* i386-tdep.c (i386_reg_struct_return_p): Handle structures with a
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
e5a52504 60 flags = bed->dynamic_sec_flags;
252b5132 61
3496cb2a 62 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 63 if (s == NULL
252b5132 64 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 65 return FALSE;
252b5132
RH
66
67 if (bed->want_got_plt)
68 {
3496cb2a 69 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 70 if (s == NULL
252b5132 71 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 72 return FALSE;
252b5132
RH
73 }
74
2517a57f
AM
75 if (bed->want_got_sym)
76 {
77 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
78 (or .got.plt) section. We don't do this in the linker script
79 because we don't want to define the symbol if we are not creating
80 a global offset table. */
14a793b2 81 bh = NULL;
2517a57f
AM
82 if (!(_bfd_generic_link_add_one_symbol
83 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3b36f7e6 84 0, NULL, FALSE, bed->collect, &bh)))
b34976b6 85 return FALSE;
14a793b2 86 h = (struct elf_link_hash_entry *) bh;
f5385ebf 87 h->def_regular = 1;
2517a57f 88 h->type = STT_OBJECT;
e6857c0c 89 h->other = STV_HIDDEN;
252b5132 90
36af4a4e 91 if (! info->executable
c152c796 92 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 93 return FALSE;
252b5132 94
2517a57f
AM
95 elf_hash_table (info)->hgot = h;
96 }
252b5132
RH
97
98 /* The first bit of the global offset table is the header. */
3b36f7e6 99 s->size += bed->got_header_size;
252b5132 100
b34976b6 101 return TRUE;
252b5132
RH
102}
103\f
7e9f0867
AM
104/* Create a strtab to hold the dynamic symbol names. */
105static bfd_boolean
106_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
107{
108 struct elf_link_hash_table *hash_table;
109
110 hash_table = elf_hash_table (info);
111 if (hash_table->dynobj == NULL)
112 hash_table->dynobj = abfd;
113
114 if (hash_table->dynstr == NULL)
115 {
116 hash_table->dynstr = _bfd_elf_strtab_init ();
117 if (hash_table->dynstr == NULL)
118 return FALSE;
119 }
120 return TRUE;
121}
122
45d6a902
AM
123/* Create some sections which will be filled in with dynamic linking
124 information. ABFD is an input file which requires dynamic sections
125 to be created. The dynamic sections take up virtual memory space
126 when the final executable is run, so we need to create them before
127 addresses are assigned to the output sections. We work out the
128 actual contents and size of these sections later. */
252b5132 129
b34976b6 130bfd_boolean
268b6b39 131_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 132{
45d6a902
AM
133 flagword flags;
134 register asection *s;
135 struct elf_link_hash_entry *h;
136 struct bfd_link_hash_entry *bh;
9c5bfbb7 137 const struct elf_backend_data *bed;
252b5132 138
0eddce27 139 if (! is_elf_hash_table (info->hash))
45d6a902
AM
140 return FALSE;
141
142 if (elf_hash_table (info)->dynamic_sections_created)
143 return TRUE;
144
7e9f0867
AM
145 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
146 return FALSE;
45d6a902 147
7e9f0867 148 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
149 bed = get_elf_backend_data (abfd);
150
151 flags = bed->dynamic_sec_flags;
45d6a902
AM
152
153 /* A dynamically linked executable has a .interp section, but a
154 shared library does not. */
36af4a4e 155 if (info->executable)
252b5132 156 {
3496cb2a
L
157 s = bfd_make_section_with_flags (abfd, ".interp",
158 flags | SEC_READONLY);
159 if (s == NULL)
45d6a902
AM
160 return FALSE;
161 }
bb0deeff 162
0eddce27 163 if (! info->traditional_format)
45d6a902 164 {
3496cb2a
L
165 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
166 flags | SEC_READONLY);
45d6a902 167 if (s == NULL
45d6a902
AM
168 || ! bfd_set_section_alignment (abfd, s, 2))
169 return FALSE;
170 elf_hash_table (info)->eh_info.hdr_sec = s;
171 }
bb0deeff 172
45d6a902
AM
173 /* Create sections to hold version informations. These are removed
174 if they are not needed. */
3496cb2a
L
175 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
176 flags | SEC_READONLY);
45d6a902 177 if (s == NULL
45d6a902
AM
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
3496cb2a
L
181 s = bfd_make_section_with_flags (abfd, ".gnu.version",
182 flags | SEC_READONLY);
45d6a902 183 if (s == NULL
45d6a902
AM
184 || ! bfd_set_section_alignment (abfd, s, 1))
185 return FALSE;
186
3496cb2a
L
187 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
188 flags | SEC_READONLY);
45d6a902 189 if (s == NULL
45d6a902
AM
190 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
191 return FALSE;
192
3496cb2a
L
193 s = bfd_make_section_with_flags (abfd, ".dynsym",
194 flags | SEC_READONLY);
45d6a902 195 if (s == NULL
45d6a902
AM
196 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
197 return FALSE;
198
3496cb2a
L
199 s = bfd_make_section_with_flags (abfd, ".dynstr",
200 flags | SEC_READONLY);
201 if (s == NULL)
45d6a902
AM
202 return FALSE;
203
3496cb2a 204 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 205 if (s == NULL
45d6a902
AM
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
210 .dynamic section. We could set _DYNAMIC in a linker script, but we
211 only want to define it if we are, in fact, creating a .dynamic
212 section. We don't want to define it if there is no .dynamic
213 section, since on some ELF platforms the start up code examines it
214 to decide how to initialize the process. */
215 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
216 FALSE, FALSE, FALSE);
217 if (h != NULL)
218 {
219 /* Zap symbol defined in an as-needed lib that wasn't linked.
220 This is a symptom of a larger problem: Absolute symbols
221 defined in shared libraries can't be overridden, because we
222 lose the link to the bfd which is via the symbol section. */
223 h->root.type = bfd_link_hash_new;
224 }
225 bh = &h->root;
45d6a902 226 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
227 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
228 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
229 return FALSE;
230 h = (struct elf_link_hash_entry *) bh;
f5385ebf 231 h->def_regular = 1;
45d6a902
AM
232 h->type = STT_OBJECT;
233
36af4a4e 234 if (! info->executable
c152c796 235 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
236 return FALSE;
237
3496cb2a
L
238 s = bfd_make_section_with_flags (abfd, ".hash",
239 flags | SEC_READONLY);
45d6a902 240 if (s == NULL
45d6a902
AM
241 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 return FALSE;
243 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
244
245 /* Let the backend create the rest of the sections. This lets the
246 backend set the right flags. The backend will normally create
247 the .got and .plt sections. */
248 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
249 return FALSE;
250
251 elf_hash_table (info)->dynamic_sections_created = TRUE;
252
253 return TRUE;
254}
255
256/* Create dynamic sections when linking against a dynamic object. */
257
258bfd_boolean
268b6b39 259_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
260{
261 flagword flags, pltflags;
262 asection *s;
9c5bfbb7 263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 264
252b5132
RH
265 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
266 .rel[a].bss sections. */
e5a52504 267 flags = bed->dynamic_sec_flags;
252b5132
RH
268
269 pltflags = flags;
252b5132 270 if (bed->plt_not_loaded)
6df4d94c
MM
271 /* We do not clear SEC_ALLOC here because we still want the OS to
272 allocate space for the section; it's just that there's nothing
273 to read in from the object file. */
5d1634d7 274 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
275 else
276 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
277 if (bed->plt_readonly)
278 pltflags |= SEC_READONLY;
279
3496cb2a 280 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 281 if (s == NULL
252b5132 282 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 283 return FALSE;
252b5132
RH
284
285 if (bed->want_plt_sym)
286 {
287 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
288 .plt section. */
14a793b2
AM
289 struct elf_link_hash_entry *h;
290 struct bfd_link_hash_entry *bh = NULL;
291
252b5132 292 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
293 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
294 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 295 return FALSE;
14a793b2 296 h = (struct elf_link_hash_entry *) bh;
f5385ebf 297 h->def_regular = 1;
252b5132
RH
298 h->type = STT_OBJECT;
299
36af4a4e 300 if (! info->executable
c152c796 301 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 302 return FALSE;
252b5132
RH
303 }
304
3496cb2a
L
305 s = bfd_make_section_with_flags (abfd,
306 (bed->default_use_rela_p
307 ? ".rela.plt" : ".rel.plt"),
308 flags | SEC_READONLY);
252b5132 309 if (s == NULL
45d6a902 310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 311 return FALSE;
252b5132
RH
312
313 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 314 return FALSE;
252b5132 315
3018b441
RH
316 if (bed->want_dynbss)
317 {
318 /* The .dynbss section is a place to put symbols which are defined
319 by dynamic objects, are referenced by regular objects, and are
320 not functions. We must allocate space for them in the process
321 image and use a R_*_COPY reloc to tell the dynamic linker to
322 initialize them at run time. The linker script puts the .dynbss
323 section into the .bss section of the final image. */
3496cb2a
L
324 s = bfd_make_section_with_flags (abfd, ".dynbss",
325 (SEC_ALLOC
326 | SEC_LINKER_CREATED));
327 if (s == NULL)
b34976b6 328 return FALSE;
252b5132 329
3018b441 330 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
331 normally needed. We need to create it here, though, so that the
332 linker will map it to an output section. We can't just create it
333 only if we need it, because we will not know whether we need it
334 until we have seen all the input files, and the first time the
335 main linker code calls BFD after examining all the input files
336 (size_dynamic_sections) the input sections have already been
337 mapped to the output sections. If the section turns out not to
338 be needed, we can discard it later. We will never need this
339 section when generating a shared object, since they do not use
340 copy relocs. */
3018b441
RH
341 if (! info->shared)
342 {
3496cb2a
L
343 s = bfd_make_section_with_flags (abfd,
344 (bed->default_use_rela_p
345 ? ".rela.bss" : ".rel.bss"),
346 flags | SEC_READONLY);
3018b441 347 if (s == NULL
45d6a902 348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 349 return FALSE;
3018b441 350 }
252b5132
RH
351 }
352
b34976b6 353 return TRUE;
252b5132
RH
354}
355\f
252b5132
RH
356/* Record a new dynamic symbol. We record the dynamic symbols as we
357 read the input files, since we need to have a list of all of them
358 before we can determine the final sizes of the output sections.
359 Note that we may actually call this function even though we are not
360 going to output any dynamic symbols; in some cases we know that a
361 symbol should be in the dynamic symbol table, but only if there is
362 one. */
363
b34976b6 364bfd_boolean
c152c796
AM
365bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
366 struct elf_link_hash_entry *h)
252b5132
RH
367{
368 if (h->dynindx == -1)
369 {
2b0f7ef9 370 struct elf_strtab_hash *dynstr;
68b6ddd0 371 char *p;
252b5132 372 const char *name;
252b5132
RH
373 bfd_size_type indx;
374
7a13edea
NC
375 /* XXX: The ABI draft says the linker must turn hidden and
376 internal symbols into STB_LOCAL symbols when producing the
377 DSO. However, if ld.so honors st_other in the dynamic table,
378 this would not be necessary. */
379 switch (ELF_ST_VISIBILITY (h->other))
380 {
381 case STV_INTERNAL:
382 case STV_HIDDEN:
9d6eee78
L
383 if (h->root.type != bfd_link_hash_undefined
384 && h->root.type != bfd_link_hash_undefweak)
38048eb9 385 {
f5385ebf 386 h->forced_local = 1;
67687978
PB
387 if (!elf_hash_table (info)->is_relocatable_executable)
388 return TRUE;
7a13edea 389 }
0444bdd4 390
7a13edea
NC
391 default:
392 break;
393 }
394
252b5132
RH
395 h->dynindx = elf_hash_table (info)->dynsymcount;
396 ++elf_hash_table (info)->dynsymcount;
397
398 dynstr = elf_hash_table (info)->dynstr;
399 if (dynstr == NULL)
400 {
401 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 402 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 403 if (dynstr == NULL)
b34976b6 404 return FALSE;
252b5132
RH
405 }
406
407 /* We don't put any version information in the dynamic string
aad5d350 408 table. */
252b5132
RH
409 name = h->root.root.string;
410 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
411 if (p != NULL)
412 /* We know that the p points into writable memory. In fact,
413 there are only a few symbols that have read-only names, being
414 those like _GLOBAL_OFFSET_TABLE_ that are created specially
415 by the backends. Most symbols will have names pointing into
416 an ELF string table read from a file, or to objalloc memory. */
417 *p = 0;
418
419 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
420
421 if (p != NULL)
422 *p = ELF_VER_CHR;
252b5132
RH
423
424 if (indx == (bfd_size_type) -1)
b34976b6 425 return FALSE;
252b5132
RH
426 h->dynstr_index = indx;
427 }
428
b34976b6 429 return TRUE;
252b5132 430}
45d6a902
AM
431\f
432/* Record an assignment to a symbol made by a linker script. We need
433 this in case some dynamic object refers to this symbol. */
434
435bfd_boolean
eaae8ded 436bfd_elf_record_link_assignment (struct bfd_link_info *info,
268b6b39
AM
437 const char *name,
438 bfd_boolean provide)
45d6a902
AM
439{
440 struct elf_link_hash_entry *h;
4ea42fb7 441 struct elf_link_hash_table *htab;
45d6a902 442
0eddce27 443 if (!is_elf_hash_table (info->hash))
45d6a902
AM
444 return TRUE;
445
4ea42fb7
AM
446 htab = elf_hash_table (info);
447 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 448 if (h == NULL)
4ea42fb7 449 return provide;
45d6a902 450
02bb6eae
AO
451 /* Since we're defining the symbol, don't let it seem to have not
452 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 453 may depend on this. */
02bb6eae
AO
454 if (h->root.type == bfd_link_hash_undefweak
455 || h->root.type == bfd_link_hash_undefined)
77cfaee6 456 {
4ea42fb7 457 h->root.type = bfd_link_hash_new;
77cfaee6
AM
458 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
459 bfd_link_repair_undef_list (&htab->root);
77cfaee6 460 }
02bb6eae 461
45d6a902 462 if (h->root.type == bfd_link_hash_new)
f5385ebf 463 h->non_elf = 0;
45d6a902
AM
464
465 /* If this symbol is being provided by the linker script, and it is
466 currently defined by a dynamic object, but not by a regular
467 object, then mark it as undefined so that the generic linker will
468 force the correct value. */
469 if (provide
f5385ebf
AM
470 && h->def_dynamic
471 && !h->def_regular)
45d6a902
AM
472 h->root.type = bfd_link_hash_undefined;
473
474 /* If this symbol is not being provided by the linker script, and it is
475 currently defined by a dynamic object, but not by a regular object,
476 then clear out any version information because the symbol will not be
477 associated with the dynamic object any more. */
478 if (!provide
f5385ebf
AM
479 && h->def_dynamic
480 && !h->def_regular)
45d6a902
AM
481 h->verinfo.verdef = NULL;
482
f5385ebf 483 h->def_regular = 1;
45d6a902 484
6fa3860b
PB
485 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
486 and executables. */
487 if (!info->relocatable
488 && h->dynindx != -1
489 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
490 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
491 h->forced_local = 1;
492
f5385ebf
AM
493 if ((h->def_dynamic
494 || h->ref_dynamic
67687978
PB
495 || info->shared
496 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
497 && h->dynindx == -1)
498 {
c152c796 499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
500 return FALSE;
501
502 /* If this is a weak defined symbol, and we know a corresponding
503 real symbol from the same dynamic object, make sure the real
504 symbol is also made into a dynamic symbol. */
f6e332e6
AM
505 if (h->u.weakdef != NULL
506 && h->u.weakdef->dynindx == -1)
45d6a902 507 {
f6e332e6 508 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
509 return FALSE;
510 }
511 }
512
513 return TRUE;
514}
42751cf3 515
8c58d23b
AM
516/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
517 success, and 2 on a failure caused by attempting to record a symbol
518 in a discarded section, eg. a discarded link-once section symbol. */
519
520int
c152c796
AM
521bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
522 bfd *input_bfd,
523 long input_indx)
8c58d23b
AM
524{
525 bfd_size_type amt;
526 struct elf_link_local_dynamic_entry *entry;
527 struct elf_link_hash_table *eht;
528 struct elf_strtab_hash *dynstr;
529 unsigned long dynstr_index;
530 char *name;
531 Elf_External_Sym_Shndx eshndx;
532 char esym[sizeof (Elf64_External_Sym)];
533
0eddce27 534 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
535 return 0;
536
537 /* See if the entry exists already. */
538 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
539 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
540 return 1;
541
542 amt = sizeof (*entry);
268b6b39 543 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
544 if (entry == NULL)
545 return 0;
546
547 /* Go find the symbol, so that we can find it's name. */
548 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 549 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
550 {
551 bfd_release (input_bfd, entry);
552 return 0;
553 }
554
555 if (entry->isym.st_shndx != SHN_UNDEF
556 && (entry->isym.st_shndx < SHN_LORESERVE
557 || entry->isym.st_shndx > SHN_HIRESERVE))
558 {
559 asection *s;
560
561 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
562 if (s == NULL || bfd_is_abs_section (s->output_section))
563 {
564 /* We can still bfd_release here as nothing has done another
565 bfd_alloc. We can't do this later in this function. */
566 bfd_release (input_bfd, entry);
567 return 2;
568 }
569 }
570
571 name = (bfd_elf_string_from_elf_section
572 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
573 entry->isym.st_name));
574
575 dynstr = elf_hash_table (info)->dynstr;
576 if (dynstr == NULL)
577 {
578 /* Create a strtab to hold the dynamic symbol names. */
579 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
580 if (dynstr == NULL)
581 return 0;
582 }
583
b34976b6 584 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
585 if (dynstr_index == (unsigned long) -1)
586 return 0;
587 entry->isym.st_name = dynstr_index;
588
589 eht = elf_hash_table (info);
590
591 entry->next = eht->dynlocal;
592 eht->dynlocal = entry;
593 entry->input_bfd = input_bfd;
594 entry->input_indx = input_indx;
595 eht->dynsymcount++;
596
597 /* Whatever binding the symbol had before, it's now local. */
598 entry->isym.st_info
599 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
600
601 /* The dynindx will be set at the end of size_dynamic_sections. */
602
603 return 1;
604}
605
30b30c21 606/* Return the dynindex of a local dynamic symbol. */
42751cf3 607
30b30c21 608long
268b6b39
AM
609_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
610 bfd *input_bfd,
611 long input_indx)
30b30c21
RH
612{
613 struct elf_link_local_dynamic_entry *e;
614
615 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
616 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
617 return e->dynindx;
618 return -1;
619}
620
621/* This function is used to renumber the dynamic symbols, if some of
622 them are removed because they are marked as local. This is called
623 via elf_link_hash_traverse. */
624
b34976b6 625static bfd_boolean
268b6b39
AM
626elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
627 void *data)
42751cf3 628{
268b6b39 629 size_t *count = data;
30b30c21 630
e92d460e
AM
631 if (h->root.type == bfd_link_hash_warning)
632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
633
6fa3860b
PB
634 if (h->forced_local)
635 return TRUE;
636
637 if (h->dynindx != -1)
638 h->dynindx = ++(*count);
639
640 return TRUE;
641}
642
643
644/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
645 STB_LOCAL binding. */
646
647static bfd_boolean
648elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
649 void *data)
650{
651 size_t *count = data;
652
653 if (h->root.type == bfd_link_hash_warning)
654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
655
656 if (!h->forced_local)
657 return TRUE;
658
42751cf3 659 if (h->dynindx != -1)
30b30c21
RH
660 h->dynindx = ++(*count);
661
b34976b6 662 return TRUE;
42751cf3 663}
30b30c21 664
aee6f5b4
AO
665/* Return true if the dynamic symbol for a given section should be
666 omitted when creating a shared library. */
667bfd_boolean
668_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
669 struct bfd_link_info *info,
670 asection *p)
671{
672 switch (elf_section_data (p)->this_hdr.sh_type)
673 {
674 case SHT_PROGBITS:
675 case SHT_NOBITS:
676 /* If sh_type is yet undecided, assume it could be
677 SHT_PROGBITS/SHT_NOBITS. */
678 case SHT_NULL:
679 if (strcmp (p->name, ".got") == 0
680 || strcmp (p->name, ".got.plt") == 0
681 || strcmp (p->name, ".plt") == 0)
682 {
683 asection *ip;
684 bfd *dynobj = elf_hash_table (info)->dynobj;
685
686 if (dynobj != NULL
1da212d6 687 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
688 && (ip->flags & SEC_LINKER_CREATED)
689 && ip->output_section == p)
690 return TRUE;
691 }
692 return FALSE;
693
694 /* There shouldn't be section relative relocations
695 against any other section. */
696 default:
697 return TRUE;
698 }
699}
700
062e2358 701/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
702 symbol for each output section, which come first. Next come symbols
703 which have been forced to local binding. Then all of the back-end
704 allocated local dynamic syms, followed by the rest of the global
705 symbols. */
30b30c21 706
554220db
AM
707static unsigned long
708_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
709 struct bfd_link_info *info,
710 unsigned long *section_sym_count)
30b30c21
RH
711{
712 unsigned long dynsymcount = 0;
713
67687978 714 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 715 {
aee6f5b4 716 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
717 asection *p;
718 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 719 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
720 && (p->flags & SEC_ALLOC) != 0
721 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
722 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21 723 }
554220db 724 *section_sym_count = dynsymcount;
30b30c21 725
6fa3860b
PB
726 elf_link_hash_traverse (elf_hash_table (info),
727 elf_link_renumber_local_hash_table_dynsyms,
728 &dynsymcount);
729
30b30c21
RH
730 if (elf_hash_table (info)->dynlocal)
731 {
732 struct elf_link_local_dynamic_entry *p;
733 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
734 p->dynindx = ++dynsymcount;
735 }
736
737 elf_link_hash_traverse (elf_hash_table (info),
738 elf_link_renumber_hash_table_dynsyms,
739 &dynsymcount);
740
741 /* There is an unused NULL entry at the head of the table which
742 we must account for in our count. Unless there weren't any
743 symbols, which means we'll have no table at all. */
744 if (dynsymcount != 0)
745 ++dynsymcount;
746
747 return elf_hash_table (info)->dynsymcount = dynsymcount;
748}
252b5132 749
45d6a902
AM
750/* This function is called when we want to define a new symbol. It
751 handles the various cases which arise when we find a definition in
752 a dynamic object, or when there is already a definition in a
753 dynamic object. The new symbol is described by NAME, SYM, PSEC,
754 and PVALUE. We set SYM_HASH to the hash table entry. We set
755 OVERRIDE if the old symbol is overriding a new definition. We set
756 TYPE_CHANGE_OK if it is OK for the type to change. We set
757 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
758 change, we mean that we shouldn't warn if the type or size does
af44c138
L
759 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
760 object is overridden by a regular object. */
45d6a902
AM
761
762bfd_boolean
268b6b39
AM
763_bfd_elf_merge_symbol (bfd *abfd,
764 struct bfd_link_info *info,
765 const char *name,
766 Elf_Internal_Sym *sym,
767 asection **psec,
768 bfd_vma *pvalue,
af44c138 769 unsigned int *pold_alignment,
268b6b39
AM
770 struct elf_link_hash_entry **sym_hash,
771 bfd_boolean *skip,
772 bfd_boolean *override,
773 bfd_boolean *type_change_ok,
0f8a2703 774 bfd_boolean *size_change_ok)
252b5132 775{
7479dfd4 776 asection *sec, *oldsec;
45d6a902
AM
777 struct elf_link_hash_entry *h;
778 struct elf_link_hash_entry *flip;
779 int bind;
780 bfd *oldbfd;
781 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 782 bfd_boolean newweak, oldweak;
45d6a902
AM
783
784 *skip = FALSE;
785 *override = FALSE;
786
787 sec = *psec;
788 bind = ELF_ST_BIND (sym->st_info);
789
790 if (! bfd_is_und_section (sec))
791 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
792 else
793 h = ((struct elf_link_hash_entry *)
794 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
795 if (h == NULL)
796 return FALSE;
797 *sym_hash = h;
252b5132 798
45d6a902
AM
799 /* This code is for coping with dynamic objects, and is only useful
800 if we are doing an ELF link. */
801 if (info->hash->creator != abfd->xvec)
802 return TRUE;
252b5132 803
45d6a902
AM
804 /* For merging, we only care about real symbols. */
805
806 while (h->root.type == bfd_link_hash_indirect
807 || h->root.type == bfd_link_hash_warning)
808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
809
810 /* If we just created the symbol, mark it as being an ELF symbol.
811 Other than that, there is nothing to do--there is no merge issue
812 with a newly defined symbol--so we just return. */
813
814 if (h->root.type == bfd_link_hash_new)
252b5132 815 {
f5385ebf 816 h->non_elf = 0;
45d6a902
AM
817 return TRUE;
818 }
252b5132 819
7479dfd4
L
820 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
821 existing symbol. */
252b5132 822
45d6a902
AM
823 switch (h->root.type)
824 {
825 default:
826 oldbfd = NULL;
7479dfd4 827 oldsec = NULL;
45d6a902 828 break;
252b5132 829
45d6a902
AM
830 case bfd_link_hash_undefined:
831 case bfd_link_hash_undefweak:
832 oldbfd = h->root.u.undef.abfd;
7479dfd4 833 oldsec = NULL;
45d6a902
AM
834 break;
835
836 case bfd_link_hash_defined:
837 case bfd_link_hash_defweak:
838 oldbfd = h->root.u.def.section->owner;
7479dfd4 839 oldsec = h->root.u.def.section;
45d6a902
AM
840 break;
841
842 case bfd_link_hash_common:
843 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 844 oldsec = h->root.u.c.p->section;
45d6a902
AM
845 break;
846 }
847
848 /* In cases involving weak versioned symbols, we may wind up trying
849 to merge a symbol with itself. Catch that here, to avoid the
850 confusion that results if we try to override a symbol with
851 itself. The additional tests catch cases like
852 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
853 dynamic object, which we do want to handle here. */
854 if (abfd == oldbfd
855 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 856 || !h->def_regular))
45d6a902
AM
857 return TRUE;
858
859 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
860 respectively, is from a dynamic object. */
861
862 if ((abfd->flags & DYNAMIC) != 0)
863 newdyn = TRUE;
864 else
865 newdyn = FALSE;
866
867 if (oldbfd != NULL)
868 olddyn = (oldbfd->flags & DYNAMIC) != 0;
869 else
870 {
871 asection *hsec;
872
873 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
874 indices used by MIPS ELF. */
875 switch (h->root.type)
252b5132 876 {
45d6a902
AM
877 default:
878 hsec = NULL;
879 break;
252b5132 880
45d6a902
AM
881 case bfd_link_hash_defined:
882 case bfd_link_hash_defweak:
883 hsec = h->root.u.def.section;
884 break;
252b5132 885
45d6a902
AM
886 case bfd_link_hash_common:
887 hsec = h->root.u.c.p->section;
888 break;
252b5132 889 }
252b5132 890
45d6a902
AM
891 if (hsec == NULL)
892 olddyn = FALSE;
893 else
894 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
895 }
252b5132 896
45d6a902
AM
897 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
898 respectively, appear to be a definition rather than reference. */
899
900 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
901 newdef = FALSE;
902 else
903 newdef = TRUE;
904
905 if (h->root.type == bfd_link_hash_undefined
906 || h->root.type == bfd_link_hash_undefweak
907 || h->root.type == bfd_link_hash_common)
908 olddef = FALSE;
909 else
910 olddef = TRUE;
911
7479dfd4
L
912 /* Check TLS symbol. */
913 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
914 && ELF_ST_TYPE (sym->st_info) != h->type)
915 {
916 bfd *ntbfd, *tbfd;
917 bfd_boolean ntdef, tdef;
918 asection *ntsec, *tsec;
919
920 if (h->type == STT_TLS)
921 {
3b36f7e6 922 ntbfd = abfd;
7479dfd4
L
923 ntsec = sec;
924 ntdef = newdef;
925 tbfd = oldbfd;
926 tsec = oldsec;
927 tdef = olddef;
928 }
929 else
930 {
931 ntbfd = oldbfd;
932 ntsec = oldsec;
933 ntdef = olddef;
934 tbfd = abfd;
935 tsec = sec;
936 tdef = newdef;
937 }
938
939 if (tdef && ntdef)
940 (*_bfd_error_handler)
941 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
942 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
943 else if (!tdef && !ntdef)
944 (*_bfd_error_handler)
945 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
946 tbfd, ntbfd, h->root.root.string);
947 else if (tdef)
948 (*_bfd_error_handler)
949 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
950 tbfd, tsec, ntbfd, h->root.root.string);
951 else
952 (*_bfd_error_handler)
953 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
954 tbfd, ntbfd, ntsec, h->root.root.string);
955
956 bfd_set_error (bfd_error_bad_value);
957 return FALSE;
958 }
959
4cc11e76 960 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
961 object or is weak in all dynamic objects. Internal and hidden
962 visibility will make it unavailable to dynamic objects. */
f5385ebf 963 if (newdyn && !h->dynamic_def)
45d6a902
AM
964 {
965 if (!bfd_is_und_section (sec))
f5385ebf 966 h->dynamic_def = 1;
45d6a902 967 else
252b5132 968 {
45d6a902
AM
969 /* Check if this symbol is weak in all dynamic objects. If it
970 is the first time we see it in a dynamic object, we mark
971 if it is weak. Otherwise, we clear it. */
f5385ebf 972 if (!h->ref_dynamic)
79349b09 973 {
45d6a902 974 if (bind == STB_WEAK)
f5385ebf 975 h->dynamic_weak = 1;
252b5132 976 }
45d6a902 977 else if (bind != STB_WEAK)
f5385ebf 978 h->dynamic_weak = 0;
252b5132 979 }
45d6a902 980 }
252b5132 981
45d6a902
AM
982 /* If the old symbol has non-default visibility, we ignore the new
983 definition from a dynamic object. */
984 if (newdyn
9c7a29a3 985 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
986 && !bfd_is_und_section (sec))
987 {
988 *skip = TRUE;
989 /* Make sure this symbol is dynamic. */
f5385ebf 990 h->ref_dynamic = 1;
45d6a902
AM
991 /* A protected symbol has external availability. Make sure it is
992 recorded as dynamic.
993
994 FIXME: Should we check type and size for protected symbol? */
995 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 996 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
997 else
998 return TRUE;
999 }
1000 else if (!newdyn
9c7a29a3 1001 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1002 && h->def_dynamic)
45d6a902
AM
1003 {
1004 /* If the new symbol with non-default visibility comes from a
1005 relocatable file and the old definition comes from a dynamic
1006 object, we remove the old definition. */
1007 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1008 h = *sym_hash;
1de1a317 1009
f6e332e6 1010 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1011 && bfd_is_und_section (sec))
1012 {
1013 /* If the new symbol is undefined and the old symbol was
1014 also undefined before, we need to make sure
1015 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1016 up the linker hash table undefs list. Since the old
1de1a317
L
1017 definition came from a dynamic object, it is still on the
1018 undefs list. */
1019 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1020 h->root.u.undef.abfd = abfd;
1021 }
1022 else
1023 {
1024 h->root.type = bfd_link_hash_new;
1025 h->root.u.undef.abfd = NULL;
1026 }
1027
f5385ebf 1028 if (h->def_dynamic)
252b5132 1029 {
f5385ebf
AM
1030 h->def_dynamic = 0;
1031 h->ref_dynamic = 1;
1032 h->dynamic_def = 1;
45d6a902
AM
1033 }
1034 /* FIXME: Should we check type and size for protected symbol? */
1035 h->size = 0;
1036 h->type = 0;
1037 return TRUE;
1038 }
14a793b2 1039
79349b09
AM
1040 /* Differentiate strong and weak symbols. */
1041 newweak = bind == STB_WEAK;
1042 oldweak = (h->root.type == bfd_link_hash_defweak
1043 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1044
15b43f48
AM
1045 /* If a new weak symbol definition comes from a regular file and the
1046 old symbol comes from a dynamic library, we treat the new one as
1047 strong. Similarly, an old weak symbol definition from a regular
1048 file is treated as strong when the new symbol comes from a dynamic
1049 library. Further, an old weak symbol from a dynamic library is
1050 treated as strong if the new symbol is from a dynamic library.
1051 This reflects the way glibc's ld.so works.
1052
1053 Do this before setting *type_change_ok or *size_change_ok so that
1054 we warn properly when dynamic library symbols are overridden. */
1055
1056 if (newdef && !newdyn && olddyn)
0f8a2703 1057 newweak = FALSE;
15b43f48 1058 if (olddef && newdyn)
0f8a2703
AM
1059 oldweak = FALSE;
1060
79349b09
AM
1061 /* It's OK to change the type if either the existing symbol or the
1062 new symbol is weak. A type change is also OK if the old symbol
1063 is undefined and the new symbol is defined. */
252b5132 1064
79349b09
AM
1065 if (oldweak
1066 || newweak
1067 || (newdef
1068 && h->root.type == bfd_link_hash_undefined))
1069 *type_change_ok = TRUE;
1070
1071 /* It's OK to change the size if either the existing symbol or the
1072 new symbol is weak, or if the old symbol is undefined. */
1073
1074 if (*type_change_ok
1075 || h->root.type == bfd_link_hash_undefined)
1076 *size_change_ok = TRUE;
45d6a902 1077
45d6a902
AM
1078 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1079 symbol, respectively, appears to be a common symbol in a dynamic
1080 object. If a symbol appears in an uninitialized section, and is
1081 not weak, and is not a function, then it may be a common symbol
1082 which was resolved when the dynamic object was created. We want
1083 to treat such symbols specially, because they raise special
1084 considerations when setting the symbol size: if the symbol
1085 appears as a common symbol in a regular object, and the size in
1086 the regular object is larger, we must make sure that we use the
1087 larger size. This problematic case can always be avoided in C,
1088 but it must be handled correctly when using Fortran shared
1089 libraries.
1090
1091 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1092 likewise for OLDDYNCOMMON and OLDDEF.
1093
1094 Note that this test is just a heuristic, and that it is quite
1095 possible to have an uninitialized symbol in a shared object which
1096 is really a definition, rather than a common symbol. This could
1097 lead to some minor confusion when the symbol really is a common
1098 symbol in some regular object. However, I think it will be
1099 harmless. */
1100
1101 if (newdyn
1102 && newdef
79349b09 1103 && !newweak
45d6a902
AM
1104 && (sec->flags & SEC_ALLOC) != 0
1105 && (sec->flags & SEC_LOAD) == 0
1106 && sym->st_size > 0
45d6a902
AM
1107 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1108 newdyncommon = TRUE;
1109 else
1110 newdyncommon = FALSE;
1111
1112 if (olddyn
1113 && olddef
1114 && h->root.type == bfd_link_hash_defined
f5385ebf 1115 && h->def_dynamic
45d6a902
AM
1116 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1117 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1118 && h->size > 0
1119 && h->type != STT_FUNC)
1120 olddyncommon = TRUE;
1121 else
1122 olddyncommon = FALSE;
1123
45d6a902
AM
1124 /* If both the old and the new symbols look like common symbols in a
1125 dynamic object, set the size of the symbol to the larger of the
1126 two. */
1127
1128 if (olddyncommon
1129 && newdyncommon
1130 && sym->st_size != h->size)
1131 {
1132 /* Since we think we have two common symbols, issue a multiple
1133 common warning if desired. Note that we only warn if the
1134 size is different. If the size is the same, we simply let
1135 the old symbol override the new one as normally happens with
1136 symbols defined in dynamic objects. */
1137
1138 if (! ((*info->callbacks->multiple_common)
1139 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1140 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1141 return FALSE;
252b5132 1142
45d6a902
AM
1143 if (sym->st_size > h->size)
1144 h->size = sym->st_size;
252b5132 1145
45d6a902 1146 *size_change_ok = TRUE;
252b5132
RH
1147 }
1148
45d6a902
AM
1149 /* If we are looking at a dynamic object, and we have found a
1150 definition, we need to see if the symbol was already defined by
1151 some other object. If so, we want to use the existing
1152 definition, and we do not want to report a multiple symbol
1153 definition error; we do this by clobbering *PSEC to be
1154 bfd_und_section_ptr.
1155
1156 We treat a common symbol as a definition if the symbol in the
1157 shared library is a function, since common symbols always
1158 represent variables; this can cause confusion in principle, but
1159 any such confusion would seem to indicate an erroneous program or
1160 shared library. We also permit a common symbol in a regular
79349b09 1161 object to override a weak symbol in a shared object. */
45d6a902
AM
1162
1163 if (newdyn
1164 && newdef
77cfaee6 1165 && (olddef
45d6a902 1166 || (h->root.type == bfd_link_hash_common
79349b09 1167 && (newweak
0f8a2703 1168 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1169 {
1170 *override = TRUE;
1171 newdef = FALSE;
1172 newdyncommon = FALSE;
252b5132 1173
45d6a902
AM
1174 *psec = sec = bfd_und_section_ptr;
1175 *size_change_ok = TRUE;
252b5132 1176
45d6a902
AM
1177 /* If we get here when the old symbol is a common symbol, then
1178 we are explicitly letting it override a weak symbol or
1179 function in a dynamic object, and we don't want to warn about
1180 a type change. If the old symbol is a defined symbol, a type
1181 change warning may still be appropriate. */
252b5132 1182
45d6a902
AM
1183 if (h->root.type == bfd_link_hash_common)
1184 *type_change_ok = TRUE;
1185 }
1186
1187 /* Handle the special case of an old common symbol merging with a
1188 new symbol which looks like a common symbol in a shared object.
1189 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1190 common symbol, and let _bfd_generic_link_add_one_symbol do the
1191 right thing. */
45d6a902
AM
1192
1193 if (newdyncommon
1194 && h->root.type == bfd_link_hash_common)
1195 {
1196 *override = TRUE;
1197 newdef = FALSE;
1198 newdyncommon = FALSE;
1199 *pvalue = sym->st_size;
1200 *psec = sec = bfd_com_section_ptr;
1201 *size_change_ok = TRUE;
1202 }
1203
c5e2cead
L
1204 /* Skip weak definitions of symbols that are already defined. */
1205 if (newdef && olddef && newweak && !oldweak)
1206 *skip = TRUE;
1207
45d6a902
AM
1208 /* If the old symbol is from a dynamic object, and the new symbol is
1209 a definition which is not from a dynamic object, then the new
1210 symbol overrides the old symbol. Symbols from regular files
1211 always take precedence over symbols from dynamic objects, even if
1212 they are defined after the dynamic object in the link.
1213
1214 As above, we again permit a common symbol in a regular object to
1215 override a definition in a shared object if the shared object
0f8a2703 1216 symbol is a function or is weak. */
45d6a902
AM
1217
1218 flip = NULL;
77cfaee6 1219 if (!newdyn
45d6a902
AM
1220 && (newdef
1221 || (bfd_is_com_section (sec)
79349b09
AM
1222 && (oldweak
1223 || h->type == STT_FUNC)))
45d6a902
AM
1224 && olddyn
1225 && olddef
f5385ebf 1226 && h->def_dynamic)
45d6a902
AM
1227 {
1228 /* Change the hash table entry to undefined, and let
1229 _bfd_generic_link_add_one_symbol do the right thing with the
1230 new definition. */
1231
1232 h->root.type = bfd_link_hash_undefined;
1233 h->root.u.undef.abfd = h->root.u.def.section->owner;
1234 *size_change_ok = TRUE;
1235
1236 olddef = FALSE;
1237 olddyncommon = FALSE;
1238
1239 /* We again permit a type change when a common symbol may be
1240 overriding a function. */
1241
1242 if (bfd_is_com_section (sec))
1243 *type_change_ok = TRUE;
1244
1245 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1246 flip = *sym_hash;
1247 else
1248 /* This union may have been set to be non-NULL when this symbol
1249 was seen in a dynamic object. We must force the union to be
1250 NULL, so that it is correct for a regular symbol. */
1251 h->verinfo.vertree = NULL;
1252 }
1253
1254 /* Handle the special case of a new common symbol merging with an
1255 old symbol that looks like it might be a common symbol defined in
1256 a shared object. Note that we have already handled the case in
1257 which a new common symbol should simply override the definition
1258 in the shared library. */
1259
1260 if (! newdyn
1261 && bfd_is_com_section (sec)
1262 && olddyncommon)
1263 {
1264 /* It would be best if we could set the hash table entry to a
1265 common symbol, but we don't know what to use for the section
1266 or the alignment. */
1267 if (! ((*info->callbacks->multiple_common)
1268 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1269 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1270 return FALSE;
1271
4cc11e76 1272 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1273 larger, pretend that the new symbol has its size. */
1274
1275 if (h->size > *pvalue)
1276 *pvalue = h->size;
1277
af44c138
L
1278 /* We need to remember the alignment required by the symbol
1279 in the dynamic object. */
1280 BFD_ASSERT (pold_alignment);
1281 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1282
1283 olddef = FALSE;
1284 olddyncommon = FALSE;
1285
1286 h->root.type = bfd_link_hash_undefined;
1287 h->root.u.undef.abfd = h->root.u.def.section->owner;
1288
1289 *size_change_ok = TRUE;
1290 *type_change_ok = TRUE;
1291
1292 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1293 flip = *sym_hash;
1294 else
1295 h->verinfo.vertree = NULL;
1296 }
1297
1298 if (flip != NULL)
1299 {
1300 /* Handle the case where we had a versioned symbol in a dynamic
1301 library and now find a definition in a normal object. In this
1302 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1304 flip->root.type = h->root.type;
1305 h->root.type = bfd_link_hash_indirect;
1306 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1307 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1308 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1309 if (h->def_dynamic)
45d6a902 1310 {
f5385ebf
AM
1311 h->def_dynamic = 0;
1312 flip->ref_dynamic = 1;
45d6a902
AM
1313 }
1314 }
1315
45d6a902
AM
1316 return TRUE;
1317}
1318
1319/* This function is called to create an indirect symbol from the
1320 default for the symbol with the default version if needed. The
1321 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1322 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1323
1324bfd_boolean
268b6b39
AM
1325_bfd_elf_add_default_symbol (bfd *abfd,
1326 struct bfd_link_info *info,
1327 struct elf_link_hash_entry *h,
1328 const char *name,
1329 Elf_Internal_Sym *sym,
1330 asection **psec,
1331 bfd_vma *value,
1332 bfd_boolean *dynsym,
0f8a2703 1333 bfd_boolean override)
45d6a902
AM
1334{
1335 bfd_boolean type_change_ok;
1336 bfd_boolean size_change_ok;
1337 bfd_boolean skip;
1338 char *shortname;
1339 struct elf_link_hash_entry *hi;
1340 struct bfd_link_hash_entry *bh;
9c5bfbb7 1341 const struct elf_backend_data *bed;
45d6a902
AM
1342 bfd_boolean collect;
1343 bfd_boolean dynamic;
1344 char *p;
1345 size_t len, shortlen;
1346 asection *sec;
1347
1348 /* If this symbol has a version, and it is the default version, we
1349 create an indirect symbol from the default name to the fully
1350 decorated name. This will cause external references which do not
1351 specify a version to be bound to this version of the symbol. */
1352 p = strchr (name, ELF_VER_CHR);
1353 if (p == NULL || p[1] != ELF_VER_CHR)
1354 return TRUE;
1355
1356 if (override)
1357 {
4cc11e76 1358 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1359 need to create the indirect symbol from the default name. */
1360 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1361 FALSE, FALSE);
1362 BFD_ASSERT (hi != NULL);
1363 if (hi == h)
1364 return TRUE;
1365 while (hi->root.type == bfd_link_hash_indirect
1366 || hi->root.type == bfd_link_hash_warning)
1367 {
1368 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1369 if (hi == h)
1370 return TRUE;
1371 }
1372 }
1373
1374 bed = get_elf_backend_data (abfd);
1375 collect = bed->collect;
1376 dynamic = (abfd->flags & DYNAMIC) != 0;
1377
1378 shortlen = p - name;
1379 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1380 if (shortname == NULL)
1381 return FALSE;
1382 memcpy (shortname, name, shortlen);
1383 shortname[shortlen] = '\0';
1384
1385 /* We are going to create a new symbol. Merge it with any existing
1386 symbol with this name. For the purposes of the merge, act as
1387 though we were defining the symbol we just defined, although we
1388 actually going to define an indirect symbol. */
1389 type_change_ok = FALSE;
1390 size_change_ok = FALSE;
1391 sec = *psec;
1392 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1393 NULL, &hi, &skip, &override,
1394 &type_change_ok, &size_change_ok))
45d6a902
AM
1395 return FALSE;
1396
1397 if (skip)
1398 goto nondefault;
1399
1400 if (! override)
1401 {
1402 bh = &hi->root;
1403 if (! (_bfd_generic_link_add_one_symbol
1404 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1405 0, name, FALSE, collect, &bh)))
45d6a902
AM
1406 return FALSE;
1407 hi = (struct elf_link_hash_entry *) bh;
1408 }
1409 else
1410 {
1411 /* In this case the symbol named SHORTNAME is overriding the
1412 indirect symbol we want to add. We were planning on making
1413 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1414 is the name without a version. NAME is the fully versioned
1415 name, and it is the default version.
1416
1417 Overriding means that we already saw a definition for the
1418 symbol SHORTNAME in a regular object, and it is overriding
1419 the symbol defined in the dynamic object.
1420
1421 When this happens, we actually want to change NAME, the
1422 symbol we just added, to refer to SHORTNAME. This will cause
1423 references to NAME in the shared object to become references
1424 to SHORTNAME in the regular object. This is what we expect
1425 when we override a function in a shared object: that the
1426 references in the shared object will be mapped to the
1427 definition in the regular object. */
1428
1429 while (hi->root.type == bfd_link_hash_indirect
1430 || hi->root.type == bfd_link_hash_warning)
1431 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1432
1433 h->root.type = bfd_link_hash_indirect;
1434 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1435 if (h->def_dynamic)
45d6a902 1436 {
f5385ebf
AM
1437 h->def_dynamic = 0;
1438 hi->ref_dynamic = 1;
1439 if (hi->ref_regular
1440 || hi->def_regular)
45d6a902 1441 {
c152c796 1442 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1443 return FALSE;
1444 }
1445 }
1446
1447 /* Now set HI to H, so that the following code will set the
1448 other fields correctly. */
1449 hi = h;
1450 }
1451
1452 /* If there is a duplicate definition somewhere, then HI may not
1453 point to an indirect symbol. We will have reported an error to
1454 the user in that case. */
1455
1456 if (hi->root.type == bfd_link_hash_indirect)
1457 {
1458 struct elf_link_hash_entry *ht;
1459
45d6a902
AM
1460 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1461 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1462
1463 /* See if the new flags lead us to realize that the symbol must
1464 be dynamic. */
1465 if (! *dynsym)
1466 {
1467 if (! dynamic)
1468 {
1469 if (info->shared
f5385ebf 1470 || hi->ref_dynamic)
45d6a902
AM
1471 *dynsym = TRUE;
1472 }
1473 else
1474 {
f5385ebf 1475 if (hi->ref_regular)
45d6a902
AM
1476 *dynsym = TRUE;
1477 }
1478 }
1479 }
1480
1481 /* We also need to define an indirection from the nondefault version
1482 of the symbol. */
1483
1484nondefault:
1485 len = strlen (name);
1486 shortname = bfd_hash_allocate (&info->hash->table, len);
1487 if (shortname == NULL)
1488 return FALSE;
1489 memcpy (shortname, name, shortlen);
1490 memcpy (shortname + shortlen, p + 1, len - shortlen);
1491
1492 /* Once again, merge with any existing symbol. */
1493 type_change_ok = FALSE;
1494 size_change_ok = FALSE;
1495 sec = *psec;
1496 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1497 NULL, &hi, &skip, &override,
1498 &type_change_ok, &size_change_ok))
45d6a902
AM
1499 return FALSE;
1500
1501 if (skip)
1502 return TRUE;
1503
1504 if (override)
1505 {
1506 /* Here SHORTNAME is a versioned name, so we don't expect to see
1507 the type of override we do in the case above unless it is
4cc11e76 1508 overridden by a versioned definition. */
45d6a902
AM
1509 if (hi->root.type != bfd_link_hash_defined
1510 && hi->root.type != bfd_link_hash_defweak)
1511 (*_bfd_error_handler)
d003868e
AM
1512 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1513 abfd, shortname);
45d6a902
AM
1514 }
1515 else
1516 {
1517 bh = &hi->root;
1518 if (! (_bfd_generic_link_add_one_symbol
1519 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1520 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1521 return FALSE;
1522 hi = (struct elf_link_hash_entry *) bh;
1523
1524 /* If there is a duplicate definition somewhere, then HI may not
1525 point to an indirect symbol. We will have reported an error
1526 to the user in that case. */
1527
1528 if (hi->root.type == bfd_link_hash_indirect)
1529 {
45d6a902
AM
1530 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1531
1532 /* See if the new flags lead us to realize that the symbol
1533 must be dynamic. */
1534 if (! *dynsym)
1535 {
1536 if (! dynamic)
1537 {
1538 if (info->shared
f5385ebf 1539 || hi->ref_dynamic)
45d6a902
AM
1540 *dynsym = TRUE;
1541 }
1542 else
1543 {
f5385ebf 1544 if (hi->ref_regular)
45d6a902
AM
1545 *dynsym = TRUE;
1546 }
1547 }
1548 }
1549 }
1550
1551 return TRUE;
1552}
1553\f
1554/* This routine is used to export all defined symbols into the dynamic
1555 symbol table. It is called via elf_link_hash_traverse. */
1556
1557bfd_boolean
268b6b39 1558_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1559{
268b6b39 1560 struct elf_info_failed *eif = data;
45d6a902
AM
1561
1562 /* Ignore indirect symbols. These are added by the versioning code. */
1563 if (h->root.type == bfd_link_hash_indirect)
1564 return TRUE;
1565
1566 if (h->root.type == bfd_link_hash_warning)
1567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1568
1569 if (h->dynindx == -1
f5385ebf
AM
1570 && (h->def_regular
1571 || h->ref_regular))
45d6a902
AM
1572 {
1573 struct bfd_elf_version_tree *t;
1574 struct bfd_elf_version_expr *d;
1575
1576 for (t = eif->verdefs; t != NULL; t = t->next)
1577 {
108ba305 1578 if (t->globals.list != NULL)
45d6a902 1579 {
108ba305
JJ
1580 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1581 if (d != NULL)
1582 goto doit;
45d6a902
AM
1583 }
1584
108ba305 1585 if (t->locals.list != NULL)
45d6a902 1586 {
108ba305
JJ
1587 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1588 if (d != NULL)
1589 return TRUE;
45d6a902
AM
1590 }
1591 }
1592
1593 if (!eif->verdefs)
1594 {
1595 doit:
c152c796 1596 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1597 {
1598 eif->failed = TRUE;
1599 return FALSE;
1600 }
1601 }
1602 }
1603
1604 return TRUE;
1605}
1606\f
1607/* Look through the symbols which are defined in other shared
1608 libraries and referenced here. Update the list of version
1609 dependencies. This will be put into the .gnu.version_r section.
1610 This function is called via elf_link_hash_traverse. */
1611
1612bfd_boolean
268b6b39
AM
1613_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1614 void *data)
45d6a902 1615{
268b6b39 1616 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1617 Elf_Internal_Verneed *t;
1618 Elf_Internal_Vernaux *a;
1619 bfd_size_type amt;
1620
1621 if (h->root.type == bfd_link_hash_warning)
1622 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1623
1624 /* We only care about symbols defined in shared objects with version
1625 information. */
f5385ebf
AM
1626 if (!h->def_dynamic
1627 || h->def_regular
45d6a902
AM
1628 || h->dynindx == -1
1629 || h->verinfo.verdef == NULL)
1630 return TRUE;
1631
1632 /* See if we already know about this version. */
1633 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1634 {
1635 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1636 continue;
1637
1638 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1639 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1640 return TRUE;
1641
1642 break;
1643 }
1644
1645 /* This is a new version. Add it to tree we are building. */
1646
1647 if (t == NULL)
1648 {
1649 amt = sizeof *t;
268b6b39 1650 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1651 if (t == NULL)
1652 {
1653 rinfo->failed = TRUE;
1654 return FALSE;
1655 }
1656
1657 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1658 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1659 elf_tdata (rinfo->output_bfd)->verref = t;
1660 }
1661
1662 amt = sizeof *a;
268b6b39 1663 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1664
1665 /* Note that we are copying a string pointer here, and testing it
1666 above. If bfd_elf_string_from_elf_section is ever changed to
1667 discard the string data when low in memory, this will have to be
1668 fixed. */
1669 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1670
1671 a->vna_flags = h->verinfo.verdef->vd_flags;
1672 a->vna_nextptr = t->vn_auxptr;
1673
1674 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1675 ++rinfo->vers;
1676
1677 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1678
1679 t->vn_auxptr = a;
1680
1681 return TRUE;
1682}
1683
1684/* Figure out appropriate versions for all the symbols. We may not
1685 have the version number script until we have read all of the input
1686 files, so until that point we don't know which symbols should be
1687 local. This function is called via elf_link_hash_traverse. */
1688
1689bfd_boolean
268b6b39 1690_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1691{
1692 struct elf_assign_sym_version_info *sinfo;
1693 struct bfd_link_info *info;
9c5bfbb7 1694 const struct elf_backend_data *bed;
45d6a902
AM
1695 struct elf_info_failed eif;
1696 char *p;
1697 bfd_size_type amt;
1698
268b6b39 1699 sinfo = data;
45d6a902
AM
1700 info = sinfo->info;
1701
1702 if (h->root.type == bfd_link_hash_warning)
1703 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1704
1705 /* Fix the symbol flags. */
1706 eif.failed = FALSE;
1707 eif.info = info;
1708 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1709 {
1710 if (eif.failed)
1711 sinfo->failed = TRUE;
1712 return FALSE;
1713 }
1714
1715 /* We only need version numbers for symbols defined in regular
1716 objects. */
f5385ebf 1717 if (!h->def_regular)
45d6a902
AM
1718 return TRUE;
1719
1720 bed = get_elf_backend_data (sinfo->output_bfd);
1721 p = strchr (h->root.root.string, ELF_VER_CHR);
1722 if (p != NULL && h->verinfo.vertree == NULL)
1723 {
1724 struct bfd_elf_version_tree *t;
1725 bfd_boolean hidden;
1726
1727 hidden = TRUE;
1728
1729 /* There are two consecutive ELF_VER_CHR characters if this is
1730 not a hidden symbol. */
1731 ++p;
1732 if (*p == ELF_VER_CHR)
1733 {
1734 hidden = FALSE;
1735 ++p;
1736 }
1737
1738 /* If there is no version string, we can just return out. */
1739 if (*p == '\0')
1740 {
1741 if (hidden)
f5385ebf 1742 h->hidden = 1;
45d6a902
AM
1743 return TRUE;
1744 }
1745
1746 /* Look for the version. If we find it, it is no longer weak. */
1747 for (t = sinfo->verdefs; t != NULL; t = t->next)
1748 {
1749 if (strcmp (t->name, p) == 0)
1750 {
1751 size_t len;
1752 char *alc;
1753 struct bfd_elf_version_expr *d;
1754
1755 len = p - h->root.root.string;
268b6b39 1756 alc = bfd_malloc (len);
45d6a902
AM
1757 if (alc == NULL)
1758 return FALSE;
1759 memcpy (alc, h->root.root.string, len - 1);
1760 alc[len - 1] = '\0';
1761 if (alc[len - 2] == ELF_VER_CHR)
1762 alc[len - 2] = '\0';
1763
1764 h->verinfo.vertree = t;
1765 t->used = TRUE;
1766 d = NULL;
1767
108ba305
JJ
1768 if (t->globals.list != NULL)
1769 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1770
1771 /* See if there is anything to force this symbol to
1772 local scope. */
108ba305 1773 if (d == NULL && t->locals.list != NULL)
45d6a902 1774 {
108ba305
JJ
1775 d = (*t->match) (&t->locals, NULL, alc);
1776 if (d != NULL
1777 && h->dynindx != -1
108ba305
JJ
1778 && ! info->export_dynamic)
1779 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1780 }
1781
1782 free (alc);
1783 break;
1784 }
1785 }
1786
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
36af4a4e 1789 if (t == NULL && info->executable)
45d6a902
AM
1790 {
1791 struct bfd_elf_version_tree **pp;
1792 int version_index;
1793
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h->dynindx == -1)
1797 return TRUE;
1798
1799 amt = sizeof *t;
108ba305 1800 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1801 if (t == NULL)
1802 {
1803 sinfo->failed = TRUE;
1804 return FALSE;
1805 }
1806
45d6a902 1807 t->name = p;
45d6a902
AM
1808 t->name_indx = (unsigned int) -1;
1809 t->used = TRUE;
1810
1811 version_index = 1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1814 version_index = 0;
1815 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1816 ++version_index;
1817 t->vernum = version_index;
1818
1819 *pp = t;
1820
1821 h->verinfo.vertree = t;
1822 }
1823 else if (t == NULL)
1824 {
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler)
d003868e
AM
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1830 bfd_set_error (bfd_error_bad_value);
1831 sinfo->failed = TRUE;
1832 return FALSE;
1833 }
1834
1835 if (hidden)
f5385ebf 1836 h->hidden = 1;
45d6a902
AM
1837 }
1838
1839 /* If we don't have a version for this symbol, see if we can find
1840 something. */
1841 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1842 {
1843 struct bfd_elf_version_tree *t;
1844 struct bfd_elf_version_tree *local_ver;
1845 struct bfd_elf_version_expr *d;
1846
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1849 it. */
1850 local_ver = NULL;
1851 for (t = sinfo->verdefs; t != NULL; t = t->next)
1852 {
108ba305 1853 if (t->globals.list != NULL)
45d6a902
AM
1854 {
1855 bfd_boolean matched;
1856
1857 matched = FALSE;
108ba305
JJ
1858 d = NULL;
1859 while ((d = (*t->match) (&t->globals, d,
1860 h->root.root.string)) != NULL)
1861 if (d->symver)
1862 matched = TRUE;
1863 else
1864 {
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1867 version. */
1868 h->verinfo.vertree = t;
1869 local_ver = NULL;
1870 d->script = 1;
1871 break;
1872 }
45d6a902
AM
1873 if (d != NULL)
1874 break;
1875 else if (matched)
1876 /* There is no undefined version for this symbol. Hide the
1877 default one. */
1878 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1879 }
1880
108ba305 1881 if (t->locals.list != NULL)
45d6a902 1882 {
108ba305
JJ
1883 d = NULL;
1884 while ((d = (*t->match) (&t->locals, d,
1885 h->root.root.string)) != NULL)
45d6a902 1886 {
108ba305 1887 local_ver = t;
45d6a902 1888 /* If the match is "*", keep looking for a more
108ba305
JJ
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1892 break;
45d6a902
AM
1893 }
1894
1895 if (d != NULL)
1896 break;
1897 }
1898 }
1899
1900 if (local_ver != NULL)
1901 {
1902 h->verinfo.vertree = local_ver;
1903 if (h->dynindx != -1
45d6a902
AM
1904 && ! info->export_dynamic)
1905 {
1906 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1907 }
1908 }
1909 }
1910
1911 return TRUE;
1912}
1913\f
45d6a902
AM
1914/* Read and swap the relocs from the section indicated by SHDR. This
1915 may be either a REL or a RELA section. The relocations are
1916 translated into RELA relocations and stored in INTERNAL_RELOCS,
1917 which should have already been allocated to contain enough space.
1918 The EXTERNAL_RELOCS are a buffer where the external form of the
1919 relocations should be stored.
1920
1921 Returns FALSE if something goes wrong. */
1922
1923static bfd_boolean
268b6b39 1924elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1925 asection *sec,
268b6b39
AM
1926 Elf_Internal_Shdr *shdr,
1927 void *external_relocs,
1928 Elf_Internal_Rela *internal_relocs)
45d6a902 1929{
9c5bfbb7 1930 const struct elf_backend_data *bed;
268b6b39 1931 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1932 const bfd_byte *erela;
1933 const bfd_byte *erelaend;
1934 Elf_Internal_Rela *irela;
243ef1e0
L
1935 Elf_Internal_Shdr *symtab_hdr;
1936 size_t nsyms;
45d6a902 1937
45d6a902
AM
1938 /* Position ourselves at the start of the section. */
1939 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1940 return FALSE;
1941
1942 /* Read the relocations. */
1943 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1944 return FALSE;
1945
243ef1e0
L
1946 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1947 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1948
45d6a902
AM
1949 bed = get_elf_backend_data (abfd);
1950
1951 /* Convert the external relocations to the internal format. */
1952 if (shdr->sh_entsize == bed->s->sizeof_rel)
1953 swap_in = bed->s->swap_reloc_in;
1954 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1955 swap_in = bed->s->swap_reloca_in;
1956 else
1957 {
1958 bfd_set_error (bfd_error_wrong_format);
1959 return FALSE;
1960 }
1961
1962 erela = external_relocs;
51992aec 1963 erelaend = erela + shdr->sh_size;
45d6a902
AM
1964 irela = internal_relocs;
1965 while (erela < erelaend)
1966 {
243ef1e0
L
1967 bfd_vma r_symndx;
1968
45d6a902 1969 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1970 r_symndx = ELF32_R_SYM (irela->r_info);
1971 if (bed->s->arch_size == 64)
1972 r_symndx >>= 24;
1973 if ((size_t) r_symndx >= nsyms)
1974 {
1975 (*_bfd_error_handler)
d003868e
AM
1976 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1977 " for offset 0x%lx in section `%A'"),
1978 abfd, sec,
1979 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1980 bfd_set_error (bfd_error_bad_value);
1981 return FALSE;
1982 }
45d6a902
AM
1983 irela += bed->s->int_rels_per_ext_rel;
1984 erela += shdr->sh_entsize;
1985 }
1986
1987 return TRUE;
1988}
1989
1990/* Read and swap the relocs for a section O. They may have been
1991 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1992 not NULL, they are used as buffers to read into. They are known to
1993 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1994 the return value is allocated using either malloc or bfd_alloc,
1995 according to the KEEP_MEMORY argument. If O has two relocation
1996 sections (both REL and RELA relocations), then the REL_HDR
1997 relocations will appear first in INTERNAL_RELOCS, followed by the
1998 REL_HDR2 relocations. */
1999
2000Elf_Internal_Rela *
268b6b39
AM
2001_bfd_elf_link_read_relocs (bfd *abfd,
2002 asection *o,
2003 void *external_relocs,
2004 Elf_Internal_Rela *internal_relocs,
2005 bfd_boolean keep_memory)
45d6a902
AM
2006{
2007 Elf_Internal_Shdr *rel_hdr;
268b6b39 2008 void *alloc1 = NULL;
45d6a902 2009 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2010 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2011
2012 if (elf_section_data (o)->relocs != NULL)
2013 return elf_section_data (o)->relocs;
2014
2015 if (o->reloc_count == 0)
2016 return NULL;
2017
2018 rel_hdr = &elf_section_data (o)->rel_hdr;
2019
2020 if (internal_relocs == NULL)
2021 {
2022 bfd_size_type size;
2023
2024 size = o->reloc_count;
2025 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2026 if (keep_memory)
268b6b39 2027 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2028 else
268b6b39 2029 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2030 if (internal_relocs == NULL)
2031 goto error_return;
2032 }
2033
2034 if (external_relocs == NULL)
2035 {
2036 bfd_size_type size = rel_hdr->sh_size;
2037
2038 if (elf_section_data (o)->rel_hdr2)
2039 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2040 alloc1 = bfd_malloc (size);
45d6a902
AM
2041 if (alloc1 == NULL)
2042 goto error_return;
2043 external_relocs = alloc1;
2044 }
2045
243ef1e0 2046 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2047 external_relocs,
2048 internal_relocs))
2049 goto error_return;
51992aec
AM
2050 if (elf_section_data (o)->rel_hdr2
2051 && (!elf_link_read_relocs_from_section
2052 (abfd, o,
2053 elf_section_data (o)->rel_hdr2,
2054 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2055 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2056 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2057 goto error_return;
2058
2059 /* Cache the results for next time, if we can. */
2060 if (keep_memory)
2061 elf_section_data (o)->relocs = internal_relocs;
2062
2063 if (alloc1 != NULL)
2064 free (alloc1);
2065
2066 /* Don't free alloc2, since if it was allocated we are passing it
2067 back (under the name of internal_relocs). */
2068
2069 return internal_relocs;
2070
2071 error_return:
2072 if (alloc1 != NULL)
2073 free (alloc1);
2074 if (alloc2 != NULL)
2075 free (alloc2);
2076 return NULL;
2077}
2078
2079/* Compute the size of, and allocate space for, REL_HDR which is the
2080 section header for a section containing relocations for O. */
2081
2082bfd_boolean
268b6b39
AM
2083_bfd_elf_link_size_reloc_section (bfd *abfd,
2084 Elf_Internal_Shdr *rel_hdr,
2085 asection *o)
45d6a902
AM
2086{
2087 bfd_size_type reloc_count;
2088 bfd_size_type num_rel_hashes;
2089
2090 /* Figure out how many relocations there will be. */
2091 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2092 reloc_count = elf_section_data (o)->rel_count;
2093 else
2094 reloc_count = elf_section_data (o)->rel_count2;
2095
2096 num_rel_hashes = o->reloc_count;
2097 if (num_rel_hashes < reloc_count)
2098 num_rel_hashes = reloc_count;
2099
2100 /* That allows us to calculate the size of the section. */
2101 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2102
2103 /* The contents field must last into write_object_contents, so we
2104 allocate it with bfd_alloc rather than malloc. Also since we
2105 cannot be sure that the contents will actually be filled in,
2106 we zero the allocated space. */
268b6b39 2107 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2108 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2109 return FALSE;
2110
2111 /* We only allocate one set of hash entries, so we only do it the
2112 first time we are called. */
2113 if (elf_section_data (o)->rel_hashes == NULL
2114 && num_rel_hashes)
2115 {
2116 struct elf_link_hash_entry **p;
2117
268b6b39 2118 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2119 if (p == NULL)
2120 return FALSE;
2121
2122 elf_section_data (o)->rel_hashes = p;
2123 }
2124
2125 return TRUE;
2126}
2127
2128/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2129 originated from the section given by INPUT_REL_HDR) to the
2130 OUTPUT_BFD. */
2131
2132bfd_boolean
268b6b39
AM
2133_bfd_elf_link_output_relocs (bfd *output_bfd,
2134 asection *input_section,
2135 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2136 Elf_Internal_Rela *internal_relocs,
2137 struct elf_link_hash_entry **rel_hash
2138 ATTRIBUTE_UNUSED)
45d6a902
AM
2139{
2140 Elf_Internal_Rela *irela;
2141 Elf_Internal_Rela *irelaend;
2142 bfd_byte *erel;
2143 Elf_Internal_Shdr *output_rel_hdr;
2144 asection *output_section;
2145 unsigned int *rel_countp = NULL;
9c5bfbb7 2146 const struct elf_backend_data *bed;
268b6b39 2147 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2148
2149 output_section = input_section->output_section;
2150 output_rel_hdr = NULL;
2151
2152 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2153 == input_rel_hdr->sh_entsize)
2154 {
2155 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2156 rel_countp = &elf_section_data (output_section)->rel_count;
2157 }
2158 else if (elf_section_data (output_section)->rel_hdr2
2159 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2160 == input_rel_hdr->sh_entsize))
2161 {
2162 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2163 rel_countp = &elf_section_data (output_section)->rel_count2;
2164 }
2165 else
2166 {
2167 (*_bfd_error_handler)
d003868e
AM
2168 (_("%B: relocation size mismatch in %B section %A"),
2169 output_bfd, input_section->owner, input_section);
45d6a902
AM
2170 bfd_set_error (bfd_error_wrong_object_format);
2171 return FALSE;
2172 }
2173
2174 bed = get_elf_backend_data (output_bfd);
2175 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2176 swap_out = bed->s->swap_reloc_out;
2177 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2178 swap_out = bed->s->swap_reloca_out;
2179 else
2180 abort ();
2181
2182 erel = output_rel_hdr->contents;
2183 erel += *rel_countp * input_rel_hdr->sh_entsize;
2184 irela = internal_relocs;
2185 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2186 * bed->s->int_rels_per_ext_rel);
2187 while (irela < irelaend)
2188 {
2189 (*swap_out) (output_bfd, irela, erel);
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erel += input_rel_hdr->sh_entsize;
2192 }
2193
2194 /* Bump the counter, so that we know where to add the next set of
2195 relocations. */
2196 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2197
2198 return TRUE;
2199}
2200\f
2201/* Fix up the flags for a symbol. This handles various cases which
2202 can only be fixed after all the input files are seen. This is
2203 currently called by both adjust_dynamic_symbol and
2204 assign_sym_version, which is unnecessary but perhaps more robust in
2205 the face of future changes. */
2206
2207bfd_boolean
268b6b39
AM
2208_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2209 struct elf_info_failed *eif)
45d6a902
AM
2210{
2211 /* If this symbol was mentioned in a non-ELF file, try to set
2212 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2213 permit a non-ELF file to correctly refer to a symbol defined in
2214 an ELF dynamic object. */
f5385ebf 2215 if (h->non_elf)
45d6a902
AM
2216 {
2217 while (h->root.type == bfd_link_hash_indirect)
2218 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2219
2220 if (h->root.type != bfd_link_hash_defined
2221 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2222 {
2223 h->ref_regular = 1;
2224 h->ref_regular_nonweak = 1;
2225 }
45d6a902
AM
2226 else
2227 {
2228 if (h->root.u.def.section->owner != NULL
2229 && (bfd_get_flavour (h->root.u.def.section->owner)
2230 == bfd_target_elf_flavour))
f5385ebf
AM
2231 {
2232 h->ref_regular = 1;
2233 h->ref_regular_nonweak = 1;
2234 }
45d6a902 2235 else
f5385ebf 2236 h->def_regular = 1;
45d6a902
AM
2237 }
2238
2239 if (h->dynindx == -1
f5385ebf
AM
2240 && (h->def_dynamic
2241 || h->ref_dynamic))
45d6a902 2242 {
c152c796 2243 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2244 {
2245 eif->failed = TRUE;
2246 return FALSE;
2247 }
2248 }
2249 }
2250 else
2251 {
f5385ebf 2252 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2253 was first seen in a non-ELF file. Fortunately, if the symbol
2254 was first seen in an ELF file, we're probably OK unless the
2255 symbol was defined in a non-ELF file. Catch that case here.
2256 FIXME: We're still in trouble if the symbol was first seen in
2257 a dynamic object, and then later in a non-ELF regular object. */
2258 if ((h->root.type == bfd_link_hash_defined
2259 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2260 && !h->def_regular
45d6a902
AM
2261 && (h->root.u.def.section->owner != NULL
2262 ? (bfd_get_flavour (h->root.u.def.section->owner)
2263 != bfd_target_elf_flavour)
2264 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2265 && !h->def_dynamic)))
2266 h->def_regular = 1;
45d6a902
AM
2267 }
2268
2269 /* If this is a final link, and the symbol was defined as a common
2270 symbol in a regular object file, and there was no definition in
2271 any dynamic object, then the linker will have allocated space for
f5385ebf 2272 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2273 flag will not have been set. */
2274 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2275 && !h->def_regular
2276 && h->ref_regular
2277 && !h->def_dynamic
45d6a902 2278 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2279 h->def_regular = 1;
45d6a902
AM
2280
2281 /* If -Bsymbolic was used (which means to bind references to global
2282 symbols to the definition within the shared object), and this
2283 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2284 need a PLT entry. Likewise, if the symbol has non-default
2285 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2286 will force it local. */
f5385ebf 2287 if (h->needs_plt
45d6a902 2288 && eif->info->shared
0eddce27 2289 && is_elf_hash_table (eif->info->hash)
45d6a902 2290 && (eif->info->symbolic
c1be741f 2291 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2292 && h->def_regular)
45d6a902 2293 {
9c5bfbb7 2294 const struct elf_backend_data *bed;
45d6a902
AM
2295 bfd_boolean force_local;
2296
2297 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2298
2299 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2300 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2301 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2302 }
2303
2304 /* If a weak undefined symbol has non-default visibility, we also
2305 hide it from the dynamic linker. */
9c7a29a3 2306 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2307 && h->root.type == bfd_link_hash_undefweak)
2308 {
9c5bfbb7 2309 const struct elf_backend_data *bed;
45d6a902
AM
2310 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2311 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2312 }
2313
2314 /* If this is a weak defined symbol in a dynamic object, and we know
2315 the real definition in the dynamic object, copy interesting flags
2316 over to the real definition. */
f6e332e6 2317 if (h->u.weakdef != NULL)
45d6a902
AM
2318 {
2319 struct elf_link_hash_entry *weakdef;
2320
f6e332e6 2321 weakdef = h->u.weakdef;
45d6a902
AM
2322 if (h->root.type == bfd_link_hash_indirect)
2323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2324
2325 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2326 || h->root.type == bfd_link_hash_defweak);
2327 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2328 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2329 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2330
2331 /* If the real definition is defined by a regular object file,
2332 don't do anything special. See the longer description in
2333 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2334 if (weakdef->def_regular)
f6e332e6 2335 h->u.weakdef = NULL;
45d6a902
AM
2336 else
2337 {
9c5bfbb7 2338 const struct elf_backend_data *bed;
45d6a902
AM
2339
2340 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2341 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2342 }
2343 }
2344
2345 return TRUE;
2346}
2347
2348/* Make the backend pick a good value for a dynamic symbol. This is
2349 called via elf_link_hash_traverse, and also calls itself
2350 recursively. */
2351
2352bfd_boolean
268b6b39 2353_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2354{
268b6b39 2355 struct elf_info_failed *eif = data;
45d6a902 2356 bfd *dynobj;
9c5bfbb7 2357 const struct elf_backend_data *bed;
45d6a902 2358
0eddce27 2359 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2360 return FALSE;
2361
2362 if (h->root.type == bfd_link_hash_warning)
2363 {
a6aa5195
AM
2364 h->got = elf_hash_table (eif->info)->init_got_offset;
2365 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2366
2367 /* When warning symbols are created, they **replace** the "real"
2368 entry in the hash table, thus we never get to see the real
2369 symbol in a hash traversal. So look at it now. */
2370 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2371 }
2372
2373 /* Ignore indirect symbols. These are added by the versioning code. */
2374 if (h->root.type == bfd_link_hash_indirect)
2375 return TRUE;
2376
2377 /* Fix the symbol flags. */
2378 if (! _bfd_elf_fix_symbol_flags (h, eif))
2379 return FALSE;
2380
2381 /* If this symbol does not require a PLT entry, and it is not
2382 defined by a dynamic object, or is not referenced by a regular
2383 object, ignore it. We do have to handle a weak defined symbol,
2384 even if no regular object refers to it, if we decided to add it
2385 to the dynamic symbol table. FIXME: Do we normally need to worry
2386 about symbols which are defined by one dynamic object and
2387 referenced by another one? */
f5385ebf
AM
2388 if (!h->needs_plt
2389 && (h->def_regular
2390 || !h->def_dynamic
2391 || (!h->ref_regular
f6e332e6 2392 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2393 {
a6aa5195 2394 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2395 return TRUE;
2396 }
2397
2398 /* If we've already adjusted this symbol, don't do it again. This
2399 can happen via a recursive call. */
f5385ebf 2400 if (h->dynamic_adjusted)
45d6a902
AM
2401 return TRUE;
2402
2403 /* Don't look at this symbol again. Note that we must set this
2404 after checking the above conditions, because we may look at a
2405 symbol once, decide not to do anything, and then get called
2406 recursively later after REF_REGULAR is set below. */
f5385ebf 2407 h->dynamic_adjusted = 1;
45d6a902
AM
2408
2409 /* If this is a weak definition, and we know a real definition, and
2410 the real symbol is not itself defined by a regular object file,
2411 then get a good value for the real definition. We handle the
2412 real symbol first, for the convenience of the backend routine.
2413
2414 Note that there is a confusing case here. If the real definition
2415 is defined by a regular object file, we don't get the real symbol
2416 from the dynamic object, but we do get the weak symbol. If the
2417 processor backend uses a COPY reloc, then if some routine in the
2418 dynamic object changes the real symbol, we will not see that
2419 change in the corresponding weak symbol. This is the way other
2420 ELF linkers work as well, and seems to be a result of the shared
2421 library model.
2422
2423 I will clarify this issue. Most SVR4 shared libraries define the
2424 variable _timezone and define timezone as a weak synonym. The
2425 tzset call changes _timezone. If you write
2426 extern int timezone;
2427 int _timezone = 5;
2428 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2429 you might expect that, since timezone is a synonym for _timezone,
2430 the same number will print both times. However, if the processor
2431 backend uses a COPY reloc, then actually timezone will be copied
2432 into your process image, and, since you define _timezone
2433 yourself, _timezone will not. Thus timezone and _timezone will
2434 wind up at different memory locations. The tzset call will set
2435 _timezone, leaving timezone unchanged. */
2436
f6e332e6 2437 if (h->u.weakdef != NULL)
45d6a902
AM
2438 {
2439 /* If we get to this point, we know there is an implicit
2440 reference by a regular object file via the weak symbol H.
2441 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2442 H->U.WEAKDEF before it finds H? */
2443 h->u.weakdef->ref_regular = 1;
45d6a902 2444
f6e332e6 2445 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2446 return FALSE;
2447 }
2448
2449 /* If a symbol has no type and no size and does not require a PLT
2450 entry, then we are probably about to do the wrong thing here: we
2451 are probably going to create a COPY reloc for an empty object.
2452 This case can arise when a shared object is built with assembly
2453 code, and the assembly code fails to set the symbol type. */
2454 if (h->size == 0
2455 && h->type == STT_NOTYPE
f5385ebf 2456 && !h->needs_plt)
45d6a902
AM
2457 (*_bfd_error_handler)
2458 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2459 h->root.root.string);
2460
2461 dynobj = elf_hash_table (eif->info)->dynobj;
2462 bed = get_elf_backend_data (dynobj);
2463 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2464 {
2465 eif->failed = TRUE;
2466 return FALSE;
2467 }
2468
2469 return TRUE;
2470}
2471
2472/* Adjust all external symbols pointing into SEC_MERGE sections
2473 to reflect the object merging within the sections. */
2474
2475bfd_boolean
268b6b39 2476_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2477{
2478 asection *sec;
2479
2480 if (h->root.type == bfd_link_hash_warning)
2481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2482
2483 if ((h->root.type == bfd_link_hash_defined
2484 || h->root.type == bfd_link_hash_defweak)
2485 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2486 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2487 {
268b6b39 2488 bfd *output_bfd = data;
45d6a902
AM
2489
2490 h->root.u.def.value =
2491 _bfd_merged_section_offset (output_bfd,
2492 &h->root.u.def.section,
2493 elf_section_data (sec)->sec_info,
753731ee 2494 h->root.u.def.value);
45d6a902
AM
2495 }
2496
2497 return TRUE;
2498}
986a241f
RH
2499
2500/* Returns false if the symbol referred to by H should be considered
2501 to resolve local to the current module, and true if it should be
2502 considered to bind dynamically. */
2503
2504bfd_boolean
268b6b39
AM
2505_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2506 struct bfd_link_info *info,
2507 bfd_boolean ignore_protected)
986a241f
RH
2508{
2509 bfd_boolean binding_stays_local_p;
2510
2511 if (h == NULL)
2512 return FALSE;
2513
2514 while (h->root.type == bfd_link_hash_indirect
2515 || h->root.type == bfd_link_hash_warning)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 /* If it was forced local, then clearly it's not dynamic. */
2519 if (h->dynindx == -1)
2520 return FALSE;
f5385ebf 2521 if (h->forced_local)
986a241f
RH
2522 return FALSE;
2523
2524 /* Identify the cases where name binding rules say that a
2525 visible symbol resolves locally. */
2526 binding_stays_local_p = info->executable || info->symbolic;
2527
2528 switch (ELF_ST_VISIBILITY (h->other))
2529 {
2530 case STV_INTERNAL:
2531 case STV_HIDDEN:
2532 return FALSE;
2533
2534 case STV_PROTECTED:
2535 /* Proper resolution for function pointer equality may require
2536 that these symbols perhaps be resolved dynamically, even though
2537 we should be resolving them to the current module. */
1c16dfa5 2538 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2539 binding_stays_local_p = TRUE;
2540 break;
2541
2542 default:
986a241f
RH
2543 break;
2544 }
2545
aa37626c 2546 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2547 if (!h->def_regular)
aa37626c
L
2548 return TRUE;
2549
986a241f
RH
2550 /* Otherwise, the symbol is dynamic if binding rules don't tell
2551 us that it remains local. */
2552 return !binding_stays_local_p;
2553}
f6c52c13
AM
2554
2555/* Return true if the symbol referred to by H should be considered
2556 to resolve local to the current module, and false otherwise. Differs
2557 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2558 undefined symbols and weak symbols. */
2559
2560bfd_boolean
268b6b39
AM
2561_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2562 struct bfd_link_info *info,
2563 bfd_boolean local_protected)
f6c52c13
AM
2564{
2565 /* If it's a local sym, of course we resolve locally. */
2566 if (h == NULL)
2567 return TRUE;
2568
7e2294f9
AO
2569 /* Common symbols that become definitions don't get the DEF_REGULAR
2570 flag set, so test it first, and don't bail out. */
2571 if (ELF_COMMON_DEF_P (h))
2572 /* Do nothing. */;
f6c52c13 2573 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2574 resolve locally. The sym is either undefined or dynamic. */
2575 else if (!h->def_regular)
f6c52c13
AM
2576 return FALSE;
2577
2578 /* Forced local symbols resolve locally. */
f5385ebf 2579 if (h->forced_local)
f6c52c13
AM
2580 return TRUE;
2581
2582 /* As do non-dynamic symbols. */
2583 if (h->dynindx == -1)
2584 return TRUE;
2585
2586 /* At this point, we know the symbol is defined and dynamic. In an
2587 executable it must resolve locally, likewise when building symbolic
2588 shared libraries. */
2589 if (info->executable || info->symbolic)
2590 return TRUE;
2591
2592 /* Now deal with defined dynamic symbols in shared libraries. Ones
2593 with default visibility might not resolve locally. */
2594 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2595 return FALSE;
2596
2597 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2598 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2599 return TRUE;
2600
1c16dfa5
L
2601 /* STV_PROTECTED non-function symbols are local. */
2602 if (h->type != STT_FUNC)
2603 return TRUE;
2604
f6c52c13
AM
2605 /* Function pointer equality tests may require that STV_PROTECTED
2606 symbols be treated as dynamic symbols, even when we know that the
2607 dynamic linker will resolve them locally. */
2608 return local_protected;
2609}
e1918d23
AM
2610
2611/* Caches some TLS segment info, and ensures that the TLS segment vma is
2612 aligned. Returns the first TLS output section. */
2613
2614struct bfd_section *
2615_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2616{
2617 struct bfd_section *sec, *tls;
2618 unsigned int align = 0;
2619
2620 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2621 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2622 break;
2623 tls = sec;
2624
2625 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2626 if (sec->alignment_power > align)
2627 align = sec->alignment_power;
2628
2629 elf_hash_table (info)->tls_sec = tls;
2630
2631 /* Ensure the alignment of the first section is the largest alignment,
2632 so that the tls segment starts aligned. */
2633 if (tls != NULL)
2634 tls->alignment_power = align;
2635
2636 return tls;
2637}
0ad989f9
L
2638
2639/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2640static bfd_boolean
2641is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2642 Elf_Internal_Sym *sym)
2643{
2644 /* Local symbols do not count, but target specific ones might. */
2645 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2646 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2647 return FALSE;
2648
2649 /* Function symbols do not count. */
2650 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2651 return FALSE;
2652
2653 /* If the section is undefined, then so is the symbol. */
2654 if (sym->st_shndx == SHN_UNDEF)
2655 return FALSE;
2656
2657 /* If the symbol is defined in the common section, then
2658 it is a common definition and so does not count. */
2659 if (sym->st_shndx == SHN_COMMON)
2660 return FALSE;
2661
2662 /* If the symbol is in a target specific section then we
2663 must rely upon the backend to tell us what it is. */
2664 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2665 /* FIXME - this function is not coded yet:
2666
2667 return _bfd_is_global_symbol_definition (abfd, sym);
2668
2669 Instead for now assume that the definition is not global,
2670 Even if this is wrong, at least the linker will behave
2671 in the same way that it used to do. */
2672 return FALSE;
2673
2674 return TRUE;
2675}
2676
2677/* Search the symbol table of the archive element of the archive ABFD
2678 whose archive map contains a mention of SYMDEF, and determine if
2679 the symbol is defined in this element. */
2680static bfd_boolean
2681elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2682{
2683 Elf_Internal_Shdr * hdr;
2684 bfd_size_type symcount;
2685 bfd_size_type extsymcount;
2686 bfd_size_type extsymoff;
2687 Elf_Internal_Sym *isymbuf;
2688 Elf_Internal_Sym *isym;
2689 Elf_Internal_Sym *isymend;
2690 bfd_boolean result;
2691
2692 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2693 if (abfd == NULL)
2694 return FALSE;
2695
2696 if (! bfd_check_format (abfd, bfd_object))
2697 return FALSE;
2698
2699 /* If we have already included the element containing this symbol in the
2700 link then we do not need to include it again. Just claim that any symbol
2701 it contains is not a definition, so that our caller will not decide to
2702 (re)include this element. */
2703 if (abfd->archive_pass)
2704 return FALSE;
2705
2706 /* Select the appropriate symbol table. */
2707 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2708 hdr = &elf_tdata (abfd)->symtab_hdr;
2709 else
2710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2711
2712 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2713
2714 /* The sh_info field of the symtab header tells us where the
2715 external symbols start. We don't care about the local symbols. */
2716 if (elf_bad_symtab (abfd))
2717 {
2718 extsymcount = symcount;
2719 extsymoff = 0;
2720 }
2721 else
2722 {
2723 extsymcount = symcount - hdr->sh_info;
2724 extsymoff = hdr->sh_info;
2725 }
2726
2727 if (extsymcount == 0)
2728 return FALSE;
2729
2730 /* Read in the symbol table. */
2731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2732 NULL, NULL, NULL);
2733 if (isymbuf == NULL)
2734 return FALSE;
2735
2736 /* Scan the symbol table looking for SYMDEF. */
2737 result = FALSE;
2738 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2739 {
2740 const char *name;
2741
2742 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2743 isym->st_name);
2744 if (name == NULL)
2745 break;
2746
2747 if (strcmp (name, symdef->name) == 0)
2748 {
2749 result = is_global_data_symbol_definition (abfd, isym);
2750 break;
2751 }
2752 }
2753
2754 free (isymbuf);
2755
2756 return result;
2757}
2758\f
5a580b3a
AM
2759/* Add an entry to the .dynamic table. */
2760
2761bfd_boolean
2762_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2763 bfd_vma tag,
2764 bfd_vma val)
2765{
2766 struct elf_link_hash_table *hash_table;
2767 const struct elf_backend_data *bed;
2768 asection *s;
2769 bfd_size_type newsize;
2770 bfd_byte *newcontents;
2771 Elf_Internal_Dyn dyn;
2772
2773 hash_table = elf_hash_table (info);
2774 if (! is_elf_hash_table (hash_table))
2775 return FALSE;
2776
8fdd7217
NC
2777 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2778 _bfd_error_handler
2779 (_("warning: creating a DT_TEXTREL in a shared object."));
2780
5a580b3a
AM
2781 bed = get_elf_backend_data (hash_table->dynobj);
2782 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2783 BFD_ASSERT (s != NULL);
2784
eea6121a 2785 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2786 newcontents = bfd_realloc (s->contents, newsize);
2787 if (newcontents == NULL)
2788 return FALSE;
2789
2790 dyn.d_tag = tag;
2791 dyn.d_un.d_val = val;
eea6121a 2792 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2793
eea6121a 2794 s->size = newsize;
5a580b3a
AM
2795 s->contents = newcontents;
2796
2797 return TRUE;
2798}
2799
2800/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2801 otherwise just check whether one already exists. Returns -1 on error,
2802 1 if a DT_NEEDED tag already exists, and 0 on success. */
2803
4ad4eba5 2804static int
7e9f0867
AM
2805elf_add_dt_needed_tag (bfd *abfd,
2806 struct bfd_link_info *info,
4ad4eba5
AM
2807 const char *soname,
2808 bfd_boolean do_it)
5a580b3a
AM
2809{
2810 struct elf_link_hash_table *hash_table;
2811 bfd_size_type oldsize;
2812 bfd_size_type strindex;
2813
7e9f0867
AM
2814 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2815 return -1;
2816
5a580b3a
AM
2817 hash_table = elf_hash_table (info);
2818 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2819 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2820 if (strindex == (bfd_size_type) -1)
2821 return -1;
2822
2823 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2824 {
2825 asection *sdyn;
2826 const struct elf_backend_data *bed;
2827 bfd_byte *extdyn;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2831 if (sdyn != NULL)
2832 for (extdyn = sdyn->contents;
2833 extdyn < sdyn->contents + sdyn->size;
2834 extdyn += bed->s->sizeof_dyn)
2835 {
2836 Elf_Internal_Dyn dyn;
5a580b3a 2837
7e9f0867
AM
2838 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2839 if (dyn.d_tag == DT_NEEDED
2840 && dyn.d_un.d_val == strindex)
2841 {
2842 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2843 return 1;
2844 }
2845 }
5a580b3a
AM
2846 }
2847
2848 if (do_it)
2849 {
7e9f0867
AM
2850 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2851 return -1;
2852
5a580b3a
AM
2853 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2854 return -1;
2855 }
2856 else
2857 /* We were just checking for existence of the tag. */
2858 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2859
2860 return 0;
2861}
2862
77cfaee6
AM
2863/* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2864 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
ec13b3bb
AM
2865 references from regular objects to these symbols.
2866
2867 ??? Should we do something about references from other dynamic
2868 obects? If not, we potentially lose some warnings about undefined
2869 symbols. But how can we recover the initial undefined / undefweak
2870 state? */
77cfaee6
AM
2871
2872struct elf_smash_syms_data
2873{
2874 bfd *not_needed;
2875 struct elf_link_hash_table *htab;
2876 bfd_boolean twiddled;
2877};
2878
2879static bfd_boolean
2880elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2881{
2882 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2883 struct bfd_link_hash_entry *bh;
2884
2885 switch (h->root.type)
2886 {
2887 default:
2888 case bfd_link_hash_new:
2889 return TRUE;
2890
2891 case bfd_link_hash_undefined:
11f25ea6
AM
2892 if (h->root.u.undef.abfd != inf->not_needed)
2893 return TRUE;
4ea42fb7
AM
2894 if (h->root.u.undef.weak != NULL
2895 && h->root.u.undef.weak != inf->not_needed)
11f25ea6
AM
2896 {
2897 /* Symbol was undefweak in u.undef.weak bfd, and has become
2898 undefined in as-needed lib. Restore weak. */
2899 h->root.type = bfd_link_hash_undefweak;
2900 h->root.u.undef.abfd = h->root.u.undef.weak;
2901 if (h->root.u.undef.next != NULL
2902 || inf->htab->root.undefs_tail == &h->root)
2903 inf->twiddled = TRUE;
2904 return TRUE;
2905 }
2906 break;
2907
77cfaee6
AM
2908 case bfd_link_hash_undefweak:
2909 if (h->root.u.undef.abfd != inf->not_needed)
2910 return TRUE;
2911 break;
2912
2913 case bfd_link_hash_defined:
2914 case bfd_link_hash_defweak:
2915 if (h->root.u.def.section->owner != inf->not_needed)
2916 return TRUE;
2917 break;
2918
2919 case bfd_link_hash_common:
2920 if (h->root.u.c.p->section->owner != inf->not_needed)
2921 return TRUE;
2922 break;
2923
2924 case bfd_link_hash_warning:
2925 case bfd_link_hash_indirect:
2926 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2927 if (h->root.u.i.link->type != bfd_link_hash_new)
2928 return TRUE;
2929 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2930 return TRUE;
2931 break;
2932 }
2933
11f25ea6
AM
2934 /* There is no way we can undo symbol table state from defined or
2935 defweak back to undefined. */
2936 if (h->ref_regular)
2937 abort ();
2938
2e8b3a61
AM
2939 /* Set sym back to newly created state, but keep undef.next if it is
2940 being used as a list pointer. */
77cfaee6 2941 bh = h->root.u.undef.next;
2e8b3a61
AM
2942 if (bh == &h->root)
2943 bh = NULL;
77cfaee6
AM
2944 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2945 inf->twiddled = TRUE;
2946 (*inf->htab->root.table.newfunc) (&h->root.root,
2947 &inf->htab->root.table,
2948 h->root.root.string);
2949 h->root.u.undef.next = bh;
2950 h->root.u.undef.abfd = inf->not_needed;
2951 h->non_elf = 0;
2952 return TRUE;
2953}
2954
5a580b3a 2955/* Sort symbol by value and section. */
4ad4eba5
AM
2956static int
2957elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2958{
2959 const struct elf_link_hash_entry *h1;
2960 const struct elf_link_hash_entry *h2;
10b7e05b 2961 bfd_signed_vma vdiff;
5a580b3a
AM
2962
2963 h1 = *(const struct elf_link_hash_entry **) arg1;
2964 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2965 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2966 if (vdiff != 0)
2967 return vdiff > 0 ? 1 : -1;
2968 else
2969 {
2970 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2971 if (sdiff != 0)
2972 return sdiff > 0 ? 1 : -1;
2973 }
5a580b3a
AM
2974 return 0;
2975}
4ad4eba5 2976
5a580b3a
AM
2977/* This function is used to adjust offsets into .dynstr for
2978 dynamic symbols. This is called via elf_link_hash_traverse. */
2979
2980static bfd_boolean
2981elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2982{
2983 struct elf_strtab_hash *dynstr = data;
2984
2985 if (h->root.type == bfd_link_hash_warning)
2986 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2987
2988 if (h->dynindx != -1)
2989 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2990 return TRUE;
2991}
2992
2993/* Assign string offsets in .dynstr, update all structures referencing
2994 them. */
2995
4ad4eba5
AM
2996static bfd_boolean
2997elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2998{
2999 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3000 struct elf_link_local_dynamic_entry *entry;
3001 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3002 bfd *dynobj = hash_table->dynobj;
3003 asection *sdyn;
3004 bfd_size_type size;
3005 const struct elf_backend_data *bed;
3006 bfd_byte *extdyn;
3007
3008 _bfd_elf_strtab_finalize (dynstr);
3009 size = _bfd_elf_strtab_size (dynstr);
3010
3011 bed = get_elf_backend_data (dynobj);
3012 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3013 BFD_ASSERT (sdyn != NULL);
3014
3015 /* Update all .dynamic entries referencing .dynstr strings. */
3016 for (extdyn = sdyn->contents;
eea6121a 3017 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3018 extdyn += bed->s->sizeof_dyn)
3019 {
3020 Elf_Internal_Dyn dyn;
3021
3022 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3023 switch (dyn.d_tag)
3024 {
3025 case DT_STRSZ:
3026 dyn.d_un.d_val = size;
3027 break;
3028 case DT_NEEDED:
3029 case DT_SONAME:
3030 case DT_RPATH:
3031 case DT_RUNPATH:
3032 case DT_FILTER:
3033 case DT_AUXILIARY:
3034 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3035 break;
3036 default:
3037 continue;
3038 }
3039 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3040 }
3041
3042 /* Now update local dynamic symbols. */
3043 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3044 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3045 entry->isym.st_name);
3046
3047 /* And the rest of dynamic symbols. */
3048 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3049
3050 /* Adjust version definitions. */
3051 if (elf_tdata (output_bfd)->cverdefs)
3052 {
3053 asection *s;
3054 bfd_byte *p;
3055 bfd_size_type i;
3056 Elf_Internal_Verdef def;
3057 Elf_Internal_Verdaux defaux;
3058
3059 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3060 p = s->contents;
3061 do
3062 {
3063 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3064 &def);
3065 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3066 if (def.vd_aux != sizeof (Elf_External_Verdef))
3067 continue;
5a580b3a
AM
3068 for (i = 0; i < def.vd_cnt; ++i)
3069 {
3070 _bfd_elf_swap_verdaux_in (output_bfd,
3071 (Elf_External_Verdaux *) p, &defaux);
3072 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3073 defaux.vda_name);
3074 _bfd_elf_swap_verdaux_out (output_bfd,
3075 &defaux, (Elf_External_Verdaux *) p);
3076 p += sizeof (Elf_External_Verdaux);
3077 }
3078 }
3079 while (def.vd_next);
3080 }
3081
3082 /* Adjust version references. */
3083 if (elf_tdata (output_bfd)->verref)
3084 {
3085 asection *s;
3086 bfd_byte *p;
3087 bfd_size_type i;
3088 Elf_Internal_Verneed need;
3089 Elf_Internal_Vernaux needaux;
3090
3091 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3092 p = s->contents;
3093 do
3094 {
3095 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3096 &need);
3097 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3098 _bfd_elf_swap_verneed_out (output_bfd, &need,
3099 (Elf_External_Verneed *) p);
3100 p += sizeof (Elf_External_Verneed);
3101 for (i = 0; i < need.vn_cnt; ++i)
3102 {
3103 _bfd_elf_swap_vernaux_in (output_bfd,
3104 (Elf_External_Vernaux *) p, &needaux);
3105 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3106 needaux.vna_name);
3107 _bfd_elf_swap_vernaux_out (output_bfd,
3108 &needaux,
3109 (Elf_External_Vernaux *) p);
3110 p += sizeof (Elf_External_Vernaux);
3111 }
3112 }
3113 while (need.vn_next);
3114 }
3115
3116 return TRUE;
3117}
3118\f
4ad4eba5
AM
3119/* Add symbols from an ELF object file to the linker hash table. */
3120
3121static bfd_boolean
3122elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3123{
3124 bfd_boolean (*add_symbol_hook)
555cd476 3125 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
3126 const char **, flagword *, asection **, bfd_vma *);
3127 bfd_boolean (*check_relocs)
3128 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
3129 bfd_boolean (*check_directives)
3130 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
3131 bfd_boolean collect;
3132 Elf_Internal_Shdr *hdr;
3133 bfd_size_type symcount;
3134 bfd_size_type extsymcount;
3135 bfd_size_type extsymoff;
3136 struct elf_link_hash_entry **sym_hash;
3137 bfd_boolean dynamic;
3138 Elf_External_Versym *extversym = NULL;
3139 Elf_External_Versym *ever;
3140 struct elf_link_hash_entry *weaks;
3141 struct elf_link_hash_entry **nondeflt_vers = NULL;
3142 bfd_size_type nondeflt_vers_cnt = 0;
3143 Elf_Internal_Sym *isymbuf = NULL;
3144 Elf_Internal_Sym *isym;
3145 Elf_Internal_Sym *isymend;
3146 const struct elf_backend_data *bed;
3147 bfd_boolean add_needed;
3148 struct elf_link_hash_table * hash_table;
3149 bfd_size_type amt;
3150
3151 hash_table = elf_hash_table (info);
3152
3153 bed = get_elf_backend_data (abfd);
3154 add_symbol_hook = bed->elf_add_symbol_hook;
3155 collect = bed->collect;
3156
3157 if ((abfd->flags & DYNAMIC) == 0)
3158 dynamic = FALSE;
3159 else
3160 {
3161 dynamic = TRUE;
3162
3163 /* You can't use -r against a dynamic object. Also, there's no
3164 hope of using a dynamic object which does not exactly match
3165 the format of the output file. */
3166 if (info->relocatable
3167 || !is_elf_hash_table (hash_table)
3168 || hash_table->root.creator != abfd->xvec)
3169 {
9a0789ec
NC
3170 if (info->relocatable)
3171 bfd_set_error (bfd_error_invalid_operation);
3172 else
3173 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3174 goto error_return;
3175 }
3176 }
3177
3178 /* As a GNU extension, any input sections which are named
3179 .gnu.warning.SYMBOL are treated as warning symbols for the given
3180 symbol. This differs from .gnu.warning sections, which generate
3181 warnings when they are included in an output file. */
3182 if (info->executable)
3183 {
3184 asection *s;
3185
3186 for (s = abfd->sections; s != NULL; s = s->next)
3187 {
3188 const char *name;
3189
3190 name = bfd_get_section_name (abfd, s);
3191 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3192 {
3193 char *msg;
3194 bfd_size_type sz;
4ad4eba5
AM
3195
3196 name += sizeof ".gnu.warning." - 1;
3197
3198 /* If this is a shared object, then look up the symbol
3199 in the hash table. If it is there, and it is already
3200 been defined, then we will not be using the entry
3201 from this shared object, so we don't need to warn.
3202 FIXME: If we see the definition in a regular object
3203 later on, we will warn, but we shouldn't. The only
3204 fix is to keep track of what warnings we are supposed
3205 to emit, and then handle them all at the end of the
3206 link. */
3207 if (dynamic)
3208 {
3209 struct elf_link_hash_entry *h;
3210
3211 h = elf_link_hash_lookup (hash_table, name,
3212 FALSE, FALSE, TRUE);
3213
3214 /* FIXME: What about bfd_link_hash_common? */
3215 if (h != NULL
3216 && (h->root.type == bfd_link_hash_defined
3217 || h->root.type == bfd_link_hash_defweak))
3218 {
3219 /* We don't want to issue this warning. Clobber
3220 the section size so that the warning does not
3221 get copied into the output file. */
eea6121a 3222 s->size = 0;
4ad4eba5
AM
3223 continue;
3224 }
3225 }
3226
eea6121a 3227 sz = s->size;
370a0e1b 3228 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3229 if (msg == NULL)
3230 goto error_return;
3231
370a0e1b 3232 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3233 goto error_return;
3234
370a0e1b 3235 msg[sz] = '\0';
4ad4eba5
AM
3236
3237 if (! (_bfd_generic_link_add_one_symbol
3238 (info, abfd, name, BSF_WARNING, s, 0, msg,
3239 FALSE, collect, NULL)))
3240 goto error_return;
3241
3242 if (! info->relocatable)
3243 {
3244 /* Clobber the section size so that the warning does
3245 not get copied into the output file. */
eea6121a 3246 s->size = 0;
11d2f718
AM
3247
3248 /* Also set SEC_EXCLUDE, so that symbols defined in
3249 the warning section don't get copied to the output. */
3250 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3251 }
3252 }
3253 }
3254 }
3255
3256 add_needed = TRUE;
3257 if (! dynamic)
3258 {
3259 /* If we are creating a shared library, create all the dynamic
3260 sections immediately. We need to attach them to something,
3261 so we attach them to this BFD, provided it is the right
3262 format. FIXME: If there are no input BFD's of the same
3263 format as the output, we can't make a shared library. */
3264 if (info->shared
3265 && is_elf_hash_table (hash_table)
3266 && hash_table->root.creator == abfd->xvec
3267 && ! hash_table->dynamic_sections_created)
3268 {
3269 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3270 goto error_return;
3271 }
3272 }
3273 else if (!is_elf_hash_table (hash_table))
3274 goto error_return;
3275 else
3276 {
3277 asection *s;
3278 const char *soname = NULL;
3279 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3280 int ret;
3281
3282 /* ld --just-symbols and dynamic objects don't mix very well.
3283 Test for --just-symbols by looking at info set up by
3284 _bfd_elf_link_just_syms. */
3285 if ((s = abfd->sections) != NULL
3286 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3287 goto error_return;
3288
3289 /* If this dynamic lib was specified on the command line with
3290 --as-needed in effect, then we don't want to add a DT_NEEDED
3291 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3292 in by another lib's DT_NEEDED. When --no-add-needed is used
3293 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3294 any dynamic library in DT_NEEDED tags in the dynamic lib at
3295 all. */
3296 add_needed = (elf_dyn_lib_class (abfd)
3297 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3298 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3299
3300 s = bfd_get_section_by_name (abfd, ".dynamic");
3301 if (s != NULL)
3302 {
3303 bfd_byte *dynbuf;
3304 bfd_byte *extdyn;
3305 int elfsec;
3306 unsigned long shlink;
3307
eea6121a 3308 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3309 goto error_free_dyn;
3310
3311 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3312 if (elfsec == -1)
3313 goto error_free_dyn;
3314 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3315
3316 for (extdyn = dynbuf;
eea6121a 3317 extdyn < dynbuf + s->size;
4ad4eba5
AM
3318 extdyn += bed->s->sizeof_dyn)
3319 {
3320 Elf_Internal_Dyn dyn;
3321
3322 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3323 if (dyn.d_tag == DT_SONAME)
3324 {
3325 unsigned int tagv = dyn.d_un.d_val;
3326 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3327 if (soname == NULL)
3328 goto error_free_dyn;
3329 }
3330 if (dyn.d_tag == DT_NEEDED)
3331 {
3332 struct bfd_link_needed_list *n, **pn;
3333 char *fnm, *anm;
3334 unsigned int tagv = dyn.d_un.d_val;
3335
3336 amt = sizeof (struct bfd_link_needed_list);
3337 n = bfd_alloc (abfd, amt);
3338 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3339 if (n == NULL || fnm == NULL)
3340 goto error_free_dyn;
3341 amt = strlen (fnm) + 1;
3342 anm = bfd_alloc (abfd, amt);
3343 if (anm == NULL)
3344 goto error_free_dyn;
3345 memcpy (anm, fnm, amt);
3346 n->name = anm;
3347 n->by = abfd;
3348 n->next = NULL;
3349 for (pn = & hash_table->needed;
3350 *pn != NULL;
3351 pn = &(*pn)->next)
3352 ;
3353 *pn = n;
3354 }
3355 if (dyn.d_tag == DT_RUNPATH)
3356 {
3357 struct bfd_link_needed_list *n, **pn;
3358 char *fnm, *anm;
3359 unsigned int tagv = dyn.d_un.d_val;
3360
3361 amt = sizeof (struct bfd_link_needed_list);
3362 n = bfd_alloc (abfd, amt);
3363 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3364 if (n == NULL || fnm == NULL)
3365 goto error_free_dyn;
3366 amt = strlen (fnm) + 1;
3367 anm = bfd_alloc (abfd, amt);
3368 if (anm == NULL)
3369 goto error_free_dyn;
3370 memcpy (anm, fnm, amt);
3371 n->name = anm;
3372 n->by = abfd;
3373 n->next = NULL;
3374 for (pn = & runpath;
3375 *pn != NULL;
3376 pn = &(*pn)->next)
3377 ;
3378 *pn = n;
3379 }
3380 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3381 if (!runpath && dyn.d_tag == DT_RPATH)
3382 {
3383 struct bfd_link_needed_list *n, **pn;
3384 char *fnm, *anm;
3385 unsigned int tagv = dyn.d_un.d_val;
3386
3387 amt = sizeof (struct bfd_link_needed_list);
3388 n = bfd_alloc (abfd, amt);
3389 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3390 if (n == NULL || fnm == NULL)
3391 goto error_free_dyn;
3392 amt = strlen (fnm) + 1;
3393 anm = bfd_alloc (abfd, amt);
3394 if (anm == NULL)
3395 {
3396 error_free_dyn:
3397 free (dynbuf);
3398 goto error_return;
3399 }
3400 memcpy (anm, fnm, amt);
3401 n->name = anm;
3402 n->by = abfd;
3403 n->next = NULL;
3404 for (pn = & rpath;
3405 *pn != NULL;
3406 pn = &(*pn)->next)
3407 ;
3408 *pn = n;
3409 }
3410 }
3411
3412 free (dynbuf);
3413 }
3414
3415 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3416 frees all more recently bfd_alloc'd blocks as well. */
3417 if (runpath)
3418 rpath = runpath;
3419
3420 if (rpath)
3421 {
3422 struct bfd_link_needed_list **pn;
3423 for (pn = & hash_table->runpath;
3424 *pn != NULL;
3425 pn = &(*pn)->next)
3426 ;
3427 *pn = rpath;
3428 }
3429
3430 /* We do not want to include any of the sections in a dynamic
3431 object in the output file. We hack by simply clobbering the
3432 list of sections in the BFD. This could be handled more
3433 cleanly by, say, a new section flag; the existing
3434 SEC_NEVER_LOAD flag is not the one we want, because that one
3435 still implies that the section takes up space in the output
3436 file. */
3437 bfd_section_list_clear (abfd);
3438
4ad4eba5
AM
3439 /* Find the name to use in a DT_NEEDED entry that refers to this
3440 object. If the object has a DT_SONAME entry, we use it.
3441 Otherwise, if the generic linker stuck something in
3442 elf_dt_name, we use that. Otherwise, we just use the file
3443 name. */
3444 if (soname == NULL || *soname == '\0')
3445 {
3446 soname = elf_dt_name (abfd);
3447 if (soname == NULL || *soname == '\0')
3448 soname = bfd_get_filename (abfd);
3449 }
3450
3451 /* Save the SONAME because sometimes the linker emulation code
3452 will need to know it. */
3453 elf_dt_name (abfd) = soname;
3454
7e9f0867 3455 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3456 if (ret < 0)
3457 goto error_return;
3458
3459 /* If we have already included this dynamic object in the
3460 link, just ignore it. There is no reason to include a
3461 particular dynamic object more than once. */
3462 if (ret > 0)
3463 return TRUE;
3464 }
3465
3466 /* If this is a dynamic object, we always link against the .dynsym
3467 symbol table, not the .symtab symbol table. The dynamic linker
3468 will only see the .dynsym symbol table, so there is no reason to
3469 look at .symtab for a dynamic object. */
3470
3471 if (! dynamic || elf_dynsymtab (abfd) == 0)
3472 hdr = &elf_tdata (abfd)->symtab_hdr;
3473 else
3474 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3475
3476 symcount = hdr->sh_size / bed->s->sizeof_sym;
3477
3478 /* The sh_info field of the symtab header tells us where the
3479 external symbols start. We don't care about the local symbols at
3480 this point. */
3481 if (elf_bad_symtab (abfd))
3482 {
3483 extsymcount = symcount;
3484 extsymoff = 0;
3485 }
3486 else
3487 {
3488 extsymcount = symcount - hdr->sh_info;
3489 extsymoff = hdr->sh_info;
3490 }
3491
3492 sym_hash = NULL;
3493 if (extsymcount != 0)
3494 {
3495 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3496 NULL, NULL, NULL);
3497 if (isymbuf == NULL)
3498 goto error_return;
3499
3500 /* We store a pointer to the hash table entry for each external
3501 symbol. */
3502 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3503 sym_hash = bfd_alloc (abfd, amt);
3504 if (sym_hash == NULL)
3505 goto error_free_sym;
3506 elf_sym_hashes (abfd) = sym_hash;
3507 }
3508
3509 if (dynamic)
3510 {
3511 /* Read in any version definitions. */
fc0e6df6
PB
3512 if (!_bfd_elf_slurp_version_tables (abfd,
3513 info->default_imported_symver))
4ad4eba5
AM
3514 goto error_free_sym;
3515
3516 /* Read in the symbol versions, but don't bother to convert them
3517 to internal format. */
3518 if (elf_dynversym (abfd) != 0)
3519 {
3520 Elf_Internal_Shdr *versymhdr;
3521
3522 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3523 extversym = bfd_malloc (versymhdr->sh_size);
3524 if (extversym == NULL)
3525 goto error_free_sym;
3526 amt = versymhdr->sh_size;
3527 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3528 || bfd_bread (extversym, amt, abfd) != amt)
3529 goto error_free_vers;
3530 }
3531 }
3532
3533 weaks = NULL;
3534
3535 ever = extversym != NULL ? extversym + extsymoff : NULL;
3536 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3537 isym < isymend;
3538 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3539 {
3540 int bind;
3541 bfd_vma value;
af44c138 3542 asection *sec, *new_sec;
4ad4eba5
AM
3543 flagword flags;
3544 const char *name;
3545 struct elf_link_hash_entry *h;
3546 bfd_boolean definition;
3547 bfd_boolean size_change_ok;
3548 bfd_boolean type_change_ok;
3549 bfd_boolean new_weakdef;
3550 bfd_boolean override;
3551 unsigned int old_alignment;
3552 bfd *old_bfd;
3553
3554 override = FALSE;
3555
3556 flags = BSF_NO_FLAGS;
3557 sec = NULL;
3558 value = isym->st_value;
3559 *sym_hash = NULL;
3560
3561 bind = ELF_ST_BIND (isym->st_info);
3562 if (bind == STB_LOCAL)
3563 {
3564 /* This should be impossible, since ELF requires that all
3565 global symbols follow all local symbols, and that sh_info
3566 point to the first global symbol. Unfortunately, Irix 5
3567 screws this up. */
3568 continue;
3569 }
3570 else if (bind == STB_GLOBAL)
3571 {
3572 if (isym->st_shndx != SHN_UNDEF
3573 && isym->st_shndx != SHN_COMMON)
3574 flags = BSF_GLOBAL;
3575 }
3576 else if (bind == STB_WEAK)
3577 flags = BSF_WEAK;
3578 else
3579 {
3580 /* Leave it up to the processor backend. */
3581 }
3582
3583 if (isym->st_shndx == SHN_UNDEF)
3584 sec = bfd_und_section_ptr;
3585 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3586 {
3587 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3588 if (sec == NULL)
3589 sec = bfd_abs_section_ptr;
529fcb95
PB
3590 else if (sec->kept_section)
3591 {
1f02cbd9 3592 /* Symbols from discarded section are undefined, and have
3b36f7e6 3593 default visibility. */
529fcb95
PB
3594 sec = bfd_und_section_ptr;
3595 isym->st_shndx = SHN_UNDEF;
1f02cbd9
JB
3596 isym->st_other = STV_DEFAULT
3597 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
529fcb95 3598 }
4ad4eba5
AM
3599 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3600 value -= sec->vma;
3601 }
3602 else if (isym->st_shndx == SHN_ABS)
3603 sec = bfd_abs_section_ptr;
3604 else if (isym->st_shndx == SHN_COMMON)
3605 {
3606 sec = bfd_com_section_ptr;
3607 /* What ELF calls the size we call the value. What ELF
3608 calls the value we call the alignment. */
3609 value = isym->st_size;
3610 }
3611 else
3612 {
3613 /* Leave it up to the processor backend. */
3614 }
3615
3616 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3617 isym->st_name);
3618 if (name == NULL)
3619 goto error_free_vers;
3620
3621 if (isym->st_shndx == SHN_COMMON
3622 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3623 {
3624 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3625
3626 if (tcomm == NULL)
3627 {
3496cb2a
L
3628 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3629 (SEC_ALLOC
3630 | SEC_IS_COMMON
3631 | SEC_LINKER_CREATED
3632 | SEC_THREAD_LOCAL));
3633 if (tcomm == NULL)
4ad4eba5
AM
3634 goto error_free_vers;
3635 }
3636 sec = tcomm;
3637 }
3638 else if (add_symbol_hook)
3639 {
3640 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3641 &value))
3642 goto error_free_vers;
3643
3644 /* The hook function sets the name to NULL if this symbol
3645 should be skipped for some reason. */
3646 if (name == NULL)
3647 continue;
3648 }
3649
3650 /* Sanity check that all possibilities were handled. */
3651 if (sec == NULL)
3652 {
3653 bfd_set_error (bfd_error_bad_value);
3654 goto error_free_vers;
3655 }
3656
3657 if (bfd_is_und_section (sec)
3658 || bfd_is_com_section (sec))
3659 definition = FALSE;
3660 else
3661 definition = TRUE;
3662
3663 size_change_ok = FALSE;
3664 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3665 old_alignment = 0;
3666 old_bfd = NULL;
af44c138 3667 new_sec = sec;
4ad4eba5
AM
3668
3669 if (is_elf_hash_table (hash_table))
3670 {
3671 Elf_Internal_Versym iver;
3672 unsigned int vernum = 0;
3673 bfd_boolean skip;
3674
fc0e6df6 3675 if (ever == NULL)
4ad4eba5 3676 {
fc0e6df6
PB
3677 if (info->default_imported_symver)
3678 /* Use the default symbol version created earlier. */
3679 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3680 else
3681 iver.vs_vers = 0;
3682 }
3683 else
3684 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3685
3686 vernum = iver.vs_vers & VERSYM_VERSION;
3687
3688 /* If this is a hidden symbol, or if it is not version
3689 1, we append the version name to the symbol name.
cc86ff91
EB
3690 However, we do not modify a non-hidden absolute symbol
3691 if it is not a function, because it might be the version
3692 symbol itself. FIXME: What if it isn't? */
fc0e6df6 3693 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
cc86ff91
EB
3694 || (vernum > 1 && (! bfd_is_abs_section (sec)
3695 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
fc0e6df6
PB
3696 {
3697 const char *verstr;
3698 size_t namelen, verlen, newlen;
3699 char *newname, *p;
3700
3701 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3702 {
fc0e6df6
PB
3703 if (vernum > elf_tdata (abfd)->cverdefs)
3704 verstr = NULL;
3705 else if (vernum > 1)
3706 verstr =
3707 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3708 else
3709 verstr = "";
4ad4eba5 3710
fc0e6df6 3711 if (verstr == NULL)
4ad4eba5 3712 {
fc0e6df6
PB
3713 (*_bfd_error_handler)
3714 (_("%B: %s: invalid version %u (max %d)"),
3715 abfd, name, vernum,
3716 elf_tdata (abfd)->cverdefs);
3717 bfd_set_error (bfd_error_bad_value);
3718 goto error_free_vers;
4ad4eba5 3719 }
fc0e6df6
PB
3720 }
3721 else
3722 {
3723 /* We cannot simply test for the number of
3724 entries in the VERNEED section since the
3725 numbers for the needed versions do not start
3726 at 0. */
3727 Elf_Internal_Verneed *t;
3728
3729 verstr = NULL;
3730 for (t = elf_tdata (abfd)->verref;
3731 t != NULL;
3732 t = t->vn_nextref)
4ad4eba5 3733 {
fc0e6df6 3734 Elf_Internal_Vernaux *a;
4ad4eba5 3735
fc0e6df6
PB
3736 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3737 {
3738 if (a->vna_other == vernum)
4ad4eba5 3739 {
fc0e6df6
PB
3740 verstr = a->vna_nodename;
3741 break;
4ad4eba5 3742 }
4ad4eba5 3743 }
fc0e6df6
PB
3744 if (a != NULL)
3745 break;
3746 }
3747 if (verstr == NULL)
3748 {
3749 (*_bfd_error_handler)
3750 (_("%B: %s: invalid needed version %d"),
3751 abfd, name, vernum);
3752 bfd_set_error (bfd_error_bad_value);
3753 goto error_free_vers;
4ad4eba5 3754 }
4ad4eba5 3755 }
fc0e6df6
PB
3756
3757 namelen = strlen (name);
3758 verlen = strlen (verstr);
3759 newlen = namelen + verlen + 2;
3760 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3761 && isym->st_shndx != SHN_UNDEF)
3762 ++newlen;
3763
3764 newname = bfd_alloc (abfd, newlen);
3765 if (newname == NULL)
3766 goto error_free_vers;
3767 memcpy (newname, name, namelen);
3768 p = newname + namelen;
3769 *p++ = ELF_VER_CHR;
3770 /* If this is a defined non-hidden version symbol,
3771 we add another @ to the name. This indicates the
3772 default version of the symbol. */
3773 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3774 && isym->st_shndx != SHN_UNDEF)
3775 *p++ = ELF_VER_CHR;
3776 memcpy (p, verstr, verlen + 1);
3777
3778 name = newname;
4ad4eba5
AM
3779 }
3780
af44c138
L
3781 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3782 &value, &old_alignment,
4ad4eba5
AM
3783 sym_hash, &skip, &override,
3784 &type_change_ok, &size_change_ok))
3785 goto error_free_vers;
3786
3787 if (skip)
3788 continue;
3789
3790 if (override)
3791 definition = FALSE;
3792
3793 h = *sym_hash;
3794 while (h->root.type == bfd_link_hash_indirect
3795 || h->root.type == bfd_link_hash_warning)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3797
3798 /* Remember the old alignment if this is a common symbol, so
3799 that we don't reduce the alignment later on. We can't
3800 check later, because _bfd_generic_link_add_one_symbol
3801 will set a default for the alignment which we want to
3802 override. We also remember the old bfd where the existing
3803 definition comes from. */
3804 switch (h->root.type)
3805 {
3806 default:
3807 break;
3808
3809 case bfd_link_hash_defined:
3810 case bfd_link_hash_defweak:
3811 old_bfd = h->root.u.def.section->owner;
3812 break;
3813
3814 case bfd_link_hash_common:
3815 old_bfd = h->root.u.c.p->section->owner;
3816 old_alignment = h->root.u.c.p->alignment_power;
3817 break;
3818 }
3819
3820 if (elf_tdata (abfd)->verdef != NULL
3821 && ! override
3822 && vernum > 1
3823 && definition)
3824 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3825 }
3826
3827 if (! (_bfd_generic_link_add_one_symbol
3828 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3829 (struct bfd_link_hash_entry **) sym_hash)))
3830 goto error_free_vers;
3831
3832 h = *sym_hash;
3833 while (h->root.type == bfd_link_hash_indirect
3834 || h->root.type == bfd_link_hash_warning)
3835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3836 *sym_hash = h;
3837
3838 new_weakdef = FALSE;
3839 if (dynamic
3840 && definition
3841 && (flags & BSF_WEAK) != 0
3842 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3843 && is_elf_hash_table (hash_table)
f6e332e6 3844 && h->u.weakdef == NULL)
4ad4eba5
AM
3845 {
3846 /* Keep a list of all weak defined non function symbols from
3847 a dynamic object, using the weakdef field. Later in this
3848 function we will set the weakdef field to the correct
3849 value. We only put non-function symbols from dynamic
3850 objects on this list, because that happens to be the only
3851 time we need to know the normal symbol corresponding to a
3852 weak symbol, and the information is time consuming to
3853 figure out. If the weakdef field is not already NULL,
3854 then this symbol was already defined by some previous
3855 dynamic object, and we will be using that previous
3856 definition anyhow. */
3857
f6e332e6 3858 h->u.weakdef = weaks;
4ad4eba5
AM
3859 weaks = h;
3860 new_weakdef = TRUE;
3861 }
3862
3863 /* Set the alignment of a common symbol. */
af44c138
L
3864 if ((isym->st_shndx == SHN_COMMON
3865 || bfd_is_com_section (sec))
4ad4eba5
AM
3866 && h->root.type == bfd_link_hash_common)
3867 {
3868 unsigned int align;
3869
af44c138
L
3870 if (isym->st_shndx == SHN_COMMON)
3871 align = bfd_log2 (isym->st_value);
3872 else
3873 {
3874 /* The new symbol is a common symbol in a shared object.
3875 We need to get the alignment from the section. */
3876 align = new_sec->alignment_power;
3877 }
4ad4eba5
AM
3878 if (align > old_alignment
3879 /* Permit an alignment power of zero if an alignment of one
3880 is specified and no other alignments have been specified. */
3881 || (isym->st_value == 1 && old_alignment == 0))
3882 h->root.u.c.p->alignment_power = align;
3883 else
3884 h->root.u.c.p->alignment_power = old_alignment;
3885 }
3886
3887 if (is_elf_hash_table (hash_table))
3888 {
4ad4eba5 3889 bfd_boolean dynsym;
4ad4eba5
AM
3890
3891 /* Check the alignment when a common symbol is involved. This
3892 can change when a common symbol is overridden by a normal
3893 definition or a common symbol is ignored due to the old
3894 normal definition. We need to make sure the maximum
3895 alignment is maintained. */
3896 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3897 && h->root.type != bfd_link_hash_common)
3898 {
3899 unsigned int common_align;
3900 unsigned int normal_align;
3901 unsigned int symbol_align;
3902 bfd *normal_bfd;
3903 bfd *common_bfd;
3904
3905 symbol_align = ffs (h->root.u.def.value) - 1;
3906 if (h->root.u.def.section->owner != NULL
3907 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3908 {
3909 normal_align = h->root.u.def.section->alignment_power;
3910 if (normal_align > symbol_align)
3911 normal_align = symbol_align;
3912 }
3913 else
3914 normal_align = symbol_align;
3915
3916 if (old_alignment)
3917 {
3918 common_align = old_alignment;
3919 common_bfd = old_bfd;
3920 normal_bfd = abfd;
3921 }
3922 else
3923 {
3924 common_align = bfd_log2 (isym->st_value);
3925 common_bfd = abfd;
3926 normal_bfd = old_bfd;
3927 }
3928
3929 if (normal_align < common_align)
3930 (*_bfd_error_handler)
d003868e
AM
3931 (_("Warning: alignment %u of symbol `%s' in %B"
3932 " is smaller than %u in %B"),
3933 normal_bfd, common_bfd,
3934 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3935 }
3936
3937 /* Remember the symbol size and type. */
3938 if (isym->st_size != 0
3939 && (definition || h->size == 0))
3940 {
3941 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3942 (*_bfd_error_handler)
d003868e
AM
3943 (_("Warning: size of symbol `%s' changed"
3944 " from %lu in %B to %lu in %B"),
3945 old_bfd, abfd,
4ad4eba5 3946 name, (unsigned long) h->size,
d003868e 3947 (unsigned long) isym->st_size);
4ad4eba5
AM
3948
3949 h->size = isym->st_size;
3950 }
3951
3952 /* If this is a common symbol, then we always want H->SIZE
3953 to be the size of the common symbol. The code just above
3954 won't fix the size if a common symbol becomes larger. We
3955 don't warn about a size change here, because that is
3956 covered by --warn-common. */
3957 if (h->root.type == bfd_link_hash_common)
3958 h->size = h->root.u.c.size;
3959
3960 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3961 && (definition || h->type == STT_NOTYPE))
3962 {
3963 if (h->type != STT_NOTYPE
3964 && h->type != ELF_ST_TYPE (isym->st_info)
3965 && ! type_change_ok)
3966 (*_bfd_error_handler)
d003868e
AM
3967 (_("Warning: type of symbol `%s' changed"
3968 " from %d to %d in %B"),
3969 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3970
3971 h->type = ELF_ST_TYPE (isym->st_info);
3972 }
3973
3974 /* If st_other has a processor-specific meaning, specific
3975 code might be needed here. We never merge the visibility
3976 attribute with the one from a dynamic object. */
3977 if (bed->elf_backend_merge_symbol_attribute)
3978 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3979 dynamic);
3980
b58f81ae
DJ
3981 /* If this symbol has default visibility and the user has requested
3982 we not re-export it, then mark it as hidden. */
3983 if (definition && !dynamic
3984 && (abfd->no_export
3985 || (abfd->my_archive && abfd->my_archive->no_export))
3986 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3987 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3988
4ad4eba5
AM
3989 if (isym->st_other != 0 && !dynamic)
3990 {
3991 unsigned char hvis, symvis, other, nvis;
3992
3993 /* Take the balance of OTHER from the definition. */
3994 other = (definition ? isym->st_other : h->other);
3995 other &= ~ ELF_ST_VISIBILITY (-1);
3996
3997 /* Combine visibilities, using the most constraining one. */
3998 hvis = ELF_ST_VISIBILITY (h->other);
3999 symvis = ELF_ST_VISIBILITY (isym->st_other);
4000 if (! hvis)
4001 nvis = symvis;
4002 else if (! symvis)
4003 nvis = hvis;
4004 else
4005 nvis = hvis < symvis ? hvis : symvis;
4006
4007 h->other = other | nvis;
4008 }
4009
4010 /* Set a flag in the hash table entry indicating the type of
4011 reference or definition we just found. Keep a count of
4012 the number of dynamic symbols we find. A dynamic symbol
4013 is one which is referenced or defined by both a regular
4014 object and a shared object. */
4ad4eba5
AM
4015 dynsym = FALSE;
4016 if (! dynamic)
4017 {
4018 if (! definition)
4019 {
f5385ebf 4020 h->ref_regular = 1;
4ad4eba5 4021 if (bind != STB_WEAK)
f5385ebf 4022 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4023 }
4024 else
f5385ebf 4025 h->def_regular = 1;
4ad4eba5 4026 if (! info->executable
f5385ebf
AM
4027 || h->def_dynamic
4028 || h->ref_dynamic)
4ad4eba5
AM
4029 dynsym = TRUE;
4030 }
4031 else
4032 {
4033 if (! definition)
f5385ebf 4034 h->ref_dynamic = 1;
4ad4eba5 4035 else
f5385ebf
AM
4036 h->def_dynamic = 1;
4037 if (h->def_regular
4038 || h->ref_regular
f6e332e6 4039 || (h->u.weakdef != NULL
4ad4eba5 4040 && ! new_weakdef
f6e332e6 4041 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4042 dynsym = TRUE;
4043 }
4044
4ad4eba5
AM
4045 /* Check to see if we need to add an indirect symbol for
4046 the default name. */
4047 if (definition || h->root.type == bfd_link_hash_common)
4048 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4049 &sec, &value, &dynsym,
4050 override))
4051 goto error_free_vers;
4052
4053 if (definition && !dynamic)
4054 {
4055 char *p = strchr (name, ELF_VER_CHR);
4056 if (p != NULL && p[1] != ELF_VER_CHR)
4057 {
4058 /* Queue non-default versions so that .symver x, x@FOO
4059 aliases can be checked. */
4060 if (! nondeflt_vers)
4061 {
4062 amt = (isymend - isym + 1)
4063 * sizeof (struct elf_link_hash_entry *);
4064 nondeflt_vers = bfd_malloc (amt);
4065 }
4066 nondeflt_vers [nondeflt_vers_cnt++] = h;
4067 }
4068 }
4069
4070 if (dynsym && h->dynindx == -1)
4071 {
c152c796 4072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4073 goto error_free_vers;
f6e332e6 4074 if (h->u.weakdef != NULL
4ad4eba5 4075 && ! new_weakdef
f6e332e6 4076 && h->u.weakdef->dynindx == -1)
4ad4eba5 4077 {
f6e332e6 4078 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4079 goto error_free_vers;
4080 }
4081 }
4082 else if (dynsym && h->dynindx != -1)
4083 /* If the symbol already has a dynamic index, but
4084 visibility says it should not be visible, turn it into
4085 a local symbol. */
4086 switch (ELF_ST_VISIBILITY (h->other))
4087 {
4088 case STV_INTERNAL:
4089 case STV_HIDDEN:
4090 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4091 dynsym = FALSE;
4092 break;
4093 }
4094
4095 if (!add_needed
4096 && definition
4097 && dynsym
f5385ebf 4098 && h->ref_regular)
4ad4eba5
AM
4099 {
4100 int ret;
4101 const char *soname = elf_dt_name (abfd);
4102
4103 /* A symbol from a library loaded via DT_NEEDED of some
4104 other library is referenced by a regular object.
e56f61be
L
4105 Add a DT_NEEDED entry for it. Issue an error if
4106 --no-add-needed is used. */
4107 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4108 {
4109 (*_bfd_error_handler)
4110 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4111 abfd, name);
e56f61be
L
4112 bfd_set_error (bfd_error_bad_value);
4113 goto error_free_vers;
4114 }
4115
a5db907e
AM
4116 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4117
4ad4eba5 4118 add_needed = TRUE;
7e9f0867 4119 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4120 if (ret < 0)
4121 goto error_free_vers;
4122
4123 BFD_ASSERT (ret == 0);
4124 }
4125 }
4126 }
4127
4128 /* Now that all the symbols from this input file are created, handle
4129 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4130 if (nondeflt_vers != NULL)
4131 {
4132 bfd_size_type cnt, symidx;
4133
4134 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4135 {
4136 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4137 char *shortname, *p;
4138
4139 p = strchr (h->root.root.string, ELF_VER_CHR);
4140 if (p == NULL
4141 || (h->root.type != bfd_link_hash_defined
4142 && h->root.type != bfd_link_hash_defweak))
4143 continue;
4144
4145 amt = p - h->root.root.string;
4146 shortname = bfd_malloc (amt + 1);
4147 memcpy (shortname, h->root.root.string, amt);
4148 shortname[amt] = '\0';
4149
4150 hi = (struct elf_link_hash_entry *)
4151 bfd_link_hash_lookup (&hash_table->root, shortname,
4152 FALSE, FALSE, FALSE);
4153 if (hi != NULL
4154 && hi->root.type == h->root.type
4155 && hi->root.u.def.value == h->root.u.def.value
4156 && hi->root.u.def.section == h->root.u.def.section)
4157 {
4158 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4159 hi->root.type = bfd_link_hash_indirect;
4160 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4161 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4162 sym_hash = elf_sym_hashes (abfd);
4163 if (sym_hash)
4164 for (symidx = 0; symidx < extsymcount; ++symidx)
4165 if (sym_hash[symidx] == hi)
4166 {
4167 sym_hash[symidx] = h;
4168 break;
4169 }
4170 }
4171 free (shortname);
4172 }
4173 free (nondeflt_vers);
4174 nondeflt_vers = NULL;
4175 }
4176
4177 if (extversym != NULL)
4178 {
4179 free (extversym);
4180 extversym = NULL;
4181 }
4182
4183 if (isymbuf != NULL)
4184 free (isymbuf);
4185 isymbuf = NULL;
4186
ec13b3bb
AM
4187 if (!add_needed
4188 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
77cfaee6 4189 {
ec13b3bb
AM
4190 /* Remove symbols defined in an as-needed shared lib that wasn't
4191 needed. */
77cfaee6
AM
4192 struct elf_smash_syms_data inf;
4193 inf.not_needed = abfd;
4194 inf.htab = hash_table;
4195 inf.twiddled = FALSE;
4196 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4197 if (inf.twiddled)
4198 bfd_link_repair_undef_list (&hash_table->root);
4199 weaks = NULL;
4200 }
4201
4ad4eba5
AM
4202 /* Now set the weakdefs field correctly for all the weak defined
4203 symbols we found. The only way to do this is to search all the
4204 symbols. Since we only need the information for non functions in
4205 dynamic objects, that's the only time we actually put anything on
4206 the list WEAKS. We need this information so that if a regular
4207 object refers to a symbol defined weakly in a dynamic object, the
4208 real symbol in the dynamic object is also put in the dynamic
4209 symbols; we also must arrange for both symbols to point to the
4210 same memory location. We could handle the general case of symbol
4211 aliasing, but a general symbol alias can only be generated in
4212 assembler code, handling it correctly would be very time
4213 consuming, and other ELF linkers don't handle general aliasing
4214 either. */
4215 if (weaks != NULL)
4216 {
4217 struct elf_link_hash_entry **hpp;
4218 struct elf_link_hash_entry **hppend;
4219 struct elf_link_hash_entry **sorted_sym_hash;
4220 struct elf_link_hash_entry *h;
4221 size_t sym_count;
4222
4223 /* Since we have to search the whole symbol list for each weak
4224 defined symbol, search time for N weak defined symbols will be
4225 O(N^2). Binary search will cut it down to O(NlogN). */
4226 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4227 sorted_sym_hash = bfd_malloc (amt);
4228 if (sorted_sym_hash == NULL)
4229 goto error_return;
4230 sym_hash = sorted_sym_hash;
4231 hpp = elf_sym_hashes (abfd);
4232 hppend = hpp + extsymcount;
4233 sym_count = 0;
4234 for (; hpp < hppend; hpp++)
4235 {
4236 h = *hpp;
4237 if (h != NULL
4238 && h->root.type == bfd_link_hash_defined
4239 && h->type != STT_FUNC)
4240 {
4241 *sym_hash = h;
4242 sym_hash++;
4243 sym_count++;
4244 }
4245 }
4246
4247 qsort (sorted_sym_hash, sym_count,
4248 sizeof (struct elf_link_hash_entry *),
4249 elf_sort_symbol);
4250
4251 while (weaks != NULL)
4252 {
4253 struct elf_link_hash_entry *hlook;
4254 asection *slook;
4255 bfd_vma vlook;
4256 long ilook;
4257 size_t i, j, idx;
4258
4259 hlook = weaks;
f6e332e6
AM
4260 weaks = hlook->u.weakdef;
4261 hlook->u.weakdef = NULL;
4ad4eba5
AM
4262
4263 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4264 || hlook->root.type == bfd_link_hash_defweak
4265 || hlook->root.type == bfd_link_hash_common
4266 || hlook->root.type == bfd_link_hash_indirect);
4267 slook = hlook->root.u.def.section;
4268 vlook = hlook->root.u.def.value;
4269
4270 ilook = -1;
4271 i = 0;
4272 j = sym_count;
4273 while (i < j)
4274 {
4275 bfd_signed_vma vdiff;
4276 idx = (i + j) / 2;
4277 h = sorted_sym_hash [idx];
4278 vdiff = vlook - h->root.u.def.value;
4279 if (vdiff < 0)
4280 j = idx;
4281 else if (vdiff > 0)
4282 i = idx + 1;
4283 else
4284 {
a9b881be 4285 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4286 if (sdiff < 0)
4287 j = idx;
4288 else if (sdiff > 0)
4289 i = idx + 1;
4290 else
4291 {
4292 ilook = idx;
4293 break;
4294 }
4295 }
4296 }
4297
4298 /* We didn't find a value/section match. */
4299 if (ilook == -1)
4300 continue;
4301
4302 for (i = ilook; i < sym_count; i++)
4303 {
4304 h = sorted_sym_hash [i];
4305
4306 /* Stop if value or section doesn't match. */
4307 if (h->root.u.def.value != vlook
4308 || h->root.u.def.section != slook)
4309 break;
4310 else if (h != hlook)
4311 {
f6e332e6 4312 hlook->u.weakdef = h;
4ad4eba5
AM
4313
4314 /* If the weak definition is in the list of dynamic
4315 symbols, make sure the real definition is put
4316 there as well. */
4317 if (hlook->dynindx != -1 && h->dynindx == -1)
4318 {
c152c796 4319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4320 goto error_return;
4321 }
4322
4323 /* If the real definition is in the list of dynamic
4324 symbols, make sure the weak definition is put
4325 there as well. If we don't do this, then the
4326 dynamic loader might not merge the entries for the
4327 real definition and the weak definition. */
4328 if (h->dynindx != -1 && hlook->dynindx == -1)
4329 {
c152c796 4330 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4331 goto error_return;
4332 }
4333 break;
4334 }
4335 }
4336 }
4337
4338 free (sorted_sym_hash);
4339 }
4340
85fbca6a
NC
4341 check_directives = get_elf_backend_data (abfd)->check_directives;
4342 if (check_directives)
4343 check_directives (abfd, info);
4344
4ad4eba5
AM
4345 /* If this object is the same format as the output object, and it is
4346 not a shared library, then let the backend look through the
4347 relocs.
4348
4349 This is required to build global offset table entries and to
4350 arrange for dynamic relocs. It is not required for the
4351 particular common case of linking non PIC code, even when linking
4352 against shared libraries, but unfortunately there is no way of
4353 knowing whether an object file has been compiled PIC or not.
4354 Looking through the relocs is not particularly time consuming.
4355 The problem is that we must either (1) keep the relocs in memory,
4356 which causes the linker to require additional runtime memory or
4357 (2) read the relocs twice from the input file, which wastes time.
4358 This would be a good case for using mmap.
4359
4360 I have no idea how to handle linking PIC code into a file of a
4361 different format. It probably can't be done. */
4362 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4363 if (! dynamic
4364 && is_elf_hash_table (hash_table)
4365 && hash_table->root.creator == abfd->xvec
4366 && check_relocs != NULL)
4367 {
4368 asection *o;
4369
4370 for (o = abfd->sections; o != NULL; o = o->next)
4371 {
4372 Elf_Internal_Rela *internal_relocs;
4373 bfd_boolean ok;
4374
4375 if ((o->flags & SEC_RELOC) == 0
4376 || o->reloc_count == 0
4377 || ((info->strip == strip_all || info->strip == strip_debugger)
4378 && (o->flags & SEC_DEBUGGING) != 0)
4379 || bfd_is_abs_section (o->output_section))
4380 continue;
4381
4382 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4383 info->keep_memory);
4384 if (internal_relocs == NULL)
4385 goto error_return;
4386
4387 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4388
4389 if (elf_section_data (o)->relocs != internal_relocs)
4390 free (internal_relocs);
4391
4392 if (! ok)
4393 goto error_return;
4394 }
4395 }
4396
4397 /* If this is a non-traditional link, try to optimize the handling
4398 of the .stab/.stabstr sections. */
4399 if (! dynamic
4400 && ! info->traditional_format
4401 && is_elf_hash_table (hash_table)
4402 && (info->strip != strip_all && info->strip != strip_debugger))
4403 {
4404 asection *stabstr;
4405
4406 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4407 if (stabstr != NULL)
4408 {
4409 bfd_size_type string_offset = 0;
4410 asection *stab;
4411
4412 for (stab = abfd->sections; stab; stab = stab->next)
4413 if (strncmp (".stab", stab->name, 5) == 0
4414 && (!stab->name[5] ||
4415 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4416 && (stab->flags & SEC_MERGE) == 0
4417 && !bfd_is_abs_section (stab->output_section))
4418 {
4419 struct bfd_elf_section_data *secdata;
4420
4421 secdata = elf_section_data (stab);
4422 if (! _bfd_link_section_stabs (abfd,
3722b82f 4423 &hash_table->stab_info,
4ad4eba5
AM
4424 stab, stabstr,
4425 &secdata->sec_info,
4426 &string_offset))
4427 goto error_return;
4428 if (secdata->sec_info)
4429 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4430 }
4431 }
4432 }
4433
77cfaee6 4434 if (is_elf_hash_table (hash_table) && add_needed)
4ad4eba5
AM
4435 {
4436 /* Add this bfd to the loaded list. */
4437 struct elf_link_loaded_list *n;
4438
4439 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4440 if (n == NULL)
4441 goto error_return;
4442 n->abfd = abfd;
4443 n->next = hash_table->loaded;
4444 hash_table->loaded = n;
4445 }
4446
4447 return TRUE;
4448
4449 error_free_vers:
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 if (extversym != NULL)
4453 free (extversym);
4454 error_free_sym:
4455 if (isymbuf != NULL)
4456 free (isymbuf);
4457 error_return:
4458 return FALSE;
4459}
4460
8387904d
AM
4461/* Return the linker hash table entry of a symbol that might be
4462 satisfied by an archive symbol. Return -1 on error. */
4463
4464struct elf_link_hash_entry *
4465_bfd_elf_archive_symbol_lookup (bfd *abfd,
4466 struct bfd_link_info *info,
4467 const char *name)
4468{
4469 struct elf_link_hash_entry *h;
4470 char *p, *copy;
4471 size_t len, first;
4472
4473 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4474 if (h != NULL)
4475 return h;
4476
4477 /* If this is a default version (the name contains @@), look up the
4478 symbol again with only one `@' as well as without the version.
4479 The effect is that references to the symbol with and without the
4480 version will be matched by the default symbol in the archive. */
4481
4482 p = strchr (name, ELF_VER_CHR);
4483 if (p == NULL || p[1] != ELF_VER_CHR)
4484 return h;
4485
4486 /* First check with only one `@'. */
4487 len = strlen (name);
4488 copy = bfd_alloc (abfd, len);
4489 if (copy == NULL)
4490 return (struct elf_link_hash_entry *) 0 - 1;
4491
4492 first = p - name + 1;
4493 memcpy (copy, name, first);
4494 memcpy (copy + first, name + first + 1, len - first);
4495
4496 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4497 if (h == NULL)
4498 {
4499 /* We also need to check references to the symbol without the
4500 version. */
4501 copy[first - 1] = '\0';
4502 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4503 FALSE, FALSE, FALSE);
4504 }
4505
4506 bfd_release (abfd, copy);
4507 return h;
4508}
4509
0ad989f9
L
4510/* Add symbols from an ELF archive file to the linker hash table. We
4511 don't use _bfd_generic_link_add_archive_symbols because of a
4512 problem which arises on UnixWare. The UnixWare libc.so is an
4513 archive which includes an entry libc.so.1 which defines a bunch of
4514 symbols. The libc.so archive also includes a number of other
4515 object files, which also define symbols, some of which are the same
4516 as those defined in libc.so.1. Correct linking requires that we
4517 consider each object file in turn, and include it if it defines any
4518 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4519 this; it looks through the list of undefined symbols, and includes
4520 any object file which defines them. When this algorithm is used on
4521 UnixWare, it winds up pulling in libc.so.1 early and defining a
4522 bunch of symbols. This means that some of the other objects in the
4523 archive are not included in the link, which is incorrect since they
4524 precede libc.so.1 in the archive.
4525
4526 Fortunately, ELF archive handling is simpler than that done by
4527 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4528 oddities. In ELF, if we find a symbol in the archive map, and the
4529 symbol is currently undefined, we know that we must pull in that
4530 object file.
4531
4532 Unfortunately, we do have to make multiple passes over the symbol
4533 table until nothing further is resolved. */
4534
4ad4eba5
AM
4535static bfd_boolean
4536elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4537{
4538 symindex c;
4539 bfd_boolean *defined = NULL;
4540 bfd_boolean *included = NULL;
4541 carsym *symdefs;
4542 bfd_boolean loop;
4543 bfd_size_type amt;
8387904d
AM
4544 const struct elf_backend_data *bed;
4545 struct elf_link_hash_entry * (*archive_symbol_lookup)
4546 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4547
4548 if (! bfd_has_map (abfd))
4549 {
4550 /* An empty archive is a special case. */
4551 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4552 return TRUE;
4553 bfd_set_error (bfd_error_no_armap);
4554 return FALSE;
4555 }
4556
4557 /* Keep track of all symbols we know to be already defined, and all
4558 files we know to be already included. This is to speed up the
4559 second and subsequent passes. */
4560 c = bfd_ardata (abfd)->symdef_count;
4561 if (c == 0)
4562 return TRUE;
4563 amt = c;
4564 amt *= sizeof (bfd_boolean);
4565 defined = bfd_zmalloc (amt);
4566 included = bfd_zmalloc (amt);
4567 if (defined == NULL || included == NULL)
4568 goto error_return;
4569
4570 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4571 bed = get_elf_backend_data (abfd);
4572 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4573
4574 do
4575 {
4576 file_ptr last;
4577 symindex i;
4578 carsym *symdef;
4579 carsym *symdefend;
4580
4581 loop = FALSE;
4582 last = -1;
4583
4584 symdef = symdefs;
4585 symdefend = symdef + c;
4586 for (i = 0; symdef < symdefend; symdef++, i++)
4587 {
4588 struct elf_link_hash_entry *h;
4589 bfd *element;
4590 struct bfd_link_hash_entry *undefs_tail;
4591 symindex mark;
4592
4593 if (defined[i] || included[i])
4594 continue;
4595 if (symdef->file_offset == last)
4596 {
4597 included[i] = TRUE;
4598 continue;
4599 }
4600
8387904d
AM
4601 h = archive_symbol_lookup (abfd, info, symdef->name);
4602 if (h == (struct elf_link_hash_entry *) 0 - 1)
4603 goto error_return;
0ad989f9
L
4604
4605 if (h == NULL)
4606 continue;
4607
4608 if (h->root.type == bfd_link_hash_common)
4609 {
4610 /* We currently have a common symbol. The archive map contains
4611 a reference to this symbol, so we may want to include it. We
4612 only want to include it however, if this archive element
4613 contains a definition of the symbol, not just another common
4614 declaration of it.
4615
4616 Unfortunately some archivers (including GNU ar) will put
4617 declarations of common symbols into their archive maps, as
4618 well as real definitions, so we cannot just go by the archive
4619 map alone. Instead we must read in the element's symbol
4620 table and check that to see what kind of symbol definition
4621 this is. */
4622 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4623 continue;
4624 }
4625 else if (h->root.type != bfd_link_hash_undefined)
4626 {
4627 if (h->root.type != bfd_link_hash_undefweak)
4628 defined[i] = TRUE;
4629 continue;
4630 }
4631
4632 /* We need to include this archive member. */
4633 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4634 if (element == NULL)
4635 goto error_return;
4636
4637 if (! bfd_check_format (element, bfd_object))
4638 goto error_return;
4639
4640 /* Doublecheck that we have not included this object
4641 already--it should be impossible, but there may be
4642 something wrong with the archive. */
4643 if (element->archive_pass != 0)
4644 {
4645 bfd_set_error (bfd_error_bad_value);
4646 goto error_return;
4647 }
4648 element->archive_pass = 1;
4649
4650 undefs_tail = info->hash->undefs_tail;
4651
4652 if (! (*info->callbacks->add_archive_element) (info, element,
4653 symdef->name))
4654 goto error_return;
4655 if (! bfd_link_add_symbols (element, info))
4656 goto error_return;
4657
4658 /* If there are any new undefined symbols, we need to make
4659 another pass through the archive in order to see whether
4660 they can be defined. FIXME: This isn't perfect, because
4661 common symbols wind up on undefs_tail and because an
4662 undefined symbol which is defined later on in this pass
4663 does not require another pass. This isn't a bug, but it
4664 does make the code less efficient than it could be. */
4665 if (undefs_tail != info->hash->undefs_tail)
4666 loop = TRUE;
4667
4668 /* Look backward to mark all symbols from this object file
4669 which we have already seen in this pass. */
4670 mark = i;
4671 do
4672 {
4673 included[mark] = TRUE;
4674 if (mark == 0)
4675 break;
4676 --mark;
4677 }
4678 while (symdefs[mark].file_offset == symdef->file_offset);
4679
4680 /* We mark subsequent symbols from this object file as we go
4681 on through the loop. */
4682 last = symdef->file_offset;
4683 }
4684 }
4685 while (loop);
4686
4687 free (defined);
4688 free (included);
4689
4690 return TRUE;
4691
4692 error_return:
4693 if (defined != NULL)
4694 free (defined);
4695 if (included != NULL)
4696 free (included);
4697 return FALSE;
4698}
4ad4eba5
AM
4699
4700/* Given an ELF BFD, add symbols to the global hash table as
4701 appropriate. */
4702
4703bfd_boolean
4704bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4705{
4706 switch (bfd_get_format (abfd))
4707 {
4708 case bfd_object:
4709 return elf_link_add_object_symbols (abfd, info);
4710 case bfd_archive:
4711 return elf_link_add_archive_symbols (abfd, info);
4712 default:
4713 bfd_set_error (bfd_error_wrong_format);
4714 return FALSE;
4715 }
4716}
5a580b3a
AM
4717\f
4718/* This function will be called though elf_link_hash_traverse to store
4719 all hash value of the exported symbols in an array. */
4720
4721static bfd_boolean
4722elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4723{
4724 unsigned long **valuep = data;
4725 const char *name;
4726 char *p;
4727 unsigned long ha;
4728 char *alc = NULL;
4729
4730 if (h->root.type == bfd_link_hash_warning)
4731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4732
4733 /* Ignore indirect symbols. These are added by the versioning code. */
4734 if (h->dynindx == -1)
4735 return TRUE;
4736
4737 name = h->root.root.string;
4738 p = strchr (name, ELF_VER_CHR);
4739 if (p != NULL)
4740 {
4741 alc = bfd_malloc (p - name + 1);
4742 memcpy (alc, name, p - name);
4743 alc[p - name] = '\0';
4744 name = alc;
4745 }
4746
4747 /* Compute the hash value. */
4748 ha = bfd_elf_hash (name);
4749
4750 /* Store the found hash value in the array given as the argument. */
4751 *(*valuep)++ = ha;
4752
4753 /* And store it in the struct so that we can put it in the hash table
4754 later. */
f6e332e6 4755 h->u.elf_hash_value = ha;
5a580b3a
AM
4756
4757 if (alc != NULL)
4758 free (alc);
4759
4760 return TRUE;
4761}
4762
4763/* Array used to determine the number of hash table buckets to use
4764 based on the number of symbols there are. If there are fewer than
4765 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4766 fewer than 37 we use 17 buckets, and so forth. We never use more
4767 than 32771 buckets. */
4768
4769static const size_t elf_buckets[] =
4770{
4771 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4772 16411, 32771, 0
4773};
4774
4775/* Compute bucket count for hashing table. We do not use a static set
4776 of possible tables sizes anymore. Instead we determine for all
4777 possible reasonable sizes of the table the outcome (i.e., the
4778 number of collisions etc) and choose the best solution. The
4779 weighting functions are not too simple to allow the table to grow
4780 without bounds. Instead one of the weighting factors is the size.
4781 Therefore the result is always a good payoff between few collisions
4782 (= short chain lengths) and table size. */
4783static size_t
4784compute_bucket_count (struct bfd_link_info *info)
4785{
4786 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4787 size_t best_size = 0;
4788 unsigned long int *hashcodes;
4789 unsigned long int *hashcodesp;
4790 unsigned long int i;
4791 bfd_size_type amt;
4792
4793 /* Compute the hash values for all exported symbols. At the same
4794 time store the values in an array so that we could use them for
4795 optimizations. */
4796 amt = dynsymcount;
4797 amt *= sizeof (unsigned long int);
4798 hashcodes = bfd_malloc (amt);
4799 if (hashcodes == NULL)
4800 return 0;
4801 hashcodesp = hashcodes;
4802
4803 /* Put all hash values in HASHCODES. */
4804 elf_link_hash_traverse (elf_hash_table (info),
4805 elf_collect_hash_codes, &hashcodesp);
4806
4807 /* We have a problem here. The following code to optimize the table
4808 size requires an integer type with more the 32 bits. If
4809 BFD_HOST_U_64_BIT is set we know about such a type. */
4810#ifdef BFD_HOST_U_64_BIT
4811 if (info->optimize)
4812 {
4813 unsigned long int nsyms = hashcodesp - hashcodes;
4814 size_t minsize;
4815 size_t maxsize;
4816 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4817 unsigned long int *counts ;
4818 bfd *dynobj = elf_hash_table (info)->dynobj;
4819 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4820
4821 /* Possible optimization parameters: if we have NSYMS symbols we say
4822 that the hashing table must at least have NSYMS/4 and at most
4823 2*NSYMS buckets. */
4824 minsize = nsyms / 4;
4825 if (minsize == 0)
4826 minsize = 1;
4827 best_size = maxsize = nsyms * 2;
4828
4829 /* Create array where we count the collisions in. We must use bfd_malloc
4830 since the size could be large. */
4831 amt = maxsize;
4832 amt *= sizeof (unsigned long int);
4833 counts = bfd_malloc (amt);
4834 if (counts == NULL)
4835 {
4836 free (hashcodes);
4837 return 0;
4838 }
4839
4840 /* Compute the "optimal" size for the hash table. The criteria is a
4841 minimal chain length. The minor criteria is (of course) the size
4842 of the table. */
4843 for (i = minsize; i < maxsize; ++i)
4844 {
4845 /* Walk through the array of hashcodes and count the collisions. */
4846 BFD_HOST_U_64_BIT max;
4847 unsigned long int j;
4848 unsigned long int fact;
4849
4850 memset (counts, '\0', i * sizeof (unsigned long int));
4851
4852 /* Determine how often each hash bucket is used. */
4853 for (j = 0; j < nsyms; ++j)
4854 ++counts[hashcodes[j] % i];
4855
4856 /* For the weight function we need some information about the
4857 pagesize on the target. This is information need not be 100%
4858 accurate. Since this information is not available (so far) we
4859 define it here to a reasonable default value. If it is crucial
4860 to have a better value some day simply define this value. */
4861# ifndef BFD_TARGET_PAGESIZE
4862# define BFD_TARGET_PAGESIZE (4096)
4863# endif
4864
4865 /* We in any case need 2 + NSYMS entries for the size values and
4866 the chains. */
4867 max = (2 + nsyms) * (bed->s->arch_size / 8);
4868
4869# if 1
4870 /* Variant 1: optimize for short chains. We add the squares
4871 of all the chain lengths (which favors many small chain
4872 over a few long chains). */
4873 for (j = 0; j < i; ++j)
4874 max += counts[j] * counts[j];
4875
4876 /* This adds penalties for the overall size of the table. */
4877 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4878 max *= fact * fact;
4879# else
4880 /* Variant 2: Optimize a lot more for small table. Here we
4881 also add squares of the size but we also add penalties for
4882 empty slots (the +1 term). */
4883 for (j = 0; j < i; ++j)
4884 max += (1 + counts[j]) * (1 + counts[j]);
4885
4886 /* The overall size of the table is considered, but not as
4887 strong as in variant 1, where it is squared. */
4888 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4889 max *= fact;
4890# endif
4891
4892 /* Compare with current best results. */
4893 if (max < best_chlen)
4894 {
4895 best_chlen = max;
4896 best_size = i;
4897 }
4898 }
4899
4900 free (counts);
4901 }
4902 else
4903#endif /* defined (BFD_HOST_U_64_BIT) */
4904 {
4905 /* This is the fallback solution if no 64bit type is available or if we
4906 are not supposed to spend much time on optimizations. We select the
4907 bucket count using a fixed set of numbers. */
4908 for (i = 0; elf_buckets[i] != 0; i++)
4909 {
4910 best_size = elf_buckets[i];
4911 if (dynsymcount < elf_buckets[i + 1])
4912 break;
4913 }
4914 }
4915
4916 /* Free the arrays we needed. */
4917 free (hashcodes);
4918
4919 return best_size;
4920}
4921
4922/* Set up the sizes and contents of the ELF dynamic sections. This is
4923 called by the ELF linker emulation before_allocation routine. We
4924 must set the sizes of the sections before the linker sets the
4925 addresses of the various sections. */
4926
4927bfd_boolean
4928bfd_elf_size_dynamic_sections (bfd *output_bfd,
4929 const char *soname,
4930 const char *rpath,
4931 const char *filter_shlib,
4932 const char * const *auxiliary_filters,
4933 struct bfd_link_info *info,
4934 asection **sinterpptr,
4935 struct bfd_elf_version_tree *verdefs)
4936{
4937 bfd_size_type soname_indx;
4938 bfd *dynobj;
4939 const struct elf_backend_data *bed;
4940 struct elf_assign_sym_version_info asvinfo;
4941
4942 *sinterpptr = NULL;
4943
4944 soname_indx = (bfd_size_type) -1;
4945
4946 if (!is_elf_hash_table (info->hash))
4947 return TRUE;
4948
8c37241b 4949 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4950 if (info->execstack)
4951 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4952 else if (info->noexecstack)
4953 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4954 else
4955 {
4956 bfd *inputobj;
4957 asection *notesec = NULL;
4958 int exec = 0;
4959
4960 for (inputobj = info->input_bfds;
4961 inputobj;
4962 inputobj = inputobj->link_next)
4963 {
4964 asection *s;
4965
d457dcf6 4966 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
4967 continue;
4968 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4969 if (s)
4970 {
4971 if (s->flags & SEC_CODE)
4972 exec = PF_X;
4973 notesec = s;
4974 }
4975 else
4976 exec = PF_X;
4977 }
4978 if (notesec)
4979 {
4980 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4981 if (exec && info->relocatable
4982 && notesec->output_section != bfd_abs_section_ptr)
4983 notesec->output_section->flags |= SEC_CODE;
4984 }
4985 }
4986
4987 /* Any syms created from now on start with -1 in
4988 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
4989 elf_hash_table (info)->init_got_refcount
4990 = elf_hash_table (info)->init_got_offset;
4991 elf_hash_table (info)->init_plt_refcount
4992 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
4993
4994 /* The backend may have to create some sections regardless of whether
4995 we're dynamic or not. */
4996 bed = get_elf_backend_data (output_bfd);
4997 if (bed->elf_backend_always_size_sections
4998 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4999 return FALSE;
5000
5001 dynobj = elf_hash_table (info)->dynobj;
5002
5003 /* If there were no dynamic objects in the link, there is nothing to
5004 do here. */
5005 if (dynobj == NULL)
5006 return TRUE;
5007
5008 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5009 return FALSE;
5010
5011 if (elf_hash_table (info)->dynamic_sections_created)
5012 {
5013 struct elf_info_failed eif;
5014 struct elf_link_hash_entry *h;
5015 asection *dynstr;
5016 struct bfd_elf_version_tree *t;
5017 struct bfd_elf_version_expr *d;
5018 bfd_boolean all_defined;
5019
5020 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5021 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5022
5023 if (soname != NULL)
5024 {
5025 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5026 soname, TRUE);
5027 if (soname_indx == (bfd_size_type) -1
5028 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5029 return FALSE;
5030 }
5031
5032 if (info->symbolic)
5033 {
5034 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5035 return FALSE;
5036 info->flags |= DF_SYMBOLIC;
5037 }
5038
5039 if (rpath != NULL)
5040 {
5041 bfd_size_type indx;
5042
5043 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5044 TRUE);
5045 if (indx == (bfd_size_type) -1
5046 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5047 return FALSE;
5048
5049 if (info->new_dtags)
5050 {
5051 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5052 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5053 return FALSE;
5054 }
5055 }
5056
5057 if (filter_shlib != NULL)
5058 {
5059 bfd_size_type indx;
5060
5061 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5062 filter_shlib, TRUE);
5063 if (indx == (bfd_size_type) -1
5064 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5065 return FALSE;
5066 }
5067
5068 if (auxiliary_filters != NULL)
5069 {
5070 const char * const *p;
5071
5072 for (p = auxiliary_filters; *p != NULL; p++)
5073 {
5074 bfd_size_type indx;
5075
5076 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5077 *p, TRUE);
5078 if (indx == (bfd_size_type) -1
5079 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5080 return FALSE;
5081 }
5082 }
5083
5084 eif.info = info;
5085 eif.verdefs = verdefs;
5086 eif.failed = FALSE;
5087
5088 /* If we are supposed to export all symbols into the dynamic symbol
5089 table (this is not the normal case), then do so. */
5090 if (info->export_dynamic)
5091 {
5092 elf_link_hash_traverse (elf_hash_table (info),
5093 _bfd_elf_export_symbol,
5094 &eif);
5095 if (eif.failed)
5096 return FALSE;
5097 }
5098
5099 /* Make all global versions with definition. */
5100 for (t = verdefs; t != NULL; t = t->next)
5101 for (d = t->globals.list; d != NULL; d = d->next)
5102 if (!d->symver && d->symbol)
5103 {
5104 const char *verstr, *name;
5105 size_t namelen, verlen, newlen;
5106 char *newname, *p;
5107 struct elf_link_hash_entry *newh;
5108
5109 name = d->symbol;
5110 namelen = strlen (name);
5111 verstr = t->name;
5112 verlen = strlen (verstr);
5113 newlen = namelen + verlen + 3;
5114
5115 newname = bfd_malloc (newlen);
5116 if (newname == NULL)
5117 return FALSE;
5118 memcpy (newname, name, namelen);
5119
5120 /* Check the hidden versioned definition. */
5121 p = newname + namelen;
5122 *p++ = ELF_VER_CHR;
5123 memcpy (p, verstr, verlen + 1);
5124 newh = elf_link_hash_lookup (elf_hash_table (info),
5125 newname, FALSE, FALSE,
5126 FALSE);
5127 if (newh == NULL
5128 || (newh->root.type != bfd_link_hash_defined
5129 && newh->root.type != bfd_link_hash_defweak))
5130 {
5131 /* Check the default versioned definition. */
5132 *p++ = ELF_VER_CHR;
5133 memcpy (p, verstr, verlen + 1);
5134 newh = elf_link_hash_lookup (elf_hash_table (info),
5135 newname, FALSE, FALSE,
5136 FALSE);
5137 }
5138 free (newname);
5139
5140 /* Mark this version if there is a definition and it is
5141 not defined in a shared object. */
5142 if (newh != NULL
f5385ebf 5143 && !newh->def_dynamic
5a580b3a
AM
5144 && (newh->root.type == bfd_link_hash_defined
5145 || newh->root.type == bfd_link_hash_defweak))
5146 d->symver = 1;
5147 }
5148
5149 /* Attach all the symbols to their version information. */
5150 asvinfo.output_bfd = output_bfd;
5151 asvinfo.info = info;
5152 asvinfo.verdefs = verdefs;
5153 asvinfo.failed = FALSE;
5154
5155 elf_link_hash_traverse (elf_hash_table (info),
5156 _bfd_elf_link_assign_sym_version,
5157 &asvinfo);
5158 if (asvinfo.failed)
5159 return FALSE;
5160
5161 if (!info->allow_undefined_version)
5162 {
5163 /* Check if all global versions have a definition. */
5164 all_defined = TRUE;
5165 for (t = verdefs; t != NULL; t = t->next)
5166 for (d = t->globals.list; d != NULL; d = d->next)
5167 if (!d->symver && !d->script)
5168 {
5169 (*_bfd_error_handler)
5170 (_("%s: undefined version: %s"),
5171 d->pattern, t->name);
5172 all_defined = FALSE;
5173 }
5174
5175 if (!all_defined)
5176 {
5177 bfd_set_error (bfd_error_bad_value);
5178 return FALSE;
5179 }
5180 }
5181
5182 /* Find all symbols which were defined in a dynamic object and make
5183 the backend pick a reasonable value for them. */
5184 elf_link_hash_traverse (elf_hash_table (info),
5185 _bfd_elf_adjust_dynamic_symbol,
5186 &eif);
5187 if (eif.failed)
5188 return FALSE;
5189
5190 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5191 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5192 now so that we know the final size of the .dynamic section. */
5193
5194 /* If there are initialization and/or finalization functions to
5195 call then add the corresponding DT_INIT/DT_FINI entries. */
5196 h = (info->init_function
5197 ? elf_link_hash_lookup (elf_hash_table (info),
5198 info->init_function, FALSE,
5199 FALSE, FALSE)
5200 : NULL);
5201 if (h != NULL
f5385ebf
AM
5202 && (h->ref_regular
5203 || h->def_regular))
5a580b3a
AM
5204 {
5205 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5206 return FALSE;
5207 }
5208 h = (info->fini_function
5209 ? elf_link_hash_lookup (elf_hash_table (info),
5210 info->fini_function, FALSE,
5211 FALSE, FALSE)
5212 : NULL);
5213 if (h != NULL
f5385ebf
AM
5214 && (h->ref_regular
5215 || h->def_regular))
5a580b3a
AM
5216 {
5217 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5218 return FALSE;
5219 }
5220
5221 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5222 {
5223 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5224 if (! info->executable)
5225 {
5226 bfd *sub;
5227 asection *o;
5228
5229 for (sub = info->input_bfds; sub != NULL;
5230 sub = sub->link_next)
5231 for (o = sub->sections; o != NULL; o = o->next)
5232 if (elf_section_data (o)->this_hdr.sh_type
5233 == SHT_PREINIT_ARRAY)
5234 {
5235 (*_bfd_error_handler)
d003868e
AM
5236 (_("%B: .preinit_array section is not allowed in DSO"),
5237 sub);
5a580b3a
AM
5238 break;
5239 }
5240
5241 bfd_set_error (bfd_error_nonrepresentable_section);
5242 return FALSE;
5243 }
5244
5245 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5246 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5247 return FALSE;
5248 }
5249 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5250 {
5251 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5252 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5253 return FALSE;
5254 }
5255 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5256 {
5257 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5258 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5259 return FALSE;
5260 }
5261
5262 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5263 /* If .dynstr is excluded from the link, we don't want any of
5264 these tags. Strictly, we should be checking each section
5265 individually; This quick check covers for the case where
5266 someone does a /DISCARD/ : { *(*) }. */
5267 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5268 {
5269 bfd_size_type strsize;
5270
5271 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5272 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5273 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5274 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5275 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5276 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5277 bed->s->sizeof_sym))
5278 return FALSE;
5279 }
5280 }
5281
5282 /* The backend must work out the sizes of all the other dynamic
5283 sections. */
5284 if (bed->elf_backend_size_dynamic_sections
5285 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5286 return FALSE;
5287
5288 if (elf_hash_table (info)->dynamic_sections_created)
5289 {
554220db 5290 unsigned long section_sym_count;
5a580b3a 5291 asection *s;
5a580b3a
AM
5292
5293 /* Set up the version definition section. */
5294 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5295 BFD_ASSERT (s != NULL);
5296
5297 /* We may have created additional version definitions if we are
5298 just linking a regular application. */
5299 verdefs = asvinfo.verdefs;
5300
5301 /* Skip anonymous version tag. */
5302 if (verdefs != NULL && verdefs->vernum == 0)
5303 verdefs = verdefs->next;
5304
3e3b46e5 5305 if (verdefs == NULL && !info->create_default_symver)
8423293d 5306 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5307 else
5308 {
5309 unsigned int cdefs;
5310 bfd_size_type size;
5311 struct bfd_elf_version_tree *t;
5312 bfd_byte *p;
5313 Elf_Internal_Verdef def;
5314 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5315 struct bfd_link_hash_entry *bh;
5316 struct elf_link_hash_entry *h;
5317 const char *name;
5a580b3a
AM
5318
5319 cdefs = 0;
5320 size = 0;
5321
5322 /* Make space for the base version. */
5323 size += sizeof (Elf_External_Verdef);
5324 size += sizeof (Elf_External_Verdaux);
5325 ++cdefs;
5326
3e3b46e5
PB
5327 /* Make space for the default version. */
5328 if (info->create_default_symver)
5329 {
5330 size += sizeof (Elf_External_Verdef);
5331 ++cdefs;
5332 }
5333
5a580b3a
AM
5334 for (t = verdefs; t != NULL; t = t->next)
5335 {
5336 struct bfd_elf_version_deps *n;
5337
5338 size += sizeof (Elf_External_Verdef);
5339 size += sizeof (Elf_External_Verdaux);
5340 ++cdefs;
5341
5342 for (n = t->deps; n != NULL; n = n->next)
5343 size += sizeof (Elf_External_Verdaux);
5344 }
5345
eea6121a
AM
5346 s->size = size;
5347 s->contents = bfd_alloc (output_bfd, s->size);
5348 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5349 return FALSE;
5350
5351 /* Fill in the version definition section. */
5352
5353 p = s->contents;
5354
5355 def.vd_version = VER_DEF_CURRENT;
5356 def.vd_flags = VER_FLG_BASE;
5357 def.vd_ndx = 1;
5358 def.vd_cnt = 1;
3e3b46e5
PB
5359 if (info->create_default_symver)
5360 {
5361 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5362 def.vd_next = sizeof (Elf_External_Verdef);
5363 }
5364 else
5365 {
5366 def.vd_aux = sizeof (Elf_External_Verdef);
5367 def.vd_next = (sizeof (Elf_External_Verdef)
5368 + sizeof (Elf_External_Verdaux));
5369 }
5a580b3a
AM
5370
5371 if (soname_indx != (bfd_size_type) -1)
5372 {
5373 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5374 soname_indx);
5375 def.vd_hash = bfd_elf_hash (soname);
5376 defaux.vda_name = soname_indx;
3e3b46e5 5377 name = soname;
5a580b3a
AM
5378 }
5379 else
5380 {
5a580b3a
AM
5381 bfd_size_type indx;
5382
06084812 5383 name = lbasename (output_bfd->filename);
5a580b3a
AM
5384 def.vd_hash = bfd_elf_hash (name);
5385 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5386 name, FALSE);
5387 if (indx == (bfd_size_type) -1)
5388 return FALSE;
5389 defaux.vda_name = indx;
5390 }
5391 defaux.vda_next = 0;
5392
5393 _bfd_elf_swap_verdef_out (output_bfd, &def,
5394 (Elf_External_Verdef *) p);
5395 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5396 if (info->create_default_symver)
5397 {
5398 /* Add a symbol representing this version. */
5399 bh = NULL;
5400 if (! (_bfd_generic_link_add_one_symbol
5401 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5402 0, NULL, FALSE,
5403 get_elf_backend_data (dynobj)->collect, &bh)))
5404 return FALSE;
5405 h = (struct elf_link_hash_entry *) bh;
5406 h->non_elf = 0;
5407 h->def_regular = 1;
5408 h->type = STT_OBJECT;
5409 h->verinfo.vertree = NULL;
5410
5411 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5412 return FALSE;
5413
5414 /* Create a duplicate of the base version with the same
5415 aux block, but different flags. */
5416 def.vd_flags = 0;
5417 def.vd_ndx = 2;
5418 def.vd_aux = sizeof (Elf_External_Verdef);
5419 if (verdefs)
5420 def.vd_next = (sizeof (Elf_External_Verdef)
5421 + sizeof (Elf_External_Verdaux));
5422 else
5423 def.vd_next = 0;
5424 _bfd_elf_swap_verdef_out (output_bfd, &def,
5425 (Elf_External_Verdef *) p);
5426 p += sizeof (Elf_External_Verdef);
5427 }
5a580b3a
AM
5428 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5429 (Elf_External_Verdaux *) p);
5430 p += sizeof (Elf_External_Verdaux);
5431
5432 for (t = verdefs; t != NULL; t = t->next)
5433 {
5434 unsigned int cdeps;
5435 struct bfd_elf_version_deps *n;
5a580b3a
AM
5436
5437 cdeps = 0;
5438 for (n = t->deps; n != NULL; n = n->next)
5439 ++cdeps;
5440
5441 /* Add a symbol representing this version. */
5442 bh = NULL;
5443 if (! (_bfd_generic_link_add_one_symbol
5444 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5445 0, NULL, FALSE,
5446 get_elf_backend_data (dynobj)->collect, &bh)))
5447 return FALSE;
5448 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5449 h->non_elf = 0;
5450 h->def_regular = 1;
5a580b3a
AM
5451 h->type = STT_OBJECT;
5452 h->verinfo.vertree = t;
5453
c152c796 5454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5455 return FALSE;
5456
5457 def.vd_version = VER_DEF_CURRENT;
5458 def.vd_flags = 0;
5459 if (t->globals.list == NULL
5460 && t->locals.list == NULL
5461 && ! t->used)
5462 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5463 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5464 def.vd_cnt = cdeps + 1;
5465 def.vd_hash = bfd_elf_hash (t->name);
5466 def.vd_aux = sizeof (Elf_External_Verdef);
5467 def.vd_next = 0;
5468 if (t->next != NULL)
5469 def.vd_next = (sizeof (Elf_External_Verdef)
5470 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5471
5472 _bfd_elf_swap_verdef_out (output_bfd, &def,
5473 (Elf_External_Verdef *) p);
5474 p += sizeof (Elf_External_Verdef);
5475
5476 defaux.vda_name = h->dynstr_index;
5477 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5478 h->dynstr_index);
5479 defaux.vda_next = 0;
5480 if (t->deps != NULL)
5481 defaux.vda_next = sizeof (Elf_External_Verdaux);
5482 t->name_indx = defaux.vda_name;
5483
5484 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5485 (Elf_External_Verdaux *) p);
5486 p += sizeof (Elf_External_Verdaux);
5487
5488 for (n = t->deps; n != NULL; n = n->next)
5489 {
5490 if (n->version_needed == NULL)
5491 {
5492 /* This can happen if there was an error in the
5493 version script. */
5494 defaux.vda_name = 0;
5495 }
5496 else
5497 {
5498 defaux.vda_name = n->version_needed->name_indx;
5499 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5500 defaux.vda_name);
5501 }
5502 if (n->next == NULL)
5503 defaux.vda_next = 0;
5504 else
5505 defaux.vda_next = sizeof (Elf_External_Verdaux);
5506
5507 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5508 (Elf_External_Verdaux *) p);
5509 p += sizeof (Elf_External_Verdaux);
5510 }
5511 }
5512
5513 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5514 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5515 return FALSE;
5516
5517 elf_tdata (output_bfd)->cverdefs = cdefs;
5518 }
5519
5520 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5521 {
5522 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5523 return FALSE;
5524 }
5525 else if (info->flags & DF_BIND_NOW)
5526 {
5527 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5528 return FALSE;
5529 }
5530
5531 if (info->flags_1)
5532 {
5533 if (info->executable)
5534 info->flags_1 &= ~ (DF_1_INITFIRST
5535 | DF_1_NODELETE
5536 | DF_1_NOOPEN);
5537 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5538 return FALSE;
5539 }
5540
5541 /* Work out the size of the version reference section. */
5542
5543 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5544 BFD_ASSERT (s != NULL);
5545 {
5546 struct elf_find_verdep_info sinfo;
5547
5548 sinfo.output_bfd = output_bfd;
5549 sinfo.info = info;
5550 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5551 if (sinfo.vers == 0)
5552 sinfo.vers = 1;
5553 sinfo.failed = FALSE;
5554
5555 elf_link_hash_traverse (elf_hash_table (info),
5556 _bfd_elf_link_find_version_dependencies,
5557 &sinfo);
5558
5559 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 5560 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5561 else
5562 {
5563 Elf_Internal_Verneed *t;
5564 unsigned int size;
5565 unsigned int crefs;
5566 bfd_byte *p;
5567
5568 /* Build the version definition section. */
5569 size = 0;
5570 crefs = 0;
5571 for (t = elf_tdata (output_bfd)->verref;
5572 t != NULL;
5573 t = t->vn_nextref)
5574 {
5575 Elf_Internal_Vernaux *a;
5576
5577 size += sizeof (Elf_External_Verneed);
5578 ++crefs;
5579 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5580 size += sizeof (Elf_External_Vernaux);
5581 }
5582
eea6121a
AM
5583 s->size = size;
5584 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5585 if (s->contents == NULL)
5586 return FALSE;
5587
5588 p = s->contents;
5589 for (t = elf_tdata (output_bfd)->verref;
5590 t != NULL;
5591 t = t->vn_nextref)
5592 {
5593 unsigned int caux;
5594 Elf_Internal_Vernaux *a;
5595 bfd_size_type indx;
5596
5597 caux = 0;
5598 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5599 ++caux;
5600
5601 t->vn_version = VER_NEED_CURRENT;
5602 t->vn_cnt = caux;
5603 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5604 elf_dt_name (t->vn_bfd) != NULL
5605 ? elf_dt_name (t->vn_bfd)
06084812 5606 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
5607 FALSE);
5608 if (indx == (bfd_size_type) -1)
5609 return FALSE;
5610 t->vn_file = indx;
5611 t->vn_aux = sizeof (Elf_External_Verneed);
5612 if (t->vn_nextref == NULL)
5613 t->vn_next = 0;
5614 else
5615 t->vn_next = (sizeof (Elf_External_Verneed)
5616 + caux * sizeof (Elf_External_Vernaux));
5617
5618 _bfd_elf_swap_verneed_out (output_bfd, t,
5619 (Elf_External_Verneed *) p);
5620 p += sizeof (Elf_External_Verneed);
5621
5622 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5623 {
5624 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 a->vna_nodename, FALSE);
5627 if (indx == (bfd_size_type) -1)
5628 return FALSE;
5629 a->vna_name = indx;
5630 if (a->vna_nextptr == NULL)
5631 a->vna_next = 0;
5632 else
5633 a->vna_next = sizeof (Elf_External_Vernaux);
5634
5635 _bfd_elf_swap_vernaux_out (output_bfd, a,
5636 (Elf_External_Vernaux *) p);
5637 p += sizeof (Elf_External_Vernaux);
5638 }
5639 }
5640
5641 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5642 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5643 return FALSE;
5644
5645 elf_tdata (output_bfd)->cverrefs = crefs;
5646 }
5647 }
5648
8423293d
AM
5649 if ((elf_tdata (output_bfd)->cverrefs == 0
5650 && elf_tdata (output_bfd)->cverdefs == 0)
5651 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5652 &section_sym_count) == 0)
5653 {
5654 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5655 s->flags |= SEC_EXCLUDE;
5656 }
5657 }
5658 return TRUE;
5659}
5660
5661bfd_boolean
5662bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5663{
5664 if (!is_elf_hash_table (info->hash))
5665 return TRUE;
5666
5667 if (elf_hash_table (info)->dynamic_sections_created)
5668 {
5669 bfd *dynobj;
5670 const struct elf_backend_data *bed;
5671 asection *s;
5672 bfd_size_type dynsymcount;
5673 unsigned long section_sym_count;
5674 size_t bucketcount = 0;
5675 size_t hash_entry_size;
5676 unsigned int dtagcount;
5677
5678 dynobj = elf_hash_table (info)->dynobj;
5679
5a580b3a
AM
5680 /* Assign dynsym indicies. In a shared library we generate a
5681 section symbol for each output section, which come first.
5682 Next come all of the back-end allocated local dynamic syms,
5683 followed by the rest of the global symbols. */
5684
554220db
AM
5685 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5686 &section_sym_count);
5a580b3a
AM
5687
5688 /* Work out the size of the symbol version section. */
5689 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5690 BFD_ASSERT (s != NULL);
8423293d
AM
5691 if (dynsymcount != 0
5692 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 5693 {
eea6121a
AM
5694 s->size = dynsymcount * sizeof (Elf_External_Versym);
5695 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5696 if (s->contents == NULL)
5697 return FALSE;
5698
5699 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5700 return FALSE;
5701 }
5702
5703 /* Set the size of the .dynsym and .hash sections. We counted
5704 the number of dynamic symbols in elf_link_add_object_symbols.
5705 We will build the contents of .dynsym and .hash when we build
5706 the final symbol table, because until then we do not know the
5707 correct value to give the symbols. We built the .dynstr
5708 section as we went along in elf_link_add_object_symbols. */
5709 s = bfd_get_section_by_name (dynobj, ".dynsym");
5710 BFD_ASSERT (s != NULL);
8423293d 5711 bed = get_elf_backend_data (output_bfd);
eea6121a 5712 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
5713
5714 if (dynsymcount != 0)
5715 {
554220db
AM
5716 s->contents = bfd_alloc (output_bfd, s->size);
5717 if (s->contents == NULL)
5718 return FALSE;
5a580b3a 5719
554220db
AM
5720 /* The first entry in .dynsym is a dummy symbol.
5721 Clear all the section syms, in case we don't output them all. */
5722 ++section_sym_count;
5723 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
5724 }
5725
5726 /* Compute the size of the hashing table. As a side effect this
5727 computes the hash values for all the names we export. */
5728 bucketcount = compute_bucket_count (info);
5729
5730 s = bfd_get_section_by_name (dynobj, ".hash");
5731 BFD_ASSERT (s != NULL);
5732 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5733 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5734 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5735 if (s->contents == NULL)
5736 return FALSE;
5737
5738 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5739 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5740 s->contents + hash_entry_size);
5741
5742 elf_hash_table (info)->bucketcount = bucketcount;
5743
5744 s = bfd_get_section_by_name (dynobj, ".dynstr");
5745 BFD_ASSERT (s != NULL);
5746
4ad4eba5 5747 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5748
eea6121a 5749 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5750
5751 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5752 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5753 return FALSE;
5754 }
5755
5756 return TRUE;
5757}
c152c796
AM
5758
5759/* Final phase of ELF linker. */
5760
5761/* A structure we use to avoid passing large numbers of arguments. */
5762
5763struct elf_final_link_info
5764{
5765 /* General link information. */
5766 struct bfd_link_info *info;
5767 /* Output BFD. */
5768 bfd *output_bfd;
5769 /* Symbol string table. */
5770 struct bfd_strtab_hash *symstrtab;
5771 /* .dynsym section. */
5772 asection *dynsym_sec;
5773 /* .hash section. */
5774 asection *hash_sec;
5775 /* symbol version section (.gnu.version). */
5776 asection *symver_sec;
5777 /* Buffer large enough to hold contents of any section. */
5778 bfd_byte *contents;
5779 /* Buffer large enough to hold external relocs of any section. */
5780 void *external_relocs;
5781 /* Buffer large enough to hold internal relocs of any section. */
5782 Elf_Internal_Rela *internal_relocs;
5783 /* Buffer large enough to hold external local symbols of any input
5784 BFD. */
5785 bfd_byte *external_syms;
5786 /* And a buffer for symbol section indices. */
5787 Elf_External_Sym_Shndx *locsym_shndx;
5788 /* Buffer large enough to hold internal local symbols of any input
5789 BFD. */
5790 Elf_Internal_Sym *internal_syms;
5791 /* Array large enough to hold a symbol index for each local symbol
5792 of any input BFD. */
5793 long *indices;
5794 /* Array large enough to hold a section pointer for each local
5795 symbol of any input BFD. */
5796 asection **sections;
5797 /* Buffer to hold swapped out symbols. */
5798 bfd_byte *symbuf;
5799 /* And one for symbol section indices. */
5800 Elf_External_Sym_Shndx *symshndxbuf;
5801 /* Number of swapped out symbols in buffer. */
5802 size_t symbuf_count;
5803 /* Number of symbols which fit in symbuf. */
5804 size_t symbuf_size;
5805 /* And same for symshndxbuf. */
5806 size_t shndxbuf_size;
5807};
5808
5809/* This struct is used to pass information to elf_link_output_extsym. */
5810
5811struct elf_outext_info
5812{
5813 bfd_boolean failed;
5814 bfd_boolean localsyms;
5815 struct elf_final_link_info *finfo;
5816};
5817
5818/* When performing a relocatable link, the input relocations are
5819 preserved. But, if they reference global symbols, the indices
5820 referenced must be updated. Update all the relocations in
5821 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5822
5823static void
5824elf_link_adjust_relocs (bfd *abfd,
5825 Elf_Internal_Shdr *rel_hdr,
5826 unsigned int count,
5827 struct elf_link_hash_entry **rel_hash)
5828{
5829 unsigned int i;
5830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5831 bfd_byte *erela;
5832 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5833 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5834 bfd_vma r_type_mask;
5835 int r_sym_shift;
5836
5837 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5838 {
5839 swap_in = bed->s->swap_reloc_in;
5840 swap_out = bed->s->swap_reloc_out;
5841 }
5842 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5843 {
5844 swap_in = bed->s->swap_reloca_in;
5845 swap_out = bed->s->swap_reloca_out;
5846 }
5847 else
5848 abort ();
5849
5850 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5851 abort ();
5852
5853 if (bed->s->arch_size == 32)
5854 {
5855 r_type_mask = 0xff;
5856 r_sym_shift = 8;
5857 }
5858 else
5859 {
5860 r_type_mask = 0xffffffff;
5861 r_sym_shift = 32;
5862 }
5863
5864 erela = rel_hdr->contents;
5865 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5866 {
5867 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5868 unsigned int j;
5869
5870 if (*rel_hash == NULL)
5871 continue;
5872
5873 BFD_ASSERT ((*rel_hash)->indx >= 0);
5874
5875 (*swap_in) (abfd, erela, irela);
5876 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5877 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5878 | (irela[j].r_info & r_type_mask));
5879 (*swap_out) (abfd, irela, erela);
5880 }
5881}
5882
5883struct elf_link_sort_rela
5884{
5885 union {
5886 bfd_vma offset;
5887 bfd_vma sym_mask;
5888 } u;
5889 enum elf_reloc_type_class type;
5890 /* We use this as an array of size int_rels_per_ext_rel. */
5891 Elf_Internal_Rela rela[1];
5892};
5893
5894static int
5895elf_link_sort_cmp1 (const void *A, const void *B)
5896{
5897 const struct elf_link_sort_rela *a = A;
5898 const struct elf_link_sort_rela *b = B;
5899 int relativea, relativeb;
5900
5901 relativea = a->type == reloc_class_relative;
5902 relativeb = b->type == reloc_class_relative;
5903
5904 if (relativea < relativeb)
5905 return 1;
5906 if (relativea > relativeb)
5907 return -1;
5908 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5909 return -1;
5910 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5911 return 1;
5912 if (a->rela->r_offset < b->rela->r_offset)
5913 return -1;
5914 if (a->rela->r_offset > b->rela->r_offset)
5915 return 1;
5916 return 0;
5917}
5918
5919static int
5920elf_link_sort_cmp2 (const void *A, const void *B)
5921{
5922 const struct elf_link_sort_rela *a = A;
5923 const struct elf_link_sort_rela *b = B;
5924 int copya, copyb;
5925
5926 if (a->u.offset < b->u.offset)
5927 return -1;
5928 if (a->u.offset > b->u.offset)
5929 return 1;
5930 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5931 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5932 if (copya < copyb)
5933 return -1;
5934 if (copya > copyb)
5935 return 1;
5936 if (a->rela->r_offset < b->rela->r_offset)
5937 return -1;
5938 if (a->rela->r_offset > b->rela->r_offset)
5939 return 1;
5940 return 0;
5941}
5942
5943static size_t
5944elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5945{
5946 asection *reldyn;
5947 bfd_size_type count, size;
5948 size_t i, ret, sort_elt, ext_size;
5949 bfd_byte *sort, *s_non_relative, *p;
5950 struct elf_link_sort_rela *sq;
5951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5952 int i2e = bed->s->int_rels_per_ext_rel;
5953 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5954 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5955 struct bfd_link_order *lo;
5956 bfd_vma r_sym_mask;
5957
5958 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5959 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5960 {
5961 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5962 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5963 return 0;
5964 ext_size = bed->s->sizeof_rel;
5965 swap_in = bed->s->swap_reloc_in;
5966 swap_out = bed->s->swap_reloc_out;
5967 }
5968 else
5969 {
5970 ext_size = bed->s->sizeof_rela;
5971 swap_in = bed->s->swap_reloca_in;
5972 swap_out = bed->s->swap_reloca_out;
5973 }
eea6121a 5974 count = reldyn->size / ext_size;
c152c796
AM
5975
5976 size = 0;
8423293d 5977 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
5978 if (lo->type == bfd_indirect_link_order)
5979 {
5980 asection *o = lo->u.indirect.section;
eea6121a 5981 size += o->size;
c152c796
AM
5982 }
5983
eea6121a 5984 if (size != reldyn->size)
c152c796
AM
5985 return 0;
5986
5987 sort_elt = (sizeof (struct elf_link_sort_rela)
5988 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5989 sort = bfd_zmalloc (sort_elt * count);
5990 if (sort == NULL)
5991 {
5992 (*info->callbacks->warning)
5993 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5994 return 0;
5995 }
5996
5997 if (bed->s->arch_size == 32)
5998 r_sym_mask = ~(bfd_vma) 0xff;
5999 else
6000 r_sym_mask = ~(bfd_vma) 0xffffffff;
6001
8423293d 6002 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6003 if (lo->type == bfd_indirect_link_order)
6004 {
6005 bfd_byte *erel, *erelend;
6006 asection *o = lo->u.indirect.section;
6007
1da212d6
AM
6008 if (o->contents == NULL && o->size != 0)
6009 {
6010 /* This is a reloc section that is being handled as a normal
6011 section. See bfd_section_from_shdr. We can't combine
6012 relocs in this case. */
6013 free (sort);
6014 return 0;
6015 }
c152c796 6016 erel = o->contents;
eea6121a 6017 erelend = o->contents + o->size;
c152c796
AM
6018 p = sort + o->output_offset / ext_size * sort_elt;
6019 while (erel < erelend)
6020 {
6021 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6022 (*swap_in) (abfd, erel, s->rela);
6023 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6024 s->u.sym_mask = r_sym_mask;
6025 p += sort_elt;
6026 erel += ext_size;
6027 }
6028 }
6029
6030 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6031
6032 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6033 {
6034 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6035 if (s->type != reloc_class_relative)
6036 break;
6037 }
6038 ret = i;
6039 s_non_relative = p;
6040
6041 sq = (struct elf_link_sort_rela *) s_non_relative;
6042 for (; i < count; i++, p += sort_elt)
6043 {
6044 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6045 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6046 sq = sp;
6047 sp->u.offset = sq->rela->r_offset;
6048 }
6049
6050 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6051
8423293d 6052 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6053 if (lo->type == bfd_indirect_link_order)
6054 {
6055 bfd_byte *erel, *erelend;
6056 asection *o = lo->u.indirect.section;
6057
6058 erel = o->contents;
eea6121a 6059 erelend = o->contents + o->size;
c152c796
AM
6060 p = sort + o->output_offset / ext_size * sort_elt;
6061 while (erel < erelend)
6062 {
6063 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6064 (*swap_out) (abfd, s->rela, erel);
6065 p += sort_elt;
6066 erel += ext_size;
6067 }
6068 }
6069
6070 free (sort);
6071 *psec = reldyn;
6072 return ret;
6073}
6074
6075/* Flush the output symbols to the file. */
6076
6077static bfd_boolean
6078elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6079 const struct elf_backend_data *bed)
6080{
6081 if (finfo->symbuf_count > 0)
6082 {
6083 Elf_Internal_Shdr *hdr;
6084 file_ptr pos;
6085 bfd_size_type amt;
6086
6087 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6088 pos = hdr->sh_offset + hdr->sh_size;
6089 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6090 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6091 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6092 return FALSE;
6093
6094 hdr->sh_size += amt;
6095 finfo->symbuf_count = 0;
6096 }
6097
6098 return TRUE;
6099}
6100
6101/* Add a symbol to the output symbol table. */
6102
6103static bfd_boolean
6104elf_link_output_sym (struct elf_final_link_info *finfo,
6105 const char *name,
6106 Elf_Internal_Sym *elfsym,
6107 asection *input_sec,
6108 struct elf_link_hash_entry *h)
6109{
6110 bfd_byte *dest;
6111 Elf_External_Sym_Shndx *destshndx;
6112 bfd_boolean (*output_symbol_hook)
6113 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6114 struct elf_link_hash_entry *);
6115 const struct elf_backend_data *bed;
6116
6117 bed = get_elf_backend_data (finfo->output_bfd);
6118 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6119 if (output_symbol_hook != NULL)
6120 {
6121 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6122 return FALSE;
6123 }
6124
6125 if (name == NULL || *name == '\0')
6126 elfsym->st_name = 0;
6127 else if (input_sec->flags & SEC_EXCLUDE)
6128 elfsym->st_name = 0;
6129 else
6130 {
6131 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6132 name, TRUE, FALSE);
6133 if (elfsym->st_name == (unsigned long) -1)
6134 return FALSE;
6135 }
6136
6137 if (finfo->symbuf_count >= finfo->symbuf_size)
6138 {
6139 if (! elf_link_flush_output_syms (finfo, bed))
6140 return FALSE;
6141 }
6142
6143 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6144 destshndx = finfo->symshndxbuf;
6145 if (destshndx != NULL)
6146 {
6147 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6148 {
6149 bfd_size_type amt;
6150
6151 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6152 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6153 if (destshndx == NULL)
6154 return FALSE;
6155 memset ((char *) destshndx + amt, 0, amt);
6156 finfo->shndxbuf_size *= 2;
6157 }
6158 destshndx += bfd_get_symcount (finfo->output_bfd);
6159 }
6160
6161 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6162 finfo->symbuf_count += 1;
6163 bfd_get_symcount (finfo->output_bfd) += 1;
6164
6165 return TRUE;
6166}
6167
6168/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6169 allowing an unsatisfied unversioned symbol in the DSO to match a
6170 versioned symbol that would normally require an explicit version.
6171 We also handle the case that a DSO references a hidden symbol
6172 which may be satisfied by a versioned symbol in another DSO. */
6173
6174static bfd_boolean
6175elf_link_check_versioned_symbol (struct bfd_link_info *info,
6176 const struct elf_backend_data *bed,
6177 struct elf_link_hash_entry *h)
6178{
6179 bfd *abfd;
6180 struct elf_link_loaded_list *loaded;
6181
6182 if (!is_elf_hash_table (info->hash))
6183 return FALSE;
6184
6185 switch (h->root.type)
6186 {
6187 default:
6188 abfd = NULL;
6189 break;
6190
6191 case bfd_link_hash_undefined:
6192 case bfd_link_hash_undefweak:
6193 abfd = h->root.u.undef.abfd;
6194 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6195 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6196 return FALSE;
6197 break;
6198
6199 case bfd_link_hash_defined:
6200 case bfd_link_hash_defweak:
6201 abfd = h->root.u.def.section->owner;
6202 break;
6203
6204 case bfd_link_hash_common:
6205 abfd = h->root.u.c.p->section->owner;
6206 break;
6207 }
6208 BFD_ASSERT (abfd != NULL);
6209
6210 for (loaded = elf_hash_table (info)->loaded;
6211 loaded != NULL;
6212 loaded = loaded->next)
6213 {
6214 bfd *input;
6215 Elf_Internal_Shdr *hdr;
6216 bfd_size_type symcount;
6217 bfd_size_type extsymcount;
6218 bfd_size_type extsymoff;
6219 Elf_Internal_Shdr *versymhdr;
6220 Elf_Internal_Sym *isym;
6221 Elf_Internal_Sym *isymend;
6222 Elf_Internal_Sym *isymbuf;
6223 Elf_External_Versym *ever;
6224 Elf_External_Versym *extversym;
6225
6226 input = loaded->abfd;
6227
6228 /* We check each DSO for a possible hidden versioned definition. */
6229 if (input == abfd
6230 || (input->flags & DYNAMIC) == 0
6231 || elf_dynversym (input) == 0)
6232 continue;
6233
6234 hdr = &elf_tdata (input)->dynsymtab_hdr;
6235
6236 symcount = hdr->sh_size / bed->s->sizeof_sym;
6237 if (elf_bad_symtab (input))
6238 {
6239 extsymcount = symcount;
6240 extsymoff = 0;
6241 }
6242 else
6243 {
6244 extsymcount = symcount - hdr->sh_info;
6245 extsymoff = hdr->sh_info;
6246 }
6247
6248 if (extsymcount == 0)
6249 continue;
6250
6251 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6252 NULL, NULL, NULL);
6253 if (isymbuf == NULL)
6254 return FALSE;
6255
6256 /* Read in any version definitions. */
6257 versymhdr = &elf_tdata (input)->dynversym_hdr;
6258 extversym = bfd_malloc (versymhdr->sh_size);
6259 if (extversym == NULL)
6260 goto error_ret;
6261
6262 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6263 || (bfd_bread (extversym, versymhdr->sh_size, input)
6264 != versymhdr->sh_size))
6265 {
6266 free (extversym);
6267 error_ret:
6268 free (isymbuf);
6269 return FALSE;
6270 }
6271
6272 ever = extversym + extsymoff;
6273 isymend = isymbuf + extsymcount;
6274 for (isym = isymbuf; isym < isymend; isym++, ever++)
6275 {
6276 const char *name;
6277 Elf_Internal_Versym iver;
6278 unsigned short version_index;
6279
6280 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6281 || isym->st_shndx == SHN_UNDEF)
6282 continue;
6283
6284 name = bfd_elf_string_from_elf_section (input,
6285 hdr->sh_link,
6286 isym->st_name);
6287 if (strcmp (name, h->root.root.string) != 0)
6288 continue;
6289
6290 _bfd_elf_swap_versym_in (input, ever, &iver);
6291
6292 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6293 {
6294 /* If we have a non-hidden versioned sym, then it should
6295 have provided a definition for the undefined sym. */
6296 abort ();
6297 }
6298
6299 version_index = iver.vs_vers & VERSYM_VERSION;
6300 if (version_index == 1 || version_index == 2)
6301 {
6302 /* This is the base or first version. We can use it. */
6303 free (extversym);
6304 free (isymbuf);
6305 return TRUE;
6306 }
6307 }
6308
6309 free (extversym);
6310 free (isymbuf);
6311 }
6312
6313 return FALSE;
6314}
6315
6316/* Add an external symbol to the symbol table. This is called from
6317 the hash table traversal routine. When generating a shared object,
6318 we go through the symbol table twice. The first time we output
6319 anything that might have been forced to local scope in a version
6320 script. The second time we output the symbols that are still
6321 global symbols. */
6322
6323static bfd_boolean
6324elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6325{
6326 struct elf_outext_info *eoinfo = data;
6327 struct elf_final_link_info *finfo = eoinfo->finfo;
6328 bfd_boolean strip;
6329 Elf_Internal_Sym sym;
6330 asection *input_sec;
6331 const struct elf_backend_data *bed;
6332
6333 if (h->root.type == bfd_link_hash_warning)
6334 {
6335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6336 if (h->root.type == bfd_link_hash_new)
6337 return TRUE;
6338 }
6339
6340 /* Decide whether to output this symbol in this pass. */
6341 if (eoinfo->localsyms)
6342 {
f5385ebf 6343 if (!h->forced_local)
c152c796
AM
6344 return TRUE;
6345 }
6346 else
6347 {
f5385ebf 6348 if (h->forced_local)
c152c796
AM
6349 return TRUE;
6350 }
6351
6352 bed = get_elf_backend_data (finfo->output_bfd);
6353
6354 /* If we have an undefined symbol reference here then it must have
6355 come from a shared library that is being linked in. (Undefined
6356 references in regular files have already been handled). If we
6357 are reporting errors for this situation then do so now. */
6358 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6359 && h->ref_dynamic
6360 && !h->ref_regular
c152c796
AM
6361 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6362 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6363 {
6364 if (! ((*finfo->info->callbacks->undefined_symbol)
6365 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6366 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6367 {
6368 eoinfo->failed = TRUE;
6369 return FALSE;
6370 }
6371 }
6372
6373 /* We should also warn if a forced local symbol is referenced from
6374 shared libraries. */
6375 if (! finfo->info->relocatable
6376 && (! finfo->info->shared)
f5385ebf
AM
6377 && h->forced_local
6378 && h->ref_dynamic
6379 && !h->dynamic_def
6380 && !h->dynamic_weak
c152c796
AM
6381 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6382 {
6383 (*_bfd_error_handler)
d003868e 6384 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
6385 finfo->output_bfd,
6386 h->root.u.def.section == bfd_abs_section_ptr
6387 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
6388 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6389 ? "internal"
6390 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6391 ? "hidden" : "local",
6392 h->root.root.string);
c152c796
AM
6393 eoinfo->failed = TRUE;
6394 return FALSE;
6395 }
6396
6397 /* We don't want to output symbols that have never been mentioned by
6398 a regular file, or that we have been told to strip. However, if
6399 h->indx is set to -2, the symbol is used by a reloc and we must
6400 output it. */
6401 if (h->indx == -2)
6402 strip = FALSE;
f5385ebf 6403 else if ((h->def_dynamic
77cfaee6
AM
6404 || h->ref_dynamic
6405 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6406 && !h->def_regular
6407 && !h->ref_regular)
c152c796
AM
6408 strip = TRUE;
6409 else if (finfo->info->strip == strip_all)
6410 strip = TRUE;
6411 else if (finfo->info->strip == strip_some
6412 && bfd_hash_lookup (finfo->info->keep_hash,
6413 h->root.root.string, FALSE, FALSE) == NULL)
6414 strip = TRUE;
6415 else if (finfo->info->strip_discarded
6416 && (h->root.type == bfd_link_hash_defined
6417 || h->root.type == bfd_link_hash_defweak)
6418 && elf_discarded_section (h->root.u.def.section))
6419 strip = TRUE;
6420 else
6421 strip = FALSE;
6422
6423 /* If we're stripping it, and it's not a dynamic symbol, there's
6424 nothing else to do unless it is a forced local symbol. */
6425 if (strip
6426 && h->dynindx == -1
f5385ebf 6427 && !h->forced_local)
c152c796
AM
6428 return TRUE;
6429
6430 sym.st_value = 0;
6431 sym.st_size = h->size;
6432 sym.st_other = h->other;
f5385ebf 6433 if (h->forced_local)
c152c796
AM
6434 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6435 else if (h->root.type == bfd_link_hash_undefweak
6436 || h->root.type == bfd_link_hash_defweak)
6437 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6438 else
6439 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6440
6441 switch (h->root.type)
6442 {
6443 default:
6444 case bfd_link_hash_new:
6445 case bfd_link_hash_warning:
6446 abort ();
6447 return FALSE;
6448
6449 case bfd_link_hash_undefined:
6450 case bfd_link_hash_undefweak:
6451 input_sec = bfd_und_section_ptr;
6452 sym.st_shndx = SHN_UNDEF;
6453 break;
6454
6455 case bfd_link_hash_defined:
6456 case bfd_link_hash_defweak:
6457 {
6458 input_sec = h->root.u.def.section;
6459 if (input_sec->output_section != NULL)
6460 {
6461 sym.st_shndx =
6462 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6463 input_sec->output_section);
6464 if (sym.st_shndx == SHN_BAD)
6465 {
6466 (*_bfd_error_handler)
d003868e
AM
6467 (_("%B: could not find output section %A for input section %A"),
6468 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6469 eoinfo->failed = TRUE;
6470 return FALSE;
6471 }
6472
6473 /* ELF symbols in relocatable files are section relative,
6474 but in nonrelocatable files they are virtual
6475 addresses. */
6476 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6477 if (! finfo->info->relocatable)
6478 {
6479 sym.st_value += input_sec->output_section->vma;
6480 if (h->type == STT_TLS)
6481 {
6482 /* STT_TLS symbols are relative to PT_TLS segment
6483 base. */
6484 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6485 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6486 }
6487 }
6488 }
6489 else
6490 {
6491 BFD_ASSERT (input_sec->owner == NULL
6492 || (input_sec->owner->flags & DYNAMIC) != 0);
6493 sym.st_shndx = SHN_UNDEF;
6494 input_sec = bfd_und_section_ptr;
6495 }
6496 }
6497 break;
6498
6499 case bfd_link_hash_common:
6500 input_sec = h->root.u.c.p->section;
6501 sym.st_shndx = SHN_COMMON;
6502 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6503 break;
6504
6505 case bfd_link_hash_indirect:
6506 /* These symbols are created by symbol versioning. They point
6507 to the decorated version of the name. For example, if the
6508 symbol foo@@GNU_1.2 is the default, which should be used when
6509 foo is used with no version, then we add an indirect symbol
6510 foo which points to foo@@GNU_1.2. We ignore these symbols,
6511 since the indirected symbol is already in the hash table. */
6512 return TRUE;
6513 }
6514
6515 /* Give the processor backend a chance to tweak the symbol value,
6516 and also to finish up anything that needs to be done for this
6517 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6518 forced local syms when non-shared is due to a historical quirk. */
6519 if ((h->dynindx != -1
f5385ebf 6520 || h->forced_local)
c152c796
AM
6521 && ((finfo->info->shared
6522 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6523 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6524 || !h->forced_local)
c152c796
AM
6525 && elf_hash_table (finfo->info)->dynamic_sections_created)
6526 {
6527 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6528 (finfo->output_bfd, finfo->info, h, &sym)))
6529 {
6530 eoinfo->failed = TRUE;
6531 return FALSE;
6532 }
6533 }
6534
6535 /* If we are marking the symbol as undefined, and there are no
6536 non-weak references to this symbol from a regular object, then
6537 mark the symbol as weak undefined; if there are non-weak
6538 references, mark the symbol as strong. We can't do this earlier,
6539 because it might not be marked as undefined until the
6540 finish_dynamic_symbol routine gets through with it. */
6541 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6542 && h->ref_regular
c152c796
AM
6543 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6544 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6545 {
6546 int bindtype;
6547
f5385ebf 6548 if (h->ref_regular_nonweak)
c152c796
AM
6549 bindtype = STB_GLOBAL;
6550 else
6551 bindtype = STB_WEAK;
6552 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6553 }
6554
6555 /* If a non-weak symbol with non-default visibility is not defined
6556 locally, it is a fatal error. */
6557 if (! finfo->info->relocatable
6558 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6559 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6560 && h->root.type == bfd_link_hash_undefined
f5385ebf 6561 && !h->def_regular)
c152c796
AM
6562 {
6563 (*_bfd_error_handler)
d003868e
AM
6564 (_("%B: %s symbol `%s' isn't defined"),
6565 finfo->output_bfd,
6566 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6567 ? "protected"
6568 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6569 ? "internal" : "hidden",
6570 h->root.root.string);
c152c796
AM
6571 eoinfo->failed = TRUE;
6572 return FALSE;
6573 }
6574
6575 /* If this symbol should be put in the .dynsym section, then put it
6576 there now. We already know the symbol index. We also fill in
6577 the entry in the .hash section. */
6578 if (h->dynindx != -1
6579 && elf_hash_table (finfo->info)->dynamic_sections_created)
6580 {
6581 size_t bucketcount;
6582 size_t bucket;
6583 size_t hash_entry_size;
6584 bfd_byte *bucketpos;
6585 bfd_vma chain;
6586 bfd_byte *esym;
6587
6588 sym.st_name = h->dynstr_index;
6589 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6590 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6591
6592 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6593 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6594 hash_entry_size
6595 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6596 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6597 + (bucket + 2) * hash_entry_size);
6598 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6599 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6600 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6601 ((bfd_byte *) finfo->hash_sec->contents
6602 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6603
6604 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6605 {
6606 Elf_Internal_Versym iversym;
6607 Elf_External_Versym *eversym;
6608
f5385ebf 6609 if (!h->def_regular)
c152c796
AM
6610 {
6611 if (h->verinfo.verdef == NULL)
6612 iversym.vs_vers = 0;
6613 else
6614 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6615 }
6616 else
6617 {
6618 if (h->verinfo.vertree == NULL)
6619 iversym.vs_vers = 1;
6620 else
6621 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6622 if (finfo->info->create_default_symver)
6623 iversym.vs_vers++;
c152c796
AM
6624 }
6625
f5385ebf 6626 if (h->hidden)
c152c796
AM
6627 iversym.vs_vers |= VERSYM_HIDDEN;
6628
6629 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6630 eversym += h->dynindx;
6631 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6632 }
6633 }
6634
6635 /* If we're stripping it, then it was just a dynamic symbol, and
6636 there's nothing else to do. */
6637 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6638 return TRUE;
6639
6640 h->indx = bfd_get_symcount (finfo->output_bfd);
6641
6642 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6643 {
6644 eoinfo->failed = TRUE;
6645 return FALSE;
6646 }
6647
6648 return TRUE;
6649}
6650
cdd3575c
AM
6651/* Return TRUE if special handling is done for relocs in SEC against
6652 symbols defined in discarded sections. */
6653
c152c796
AM
6654static bfd_boolean
6655elf_section_ignore_discarded_relocs (asection *sec)
6656{
6657 const struct elf_backend_data *bed;
6658
cdd3575c
AM
6659 switch (sec->sec_info_type)
6660 {
6661 case ELF_INFO_TYPE_STABS:
6662 case ELF_INFO_TYPE_EH_FRAME:
6663 return TRUE;
6664 default:
6665 break;
6666 }
c152c796
AM
6667
6668 bed = get_elf_backend_data (sec->owner);
6669 if (bed->elf_backend_ignore_discarded_relocs != NULL
6670 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6671 return TRUE;
6672
6673 return FALSE;
6674}
6675
9e66c942
AM
6676enum action_discarded
6677 {
6678 COMPLAIN = 1,
6679 PRETEND = 2
6680 };
6681
6682/* Return a mask saying how ld should treat relocations in SEC against
6683 symbols defined in discarded sections. If this function returns
6684 COMPLAIN set, ld will issue a warning message. If this function
6685 returns PRETEND set, and the discarded section was link-once and the
6686 same size as the kept link-once section, ld will pretend that the
6687 symbol was actually defined in the kept section. Otherwise ld will
6688 zero the reloc (at least that is the intent, but some cooperation by
6689 the target dependent code is needed, particularly for REL targets). */
6690
6691static unsigned int
6692elf_action_discarded (asection *sec)
cdd3575c 6693{
9e66c942
AM
6694 if (sec->flags & SEC_DEBUGGING)
6695 return PRETEND;
cdd3575c
AM
6696
6697 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6698 return 0;
cdd3575c
AM
6699
6700 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6701 return 0;
cdd3575c 6702
27b56da8 6703 if (strcmp (".PARISC.unwind", sec->name) == 0)
9e66c942 6704 return 0;
327c1315
AM
6705
6706 if (strcmp (".fixup", sec->name) == 0)
9e66c942 6707 return 0;
27b56da8 6708
9e66c942 6709 return COMPLAIN | PRETEND;
cdd3575c
AM
6710}
6711
3d7f7666
L
6712/* Find a match between a section and a member of a section group. */
6713
6714static asection *
6715match_group_member (asection *sec, asection *group)
6716{
6717 asection *first = elf_next_in_group (group);
6718 asection *s = first;
6719
6720 while (s != NULL)
6721 {
6722 if (bfd_elf_match_symbols_in_sections (s, sec))
6723 return s;
6724
6725 if (s == first)
6726 break;
6727 }
6728
6729 return NULL;
6730}
6731
01b3c8ab
L
6732/* Check if the kept section of a discarded section SEC can be used
6733 to replace it. Return the replacement if it is OK. Otherwise return
6734 NULL. */
6735
6736asection *
6737_bfd_elf_check_kept_section (asection *sec)
6738{
6739 asection *kept;
6740
6741 kept = sec->kept_section;
6742 if (kept != NULL)
6743 {
6744 if (elf_sec_group (sec) != NULL)
6745 kept = match_group_member (sec, kept);
6746 if (kept != NULL && sec->size != kept->size)
6747 kept = NULL;
6748 }
6749 return kept;
6750}
6751
c152c796
AM
6752/* Link an input file into the linker output file. This function
6753 handles all the sections and relocations of the input file at once.
6754 This is so that we only have to read the local symbols once, and
6755 don't have to keep them in memory. */
6756
6757static bfd_boolean
6758elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6759{
6760 bfd_boolean (*relocate_section)
6761 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6762 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6763 bfd *output_bfd;
6764 Elf_Internal_Shdr *symtab_hdr;
6765 size_t locsymcount;
6766 size_t extsymoff;
6767 Elf_Internal_Sym *isymbuf;
6768 Elf_Internal_Sym *isym;
6769 Elf_Internal_Sym *isymend;
6770 long *pindex;
6771 asection **ppsection;
6772 asection *o;
6773 const struct elf_backend_data *bed;
6774 bfd_boolean emit_relocs;
6775 struct elf_link_hash_entry **sym_hashes;
6776
6777 output_bfd = finfo->output_bfd;
6778 bed = get_elf_backend_data (output_bfd);
6779 relocate_section = bed->elf_backend_relocate_section;
6780
6781 /* If this is a dynamic object, we don't want to do anything here:
6782 we don't want the local symbols, and we don't want the section
6783 contents. */
6784 if ((input_bfd->flags & DYNAMIC) != 0)
6785 return TRUE;
6786
6787 emit_relocs = (finfo->info->relocatable
eac338cf 6788 || finfo->info->emitrelocations);
c152c796
AM
6789
6790 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6791 if (elf_bad_symtab (input_bfd))
6792 {
6793 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6794 extsymoff = 0;
6795 }
6796 else
6797 {
6798 locsymcount = symtab_hdr->sh_info;
6799 extsymoff = symtab_hdr->sh_info;
6800 }
6801
6802 /* Read the local symbols. */
6803 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6804 if (isymbuf == NULL && locsymcount != 0)
6805 {
6806 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6807 finfo->internal_syms,
6808 finfo->external_syms,
6809 finfo->locsym_shndx);
6810 if (isymbuf == NULL)
6811 return FALSE;
6812 }
6813
6814 /* Find local symbol sections and adjust values of symbols in
6815 SEC_MERGE sections. Write out those local symbols we know are
6816 going into the output file. */
6817 isymend = isymbuf + locsymcount;
6818 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6819 isym < isymend;
6820 isym++, pindex++, ppsection++)
6821 {
6822 asection *isec;
6823 const char *name;
6824 Elf_Internal_Sym osym;
6825
6826 *pindex = -1;
6827
6828 if (elf_bad_symtab (input_bfd))
6829 {
6830 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6831 {
6832 *ppsection = NULL;
6833 continue;
6834 }
6835 }
6836
6837 if (isym->st_shndx == SHN_UNDEF)
6838 isec = bfd_und_section_ptr;
6839 else if (isym->st_shndx < SHN_LORESERVE
6840 || isym->st_shndx > SHN_HIRESERVE)
6841 {
6842 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6843 if (isec
6844 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6845 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6846 isym->st_value =
6847 _bfd_merged_section_offset (output_bfd, &isec,
6848 elf_section_data (isec)->sec_info,
753731ee 6849 isym->st_value);
c152c796
AM
6850 }
6851 else if (isym->st_shndx == SHN_ABS)
6852 isec = bfd_abs_section_ptr;
6853 else if (isym->st_shndx == SHN_COMMON)
6854 isec = bfd_com_section_ptr;
6855 else
6856 {
6857 /* Who knows? */
6858 isec = NULL;
6859 }
6860
6861 *ppsection = isec;
6862
6863 /* Don't output the first, undefined, symbol. */
6864 if (ppsection == finfo->sections)
6865 continue;
6866
6867 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6868 {
6869 /* We never output section symbols. Instead, we use the
6870 section symbol of the corresponding section in the output
6871 file. */
6872 continue;
6873 }
6874
6875 /* If we are stripping all symbols, we don't want to output this
6876 one. */
6877 if (finfo->info->strip == strip_all)
6878 continue;
6879
6880 /* If we are discarding all local symbols, we don't want to
6881 output this one. If we are generating a relocatable output
6882 file, then some of the local symbols may be required by
6883 relocs; we output them below as we discover that they are
6884 needed. */
6885 if (finfo->info->discard == discard_all)
6886 continue;
6887
6888 /* If this symbol is defined in a section which we are
6889 discarding, we don't need to keep it, but note that
6890 linker_mark is only reliable for sections that have contents.
6891 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6892 as well as linker_mark. */
6893 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610
PB
6894 && (isec == NULL
6895 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
c152c796
AM
6896 || (! finfo->info->relocatable
6897 && (isec->flags & SEC_EXCLUDE) != 0)))
6898 continue;
6899
e75a280b
L
6900 /* If the section is not in the output BFD's section list, it is not
6901 being output. */
6902 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6903 continue;
6904
c152c796
AM
6905 /* Get the name of the symbol. */
6906 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6907 isym->st_name);
6908 if (name == NULL)
6909 return FALSE;
6910
6911 /* See if we are discarding symbols with this name. */
6912 if ((finfo->info->strip == strip_some
6913 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6914 == NULL))
6915 || (((finfo->info->discard == discard_sec_merge
6916 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6917 || finfo->info->discard == discard_l)
6918 && bfd_is_local_label_name (input_bfd, name)))
6919 continue;
6920
6921 /* If we get here, we are going to output this symbol. */
6922
6923 osym = *isym;
6924
6925 /* Adjust the section index for the output file. */
6926 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6927 isec->output_section);
6928 if (osym.st_shndx == SHN_BAD)
6929 return FALSE;
6930
6931 *pindex = bfd_get_symcount (output_bfd);
6932
6933 /* ELF symbols in relocatable files are section relative, but
6934 in executable files they are virtual addresses. Note that
6935 this code assumes that all ELF sections have an associated
6936 BFD section with a reasonable value for output_offset; below
6937 we assume that they also have a reasonable value for
6938 output_section. Any special sections must be set up to meet
6939 these requirements. */
6940 osym.st_value += isec->output_offset;
6941 if (! finfo->info->relocatable)
6942 {
6943 osym.st_value += isec->output_section->vma;
6944 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6945 {
6946 /* STT_TLS symbols are relative to PT_TLS segment base. */
6947 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6948 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6949 }
6950 }
6951
6952 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6953 return FALSE;
6954 }
6955
6956 /* Relocate the contents of each section. */
6957 sym_hashes = elf_sym_hashes (input_bfd);
6958 for (o = input_bfd->sections; o != NULL; o = o->next)
6959 {
6960 bfd_byte *contents;
6961
6962 if (! o->linker_mark)
6963 {
6964 /* This section was omitted from the link. */
6965 continue;
6966 }
6967
6968 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6969 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6970 continue;
6971
6972 if ((o->flags & SEC_LINKER_CREATED) != 0)
6973 {
6974 /* Section was created by _bfd_elf_link_create_dynamic_sections
6975 or somesuch. */
6976 continue;
6977 }
6978
6979 /* Get the contents of the section. They have been cached by a
6980 relaxation routine. Note that o is a section in an input
6981 file, so the contents field will not have been set by any of
6982 the routines which work on output files. */
6983 if (elf_section_data (o)->this_hdr.contents != NULL)
6984 contents = elf_section_data (o)->this_hdr.contents;
6985 else
6986 {
eea6121a
AM
6987 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6988
c152c796 6989 contents = finfo->contents;
eea6121a 6990 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6991 return FALSE;
6992 }
6993
6994 if ((o->flags & SEC_RELOC) != 0)
6995 {
6996 Elf_Internal_Rela *internal_relocs;
6997 bfd_vma r_type_mask;
6998 int r_sym_shift;
6999
7000 /* Get the swapped relocs. */
7001 internal_relocs
7002 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7003 finfo->internal_relocs, FALSE);
7004 if (internal_relocs == NULL
7005 && o->reloc_count > 0)
7006 return FALSE;
7007
7008 if (bed->s->arch_size == 32)
7009 {
7010 r_type_mask = 0xff;
7011 r_sym_shift = 8;
7012 }
7013 else
7014 {
7015 r_type_mask = 0xffffffff;
7016 r_sym_shift = 32;
7017 }
7018
7019 /* Run through the relocs looking for any against symbols
7020 from discarded sections and section symbols from
7021 removed link-once sections. Complain about relocs
7022 against discarded sections. Zero relocs against removed
7023 link-once sections. Preserve debug information as much
7024 as we can. */
7025 if (!elf_section_ignore_discarded_relocs (o))
7026 {
7027 Elf_Internal_Rela *rel, *relend;
9e66c942 7028 unsigned int action = elf_action_discarded (o);
c152c796
AM
7029
7030 rel = internal_relocs;
7031 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7032 for ( ; rel < relend; rel++)
7033 {
7034 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
7035 asection **ps, *sec;
7036 struct elf_link_hash_entry *h = NULL;
7037 const char *sym_name;
c152c796 7038
ee75fd95
AM
7039 if (r_symndx == STN_UNDEF)
7040 continue;
7041
c152c796
AM
7042 if (r_symndx >= locsymcount
7043 || (elf_bad_symtab (input_bfd)
7044 && finfo->sections[r_symndx] == NULL))
7045 {
c152c796 7046 h = sym_hashes[r_symndx - extsymoff];
dce669a1 7047
8c19749a
NC
7048 /* Badly formatted input files can contain relocs that
7049 reference non-existant symbols. Check here so that
7050 we do not seg fault. */
7051 if (h == NULL)
7052 {
7053 char buffer [32];
7054
7055 sprintf_vma (buffer, rel->r_info);
7056 (*_bfd_error_handler)
7057 (_("error: %B contains a reloc (0x%s) for section %A "
7058 "that references a non-existent global symbol"),
7059 input_bfd, o, buffer);
7060 bfd_set_error (bfd_error_bad_value);
7061 return FALSE;
7062 }
3b36f7e6 7063
c152c796
AM
7064 while (h->root.type == bfd_link_hash_indirect
7065 || h->root.type == bfd_link_hash_warning)
7066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7067
cdd3575c
AM
7068 if (h->root.type != bfd_link_hash_defined
7069 && h->root.type != bfd_link_hash_defweak)
7070 continue;
7071
7072 ps = &h->root.u.def.section;
7073 sym_name = h->root.root.string;
c152c796
AM
7074 }
7075 else
7076 {
cdd3575c
AM
7077 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7078 ps = &finfo->sections[r_symndx];
26c61ae5
L
7079 sym_name = bfd_elf_sym_name (input_bfd,
7080 symtab_hdr,
7081 sym, *ps);
cdd3575c 7082 }
c152c796 7083
cdd3575c
AM
7084 /* Complain if the definition comes from a
7085 discarded section. */
7086 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7087 {
87e5235d 7088 BFD_ASSERT (r_symndx != 0);
9e66c942 7089 if (action & COMPLAIN)
e1fffbe6
AM
7090 (*finfo->info->callbacks->einfo)
7091 (_("%X`%s' referenced in section `%A' of %B: "
7092 "defined in discarded section `%A' of %B"),
7093 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 7094
87e5235d
AM
7095 /* Try to do the best we can to support buggy old
7096 versions of gcc. If we've warned, or this is
7097 debugging info, pretend that the symbol is
7098 really defined in the kept linkonce section.
7099 FIXME: This is quite broken. Modifying the
7100 symbol here means we will be changing all later
7101 uses of the symbol, not just in this section.
7102 The only thing that makes this half reasonable
7103 is that we warn in non-debug sections, and
7104 debug sections tend to come after other
7105 sections. */
01b3c8ab 7106 if (action & PRETEND)
87e5235d 7107 {
01b3c8ab
L
7108 asection *kept;
7109
7110 kept = _bfd_elf_check_kept_section (sec);
7111 if (kept != NULL)
87e5235d
AM
7112 {
7113 *ps = kept;
7114 continue;
7115 }
7116 }
7117
cdd3575c
AM
7118 /* Remove the symbol reference from the reloc, but
7119 don't kill the reloc completely. This is so that
7120 a zero value will be written into the section,
7121 which may have non-zero contents put there by the
7122 assembler. Zero in things like an eh_frame fde
7123 pc_begin allows stack unwinders to recognize the
7124 fde as bogus. */
7125 rel->r_info &= r_type_mask;
7126 rel->r_addend = 0;
c152c796
AM
7127 }
7128 }
7129 }
7130
7131 /* Relocate the section by invoking a back end routine.
7132
7133 The back end routine is responsible for adjusting the
7134 section contents as necessary, and (if using Rela relocs
7135 and generating a relocatable output file) adjusting the
7136 reloc addend as necessary.
7137
7138 The back end routine does not have to worry about setting
7139 the reloc address or the reloc symbol index.
7140
7141 The back end routine is given a pointer to the swapped in
7142 internal symbols, and can access the hash table entries
7143 for the external symbols via elf_sym_hashes (input_bfd).
7144
7145 When generating relocatable output, the back end routine
7146 must handle STB_LOCAL/STT_SECTION symbols specially. The
7147 output symbol is going to be a section symbol
7148 corresponding to the output section, which will require
7149 the addend to be adjusted. */
7150
7151 if (! (*relocate_section) (output_bfd, finfo->info,
7152 input_bfd, o, contents,
7153 internal_relocs,
7154 isymbuf,
7155 finfo->sections))
7156 return FALSE;
7157
7158 if (emit_relocs)
7159 {
7160 Elf_Internal_Rela *irela;
7161 Elf_Internal_Rela *irelaend;
7162 bfd_vma last_offset;
7163 struct elf_link_hash_entry **rel_hash;
eac338cf 7164 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
7165 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7166 unsigned int next_erel;
c152c796
AM
7167 bfd_boolean rela_normal;
7168
7169 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7170 rela_normal = (bed->rela_normal
7171 && (input_rel_hdr->sh_entsize
7172 == bed->s->sizeof_rela));
7173
7174 /* Adjust the reloc addresses and symbol indices. */
7175
7176 irela = internal_relocs;
7177 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7178 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7179 + elf_section_data (o->output_section)->rel_count
7180 + elf_section_data (o->output_section)->rel_count2);
eac338cf 7181 rel_hash_list = rel_hash;
c152c796
AM
7182 last_offset = o->output_offset;
7183 if (!finfo->info->relocatable)
7184 last_offset += o->output_section->vma;
7185 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7186 {
7187 unsigned long r_symndx;
7188 asection *sec;
7189 Elf_Internal_Sym sym;
7190
7191 if (next_erel == bed->s->int_rels_per_ext_rel)
7192 {
7193 rel_hash++;
7194 next_erel = 0;
7195 }
7196
7197 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7198 finfo->info, o,
7199 irela->r_offset);
7200 if (irela->r_offset >= (bfd_vma) -2)
7201 {
7202 /* This is a reloc for a deleted entry or somesuch.
7203 Turn it into an R_*_NONE reloc, at the same
7204 offset as the last reloc. elf_eh_frame.c and
7205 elf_bfd_discard_info rely on reloc offsets
7206 being ordered. */
7207 irela->r_offset = last_offset;
7208 irela->r_info = 0;
7209 irela->r_addend = 0;
7210 continue;
7211 }
7212
7213 irela->r_offset += o->output_offset;
7214
7215 /* Relocs in an executable have to be virtual addresses. */
7216 if (!finfo->info->relocatable)
7217 irela->r_offset += o->output_section->vma;
7218
7219 last_offset = irela->r_offset;
7220
7221 r_symndx = irela->r_info >> r_sym_shift;
7222 if (r_symndx == STN_UNDEF)
7223 continue;
7224
7225 if (r_symndx >= locsymcount
7226 || (elf_bad_symtab (input_bfd)
7227 && finfo->sections[r_symndx] == NULL))
7228 {
7229 struct elf_link_hash_entry *rh;
7230 unsigned long indx;
7231
7232 /* This is a reloc against a global symbol. We
7233 have not yet output all the local symbols, so
7234 we do not know the symbol index of any global
7235 symbol. We set the rel_hash entry for this
7236 reloc to point to the global hash table entry
7237 for this symbol. The symbol index is then
ee75fd95 7238 set at the end of bfd_elf_final_link. */
c152c796
AM
7239 indx = r_symndx - extsymoff;
7240 rh = elf_sym_hashes (input_bfd)[indx];
7241 while (rh->root.type == bfd_link_hash_indirect
7242 || rh->root.type == bfd_link_hash_warning)
7243 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7244
7245 /* Setting the index to -2 tells
7246 elf_link_output_extsym that this symbol is
7247 used by a reloc. */
7248 BFD_ASSERT (rh->indx < 0);
7249 rh->indx = -2;
7250
7251 *rel_hash = rh;
7252
7253 continue;
7254 }
7255
7256 /* This is a reloc against a local symbol. */
7257
7258 *rel_hash = NULL;
7259 sym = isymbuf[r_symndx];
7260 sec = finfo->sections[r_symndx];
7261 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7262 {
7263 /* I suppose the backend ought to fill in the
7264 section of any STT_SECTION symbol against a
6a8d1586
AM
7265 processor specific section. */
7266 r_symndx = 0;
7267 if (bfd_is_abs_section (sec))
7268 ;
c152c796
AM
7269 else if (sec == NULL || sec->owner == NULL)
7270 {
7271 bfd_set_error (bfd_error_bad_value);
7272 return FALSE;
7273 }
7274 else
7275 {
6a8d1586
AM
7276 asection *osec = sec->output_section;
7277
7278 /* If we have discarded a section, the output
7279 section will be the absolute section. In
7280 case of discarded link-once and discarded
7281 SEC_MERGE sections, use the kept section. */
7282 if (bfd_is_abs_section (osec)
7283 && sec->kept_section != NULL
7284 && sec->kept_section->output_section != NULL)
7285 {
7286 osec = sec->kept_section->output_section;
7287 irela->r_addend -= osec->vma;
7288 }
7289
7290 if (!bfd_is_abs_section (osec))
7291 {
7292 r_symndx = osec->target_index;
7293 BFD_ASSERT (r_symndx != 0);
7294 }
c152c796
AM
7295 }
7296
7297 /* Adjust the addend according to where the
7298 section winds up in the output section. */
7299 if (rela_normal)
7300 irela->r_addend += sec->output_offset;
7301 }
7302 else
7303 {
7304 if (finfo->indices[r_symndx] == -1)
7305 {
7306 unsigned long shlink;
7307 const char *name;
7308 asection *osec;
7309
7310 if (finfo->info->strip == strip_all)
7311 {
7312 /* You can't do ld -r -s. */
7313 bfd_set_error (bfd_error_invalid_operation);
7314 return FALSE;
7315 }
7316
7317 /* This symbol was skipped earlier, but
7318 since it is needed by a reloc, we
7319 must output it now. */
7320 shlink = symtab_hdr->sh_link;
7321 name = (bfd_elf_string_from_elf_section
7322 (input_bfd, shlink, sym.st_name));
7323 if (name == NULL)
7324 return FALSE;
7325
7326 osec = sec->output_section;
7327 sym.st_shndx =
7328 _bfd_elf_section_from_bfd_section (output_bfd,
7329 osec);
7330 if (sym.st_shndx == SHN_BAD)
7331 return FALSE;
7332
7333 sym.st_value += sec->output_offset;
7334 if (! finfo->info->relocatable)
7335 {
7336 sym.st_value += osec->vma;
7337 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7338 {
7339 /* STT_TLS symbols are relative to PT_TLS
7340 segment base. */
7341 BFD_ASSERT (elf_hash_table (finfo->info)
7342 ->tls_sec != NULL);
7343 sym.st_value -= (elf_hash_table (finfo->info)
7344 ->tls_sec->vma);
7345 }
7346 }
7347
7348 finfo->indices[r_symndx]
7349 = bfd_get_symcount (output_bfd);
7350
7351 if (! elf_link_output_sym (finfo, name, &sym, sec,
7352 NULL))
7353 return FALSE;
7354 }
7355
7356 r_symndx = finfo->indices[r_symndx];
7357 }
7358
7359 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7360 | (irela->r_info & r_type_mask));
7361 }
7362
7363 /* Swap out the relocs. */
c152c796 7364 if (input_rel_hdr->sh_size != 0
eac338cf
PB
7365 && !bed->elf_backend_emit_relocs (output_bfd, o,
7366 input_rel_hdr,
7367 internal_relocs,
7368 rel_hash_list))
c152c796
AM
7369 return FALSE;
7370
7371 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7372 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7373 {
7374 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7375 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
7376 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7377 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7378 input_rel_hdr2,
7379 internal_relocs,
7380 rel_hash_list))
c152c796
AM
7381 return FALSE;
7382 }
7383 }
7384 }
7385
7386 /* Write out the modified section contents. */
7387 if (bed->elf_backend_write_section
7388 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7389 {
7390 /* Section written out. */
7391 }
7392 else switch (o->sec_info_type)
7393 {
7394 case ELF_INFO_TYPE_STABS:
7395 if (! (_bfd_write_section_stabs
7396 (output_bfd,
7397 &elf_hash_table (finfo->info)->stab_info,
7398 o, &elf_section_data (o)->sec_info, contents)))
7399 return FALSE;
7400 break;
7401 case ELF_INFO_TYPE_MERGE:
7402 if (! _bfd_write_merged_section (output_bfd, o,
7403 elf_section_data (o)->sec_info))
7404 return FALSE;
7405 break;
7406 case ELF_INFO_TYPE_EH_FRAME:
7407 {
7408 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7409 o, contents))
7410 return FALSE;
7411 }
7412 break;
7413 default:
7414 {
c152c796
AM
7415 if (! (o->flags & SEC_EXCLUDE)
7416 && ! bfd_set_section_contents (output_bfd, o->output_section,
7417 contents,
7418 (file_ptr) o->output_offset,
eea6121a 7419 o->size))
c152c796
AM
7420 return FALSE;
7421 }
7422 break;
7423 }
7424 }
7425
7426 return TRUE;
7427}
7428
7429/* Generate a reloc when linking an ELF file. This is a reloc
7430 requested by the linker, and does come from any input file. This
7431 is used to build constructor and destructor tables when linking
7432 with -Ur. */
7433
7434static bfd_boolean
7435elf_reloc_link_order (bfd *output_bfd,
7436 struct bfd_link_info *info,
7437 asection *output_section,
7438 struct bfd_link_order *link_order)
7439{
7440 reloc_howto_type *howto;
7441 long indx;
7442 bfd_vma offset;
7443 bfd_vma addend;
7444 struct elf_link_hash_entry **rel_hash_ptr;
7445 Elf_Internal_Shdr *rel_hdr;
7446 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7447 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7448 bfd_byte *erel;
7449 unsigned int i;
7450
7451 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7452 if (howto == NULL)
7453 {
7454 bfd_set_error (bfd_error_bad_value);
7455 return FALSE;
7456 }
7457
7458 addend = link_order->u.reloc.p->addend;
7459
7460 /* Figure out the symbol index. */
7461 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7462 + elf_section_data (output_section)->rel_count
7463 + elf_section_data (output_section)->rel_count2);
7464 if (link_order->type == bfd_section_reloc_link_order)
7465 {
7466 indx = link_order->u.reloc.p->u.section->target_index;
7467 BFD_ASSERT (indx != 0);
7468 *rel_hash_ptr = NULL;
7469 }
7470 else
7471 {
7472 struct elf_link_hash_entry *h;
7473
7474 /* Treat a reloc against a defined symbol as though it were
7475 actually against the section. */
7476 h = ((struct elf_link_hash_entry *)
7477 bfd_wrapped_link_hash_lookup (output_bfd, info,
7478 link_order->u.reloc.p->u.name,
7479 FALSE, FALSE, TRUE));
7480 if (h != NULL
7481 && (h->root.type == bfd_link_hash_defined
7482 || h->root.type == bfd_link_hash_defweak))
7483 {
7484 asection *section;
7485
7486 section = h->root.u.def.section;
7487 indx = section->output_section->target_index;
7488 *rel_hash_ptr = NULL;
7489 /* It seems that we ought to add the symbol value to the
7490 addend here, but in practice it has already been added
7491 because it was passed to constructor_callback. */
7492 addend += section->output_section->vma + section->output_offset;
7493 }
7494 else if (h != NULL)
7495 {
7496 /* Setting the index to -2 tells elf_link_output_extsym that
7497 this symbol is used by a reloc. */
7498 h->indx = -2;
7499 *rel_hash_ptr = h;
7500 indx = 0;
7501 }
7502 else
7503 {
7504 if (! ((*info->callbacks->unattached_reloc)
7505 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7506 return FALSE;
7507 indx = 0;
7508 }
7509 }
7510
7511 /* If this is an inplace reloc, we must write the addend into the
7512 object file. */
7513 if (howto->partial_inplace && addend != 0)
7514 {
7515 bfd_size_type size;
7516 bfd_reloc_status_type rstat;
7517 bfd_byte *buf;
7518 bfd_boolean ok;
7519 const char *sym_name;
7520
7521 size = bfd_get_reloc_size (howto);
7522 buf = bfd_zmalloc (size);
7523 if (buf == NULL)
7524 return FALSE;
7525 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7526 switch (rstat)
7527 {
7528 case bfd_reloc_ok:
7529 break;
7530
7531 default:
7532 case bfd_reloc_outofrange:
7533 abort ();
7534
7535 case bfd_reloc_overflow:
7536 if (link_order->type == bfd_section_reloc_link_order)
7537 sym_name = bfd_section_name (output_bfd,
7538 link_order->u.reloc.p->u.section);
7539 else
7540 sym_name = link_order->u.reloc.p->u.name;
7541 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7542 (info, NULL, sym_name, howto->name, addend, NULL,
7543 NULL, (bfd_vma) 0)))
c152c796
AM
7544 {
7545 free (buf);
7546 return FALSE;
7547 }
7548 break;
7549 }
7550 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7551 link_order->offset, size);
7552 free (buf);
7553 if (! ok)
7554 return FALSE;
7555 }
7556
7557 /* The address of a reloc is relative to the section in a
7558 relocatable file, and is a virtual address in an executable
7559 file. */
7560 offset = link_order->offset;
7561 if (! info->relocatable)
7562 offset += output_section->vma;
7563
7564 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7565 {
7566 irel[i].r_offset = offset;
7567 irel[i].r_info = 0;
7568 irel[i].r_addend = 0;
7569 }
7570 if (bed->s->arch_size == 32)
7571 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7572 else
7573 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7574
7575 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7576 erel = rel_hdr->contents;
7577 if (rel_hdr->sh_type == SHT_REL)
7578 {
7579 erel += (elf_section_data (output_section)->rel_count
7580 * bed->s->sizeof_rel);
7581 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7582 }
7583 else
7584 {
7585 irel[0].r_addend = addend;
7586 erel += (elf_section_data (output_section)->rel_count
7587 * bed->s->sizeof_rela);
7588 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7589 }
7590
7591 ++elf_section_data (output_section)->rel_count;
7592
7593 return TRUE;
7594}
7595
0b52efa6
PB
7596
7597/* Get the output vma of the section pointed to by the sh_link field. */
7598
7599static bfd_vma
7600elf_get_linked_section_vma (struct bfd_link_order *p)
7601{
7602 Elf_Internal_Shdr **elf_shdrp;
7603 asection *s;
7604 int elfsec;
7605
7606 s = p->u.indirect.section;
7607 elf_shdrp = elf_elfsections (s->owner);
7608 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7609 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7610 /* PR 290:
7611 The Intel C compiler generates SHT_IA_64_UNWIND with
7612 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7613 sh_info fields. Hence we could get the situation
7614 where elfsec is 0. */
7615 if (elfsec == 0)
7616 {
7617 const struct elf_backend_data *bed
7618 = get_elf_backend_data (s->owner);
7619 if (bed->link_order_error_handler)
d003868e
AM
7620 bed->link_order_error_handler
7621 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7622 return 0;
7623 }
7624 else
7625 {
7626 s = elf_shdrp[elfsec]->bfd_section;
7627 return s->output_section->vma + s->output_offset;
7628 }
0b52efa6
PB
7629}
7630
7631
7632/* Compare two sections based on the locations of the sections they are
7633 linked to. Used by elf_fixup_link_order. */
7634
7635static int
7636compare_link_order (const void * a, const void * b)
7637{
7638 bfd_vma apos;
7639 bfd_vma bpos;
7640
7641 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7642 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7643 if (apos < bpos)
7644 return -1;
7645 return apos > bpos;
7646}
7647
7648
7649/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7650 order as their linked sections. Returns false if this could not be done
7651 because an output section includes both ordered and unordered
7652 sections. Ideally we'd do this in the linker proper. */
7653
7654static bfd_boolean
7655elf_fixup_link_order (bfd *abfd, asection *o)
7656{
7657 int seen_linkorder;
7658 int seen_other;
7659 int n;
7660 struct bfd_link_order *p;
7661 bfd *sub;
7662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7663 int elfsec;
7664 struct bfd_link_order **sections;
7665 asection *s;
7666 bfd_vma offset;
3b36f7e6 7667
0b52efa6
PB
7668 seen_other = 0;
7669 seen_linkorder = 0;
8423293d 7670 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7671 {
7672 if (p->type == bfd_indirect_link_order
7673 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7674 == bfd_target_elf_flavour)
7675 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7676 {
7677 s = p->u.indirect.section;
7678 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7679 if (elfsec != -1
7680 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7681 seen_linkorder++;
7682 else
7683 seen_other++;
7684 }
7685 else
7686 seen_other++;
7687 }
7688
7689 if (!seen_linkorder)
7690 return TRUE;
7691
7692 if (seen_other && seen_linkorder)
08ccf96b 7693 {
d003868e
AM
7694 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7695 o);
08ccf96b
L
7696 bfd_set_error (bfd_error_bad_value);
7697 return FALSE;
7698 }
3b36f7e6 7699
0b52efa6
PB
7700 sections = (struct bfd_link_order **)
7701 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7702 seen_linkorder = 0;
3b36f7e6 7703
8423293d 7704 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7705 {
7706 sections[seen_linkorder++] = p;
7707 }
7708 /* Sort the input sections in the order of their linked section. */
7709 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7710 compare_link_order);
7711
7712 /* Change the offsets of the sections. */
7713 offset = 0;
7714 for (n = 0; n < seen_linkorder; n++)
7715 {
7716 s = sections[n]->u.indirect.section;
7717 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7718 s->output_offset = offset;
7719 sections[n]->offset = offset;
7720 offset += sections[n]->size;
7721 }
7722
7723 return TRUE;
7724}
7725
7726
c152c796
AM
7727/* Do the final step of an ELF link. */
7728
7729bfd_boolean
7730bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7731{
7732 bfd_boolean dynamic;
7733 bfd_boolean emit_relocs;
7734 bfd *dynobj;
7735 struct elf_final_link_info finfo;
7736 register asection *o;
7737 register struct bfd_link_order *p;
7738 register bfd *sub;
7739 bfd_size_type max_contents_size;
7740 bfd_size_type max_external_reloc_size;
7741 bfd_size_type max_internal_reloc_count;
7742 bfd_size_type max_sym_count;
7743 bfd_size_type max_sym_shndx_count;
7744 file_ptr off;
7745 Elf_Internal_Sym elfsym;
7746 unsigned int i;
7747 Elf_Internal_Shdr *symtab_hdr;
7748 Elf_Internal_Shdr *symtab_shndx_hdr;
7749 Elf_Internal_Shdr *symstrtab_hdr;
7750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7751 struct elf_outext_info eoinfo;
7752 bfd_boolean merged;
7753 size_t relativecount = 0;
7754 asection *reldyn = 0;
7755 bfd_size_type amt;
7756
7757 if (! is_elf_hash_table (info->hash))
7758 return FALSE;
7759
7760 if (info->shared)
7761 abfd->flags |= DYNAMIC;
7762
7763 dynamic = elf_hash_table (info)->dynamic_sections_created;
7764 dynobj = elf_hash_table (info)->dynobj;
7765
7766 emit_relocs = (info->relocatable
7767 || info->emitrelocations
7768 || bed->elf_backend_emit_relocs);
7769
7770 finfo.info = info;
7771 finfo.output_bfd = abfd;
7772 finfo.symstrtab = _bfd_elf_stringtab_init ();
7773 if (finfo.symstrtab == NULL)
7774 return FALSE;
7775
7776 if (! dynamic)
7777 {
7778 finfo.dynsym_sec = NULL;
7779 finfo.hash_sec = NULL;
7780 finfo.symver_sec = NULL;
7781 }
7782 else
7783 {
7784 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7785 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7786 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7787 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7788 /* Note that it is OK if symver_sec is NULL. */
7789 }
7790
7791 finfo.contents = NULL;
7792 finfo.external_relocs = NULL;
7793 finfo.internal_relocs = NULL;
7794 finfo.external_syms = NULL;
7795 finfo.locsym_shndx = NULL;
7796 finfo.internal_syms = NULL;
7797 finfo.indices = NULL;
7798 finfo.sections = NULL;
7799 finfo.symbuf = NULL;
7800 finfo.symshndxbuf = NULL;
7801 finfo.symbuf_count = 0;
7802 finfo.shndxbuf_size = 0;
7803
7804 /* Count up the number of relocations we will output for each output
7805 section, so that we know the sizes of the reloc sections. We
7806 also figure out some maximum sizes. */
7807 max_contents_size = 0;
7808 max_external_reloc_size = 0;
7809 max_internal_reloc_count = 0;
7810 max_sym_count = 0;
7811 max_sym_shndx_count = 0;
7812 merged = FALSE;
7813 for (o = abfd->sections; o != NULL; o = o->next)
7814 {
7815 struct bfd_elf_section_data *esdo = elf_section_data (o);
7816 o->reloc_count = 0;
7817
8423293d 7818 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
7819 {
7820 unsigned int reloc_count = 0;
7821 struct bfd_elf_section_data *esdi = NULL;
7822 unsigned int *rel_count1;
7823
7824 if (p->type == bfd_section_reloc_link_order
7825 || p->type == bfd_symbol_reloc_link_order)
7826 reloc_count = 1;
7827 else if (p->type == bfd_indirect_link_order)
7828 {
7829 asection *sec;
7830
7831 sec = p->u.indirect.section;
7832 esdi = elf_section_data (sec);
7833
7834 /* Mark all sections which are to be included in the
7835 link. This will normally be every section. We need
7836 to do this so that we can identify any sections which
7837 the linker has decided to not include. */
7838 sec->linker_mark = TRUE;
7839
7840 if (sec->flags & SEC_MERGE)
7841 merged = TRUE;
7842
7843 if (info->relocatable || info->emitrelocations)
7844 reloc_count = sec->reloc_count;
7845 else if (bed->elf_backend_count_relocs)
7846 {
7847 Elf_Internal_Rela * relocs;
7848
7849 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7850 info->keep_memory);
7851
7852 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7853
7854 if (elf_section_data (o)->relocs != relocs)
7855 free (relocs);
7856 }
7857
eea6121a
AM
7858 if (sec->rawsize > max_contents_size)
7859 max_contents_size = sec->rawsize;
7860 if (sec->size > max_contents_size)
7861 max_contents_size = sec->size;
c152c796
AM
7862
7863 /* We are interested in just local symbols, not all
7864 symbols. */
7865 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7866 && (sec->owner->flags & DYNAMIC) == 0)
7867 {
7868 size_t sym_count;
7869
7870 if (elf_bad_symtab (sec->owner))
7871 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7872 / bed->s->sizeof_sym);
7873 else
7874 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7875
7876 if (sym_count > max_sym_count)
7877 max_sym_count = sym_count;
7878
7879 if (sym_count > max_sym_shndx_count
7880 && elf_symtab_shndx (sec->owner) != 0)
7881 max_sym_shndx_count = sym_count;
7882
7883 if ((sec->flags & SEC_RELOC) != 0)
7884 {
7885 size_t ext_size;
7886
7887 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7888 if (ext_size > max_external_reloc_size)
7889 max_external_reloc_size = ext_size;
7890 if (sec->reloc_count > max_internal_reloc_count)
7891 max_internal_reloc_count = sec->reloc_count;
7892 }
7893 }
7894 }
7895
7896 if (reloc_count == 0)
7897 continue;
7898
7899 o->reloc_count += reloc_count;
7900
7901 /* MIPS may have a mix of REL and RELA relocs on sections.
7902 To support this curious ABI we keep reloc counts in
7903 elf_section_data too. We must be careful to add the
7904 relocations from the input section to the right output
7905 count. FIXME: Get rid of one count. We have
7906 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7907 rel_count1 = &esdo->rel_count;
7908 if (esdi != NULL)
7909 {
7910 bfd_boolean same_size;
7911 bfd_size_type entsize1;
7912
7913 entsize1 = esdi->rel_hdr.sh_entsize;
7914 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7915 || entsize1 == bed->s->sizeof_rela);
7916 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7917
7918 if (!same_size)
7919 rel_count1 = &esdo->rel_count2;
7920
7921 if (esdi->rel_hdr2 != NULL)
7922 {
7923 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7924 unsigned int alt_count;
7925 unsigned int *rel_count2;
7926
7927 BFD_ASSERT (entsize2 != entsize1
7928 && (entsize2 == bed->s->sizeof_rel
7929 || entsize2 == bed->s->sizeof_rela));
7930
7931 rel_count2 = &esdo->rel_count2;
7932 if (!same_size)
7933 rel_count2 = &esdo->rel_count;
7934
7935 /* The following is probably too simplistic if the
7936 backend counts output relocs unusually. */
7937 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7938 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7939 *rel_count2 += alt_count;
7940 reloc_count -= alt_count;
7941 }
7942 }
7943 *rel_count1 += reloc_count;
7944 }
7945
7946 if (o->reloc_count > 0)
7947 o->flags |= SEC_RELOC;
7948 else
7949 {
7950 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7951 set it (this is probably a bug) and if it is set
7952 assign_section_numbers will create a reloc section. */
7953 o->flags &=~ SEC_RELOC;
7954 }
7955
7956 /* If the SEC_ALLOC flag is not set, force the section VMA to
7957 zero. This is done in elf_fake_sections as well, but forcing
7958 the VMA to 0 here will ensure that relocs against these
7959 sections are handled correctly. */
7960 if ((o->flags & SEC_ALLOC) == 0
7961 && ! o->user_set_vma)
7962 o->vma = 0;
7963 }
7964
7965 if (! info->relocatable && merged)
7966 elf_link_hash_traverse (elf_hash_table (info),
7967 _bfd_elf_link_sec_merge_syms, abfd);
7968
7969 /* Figure out the file positions for everything but the symbol table
7970 and the relocs. We set symcount to force assign_section_numbers
7971 to create a symbol table. */
7972 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7973 BFD_ASSERT (! abfd->output_has_begun);
7974 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7975 goto error_return;
7976
ee75fd95 7977 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7978 for (o = abfd->sections; o != NULL; o = o->next)
7979 {
7980 if ((o->flags & SEC_RELOC) != 0)
7981 {
7982 if (!(_bfd_elf_link_size_reloc_section
7983 (abfd, &elf_section_data (o)->rel_hdr, o)))
7984 goto error_return;
7985
7986 if (elf_section_data (o)->rel_hdr2
7987 && !(_bfd_elf_link_size_reloc_section
7988 (abfd, elf_section_data (o)->rel_hdr2, o)))
7989 goto error_return;
7990 }
7991
7992 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7993 to count upwards while actually outputting the relocations. */
7994 elf_section_data (o)->rel_count = 0;
7995 elf_section_data (o)->rel_count2 = 0;
7996 }
7997
7998 _bfd_elf_assign_file_positions_for_relocs (abfd);
7999
8000 /* We have now assigned file positions for all the sections except
8001 .symtab and .strtab. We start the .symtab section at the current
8002 file position, and write directly to it. We build the .strtab
8003 section in memory. */
8004 bfd_get_symcount (abfd) = 0;
8005 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8006 /* sh_name is set in prep_headers. */
8007 symtab_hdr->sh_type = SHT_SYMTAB;
8008 /* sh_flags, sh_addr and sh_size all start off zero. */
8009 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8010 /* sh_link is set in assign_section_numbers. */
8011 /* sh_info is set below. */
8012 /* sh_offset is set just below. */
8013 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8014
8015 off = elf_tdata (abfd)->next_file_pos;
8016 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8017
8018 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8019 incorrect. We do not yet know the size of the .symtab section.
8020 We correct next_file_pos below, after we do know the size. */
8021
8022 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8023 continuously seeking to the right position in the file. */
8024 if (! info->keep_memory || max_sym_count < 20)
8025 finfo.symbuf_size = 20;
8026 else
8027 finfo.symbuf_size = max_sym_count;
8028 amt = finfo.symbuf_size;
8029 amt *= bed->s->sizeof_sym;
8030 finfo.symbuf = bfd_malloc (amt);
8031 if (finfo.symbuf == NULL)
8032 goto error_return;
8033 if (elf_numsections (abfd) > SHN_LORESERVE)
8034 {
8035 /* Wild guess at number of output symbols. realloc'd as needed. */
8036 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8037 finfo.shndxbuf_size = amt;
8038 amt *= sizeof (Elf_External_Sym_Shndx);
8039 finfo.symshndxbuf = bfd_zmalloc (amt);
8040 if (finfo.symshndxbuf == NULL)
8041 goto error_return;
8042 }
8043
8044 /* Start writing out the symbol table. The first symbol is always a
8045 dummy symbol. */
8046 if (info->strip != strip_all
8047 || emit_relocs)
8048 {
8049 elfsym.st_value = 0;
8050 elfsym.st_size = 0;
8051 elfsym.st_info = 0;
8052 elfsym.st_other = 0;
8053 elfsym.st_shndx = SHN_UNDEF;
8054 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8055 NULL))
8056 goto error_return;
8057 }
8058
c152c796
AM
8059 /* Output a symbol for each section. We output these even if we are
8060 discarding local symbols, since they are used for relocs. These
8061 symbols have no names. We store the index of each one in the
8062 index field of the section, so that we can find it again when
8063 outputting relocs. */
8064 if (info->strip != strip_all
8065 || emit_relocs)
8066 {
8067 elfsym.st_size = 0;
8068 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8069 elfsym.st_other = 0;
8070 for (i = 1; i < elf_numsections (abfd); i++)
8071 {
8072 o = bfd_section_from_elf_index (abfd, i);
8073 if (o != NULL)
8074 o->target_index = bfd_get_symcount (abfd);
8075 elfsym.st_shndx = i;
8076 if (info->relocatable || o == NULL)
8077 elfsym.st_value = 0;
8078 else
8079 elfsym.st_value = o->vma;
8080 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8081 goto error_return;
8082 if (i == SHN_LORESERVE - 1)
8083 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8084 }
8085 }
8086
8087 /* Allocate some memory to hold information read in from the input
8088 files. */
8089 if (max_contents_size != 0)
8090 {
8091 finfo.contents = bfd_malloc (max_contents_size);
8092 if (finfo.contents == NULL)
8093 goto error_return;
8094 }
8095
8096 if (max_external_reloc_size != 0)
8097 {
8098 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8099 if (finfo.external_relocs == NULL)
8100 goto error_return;
8101 }
8102
8103 if (max_internal_reloc_count != 0)
8104 {
8105 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8106 amt *= sizeof (Elf_Internal_Rela);
8107 finfo.internal_relocs = bfd_malloc (amt);
8108 if (finfo.internal_relocs == NULL)
8109 goto error_return;
8110 }
8111
8112 if (max_sym_count != 0)
8113 {
8114 amt = max_sym_count * bed->s->sizeof_sym;
8115 finfo.external_syms = bfd_malloc (amt);
8116 if (finfo.external_syms == NULL)
8117 goto error_return;
8118
8119 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8120 finfo.internal_syms = bfd_malloc (amt);
8121 if (finfo.internal_syms == NULL)
8122 goto error_return;
8123
8124 amt = max_sym_count * sizeof (long);
8125 finfo.indices = bfd_malloc (amt);
8126 if (finfo.indices == NULL)
8127 goto error_return;
8128
8129 amt = max_sym_count * sizeof (asection *);
8130 finfo.sections = bfd_malloc (amt);
8131 if (finfo.sections == NULL)
8132 goto error_return;
8133 }
8134
8135 if (max_sym_shndx_count != 0)
8136 {
8137 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8138 finfo.locsym_shndx = bfd_malloc (amt);
8139 if (finfo.locsym_shndx == NULL)
8140 goto error_return;
8141 }
8142
8143 if (elf_hash_table (info)->tls_sec)
8144 {
8145 bfd_vma base, end = 0;
8146 asection *sec;
8147
8148 for (sec = elf_hash_table (info)->tls_sec;
8149 sec && (sec->flags & SEC_THREAD_LOCAL);
8150 sec = sec->next)
8151 {
eea6121a 8152 bfd_vma size = sec->size;
c152c796
AM
8153
8154 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8155 {
8156 struct bfd_link_order *o;
8157
8423293d 8158 for (o = sec->map_head.link_order; o != NULL; o = o->next)
c152c796
AM
8159 if (size < o->offset + o->size)
8160 size = o->offset + o->size;
8161 }
8162 end = sec->vma + size;
8163 }
8164 base = elf_hash_table (info)->tls_sec->vma;
8165 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8166 elf_hash_table (info)->tls_size = end - base;
8167 }
8168
0b52efa6
PB
8169 /* Reorder SHF_LINK_ORDER sections. */
8170 for (o = abfd->sections; o != NULL; o = o->next)
8171 {
8172 if (!elf_fixup_link_order (abfd, o))
8173 return FALSE;
8174 }
8175
c152c796
AM
8176 /* Since ELF permits relocations to be against local symbols, we
8177 must have the local symbols available when we do the relocations.
8178 Since we would rather only read the local symbols once, and we
8179 would rather not keep them in memory, we handle all the
8180 relocations for a single input file at the same time.
8181
8182 Unfortunately, there is no way to know the total number of local
8183 symbols until we have seen all of them, and the local symbol
8184 indices precede the global symbol indices. This means that when
8185 we are generating relocatable output, and we see a reloc against
8186 a global symbol, we can not know the symbol index until we have
8187 finished examining all the local symbols to see which ones we are
8188 going to output. To deal with this, we keep the relocations in
8189 memory, and don't output them until the end of the link. This is
8190 an unfortunate waste of memory, but I don't see a good way around
8191 it. Fortunately, it only happens when performing a relocatable
8192 link, which is not the common case. FIXME: If keep_memory is set
8193 we could write the relocs out and then read them again; I don't
8194 know how bad the memory loss will be. */
8195
8196 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8197 sub->output_has_begun = FALSE;
8198 for (o = abfd->sections; o != NULL; o = o->next)
8199 {
8423293d 8200 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8201 {
8202 if (p->type == bfd_indirect_link_order
8203 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8204 == bfd_target_elf_flavour)
8205 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8206 {
8207 if (! sub->output_has_begun)
8208 {
8209 if (! elf_link_input_bfd (&finfo, sub))
8210 goto error_return;
8211 sub->output_has_begun = TRUE;
8212 }
8213 }
8214 else if (p->type == bfd_section_reloc_link_order
8215 || p->type == bfd_symbol_reloc_link_order)
8216 {
8217 if (! elf_reloc_link_order (abfd, info, o, p))
8218 goto error_return;
8219 }
8220 else
8221 {
8222 if (! _bfd_default_link_order (abfd, info, o, p))
8223 goto error_return;
8224 }
8225 }
8226 }
8227
8228 /* Output any global symbols that got converted to local in a
8229 version script or due to symbol visibility. We do this in a
8230 separate step since ELF requires all local symbols to appear
8231 prior to any global symbols. FIXME: We should only do this if
8232 some global symbols were, in fact, converted to become local.
8233 FIXME: Will this work correctly with the Irix 5 linker? */
8234 eoinfo.failed = FALSE;
8235 eoinfo.finfo = &finfo;
8236 eoinfo.localsyms = TRUE;
8237 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8238 &eoinfo);
8239 if (eoinfo.failed)
8240 return FALSE;
8241
8242 /* That wrote out all the local symbols. Finish up the symbol table
8243 with the global symbols. Even if we want to strip everything we
8244 can, we still need to deal with those global symbols that got
8245 converted to local in a version script. */
8246
8247 /* The sh_info field records the index of the first non local symbol. */
8248 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8249
8250 if (dynamic
8251 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8252 {
8253 Elf_Internal_Sym sym;
8254 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8255 long last_local = 0;
8256
8257 /* Write out the section symbols for the output sections. */
67687978 8258 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8259 {
8260 asection *s;
8261
8262 sym.st_size = 0;
8263 sym.st_name = 0;
8264 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8265 sym.st_other = 0;
8266
8267 for (s = abfd->sections; s != NULL; s = s->next)
8268 {
8269 int indx;
8270 bfd_byte *dest;
8271 long dynindx;
8272
c152c796 8273 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8274 if (dynindx <= 0)
8275 continue;
8276 indx = elf_section_data (s)->this_idx;
c152c796
AM
8277 BFD_ASSERT (indx > 0);
8278 sym.st_shndx = indx;
8279 sym.st_value = s->vma;
8280 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8281 if (last_local < dynindx)
8282 last_local = dynindx;
c152c796
AM
8283 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8284 }
c152c796
AM
8285 }
8286
8287 /* Write out the local dynsyms. */
8288 if (elf_hash_table (info)->dynlocal)
8289 {
8290 struct elf_link_local_dynamic_entry *e;
8291 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8292 {
8293 asection *s;
8294 bfd_byte *dest;
8295
8296 sym.st_size = e->isym.st_size;
8297 sym.st_other = e->isym.st_other;
8298
8299 /* Copy the internal symbol as is.
8300 Note that we saved a word of storage and overwrote
8301 the original st_name with the dynstr_index. */
8302 sym = e->isym;
8303
8304 if (e->isym.st_shndx != SHN_UNDEF
8305 && (e->isym.st_shndx < SHN_LORESERVE
8306 || e->isym.st_shndx > SHN_HIRESERVE))
8307 {
8308 s = bfd_section_from_elf_index (e->input_bfd,
8309 e->isym.st_shndx);
8310
8311 sym.st_shndx =
8312 elf_section_data (s->output_section)->this_idx;
8313 sym.st_value = (s->output_section->vma
8314 + s->output_offset
8315 + e->isym.st_value);
8316 }
8317
8318 if (last_local < e->dynindx)
8319 last_local = e->dynindx;
8320
8321 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8322 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8323 }
8324 }
8325
8326 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8327 last_local + 1;
8328 }
8329
8330 /* We get the global symbols from the hash table. */
8331 eoinfo.failed = FALSE;
8332 eoinfo.localsyms = FALSE;
8333 eoinfo.finfo = &finfo;
8334 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8335 &eoinfo);
8336 if (eoinfo.failed)
8337 return FALSE;
8338
8339 /* If backend needs to output some symbols not present in the hash
8340 table, do it now. */
8341 if (bed->elf_backend_output_arch_syms)
8342 {
8343 typedef bfd_boolean (*out_sym_func)
8344 (void *, const char *, Elf_Internal_Sym *, asection *,
8345 struct elf_link_hash_entry *);
8346
8347 if (! ((*bed->elf_backend_output_arch_syms)
8348 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8349 return FALSE;
8350 }
8351
8352 /* Flush all symbols to the file. */
8353 if (! elf_link_flush_output_syms (&finfo, bed))
8354 return FALSE;
8355
8356 /* Now we know the size of the symtab section. */
8357 off += symtab_hdr->sh_size;
8358
8359 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8360 if (symtab_shndx_hdr->sh_name != 0)
8361 {
8362 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8363 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8364 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8365 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8366 symtab_shndx_hdr->sh_size = amt;
8367
8368 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8369 off, TRUE);
8370
8371 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8372 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8373 return FALSE;
8374 }
8375
8376
8377 /* Finish up and write out the symbol string table (.strtab)
8378 section. */
8379 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8380 /* sh_name was set in prep_headers. */
8381 symstrtab_hdr->sh_type = SHT_STRTAB;
8382 symstrtab_hdr->sh_flags = 0;
8383 symstrtab_hdr->sh_addr = 0;
8384 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8385 symstrtab_hdr->sh_entsize = 0;
8386 symstrtab_hdr->sh_link = 0;
8387 symstrtab_hdr->sh_info = 0;
8388 /* sh_offset is set just below. */
8389 symstrtab_hdr->sh_addralign = 1;
8390
8391 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8392 elf_tdata (abfd)->next_file_pos = off;
8393
8394 if (bfd_get_symcount (abfd) > 0)
8395 {
8396 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8397 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8398 return FALSE;
8399 }
8400
8401 /* Adjust the relocs to have the correct symbol indices. */
8402 for (o = abfd->sections; o != NULL; o = o->next)
8403 {
8404 if ((o->flags & SEC_RELOC) == 0)
8405 continue;
8406
8407 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8408 elf_section_data (o)->rel_count,
8409 elf_section_data (o)->rel_hashes);
8410 if (elf_section_data (o)->rel_hdr2 != NULL)
8411 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8412 elf_section_data (o)->rel_count2,
8413 (elf_section_data (o)->rel_hashes
8414 + elf_section_data (o)->rel_count));
8415
8416 /* Set the reloc_count field to 0 to prevent write_relocs from
8417 trying to swap the relocs out itself. */
8418 o->reloc_count = 0;
8419 }
8420
8421 if (dynamic && info->combreloc && dynobj != NULL)
8422 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8423
8424 /* If we are linking against a dynamic object, or generating a
8425 shared library, finish up the dynamic linking information. */
8426 if (dynamic)
8427 {
8428 bfd_byte *dyncon, *dynconend;
8429
8430 /* Fix up .dynamic entries. */
8431 o = bfd_get_section_by_name (dynobj, ".dynamic");
8432 BFD_ASSERT (o != NULL);
8433
8434 dyncon = o->contents;
eea6121a 8435 dynconend = o->contents + o->size;
c152c796
AM
8436 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8437 {
8438 Elf_Internal_Dyn dyn;
8439 const char *name;
8440 unsigned int type;
8441
8442 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8443
8444 switch (dyn.d_tag)
8445 {
8446 default:
8447 continue;
8448 case DT_NULL:
8449 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8450 {
8451 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8452 {
8453 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8454 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8455 default: continue;
8456 }
8457 dyn.d_un.d_val = relativecount;
8458 relativecount = 0;
8459 break;
8460 }
8461 continue;
8462
8463 case DT_INIT:
8464 name = info->init_function;
8465 goto get_sym;
8466 case DT_FINI:
8467 name = info->fini_function;
8468 get_sym:
8469 {
8470 struct elf_link_hash_entry *h;
8471
8472 h = elf_link_hash_lookup (elf_hash_table (info), name,
8473 FALSE, FALSE, TRUE);
8474 if (h != NULL
8475 && (h->root.type == bfd_link_hash_defined
8476 || h->root.type == bfd_link_hash_defweak))
8477 {
8478 dyn.d_un.d_val = h->root.u.def.value;
8479 o = h->root.u.def.section;
8480 if (o->output_section != NULL)
8481 dyn.d_un.d_val += (o->output_section->vma
8482 + o->output_offset);
8483 else
8484 {
8485 /* The symbol is imported from another shared
8486 library and does not apply to this one. */
8487 dyn.d_un.d_val = 0;
8488 }
8489 break;
8490 }
8491 }
8492 continue;
8493
8494 case DT_PREINIT_ARRAYSZ:
8495 name = ".preinit_array";
8496 goto get_size;
8497 case DT_INIT_ARRAYSZ:
8498 name = ".init_array";
8499 goto get_size;
8500 case DT_FINI_ARRAYSZ:
8501 name = ".fini_array";
8502 get_size:
8503 o = bfd_get_section_by_name (abfd, name);
8504 if (o == NULL)
8505 {
8506 (*_bfd_error_handler)
d003868e 8507 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8508 goto error_return;
8509 }
eea6121a 8510 if (o->size == 0)
c152c796
AM
8511 (*_bfd_error_handler)
8512 (_("warning: %s section has zero size"), name);
eea6121a 8513 dyn.d_un.d_val = o->size;
c152c796
AM
8514 break;
8515
8516 case DT_PREINIT_ARRAY:
8517 name = ".preinit_array";
8518 goto get_vma;
8519 case DT_INIT_ARRAY:
8520 name = ".init_array";
8521 goto get_vma;
8522 case DT_FINI_ARRAY:
8523 name = ".fini_array";
8524 goto get_vma;
8525
8526 case DT_HASH:
8527 name = ".hash";
8528 goto get_vma;
8529 case DT_STRTAB:
8530 name = ".dynstr";
8531 goto get_vma;
8532 case DT_SYMTAB:
8533 name = ".dynsym";
8534 goto get_vma;
8535 case DT_VERDEF:
8536 name = ".gnu.version_d";
8537 goto get_vma;
8538 case DT_VERNEED:
8539 name = ".gnu.version_r";
8540 goto get_vma;
8541 case DT_VERSYM:
8542 name = ".gnu.version";
8543 get_vma:
8544 o = bfd_get_section_by_name (abfd, name);
8545 if (o == NULL)
8546 {
8547 (*_bfd_error_handler)
d003868e 8548 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8549 goto error_return;
8550 }
8551 dyn.d_un.d_ptr = o->vma;
8552 break;
8553
8554 case DT_REL:
8555 case DT_RELA:
8556 case DT_RELSZ:
8557 case DT_RELASZ:
8558 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8559 type = SHT_REL;
8560 else
8561 type = SHT_RELA;
8562 dyn.d_un.d_val = 0;
8563 for (i = 1; i < elf_numsections (abfd); i++)
8564 {
8565 Elf_Internal_Shdr *hdr;
8566
8567 hdr = elf_elfsections (abfd)[i];
8568 if (hdr->sh_type == type
8569 && (hdr->sh_flags & SHF_ALLOC) != 0)
8570 {
8571 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8572 dyn.d_un.d_val += hdr->sh_size;
8573 else
8574 {
8575 if (dyn.d_un.d_val == 0
8576 || hdr->sh_addr < dyn.d_un.d_val)
8577 dyn.d_un.d_val = hdr->sh_addr;
8578 }
8579 }
8580 }
8581 break;
8582 }
8583 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8584 }
8585 }
8586
8587 /* If we have created any dynamic sections, then output them. */
8588 if (dynobj != NULL)
8589 {
8590 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8591 goto error_return;
8592
8593 for (o = dynobj->sections; o != NULL; o = o->next)
8594 {
8595 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8596 || o->size == 0
c152c796
AM
8597 || o->output_section == bfd_abs_section_ptr)
8598 continue;
8599 if ((o->flags & SEC_LINKER_CREATED) == 0)
8600 {
8601 /* At this point, we are only interested in sections
8602 created by _bfd_elf_link_create_dynamic_sections. */
8603 continue;
8604 }
3722b82f
AM
8605 if (elf_hash_table (info)->stab_info.stabstr == o)
8606 continue;
eea6121a
AM
8607 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8608 continue;
c152c796
AM
8609 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8610 != SHT_STRTAB)
8611 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8612 {
8613 if (! bfd_set_section_contents (abfd, o->output_section,
8614 o->contents,
8615 (file_ptr) o->output_offset,
eea6121a 8616 o->size))
c152c796
AM
8617 goto error_return;
8618 }
8619 else
8620 {
8621 /* The contents of the .dynstr section are actually in a
8622 stringtab. */
8623 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8624 if (bfd_seek (abfd, off, SEEK_SET) != 0
8625 || ! _bfd_elf_strtab_emit (abfd,
8626 elf_hash_table (info)->dynstr))
8627 goto error_return;
8628 }
8629 }
8630 }
8631
8632 if (info->relocatable)
8633 {
8634 bfd_boolean failed = FALSE;
8635
8636 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8637 if (failed)
8638 goto error_return;
8639 }
8640
8641 /* If we have optimized stabs strings, output them. */
3722b82f 8642 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8643 {
8644 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8645 goto error_return;
8646 }
8647
8648 if (info->eh_frame_hdr)
8649 {
8650 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8651 goto error_return;
8652 }
8653
8654 if (finfo.symstrtab != NULL)
8655 _bfd_stringtab_free (finfo.symstrtab);
8656 if (finfo.contents != NULL)
8657 free (finfo.contents);
8658 if (finfo.external_relocs != NULL)
8659 free (finfo.external_relocs);
8660 if (finfo.internal_relocs != NULL)
8661 free (finfo.internal_relocs);
8662 if (finfo.external_syms != NULL)
8663 free (finfo.external_syms);
8664 if (finfo.locsym_shndx != NULL)
8665 free (finfo.locsym_shndx);
8666 if (finfo.internal_syms != NULL)
8667 free (finfo.internal_syms);
8668 if (finfo.indices != NULL)
8669 free (finfo.indices);
8670 if (finfo.sections != NULL)
8671 free (finfo.sections);
8672 if (finfo.symbuf != NULL)
8673 free (finfo.symbuf);
8674 if (finfo.symshndxbuf != NULL)
8675 free (finfo.symshndxbuf);
8676 for (o = abfd->sections; o != NULL; o = o->next)
8677 {
8678 if ((o->flags & SEC_RELOC) != 0
8679 && elf_section_data (o)->rel_hashes != NULL)
8680 free (elf_section_data (o)->rel_hashes);
8681 }
8682
8683 elf_tdata (abfd)->linker = TRUE;
8684
8685 return TRUE;
8686
8687 error_return:
8688 if (finfo.symstrtab != NULL)
8689 _bfd_stringtab_free (finfo.symstrtab);
8690 if (finfo.contents != NULL)
8691 free (finfo.contents);
8692 if (finfo.external_relocs != NULL)
8693 free (finfo.external_relocs);
8694 if (finfo.internal_relocs != NULL)
8695 free (finfo.internal_relocs);
8696 if (finfo.external_syms != NULL)
8697 free (finfo.external_syms);
8698 if (finfo.locsym_shndx != NULL)
8699 free (finfo.locsym_shndx);
8700 if (finfo.internal_syms != NULL)
8701 free (finfo.internal_syms);
8702 if (finfo.indices != NULL)
8703 free (finfo.indices);
8704 if (finfo.sections != NULL)
8705 free (finfo.sections);
8706 if (finfo.symbuf != NULL)
8707 free (finfo.symbuf);
8708 if (finfo.symshndxbuf != NULL)
8709 free (finfo.symshndxbuf);
8710 for (o = abfd->sections; o != NULL; o = o->next)
8711 {
8712 if ((o->flags & SEC_RELOC) != 0
8713 && elf_section_data (o)->rel_hashes != NULL)
8714 free (elf_section_data (o)->rel_hashes);
8715 }
8716
8717 return FALSE;
8718}
8719\f
8720/* Garbage collect unused sections. */
8721
8722/* The mark phase of garbage collection. For a given section, mark
8723 it and any sections in this section's group, and all the sections
8724 which define symbols to which it refers. */
8725
8726typedef asection * (*gc_mark_hook_fn)
8727 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8728 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8729
ccfa59ea
AM
8730bfd_boolean
8731_bfd_elf_gc_mark (struct bfd_link_info *info,
8732 asection *sec,
8733 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8734{
8735 bfd_boolean ret;
39c2f51b 8736 bfd_boolean is_eh;
c152c796
AM
8737 asection *group_sec;
8738
8739 sec->gc_mark = 1;
8740
8741 /* Mark all the sections in the group. */
8742 group_sec = elf_section_data (sec)->next_in_group;
8743 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8744 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8745 return FALSE;
8746
8747 /* Look through the section relocs. */
8748 ret = TRUE;
39c2f51b 8749 is_eh = strcmp (sec->name, ".eh_frame") == 0;
c152c796
AM
8750 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8751 {
8752 Elf_Internal_Rela *relstart, *rel, *relend;
8753 Elf_Internal_Shdr *symtab_hdr;
8754 struct elf_link_hash_entry **sym_hashes;
8755 size_t nlocsyms;
8756 size_t extsymoff;
8757 bfd *input_bfd = sec->owner;
8758 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8759 Elf_Internal_Sym *isym = NULL;
8760 int r_sym_shift;
8761
8762 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8763 sym_hashes = elf_sym_hashes (input_bfd);
8764
8765 /* Read the local symbols. */
8766 if (elf_bad_symtab (input_bfd))
8767 {
8768 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8769 extsymoff = 0;
8770 }
8771 else
8772 extsymoff = nlocsyms = symtab_hdr->sh_info;
8773
8774 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8775 if (isym == NULL && nlocsyms != 0)
8776 {
8777 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8778 NULL, NULL, NULL);
8779 if (isym == NULL)
8780 return FALSE;
8781 }
8782
8783 /* Read the relocations. */
8784 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8785 info->keep_memory);
8786 if (relstart == NULL)
8787 {
8788 ret = FALSE;
8789 goto out1;
8790 }
8791 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8792
8793 if (bed->s->arch_size == 32)
8794 r_sym_shift = 8;
8795 else
8796 r_sym_shift = 32;
8797
8798 for (rel = relstart; rel < relend; rel++)
8799 {
8800 unsigned long r_symndx;
8801 asection *rsec;
8802 struct elf_link_hash_entry *h;
8803
8804 r_symndx = rel->r_info >> r_sym_shift;
8805 if (r_symndx == 0)
8806 continue;
8807
8808 if (r_symndx >= nlocsyms
8809 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8810 {
8811 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8812 while (h->root.type == bfd_link_hash_indirect
8813 || h->root.type == bfd_link_hash_warning)
8814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8815 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8816 }
8817 else
8818 {
8819 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8820 }
8821
8822 if (rsec && !rsec->gc_mark)
8823 {
8824 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8825 rsec->gc_mark = 1;
39c2f51b
AM
8826 else if (is_eh)
8827 rsec->gc_mark_from_eh = 1;
ccfa59ea 8828 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8829 {
8830 ret = FALSE;
8831 goto out2;
8832 }
8833 }
8834 }
8835
8836 out2:
8837 if (elf_section_data (sec)->relocs != relstart)
8838 free (relstart);
8839 out1:
8840 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8841 {
8842 if (! info->keep_memory)
8843 free (isym);
8844 else
8845 symtab_hdr->contents = (unsigned char *) isym;
8846 }
8847 }
8848
8849 return ret;
8850}
8851
8852/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8853
8854static bfd_boolean
8855elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8856{
8857 int *idx = idxptr;
8858
8859 if (h->root.type == bfd_link_hash_warning)
8860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8861
8862 if (h->dynindx != -1
8863 && ((h->root.type != bfd_link_hash_defined
8864 && h->root.type != bfd_link_hash_defweak)
8865 || h->root.u.def.section->gc_mark))
8866 h->dynindx = (*idx)++;
8867
8868 return TRUE;
8869}
8870
8871/* The sweep phase of garbage collection. Remove all garbage sections. */
8872
8873typedef bfd_boolean (*gc_sweep_hook_fn)
8874 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8875
8876static bfd_boolean
8877elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8878{
8879 bfd *sub;
8880
8881 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8882 {
8883 asection *o;
8884
8885 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8886 continue;
8887
8888 for (o = sub->sections; o != NULL; o = o->next)
8889 {
7c2c8505
AM
8890 /* Keep debug and special sections. */
8891 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8892 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8893 o->gc_mark = 1;
8894
8895 if (o->gc_mark)
8896 continue;
8897
39c2f51b
AM
8898 /* Keep .gcc_except_table.* if the associated .text.* is
8899 marked. This isn't very nice, but the proper solution,
8900 splitting .eh_frame up and using comdat doesn't pan out
8901 easily due to needing special relocs to handle the
8902 difference of two symbols in separate sections.
8903 Don't keep code sections referenced by .eh_frame. */
8904 if (o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
8905 {
8906 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
8907 {
8908 unsigned long len;
8909 char *fn_name;
8910 asection *fn_text;
8911
8912 len = strlen (o->name + 18) + 1;
8913 fn_name = bfd_malloc (len + 6);
8914 if (fn_name == NULL)
8915 return FALSE;
8916 memcpy (fn_name, ".text.", 6);
8917 memcpy (fn_name + 6, o->name + 18, len);
8918 fn_text = bfd_get_section_by_name (sub, fn_name);
8919 free (fn_name);
8920 if (fn_text != NULL && fn_text->gc_mark)
8921 o->gc_mark = 1;
8922 }
8923
8924 /* If not using specially named exception table section,
8925 then keep whatever we are using. */
8926 else
8927 o->gc_mark = 1;
8928
8929 if (o->gc_mark)
8930 continue;
8931 }
8932
c152c796
AM
8933 /* Skip sweeping sections already excluded. */
8934 if (o->flags & SEC_EXCLUDE)
8935 continue;
8936
8937 /* Since this is early in the link process, it is simple
8938 to remove a section from the output. */
8939 o->flags |= SEC_EXCLUDE;
8940
8941 /* But we also have to update some of the relocation
8942 info we collected before. */
8943 if (gc_sweep_hook
e8aaee2a
AM
8944 && (o->flags & SEC_RELOC) != 0
8945 && o->reloc_count > 0
8946 && !bfd_is_abs_section (o->output_section))
c152c796
AM
8947 {
8948 Elf_Internal_Rela *internal_relocs;
8949 bfd_boolean r;
8950
8951 internal_relocs
8952 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8953 info->keep_memory);
8954 if (internal_relocs == NULL)
8955 return FALSE;
8956
8957 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8958
8959 if (elf_section_data (o)->relocs != internal_relocs)
8960 free (internal_relocs);
8961
8962 if (!r)
8963 return FALSE;
8964 }
8965 }
8966 }
8967
8968 /* Remove the symbols that were in the swept sections from the dynamic
8969 symbol table. GCFIXME: Anyone know how to get them out of the
8970 static symbol table as well? */
8971 {
8972 int i = 0;
8973
8974 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8975
8976 elf_hash_table (info)->dynsymcount = i;
8977 }
8978
8979 return TRUE;
8980}
8981
8982/* Propagate collected vtable information. This is called through
8983 elf_link_hash_traverse. */
8984
8985static bfd_boolean
8986elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8987{
8988 if (h->root.type == bfd_link_hash_warning)
8989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8990
8991 /* Those that are not vtables. */
f6e332e6 8992 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8993 return TRUE;
8994
8995 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8996 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8997 return TRUE;
8998
8999 /* If we've already been done, exit. */
f6e332e6 9000 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
9001 return TRUE;
9002
9003 /* Make sure the parent's table is up to date. */
f6e332e6 9004 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 9005
f6e332e6 9006 if (h->vtable->used == NULL)
c152c796
AM
9007 {
9008 /* None of this table's entries were referenced. Re-use the
9009 parent's table. */
f6e332e6
AM
9010 h->vtable->used = h->vtable->parent->vtable->used;
9011 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
9012 }
9013 else
9014 {
9015 size_t n;
9016 bfd_boolean *cu, *pu;
9017
9018 /* Or the parent's entries into ours. */
f6e332e6 9019 cu = h->vtable->used;
c152c796 9020 cu[-1] = TRUE;
f6e332e6 9021 pu = h->vtable->parent->vtable->used;
c152c796
AM
9022 if (pu != NULL)
9023 {
9024 const struct elf_backend_data *bed;
9025 unsigned int log_file_align;
9026
9027 bed = get_elf_backend_data (h->root.u.def.section->owner);
9028 log_file_align = bed->s->log_file_align;
f6e332e6 9029 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
9030 while (n--)
9031 {
9032 if (*pu)
9033 *cu = TRUE;
9034 pu++;
9035 cu++;
9036 }
9037 }
9038 }
9039
9040 return TRUE;
9041}
9042
9043static bfd_boolean
9044elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9045{
9046 asection *sec;
9047 bfd_vma hstart, hend;
9048 Elf_Internal_Rela *relstart, *relend, *rel;
9049 const struct elf_backend_data *bed;
9050 unsigned int log_file_align;
9051
9052 if (h->root.type == bfd_link_hash_warning)
9053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9054
9055 /* Take care of both those symbols that do not describe vtables as
9056 well as those that are not loaded. */
f6e332e6 9057 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9058 return TRUE;
9059
9060 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9061 || h->root.type == bfd_link_hash_defweak);
9062
9063 sec = h->root.u.def.section;
9064 hstart = h->root.u.def.value;
9065 hend = hstart + h->size;
9066
9067 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9068 if (!relstart)
9069 return *(bfd_boolean *) okp = FALSE;
9070 bed = get_elf_backend_data (sec->owner);
9071 log_file_align = bed->s->log_file_align;
9072
9073 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9074
9075 for (rel = relstart; rel < relend; ++rel)
9076 if (rel->r_offset >= hstart && rel->r_offset < hend)
9077 {
9078 /* If the entry is in use, do nothing. */
f6e332e6
AM
9079 if (h->vtable->used
9080 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
9081 {
9082 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 9083 if (h->vtable->used[entry])
c152c796
AM
9084 continue;
9085 }
9086 /* Otherwise, kill it. */
9087 rel->r_offset = rel->r_info = rel->r_addend = 0;
9088 }
9089
9090 return TRUE;
9091}
9092
715df9b8
EB
9093/* Mark sections containing dynamically referenced symbols. This is called
9094 through elf_link_hash_traverse. */
9095
9096static bfd_boolean
9097elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9098 void *okp ATTRIBUTE_UNUSED)
9099{
9100 if (h->root.type == bfd_link_hash_warning)
9101 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9102
9103 if ((h->root.type == bfd_link_hash_defined
9104 || h->root.type == bfd_link_hash_defweak)
f5385ebf 9105 && h->ref_dynamic)
715df9b8
EB
9106 h->root.u.def.section->flags |= SEC_KEEP;
9107
9108 return TRUE;
9109}
3b36f7e6 9110
c152c796
AM
9111/* Do mark and sweep of unused sections. */
9112
9113bfd_boolean
9114bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9115{
9116 bfd_boolean ok = TRUE;
9117 bfd *sub;
9118 asection * (*gc_mark_hook)
9119 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9120 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9121
9122 if (!get_elf_backend_data (abfd)->can_gc_sections
9123 || info->relocatable
9124 || info->emitrelocations
715df9b8
EB
9125 || info->shared
9126 || !is_elf_hash_table (info->hash))
c152c796
AM
9127 {
9128 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9129 return TRUE;
9130 }
9131
9132 /* Apply transitive closure to the vtable entry usage info. */
9133 elf_link_hash_traverse (elf_hash_table (info),
9134 elf_gc_propagate_vtable_entries_used,
9135 &ok);
9136 if (!ok)
9137 return FALSE;
9138
9139 /* Kill the vtable relocations that were not used. */
9140 elf_link_hash_traverse (elf_hash_table (info),
9141 elf_gc_smash_unused_vtentry_relocs,
9142 &ok);
9143 if (!ok)
9144 return FALSE;
9145
715df9b8
EB
9146 /* Mark dynamically referenced symbols. */
9147 if (elf_hash_table (info)->dynamic_sections_created)
9148 elf_link_hash_traverse (elf_hash_table (info),
9149 elf_gc_mark_dynamic_ref_symbol,
9150 &ok);
9151 if (!ok)
9152 return FALSE;
c152c796 9153
715df9b8 9154 /* Grovel through relocs to find out who stays ... */
c152c796
AM
9155 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9156 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9157 {
9158 asection *o;
9159
9160 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9161 continue;
9162
9163 for (o = sub->sections; o != NULL; o = o->next)
39c2f51b
AM
9164 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9165 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9166 return FALSE;
c152c796
AM
9167 }
9168
9169 /* ... and mark SEC_EXCLUDE for those that go. */
9170 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9171 return FALSE;
9172
9173 return TRUE;
9174}
9175\f
9176/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9177
9178bfd_boolean
9179bfd_elf_gc_record_vtinherit (bfd *abfd,
9180 asection *sec,
9181 struct elf_link_hash_entry *h,
9182 bfd_vma offset)
9183{
9184 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9185 struct elf_link_hash_entry **search, *child;
9186 bfd_size_type extsymcount;
9187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9188
9189 /* The sh_info field of the symtab header tells us where the
9190 external symbols start. We don't care about the local symbols at
9191 this point. */
9192 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9193 if (!elf_bad_symtab (abfd))
9194 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9195
9196 sym_hashes = elf_sym_hashes (abfd);
9197 sym_hashes_end = sym_hashes + extsymcount;
9198
9199 /* Hunt down the child symbol, which is in this section at the same
9200 offset as the relocation. */
9201 for (search = sym_hashes; search != sym_hashes_end; ++search)
9202 {
9203 if ((child = *search) != NULL
9204 && (child->root.type == bfd_link_hash_defined
9205 || child->root.type == bfd_link_hash_defweak)
9206 && child->root.u.def.section == sec
9207 && child->root.u.def.value == offset)
9208 goto win;
9209 }
9210
d003868e
AM
9211 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9212 abfd, sec, (unsigned long) offset);
c152c796
AM
9213 bfd_set_error (bfd_error_invalid_operation);
9214 return FALSE;
9215
9216 win:
f6e332e6
AM
9217 if (!child->vtable)
9218 {
9219 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9220 if (!child->vtable)
9221 return FALSE;
9222 }
c152c796
AM
9223 if (!h)
9224 {
9225 /* This *should* only be the absolute section. It could potentially
9226 be that someone has defined a non-global vtable though, which
9227 would be bad. It isn't worth paging in the local symbols to be
9228 sure though; that case should simply be handled by the assembler. */
9229
f6e332e6 9230 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9231 }
9232 else
f6e332e6 9233 child->vtable->parent = h;
c152c796
AM
9234
9235 return TRUE;
9236}
9237
9238/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9239
9240bfd_boolean
9241bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9242 asection *sec ATTRIBUTE_UNUSED,
9243 struct elf_link_hash_entry *h,
9244 bfd_vma addend)
9245{
9246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9247 unsigned int log_file_align = bed->s->log_file_align;
9248
f6e332e6
AM
9249 if (!h->vtable)
9250 {
9251 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9252 if (!h->vtable)
9253 return FALSE;
9254 }
9255
9256 if (addend >= h->vtable->size)
c152c796
AM
9257 {
9258 size_t size, bytes, file_align;
f6e332e6 9259 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9260
9261 /* While the symbol is undefined, we have to be prepared to handle
9262 a zero size. */
9263 file_align = 1 << log_file_align;
9264 if (h->root.type == bfd_link_hash_undefined)
9265 size = addend + file_align;
9266 else
9267 {
9268 size = h->size;
9269 if (addend >= size)
9270 {
9271 /* Oops! We've got a reference past the defined end of
9272 the table. This is probably a bug -- shall we warn? */
9273 size = addend + file_align;
9274 }
9275 }
9276 size = (size + file_align - 1) & -file_align;
9277
9278 /* Allocate one extra entry for use as a "done" flag for the
9279 consolidation pass. */
9280 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9281
9282 if (ptr)
9283 {
9284 ptr = bfd_realloc (ptr - 1, bytes);
9285
9286 if (ptr != NULL)
9287 {
9288 size_t oldbytes;
9289
f6e332e6 9290 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9291 * sizeof (bfd_boolean));
9292 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9293 }
9294 }
9295 else
9296 ptr = bfd_zmalloc (bytes);
9297
9298 if (ptr == NULL)
9299 return FALSE;
9300
9301 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9302 h->vtable->used = ptr + 1;
9303 h->vtable->size = size;
c152c796
AM
9304 }
9305
f6e332e6 9306 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9307
9308 return TRUE;
9309}
9310
9311struct alloc_got_off_arg {
9312 bfd_vma gotoff;
9313 unsigned int got_elt_size;
9314};
9315
9316/* We need a special top-level link routine to convert got reference counts
9317 to real got offsets. */
9318
9319static bfd_boolean
9320elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9321{
9322 struct alloc_got_off_arg *gofarg = arg;
9323
9324 if (h->root.type == bfd_link_hash_warning)
9325 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9326
9327 if (h->got.refcount > 0)
9328 {
9329 h->got.offset = gofarg->gotoff;
9330 gofarg->gotoff += gofarg->got_elt_size;
9331 }
9332 else
9333 h->got.offset = (bfd_vma) -1;
9334
9335 return TRUE;
9336}
9337
9338/* And an accompanying bit to work out final got entry offsets once
9339 we're done. Should be called from final_link. */
9340
9341bfd_boolean
9342bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9343 struct bfd_link_info *info)
9344{
9345 bfd *i;
9346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9347 bfd_vma gotoff;
9348 unsigned int got_elt_size = bed->s->arch_size / 8;
9349 struct alloc_got_off_arg gofarg;
9350
9351 if (! is_elf_hash_table (info->hash))
9352 return FALSE;
9353
9354 /* The GOT offset is relative to the .got section, but the GOT header is
9355 put into the .got.plt section, if the backend uses it. */
9356 if (bed->want_got_plt)
9357 gotoff = 0;
9358 else
9359 gotoff = bed->got_header_size;
9360
9361 /* Do the local .got entries first. */
9362 for (i = info->input_bfds; i; i = i->link_next)
9363 {
9364 bfd_signed_vma *local_got;
9365 bfd_size_type j, locsymcount;
9366 Elf_Internal_Shdr *symtab_hdr;
9367
9368 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9369 continue;
9370
9371 local_got = elf_local_got_refcounts (i);
9372 if (!local_got)
9373 continue;
9374
9375 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9376 if (elf_bad_symtab (i))
9377 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9378 else
9379 locsymcount = symtab_hdr->sh_info;
9380
9381 for (j = 0; j < locsymcount; ++j)
9382 {
9383 if (local_got[j] > 0)
9384 {
9385 local_got[j] = gotoff;
9386 gotoff += got_elt_size;
9387 }
9388 else
9389 local_got[j] = (bfd_vma) -1;
9390 }
9391 }
9392
9393 /* Then the global .got entries. .plt refcounts are handled by
9394 adjust_dynamic_symbol */
9395 gofarg.gotoff = gotoff;
9396 gofarg.got_elt_size = got_elt_size;
9397 elf_link_hash_traverse (elf_hash_table (info),
9398 elf_gc_allocate_got_offsets,
9399 &gofarg);
9400 return TRUE;
9401}
9402
9403/* Many folk need no more in the way of final link than this, once
9404 got entry reference counting is enabled. */
9405
9406bfd_boolean
9407bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9408{
9409 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9410 return FALSE;
9411
9412 /* Invoke the regular ELF backend linker to do all the work. */
9413 return bfd_elf_final_link (abfd, info);
9414}
9415
9416bfd_boolean
9417bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9418{
9419 struct elf_reloc_cookie *rcookie = cookie;
9420
9421 if (rcookie->bad_symtab)
9422 rcookie->rel = rcookie->rels;
9423
9424 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9425 {
9426 unsigned long r_symndx;
9427
9428 if (! rcookie->bad_symtab)
9429 if (rcookie->rel->r_offset > offset)
9430 return FALSE;
9431 if (rcookie->rel->r_offset != offset)
9432 continue;
9433
9434 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9435 if (r_symndx == SHN_UNDEF)
9436 return TRUE;
9437
9438 if (r_symndx >= rcookie->locsymcount
9439 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9440 {
9441 struct elf_link_hash_entry *h;
9442
9443 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9444
9445 while (h->root.type == bfd_link_hash_indirect
9446 || h->root.type == bfd_link_hash_warning)
9447 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9448
9449 if ((h->root.type == bfd_link_hash_defined
9450 || h->root.type == bfd_link_hash_defweak)
9451 && elf_discarded_section (h->root.u.def.section))
9452 return TRUE;
9453 else
9454 return FALSE;
9455 }
9456 else
9457 {
9458 /* It's not a relocation against a global symbol,
9459 but it could be a relocation against a local
9460 symbol for a discarded section. */
9461 asection *isec;
9462 Elf_Internal_Sym *isym;
9463
9464 /* Need to: get the symbol; get the section. */
9465 isym = &rcookie->locsyms[r_symndx];
9466 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9467 {
9468 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9469 if (isec != NULL && elf_discarded_section (isec))
9470 return TRUE;
9471 }
9472 }
9473 return FALSE;
9474 }
9475 return FALSE;
9476}
9477
9478/* Discard unneeded references to discarded sections.
9479 Returns TRUE if any section's size was changed. */
9480/* This function assumes that the relocations are in sorted order,
9481 which is true for all known assemblers. */
9482
9483bfd_boolean
9484bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9485{
9486 struct elf_reloc_cookie cookie;
9487 asection *stab, *eh;
9488 Elf_Internal_Shdr *symtab_hdr;
9489 const struct elf_backend_data *bed;
9490 bfd *abfd;
9491 unsigned int count;
9492 bfd_boolean ret = FALSE;
9493
9494 if (info->traditional_format
9495 || !is_elf_hash_table (info->hash))
9496 return FALSE;
9497
9498 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9499 {
9500 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9501 continue;
9502
9503 bed = get_elf_backend_data (abfd);
9504
9505 if ((abfd->flags & DYNAMIC) != 0)
9506 continue;
9507
9508 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9509 if (info->relocatable
9510 || (eh != NULL
eea6121a 9511 && (eh->size == 0
c152c796
AM
9512 || bfd_is_abs_section (eh->output_section))))
9513 eh = NULL;
9514
9515 stab = bfd_get_section_by_name (abfd, ".stab");
9516 if (stab != NULL
eea6121a 9517 && (stab->size == 0
c152c796
AM
9518 || bfd_is_abs_section (stab->output_section)
9519 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9520 stab = NULL;
9521
9522 if (stab == NULL
9523 && eh == NULL
9524 && bed->elf_backend_discard_info == NULL)
9525 continue;
9526
9527 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9528 cookie.abfd = abfd;
9529 cookie.sym_hashes = elf_sym_hashes (abfd);
9530 cookie.bad_symtab = elf_bad_symtab (abfd);
9531 if (cookie.bad_symtab)
9532 {
9533 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9534 cookie.extsymoff = 0;
9535 }
9536 else
9537 {
9538 cookie.locsymcount = symtab_hdr->sh_info;
9539 cookie.extsymoff = symtab_hdr->sh_info;
9540 }
9541
9542 if (bed->s->arch_size == 32)
9543 cookie.r_sym_shift = 8;
9544 else
9545 cookie.r_sym_shift = 32;
9546
9547 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9548 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9549 {
9550 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9551 cookie.locsymcount, 0,
9552 NULL, NULL, NULL);
9553 if (cookie.locsyms == NULL)
9554 return FALSE;
9555 }
9556
9557 if (stab != NULL)
9558 {
9559 cookie.rels = NULL;
9560 count = stab->reloc_count;
9561 if (count != 0)
9562 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9563 info->keep_memory);
9564 if (cookie.rels != NULL)
9565 {
9566 cookie.rel = cookie.rels;
9567 cookie.relend = cookie.rels;
9568 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9569 if (_bfd_discard_section_stabs (abfd, stab,
9570 elf_section_data (stab)->sec_info,
9571 bfd_elf_reloc_symbol_deleted_p,
9572 &cookie))
9573 ret = TRUE;
9574 if (elf_section_data (stab)->relocs != cookie.rels)
9575 free (cookie.rels);
9576 }
9577 }
9578
9579 if (eh != NULL)
9580 {
9581 cookie.rels = NULL;
9582 count = eh->reloc_count;
9583 if (count != 0)
9584 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9585 info->keep_memory);
9586 cookie.rel = cookie.rels;
9587 cookie.relend = cookie.rels;
9588 if (cookie.rels != NULL)
9589 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9590
9591 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9592 bfd_elf_reloc_symbol_deleted_p,
9593 &cookie))
9594 ret = TRUE;
9595
9596 if (cookie.rels != NULL
9597 && elf_section_data (eh)->relocs != cookie.rels)
9598 free (cookie.rels);
9599 }
9600
9601 if (bed->elf_backend_discard_info != NULL
9602 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9603 ret = TRUE;
9604
9605 if (cookie.locsyms != NULL
9606 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9607 {
9608 if (! info->keep_memory)
9609 free (cookie.locsyms);
9610 else
9611 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9612 }
9613 }
9614
9615 if (info->eh_frame_hdr
9616 && !info->relocatable
9617 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9618 ret = TRUE;
9619
9620 return ret;
9621}
082b7297
L
9622
9623void
9624_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9625{
9626 flagword flags;
6d2cd210 9627 const char *name, *p;
082b7297
L
9628 struct bfd_section_already_linked *l;
9629 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9630 asection *group;
9631
9632 /* A single member comdat group section may be discarded by a
9633 linkonce section. See below. */
9634 if (sec->output_section == bfd_abs_section_ptr)
9635 return;
082b7297
L
9636
9637 flags = sec->flags;
3d7f7666
L
9638
9639 /* Check if it belongs to a section group. */
9640 group = elf_sec_group (sec);
9641
9642 /* Return if it isn't a linkonce section nor a member of a group. A
9643 comdat group section also has SEC_LINK_ONCE set. */
9644 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9645 return;
9646
3d7f7666
L
9647 if (group)
9648 {
9649 /* If this is the member of a single member comdat group, check if
9650 the group should be discarded. */
9651 if (elf_next_in_group (sec) == sec
9652 && (group->flags & SEC_LINK_ONCE) != 0)
9653 sec = group;
9654 else
9655 return;
9656 }
9657
082b7297
L
9658 /* FIXME: When doing a relocatable link, we may have trouble
9659 copying relocations in other sections that refer to local symbols
9660 in the section being discarded. Those relocations will have to
9661 be converted somehow; as of this writing I'm not sure that any of
9662 the backends handle that correctly.
9663
9664 It is tempting to instead not discard link once sections when
9665 doing a relocatable link (technically, they should be discarded
9666 whenever we are building constructors). However, that fails,
9667 because the linker winds up combining all the link once sections
9668 into a single large link once section, which defeats the purpose
9669 of having link once sections in the first place.
9670
9671 Also, not merging link once sections in a relocatable link
9672 causes trouble for MIPS ELF, which relies on link once semantics
9673 to handle the .reginfo section correctly. */
9674
9675 name = bfd_get_section_name (abfd, sec);
9676
6d2cd210
JJ
9677 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9678 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9679 p++;
9680 else
9681 p = name;
9682
9683 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9684
9685 for (l = already_linked_list->entry; l != NULL; l = l->next)
9686 {
9687 /* We may have 3 different sections on the list: group section,
9688 comdat section and linkonce section. SEC may be a linkonce or
9689 group section. We match a group section with a group section,
9690 a linkonce section with a linkonce section, and ignore comdat
9691 section. */
3d7f7666 9692 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9693 && strcmp (name, l->sec->name) == 0
082b7297
L
9694 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9695 {
9696 /* The section has already been linked. See if we should
6d2cd210 9697 issue a warning. */
082b7297
L
9698 switch (flags & SEC_LINK_DUPLICATES)
9699 {
9700 default:
9701 abort ();
9702
9703 case SEC_LINK_DUPLICATES_DISCARD:
9704 break;
9705
9706 case SEC_LINK_DUPLICATES_ONE_ONLY:
9707 (*_bfd_error_handler)
c93625e2 9708 (_("%B: ignoring duplicate section `%A'"),
d003868e 9709 abfd, sec);
082b7297
L
9710 break;
9711
9712 case SEC_LINK_DUPLICATES_SAME_SIZE:
9713 if (sec->size != l->sec->size)
9714 (*_bfd_error_handler)
c93625e2 9715 (_("%B: duplicate section `%A' has different size"),
d003868e 9716 abfd, sec);
082b7297 9717 break;
ea5158d8
DJ
9718
9719 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9720 if (sec->size != l->sec->size)
9721 (*_bfd_error_handler)
c93625e2 9722 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
9723 abfd, sec);
9724 else if (sec->size != 0)
9725 {
9726 bfd_byte *sec_contents, *l_sec_contents;
9727
9728 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9729 (*_bfd_error_handler)
c93625e2 9730 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9731 abfd, sec);
9732 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9733 &l_sec_contents))
9734 (*_bfd_error_handler)
c93625e2 9735 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9736 l->sec->owner, l->sec);
9737 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9738 (*_bfd_error_handler)
c93625e2 9739 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
9740 abfd, sec);
9741
9742 if (sec_contents)
9743 free (sec_contents);
9744 if (l_sec_contents)
9745 free (l_sec_contents);
9746 }
9747 break;
082b7297
L
9748 }
9749
9750 /* Set the output_section field so that lang_add_section
9751 does not create a lang_input_section structure for this
9752 section. Since there might be a symbol in the section
9753 being discarded, we must retain a pointer to the section
9754 which we are really going to use. */
9755 sec->output_section = bfd_abs_section_ptr;
9756 sec->kept_section = l->sec;
3b36f7e6 9757
082b7297 9758 if (flags & SEC_GROUP)
3d7f7666
L
9759 {
9760 asection *first = elf_next_in_group (sec);
9761 asection *s = first;
9762
9763 while (s != NULL)
9764 {
9765 s->output_section = bfd_abs_section_ptr;
9766 /* Record which group discards it. */
9767 s->kept_section = l->sec;
9768 s = elf_next_in_group (s);
9769 /* These lists are circular. */
9770 if (s == first)
9771 break;
9772 }
9773 }
082b7297
L
9774
9775 return;
9776 }
9777 }
9778
3d7f7666
L
9779 if (group)
9780 {
9781 /* If this is the member of a single member comdat group and the
9782 group hasn't be discarded, we check if it matches a linkonce
9783 section. We only record the discarded comdat group. Otherwise
9784 the undiscarded group will be discarded incorrectly later since
9785 itself has been recorded. */
6d2cd210
JJ
9786 for (l = already_linked_list->entry; l != NULL; l = l->next)
9787 if ((l->sec->flags & SEC_GROUP) == 0
9788 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9789 && bfd_elf_match_symbols_in_sections (l->sec,
9790 elf_next_in_group (sec)))
9791 {
9792 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9793 elf_next_in_group (sec)->kept_section = l->sec;
9794 group->output_section = bfd_abs_section_ptr;
9795 break;
9796 }
9797 if (l == NULL)
3d7f7666
L
9798 return;
9799 }
9800 else
9801 /* There is no direct match. But for linkonce section, we should
9802 check if there is a match with comdat group member. We always
9803 record the linkonce section, discarded or not. */
6d2cd210
JJ
9804 for (l = already_linked_list->entry; l != NULL; l = l->next)
9805 if (l->sec->flags & SEC_GROUP)
9806 {
9807 asection *first = elf_next_in_group (l->sec);
9808
9809 if (first != NULL
9810 && elf_next_in_group (first) == first
9811 && bfd_elf_match_symbols_in_sections (first, sec))
9812 {
9813 sec->output_section = bfd_abs_section_ptr;
9814 sec->kept_section = l->sec;
9815 break;
9816 }
9817 }
9818
082b7297
L
9819 /* This is the first section with this name. Record it. */
9820 bfd_section_already_linked_table_insert (already_linked_list, sec);
9821}
81e1b023 9822
f652615e 9823static void
3b2175db
PB
9824bfd_elf_set_symbol (struct elf_link_hash_entry *h, bfd_vma val,
9825 struct bfd_section *s)
f652615e
L
9826{
9827 h->root.type = bfd_link_hash_defined;
3b2175db 9828 h->root.u.def.section = s ? s : bfd_abs_section_ptr;
f652615e
L
9829 h->root.u.def.value = val;
9830 h->def_regular = 1;
9831 h->type = STT_OBJECT;
9832 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9833 h->forced_local = 1;
9834}
9835
b116d4a7
AM
9836/* Set NAME to VAL if the symbol exists and is not defined in a regular
9837 object file. If S is NULL it is an absolute symbol, otherwise it is
9838 relative to that section. */
81e1b023
L
9839
9840void
9841_bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
3b2175db 9842 bfd_vma val, struct bfd_section *s)
81e1b023
L
9843{
9844 struct elf_link_hash_entry *h;
0291d291 9845
eaae8ded
AM
9846 bfd_elf_record_link_assignment (info, name, TRUE);
9847
a3c2b96a 9848 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
eaae8ded
AM
9849 if (h != NULL
9850 && !(h->root.type == bfd_link_hash_defined
9851 && h->root.u.def.section != NULL
9852 && h->root.u.def.section != h->root.u.def.section->output_section))
3b2175db 9853 bfd_elf_set_symbol (h, val, s);
f652615e
L
9854}
9855
b116d4a7
AM
9856/* Set START and END to boundaries of SEC if they exist and are not
9857 defined in regular object files. */
f652615e
L
9858
9859void
9860_bfd_elf_provide_section_bound_symbols (struct bfd_link_info *info,
9861 asection *sec,
9862 const char *start,
9863 const char *end)
9864{
a3c2b96a
AM
9865 bfd_vma val = 0;
9866 _bfd_elf_provide_symbol (info, start, val, sec);
9867 if (sec != NULL)
9868 val = sec->size;
9869 _bfd_elf_provide_symbol (info, end, val, sec);
9870}
f652615e 9871
a3c2b96a 9872/* Convert symbols in excluded output sections to absolute. */
f652615e 9873
a3c2b96a
AM
9874static bfd_boolean
9875fix_syms (struct bfd_link_hash_entry *h, void *data)
9876{
9877 bfd *obfd = (bfd *) data;
f652615e 9878
a3c2b96a
AM
9879 if (h->type == bfd_link_hash_warning)
9880 h = h->u.i.link;
f652615e 9881
a3c2b96a
AM
9882 if (h->type == bfd_link_hash_defined
9883 || h->type == bfd_link_hash_defweak)
81e1b023 9884 {
a3c2b96a
AM
9885 asection *s = h->u.def.section;
9886 if (s != NULL
9887 && s == s->output_section
9888 && bfd_section_removed_from_list (obfd, s))
9889 {
9890 h->u.def.value += s->vma;
9891 h->u.def.section = bfd_abs_section_ptr;
9892 }
f652615e
L
9893 }
9894
a3c2b96a
AM
9895 return TRUE;
9896}
f652615e 9897
a3c2b96a
AM
9898void
9899_bfd_elf_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
9900{
9901 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
81e1b023 9902}
This page took 0.820903 seconds and 4 git commands to generate.