Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linking support for BFD. |
64d03ab5 | 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, |
16583161 | 3 | 2005, 2006, 2007, 2008, 2009, 2010 |
9dbe8890 | 4 | Free Software Foundation, Inc. |
252b5132 | 5 | |
8fdd7217 | 6 | This file is part of BFD, the Binary File Descriptor library. |
252b5132 | 7 | |
8fdd7217 NC |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 10 | the Free Software Foundation; either version 3 of the License, or |
8fdd7217 | 11 | (at your option) any later version. |
252b5132 | 12 | |
8fdd7217 NC |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
252b5132 | 17 | |
8fdd7217 NC |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
20 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
21 | MA 02110-1301, USA. */ | |
252b5132 | 22 | |
252b5132 | 23 | #include "sysdep.h" |
3db64b00 | 24 | #include "bfd.h" |
252b5132 RH |
25 | #include "bfdlink.h" |
26 | #include "libbfd.h" | |
27 | #define ARCH_SIZE 0 | |
28 | #include "elf-bfd.h" | |
4ad4eba5 | 29 | #include "safe-ctype.h" |
ccf2f652 | 30 | #include "libiberty.h" |
66eb6687 | 31 | #include "objalloc.h" |
252b5132 | 32 | |
28caa186 AM |
33 | /* This struct is used to pass information to routines called via |
34 | elf_link_hash_traverse which must return failure. */ | |
35 | ||
36 | struct elf_info_failed | |
37 | { | |
38 | struct bfd_link_info *info; | |
39 | struct bfd_elf_version_tree *verdefs; | |
40 | bfd_boolean failed; | |
41 | }; | |
42 | ||
43 | /* This structure is used to pass information to | |
44 | _bfd_elf_link_find_version_dependencies. */ | |
45 | ||
46 | struct elf_find_verdep_info | |
47 | { | |
48 | /* General link information. */ | |
49 | struct bfd_link_info *info; | |
50 | /* The number of dependencies. */ | |
51 | unsigned int vers; | |
52 | /* Whether we had a failure. */ | |
53 | bfd_boolean failed; | |
54 | }; | |
55 | ||
56 | static bfd_boolean _bfd_elf_fix_symbol_flags | |
57 | (struct elf_link_hash_entry *, struct elf_info_failed *); | |
58 | ||
d98685ac AM |
59 | /* Define a symbol in a dynamic linkage section. */ |
60 | ||
61 | struct elf_link_hash_entry * | |
62 | _bfd_elf_define_linkage_sym (bfd *abfd, | |
63 | struct bfd_link_info *info, | |
64 | asection *sec, | |
65 | const char *name) | |
66 | { | |
67 | struct elf_link_hash_entry *h; | |
68 | struct bfd_link_hash_entry *bh; | |
ccabcbe5 | 69 | const struct elf_backend_data *bed; |
d98685ac AM |
70 | |
71 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); | |
72 | if (h != NULL) | |
73 | { | |
74 | /* Zap symbol defined in an as-needed lib that wasn't linked. | |
75 | This is a symptom of a larger problem: Absolute symbols | |
76 | defined in shared libraries can't be overridden, because we | |
77 | lose the link to the bfd which is via the symbol section. */ | |
78 | h->root.type = bfd_link_hash_new; | |
79 | } | |
80 | ||
81 | bh = &h->root; | |
82 | if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, | |
83 | sec, 0, NULL, FALSE, | |
84 | get_elf_backend_data (abfd)->collect, | |
85 | &bh)) | |
86 | return NULL; | |
87 | h = (struct elf_link_hash_entry *) bh; | |
88 | h->def_regular = 1; | |
e28df02b | 89 | h->non_elf = 0; |
d98685ac AM |
90 | h->type = STT_OBJECT; |
91 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | |
92 | ||
ccabcbe5 AM |
93 | bed = get_elf_backend_data (abfd); |
94 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
d98685ac AM |
95 | return h; |
96 | } | |
97 | ||
b34976b6 | 98 | bfd_boolean |
268b6b39 | 99 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
252b5132 RH |
100 | { |
101 | flagword flags; | |
aad5d350 | 102 | asection *s; |
252b5132 | 103 | struct elf_link_hash_entry *h; |
9c5bfbb7 | 104 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6de2ae4a | 105 | struct elf_link_hash_table *htab = elf_hash_table (info); |
252b5132 RH |
106 | |
107 | /* This function may be called more than once. */ | |
aad5d350 AM |
108 | s = bfd_get_section_by_name (abfd, ".got"); |
109 | if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0) | |
b34976b6 | 110 | return TRUE; |
252b5132 | 111 | |
e5a52504 | 112 | flags = bed->dynamic_sec_flags; |
252b5132 | 113 | |
6de2ae4a L |
114 | s = bfd_make_section_with_flags (abfd, |
115 | (bed->rela_plts_and_copies_p | |
116 | ? ".rela.got" : ".rel.got"), | |
117 | (bed->dynamic_sec_flags | |
118 | | SEC_READONLY)); | |
119 | if (s == NULL | |
120 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
121 | return FALSE; | |
122 | htab->srelgot = s; | |
252b5132 | 123 | |
64e77c6d L |
124 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
125 | if (s == NULL | |
126 | || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
127 | return FALSE; | |
128 | htab->sgot = s; | |
129 | ||
252b5132 RH |
130 | if (bed->want_got_plt) |
131 | { | |
3496cb2a | 132 | s = bfd_make_section_with_flags (abfd, ".got.plt", flags); |
252b5132 | 133 | if (s == NULL |
6de2ae4a L |
134 | || !bfd_set_section_alignment (abfd, s, |
135 | bed->s->log_file_align)) | |
b34976b6 | 136 | return FALSE; |
6de2ae4a | 137 | htab->sgotplt = s; |
252b5132 RH |
138 | } |
139 | ||
64e77c6d L |
140 | /* The first bit of the global offset table is the header. */ |
141 | s->size += bed->got_header_size; | |
142 | ||
2517a57f AM |
143 | if (bed->want_got_sym) |
144 | { | |
145 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
146 | (or .got.plt) section. We don't do this in the linker script | |
147 | because we don't want to define the symbol if we are not creating | |
148 | a global offset table. */ | |
6de2ae4a L |
149 | h = _bfd_elf_define_linkage_sym (abfd, info, s, |
150 | "_GLOBAL_OFFSET_TABLE_"); | |
2517a57f | 151 | elf_hash_table (info)->hgot = h; |
d98685ac AM |
152 | if (h == NULL) |
153 | return FALSE; | |
2517a57f | 154 | } |
252b5132 | 155 | |
b34976b6 | 156 | return TRUE; |
252b5132 RH |
157 | } |
158 | \f | |
7e9f0867 AM |
159 | /* Create a strtab to hold the dynamic symbol names. */ |
160 | static bfd_boolean | |
161 | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) | |
162 | { | |
163 | struct elf_link_hash_table *hash_table; | |
164 | ||
165 | hash_table = elf_hash_table (info); | |
166 | if (hash_table->dynobj == NULL) | |
167 | hash_table->dynobj = abfd; | |
168 | ||
169 | if (hash_table->dynstr == NULL) | |
170 | { | |
171 | hash_table->dynstr = _bfd_elf_strtab_init (); | |
172 | if (hash_table->dynstr == NULL) | |
173 | return FALSE; | |
174 | } | |
175 | return TRUE; | |
176 | } | |
177 | ||
45d6a902 AM |
178 | /* Create some sections which will be filled in with dynamic linking |
179 | information. ABFD is an input file which requires dynamic sections | |
180 | to be created. The dynamic sections take up virtual memory space | |
181 | when the final executable is run, so we need to create them before | |
182 | addresses are assigned to the output sections. We work out the | |
183 | actual contents and size of these sections later. */ | |
252b5132 | 184 | |
b34976b6 | 185 | bfd_boolean |
268b6b39 | 186 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
252b5132 | 187 | { |
45d6a902 | 188 | flagword flags; |
91d6fa6a | 189 | asection *s; |
9c5bfbb7 | 190 | const struct elf_backend_data *bed; |
252b5132 | 191 | |
0eddce27 | 192 | if (! is_elf_hash_table (info->hash)) |
45d6a902 AM |
193 | return FALSE; |
194 | ||
195 | if (elf_hash_table (info)->dynamic_sections_created) | |
196 | return TRUE; | |
197 | ||
7e9f0867 AM |
198 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
199 | return FALSE; | |
45d6a902 | 200 | |
7e9f0867 | 201 | abfd = elf_hash_table (info)->dynobj; |
e5a52504 MM |
202 | bed = get_elf_backend_data (abfd); |
203 | ||
204 | flags = bed->dynamic_sec_flags; | |
45d6a902 AM |
205 | |
206 | /* A dynamically linked executable has a .interp section, but a | |
207 | shared library does not. */ | |
36af4a4e | 208 | if (info->executable) |
252b5132 | 209 | { |
3496cb2a L |
210 | s = bfd_make_section_with_flags (abfd, ".interp", |
211 | flags | SEC_READONLY); | |
212 | if (s == NULL) | |
45d6a902 AM |
213 | return FALSE; |
214 | } | |
bb0deeff | 215 | |
45d6a902 AM |
216 | /* Create sections to hold version informations. These are removed |
217 | if they are not needed. */ | |
3496cb2a L |
218 | s = bfd_make_section_with_flags (abfd, ".gnu.version_d", |
219 | flags | SEC_READONLY); | |
45d6a902 | 220 | if (s == NULL |
45d6a902 AM |
221 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
222 | return FALSE; | |
223 | ||
3496cb2a L |
224 | s = bfd_make_section_with_flags (abfd, ".gnu.version", |
225 | flags | SEC_READONLY); | |
45d6a902 | 226 | if (s == NULL |
45d6a902 AM |
227 | || ! bfd_set_section_alignment (abfd, s, 1)) |
228 | return FALSE; | |
229 | ||
3496cb2a L |
230 | s = bfd_make_section_with_flags (abfd, ".gnu.version_r", |
231 | flags | SEC_READONLY); | |
45d6a902 | 232 | if (s == NULL |
45d6a902 AM |
233 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
234 | return FALSE; | |
235 | ||
3496cb2a L |
236 | s = bfd_make_section_with_flags (abfd, ".dynsym", |
237 | flags | SEC_READONLY); | |
45d6a902 | 238 | if (s == NULL |
45d6a902 AM |
239 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
240 | return FALSE; | |
241 | ||
3496cb2a L |
242 | s = bfd_make_section_with_flags (abfd, ".dynstr", |
243 | flags | SEC_READONLY); | |
244 | if (s == NULL) | |
45d6a902 AM |
245 | return FALSE; |
246 | ||
3496cb2a | 247 | s = bfd_make_section_with_flags (abfd, ".dynamic", flags); |
45d6a902 | 248 | if (s == NULL |
45d6a902 AM |
249 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
250 | return FALSE; | |
251 | ||
252 | /* The special symbol _DYNAMIC is always set to the start of the | |
77cfaee6 AM |
253 | .dynamic section. We could set _DYNAMIC in a linker script, but we |
254 | only want to define it if we are, in fact, creating a .dynamic | |
255 | section. We don't want to define it if there is no .dynamic | |
256 | section, since on some ELF platforms the start up code examines it | |
257 | to decide how to initialize the process. */ | |
d98685ac | 258 | if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC")) |
45d6a902 AM |
259 | return FALSE; |
260 | ||
fdc90cb4 JJ |
261 | if (info->emit_hash) |
262 | { | |
263 | s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY); | |
264 | if (s == NULL | |
265 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
266 | return FALSE; | |
267 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |
268 | } | |
269 | ||
270 | if (info->emit_gnu_hash) | |
271 | { | |
272 | s = bfd_make_section_with_flags (abfd, ".gnu.hash", | |
273 | flags | SEC_READONLY); | |
274 | if (s == NULL | |
275 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
276 | return FALSE; | |
277 | /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: | |
278 | 4 32-bit words followed by variable count of 64-bit words, then | |
279 | variable count of 32-bit words. */ | |
280 | if (bed->s->arch_size == 64) | |
281 | elf_section_data (s)->this_hdr.sh_entsize = 0; | |
282 | else | |
283 | elf_section_data (s)->this_hdr.sh_entsize = 4; | |
284 | } | |
45d6a902 AM |
285 | |
286 | /* Let the backend create the rest of the sections. This lets the | |
287 | backend set the right flags. The backend will normally create | |
288 | the .got and .plt sections. */ | |
289 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
290 | return FALSE; | |
291 | ||
292 | elf_hash_table (info)->dynamic_sections_created = TRUE; | |
293 | ||
294 | return TRUE; | |
295 | } | |
296 | ||
297 | /* Create dynamic sections when linking against a dynamic object. */ | |
298 | ||
299 | bfd_boolean | |
268b6b39 | 300 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
45d6a902 AM |
301 | { |
302 | flagword flags, pltflags; | |
7325306f | 303 | struct elf_link_hash_entry *h; |
45d6a902 | 304 | asection *s; |
9c5bfbb7 | 305 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6de2ae4a | 306 | struct elf_link_hash_table *htab = elf_hash_table (info); |
45d6a902 | 307 | |
252b5132 RH |
308 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
309 | .rel[a].bss sections. */ | |
e5a52504 | 310 | flags = bed->dynamic_sec_flags; |
252b5132 RH |
311 | |
312 | pltflags = flags; | |
252b5132 | 313 | if (bed->plt_not_loaded) |
6df4d94c MM |
314 | /* We do not clear SEC_ALLOC here because we still want the OS to |
315 | allocate space for the section; it's just that there's nothing | |
316 | to read in from the object file. */ | |
5d1634d7 | 317 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
6df4d94c MM |
318 | else |
319 | pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; | |
252b5132 RH |
320 | if (bed->plt_readonly) |
321 | pltflags |= SEC_READONLY; | |
322 | ||
3496cb2a | 323 | s = bfd_make_section_with_flags (abfd, ".plt", pltflags); |
252b5132 | 324 | if (s == NULL |
252b5132 | 325 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) |
b34976b6 | 326 | return FALSE; |
6de2ae4a | 327 | htab->splt = s; |
252b5132 | 328 | |
d98685ac AM |
329 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
330 | .plt section. */ | |
7325306f RS |
331 | if (bed->want_plt_sym) |
332 | { | |
333 | h = _bfd_elf_define_linkage_sym (abfd, info, s, | |
334 | "_PROCEDURE_LINKAGE_TABLE_"); | |
335 | elf_hash_table (info)->hplt = h; | |
336 | if (h == NULL) | |
337 | return FALSE; | |
338 | } | |
252b5132 | 339 | |
3496cb2a | 340 | s = bfd_make_section_with_flags (abfd, |
d35fd659 | 341 | (bed->rela_plts_and_copies_p |
3496cb2a L |
342 | ? ".rela.plt" : ".rel.plt"), |
343 | flags | SEC_READONLY); | |
252b5132 | 344 | if (s == NULL |
45d6a902 | 345 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 346 | return FALSE; |
6de2ae4a | 347 | htab->srelplt = s; |
252b5132 RH |
348 | |
349 | if (! _bfd_elf_create_got_section (abfd, info)) | |
b34976b6 | 350 | return FALSE; |
252b5132 | 351 | |
3018b441 RH |
352 | if (bed->want_dynbss) |
353 | { | |
354 | /* The .dynbss section is a place to put symbols which are defined | |
355 | by dynamic objects, are referenced by regular objects, and are | |
356 | not functions. We must allocate space for them in the process | |
357 | image and use a R_*_COPY reloc to tell the dynamic linker to | |
358 | initialize them at run time. The linker script puts the .dynbss | |
359 | section into the .bss section of the final image. */ | |
3496cb2a L |
360 | s = bfd_make_section_with_flags (abfd, ".dynbss", |
361 | (SEC_ALLOC | |
362 | | SEC_LINKER_CREATED)); | |
363 | if (s == NULL) | |
b34976b6 | 364 | return FALSE; |
252b5132 | 365 | |
3018b441 | 366 | /* The .rel[a].bss section holds copy relocs. This section is not |
77cfaee6 AM |
367 | normally needed. We need to create it here, though, so that the |
368 | linker will map it to an output section. We can't just create it | |
369 | only if we need it, because we will not know whether we need it | |
370 | until we have seen all the input files, and the first time the | |
371 | main linker code calls BFD after examining all the input files | |
372 | (size_dynamic_sections) the input sections have already been | |
373 | mapped to the output sections. If the section turns out not to | |
374 | be needed, we can discard it later. We will never need this | |
375 | section when generating a shared object, since they do not use | |
376 | copy relocs. */ | |
3018b441 RH |
377 | if (! info->shared) |
378 | { | |
3496cb2a | 379 | s = bfd_make_section_with_flags (abfd, |
d35fd659 | 380 | (bed->rela_plts_and_copies_p |
3496cb2a L |
381 | ? ".rela.bss" : ".rel.bss"), |
382 | flags | SEC_READONLY); | |
3018b441 | 383 | if (s == NULL |
45d6a902 | 384 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 385 | return FALSE; |
3018b441 | 386 | } |
252b5132 RH |
387 | } |
388 | ||
b34976b6 | 389 | return TRUE; |
252b5132 RH |
390 | } |
391 | \f | |
252b5132 RH |
392 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
393 | read the input files, since we need to have a list of all of them | |
394 | before we can determine the final sizes of the output sections. | |
395 | Note that we may actually call this function even though we are not | |
396 | going to output any dynamic symbols; in some cases we know that a | |
397 | symbol should be in the dynamic symbol table, but only if there is | |
398 | one. */ | |
399 | ||
b34976b6 | 400 | bfd_boolean |
c152c796 AM |
401 | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
402 | struct elf_link_hash_entry *h) | |
252b5132 RH |
403 | { |
404 | if (h->dynindx == -1) | |
405 | { | |
2b0f7ef9 | 406 | struct elf_strtab_hash *dynstr; |
68b6ddd0 | 407 | char *p; |
252b5132 | 408 | const char *name; |
252b5132 RH |
409 | bfd_size_type indx; |
410 | ||
7a13edea NC |
411 | /* XXX: The ABI draft says the linker must turn hidden and |
412 | internal symbols into STB_LOCAL symbols when producing the | |
413 | DSO. However, if ld.so honors st_other in the dynamic table, | |
414 | this would not be necessary. */ | |
415 | switch (ELF_ST_VISIBILITY (h->other)) | |
416 | { | |
417 | case STV_INTERNAL: | |
418 | case STV_HIDDEN: | |
9d6eee78 L |
419 | if (h->root.type != bfd_link_hash_undefined |
420 | && h->root.type != bfd_link_hash_undefweak) | |
38048eb9 | 421 | { |
f5385ebf | 422 | h->forced_local = 1; |
67687978 PB |
423 | if (!elf_hash_table (info)->is_relocatable_executable) |
424 | return TRUE; | |
7a13edea | 425 | } |
0444bdd4 | 426 | |
7a13edea NC |
427 | default: |
428 | break; | |
429 | } | |
430 | ||
252b5132 RH |
431 | h->dynindx = elf_hash_table (info)->dynsymcount; |
432 | ++elf_hash_table (info)->dynsymcount; | |
433 | ||
434 | dynstr = elf_hash_table (info)->dynstr; | |
435 | if (dynstr == NULL) | |
436 | { | |
437 | /* Create a strtab to hold the dynamic symbol names. */ | |
2b0f7ef9 | 438 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
252b5132 | 439 | if (dynstr == NULL) |
b34976b6 | 440 | return FALSE; |
252b5132 RH |
441 | } |
442 | ||
443 | /* We don't put any version information in the dynamic string | |
aad5d350 | 444 | table. */ |
252b5132 RH |
445 | name = h->root.root.string; |
446 | p = strchr (name, ELF_VER_CHR); | |
68b6ddd0 AM |
447 | if (p != NULL) |
448 | /* We know that the p points into writable memory. In fact, | |
449 | there are only a few symbols that have read-only names, being | |
450 | those like _GLOBAL_OFFSET_TABLE_ that are created specially | |
451 | by the backends. Most symbols will have names pointing into | |
452 | an ELF string table read from a file, or to objalloc memory. */ | |
453 | *p = 0; | |
454 | ||
455 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | |
456 | ||
457 | if (p != NULL) | |
458 | *p = ELF_VER_CHR; | |
252b5132 RH |
459 | |
460 | if (indx == (bfd_size_type) -1) | |
b34976b6 | 461 | return FALSE; |
252b5132 RH |
462 | h->dynstr_index = indx; |
463 | } | |
464 | ||
b34976b6 | 465 | return TRUE; |
252b5132 | 466 | } |
45d6a902 | 467 | \f |
55255dae L |
468 | /* Mark a symbol dynamic. */ |
469 | ||
28caa186 | 470 | static void |
55255dae | 471 | bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, |
40b36307 L |
472 | struct elf_link_hash_entry *h, |
473 | Elf_Internal_Sym *sym) | |
55255dae | 474 | { |
40b36307 | 475 | struct bfd_elf_dynamic_list *d = info->dynamic_list; |
55255dae | 476 | |
40b36307 L |
477 | /* It may be called more than once on the same H. */ |
478 | if(h->dynamic || info->relocatable) | |
55255dae L |
479 | return; |
480 | ||
40b36307 L |
481 | if ((info->dynamic_data |
482 | && (h->type == STT_OBJECT | |
483 | || (sym != NULL | |
484 | && ELF_ST_TYPE (sym->st_info) == STT_OBJECT))) | |
a0c8462f | 485 | || (d != NULL |
40b36307 L |
486 | && h->root.type == bfd_link_hash_new |
487 | && (*d->match) (&d->head, NULL, h->root.root.string))) | |
55255dae L |
488 | h->dynamic = 1; |
489 | } | |
490 | ||
45d6a902 AM |
491 | /* Record an assignment to a symbol made by a linker script. We need |
492 | this in case some dynamic object refers to this symbol. */ | |
493 | ||
494 | bfd_boolean | |
fe21a8fc L |
495 | bfd_elf_record_link_assignment (bfd *output_bfd, |
496 | struct bfd_link_info *info, | |
268b6b39 | 497 | const char *name, |
fe21a8fc L |
498 | bfd_boolean provide, |
499 | bfd_boolean hidden) | |
45d6a902 | 500 | { |
00cbee0a | 501 | struct elf_link_hash_entry *h, *hv; |
4ea42fb7 | 502 | struct elf_link_hash_table *htab; |
00cbee0a | 503 | const struct elf_backend_data *bed; |
45d6a902 | 504 | |
0eddce27 | 505 | if (!is_elf_hash_table (info->hash)) |
45d6a902 AM |
506 | return TRUE; |
507 | ||
4ea42fb7 AM |
508 | htab = elf_hash_table (info); |
509 | h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); | |
45d6a902 | 510 | if (h == NULL) |
4ea42fb7 | 511 | return provide; |
45d6a902 | 512 | |
00cbee0a | 513 | switch (h->root.type) |
77cfaee6 | 514 | { |
00cbee0a L |
515 | case bfd_link_hash_defined: |
516 | case bfd_link_hash_defweak: | |
517 | case bfd_link_hash_common: | |
518 | break; | |
519 | case bfd_link_hash_undefweak: | |
520 | case bfd_link_hash_undefined: | |
521 | /* Since we're defining the symbol, don't let it seem to have not | |
522 | been defined. record_dynamic_symbol and size_dynamic_sections | |
523 | may depend on this. */ | |
4ea42fb7 | 524 | h->root.type = bfd_link_hash_new; |
77cfaee6 AM |
525 | if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) |
526 | bfd_link_repair_undef_list (&htab->root); | |
00cbee0a L |
527 | break; |
528 | case bfd_link_hash_new: | |
40b36307 | 529 | bfd_elf_link_mark_dynamic_symbol (info, h, NULL); |
55255dae | 530 | h->non_elf = 0; |
00cbee0a L |
531 | break; |
532 | case bfd_link_hash_indirect: | |
533 | /* We had a versioned symbol in a dynamic library. We make the | |
a0c8462f | 534 | the versioned symbol point to this one. */ |
00cbee0a L |
535 | bed = get_elf_backend_data (output_bfd); |
536 | hv = h; | |
537 | while (hv->root.type == bfd_link_hash_indirect | |
538 | || hv->root.type == bfd_link_hash_warning) | |
539 | hv = (struct elf_link_hash_entry *) hv->root.u.i.link; | |
540 | /* We don't need to update h->root.u since linker will set them | |
541 | later. */ | |
542 | h->root.type = bfd_link_hash_undefined; | |
543 | hv->root.type = bfd_link_hash_indirect; | |
544 | hv->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
545 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); | |
546 | break; | |
547 | case bfd_link_hash_warning: | |
548 | abort (); | |
549 | break; | |
55255dae | 550 | } |
45d6a902 AM |
551 | |
552 | /* If this symbol is being provided by the linker script, and it is | |
553 | currently defined by a dynamic object, but not by a regular | |
554 | object, then mark it as undefined so that the generic linker will | |
555 | force the correct value. */ | |
556 | if (provide | |
f5385ebf AM |
557 | && h->def_dynamic |
558 | && !h->def_regular) | |
45d6a902 AM |
559 | h->root.type = bfd_link_hash_undefined; |
560 | ||
561 | /* If this symbol is not being provided by the linker script, and it is | |
562 | currently defined by a dynamic object, but not by a regular object, | |
563 | then clear out any version information because the symbol will not be | |
564 | associated with the dynamic object any more. */ | |
565 | if (!provide | |
f5385ebf AM |
566 | && h->def_dynamic |
567 | && !h->def_regular) | |
45d6a902 AM |
568 | h->verinfo.verdef = NULL; |
569 | ||
f5385ebf | 570 | h->def_regular = 1; |
45d6a902 | 571 | |
fe21a8fc L |
572 | if (provide && hidden) |
573 | { | |
91d6fa6a | 574 | bed = get_elf_backend_data (output_bfd); |
fe21a8fc L |
575 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
576 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
577 | } | |
578 | ||
6fa3860b PB |
579 | /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects |
580 | and executables. */ | |
581 | if (!info->relocatable | |
582 | && h->dynindx != -1 | |
583 | && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
584 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) | |
585 | h->forced_local = 1; | |
586 | ||
f5385ebf AM |
587 | if ((h->def_dynamic |
588 | || h->ref_dynamic | |
67687978 PB |
589 | || info->shared |
590 | || (info->executable && elf_hash_table (info)->is_relocatable_executable)) | |
45d6a902 AM |
591 | && h->dynindx == -1) |
592 | { | |
c152c796 | 593 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
45d6a902 AM |
594 | return FALSE; |
595 | ||
596 | /* If this is a weak defined symbol, and we know a corresponding | |
597 | real symbol from the same dynamic object, make sure the real | |
598 | symbol is also made into a dynamic symbol. */ | |
f6e332e6 AM |
599 | if (h->u.weakdef != NULL |
600 | && h->u.weakdef->dynindx == -1) | |
45d6a902 | 601 | { |
f6e332e6 | 602 | if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) |
45d6a902 AM |
603 | return FALSE; |
604 | } | |
605 | } | |
606 | ||
607 | return TRUE; | |
608 | } | |
42751cf3 | 609 | |
8c58d23b AM |
610 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
611 | success, and 2 on a failure caused by attempting to record a symbol | |
612 | in a discarded section, eg. a discarded link-once section symbol. */ | |
613 | ||
614 | int | |
c152c796 AM |
615 | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
616 | bfd *input_bfd, | |
617 | long input_indx) | |
8c58d23b AM |
618 | { |
619 | bfd_size_type amt; | |
620 | struct elf_link_local_dynamic_entry *entry; | |
621 | struct elf_link_hash_table *eht; | |
622 | struct elf_strtab_hash *dynstr; | |
623 | unsigned long dynstr_index; | |
624 | char *name; | |
625 | Elf_External_Sym_Shndx eshndx; | |
626 | char esym[sizeof (Elf64_External_Sym)]; | |
627 | ||
0eddce27 | 628 | if (! is_elf_hash_table (info->hash)) |
8c58d23b AM |
629 | return 0; |
630 | ||
631 | /* See if the entry exists already. */ | |
632 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
633 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
634 | return 1; | |
635 | ||
636 | amt = sizeof (*entry); | |
a50b1753 | 637 | entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); |
8c58d23b AM |
638 | if (entry == NULL) |
639 | return 0; | |
640 | ||
641 | /* Go find the symbol, so that we can find it's name. */ | |
642 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | |
268b6b39 | 643 | 1, input_indx, &entry->isym, esym, &eshndx)) |
8c58d23b AM |
644 | { |
645 | bfd_release (input_bfd, entry); | |
646 | return 0; | |
647 | } | |
648 | ||
649 | if (entry->isym.st_shndx != SHN_UNDEF | |
4fbb74a6 | 650 | && entry->isym.st_shndx < SHN_LORESERVE) |
8c58d23b AM |
651 | { |
652 | asection *s; | |
653 | ||
654 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |
655 | if (s == NULL || bfd_is_abs_section (s->output_section)) | |
656 | { | |
657 | /* We can still bfd_release here as nothing has done another | |
658 | bfd_alloc. We can't do this later in this function. */ | |
659 | bfd_release (input_bfd, entry); | |
660 | return 2; | |
661 | } | |
662 | } | |
663 | ||
664 | name = (bfd_elf_string_from_elf_section | |
665 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
666 | entry->isym.st_name)); | |
667 | ||
668 | dynstr = elf_hash_table (info)->dynstr; | |
669 | if (dynstr == NULL) | |
670 | { | |
671 | /* Create a strtab to hold the dynamic symbol names. */ | |
672 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
673 | if (dynstr == NULL) | |
674 | return 0; | |
675 | } | |
676 | ||
b34976b6 | 677 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); |
8c58d23b AM |
678 | if (dynstr_index == (unsigned long) -1) |
679 | return 0; | |
680 | entry->isym.st_name = dynstr_index; | |
681 | ||
682 | eht = elf_hash_table (info); | |
683 | ||
684 | entry->next = eht->dynlocal; | |
685 | eht->dynlocal = entry; | |
686 | entry->input_bfd = input_bfd; | |
687 | entry->input_indx = input_indx; | |
688 | eht->dynsymcount++; | |
689 | ||
690 | /* Whatever binding the symbol had before, it's now local. */ | |
691 | entry->isym.st_info | |
692 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
693 | ||
694 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
695 | ||
696 | return 1; | |
697 | } | |
698 | ||
30b30c21 | 699 | /* Return the dynindex of a local dynamic symbol. */ |
42751cf3 | 700 | |
30b30c21 | 701 | long |
268b6b39 AM |
702 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
703 | bfd *input_bfd, | |
704 | long input_indx) | |
30b30c21 RH |
705 | { |
706 | struct elf_link_local_dynamic_entry *e; | |
707 | ||
708 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
709 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |
710 | return e->dynindx; | |
711 | return -1; | |
712 | } | |
713 | ||
714 | /* This function is used to renumber the dynamic symbols, if some of | |
715 | them are removed because they are marked as local. This is called | |
716 | via elf_link_hash_traverse. */ | |
717 | ||
b34976b6 | 718 | static bfd_boolean |
268b6b39 AM |
719 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
720 | void *data) | |
42751cf3 | 721 | { |
a50b1753 | 722 | size_t *count = (size_t *) data; |
30b30c21 | 723 | |
e92d460e AM |
724 | if (h->root.type == bfd_link_hash_warning) |
725 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
726 | ||
6fa3860b PB |
727 | if (h->forced_local) |
728 | return TRUE; | |
729 | ||
730 | if (h->dynindx != -1) | |
731 | h->dynindx = ++(*count); | |
732 | ||
733 | return TRUE; | |
734 | } | |
735 | ||
736 | ||
737 | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with | |
738 | STB_LOCAL binding. */ | |
739 | ||
740 | static bfd_boolean | |
741 | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, | |
742 | void *data) | |
743 | { | |
a50b1753 | 744 | size_t *count = (size_t *) data; |
6fa3860b PB |
745 | |
746 | if (h->root.type == bfd_link_hash_warning) | |
747 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
748 | ||
749 | if (!h->forced_local) | |
750 | return TRUE; | |
751 | ||
42751cf3 | 752 | if (h->dynindx != -1) |
30b30c21 RH |
753 | h->dynindx = ++(*count); |
754 | ||
b34976b6 | 755 | return TRUE; |
42751cf3 | 756 | } |
30b30c21 | 757 | |
aee6f5b4 AO |
758 | /* Return true if the dynamic symbol for a given section should be |
759 | omitted when creating a shared library. */ | |
760 | bfd_boolean | |
761 | _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, | |
762 | struct bfd_link_info *info, | |
763 | asection *p) | |
764 | { | |
74541ad4 AM |
765 | struct elf_link_hash_table *htab; |
766 | ||
aee6f5b4 AO |
767 | switch (elf_section_data (p)->this_hdr.sh_type) |
768 | { | |
769 | case SHT_PROGBITS: | |
770 | case SHT_NOBITS: | |
771 | /* If sh_type is yet undecided, assume it could be | |
772 | SHT_PROGBITS/SHT_NOBITS. */ | |
773 | case SHT_NULL: | |
74541ad4 AM |
774 | htab = elf_hash_table (info); |
775 | if (p == htab->tls_sec) | |
776 | return FALSE; | |
777 | ||
778 | if (htab->text_index_section != NULL) | |
779 | return p != htab->text_index_section && p != htab->data_index_section; | |
780 | ||
aee6f5b4 AO |
781 | if (strcmp (p->name, ".got") == 0 |
782 | || strcmp (p->name, ".got.plt") == 0 | |
783 | || strcmp (p->name, ".plt") == 0) | |
784 | { | |
785 | asection *ip; | |
aee6f5b4 | 786 | |
74541ad4 AM |
787 | if (htab->dynobj != NULL |
788 | && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL | |
aee6f5b4 AO |
789 | && (ip->flags & SEC_LINKER_CREATED) |
790 | && ip->output_section == p) | |
791 | return TRUE; | |
792 | } | |
793 | return FALSE; | |
794 | ||
795 | /* There shouldn't be section relative relocations | |
796 | against any other section. */ | |
797 | default: | |
798 | return TRUE; | |
799 | } | |
800 | } | |
801 | ||
062e2358 | 802 | /* Assign dynsym indices. In a shared library we generate a section |
6fa3860b PB |
803 | symbol for each output section, which come first. Next come symbols |
804 | which have been forced to local binding. Then all of the back-end | |
805 | allocated local dynamic syms, followed by the rest of the global | |
806 | symbols. */ | |
30b30c21 | 807 | |
554220db AM |
808 | static unsigned long |
809 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, | |
810 | struct bfd_link_info *info, | |
811 | unsigned long *section_sym_count) | |
30b30c21 RH |
812 | { |
813 | unsigned long dynsymcount = 0; | |
814 | ||
67687978 | 815 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) |
30b30c21 | 816 | { |
aee6f5b4 | 817 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
30b30c21 RH |
818 | asection *p; |
819 | for (p = output_bfd->sections; p ; p = p->next) | |
8c37241b | 820 | if ((p->flags & SEC_EXCLUDE) == 0 |
aee6f5b4 AO |
821 | && (p->flags & SEC_ALLOC) != 0 |
822 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
823 | elf_section_data (p)->dynindx = ++dynsymcount; | |
74541ad4 AM |
824 | else |
825 | elf_section_data (p)->dynindx = 0; | |
30b30c21 | 826 | } |
554220db | 827 | *section_sym_count = dynsymcount; |
30b30c21 | 828 | |
6fa3860b PB |
829 | elf_link_hash_traverse (elf_hash_table (info), |
830 | elf_link_renumber_local_hash_table_dynsyms, | |
831 | &dynsymcount); | |
832 | ||
30b30c21 RH |
833 | if (elf_hash_table (info)->dynlocal) |
834 | { | |
835 | struct elf_link_local_dynamic_entry *p; | |
836 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | |
837 | p->dynindx = ++dynsymcount; | |
838 | } | |
839 | ||
840 | elf_link_hash_traverse (elf_hash_table (info), | |
841 | elf_link_renumber_hash_table_dynsyms, | |
842 | &dynsymcount); | |
843 | ||
844 | /* There is an unused NULL entry at the head of the table which | |
845 | we must account for in our count. Unless there weren't any | |
846 | symbols, which means we'll have no table at all. */ | |
847 | if (dynsymcount != 0) | |
848 | ++dynsymcount; | |
849 | ||
ccabcbe5 AM |
850 | elf_hash_table (info)->dynsymcount = dynsymcount; |
851 | return dynsymcount; | |
30b30c21 | 852 | } |
252b5132 | 853 | |
54ac0771 L |
854 | /* Merge st_other field. */ |
855 | ||
856 | static void | |
857 | elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, | |
858 | Elf_Internal_Sym *isym, bfd_boolean definition, | |
859 | bfd_boolean dynamic) | |
860 | { | |
861 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
862 | ||
863 | /* If st_other has a processor-specific meaning, specific | |
864 | code might be needed here. We never merge the visibility | |
865 | attribute with the one from a dynamic object. */ | |
866 | if (bed->elf_backend_merge_symbol_attribute) | |
867 | (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, | |
868 | dynamic); | |
869 | ||
870 | /* If this symbol has default visibility and the user has requested | |
871 | we not re-export it, then mark it as hidden. */ | |
872 | if (definition | |
873 | && !dynamic | |
874 | && (abfd->no_export | |
875 | || (abfd->my_archive && abfd->my_archive->no_export)) | |
876 | && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) | |
877 | isym->st_other = (STV_HIDDEN | |
878 | | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); | |
879 | ||
880 | if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0) | |
881 | { | |
882 | unsigned char hvis, symvis, other, nvis; | |
883 | ||
884 | /* Only merge the visibility. Leave the remainder of the | |
885 | st_other field to elf_backend_merge_symbol_attribute. */ | |
886 | other = h->other & ~ELF_ST_VISIBILITY (-1); | |
887 | ||
888 | /* Combine visibilities, using the most constraining one. */ | |
889 | hvis = ELF_ST_VISIBILITY (h->other); | |
890 | symvis = ELF_ST_VISIBILITY (isym->st_other); | |
891 | if (! hvis) | |
892 | nvis = symvis; | |
893 | else if (! symvis) | |
894 | nvis = hvis; | |
895 | else | |
896 | nvis = hvis < symvis ? hvis : symvis; | |
897 | ||
898 | h->other = other | nvis; | |
899 | } | |
900 | } | |
901 | ||
45d6a902 AM |
902 | /* This function is called when we want to define a new symbol. It |
903 | handles the various cases which arise when we find a definition in | |
904 | a dynamic object, or when there is already a definition in a | |
905 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
906 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
907 | OVERRIDE if the old symbol is overriding a new definition. We set | |
908 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
909 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
910 | change, we mean that we shouldn't warn if the type or size does | |
af44c138 L |
911 | change. We set POLD_ALIGNMENT if an old common symbol in a dynamic |
912 | object is overridden by a regular object. */ | |
45d6a902 AM |
913 | |
914 | bfd_boolean | |
268b6b39 AM |
915 | _bfd_elf_merge_symbol (bfd *abfd, |
916 | struct bfd_link_info *info, | |
917 | const char *name, | |
918 | Elf_Internal_Sym *sym, | |
919 | asection **psec, | |
920 | bfd_vma *pvalue, | |
af44c138 | 921 | unsigned int *pold_alignment, |
268b6b39 AM |
922 | struct elf_link_hash_entry **sym_hash, |
923 | bfd_boolean *skip, | |
924 | bfd_boolean *override, | |
925 | bfd_boolean *type_change_ok, | |
0f8a2703 | 926 | bfd_boolean *size_change_ok) |
252b5132 | 927 | { |
7479dfd4 | 928 | asection *sec, *oldsec; |
45d6a902 AM |
929 | struct elf_link_hash_entry *h; |
930 | struct elf_link_hash_entry *flip; | |
931 | int bind; | |
932 | bfd *oldbfd; | |
933 | bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
0a36a439 | 934 | bfd_boolean newweak, oldweak, newfunc, oldfunc; |
a4d8e49b | 935 | const struct elf_backend_data *bed; |
45d6a902 AM |
936 | |
937 | *skip = FALSE; | |
938 | *override = FALSE; | |
939 | ||
940 | sec = *psec; | |
941 | bind = ELF_ST_BIND (sym->st_info); | |
942 | ||
cd7be95b KH |
943 | /* Silently discard TLS symbols from --just-syms. There's no way to |
944 | combine a static TLS block with a new TLS block for this executable. */ | |
945 | if (ELF_ST_TYPE (sym->st_info) == STT_TLS | |
946 | && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS) | |
947 | { | |
948 | *skip = TRUE; | |
949 | return TRUE; | |
950 | } | |
951 | ||
45d6a902 AM |
952 | if (! bfd_is_und_section (sec)) |
953 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); | |
954 | else | |
955 | h = ((struct elf_link_hash_entry *) | |
956 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); | |
957 | if (h == NULL) | |
958 | return FALSE; | |
959 | *sym_hash = h; | |
252b5132 | 960 | |
88ba32a0 L |
961 | bed = get_elf_backend_data (abfd); |
962 | ||
45d6a902 AM |
963 | /* This code is for coping with dynamic objects, and is only useful |
964 | if we are doing an ELF link. */ | |
88ba32a0 | 965 | if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) |
45d6a902 | 966 | return TRUE; |
252b5132 | 967 | |
45d6a902 AM |
968 | /* For merging, we only care about real symbols. */ |
969 | ||
970 | while (h->root.type == bfd_link_hash_indirect | |
971 | || h->root.type == bfd_link_hash_warning) | |
972 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
973 | ||
40b36307 L |
974 | /* We have to check it for every instance since the first few may be |
975 | refereences and not all compilers emit symbol type for undefined | |
976 | symbols. */ | |
977 | bfd_elf_link_mark_dynamic_symbol (info, h, sym); | |
978 | ||
45d6a902 AM |
979 | /* If we just created the symbol, mark it as being an ELF symbol. |
980 | Other than that, there is nothing to do--there is no merge issue | |
981 | with a newly defined symbol--so we just return. */ | |
982 | ||
983 | if (h->root.type == bfd_link_hash_new) | |
252b5132 | 984 | { |
f5385ebf | 985 | h->non_elf = 0; |
45d6a902 AM |
986 | return TRUE; |
987 | } | |
252b5132 | 988 | |
7479dfd4 L |
989 | /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the |
990 | existing symbol. */ | |
252b5132 | 991 | |
45d6a902 AM |
992 | switch (h->root.type) |
993 | { | |
994 | default: | |
995 | oldbfd = NULL; | |
7479dfd4 | 996 | oldsec = NULL; |
45d6a902 | 997 | break; |
252b5132 | 998 | |
45d6a902 AM |
999 | case bfd_link_hash_undefined: |
1000 | case bfd_link_hash_undefweak: | |
1001 | oldbfd = h->root.u.undef.abfd; | |
7479dfd4 | 1002 | oldsec = NULL; |
45d6a902 AM |
1003 | break; |
1004 | ||
1005 | case bfd_link_hash_defined: | |
1006 | case bfd_link_hash_defweak: | |
1007 | oldbfd = h->root.u.def.section->owner; | |
7479dfd4 | 1008 | oldsec = h->root.u.def.section; |
45d6a902 AM |
1009 | break; |
1010 | ||
1011 | case bfd_link_hash_common: | |
1012 | oldbfd = h->root.u.c.p->section->owner; | |
7479dfd4 | 1013 | oldsec = h->root.u.c.p->section; |
45d6a902 AM |
1014 | break; |
1015 | } | |
1016 | ||
895fa45f MGD |
1017 | /* Differentiate strong and weak symbols. */ |
1018 | newweak = bind == STB_WEAK; | |
1019 | oldweak = (h->root.type == bfd_link_hash_defweak | |
1020 | || h->root.type == bfd_link_hash_undefweak); | |
1021 | ||
45d6a902 AM |
1022 | /* In cases involving weak versioned symbols, we may wind up trying |
1023 | to merge a symbol with itself. Catch that here, to avoid the | |
1024 | confusion that results if we try to override a symbol with | |
1025 | itself. The additional tests catch cases like | |
1026 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
1027 | dynamic object, which we do want to handle here. */ | |
1028 | if (abfd == oldbfd | |
895fa45f | 1029 | && (newweak || oldweak) |
45d6a902 | 1030 | && ((abfd->flags & DYNAMIC) == 0 |
f5385ebf | 1031 | || !h->def_regular)) |
45d6a902 AM |
1032 | return TRUE; |
1033 | ||
1034 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, | |
1035 | respectively, is from a dynamic object. */ | |
1036 | ||
707bba77 | 1037 | newdyn = (abfd->flags & DYNAMIC) != 0; |
45d6a902 | 1038 | |
707bba77 | 1039 | olddyn = FALSE; |
45d6a902 AM |
1040 | if (oldbfd != NULL) |
1041 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
707bba77 | 1042 | else if (oldsec != NULL) |
45d6a902 | 1043 | { |
707bba77 | 1044 | /* This handles the special SHN_MIPS_{TEXT,DATA} section |
45d6a902 | 1045 | indices used by MIPS ELF. */ |
707bba77 | 1046 | olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; |
45d6a902 | 1047 | } |
252b5132 | 1048 | |
45d6a902 AM |
1049 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
1050 | respectively, appear to be a definition rather than reference. */ | |
1051 | ||
707bba77 | 1052 | newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); |
45d6a902 | 1053 | |
707bba77 AM |
1054 | olddef = (h->root.type != bfd_link_hash_undefined |
1055 | && h->root.type != bfd_link_hash_undefweak | |
1056 | && h->root.type != bfd_link_hash_common); | |
45d6a902 | 1057 | |
0a36a439 L |
1058 | /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, |
1059 | respectively, appear to be a function. */ | |
1060 | ||
1061 | newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
1062 | && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); | |
1063 | ||
1064 | oldfunc = (h->type != STT_NOTYPE | |
1065 | && bed->is_function_type (h->type)); | |
1066 | ||
580a2b6e L |
1067 | /* When we try to create a default indirect symbol from the dynamic |
1068 | definition with the default version, we skip it if its type and | |
1069 | the type of existing regular definition mismatch. We only do it | |
1070 | if the existing regular definition won't be dynamic. */ | |
1071 | if (pold_alignment == NULL | |
1072 | && !info->shared | |
1073 | && !info->export_dynamic | |
1074 | && !h->ref_dynamic | |
1075 | && newdyn | |
1076 | && newdef | |
1077 | && !olddyn | |
1078 | && (olddef || h->root.type == bfd_link_hash_common) | |
1079 | && ELF_ST_TYPE (sym->st_info) != h->type | |
1080 | && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
fcb93ecf | 1081 | && h->type != STT_NOTYPE |
0a36a439 | 1082 | && !(newfunc && oldfunc)) |
580a2b6e L |
1083 | { |
1084 | *skip = TRUE; | |
1085 | return TRUE; | |
1086 | } | |
1087 | ||
68f49ba3 L |
1088 | /* Check TLS symbol. We don't check undefined symbol introduced by |
1089 | "ld -u". */ | |
7479dfd4 | 1090 | if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS) |
68f49ba3 L |
1091 | && ELF_ST_TYPE (sym->st_info) != h->type |
1092 | && oldbfd != NULL) | |
7479dfd4 L |
1093 | { |
1094 | bfd *ntbfd, *tbfd; | |
1095 | bfd_boolean ntdef, tdef; | |
1096 | asection *ntsec, *tsec; | |
1097 | ||
1098 | if (h->type == STT_TLS) | |
1099 | { | |
3b36f7e6 | 1100 | ntbfd = abfd; |
7479dfd4 L |
1101 | ntsec = sec; |
1102 | ntdef = newdef; | |
1103 | tbfd = oldbfd; | |
1104 | tsec = oldsec; | |
1105 | tdef = olddef; | |
1106 | } | |
1107 | else | |
1108 | { | |
1109 | ntbfd = oldbfd; | |
1110 | ntsec = oldsec; | |
1111 | ntdef = olddef; | |
1112 | tbfd = abfd; | |
1113 | tsec = sec; | |
1114 | tdef = newdef; | |
1115 | } | |
1116 | ||
1117 | if (tdef && ntdef) | |
1118 | (*_bfd_error_handler) | |
fc3e1e3c | 1119 | (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"), |
7479dfd4 L |
1120 | tbfd, tsec, ntbfd, ntsec, h->root.root.string); |
1121 | else if (!tdef && !ntdef) | |
1122 | (*_bfd_error_handler) | |
fc3e1e3c | 1123 | (_("%s: TLS reference in %B mismatches non-TLS reference in %B"), |
7479dfd4 L |
1124 | tbfd, ntbfd, h->root.root.string); |
1125 | else if (tdef) | |
1126 | (*_bfd_error_handler) | |
fc3e1e3c | 1127 | (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"), |
7479dfd4 L |
1128 | tbfd, tsec, ntbfd, h->root.root.string); |
1129 | else | |
1130 | (*_bfd_error_handler) | |
fc3e1e3c | 1131 | (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"), |
7479dfd4 L |
1132 | tbfd, ntbfd, ntsec, h->root.root.string); |
1133 | ||
1134 | bfd_set_error (bfd_error_bad_value); | |
1135 | return FALSE; | |
1136 | } | |
1137 | ||
4cc11e76 | 1138 | /* We need to remember if a symbol has a definition in a dynamic |
45d6a902 AM |
1139 | object or is weak in all dynamic objects. Internal and hidden |
1140 | visibility will make it unavailable to dynamic objects. */ | |
f5385ebf | 1141 | if (newdyn && !h->dynamic_def) |
45d6a902 AM |
1142 | { |
1143 | if (!bfd_is_und_section (sec)) | |
f5385ebf | 1144 | h->dynamic_def = 1; |
45d6a902 | 1145 | else |
252b5132 | 1146 | { |
45d6a902 AM |
1147 | /* Check if this symbol is weak in all dynamic objects. If it |
1148 | is the first time we see it in a dynamic object, we mark | |
1149 | if it is weak. Otherwise, we clear it. */ | |
f5385ebf | 1150 | if (!h->ref_dynamic) |
79349b09 | 1151 | { |
45d6a902 | 1152 | if (bind == STB_WEAK) |
f5385ebf | 1153 | h->dynamic_weak = 1; |
252b5132 | 1154 | } |
45d6a902 | 1155 | else if (bind != STB_WEAK) |
f5385ebf | 1156 | h->dynamic_weak = 0; |
252b5132 | 1157 | } |
45d6a902 | 1158 | } |
252b5132 | 1159 | |
45d6a902 AM |
1160 | /* If the old symbol has non-default visibility, we ignore the new |
1161 | definition from a dynamic object. */ | |
1162 | if (newdyn | |
9c7a29a3 | 1163 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
1164 | && !bfd_is_und_section (sec)) |
1165 | { | |
1166 | *skip = TRUE; | |
1167 | /* Make sure this symbol is dynamic. */ | |
f5385ebf | 1168 | h->ref_dynamic = 1; |
45d6a902 AM |
1169 | /* A protected symbol has external availability. Make sure it is |
1170 | recorded as dynamic. | |
1171 | ||
1172 | FIXME: Should we check type and size for protected symbol? */ | |
1173 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | |
c152c796 | 1174 | return bfd_elf_link_record_dynamic_symbol (info, h); |
45d6a902 AM |
1175 | else |
1176 | return TRUE; | |
1177 | } | |
1178 | else if (!newdyn | |
9c7a29a3 | 1179 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
f5385ebf | 1180 | && h->def_dynamic) |
45d6a902 AM |
1181 | { |
1182 | /* If the new symbol with non-default visibility comes from a | |
1183 | relocatable file and the old definition comes from a dynamic | |
1184 | object, we remove the old definition. */ | |
1185 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
d2dee3b2 L |
1186 | { |
1187 | /* Handle the case where the old dynamic definition is | |
1188 | default versioned. We need to copy the symbol info from | |
1189 | the symbol with default version to the normal one if it | |
1190 | was referenced before. */ | |
1191 | if (h->ref_regular) | |
1192 | { | |
d2dee3b2 | 1193 | struct elf_link_hash_entry *vh = *sym_hash; |
91d6fa6a | 1194 | |
d2dee3b2 L |
1195 | vh->root.type = h->root.type; |
1196 | h->root.type = bfd_link_hash_indirect; | |
1197 | (*bed->elf_backend_copy_indirect_symbol) (info, vh, h); | |
1198 | /* Protected symbols will override the dynamic definition | |
1199 | with default version. */ | |
1200 | if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED) | |
1201 | { | |
1202 | h->root.u.i.link = (struct bfd_link_hash_entry *) vh; | |
1203 | vh->dynamic_def = 1; | |
1204 | vh->ref_dynamic = 1; | |
1205 | } | |
1206 | else | |
1207 | { | |
1208 | h->root.type = vh->root.type; | |
1209 | vh->ref_dynamic = 0; | |
1210 | /* We have to hide it here since it was made dynamic | |
1211 | global with extra bits when the symbol info was | |
1212 | copied from the old dynamic definition. */ | |
1213 | (*bed->elf_backend_hide_symbol) (info, vh, TRUE); | |
1214 | } | |
1215 | h = vh; | |
1216 | } | |
1217 | else | |
1218 | h = *sym_hash; | |
1219 | } | |
1de1a317 | 1220 | |
f6e332e6 | 1221 | if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root) |
1de1a317 L |
1222 | && bfd_is_und_section (sec)) |
1223 | { | |
1224 | /* If the new symbol is undefined and the old symbol was | |
1225 | also undefined before, we need to make sure | |
1226 | _bfd_generic_link_add_one_symbol doesn't mess | |
f6e332e6 | 1227 | up the linker hash table undefs list. Since the old |
1de1a317 L |
1228 | definition came from a dynamic object, it is still on the |
1229 | undefs list. */ | |
1230 | h->root.type = bfd_link_hash_undefined; | |
1de1a317 L |
1231 | h->root.u.undef.abfd = abfd; |
1232 | } | |
1233 | else | |
1234 | { | |
1235 | h->root.type = bfd_link_hash_new; | |
1236 | h->root.u.undef.abfd = NULL; | |
1237 | } | |
1238 | ||
f5385ebf | 1239 | if (h->def_dynamic) |
252b5132 | 1240 | { |
f5385ebf AM |
1241 | h->def_dynamic = 0; |
1242 | h->ref_dynamic = 1; | |
1243 | h->dynamic_def = 1; | |
45d6a902 AM |
1244 | } |
1245 | /* FIXME: Should we check type and size for protected symbol? */ | |
1246 | h->size = 0; | |
1247 | h->type = 0; | |
1248 | return TRUE; | |
1249 | } | |
14a793b2 | 1250 | |
3e7a7d11 NC |
1251 | if (bind == STB_GNU_UNIQUE) |
1252 | h->unique_global = 1; | |
1253 | ||
15b43f48 AM |
1254 | /* If a new weak symbol definition comes from a regular file and the |
1255 | old symbol comes from a dynamic library, we treat the new one as | |
1256 | strong. Similarly, an old weak symbol definition from a regular | |
1257 | file is treated as strong when the new symbol comes from a dynamic | |
1258 | library. Further, an old weak symbol from a dynamic library is | |
1259 | treated as strong if the new symbol is from a dynamic library. | |
1260 | This reflects the way glibc's ld.so works. | |
1261 | ||
1262 | Do this before setting *type_change_ok or *size_change_ok so that | |
1263 | we warn properly when dynamic library symbols are overridden. */ | |
1264 | ||
1265 | if (newdef && !newdyn && olddyn) | |
0f8a2703 | 1266 | newweak = FALSE; |
15b43f48 | 1267 | if (olddef && newdyn) |
0f8a2703 AM |
1268 | oldweak = FALSE; |
1269 | ||
d334575b | 1270 | /* Allow changes between different types of function symbol. */ |
0a36a439 | 1271 | if (newfunc && oldfunc) |
fcb93ecf PB |
1272 | *type_change_ok = TRUE; |
1273 | ||
79349b09 AM |
1274 | /* It's OK to change the type if either the existing symbol or the |
1275 | new symbol is weak. A type change is also OK if the old symbol | |
1276 | is undefined and the new symbol is defined. */ | |
252b5132 | 1277 | |
79349b09 AM |
1278 | if (oldweak |
1279 | || newweak | |
1280 | || (newdef | |
1281 | && h->root.type == bfd_link_hash_undefined)) | |
1282 | *type_change_ok = TRUE; | |
1283 | ||
1284 | /* It's OK to change the size if either the existing symbol or the | |
1285 | new symbol is weak, or if the old symbol is undefined. */ | |
1286 | ||
1287 | if (*type_change_ok | |
1288 | || h->root.type == bfd_link_hash_undefined) | |
1289 | *size_change_ok = TRUE; | |
45d6a902 | 1290 | |
45d6a902 AM |
1291 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
1292 | symbol, respectively, appears to be a common symbol in a dynamic | |
1293 | object. If a symbol appears in an uninitialized section, and is | |
1294 | not weak, and is not a function, then it may be a common symbol | |
1295 | which was resolved when the dynamic object was created. We want | |
1296 | to treat such symbols specially, because they raise special | |
1297 | considerations when setting the symbol size: if the symbol | |
1298 | appears as a common symbol in a regular object, and the size in | |
1299 | the regular object is larger, we must make sure that we use the | |
1300 | larger size. This problematic case can always be avoided in C, | |
1301 | but it must be handled correctly when using Fortran shared | |
1302 | libraries. | |
1303 | ||
1304 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
1305 | likewise for OLDDYNCOMMON and OLDDEF. | |
1306 | ||
1307 | Note that this test is just a heuristic, and that it is quite | |
1308 | possible to have an uninitialized symbol in a shared object which | |
1309 | is really a definition, rather than a common symbol. This could | |
1310 | lead to some minor confusion when the symbol really is a common | |
1311 | symbol in some regular object. However, I think it will be | |
1312 | harmless. */ | |
1313 | ||
1314 | if (newdyn | |
1315 | && newdef | |
79349b09 | 1316 | && !newweak |
45d6a902 AM |
1317 | && (sec->flags & SEC_ALLOC) != 0 |
1318 | && (sec->flags & SEC_LOAD) == 0 | |
1319 | && sym->st_size > 0 | |
0a36a439 | 1320 | && !newfunc) |
45d6a902 AM |
1321 | newdyncommon = TRUE; |
1322 | else | |
1323 | newdyncommon = FALSE; | |
1324 | ||
1325 | if (olddyn | |
1326 | && olddef | |
1327 | && h->root.type == bfd_link_hash_defined | |
f5385ebf | 1328 | && h->def_dynamic |
45d6a902 AM |
1329 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 |
1330 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
1331 | && h->size > 0 | |
0a36a439 | 1332 | && !oldfunc) |
45d6a902 AM |
1333 | olddyncommon = TRUE; |
1334 | else | |
1335 | olddyncommon = FALSE; | |
1336 | ||
a4d8e49b L |
1337 | /* We now know everything about the old and new symbols. We ask the |
1338 | backend to check if we can merge them. */ | |
a4d8e49b L |
1339 | if (bed->merge_symbol |
1340 | && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue, | |
1341 | pold_alignment, skip, override, | |
1342 | type_change_ok, size_change_ok, | |
1343 | &newdyn, &newdef, &newdyncommon, &newweak, | |
1344 | abfd, &sec, | |
1345 | &olddyn, &olddef, &olddyncommon, &oldweak, | |
1346 | oldbfd, &oldsec)) | |
1347 | return FALSE; | |
1348 | ||
45d6a902 AM |
1349 | /* If both the old and the new symbols look like common symbols in a |
1350 | dynamic object, set the size of the symbol to the larger of the | |
1351 | two. */ | |
1352 | ||
1353 | if (olddyncommon | |
1354 | && newdyncommon | |
1355 | && sym->st_size != h->size) | |
1356 | { | |
1357 | /* Since we think we have two common symbols, issue a multiple | |
1358 | common warning if desired. Note that we only warn if the | |
1359 | size is different. If the size is the same, we simply let | |
1360 | the old symbol override the new one as normally happens with | |
1361 | symbols defined in dynamic objects. */ | |
1362 | ||
1363 | if (! ((*info->callbacks->multiple_common) | |
1364 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
1365 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
1366 | return FALSE; | |
252b5132 | 1367 | |
45d6a902 AM |
1368 | if (sym->st_size > h->size) |
1369 | h->size = sym->st_size; | |
252b5132 | 1370 | |
45d6a902 | 1371 | *size_change_ok = TRUE; |
252b5132 RH |
1372 | } |
1373 | ||
45d6a902 AM |
1374 | /* If we are looking at a dynamic object, and we have found a |
1375 | definition, we need to see if the symbol was already defined by | |
1376 | some other object. If so, we want to use the existing | |
1377 | definition, and we do not want to report a multiple symbol | |
1378 | definition error; we do this by clobbering *PSEC to be | |
1379 | bfd_und_section_ptr. | |
1380 | ||
1381 | We treat a common symbol as a definition if the symbol in the | |
1382 | shared library is a function, since common symbols always | |
1383 | represent variables; this can cause confusion in principle, but | |
1384 | any such confusion would seem to indicate an erroneous program or | |
1385 | shared library. We also permit a common symbol in a regular | |
79349b09 | 1386 | object to override a weak symbol in a shared object. */ |
45d6a902 AM |
1387 | |
1388 | if (newdyn | |
1389 | && newdef | |
77cfaee6 | 1390 | && (olddef |
45d6a902 | 1391 | || (h->root.type == bfd_link_hash_common |
0a36a439 | 1392 | && (newweak || newfunc)))) |
45d6a902 AM |
1393 | { |
1394 | *override = TRUE; | |
1395 | newdef = FALSE; | |
1396 | newdyncommon = FALSE; | |
252b5132 | 1397 | |
45d6a902 AM |
1398 | *psec = sec = bfd_und_section_ptr; |
1399 | *size_change_ok = TRUE; | |
252b5132 | 1400 | |
45d6a902 AM |
1401 | /* If we get here when the old symbol is a common symbol, then |
1402 | we are explicitly letting it override a weak symbol or | |
1403 | function in a dynamic object, and we don't want to warn about | |
1404 | a type change. If the old symbol is a defined symbol, a type | |
1405 | change warning may still be appropriate. */ | |
252b5132 | 1406 | |
45d6a902 AM |
1407 | if (h->root.type == bfd_link_hash_common) |
1408 | *type_change_ok = TRUE; | |
1409 | } | |
1410 | ||
1411 | /* Handle the special case of an old common symbol merging with a | |
1412 | new symbol which looks like a common symbol in a shared object. | |
1413 | We change *PSEC and *PVALUE to make the new symbol look like a | |
91134c82 L |
1414 | common symbol, and let _bfd_generic_link_add_one_symbol do the |
1415 | right thing. */ | |
45d6a902 AM |
1416 | |
1417 | if (newdyncommon | |
1418 | && h->root.type == bfd_link_hash_common) | |
1419 | { | |
1420 | *override = TRUE; | |
1421 | newdef = FALSE; | |
1422 | newdyncommon = FALSE; | |
1423 | *pvalue = sym->st_size; | |
a4d8e49b | 1424 | *psec = sec = bed->common_section (oldsec); |
45d6a902 AM |
1425 | *size_change_ok = TRUE; |
1426 | } | |
1427 | ||
c5e2cead | 1428 | /* Skip weak definitions of symbols that are already defined. */ |
f41d945b | 1429 | if (newdef && olddef && newweak) |
54ac0771 L |
1430 | { |
1431 | *skip = TRUE; | |
1432 | ||
1433 | /* Merge st_other. If the symbol already has a dynamic index, | |
1434 | but visibility says it should not be visible, turn it into a | |
1435 | local symbol. */ | |
1436 | elf_merge_st_other (abfd, h, sym, newdef, newdyn); | |
1437 | if (h->dynindx != -1) | |
1438 | switch (ELF_ST_VISIBILITY (h->other)) | |
1439 | { | |
1440 | case STV_INTERNAL: | |
1441 | case STV_HIDDEN: | |
1442 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1443 | break; | |
1444 | } | |
1445 | } | |
c5e2cead | 1446 | |
45d6a902 AM |
1447 | /* If the old symbol is from a dynamic object, and the new symbol is |
1448 | a definition which is not from a dynamic object, then the new | |
1449 | symbol overrides the old symbol. Symbols from regular files | |
1450 | always take precedence over symbols from dynamic objects, even if | |
1451 | they are defined after the dynamic object in the link. | |
1452 | ||
1453 | As above, we again permit a common symbol in a regular object to | |
1454 | override a definition in a shared object if the shared object | |
0f8a2703 | 1455 | symbol is a function or is weak. */ |
45d6a902 AM |
1456 | |
1457 | flip = NULL; | |
77cfaee6 | 1458 | if (!newdyn |
45d6a902 AM |
1459 | && (newdef |
1460 | || (bfd_is_com_section (sec) | |
0a36a439 | 1461 | && (oldweak || oldfunc))) |
45d6a902 AM |
1462 | && olddyn |
1463 | && olddef | |
f5385ebf | 1464 | && h->def_dynamic) |
45d6a902 AM |
1465 | { |
1466 | /* Change the hash table entry to undefined, and let | |
1467 | _bfd_generic_link_add_one_symbol do the right thing with the | |
1468 | new definition. */ | |
1469 | ||
1470 | h->root.type = bfd_link_hash_undefined; | |
1471 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1472 | *size_change_ok = TRUE; | |
1473 | ||
1474 | olddef = FALSE; | |
1475 | olddyncommon = FALSE; | |
1476 | ||
1477 | /* We again permit a type change when a common symbol may be | |
1478 | overriding a function. */ | |
1479 | ||
1480 | if (bfd_is_com_section (sec)) | |
0a36a439 L |
1481 | { |
1482 | if (oldfunc) | |
1483 | { | |
1484 | /* If a common symbol overrides a function, make sure | |
1485 | that it isn't defined dynamically nor has type | |
1486 | function. */ | |
1487 | h->def_dynamic = 0; | |
1488 | h->type = STT_NOTYPE; | |
1489 | } | |
1490 | *type_change_ok = TRUE; | |
1491 | } | |
45d6a902 AM |
1492 | |
1493 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1494 | flip = *sym_hash; | |
1495 | else | |
1496 | /* This union may have been set to be non-NULL when this symbol | |
1497 | was seen in a dynamic object. We must force the union to be | |
1498 | NULL, so that it is correct for a regular symbol. */ | |
1499 | h->verinfo.vertree = NULL; | |
1500 | } | |
1501 | ||
1502 | /* Handle the special case of a new common symbol merging with an | |
1503 | old symbol that looks like it might be a common symbol defined in | |
1504 | a shared object. Note that we have already handled the case in | |
1505 | which a new common symbol should simply override the definition | |
1506 | in the shared library. */ | |
1507 | ||
1508 | if (! newdyn | |
1509 | && bfd_is_com_section (sec) | |
1510 | && olddyncommon) | |
1511 | { | |
1512 | /* It would be best if we could set the hash table entry to a | |
1513 | common symbol, but we don't know what to use for the section | |
1514 | or the alignment. */ | |
1515 | if (! ((*info->callbacks->multiple_common) | |
1516 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
1517 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
1518 | return FALSE; | |
1519 | ||
4cc11e76 | 1520 | /* If the presumed common symbol in the dynamic object is |
45d6a902 AM |
1521 | larger, pretend that the new symbol has its size. */ |
1522 | ||
1523 | if (h->size > *pvalue) | |
1524 | *pvalue = h->size; | |
1525 | ||
af44c138 L |
1526 | /* We need to remember the alignment required by the symbol |
1527 | in the dynamic object. */ | |
1528 | BFD_ASSERT (pold_alignment); | |
1529 | *pold_alignment = h->root.u.def.section->alignment_power; | |
45d6a902 AM |
1530 | |
1531 | olddef = FALSE; | |
1532 | olddyncommon = FALSE; | |
1533 | ||
1534 | h->root.type = bfd_link_hash_undefined; | |
1535 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1536 | ||
1537 | *size_change_ok = TRUE; | |
1538 | *type_change_ok = TRUE; | |
1539 | ||
1540 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |
1541 | flip = *sym_hash; | |
1542 | else | |
1543 | h->verinfo.vertree = NULL; | |
1544 | } | |
1545 | ||
1546 | if (flip != NULL) | |
1547 | { | |
1548 | /* Handle the case where we had a versioned symbol in a dynamic | |
1549 | library and now find a definition in a normal object. In this | |
1550 | case, we make the versioned symbol point to the normal one. */ | |
45d6a902 | 1551 | flip->root.type = h->root.type; |
00cbee0a | 1552 | flip->root.u.undef.abfd = h->root.u.undef.abfd; |
45d6a902 AM |
1553 | h->root.type = bfd_link_hash_indirect; |
1554 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |
fcfa13d2 | 1555 | (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); |
f5385ebf | 1556 | if (h->def_dynamic) |
45d6a902 | 1557 | { |
f5385ebf AM |
1558 | h->def_dynamic = 0; |
1559 | flip->ref_dynamic = 1; | |
45d6a902 AM |
1560 | } |
1561 | } | |
1562 | ||
45d6a902 AM |
1563 | return TRUE; |
1564 | } | |
1565 | ||
1566 | /* This function is called to create an indirect symbol from the | |
1567 | default for the symbol with the default version if needed. The | |
1568 | symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We | |
0f8a2703 | 1569 | set DYNSYM if the new indirect symbol is dynamic. */ |
45d6a902 | 1570 | |
28caa186 | 1571 | static bfd_boolean |
268b6b39 AM |
1572 | _bfd_elf_add_default_symbol (bfd *abfd, |
1573 | struct bfd_link_info *info, | |
1574 | struct elf_link_hash_entry *h, | |
1575 | const char *name, | |
1576 | Elf_Internal_Sym *sym, | |
1577 | asection **psec, | |
1578 | bfd_vma *value, | |
1579 | bfd_boolean *dynsym, | |
0f8a2703 | 1580 | bfd_boolean override) |
45d6a902 AM |
1581 | { |
1582 | bfd_boolean type_change_ok; | |
1583 | bfd_boolean size_change_ok; | |
1584 | bfd_boolean skip; | |
1585 | char *shortname; | |
1586 | struct elf_link_hash_entry *hi; | |
1587 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 1588 | const struct elf_backend_data *bed; |
45d6a902 AM |
1589 | bfd_boolean collect; |
1590 | bfd_boolean dynamic; | |
1591 | char *p; | |
1592 | size_t len, shortlen; | |
1593 | asection *sec; | |
1594 | ||
1595 | /* If this symbol has a version, and it is the default version, we | |
1596 | create an indirect symbol from the default name to the fully | |
1597 | decorated name. This will cause external references which do not | |
1598 | specify a version to be bound to this version of the symbol. */ | |
1599 | p = strchr (name, ELF_VER_CHR); | |
1600 | if (p == NULL || p[1] != ELF_VER_CHR) | |
1601 | return TRUE; | |
1602 | ||
1603 | if (override) | |
1604 | { | |
4cc11e76 | 1605 | /* We are overridden by an old definition. We need to check if we |
45d6a902 AM |
1606 | need to create the indirect symbol from the default name. */ |
1607 | hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, | |
1608 | FALSE, FALSE); | |
1609 | BFD_ASSERT (hi != NULL); | |
1610 | if (hi == h) | |
1611 | return TRUE; | |
1612 | while (hi->root.type == bfd_link_hash_indirect | |
1613 | || hi->root.type == bfd_link_hash_warning) | |
1614 | { | |
1615 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1616 | if (hi == h) | |
1617 | return TRUE; | |
1618 | } | |
1619 | } | |
1620 | ||
1621 | bed = get_elf_backend_data (abfd); | |
1622 | collect = bed->collect; | |
1623 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
1624 | ||
1625 | shortlen = p - name; | |
a50b1753 | 1626 | shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); |
45d6a902 AM |
1627 | if (shortname == NULL) |
1628 | return FALSE; | |
1629 | memcpy (shortname, name, shortlen); | |
1630 | shortname[shortlen] = '\0'; | |
1631 | ||
1632 | /* We are going to create a new symbol. Merge it with any existing | |
1633 | symbol with this name. For the purposes of the merge, act as | |
1634 | though we were defining the symbol we just defined, although we | |
1635 | actually going to define an indirect symbol. */ | |
1636 | type_change_ok = FALSE; | |
1637 | size_change_ok = FALSE; | |
1638 | sec = *psec; | |
1639 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
af44c138 L |
1640 | NULL, &hi, &skip, &override, |
1641 | &type_change_ok, &size_change_ok)) | |
45d6a902 AM |
1642 | return FALSE; |
1643 | ||
1644 | if (skip) | |
1645 | goto nondefault; | |
1646 | ||
1647 | if (! override) | |
1648 | { | |
1649 | bh = &hi->root; | |
1650 | if (! (_bfd_generic_link_add_one_symbol | |
1651 | (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, | |
268b6b39 | 1652 | 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1653 | return FALSE; |
1654 | hi = (struct elf_link_hash_entry *) bh; | |
1655 | } | |
1656 | else | |
1657 | { | |
1658 | /* In this case the symbol named SHORTNAME is overriding the | |
1659 | indirect symbol we want to add. We were planning on making | |
1660 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
1661 | is the name without a version. NAME is the fully versioned | |
1662 | name, and it is the default version. | |
1663 | ||
1664 | Overriding means that we already saw a definition for the | |
1665 | symbol SHORTNAME in a regular object, and it is overriding | |
1666 | the symbol defined in the dynamic object. | |
1667 | ||
1668 | When this happens, we actually want to change NAME, the | |
1669 | symbol we just added, to refer to SHORTNAME. This will cause | |
1670 | references to NAME in the shared object to become references | |
1671 | to SHORTNAME in the regular object. This is what we expect | |
1672 | when we override a function in a shared object: that the | |
1673 | references in the shared object will be mapped to the | |
1674 | definition in the regular object. */ | |
1675 | ||
1676 | while (hi->root.type == bfd_link_hash_indirect | |
1677 | || hi->root.type == bfd_link_hash_warning) | |
1678 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1679 | ||
1680 | h->root.type = bfd_link_hash_indirect; | |
1681 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
f5385ebf | 1682 | if (h->def_dynamic) |
45d6a902 | 1683 | { |
f5385ebf AM |
1684 | h->def_dynamic = 0; |
1685 | hi->ref_dynamic = 1; | |
1686 | if (hi->ref_regular | |
1687 | || hi->def_regular) | |
45d6a902 | 1688 | { |
c152c796 | 1689 | if (! bfd_elf_link_record_dynamic_symbol (info, hi)) |
45d6a902 AM |
1690 | return FALSE; |
1691 | } | |
1692 | } | |
1693 | ||
1694 | /* Now set HI to H, so that the following code will set the | |
1695 | other fields correctly. */ | |
1696 | hi = h; | |
1697 | } | |
1698 | ||
fab4a87f L |
1699 | /* Check if HI is a warning symbol. */ |
1700 | if (hi->root.type == bfd_link_hash_warning) | |
1701 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1702 | ||
45d6a902 AM |
1703 | /* If there is a duplicate definition somewhere, then HI may not |
1704 | point to an indirect symbol. We will have reported an error to | |
1705 | the user in that case. */ | |
1706 | ||
1707 | if (hi->root.type == bfd_link_hash_indirect) | |
1708 | { | |
1709 | struct elf_link_hash_entry *ht; | |
1710 | ||
45d6a902 | 1711 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
fcfa13d2 | 1712 | (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); |
45d6a902 AM |
1713 | |
1714 | /* See if the new flags lead us to realize that the symbol must | |
1715 | be dynamic. */ | |
1716 | if (! *dynsym) | |
1717 | { | |
1718 | if (! dynamic) | |
1719 | { | |
ca4a656b | 1720 | if (! info->executable |
f5385ebf | 1721 | || hi->ref_dynamic) |
45d6a902 AM |
1722 | *dynsym = TRUE; |
1723 | } | |
1724 | else | |
1725 | { | |
f5385ebf | 1726 | if (hi->ref_regular) |
45d6a902 AM |
1727 | *dynsym = TRUE; |
1728 | } | |
1729 | } | |
1730 | } | |
1731 | ||
1732 | /* We also need to define an indirection from the nondefault version | |
1733 | of the symbol. */ | |
1734 | ||
1735 | nondefault: | |
1736 | len = strlen (name); | |
a50b1753 | 1737 | shortname = (char *) bfd_hash_allocate (&info->hash->table, len); |
45d6a902 AM |
1738 | if (shortname == NULL) |
1739 | return FALSE; | |
1740 | memcpy (shortname, name, shortlen); | |
1741 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |
1742 | ||
1743 | /* Once again, merge with any existing symbol. */ | |
1744 | type_change_ok = FALSE; | |
1745 | size_change_ok = FALSE; | |
1746 | sec = *psec; | |
1747 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |
af44c138 L |
1748 | NULL, &hi, &skip, &override, |
1749 | &type_change_ok, &size_change_ok)) | |
45d6a902 AM |
1750 | return FALSE; |
1751 | ||
1752 | if (skip) | |
1753 | return TRUE; | |
1754 | ||
1755 | if (override) | |
1756 | { | |
1757 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
1758 | the type of override we do in the case above unless it is | |
4cc11e76 | 1759 | overridden by a versioned definition. */ |
45d6a902 AM |
1760 | if (hi->root.type != bfd_link_hash_defined |
1761 | && hi->root.type != bfd_link_hash_defweak) | |
1762 | (*_bfd_error_handler) | |
d003868e AM |
1763 | (_("%B: unexpected redefinition of indirect versioned symbol `%s'"), |
1764 | abfd, shortname); | |
45d6a902 AM |
1765 | } |
1766 | else | |
1767 | { | |
1768 | bh = &hi->root; | |
1769 | if (! (_bfd_generic_link_add_one_symbol | |
1770 | (info, abfd, shortname, BSF_INDIRECT, | |
268b6b39 | 1771 | bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1772 | return FALSE; |
1773 | hi = (struct elf_link_hash_entry *) bh; | |
1774 | ||
1775 | /* If there is a duplicate definition somewhere, then HI may not | |
1776 | point to an indirect symbol. We will have reported an error | |
1777 | to the user in that case. */ | |
1778 | ||
1779 | if (hi->root.type == bfd_link_hash_indirect) | |
1780 | { | |
fcfa13d2 | 1781 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
45d6a902 AM |
1782 | |
1783 | /* See if the new flags lead us to realize that the symbol | |
1784 | must be dynamic. */ | |
1785 | if (! *dynsym) | |
1786 | { | |
1787 | if (! dynamic) | |
1788 | { | |
ca4a656b | 1789 | if (! info->executable |
f5385ebf | 1790 | || hi->ref_dynamic) |
45d6a902 AM |
1791 | *dynsym = TRUE; |
1792 | } | |
1793 | else | |
1794 | { | |
f5385ebf | 1795 | if (hi->ref_regular) |
45d6a902 AM |
1796 | *dynsym = TRUE; |
1797 | } | |
1798 | } | |
1799 | } | |
1800 | } | |
1801 | ||
1802 | return TRUE; | |
1803 | } | |
1804 | \f | |
1805 | /* This routine is used to export all defined symbols into the dynamic | |
1806 | symbol table. It is called via elf_link_hash_traverse. */ | |
1807 | ||
28caa186 | 1808 | static bfd_boolean |
268b6b39 | 1809 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1810 | { |
a50b1753 | 1811 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
45d6a902 | 1812 | |
55255dae L |
1813 | /* Ignore this if we won't export it. */ |
1814 | if (!eif->info->export_dynamic && !h->dynamic) | |
1815 | return TRUE; | |
1816 | ||
45d6a902 AM |
1817 | /* Ignore indirect symbols. These are added by the versioning code. */ |
1818 | if (h->root.type == bfd_link_hash_indirect) | |
1819 | return TRUE; | |
1820 | ||
1821 | if (h->root.type == bfd_link_hash_warning) | |
1822 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1823 | ||
1824 | if (h->dynindx == -1 | |
f5385ebf AM |
1825 | && (h->def_regular |
1826 | || h->ref_regular)) | |
45d6a902 | 1827 | { |
1e8fa21e | 1828 | bfd_boolean hide; |
45d6a902 | 1829 | |
1e8fa21e | 1830 | if (eif->verdefs == NULL |
09e2aba4 | 1831 | || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide) |
1e8fa21e | 1832 | && !hide)) |
45d6a902 | 1833 | { |
c152c796 | 1834 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
45d6a902 AM |
1835 | { |
1836 | eif->failed = TRUE; | |
1837 | return FALSE; | |
1838 | } | |
1839 | } | |
1840 | } | |
1841 | ||
1842 | return TRUE; | |
1843 | } | |
1844 | \f | |
1845 | /* Look through the symbols which are defined in other shared | |
1846 | libraries and referenced here. Update the list of version | |
1847 | dependencies. This will be put into the .gnu.version_r section. | |
1848 | This function is called via elf_link_hash_traverse. */ | |
1849 | ||
28caa186 | 1850 | static bfd_boolean |
268b6b39 AM |
1851 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
1852 | void *data) | |
45d6a902 | 1853 | { |
a50b1753 | 1854 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; |
45d6a902 AM |
1855 | Elf_Internal_Verneed *t; |
1856 | Elf_Internal_Vernaux *a; | |
1857 | bfd_size_type amt; | |
1858 | ||
1859 | if (h->root.type == bfd_link_hash_warning) | |
1860 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1861 | ||
1862 | /* We only care about symbols defined in shared objects with version | |
1863 | information. */ | |
f5385ebf AM |
1864 | if (!h->def_dynamic |
1865 | || h->def_regular | |
45d6a902 AM |
1866 | || h->dynindx == -1 |
1867 | || h->verinfo.verdef == NULL) | |
1868 | return TRUE; | |
1869 | ||
1870 | /* See if we already know about this version. */ | |
28caa186 AM |
1871 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; |
1872 | t != NULL; | |
1873 | t = t->vn_nextref) | |
45d6a902 AM |
1874 | { |
1875 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
1876 | continue; | |
1877 | ||
1878 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1879 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
1880 | return TRUE; | |
1881 | ||
1882 | break; | |
1883 | } | |
1884 | ||
1885 | /* This is a new version. Add it to tree we are building. */ | |
1886 | ||
1887 | if (t == NULL) | |
1888 | { | |
1889 | amt = sizeof *t; | |
a50b1753 | 1890 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); |
45d6a902 AM |
1891 | if (t == NULL) |
1892 | { | |
1893 | rinfo->failed = TRUE; | |
1894 | return FALSE; | |
1895 | } | |
1896 | ||
1897 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
28caa186 AM |
1898 | t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; |
1899 | elf_tdata (rinfo->info->output_bfd)->verref = t; | |
45d6a902 AM |
1900 | } |
1901 | ||
1902 | amt = sizeof *a; | |
a50b1753 | 1903 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); |
14b1c01e AM |
1904 | if (a == NULL) |
1905 | { | |
1906 | rinfo->failed = TRUE; | |
1907 | return FALSE; | |
1908 | } | |
45d6a902 AM |
1909 | |
1910 | /* Note that we are copying a string pointer here, and testing it | |
1911 | above. If bfd_elf_string_from_elf_section is ever changed to | |
1912 | discard the string data when low in memory, this will have to be | |
1913 | fixed. */ | |
1914 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
1915 | ||
1916 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
1917 | a->vna_nextptr = t->vn_auxptr; | |
1918 | ||
1919 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
1920 | ++rinfo->vers; | |
1921 | ||
1922 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
1923 | ||
1924 | t->vn_auxptr = a; | |
1925 | ||
1926 | return TRUE; | |
1927 | } | |
1928 | ||
1929 | /* Figure out appropriate versions for all the symbols. We may not | |
1930 | have the version number script until we have read all of the input | |
1931 | files, so until that point we don't know which symbols should be | |
1932 | local. This function is called via elf_link_hash_traverse. */ | |
1933 | ||
28caa186 | 1934 | static bfd_boolean |
268b6b39 | 1935 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1936 | { |
28caa186 | 1937 | struct elf_info_failed *sinfo; |
45d6a902 | 1938 | struct bfd_link_info *info; |
9c5bfbb7 | 1939 | const struct elf_backend_data *bed; |
45d6a902 AM |
1940 | struct elf_info_failed eif; |
1941 | char *p; | |
1942 | bfd_size_type amt; | |
1943 | ||
a50b1753 | 1944 | sinfo = (struct elf_info_failed *) data; |
45d6a902 AM |
1945 | info = sinfo->info; |
1946 | ||
1947 | if (h->root.type == bfd_link_hash_warning) | |
1948 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1949 | ||
1950 | /* Fix the symbol flags. */ | |
1951 | eif.failed = FALSE; | |
1952 | eif.info = info; | |
1953 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |
1954 | { | |
1955 | if (eif.failed) | |
1956 | sinfo->failed = TRUE; | |
1957 | return FALSE; | |
1958 | } | |
1959 | ||
1960 | /* We only need version numbers for symbols defined in regular | |
1961 | objects. */ | |
f5385ebf | 1962 | if (!h->def_regular) |
45d6a902 AM |
1963 | return TRUE; |
1964 | ||
28caa186 | 1965 | bed = get_elf_backend_data (info->output_bfd); |
45d6a902 AM |
1966 | p = strchr (h->root.root.string, ELF_VER_CHR); |
1967 | if (p != NULL && h->verinfo.vertree == NULL) | |
1968 | { | |
1969 | struct bfd_elf_version_tree *t; | |
1970 | bfd_boolean hidden; | |
1971 | ||
1972 | hidden = TRUE; | |
1973 | ||
1974 | /* There are two consecutive ELF_VER_CHR characters if this is | |
1975 | not a hidden symbol. */ | |
1976 | ++p; | |
1977 | if (*p == ELF_VER_CHR) | |
1978 | { | |
1979 | hidden = FALSE; | |
1980 | ++p; | |
1981 | } | |
1982 | ||
1983 | /* If there is no version string, we can just return out. */ | |
1984 | if (*p == '\0') | |
1985 | { | |
1986 | if (hidden) | |
f5385ebf | 1987 | h->hidden = 1; |
45d6a902 AM |
1988 | return TRUE; |
1989 | } | |
1990 | ||
1991 | /* Look for the version. If we find it, it is no longer weak. */ | |
1992 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
1993 | { | |
1994 | if (strcmp (t->name, p) == 0) | |
1995 | { | |
1996 | size_t len; | |
1997 | char *alc; | |
1998 | struct bfd_elf_version_expr *d; | |
1999 | ||
2000 | len = p - h->root.root.string; | |
a50b1753 | 2001 | alc = (char *) bfd_malloc (len); |
45d6a902 | 2002 | if (alc == NULL) |
14b1c01e AM |
2003 | { |
2004 | sinfo->failed = TRUE; | |
2005 | return FALSE; | |
2006 | } | |
45d6a902 AM |
2007 | memcpy (alc, h->root.root.string, len - 1); |
2008 | alc[len - 1] = '\0'; | |
2009 | if (alc[len - 2] == ELF_VER_CHR) | |
2010 | alc[len - 2] = '\0'; | |
2011 | ||
2012 | h->verinfo.vertree = t; | |
2013 | t->used = TRUE; | |
2014 | d = NULL; | |
2015 | ||
108ba305 JJ |
2016 | if (t->globals.list != NULL) |
2017 | d = (*t->match) (&t->globals, NULL, alc); | |
45d6a902 AM |
2018 | |
2019 | /* See if there is anything to force this symbol to | |
2020 | local scope. */ | |
108ba305 | 2021 | if (d == NULL && t->locals.list != NULL) |
45d6a902 | 2022 | { |
108ba305 JJ |
2023 | d = (*t->match) (&t->locals, NULL, alc); |
2024 | if (d != NULL | |
2025 | && h->dynindx != -1 | |
108ba305 JJ |
2026 | && ! info->export_dynamic) |
2027 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
2028 | } |
2029 | ||
2030 | free (alc); | |
2031 | break; | |
2032 | } | |
2033 | } | |
2034 | ||
2035 | /* If we are building an application, we need to create a | |
2036 | version node for this version. */ | |
36af4a4e | 2037 | if (t == NULL && info->executable) |
45d6a902 AM |
2038 | { |
2039 | struct bfd_elf_version_tree **pp; | |
2040 | int version_index; | |
2041 | ||
2042 | /* If we aren't going to export this symbol, we don't need | |
2043 | to worry about it. */ | |
2044 | if (h->dynindx == -1) | |
2045 | return TRUE; | |
2046 | ||
2047 | amt = sizeof *t; | |
a50b1753 | 2048 | t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt); |
45d6a902 AM |
2049 | if (t == NULL) |
2050 | { | |
2051 | sinfo->failed = TRUE; | |
2052 | return FALSE; | |
2053 | } | |
2054 | ||
45d6a902 | 2055 | t->name = p; |
45d6a902 AM |
2056 | t->name_indx = (unsigned int) -1; |
2057 | t->used = TRUE; | |
2058 | ||
2059 | version_index = 1; | |
2060 | /* Don't count anonymous version tag. */ | |
2061 | if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0) | |
2062 | version_index = 0; | |
2063 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
2064 | ++version_index; | |
2065 | t->vernum = version_index; | |
2066 | ||
2067 | *pp = t; | |
2068 | ||
2069 | h->verinfo.vertree = t; | |
2070 | } | |
2071 | else if (t == NULL) | |
2072 | { | |
2073 | /* We could not find the version for a symbol when | |
2074 | generating a shared archive. Return an error. */ | |
2075 | (*_bfd_error_handler) | |
c55fe096 | 2076 | (_("%B: version node not found for symbol %s"), |
28caa186 | 2077 | info->output_bfd, h->root.root.string); |
45d6a902 AM |
2078 | bfd_set_error (bfd_error_bad_value); |
2079 | sinfo->failed = TRUE; | |
2080 | return FALSE; | |
2081 | } | |
2082 | ||
2083 | if (hidden) | |
f5385ebf | 2084 | h->hidden = 1; |
45d6a902 AM |
2085 | } |
2086 | ||
2087 | /* If we don't have a version for this symbol, see if we can find | |
2088 | something. */ | |
2089 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
2090 | { | |
1e8fa21e | 2091 | bfd_boolean hide; |
ae5a3597 | 2092 | |
09e2aba4 | 2093 | h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs, |
1e8fa21e AM |
2094 | h->root.root.string, &hide); |
2095 | if (h->verinfo.vertree != NULL && hide) | |
2096 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
2097 | } |
2098 | ||
2099 | return TRUE; | |
2100 | } | |
2101 | \f | |
45d6a902 AM |
2102 | /* Read and swap the relocs from the section indicated by SHDR. This |
2103 | may be either a REL or a RELA section. The relocations are | |
2104 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2105 | which should have already been allocated to contain enough space. | |
2106 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2107 | relocations should be stored. | |
2108 | ||
2109 | Returns FALSE if something goes wrong. */ | |
2110 | ||
2111 | static bfd_boolean | |
268b6b39 | 2112 | elf_link_read_relocs_from_section (bfd *abfd, |
243ef1e0 | 2113 | asection *sec, |
268b6b39 AM |
2114 | Elf_Internal_Shdr *shdr, |
2115 | void *external_relocs, | |
2116 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 | 2117 | { |
9c5bfbb7 | 2118 | const struct elf_backend_data *bed; |
268b6b39 | 2119 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
45d6a902 AM |
2120 | const bfd_byte *erela; |
2121 | const bfd_byte *erelaend; | |
2122 | Elf_Internal_Rela *irela; | |
243ef1e0 L |
2123 | Elf_Internal_Shdr *symtab_hdr; |
2124 | size_t nsyms; | |
45d6a902 | 2125 | |
45d6a902 AM |
2126 | /* Position ourselves at the start of the section. */ |
2127 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2128 | return FALSE; | |
2129 | ||
2130 | /* Read the relocations. */ | |
2131 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | |
2132 | return FALSE; | |
2133 | ||
243ef1e0 | 2134 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
ce98a316 | 2135 | nsyms = NUM_SHDR_ENTRIES (symtab_hdr); |
243ef1e0 | 2136 | |
45d6a902 AM |
2137 | bed = get_elf_backend_data (abfd); |
2138 | ||
2139 | /* Convert the external relocations to the internal format. */ | |
2140 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |
2141 | swap_in = bed->s->swap_reloc_in; | |
2142 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |
2143 | swap_in = bed->s->swap_reloca_in; | |
2144 | else | |
2145 | { | |
2146 | bfd_set_error (bfd_error_wrong_format); | |
2147 | return FALSE; | |
2148 | } | |
2149 | ||
a50b1753 | 2150 | erela = (const bfd_byte *) external_relocs; |
51992aec | 2151 | erelaend = erela + shdr->sh_size; |
45d6a902 AM |
2152 | irela = internal_relocs; |
2153 | while (erela < erelaend) | |
2154 | { | |
243ef1e0 L |
2155 | bfd_vma r_symndx; |
2156 | ||
45d6a902 | 2157 | (*swap_in) (abfd, erela, irela); |
243ef1e0 L |
2158 | r_symndx = ELF32_R_SYM (irela->r_info); |
2159 | if (bed->s->arch_size == 64) | |
2160 | r_symndx >>= 24; | |
ce98a316 NC |
2161 | if (nsyms > 0) |
2162 | { | |
2163 | if ((size_t) r_symndx >= nsyms) | |
2164 | { | |
2165 | (*_bfd_error_handler) | |
2166 | (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)" | |
2167 | " for offset 0x%lx in section `%A'"), | |
2168 | abfd, sec, | |
2169 | (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset); | |
2170 | bfd_set_error (bfd_error_bad_value); | |
2171 | return FALSE; | |
2172 | } | |
2173 | } | |
cf35638d | 2174 | else if (r_symndx != STN_UNDEF) |
243ef1e0 L |
2175 | { |
2176 | (*_bfd_error_handler) | |
ce98a316 NC |
2177 | (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'" |
2178 | " when the object file has no symbol table"), | |
d003868e AM |
2179 | abfd, sec, |
2180 | (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset); | |
243ef1e0 L |
2181 | bfd_set_error (bfd_error_bad_value); |
2182 | return FALSE; | |
2183 | } | |
45d6a902 AM |
2184 | irela += bed->s->int_rels_per_ext_rel; |
2185 | erela += shdr->sh_entsize; | |
2186 | } | |
2187 | ||
2188 | return TRUE; | |
2189 | } | |
2190 | ||
2191 | /* Read and swap the relocs for a section O. They may have been | |
2192 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2193 | not NULL, they are used as buffers to read into. They are known to | |
2194 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2195 | the return value is allocated using either malloc or bfd_alloc, | |
2196 | according to the KEEP_MEMORY argument. If O has two relocation | |
2197 | sections (both REL and RELA relocations), then the REL_HDR | |
2198 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
d4730f92 | 2199 | RELA_HDR relocations. */ |
45d6a902 AM |
2200 | |
2201 | Elf_Internal_Rela * | |
268b6b39 AM |
2202 | _bfd_elf_link_read_relocs (bfd *abfd, |
2203 | asection *o, | |
2204 | void *external_relocs, | |
2205 | Elf_Internal_Rela *internal_relocs, | |
2206 | bfd_boolean keep_memory) | |
45d6a902 | 2207 | { |
268b6b39 | 2208 | void *alloc1 = NULL; |
45d6a902 | 2209 | Elf_Internal_Rela *alloc2 = NULL; |
9c5bfbb7 | 2210 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
d4730f92 BS |
2211 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
2212 | Elf_Internal_Rela *internal_rela_relocs; | |
45d6a902 | 2213 | |
d4730f92 BS |
2214 | if (esdo->relocs != NULL) |
2215 | return esdo->relocs; | |
45d6a902 AM |
2216 | |
2217 | if (o->reloc_count == 0) | |
2218 | return NULL; | |
2219 | ||
45d6a902 AM |
2220 | if (internal_relocs == NULL) |
2221 | { | |
2222 | bfd_size_type size; | |
2223 | ||
2224 | size = o->reloc_count; | |
2225 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
2226 | if (keep_memory) | |
a50b1753 | 2227 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); |
45d6a902 | 2228 | else |
a50b1753 | 2229 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
45d6a902 AM |
2230 | if (internal_relocs == NULL) |
2231 | goto error_return; | |
2232 | } | |
2233 | ||
2234 | if (external_relocs == NULL) | |
2235 | { | |
d4730f92 BS |
2236 | bfd_size_type size = 0; |
2237 | ||
2238 | if (esdo->rel.hdr) | |
2239 | size += esdo->rel.hdr->sh_size; | |
2240 | if (esdo->rela.hdr) | |
2241 | size += esdo->rela.hdr->sh_size; | |
45d6a902 | 2242 | |
268b6b39 | 2243 | alloc1 = bfd_malloc (size); |
45d6a902 AM |
2244 | if (alloc1 == NULL) |
2245 | goto error_return; | |
2246 | external_relocs = alloc1; | |
2247 | } | |
2248 | ||
d4730f92 BS |
2249 | internal_rela_relocs = internal_relocs; |
2250 | if (esdo->rel.hdr) | |
2251 | { | |
2252 | if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, | |
2253 | external_relocs, | |
2254 | internal_relocs)) | |
2255 | goto error_return; | |
2256 | external_relocs = (((bfd_byte *) external_relocs) | |
2257 | + esdo->rel.hdr->sh_size); | |
2258 | internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) | |
2259 | * bed->s->int_rels_per_ext_rel); | |
2260 | } | |
2261 | ||
2262 | if (esdo->rela.hdr | |
2263 | && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, | |
2264 | external_relocs, | |
2265 | internal_rela_relocs))) | |
45d6a902 AM |
2266 | goto error_return; |
2267 | ||
2268 | /* Cache the results for next time, if we can. */ | |
2269 | if (keep_memory) | |
d4730f92 | 2270 | esdo->relocs = internal_relocs; |
45d6a902 AM |
2271 | |
2272 | if (alloc1 != NULL) | |
2273 | free (alloc1); | |
2274 | ||
2275 | /* Don't free alloc2, since if it was allocated we are passing it | |
2276 | back (under the name of internal_relocs). */ | |
2277 | ||
2278 | return internal_relocs; | |
2279 | ||
2280 | error_return: | |
2281 | if (alloc1 != NULL) | |
2282 | free (alloc1); | |
2283 | if (alloc2 != NULL) | |
4dd07732 AM |
2284 | { |
2285 | if (keep_memory) | |
2286 | bfd_release (abfd, alloc2); | |
2287 | else | |
2288 | free (alloc2); | |
2289 | } | |
45d6a902 AM |
2290 | return NULL; |
2291 | } | |
2292 | ||
2293 | /* Compute the size of, and allocate space for, REL_HDR which is the | |
2294 | section header for a section containing relocations for O. */ | |
2295 | ||
28caa186 | 2296 | static bfd_boolean |
268b6b39 | 2297 | _bfd_elf_link_size_reloc_section (bfd *abfd, |
d4730f92 | 2298 | struct bfd_elf_section_reloc_data *reldata) |
45d6a902 | 2299 | { |
d4730f92 | 2300 | Elf_Internal_Shdr *rel_hdr = reldata->hdr; |
45d6a902 AM |
2301 | |
2302 | /* That allows us to calculate the size of the section. */ | |
d4730f92 | 2303 | rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; |
45d6a902 AM |
2304 | |
2305 | /* The contents field must last into write_object_contents, so we | |
2306 | allocate it with bfd_alloc rather than malloc. Also since we | |
2307 | cannot be sure that the contents will actually be filled in, | |
2308 | we zero the allocated space. */ | |
a50b1753 | 2309 | rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); |
45d6a902 AM |
2310 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
2311 | return FALSE; | |
2312 | ||
d4730f92 | 2313 | if (reldata->hashes == NULL && reldata->count) |
45d6a902 AM |
2314 | { |
2315 | struct elf_link_hash_entry **p; | |
2316 | ||
a50b1753 | 2317 | p = (struct elf_link_hash_entry **) |
d4730f92 | 2318 | bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *)); |
45d6a902 AM |
2319 | if (p == NULL) |
2320 | return FALSE; | |
2321 | ||
d4730f92 | 2322 | reldata->hashes = p; |
45d6a902 AM |
2323 | } |
2324 | ||
2325 | return TRUE; | |
2326 | } | |
2327 | ||
2328 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |
2329 | originated from the section given by INPUT_REL_HDR) to the | |
2330 | OUTPUT_BFD. */ | |
2331 | ||
2332 | bfd_boolean | |
268b6b39 AM |
2333 | _bfd_elf_link_output_relocs (bfd *output_bfd, |
2334 | asection *input_section, | |
2335 | Elf_Internal_Shdr *input_rel_hdr, | |
eac338cf PB |
2336 | Elf_Internal_Rela *internal_relocs, |
2337 | struct elf_link_hash_entry **rel_hash | |
2338 | ATTRIBUTE_UNUSED) | |
45d6a902 AM |
2339 | { |
2340 | Elf_Internal_Rela *irela; | |
2341 | Elf_Internal_Rela *irelaend; | |
2342 | bfd_byte *erel; | |
d4730f92 | 2343 | struct bfd_elf_section_reloc_data *output_reldata; |
45d6a902 | 2344 | asection *output_section; |
9c5bfbb7 | 2345 | const struct elf_backend_data *bed; |
268b6b39 | 2346 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
d4730f92 | 2347 | struct bfd_elf_section_data *esdo; |
45d6a902 AM |
2348 | |
2349 | output_section = input_section->output_section; | |
45d6a902 | 2350 | |
d4730f92 BS |
2351 | bed = get_elf_backend_data (output_bfd); |
2352 | esdo = elf_section_data (output_section); | |
2353 | if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
45d6a902 | 2354 | { |
d4730f92 BS |
2355 | output_reldata = &esdo->rel; |
2356 | swap_out = bed->s->swap_reloc_out; | |
45d6a902 | 2357 | } |
d4730f92 BS |
2358 | else if (esdo->rela.hdr |
2359 | && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
45d6a902 | 2360 | { |
d4730f92 BS |
2361 | output_reldata = &esdo->rela; |
2362 | swap_out = bed->s->swap_reloca_out; | |
45d6a902 AM |
2363 | } |
2364 | else | |
2365 | { | |
2366 | (*_bfd_error_handler) | |
d003868e AM |
2367 | (_("%B: relocation size mismatch in %B section %A"), |
2368 | output_bfd, input_section->owner, input_section); | |
297d8443 | 2369 | bfd_set_error (bfd_error_wrong_format); |
45d6a902 AM |
2370 | return FALSE; |
2371 | } | |
2372 | ||
d4730f92 BS |
2373 | erel = output_reldata->hdr->contents; |
2374 | erel += output_reldata->count * input_rel_hdr->sh_entsize; | |
45d6a902 AM |
2375 | irela = internal_relocs; |
2376 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | |
2377 | * bed->s->int_rels_per_ext_rel); | |
2378 | while (irela < irelaend) | |
2379 | { | |
2380 | (*swap_out) (output_bfd, irela, erel); | |
2381 | irela += bed->s->int_rels_per_ext_rel; | |
2382 | erel += input_rel_hdr->sh_entsize; | |
2383 | } | |
2384 | ||
2385 | /* Bump the counter, so that we know where to add the next set of | |
2386 | relocations. */ | |
d4730f92 | 2387 | output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); |
45d6a902 AM |
2388 | |
2389 | return TRUE; | |
2390 | } | |
2391 | \f | |
508c3946 L |
2392 | /* Make weak undefined symbols in PIE dynamic. */ |
2393 | ||
2394 | bfd_boolean | |
2395 | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, | |
2396 | struct elf_link_hash_entry *h) | |
2397 | { | |
2398 | if (info->pie | |
2399 | && h->dynindx == -1 | |
2400 | && h->root.type == bfd_link_hash_undefweak) | |
2401 | return bfd_elf_link_record_dynamic_symbol (info, h); | |
2402 | ||
2403 | return TRUE; | |
2404 | } | |
2405 | ||
45d6a902 AM |
2406 | /* Fix up the flags for a symbol. This handles various cases which |
2407 | can only be fixed after all the input files are seen. This is | |
2408 | currently called by both adjust_dynamic_symbol and | |
2409 | assign_sym_version, which is unnecessary but perhaps more robust in | |
2410 | the face of future changes. */ | |
2411 | ||
28caa186 | 2412 | static bfd_boolean |
268b6b39 AM |
2413 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
2414 | struct elf_info_failed *eif) | |
45d6a902 | 2415 | { |
33774f08 | 2416 | const struct elf_backend_data *bed; |
508c3946 | 2417 | |
45d6a902 AM |
2418 | /* If this symbol was mentioned in a non-ELF file, try to set |
2419 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
2420 | permit a non-ELF file to correctly refer to a symbol defined in | |
2421 | an ELF dynamic object. */ | |
f5385ebf | 2422 | if (h->non_elf) |
45d6a902 AM |
2423 | { |
2424 | while (h->root.type == bfd_link_hash_indirect) | |
2425 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2426 | ||
2427 | if (h->root.type != bfd_link_hash_defined | |
2428 | && h->root.type != bfd_link_hash_defweak) | |
f5385ebf AM |
2429 | { |
2430 | h->ref_regular = 1; | |
2431 | h->ref_regular_nonweak = 1; | |
2432 | } | |
45d6a902 AM |
2433 | else |
2434 | { | |
2435 | if (h->root.u.def.section->owner != NULL | |
2436 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
2437 | == bfd_target_elf_flavour)) | |
f5385ebf AM |
2438 | { |
2439 | h->ref_regular = 1; | |
2440 | h->ref_regular_nonweak = 1; | |
2441 | } | |
45d6a902 | 2442 | else |
f5385ebf | 2443 | h->def_regular = 1; |
45d6a902 AM |
2444 | } |
2445 | ||
2446 | if (h->dynindx == -1 | |
f5385ebf AM |
2447 | && (h->def_dynamic |
2448 | || h->ref_dynamic)) | |
45d6a902 | 2449 | { |
c152c796 | 2450 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
45d6a902 AM |
2451 | { |
2452 | eif->failed = TRUE; | |
2453 | return FALSE; | |
2454 | } | |
2455 | } | |
2456 | } | |
2457 | else | |
2458 | { | |
f5385ebf | 2459 | /* Unfortunately, NON_ELF is only correct if the symbol |
45d6a902 AM |
2460 | was first seen in a non-ELF file. Fortunately, if the symbol |
2461 | was first seen in an ELF file, we're probably OK unless the | |
2462 | symbol was defined in a non-ELF file. Catch that case here. | |
2463 | FIXME: We're still in trouble if the symbol was first seen in | |
2464 | a dynamic object, and then later in a non-ELF regular object. */ | |
2465 | if ((h->root.type == bfd_link_hash_defined | |
2466 | || h->root.type == bfd_link_hash_defweak) | |
f5385ebf | 2467 | && !h->def_regular |
45d6a902 AM |
2468 | && (h->root.u.def.section->owner != NULL |
2469 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
2470 | != bfd_target_elf_flavour) | |
2471 | : (bfd_is_abs_section (h->root.u.def.section) | |
f5385ebf AM |
2472 | && !h->def_dynamic))) |
2473 | h->def_regular = 1; | |
45d6a902 AM |
2474 | } |
2475 | ||
508c3946 | 2476 | /* Backend specific symbol fixup. */ |
33774f08 AM |
2477 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
2478 | if (bed->elf_backend_fixup_symbol | |
2479 | && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) | |
2480 | return FALSE; | |
508c3946 | 2481 | |
45d6a902 AM |
2482 | /* If this is a final link, and the symbol was defined as a common |
2483 | symbol in a regular object file, and there was no definition in | |
2484 | any dynamic object, then the linker will have allocated space for | |
f5385ebf | 2485 | the symbol in a common section but the DEF_REGULAR |
45d6a902 AM |
2486 | flag will not have been set. */ |
2487 | if (h->root.type == bfd_link_hash_defined | |
f5385ebf AM |
2488 | && !h->def_regular |
2489 | && h->ref_regular | |
2490 | && !h->def_dynamic | |
45d6a902 | 2491 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) |
f5385ebf | 2492 | h->def_regular = 1; |
45d6a902 AM |
2493 | |
2494 | /* If -Bsymbolic was used (which means to bind references to global | |
2495 | symbols to the definition within the shared object), and this | |
2496 | symbol was defined in a regular object, then it actually doesn't | |
9c7a29a3 AM |
2497 | need a PLT entry. Likewise, if the symbol has non-default |
2498 | visibility. If the symbol has hidden or internal visibility, we | |
c1be741f | 2499 | will force it local. */ |
f5385ebf | 2500 | if (h->needs_plt |
45d6a902 | 2501 | && eif->info->shared |
0eddce27 | 2502 | && is_elf_hash_table (eif->info->hash) |
55255dae | 2503 | && (SYMBOLIC_BIND (eif->info, h) |
c1be741f | 2504 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
f5385ebf | 2505 | && h->def_regular) |
45d6a902 | 2506 | { |
45d6a902 AM |
2507 | bfd_boolean force_local; |
2508 | ||
45d6a902 AM |
2509 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
2510 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
2511 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
2512 | } | |
2513 | ||
2514 | /* If a weak undefined symbol has non-default visibility, we also | |
2515 | hide it from the dynamic linker. */ | |
9c7a29a3 | 2516 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 | 2517 | && h->root.type == bfd_link_hash_undefweak) |
33774f08 | 2518 | (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
45d6a902 AM |
2519 | |
2520 | /* If this is a weak defined symbol in a dynamic object, and we know | |
2521 | the real definition in the dynamic object, copy interesting flags | |
2522 | over to the real definition. */ | |
f6e332e6 | 2523 | if (h->u.weakdef != NULL) |
45d6a902 AM |
2524 | { |
2525 | struct elf_link_hash_entry *weakdef; | |
2526 | ||
f6e332e6 | 2527 | weakdef = h->u.weakdef; |
45d6a902 AM |
2528 | if (h->root.type == bfd_link_hash_indirect) |
2529 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2530 | ||
2531 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
2532 | || h->root.type == bfd_link_hash_defweak); | |
f5385ebf | 2533 | BFD_ASSERT (weakdef->def_dynamic); |
45d6a902 AM |
2534 | |
2535 | /* If the real definition is defined by a regular object file, | |
2536 | don't do anything special. See the longer description in | |
2537 | _bfd_elf_adjust_dynamic_symbol, below. */ | |
f5385ebf | 2538 | if (weakdef->def_regular) |
f6e332e6 | 2539 | h->u.weakdef = NULL; |
45d6a902 | 2540 | else |
a26587ba RS |
2541 | { |
2542 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
2543 | || weakdef->root.type == bfd_link_hash_defweak); | |
2544 | (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h); | |
2545 | } | |
45d6a902 AM |
2546 | } |
2547 | ||
2548 | return TRUE; | |
2549 | } | |
2550 | ||
2551 | /* Make the backend pick a good value for a dynamic symbol. This is | |
2552 | called via elf_link_hash_traverse, and also calls itself | |
2553 | recursively. */ | |
2554 | ||
28caa186 | 2555 | static bfd_boolean |
268b6b39 | 2556 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 2557 | { |
a50b1753 | 2558 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
45d6a902 | 2559 | bfd *dynobj; |
9c5bfbb7 | 2560 | const struct elf_backend_data *bed; |
45d6a902 | 2561 | |
0eddce27 | 2562 | if (! is_elf_hash_table (eif->info->hash)) |
45d6a902 AM |
2563 | return FALSE; |
2564 | ||
2565 | if (h->root.type == bfd_link_hash_warning) | |
2566 | { | |
a6aa5195 AM |
2567 | h->got = elf_hash_table (eif->info)->init_got_offset; |
2568 | h->plt = elf_hash_table (eif->info)->init_plt_offset; | |
45d6a902 AM |
2569 | |
2570 | /* When warning symbols are created, they **replace** the "real" | |
2571 | entry in the hash table, thus we never get to see the real | |
2572 | symbol in a hash traversal. So look at it now. */ | |
2573 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2574 | } | |
2575 | ||
2576 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
2577 | if (h->root.type == bfd_link_hash_indirect) | |
2578 | return TRUE; | |
2579 | ||
2580 | /* Fix the symbol flags. */ | |
2581 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |
2582 | return FALSE; | |
2583 | ||
2584 | /* If this symbol does not require a PLT entry, and it is not | |
2585 | defined by a dynamic object, or is not referenced by a regular | |
2586 | object, ignore it. We do have to handle a weak defined symbol, | |
2587 | even if no regular object refers to it, if we decided to add it | |
2588 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
2589 | about symbols which are defined by one dynamic object and | |
2590 | referenced by another one? */ | |
f5385ebf | 2591 | if (!h->needs_plt |
91e21fb7 | 2592 | && h->type != STT_GNU_IFUNC |
f5385ebf AM |
2593 | && (h->def_regular |
2594 | || !h->def_dynamic | |
2595 | || (!h->ref_regular | |
f6e332e6 | 2596 | && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1)))) |
45d6a902 | 2597 | { |
a6aa5195 | 2598 | h->plt = elf_hash_table (eif->info)->init_plt_offset; |
45d6a902 AM |
2599 | return TRUE; |
2600 | } | |
2601 | ||
2602 | /* If we've already adjusted this symbol, don't do it again. This | |
2603 | can happen via a recursive call. */ | |
f5385ebf | 2604 | if (h->dynamic_adjusted) |
45d6a902 AM |
2605 | return TRUE; |
2606 | ||
2607 | /* Don't look at this symbol again. Note that we must set this | |
2608 | after checking the above conditions, because we may look at a | |
2609 | symbol once, decide not to do anything, and then get called | |
2610 | recursively later after REF_REGULAR is set below. */ | |
f5385ebf | 2611 | h->dynamic_adjusted = 1; |
45d6a902 AM |
2612 | |
2613 | /* If this is a weak definition, and we know a real definition, and | |
2614 | the real symbol is not itself defined by a regular object file, | |
2615 | then get a good value for the real definition. We handle the | |
2616 | real symbol first, for the convenience of the backend routine. | |
2617 | ||
2618 | Note that there is a confusing case here. If the real definition | |
2619 | is defined by a regular object file, we don't get the real symbol | |
2620 | from the dynamic object, but we do get the weak symbol. If the | |
2621 | processor backend uses a COPY reloc, then if some routine in the | |
2622 | dynamic object changes the real symbol, we will not see that | |
2623 | change in the corresponding weak symbol. This is the way other | |
2624 | ELF linkers work as well, and seems to be a result of the shared | |
2625 | library model. | |
2626 | ||
2627 | I will clarify this issue. Most SVR4 shared libraries define the | |
2628 | variable _timezone and define timezone as a weak synonym. The | |
2629 | tzset call changes _timezone. If you write | |
2630 | extern int timezone; | |
2631 | int _timezone = 5; | |
2632 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
2633 | you might expect that, since timezone is a synonym for _timezone, | |
2634 | the same number will print both times. However, if the processor | |
2635 | backend uses a COPY reloc, then actually timezone will be copied | |
2636 | into your process image, and, since you define _timezone | |
2637 | yourself, _timezone will not. Thus timezone and _timezone will | |
2638 | wind up at different memory locations. The tzset call will set | |
2639 | _timezone, leaving timezone unchanged. */ | |
2640 | ||
f6e332e6 | 2641 | if (h->u.weakdef != NULL) |
45d6a902 AM |
2642 | { |
2643 | /* If we get to this point, we know there is an implicit | |
2644 | reference by a regular object file via the weak symbol H. | |
2645 | FIXME: Is this really true? What if the traversal finds | |
f6e332e6 AM |
2646 | H->U.WEAKDEF before it finds H? */ |
2647 | h->u.weakdef->ref_regular = 1; | |
45d6a902 | 2648 | |
f6e332e6 | 2649 | if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif)) |
45d6a902 AM |
2650 | return FALSE; |
2651 | } | |
2652 | ||
2653 | /* If a symbol has no type and no size and does not require a PLT | |
2654 | entry, then we are probably about to do the wrong thing here: we | |
2655 | are probably going to create a COPY reloc for an empty object. | |
2656 | This case can arise when a shared object is built with assembly | |
2657 | code, and the assembly code fails to set the symbol type. */ | |
2658 | if (h->size == 0 | |
2659 | && h->type == STT_NOTYPE | |
f5385ebf | 2660 | && !h->needs_plt) |
45d6a902 AM |
2661 | (*_bfd_error_handler) |
2662 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
2663 | h->root.root.string); | |
2664 | ||
2665 | dynobj = elf_hash_table (eif->info)->dynobj; | |
2666 | bed = get_elf_backend_data (dynobj); | |
e7c33416 | 2667 | |
45d6a902 AM |
2668 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
2669 | { | |
2670 | eif->failed = TRUE; | |
2671 | return FALSE; | |
2672 | } | |
2673 | ||
2674 | return TRUE; | |
2675 | } | |
2676 | ||
027297b7 L |
2677 | /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, |
2678 | DYNBSS. */ | |
2679 | ||
2680 | bfd_boolean | |
2681 | _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h, | |
2682 | asection *dynbss) | |
2683 | { | |
91ac5911 | 2684 | unsigned int power_of_two; |
027297b7 L |
2685 | bfd_vma mask; |
2686 | asection *sec = h->root.u.def.section; | |
2687 | ||
2688 | /* The section aligment of definition is the maximum alignment | |
91ac5911 L |
2689 | requirement of symbols defined in the section. Since we don't |
2690 | know the symbol alignment requirement, we start with the | |
2691 | maximum alignment and check low bits of the symbol address | |
2692 | for the minimum alignment. */ | |
2693 | power_of_two = bfd_get_section_alignment (sec->owner, sec); | |
2694 | mask = ((bfd_vma) 1 << power_of_two) - 1; | |
2695 | while ((h->root.u.def.value & mask) != 0) | |
2696 | { | |
2697 | mask >>= 1; | |
2698 | --power_of_two; | |
2699 | } | |
027297b7 | 2700 | |
91ac5911 L |
2701 | if (power_of_two > bfd_get_section_alignment (dynbss->owner, |
2702 | dynbss)) | |
027297b7 L |
2703 | { |
2704 | /* Adjust the section alignment if needed. */ | |
2705 | if (! bfd_set_section_alignment (dynbss->owner, dynbss, | |
91ac5911 | 2706 | power_of_two)) |
027297b7 L |
2707 | return FALSE; |
2708 | } | |
2709 | ||
91ac5911 | 2710 | /* We make sure that the symbol will be aligned properly. */ |
027297b7 L |
2711 | dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); |
2712 | ||
2713 | /* Define the symbol as being at this point in DYNBSS. */ | |
2714 | h->root.u.def.section = dynbss; | |
2715 | h->root.u.def.value = dynbss->size; | |
2716 | ||
2717 | /* Increment the size of DYNBSS to make room for the symbol. */ | |
2718 | dynbss->size += h->size; | |
2719 | ||
2720 | return TRUE; | |
2721 | } | |
2722 | ||
45d6a902 AM |
2723 | /* Adjust all external symbols pointing into SEC_MERGE sections |
2724 | to reflect the object merging within the sections. */ | |
2725 | ||
28caa186 | 2726 | static bfd_boolean |
268b6b39 | 2727 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
2728 | { |
2729 | asection *sec; | |
2730 | ||
2731 | if (h->root.type == bfd_link_hash_warning) | |
2732 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2733 | ||
2734 | if ((h->root.type == bfd_link_hash_defined | |
2735 | || h->root.type == bfd_link_hash_defweak) | |
2736 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
2737 | && sec->sec_info_type == ELF_INFO_TYPE_MERGE) | |
2738 | { | |
a50b1753 | 2739 | bfd *output_bfd = (bfd *) data; |
45d6a902 AM |
2740 | |
2741 | h->root.u.def.value = | |
2742 | _bfd_merged_section_offset (output_bfd, | |
2743 | &h->root.u.def.section, | |
2744 | elf_section_data (sec)->sec_info, | |
753731ee | 2745 | h->root.u.def.value); |
45d6a902 AM |
2746 | } |
2747 | ||
2748 | return TRUE; | |
2749 | } | |
986a241f RH |
2750 | |
2751 | /* Returns false if the symbol referred to by H should be considered | |
2752 | to resolve local to the current module, and true if it should be | |
2753 | considered to bind dynamically. */ | |
2754 | ||
2755 | bfd_boolean | |
268b6b39 AM |
2756 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
2757 | struct bfd_link_info *info, | |
89a2ee5a | 2758 | bfd_boolean not_local_protected) |
986a241f RH |
2759 | { |
2760 | bfd_boolean binding_stays_local_p; | |
fcb93ecf PB |
2761 | const struct elf_backend_data *bed; |
2762 | struct elf_link_hash_table *hash_table; | |
986a241f RH |
2763 | |
2764 | if (h == NULL) | |
2765 | return FALSE; | |
2766 | ||
2767 | while (h->root.type == bfd_link_hash_indirect | |
2768 | || h->root.type == bfd_link_hash_warning) | |
2769 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2770 | ||
2771 | /* If it was forced local, then clearly it's not dynamic. */ | |
2772 | if (h->dynindx == -1) | |
2773 | return FALSE; | |
f5385ebf | 2774 | if (h->forced_local) |
986a241f RH |
2775 | return FALSE; |
2776 | ||
2777 | /* Identify the cases where name binding rules say that a | |
2778 | visible symbol resolves locally. */ | |
55255dae | 2779 | binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h); |
986a241f RH |
2780 | |
2781 | switch (ELF_ST_VISIBILITY (h->other)) | |
2782 | { | |
2783 | case STV_INTERNAL: | |
2784 | case STV_HIDDEN: | |
2785 | return FALSE; | |
2786 | ||
2787 | case STV_PROTECTED: | |
fcb93ecf PB |
2788 | hash_table = elf_hash_table (info); |
2789 | if (!is_elf_hash_table (hash_table)) | |
2790 | return FALSE; | |
2791 | ||
2792 | bed = get_elf_backend_data (hash_table->dynobj); | |
2793 | ||
986a241f RH |
2794 | /* Proper resolution for function pointer equality may require |
2795 | that these symbols perhaps be resolved dynamically, even though | |
2796 | we should be resolving them to the current module. */ | |
89a2ee5a | 2797 | if (!not_local_protected || !bed->is_function_type (h->type)) |
986a241f RH |
2798 | binding_stays_local_p = TRUE; |
2799 | break; | |
2800 | ||
2801 | default: | |
986a241f RH |
2802 | break; |
2803 | } | |
2804 | ||
aa37626c | 2805 | /* If it isn't defined locally, then clearly it's dynamic. */ |
89a2ee5a | 2806 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
aa37626c L |
2807 | return TRUE; |
2808 | ||
986a241f RH |
2809 | /* Otherwise, the symbol is dynamic if binding rules don't tell |
2810 | us that it remains local. */ | |
2811 | return !binding_stays_local_p; | |
2812 | } | |
f6c52c13 AM |
2813 | |
2814 | /* Return true if the symbol referred to by H should be considered | |
2815 | to resolve local to the current module, and false otherwise. Differs | |
2816 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |
2e76e85a | 2817 | undefined symbols. The two functions are virtually identical except |
89a2ee5a AM |
2818 | for the place where forced_local and dynindx == -1 are tested. If |
2819 | either of those tests are true, _bfd_elf_dynamic_symbol_p will say | |
2820 | the symbol is local, while _bfd_elf_symbol_refs_local_p will say | |
2821 | the symbol is local only for defined symbols. | |
2822 | It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as | |
2823 | !_bfd_elf_symbol_refs_local_p, except that targets differ in their | |
2824 | treatment of undefined weak symbols. For those that do not make | |
2825 | undefined weak symbols dynamic, both functions may return false. */ | |
f6c52c13 AM |
2826 | |
2827 | bfd_boolean | |
268b6b39 AM |
2828 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
2829 | struct bfd_link_info *info, | |
2830 | bfd_boolean local_protected) | |
f6c52c13 | 2831 | { |
fcb93ecf PB |
2832 | const struct elf_backend_data *bed; |
2833 | struct elf_link_hash_table *hash_table; | |
2834 | ||
f6c52c13 AM |
2835 | /* If it's a local sym, of course we resolve locally. */ |
2836 | if (h == NULL) | |
2837 | return TRUE; | |
2838 | ||
d95edcac L |
2839 | /* STV_HIDDEN or STV_INTERNAL ones must be local. */ |
2840 | if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
2841 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
2842 | return TRUE; | |
2843 | ||
7e2294f9 AO |
2844 | /* Common symbols that become definitions don't get the DEF_REGULAR |
2845 | flag set, so test it first, and don't bail out. */ | |
2846 | if (ELF_COMMON_DEF_P (h)) | |
2847 | /* Do nothing. */; | |
f6c52c13 | 2848 | /* If we don't have a definition in a regular file, then we can't |
49ff44d6 L |
2849 | resolve locally. The sym is either undefined or dynamic. */ |
2850 | else if (!h->def_regular) | |
f6c52c13 AM |
2851 | return FALSE; |
2852 | ||
2853 | /* Forced local symbols resolve locally. */ | |
f5385ebf | 2854 | if (h->forced_local) |
f6c52c13 AM |
2855 | return TRUE; |
2856 | ||
2857 | /* As do non-dynamic symbols. */ | |
2858 | if (h->dynindx == -1) | |
2859 | return TRUE; | |
2860 | ||
2861 | /* At this point, we know the symbol is defined and dynamic. In an | |
2862 | executable it must resolve locally, likewise when building symbolic | |
2863 | shared libraries. */ | |
55255dae | 2864 | if (info->executable || SYMBOLIC_BIND (info, h)) |
f6c52c13 AM |
2865 | return TRUE; |
2866 | ||
2867 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |
2868 | with default visibility might not resolve locally. */ | |
2869 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
2870 | return FALSE; | |
2871 | ||
fcb93ecf PB |
2872 | hash_table = elf_hash_table (info); |
2873 | if (!is_elf_hash_table (hash_table)) | |
2874 | return TRUE; | |
2875 | ||
2876 | bed = get_elf_backend_data (hash_table->dynobj); | |
2877 | ||
1c16dfa5 | 2878 | /* STV_PROTECTED non-function symbols are local. */ |
fcb93ecf | 2879 | if (!bed->is_function_type (h->type)) |
1c16dfa5 L |
2880 | return TRUE; |
2881 | ||
f6c52c13 AM |
2882 | /* Function pointer equality tests may require that STV_PROTECTED |
2883 | symbols be treated as dynamic symbols, even when we know that the | |
2884 | dynamic linker will resolve them locally. */ | |
2885 | return local_protected; | |
2886 | } | |
e1918d23 AM |
2887 | |
2888 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |
2889 | aligned. Returns the first TLS output section. */ | |
2890 | ||
2891 | struct bfd_section * | |
2892 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |
2893 | { | |
2894 | struct bfd_section *sec, *tls; | |
2895 | unsigned int align = 0; | |
2896 | ||
2897 | for (sec = obfd->sections; sec != NULL; sec = sec->next) | |
2898 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) | |
2899 | break; | |
2900 | tls = sec; | |
2901 | ||
2902 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | |
2903 | if (sec->alignment_power > align) | |
2904 | align = sec->alignment_power; | |
2905 | ||
2906 | elf_hash_table (info)->tls_sec = tls; | |
2907 | ||
2908 | /* Ensure the alignment of the first section is the largest alignment, | |
2909 | so that the tls segment starts aligned. */ | |
2910 | if (tls != NULL) | |
2911 | tls->alignment_power = align; | |
2912 | ||
2913 | return tls; | |
2914 | } | |
0ad989f9 L |
2915 | |
2916 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |
2917 | static bfd_boolean | |
2918 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | |
2919 | Elf_Internal_Sym *sym) | |
2920 | { | |
a4d8e49b L |
2921 | const struct elf_backend_data *bed; |
2922 | ||
0ad989f9 L |
2923 | /* Local symbols do not count, but target specific ones might. */ |
2924 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
2925 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
2926 | return FALSE; | |
2927 | ||
fcb93ecf | 2928 | bed = get_elf_backend_data (abfd); |
0ad989f9 | 2929 | /* Function symbols do not count. */ |
fcb93ecf | 2930 | if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) |
0ad989f9 L |
2931 | return FALSE; |
2932 | ||
2933 | /* If the section is undefined, then so is the symbol. */ | |
2934 | if (sym->st_shndx == SHN_UNDEF) | |
2935 | return FALSE; | |
2936 | ||
2937 | /* If the symbol is defined in the common section, then | |
2938 | it is a common definition and so does not count. */ | |
a4d8e49b | 2939 | if (bed->common_definition (sym)) |
0ad989f9 L |
2940 | return FALSE; |
2941 | ||
2942 | /* If the symbol is in a target specific section then we | |
2943 | must rely upon the backend to tell us what it is. */ | |
2944 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
2945 | /* FIXME - this function is not coded yet: | |
2946 | ||
2947 | return _bfd_is_global_symbol_definition (abfd, sym); | |
2948 | ||
2949 | Instead for now assume that the definition is not global, | |
2950 | Even if this is wrong, at least the linker will behave | |
2951 | in the same way that it used to do. */ | |
2952 | return FALSE; | |
2953 | ||
2954 | return TRUE; | |
2955 | } | |
2956 | ||
2957 | /* Search the symbol table of the archive element of the archive ABFD | |
2958 | whose archive map contains a mention of SYMDEF, and determine if | |
2959 | the symbol is defined in this element. */ | |
2960 | static bfd_boolean | |
2961 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |
2962 | { | |
2963 | Elf_Internal_Shdr * hdr; | |
2964 | bfd_size_type symcount; | |
2965 | bfd_size_type extsymcount; | |
2966 | bfd_size_type extsymoff; | |
2967 | Elf_Internal_Sym *isymbuf; | |
2968 | Elf_Internal_Sym *isym; | |
2969 | Elf_Internal_Sym *isymend; | |
2970 | bfd_boolean result; | |
2971 | ||
2972 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
2973 | if (abfd == NULL) | |
2974 | return FALSE; | |
2975 | ||
2976 | if (! bfd_check_format (abfd, bfd_object)) | |
2977 | return FALSE; | |
2978 | ||
2979 | /* If we have already included the element containing this symbol in the | |
2980 | link then we do not need to include it again. Just claim that any symbol | |
2981 | it contains is not a definition, so that our caller will not decide to | |
2982 | (re)include this element. */ | |
2983 | if (abfd->archive_pass) | |
2984 | return FALSE; | |
2985 | ||
2986 | /* Select the appropriate symbol table. */ | |
2987 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
2988 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
2989 | else | |
2990 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2991 | ||
2992 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
2993 | ||
2994 | /* The sh_info field of the symtab header tells us where the | |
2995 | external symbols start. We don't care about the local symbols. */ | |
2996 | if (elf_bad_symtab (abfd)) | |
2997 | { | |
2998 | extsymcount = symcount; | |
2999 | extsymoff = 0; | |
3000 | } | |
3001 | else | |
3002 | { | |
3003 | extsymcount = symcount - hdr->sh_info; | |
3004 | extsymoff = hdr->sh_info; | |
3005 | } | |
3006 | ||
3007 | if (extsymcount == 0) | |
3008 | return FALSE; | |
3009 | ||
3010 | /* Read in the symbol table. */ | |
3011 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
3012 | NULL, NULL, NULL); | |
3013 | if (isymbuf == NULL) | |
3014 | return FALSE; | |
3015 | ||
3016 | /* Scan the symbol table looking for SYMDEF. */ | |
3017 | result = FALSE; | |
3018 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |
3019 | { | |
3020 | const char *name; | |
3021 | ||
3022 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
3023 | isym->st_name); | |
3024 | if (name == NULL) | |
3025 | break; | |
3026 | ||
3027 | if (strcmp (name, symdef->name) == 0) | |
3028 | { | |
3029 | result = is_global_data_symbol_definition (abfd, isym); | |
3030 | break; | |
3031 | } | |
3032 | } | |
3033 | ||
3034 | free (isymbuf); | |
3035 | ||
3036 | return result; | |
3037 | } | |
3038 | \f | |
5a580b3a AM |
3039 | /* Add an entry to the .dynamic table. */ |
3040 | ||
3041 | bfd_boolean | |
3042 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | |
3043 | bfd_vma tag, | |
3044 | bfd_vma val) | |
3045 | { | |
3046 | struct elf_link_hash_table *hash_table; | |
3047 | const struct elf_backend_data *bed; | |
3048 | asection *s; | |
3049 | bfd_size_type newsize; | |
3050 | bfd_byte *newcontents; | |
3051 | Elf_Internal_Dyn dyn; | |
3052 | ||
3053 | hash_table = elf_hash_table (info); | |
3054 | if (! is_elf_hash_table (hash_table)) | |
3055 | return FALSE; | |
3056 | ||
3057 | bed = get_elf_backend_data (hash_table->dynobj); | |
3058 | s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |
3059 | BFD_ASSERT (s != NULL); | |
3060 | ||
eea6121a | 3061 | newsize = s->size + bed->s->sizeof_dyn; |
a50b1753 | 3062 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
5a580b3a AM |
3063 | if (newcontents == NULL) |
3064 | return FALSE; | |
3065 | ||
3066 | dyn.d_tag = tag; | |
3067 | dyn.d_un.d_val = val; | |
eea6121a | 3068 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); |
5a580b3a | 3069 | |
eea6121a | 3070 | s->size = newsize; |
5a580b3a AM |
3071 | s->contents = newcontents; |
3072 | ||
3073 | return TRUE; | |
3074 | } | |
3075 | ||
3076 | /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, | |
3077 | otherwise just check whether one already exists. Returns -1 on error, | |
3078 | 1 if a DT_NEEDED tag already exists, and 0 on success. */ | |
3079 | ||
4ad4eba5 | 3080 | static int |
7e9f0867 AM |
3081 | elf_add_dt_needed_tag (bfd *abfd, |
3082 | struct bfd_link_info *info, | |
4ad4eba5 AM |
3083 | const char *soname, |
3084 | bfd_boolean do_it) | |
5a580b3a AM |
3085 | { |
3086 | struct elf_link_hash_table *hash_table; | |
3087 | bfd_size_type oldsize; | |
3088 | bfd_size_type strindex; | |
3089 | ||
7e9f0867 AM |
3090 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
3091 | return -1; | |
3092 | ||
5a580b3a AM |
3093 | hash_table = elf_hash_table (info); |
3094 | oldsize = _bfd_elf_strtab_size (hash_table->dynstr); | |
3095 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); | |
3096 | if (strindex == (bfd_size_type) -1) | |
3097 | return -1; | |
3098 | ||
3099 | if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) | |
3100 | { | |
3101 | asection *sdyn; | |
3102 | const struct elf_backend_data *bed; | |
3103 | bfd_byte *extdyn; | |
3104 | ||
3105 | bed = get_elf_backend_data (hash_table->dynobj); | |
3106 | sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |
7e9f0867 AM |
3107 | if (sdyn != NULL) |
3108 | for (extdyn = sdyn->contents; | |
3109 | extdyn < sdyn->contents + sdyn->size; | |
3110 | extdyn += bed->s->sizeof_dyn) | |
3111 | { | |
3112 | Elf_Internal_Dyn dyn; | |
5a580b3a | 3113 | |
7e9f0867 AM |
3114 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
3115 | if (dyn.d_tag == DT_NEEDED | |
3116 | && dyn.d_un.d_val == strindex) | |
3117 | { | |
3118 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
3119 | return 1; | |
3120 | } | |
3121 | } | |
5a580b3a AM |
3122 | } |
3123 | ||
3124 | if (do_it) | |
3125 | { | |
7e9f0867 AM |
3126 | if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) |
3127 | return -1; | |
3128 | ||
5a580b3a AM |
3129 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
3130 | return -1; | |
3131 | } | |
3132 | else | |
3133 | /* We were just checking for existence of the tag. */ | |
3134 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
3135 | ||
3136 | return 0; | |
3137 | } | |
3138 | ||
010e5ae2 AM |
3139 | static bfd_boolean |
3140 | on_needed_list (const char *soname, struct bfd_link_needed_list *needed) | |
3141 | { | |
3142 | for (; needed != NULL; needed = needed->next) | |
3143 | if (strcmp (soname, needed->name) == 0) | |
3144 | return TRUE; | |
3145 | ||
3146 | return FALSE; | |
3147 | } | |
3148 | ||
5a580b3a | 3149 | /* Sort symbol by value and section. */ |
4ad4eba5 AM |
3150 | static int |
3151 | elf_sort_symbol (const void *arg1, const void *arg2) | |
5a580b3a AM |
3152 | { |
3153 | const struct elf_link_hash_entry *h1; | |
3154 | const struct elf_link_hash_entry *h2; | |
10b7e05b | 3155 | bfd_signed_vma vdiff; |
5a580b3a AM |
3156 | |
3157 | h1 = *(const struct elf_link_hash_entry **) arg1; | |
3158 | h2 = *(const struct elf_link_hash_entry **) arg2; | |
10b7e05b NC |
3159 | vdiff = h1->root.u.def.value - h2->root.u.def.value; |
3160 | if (vdiff != 0) | |
3161 | return vdiff > 0 ? 1 : -1; | |
3162 | else | |
3163 | { | |
3164 | long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; | |
3165 | if (sdiff != 0) | |
3166 | return sdiff > 0 ? 1 : -1; | |
3167 | } | |
5a580b3a AM |
3168 | return 0; |
3169 | } | |
4ad4eba5 | 3170 | |
5a580b3a AM |
3171 | /* This function is used to adjust offsets into .dynstr for |
3172 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |
3173 | ||
3174 | static bfd_boolean | |
3175 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | |
3176 | { | |
a50b1753 | 3177 | struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; |
5a580b3a AM |
3178 | |
3179 | if (h->root.type == bfd_link_hash_warning) | |
3180 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3181 | ||
3182 | if (h->dynindx != -1) | |
3183 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |
3184 | return TRUE; | |
3185 | } | |
3186 | ||
3187 | /* Assign string offsets in .dynstr, update all structures referencing | |
3188 | them. */ | |
3189 | ||
4ad4eba5 AM |
3190 | static bfd_boolean |
3191 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
5a580b3a AM |
3192 | { |
3193 | struct elf_link_hash_table *hash_table = elf_hash_table (info); | |
3194 | struct elf_link_local_dynamic_entry *entry; | |
3195 | struct elf_strtab_hash *dynstr = hash_table->dynstr; | |
3196 | bfd *dynobj = hash_table->dynobj; | |
3197 | asection *sdyn; | |
3198 | bfd_size_type size; | |
3199 | const struct elf_backend_data *bed; | |
3200 | bfd_byte *extdyn; | |
3201 | ||
3202 | _bfd_elf_strtab_finalize (dynstr); | |
3203 | size = _bfd_elf_strtab_size (dynstr); | |
3204 | ||
3205 | bed = get_elf_backend_data (dynobj); | |
3206 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
3207 | BFD_ASSERT (sdyn != NULL); | |
3208 | ||
3209 | /* Update all .dynamic entries referencing .dynstr strings. */ | |
3210 | for (extdyn = sdyn->contents; | |
eea6121a | 3211 | extdyn < sdyn->contents + sdyn->size; |
5a580b3a AM |
3212 | extdyn += bed->s->sizeof_dyn) |
3213 | { | |
3214 | Elf_Internal_Dyn dyn; | |
3215 | ||
3216 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | |
3217 | switch (dyn.d_tag) | |
3218 | { | |
3219 | case DT_STRSZ: | |
3220 | dyn.d_un.d_val = size; | |
3221 | break; | |
3222 | case DT_NEEDED: | |
3223 | case DT_SONAME: | |
3224 | case DT_RPATH: | |
3225 | case DT_RUNPATH: | |
3226 | case DT_FILTER: | |
3227 | case DT_AUXILIARY: | |
7ee314fa AM |
3228 | case DT_AUDIT: |
3229 | case DT_DEPAUDIT: | |
5a580b3a AM |
3230 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); |
3231 | break; | |
3232 | default: | |
3233 | continue; | |
3234 | } | |
3235 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | |
3236 | } | |
3237 | ||
3238 | /* Now update local dynamic symbols. */ | |
3239 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) | |
3240 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |
3241 | entry->isym.st_name); | |
3242 | ||
3243 | /* And the rest of dynamic symbols. */ | |
3244 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); | |
3245 | ||
3246 | /* Adjust version definitions. */ | |
3247 | if (elf_tdata (output_bfd)->cverdefs) | |
3248 | { | |
3249 | asection *s; | |
3250 | bfd_byte *p; | |
3251 | bfd_size_type i; | |
3252 | Elf_Internal_Verdef def; | |
3253 | Elf_Internal_Verdaux defaux; | |
3254 | ||
3255 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
3256 | p = s->contents; | |
3257 | do | |
3258 | { | |
3259 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |
3260 | &def); | |
3261 | p += sizeof (Elf_External_Verdef); | |
3e3b46e5 PB |
3262 | if (def.vd_aux != sizeof (Elf_External_Verdef)) |
3263 | continue; | |
5a580b3a AM |
3264 | for (i = 0; i < def.vd_cnt; ++i) |
3265 | { | |
3266 | _bfd_elf_swap_verdaux_in (output_bfd, | |
3267 | (Elf_External_Verdaux *) p, &defaux); | |
3268 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |
3269 | defaux.vda_name); | |
3270 | _bfd_elf_swap_verdaux_out (output_bfd, | |
3271 | &defaux, (Elf_External_Verdaux *) p); | |
3272 | p += sizeof (Elf_External_Verdaux); | |
3273 | } | |
3274 | } | |
3275 | while (def.vd_next); | |
3276 | } | |
3277 | ||
3278 | /* Adjust version references. */ | |
3279 | if (elf_tdata (output_bfd)->verref) | |
3280 | { | |
3281 | asection *s; | |
3282 | bfd_byte *p; | |
3283 | bfd_size_type i; | |
3284 | Elf_Internal_Verneed need; | |
3285 | Elf_Internal_Vernaux needaux; | |
3286 | ||
3287 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
3288 | p = s->contents; | |
3289 | do | |
3290 | { | |
3291 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |
3292 | &need); | |
3293 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |
3294 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |
3295 | (Elf_External_Verneed *) p); | |
3296 | p += sizeof (Elf_External_Verneed); | |
3297 | for (i = 0; i < need.vn_cnt; ++i) | |
3298 | { | |
3299 | _bfd_elf_swap_vernaux_in (output_bfd, | |
3300 | (Elf_External_Vernaux *) p, &needaux); | |
3301 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |
3302 | needaux.vna_name); | |
3303 | _bfd_elf_swap_vernaux_out (output_bfd, | |
3304 | &needaux, | |
3305 | (Elf_External_Vernaux *) p); | |
3306 | p += sizeof (Elf_External_Vernaux); | |
3307 | } | |
3308 | } | |
3309 | while (need.vn_next); | |
3310 | } | |
3311 | ||
3312 | return TRUE; | |
3313 | } | |
3314 | \f | |
13285a1b AM |
3315 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
3316 | The default is to only match when the INPUT and OUTPUT are exactly | |
3317 | the same target. */ | |
3318 | ||
3319 | bfd_boolean | |
3320 | _bfd_elf_default_relocs_compatible (const bfd_target *input, | |
3321 | const bfd_target *output) | |
3322 | { | |
3323 | return input == output; | |
3324 | } | |
3325 | ||
3326 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | |
3327 | This version is used when different targets for the same architecture | |
3328 | are virtually identical. */ | |
3329 | ||
3330 | bfd_boolean | |
3331 | _bfd_elf_relocs_compatible (const bfd_target *input, | |
3332 | const bfd_target *output) | |
3333 | { | |
3334 | const struct elf_backend_data *obed, *ibed; | |
3335 | ||
3336 | if (input == output) | |
3337 | return TRUE; | |
3338 | ||
3339 | ibed = xvec_get_elf_backend_data (input); | |
3340 | obed = xvec_get_elf_backend_data (output); | |
3341 | ||
3342 | if (ibed->arch != obed->arch) | |
3343 | return FALSE; | |
3344 | ||
3345 | /* If both backends are using this function, deem them compatible. */ | |
3346 | return ibed->relocs_compatible == obed->relocs_compatible; | |
3347 | } | |
3348 | ||
4ad4eba5 AM |
3349 | /* Add symbols from an ELF object file to the linker hash table. */ |
3350 | ||
3351 | static bfd_boolean | |
3352 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | |
3353 | { | |
a0c402a5 | 3354 | Elf_Internal_Ehdr *ehdr; |
4ad4eba5 AM |
3355 | Elf_Internal_Shdr *hdr; |
3356 | bfd_size_type symcount; | |
3357 | bfd_size_type extsymcount; | |
3358 | bfd_size_type extsymoff; | |
3359 | struct elf_link_hash_entry **sym_hash; | |
3360 | bfd_boolean dynamic; | |
3361 | Elf_External_Versym *extversym = NULL; | |
3362 | Elf_External_Versym *ever; | |
3363 | struct elf_link_hash_entry *weaks; | |
3364 | struct elf_link_hash_entry **nondeflt_vers = NULL; | |
3365 | bfd_size_type nondeflt_vers_cnt = 0; | |
3366 | Elf_Internal_Sym *isymbuf = NULL; | |
3367 | Elf_Internal_Sym *isym; | |
3368 | Elf_Internal_Sym *isymend; | |
3369 | const struct elf_backend_data *bed; | |
3370 | bfd_boolean add_needed; | |
66eb6687 | 3371 | struct elf_link_hash_table *htab; |
4ad4eba5 | 3372 | bfd_size_type amt; |
66eb6687 | 3373 | void *alloc_mark = NULL; |
4f87808c AM |
3374 | struct bfd_hash_entry **old_table = NULL; |
3375 | unsigned int old_size = 0; | |
3376 | unsigned int old_count = 0; | |
66eb6687 AM |
3377 | void *old_tab = NULL; |
3378 | void *old_hash; | |
3379 | void *old_ent; | |
3380 | struct bfd_link_hash_entry *old_undefs = NULL; | |
3381 | struct bfd_link_hash_entry *old_undefs_tail = NULL; | |
3382 | long old_dynsymcount = 0; | |
3383 | size_t tabsize = 0; | |
3384 | size_t hashsize = 0; | |
4ad4eba5 | 3385 | |
66eb6687 | 3386 | htab = elf_hash_table (info); |
4ad4eba5 | 3387 | bed = get_elf_backend_data (abfd); |
4ad4eba5 AM |
3388 | |
3389 | if ((abfd->flags & DYNAMIC) == 0) | |
3390 | dynamic = FALSE; | |
3391 | else | |
3392 | { | |
3393 | dynamic = TRUE; | |
3394 | ||
3395 | /* You can't use -r against a dynamic object. Also, there's no | |
3396 | hope of using a dynamic object which does not exactly match | |
3397 | the format of the output file. */ | |
3398 | if (info->relocatable | |
66eb6687 | 3399 | || !is_elf_hash_table (htab) |
f13a99db | 3400 | || info->output_bfd->xvec != abfd->xvec) |
4ad4eba5 | 3401 | { |
9a0789ec NC |
3402 | if (info->relocatable) |
3403 | bfd_set_error (bfd_error_invalid_operation); | |
3404 | else | |
3405 | bfd_set_error (bfd_error_wrong_format); | |
4ad4eba5 AM |
3406 | goto error_return; |
3407 | } | |
3408 | } | |
3409 | ||
a0c402a5 L |
3410 | ehdr = elf_elfheader (abfd); |
3411 | if (info->warn_alternate_em | |
3412 | && bed->elf_machine_code != ehdr->e_machine | |
3413 | && ((bed->elf_machine_alt1 != 0 | |
3414 | && ehdr->e_machine == bed->elf_machine_alt1) | |
3415 | || (bed->elf_machine_alt2 != 0 | |
3416 | && ehdr->e_machine == bed->elf_machine_alt2))) | |
3417 | info->callbacks->einfo | |
3418 | (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"), | |
3419 | ehdr->e_machine, abfd, bed->elf_machine_code); | |
3420 | ||
4ad4eba5 AM |
3421 | /* As a GNU extension, any input sections which are named |
3422 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
3423 | symbol. This differs from .gnu.warning sections, which generate | |
3424 | warnings when they are included in an output file. */ | |
3425 | if (info->executable) | |
3426 | { | |
3427 | asection *s; | |
3428 | ||
3429 | for (s = abfd->sections; s != NULL; s = s->next) | |
3430 | { | |
3431 | const char *name; | |
3432 | ||
3433 | name = bfd_get_section_name (abfd, s); | |
0112cd26 | 3434 | if (CONST_STRNEQ (name, ".gnu.warning.")) |
4ad4eba5 AM |
3435 | { |
3436 | char *msg; | |
3437 | bfd_size_type sz; | |
4ad4eba5 AM |
3438 | |
3439 | name += sizeof ".gnu.warning." - 1; | |
3440 | ||
3441 | /* If this is a shared object, then look up the symbol | |
3442 | in the hash table. If it is there, and it is already | |
3443 | been defined, then we will not be using the entry | |
3444 | from this shared object, so we don't need to warn. | |
3445 | FIXME: If we see the definition in a regular object | |
3446 | later on, we will warn, but we shouldn't. The only | |
3447 | fix is to keep track of what warnings we are supposed | |
3448 | to emit, and then handle them all at the end of the | |
3449 | link. */ | |
3450 | if (dynamic) | |
3451 | { | |
3452 | struct elf_link_hash_entry *h; | |
3453 | ||
66eb6687 | 3454 | h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); |
4ad4eba5 AM |
3455 | |
3456 | /* FIXME: What about bfd_link_hash_common? */ | |
3457 | if (h != NULL | |
3458 | && (h->root.type == bfd_link_hash_defined | |
3459 | || h->root.type == bfd_link_hash_defweak)) | |
3460 | { | |
3461 | /* We don't want to issue this warning. Clobber | |
3462 | the section size so that the warning does not | |
3463 | get copied into the output file. */ | |
eea6121a | 3464 | s->size = 0; |
4ad4eba5 AM |
3465 | continue; |
3466 | } | |
3467 | } | |
3468 | ||
eea6121a | 3469 | sz = s->size; |
a50b1753 | 3470 | msg = (char *) bfd_alloc (abfd, sz + 1); |
4ad4eba5 AM |
3471 | if (msg == NULL) |
3472 | goto error_return; | |
3473 | ||
370a0e1b | 3474 | if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) |
4ad4eba5 AM |
3475 | goto error_return; |
3476 | ||
370a0e1b | 3477 | msg[sz] = '\0'; |
4ad4eba5 AM |
3478 | |
3479 | if (! (_bfd_generic_link_add_one_symbol | |
3480 | (info, abfd, name, BSF_WARNING, s, 0, msg, | |
66eb6687 | 3481 | FALSE, bed->collect, NULL))) |
4ad4eba5 AM |
3482 | goto error_return; |
3483 | ||
3484 | if (! info->relocatable) | |
3485 | { | |
3486 | /* Clobber the section size so that the warning does | |
3487 | not get copied into the output file. */ | |
eea6121a | 3488 | s->size = 0; |
11d2f718 AM |
3489 | |
3490 | /* Also set SEC_EXCLUDE, so that symbols defined in | |
3491 | the warning section don't get copied to the output. */ | |
3492 | s->flags |= SEC_EXCLUDE; | |
4ad4eba5 AM |
3493 | } |
3494 | } | |
3495 | } | |
3496 | } | |
3497 | ||
3498 | add_needed = TRUE; | |
3499 | if (! dynamic) | |
3500 | { | |
3501 | /* If we are creating a shared library, create all the dynamic | |
3502 | sections immediately. We need to attach them to something, | |
3503 | so we attach them to this BFD, provided it is the right | |
3504 | format. FIXME: If there are no input BFD's of the same | |
3505 | format as the output, we can't make a shared library. */ | |
3506 | if (info->shared | |
66eb6687 | 3507 | && is_elf_hash_table (htab) |
f13a99db | 3508 | && info->output_bfd->xvec == abfd->xvec |
66eb6687 | 3509 | && !htab->dynamic_sections_created) |
4ad4eba5 AM |
3510 | { |
3511 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |
3512 | goto error_return; | |
3513 | } | |
3514 | } | |
66eb6687 | 3515 | else if (!is_elf_hash_table (htab)) |
4ad4eba5 AM |
3516 | goto error_return; |
3517 | else | |
3518 | { | |
3519 | asection *s; | |
3520 | const char *soname = NULL; | |
7ee314fa | 3521 | char *audit = NULL; |
4ad4eba5 AM |
3522 | struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; |
3523 | int ret; | |
3524 | ||
3525 | /* ld --just-symbols and dynamic objects don't mix very well. | |
92fd189d | 3526 | ld shouldn't allow it. */ |
4ad4eba5 AM |
3527 | if ((s = abfd->sections) != NULL |
3528 | && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS) | |
92fd189d | 3529 | abort (); |
4ad4eba5 AM |
3530 | |
3531 | /* If this dynamic lib was specified on the command line with | |
3532 | --as-needed in effect, then we don't want to add a DT_NEEDED | |
3533 | tag unless the lib is actually used. Similary for libs brought | |
e56f61be L |
3534 | in by another lib's DT_NEEDED. When --no-add-needed is used |
3535 | on a dynamic lib, we don't want to add a DT_NEEDED entry for | |
3536 | any dynamic library in DT_NEEDED tags in the dynamic lib at | |
3537 | all. */ | |
3538 | add_needed = (elf_dyn_lib_class (abfd) | |
3539 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | |
3540 | | DYN_NO_NEEDED)) == 0; | |
4ad4eba5 AM |
3541 | |
3542 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
3543 | if (s != NULL) | |
3544 | { | |
3545 | bfd_byte *dynbuf; | |
3546 | bfd_byte *extdyn; | |
cb33740c | 3547 | unsigned int elfsec; |
4ad4eba5 AM |
3548 | unsigned long shlink; |
3549 | ||
eea6121a | 3550 | if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
f8703194 L |
3551 | { |
3552 | error_free_dyn: | |
3553 | free (dynbuf); | |
3554 | goto error_return; | |
3555 | } | |
4ad4eba5 AM |
3556 | |
3557 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
cb33740c | 3558 | if (elfsec == SHN_BAD) |
4ad4eba5 AM |
3559 | goto error_free_dyn; |
3560 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
3561 | ||
3562 | for (extdyn = dynbuf; | |
eea6121a | 3563 | extdyn < dynbuf + s->size; |
4ad4eba5 AM |
3564 | extdyn += bed->s->sizeof_dyn) |
3565 | { | |
3566 | Elf_Internal_Dyn dyn; | |
3567 | ||
3568 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); | |
3569 | if (dyn.d_tag == DT_SONAME) | |
3570 | { | |
3571 | unsigned int tagv = dyn.d_un.d_val; | |
3572 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3573 | if (soname == NULL) | |
3574 | goto error_free_dyn; | |
3575 | } | |
3576 | if (dyn.d_tag == DT_NEEDED) | |
3577 | { | |
3578 | struct bfd_link_needed_list *n, **pn; | |
3579 | char *fnm, *anm; | |
3580 | unsigned int tagv = dyn.d_un.d_val; | |
3581 | ||
3582 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3583 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3584 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3585 | if (n == NULL || fnm == NULL) | |
3586 | goto error_free_dyn; | |
3587 | amt = strlen (fnm) + 1; | |
a50b1753 | 3588 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3589 | if (anm == NULL) |
3590 | goto error_free_dyn; | |
3591 | memcpy (anm, fnm, amt); | |
3592 | n->name = anm; | |
3593 | n->by = abfd; | |
3594 | n->next = NULL; | |
66eb6687 | 3595 | for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) |
4ad4eba5 AM |
3596 | ; |
3597 | *pn = n; | |
3598 | } | |
3599 | if (dyn.d_tag == DT_RUNPATH) | |
3600 | { | |
3601 | struct bfd_link_needed_list *n, **pn; | |
3602 | char *fnm, *anm; | |
3603 | unsigned int tagv = dyn.d_un.d_val; | |
3604 | ||
3605 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3606 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3607 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3608 | if (n == NULL || fnm == NULL) | |
3609 | goto error_free_dyn; | |
3610 | amt = strlen (fnm) + 1; | |
a50b1753 | 3611 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3612 | if (anm == NULL) |
3613 | goto error_free_dyn; | |
3614 | memcpy (anm, fnm, amt); | |
3615 | n->name = anm; | |
3616 | n->by = abfd; | |
3617 | n->next = NULL; | |
3618 | for (pn = & runpath; | |
3619 | *pn != NULL; | |
3620 | pn = &(*pn)->next) | |
3621 | ; | |
3622 | *pn = n; | |
3623 | } | |
3624 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ | |
3625 | if (!runpath && dyn.d_tag == DT_RPATH) | |
3626 | { | |
3627 | struct bfd_link_needed_list *n, **pn; | |
3628 | char *fnm, *anm; | |
3629 | unsigned int tagv = dyn.d_un.d_val; | |
3630 | ||
3631 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3632 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3633 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3634 | if (n == NULL || fnm == NULL) | |
3635 | goto error_free_dyn; | |
3636 | amt = strlen (fnm) + 1; | |
a50b1753 | 3637 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 | 3638 | if (anm == NULL) |
f8703194 | 3639 | goto error_free_dyn; |
4ad4eba5 AM |
3640 | memcpy (anm, fnm, amt); |
3641 | n->name = anm; | |
3642 | n->by = abfd; | |
3643 | n->next = NULL; | |
3644 | for (pn = & rpath; | |
3645 | *pn != NULL; | |
3646 | pn = &(*pn)->next) | |
3647 | ; | |
3648 | *pn = n; | |
3649 | } | |
7ee314fa AM |
3650 | if (dyn.d_tag == DT_AUDIT) |
3651 | { | |
3652 | unsigned int tagv = dyn.d_un.d_val; | |
3653 | audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3654 | } | |
4ad4eba5 AM |
3655 | } |
3656 | ||
3657 | free (dynbuf); | |
3658 | } | |
3659 | ||
3660 | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that | |
3661 | frees all more recently bfd_alloc'd blocks as well. */ | |
3662 | if (runpath) | |
3663 | rpath = runpath; | |
3664 | ||
3665 | if (rpath) | |
3666 | { | |
3667 | struct bfd_link_needed_list **pn; | |
66eb6687 | 3668 | for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) |
4ad4eba5 AM |
3669 | ; |
3670 | *pn = rpath; | |
3671 | } | |
3672 | ||
3673 | /* We do not want to include any of the sections in a dynamic | |
3674 | object in the output file. We hack by simply clobbering the | |
3675 | list of sections in the BFD. This could be handled more | |
3676 | cleanly by, say, a new section flag; the existing | |
3677 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
3678 | still implies that the section takes up space in the output | |
3679 | file. */ | |
3680 | bfd_section_list_clear (abfd); | |
3681 | ||
4ad4eba5 AM |
3682 | /* Find the name to use in a DT_NEEDED entry that refers to this |
3683 | object. If the object has a DT_SONAME entry, we use it. | |
3684 | Otherwise, if the generic linker stuck something in | |
3685 | elf_dt_name, we use that. Otherwise, we just use the file | |
3686 | name. */ | |
3687 | if (soname == NULL || *soname == '\0') | |
3688 | { | |
3689 | soname = elf_dt_name (abfd); | |
3690 | if (soname == NULL || *soname == '\0') | |
3691 | soname = bfd_get_filename (abfd); | |
3692 | } | |
3693 | ||
3694 | /* Save the SONAME because sometimes the linker emulation code | |
3695 | will need to know it. */ | |
3696 | elf_dt_name (abfd) = soname; | |
3697 | ||
7e9f0867 | 3698 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); |
4ad4eba5 AM |
3699 | if (ret < 0) |
3700 | goto error_return; | |
3701 | ||
3702 | /* If we have already included this dynamic object in the | |
3703 | link, just ignore it. There is no reason to include a | |
3704 | particular dynamic object more than once. */ | |
3705 | if (ret > 0) | |
3706 | return TRUE; | |
7ee314fa AM |
3707 | |
3708 | /* Save the DT_AUDIT entry for the linker emulation code. */ | |
3709 | elf_dt_audit (abfd) = audit; | |
4ad4eba5 AM |
3710 | } |
3711 | ||
3712 | /* If this is a dynamic object, we always link against the .dynsym | |
3713 | symbol table, not the .symtab symbol table. The dynamic linker | |
3714 | will only see the .dynsym symbol table, so there is no reason to | |
3715 | look at .symtab for a dynamic object. */ | |
3716 | ||
3717 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
3718 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3719 | else | |
3720 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3721 | ||
3722 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
3723 | ||
3724 | /* The sh_info field of the symtab header tells us where the | |
3725 | external symbols start. We don't care about the local symbols at | |
3726 | this point. */ | |
3727 | if (elf_bad_symtab (abfd)) | |
3728 | { | |
3729 | extsymcount = symcount; | |
3730 | extsymoff = 0; | |
3731 | } | |
3732 | else | |
3733 | { | |
3734 | extsymcount = symcount - hdr->sh_info; | |
3735 | extsymoff = hdr->sh_info; | |
3736 | } | |
3737 | ||
3738 | sym_hash = NULL; | |
3739 | if (extsymcount != 0) | |
3740 | { | |
3741 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
3742 | NULL, NULL, NULL); | |
3743 | if (isymbuf == NULL) | |
3744 | goto error_return; | |
3745 | ||
3746 | /* We store a pointer to the hash table entry for each external | |
3747 | symbol. */ | |
3748 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
a50b1753 | 3749 | sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3750 | if (sym_hash == NULL) |
3751 | goto error_free_sym; | |
3752 | elf_sym_hashes (abfd) = sym_hash; | |
3753 | } | |
3754 | ||
3755 | if (dynamic) | |
3756 | { | |
3757 | /* Read in any version definitions. */ | |
fc0e6df6 PB |
3758 | if (!_bfd_elf_slurp_version_tables (abfd, |
3759 | info->default_imported_symver)) | |
4ad4eba5 AM |
3760 | goto error_free_sym; |
3761 | ||
3762 | /* Read in the symbol versions, but don't bother to convert them | |
3763 | to internal format. */ | |
3764 | if (elf_dynversym (abfd) != 0) | |
3765 | { | |
3766 | Elf_Internal_Shdr *versymhdr; | |
3767 | ||
3768 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
a50b1753 | 3769 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
4ad4eba5 AM |
3770 | if (extversym == NULL) |
3771 | goto error_free_sym; | |
3772 | amt = versymhdr->sh_size; | |
3773 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
3774 | || bfd_bread (extversym, amt, abfd) != amt) | |
3775 | goto error_free_vers; | |
3776 | } | |
3777 | } | |
3778 | ||
66eb6687 AM |
3779 | /* If we are loading an as-needed shared lib, save the symbol table |
3780 | state before we start adding symbols. If the lib turns out | |
3781 | to be unneeded, restore the state. */ | |
3782 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
3783 | { | |
3784 | unsigned int i; | |
3785 | size_t entsize; | |
3786 | ||
3787 | for (entsize = 0, i = 0; i < htab->root.table.size; i++) | |
3788 | { | |
3789 | struct bfd_hash_entry *p; | |
2de92251 | 3790 | struct elf_link_hash_entry *h; |
66eb6687 AM |
3791 | |
3792 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
2de92251 AM |
3793 | { |
3794 | h = (struct elf_link_hash_entry *) p; | |
3795 | entsize += htab->root.table.entsize; | |
3796 | if (h->root.type == bfd_link_hash_warning) | |
3797 | entsize += htab->root.table.entsize; | |
3798 | } | |
66eb6687 AM |
3799 | } |
3800 | ||
3801 | tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); | |
3802 | hashsize = extsymcount * sizeof (struct elf_link_hash_entry *); | |
3803 | old_tab = bfd_malloc (tabsize + entsize + hashsize); | |
3804 | if (old_tab == NULL) | |
3805 | goto error_free_vers; | |
3806 | ||
3807 | /* Remember the current objalloc pointer, so that all mem for | |
3808 | symbols added can later be reclaimed. */ | |
3809 | alloc_mark = bfd_hash_allocate (&htab->root.table, 1); | |
3810 | if (alloc_mark == NULL) | |
3811 | goto error_free_vers; | |
3812 | ||
5061a885 AM |
3813 | /* Make a special call to the linker "notice" function to |
3814 | tell it that we are about to handle an as-needed lib. */ | |
3815 | if (!(*info->callbacks->notice) (info, NULL, abfd, NULL, | |
3816 | notice_as_needed)) | |
9af2a943 | 3817 | goto error_free_vers; |
5061a885 | 3818 | |
66eb6687 AM |
3819 | /* Clone the symbol table and sym hashes. Remember some |
3820 | pointers into the symbol table, and dynamic symbol count. */ | |
3821 | old_hash = (char *) old_tab + tabsize; | |
3822 | old_ent = (char *) old_hash + hashsize; | |
3823 | memcpy (old_tab, htab->root.table.table, tabsize); | |
3824 | memcpy (old_hash, sym_hash, hashsize); | |
3825 | old_undefs = htab->root.undefs; | |
3826 | old_undefs_tail = htab->root.undefs_tail; | |
4f87808c AM |
3827 | old_table = htab->root.table.table; |
3828 | old_size = htab->root.table.size; | |
3829 | old_count = htab->root.table.count; | |
66eb6687 AM |
3830 | old_dynsymcount = htab->dynsymcount; |
3831 | ||
3832 | for (i = 0; i < htab->root.table.size; i++) | |
3833 | { | |
3834 | struct bfd_hash_entry *p; | |
2de92251 | 3835 | struct elf_link_hash_entry *h; |
66eb6687 AM |
3836 | |
3837 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
3838 | { | |
3839 | memcpy (old_ent, p, htab->root.table.entsize); | |
3840 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
2de92251 AM |
3841 | h = (struct elf_link_hash_entry *) p; |
3842 | if (h->root.type == bfd_link_hash_warning) | |
3843 | { | |
3844 | memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); | |
3845 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
3846 | } | |
66eb6687 AM |
3847 | } |
3848 | } | |
3849 | } | |
4ad4eba5 | 3850 | |
66eb6687 | 3851 | weaks = NULL; |
4ad4eba5 AM |
3852 | ever = extversym != NULL ? extversym + extsymoff : NULL; |
3853 | for (isym = isymbuf, isymend = isymbuf + extsymcount; | |
3854 | isym < isymend; | |
3855 | isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
3856 | { | |
3857 | int bind; | |
3858 | bfd_vma value; | |
af44c138 | 3859 | asection *sec, *new_sec; |
4ad4eba5 AM |
3860 | flagword flags; |
3861 | const char *name; | |
3862 | struct elf_link_hash_entry *h; | |
3863 | bfd_boolean definition; | |
3864 | bfd_boolean size_change_ok; | |
3865 | bfd_boolean type_change_ok; | |
3866 | bfd_boolean new_weakdef; | |
3867 | bfd_boolean override; | |
a4d8e49b | 3868 | bfd_boolean common; |
4ad4eba5 AM |
3869 | unsigned int old_alignment; |
3870 | bfd *old_bfd; | |
3cbc5de0 | 3871 | bfd * undef_bfd = NULL; |
4ad4eba5 AM |
3872 | |
3873 | override = FALSE; | |
3874 | ||
3875 | flags = BSF_NO_FLAGS; | |
3876 | sec = NULL; | |
3877 | value = isym->st_value; | |
3878 | *sym_hash = NULL; | |
a4d8e49b | 3879 | common = bed->common_definition (isym); |
4ad4eba5 AM |
3880 | |
3881 | bind = ELF_ST_BIND (isym->st_info); | |
3e7a7d11 | 3882 | switch (bind) |
4ad4eba5 | 3883 | { |
3e7a7d11 | 3884 | case STB_LOCAL: |
4ad4eba5 AM |
3885 | /* This should be impossible, since ELF requires that all |
3886 | global symbols follow all local symbols, and that sh_info | |
3887 | point to the first global symbol. Unfortunately, Irix 5 | |
3888 | screws this up. */ | |
3889 | continue; | |
3e7a7d11 NC |
3890 | |
3891 | case STB_GLOBAL: | |
a4d8e49b | 3892 | if (isym->st_shndx != SHN_UNDEF && !common) |
4ad4eba5 | 3893 | flags = BSF_GLOBAL; |
3e7a7d11 NC |
3894 | break; |
3895 | ||
3896 | case STB_WEAK: | |
3897 | flags = BSF_WEAK; | |
3898 | break; | |
3899 | ||
3900 | case STB_GNU_UNIQUE: | |
3901 | flags = BSF_GNU_UNIQUE; | |
3902 | break; | |
3903 | ||
3904 | default: | |
4ad4eba5 | 3905 | /* Leave it up to the processor backend. */ |
3e7a7d11 | 3906 | break; |
4ad4eba5 AM |
3907 | } |
3908 | ||
3909 | if (isym->st_shndx == SHN_UNDEF) | |
3910 | sec = bfd_und_section_ptr; | |
cb33740c AM |
3911 | else if (isym->st_shndx == SHN_ABS) |
3912 | sec = bfd_abs_section_ptr; | |
3913 | else if (isym->st_shndx == SHN_COMMON) | |
3914 | { | |
3915 | sec = bfd_com_section_ptr; | |
3916 | /* What ELF calls the size we call the value. What ELF | |
3917 | calls the value we call the alignment. */ | |
3918 | value = isym->st_size; | |
3919 | } | |
3920 | else | |
4ad4eba5 AM |
3921 | { |
3922 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
3923 | if (sec == NULL) | |
3924 | sec = bfd_abs_section_ptr; | |
529fcb95 PB |
3925 | else if (sec->kept_section) |
3926 | { | |
e5d08002 L |
3927 | /* Symbols from discarded section are undefined. We keep |
3928 | its visibility. */ | |
529fcb95 PB |
3929 | sec = bfd_und_section_ptr; |
3930 | isym->st_shndx = SHN_UNDEF; | |
3931 | } | |
4ad4eba5 AM |
3932 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
3933 | value -= sec->vma; | |
3934 | } | |
4ad4eba5 AM |
3935 | |
3936 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
3937 | isym->st_name); | |
3938 | if (name == NULL) | |
3939 | goto error_free_vers; | |
3940 | ||
3941 | if (isym->st_shndx == SHN_COMMON | |
6a4a0940 JJ |
3942 | && ELF_ST_TYPE (isym->st_info) == STT_TLS |
3943 | && !info->relocatable) | |
4ad4eba5 AM |
3944 | { |
3945 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | |
3946 | ||
3947 | if (tcomm == NULL) | |
3948 | { | |
3496cb2a L |
3949 | tcomm = bfd_make_section_with_flags (abfd, ".tcommon", |
3950 | (SEC_ALLOC | |
3951 | | SEC_IS_COMMON | |
3952 | | SEC_LINKER_CREATED | |
3953 | | SEC_THREAD_LOCAL)); | |
3954 | if (tcomm == NULL) | |
4ad4eba5 AM |
3955 | goto error_free_vers; |
3956 | } | |
3957 | sec = tcomm; | |
3958 | } | |
66eb6687 | 3959 | else if (bed->elf_add_symbol_hook) |
4ad4eba5 | 3960 | { |
66eb6687 AM |
3961 | if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, |
3962 | &sec, &value)) | |
4ad4eba5 AM |
3963 | goto error_free_vers; |
3964 | ||
3965 | /* The hook function sets the name to NULL if this symbol | |
3966 | should be skipped for some reason. */ | |
3967 | if (name == NULL) | |
3968 | continue; | |
3969 | } | |
3970 | ||
3971 | /* Sanity check that all possibilities were handled. */ | |
3972 | if (sec == NULL) | |
3973 | { | |
3974 | bfd_set_error (bfd_error_bad_value); | |
3975 | goto error_free_vers; | |
3976 | } | |
3977 | ||
3978 | if (bfd_is_und_section (sec) | |
3979 | || bfd_is_com_section (sec)) | |
3980 | definition = FALSE; | |
3981 | else | |
3982 | definition = TRUE; | |
3983 | ||
3984 | size_change_ok = FALSE; | |
66eb6687 | 3985 | type_change_ok = bed->type_change_ok; |
4ad4eba5 AM |
3986 | old_alignment = 0; |
3987 | old_bfd = NULL; | |
af44c138 | 3988 | new_sec = sec; |
4ad4eba5 | 3989 | |
66eb6687 | 3990 | if (is_elf_hash_table (htab)) |
4ad4eba5 AM |
3991 | { |
3992 | Elf_Internal_Versym iver; | |
3993 | unsigned int vernum = 0; | |
3994 | bfd_boolean skip; | |
3995 | ||
b918acf9 NC |
3996 | /* If this is a definition of a symbol which was previously |
3997 | referenced in a non-weak manner then make a note of the bfd | |
3998 | that contained the reference. This is used if we need to | |
3999 | refer to the source of the reference later on. */ | |
4000 | if (! bfd_is_und_section (sec)) | |
4001 | { | |
4002 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); | |
4003 | ||
4004 | if (h != NULL | |
4005 | && h->root.type == bfd_link_hash_undefined | |
4006 | && h->root.u.undef.abfd) | |
4007 | undef_bfd = h->root.u.undef.abfd; | |
4008 | } | |
4009 | ||
fc0e6df6 | 4010 | if (ever == NULL) |
4ad4eba5 | 4011 | { |
fc0e6df6 PB |
4012 | if (info->default_imported_symver) |
4013 | /* Use the default symbol version created earlier. */ | |
4014 | iver.vs_vers = elf_tdata (abfd)->cverdefs; | |
4015 | else | |
4016 | iver.vs_vers = 0; | |
4017 | } | |
4018 | else | |
4019 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
4020 | ||
4021 | vernum = iver.vs_vers & VERSYM_VERSION; | |
4022 | ||
4023 | /* If this is a hidden symbol, or if it is not version | |
4024 | 1, we append the version name to the symbol name. | |
cc86ff91 EB |
4025 | However, we do not modify a non-hidden absolute symbol |
4026 | if it is not a function, because it might be the version | |
4027 | symbol itself. FIXME: What if it isn't? */ | |
fc0e6df6 | 4028 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 |
fcb93ecf PB |
4029 | || (vernum > 1 |
4030 | && (!bfd_is_abs_section (sec) | |
4031 | || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) | |
fc0e6df6 PB |
4032 | { |
4033 | const char *verstr; | |
4034 | size_t namelen, verlen, newlen; | |
4035 | char *newname, *p; | |
4036 | ||
4037 | if (isym->st_shndx != SHN_UNDEF) | |
4ad4eba5 | 4038 | { |
fc0e6df6 PB |
4039 | if (vernum > elf_tdata (abfd)->cverdefs) |
4040 | verstr = NULL; | |
4041 | else if (vernum > 1) | |
4042 | verstr = | |
4043 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
4044 | else | |
4045 | verstr = ""; | |
4ad4eba5 | 4046 | |
fc0e6df6 | 4047 | if (verstr == NULL) |
4ad4eba5 | 4048 | { |
fc0e6df6 PB |
4049 | (*_bfd_error_handler) |
4050 | (_("%B: %s: invalid version %u (max %d)"), | |
4051 | abfd, name, vernum, | |
4052 | elf_tdata (abfd)->cverdefs); | |
4053 | bfd_set_error (bfd_error_bad_value); | |
4054 | goto error_free_vers; | |
4ad4eba5 | 4055 | } |
fc0e6df6 PB |
4056 | } |
4057 | else | |
4058 | { | |
4059 | /* We cannot simply test for the number of | |
4060 | entries in the VERNEED section since the | |
4061 | numbers for the needed versions do not start | |
4062 | at 0. */ | |
4063 | Elf_Internal_Verneed *t; | |
4064 | ||
4065 | verstr = NULL; | |
4066 | for (t = elf_tdata (abfd)->verref; | |
4067 | t != NULL; | |
4068 | t = t->vn_nextref) | |
4ad4eba5 | 4069 | { |
fc0e6df6 | 4070 | Elf_Internal_Vernaux *a; |
4ad4eba5 | 4071 | |
fc0e6df6 PB |
4072 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
4073 | { | |
4074 | if (a->vna_other == vernum) | |
4ad4eba5 | 4075 | { |
fc0e6df6 PB |
4076 | verstr = a->vna_nodename; |
4077 | break; | |
4ad4eba5 | 4078 | } |
4ad4eba5 | 4079 | } |
fc0e6df6 PB |
4080 | if (a != NULL) |
4081 | break; | |
4082 | } | |
4083 | if (verstr == NULL) | |
4084 | { | |
4085 | (*_bfd_error_handler) | |
4086 | (_("%B: %s: invalid needed version %d"), | |
4087 | abfd, name, vernum); | |
4088 | bfd_set_error (bfd_error_bad_value); | |
4089 | goto error_free_vers; | |
4ad4eba5 | 4090 | } |
4ad4eba5 | 4091 | } |
fc0e6df6 PB |
4092 | |
4093 | namelen = strlen (name); | |
4094 | verlen = strlen (verstr); | |
4095 | newlen = namelen + verlen + 2; | |
4096 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
4097 | && isym->st_shndx != SHN_UNDEF) | |
4098 | ++newlen; | |
4099 | ||
a50b1753 | 4100 | newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); |
fc0e6df6 PB |
4101 | if (newname == NULL) |
4102 | goto error_free_vers; | |
4103 | memcpy (newname, name, namelen); | |
4104 | p = newname + namelen; | |
4105 | *p++ = ELF_VER_CHR; | |
4106 | /* If this is a defined non-hidden version symbol, | |
4107 | we add another @ to the name. This indicates the | |
4108 | default version of the symbol. */ | |
4109 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
4110 | && isym->st_shndx != SHN_UNDEF) | |
4111 | *p++ = ELF_VER_CHR; | |
4112 | memcpy (p, verstr, verlen + 1); | |
4113 | ||
4114 | name = newname; | |
4ad4eba5 AM |
4115 | } |
4116 | ||
b918acf9 NC |
4117 | /* If necessary, make a second attempt to locate the bfd |
4118 | containing an unresolved, non-weak reference to the | |
4119 | current symbol. */ | |
4120 | if (! bfd_is_und_section (sec) && undef_bfd == NULL) | |
3cbc5de0 NC |
4121 | { |
4122 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); | |
4123 | ||
4124 | if (h != NULL | |
b918acf9 | 4125 | && h->root.type == bfd_link_hash_undefined |
3cbc5de0 NC |
4126 | && h->root.u.undef.abfd) |
4127 | undef_bfd = h->root.u.undef.abfd; | |
4128 | } | |
4129 | ||
af44c138 L |
4130 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, |
4131 | &value, &old_alignment, | |
4ad4eba5 AM |
4132 | sym_hash, &skip, &override, |
4133 | &type_change_ok, &size_change_ok)) | |
4134 | goto error_free_vers; | |
4135 | ||
4136 | if (skip) | |
4137 | continue; | |
4138 | ||
4139 | if (override) | |
4140 | definition = FALSE; | |
4141 | ||
4142 | h = *sym_hash; | |
4143 | while (h->root.type == bfd_link_hash_indirect | |
4144 | || h->root.type == bfd_link_hash_warning) | |
4145 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4146 | ||
4147 | /* Remember the old alignment if this is a common symbol, so | |
4148 | that we don't reduce the alignment later on. We can't | |
4149 | check later, because _bfd_generic_link_add_one_symbol | |
4150 | will set a default for the alignment which we want to | |
4151 | override. We also remember the old bfd where the existing | |
4152 | definition comes from. */ | |
4153 | switch (h->root.type) | |
4154 | { | |
4155 | default: | |
4156 | break; | |
4157 | ||
4158 | case bfd_link_hash_defined: | |
4159 | case bfd_link_hash_defweak: | |
4160 | old_bfd = h->root.u.def.section->owner; | |
4161 | break; | |
4162 | ||
4163 | case bfd_link_hash_common: | |
4164 | old_bfd = h->root.u.c.p->section->owner; | |
4165 | old_alignment = h->root.u.c.p->alignment_power; | |
4166 | break; | |
4167 | } | |
4168 | ||
4169 | if (elf_tdata (abfd)->verdef != NULL | |
4170 | && ! override | |
4171 | && vernum > 1 | |
4172 | && definition) | |
4173 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
4174 | } | |
4175 | ||
4176 | if (! (_bfd_generic_link_add_one_symbol | |
66eb6687 | 4177 | (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, |
4ad4eba5 AM |
4178 | (struct bfd_link_hash_entry **) sym_hash))) |
4179 | goto error_free_vers; | |
4180 | ||
4181 | h = *sym_hash; | |
4182 | while (h->root.type == bfd_link_hash_indirect | |
4183 | || h->root.type == bfd_link_hash_warning) | |
4184 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3e7a7d11 | 4185 | |
4ad4eba5 | 4186 | *sym_hash = h; |
d64284fe L |
4187 | if (is_elf_hash_table (htab)) |
4188 | h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; | |
4ad4eba5 AM |
4189 | |
4190 | new_weakdef = FALSE; | |
4191 | if (dynamic | |
4192 | && definition | |
4193 | && (flags & BSF_WEAK) != 0 | |
fcb93ecf | 4194 | && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) |
66eb6687 | 4195 | && is_elf_hash_table (htab) |
f6e332e6 | 4196 | && h->u.weakdef == NULL) |
4ad4eba5 AM |
4197 | { |
4198 | /* Keep a list of all weak defined non function symbols from | |
4199 | a dynamic object, using the weakdef field. Later in this | |
4200 | function we will set the weakdef field to the correct | |
4201 | value. We only put non-function symbols from dynamic | |
4202 | objects on this list, because that happens to be the only | |
4203 | time we need to know the normal symbol corresponding to a | |
4204 | weak symbol, and the information is time consuming to | |
4205 | figure out. If the weakdef field is not already NULL, | |
4206 | then this symbol was already defined by some previous | |
4207 | dynamic object, and we will be using that previous | |
4208 | definition anyhow. */ | |
4209 | ||
f6e332e6 | 4210 | h->u.weakdef = weaks; |
4ad4eba5 AM |
4211 | weaks = h; |
4212 | new_weakdef = TRUE; | |
4213 | } | |
4214 | ||
4215 | /* Set the alignment of a common symbol. */ | |
a4d8e49b | 4216 | if ((common || bfd_is_com_section (sec)) |
4ad4eba5 AM |
4217 | && h->root.type == bfd_link_hash_common) |
4218 | { | |
4219 | unsigned int align; | |
4220 | ||
a4d8e49b | 4221 | if (common) |
af44c138 L |
4222 | align = bfd_log2 (isym->st_value); |
4223 | else | |
4224 | { | |
4225 | /* The new symbol is a common symbol in a shared object. | |
4226 | We need to get the alignment from the section. */ | |
4227 | align = new_sec->alignment_power; | |
4228 | } | |
4ad4eba5 AM |
4229 | if (align > old_alignment |
4230 | /* Permit an alignment power of zero if an alignment of one | |
4231 | is specified and no other alignments have been specified. */ | |
4232 | || (isym->st_value == 1 && old_alignment == 0)) | |
4233 | h->root.u.c.p->alignment_power = align; | |
4234 | else | |
4235 | h->root.u.c.p->alignment_power = old_alignment; | |
4236 | } | |
4237 | ||
66eb6687 | 4238 | if (is_elf_hash_table (htab)) |
4ad4eba5 | 4239 | { |
4ad4eba5 | 4240 | bfd_boolean dynsym; |
4ad4eba5 AM |
4241 | |
4242 | /* Check the alignment when a common symbol is involved. This | |
4243 | can change when a common symbol is overridden by a normal | |
4244 | definition or a common symbol is ignored due to the old | |
4245 | normal definition. We need to make sure the maximum | |
4246 | alignment is maintained. */ | |
a4d8e49b | 4247 | if ((old_alignment || common) |
4ad4eba5 AM |
4248 | && h->root.type != bfd_link_hash_common) |
4249 | { | |
4250 | unsigned int common_align; | |
4251 | unsigned int normal_align; | |
4252 | unsigned int symbol_align; | |
4253 | bfd *normal_bfd; | |
4254 | bfd *common_bfd; | |
4255 | ||
4256 | symbol_align = ffs (h->root.u.def.value) - 1; | |
4257 | if (h->root.u.def.section->owner != NULL | |
4258 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
4259 | { | |
4260 | normal_align = h->root.u.def.section->alignment_power; | |
4261 | if (normal_align > symbol_align) | |
4262 | normal_align = symbol_align; | |
4263 | } | |
4264 | else | |
4265 | normal_align = symbol_align; | |
4266 | ||
4267 | if (old_alignment) | |
4268 | { | |
4269 | common_align = old_alignment; | |
4270 | common_bfd = old_bfd; | |
4271 | normal_bfd = abfd; | |
4272 | } | |
4273 | else | |
4274 | { | |
4275 | common_align = bfd_log2 (isym->st_value); | |
4276 | common_bfd = abfd; | |
4277 | normal_bfd = old_bfd; | |
4278 | } | |
4279 | ||
4280 | if (normal_align < common_align) | |
d07676f8 NC |
4281 | { |
4282 | /* PR binutils/2735 */ | |
4283 | if (normal_bfd == NULL) | |
4284 | (*_bfd_error_handler) | |
4285 | (_("Warning: alignment %u of common symbol `%s' in %B" | |
4286 | " is greater than the alignment (%u) of its section %A"), | |
4287 | common_bfd, h->root.u.def.section, | |
4288 | 1 << common_align, name, 1 << normal_align); | |
4289 | else | |
4290 | (*_bfd_error_handler) | |
4291 | (_("Warning: alignment %u of symbol `%s' in %B" | |
4292 | " is smaller than %u in %B"), | |
4293 | normal_bfd, common_bfd, | |
4294 | 1 << normal_align, name, 1 << common_align); | |
4295 | } | |
4ad4eba5 AM |
4296 | } |
4297 | ||
83ad0046 L |
4298 | /* Remember the symbol size if it isn't undefined. */ |
4299 | if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF) | |
4ad4eba5 AM |
4300 | && (definition || h->size == 0)) |
4301 | { | |
83ad0046 L |
4302 | if (h->size != 0 |
4303 | && h->size != isym->st_size | |
4304 | && ! size_change_ok) | |
4ad4eba5 | 4305 | (*_bfd_error_handler) |
d003868e AM |
4306 | (_("Warning: size of symbol `%s' changed" |
4307 | " from %lu in %B to %lu in %B"), | |
4308 | old_bfd, abfd, | |
4ad4eba5 | 4309 | name, (unsigned long) h->size, |
d003868e | 4310 | (unsigned long) isym->st_size); |
4ad4eba5 AM |
4311 | |
4312 | h->size = isym->st_size; | |
4313 | } | |
4314 | ||
4315 | /* If this is a common symbol, then we always want H->SIZE | |
4316 | to be the size of the common symbol. The code just above | |
4317 | won't fix the size if a common symbol becomes larger. We | |
4318 | don't warn about a size change here, because that is | |
fcb93ecf PB |
4319 | covered by --warn-common. Allow changed between different |
4320 | function types. */ | |
4ad4eba5 AM |
4321 | if (h->root.type == bfd_link_hash_common) |
4322 | h->size = h->root.u.c.size; | |
4323 | ||
4324 | if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE | |
4325 | && (definition || h->type == STT_NOTYPE)) | |
4326 | { | |
2955ec4c L |
4327 | unsigned int type = ELF_ST_TYPE (isym->st_info); |
4328 | ||
4329 | /* Turn an IFUNC symbol from a DSO into a normal FUNC | |
4330 | symbol. */ | |
4331 | if (type == STT_GNU_IFUNC | |
4332 | && (abfd->flags & DYNAMIC) != 0) | |
4333 | type = STT_FUNC; | |
4ad4eba5 | 4334 | |
2955ec4c L |
4335 | if (h->type != type) |
4336 | { | |
4337 | if (h->type != STT_NOTYPE && ! type_change_ok) | |
4338 | (*_bfd_error_handler) | |
4339 | (_("Warning: type of symbol `%s' changed" | |
4340 | " from %d to %d in %B"), | |
4341 | abfd, name, h->type, type); | |
4342 | ||
4343 | h->type = type; | |
4344 | } | |
4ad4eba5 AM |
4345 | } |
4346 | ||
54ac0771 L |
4347 | /* Merge st_other field. */ |
4348 | elf_merge_st_other (abfd, h, isym, definition, dynamic); | |
4ad4eba5 AM |
4349 | |
4350 | /* Set a flag in the hash table entry indicating the type of | |
4351 | reference or definition we just found. Keep a count of | |
4352 | the number of dynamic symbols we find. A dynamic symbol | |
4353 | is one which is referenced or defined by both a regular | |
4354 | object and a shared object. */ | |
4ad4eba5 AM |
4355 | dynsym = FALSE; |
4356 | if (! dynamic) | |
4357 | { | |
4358 | if (! definition) | |
4359 | { | |
f5385ebf | 4360 | h->ref_regular = 1; |
4ad4eba5 | 4361 | if (bind != STB_WEAK) |
f5385ebf | 4362 | h->ref_regular_nonweak = 1; |
4ad4eba5 AM |
4363 | } |
4364 | else | |
d8880531 L |
4365 | { |
4366 | h->def_regular = 1; | |
4367 | if (h->def_dynamic) | |
4368 | { | |
4369 | h->def_dynamic = 0; | |
4370 | h->ref_dynamic = 1; | |
4371 | h->dynamic_def = 1; | |
4372 | } | |
4373 | } | |
4ad4eba5 | 4374 | if (! info->executable |
f5385ebf AM |
4375 | || h->def_dynamic |
4376 | || h->ref_dynamic) | |
4ad4eba5 AM |
4377 | dynsym = TRUE; |
4378 | } | |
4379 | else | |
4380 | { | |
4381 | if (! definition) | |
f5385ebf | 4382 | h->ref_dynamic = 1; |
4ad4eba5 | 4383 | else |
f5385ebf AM |
4384 | h->def_dynamic = 1; |
4385 | if (h->def_regular | |
4386 | || h->ref_regular | |
f6e332e6 | 4387 | || (h->u.weakdef != NULL |
4ad4eba5 | 4388 | && ! new_weakdef |
f6e332e6 | 4389 | && h->u.weakdef->dynindx != -1)) |
4ad4eba5 AM |
4390 | dynsym = TRUE; |
4391 | } | |
4392 | ||
b2064611 | 4393 | if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable) |
92b7c7b6 L |
4394 | { |
4395 | /* We don't want to make debug symbol dynamic. */ | |
92b7c7b6 L |
4396 | dynsym = FALSE; |
4397 | } | |
4398 | ||
4ad4eba5 AM |
4399 | /* Check to see if we need to add an indirect symbol for |
4400 | the default name. */ | |
4401 | if (definition || h->root.type == bfd_link_hash_common) | |
4402 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | |
4403 | &sec, &value, &dynsym, | |
4404 | override)) | |
4405 | goto error_free_vers; | |
4406 | ||
4407 | if (definition && !dynamic) | |
4408 | { | |
4409 | char *p = strchr (name, ELF_VER_CHR); | |
4410 | if (p != NULL && p[1] != ELF_VER_CHR) | |
4411 | { | |
4412 | /* Queue non-default versions so that .symver x, x@FOO | |
4413 | aliases can be checked. */ | |
66eb6687 | 4414 | if (!nondeflt_vers) |
4ad4eba5 | 4415 | { |
66eb6687 AM |
4416 | amt = ((isymend - isym + 1) |
4417 | * sizeof (struct elf_link_hash_entry *)); | |
a50b1753 NC |
4418 | nondeflt_vers = |
4419 | (struct elf_link_hash_entry **) bfd_malloc (amt); | |
14b1c01e AM |
4420 | if (!nondeflt_vers) |
4421 | goto error_free_vers; | |
4ad4eba5 | 4422 | } |
66eb6687 | 4423 | nondeflt_vers[nondeflt_vers_cnt++] = h; |
4ad4eba5 AM |
4424 | } |
4425 | } | |
4426 | ||
4427 | if (dynsym && h->dynindx == -1) | |
4428 | { | |
c152c796 | 4429 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
4ad4eba5 | 4430 | goto error_free_vers; |
f6e332e6 | 4431 | if (h->u.weakdef != NULL |
4ad4eba5 | 4432 | && ! new_weakdef |
f6e332e6 | 4433 | && h->u.weakdef->dynindx == -1) |
4ad4eba5 | 4434 | { |
66eb6687 | 4435 | if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) |
4ad4eba5 AM |
4436 | goto error_free_vers; |
4437 | } | |
4438 | } | |
4439 | else if (dynsym && h->dynindx != -1) | |
4440 | /* If the symbol already has a dynamic index, but | |
4441 | visibility says it should not be visible, turn it into | |
4442 | a local symbol. */ | |
4443 | switch (ELF_ST_VISIBILITY (h->other)) | |
4444 | { | |
4445 | case STV_INTERNAL: | |
4446 | case STV_HIDDEN: | |
4447 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
4448 | dynsym = FALSE; | |
4449 | break; | |
4450 | } | |
4451 | ||
4452 | if (!add_needed | |
4453 | && definition | |
010e5ae2 AM |
4454 | && ((dynsym |
4455 | && h->ref_regular) | |
4456 | || (h->ref_dynamic | |
4457 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 | |
4458 | && !on_needed_list (elf_dt_name (abfd), htab->needed)))) | |
4ad4eba5 AM |
4459 | { |
4460 | int ret; | |
4461 | const char *soname = elf_dt_name (abfd); | |
4462 | ||
4463 | /* A symbol from a library loaded via DT_NEEDED of some | |
4464 | other library is referenced by a regular object. | |
e56f61be | 4465 | Add a DT_NEEDED entry for it. Issue an error if |
b918acf9 NC |
4466 | --no-add-needed is used and the reference was not |
4467 | a weak one. */ | |
4468 | if (undef_bfd != NULL | |
4469 | && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) | |
e56f61be L |
4470 | { |
4471 | (*_bfd_error_handler) | |
3cbc5de0 | 4472 | (_("%B: undefined reference to symbol '%s'"), |
b918acf9 | 4473 | undef_bfd, name); |
3cbc5de0 NC |
4474 | (*_bfd_error_handler) |
4475 | (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"), | |
d003868e | 4476 | abfd, name); |
3cbc5de0 | 4477 | bfd_set_error (bfd_error_invalid_operation); |
e56f61be L |
4478 | goto error_free_vers; |
4479 | } | |
4480 | ||
a50b1753 NC |
4481 | elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) |
4482 | (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); | |
a5db907e | 4483 | |
4ad4eba5 | 4484 | add_needed = TRUE; |
7e9f0867 | 4485 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); |
4ad4eba5 AM |
4486 | if (ret < 0) |
4487 | goto error_free_vers; | |
4488 | ||
4489 | BFD_ASSERT (ret == 0); | |
4490 | } | |
4491 | } | |
4492 | } | |
4493 | ||
66eb6687 AM |
4494 | if (extversym != NULL) |
4495 | { | |
4496 | free (extversym); | |
4497 | extversym = NULL; | |
4498 | } | |
4499 | ||
4500 | if (isymbuf != NULL) | |
4501 | { | |
4502 | free (isymbuf); | |
4503 | isymbuf = NULL; | |
4504 | } | |
4505 | ||
4506 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
4507 | { | |
4508 | unsigned int i; | |
4509 | ||
4510 | /* Restore the symbol table. */ | |
97fed1c9 JJ |
4511 | if (bed->as_needed_cleanup) |
4512 | (*bed->as_needed_cleanup) (abfd, info); | |
66eb6687 AM |
4513 | old_hash = (char *) old_tab + tabsize; |
4514 | old_ent = (char *) old_hash + hashsize; | |
4515 | sym_hash = elf_sym_hashes (abfd); | |
4f87808c AM |
4516 | htab->root.table.table = old_table; |
4517 | htab->root.table.size = old_size; | |
4518 | htab->root.table.count = old_count; | |
66eb6687 AM |
4519 | memcpy (htab->root.table.table, old_tab, tabsize); |
4520 | memcpy (sym_hash, old_hash, hashsize); | |
4521 | htab->root.undefs = old_undefs; | |
4522 | htab->root.undefs_tail = old_undefs_tail; | |
4523 | for (i = 0; i < htab->root.table.size; i++) | |
4524 | { | |
4525 | struct bfd_hash_entry *p; | |
4526 | struct elf_link_hash_entry *h; | |
4527 | ||
4528 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
4529 | { | |
4530 | h = (struct elf_link_hash_entry *) p; | |
2de92251 AM |
4531 | if (h->root.type == bfd_link_hash_warning) |
4532 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
66eb6687 AM |
4533 | if (h->dynindx >= old_dynsymcount) |
4534 | _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index); | |
2de92251 | 4535 | |
66eb6687 AM |
4536 | memcpy (p, old_ent, htab->root.table.entsize); |
4537 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
2de92251 AM |
4538 | h = (struct elf_link_hash_entry *) p; |
4539 | if (h->root.type == bfd_link_hash_warning) | |
4540 | { | |
4541 | memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); | |
4542 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
4543 | } | |
66eb6687 AM |
4544 | } |
4545 | } | |
4546 | ||
5061a885 AM |
4547 | /* Make a special call to the linker "notice" function to |
4548 | tell it that symbols added for crefs may need to be removed. */ | |
4549 | if (!(*info->callbacks->notice) (info, NULL, abfd, NULL, | |
4550 | notice_not_needed)) | |
9af2a943 | 4551 | goto error_free_vers; |
5061a885 | 4552 | |
66eb6687 AM |
4553 | free (old_tab); |
4554 | objalloc_free_block ((struct objalloc *) htab->root.table.memory, | |
4555 | alloc_mark); | |
4556 | if (nondeflt_vers != NULL) | |
4557 | free (nondeflt_vers); | |
4558 | return TRUE; | |
4559 | } | |
2de92251 | 4560 | |
66eb6687 AM |
4561 | if (old_tab != NULL) |
4562 | { | |
5061a885 AM |
4563 | if (!(*info->callbacks->notice) (info, NULL, abfd, NULL, |
4564 | notice_needed)) | |
9af2a943 | 4565 | goto error_free_vers; |
66eb6687 AM |
4566 | free (old_tab); |
4567 | old_tab = NULL; | |
4568 | } | |
4569 | ||
4ad4eba5 AM |
4570 | /* Now that all the symbols from this input file are created, handle |
4571 | .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */ | |
4572 | if (nondeflt_vers != NULL) | |
4573 | { | |
4574 | bfd_size_type cnt, symidx; | |
4575 | ||
4576 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | |
4577 | { | |
4578 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | |
4579 | char *shortname, *p; | |
4580 | ||
4581 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
4582 | if (p == NULL | |
4583 | || (h->root.type != bfd_link_hash_defined | |
4584 | && h->root.type != bfd_link_hash_defweak)) | |
4585 | continue; | |
4586 | ||
4587 | amt = p - h->root.root.string; | |
a50b1753 | 4588 | shortname = (char *) bfd_malloc (amt + 1); |
14b1c01e AM |
4589 | if (!shortname) |
4590 | goto error_free_vers; | |
4ad4eba5 AM |
4591 | memcpy (shortname, h->root.root.string, amt); |
4592 | shortname[amt] = '\0'; | |
4593 | ||
4594 | hi = (struct elf_link_hash_entry *) | |
66eb6687 | 4595 | bfd_link_hash_lookup (&htab->root, shortname, |
4ad4eba5 AM |
4596 | FALSE, FALSE, FALSE); |
4597 | if (hi != NULL | |
4598 | && hi->root.type == h->root.type | |
4599 | && hi->root.u.def.value == h->root.u.def.value | |
4600 | && hi->root.u.def.section == h->root.u.def.section) | |
4601 | { | |
4602 | (*bed->elf_backend_hide_symbol) (info, hi, TRUE); | |
4603 | hi->root.type = bfd_link_hash_indirect; | |
4604 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
fcfa13d2 | 4605 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
4ad4eba5 AM |
4606 | sym_hash = elf_sym_hashes (abfd); |
4607 | if (sym_hash) | |
4608 | for (symidx = 0; symidx < extsymcount; ++symidx) | |
4609 | if (sym_hash[symidx] == hi) | |
4610 | { | |
4611 | sym_hash[symidx] = h; | |
4612 | break; | |
4613 | } | |
4614 | } | |
4615 | free (shortname); | |
4616 | } | |
4617 | free (nondeflt_vers); | |
4618 | nondeflt_vers = NULL; | |
4619 | } | |
4620 | ||
4ad4eba5 AM |
4621 | /* Now set the weakdefs field correctly for all the weak defined |
4622 | symbols we found. The only way to do this is to search all the | |
4623 | symbols. Since we only need the information for non functions in | |
4624 | dynamic objects, that's the only time we actually put anything on | |
4625 | the list WEAKS. We need this information so that if a regular | |
4626 | object refers to a symbol defined weakly in a dynamic object, the | |
4627 | real symbol in the dynamic object is also put in the dynamic | |
4628 | symbols; we also must arrange for both symbols to point to the | |
4629 | same memory location. We could handle the general case of symbol | |
4630 | aliasing, but a general symbol alias can only be generated in | |
4631 | assembler code, handling it correctly would be very time | |
4632 | consuming, and other ELF linkers don't handle general aliasing | |
4633 | either. */ | |
4634 | if (weaks != NULL) | |
4635 | { | |
4636 | struct elf_link_hash_entry **hpp; | |
4637 | struct elf_link_hash_entry **hppend; | |
4638 | struct elf_link_hash_entry **sorted_sym_hash; | |
4639 | struct elf_link_hash_entry *h; | |
4640 | size_t sym_count; | |
4641 | ||
4642 | /* Since we have to search the whole symbol list for each weak | |
4643 | defined symbol, search time for N weak defined symbols will be | |
4644 | O(N^2). Binary search will cut it down to O(NlogN). */ | |
4645 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
a50b1753 | 4646 | sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt); |
4ad4eba5 AM |
4647 | if (sorted_sym_hash == NULL) |
4648 | goto error_return; | |
4649 | sym_hash = sorted_sym_hash; | |
4650 | hpp = elf_sym_hashes (abfd); | |
4651 | hppend = hpp + extsymcount; | |
4652 | sym_count = 0; | |
4653 | for (; hpp < hppend; hpp++) | |
4654 | { | |
4655 | h = *hpp; | |
4656 | if (h != NULL | |
4657 | && h->root.type == bfd_link_hash_defined | |
fcb93ecf | 4658 | && !bed->is_function_type (h->type)) |
4ad4eba5 AM |
4659 | { |
4660 | *sym_hash = h; | |
4661 | sym_hash++; | |
4662 | sym_count++; | |
4663 | } | |
4664 | } | |
4665 | ||
4666 | qsort (sorted_sym_hash, sym_count, | |
4667 | sizeof (struct elf_link_hash_entry *), | |
4668 | elf_sort_symbol); | |
4669 | ||
4670 | while (weaks != NULL) | |
4671 | { | |
4672 | struct elf_link_hash_entry *hlook; | |
4673 | asection *slook; | |
4674 | bfd_vma vlook; | |
4675 | long ilook; | |
4676 | size_t i, j, idx; | |
4677 | ||
4678 | hlook = weaks; | |
f6e332e6 AM |
4679 | weaks = hlook->u.weakdef; |
4680 | hlook->u.weakdef = NULL; | |
4ad4eba5 AM |
4681 | |
4682 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
4683 | || hlook->root.type == bfd_link_hash_defweak | |
4684 | || hlook->root.type == bfd_link_hash_common | |
4685 | || hlook->root.type == bfd_link_hash_indirect); | |
4686 | slook = hlook->root.u.def.section; | |
4687 | vlook = hlook->root.u.def.value; | |
4688 | ||
4689 | ilook = -1; | |
4690 | i = 0; | |
4691 | j = sym_count; | |
4692 | while (i < j) | |
4693 | { | |
4694 | bfd_signed_vma vdiff; | |
4695 | idx = (i + j) / 2; | |
4696 | h = sorted_sym_hash [idx]; | |
4697 | vdiff = vlook - h->root.u.def.value; | |
4698 | if (vdiff < 0) | |
4699 | j = idx; | |
4700 | else if (vdiff > 0) | |
4701 | i = idx + 1; | |
4702 | else | |
4703 | { | |
a9b881be | 4704 | long sdiff = slook->id - h->root.u.def.section->id; |
4ad4eba5 AM |
4705 | if (sdiff < 0) |
4706 | j = idx; | |
4707 | else if (sdiff > 0) | |
4708 | i = idx + 1; | |
4709 | else | |
4710 | { | |
4711 | ilook = idx; | |
4712 | break; | |
4713 | } | |
4714 | } | |
4715 | } | |
4716 | ||
4717 | /* We didn't find a value/section match. */ | |
4718 | if (ilook == -1) | |
4719 | continue; | |
4720 | ||
4721 | for (i = ilook; i < sym_count; i++) | |
4722 | { | |
4723 | h = sorted_sym_hash [i]; | |
4724 | ||
4725 | /* Stop if value or section doesn't match. */ | |
4726 | if (h->root.u.def.value != vlook | |
4727 | || h->root.u.def.section != slook) | |
4728 | break; | |
4729 | else if (h != hlook) | |
4730 | { | |
f6e332e6 | 4731 | hlook->u.weakdef = h; |
4ad4eba5 AM |
4732 | |
4733 | /* If the weak definition is in the list of dynamic | |
4734 | symbols, make sure the real definition is put | |
4735 | there as well. */ | |
4736 | if (hlook->dynindx != -1 && h->dynindx == -1) | |
4737 | { | |
c152c796 | 4738 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
4dd07732 AM |
4739 | { |
4740 | err_free_sym_hash: | |
4741 | free (sorted_sym_hash); | |
4742 | goto error_return; | |
4743 | } | |
4ad4eba5 AM |
4744 | } |
4745 | ||
4746 | /* If the real definition is in the list of dynamic | |
4747 | symbols, make sure the weak definition is put | |
4748 | there as well. If we don't do this, then the | |
4749 | dynamic loader might not merge the entries for the | |
4750 | real definition and the weak definition. */ | |
4751 | if (h->dynindx != -1 && hlook->dynindx == -1) | |
4752 | { | |
c152c796 | 4753 | if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) |
4dd07732 | 4754 | goto err_free_sym_hash; |
4ad4eba5 AM |
4755 | } |
4756 | break; | |
4757 | } | |
4758 | } | |
4759 | } | |
4760 | ||
4761 | free (sorted_sym_hash); | |
4762 | } | |
4763 | ||
33177bb1 AM |
4764 | if (bed->check_directives |
4765 | && !(*bed->check_directives) (abfd, info)) | |
4766 | return FALSE; | |
85fbca6a | 4767 | |
4ad4eba5 AM |
4768 | /* If this object is the same format as the output object, and it is |
4769 | not a shared library, then let the backend look through the | |
4770 | relocs. | |
4771 | ||
4772 | This is required to build global offset table entries and to | |
4773 | arrange for dynamic relocs. It is not required for the | |
4774 | particular common case of linking non PIC code, even when linking | |
4775 | against shared libraries, but unfortunately there is no way of | |
4776 | knowing whether an object file has been compiled PIC or not. | |
4777 | Looking through the relocs is not particularly time consuming. | |
4778 | The problem is that we must either (1) keep the relocs in memory, | |
4779 | which causes the linker to require additional runtime memory or | |
4780 | (2) read the relocs twice from the input file, which wastes time. | |
4781 | This would be a good case for using mmap. | |
4782 | ||
4783 | I have no idea how to handle linking PIC code into a file of a | |
4784 | different format. It probably can't be done. */ | |
4ad4eba5 | 4785 | if (! dynamic |
66eb6687 | 4786 | && is_elf_hash_table (htab) |
13285a1b | 4787 | && bed->check_relocs != NULL |
39334f3a | 4788 | && elf_object_id (abfd) == elf_hash_table_id (htab) |
f13a99db | 4789 | && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) |
4ad4eba5 AM |
4790 | { |
4791 | asection *o; | |
4792 | ||
4793 | for (o = abfd->sections; o != NULL; o = o->next) | |
4794 | { | |
4795 | Elf_Internal_Rela *internal_relocs; | |
4796 | bfd_boolean ok; | |
4797 | ||
4798 | if ((o->flags & SEC_RELOC) == 0 | |
4799 | || o->reloc_count == 0 | |
4800 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
4801 | && (o->flags & SEC_DEBUGGING) != 0) | |
4802 | || bfd_is_abs_section (o->output_section)) | |
4803 | continue; | |
4804 | ||
4805 | internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
4806 | info->keep_memory); | |
4807 | if (internal_relocs == NULL) | |
4808 | goto error_return; | |
4809 | ||
66eb6687 | 4810 | ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); |
4ad4eba5 AM |
4811 | |
4812 | if (elf_section_data (o)->relocs != internal_relocs) | |
4813 | free (internal_relocs); | |
4814 | ||
4815 | if (! ok) | |
4816 | goto error_return; | |
4817 | } | |
4818 | } | |
4819 | ||
4820 | /* If this is a non-traditional link, try to optimize the handling | |
4821 | of the .stab/.stabstr sections. */ | |
4822 | if (! dynamic | |
4823 | && ! info->traditional_format | |
66eb6687 | 4824 | && is_elf_hash_table (htab) |
4ad4eba5 AM |
4825 | && (info->strip != strip_all && info->strip != strip_debugger)) |
4826 | { | |
4827 | asection *stabstr; | |
4828 | ||
4829 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
4830 | if (stabstr != NULL) | |
4831 | { | |
4832 | bfd_size_type string_offset = 0; | |
4833 | asection *stab; | |
4834 | ||
4835 | for (stab = abfd->sections; stab; stab = stab->next) | |
0112cd26 | 4836 | if (CONST_STRNEQ (stab->name, ".stab") |
4ad4eba5 AM |
4837 | && (!stab->name[5] || |
4838 | (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) | |
4839 | && (stab->flags & SEC_MERGE) == 0 | |
4840 | && !bfd_is_abs_section (stab->output_section)) | |
4841 | { | |
4842 | struct bfd_elf_section_data *secdata; | |
4843 | ||
4844 | secdata = elf_section_data (stab); | |
66eb6687 AM |
4845 | if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, |
4846 | stabstr, &secdata->sec_info, | |
4ad4eba5 AM |
4847 | &string_offset)) |
4848 | goto error_return; | |
4849 | if (secdata->sec_info) | |
4850 | stab->sec_info_type = ELF_INFO_TYPE_STABS; | |
4851 | } | |
4852 | } | |
4853 | } | |
4854 | ||
66eb6687 | 4855 | if (is_elf_hash_table (htab) && add_needed) |
4ad4eba5 AM |
4856 | { |
4857 | /* Add this bfd to the loaded list. */ | |
4858 | struct elf_link_loaded_list *n; | |
4859 | ||
a50b1753 NC |
4860 | n = (struct elf_link_loaded_list *) |
4861 | bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)); | |
4ad4eba5 AM |
4862 | if (n == NULL) |
4863 | goto error_return; | |
4864 | n->abfd = abfd; | |
66eb6687 AM |
4865 | n->next = htab->loaded; |
4866 | htab->loaded = n; | |
4ad4eba5 AM |
4867 | } |
4868 | ||
4869 | return TRUE; | |
4870 | ||
4871 | error_free_vers: | |
66eb6687 AM |
4872 | if (old_tab != NULL) |
4873 | free (old_tab); | |
4ad4eba5 AM |
4874 | if (nondeflt_vers != NULL) |
4875 | free (nondeflt_vers); | |
4876 | if (extversym != NULL) | |
4877 | free (extversym); | |
4878 | error_free_sym: | |
4879 | if (isymbuf != NULL) | |
4880 | free (isymbuf); | |
4881 | error_return: | |
4882 | return FALSE; | |
4883 | } | |
4884 | ||
8387904d AM |
4885 | /* Return the linker hash table entry of a symbol that might be |
4886 | satisfied by an archive symbol. Return -1 on error. */ | |
4887 | ||
4888 | struct elf_link_hash_entry * | |
4889 | _bfd_elf_archive_symbol_lookup (bfd *abfd, | |
4890 | struct bfd_link_info *info, | |
4891 | const char *name) | |
4892 | { | |
4893 | struct elf_link_hash_entry *h; | |
4894 | char *p, *copy; | |
4895 | size_t len, first; | |
4896 | ||
4897 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); | |
4898 | if (h != NULL) | |
4899 | return h; | |
4900 | ||
4901 | /* If this is a default version (the name contains @@), look up the | |
4902 | symbol again with only one `@' as well as without the version. | |
4903 | The effect is that references to the symbol with and without the | |
4904 | version will be matched by the default symbol in the archive. */ | |
4905 | ||
4906 | p = strchr (name, ELF_VER_CHR); | |
4907 | if (p == NULL || p[1] != ELF_VER_CHR) | |
4908 | return h; | |
4909 | ||
4910 | /* First check with only one `@'. */ | |
4911 | len = strlen (name); | |
a50b1753 | 4912 | copy = (char *) bfd_alloc (abfd, len); |
8387904d AM |
4913 | if (copy == NULL) |
4914 | return (struct elf_link_hash_entry *) 0 - 1; | |
4915 | ||
4916 | first = p - name + 1; | |
4917 | memcpy (copy, name, first); | |
4918 | memcpy (copy + first, name + first + 1, len - first); | |
4919 | ||
4920 | h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE); | |
4921 | if (h == NULL) | |
4922 | { | |
4923 | /* We also need to check references to the symbol without the | |
4924 | version. */ | |
4925 | copy[first - 1] = '\0'; | |
4926 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
4927 | FALSE, FALSE, FALSE); | |
4928 | } | |
4929 | ||
4930 | bfd_release (abfd, copy); | |
4931 | return h; | |
4932 | } | |
4933 | ||
0ad989f9 L |
4934 | /* Add symbols from an ELF archive file to the linker hash table. We |
4935 | don't use _bfd_generic_link_add_archive_symbols because of a | |
4936 | problem which arises on UnixWare. The UnixWare libc.so is an | |
4937 | archive which includes an entry libc.so.1 which defines a bunch of | |
4938 | symbols. The libc.so archive also includes a number of other | |
4939 | object files, which also define symbols, some of which are the same | |
4940 | as those defined in libc.so.1. Correct linking requires that we | |
4941 | consider each object file in turn, and include it if it defines any | |
4942 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
4943 | this; it looks through the list of undefined symbols, and includes | |
4944 | any object file which defines them. When this algorithm is used on | |
4945 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
4946 | bunch of symbols. This means that some of the other objects in the | |
4947 | archive are not included in the link, which is incorrect since they | |
4948 | precede libc.so.1 in the archive. | |
4949 | ||
4950 | Fortunately, ELF archive handling is simpler than that done by | |
4951 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
4952 | oddities. In ELF, if we find a symbol in the archive map, and the | |
4953 | symbol is currently undefined, we know that we must pull in that | |
4954 | object file. | |
4955 | ||
4956 | Unfortunately, we do have to make multiple passes over the symbol | |
4957 | table until nothing further is resolved. */ | |
4958 | ||
4ad4eba5 AM |
4959 | static bfd_boolean |
4960 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | |
0ad989f9 L |
4961 | { |
4962 | symindex c; | |
4963 | bfd_boolean *defined = NULL; | |
4964 | bfd_boolean *included = NULL; | |
4965 | carsym *symdefs; | |
4966 | bfd_boolean loop; | |
4967 | bfd_size_type amt; | |
8387904d AM |
4968 | const struct elf_backend_data *bed; |
4969 | struct elf_link_hash_entry * (*archive_symbol_lookup) | |
4970 | (bfd *, struct bfd_link_info *, const char *); | |
0ad989f9 L |
4971 | |
4972 | if (! bfd_has_map (abfd)) | |
4973 | { | |
4974 | /* An empty archive is a special case. */ | |
4975 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | |
4976 | return TRUE; | |
4977 | bfd_set_error (bfd_error_no_armap); | |
4978 | return FALSE; | |
4979 | } | |
4980 | ||
4981 | /* Keep track of all symbols we know to be already defined, and all | |
4982 | files we know to be already included. This is to speed up the | |
4983 | second and subsequent passes. */ | |
4984 | c = bfd_ardata (abfd)->symdef_count; | |
4985 | if (c == 0) | |
4986 | return TRUE; | |
4987 | amt = c; | |
4988 | amt *= sizeof (bfd_boolean); | |
a50b1753 NC |
4989 | defined = (bfd_boolean *) bfd_zmalloc (amt); |
4990 | included = (bfd_boolean *) bfd_zmalloc (amt); | |
0ad989f9 L |
4991 | if (defined == NULL || included == NULL) |
4992 | goto error_return; | |
4993 | ||
4994 | symdefs = bfd_ardata (abfd)->symdefs; | |
8387904d AM |
4995 | bed = get_elf_backend_data (abfd); |
4996 | archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; | |
0ad989f9 L |
4997 | |
4998 | do | |
4999 | { | |
5000 | file_ptr last; | |
5001 | symindex i; | |
5002 | carsym *symdef; | |
5003 | carsym *symdefend; | |
5004 | ||
5005 | loop = FALSE; | |
5006 | last = -1; | |
5007 | ||
5008 | symdef = symdefs; | |
5009 | symdefend = symdef + c; | |
5010 | for (i = 0; symdef < symdefend; symdef++, i++) | |
5011 | { | |
5012 | struct elf_link_hash_entry *h; | |
5013 | bfd *element; | |
5014 | struct bfd_link_hash_entry *undefs_tail; | |
5015 | symindex mark; | |
5016 | ||
5017 | if (defined[i] || included[i]) | |
5018 | continue; | |
5019 | if (symdef->file_offset == last) | |
5020 | { | |
5021 | included[i] = TRUE; | |
5022 | continue; | |
5023 | } | |
5024 | ||
8387904d AM |
5025 | h = archive_symbol_lookup (abfd, info, symdef->name); |
5026 | if (h == (struct elf_link_hash_entry *) 0 - 1) | |
5027 | goto error_return; | |
0ad989f9 L |
5028 | |
5029 | if (h == NULL) | |
5030 | continue; | |
5031 | ||
5032 | if (h->root.type == bfd_link_hash_common) | |
5033 | { | |
5034 | /* We currently have a common symbol. The archive map contains | |
5035 | a reference to this symbol, so we may want to include it. We | |
5036 | only want to include it however, if this archive element | |
5037 | contains a definition of the symbol, not just another common | |
5038 | declaration of it. | |
5039 | ||
5040 | Unfortunately some archivers (including GNU ar) will put | |
5041 | declarations of common symbols into their archive maps, as | |
5042 | well as real definitions, so we cannot just go by the archive | |
5043 | map alone. Instead we must read in the element's symbol | |
5044 | table and check that to see what kind of symbol definition | |
5045 | this is. */ | |
5046 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
5047 | continue; | |
5048 | } | |
5049 | else if (h->root.type != bfd_link_hash_undefined) | |
5050 | { | |
5051 | if (h->root.type != bfd_link_hash_undefweak) | |
5052 | defined[i] = TRUE; | |
5053 | continue; | |
5054 | } | |
5055 | ||
5056 | /* We need to include this archive member. */ | |
5057 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
5058 | if (element == NULL) | |
5059 | goto error_return; | |
5060 | ||
5061 | if (! bfd_check_format (element, bfd_object)) | |
5062 | goto error_return; | |
5063 | ||
5064 | /* Doublecheck that we have not included this object | |
5065 | already--it should be impossible, but there may be | |
5066 | something wrong with the archive. */ | |
5067 | if (element->archive_pass != 0) | |
5068 | { | |
5069 | bfd_set_error (bfd_error_bad_value); | |
5070 | goto error_return; | |
5071 | } | |
5072 | element->archive_pass = 1; | |
5073 | ||
5074 | undefs_tail = info->hash->undefs_tail; | |
5075 | ||
0e144ba7 AM |
5076 | if (!(*info->callbacks |
5077 | ->add_archive_element) (info, element, symdef->name, &element)) | |
0ad989f9 | 5078 | goto error_return; |
0e144ba7 | 5079 | if (!bfd_link_add_symbols (element, info)) |
0ad989f9 L |
5080 | goto error_return; |
5081 | ||
5082 | /* If there are any new undefined symbols, we need to make | |
5083 | another pass through the archive in order to see whether | |
5084 | they can be defined. FIXME: This isn't perfect, because | |
5085 | common symbols wind up on undefs_tail and because an | |
5086 | undefined symbol which is defined later on in this pass | |
5087 | does not require another pass. This isn't a bug, but it | |
5088 | does make the code less efficient than it could be. */ | |
5089 | if (undefs_tail != info->hash->undefs_tail) | |
5090 | loop = TRUE; | |
5091 | ||
5092 | /* Look backward to mark all symbols from this object file | |
5093 | which we have already seen in this pass. */ | |
5094 | mark = i; | |
5095 | do | |
5096 | { | |
5097 | included[mark] = TRUE; | |
5098 | if (mark == 0) | |
5099 | break; | |
5100 | --mark; | |
5101 | } | |
5102 | while (symdefs[mark].file_offset == symdef->file_offset); | |
5103 | ||
5104 | /* We mark subsequent symbols from this object file as we go | |
5105 | on through the loop. */ | |
5106 | last = symdef->file_offset; | |
5107 | } | |
5108 | } | |
5109 | while (loop); | |
5110 | ||
5111 | free (defined); | |
5112 | free (included); | |
5113 | ||
5114 | return TRUE; | |
5115 | ||
5116 | error_return: | |
5117 | if (defined != NULL) | |
5118 | free (defined); | |
5119 | if (included != NULL) | |
5120 | free (included); | |
5121 | return FALSE; | |
5122 | } | |
4ad4eba5 AM |
5123 | |
5124 | /* Given an ELF BFD, add symbols to the global hash table as | |
5125 | appropriate. */ | |
5126 | ||
5127 | bfd_boolean | |
5128 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | |
5129 | { | |
5130 | switch (bfd_get_format (abfd)) | |
5131 | { | |
5132 | case bfd_object: | |
5133 | return elf_link_add_object_symbols (abfd, info); | |
5134 | case bfd_archive: | |
5135 | return elf_link_add_archive_symbols (abfd, info); | |
5136 | default: | |
5137 | bfd_set_error (bfd_error_wrong_format); | |
5138 | return FALSE; | |
5139 | } | |
5140 | } | |
5a580b3a | 5141 | \f |
14b1c01e AM |
5142 | struct hash_codes_info |
5143 | { | |
5144 | unsigned long *hashcodes; | |
5145 | bfd_boolean error; | |
5146 | }; | |
a0c8462f | 5147 | |
5a580b3a AM |
5148 | /* This function will be called though elf_link_hash_traverse to store |
5149 | all hash value of the exported symbols in an array. */ | |
5150 | ||
5151 | static bfd_boolean | |
5152 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | |
5153 | { | |
a50b1753 | 5154 | struct hash_codes_info *inf = (struct hash_codes_info *) data; |
5a580b3a AM |
5155 | const char *name; |
5156 | char *p; | |
5157 | unsigned long ha; | |
5158 | char *alc = NULL; | |
5159 | ||
5160 | if (h->root.type == bfd_link_hash_warning) | |
5161 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5162 | ||
5163 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
5164 | if (h->dynindx == -1) | |
5165 | return TRUE; | |
5166 | ||
5167 | name = h->root.root.string; | |
5168 | p = strchr (name, ELF_VER_CHR); | |
5169 | if (p != NULL) | |
5170 | { | |
a50b1753 | 5171 | alc = (char *) bfd_malloc (p - name + 1); |
14b1c01e AM |
5172 | if (alc == NULL) |
5173 | { | |
5174 | inf->error = TRUE; | |
5175 | return FALSE; | |
5176 | } | |
5a580b3a AM |
5177 | memcpy (alc, name, p - name); |
5178 | alc[p - name] = '\0'; | |
5179 | name = alc; | |
5180 | } | |
5181 | ||
5182 | /* Compute the hash value. */ | |
5183 | ha = bfd_elf_hash (name); | |
5184 | ||
5185 | /* Store the found hash value in the array given as the argument. */ | |
14b1c01e | 5186 | *(inf->hashcodes)++ = ha; |
5a580b3a AM |
5187 | |
5188 | /* And store it in the struct so that we can put it in the hash table | |
5189 | later. */ | |
f6e332e6 | 5190 | h->u.elf_hash_value = ha; |
5a580b3a AM |
5191 | |
5192 | if (alc != NULL) | |
5193 | free (alc); | |
5194 | ||
5195 | return TRUE; | |
5196 | } | |
5197 | ||
fdc90cb4 JJ |
5198 | struct collect_gnu_hash_codes |
5199 | { | |
5200 | bfd *output_bfd; | |
5201 | const struct elf_backend_data *bed; | |
5202 | unsigned long int nsyms; | |
5203 | unsigned long int maskbits; | |
5204 | unsigned long int *hashcodes; | |
5205 | unsigned long int *hashval; | |
5206 | unsigned long int *indx; | |
5207 | unsigned long int *counts; | |
5208 | bfd_vma *bitmask; | |
5209 | bfd_byte *contents; | |
5210 | long int min_dynindx; | |
5211 | unsigned long int bucketcount; | |
5212 | unsigned long int symindx; | |
5213 | long int local_indx; | |
5214 | long int shift1, shift2; | |
5215 | unsigned long int mask; | |
14b1c01e | 5216 | bfd_boolean error; |
fdc90cb4 JJ |
5217 | }; |
5218 | ||
5219 | /* This function will be called though elf_link_hash_traverse to store | |
5220 | all hash value of the exported symbols in an array. */ | |
5221 | ||
5222 | static bfd_boolean | |
5223 | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) | |
5224 | { | |
a50b1753 | 5225 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
fdc90cb4 JJ |
5226 | const char *name; |
5227 | char *p; | |
5228 | unsigned long ha; | |
5229 | char *alc = NULL; | |
5230 | ||
5231 | if (h->root.type == bfd_link_hash_warning) | |
5232 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5233 | ||
5234 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
5235 | if (h->dynindx == -1) | |
5236 | return TRUE; | |
5237 | ||
5238 | /* Ignore also local symbols and undefined symbols. */ | |
5239 | if (! (*s->bed->elf_hash_symbol) (h)) | |
5240 | return TRUE; | |
5241 | ||
5242 | name = h->root.root.string; | |
5243 | p = strchr (name, ELF_VER_CHR); | |
5244 | if (p != NULL) | |
5245 | { | |
a50b1753 | 5246 | alc = (char *) bfd_malloc (p - name + 1); |
14b1c01e AM |
5247 | if (alc == NULL) |
5248 | { | |
5249 | s->error = TRUE; | |
5250 | return FALSE; | |
5251 | } | |
fdc90cb4 JJ |
5252 | memcpy (alc, name, p - name); |
5253 | alc[p - name] = '\0'; | |
5254 | name = alc; | |
5255 | } | |
5256 | ||
5257 | /* Compute the hash value. */ | |
5258 | ha = bfd_elf_gnu_hash (name); | |
5259 | ||
5260 | /* Store the found hash value in the array for compute_bucket_count, | |
5261 | and also for .dynsym reordering purposes. */ | |
5262 | s->hashcodes[s->nsyms] = ha; | |
5263 | s->hashval[h->dynindx] = ha; | |
5264 | ++s->nsyms; | |
5265 | if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) | |
5266 | s->min_dynindx = h->dynindx; | |
5267 | ||
5268 | if (alc != NULL) | |
5269 | free (alc); | |
5270 | ||
5271 | return TRUE; | |
5272 | } | |
5273 | ||
5274 | /* This function will be called though elf_link_hash_traverse to do | |
5275 | final dynaminc symbol renumbering. */ | |
5276 | ||
5277 | static bfd_boolean | |
5278 | elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data) | |
5279 | { | |
a50b1753 | 5280 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
fdc90cb4 JJ |
5281 | unsigned long int bucket; |
5282 | unsigned long int val; | |
5283 | ||
5284 | if (h->root.type == bfd_link_hash_warning) | |
5285 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5286 | ||
5287 | /* Ignore indirect symbols. */ | |
5288 | if (h->dynindx == -1) | |
5289 | return TRUE; | |
5290 | ||
5291 | /* Ignore also local symbols and undefined symbols. */ | |
5292 | if (! (*s->bed->elf_hash_symbol) (h)) | |
5293 | { | |
5294 | if (h->dynindx >= s->min_dynindx) | |
5295 | h->dynindx = s->local_indx++; | |
5296 | return TRUE; | |
5297 | } | |
5298 | ||
5299 | bucket = s->hashval[h->dynindx] % s->bucketcount; | |
5300 | val = (s->hashval[h->dynindx] >> s->shift1) | |
5301 | & ((s->maskbits >> s->shift1) - 1); | |
5302 | s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); | |
5303 | s->bitmask[val] | |
5304 | |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); | |
5305 | val = s->hashval[h->dynindx] & ~(unsigned long int) 1; | |
5306 | if (s->counts[bucket] == 1) | |
5307 | /* Last element terminates the chain. */ | |
5308 | val |= 1; | |
5309 | bfd_put_32 (s->output_bfd, val, | |
5310 | s->contents + (s->indx[bucket] - s->symindx) * 4); | |
5311 | --s->counts[bucket]; | |
5312 | h->dynindx = s->indx[bucket]++; | |
5313 | return TRUE; | |
5314 | } | |
5315 | ||
5316 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ | |
5317 | ||
5318 | bfd_boolean | |
5319 | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) | |
5320 | { | |
5321 | return !(h->forced_local | |
5322 | || h->root.type == bfd_link_hash_undefined | |
5323 | || h->root.type == bfd_link_hash_undefweak | |
5324 | || ((h->root.type == bfd_link_hash_defined | |
5325 | || h->root.type == bfd_link_hash_defweak) | |
5326 | && h->root.u.def.section->output_section == NULL)); | |
5327 | } | |
5328 | ||
5a580b3a AM |
5329 | /* Array used to determine the number of hash table buckets to use |
5330 | based on the number of symbols there are. If there are fewer than | |
5331 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
5332 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
5333 | than 32771 buckets. */ | |
5334 | ||
5335 | static const size_t elf_buckets[] = | |
5336 | { | |
5337 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
5338 | 16411, 32771, 0 | |
5339 | }; | |
5340 | ||
5341 | /* Compute bucket count for hashing table. We do not use a static set | |
5342 | of possible tables sizes anymore. Instead we determine for all | |
5343 | possible reasonable sizes of the table the outcome (i.e., the | |
5344 | number of collisions etc) and choose the best solution. The | |
5345 | weighting functions are not too simple to allow the table to grow | |
5346 | without bounds. Instead one of the weighting factors is the size. | |
5347 | Therefore the result is always a good payoff between few collisions | |
5348 | (= short chain lengths) and table size. */ | |
5349 | static size_t | |
b20dd2ce | 5350 | compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
d40f3da9 AM |
5351 | unsigned long int *hashcodes ATTRIBUTE_UNUSED, |
5352 | unsigned long int nsyms, | |
5353 | int gnu_hash) | |
5a580b3a | 5354 | { |
5a580b3a | 5355 | size_t best_size = 0; |
5a580b3a | 5356 | unsigned long int i; |
5a580b3a | 5357 | |
5a580b3a AM |
5358 | /* We have a problem here. The following code to optimize the table |
5359 | size requires an integer type with more the 32 bits. If | |
5360 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
5361 | #ifdef BFD_HOST_U_64_BIT | |
5362 | if (info->optimize) | |
5363 | { | |
5a580b3a AM |
5364 | size_t minsize; |
5365 | size_t maxsize; | |
5366 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
5a580b3a | 5367 | bfd *dynobj = elf_hash_table (info)->dynobj; |
d40f3da9 | 5368 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; |
5a580b3a | 5369 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
fdc90cb4 | 5370 | unsigned long int *counts; |
d40f3da9 | 5371 | bfd_size_type amt; |
0883b6e0 | 5372 | unsigned int no_improvement_count = 0; |
5a580b3a AM |
5373 | |
5374 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
5375 | that the hashing table must at least have NSYMS/4 and at most | |
5376 | 2*NSYMS buckets. */ | |
5377 | minsize = nsyms / 4; | |
5378 | if (minsize == 0) | |
5379 | minsize = 1; | |
5380 | best_size = maxsize = nsyms * 2; | |
fdc90cb4 JJ |
5381 | if (gnu_hash) |
5382 | { | |
5383 | if (minsize < 2) | |
5384 | minsize = 2; | |
5385 | if ((best_size & 31) == 0) | |
5386 | ++best_size; | |
5387 | } | |
5a580b3a AM |
5388 | |
5389 | /* Create array where we count the collisions in. We must use bfd_malloc | |
5390 | since the size could be large. */ | |
5391 | amt = maxsize; | |
5392 | amt *= sizeof (unsigned long int); | |
a50b1753 | 5393 | counts = (unsigned long int *) bfd_malloc (amt); |
5a580b3a | 5394 | if (counts == NULL) |
fdc90cb4 | 5395 | return 0; |
5a580b3a AM |
5396 | |
5397 | /* Compute the "optimal" size for the hash table. The criteria is a | |
5398 | minimal chain length. The minor criteria is (of course) the size | |
5399 | of the table. */ | |
5400 | for (i = minsize; i < maxsize; ++i) | |
5401 | { | |
5402 | /* Walk through the array of hashcodes and count the collisions. */ | |
5403 | BFD_HOST_U_64_BIT max; | |
5404 | unsigned long int j; | |
5405 | unsigned long int fact; | |
5406 | ||
fdc90cb4 JJ |
5407 | if (gnu_hash && (i & 31) == 0) |
5408 | continue; | |
5409 | ||
5a580b3a AM |
5410 | memset (counts, '\0', i * sizeof (unsigned long int)); |
5411 | ||
5412 | /* Determine how often each hash bucket is used. */ | |
5413 | for (j = 0; j < nsyms; ++j) | |
5414 | ++counts[hashcodes[j] % i]; | |
5415 | ||
5416 | /* For the weight function we need some information about the | |
5417 | pagesize on the target. This is information need not be 100% | |
5418 | accurate. Since this information is not available (so far) we | |
5419 | define it here to a reasonable default value. If it is crucial | |
5420 | to have a better value some day simply define this value. */ | |
5421 | # ifndef BFD_TARGET_PAGESIZE | |
5422 | # define BFD_TARGET_PAGESIZE (4096) | |
5423 | # endif | |
5424 | ||
fdc90cb4 JJ |
5425 | /* We in any case need 2 + DYNSYMCOUNT entries for the size values |
5426 | and the chains. */ | |
5427 | max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; | |
5a580b3a AM |
5428 | |
5429 | # if 1 | |
5430 | /* Variant 1: optimize for short chains. We add the squares | |
5431 | of all the chain lengths (which favors many small chain | |
5432 | over a few long chains). */ | |
5433 | for (j = 0; j < i; ++j) | |
5434 | max += counts[j] * counts[j]; | |
5435 | ||
5436 | /* This adds penalties for the overall size of the table. */ | |
fdc90cb4 | 5437 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
5a580b3a AM |
5438 | max *= fact * fact; |
5439 | # else | |
5440 | /* Variant 2: Optimize a lot more for small table. Here we | |
5441 | also add squares of the size but we also add penalties for | |
5442 | empty slots (the +1 term). */ | |
5443 | for (j = 0; j < i; ++j) | |
5444 | max += (1 + counts[j]) * (1 + counts[j]); | |
5445 | ||
5446 | /* The overall size of the table is considered, but not as | |
5447 | strong as in variant 1, where it is squared. */ | |
fdc90cb4 | 5448 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
5a580b3a AM |
5449 | max *= fact; |
5450 | # endif | |
5451 | ||
5452 | /* Compare with current best results. */ | |
5453 | if (max < best_chlen) | |
5454 | { | |
5455 | best_chlen = max; | |
5456 | best_size = i; | |
0883b6e0 | 5457 | no_improvement_count = 0; |
5a580b3a | 5458 | } |
0883b6e0 NC |
5459 | /* PR 11843: Avoid futile long searches for the best bucket size |
5460 | when there are a large number of symbols. */ | |
5461 | else if (++no_improvement_count == 100) | |
5462 | break; | |
5a580b3a AM |
5463 | } |
5464 | ||
5465 | free (counts); | |
5466 | } | |
5467 | else | |
5468 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
5469 | { | |
5470 | /* This is the fallback solution if no 64bit type is available or if we | |
5471 | are not supposed to spend much time on optimizations. We select the | |
5472 | bucket count using a fixed set of numbers. */ | |
5473 | for (i = 0; elf_buckets[i] != 0; i++) | |
5474 | { | |
5475 | best_size = elf_buckets[i]; | |
fdc90cb4 | 5476 | if (nsyms < elf_buckets[i + 1]) |
5a580b3a AM |
5477 | break; |
5478 | } | |
fdc90cb4 JJ |
5479 | if (gnu_hash && best_size < 2) |
5480 | best_size = 2; | |
5a580b3a AM |
5481 | } |
5482 | ||
5a580b3a AM |
5483 | return best_size; |
5484 | } | |
5485 | ||
d0bf826b AM |
5486 | /* Size any SHT_GROUP section for ld -r. */ |
5487 | ||
5488 | bfd_boolean | |
5489 | _bfd_elf_size_group_sections (struct bfd_link_info *info) | |
5490 | { | |
5491 | bfd *ibfd; | |
5492 | ||
5493 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) | |
5494 | if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour | |
5495 | && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) | |
5496 | return FALSE; | |
5497 | return TRUE; | |
5498 | } | |
5499 | ||
5a580b3a AM |
5500 | /* Set up the sizes and contents of the ELF dynamic sections. This is |
5501 | called by the ELF linker emulation before_allocation routine. We | |
5502 | must set the sizes of the sections before the linker sets the | |
5503 | addresses of the various sections. */ | |
5504 | ||
5505 | bfd_boolean | |
5506 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | |
5507 | const char *soname, | |
5508 | const char *rpath, | |
5509 | const char *filter_shlib, | |
7ee314fa AM |
5510 | const char *audit, |
5511 | const char *depaudit, | |
5a580b3a AM |
5512 | const char * const *auxiliary_filters, |
5513 | struct bfd_link_info *info, | |
5514 | asection **sinterpptr, | |
5515 | struct bfd_elf_version_tree *verdefs) | |
5516 | { | |
5517 | bfd_size_type soname_indx; | |
5518 | bfd *dynobj; | |
5519 | const struct elf_backend_data *bed; | |
28caa186 | 5520 | struct elf_info_failed asvinfo; |
5a580b3a AM |
5521 | |
5522 | *sinterpptr = NULL; | |
5523 | ||
5524 | soname_indx = (bfd_size_type) -1; | |
5525 | ||
5526 | if (!is_elf_hash_table (info->hash)) | |
5527 | return TRUE; | |
5528 | ||
6bfdb61b | 5529 | bed = get_elf_backend_data (output_bfd); |
5a580b3a AM |
5530 | if (info->execstack) |
5531 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X; | |
5532 | else if (info->noexecstack) | |
5533 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W; | |
5534 | else | |
5535 | { | |
5536 | bfd *inputobj; | |
5537 | asection *notesec = NULL; | |
5538 | int exec = 0; | |
5539 | ||
5540 | for (inputobj = info->input_bfds; | |
5541 | inputobj; | |
5542 | inputobj = inputobj->link_next) | |
5543 | { | |
5544 | asection *s; | |
5545 | ||
a94b9d2d | 5546 | if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED)) |
5a580b3a AM |
5547 | continue; |
5548 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | |
5549 | if (s) | |
5550 | { | |
5551 | if (s->flags & SEC_CODE) | |
5552 | exec = PF_X; | |
5553 | notesec = s; | |
5554 | } | |
6bfdb61b | 5555 | else if (bed->default_execstack) |
5a580b3a AM |
5556 | exec = PF_X; |
5557 | } | |
5558 | if (notesec) | |
5559 | { | |
5560 | elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec; | |
5561 | if (exec && info->relocatable | |
5562 | && notesec->output_section != bfd_abs_section_ptr) | |
5563 | notesec->output_section->flags |= SEC_CODE; | |
5564 | } | |
5565 | } | |
5566 | ||
5567 | /* Any syms created from now on start with -1 in | |
5568 | got.refcount/offset and plt.refcount/offset. */ | |
a6aa5195 AM |
5569 | elf_hash_table (info)->init_got_refcount |
5570 | = elf_hash_table (info)->init_got_offset; | |
5571 | elf_hash_table (info)->init_plt_refcount | |
5572 | = elf_hash_table (info)->init_plt_offset; | |
5a580b3a | 5573 | |
d0bf826b AM |
5574 | if (info->relocatable |
5575 | && !_bfd_elf_size_group_sections (info)) | |
5576 | return FALSE; | |
5577 | ||
5a580b3a AM |
5578 | /* The backend may have to create some sections regardless of whether |
5579 | we're dynamic or not. */ | |
5a580b3a AM |
5580 | if (bed->elf_backend_always_size_sections |
5581 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
5582 | return FALSE; | |
5583 | ||
eb3d5f3b JB |
5584 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) |
5585 | return FALSE; | |
5586 | ||
5a580b3a AM |
5587 | dynobj = elf_hash_table (info)->dynobj; |
5588 | ||
5589 | /* If there were no dynamic objects in the link, there is nothing to | |
5590 | do here. */ | |
5591 | if (dynobj == NULL) | |
5592 | return TRUE; | |
5593 | ||
5a580b3a AM |
5594 | if (elf_hash_table (info)->dynamic_sections_created) |
5595 | { | |
5596 | struct elf_info_failed eif; | |
5597 | struct elf_link_hash_entry *h; | |
5598 | asection *dynstr; | |
5599 | struct bfd_elf_version_tree *t; | |
5600 | struct bfd_elf_version_expr *d; | |
046183de | 5601 | asection *s; |
5a580b3a AM |
5602 | bfd_boolean all_defined; |
5603 | ||
5604 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
5605 | BFD_ASSERT (*sinterpptr != NULL || !info->executable); | |
5606 | ||
5607 | if (soname != NULL) | |
5608 | { | |
5609 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5610 | soname, TRUE); | |
5611 | if (soname_indx == (bfd_size_type) -1 | |
5612 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
5613 | return FALSE; | |
5614 | } | |
5615 | ||
5616 | if (info->symbolic) | |
5617 | { | |
5618 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
5619 | return FALSE; | |
5620 | info->flags |= DF_SYMBOLIC; | |
5621 | } | |
5622 | ||
5623 | if (rpath != NULL) | |
5624 | { | |
5625 | bfd_size_type indx; | |
5626 | ||
5627 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, | |
5628 | TRUE); | |
5629 | if (indx == (bfd_size_type) -1 | |
5630 | || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
5631 | return FALSE; | |
5632 | ||
5633 | if (info->new_dtags) | |
5634 | { | |
5635 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx); | |
5636 | if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx)) | |
5637 | return FALSE; | |
5638 | } | |
5639 | } | |
5640 | ||
5641 | if (filter_shlib != NULL) | |
5642 | { | |
5643 | bfd_size_type indx; | |
5644 | ||
5645 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5646 | filter_shlib, TRUE); | |
5647 | if (indx == (bfd_size_type) -1 | |
5648 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
5649 | return FALSE; | |
5650 | } | |
5651 | ||
5652 | if (auxiliary_filters != NULL) | |
5653 | { | |
5654 | const char * const *p; | |
5655 | ||
5656 | for (p = auxiliary_filters; *p != NULL; p++) | |
5657 | { | |
5658 | bfd_size_type indx; | |
5659 | ||
5660 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5661 | *p, TRUE); | |
5662 | if (indx == (bfd_size_type) -1 | |
5663 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
5664 | return FALSE; | |
5665 | } | |
5666 | } | |
5667 | ||
7ee314fa AM |
5668 | if (audit != NULL) |
5669 | { | |
5670 | bfd_size_type indx; | |
5671 | ||
5672 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, | |
5673 | TRUE); | |
5674 | if (indx == (bfd_size_type) -1 | |
5675 | || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) | |
5676 | return FALSE; | |
5677 | } | |
5678 | ||
5679 | if (depaudit != NULL) | |
5680 | { | |
5681 | bfd_size_type indx; | |
5682 | ||
5683 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, | |
5684 | TRUE); | |
5685 | if (indx == (bfd_size_type) -1 | |
5686 | || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) | |
5687 | return FALSE; | |
5688 | } | |
5689 | ||
5a580b3a AM |
5690 | eif.info = info; |
5691 | eif.verdefs = verdefs; | |
5692 | eif.failed = FALSE; | |
5693 | ||
5694 | /* If we are supposed to export all symbols into the dynamic symbol | |
5695 | table (this is not the normal case), then do so. */ | |
55255dae L |
5696 | if (info->export_dynamic |
5697 | || (info->executable && info->dynamic)) | |
5a580b3a AM |
5698 | { |
5699 | elf_link_hash_traverse (elf_hash_table (info), | |
5700 | _bfd_elf_export_symbol, | |
5701 | &eif); | |
5702 | if (eif.failed) | |
5703 | return FALSE; | |
5704 | } | |
5705 | ||
5706 | /* Make all global versions with definition. */ | |
5707 | for (t = verdefs; t != NULL; t = t->next) | |
5708 | for (d = t->globals.list; d != NULL; d = d->next) | |
ae5a3597 | 5709 | if (!d->symver && d->literal) |
5a580b3a AM |
5710 | { |
5711 | const char *verstr, *name; | |
5712 | size_t namelen, verlen, newlen; | |
93252b1c | 5713 | char *newname, *p, leading_char; |
5a580b3a AM |
5714 | struct elf_link_hash_entry *newh; |
5715 | ||
93252b1c | 5716 | leading_char = bfd_get_symbol_leading_char (output_bfd); |
ae5a3597 | 5717 | name = d->pattern; |
93252b1c | 5718 | namelen = strlen (name) + (leading_char != '\0'); |
5a580b3a AM |
5719 | verstr = t->name; |
5720 | verlen = strlen (verstr); | |
5721 | newlen = namelen + verlen + 3; | |
5722 | ||
a50b1753 | 5723 | newname = (char *) bfd_malloc (newlen); |
5a580b3a AM |
5724 | if (newname == NULL) |
5725 | return FALSE; | |
93252b1c MF |
5726 | newname[0] = leading_char; |
5727 | memcpy (newname + (leading_char != '\0'), name, namelen); | |
5a580b3a AM |
5728 | |
5729 | /* Check the hidden versioned definition. */ | |
5730 | p = newname + namelen; | |
5731 | *p++ = ELF_VER_CHR; | |
5732 | memcpy (p, verstr, verlen + 1); | |
5733 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
5734 | newname, FALSE, FALSE, | |
5735 | FALSE); | |
5736 | if (newh == NULL | |
5737 | || (newh->root.type != bfd_link_hash_defined | |
5738 | && newh->root.type != bfd_link_hash_defweak)) | |
5739 | { | |
5740 | /* Check the default versioned definition. */ | |
5741 | *p++ = ELF_VER_CHR; | |
5742 | memcpy (p, verstr, verlen + 1); | |
5743 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
5744 | newname, FALSE, FALSE, | |
5745 | FALSE); | |
5746 | } | |
5747 | free (newname); | |
5748 | ||
5749 | /* Mark this version if there is a definition and it is | |
5750 | not defined in a shared object. */ | |
5751 | if (newh != NULL | |
f5385ebf | 5752 | && !newh->def_dynamic |
5a580b3a AM |
5753 | && (newh->root.type == bfd_link_hash_defined |
5754 | || newh->root.type == bfd_link_hash_defweak)) | |
5755 | d->symver = 1; | |
5756 | } | |
5757 | ||
5758 | /* Attach all the symbols to their version information. */ | |
5a580b3a AM |
5759 | asvinfo.info = info; |
5760 | asvinfo.verdefs = verdefs; | |
5761 | asvinfo.failed = FALSE; | |
5762 | ||
5763 | elf_link_hash_traverse (elf_hash_table (info), | |
5764 | _bfd_elf_link_assign_sym_version, | |
5765 | &asvinfo); | |
5766 | if (asvinfo.failed) | |
5767 | return FALSE; | |
5768 | ||
5769 | if (!info->allow_undefined_version) | |
5770 | { | |
5771 | /* Check if all global versions have a definition. */ | |
5772 | all_defined = TRUE; | |
5773 | for (t = verdefs; t != NULL; t = t->next) | |
5774 | for (d = t->globals.list; d != NULL; d = d->next) | |
ae5a3597 | 5775 | if (d->literal && !d->symver && !d->script) |
5a580b3a AM |
5776 | { |
5777 | (*_bfd_error_handler) | |
5778 | (_("%s: undefined version: %s"), | |
5779 | d->pattern, t->name); | |
5780 | all_defined = FALSE; | |
5781 | } | |
5782 | ||
5783 | if (!all_defined) | |
5784 | { | |
5785 | bfd_set_error (bfd_error_bad_value); | |
5786 | return FALSE; | |
5787 | } | |
5788 | } | |
5789 | ||
5790 | /* Find all symbols which were defined in a dynamic object and make | |
5791 | the backend pick a reasonable value for them. */ | |
5792 | elf_link_hash_traverse (elf_hash_table (info), | |
5793 | _bfd_elf_adjust_dynamic_symbol, | |
5794 | &eif); | |
5795 | if (eif.failed) | |
5796 | return FALSE; | |
5797 | ||
5798 | /* Add some entries to the .dynamic section. We fill in some of the | |
ee75fd95 | 5799 | values later, in bfd_elf_final_link, but we must add the entries |
5a580b3a AM |
5800 | now so that we know the final size of the .dynamic section. */ |
5801 | ||
5802 | /* If there are initialization and/or finalization functions to | |
5803 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
5804 | h = (info->init_function | |
5805 | ? elf_link_hash_lookup (elf_hash_table (info), | |
5806 | info->init_function, FALSE, | |
5807 | FALSE, FALSE) | |
5808 | : NULL); | |
5809 | if (h != NULL | |
f5385ebf AM |
5810 | && (h->ref_regular |
5811 | || h->def_regular)) | |
5a580b3a AM |
5812 | { |
5813 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) | |
5814 | return FALSE; | |
5815 | } | |
5816 | h = (info->fini_function | |
5817 | ? elf_link_hash_lookup (elf_hash_table (info), | |
5818 | info->fini_function, FALSE, | |
5819 | FALSE, FALSE) | |
5820 | : NULL); | |
5821 | if (h != NULL | |
f5385ebf AM |
5822 | && (h->ref_regular |
5823 | || h->def_regular)) | |
5a580b3a AM |
5824 | { |
5825 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) | |
5826 | return FALSE; | |
5827 | } | |
5828 | ||
046183de AM |
5829 | s = bfd_get_section_by_name (output_bfd, ".preinit_array"); |
5830 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5831 | { |
5832 | /* DT_PREINIT_ARRAY is not allowed in shared library. */ | |
5833 | if (! info->executable) | |
5834 | { | |
5835 | bfd *sub; | |
5836 | asection *o; | |
5837 | ||
5838 | for (sub = info->input_bfds; sub != NULL; | |
5839 | sub = sub->link_next) | |
3fcd97f1 JJ |
5840 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour) |
5841 | for (o = sub->sections; o != NULL; o = o->next) | |
5842 | if (elf_section_data (o)->this_hdr.sh_type | |
5843 | == SHT_PREINIT_ARRAY) | |
5844 | { | |
5845 | (*_bfd_error_handler) | |
5846 | (_("%B: .preinit_array section is not allowed in DSO"), | |
5847 | sub); | |
5848 | break; | |
5849 | } | |
5a580b3a AM |
5850 | |
5851 | bfd_set_error (bfd_error_nonrepresentable_section); | |
5852 | return FALSE; | |
5853 | } | |
5854 | ||
5855 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) | |
5856 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) | |
5857 | return FALSE; | |
5858 | } | |
046183de AM |
5859 | s = bfd_get_section_by_name (output_bfd, ".init_array"); |
5860 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5861 | { |
5862 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) | |
5863 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) | |
5864 | return FALSE; | |
5865 | } | |
046183de AM |
5866 | s = bfd_get_section_by_name (output_bfd, ".fini_array"); |
5867 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5868 | { |
5869 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) | |
5870 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) | |
5871 | return FALSE; | |
5872 | } | |
5873 | ||
5874 | dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); | |
5875 | /* If .dynstr is excluded from the link, we don't want any of | |
5876 | these tags. Strictly, we should be checking each section | |
5877 | individually; This quick check covers for the case where | |
5878 | someone does a /DISCARD/ : { *(*) }. */ | |
5879 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | |
5880 | { | |
5881 | bfd_size_type strsize; | |
5882 | ||
5883 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
fdc90cb4 JJ |
5884 | if ((info->emit_hash |
5885 | && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) | |
5886 | || (info->emit_gnu_hash | |
5887 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)) | |
5a580b3a AM |
5888 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) |
5889 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
5890 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
5891 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, | |
5892 | bed->s->sizeof_sym)) | |
5893 | return FALSE; | |
5894 | } | |
5895 | } | |
5896 | ||
5897 | /* The backend must work out the sizes of all the other dynamic | |
5898 | sections. */ | |
5899 | if (bed->elf_backend_size_dynamic_sections | |
5900 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
5901 | return FALSE; | |
5902 | ||
5903 | if (elf_hash_table (info)->dynamic_sections_created) | |
5904 | { | |
554220db | 5905 | unsigned long section_sym_count; |
5a580b3a | 5906 | asection *s; |
5a580b3a AM |
5907 | |
5908 | /* Set up the version definition section. */ | |
5909 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
5910 | BFD_ASSERT (s != NULL); | |
5911 | ||
5912 | /* We may have created additional version definitions if we are | |
5913 | just linking a regular application. */ | |
5914 | verdefs = asvinfo.verdefs; | |
5915 | ||
5916 | /* Skip anonymous version tag. */ | |
5917 | if (verdefs != NULL && verdefs->vernum == 0) | |
5918 | verdefs = verdefs->next; | |
5919 | ||
3e3b46e5 | 5920 | if (verdefs == NULL && !info->create_default_symver) |
8423293d | 5921 | s->flags |= SEC_EXCLUDE; |
5a580b3a AM |
5922 | else |
5923 | { | |
5924 | unsigned int cdefs; | |
5925 | bfd_size_type size; | |
5926 | struct bfd_elf_version_tree *t; | |
5927 | bfd_byte *p; | |
5928 | Elf_Internal_Verdef def; | |
5929 | Elf_Internal_Verdaux defaux; | |
3e3b46e5 PB |
5930 | struct bfd_link_hash_entry *bh; |
5931 | struct elf_link_hash_entry *h; | |
5932 | const char *name; | |
5a580b3a AM |
5933 | |
5934 | cdefs = 0; | |
5935 | size = 0; | |
5936 | ||
5937 | /* Make space for the base version. */ | |
5938 | size += sizeof (Elf_External_Verdef); | |
5939 | size += sizeof (Elf_External_Verdaux); | |
5940 | ++cdefs; | |
5941 | ||
3e3b46e5 PB |
5942 | /* Make space for the default version. */ |
5943 | if (info->create_default_symver) | |
5944 | { | |
5945 | size += sizeof (Elf_External_Verdef); | |
5946 | ++cdefs; | |
5947 | } | |
5948 | ||
5a580b3a AM |
5949 | for (t = verdefs; t != NULL; t = t->next) |
5950 | { | |
5951 | struct bfd_elf_version_deps *n; | |
5952 | ||
a6cc6b3b RO |
5953 | /* Don't emit base version twice. */ |
5954 | if (t->vernum == 0) | |
5955 | continue; | |
5956 | ||
5a580b3a AM |
5957 | size += sizeof (Elf_External_Verdef); |
5958 | size += sizeof (Elf_External_Verdaux); | |
5959 | ++cdefs; | |
5960 | ||
5961 | for (n = t->deps; n != NULL; n = n->next) | |
5962 | size += sizeof (Elf_External_Verdaux); | |
5963 | } | |
5964 | ||
eea6121a | 5965 | s->size = size; |
a50b1753 | 5966 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
eea6121a | 5967 | if (s->contents == NULL && s->size != 0) |
5a580b3a AM |
5968 | return FALSE; |
5969 | ||
5970 | /* Fill in the version definition section. */ | |
5971 | ||
5972 | p = s->contents; | |
5973 | ||
5974 | def.vd_version = VER_DEF_CURRENT; | |
5975 | def.vd_flags = VER_FLG_BASE; | |
5976 | def.vd_ndx = 1; | |
5977 | def.vd_cnt = 1; | |
3e3b46e5 PB |
5978 | if (info->create_default_symver) |
5979 | { | |
5980 | def.vd_aux = 2 * sizeof (Elf_External_Verdef); | |
5981 | def.vd_next = sizeof (Elf_External_Verdef); | |
5982 | } | |
5983 | else | |
5984 | { | |
5985 | def.vd_aux = sizeof (Elf_External_Verdef); | |
5986 | def.vd_next = (sizeof (Elf_External_Verdef) | |
5987 | + sizeof (Elf_External_Verdaux)); | |
5988 | } | |
5a580b3a AM |
5989 | |
5990 | if (soname_indx != (bfd_size_type) -1) | |
5991 | { | |
5992 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
5993 | soname_indx); | |
5994 | def.vd_hash = bfd_elf_hash (soname); | |
5995 | defaux.vda_name = soname_indx; | |
3e3b46e5 | 5996 | name = soname; |
5a580b3a AM |
5997 | } |
5998 | else | |
5999 | { | |
5a580b3a AM |
6000 | bfd_size_type indx; |
6001 | ||
06084812 | 6002 | name = lbasename (output_bfd->filename); |
5a580b3a AM |
6003 | def.vd_hash = bfd_elf_hash (name); |
6004 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6005 | name, FALSE); | |
6006 | if (indx == (bfd_size_type) -1) | |
6007 | return FALSE; | |
6008 | defaux.vda_name = indx; | |
6009 | } | |
6010 | defaux.vda_next = 0; | |
6011 | ||
6012 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6013 | (Elf_External_Verdef *) p); | |
6014 | p += sizeof (Elf_External_Verdef); | |
3e3b46e5 PB |
6015 | if (info->create_default_symver) |
6016 | { | |
6017 | /* Add a symbol representing this version. */ | |
6018 | bh = NULL; | |
6019 | if (! (_bfd_generic_link_add_one_symbol | |
6020 | (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, | |
6021 | 0, NULL, FALSE, | |
6022 | get_elf_backend_data (dynobj)->collect, &bh))) | |
6023 | return FALSE; | |
6024 | h = (struct elf_link_hash_entry *) bh; | |
6025 | h->non_elf = 0; | |
6026 | h->def_regular = 1; | |
6027 | h->type = STT_OBJECT; | |
6028 | h->verinfo.vertree = NULL; | |
6029 | ||
6030 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
6031 | return FALSE; | |
6032 | ||
6033 | /* Create a duplicate of the base version with the same | |
6034 | aux block, but different flags. */ | |
6035 | def.vd_flags = 0; | |
6036 | def.vd_ndx = 2; | |
6037 | def.vd_aux = sizeof (Elf_External_Verdef); | |
6038 | if (verdefs) | |
6039 | def.vd_next = (sizeof (Elf_External_Verdef) | |
6040 | + sizeof (Elf_External_Verdaux)); | |
6041 | else | |
6042 | def.vd_next = 0; | |
6043 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6044 | (Elf_External_Verdef *) p); | |
6045 | p += sizeof (Elf_External_Verdef); | |
6046 | } | |
5a580b3a AM |
6047 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
6048 | (Elf_External_Verdaux *) p); | |
6049 | p += sizeof (Elf_External_Verdaux); | |
6050 | ||
6051 | for (t = verdefs; t != NULL; t = t->next) | |
6052 | { | |
6053 | unsigned int cdeps; | |
6054 | struct bfd_elf_version_deps *n; | |
5a580b3a | 6055 | |
a6cc6b3b RO |
6056 | /* Don't emit the base version twice. */ |
6057 | if (t->vernum == 0) | |
6058 | continue; | |
6059 | ||
5a580b3a AM |
6060 | cdeps = 0; |
6061 | for (n = t->deps; n != NULL; n = n->next) | |
6062 | ++cdeps; | |
6063 | ||
6064 | /* Add a symbol representing this version. */ | |
6065 | bh = NULL; | |
6066 | if (! (_bfd_generic_link_add_one_symbol | |
6067 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
6068 | 0, NULL, FALSE, | |
6069 | get_elf_backend_data (dynobj)->collect, &bh))) | |
6070 | return FALSE; | |
6071 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6072 | h->non_elf = 0; |
6073 | h->def_regular = 1; | |
5a580b3a AM |
6074 | h->type = STT_OBJECT; |
6075 | h->verinfo.vertree = t; | |
6076 | ||
c152c796 | 6077 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
5a580b3a AM |
6078 | return FALSE; |
6079 | ||
6080 | def.vd_version = VER_DEF_CURRENT; | |
6081 | def.vd_flags = 0; | |
6082 | if (t->globals.list == NULL | |
6083 | && t->locals.list == NULL | |
6084 | && ! t->used) | |
6085 | def.vd_flags |= VER_FLG_WEAK; | |
3e3b46e5 | 6086 | def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); |
5a580b3a AM |
6087 | def.vd_cnt = cdeps + 1; |
6088 | def.vd_hash = bfd_elf_hash (t->name); | |
6089 | def.vd_aux = sizeof (Elf_External_Verdef); | |
6090 | def.vd_next = 0; | |
a6cc6b3b RO |
6091 | |
6092 | /* If a basever node is next, it *must* be the last node in | |
6093 | the chain, otherwise Verdef construction breaks. */ | |
6094 | if (t->next != NULL && t->next->vernum == 0) | |
6095 | BFD_ASSERT (t->next->next == NULL); | |
6096 | ||
6097 | if (t->next != NULL && t->next->vernum != 0) | |
5a580b3a AM |
6098 | def.vd_next = (sizeof (Elf_External_Verdef) |
6099 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
6100 | ||
6101 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6102 | (Elf_External_Verdef *) p); | |
6103 | p += sizeof (Elf_External_Verdef); | |
6104 | ||
6105 | defaux.vda_name = h->dynstr_index; | |
6106 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
6107 | h->dynstr_index); | |
6108 | defaux.vda_next = 0; | |
6109 | if (t->deps != NULL) | |
6110 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
6111 | t->name_indx = defaux.vda_name; | |
6112 | ||
6113 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
6114 | (Elf_External_Verdaux *) p); | |
6115 | p += sizeof (Elf_External_Verdaux); | |
6116 | ||
6117 | for (n = t->deps; n != NULL; n = n->next) | |
6118 | { | |
6119 | if (n->version_needed == NULL) | |
6120 | { | |
6121 | /* This can happen if there was an error in the | |
6122 | version script. */ | |
6123 | defaux.vda_name = 0; | |
6124 | } | |
6125 | else | |
6126 | { | |
6127 | defaux.vda_name = n->version_needed->name_indx; | |
6128 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
6129 | defaux.vda_name); | |
6130 | } | |
6131 | if (n->next == NULL) | |
6132 | defaux.vda_next = 0; | |
6133 | else | |
6134 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
6135 | ||
6136 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
6137 | (Elf_External_Verdaux *) p); | |
6138 | p += sizeof (Elf_External_Verdaux); | |
6139 | } | |
6140 | } | |
6141 | ||
6142 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
6143 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
6144 | return FALSE; | |
6145 | ||
6146 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
6147 | } | |
6148 | ||
6149 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) | |
6150 | { | |
6151 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | |
6152 | return FALSE; | |
6153 | } | |
6154 | else if (info->flags & DF_BIND_NOW) | |
6155 | { | |
6156 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) | |
6157 | return FALSE; | |
6158 | } | |
6159 | ||
6160 | if (info->flags_1) | |
6161 | { | |
6162 | if (info->executable) | |
6163 | info->flags_1 &= ~ (DF_1_INITFIRST | |
6164 | | DF_1_NODELETE | |
6165 | | DF_1_NOOPEN); | |
6166 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | |
6167 | return FALSE; | |
6168 | } | |
6169 | ||
6170 | /* Work out the size of the version reference section. */ | |
6171 | ||
6172 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
6173 | BFD_ASSERT (s != NULL); | |
6174 | { | |
6175 | struct elf_find_verdep_info sinfo; | |
6176 | ||
5a580b3a AM |
6177 | sinfo.info = info; |
6178 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
6179 | if (sinfo.vers == 0) | |
6180 | sinfo.vers = 1; | |
6181 | sinfo.failed = FALSE; | |
6182 | ||
6183 | elf_link_hash_traverse (elf_hash_table (info), | |
6184 | _bfd_elf_link_find_version_dependencies, | |
6185 | &sinfo); | |
14b1c01e AM |
6186 | if (sinfo.failed) |
6187 | return FALSE; | |
5a580b3a AM |
6188 | |
6189 | if (elf_tdata (output_bfd)->verref == NULL) | |
8423293d | 6190 | s->flags |= SEC_EXCLUDE; |
5a580b3a AM |
6191 | else |
6192 | { | |
6193 | Elf_Internal_Verneed *t; | |
6194 | unsigned int size; | |
6195 | unsigned int crefs; | |
6196 | bfd_byte *p; | |
6197 | ||
a6cc6b3b | 6198 | /* Build the version dependency section. */ |
5a580b3a AM |
6199 | size = 0; |
6200 | crefs = 0; | |
6201 | for (t = elf_tdata (output_bfd)->verref; | |
6202 | t != NULL; | |
6203 | t = t->vn_nextref) | |
6204 | { | |
6205 | Elf_Internal_Vernaux *a; | |
6206 | ||
6207 | size += sizeof (Elf_External_Verneed); | |
6208 | ++crefs; | |
6209 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6210 | size += sizeof (Elf_External_Vernaux); | |
6211 | } | |
6212 | ||
eea6121a | 6213 | s->size = size; |
a50b1753 | 6214 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
5a580b3a AM |
6215 | if (s->contents == NULL) |
6216 | return FALSE; | |
6217 | ||
6218 | p = s->contents; | |
6219 | for (t = elf_tdata (output_bfd)->verref; | |
6220 | t != NULL; | |
6221 | t = t->vn_nextref) | |
6222 | { | |
6223 | unsigned int caux; | |
6224 | Elf_Internal_Vernaux *a; | |
6225 | bfd_size_type indx; | |
6226 | ||
6227 | caux = 0; | |
6228 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6229 | ++caux; | |
6230 | ||
6231 | t->vn_version = VER_NEED_CURRENT; | |
6232 | t->vn_cnt = caux; | |
6233 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6234 | elf_dt_name (t->vn_bfd) != NULL | |
6235 | ? elf_dt_name (t->vn_bfd) | |
06084812 | 6236 | : lbasename (t->vn_bfd->filename), |
5a580b3a AM |
6237 | FALSE); |
6238 | if (indx == (bfd_size_type) -1) | |
6239 | return FALSE; | |
6240 | t->vn_file = indx; | |
6241 | t->vn_aux = sizeof (Elf_External_Verneed); | |
6242 | if (t->vn_nextref == NULL) | |
6243 | t->vn_next = 0; | |
6244 | else | |
6245 | t->vn_next = (sizeof (Elf_External_Verneed) | |
6246 | + caux * sizeof (Elf_External_Vernaux)); | |
6247 | ||
6248 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
6249 | (Elf_External_Verneed *) p); | |
6250 | p += sizeof (Elf_External_Verneed); | |
6251 | ||
6252 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6253 | { | |
6254 | a->vna_hash = bfd_elf_hash (a->vna_nodename); | |
6255 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6256 | a->vna_nodename, FALSE); | |
6257 | if (indx == (bfd_size_type) -1) | |
6258 | return FALSE; | |
6259 | a->vna_name = indx; | |
6260 | if (a->vna_nextptr == NULL) | |
6261 | a->vna_next = 0; | |
6262 | else | |
6263 | a->vna_next = sizeof (Elf_External_Vernaux); | |
6264 | ||
6265 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
6266 | (Elf_External_Vernaux *) p); | |
6267 | p += sizeof (Elf_External_Vernaux); | |
6268 | } | |
6269 | } | |
6270 | ||
6271 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
6272 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
6273 | return FALSE; | |
6274 | ||
6275 | elf_tdata (output_bfd)->cverrefs = crefs; | |
6276 | } | |
6277 | } | |
6278 | ||
8423293d AM |
6279 | if ((elf_tdata (output_bfd)->cverrefs == 0 |
6280 | && elf_tdata (output_bfd)->cverdefs == 0) | |
6281 | || _bfd_elf_link_renumber_dynsyms (output_bfd, info, | |
6282 | §ion_sym_count) == 0) | |
6283 | { | |
6284 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
6285 | s->flags |= SEC_EXCLUDE; | |
6286 | } | |
6287 | } | |
6288 | return TRUE; | |
6289 | } | |
6290 | ||
74541ad4 AM |
6291 | /* Find the first non-excluded output section. We'll use its |
6292 | section symbol for some emitted relocs. */ | |
6293 | void | |
6294 | _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) | |
6295 | { | |
6296 | asection *s; | |
6297 | ||
6298 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
6299 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | |
6300 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) | |
6301 | { | |
6302 | elf_hash_table (info)->text_index_section = s; | |
6303 | break; | |
6304 | } | |
6305 | } | |
6306 | ||
6307 | /* Find two non-excluded output sections, one for code, one for data. | |
6308 | We'll use their section symbols for some emitted relocs. */ | |
6309 | void | |
6310 | _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) | |
6311 | { | |
6312 | asection *s; | |
6313 | ||
266b05cf DJ |
6314 | /* Data first, since setting text_index_section changes |
6315 | _bfd_elf_link_omit_section_dynsym. */ | |
74541ad4 | 6316 | for (s = output_bfd->sections; s != NULL; s = s->next) |
266b05cf | 6317 | if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC) |
74541ad4 AM |
6318 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) |
6319 | { | |
266b05cf | 6320 | elf_hash_table (info)->data_index_section = s; |
74541ad4 AM |
6321 | break; |
6322 | } | |
6323 | ||
6324 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
266b05cf DJ |
6325 | if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) |
6326 | == (SEC_ALLOC | SEC_READONLY)) | |
74541ad4 AM |
6327 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) |
6328 | { | |
266b05cf | 6329 | elf_hash_table (info)->text_index_section = s; |
74541ad4 AM |
6330 | break; |
6331 | } | |
6332 | ||
6333 | if (elf_hash_table (info)->text_index_section == NULL) | |
6334 | elf_hash_table (info)->text_index_section | |
6335 | = elf_hash_table (info)->data_index_section; | |
6336 | } | |
6337 | ||
8423293d AM |
6338 | bfd_boolean |
6339 | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
6340 | { | |
74541ad4 AM |
6341 | const struct elf_backend_data *bed; |
6342 | ||
8423293d AM |
6343 | if (!is_elf_hash_table (info->hash)) |
6344 | return TRUE; | |
6345 | ||
74541ad4 AM |
6346 | bed = get_elf_backend_data (output_bfd); |
6347 | (*bed->elf_backend_init_index_section) (output_bfd, info); | |
6348 | ||
8423293d AM |
6349 | if (elf_hash_table (info)->dynamic_sections_created) |
6350 | { | |
6351 | bfd *dynobj; | |
8423293d AM |
6352 | asection *s; |
6353 | bfd_size_type dynsymcount; | |
6354 | unsigned long section_sym_count; | |
8423293d AM |
6355 | unsigned int dtagcount; |
6356 | ||
6357 | dynobj = elf_hash_table (info)->dynobj; | |
6358 | ||
5a580b3a AM |
6359 | /* Assign dynsym indicies. In a shared library we generate a |
6360 | section symbol for each output section, which come first. | |
6361 | Next come all of the back-end allocated local dynamic syms, | |
6362 | followed by the rest of the global symbols. */ | |
6363 | ||
554220db AM |
6364 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, |
6365 | §ion_sym_count); | |
5a580b3a AM |
6366 | |
6367 | /* Work out the size of the symbol version section. */ | |
6368 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
6369 | BFD_ASSERT (s != NULL); | |
8423293d AM |
6370 | if (dynsymcount != 0 |
6371 | && (s->flags & SEC_EXCLUDE) == 0) | |
5a580b3a | 6372 | { |
eea6121a | 6373 | s->size = dynsymcount * sizeof (Elf_External_Versym); |
a50b1753 | 6374 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
5a580b3a AM |
6375 | if (s->contents == NULL) |
6376 | return FALSE; | |
6377 | ||
6378 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
6379 | return FALSE; | |
6380 | } | |
6381 | ||
6382 | /* Set the size of the .dynsym and .hash sections. We counted | |
6383 | the number of dynamic symbols in elf_link_add_object_symbols. | |
6384 | We will build the contents of .dynsym and .hash when we build | |
6385 | the final symbol table, because until then we do not know the | |
6386 | correct value to give the symbols. We built the .dynstr | |
6387 | section as we went along in elf_link_add_object_symbols. */ | |
6388 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
6389 | BFD_ASSERT (s != NULL); | |
eea6121a | 6390 | s->size = dynsymcount * bed->s->sizeof_sym; |
5a580b3a AM |
6391 | |
6392 | if (dynsymcount != 0) | |
6393 | { | |
a50b1753 | 6394 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
554220db AM |
6395 | if (s->contents == NULL) |
6396 | return FALSE; | |
5a580b3a | 6397 | |
554220db AM |
6398 | /* The first entry in .dynsym is a dummy symbol. |
6399 | Clear all the section syms, in case we don't output them all. */ | |
6400 | ++section_sym_count; | |
6401 | memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); | |
5a580b3a AM |
6402 | } |
6403 | ||
fdc90cb4 JJ |
6404 | elf_hash_table (info)->bucketcount = 0; |
6405 | ||
5a580b3a AM |
6406 | /* Compute the size of the hashing table. As a side effect this |
6407 | computes the hash values for all the names we export. */ | |
fdc90cb4 JJ |
6408 | if (info->emit_hash) |
6409 | { | |
6410 | unsigned long int *hashcodes; | |
14b1c01e | 6411 | struct hash_codes_info hashinf; |
fdc90cb4 JJ |
6412 | bfd_size_type amt; |
6413 | unsigned long int nsyms; | |
6414 | size_t bucketcount; | |
6415 | size_t hash_entry_size; | |
6416 | ||
6417 | /* Compute the hash values for all exported symbols. At the same | |
6418 | time store the values in an array so that we could use them for | |
6419 | optimizations. */ | |
6420 | amt = dynsymcount * sizeof (unsigned long int); | |
a50b1753 | 6421 | hashcodes = (unsigned long int *) bfd_malloc (amt); |
fdc90cb4 JJ |
6422 | if (hashcodes == NULL) |
6423 | return FALSE; | |
14b1c01e AM |
6424 | hashinf.hashcodes = hashcodes; |
6425 | hashinf.error = FALSE; | |
5a580b3a | 6426 | |
fdc90cb4 JJ |
6427 | /* Put all hash values in HASHCODES. */ |
6428 | elf_link_hash_traverse (elf_hash_table (info), | |
14b1c01e AM |
6429 | elf_collect_hash_codes, &hashinf); |
6430 | if (hashinf.error) | |
4dd07732 AM |
6431 | { |
6432 | free (hashcodes); | |
6433 | return FALSE; | |
6434 | } | |
5a580b3a | 6435 | |
14b1c01e | 6436 | nsyms = hashinf.hashcodes - hashcodes; |
fdc90cb4 JJ |
6437 | bucketcount |
6438 | = compute_bucket_count (info, hashcodes, nsyms, 0); | |
6439 | free (hashcodes); | |
6440 | ||
6441 | if (bucketcount == 0) | |
6442 | return FALSE; | |
5a580b3a | 6443 | |
fdc90cb4 JJ |
6444 | elf_hash_table (info)->bucketcount = bucketcount; |
6445 | ||
6446 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
6447 | BFD_ASSERT (s != NULL); | |
6448 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; | |
6449 | s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
a50b1753 | 6450 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6451 | if (s->contents == NULL) |
6452 | return FALSE; | |
6453 | ||
6454 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); | |
6455 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
6456 | s->contents + hash_entry_size); | |
6457 | } | |
6458 | ||
6459 | if (info->emit_gnu_hash) | |
6460 | { | |
6461 | size_t i, cnt; | |
6462 | unsigned char *contents; | |
6463 | struct collect_gnu_hash_codes cinfo; | |
6464 | bfd_size_type amt; | |
6465 | size_t bucketcount; | |
6466 | ||
6467 | memset (&cinfo, 0, sizeof (cinfo)); | |
6468 | ||
6469 | /* Compute the hash values for all exported symbols. At the same | |
6470 | time store the values in an array so that we could use them for | |
6471 | optimizations. */ | |
6472 | amt = dynsymcount * 2 * sizeof (unsigned long int); | |
a50b1753 | 6473 | cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); |
fdc90cb4 JJ |
6474 | if (cinfo.hashcodes == NULL) |
6475 | return FALSE; | |
6476 | ||
6477 | cinfo.hashval = cinfo.hashcodes + dynsymcount; | |
6478 | cinfo.min_dynindx = -1; | |
6479 | cinfo.output_bfd = output_bfd; | |
6480 | cinfo.bed = bed; | |
6481 | ||
6482 | /* Put all hash values in HASHCODES. */ | |
6483 | elf_link_hash_traverse (elf_hash_table (info), | |
6484 | elf_collect_gnu_hash_codes, &cinfo); | |
14b1c01e | 6485 | if (cinfo.error) |
4dd07732 AM |
6486 | { |
6487 | free (cinfo.hashcodes); | |
6488 | return FALSE; | |
6489 | } | |
fdc90cb4 JJ |
6490 | |
6491 | bucketcount | |
6492 | = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); | |
6493 | ||
6494 | if (bucketcount == 0) | |
6495 | { | |
6496 | free (cinfo.hashcodes); | |
6497 | return FALSE; | |
6498 | } | |
6499 | ||
6500 | s = bfd_get_section_by_name (dynobj, ".gnu.hash"); | |
6501 | BFD_ASSERT (s != NULL); | |
6502 | ||
6503 | if (cinfo.nsyms == 0) | |
6504 | { | |
6505 | /* Empty .gnu.hash section is special. */ | |
6506 | BFD_ASSERT (cinfo.min_dynindx == -1); | |
6507 | free (cinfo.hashcodes); | |
6508 | s->size = 5 * 4 + bed->s->arch_size / 8; | |
a50b1753 | 6509 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6510 | if (contents == NULL) |
6511 | return FALSE; | |
6512 | s->contents = contents; | |
6513 | /* 1 empty bucket. */ | |
6514 | bfd_put_32 (output_bfd, 1, contents); | |
6515 | /* SYMIDX above the special symbol 0. */ | |
6516 | bfd_put_32 (output_bfd, 1, contents + 4); | |
6517 | /* Just one word for bitmask. */ | |
6518 | bfd_put_32 (output_bfd, 1, contents + 8); | |
6519 | /* Only hash fn bloom filter. */ | |
6520 | bfd_put_32 (output_bfd, 0, contents + 12); | |
6521 | /* No hashes are valid - empty bitmask. */ | |
6522 | bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); | |
6523 | /* No hashes in the only bucket. */ | |
6524 | bfd_put_32 (output_bfd, 0, | |
6525 | contents + 16 + bed->s->arch_size / 8); | |
6526 | } | |
6527 | else | |
6528 | { | |
fdc90cb4 | 6529 | unsigned long int maskwords, maskbitslog2; |
0b33793d | 6530 | BFD_ASSERT (cinfo.min_dynindx != -1); |
fdc90cb4 JJ |
6531 | |
6532 | maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1; | |
6533 | if (maskbitslog2 < 3) | |
6534 | maskbitslog2 = 5; | |
6535 | else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) | |
6536 | maskbitslog2 = maskbitslog2 + 3; | |
6537 | else | |
6538 | maskbitslog2 = maskbitslog2 + 2; | |
6539 | if (bed->s->arch_size == 64) | |
6540 | { | |
6541 | if (maskbitslog2 == 5) | |
6542 | maskbitslog2 = 6; | |
6543 | cinfo.shift1 = 6; | |
6544 | } | |
6545 | else | |
6546 | cinfo.shift1 = 5; | |
6547 | cinfo.mask = (1 << cinfo.shift1) - 1; | |
2ccdbfcc | 6548 | cinfo.shift2 = maskbitslog2; |
fdc90cb4 JJ |
6549 | cinfo.maskbits = 1 << maskbitslog2; |
6550 | maskwords = 1 << (maskbitslog2 - cinfo.shift1); | |
6551 | amt = bucketcount * sizeof (unsigned long int) * 2; | |
6552 | amt += maskwords * sizeof (bfd_vma); | |
a50b1753 | 6553 | cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); |
fdc90cb4 JJ |
6554 | if (cinfo.bitmask == NULL) |
6555 | { | |
6556 | free (cinfo.hashcodes); | |
6557 | return FALSE; | |
6558 | } | |
6559 | ||
a50b1753 | 6560 | cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); |
fdc90cb4 JJ |
6561 | cinfo.indx = cinfo.counts + bucketcount; |
6562 | cinfo.symindx = dynsymcount - cinfo.nsyms; | |
6563 | memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); | |
6564 | ||
6565 | /* Determine how often each hash bucket is used. */ | |
6566 | memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); | |
6567 | for (i = 0; i < cinfo.nsyms; ++i) | |
6568 | ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; | |
6569 | ||
6570 | for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) | |
6571 | if (cinfo.counts[i] != 0) | |
6572 | { | |
6573 | cinfo.indx[i] = cnt; | |
6574 | cnt += cinfo.counts[i]; | |
6575 | } | |
6576 | BFD_ASSERT (cnt == dynsymcount); | |
6577 | cinfo.bucketcount = bucketcount; | |
6578 | cinfo.local_indx = cinfo.min_dynindx; | |
6579 | ||
6580 | s->size = (4 + bucketcount + cinfo.nsyms) * 4; | |
6581 | s->size += cinfo.maskbits / 8; | |
a50b1753 | 6582 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6583 | if (contents == NULL) |
6584 | { | |
6585 | free (cinfo.bitmask); | |
6586 | free (cinfo.hashcodes); | |
6587 | return FALSE; | |
6588 | } | |
6589 | ||
6590 | s->contents = contents; | |
6591 | bfd_put_32 (output_bfd, bucketcount, contents); | |
6592 | bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); | |
6593 | bfd_put_32 (output_bfd, maskwords, contents + 8); | |
6594 | bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); | |
6595 | contents += 16 + cinfo.maskbits / 8; | |
6596 | ||
6597 | for (i = 0; i < bucketcount; ++i) | |
6598 | { | |
6599 | if (cinfo.counts[i] == 0) | |
6600 | bfd_put_32 (output_bfd, 0, contents); | |
6601 | else | |
6602 | bfd_put_32 (output_bfd, cinfo.indx[i], contents); | |
6603 | contents += 4; | |
6604 | } | |
6605 | ||
6606 | cinfo.contents = contents; | |
6607 | ||
6608 | /* Renumber dynamic symbols, populate .gnu.hash section. */ | |
6609 | elf_link_hash_traverse (elf_hash_table (info), | |
6610 | elf_renumber_gnu_hash_syms, &cinfo); | |
6611 | ||
6612 | contents = s->contents + 16; | |
6613 | for (i = 0; i < maskwords; ++i) | |
6614 | { | |
6615 | bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], | |
6616 | contents); | |
6617 | contents += bed->s->arch_size / 8; | |
6618 | } | |
6619 | ||
6620 | free (cinfo.bitmask); | |
6621 | free (cinfo.hashcodes); | |
6622 | } | |
6623 | } | |
5a580b3a AM |
6624 | |
6625 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
6626 | BFD_ASSERT (s != NULL); | |
6627 | ||
4ad4eba5 | 6628 | elf_finalize_dynstr (output_bfd, info); |
5a580b3a | 6629 | |
eea6121a | 6630 | s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
5a580b3a AM |
6631 | |
6632 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | |
6633 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) | |
6634 | return FALSE; | |
6635 | } | |
6636 | ||
6637 | return TRUE; | |
6638 | } | |
4d269e42 AM |
6639 | \f |
6640 | /* Indicate that we are only retrieving symbol values from this | |
6641 | section. */ | |
6642 | ||
6643 | void | |
6644 | _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info) | |
6645 | { | |
6646 | if (is_elf_hash_table (info->hash)) | |
6647 | sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS; | |
6648 | _bfd_generic_link_just_syms (sec, info); | |
6649 | } | |
6650 | ||
6651 | /* Make sure sec_info_type is cleared if sec_info is cleared too. */ | |
6652 | ||
6653 | static void | |
6654 | merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, | |
6655 | asection *sec) | |
6656 | { | |
6657 | BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE); | |
6658 | sec->sec_info_type = ELF_INFO_TYPE_NONE; | |
6659 | } | |
6660 | ||
6661 | /* Finish SHF_MERGE section merging. */ | |
6662 | ||
6663 | bfd_boolean | |
6664 | _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info) | |
6665 | { | |
6666 | bfd *ibfd; | |
6667 | asection *sec; | |
6668 | ||
6669 | if (!is_elf_hash_table (info->hash)) | |
6670 | return FALSE; | |
6671 | ||
6672 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) | |
6673 | if ((ibfd->flags & DYNAMIC) == 0) | |
6674 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
6675 | if ((sec->flags & SEC_MERGE) != 0 | |
6676 | && !bfd_is_abs_section (sec->output_section)) | |
6677 | { | |
6678 | struct bfd_elf_section_data *secdata; | |
6679 | ||
6680 | secdata = elf_section_data (sec); | |
6681 | if (! _bfd_add_merge_section (abfd, | |
6682 | &elf_hash_table (info)->merge_info, | |
6683 | sec, &secdata->sec_info)) | |
6684 | return FALSE; | |
6685 | else if (secdata->sec_info) | |
6686 | sec->sec_info_type = ELF_INFO_TYPE_MERGE; | |
6687 | } | |
6688 | ||
6689 | if (elf_hash_table (info)->merge_info != NULL) | |
6690 | _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info, | |
6691 | merge_sections_remove_hook); | |
6692 | return TRUE; | |
6693 | } | |
6694 | ||
6695 | /* Create an entry in an ELF linker hash table. */ | |
6696 | ||
6697 | struct bfd_hash_entry * | |
6698 | _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | |
6699 | struct bfd_hash_table *table, | |
6700 | const char *string) | |
6701 | { | |
6702 | /* Allocate the structure if it has not already been allocated by a | |
6703 | subclass. */ | |
6704 | if (entry == NULL) | |
6705 | { | |
a50b1753 NC |
6706 | entry = (struct bfd_hash_entry *) |
6707 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); | |
4d269e42 AM |
6708 | if (entry == NULL) |
6709 | return entry; | |
6710 | } | |
6711 | ||
6712 | /* Call the allocation method of the superclass. */ | |
6713 | entry = _bfd_link_hash_newfunc (entry, table, string); | |
6714 | if (entry != NULL) | |
6715 | { | |
6716 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; | |
6717 | struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; | |
6718 | ||
6719 | /* Set local fields. */ | |
6720 | ret->indx = -1; | |
6721 | ret->dynindx = -1; | |
6722 | ret->got = htab->init_got_refcount; | |
6723 | ret->plt = htab->init_plt_refcount; | |
6724 | memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) | |
6725 | - offsetof (struct elf_link_hash_entry, size))); | |
6726 | /* Assume that we have been called by a non-ELF symbol reader. | |
6727 | This flag is then reset by the code which reads an ELF input | |
6728 | file. This ensures that a symbol created by a non-ELF symbol | |
6729 | reader will have the flag set correctly. */ | |
6730 | ret->non_elf = 1; | |
6731 | } | |
6732 | ||
6733 | return entry; | |
6734 | } | |
6735 | ||
6736 | /* Copy data from an indirect symbol to its direct symbol, hiding the | |
6737 | old indirect symbol. Also used for copying flags to a weakdef. */ | |
6738 | ||
6739 | void | |
6740 | _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, | |
6741 | struct elf_link_hash_entry *dir, | |
6742 | struct elf_link_hash_entry *ind) | |
6743 | { | |
6744 | struct elf_link_hash_table *htab; | |
6745 | ||
6746 | /* Copy down any references that we may have already seen to the | |
6747 | symbol which just became indirect. */ | |
6748 | ||
6749 | dir->ref_dynamic |= ind->ref_dynamic; | |
6750 | dir->ref_regular |= ind->ref_regular; | |
6751 | dir->ref_regular_nonweak |= ind->ref_regular_nonweak; | |
6752 | dir->non_got_ref |= ind->non_got_ref; | |
6753 | dir->needs_plt |= ind->needs_plt; | |
6754 | dir->pointer_equality_needed |= ind->pointer_equality_needed; | |
6755 | ||
6756 | if (ind->root.type != bfd_link_hash_indirect) | |
6757 | return; | |
6758 | ||
6759 | /* Copy over the global and procedure linkage table refcount entries. | |
6760 | These may have been already set up by a check_relocs routine. */ | |
6761 | htab = elf_hash_table (info); | |
6762 | if (ind->got.refcount > htab->init_got_refcount.refcount) | |
6763 | { | |
6764 | if (dir->got.refcount < 0) | |
6765 | dir->got.refcount = 0; | |
6766 | dir->got.refcount += ind->got.refcount; | |
6767 | ind->got.refcount = htab->init_got_refcount.refcount; | |
6768 | } | |
6769 | ||
6770 | if (ind->plt.refcount > htab->init_plt_refcount.refcount) | |
6771 | { | |
6772 | if (dir->plt.refcount < 0) | |
6773 | dir->plt.refcount = 0; | |
6774 | dir->plt.refcount += ind->plt.refcount; | |
6775 | ind->plt.refcount = htab->init_plt_refcount.refcount; | |
6776 | } | |
6777 | ||
6778 | if (ind->dynindx != -1) | |
6779 | { | |
6780 | if (dir->dynindx != -1) | |
6781 | _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); | |
6782 | dir->dynindx = ind->dynindx; | |
6783 | dir->dynstr_index = ind->dynstr_index; | |
6784 | ind->dynindx = -1; | |
6785 | ind->dynstr_index = 0; | |
6786 | } | |
6787 | } | |
6788 | ||
6789 | void | |
6790 | _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, | |
6791 | struct elf_link_hash_entry *h, | |
6792 | bfd_boolean force_local) | |
6793 | { | |
3aa14d16 L |
6794 | /* STT_GNU_IFUNC symbol must go through PLT. */ |
6795 | if (h->type != STT_GNU_IFUNC) | |
6796 | { | |
6797 | h->plt = elf_hash_table (info)->init_plt_offset; | |
6798 | h->needs_plt = 0; | |
6799 | } | |
4d269e42 AM |
6800 | if (force_local) |
6801 | { | |
6802 | h->forced_local = 1; | |
6803 | if (h->dynindx != -1) | |
6804 | { | |
6805 | h->dynindx = -1; | |
6806 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
6807 | h->dynstr_index); | |
6808 | } | |
6809 | } | |
6810 | } | |
6811 | ||
6812 | /* Initialize an ELF linker hash table. */ | |
6813 | ||
6814 | bfd_boolean | |
6815 | _bfd_elf_link_hash_table_init | |
6816 | (struct elf_link_hash_table *table, | |
6817 | bfd *abfd, | |
6818 | struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, | |
6819 | struct bfd_hash_table *, | |
6820 | const char *), | |
4dfe6ac6 NC |
6821 | unsigned int entsize, |
6822 | enum elf_target_id target_id) | |
4d269e42 AM |
6823 | { |
6824 | bfd_boolean ret; | |
6825 | int can_refcount = get_elf_backend_data (abfd)->can_refcount; | |
6826 | ||
6827 | memset (table, 0, sizeof * table); | |
6828 | table->init_got_refcount.refcount = can_refcount - 1; | |
6829 | table->init_plt_refcount.refcount = can_refcount - 1; | |
6830 | table->init_got_offset.offset = -(bfd_vma) 1; | |
6831 | table->init_plt_offset.offset = -(bfd_vma) 1; | |
6832 | /* The first dynamic symbol is a dummy. */ | |
6833 | table->dynsymcount = 1; | |
6834 | ||
6835 | ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); | |
4dfe6ac6 | 6836 | |
4d269e42 | 6837 | table->root.type = bfd_link_elf_hash_table; |
4dfe6ac6 | 6838 | table->hash_table_id = target_id; |
4d269e42 AM |
6839 | |
6840 | return ret; | |
6841 | } | |
6842 | ||
6843 | /* Create an ELF linker hash table. */ | |
6844 | ||
6845 | struct bfd_link_hash_table * | |
6846 | _bfd_elf_link_hash_table_create (bfd *abfd) | |
6847 | { | |
6848 | struct elf_link_hash_table *ret; | |
6849 | bfd_size_type amt = sizeof (struct elf_link_hash_table); | |
6850 | ||
a50b1753 | 6851 | ret = (struct elf_link_hash_table *) bfd_malloc (amt); |
4d269e42 AM |
6852 | if (ret == NULL) |
6853 | return NULL; | |
6854 | ||
6855 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, | |
4dfe6ac6 NC |
6856 | sizeof (struct elf_link_hash_entry), |
6857 | GENERIC_ELF_DATA)) | |
4d269e42 AM |
6858 | { |
6859 | free (ret); | |
6860 | return NULL; | |
6861 | } | |
6862 | ||
6863 | return &ret->root; | |
6864 | } | |
6865 | ||
6866 | /* This is a hook for the ELF emulation code in the generic linker to | |
6867 | tell the backend linker what file name to use for the DT_NEEDED | |
6868 | entry for a dynamic object. */ | |
6869 | ||
6870 | void | |
6871 | bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) | |
6872 | { | |
6873 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6874 | && bfd_get_format (abfd) == bfd_object) | |
6875 | elf_dt_name (abfd) = name; | |
6876 | } | |
6877 | ||
6878 | int | |
6879 | bfd_elf_get_dyn_lib_class (bfd *abfd) | |
6880 | { | |
6881 | int lib_class; | |
6882 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6883 | && bfd_get_format (abfd) == bfd_object) | |
6884 | lib_class = elf_dyn_lib_class (abfd); | |
6885 | else | |
6886 | lib_class = 0; | |
6887 | return lib_class; | |
6888 | } | |
6889 | ||
6890 | void | |
6891 | bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) | |
6892 | { | |
6893 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6894 | && bfd_get_format (abfd) == bfd_object) | |
6895 | elf_dyn_lib_class (abfd) = lib_class; | |
6896 | } | |
6897 | ||
6898 | /* Get the list of DT_NEEDED entries for a link. This is a hook for | |
6899 | the linker ELF emulation code. */ | |
6900 | ||
6901 | struct bfd_link_needed_list * | |
6902 | bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, | |
6903 | struct bfd_link_info *info) | |
6904 | { | |
6905 | if (! is_elf_hash_table (info->hash)) | |
6906 | return NULL; | |
6907 | return elf_hash_table (info)->needed; | |
6908 | } | |
6909 | ||
6910 | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a | |
6911 | hook for the linker ELF emulation code. */ | |
6912 | ||
6913 | struct bfd_link_needed_list * | |
6914 | bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, | |
6915 | struct bfd_link_info *info) | |
6916 | { | |
6917 | if (! is_elf_hash_table (info->hash)) | |
6918 | return NULL; | |
6919 | return elf_hash_table (info)->runpath; | |
6920 | } | |
6921 | ||
6922 | /* Get the name actually used for a dynamic object for a link. This | |
6923 | is the SONAME entry if there is one. Otherwise, it is the string | |
6924 | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ | |
6925 | ||
6926 | const char * | |
6927 | bfd_elf_get_dt_soname (bfd *abfd) | |
6928 | { | |
6929 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6930 | && bfd_get_format (abfd) == bfd_object) | |
6931 | return elf_dt_name (abfd); | |
6932 | return NULL; | |
6933 | } | |
6934 | ||
6935 | /* Get the list of DT_NEEDED entries from a BFD. This is a hook for | |
6936 | the ELF linker emulation code. */ | |
6937 | ||
6938 | bfd_boolean | |
6939 | bfd_elf_get_bfd_needed_list (bfd *abfd, | |
6940 | struct bfd_link_needed_list **pneeded) | |
6941 | { | |
6942 | asection *s; | |
6943 | bfd_byte *dynbuf = NULL; | |
cb33740c | 6944 | unsigned int elfsec; |
4d269e42 AM |
6945 | unsigned long shlink; |
6946 | bfd_byte *extdyn, *extdynend; | |
6947 | size_t extdynsize; | |
6948 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | |
6949 | ||
6950 | *pneeded = NULL; | |
6951 | ||
6952 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour | |
6953 | || bfd_get_format (abfd) != bfd_object) | |
6954 | return TRUE; | |
6955 | ||
6956 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
6957 | if (s == NULL || s->size == 0) | |
6958 | return TRUE; | |
6959 | ||
6960 | if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) | |
6961 | goto error_return; | |
6962 | ||
6963 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
cb33740c | 6964 | if (elfsec == SHN_BAD) |
4d269e42 AM |
6965 | goto error_return; |
6966 | ||
6967 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
c152c796 | 6968 | |
4d269e42 AM |
6969 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
6970 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | |
6971 | ||
6972 | extdyn = dynbuf; | |
6973 | extdynend = extdyn + s->size; | |
6974 | for (; extdyn < extdynend; extdyn += extdynsize) | |
6975 | { | |
6976 | Elf_Internal_Dyn dyn; | |
6977 | ||
6978 | (*swap_dyn_in) (abfd, extdyn, &dyn); | |
6979 | ||
6980 | if (dyn.d_tag == DT_NULL) | |
6981 | break; | |
6982 | ||
6983 | if (dyn.d_tag == DT_NEEDED) | |
6984 | { | |
6985 | const char *string; | |
6986 | struct bfd_link_needed_list *l; | |
6987 | unsigned int tagv = dyn.d_un.d_val; | |
6988 | bfd_size_type amt; | |
6989 | ||
6990 | string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
6991 | if (string == NULL) | |
6992 | goto error_return; | |
6993 | ||
6994 | amt = sizeof *l; | |
a50b1753 | 6995 | l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4d269e42 AM |
6996 | if (l == NULL) |
6997 | goto error_return; | |
6998 | ||
6999 | l->by = abfd; | |
7000 | l->name = string; | |
7001 | l->next = *pneeded; | |
7002 | *pneeded = l; | |
7003 | } | |
7004 | } | |
7005 | ||
7006 | free (dynbuf); | |
7007 | ||
7008 | return TRUE; | |
7009 | ||
7010 | error_return: | |
7011 | if (dynbuf != NULL) | |
7012 | free (dynbuf); | |
7013 | return FALSE; | |
7014 | } | |
7015 | ||
7016 | struct elf_symbuf_symbol | |
7017 | { | |
7018 | unsigned long st_name; /* Symbol name, index in string tbl */ | |
7019 | unsigned char st_info; /* Type and binding attributes */ | |
7020 | unsigned char st_other; /* Visibilty, and target specific */ | |
7021 | }; | |
7022 | ||
7023 | struct elf_symbuf_head | |
7024 | { | |
7025 | struct elf_symbuf_symbol *ssym; | |
7026 | bfd_size_type count; | |
7027 | unsigned int st_shndx; | |
7028 | }; | |
7029 | ||
7030 | struct elf_symbol | |
7031 | { | |
7032 | union | |
7033 | { | |
7034 | Elf_Internal_Sym *isym; | |
7035 | struct elf_symbuf_symbol *ssym; | |
7036 | } u; | |
7037 | const char *name; | |
7038 | }; | |
7039 | ||
7040 | /* Sort references to symbols by ascending section number. */ | |
7041 | ||
7042 | static int | |
7043 | elf_sort_elf_symbol (const void *arg1, const void *arg2) | |
7044 | { | |
7045 | const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; | |
7046 | const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; | |
7047 | ||
7048 | return s1->st_shndx - s2->st_shndx; | |
7049 | } | |
7050 | ||
7051 | static int | |
7052 | elf_sym_name_compare (const void *arg1, const void *arg2) | |
7053 | { | |
7054 | const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; | |
7055 | const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; | |
7056 | return strcmp (s1->name, s2->name); | |
7057 | } | |
7058 | ||
7059 | static struct elf_symbuf_head * | |
7060 | elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf) | |
7061 | { | |
14b1c01e | 7062 | Elf_Internal_Sym **ind, **indbufend, **indbuf; |
4d269e42 AM |
7063 | struct elf_symbuf_symbol *ssym; |
7064 | struct elf_symbuf_head *ssymbuf, *ssymhead; | |
3ae181ee | 7065 | bfd_size_type i, shndx_count, total_size; |
4d269e42 | 7066 | |
a50b1753 | 7067 | indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf)); |
4d269e42 AM |
7068 | if (indbuf == NULL) |
7069 | return NULL; | |
7070 | ||
7071 | for (ind = indbuf, i = 0; i < symcount; i++) | |
7072 | if (isymbuf[i].st_shndx != SHN_UNDEF) | |
7073 | *ind++ = &isymbuf[i]; | |
7074 | indbufend = ind; | |
7075 | ||
7076 | qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), | |
7077 | elf_sort_elf_symbol); | |
7078 | ||
7079 | shndx_count = 0; | |
7080 | if (indbufend > indbuf) | |
7081 | for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) | |
7082 | if (ind[0]->st_shndx != ind[1]->st_shndx) | |
7083 | shndx_count++; | |
7084 | ||
3ae181ee L |
7085 | total_size = ((shndx_count + 1) * sizeof (*ssymbuf) |
7086 | + (indbufend - indbuf) * sizeof (*ssym)); | |
a50b1753 | 7087 | ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); |
4d269e42 AM |
7088 | if (ssymbuf == NULL) |
7089 | { | |
7090 | free (indbuf); | |
7091 | return NULL; | |
7092 | } | |
7093 | ||
3ae181ee | 7094 | ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); |
4d269e42 AM |
7095 | ssymbuf->ssym = NULL; |
7096 | ssymbuf->count = shndx_count; | |
7097 | ssymbuf->st_shndx = 0; | |
7098 | for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) | |
7099 | { | |
7100 | if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) | |
7101 | { | |
7102 | ssymhead++; | |
7103 | ssymhead->ssym = ssym; | |
7104 | ssymhead->count = 0; | |
7105 | ssymhead->st_shndx = (*ind)->st_shndx; | |
7106 | } | |
7107 | ssym->st_name = (*ind)->st_name; | |
7108 | ssym->st_info = (*ind)->st_info; | |
7109 | ssym->st_other = (*ind)->st_other; | |
7110 | ssymhead->count++; | |
7111 | } | |
3ae181ee L |
7112 | BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count |
7113 | && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) | |
7114 | == total_size)); | |
4d269e42 AM |
7115 | |
7116 | free (indbuf); | |
7117 | return ssymbuf; | |
7118 | } | |
7119 | ||
7120 | /* Check if 2 sections define the same set of local and global | |
7121 | symbols. */ | |
7122 | ||
8f317e31 | 7123 | static bfd_boolean |
4d269e42 AM |
7124 | bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, |
7125 | struct bfd_link_info *info) | |
7126 | { | |
7127 | bfd *bfd1, *bfd2; | |
7128 | const struct elf_backend_data *bed1, *bed2; | |
7129 | Elf_Internal_Shdr *hdr1, *hdr2; | |
7130 | bfd_size_type symcount1, symcount2; | |
7131 | Elf_Internal_Sym *isymbuf1, *isymbuf2; | |
7132 | struct elf_symbuf_head *ssymbuf1, *ssymbuf2; | |
7133 | Elf_Internal_Sym *isym, *isymend; | |
7134 | struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; | |
7135 | bfd_size_type count1, count2, i; | |
cb33740c | 7136 | unsigned int shndx1, shndx2; |
4d269e42 AM |
7137 | bfd_boolean result; |
7138 | ||
7139 | bfd1 = sec1->owner; | |
7140 | bfd2 = sec2->owner; | |
7141 | ||
4d269e42 AM |
7142 | /* Both sections have to be in ELF. */ |
7143 | if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour | |
7144 | || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) | |
7145 | return FALSE; | |
7146 | ||
7147 | if (elf_section_type (sec1) != elf_section_type (sec2)) | |
7148 | return FALSE; | |
7149 | ||
4d269e42 AM |
7150 | shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); |
7151 | shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); | |
cb33740c | 7152 | if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) |
4d269e42 AM |
7153 | return FALSE; |
7154 | ||
7155 | bed1 = get_elf_backend_data (bfd1); | |
7156 | bed2 = get_elf_backend_data (bfd2); | |
7157 | hdr1 = &elf_tdata (bfd1)->symtab_hdr; | |
7158 | symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; | |
7159 | hdr2 = &elf_tdata (bfd2)->symtab_hdr; | |
7160 | symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; | |
7161 | ||
7162 | if (symcount1 == 0 || symcount2 == 0) | |
7163 | return FALSE; | |
7164 | ||
7165 | result = FALSE; | |
7166 | isymbuf1 = NULL; | |
7167 | isymbuf2 = NULL; | |
a50b1753 NC |
7168 | ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; |
7169 | ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; | |
4d269e42 AM |
7170 | |
7171 | if (ssymbuf1 == NULL) | |
7172 | { | |
7173 | isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, | |
7174 | NULL, NULL, NULL); | |
7175 | if (isymbuf1 == NULL) | |
7176 | goto done; | |
7177 | ||
7178 | if (!info->reduce_memory_overheads) | |
7179 | elf_tdata (bfd1)->symbuf = ssymbuf1 | |
7180 | = elf_create_symbuf (symcount1, isymbuf1); | |
7181 | } | |
7182 | ||
7183 | if (ssymbuf1 == NULL || ssymbuf2 == NULL) | |
7184 | { | |
7185 | isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, | |
7186 | NULL, NULL, NULL); | |
7187 | if (isymbuf2 == NULL) | |
7188 | goto done; | |
7189 | ||
7190 | if (ssymbuf1 != NULL && !info->reduce_memory_overheads) | |
7191 | elf_tdata (bfd2)->symbuf = ssymbuf2 | |
7192 | = elf_create_symbuf (symcount2, isymbuf2); | |
7193 | } | |
7194 | ||
7195 | if (ssymbuf1 != NULL && ssymbuf2 != NULL) | |
7196 | { | |
7197 | /* Optimized faster version. */ | |
7198 | bfd_size_type lo, hi, mid; | |
7199 | struct elf_symbol *symp; | |
7200 | struct elf_symbuf_symbol *ssym, *ssymend; | |
7201 | ||
7202 | lo = 0; | |
7203 | hi = ssymbuf1->count; | |
7204 | ssymbuf1++; | |
7205 | count1 = 0; | |
7206 | while (lo < hi) | |
7207 | { | |
7208 | mid = (lo + hi) / 2; | |
cb33740c | 7209 | if (shndx1 < ssymbuf1[mid].st_shndx) |
4d269e42 | 7210 | hi = mid; |
cb33740c | 7211 | else if (shndx1 > ssymbuf1[mid].st_shndx) |
4d269e42 AM |
7212 | lo = mid + 1; |
7213 | else | |
7214 | { | |
7215 | count1 = ssymbuf1[mid].count; | |
7216 | ssymbuf1 += mid; | |
7217 | break; | |
7218 | } | |
7219 | } | |
7220 | ||
7221 | lo = 0; | |
7222 | hi = ssymbuf2->count; | |
7223 | ssymbuf2++; | |
7224 | count2 = 0; | |
7225 | while (lo < hi) | |
7226 | { | |
7227 | mid = (lo + hi) / 2; | |
cb33740c | 7228 | if (shndx2 < ssymbuf2[mid].st_shndx) |
4d269e42 | 7229 | hi = mid; |
cb33740c | 7230 | else if (shndx2 > ssymbuf2[mid].st_shndx) |
4d269e42 AM |
7231 | lo = mid + 1; |
7232 | else | |
7233 | { | |
7234 | count2 = ssymbuf2[mid].count; | |
7235 | ssymbuf2 += mid; | |
7236 | break; | |
7237 | } | |
7238 | } | |
7239 | ||
7240 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
7241 | goto done; | |
7242 | ||
a50b1753 NC |
7243 | symtable1 = (struct elf_symbol *) |
7244 | bfd_malloc (count1 * sizeof (struct elf_symbol)); | |
7245 | symtable2 = (struct elf_symbol *) | |
7246 | bfd_malloc (count2 * sizeof (struct elf_symbol)); | |
4d269e42 AM |
7247 | if (symtable1 == NULL || symtable2 == NULL) |
7248 | goto done; | |
7249 | ||
7250 | symp = symtable1; | |
7251 | for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; | |
7252 | ssym < ssymend; ssym++, symp++) | |
7253 | { | |
7254 | symp->u.ssym = ssym; | |
7255 | symp->name = bfd_elf_string_from_elf_section (bfd1, | |
7256 | hdr1->sh_link, | |
7257 | ssym->st_name); | |
7258 | } | |
7259 | ||
7260 | symp = symtable2; | |
7261 | for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; | |
7262 | ssym < ssymend; ssym++, symp++) | |
7263 | { | |
7264 | symp->u.ssym = ssym; | |
7265 | symp->name = bfd_elf_string_from_elf_section (bfd2, | |
7266 | hdr2->sh_link, | |
7267 | ssym->st_name); | |
7268 | } | |
7269 | ||
7270 | /* Sort symbol by name. */ | |
7271 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
7272 | elf_sym_name_compare); | |
7273 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
7274 | elf_sym_name_compare); | |
7275 | ||
7276 | for (i = 0; i < count1; i++) | |
7277 | /* Two symbols must have the same binding, type and name. */ | |
7278 | if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info | |
7279 | || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other | |
7280 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
7281 | goto done; | |
7282 | ||
7283 | result = TRUE; | |
7284 | goto done; | |
7285 | } | |
7286 | ||
a50b1753 NC |
7287 | symtable1 = (struct elf_symbol *) |
7288 | bfd_malloc (symcount1 * sizeof (struct elf_symbol)); | |
7289 | symtable2 = (struct elf_symbol *) | |
7290 | bfd_malloc (symcount2 * sizeof (struct elf_symbol)); | |
4d269e42 AM |
7291 | if (symtable1 == NULL || symtable2 == NULL) |
7292 | goto done; | |
7293 | ||
7294 | /* Count definitions in the section. */ | |
7295 | count1 = 0; | |
7296 | for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) | |
cb33740c | 7297 | if (isym->st_shndx == shndx1) |
4d269e42 AM |
7298 | symtable1[count1++].u.isym = isym; |
7299 | ||
7300 | count2 = 0; | |
7301 | for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) | |
cb33740c | 7302 | if (isym->st_shndx == shndx2) |
4d269e42 AM |
7303 | symtable2[count2++].u.isym = isym; |
7304 | ||
7305 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
7306 | goto done; | |
7307 | ||
7308 | for (i = 0; i < count1; i++) | |
7309 | symtable1[i].name | |
7310 | = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, | |
7311 | symtable1[i].u.isym->st_name); | |
7312 | ||
7313 | for (i = 0; i < count2; i++) | |
7314 | symtable2[i].name | |
7315 | = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, | |
7316 | symtable2[i].u.isym->st_name); | |
7317 | ||
7318 | /* Sort symbol by name. */ | |
7319 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
7320 | elf_sym_name_compare); | |
7321 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
7322 | elf_sym_name_compare); | |
7323 | ||
7324 | for (i = 0; i < count1; i++) | |
7325 | /* Two symbols must have the same binding, type and name. */ | |
7326 | if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info | |
7327 | || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other | |
7328 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
7329 | goto done; | |
7330 | ||
7331 | result = TRUE; | |
7332 | ||
7333 | done: | |
7334 | if (symtable1) | |
7335 | free (symtable1); | |
7336 | if (symtable2) | |
7337 | free (symtable2); | |
7338 | if (isymbuf1) | |
7339 | free (isymbuf1); | |
7340 | if (isymbuf2) | |
7341 | free (isymbuf2); | |
7342 | ||
7343 | return result; | |
7344 | } | |
7345 | ||
7346 | /* Return TRUE if 2 section types are compatible. */ | |
7347 | ||
7348 | bfd_boolean | |
7349 | _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, | |
7350 | bfd *bbfd, const asection *bsec) | |
7351 | { | |
7352 | if (asec == NULL | |
7353 | || bsec == NULL | |
7354 | || abfd->xvec->flavour != bfd_target_elf_flavour | |
7355 | || bbfd->xvec->flavour != bfd_target_elf_flavour) | |
7356 | return TRUE; | |
7357 | ||
7358 | return elf_section_type (asec) == elf_section_type (bsec); | |
7359 | } | |
7360 | \f | |
c152c796 AM |
7361 | /* Final phase of ELF linker. */ |
7362 | ||
7363 | /* A structure we use to avoid passing large numbers of arguments. */ | |
7364 | ||
7365 | struct elf_final_link_info | |
7366 | { | |
7367 | /* General link information. */ | |
7368 | struct bfd_link_info *info; | |
7369 | /* Output BFD. */ | |
7370 | bfd *output_bfd; | |
7371 | /* Symbol string table. */ | |
7372 | struct bfd_strtab_hash *symstrtab; | |
7373 | /* .dynsym section. */ | |
7374 | asection *dynsym_sec; | |
7375 | /* .hash section. */ | |
7376 | asection *hash_sec; | |
7377 | /* symbol version section (.gnu.version). */ | |
7378 | asection *symver_sec; | |
7379 | /* Buffer large enough to hold contents of any section. */ | |
7380 | bfd_byte *contents; | |
7381 | /* Buffer large enough to hold external relocs of any section. */ | |
7382 | void *external_relocs; | |
7383 | /* Buffer large enough to hold internal relocs of any section. */ | |
7384 | Elf_Internal_Rela *internal_relocs; | |
7385 | /* Buffer large enough to hold external local symbols of any input | |
7386 | BFD. */ | |
7387 | bfd_byte *external_syms; | |
7388 | /* And a buffer for symbol section indices. */ | |
7389 | Elf_External_Sym_Shndx *locsym_shndx; | |
7390 | /* Buffer large enough to hold internal local symbols of any input | |
7391 | BFD. */ | |
7392 | Elf_Internal_Sym *internal_syms; | |
7393 | /* Array large enough to hold a symbol index for each local symbol | |
7394 | of any input BFD. */ | |
7395 | long *indices; | |
7396 | /* Array large enough to hold a section pointer for each local | |
7397 | symbol of any input BFD. */ | |
7398 | asection **sections; | |
7399 | /* Buffer to hold swapped out symbols. */ | |
7400 | bfd_byte *symbuf; | |
7401 | /* And one for symbol section indices. */ | |
7402 | Elf_External_Sym_Shndx *symshndxbuf; | |
7403 | /* Number of swapped out symbols in buffer. */ | |
7404 | size_t symbuf_count; | |
7405 | /* Number of symbols which fit in symbuf. */ | |
7406 | size_t symbuf_size; | |
7407 | /* And same for symshndxbuf. */ | |
7408 | size_t shndxbuf_size; | |
7409 | }; | |
7410 | ||
7411 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
7412 | ||
7413 | struct elf_outext_info | |
7414 | { | |
7415 | bfd_boolean failed; | |
7416 | bfd_boolean localsyms; | |
7417 | struct elf_final_link_info *finfo; | |
7418 | }; | |
7419 | ||
d9352518 DB |
7420 | |
7421 | /* Support for evaluating a complex relocation. | |
7422 | ||
7423 | Complex relocations are generalized, self-describing relocations. The | |
7424 | implementation of them consists of two parts: complex symbols, and the | |
a0c8462f | 7425 | relocations themselves. |
d9352518 DB |
7426 | |
7427 | The relocations are use a reserved elf-wide relocation type code (R_RELC | |
7428 | external / BFD_RELOC_RELC internal) and an encoding of relocation field | |
7429 | information (start bit, end bit, word width, etc) into the addend. This | |
7430 | information is extracted from CGEN-generated operand tables within gas. | |
7431 | ||
7432 | Complex symbols are mangled symbols (BSF_RELC external / STT_RELC | |
7433 | internal) representing prefix-notation expressions, including but not | |
7434 | limited to those sorts of expressions normally encoded as addends in the | |
7435 | addend field. The symbol mangling format is: | |
7436 | ||
7437 | <node> := <literal> | |
7438 | | <unary-operator> ':' <node> | |
7439 | | <binary-operator> ':' <node> ':' <node> | |
7440 | ; | |
7441 | ||
7442 | <literal> := 's' <digits=N> ':' <N character symbol name> | |
7443 | | 'S' <digits=N> ':' <N character section name> | |
7444 | | '#' <hexdigits> | |
7445 | ; | |
7446 | ||
7447 | <binary-operator> := as in C | |
7448 | <unary-operator> := as in C, plus "0-" for unambiguous negation. */ | |
7449 | ||
7450 | static void | |
a0c8462f AM |
7451 | set_symbol_value (bfd *bfd_with_globals, |
7452 | Elf_Internal_Sym *isymbuf, | |
7453 | size_t locsymcount, | |
7454 | size_t symidx, | |
7455 | bfd_vma val) | |
d9352518 | 7456 | { |
8977835c AM |
7457 | struct elf_link_hash_entry **sym_hashes; |
7458 | struct elf_link_hash_entry *h; | |
7459 | size_t extsymoff = locsymcount; | |
d9352518 | 7460 | |
8977835c | 7461 | if (symidx < locsymcount) |
d9352518 | 7462 | { |
8977835c AM |
7463 | Elf_Internal_Sym *sym; |
7464 | ||
7465 | sym = isymbuf + symidx; | |
7466 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | |
7467 | { | |
7468 | /* It is a local symbol: move it to the | |
7469 | "absolute" section and give it a value. */ | |
7470 | sym->st_shndx = SHN_ABS; | |
7471 | sym->st_value = val; | |
7472 | return; | |
7473 | } | |
7474 | BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); | |
7475 | extsymoff = 0; | |
d9352518 | 7476 | } |
8977835c AM |
7477 | |
7478 | /* It is a global symbol: set its link type | |
7479 | to "defined" and give it a value. */ | |
7480 | ||
7481 | sym_hashes = elf_sym_hashes (bfd_with_globals); | |
7482 | h = sym_hashes [symidx - extsymoff]; | |
7483 | while (h->root.type == bfd_link_hash_indirect | |
7484 | || h->root.type == bfd_link_hash_warning) | |
7485 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
7486 | h->root.type = bfd_link_hash_defined; | |
7487 | h->root.u.def.value = val; | |
7488 | h->root.u.def.section = bfd_abs_section_ptr; | |
d9352518 DB |
7489 | } |
7490 | ||
a0c8462f AM |
7491 | static bfd_boolean |
7492 | resolve_symbol (const char *name, | |
7493 | bfd *input_bfd, | |
7494 | struct elf_final_link_info *finfo, | |
7495 | bfd_vma *result, | |
7496 | Elf_Internal_Sym *isymbuf, | |
7497 | size_t locsymcount) | |
d9352518 | 7498 | { |
a0c8462f AM |
7499 | Elf_Internal_Sym *sym; |
7500 | struct bfd_link_hash_entry *global_entry; | |
7501 | const char *candidate = NULL; | |
7502 | Elf_Internal_Shdr *symtab_hdr; | |
7503 | size_t i; | |
7504 | ||
d9352518 DB |
7505 | symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
7506 | ||
7507 | for (i = 0; i < locsymcount; ++ i) | |
7508 | { | |
8977835c | 7509 | sym = isymbuf + i; |
d9352518 DB |
7510 | |
7511 | if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) | |
7512 | continue; | |
7513 | ||
7514 | candidate = bfd_elf_string_from_elf_section (input_bfd, | |
7515 | symtab_hdr->sh_link, | |
7516 | sym->st_name); | |
7517 | #ifdef DEBUG | |
0f02bbd9 AM |
7518 | printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", |
7519 | name, candidate, (unsigned long) sym->st_value); | |
d9352518 DB |
7520 | #endif |
7521 | if (candidate && strcmp (candidate, name) == 0) | |
7522 | { | |
0f02bbd9 | 7523 | asection *sec = finfo->sections [i]; |
d9352518 | 7524 | |
0f02bbd9 AM |
7525 | *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); |
7526 | *result += sec->output_offset + sec->output_section->vma; | |
d9352518 | 7527 | #ifdef DEBUG |
0f02bbd9 AM |
7528 | printf ("Found symbol with value %8.8lx\n", |
7529 | (unsigned long) *result); | |
d9352518 DB |
7530 | #endif |
7531 | return TRUE; | |
7532 | } | |
7533 | } | |
7534 | ||
7535 | /* Hmm, haven't found it yet. perhaps it is a global. */ | |
a0c8462f AM |
7536 | global_entry = bfd_link_hash_lookup (finfo->info->hash, name, |
7537 | FALSE, FALSE, TRUE); | |
d9352518 DB |
7538 | if (!global_entry) |
7539 | return FALSE; | |
a0c8462f | 7540 | |
d9352518 DB |
7541 | if (global_entry->type == bfd_link_hash_defined |
7542 | || global_entry->type == bfd_link_hash_defweak) | |
7543 | { | |
a0c8462f AM |
7544 | *result = (global_entry->u.def.value |
7545 | + global_entry->u.def.section->output_section->vma | |
7546 | + global_entry->u.def.section->output_offset); | |
d9352518 | 7547 | #ifdef DEBUG |
0f02bbd9 AM |
7548 | printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", |
7549 | global_entry->root.string, (unsigned long) *result); | |
d9352518 DB |
7550 | #endif |
7551 | return TRUE; | |
a0c8462f | 7552 | } |
d9352518 | 7553 | |
d9352518 DB |
7554 | return FALSE; |
7555 | } | |
7556 | ||
7557 | static bfd_boolean | |
a0c8462f AM |
7558 | resolve_section (const char *name, |
7559 | asection *sections, | |
7560 | bfd_vma *result) | |
d9352518 | 7561 | { |
a0c8462f AM |
7562 | asection *curr; |
7563 | unsigned int len; | |
d9352518 | 7564 | |
a0c8462f | 7565 | for (curr = sections; curr; curr = curr->next) |
d9352518 DB |
7566 | if (strcmp (curr->name, name) == 0) |
7567 | { | |
7568 | *result = curr->vma; | |
7569 | return TRUE; | |
7570 | } | |
7571 | ||
7572 | /* Hmm. still haven't found it. try pseudo-section names. */ | |
a0c8462f | 7573 | for (curr = sections; curr; curr = curr->next) |
d9352518 DB |
7574 | { |
7575 | len = strlen (curr->name); | |
a0c8462f | 7576 | if (len > strlen (name)) |
d9352518 DB |
7577 | continue; |
7578 | ||
7579 | if (strncmp (curr->name, name, len) == 0) | |
7580 | { | |
7581 | if (strncmp (".end", name + len, 4) == 0) | |
7582 | { | |
7583 | *result = curr->vma + curr->size; | |
7584 | return TRUE; | |
7585 | } | |
7586 | ||
7587 | /* Insert more pseudo-section names here, if you like. */ | |
7588 | } | |
7589 | } | |
a0c8462f | 7590 | |
d9352518 DB |
7591 | return FALSE; |
7592 | } | |
7593 | ||
7594 | static void | |
a0c8462f | 7595 | undefined_reference (const char *reftype, const char *name) |
d9352518 | 7596 | { |
a0c8462f AM |
7597 | _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), |
7598 | reftype, name); | |
d9352518 DB |
7599 | } |
7600 | ||
7601 | static bfd_boolean | |
a0c8462f AM |
7602 | eval_symbol (bfd_vma *result, |
7603 | const char **symp, | |
7604 | bfd *input_bfd, | |
7605 | struct elf_final_link_info *finfo, | |
7606 | bfd_vma dot, | |
7607 | Elf_Internal_Sym *isymbuf, | |
7608 | size_t locsymcount, | |
7609 | int signed_p) | |
d9352518 | 7610 | { |
4b93929b NC |
7611 | size_t len; |
7612 | size_t symlen; | |
a0c8462f AM |
7613 | bfd_vma a; |
7614 | bfd_vma b; | |
4b93929b | 7615 | char symbuf[4096]; |
0f02bbd9 | 7616 | const char *sym = *symp; |
a0c8462f AM |
7617 | const char *symend; |
7618 | bfd_boolean symbol_is_section = FALSE; | |
d9352518 DB |
7619 | |
7620 | len = strlen (sym); | |
7621 | symend = sym + len; | |
7622 | ||
4b93929b | 7623 | if (len < 1 || len > sizeof (symbuf)) |
d9352518 DB |
7624 | { |
7625 | bfd_set_error (bfd_error_invalid_operation); | |
7626 | return FALSE; | |
7627 | } | |
a0c8462f | 7628 | |
d9352518 DB |
7629 | switch (* sym) |
7630 | { | |
7631 | case '.': | |
0f02bbd9 AM |
7632 | *result = dot; |
7633 | *symp = sym + 1; | |
d9352518 DB |
7634 | return TRUE; |
7635 | ||
7636 | case '#': | |
0f02bbd9 AM |
7637 | ++sym; |
7638 | *result = strtoul (sym, (char **) symp, 16); | |
d9352518 DB |
7639 | return TRUE; |
7640 | ||
7641 | case 'S': | |
7642 | symbol_is_section = TRUE; | |
a0c8462f | 7643 | case 's': |
0f02bbd9 AM |
7644 | ++sym; |
7645 | symlen = strtol (sym, (char **) symp, 10); | |
7646 | sym = *symp + 1; /* Skip the trailing ':'. */ | |
d9352518 | 7647 | |
4b93929b | 7648 | if (symend < sym || symlen + 1 > sizeof (symbuf)) |
d9352518 DB |
7649 | { |
7650 | bfd_set_error (bfd_error_invalid_operation); | |
7651 | return FALSE; | |
7652 | } | |
7653 | ||
7654 | memcpy (symbuf, sym, symlen); | |
a0c8462f | 7655 | symbuf[symlen] = '\0'; |
0f02bbd9 | 7656 | *symp = sym + symlen; |
a0c8462f AM |
7657 | |
7658 | /* Is it always possible, with complex symbols, that gas "mis-guessed" | |
d9352518 DB |
7659 | the symbol as a section, or vice-versa. so we're pretty liberal in our |
7660 | interpretation here; section means "try section first", not "must be a | |
7661 | section", and likewise with symbol. */ | |
7662 | ||
a0c8462f | 7663 | if (symbol_is_section) |
d9352518 | 7664 | { |
8977835c AM |
7665 | if (!resolve_section (symbuf, finfo->output_bfd->sections, result) |
7666 | && !resolve_symbol (symbuf, input_bfd, finfo, result, | |
7667 | isymbuf, locsymcount)) | |
d9352518 DB |
7668 | { |
7669 | undefined_reference ("section", symbuf); | |
7670 | return FALSE; | |
7671 | } | |
a0c8462f AM |
7672 | } |
7673 | else | |
d9352518 | 7674 | { |
8977835c AM |
7675 | if (!resolve_symbol (symbuf, input_bfd, finfo, result, |
7676 | isymbuf, locsymcount) | |
7677 | && !resolve_section (symbuf, finfo->output_bfd->sections, | |
7678 | result)) | |
d9352518 DB |
7679 | { |
7680 | undefined_reference ("symbol", symbuf); | |
7681 | return FALSE; | |
7682 | } | |
7683 | } | |
7684 | ||
7685 | return TRUE; | |
a0c8462f | 7686 | |
d9352518 DB |
7687 | /* All that remains are operators. */ |
7688 | ||
7689 | #define UNARY_OP(op) \ | |
7690 | if (strncmp (sym, #op, strlen (#op)) == 0) \ | |
7691 | { \ | |
7692 | sym += strlen (#op); \ | |
a0c8462f AM |
7693 | if (*sym == ':') \ |
7694 | ++sym; \ | |
0f02bbd9 AM |
7695 | *symp = sym; \ |
7696 | if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \ | |
7697 | isymbuf, locsymcount, signed_p)) \ | |
a0c8462f AM |
7698 | return FALSE; \ |
7699 | if (signed_p) \ | |
0f02bbd9 | 7700 | *result = op ((bfd_signed_vma) a); \ |
a0c8462f AM |
7701 | else \ |
7702 | *result = op a; \ | |
d9352518 DB |
7703 | return TRUE; \ |
7704 | } | |
7705 | ||
7706 | #define BINARY_OP(op) \ | |
7707 | if (strncmp (sym, #op, strlen (#op)) == 0) \ | |
7708 | { \ | |
7709 | sym += strlen (#op); \ | |
a0c8462f AM |
7710 | if (*sym == ':') \ |
7711 | ++sym; \ | |
0f02bbd9 AM |
7712 | *symp = sym; \ |
7713 | if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \ | |
7714 | isymbuf, locsymcount, signed_p)) \ | |
a0c8462f | 7715 | return FALSE; \ |
0f02bbd9 AM |
7716 | ++*symp; \ |
7717 | if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \ | |
7718 | isymbuf, locsymcount, signed_p)) \ | |
a0c8462f AM |
7719 | return FALSE; \ |
7720 | if (signed_p) \ | |
0f02bbd9 | 7721 | *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ |
a0c8462f AM |
7722 | else \ |
7723 | *result = a op b; \ | |
d9352518 DB |
7724 | return TRUE; \ |
7725 | } | |
7726 | ||
7727 | default: | |
7728 | UNARY_OP (0-); | |
7729 | BINARY_OP (<<); | |
7730 | BINARY_OP (>>); | |
7731 | BINARY_OP (==); | |
7732 | BINARY_OP (!=); | |
7733 | BINARY_OP (<=); | |
7734 | BINARY_OP (>=); | |
7735 | BINARY_OP (&&); | |
7736 | BINARY_OP (||); | |
7737 | UNARY_OP (~); | |
7738 | UNARY_OP (!); | |
7739 | BINARY_OP (*); | |
7740 | BINARY_OP (/); | |
7741 | BINARY_OP (%); | |
7742 | BINARY_OP (^); | |
7743 | BINARY_OP (|); | |
7744 | BINARY_OP (&); | |
7745 | BINARY_OP (+); | |
7746 | BINARY_OP (-); | |
7747 | BINARY_OP (<); | |
7748 | BINARY_OP (>); | |
7749 | #undef UNARY_OP | |
7750 | #undef BINARY_OP | |
7751 | _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); | |
7752 | bfd_set_error (bfd_error_invalid_operation); | |
7753 | return FALSE; | |
7754 | } | |
7755 | } | |
7756 | ||
d9352518 | 7757 | static void |
a0c8462f AM |
7758 | put_value (bfd_vma size, |
7759 | unsigned long chunksz, | |
7760 | bfd *input_bfd, | |
7761 | bfd_vma x, | |
7762 | bfd_byte *location) | |
d9352518 DB |
7763 | { |
7764 | location += (size - chunksz); | |
7765 | ||
a0c8462f | 7766 | for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8)) |
d9352518 DB |
7767 | { |
7768 | switch (chunksz) | |
7769 | { | |
7770 | default: | |
7771 | case 0: | |
7772 | abort (); | |
7773 | case 1: | |
7774 | bfd_put_8 (input_bfd, x, location); | |
7775 | break; | |
7776 | case 2: | |
7777 | bfd_put_16 (input_bfd, x, location); | |
7778 | break; | |
7779 | case 4: | |
7780 | bfd_put_32 (input_bfd, x, location); | |
7781 | break; | |
7782 | case 8: | |
7783 | #ifdef BFD64 | |
7784 | bfd_put_64 (input_bfd, x, location); | |
7785 | #else | |
7786 | abort (); | |
7787 | #endif | |
7788 | break; | |
7789 | } | |
7790 | } | |
7791 | } | |
7792 | ||
a0c8462f AM |
7793 | static bfd_vma |
7794 | get_value (bfd_vma size, | |
7795 | unsigned long chunksz, | |
7796 | bfd *input_bfd, | |
7797 | bfd_byte *location) | |
d9352518 DB |
7798 | { |
7799 | bfd_vma x = 0; | |
7800 | ||
a0c8462f | 7801 | for (; size; size -= chunksz, location += chunksz) |
d9352518 DB |
7802 | { |
7803 | switch (chunksz) | |
7804 | { | |
7805 | default: | |
7806 | case 0: | |
7807 | abort (); | |
7808 | case 1: | |
7809 | x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location); | |
7810 | break; | |
7811 | case 2: | |
7812 | x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location); | |
7813 | break; | |
7814 | case 4: | |
7815 | x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location); | |
7816 | break; | |
7817 | case 8: | |
7818 | #ifdef BFD64 | |
7819 | x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location); | |
7820 | #else | |
7821 | abort (); | |
7822 | #endif | |
7823 | break; | |
7824 | } | |
7825 | } | |
7826 | return x; | |
7827 | } | |
7828 | ||
a0c8462f AM |
7829 | static void |
7830 | decode_complex_addend (unsigned long *start, /* in bits */ | |
7831 | unsigned long *oplen, /* in bits */ | |
7832 | unsigned long *len, /* in bits */ | |
7833 | unsigned long *wordsz, /* in bytes */ | |
7834 | unsigned long *chunksz, /* in bytes */ | |
7835 | unsigned long *lsb0_p, | |
7836 | unsigned long *signed_p, | |
7837 | unsigned long *trunc_p, | |
7838 | unsigned long encoded) | |
d9352518 DB |
7839 | { |
7840 | * start = encoded & 0x3F; | |
7841 | * len = (encoded >> 6) & 0x3F; | |
7842 | * oplen = (encoded >> 12) & 0x3F; | |
7843 | * wordsz = (encoded >> 18) & 0xF; | |
7844 | * chunksz = (encoded >> 22) & 0xF; | |
7845 | * lsb0_p = (encoded >> 27) & 1; | |
7846 | * signed_p = (encoded >> 28) & 1; | |
7847 | * trunc_p = (encoded >> 29) & 1; | |
7848 | } | |
7849 | ||
cdfeee4f | 7850 | bfd_reloc_status_type |
0f02bbd9 | 7851 | bfd_elf_perform_complex_relocation (bfd *input_bfd, |
cdfeee4f | 7852 | asection *input_section ATTRIBUTE_UNUSED, |
0f02bbd9 AM |
7853 | bfd_byte *contents, |
7854 | Elf_Internal_Rela *rel, | |
7855 | bfd_vma relocation) | |
d9352518 | 7856 | { |
0f02bbd9 AM |
7857 | bfd_vma shift, x, mask; |
7858 | unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; | |
cdfeee4f | 7859 | bfd_reloc_status_type r; |
d9352518 DB |
7860 | |
7861 | /* Perform this reloc, since it is complex. | |
7862 | (this is not to say that it necessarily refers to a complex | |
7863 | symbol; merely that it is a self-describing CGEN based reloc. | |
7864 | i.e. the addend has the complete reloc information (bit start, end, | |
a0c8462f | 7865 | word size, etc) encoded within it.). */ |
d9352518 | 7866 | |
a0c8462f AM |
7867 | decode_complex_addend (&start, &oplen, &len, &wordsz, |
7868 | &chunksz, &lsb0_p, &signed_p, | |
7869 | &trunc_p, rel->r_addend); | |
d9352518 DB |
7870 | |
7871 | mask = (((1L << (len - 1)) - 1) << 1) | 1; | |
7872 | ||
7873 | if (lsb0_p) | |
7874 | shift = (start + 1) - len; | |
7875 | else | |
7876 | shift = (8 * wordsz) - (start + len); | |
7877 | ||
5dabe785 | 7878 | /* FIXME: octets_per_byte. */ |
a0c8462f | 7879 | x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset); |
d9352518 DB |
7880 | |
7881 | #ifdef DEBUG | |
7882 | printf ("Doing complex reloc: " | |
7883 | "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " | |
7884 | "chunksz %ld, start %ld, len %ld, oplen %ld\n" | |
7885 | " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", | |
7886 | lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, | |
9ccb8af9 AM |
7887 | oplen, (unsigned long) x, (unsigned long) mask, |
7888 | (unsigned long) relocation); | |
d9352518 DB |
7889 | #endif |
7890 | ||
cdfeee4f | 7891 | r = bfd_reloc_ok; |
d9352518 | 7892 | if (! trunc_p) |
cdfeee4f AM |
7893 | /* Now do an overflow check. */ |
7894 | r = bfd_check_overflow ((signed_p | |
7895 | ? complain_overflow_signed | |
7896 | : complain_overflow_unsigned), | |
7897 | len, 0, (8 * wordsz), | |
7898 | relocation); | |
a0c8462f | 7899 | |
d9352518 DB |
7900 | /* Do the deed. */ |
7901 | x = (x & ~(mask << shift)) | ((relocation & mask) << shift); | |
7902 | ||
7903 | #ifdef DEBUG | |
7904 | printf (" relocation: %8.8lx\n" | |
7905 | " shifted mask: %8.8lx\n" | |
7906 | " shifted/masked reloc: %8.8lx\n" | |
7907 | " result: %8.8lx\n", | |
9ccb8af9 AM |
7908 | (unsigned long) relocation, (unsigned long) (mask << shift), |
7909 | (unsigned long) ((relocation & mask) << shift), (unsigned long) x); | |
d9352518 | 7910 | #endif |
5dabe785 | 7911 | /* FIXME: octets_per_byte. */ |
d9352518 | 7912 | put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset); |
cdfeee4f | 7913 | return r; |
d9352518 DB |
7914 | } |
7915 | ||
c152c796 AM |
7916 | /* When performing a relocatable link, the input relocations are |
7917 | preserved. But, if they reference global symbols, the indices | |
d4730f92 BS |
7918 | referenced must be updated. Update all the relocations found in |
7919 | RELDATA. */ | |
c152c796 AM |
7920 | |
7921 | static void | |
7922 | elf_link_adjust_relocs (bfd *abfd, | |
d4730f92 | 7923 | struct bfd_elf_section_reloc_data *reldata) |
c152c796 AM |
7924 | { |
7925 | unsigned int i; | |
7926 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
7927 | bfd_byte *erela; | |
7928 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
7929 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
7930 | bfd_vma r_type_mask; | |
7931 | int r_sym_shift; | |
d4730f92 BS |
7932 | unsigned int count = reldata->count; |
7933 | struct elf_link_hash_entry **rel_hash = reldata->hashes; | |
c152c796 | 7934 | |
d4730f92 | 7935 | if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) |
c152c796 AM |
7936 | { |
7937 | swap_in = bed->s->swap_reloc_in; | |
7938 | swap_out = bed->s->swap_reloc_out; | |
7939 | } | |
d4730f92 | 7940 | else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) |
c152c796 AM |
7941 | { |
7942 | swap_in = bed->s->swap_reloca_in; | |
7943 | swap_out = bed->s->swap_reloca_out; | |
7944 | } | |
7945 | else | |
7946 | abort (); | |
7947 | ||
7948 | if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) | |
7949 | abort (); | |
7950 | ||
7951 | if (bed->s->arch_size == 32) | |
7952 | { | |
7953 | r_type_mask = 0xff; | |
7954 | r_sym_shift = 8; | |
7955 | } | |
7956 | else | |
7957 | { | |
7958 | r_type_mask = 0xffffffff; | |
7959 | r_sym_shift = 32; | |
7960 | } | |
7961 | ||
d4730f92 BS |
7962 | erela = reldata->hdr->contents; |
7963 | for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) | |
c152c796 AM |
7964 | { |
7965 | Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; | |
7966 | unsigned int j; | |
7967 | ||
7968 | if (*rel_hash == NULL) | |
7969 | continue; | |
7970 | ||
7971 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
7972 | ||
7973 | (*swap_in) (abfd, erela, irela); | |
7974 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |
7975 | irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift | |
7976 | | (irela[j].r_info & r_type_mask)); | |
7977 | (*swap_out) (abfd, irela, erela); | |
7978 | } | |
7979 | } | |
7980 | ||
7981 | struct elf_link_sort_rela | |
7982 | { | |
7983 | union { | |
7984 | bfd_vma offset; | |
7985 | bfd_vma sym_mask; | |
7986 | } u; | |
7987 | enum elf_reloc_type_class type; | |
7988 | /* We use this as an array of size int_rels_per_ext_rel. */ | |
7989 | Elf_Internal_Rela rela[1]; | |
7990 | }; | |
7991 | ||
7992 | static int | |
7993 | elf_link_sort_cmp1 (const void *A, const void *B) | |
7994 | { | |
a50b1753 NC |
7995 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
7996 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
c152c796 AM |
7997 | int relativea, relativeb; |
7998 | ||
7999 | relativea = a->type == reloc_class_relative; | |
8000 | relativeb = b->type == reloc_class_relative; | |
8001 | ||
8002 | if (relativea < relativeb) | |
8003 | return 1; | |
8004 | if (relativea > relativeb) | |
8005 | return -1; | |
8006 | if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) | |
8007 | return -1; | |
8008 | if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) | |
8009 | return 1; | |
8010 | if (a->rela->r_offset < b->rela->r_offset) | |
8011 | return -1; | |
8012 | if (a->rela->r_offset > b->rela->r_offset) | |
8013 | return 1; | |
8014 | return 0; | |
8015 | } | |
8016 | ||
8017 | static int | |
8018 | elf_link_sort_cmp2 (const void *A, const void *B) | |
8019 | { | |
a50b1753 NC |
8020 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
8021 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
c152c796 AM |
8022 | int copya, copyb; |
8023 | ||
8024 | if (a->u.offset < b->u.offset) | |
8025 | return -1; | |
8026 | if (a->u.offset > b->u.offset) | |
8027 | return 1; | |
8028 | copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt); | |
8029 | copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt); | |
8030 | if (copya < copyb) | |
8031 | return -1; | |
8032 | if (copya > copyb) | |
8033 | return 1; | |
8034 | if (a->rela->r_offset < b->rela->r_offset) | |
8035 | return -1; | |
8036 | if (a->rela->r_offset > b->rela->r_offset) | |
8037 | return 1; | |
8038 | return 0; | |
8039 | } | |
8040 | ||
8041 | static size_t | |
8042 | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) | |
8043 | { | |
3410fea8 | 8044 | asection *dynamic_relocs; |
fc66a176 L |
8045 | asection *rela_dyn; |
8046 | asection *rel_dyn; | |
c152c796 AM |
8047 | bfd_size_type count, size; |
8048 | size_t i, ret, sort_elt, ext_size; | |
8049 | bfd_byte *sort, *s_non_relative, *p; | |
8050 | struct elf_link_sort_rela *sq; | |
8051 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
8052 | int i2e = bed->s->int_rels_per_ext_rel; | |
8053 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
8054 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
8055 | struct bfd_link_order *lo; | |
8056 | bfd_vma r_sym_mask; | |
3410fea8 | 8057 | bfd_boolean use_rela; |
c152c796 | 8058 | |
3410fea8 NC |
8059 | /* Find a dynamic reloc section. */ |
8060 | rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | |
8061 | rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); | |
8062 | if (rela_dyn != NULL && rela_dyn->size > 0 | |
8063 | && rel_dyn != NULL && rel_dyn->size > 0) | |
c152c796 | 8064 | { |
3410fea8 NC |
8065 | bfd_boolean use_rela_initialised = FALSE; |
8066 | ||
8067 | /* This is just here to stop gcc from complaining. | |
8068 | It's initialization checking code is not perfect. */ | |
8069 | use_rela = TRUE; | |
8070 | ||
8071 | /* Both sections are present. Examine the sizes | |
8072 | of the indirect sections to help us choose. */ | |
8073 | for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
8074 | if (lo->type == bfd_indirect_link_order) | |
8075 | { | |
8076 | asection *o = lo->u.indirect.section; | |
8077 | ||
8078 | if ((o->size % bed->s->sizeof_rela) == 0) | |
8079 | { | |
8080 | if ((o->size % bed->s->sizeof_rel) == 0) | |
8081 | /* Section size is divisible by both rel and rela sizes. | |
8082 | It is of no help to us. */ | |
8083 | ; | |
8084 | else | |
8085 | { | |
8086 | /* Section size is only divisible by rela. */ | |
8087 | if (use_rela_initialised && (use_rela == FALSE)) | |
8088 | { | |
8089 | _bfd_error_handler | |
8090 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8091 | bfd_set_error (bfd_error_invalid_operation); | |
8092 | return 0; | |
8093 | } | |
8094 | else | |
8095 | { | |
8096 | use_rela = TRUE; | |
8097 | use_rela_initialised = TRUE; | |
8098 | } | |
8099 | } | |
8100 | } | |
8101 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
8102 | { | |
8103 | /* Section size is only divisible by rel. */ | |
8104 | if (use_rela_initialised && (use_rela == TRUE)) | |
8105 | { | |
8106 | _bfd_error_handler | |
8107 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8108 | bfd_set_error (bfd_error_invalid_operation); | |
8109 | return 0; | |
8110 | } | |
8111 | else | |
8112 | { | |
8113 | use_rela = FALSE; | |
8114 | use_rela_initialised = TRUE; | |
8115 | } | |
8116 | } | |
8117 | else | |
8118 | { | |
8119 | /* The section size is not divisible by either - something is wrong. */ | |
8120 | _bfd_error_handler | |
8121 | (_("%B: Unable to sort relocs - they are of an unknown size"), abfd); | |
8122 | bfd_set_error (bfd_error_invalid_operation); | |
8123 | return 0; | |
8124 | } | |
8125 | } | |
8126 | ||
8127 | for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
8128 | if (lo->type == bfd_indirect_link_order) | |
8129 | { | |
8130 | asection *o = lo->u.indirect.section; | |
8131 | ||
8132 | if ((o->size % bed->s->sizeof_rela) == 0) | |
8133 | { | |
8134 | if ((o->size % bed->s->sizeof_rel) == 0) | |
8135 | /* Section size is divisible by both rel and rela sizes. | |
8136 | It is of no help to us. */ | |
8137 | ; | |
8138 | else | |
8139 | { | |
8140 | /* Section size is only divisible by rela. */ | |
8141 | if (use_rela_initialised && (use_rela == FALSE)) | |
8142 | { | |
8143 | _bfd_error_handler | |
8144 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8145 | bfd_set_error (bfd_error_invalid_operation); | |
8146 | return 0; | |
8147 | } | |
8148 | else | |
8149 | { | |
8150 | use_rela = TRUE; | |
8151 | use_rela_initialised = TRUE; | |
8152 | } | |
8153 | } | |
8154 | } | |
8155 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
8156 | { | |
8157 | /* Section size is only divisible by rel. */ | |
8158 | if (use_rela_initialised && (use_rela == TRUE)) | |
8159 | { | |
8160 | _bfd_error_handler | |
8161 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8162 | bfd_set_error (bfd_error_invalid_operation); | |
8163 | return 0; | |
8164 | } | |
8165 | else | |
8166 | { | |
8167 | use_rela = FALSE; | |
8168 | use_rela_initialised = TRUE; | |
8169 | } | |
8170 | } | |
8171 | else | |
8172 | { | |
8173 | /* The section size is not divisible by either - something is wrong. */ | |
8174 | _bfd_error_handler | |
8175 | (_("%B: Unable to sort relocs - they are of an unknown size"), abfd); | |
8176 | bfd_set_error (bfd_error_invalid_operation); | |
8177 | return 0; | |
8178 | } | |
8179 | } | |
8180 | ||
8181 | if (! use_rela_initialised) | |
8182 | /* Make a guess. */ | |
8183 | use_rela = TRUE; | |
c152c796 | 8184 | } |
fc66a176 L |
8185 | else if (rela_dyn != NULL && rela_dyn->size > 0) |
8186 | use_rela = TRUE; | |
8187 | else if (rel_dyn != NULL && rel_dyn->size > 0) | |
3410fea8 | 8188 | use_rela = FALSE; |
c152c796 | 8189 | else |
fc66a176 | 8190 | return 0; |
3410fea8 NC |
8191 | |
8192 | if (use_rela) | |
c152c796 | 8193 | { |
3410fea8 | 8194 | dynamic_relocs = rela_dyn; |
c152c796 AM |
8195 | ext_size = bed->s->sizeof_rela; |
8196 | swap_in = bed->s->swap_reloca_in; | |
8197 | swap_out = bed->s->swap_reloca_out; | |
8198 | } | |
3410fea8 NC |
8199 | else |
8200 | { | |
8201 | dynamic_relocs = rel_dyn; | |
8202 | ext_size = bed->s->sizeof_rel; | |
8203 | swap_in = bed->s->swap_reloc_in; | |
8204 | swap_out = bed->s->swap_reloc_out; | |
8205 | } | |
c152c796 AM |
8206 | |
8207 | size = 0; | |
3410fea8 | 8208 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 | 8209 | if (lo->type == bfd_indirect_link_order) |
3410fea8 | 8210 | size += lo->u.indirect.section->size; |
c152c796 | 8211 | |
3410fea8 | 8212 | if (size != dynamic_relocs->size) |
c152c796 AM |
8213 | return 0; |
8214 | ||
8215 | sort_elt = (sizeof (struct elf_link_sort_rela) | |
8216 | + (i2e - 1) * sizeof (Elf_Internal_Rela)); | |
3410fea8 NC |
8217 | |
8218 | count = dynamic_relocs->size / ext_size; | |
5e486aa1 NC |
8219 | if (count == 0) |
8220 | return 0; | |
a50b1753 | 8221 | sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); |
3410fea8 | 8222 | |
c152c796 AM |
8223 | if (sort == NULL) |
8224 | { | |
8225 | (*info->callbacks->warning) | |
8226 | (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0); | |
8227 | return 0; | |
8228 | } | |
8229 | ||
8230 | if (bed->s->arch_size == 32) | |
8231 | r_sym_mask = ~(bfd_vma) 0xff; | |
8232 | else | |
8233 | r_sym_mask = ~(bfd_vma) 0xffffffff; | |
8234 | ||
3410fea8 | 8235 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 AM |
8236 | if (lo->type == bfd_indirect_link_order) |
8237 | { | |
8238 | bfd_byte *erel, *erelend; | |
8239 | asection *o = lo->u.indirect.section; | |
8240 | ||
1da212d6 AM |
8241 | if (o->contents == NULL && o->size != 0) |
8242 | { | |
8243 | /* This is a reloc section that is being handled as a normal | |
8244 | section. See bfd_section_from_shdr. We can't combine | |
8245 | relocs in this case. */ | |
8246 | free (sort); | |
8247 | return 0; | |
8248 | } | |
c152c796 | 8249 | erel = o->contents; |
eea6121a | 8250 | erelend = o->contents + o->size; |
5dabe785 | 8251 | /* FIXME: octets_per_byte. */ |
c152c796 | 8252 | p = sort + o->output_offset / ext_size * sort_elt; |
3410fea8 | 8253 | |
c152c796 AM |
8254 | while (erel < erelend) |
8255 | { | |
8256 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
3410fea8 | 8257 | |
c152c796 AM |
8258 | (*swap_in) (abfd, erel, s->rela); |
8259 | s->type = (*bed->elf_backend_reloc_type_class) (s->rela); | |
8260 | s->u.sym_mask = r_sym_mask; | |
8261 | p += sort_elt; | |
8262 | erel += ext_size; | |
8263 | } | |
8264 | } | |
8265 | ||
8266 | qsort (sort, count, sort_elt, elf_link_sort_cmp1); | |
8267 | ||
8268 | for (i = 0, p = sort; i < count; i++, p += sort_elt) | |
8269 | { | |
8270 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
8271 | if (s->type != reloc_class_relative) | |
8272 | break; | |
8273 | } | |
8274 | ret = i; | |
8275 | s_non_relative = p; | |
8276 | ||
8277 | sq = (struct elf_link_sort_rela *) s_non_relative; | |
8278 | for (; i < count; i++, p += sort_elt) | |
8279 | { | |
8280 | struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; | |
8281 | if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) | |
8282 | sq = sp; | |
8283 | sp->u.offset = sq->rela->r_offset; | |
8284 | } | |
8285 | ||
8286 | qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); | |
8287 | ||
3410fea8 | 8288 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 AM |
8289 | if (lo->type == bfd_indirect_link_order) |
8290 | { | |
8291 | bfd_byte *erel, *erelend; | |
8292 | asection *o = lo->u.indirect.section; | |
8293 | ||
8294 | erel = o->contents; | |
eea6121a | 8295 | erelend = o->contents + o->size; |
5dabe785 | 8296 | /* FIXME: octets_per_byte. */ |
c152c796 AM |
8297 | p = sort + o->output_offset / ext_size * sort_elt; |
8298 | while (erel < erelend) | |
8299 | { | |
8300 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
8301 | (*swap_out) (abfd, s->rela, erel); | |
8302 | p += sort_elt; | |
8303 | erel += ext_size; | |
8304 | } | |
8305 | } | |
8306 | ||
8307 | free (sort); | |
3410fea8 | 8308 | *psec = dynamic_relocs; |
c152c796 AM |
8309 | return ret; |
8310 | } | |
8311 | ||
8312 | /* Flush the output symbols to the file. */ | |
8313 | ||
8314 | static bfd_boolean | |
8315 | elf_link_flush_output_syms (struct elf_final_link_info *finfo, | |
8316 | const struct elf_backend_data *bed) | |
8317 | { | |
8318 | if (finfo->symbuf_count > 0) | |
8319 | { | |
8320 | Elf_Internal_Shdr *hdr; | |
8321 | file_ptr pos; | |
8322 | bfd_size_type amt; | |
8323 | ||
8324 | hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
8325 | pos = hdr->sh_offset + hdr->sh_size; | |
8326 | amt = finfo->symbuf_count * bed->s->sizeof_sym; | |
8327 | if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0 | |
8328 | || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt) | |
8329 | return FALSE; | |
8330 | ||
8331 | hdr->sh_size += amt; | |
8332 | finfo->symbuf_count = 0; | |
8333 | } | |
8334 | ||
8335 | return TRUE; | |
8336 | } | |
8337 | ||
8338 | /* Add a symbol to the output symbol table. */ | |
8339 | ||
6e0b88f1 | 8340 | static int |
c152c796 AM |
8341 | elf_link_output_sym (struct elf_final_link_info *finfo, |
8342 | const char *name, | |
8343 | Elf_Internal_Sym *elfsym, | |
8344 | asection *input_sec, | |
8345 | struct elf_link_hash_entry *h) | |
8346 | { | |
8347 | bfd_byte *dest; | |
8348 | Elf_External_Sym_Shndx *destshndx; | |
6e0b88f1 | 8349 | int (*output_symbol_hook) |
c152c796 AM |
8350 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, |
8351 | struct elf_link_hash_entry *); | |
8352 | const struct elf_backend_data *bed; | |
8353 | ||
8354 | bed = get_elf_backend_data (finfo->output_bfd); | |
8355 | output_symbol_hook = bed->elf_backend_link_output_symbol_hook; | |
8356 | if (output_symbol_hook != NULL) | |
8357 | { | |
6e0b88f1 AM |
8358 | int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h); |
8359 | if (ret != 1) | |
8360 | return ret; | |
c152c796 AM |
8361 | } |
8362 | ||
8363 | if (name == NULL || *name == '\0') | |
8364 | elfsym->st_name = 0; | |
8365 | else if (input_sec->flags & SEC_EXCLUDE) | |
8366 | elfsym->st_name = 0; | |
8367 | else | |
8368 | { | |
8369 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
8370 | name, TRUE, FALSE); | |
8371 | if (elfsym->st_name == (unsigned long) -1) | |
6e0b88f1 | 8372 | return 0; |
c152c796 AM |
8373 | } |
8374 | ||
8375 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
8376 | { | |
8377 | if (! elf_link_flush_output_syms (finfo, bed)) | |
6e0b88f1 | 8378 | return 0; |
c152c796 AM |
8379 | } |
8380 | ||
8381 | dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym; | |
8382 | destshndx = finfo->symshndxbuf; | |
8383 | if (destshndx != NULL) | |
8384 | { | |
8385 | if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size) | |
8386 | { | |
8387 | bfd_size_type amt; | |
8388 | ||
8389 | amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx); | |
a50b1753 NC |
8390 | destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx, |
8391 | amt * 2); | |
c152c796 | 8392 | if (destshndx == NULL) |
6e0b88f1 | 8393 | return 0; |
515ef31d | 8394 | finfo->symshndxbuf = destshndx; |
c152c796 AM |
8395 | memset ((char *) destshndx + amt, 0, amt); |
8396 | finfo->shndxbuf_size *= 2; | |
8397 | } | |
8398 | destshndx += bfd_get_symcount (finfo->output_bfd); | |
8399 | } | |
8400 | ||
8401 | bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx); | |
8402 | finfo->symbuf_count += 1; | |
8403 | bfd_get_symcount (finfo->output_bfd) += 1; | |
8404 | ||
6e0b88f1 | 8405 | return 1; |
c152c796 AM |
8406 | } |
8407 | ||
c0d5a53d L |
8408 | /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ |
8409 | ||
8410 | static bfd_boolean | |
8411 | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) | |
8412 | { | |
4fbb74a6 AM |
8413 | if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) |
8414 | && sym->st_shndx < SHN_LORESERVE) | |
c0d5a53d L |
8415 | { |
8416 | /* The gABI doesn't support dynamic symbols in output sections | |
a0c8462f | 8417 | beyond 64k. */ |
c0d5a53d L |
8418 | (*_bfd_error_handler) |
8419 | (_("%B: Too many sections: %d (>= %d)"), | |
4fbb74a6 | 8420 | abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); |
c0d5a53d L |
8421 | bfd_set_error (bfd_error_nonrepresentable_section); |
8422 | return FALSE; | |
8423 | } | |
8424 | return TRUE; | |
8425 | } | |
8426 | ||
c152c796 AM |
8427 | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in |
8428 | allowing an unsatisfied unversioned symbol in the DSO to match a | |
8429 | versioned symbol that would normally require an explicit version. | |
8430 | We also handle the case that a DSO references a hidden symbol | |
8431 | which may be satisfied by a versioned symbol in another DSO. */ | |
8432 | ||
8433 | static bfd_boolean | |
8434 | elf_link_check_versioned_symbol (struct bfd_link_info *info, | |
8435 | const struct elf_backend_data *bed, | |
8436 | struct elf_link_hash_entry *h) | |
8437 | { | |
8438 | bfd *abfd; | |
8439 | struct elf_link_loaded_list *loaded; | |
8440 | ||
8441 | if (!is_elf_hash_table (info->hash)) | |
8442 | return FALSE; | |
8443 | ||
8444 | switch (h->root.type) | |
8445 | { | |
8446 | default: | |
8447 | abfd = NULL; | |
8448 | break; | |
8449 | ||
8450 | case bfd_link_hash_undefined: | |
8451 | case bfd_link_hash_undefweak: | |
8452 | abfd = h->root.u.undef.abfd; | |
8453 | if ((abfd->flags & DYNAMIC) == 0 | |
e56f61be | 8454 | || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) |
c152c796 AM |
8455 | return FALSE; |
8456 | break; | |
8457 | ||
8458 | case bfd_link_hash_defined: | |
8459 | case bfd_link_hash_defweak: | |
8460 | abfd = h->root.u.def.section->owner; | |
8461 | break; | |
8462 | ||
8463 | case bfd_link_hash_common: | |
8464 | abfd = h->root.u.c.p->section->owner; | |
8465 | break; | |
8466 | } | |
8467 | BFD_ASSERT (abfd != NULL); | |
8468 | ||
8469 | for (loaded = elf_hash_table (info)->loaded; | |
8470 | loaded != NULL; | |
8471 | loaded = loaded->next) | |
8472 | { | |
8473 | bfd *input; | |
8474 | Elf_Internal_Shdr *hdr; | |
8475 | bfd_size_type symcount; | |
8476 | bfd_size_type extsymcount; | |
8477 | bfd_size_type extsymoff; | |
8478 | Elf_Internal_Shdr *versymhdr; | |
8479 | Elf_Internal_Sym *isym; | |
8480 | Elf_Internal_Sym *isymend; | |
8481 | Elf_Internal_Sym *isymbuf; | |
8482 | Elf_External_Versym *ever; | |
8483 | Elf_External_Versym *extversym; | |
8484 | ||
8485 | input = loaded->abfd; | |
8486 | ||
8487 | /* We check each DSO for a possible hidden versioned definition. */ | |
8488 | if (input == abfd | |
8489 | || (input->flags & DYNAMIC) == 0 | |
8490 | || elf_dynversym (input) == 0) | |
8491 | continue; | |
8492 | ||
8493 | hdr = &elf_tdata (input)->dynsymtab_hdr; | |
8494 | ||
8495 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
8496 | if (elf_bad_symtab (input)) | |
8497 | { | |
8498 | extsymcount = symcount; | |
8499 | extsymoff = 0; | |
8500 | } | |
8501 | else | |
8502 | { | |
8503 | extsymcount = symcount - hdr->sh_info; | |
8504 | extsymoff = hdr->sh_info; | |
8505 | } | |
8506 | ||
8507 | if (extsymcount == 0) | |
8508 | continue; | |
8509 | ||
8510 | isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, | |
8511 | NULL, NULL, NULL); | |
8512 | if (isymbuf == NULL) | |
8513 | return FALSE; | |
8514 | ||
8515 | /* Read in any version definitions. */ | |
8516 | versymhdr = &elf_tdata (input)->dynversym_hdr; | |
a50b1753 | 8517 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
c152c796 AM |
8518 | if (extversym == NULL) |
8519 | goto error_ret; | |
8520 | ||
8521 | if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 | |
8522 | || (bfd_bread (extversym, versymhdr->sh_size, input) | |
8523 | != versymhdr->sh_size)) | |
8524 | { | |
8525 | free (extversym); | |
8526 | error_ret: | |
8527 | free (isymbuf); | |
8528 | return FALSE; | |
8529 | } | |
8530 | ||
8531 | ever = extversym + extsymoff; | |
8532 | isymend = isymbuf + extsymcount; | |
8533 | for (isym = isymbuf; isym < isymend; isym++, ever++) | |
8534 | { | |
8535 | const char *name; | |
8536 | Elf_Internal_Versym iver; | |
8537 | unsigned short version_index; | |
8538 | ||
8539 | if (ELF_ST_BIND (isym->st_info) == STB_LOCAL | |
8540 | || isym->st_shndx == SHN_UNDEF) | |
8541 | continue; | |
8542 | ||
8543 | name = bfd_elf_string_from_elf_section (input, | |
8544 | hdr->sh_link, | |
8545 | isym->st_name); | |
8546 | if (strcmp (name, h->root.root.string) != 0) | |
8547 | continue; | |
8548 | ||
8549 | _bfd_elf_swap_versym_in (input, ever, &iver); | |
8550 | ||
d023c380 L |
8551 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
8552 | && !(h->def_regular | |
8553 | && h->forced_local)) | |
c152c796 AM |
8554 | { |
8555 | /* If we have a non-hidden versioned sym, then it should | |
d023c380 L |
8556 | have provided a definition for the undefined sym unless |
8557 | it is defined in a non-shared object and forced local. | |
8558 | */ | |
c152c796 AM |
8559 | abort (); |
8560 | } | |
8561 | ||
8562 | version_index = iver.vs_vers & VERSYM_VERSION; | |
8563 | if (version_index == 1 || version_index == 2) | |
8564 | { | |
8565 | /* This is the base or first version. We can use it. */ | |
8566 | free (extversym); | |
8567 | free (isymbuf); | |
8568 | return TRUE; | |
8569 | } | |
8570 | } | |
8571 | ||
8572 | free (extversym); | |
8573 | free (isymbuf); | |
8574 | } | |
8575 | ||
8576 | return FALSE; | |
8577 | } | |
8578 | ||
8579 | /* Add an external symbol to the symbol table. This is called from | |
8580 | the hash table traversal routine. When generating a shared object, | |
8581 | we go through the symbol table twice. The first time we output | |
8582 | anything that might have been forced to local scope in a version | |
8583 | script. The second time we output the symbols that are still | |
8584 | global symbols. */ | |
8585 | ||
8586 | static bfd_boolean | |
8587 | elf_link_output_extsym (struct elf_link_hash_entry *h, void *data) | |
8588 | { | |
a50b1753 | 8589 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; |
c152c796 AM |
8590 | struct elf_final_link_info *finfo = eoinfo->finfo; |
8591 | bfd_boolean strip; | |
8592 | Elf_Internal_Sym sym; | |
8593 | asection *input_sec; | |
8594 | const struct elf_backend_data *bed; | |
6e0b88f1 AM |
8595 | long indx; |
8596 | int ret; | |
c152c796 AM |
8597 | |
8598 | if (h->root.type == bfd_link_hash_warning) | |
8599 | { | |
8600 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8601 | if (h->root.type == bfd_link_hash_new) | |
8602 | return TRUE; | |
8603 | } | |
8604 | ||
8605 | /* Decide whether to output this symbol in this pass. */ | |
8606 | if (eoinfo->localsyms) | |
8607 | { | |
f5385ebf | 8608 | if (!h->forced_local) |
c152c796 AM |
8609 | return TRUE; |
8610 | } | |
8611 | else | |
8612 | { | |
f5385ebf | 8613 | if (h->forced_local) |
c152c796 AM |
8614 | return TRUE; |
8615 | } | |
8616 | ||
8617 | bed = get_elf_backend_data (finfo->output_bfd); | |
8618 | ||
12ac1cf5 | 8619 | if (h->root.type == bfd_link_hash_undefined) |
c152c796 | 8620 | { |
12ac1cf5 NC |
8621 | /* If we have an undefined symbol reference here then it must have |
8622 | come from a shared library that is being linked in. (Undefined | |
98da7939 L |
8623 | references in regular files have already been handled unless |
8624 | they are in unreferenced sections which are removed by garbage | |
8625 | collection). */ | |
12ac1cf5 NC |
8626 | bfd_boolean ignore_undef = FALSE; |
8627 | ||
8628 | /* Some symbols may be special in that the fact that they're | |
8629 | undefined can be safely ignored - let backend determine that. */ | |
8630 | if (bed->elf_backend_ignore_undef_symbol) | |
8631 | ignore_undef = bed->elf_backend_ignore_undef_symbol (h); | |
8632 | ||
8633 | /* If we are reporting errors for this situation then do so now. */ | |
89a2ee5a | 8634 | if (!ignore_undef |
12ac1cf5 | 8635 | && h->ref_dynamic |
98da7939 | 8636 | && (!h->ref_regular || finfo->info->gc_sections) |
12ac1cf5 NC |
8637 | && ! elf_link_check_versioned_symbol (finfo->info, bed, h) |
8638 | && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) | |
c152c796 | 8639 | { |
12ac1cf5 | 8640 | if (! (finfo->info->callbacks->undefined_symbol |
98da7939 L |
8641 | (finfo->info, h->root.root.string, |
8642 | h->ref_regular ? NULL : h->root.u.undef.abfd, | |
12ac1cf5 NC |
8643 | NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR))) |
8644 | { | |
17d078c5 | 8645 | bfd_set_error (bfd_error_bad_value); |
12ac1cf5 NC |
8646 | eoinfo->failed = TRUE; |
8647 | return FALSE; | |
8648 | } | |
c152c796 AM |
8649 | } |
8650 | } | |
8651 | ||
8652 | /* We should also warn if a forced local symbol is referenced from | |
8653 | shared libraries. */ | |
8654 | if (! finfo->info->relocatable | |
8655 | && (! finfo->info->shared) | |
f5385ebf AM |
8656 | && h->forced_local |
8657 | && h->ref_dynamic | |
8658 | && !h->dynamic_def | |
8659 | && !h->dynamic_weak | |
c152c796 AM |
8660 | && ! elf_link_check_versioned_symbol (finfo->info, bed, h)) |
8661 | { | |
17d078c5 AM |
8662 | bfd *def_bfd; |
8663 | const char *msg; | |
8664 | ||
8665 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
8666 | msg = _("%B: internal symbol `%s' in %B is referenced by DSO"); | |
8667 | else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | |
8668 | msg = _("%B: hidden symbol `%s' in %B is referenced by DSO"); | |
8669 | else | |
8670 | msg = _("%B: local symbol `%s' in %B is referenced by DSO"); | |
8671 | def_bfd = finfo->output_bfd; | |
8672 | if (h->root.u.def.section != bfd_abs_section_ptr) | |
8673 | def_bfd = h->root.u.def.section->owner; | |
8674 | (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd, | |
8675 | h->root.root.string); | |
8676 | bfd_set_error (bfd_error_bad_value); | |
c152c796 AM |
8677 | eoinfo->failed = TRUE; |
8678 | return FALSE; | |
8679 | } | |
8680 | ||
8681 | /* We don't want to output symbols that have never been mentioned by | |
8682 | a regular file, or that we have been told to strip. However, if | |
8683 | h->indx is set to -2, the symbol is used by a reloc and we must | |
8684 | output it. */ | |
8685 | if (h->indx == -2) | |
8686 | strip = FALSE; | |
f5385ebf | 8687 | else if ((h->def_dynamic |
77cfaee6 AM |
8688 | || h->ref_dynamic |
8689 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
8690 | && !h->def_regular |
8691 | && !h->ref_regular) | |
c152c796 AM |
8692 | strip = TRUE; |
8693 | else if (finfo->info->strip == strip_all) | |
8694 | strip = TRUE; | |
8695 | else if (finfo->info->strip == strip_some | |
8696 | && bfd_hash_lookup (finfo->info->keep_hash, | |
8697 | h->root.root.string, FALSE, FALSE) == NULL) | |
8698 | strip = TRUE; | |
8699 | else if (finfo->info->strip_discarded | |
8700 | && (h->root.type == bfd_link_hash_defined | |
8701 | || h->root.type == bfd_link_hash_defweak) | |
8702 | && elf_discarded_section (h->root.u.def.section)) | |
8703 | strip = TRUE; | |
8704 | else | |
8705 | strip = FALSE; | |
8706 | ||
8707 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
57ca8ac7 L |
8708 | nothing else to do unless it is a forced local symbol or a |
8709 | STT_GNU_IFUNC symbol. */ | |
c152c796 AM |
8710 | if (strip |
8711 | && h->dynindx == -1 | |
57ca8ac7 | 8712 | && h->type != STT_GNU_IFUNC |
f5385ebf | 8713 | && !h->forced_local) |
c152c796 AM |
8714 | return TRUE; |
8715 | ||
8716 | sym.st_value = 0; | |
8717 | sym.st_size = h->size; | |
8718 | sym.st_other = h->other; | |
f5385ebf | 8719 | if (h->forced_local) |
935bd1e0 L |
8720 | { |
8721 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
8722 | /* Turn off visibility on local symbol. */ | |
8723 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); | |
8724 | } | |
3e7a7d11 NC |
8725 | else if (h->unique_global) |
8726 | sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type); | |
c152c796 AM |
8727 | else if (h->root.type == bfd_link_hash_undefweak |
8728 | || h->root.type == bfd_link_hash_defweak) | |
8729 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
8730 | else | |
8731 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
8732 | ||
8733 | switch (h->root.type) | |
8734 | { | |
8735 | default: | |
8736 | case bfd_link_hash_new: | |
8737 | case bfd_link_hash_warning: | |
8738 | abort (); | |
8739 | return FALSE; | |
8740 | ||
8741 | case bfd_link_hash_undefined: | |
8742 | case bfd_link_hash_undefweak: | |
8743 | input_sec = bfd_und_section_ptr; | |
8744 | sym.st_shndx = SHN_UNDEF; | |
8745 | break; | |
8746 | ||
8747 | case bfd_link_hash_defined: | |
8748 | case bfd_link_hash_defweak: | |
8749 | { | |
8750 | input_sec = h->root.u.def.section; | |
8751 | if (input_sec->output_section != NULL) | |
8752 | { | |
8753 | sym.st_shndx = | |
8754 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
8755 | input_sec->output_section); | |
8756 | if (sym.st_shndx == SHN_BAD) | |
8757 | { | |
8758 | (*_bfd_error_handler) | |
d003868e AM |
8759 | (_("%B: could not find output section %A for input section %A"), |
8760 | finfo->output_bfd, input_sec->output_section, input_sec); | |
17d078c5 | 8761 | bfd_set_error (bfd_error_nonrepresentable_section); |
c152c796 AM |
8762 | eoinfo->failed = TRUE; |
8763 | return FALSE; | |
8764 | } | |
8765 | ||
8766 | /* ELF symbols in relocatable files are section relative, | |
8767 | but in nonrelocatable files they are virtual | |
8768 | addresses. */ | |
8769 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
8770 | if (! finfo->info->relocatable) | |
8771 | { | |
8772 | sym.st_value += input_sec->output_section->vma; | |
8773 | if (h->type == STT_TLS) | |
8774 | { | |
430a16a5 NC |
8775 | asection *tls_sec = elf_hash_table (finfo->info)->tls_sec; |
8776 | if (tls_sec != NULL) | |
8777 | sym.st_value -= tls_sec->vma; | |
8778 | else | |
8779 | { | |
8780 | /* The TLS section may have been garbage collected. */ | |
8781 | BFD_ASSERT (finfo->info->gc_sections | |
8782 | && !input_sec->gc_mark); | |
8783 | } | |
c152c796 AM |
8784 | } |
8785 | } | |
8786 | } | |
8787 | else | |
8788 | { | |
8789 | BFD_ASSERT (input_sec->owner == NULL | |
8790 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
8791 | sym.st_shndx = SHN_UNDEF; | |
8792 | input_sec = bfd_und_section_ptr; | |
8793 | } | |
8794 | } | |
8795 | break; | |
8796 | ||
8797 | case bfd_link_hash_common: | |
8798 | input_sec = h->root.u.c.p->section; | |
a4d8e49b | 8799 | sym.st_shndx = bed->common_section_index (input_sec); |
c152c796 AM |
8800 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
8801 | break; | |
8802 | ||
8803 | case bfd_link_hash_indirect: | |
8804 | /* These symbols are created by symbol versioning. They point | |
8805 | to the decorated version of the name. For example, if the | |
8806 | symbol foo@@GNU_1.2 is the default, which should be used when | |
8807 | foo is used with no version, then we add an indirect symbol | |
8808 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
8809 | since the indirected symbol is already in the hash table. */ | |
8810 | return TRUE; | |
8811 | } | |
8812 | ||
8813 | /* Give the processor backend a chance to tweak the symbol value, | |
8814 | and also to finish up anything that needs to be done for this | |
8815 | symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for | |
3aa14d16 | 8816 | forced local syms when non-shared is due to a historical quirk. |
5f35ea9c | 8817 | STT_GNU_IFUNC symbol must go through PLT. */ |
3aa14d16 | 8818 | if ((h->type == STT_GNU_IFUNC |
5f35ea9c | 8819 | && h->def_regular |
3aa14d16 L |
8820 | && !finfo->info->relocatable) |
8821 | || ((h->dynindx != -1 | |
8822 | || h->forced_local) | |
8823 | && ((finfo->info->shared | |
8824 | && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
8825 | || h->root.type != bfd_link_hash_undefweak)) | |
8826 | || !h->forced_local) | |
8827 | && elf_hash_table (finfo->info)->dynamic_sections_created)) | |
c152c796 AM |
8828 | { |
8829 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
8830 | (finfo->output_bfd, finfo->info, h, &sym))) | |
8831 | { | |
8832 | eoinfo->failed = TRUE; | |
8833 | return FALSE; | |
8834 | } | |
8835 | } | |
8836 | ||
8837 | /* If we are marking the symbol as undefined, and there are no | |
8838 | non-weak references to this symbol from a regular object, then | |
8839 | mark the symbol as weak undefined; if there are non-weak | |
8840 | references, mark the symbol as strong. We can't do this earlier, | |
8841 | because it might not be marked as undefined until the | |
8842 | finish_dynamic_symbol routine gets through with it. */ | |
8843 | if (sym.st_shndx == SHN_UNDEF | |
f5385ebf | 8844 | && h->ref_regular |
c152c796 AM |
8845 | && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL |
8846 | || ELF_ST_BIND (sym.st_info) == STB_WEAK)) | |
8847 | { | |
8848 | int bindtype; | |
2955ec4c L |
8849 | unsigned int type = ELF_ST_TYPE (sym.st_info); |
8850 | ||
8851 | /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ | |
8852 | if (type == STT_GNU_IFUNC) | |
8853 | type = STT_FUNC; | |
c152c796 | 8854 | |
f5385ebf | 8855 | if (h->ref_regular_nonweak) |
c152c796 AM |
8856 | bindtype = STB_GLOBAL; |
8857 | else | |
8858 | bindtype = STB_WEAK; | |
2955ec4c | 8859 | sym.st_info = ELF_ST_INFO (bindtype, type); |
c152c796 AM |
8860 | } |
8861 | ||
bda987c2 CD |
8862 | /* If this is a symbol defined in a dynamic library, don't use the |
8863 | symbol size from the dynamic library. Relinking an executable | |
8864 | against a new library may introduce gratuitous changes in the | |
8865 | executable's symbols if we keep the size. */ | |
8866 | if (sym.st_shndx == SHN_UNDEF | |
8867 | && !h->def_regular | |
8868 | && h->def_dynamic) | |
8869 | sym.st_size = 0; | |
8870 | ||
c152c796 AM |
8871 | /* If a non-weak symbol with non-default visibility is not defined |
8872 | locally, it is a fatal error. */ | |
8873 | if (! finfo->info->relocatable | |
8874 | && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT | |
8875 | && ELF_ST_BIND (sym.st_info) != STB_WEAK | |
8876 | && h->root.type == bfd_link_hash_undefined | |
f5385ebf | 8877 | && !h->def_regular) |
c152c796 | 8878 | { |
17d078c5 AM |
8879 | const char *msg; |
8880 | ||
8881 | if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) | |
8882 | msg = _("%B: protected symbol `%s' isn't defined"); | |
8883 | else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) | |
8884 | msg = _("%B: internal symbol `%s' isn't defined"); | |
8885 | else | |
8886 | msg = _("%B: hidden symbol `%s' isn't defined"); | |
8887 | (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string); | |
8888 | bfd_set_error (bfd_error_bad_value); | |
c152c796 AM |
8889 | eoinfo->failed = TRUE; |
8890 | return FALSE; | |
8891 | } | |
8892 | ||
8893 | /* If this symbol should be put in the .dynsym section, then put it | |
8894 | there now. We already know the symbol index. We also fill in | |
8895 | the entry in the .hash section. */ | |
8896 | if (h->dynindx != -1 | |
8897 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
8898 | { | |
c152c796 AM |
8899 | bfd_byte *esym; |
8900 | ||
8901 | sym.st_name = h->dynstr_index; | |
8902 | esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym; | |
c0d5a53d L |
8903 | if (! check_dynsym (finfo->output_bfd, &sym)) |
8904 | { | |
8905 | eoinfo->failed = TRUE; | |
8906 | return FALSE; | |
8907 | } | |
c152c796 AM |
8908 | bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0); |
8909 | ||
fdc90cb4 JJ |
8910 | if (finfo->hash_sec != NULL) |
8911 | { | |
8912 | size_t hash_entry_size; | |
8913 | bfd_byte *bucketpos; | |
8914 | bfd_vma chain; | |
41198d0c L |
8915 | size_t bucketcount; |
8916 | size_t bucket; | |
8917 | ||
8918 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
8919 | bucket = h->u.elf_hash_value % bucketcount; | |
fdc90cb4 JJ |
8920 | |
8921 | hash_entry_size | |
8922 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; | |
8923 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
8924 | + (bucket + 2) * hash_entry_size); | |
8925 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); | |
8926 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); | |
8927 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, | |
8928 | ((bfd_byte *) finfo->hash_sec->contents | |
8929 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
8930 | } | |
c152c796 AM |
8931 | |
8932 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) | |
8933 | { | |
8934 | Elf_Internal_Versym iversym; | |
8935 | Elf_External_Versym *eversym; | |
8936 | ||
f5385ebf | 8937 | if (!h->def_regular) |
c152c796 AM |
8938 | { |
8939 | if (h->verinfo.verdef == NULL) | |
8940 | iversym.vs_vers = 0; | |
8941 | else | |
8942 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
8943 | } | |
8944 | else | |
8945 | { | |
8946 | if (h->verinfo.vertree == NULL) | |
8947 | iversym.vs_vers = 1; | |
8948 | else | |
8949 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
3e3b46e5 PB |
8950 | if (finfo->info->create_default_symver) |
8951 | iversym.vs_vers++; | |
c152c796 AM |
8952 | } |
8953 | ||
f5385ebf | 8954 | if (h->hidden) |
c152c796 AM |
8955 | iversym.vs_vers |= VERSYM_HIDDEN; |
8956 | ||
8957 | eversym = (Elf_External_Versym *) finfo->symver_sec->contents; | |
8958 | eversym += h->dynindx; | |
8959 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym); | |
8960 | } | |
8961 | } | |
8962 | ||
8963 | /* If we're stripping it, then it was just a dynamic symbol, and | |
8964 | there's nothing else to do. */ | |
8965 | if (strip || (input_sec->flags & SEC_EXCLUDE) != 0) | |
8966 | return TRUE; | |
8967 | ||
6e0b88f1 AM |
8968 | indx = bfd_get_symcount (finfo->output_bfd); |
8969 | ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h); | |
8970 | if (ret == 0) | |
c152c796 AM |
8971 | { |
8972 | eoinfo->failed = TRUE; | |
8973 | return FALSE; | |
8974 | } | |
6e0b88f1 AM |
8975 | else if (ret == 1) |
8976 | h->indx = indx; | |
8977 | else if (h->indx == -2) | |
8978 | abort(); | |
c152c796 AM |
8979 | |
8980 | return TRUE; | |
8981 | } | |
8982 | ||
cdd3575c AM |
8983 | /* Return TRUE if special handling is done for relocs in SEC against |
8984 | symbols defined in discarded sections. */ | |
8985 | ||
c152c796 AM |
8986 | static bfd_boolean |
8987 | elf_section_ignore_discarded_relocs (asection *sec) | |
8988 | { | |
8989 | const struct elf_backend_data *bed; | |
8990 | ||
cdd3575c AM |
8991 | switch (sec->sec_info_type) |
8992 | { | |
8993 | case ELF_INFO_TYPE_STABS: | |
8994 | case ELF_INFO_TYPE_EH_FRAME: | |
8995 | return TRUE; | |
8996 | default: | |
8997 | break; | |
8998 | } | |
c152c796 AM |
8999 | |
9000 | bed = get_elf_backend_data (sec->owner); | |
9001 | if (bed->elf_backend_ignore_discarded_relocs != NULL | |
9002 | && (*bed->elf_backend_ignore_discarded_relocs) (sec)) | |
9003 | return TRUE; | |
9004 | ||
9005 | return FALSE; | |
9006 | } | |
9007 | ||
9e66c942 AM |
9008 | /* Return a mask saying how ld should treat relocations in SEC against |
9009 | symbols defined in discarded sections. If this function returns | |
9010 | COMPLAIN set, ld will issue a warning message. If this function | |
9011 | returns PRETEND set, and the discarded section was link-once and the | |
9012 | same size as the kept link-once section, ld will pretend that the | |
9013 | symbol was actually defined in the kept section. Otherwise ld will | |
9014 | zero the reloc (at least that is the intent, but some cooperation by | |
9015 | the target dependent code is needed, particularly for REL targets). */ | |
9016 | ||
8a696751 AM |
9017 | unsigned int |
9018 | _bfd_elf_default_action_discarded (asection *sec) | |
cdd3575c | 9019 | { |
9e66c942 | 9020 | if (sec->flags & SEC_DEBUGGING) |
69d54b1b | 9021 | return PRETEND; |
cdd3575c AM |
9022 | |
9023 | if (strcmp (".eh_frame", sec->name) == 0) | |
9e66c942 | 9024 | return 0; |
cdd3575c AM |
9025 | |
9026 | if (strcmp (".gcc_except_table", sec->name) == 0) | |
9e66c942 | 9027 | return 0; |
cdd3575c | 9028 | |
9e66c942 | 9029 | return COMPLAIN | PRETEND; |
cdd3575c AM |
9030 | } |
9031 | ||
3d7f7666 L |
9032 | /* Find a match between a section and a member of a section group. */ |
9033 | ||
9034 | static asection * | |
c0f00686 L |
9035 | match_group_member (asection *sec, asection *group, |
9036 | struct bfd_link_info *info) | |
3d7f7666 L |
9037 | { |
9038 | asection *first = elf_next_in_group (group); | |
9039 | asection *s = first; | |
9040 | ||
9041 | while (s != NULL) | |
9042 | { | |
c0f00686 | 9043 | if (bfd_elf_match_symbols_in_sections (s, sec, info)) |
3d7f7666 L |
9044 | return s; |
9045 | ||
83180ade | 9046 | s = elf_next_in_group (s); |
3d7f7666 L |
9047 | if (s == first) |
9048 | break; | |
9049 | } | |
9050 | ||
9051 | return NULL; | |
9052 | } | |
9053 | ||
01b3c8ab | 9054 | /* Check if the kept section of a discarded section SEC can be used |
c2370991 AM |
9055 | to replace it. Return the replacement if it is OK. Otherwise return |
9056 | NULL. */ | |
01b3c8ab L |
9057 | |
9058 | asection * | |
c0f00686 | 9059 | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) |
01b3c8ab L |
9060 | { |
9061 | asection *kept; | |
9062 | ||
9063 | kept = sec->kept_section; | |
9064 | if (kept != NULL) | |
9065 | { | |
c2370991 | 9066 | if ((kept->flags & SEC_GROUP) != 0) |
c0f00686 | 9067 | kept = match_group_member (sec, kept, info); |
1dd2625f BW |
9068 | if (kept != NULL |
9069 | && ((sec->rawsize != 0 ? sec->rawsize : sec->size) | |
9070 | != (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
01b3c8ab | 9071 | kept = NULL; |
c2370991 | 9072 | sec->kept_section = kept; |
01b3c8ab L |
9073 | } |
9074 | return kept; | |
9075 | } | |
9076 | ||
c152c796 AM |
9077 | /* Link an input file into the linker output file. This function |
9078 | handles all the sections and relocations of the input file at once. | |
9079 | This is so that we only have to read the local symbols once, and | |
9080 | don't have to keep them in memory. */ | |
9081 | ||
9082 | static bfd_boolean | |
9083 | elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd) | |
9084 | { | |
ece5ef60 | 9085 | int (*relocate_section) |
c152c796 AM |
9086 | (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
9087 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); | |
9088 | bfd *output_bfd; | |
9089 | Elf_Internal_Shdr *symtab_hdr; | |
9090 | size_t locsymcount; | |
9091 | size_t extsymoff; | |
9092 | Elf_Internal_Sym *isymbuf; | |
9093 | Elf_Internal_Sym *isym; | |
9094 | Elf_Internal_Sym *isymend; | |
9095 | long *pindex; | |
9096 | asection **ppsection; | |
9097 | asection *o; | |
9098 | const struct elf_backend_data *bed; | |
c152c796 AM |
9099 | struct elf_link_hash_entry **sym_hashes; |
9100 | ||
9101 | output_bfd = finfo->output_bfd; | |
9102 | bed = get_elf_backend_data (output_bfd); | |
9103 | relocate_section = bed->elf_backend_relocate_section; | |
9104 | ||
9105 | /* If this is a dynamic object, we don't want to do anything here: | |
9106 | we don't want the local symbols, and we don't want the section | |
9107 | contents. */ | |
9108 | if ((input_bfd->flags & DYNAMIC) != 0) | |
9109 | return TRUE; | |
9110 | ||
c152c796 AM |
9111 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
9112 | if (elf_bad_symtab (input_bfd)) | |
9113 | { | |
9114 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
9115 | extsymoff = 0; | |
9116 | } | |
9117 | else | |
9118 | { | |
9119 | locsymcount = symtab_hdr->sh_info; | |
9120 | extsymoff = symtab_hdr->sh_info; | |
9121 | } | |
9122 | ||
9123 | /* Read the local symbols. */ | |
9124 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
9125 | if (isymbuf == NULL && locsymcount != 0) | |
9126 | { | |
9127 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
9128 | finfo->internal_syms, | |
9129 | finfo->external_syms, | |
9130 | finfo->locsym_shndx); | |
9131 | if (isymbuf == NULL) | |
9132 | return FALSE; | |
9133 | } | |
9134 | ||
9135 | /* Find local symbol sections and adjust values of symbols in | |
9136 | SEC_MERGE sections. Write out those local symbols we know are | |
9137 | going into the output file. */ | |
9138 | isymend = isymbuf + locsymcount; | |
9139 | for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections; | |
9140 | isym < isymend; | |
9141 | isym++, pindex++, ppsection++) | |
9142 | { | |
9143 | asection *isec; | |
9144 | const char *name; | |
9145 | Elf_Internal_Sym osym; | |
6e0b88f1 AM |
9146 | long indx; |
9147 | int ret; | |
c152c796 AM |
9148 | |
9149 | *pindex = -1; | |
9150 | ||
9151 | if (elf_bad_symtab (input_bfd)) | |
9152 | { | |
9153 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
9154 | { | |
9155 | *ppsection = NULL; | |
9156 | continue; | |
9157 | } | |
9158 | } | |
9159 | ||
9160 | if (isym->st_shndx == SHN_UNDEF) | |
9161 | isec = bfd_und_section_ptr; | |
c152c796 AM |
9162 | else if (isym->st_shndx == SHN_ABS) |
9163 | isec = bfd_abs_section_ptr; | |
9164 | else if (isym->st_shndx == SHN_COMMON) | |
9165 | isec = bfd_com_section_ptr; | |
9166 | else | |
9167 | { | |
cb33740c AM |
9168 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
9169 | if (isec == NULL) | |
9170 | { | |
9171 | /* Don't attempt to output symbols with st_shnx in the | |
9172 | reserved range other than SHN_ABS and SHN_COMMON. */ | |
9173 | *ppsection = NULL; | |
9174 | continue; | |
9175 | } | |
9176 | else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE | |
9177 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) | |
9178 | isym->st_value = | |
9179 | _bfd_merged_section_offset (output_bfd, &isec, | |
9180 | elf_section_data (isec)->sec_info, | |
9181 | isym->st_value); | |
c152c796 AM |
9182 | } |
9183 | ||
9184 | *ppsection = isec; | |
9185 | ||
9186 | /* Don't output the first, undefined, symbol. */ | |
9187 | if (ppsection == finfo->sections) | |
9188 | continue; | |
9189 | ||
9190 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
9191 | { | |
9192 | /* We never output section symbols. Instead, we use the | |
9193 | section symbol of the corresponding section in the output | |
9194 | file. */ | |
9195 | continue; | |
9196 | } | |
9197 | ||
9198 | /* If we are stripping all symbols, we don't want to output this | |
9199 | one. */ | |
9200 | if (finfo->info->strip == strip_all) | |
9201 | continue; | |
9202 | ||
9203 | /* If we are discarding all local symbols, we don't want to | |
9204 | output this one. If we are generating a relocatable output | |
9205 | file, then some of the local symbols may be required by | |
9206 | relocs; we output them below as we discover that they are | |
9207 | needed. */ | |
9208 | if (finfo->info->discard == discard_all) | |
9209 | continue; | |
9210 | ||
9211 | /* If this symbol is defined in a section which we are | |
f02571c5 AM |
9212 | discarding, we don't need to keep it. */ |
9213 | if (isym->st_shndx != SHN_UNDEF | |
4fbb74a6 AM |
9214 | && isym->st_shndx < SHN_LORESERVE |
9215 | && bfd_section_removed_from_list (output_bfd, | |
9216 | isec->output_section)) | |
e75a280b L |
9217 | continue; |
9218 | ||
c152c796 AM |
9219 | /* Get the name of the symbol. */ |
9220 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
9221 | isym->st_name); | |
9222 | if (name == NULL) | |
9223 | return FALSE; | |
9224 | ||
9225 | /* See if we are discarding symbols with this name. */ | |
9226 | if ((finfo->info->strip == strip_some | |
9227 | && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE) | |
9228 | == NULL)) | |
9229 | || (((finfo->info->discard == discard_sec_merge | |
9230 | && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable) | |
9231 | || finfo->info->discard == discard_l) | |
9232 | && bfd_is_local_label_name (input_bfd, name))) | |
9233 | continue; | |
9234 | ||
c152c796 AM |
9235 | osym = *isym; |
9236 | ||
9237 | /* Adjust the section index for the output file. */ | |
9238 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
9239 | isec->output_section); | |
9240 | if (osym.st_shndx == SHN_BAD) | |
9241 | return FALSE; | |
9242 | ||
c152c796 AM |
9243 | /* ELF symbols in relocatable files are section relative, but |
9244 | in executable files they are virtual addresses. Note that | |
9245 | this code assumes that all ELF sections have an associated | |
9246 | BFD section with a reasonable value for output_offset; below | |
9247 | we assume that they also have a reasonable value for | |
9248 | output_section. Any special sections must be set up to meet | |
9249 | these requirements. */ | |
9250 | osym.st_value += isec->output_offset; | |
9251 | if (! finfo->info->relocatable) | |
9252 | { | |
9253 | osym.st_value += isec->output_section->vma; | |
9254 | if (ELF_ST_TYPE (osym.st_info) == STT_TLS) | |
9255 | { | |
9256 | /* STT_TLS symbols are relative to PT_TLS segment base. */ | |
9257 | BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL); | |
9258 | osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma; | |
9259 | } | |
9260 | } | |
9261 | ||
6e0b88f1 AM |
9262 | indx = bfd_get_symcount (output_bfd); |
9263 | ret = elf_link_output_sym (finfo, name, &osym, isec, NULL); | |
9264 | if (ret == 0) | |
c152c796 | 9265 | return FALSE; |
6e0b88f1 AM |
9266 | else if (ret == 1) |
9267 | *pindex = indx; | |
c152c796 AM |
9268 | } |
9269 | ||
9270 | /* Relocate the contents of each section. */ | |
9271 | sym_hashes = elf_sym_hashes (input_bfd); | |
9272 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
9273 | { | |
9274 | bfd_byte *contents; | |
9275 | ||
9276 | if (! o->linker_mark) | |
9277 | { | |
9278 | /* This section was omitted from the link. */ | |
9279 | continue; | |
9280 | } | |
9281 | ||
bcacc0f5 AM |
9282 | if (finfo->info->relocatable |
9283 | && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) | |
9284 | { | |
9285 | /* Deal with the group signature symbol. */ | |
9286 | struct bfd_elf_section_data *sec_data = elf_section_data (o); | |
9287 | unsigned long symndx = sec_data->this_hdr.sh_info; | |
9288 | asection *osec = o->output_section; | |
9289 | ||
9290 | if (symndx >= locsymcount | |
9291 | || (elf_bad_symtab (input_bfd) | |
9292 | && finfo->sections[symndx] == NULL)) | |
9293 | { | |
9294 | struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; | |
9295 | while (h->root.type == bfd_link_hash_indirect | |
9296 | || h->root.type == bfd_link_hash_warning) | |
9297 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9298 | /* Arrange for symbol to be output. */ | |
9299 | h->indx = -2; | |
9300 | elf_section_data (osec)->this_hdr.sh_info = -2; | |
9301 | } | |
9302 | else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) | |
9303 | { | |
9304 | /* We'll use the output section target_index. */ | |
9305 | asection *sec = finfo->sections[symndx]->output_section; | |
9306 | elf_section_data (osec)->this_hdr.sh_info = sec->target_index; | |
9307 | } | |
9308 | else | |
9309 | { | |
9310 | if (finfo->indices[symndx] == -1) | |
9311 | { | |
9312 | /* Otherwise output the local symbol now. */ | |
9313 | Elf_Internal_Sym sym = isymbuf[symndx]; | |
9314 | asection *sec = finfo->sections[symndx]->output_section; | |
9315 | const char *name; | |
6e0b88f1 AM |
9316 | long indx; |
9317 | int ret; | |
bcacc0f5 AM |
9318 | |
9319 | name = bfd_elf_string_from_elf_section (input_bfd, | |
9320 | symtab_hdr->sh_link, | |
9321 | sym.st_name); | |
9322 | if (name == NULL) | |
9323 | return FALSE; | |
9324 | ||
9325 | sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
9326 | sec); | |
9327 | if (sym.st_shndx == SHN_BAD) | |
9328 | return FALSE; | |
9329 | ||
9330 | sym.st_value += o->output_offset; | |
9331 | ||
6e0b88f1 AM |
9332 | indx = bfd_get_symcount (output_bfd); |
9333 | ret = elf_link_output_sym (finfo, name, &sym, o, NULL); | |
9334 | if (ret == 0) | |
bcacc0f5 | 9335 | return FALSE; |
6e0b88f1 AM |
9336 | else if (ret == 1) |
9337 | finfo->indices[symndx] = indx; | |
9338 | else | |
9339 | abort (); | |
bcacc0f5 AM |
9340 | } |
9341 | elf_section_data (osec)->this_hdr.sh_info | |
9342 | = finfo->indices[symndx]; | |
9343 | } | |
9344 | } | |
9345 | ||
c152c796 | 9346 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
eea6121a | 9347 | || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) |
c152c796 AM |
9348 | continue; |
9349 | ||
9350 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
9351 | { | |
9352 | /* Section was created by _bfd_elf_link_create_dynamic_sections | |
9353 | or somesuch. */ | |
9354 | continue; | |
9355 | } | |
9356 | ||
9357 | /* Get the contents of the section. They have been cached by a | |
9358 | relaxation routine. Note that o is a section in an input | |
9359 | file, so the contents field will not have been set by any of | |
9360 | the routines which work on output files. */ | |
9361 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
9362 | contents = elf_section_data (o)->this_hdr.contents; | |
9363 | else | |
9364 | { | |
9365 | contents = finfo->contents; | |
4a114e3e | 9366 | if (! bfd_get_full_section_contents (input_bfd, o, &contents)) |
c152c796 AM |
9367 | return FALSE; |
9368 | } | |
9369 | ||
9370 | if ((o->flags & SEC_RELOC) != 0) | |
9371 | { | |
9372 | Elf_Internal_Rela *internal_relocs; | |
0f02bbd9 | 9373 | Elf_Internal_Rela *rel, *relend; |
c152c796 AM |
9374 | bfd_vma r_type_mask; |
9375 | int r_sym_shift; | |
0f02bbd9 | 9376 | int action_discarded; |
ece5ef60 | 9377 | int ret; |
c152c796 AM |
9378 | |
9379 | /* Get the swapped relocs. */ | |
9380 | internal_relocs | |
9381 | = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs, | |
9382 | finfo->internal_relocs, FALSE); | |
9383 | if (internal_relocs == NULL | |
9384 | && o->reloc_count > 0) | |
9385 | return FALSE; | |
9386 | ||
9387 | if (bed->s->arch_size == 32) | |
9388 | { | |
9389 | r_type_mask = 0xff; | |
9390 | r_sym_shift = 8; | |
9391 | } | |
9392 | else | |
9393 | { | |
9394 | r_type_mask = 0xffffffff; | |
9395 | r_sym_shift = 32; | |
9396 | } | |
9397 | ||
0f02bbd9 | 9398 | action_discarded = -1; |
c152c796 | 9399 | if (!elf_section_ignore_discarded_relocs (o)) |
0f02bbd9 AM |
9400 | action_discarded = (*bed->action_discarded) (o); |
9401 | ||
9402 | /* Run through the relocs evaluating complex reloc symbols and | |
9403 | looking for relocs against symbols from discarded sections | |
9404 | or section symbols from removed link-once sections. | |
9405 | Complain about relocs against discarded sections. Zero | |
9406 | relocs against removed link-once sections. */ | |
9407 | ||
9408 | rel = internal_relocs; | |
9409 | relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
9410 | for ( ; rel < relend; rel++) | |
c152c796 | 9411 | { |
0f02bbd9 AM |
9412 | unsigned long r_symndx = rel->r_info >> r_sym_shift; |
9413 | unsigned int s_type; | |
9414 | asection **ps, *sec; | |
9415 | struct elf_link_hash_entry *h = NULL; | |
9416 | const char *sym_name; | |
c152c796 | 9417 | |
0f02bbd9 AM |
9418 | if (r_symndx == STN_UNDEF) |
9419 | continue; | |
c152c796 | 9420 | |
0f02bbd9 AM |
9421 | if (r_symndx >= locsymcount |
9422 | || (elf_bad_symtab (input_bfd) | |
9423 | && finfo->sections[r_symndx] == NULL)) | |
9424 | { | |
9425 | h = sym_hashes[r_symndx - extsymoff]; | |
ee75fd95 | 9426 | |
0f02bbd9 AM |
9427 | /* Badly formatted input files can contain relocs that |
9428 | reference non-existant symbols. Check here so that | |
9429 | we do not seg fault. */ | |
9430 | if (h == NULL) | |
c152c796 | 9431 | { |
0f02bbd9 | 9432 | char buffer [32]; |
dce669a1 | 9433 | |
0f02bbd9 AM |
9434 | sprintf_vma (buffer, rel->r_info); |
9435 | (*_bfd_error_handler) | |
9436 | (_("error: %B contains a reloc (0x%s) for section %A " | |
9437 | "that references a non-existent global symbol"), | |
9438 | input_bfd, o, buffer); | |
9439 | bfd_set_error (bfd_error_bad_value); | |
9440 | return FALSE; | |
9441 | } | |
3b36f7e6 | 9442 | |
0f02bbd9 AM |
9443 | while (h->root.type == bfd_link_hash_indirect |
9444 | || h->root.type == bfd_link_hash_warning) | |
9445 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
c152c796 | 9446 | |
0f02bbd9 | 9447 | s_type = h->type; |
cdd3575c | 9448 | |
0f02bbd9 AM |
9449 | ps = NULL; |
9450 | if (h->root.type == bfd_link_hash_defined | |
9451 | || h->root.type == bfd_link_hash_defweak) | |
9452 | ps = &h->root.u.def.section; | |
9453 | ||
9454 | sym_name = h->root.root.string; | |
9455 | } | |
9456 | else | |
9457 | { | |
9458 | Elf_Internal_Sym *sym = isymbuf + r_symndx; | |
9459 | ||
9460 | s_type = ELF_ST_TYPE (sym->st_info); | |
9461 | ps = &finfo->sections[r_symndx]; | |
9462 | sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
9463 | sym, *ps); | |
9464 | } | |
c152c796 | 9465 | |
c301e700 DD |
9466 | if ((s_type == STT_RELC || s_type == STT_SRELC) |
9467 | && !finfo->info->relocatable) | |
0f02bbd9 AM |
9468 | { |
9469 | bfd_vma val; | |
9470 | bfd_vma dot = (rel->r_offset | |
9471 | + o->output_offset + o->output_section->vma); | |
9472 | #ifdef DEBUG | |
9473 | printf ("Encountered a complex symbol!"); | |
9474 | printf (" (input_bfd %s, section %s, reloc %ld\n", | |
9ccb8af9 AM |
9475 | input_bfd->filename, o->name, |
9476 | (long) (rel - internal_relocs)); | |
0f02bbd9 AM |
9477 | printf (" symbol: idx %8.8lx, name %s\n", |
9478 | r_symndx, sym_name); | |
9479 | printf (" reloc : info %8.8lx, addr %8.8lx\n", | |
9480 | (unsigned long) rel->r_info, | |
9481 | (unsigned long) rel->r_offset); | |
9482 | #endif | |
9483 | if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot, | |
9484 | isymbuf, locsymcount, s_type == STT_SRELC)) | |
9485 | return FALSE; | |
9486 | ||
9487 | /* Symbol evaluated OK. Update to absolute value. */ | |
9488 | set_symbol_value (input_bfd, isymbuf, locsymcount, | |
9489 | r_symndx, val); | |
9490 | continue; | |
9491 | } | |
9492 | ||
9493 | if (action_discarded != -1 && ps != NULL) | |
9494 | { | |
cdd3575c AM |
9495 | /* Complain if the definition comes from a |
9496 | discarded section. */ | |
9497 | if ((sec = *ps) != NULL && elf_discarded_section (sec)) | |
9498 | { | |
cf35638d | 9499 | BFD_ASSERT (r_symndx != STN_UNDEF); |
0f02bbd9 | 9500 | if (action_discarded & COMPLAIN) |
e1fffbe6 AM |
9501 | (*finfo->info->callbacks->einfo) |
9502 | (_("%X`%s' referenced in section `%A' of %B: " | |
58ac56d0 | 9503 | "defined in discarded section `%A' of %B\n"), |
e1fffbe6 | 9504 | sym_name, o, input_bfd, sec, sec->owner); |
cdd3575c | 9505 | |
87e5235d | 9506 | /* Try to do the best we can to support buggy old |
e0ae6d6f | 9507 | versions of gcc. Pretend that the symbol is |
87e5235d AM |
9508 | really defined in the kept linkonce section. |
9509 | FIXME: This is quite broken. Modifying the | |
9510 | symbol here means we will be changing all later | |
e0ae6d6f | 9511 | uses of the symbol, not just in this section. */ |
0f02bbd9 | 9512 | if (action_discarded & PRETEND) |
87e5235d | 9513 | { |
01b3c8ab L |
9514 | asection *kept; |
9515 | ||
c0f00686 L |
9516 | kept = _bfd_elf_check_kept_section (sec, |
9517 | finfo->info); | |
01b3c8ab | 9518 | if (kept != NULL) |
87e5235d AM |
9519 | { |
9520 | *ps = kept; | |
9521 | continue; | |
9522 | } | |
9523 | } | |
c152c796 AM |
9524 | } |
9525 | } | |
9526 | } | |
9527 | ||
9528 | /* Relocate the section by invoking a back end routine. | |
9529 | ||
9530 | The back end routine is responsible for adjusting the | |
9531 | section contents as necessary, and (if using Rela relocs | |
9532 | and generating a relocatable output file) adjusting the | |
9533 | reloc addend as necessary. | |
9534 | ||
9535 | The back end routine does not have to worry about setting | |
9536 | the reloc address or the reloc symbol index. | |
9537 | ||
9538 | The back end routine is given a pointer to the swapped in | |
9539 | internal symbols, and can access the hash table entries | |
9540 | for the external symbols via elf_sym_hashes (input_bfd). | |
9541 | ||
9542 | When generating relocatable output, the back end routine | |
9543 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
9544 | output symbol is going to be a section symbol | |
9545 | corresponding to the output section, which will require | |
9546 | the addend to be adjusted. */ | |
9547 | ||
ece5ef60 | 9548 | ret = (*relocate_section) (output_bfd, finfo->info, |
c152c796 AM |
9549 | input_bfd, o, contents, |
9550 | internal_relocs, | |
9551 | isymbuf, | |
ece5ef60 AM |
9552 | finfo->sections); |
9553 | if (!ret) | |
c152c796 AM |
9554 | return FALSE; |
9555 | ||
ece5ef60 AM |
9556 | if (ret == 2 |
9557 | || finfo->info->relocatable | |
9558 | || finfo->info->emitrelocations) | |
c152c796 AM |
9559 | { |
9560 | Elf_Internal_Rela *irela; | |
d4730f92 | 9561 | Elf_Internal_Rela *irelaend, *irelamid; |
c152c796 AM |
9562 | bfd_vma last_offset; |
9563 | struct elf_link_hash_entry **rel_hash; | |
d4730f92 BS |
9564 | struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; |
9565 | Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; | |
c152c796 | 9566 | unsigned int next_erel; |
c152c796 | 9567 | bfd_boolean rela_normal; |
d4730f92 | 9568 | struct bfd_elf_section_data *esdi, *esdo; |
c152c796 | 9569 | |
d4730f92 BS |
9570 | esdi = elf_section_data (o); |
9571 | esdo = elf_section_data (o->output_section); | |
9572 | rela_normal = FALSE; | |
c152c796 AM |
9573 | |
9574 | /* Adjust the reloc addresses and symbol indices. */ | |
9575 | ||
9576 | irela = internal_relocs; | |
9577 | irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
d4730f92 BS |
9578 | rel_hash = esdo->rel.hashes + esdo->rel.count; |
9579 | /* We start processing the REL relocs, if any. When we reach | |
9580 | IRELAMID in the loop, we switch to the RELA relocs. */ | |
9581 | irelamid = irela; | |
9582 | if (esdi->rel.hdr != NULL) | |
9583 | irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) | |
9584 | * bed->s->int_rels_per_ext_rel); | |
eac338cf | 9585 | rel_hash_list = rel_hash; |
d4730f92 | 9586 | rela_hash_list = NULL; |
c152c796 AM |
9587 | last_offset = o->output_offset; |
9588 | if (!finfo->info->relocatable) | |
9589 | last_offset += o->output_section->vma; | |
9590 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) | |
9591 | { | |
9592 | unsigned long r_symndx; | |
9593 | asection *sec; | |
9594 | Elf_Internal_Sym sym; | |
9595 | ||
9596 | if (next_erel == bed->s->int_rels_per_ext_rel) | |
9597 | { | |
9598 | rel_hash++; | |
9599 | next_erel = 0; | |
9600 | } | |
9601 | ||
d4730f92 BS |
9602 | if (irela == irelamid) |
9603 | { | |
9604 | rel_hash = esdo->rela.hashes + esdo->rela.count; | |
9605 | rela_hash_list = rel_hash; | |
9606 | rela_normal = bed->rela_normal; | |
9607 | } | |
9608 | ||
c152c796 AM |
9609 | irela->r_offset = _bfd_elf_section_offset (output_bfd, |
9610 | finfo->info, o, | |
9611 | irela->r_offset); | |
9612 | if (irela->r_offset >= (bfd_vma) -2) | |
9613 | { | |
9614 | /* This is a reloc for a deleted entry or somesuch. | |
9615 | Turn it into an R_*_NONE reloc, at the same | |
9616 | offset as the last reloc. elf_eh_frame.c and | |
e460dd0d | 9617 | bfd_elf_discard_info rely on reloc offsets |
c152c796 AM |
9618 | being ordered. */ |
9619 | irela->r_offset = last_offset; | |
9620 | irela->r_info = 0; | |
9621 | irela->r_addend = 0; | |
9622 | continue; | |
9623 | } | |
9624 | ||
9625 | irela->r_offset += o->output_offset; | |
9626 | ||
9627 | /* Relocs in an executable have to be virtual addresses. */ | |
9628 | if (!finfo->info->relocatable) | |
9629 | irela->r_offset += o->output_section->vma; | |
9630 | ||
9631 | last_offset = irela->r_offset; | |
9632 | ||
9633 | r_symndx = irela->r_info >> r_sym_shift; | |
9634 | if (r_symndx == STN_UNDEF) | |
9635 | continue; | |
9636 | ||
9637 | if (r_symndx >= locsymcount | |
9638 | || (elf_bad_symtab (input_bfd) | |
9639 | && finfo->sections[r_symndx] == NULL)) | |
9640 | { | |
9641 | struct elf_link_hash_entry *rh; | |
9642 | unsigned long indx; | |
9643 | ||
9644 | /* This is a reloc against a global symbol. We | |
9645 | have not yet output all the local symbols, so | |
9646 | we do not know the symbol index of any global | |
9647 | symbol. We set the rel_hash entry for this | |
9648 | reloc to point to the global hash table entry | |
9649 | for this symbol. The symbol index is then | |
ee75fd95 | 9650 | set at the end of bfd_elf_final_link. */ |
c152c796 AM |
9651 | indx = r_symndx - extsymoff; |
9652 | rh = elf_sym_hashes (input_bfd)[indx]; | |
9653 | while (rh->root.type == bfd_link_hash_indirect | |
9654 | || rh->root.type == bfd_link_hash_warning) | |
9655 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
9656 | ||
9657 | /* Setting the index to -2 tells | |
9658 | elf_link_output_extsym that this symbol is | |
9659 | used by a reloc. */ | |
9660 | BFD_ASSERT (rh->indx < 0); | |
9661 | rh->indx = -2; | |
9662 | ||
9663 | *rel_hash = rh; | |
9664 | ||
9665 | continue; | |
9666 | } | |
9667 | ||
9668 | /* This is a reloc against a local symbol. */ | |
9669 | ||
9670 | *rel_hash = NULL; | |
9671 | sym = isymbuf[r_symndx]; | |
9672 | sec = finfo->sections[r_symndx]; | |
9673 | if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) | |
9674 | { | |
9675 | /* I suppose the backend ought to fill in the | |
9676 | section of any STT_SECTION symbol against a | |
6a8d1586 | 9677 | processor specific section. */ |
cf35638d | 9678 | r_symndx = STN_UNDEF; |
6a8d1586 AM |
9679 | if (bfd_is_abs_section (sec)) |
9680 | ; | |
c152c796 AM |
9681 | else if (sec == NULL || sec->owner == NULL) |
9682 | { | |
9683 | bfd_set_error (bfd_error_bad_value); | |
9684 | return FALSE; | |
9685 | } | |
9686 | else | |
9687 | { | |
6a8d1586 AM |
9688 | asection *osec = sec->output_section; |
9689 | ||
9690 | /* If we have discarded a section, the output | |
9691 | section will be the absolute section. In | |
ab96bf03 AM |
9692 | case of discarded SEC_MERGE sections, use |
9693 | the kept section. relocate_section should | |
9694 | have already handled discarded linkonce | |
9695 | sections. */ | |
6a8d1586 AM |
9696 | if (bfd_is_abs_section (osec) |
9697 | && sec->kept_section != NULL | |
9698 | && sec->kept_section->output_section != NULL) | |
9699 | { | |
9700 | osec = sec->kept_section->output_section; | |
9701 | irela->r_addend -= osec->vma; | |
9702 | } | |
9703 | ||
9704 | if (!bfd_is_abs_section (osec)) | |
9705 | { | |
9706 | r_symndx = osec->target_index; | |
cf35638d | 9707 | if (r_symndx == STN_UNDEF) |
74541ad4 AM |
9708 | { |
9709 | struct elf_link_hash_table *htab; | |
9710 | asection *oi; | |
9711 | ||
9712 | htab = elf_hash_table (finfo->info); | |
9713 | oi = htab->text_index_section; | |
9714 | if ((osec->flags & SEC_READONLY) == 0 | |
9715 | && htab->data_index_section != NULL) | |
9716 | oi = htab->data_index_section; | |
9717 | ||
9718 | if (oi != NULL) | |
9719 | { | |
9720 | irela->r_addend += osec->vma - oi->vma; | |
9721 | r_symndx = oi->target_index; | |
9722 | } | |
9723 | } | |
9724 | ||
cf35638d | 9725 | BFD_ASSERT (r_symndx != STN_UNDEF); |
6a8d1586 | 9726 | } |
c152c796 AM |
9727 | } |
9728 | ||
9729 | /* Adjust the addend according to where the | |
9730 | section winds up in the output section. */ | |
9731 | if (rela_normal) | |
9732 | irela->r_addend += sec->output_offset; | |
9733 | } | |
9734 | else | |
9735 | { | |
9736 | if (finfo->indices[r_symndx] == -1) | |
9737 | { | |
9738 | unsigned long shlink; | |
9739 | const char *name; | |
9740 | asection *osec; | |
6e0b88f1 | 9741 | long indx; |
c152c796 AM |
9742 | |
9743 | if (finfo->info->strip == strip_all) | |
9744 | { | |
9745 | /* You can't do ld -r -s. */ | |
9746 | bfd_set_error (bfd_error_invalid_operation); | |
9747 | return FALSE; | |
9748 | } | |
9749 | ||
9750 | /* This symbol was skipped earlier, but | |
9751 | since it is needed by a reloc, we | |
9752 | must output it now. */ | |
9753 | shlink = symtab_hdr->sh_link; | |
9754 | name = (bfd_elf_string_from_elf_section | |
9755 | (input_bfd, shlink, sym.st_name)); | |
9756 | if (name == NULL) | |
9757 | return FALSE; | |
9758 | ||
9759 | osec = sec->output_section; | |
9760 | sym.st_shndx = | |
9761 | _bfd_elf_section_from_bfd_section (output_bfd, | |
9762 | osec); | |
9763 | if (sym.st_shndx == SHN_BAD) | |
9764 | return FALSE; | |
9765 | ||
9766 | sym.st_value += sec->output_offset; | |
9767 | if (! finfo->info->relocatable) | |
9768 | { | |
9769 | sym.st_value += osec->vma; | |
9770 | if (ELF_ST_TYPE (sym.st_info) == STT_TLS) | |
9771 | { | |
9772 | /* STT_TLS symbols are relative to PT_TLS | |
9773 | segment base. */ | |
9774 | BFD_ASSERT (elf_hash_table (finfo->info) | |
9775 | ->tls_sec != NULL); | |
9776 | sym.st_value -= (elf_hash_table (finfo->info) | |
9777 | ->tls_sec->vma); | |
9778 | } | |
9779 | } | |
9780 | ||
6e0b88f1 AM |
9781 | indx = bfd_get_symcount (output_bfd); |
9782 | ret = elf_link_output_sym (finfo, name, &sym, sec, | |
9783 | NULL); | |
9784 | if (ret == 0) | |
c152c796 | 9785 | return FALSE; |
6e0b88f1 AM |
9786 | else if (ret == 1) |
9787 | finfo->indices[r_symndx] = indx; | |
9788 | else | |
9789 | abort (); | |
c152c796 AM |
9790 | } |
9791 | ||
9792 | r_symndx = finfo->indices[r_symndx]; | |
9793 | } | |
9794 | ||
9795 | irela->r_info = ((bfd_vma) r_symndx << r_sym_shift | |
9796 | | (irela->r_info & r_type_mask)); | |
9797 | } | |
9798 | ||
9799 | /* Swap out the relocs. */ | |
d4730f92 BS |
9800 | input_rel_hdr = esdi->rel.hdr; |
9801 | if (input_rel_hdr && input_rel_hdr->sh_size != 0) | |
c152c796 | 9802 | { |
d4730f92 BS |
9803 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
9804 | input_rel_hdr, | |
9805 | internal_relocs, | |
9806 | rel_hash_list)) | |
9807 | return FALSE; | |
c152c796 AM |
9808 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) |
9809 | * bed->s->int_rels_per_ext_rel); | |
eac338cf | 9810 | rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); |
d4730f92 BS |
9811 | } |
9812 | ||
9813 | input_rela_hdr = esdi->rela.hdr; | |
9814 | if (input_rela_hdr && input_rela_hdr->sh_size != 0) | |
9815 | { | |
eac338cf | 9816 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
d4730f92 | 9817 | input_rela_hdr, |
eac338cf | 9818 | internal_relocs, |
d4730f92 | 9819 | rela_hash_list)) |
c152c796 AM |
9820 | return FALSE; |
9821 | } | |
9822 | } | |
9823 | } | |
9824 | ||
9825 | /* Write out the modified section contents. */ | |
9826 | if (bed->elf_backend_write_section | |
c7b8f16e JB |
9827 | && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o, |
9828 | contents)) | |
c152c796 AM |
9829 | { |
9830 | /* Section written out. */ | |
9831 | } | |
9832 | else switch (o->sec_info_type) | |
9833 | { | |
9834 | case ELF_INFO_TYPE_STABS: | |
9835 | if (! (_bfd_write_section_stabs | |
9836 | (output_bfd, | |
9837 | &elf_hash_table (finfo->info)->stab_info, | |
9838 | o, &elf_section_data (o)->sec_info, contents))) | |
9839 | return FALSE; | |
9840 | break; | |
9841 | case ELF_INFO_TYPE_MERGE: | |
9842 | if (! _bfd_write_merged_section (output_bfd, o, | |
9843 | elf_section_data (o)->sec_info)) | |
9844 | return FALSE; | |
9845 | break; | |
9846 | case ELF_INFO_TYPE_EH_FRAME: | |
9847 | { | |
9848 | if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info, | |
9849 | o, contents)) | |
9850 | return FALSE; | |
9851 | } | |
9852 | break; | |
9853 | default: | |
9854 | { | |
5dabe785 | 9855 | /* FIXME: octets_per_byte. */ |
c152c796 AM |
9856 | if (! (o->flags & SEC_EXCLUDE) |
9857 | && ! bfd_set_section_contents (output_bfd, o->output_section, | |
9858 | contents, | |
9859 | (file_ptr) o->output_offset, | |
eea6121a | 9860 | o->size)) |
c152c796 AM |
9861 | return FALSE; |
9862 | } | |
9863 | break; | |
9864 | } | |
9865 | } | |
9866 | ||
9867 | return TRUE; | |
9868 | } | |
9869 | ||
9870 | /* Generate a reloc when linking an ELF file. This is a reloc | |
3a800eb9 | 9871 | requested by the linker, and does not come from any input file. This |
c152c796 AM |
9872 | is used to build constructor and destructor tables when linking |
9873 | with -Ur. */ | |
9874 | ||
9875 | static bfd_boolean | |
9876 | elf_reloc_link_order (bfd *output_bfd, | |
9877 | struct bfd_link_info *info, | |
9878 | asection *output_section, | |
9879 | struct bfd_link_order *link_order) | |
9880 | { | |
9881 | reloc_howto_type *howto; | |
9882 | long indx; | |
9883 | bfd_vma offset; | |
9884 | bfd_vma addend; | |
d4730f92 | 9885 | struct bfd_elf_section_reloc_data *reldata; |
c152c796 AM |
9886 | struct elf_link_hash_entry **rel_hash_ptr; |
9887 | Elf_Internal_Shdr *rel_hdr; | |
9888 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
9889 | Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; | |
9890 | bfd_byte *erel; | |
9891 | unsigned int i; | |
d4730f92 | 9892 | struct bfd_elf_section_data *esdo = elf_section_data (output_section); |
c152c796 AM |
9893 | |
9894 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
9895 | if (howto == NULL) | |
9896 | { | |
9897 | bfd_set_error (bfd_error_bad_value); | |
9898 | return FALSE; | |
9899 | } | |
9900 | ||
9901 | addend = link_order->u.reloc.p->addend; | |
9902 | ||
d4730f92 BS |
9903 | if (esdo->rel.hdr) |
9904 | reldata = &esdo->rel; | |
9905 | else if (esdo->rela.hdr) | |
9906 | reldata = &esdo->rela; | |
9907 | else | |
9908 | { | |
9909 | reldata = NULL; | |
9910 | BFD_ASSERT (0); | |
9911 | } | |
9912 | ||
c152c796 | 9913 | /* Figure out the symbol index. */ |
d4730f92 | 9914 | rel_hash_ptr = reldata->hashes + reldata->count; |
c152c796 AM |
9915 | if (link_order->type == bfd_section_reloc_link_order) |
9916 | { | |
9917 | indx = link_order->u.reloc.p->u.section->target_index; | |
9918 | BFD_ASSERT (indx != 0); | |
9919 | *rel_hash_ptr = NULL; | |
9920 | } | |
9921 | else | |
9922 | { | |
9923 | struct elf_link_hash_entry *h; | |
9924 | ||
9925 | /* Treat a reloc against a defined symbol as though it were | |
9926 | actually against the section. */ | |
9927 | h = ((struct elf_link_hash_entry *) | |
9928 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
9929 | link_order->u.reloc.p->u.name, | |
9930 | FALSE, FALSE, TRUE)); | |
9931 | if (h != NULL | |
9932 | && (h->root.type == bfd_link_hash_defined | |
9933 | || h->root.type == bfd_link_hash_defweak)) | |
9934 | { | |
9935 | asection *section; | |
9936 | ||
9937 | section = h->root.u.def.section; | |
9938 | indx = section->output_section->target_index; | |
9939 | *rel_hash_ptr = NULL; | |
9940 | /* It seems that we ought to add the symbol value to the | |
9941 | addend here, but in practice it has already been added | |
9942 | because it was passed to constructor_callback. */ | |
9943 | addend += section->output_section->vma + section->output_offset; | |
9944 | } | |
9945 | else if (h != NULL) | |
9946 | { | |
9947 | /* Setting the index to -2 tells elf_link_output_extsym that | |
9948 | this symbol is used by a reloc. */ | |
9949 | h->indx = -2; | |
9950 | *rel_hash_ptr = h; | |
9951 | indx = 0; | |
9952 | } | |
9953 | else | |
9954 | { | |
9955 | if (! ((*info->callbacks->unattached_reloc) | |
9956 | (info, link_order->u.reloc.p->u.name, NULL, NULL, 0))) | |
9957 | return FALSE; | |
9958 | indx = 0; | |
9959 | } | |
9960 | } | |
9961 | ||
9962 | /* If this is an inplace reloc, we must write the addend into the | |
9963 | object file. */ | |
9964 | if (howto->partial_inplace && addend != 0) | |
9965 | { | |
9966 | bfd_size_type size; | |
9967 | bfd_reloc_status_type rstat; | |
9968 | bfd_byte *buf; | |
9969 | bfd_boolean ok; | |
9970 | const char *sym_name; | |
9971 | ||
a50b1753 NC |
9972 | size = (bfd_size_type) bfd_get_reloc_size (howto); |
9973 | buf = (bfd_byte *) bfd_zmalloc (size); | |
c152c796 AM |
9974 | if (buf == NULL) |
9975 | return FALSE; | |
9976 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
9977 | switch (rstat) | |
9978 | { | |
9979 | case bfd_reloc_ok: | |
9980 | break; | |
9981 | ||
9982 | default: | |
9983 | case bfd_reloc_outofrange: | |
9984 | abort (); | |
9985 | ||
9986 | case bfd_reloc_overflow: | |
9987 | if (link_order->type == bfd_section_reloc_link_order) | |
9988 | sym_name = bfd_section_name (output_bfd, | |
9989 | link_order->u.reloc.p->u.section); | |
9990 | else | |
9991 | sym_name = link_order->u.reloc.p->u.name; | |
9992 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f L |
9993 | (info, NULL, sym_name, howto->name, addend, NULL, |
9994 | NULL, (bfd_vma) 0))) | |
c152c796 AM |
9995 | { |
9996 | free (buf); | |
9997 | return FALSE; | |
9998 | } | |
9999 | break; | |
10000 | } | |
10001 | ok = bfd_set_section_contents (output_bfd, output_section, buf, | |
10002 | link_order->offset, size); | |
10003 | free (buf); | |
10004 | if (! ok) | |
10005 | return FALSE; | |
10006 | } | |
10007 | ||
10008 | /* The address of a reloc is relative to the section in a | |
10009 | relocatable file, and is a virtual address in an executable | |
10010 | file. */ | |
10011 | offset = link_order->offset; | |
10012 | if (! info->relocatable) | |
10013 | offset += output_section->vma; | |
10014 | ||
10015 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | |
10016 | { | |
10017 | irel[i].r_offset = offset; | |
10018 | irel[i].r_info = 0; | |
10019 | irel[i].r_addend = 0; | |
10020 | } | |
10021 | if (bed->s->arch_size == 32) | |
10022 | irel[0].r_info = ELF32_R_INFO (indx, howto->type); | |
10023 | else | |
10024 | irel[0].r_info = ELF64_R_INFO (indx, howto->type); | |
10025 | ||
d4730f92 | 10026 | rel_hdr = reldata->hdr; |
c152c796 AM |
10027 | erel = rel_hdr->contents; |
10028 | if (rel_hdr->sh_type == SHT_REL) | |
10029 | { | |
d4730f92 | 10030 | erel += reldata->count * bed->s->sizeof_rel; |
c152c796 AM |
10031 | (*bed->s->swap_reloc_out) (output_bfd, irel, erel); |
10032 | } | |
10033 | else | |
10034 | { | |
10035 | irel[0].r_addend = addend; | |
d4730f92 | 10036 | erel += reldata->count * bed->s->sizeof_rela; |
c152c796 AM |
10037 | (*bed->s->swap_reloca_out) (output_bfd, irel, erel); |
10038 | } | |
10039 | ||
d4730f92 | 10040 | ++reldata->count; |
c152c796 AM |
10041 | |
10042 | return TRUE; | |
10043 | } | |
10044 | ||
0b52efa6 PB |
10045 | |
10046 | /* Get the output vma of the section pointed to by the sh_link field. */ | |
10047 | ||
10048 | static bfd_vma | |
10049 | elf_get_linked_section_vma (struct bfd_link_order *p) | |
10050 | { | |
10051 | Elf_Internal_Shdr **elf_shdrp; | |
10052 | asection *s; | |
10053 | int elfsec; | |
10054 | ||
10055 | s = p->u.indirect.section; | |
10056 | elf_shdrp = elf_elfsections (s->owner); | |
10057 | elfsec = _bfd_elf_section_from_bfd_section (s->owner, s); | |
10058 | elfsec = elf_shdrp[elfsec]->sh_link; | |
185d09ad L |
10059 | /* PR 290: |
10060 | The Intel C compiler generates SHT_IA_64_UNWIND with | |
e04bcc6d | 10061 | SHF_LINK_ORDER. But it doesn't set the sh_link or |
185d09ad L |
10062 | sh_info fields. Hence we could get the situation |
10063 | where elfsec is 0. */ | |
10064 | if (elfsec == 0) | |
10065 | { | |
10066 | const struct elf_backend_data *bed | |
10067 | = get_elf_backend_data (s->owner); | |
10068 | if (bed->link_order_error_handler) | |
d003868e AM |
10069 | bed->link_order_error_handler |
10070 | (_("%B: warning: sh_link not set for section `%A'"), s->owner, s); | |
185d09ad L |
10071 | return 0; |
10072 | } | |
10073 | else | |
10074 | { | |
10075 | s = elf_shdrp[elfsec]->bfd_section; | |
10076 | return s->output_section->vma + s->output_offset; | |
10077 | } | |
0b52efa6 PB |
10078 | } |
10079 | ||
10080 | ||
10081 | /* Compare two sections based on the locations of the sections they are | |
10082 | linked to. Used by elf_fixup_link_order. */ | |
10083 | ||
10084 | static int | |
10085 | compare_link_order (const void * a, const void * b) | |
10086 | { | |
10087 | bfd_vma apos; | |
10088 | bfd_vma bpos; | |
10089 | ||
10090 | apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a); | |
10091 | bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b); | |
10092 | if (apos < bpos) | |
10093 | return -1; | |
10094 | return apos > bpos; | |
10095 | } | |
10096 | ||
10097 | ||
10098 | /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same | |
10099 | order as their linked sections. Returns false if this could not be done | |
10100 | because an output section includes both ordered and unordered | |
10101 | sections. Ideally we'd do this in the linker proper. */ | |
10102 | ||
10103 | static bfd_boolean | |
10104 | elf_fixup_link_order (bfd *abfd, asection *o) | |
10105 | { | |
10106 | int seen_linkorder; | |
10107 | int seen_other; | |
10108 | int n; | |
10109 | struct bfd_link_order *p; | |
10110 | bfd *sub; | |
10111 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
b761a207 | 10112 | unsigned elfsec; |
0b52efa6 | 10113 | struct bfd_link_order **sections; |
d33cdfe3 | 10114 | asection *s, *other_sec, *linkorder_sec; |
0b52efa6 | 10115 | bfd_vma offset; |
3b36f7e6 | 10116 | |
d33cdfe3 L |
10117 | other_sec = NULL; |
10118 | linkorder_sec = NULL; | |
0b52efa6 PB |
10119 | seen_other = 0; |
10120 | seen_linkorder = 0; | |
8423293d | 10121 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
0b52efa6 | 10122 | { |
d33cdfe3 | 10123 | if (p->type == bfd_indirect_link_order) |
0b52efa6 PB |
10124 | { |
10125 | s = p->u.indirect.section; | |
d33cdfe3 L |
10126 | sub = s->owner; |
10127 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour | |
10128 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass | |
b761a207 BE |
10129 | && (elfsec = _bfd_elf_section_from_bfd_section (sub, s)) |
10130 | && elfsec < elf_numsections (sub) | |
4fbb74a6 AM |
10131 | && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER |
10132 | && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub)) | |
d33cdfe3 L |
10133 | { |
10134 | seen_linkorder++; | |
10135 | linkorder_sec = s; | |
10136 | } | |
0b52efa6 | 10137 | else |
d33cdfe3 L |
10138 | { |
10139 | seen_other++; | |
10140 | other_sec = s; | |
10141 | } | |
0b52efa6 PB |
10142 | } |
10143 | else | |
10144 | seen_other++; | |
d33cdfe3 L |
10145 | |
10146 | if (seen_other && seen_linkorder) | |
10147 | { | |
10148 | if (other_sec && linkorder_sec) | |
10149 | (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"), | |
10150 | o, linkorder_sec, | |
10151 | linkorder_sec->owner, other_sec, | |
10152 | other_sec->owner); | |
10153 | else | |
10154 | (*_bfd_error_handler) (_("%A has both ordered and unordered sections"), | |
10155 | o); | |
10156 | bfd_set_error (bfd_error_bad_value); | |
10157 | return FALSE; | |
10158 | } | |
0b52efa6 PB |
10159 | } |
10160 | ||
10161 | if (!seen_linkorder) | |
10162 | return TRUE; | |
10163 | ||
0b52efa6 | 10164 | sections = (struct bfd_link_order **) |
14b1c01e AM |
10165 | bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *)); |
10166 | if (sections == NULL) | |
10167 | return FALSE; | |
0b52efa6 | 10168 | seen_linkorder = 0; |
3b36f7e6 | 10169 | |
8423293d | 10170 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
0b52efa6 PB |
10171 | { |
10172 | sections[seen_linkorder++] = p; | |
10173 | } | |
10174 | /* Sort the input sections in the order of their linked section. */ | |
10175 | qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *), | |
10176 | compare_link_order); | |
10177 | ||
10178 | /* Change the offsets of the sections. */ | |
10179 | offset = 0; | |
10180 | for (n = 0; n < seen_linkorder; n++) | |
10181 | { | |
10182 | s = sections[n]->u.indirect.section; | |
461686a3 | 10183 | offset &= ~(bfd_vma) 0 << s->alignment_power; |
0b52efa6 PB |
10184 | s->output_offset = offset; |
10185 | sections[n]->offset = offset; | |
5dabe785 | 10186 | /* FIXME: octets_per_byte. */ |
0b52efa6 PB |
10187 | offset += sections[n]->size; |
10188 | } | |
10189 | ||
4dd07732 | 10190 | free (sections); |
0b52efa6 PB |
10191 | return TRUE; |
10192 | } | |
10193 | ||
10194 | ||
c152c796 AM |
10195 | /* Do the final step of an ELF link. */ |
10196 | ||
10197 | bfd_boolean | |
10198 | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) | |
10199 | { | |
10200 | bfd_boolean dynamic; | |
10201 | bfd_boolean emit_relocs; | |
10202 | bfd *dynobj; | |
10203 | struct elf_final_link_info finfo; | |
91d6fa6a NC |
10204 | asection *o; |
10205 | struct bfd_link_order *p; | |
10206 | bfd *sub; | |
c152c796 AM |
10207 | bfd_size_type max_contents_size; |
10208 | bfd_size_type max_external_reloc_size; | |
10209 | bfd_size_type max_internal_reloc_count; | |
10210 | bfd_size_type max_sym_count; | |
10211 | bfd_size_type max_sym_shndx_count; | |
10212 | file_ptr off; | |
10213 | Elf_Internal_Sym elfsym; | |
10214 | unsigned int i; | |
10215 | Elf_Internal_Shdr *symtab_hdr; | |
10216 | Elf_Internal_Shdr *symtab_shndx_hdr; | |
10217 | Elf_Internal_Shdr *symstrtab_hdr; | |
10218 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
10219 | struct elf_outext_info eoinfo; | |
10220 | bfd_boolean merged; | |
10221 | size_t relativecount = 0; | |
10222 | asection *reldyn = 0; | |
10223 | bfd_size_type amt; | |
104d59d1 JM |
10224 | asection *attr_section = NULL; |
10225 | bfd_vma attr_size = 0; | |
10226 | const char *std_attrs_section; | |
c152c796 AM |
10227 | |
10228 | if (! is_elf_hash_table (info->hash)) | |
10229 | return FALSE; | |
10230 | ||
10231 | if (info->shared) | |
10232 | abfd->flags |= DYNAMIC; | |
10233 | ||
10234 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
10235 | dynobj = elf_hash_table (info)->dynobj; | |
10236 | ||
10237 | emit_relocs = (info->relocatable | |
a4676736 | 10238 | || info->emitrelocations); |
c152c796 AM |
10239 | |
10240 | finfo.info = info; | |
10241 | finfo.output_bfd = abfd; | |
10242 | finfo.symstrtab = _bfd_elf_stringtab_init (); | |
10243 | if (finfo.symstrtab == NULL) | |
10244 | return FALSE; | |
10245 | ||
10246 | if (! dynamic) | |
10247 | { | |
10248 | finfo.dynsym_sec = NULL; | |
10249 | finfo.hash_sec = NULL; | |
10250 | finfo.symver_sec = NULL; | |
10251 | } | |
10252 | else | |
10253 | { | |
10254 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
10255 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
fdc90cb4 | 10256 | BFD_ASSERT (finfo.dynsym_sec != NULL); |
c152c796 AM |
10257 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); |
10258 | /* Note that it is OK if symver_sec is NULL. */ | |
10259 | } | |
10260 | ||
10261 | finfo.contents = NULL; | |
10262 | finfo.external_relocs = NULL; | |
10263 | finfo.internal_relocs = NULL; | |
10264 | finfo.external_syms = NULL; | |
10265 | finfo.locsym_shndx = NULL; | |
10266 | finfo.internal_syms = NULL; | |
10267 | finfo.indices = NULL; | |
10268 | finfo.sections = NULL; | |
10269 | finfo.symbuf = NULL; | |
10270 | finfo.symshndxbuf = NULL; | |
10271 | finfo.symbuf_count = 0; | |
10272 | finfo.shndxbuf_size = 0; | |
10273 | ||
104d59d1 JM |
10274 | /* The object attributes have been merged. Remove the input |
10275 | sections from the link, and set the contents of the output | |
10276 | secton. */ | |
10277 | std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; | |
10278 | for (o = abfd->sections; o != NULL; o = o->next) | |
10279 | { | |
10280 | if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) | |
10281 | || strcmp (o->name, ".gnu.attributes") == 0) | |
10282 | { | |
10283 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
10284 | { | |
10285 | asection *input_section; | |
10286 | ||
10287 | if (p->type != bfd_indirect_link_order) | |
10288 | continue; | |
10289 | input_section = p->u.indirect.section; | |
10290 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10291 | elf_link_input_bfd ignores this section. */ | |
10292 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10293 | } | |
a0c8462f | 10294 | |
104d59d1 JM |
10295 | attr_size = bfd_elf_obj_attr_size (abfd); |
10296 | if (attr_size) | |
10297 | { | |
10298 | bfd_set_section_size (abfd, o, attr_size); | |
10299 | attr_section = o; | |
10300 | /* Skip this section later on. */ | |
10301 | o->map_head.link_order = NULL; | |
10302 | } | |
10303 | else | |
10304 | o->flags |= SEC_EXCLUDE; | |
10305 | } | |
10306 | } | |
10307 | ||
c152c796 AM |
10308 | /* Count up the number of relocations we will output for each output |
10309 | section, so that we know the sizes of the reloc sections. We | |
10310 | also figure out some maximum sizes. */ | |
10311 | max_contents_size = 0; | |
10312 | max_external_reloc_size = 0; | |
10313 | max_internal_reloc_count = 0; | |
10314 | max_sym_count = 0; | |
10315 | max_sym_shndx_count = 0; | |
10316 | merged = FALSE; | |
10317 | for (o = abfd->sections; o != NULL; o = o->next) | |
10318 | { | |
10319 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
10320 | o->reloc_count = 0; | |
10321 | ||
8423293d | 10322 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
c152c796 AM |
10323 | { |
10324 | unsigned int reloc_count = 0; | |
10325 | struct bfd_elf_section_data *esdi = NULL; | |
c152c796 AM |
10326 | |
10327 | if (p->type == bfd_section_reloc_link_order | |
10328 | || p->type == bfd_symbol_reloc_link_order) | |
10329 | reloc_count = 1; | |
10330 | else if (p->type == bfd_indirect_link_order) | |
10331 | { | |
10332 | asection *sec; | |
10333 | ||
10334 | sec = p->u.indirect.section; | |
10335 | esdi = elf_section_data (sec); | |
10336 | ||
10337 | /* Mark all sections which are to be included in the | |
10338 | link. This will normally be every section. We need | |
10339 | to do this so that we can identify any sections which | |
10340 | the linker has decided to not include. */ | |
10341 | sec->linker_mark = TRUE; | |
10342 | ||
10343 | if (sec->flags & SEC_MERGE) | |
10344 | merged = TRUE; | |
10345 | ||
10346 | if (info->relocatable || info->emitrelocations) | |
10347 | reloc_count = sec->reloc_count; | |
10348 | else if (bed->elf_backend_count_relocs) | |
58217f29 | 10349 | reloc_count = (*bed->elf_backend_count_relocs) (info, sec); |
c152c796 | 10350 | |
eea6121a AM |
10351 | if (sec->rawsize > max_contents_size) |
10352 | max_contents_size = sec->rawsize; | |
10353 | if (sec->size > max_contents_size) | |
10354 | max_contents_size = sec->size; | |
c152c796 AM |
10355 | |
10356 | /* We are interested in just local symbols, not all | |
10357 | symbols. */ | |
10358 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
10359 | && (sec->owner->flags & DYNAMIC) == 0) | |
10360 | { | |
10361 | size_t sym_count; | |
10362 | ||
10363 | if (elf_bad_symtab (sec->owner)) | |
10364 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
10365 | / bed->s->sizeof_sym); | |
10366 | else | |
10367 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
10368 | ||
10369 | if (sym_count > max_sym_count) | |
10370 | max_sym_count = sym_count; | |
10371 | ||
10372 | if (sym_count > max_sym_shndx_count | |
10373 | && elf_symtab_shndx (sec->owner) != 0) | |
10374 | max_sym_shndx_count = sym_count; | |
10375 | ||
10376 | if ((sec->flags & SEC_RELOC) != 0) | |
10377 | { | |
d4730f92 | 10378 | size_t ext_size = 0; |
c152c796 | 10379 | |
d4730f92 BS |
10380 | if (esdi->rel.hdr != NULL) |
10381 | ext_size = esdi->rel.hdr->sh_size; | |
10382 | if (esdi->rela.hdr != NULL) | |
10383 | ext_size += esdi->rela.hdr->sh_size; | |
7326c758 | 10384 | |
c152c796 AM |
10385 | if (ext_size > max_external_reloc_size) |
10386 | max_external_reloc_size = ext_size; | |
10387 | if (sec->reloc_count > max_internal_reloc_count) | |
10388 | max_internal_reloc_count = sec->reloc_count; | |
10389 | } | |
10390 | } | |
10391 | } | |
10392 | ||
10393 | if (reloc_count == 0) | |
10394 | continue; | |
10395 | ||
10396 | o->reloc_count += reloc_count; | |
10397 | ||
d4730f92 BS |
10398 | if (p->type == bfd_indirect_link_order |
10399 | && (info->relocatable || info->emitrelocations)) | |
c152c796 | 10400 | { |
d4730f92 BS |
10401 | if (esdi->rel.hdr) |
10402 | esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); | |
10403 | if (esdi->rela.hdr) | |
10404 | esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); | |
10405 | } | |
10406 | else | |
10407 | { | |
10408 | if (o->use_rela_p) | |
10409 | esdo->rela.count += reloc_count; | |
2c2b4ed4 | 10410 | else |
d4730f92 | 10411 | esdo->rel.count += reloc_count; |
c152c796 | 10412 | } |
c152c796 AM |
10413 | } |
10414 | ||
10415 | if (o->reloc_count > 0) | |
10416 | o->flags |= SEC_RELOC; | |
10417 | else | |
10418 | { | |
10419 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
10420 | set it (this is probably a bug) and if it is set | |
10421 | assign_section_numbers will create a reloc section. */ | |
10422 | o->flags &=~ SEC_RELOC; | |
10423 | } | |
10424 | ||
10425 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
10426 | zero. This is done in elf_fake_sections as well, but forcing | |
10427 | the VMA to 0 here will ensure that relocs against these | |
10428 | sections are handled correctly. */ | |
10429 | if ((o->flags & SEC_ALLOC) == 0 | |
10430 | && ! o->user_set_vma) | |
10431 | o->vma = 0; | |
10432 | } | |
10433 | ||
10434 | if (! info->relocatable && merged) | |
10435 | elf_link_hash_traverse (elf_hash_table (info), | |
10436 | _bfd_elf_link_sec_merge_syms, abfd); | |
10437 | ||
10438 | /* Figure out the file positions for everything but the symbol table | |
10439 | and the relocs. We set symcount to force assign_section_numbers | |
10440 | to create a symbol table. */ | |
10441 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
10442 | BFD_ASSERT (! abfd->output_has_begun); | |
10443 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
10444 | goto error_return; | |
10445 | ||
ee75fd95 | 10446 | /* Set sizes, and assign file positions for reloc sections. */ |
c152c796 AM |
10447 | for (o = abfd->sections; o != NULL; o = o->next) |
10448 | { | |
d4730f92 | 10449 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
c152c796 AM |
10450 | if ((o->flags & SEC_RELOC) != 0) |
10451 | { | |
d4730f92 BS |
10452 | if (esdo->rel.hdr |
10453 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) | |
c152c796 AM |
10454 | goto error_return; |
10455 | ||
d4730f92 BS |
10456 | if (esdo->rela.hdr |
10457 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) | |
c152c796 AM |
10458 | goto error_return; |
10459 | } | |
10460 | ||
10461 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |
10462 | to count upwards while actually outputting the relocations. */ | |
d4730f92 BS |
10463 | esdo->rel.count = 0; |
10464 | esdo->rela.count = 0; | |
c152c796 AM |
10465 | } |
10466 | ||
10467 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
10468 | ||
10469 | /* We have now assigned file positions for all the sections except | |
10470 | .symtab and .strtab. We start the .symtab section at the current | |
10471 | file position, and write directly to it. We build the .strtab | |
10472 | section in memory. */ | |
10473 | bfd_get_symcount (abfd) = 0; | |
10474 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10475 | /* sh_name is set in prep_headers. */ | |
10476 | symtab_hdr->sh_type = SHT_SYMTAB; | |
10477 | /* sh_flags, sh_addr and sh_size all start off zero. */ | |
10478 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | |
10479 | /* sh_link is set in assign_section_numbers. */ | |
10480 | /* sh_info is set below. */ | |
10481 | /* sh_offset is set just below. */ | |
72de5009 | 10482 | symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
c152c796 AM |
10483 | |
10484 | off = elf_tdata (abfd)->next_file_pos; | |
10485 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); | |
10486 | ||
10487 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
10488 | incorrect. We do not yet know the size of the .symtab section. | |
10489 | We correct next_file_pos below, after we do know the size. */ | |
10490 | ||
10491 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
10492 | continuously seeking to the right position in the file. */ | |
10493 | if (! info->keep_memory || max_sym_count < 20) | |
10494 | finfo.symbuf_size = 20; | |
10495 | else | |
10496 | finfo.symbuf_size = max_sym_count; | |
10497 | amt = finfo.symbuf_size; | |
10498 | amt *= bed->s->sizeof_sym; | |
a50b1753 | 10499 | finfo.symbuf = (bfd_byte *) bfd_malloc (amt); |
c152c796 AM |
10500 | if (finfo.symbuf == NULL) |
10501 | goto error_return; | |
4fbb74a6 | 10502 | if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) |
c152c796 AM |
10503 | { |
10504 | /* Wild guess at number of output symbols. realloc'd as needed. */ | |
10505 | amt = 2 * max_sym_count + elf_numsections (abfd) + 1000; | |
10506 | finfo.shndxbuf_size = amt; | |
10507 | amt *= sizeof (Elf_External_Sym_Shndx); | |
a50b1753 | 10508 | finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); |
c152c796 AM |
10509 | if (finfo.symshndxbuf == NULL) |
10510 | goto error_return; | |
10511 | } | |
10512 | ||
10513 | /* Start writing out the symbol table. The first symbol is always a | |
10514 | dummy symbol. */ | |
10515 | if (info->strip != strip_all | |
10516 | || emit_relocs) | |
10517 | { | |
10518 | elfsym.st_value = 0; | |
10519 | elfsym.st_size = 0; | |
10520 | elfsym.st_info = 0; | |
10521 | elfsym.st_other = 0; | |
10522 | elfsym.st_shndx = SHN_UNDEF; | |
6e0b88f1 AM |
10523 | if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr, |
10524 | NULL) != 1) | |
c152c796 AM |
10525 | goto error_return; |
10526 | } | |
10527 | ||
c152c796 AM |
10528 | /* Output a symbol for each section. We output these even if we are |
10529 | discarding local symbols, since they are used for relocs. These | |
10530 | symbols have no names. We store the index of each one in the | |
10531 | index field of the section, so that we can find it again when | |
10532 | outputting relocs. */ | |
10533 | if (info->strip != strip_all | |
10534 | || emit_relocs) | |
10535 | { | |
10536 | elfsym.st_size = 0; | |
10537 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
10538 | elfsym.st_other = 0; | |
f0b5bb34 | 10539 | elfsym.st_value = 0; |
c152c796 AM |
10540 | for (i = 1; i < elf_numsections (abfd); i++) |
10541 | { | |
10542 | o = bfd_section_from_elf_index (abfd, i); | |
10543 | if (o != NULL) | |
f0b5bb34 AM |
10544 | { |
10545 | o->target_index = bfd_get_symcount (abfd); | |
10546 | elfsym.st_shndx = i; | |
10547 | if (!info->relocatable) | |
10548 | elfsym.st_value = o->vma; | |
6e0b88f1 | 10549 | if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1) |
f0b5bb34 AM |
10550 | goto error_return; |
10551 | } | |
c152c796 AM |
10552 | } |
10553 | } | |
10554 | ||
10555 | /* Allocate some memory to hold information read in from the input | |
10556 | files. */ | |
10557 | if (max_contents_size != 0) | |
10558 | { | |
a50b1753 | 10559 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
c152c796 AM |
10560 | if (finfo.contents == NULL) |
10561 | goto error_return; | |
10562 | } | |
10563 | ||
10564 | if (max_external_reloc_size != 0) | |
10565 | { | |
10566 | finfo.external_relocs = bfd_malloc (max_external_reloc_size); | |
10567 | if (finfo.external_relocs == NULL) | |
10568 | goto error_return; | |
10569 | } | |
10570 | ||
10571 | if (max_internal_reloc_count != 0) | |
10572 | { | |
10573 | amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; | |
10574 | amt *= sizeof (Elf_Internal_Rela); | |
a50b1753 | 10575 | finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); |
c152c796 AM |
10576 | if (finfo.internal_relocs == NULL) |
10577 | goto error_return; | |
10578 | } | |
10579 | ||
10580 | if (max_sym_count != 0) | |
10581 | { | |
10582 | amt = max_sym_count * bed->s->sizeof_sym; | |
a50b1753 | 10583 | finfo.external_syms = (bfd_byte *) bfd_malloc (amt); |
c152c796 AM |
10584 | if (finfo.external_syms == NULL) |
10585 | goto error_return; | |
10586 | ||
10587 | amt = max_sym_count * sizeof (Elf_Internal_Sym); | |
a50b1753 | 10588 | finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); |
c152c796 AM |
10589 | if (finfo.internal_syms == NULL) |
10590 | goto error_return; | |
10591 | ||
10592 | amt = max_sym_count * sizeof (long); | |
a50b1753 | 10593 | finfo.indices = (long int *) bfd_malloc (amt); |
c152c796 AM |
10594 | if (finfo.indices == NULL) |
10595 | goto error_return; | |
10596 | ||
10597 | amt = max_sym_count * sizeof (asection *); | |
a50b1753 | 10598 | finfo.sections = (asection **) bfd_malloc (amt); |
c152c796 AM |
10599 | if (finfo.sections == NULL) |
10600 | goto error_return; | |
10601 | } | |
10602 | ||
10603 | if (max_sym_shndx_count != 0) | |
10604 | { | |
10605 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | |
a50b1753 | 10606 | finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); |
c152c796 AM |
10607 | if (finfo.locsym_shndx == NULL) |
10608 | goto error_return; | |
10609 | } | |
10610 | ||
10611 | if (elf_hash_table (info)->tls_sec) | |
10612 | { | |
10613 | bfd_vma base, end = 0; | |
10614 | asection *sec; | |
10615 | ||
10616 | for (sec = elf_hash_table (info)->tls_sec; | |
10617 | sec && (sec->flags & SEC_THREAD_LOCAL); | |
10618 | sec = sec->next) | |
10619 | { | |
3a800eb9 | 10620 | bfd_size_type size = sec->size; |
c152c796 | 10621 | |
3a800eb9 AM |
10622 | if (size == 0 |
10623 | && (sec->flags & SEC_HAS_CONTENTS) == 0) | |
c152c796 | 10624 | { |
91d6fa6a NC |
10625 | struct bfd_link_order *ord = sec->map_tail.link_order; |
10626 | ||
10627 | if (ord != NULL) | |
10628 | size = ord->offset + ord->size; | |
c152c796 AM |
10629 | } |
10630 | end = sec->vma + size; | |
10631 | } | |
10632 | base = elf_hash_table (info)->tls_sec->vma; | |
7dc98aea RO |
10633 | /* Only align end of TLS section if static TLS doesn't have special |
10634 | alignment requirements. */ | |
10635 | if (bed->static_tls_alignment == 1) | |
10636 | end = align_power (end, | |
10637 | elf_hash_table (info)->tls_sec->alignment_power); | |
c152c796 AM |
10638 | elf_hash_table (info)->tls_size = end - base; |
10639 | } | |
10640 | ||
0b52efa6 PB |
10641 | /* Reorder SHF_LINK_ORDER sections. */ |
10642 | for (o = abfd->sections; o != NULL; o = o->next) | |
10643 | { | |
10644 | if (!elf_fixup_link_order (abfd, o)) | |
10645 | return FALSE; | |
10646 | } | |
10647 | ||
c152c796 AM |
10648 | /* Since ELF permits relocations to be against local symbols, we |
10649 | must have the local symbols available when we do the relocations. | |
10650 | Since we would rather only read the local symbols once, and we | |
10651 | would rather not keep them in memory, we handle all the | |
10652 | relocations for a single input file at the same time. | |
10653 | ||
10654 | Unfortunately, there is no way to know the total number of local | |
10655 | symbols until we have seen all of them, and the local symbol | |
10656 | indices precede the global symbol indices. This means that when | |
10657 | we are generating relocatable output, and we see a reloc against | |
10658 | a global symbol, we can not know the symbol index until we have | |
10659 | finished examining all the local symbols to see which ones we are | |
10660 | going to output. To deal with this, we keep the relocations in | |
10661 | memory, and don't output them until the end of the link. This is | |
10662 | an unfortunate waste of memory, but I don't see a good way around | |
10663 | it. Fortunately, it only happens when performing a relocatable | |
10664 | link, which is not the common case. FIXME: If keep_memory is set | |
10665 | we could write the relocs out and then read them again; I don't | |
10666 | know how bad the memory loss will be. */ | |
10667 | ||
10668 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
10669 | sub->output_has_begun = FALSE; | |
10670 | for (o = abfd->sections; o != NULL; o = o->next) | |
10671 | { | |
8423293d | 10672 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
c152c796 AM |
10673 | { |
10674 | if (p->type == bfd_indirect_link_order | |
10675 | && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) | |
10676 | == bfd_target_elf_flavour) | |
10677 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) | |
10678 | { | |
10679 | if (! sub->output_has_begun) | |
10680 | { | |
10681 | if (! elf_link_input_bfd (&finfo, sub)) | |
10682 | goto error_return; | |
10683 | sub->output_has_begun = TRUE; | |
10684 | } | |
10685 | } | |
10686 | else if (p->type == bfd_section_reloc_link_order | |
10687 | || p->type == bfd_symbol_reloc_link_order) | |
10688 | { | |
10689 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
10690 | goto error_return; | |
10691 | } | |
10692 | else | |
10693 | { | |
10694 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
351f65ca L |
10695 | { |
10696 | if (p->type == bfd_indirect_link_order | |
10697 | && (bfd_get_flavour (sub) | |
10698 | == bfd_target_elf_flavour) | |
10699 | && (elf_elfheader (sub)->e_ident[EI_CLASS] | |
10700 | != bed->s->elfclass)) | |
10701 | { | |
10702 | const char *iclass, *oclass; | |
10703 | ||
10704 | if (bed->s->elfclass == ELFCLASS64) | |
10705 | { | |
10706 | iclass = "ELFCLASS32"; | |
10707 | oclass = "ELFCLASS64"; | |
10708 | } | |
10709 | else | |
10710 | { | |
10711 | iclass = "ELFCLASS64"; | |
10712 | oclass = "ELFCLASS32"; | |
10713 | } | |
10714 | ||
10715 | bfd_set_error (bfd_error_wrong_format); | |
10716 | (*_bfd_error_handler) | |
10717 | (_("%B: file class %s incompatible with %s"), | |
10718 | sub, iclass, oclass); | |
10719 | } | |
10720 | ||
10721 | goto error_return; | |
10722 | } | |
c152c796 AM |
10723 | } |
10724 | } | |
10725 | } | |
10726 | ||
c0f00686 L |
10727 | /* Free symbol buffer if needed. */ |
10728 | if (!info->reduce_memory_overheads) | |
10729 | { | |
10730 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
3fcd97f1 JJ |
10731 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour |
10732 | && elf_tdata (sub)->symbuf) | |
c0f00686 L |
10733 | { |
10734 | free (elf_tdata (sub)->symbuf); | |
10735 | elf_tdata (sub)->symbuf = NULL; | |
10736 | } | |
10737 | } | |
10738 | ||
c152c796 AM |
10739 | /* Output any global symbols that got converted to local in a |
10740 | version script or due to symbol visibility. We do this in a | |
10741 | separate step since ELF requires all local symbols to appear | |
10742 | prior to any global symbols. FIXME: We should only do this if | |
10743 | some global symbols were, in fact, converted to become local. | |
10744 | FIXME: Will this work correctly with the Irix 5 linker? */ | |
10745 | eoinfo.failed = FALSE; | |
10746 | eoinfo.finfo = &finfo; | |
10747 | eoinfo.localsyms = TRUE; | |
10748 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
10749 | &eoinfo); | |
10750 | if (eoinfo.failed) | |
10751 | return FALSE; | |
10752 | ||
4e617b1e PB |
10753 | /* If backend needs to output some local symbols not present in the hash |
10754 | table, do it now. */ | |
10755 | if (bed->elf_backend_output_arch_local_syms) | |
10756 | { | |
6e0b88f1 | 10757 | typedef int (*out_sym_func) |
4e617b1e PB |
10758 | (void *, const char *, Elf_Internal_Sym *, asection *, |
10759 | struct elf_link_hash_entry *); | |
10760 | ||
10761 | if (! ((*bed->elf_backend_output_arch_local_syms) | |
10762 | (abfd, info, &finfo, (out_sym_func) elf_link_output_sym))) | |
10763 | return FALSE; | |
10764 | } | |
10765 | ||
c152c796 AM |
10766 | /* That wrote out all the local symbols. Finish up the symbol table |
10767 | with the global symbols. Even if we want to strip everything we | |
10768 | can, we still need to deal with those global symbols that got | |
10769 | converted to local in a version script. */ | |
10770 | ||
10771 | /* The sh_info field records the index of the first non local symbol. */ | |
10772 | symtab_hdr->sh_info = bfd_get_symcount (abfd); | |
10773 | ||
10774 | if (dynamic | |
10775 | && finfo.dynsym_sec->output_section != bfd_abs_section_ptr) | |
10776 | { | |
10777 | Elf_Internal_Sym sym; | |
10778 | bfd_byte *dynsym = finfo.dynsym_sec->contents; | |
10779 | long last_local = 0; | |
10780 | ||
10781 | /* Write out the section symbols for the output sections. */ | |
67687978 | 10782 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) |
c152c796 AM |
10783 | { |
10784 | asection *s; | |
10785 | ||
10786 | sym.st_size = 0; | |
10787 | sym.st_name = 0; | |
10788 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
10789 | sym.st_other = 0; | |
10790 | ||
10791 | for (s = abfd->sections; s != NULL; s = s->next) | |
10792 | { | |
10793 | int indx; | |
10794 | bfd_byte *dest; | |
10795 | long dynindx; | |
10796 | ||
c152c796 | 10797 | dynindx = elf_section_data (s)->dynindx; |
8c37241b JJ |
10798 | if (dynindx <= 0) |
10799 | continue; | |
10800 | indx = elf_section_data (s)->this_idx; | |
c152c796 AM |
10801 | BFD_ASSERT (indx > 0); |
10802 | sym.st_shndx = indx; | |
c0d5a53d L |
10803 | if (! check_dynsym (abfd, &sym)) |
10804 | return FALSE; | |
c152c796 AM |
10805 | sym.st_value = s->vma; |
10806 | dest = dynsym + dynindx * bed->s->sizeof_sym; | |
8c37241b JJ |
10807 | if (last_local < dynindx) |
10808 | last_local = dynindx; | |
c152c796 AM |
10809 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
10810 | } | |
c152c796 AM |
10811 | } |
10812 | ||
10813 | /* Write out the local dynsyms. */ | |
10814 | if (elf_hash_table (info)->dynlocal) | |
10815 | { | |
10816 | struct elf_link_local_dynamic_entry *e; | |
10817 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
10818 | { | |
10819 | asection *s; | |
10820 | bfd_byte *dest; | |
10821 | ||
935bd1e0 | 10822 | /* Copy the internal symbol and turn off visibility. |
c152c796 AM |
10823 | Note that we saved a word of storage and overwrote |
10824 | the original st_name with the dynstr_index. */ | |
10825 | sym = e->isym; | |
935bd1e0 | 10826 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
c152c796 | 10827 | |
cb33740c AM |
10828 | s = bfd_section_from_elf_index (e->input_bfd, |
10829 | e->isym.st_shndx); | |
10830 | if (s != NULL) | |
c152c796 | 10831 | { |
c152c796 AM |
10832 | sym.st_shndx = |
10833 | elf_section_data (s->output_section)->this_idx; | |
c0d5a53d L |
10834 | if (! check_dynsym (abfd, &sym)) |
10835 | return FALSE; | |
c152c796 AM |
10836 | sym.st_value = (s->output_section->vma |
10837 | + s->output_offset | |
10838 | + e->isym.st_value); | |
10839 | } | |
10840 | ||
10841 | if (last_local < e->dynindx) | |
10842 | last_local = e->dynindx; | |
10843 | ||
10844 | dest = dynsym + e->dynindx * bed->s->sizeof_sym; | |
10845 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |
10846 | } | |
10847 | } | |
10848 | ||
10849 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = | |
10850 | last_local + 1; | |
10851 | } | |
10852 | ||
10853 | /* We get the global symbols from the hash table. */ | |
10854 | eoinfo.failed = FALSE; | |
10855 | eoinfo.localsyms = FALSE; | |
10856 | eoinfo.finfo = &finfo; | |
10857 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
10858 | &eoinfo); | |
10859 | if (eoinfo.failed) | |
10860 | return FALSE; | |
10861 | ||
10862 | /* If backend needs to output some symbols not present in the hash | |
10863 | table, do it now. */ | |
10864 | if (bed->elf_backend_output_arch_syms) | |
10865 | { | |
6e0b88f1 | 10866 | typedef int (*out_sym_func) |
c152c796 AM |
10867 | (void *, const char *, Elf_Internal_Sym *, asection *, |
10868 | struct elf_link_hash_entry *); | |
10869 | ||
10870 | if (! ((*bed->elf_backend_output_arch_syms) | |
10871 | (abfd, info, &finfo, (out_sym_func) elf_link_output_sym))) | |
10872 | return FALSE; | |
10873 | } | |
10874 | ||
10875 | /* Flush all symbols to the file. */ | |
10876 | if (! elf_link_flush_output_syms (&finfo, bed)) | |
10877 | return FALSE; | |
10878 | ||
10879 | /* Now we know the size of the symtab section. */ | |
10880 | off += symtab_hdr->sh_size; | |
10881 | ||
10882 | symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; | |
10883 | if (symtab_shndx_hdr->sh_name != 0) | |
10884 | { | |
10885 | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; | |
10886 | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | |
10887 | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | |
10888 | amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); | |
10889 | symtab_shndx_hdr->sh_size = amt; | |
10890 | ||
10891 | off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, | |
10892 | off, TRUE); | |
10893 | ||
10894 | if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 | |
10895 | || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt)) | |
10896 | return FALSE; | |
10897 | } | |
10898 | ||
10899 | ||
10900 | /* Finish up and write out the symbol string table (.strtab) | |
10901 | section. */ | |
10902 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
10903 | /* sh_name was set in prep_headers. */ | |
10904 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
10905 | symstrtab_hdr->sh_flags = 0; | |
10906 | symstrtab_hdr->sh_addr = 0; | |
10907 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
10908 | symstrtab_hdr->sh_entsize = 0; | |
10909 | symstrtab_hdr->sh_link = 0; | |
10910 | symstrtab_hdr->sh_info = 0; | |
10911 | /* sh_offset is set just below. */ | |
10912 | symstrtab_hdr->sh_addralign = 1; | |
10913 | ||
10914 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE); | |
10915 | elf_tdata (abfd)->next_file_pos = off; | |
10916 | ||
10917 | if (bfd_get_symcount (abfd) > 0) | |
10918 | { | |
10919 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
10920 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
10921 | return FALSE; | |
10922 | } | |
10923 | ||
10924 | /* Adjust the relocs to have the correct symbol indices. */ | |
10925 | for (o = abfd->sections; o != NULL; o = o->next) | |
10926 | { | |
d4730f92 | 10927 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
c152c796 AM |
10928 | if ((o->flags & SEC_RELOC) == 0) |
10929 | continue; | |
10930 | ||
d4730f92 BS |
10931 | if (esdo->rel.hdr != NULL) |
10932 | elf_link_adjust_relocs (abfd, &esdo->rel); | |
10933 | if (esdo->rela.hdr != NULL) | |
10934 | elf_link_adjust_relocs (abfd, &esdo->rela); | |
c152c796 AM |
10935 | |
10936 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
10937 | trying to swap the relocs out itself. */ | |
10938 | o->reloc_count = 0; | |
10939 | } | |
10940 | ||
10941 | if (dynamic && info->combreloc && dynobj != NULL) | |
10942 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | |
10943 | ||
10944 | /* If we are linking against a dynamic object, or generating a | |
10945 | shared library, finish up the dynamic linking information. */ | |
10946 | if (dynamic) | |
10947 | { | |
10948 | bfd_byte *dyncon, *dynconend; | |
10949 | ||
10950 | /* Fix up .dynamic entries. */ | |
10951 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
10952 | BFD_ASSERT (o != NULL); | |
10953 | ||
10954 | dyncon = o->contents; | |
eea6121a | 10955 | dynconend = o->contents + o->size; |
c152c796 AM |
10956 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
10957 | { | |
10958 | Elf_Internal_Dyn dyn; | |
10959 | const char *name; | |
10960 | unsigned int type; | |
10961 | ||
10962 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
10963 | ||
10964 | switch (dyn.d_tag) | |
10965 | { | |
10966 | default: | |
10967 | continue; | |
10968 | case DT_NULL: | |
10969 | if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) | |
10970 | { | |
10971 | switch (elf_section_data (reldyn)->this_hdr.sh_type) | |
10972 | { | |
10973 | case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; | |
10974 | case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; | |
10975 | default: continue; | |
10976 | } | |
10977 | dyn.d_un.d_val = relativecount; | |
10978 | relativecount = 0; | |
10979 | break; | |
10980 | } | |
10981 | continue; | |
10982 | ||
10983 | case DT_INIT: | |
10984 | name = info->init_function; | |
10985 | goto get_sym; | |
10986 | case DT_FINI: | |
10987 | name = info->fini_function; | |
10988 | get_sym: | |
10989 | { | |
10990 | struct elf_link_hash_entry *h; | |
10991 | ||
10992 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
10993 | FALSE, FALSE, TRUE); | |
10994 | if (h != NULL | |
10995 | && (h->root.type == bfd_link_hash_defined | |
10996 | || h->root.type == bfd_link_hash_defweak)) | |
10997 | { | |
bef26483 | 10998 | dyn.d_un.d_ptr = h->root.u.def.value; |
c152c796 AM |
10999 | o = h->root.u.def.section; |
11000 | if (o->output_section != NULL) | |
bef26483 | 11001 | dyn.d_un.d_ptr += (o->output_section->vma |
c152c796 AM |
11002 | + o->output_offset); |
11003 | else | |
11004 | { | |
11005 | /* The symbol is imported from another shared | |
11006 | library and does not apply to this one. */ | |
bef26483 | 11007 | dyn.d_un.d_ptr = 0; |
c152c796 AM |
11008 | } |
11009 | break; | |
11010 | } | |
11011 | } | |
11012 | continue; | |
11013 | ||
11014 | case DT_PREINIT_ARRAYSZ: | |
11015 | name = ".preinit_array"; | |
11016 | goto get_size; | |
11017 | case DT_INIT_ARRAYSZ: | |
11018 | name = ".init_array"; | |
11019 | goto get_size; | |
11020 | case DT_FINI_ARRAYSZ: | |
11021 | name = ".fini_array"; | |
11022 | get_size: | |
11023 | o = bfd_get_section_by_name (abfd, name); | |
11024 | if (o == NULL) | |
11025 | { | |
11026 | (*_bfd_error_handler) | |
d003868e | 11027 | (_("%B: could not find output section %s"), abfd, name); |
c152c796 AM |
11028 | goto error_return; |
11029 | } | |
eea6121a | 11030 | if (o->size == 0) |
c152c796 AM |
11031 | (*_bfd_error_handler) |
11032 | (_("warning: %s section has zero size"), name); | |
eea6121a | 11033 | dyn.d_un.d_val = o->size; |
c152c796 AM |
11034 | break; |
11035 | ||
11036 | case DT_PREINIT_ARRAY: | |
11037 | name = ".preinit_array"; | |
11038 | goto get_vma; | |
11039 | case DT_INIT_ARRAY: | |
11040 | name = ".init_array"; | |
11041 | goto get_vma; | |
11042 | case DT_FINI_ARRAY: | |
11043 | name = ".fini_array"; | |
11044 | goto get_vma; | |
11045 | ||
11046 | case DT_HASH: | |
11047 | name = ".hash"; | |
11048 | goto get_vma; | |
fdc90cb4 JJ |
11049 | case DT_GNU_HASH: |
11050 | name = ".gnu.hash"; | |
11051 | goto get_vma; | |
c152c796 AM |
11052 | case DT_STRTAB: |
11053 | name = ".dynstr"; | |
11054 | goto get_vma; | |
11055 | case DT_SYMTAB: | |
11056 | name = ".dynsym"; | |
11057 | goto get_vma; | |
11058 | case DT_VERDEF: | |
11059 | name = ".gnu.version_d"; | |
11060 | goto get_vma; | |
11061 | case DT_VERNEED: | |
11062 | name = ".gnu.version_r"; | |
11063 | goto get_vma; | |
11064 | case DT_VERSYM: | |
11065 | name = ".gnu.version"; | |
11066 | get_vma: | |
11067 | o = bfd_get_section_by_name (abfd, name); | |
11068 | if (o == NULL) | |
11069 | { | |
11070 | (*_bfd_error_handler) | |
d003868e | 11071 | (_("%B: could not find output section %s"), abfd, name); |
c152c796 AM |
11072 | goto error_return; |
11073 | } | |
11074 | dyn.d_un.d_ptr = o->vma; | |
11075 | break; | |
11076 | ||
11077 | case DT_REL: | |
11078 | case DT_RELA: | |
11079 | case DT_RELSZ: | |
11080 | case DT_RELASZ: | |
11081 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
11082 | type = SHT_REL; | |
11083 | else | |
11084 | type = SHT_RELA; | |
11085 | dyn.d_un.d_val = 0; | |
bef26483 | 11086 | dyn.d_un.d_ptr = 0; |
c152c796 AM |
11087 | for (i = 1; i < elf_numsections (abfd); i++) |
11088 | { | |
11089 | Elf_Internal_Shdr *hdr; | |
11090 | ||
11091 | hdr = elf_elfsections (abfd)[i]; | |
11092 | if (hdr->sh_type == type | |
11093 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
11094 | { | |
11095 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
11096 | dyn.d_un.d_val += hdr->sh_size; | |
11097 | else | |
11098 | { | |
bef26483 AM |
11099 | if (dyn.d_un.d_ptr == 0 |
11100 | || hdr->sh_addr < dyn.d_un.d_ptr) | |
11101 | dyn.d_un.d_ptr = hdr->sh_addr; | |
c152c796 AM |
11102 | } |
11103 | } | |
11104 | } | |
11105 | break; | |
11106 | } | |
11107 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |
11108 | } | |
11109 | } | |
11110 | ||
11111 | /* If we have created any dynamic sections, then output them. */ | |
11112 | if (dynobj != NULL) | |
11113 | { | |
11114 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
11115 | goto error_return; | |
11116 | ||
943284cc DJ |
11117 | /* Check for DT_TEXTREL (late, in case the backend removes it). */ |
11118 | if (info->warn_shared_textrel && info->shared) | |
11119 | { | |
11120 | bfd_byte *dyncon, *dynconend; | |
11121 | ||
11122 | /* Fix up .dynamic entries. */ | |
11123 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
11124 | BFD_ASSERT (o != NULL); | |
11125 | ||
11126 | dyncon = o->contents; | |
11127 | dynconend = o->contents + o->size; | |
11128 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |
11129 | { | |
11130 | Elf_Internal_Dyn dyn; | |
11131 | ||
11132 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
11133 | ||
11134 | if (dyn.d_tag == DT_TEXTREL) | |
11135 | { | |
a0c8462f | 11136 | info->callbacks->einfo |
9267588c | 11137 | (_("%P: warning: creating a DT_TEXTREL in a shared object.\n")); |
943284cc DJ |
11138 | break; |
11139 | } | |
11140 | } | |
11141 | } | |
11142 | ||
c152c796 AM |
11143 | for (o = dynobj->sections; o != NULL; o = o->next) |
11144 | { | |
11145 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
eea6121a | 11146 | || o->size == 0 |
c152c796 AM |
11147 | || o->output_section == bfd_abs_section_ptr) |
11148 | continue; | |
11149 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
11150 | { | |
11151 | /* At this point, we are only interested in sections | |
11152 | created by _bfd_elf_link_create_dynamic_sections. */ | |
11153 | continue; | |
11154 | } | |
3722b82f AM |
11155 | if (elf_hash_table (info)->stab_info.stabstr == o) |
11156 | continue; | |
eea6121a AM |
11157 | if (elf_hash_table (info)->eh_info.hdr_sec == o) |
11158 | continue; | |
c152c796 AM |
11159 | if ((elf_section_data (o->output_section)->this_hdr.sh_type |
11160 | != SHT_STRTAB) | |
11161 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
11162 | { | |
5dabe785 | 11163 | /* FIXME: octets_per_byte. */ |
c152c796 AM |
11164 | if (! bfd_set_section_contents (abfd, o->output_section, |
11165 | o->contents, | |
11166 | (file_ptr) o->output_offset, | |
eea6121a | 11167 | o->size)) |
c152c796 AM |
11168 | goto error_return; |
11169 | } | |
11170 | else | |
11171 | { | |
11172 | /* The contents of the .dynstr section are actually in a | |
11173 | stringtab. */ | |
11174 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
11175 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
11176 | || ! _bfd_elf_strtab_emit (abfd, | |
11177 | elf_hash_table (info)->dynstr)) | |
11178 | goto error_return; | |
11179 | } | |
11180 | } | |
11181 | } | |
11182 | ||
11183 | if (info->relocatable) | |
11184 | { | |
11185 | bfd_boolean failed = FALSE; | |
11186 | ||
11187 | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | |
11188 | if (failed) | |
11189 | goto error_return; | |
11190 | } | |
11191 | ||
11192 | /* If we have optimized stabs strings, output them. */ | |
3722b82f | 11193 | if (elf_hash_table (info)->stab_info.stabstr != NULL) |
c152c796 AM |
11194 | { |
11195 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
11196 | goto error_return; | |
11197 | } | |
11198 | ||
11199 | if (info->eh_frame_hdr) | |
11200 | { | |
11201 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) | |
11202 | goto error_return; | |
11203 | } | |
11204 | ||
11205 | if (finfo.symstrtab != NULL) | |
11206 | _bfd_stringtab_free (finfo.symstrtab); | |
11207 | if (finfo.contents != NULL) | |
11208 | free (finfo.contents); | |
11209 | if (finfo.external_relocs != NULL) | |
11210 | free (finfo.external_relocs); | |
11211 | if (finfo.internal_relocs != NULL) | |
11212 | free (finfo.internal_relocs); | |
11213 | if (finfo.external_syms != NULL) | |
11214 | free (finfo.external_syms); | |
11215 | if (finfo.locsym_shndx != NULL) | |
11216 | free (finfo.locsym_shndx); | |
11217 | if (finfo.internal_syms != NULL) | |
11218 | free (finfo.internal_syms); | |
11219 | if (finfo.indices != NULL) | |
11220 | free (finfo.indices); | |
11221 | if (finfo.sections != NULL) | |
11222 | free (finfo.sections); | |
11223 | if (finfo.symbuf != NULL) | |
11224 | free (finfo.symbuf); | |
11225 | if (finfo.symshndxbuf != NULL) | |
11226 | free (finfo.symshndxbuf); | |
11227 | for (o = abfd->sections; o != NULL; o = o->next) | |
11228 | { | |
d4730f92 BS |
11229 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
11230 | if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) | |
11231 | free (esdo->rel.hashes); | |
11232 | if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) | |
11233 | free (esdo->rela.hashes); | |
c152c796 AM |
11234 | } |
11235 | ||
11236 | elf_tdata (abfd)->linker = TRUE; | |
11237 | ||
104d59d1 JM |
11238 | if (attr_section) |
11239 | { | |
a50b1753 | 11240 | bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); |
104d59d1 | 11241 | if (contents == NULL) |
d0f16d5e | 11242 | return FALSE; /* Bail out and fail. */ |
104d59d1 JM |
11243 | bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); |
11244 | bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); | |
11245 | free (contents); | |
11246 | } | |
11247 | ||
c152c796 AM |
11248 | return TRUE; |
11249 | ||
11250 | error_return: | |
11251 | if (finfo.symstrtab != NULL) | |
11252 | _bfd_stringtab_free (finfo.symstrtab); | |
11253 | if (finfo.contents != NULL) | |
11254 | free (finfo.contents); | |
11255 | if (finfo.external_relocs != NULL) | |
11256 | free (finfo.external_relocs); | |
11257 | if (finfo.internal_relocs != NULL) | |
11258 | free (finfo.internal_relocs); | |
11259 | if (finfo.external_syms != NULL) | |
11260 | free (finfo.external_syms); | |
11261 | if (finfo.locsym_shndx != NULL) | |
11262 | free (finfo.locsym_shndx); | |
11263 | if (finfo.internal_syms != NULL) | |
11264 | free (finfo.internal_syms); | |
11265 | if (finfo.indices != NULL) | |
11266 | free (finfo.indices); | |
11267 | if (finfo.sections != NULL) | |
11268 | free (finfo.sections); | |
11269 | if (finfo.symbuf != NULL) | |
11270 | free (finfo.symbuf); | |
11271 | if (finfo.symshndxbuf != NULL) | |
11272 | free (finfo.symshndxbuf); | |
11273 | for (o = abfd->sections; o != NULL; o = o->next) | |
11274 | { | |
d4730f92 BS |
11275 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
11276 | if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) | |
11277 | free (esdo->rel.hashes); | |
11278 | if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) | |
11279 | free (esdo->rela.hashes); | |
c152c796 AM |
11280 | } |
11281 | ||
11282 | return FALSE; | |
11283 | } | |
11284 | \f | |
5241d853 RS |
11285 | /* Initialize COOKIE for input bfd ABFD. */ |
11286 | ||
11287 | static bfd_boolean | |
11288 | init_reloc_cookie (struct elf_reloc_cookie *cookie, | |
11289 | struct bfd_link_info *info, bfd *abfd) | |
11290 | { | |
11291 | Elf_Internal_Shdr *symtab_hdr; | |
11292 | const struct elf_backend_data *bed; | |
11293 | ||
11294 | bed = get_elf_backend_data (abfd); | |
11295 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11296 | ||
11297 | cookie->abfd = abfd; | |
11298 | cookie->sym_hashes = elf_sym_hashes (abfd); | |
11299 | cookie->bad_symtab = elf_bad_symtab (abfd); | |
11300 | if (cookie->bad_symtab) | |
11301 | { | |
11302 | cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
11303 | cookie->extsymoff = 0; | |
11304 | } | |
11305 | else | |
11306 | { | |
11307 | cookie->locsymcount = symtab_hdr->sh_info; | |
11308 | cookie->extsymoff = symtab_hdr->sh_info; | |
11309 | } | |
11310 | ||
11311 | if (bed->s->arch_size == 32) | |
11312 | cookie->r_sym_shift = 8; | |
11313 | else | |
11314 | cookie->r_sym_shift = 32; | |
11315 | ||
11316 | cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
11317 | if (cookie->locsyms == NULL && cookie->locsymcount != 0) | |
11318 | { | |
11319 | cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
11320 | cookie->locsymcount, 0, | |
11321 | NULL, NULL, NULL); | |
11322 | if (cookie->locsyms == NULL) | |
11323 | { | |
11324 | info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); | |
11325 | return FALSE; | |
11326 | } | |
11327 | if (info->keep_memory) | |
11328 | symtab_hdr->contents = (bfd_byte *) cookie->locsyms; | |
11329 | } | |
11330 | return TRUE; | |
11331 | } | |
11332 | ||
11333 | /* Free the memory allocated by init_reloc_cookie, if appropriate. */ | |
11334 | ||
11335 | static void | |
11336 | fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) | |
11337 | { | |
11338 | Elf_Internal_Shdr *symtab_hdr; | |
11339 | ||
11340 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11341 | if (cookie->locsyms != NULL | |
11342 | && symtab_hdr->contents != (unsigned char *) cookie->locsyms) | |
11343 | free (cookie->locsyms); | |
11344 | } | |
11345 | ||
11346 | /* Initialize the relocation information in COOKIE for input section SEC | |
11347 | of input bfd ABFD. */ | |
11348 | ||
11349 | static bfd_boolean | |
11350 | init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
11351 | struct bfd_link_info *info, bfd *abfd, | |
11352 | asection *sec) | |
11353 | { | |
11354 | const struct elf_backend_data *bed; | |
11355 | ||
11356 | if (sec->reloc_count == 0) | |
11357 | { | |
11358 | cookie->rels = NULL; | |
11359 | cookie->relend = NULL; | |
11360 | } | |
11361 | else | |
11362 | { | |
11363 | bed = get_elf_backend_data (abfd); | |
11364 | ||
11365 | cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | |
11366 | info->keep_memory); | |
11367 | if (cookie->rels == NULL) | |
11368 | return FALSE; | |
11369 | cookie->rel = cookie->rels; | |
11370 | cookie->relend = (cookie->rels | |
11371 | + sec->reloc_count * bed->s->int_rels_per_ext_rel); | |
11372 | } | |
11373 | cookie->rel = cookie->rels; | |
11374 | return TRUE; | |
11375 | } | |
11376 | ||
11377 | /* Free the memory allocated by init_reloc_cookie_rels, | |
11378 | if appropriate. */ | |
11379 | ||
11380 | static void | |
11381 | fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
11382 | asection *sec) | |
11383 | { | |
11384 | if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels) | |
11385 | free (cookie->rels); | |
11386 | } | |
11387 | ||
11388 | /* Initialize the whole of COOKIE for input section SEC. */ | |
11389 | ||
11390 | static bfd_boolean | |
11391 | init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
11392 | struct bfd_link_info *info, | |
11393 | asection *sec) | |
11394 | { | |
11395 | if (!init_reloc_cookie (cookie, info, sec->owner)) | |
11396 | goto error1; | |
11397 | if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) | |
11398 | goto error2; | |
11399 | return TRUE; | |
11400 | ||
11401 | error2: | |
11402 | fini_reloc_cookie (cookie, sec->owner); | |
11403 | error1: | |
11404 | return FALSE; | |
11405 | } | |
11406 | ||
11407 | /* Free the memory allocated by init_reloc_cookie_for_section, | |
11408 | if appropriate. */ | |
11409 | ||
11410 | static void | |
11411 | fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
11412 | asection *sec) | |
11413 | { | |
11414 | fini_reloc_cookie_rels (cookie, sec); | |
11415 | fini_reloc_cookie (cookie, sec->owner); | |
11416 | } | |
11417 | \f | |
c152c796 AM |
11418 | /* Garbage collect unused sections. */ |
11419 | ||
07adf181 AM |
11420 | /* Default gc_mark_hook. */ |
11421 | ||
11422 | asection * | |
11423 | _bfd_elf_gc_mark_hook (asection *sec, | |
11424 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
11425 | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | |
11426 | struct elf_link_hash_entry *h, | |
11427 | Elf_Internal_Sym *sym) | |
11428 | { | |
bde6f3eb L |
11429 | const char *sec_name; |
11430 | ||
07adf181 AM |
11431 | if (h != NULL) |
11432 | { | |
11433 | switch (h->root.type) | |
11434 | { | |
11435 | case bfd_link_hash_defined: | |
11436 | case bfd_link_hash_defweak: | |
11437 | return h->root.u.def.section; | |
11438 | ||
11439 | case bfd_link_hash_common: | |
11440 | return h->root.u.c.p->section; | |
11441 | ||
bde6f3eb L |
11442 | case bfd_link_hash_undefined: |
11443 | case bfd_link_hash_undefweak: | |
11444 | /* To work around a glibc bug, keep all XXX input sections | |
11445 | when there is an as yet undefined reference to __start_XXX | |
11446 | or __stop_XXX symbols. The linker will later define such | |
11447 | symbols for orphan input sections that have a name | |
11448 | representable as a C identifier. */ | |
11449 | if (strncmp (h->root.root.string, "__start_", 8) == 0) | |
11450 | sec_name = h->root.root.string + 8; | |
11451 | else if (strncmp (h->root.root.string, "__stop_", 7) == 0) | |
11452 | sec_name = h->root.root.string + 7; | |
11453 | else | |
11454 | sec_name = NULL; | |
11455 | ||
11456 | if (sec_name && *sec_name != '\0') | |
11457 | { | |
11458 | bfd *i; | |
11459 | ||
11460 | for (i = info->input_bfds; i; i = i->link_next) | |
11461 | { | |
11462 | sec = bfd_get_section_by_name (i, sec_name); | |
11463 | if (sec) | |
11464 | sec->flags |= SEC_KEEP; | |
11465 | } | |
11466 | } | |
11467 | break; | |
11468 | ||
07adf181 AM |
11469 | default: |
11470 | break; | |
11471 | } | |
11472 | } | |
11473 | else | |
11474 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
11475 | ||
11476 | return NULL; | |
11477 | } | |
11478 | ||
5241d853 RS |
11479 | /* COOKIE->rel describes a relocation against section SEC, which is |
11480 | a section we've decided to keep. Return the section that contains | |
11481 | the relocation symbol, or NULL if no section contains it. */ | |
11482 | ||
11483 | asection * | |
11484 | _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, | |
11485 | elf_gc_mark_hook_fn gc_mark_hook, | |
11486 | struct elf_reloc_cookie *cookie) | |
11487 | { | |
11488 | unsigned long r_symndx; | |
11489 | struct elf_link_hash_entry *h; | |
11490 | ||
11491 | r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; | |
cf35638d | 11492 | if (r_symndx == STN_UNDEF) |
5241d853 RS |
11493 | return NULL; |
11494 | ||
11495 | if (r_symndx >= cookie->locsymcount | |
11496 | || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) | |
11497 | { | |
11498 | h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; | |
11499 | while (h->root.type == bfd_link_hash_indirect | |
11500 | || h->root.type == bfd_link_hash_warning) | |
11501 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11502 | return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); | |
11503 | } | |
11504 | ||
11505 | return (*gc_mark_hook) (sec, info, cookie->rel, NULL, | |
11506 | &cookie->locsyms[r_symndx]); | |
11507 | } | |
11508 | ||
11509 | /* COOKIE->rel describes a relocation against section SEC, which is | |
11510 | a section we've decided to keep. Mark the section that contains | |
9d0a14d3 | 11511 | the relocation symbol. */ |
5241d853 RS |
11512 | |
11513 | bfd_boolean | |
11514 | _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, | |
11515 | asection *sec, | |
11516 | elf_gc_mark_hook_fn gc_mark_hook, | |
9d0a14d3 | 11517 | struct elf_reloc_cookie *cookie) |
5241d853 RS |
11518 | { |
11519 | asection *rsec; | |
11520 | ||
11521 | rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie); | |
11522 | if (rsec && !rsec->gc_mark) | |
11523 | { | |
11524 | if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour) | |
11525 | rsec->gc_mark = 1; | |
5241d853 RS |
11526 | else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) |
11527 | return FALSE; | |
11528 | } | |
11529 | return TRUE; | |
11530 | } | |
11531 | ||
07adf181 AM |
11532 | /* The mark phase of garbage collection. For a given section, mark |
11533 | it and any sections in this section's group, and all the sections | |
11534 | which define symbols to which it refers. */ | |
11535 | ||
ccfa59ea AM |
11536 | bfd_boolean |
11537 | _bfd_elf_gc_mark (struct bfd_link_info *info, | |
11538 | asection *sec, | |
6a5bb875 | 11539 | elf_gc_mark_hook_fn gc_mark_hook) |
c152c796 AM |
11540 | { |
11541 | bfd_boolean ret; | |
9d0a14d3 | 11542 | asection *group_sec, *eh_frame; |
c152c796 AM |
11543 | |
11544 | sec->gc_mark = 1; | |
11545 | ||
11546 | /* Mark all the sections in the group. */ | |
11547 | group_sec = elf_section_data (sec)->next_in_group; | |
11548 | if (group_sec && !group_sec->gc_mark) | |
ccfa59ea | 11549 | if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) |
c152c796 AM |
11550 | return FALSE; |
11551 | ||
11552 | /* Look through the section relocs. */ | |
11553 | ret = TRUE; | |
9d0a14d3 RS |
11554 | eh_frame = elf_eh_frame_section (sec->owner); |
11555 | if ((sec->flags & SEC_RELOC) != 0 | |
11556 | && sec->reloc_count > 0 | |
11557 | && sec != eh_frame) | |
c152c796 | 11558 | { |
5241d853 | 11559 | struct elf_reloc_cookie cookie; |
c152c796 | 11560 | |
5241d853 RS |
11561 | if (!init_reloc_cookie_for_section (&cookie, info, sec)) |
11562 | ret = FALSE; | |
c152c796 | 11563 | else |
c152c796 | 11564 | { |
5241d853 | 11565 | for (; cookie.rel < cookie.relend; cookie.rel++) |
9d0a14d3 | 11566 | if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) |
5241d853 RS |
11567 | { |
11568 | ret = FALSE; | |
11569 | break; | |
11570 | } | |
11571 | fini_reloc_cookie_for_section (&cookie, sec); | |
c152c796 AM |
11572 | } |
11573 | } | |
9d0a14d3 RS |
11574 | |
11575 | if (ret && eh_frame && elf_fde_list (sec)) | |
11576 | { | |
11577 | struct elf_reloc_cookie cookie; | |
11578 | ||
11579 | if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) | |
11580 | ret = FALSE; | |
11581 | else | |
11582 | { | |
11583 | if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, | |
11584 | gc_mark_hook, &cookie)) | |
11585 | ret = FALSE; | |
11586 | fini_reloc_cookie_for_section (&cookie, eh_frame); | |
11587 | } | |
11588 | } | |
11589 | ||
c152c796 AM |
11590 | return ret; |
11591 | } | |
11592 | ||
11593 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
11594 | ||
c17d87de NC |
11595 | struct elf_gc_sweep_symbol_info |
11596 | { | |
ccabcbe5 AM |
11597 | struct bfd_link_info *info; |
11598 | void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, | |
11599 | bfd_boolean); | |
11600 | }; | |
11601 | ||
c152c796 | 11602 | static bfd_boolean |
ccabcbe5 | 11603 | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) |
c152c796 | 11604 | { |
c152c796 AM |
11605 | if (h->root.type == bfd_link_hash_warning) |
11606 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11607 | ||
ccabcbe5 AM |
11608 | if ((h->root.type == bfd_link_hash_defined |
11609 | || h->root.type == bfd_link_hash_defweak) | |
11610 | && !h->root.u.def.section->gc_mark | |
11611 | && !(h->root.u.def.section->owner->flags & DYNAMIC)) | |
11612 | { | |
a50b1753 NC |
11613 | struct elf_gc_sweep_symbol_info *inf = |
11614 | (struct elf_gc_sweep_symbol_info *) data; | |
ccabcbe5 AM |
11615 | (*inf->hide_symbol) (inf->info, h, TRUE); |
11616 | } | |
c152c796 AM |
11617 | |
11618 | return TRUE; | |
11619 | } | |
11620 | ||
11621 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
11622 | ||
11623 | typedef bfd_boolean (*gc_sweep_hook_fn) | |
11624 | (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); | |
11625 | ||
11626 | static bfd_boolean | |
ccabcbe5 | 11627 | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) |
c152c796 AM |
11628 | { |
11629 | bfd *sub; | |
ccabcbe5 AM |
11630 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
11631 | gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook; | |
11632 | unsigned long section_sym_count; | |
11633 | struct elf_gc_sweep_symbol_info sweep_info; | |
c152c796 AM |
11634 | |
11635 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
11636 | { | |
11637 | asection *o; | |
11638 | ||
11639 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
11640 | continue; | |
11641 | ||
11642 | for (o = sub->sections; o != NULL; o = o->next) | |
11643 | { | |
a33dafc3 L |
11644 | /* When any section in a section group is kept, we keep all |
11645 | sections in the section group. If the first member of | |
11646 | the section group is excluded, we will also exclude the | |
11647 | group section. */ | |
11648 | if (o->flags & SEC_GROUP) | |
11649 | { | |
11650 | asection *first = elf_next_in_group (o); | |
11651 | o->gc_mark = first->gc_mark; | |
11652 | } | |
11653 | else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0 | |
16583161 L |
11654 | || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0 |
11655 | || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE) | |
a33dafc3 | 11656 | { |
16583161 | 11657 | /* Keep debug, special and SHT_NOTE sections. */ |
a33dafc3 L |
11658 | o->gc_mark = 1; |
11659 | } | |
c152c796 AM |
11660 | |
11661 | if (o->gc_mark) | |
11662 | continue; | |
11663 | ||
11664 | /* Skip sweeping sections already excluded. */ | |
11665 | if (o->flags & SEC_EXCLUDE) | |
11666 | continue; | |
11667 | ||
11668 | /* Since this is early in the link process, it is simple | |
11669 | to remove a section from the output. */ | |
11670 | o->flags |= SEC_EXCLUDE; | |
11671 | ||
c55fe096 | 11672 | if (info->print_gc_sections && o->size != 0) |
c17d87de NC |
11673 | _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name); |
11674 | ||
c152c796 AM |
11675 | /* But we also have to update some of the relocation |
11676 | info we collected before. */ | |
11677 | if (gc_sweep_hook | |
e8aaee2a AM |
11678 | && (o->flags & SEC_RELOC) != 0 |
11679 | && o->reloc_count > 0 | |
11680 | && !bfd_is_abs_section (o->output_section)) | |
c152c796 AM |
11681 | { |
11682 | Elf_Internal_Rela *internal_relocs; | |
11683 | bfd_boolean r; | |
11684 | ||
11685 | internal_relocs | |
11686 | = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL, | |
11687 | info->keep_memory); | |
11688 | if (internal_relocs == NULL) | |
11689 | return FALSE; | |
11690 | ||
11691 | r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); | |
11692 | ||
11693 | if (elf_section_data (o)->relocs != internal_relocs) | |
11694 | free (internal_relocs); | |
11695 | ||
11696 | if (!r) | |
11697 | return FALSE; | |
11698 | } | |
11699 | } | |
11700 | } | |
11701 | ||
11702 | /* Remove the symbols that were in the swept sections from the dynamic | |
11703 | symbol table. GCFIXME: Anyone know how to get them out of the | |
11704 | static symbol table as well? */ | |
ccabcbe5 AM |
11705 | sweep_info.info = info; |
11706 | sweep_info.hide_symbol = bed->elf_backend_hide_symbol; | |
11707 | elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, | |
11708 | &sweep_info); | |
c152c796 | 11709 | |
ccabcbe5 | 11710 | _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count); |
c152c796 AM |
11711 | return TRUE; |
11712 | } | |
11713 | ||
11714 | /* Propagate collected vtable information. This is called through | |
11715 | elf_link_hash_traverse. */ | |
11716 | ||
11717 | static bfd_boolean | |
11718 | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) | |
11719 | { | |
11720 | if (h->root.type == bfd_link_hash_warning) | |
11721 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11722 | ||
11723 | /* Those that are not vtables. */ | |
f6e332e6 | 11724 | if (h->vtable == NULL || h->vtable->parent == NULL) |
c152c796 AM |
11725 | return TRUE; |
11726 | ||
11727 | /* Those vtables that do not have parents, we cannot merge. */ | |
f6e332e6 | 11728 | if (h->vtable->parent == (struct elf_link_hash_entry *) -1) |
c152c796 AM |
11729 | return TRUE; |
11730 | ||
11731 | /* If we've already been done, exit. */ | |
f6e332e6 | 11732 | if (h->vtable->used && h->vtable->used[-1]) |
c152c796 AM |
11733 | return TRUE; |
11734 | ||
11735 | /* Make sure the parent's table is up to date. */ | |
f6e332e6 | 11736 | elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp); |
c152c796 | 11737 | |
f6e332e6 | 11738 | if (h->vtable->used == NULL) |
c152c796 AM |
11739 | { |
11740 | /* None of this table's entries were referenced. Re-use the | |
11741 | parent's table. */ | |
f6e332e6 AM |
11742 | h->vtable->used = h->vtable->parent->vtable->used; |
11743 | h->vtable->size = h->vtable->parent->vtable->size; | |
c152c796 AM |
11744 | } |
11745 | else | |
11746 | { | |
11747 | size_t n; | |
11748 | bfd_boolean *cu, *pu; | |
11749 | ||
11750 | /* Or the parent's entries into ours. */ | |
f6e332e6 | 11751 | cu = h->vtable->used; |
c152c796 | 11752 | cu[-1] = TRUE; |
f6e332e6 | 11753 | pu = h->vtable->parent->vtable->used; |
c152c796 AM |
11754 | if (pu != NULL) |
11755 | { | |
11756 | const struct elf_backend_data *bed; | |
11757 | unsigned int log_file_align; | |
11758 | ||
11759 | bed = get_elf_backend_data (h->root.u.def.section->owner); | |
11760 | log_file_align = bed->s->log_file_align; | |
f6e332e6 | 11761 | n = h->vtable->parent->vtable->size >> log_file_align; |
c152c796 AM |
11762 | while (n--) |
11763 | { | |
11764 | if (*pu) | |
11765 | *cu = TRUE; | |
11766 | pu++; | |
11767 | cu++; | |
11768 | } | |
11769 | } | |
11770 | } | |
11771 | ||
11772 | return TRUE; | |
11773 | } | |
11774 | ||
11775 | static bfd_boolean | |
11776 | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) | |
11777 | { | |
11778 | asection *sec; | |
11779 | bfd_vma hstart, hend; | |
11780 | Elf_Internal_Rela *relstart, *relend, *rel; | |
11781 | const struct elf_backend_data *bed; | |
11782 | unsigned int log_file_align; | |
11783 | ||
11784 | if (h->root.type == bfd_link_hash_warning) | |
11785 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11786 | ||
11787 | /* Take care of both those symbols that do not describe vtables as | |
11788 | well as those that are not loaded. */ | |
f6e332e6 | 11789 | if (h->vtable == NULL || h->vtable->parent == NULL) |
c152c796 AM |
11790 | return TRUE; |
11791 | ||
11792 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
11793 | || h->root.type == bfd_link_hash_defweak); | |
11794 | ||
11795 | sec = h->root.u.def.section; | |
11796 | hstart = h->root.u.def.value; | |
11797 | hend = hstart + h->size; | |
11798 | ||
11799 | relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); | |
11800 | if (!relstart) | |
11801 | return *(bfd_boolean *) okp = FALSE; | |
11802 | bed = get_elf_backend_data (sec->owner); | |
11803 | log_file_align = bed->s->log_file_align; | |
11804 | ||
11805 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
11806 | ||
11807 | for (rel = relstart; rel < relend; ++rel) | |
11808 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
11809 | { | |
11810 | /* If the entry is in use, do nothing. */ | |
f6e332e6 AM |
11811 | if (h->vtable->used |
11812 | && (rel->r_offset - hstart) < h->vtable->size) | |
c152c796 AM |
11813 | { |
11814 | bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; | |
f6e332e6 | 11815 | if (h->vtable->used[entry]) |
c152c796 AM |
11816 | continue; |
11817 | } | |
11818 | /* Otherwise, kill it. */ | |
11819 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
11820 | } | |
11821 | ||
11822 | return TRUE; | |
11823 | } | |
11824 | ||
87538722 AM |
11825 | /* Mark sections containing dynamically referenced symbols. When |
11826 | building shared libraries, we must assume that any visible symbol is | |
11827 | referenced. */ | |
715df9b8 | 11828 | |
64d03ab5 AM |
11829 | bfd_boolean |
11830 | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) | |
715df9b8 | 11831 | { |
87538722 AM |
11832 | struct bfd_link_info *info = (struct bfd_link_info *) inf; |
11833 | ||
715df9b8 EB |
11834 | if (h->root.type == bfd_link_hash_warning) |
11835 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
11836 | ||
11837 | if ((h->root.type == bfd_link_hash_defined | |
11838 | || h->root.type == bfd_link_hash_defweak) | |
87538722 | 11839 | && (h->ref_dynamic |
5adcfd8b | 11840 | || (!info->executable |
87538722 AM |
11841 | && h->def_regular |
11842 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | |
11843 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN))) | |
715df9b8 EB |
11844 | h->root.u.def.section->flags |= SEC_KEEP; |
11845 | ||
11846 | return TRUE; | |
11847 | } | |
3b36f7e6 | 11848 | |
74f0fb50 AM |
11849 | /* Keep all sections containing symbols undefined on the command-line, |
11850 | and the section containing the entry symbol. */ | |
11851 | ||
11852 | void | |
11853 | _bfd_elf_gc_keep (struct bfd_link_info *info) | |
11854 | { | |
11855 | struct bfd_sym_chain *sym; | |
11856 | ||
11857 | for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) | |
11858 | { | |
11859 | struct elf_link_hash_entry *h; | |
11860 | ||
11861 | h = elf_link_hash_lookup (elf_hash_table (info), sym->name, | |
11862 | FALSE, FALSE, FALSE); | |
11863 | ||
11864 | if (h != NULL | |
11865 | && (h->root.type == bfd_link_hash_defined | |
11866 | || h->root.type == bfd_link_hash_defweak) | |
11867 | && !bfd_is_abs_section (h->root.u.def.section)) | |
11868 | h->root.u.def.section->flags |= SEC_KEEP; | |
11869 | } | |
11870 | } | |
11871 | ||
c152c796 AM |
11872 | /* Do mark and sweep of unused sections. */ |
11873 | ||
11874 | bfd_boolean | |
11875 | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) | |
11876 | { | |
11877 | bfd_boolean ok = TRUE; | |
11878 | bfd *sub; | |
6a5bb875 | 11879 | elf_gc_mark_hook_fn gc_mark_hook; |
64d03ab5 | 11880 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
c152c796 | 11881 | |
64d03ab5 | 11882 | if (!bed->can_gc_sections |
715df9b8 | 11883 | || !is_elf_hash_table (info->hash)) |
c152c796 AM |
11884 | { |
11885 | (*_bfd_error_handler)(_("Warning: gc-sections option ignored")); | |
11886 | return TRUE; | |
11887 | } | |
11888 | ||
74f0fb50 AM |
11889 | bed->gc_keep (info); |
11890 | ||
9d0a14d3 RS |
11891 | /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section |
11892 | at the .eh_frame section if we can mark the FDEs individually. */ | |
11893 | _bfd_elf_begin_eh_frame_parsing (info); | |
11894 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
11895 | { | |
11896 | asection *sec; | |
11897 | struct elf_reloc_cookie cookie; | |
11898 | ||
11899 | sec = bfd_get_section_by_name (sub, ".eh_frame"); | |
11900 | if (sec && init_reloc_cookie_for_section (&cookie, info, sec)) | |
11901 | { | |
11902 | _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); | |
11903 | if (elf_section_data (sec)->sec_info) | |
11904 | elf_eh_frame_section (sub) = sec; | |
11905 | fini_reloc_cookie_for_section (&cookie, sec); | |
11906 | } | |
11907 | } | |
11908 | _bfd_elf_end_eh_frame_parsing (info); | |
11909 | ||
c152c796 AM |
11910 | /* Apply transitive closure to the vtable entry usage info. */ |
11911 | elf_link_hash_traverse (elf_hash_table (info), | |
11912 | elf_gc_propagate_vtable_entries_used, | |
11913 | &ok); | |
11914 | if (!ok) | |
11915 | return FALSE; | |
11916 | ||
11917 | /* Kill the vtable relocations that were not used. */ | |
11918 | elf_link_hash_traverse (elf_hash_table (info), | |
11919 | elf_gc_smash_unused_vtentry_relocs, | |
11920 | &ok); | |
11921 | if (!ok) | |
11922 | return FALSE; | |
11923 | ||
715df9b8 EB |
11924 | /* Mark dynamically referenced symbols. */ |
11925 | if (elf_hash_table (info)->dynamic_sections_created) | |
11926 | elf_link_hash_traverse (elf_hash_table (info), | |
64d03ab5 | 11927 | bed->gc_mark_dynamic_ref, |
87538722 | 11928 | info); |
c152c796 | 11929 | |
715df9b8 | 11930 | /* Grovel through relocs to find out who stays ... */ |
64d03ab5 | 11931 | gc_mark_hook = bed->gc_mark_hook; |
c152c796 AM |
11932 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) |
11933 | { | |
11934 | asection *o; | |
11935 | ||
11936 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
11937 | continue; | |
11938 | ||
11939 | for (o = sub->sections; o != NULL; o = o->next) | |
a14a5de3 | 11940 | if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark) |
39c2f51b AM |
11941 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) |
11942 | return FALSE; | |
c152c796 AM |
11943 | } |
11944 | ||
6a5bb875 PB |
11945 | /* Allow the backend to mark additional target specific sections. */ |
11946 | if (bed->gc_mark_extra_sections) | |
74f0fb50 | 11947 | bed->gc_mark_extra_sections (info, gc_mark_hook); |
6a5bb875 | 11948 | |
c152c796 | 11949 | /* ... and mark SEC_EXCLUDE for those that go. */ |
ccabcbe5 | 11950 | return elf_gc_sweep (abfd, info); |
c152c796 AM |
11951 | } |
11952 | \f | |
11953 | /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ | |
11954 | ||
11955 | bfd_boolean | |
11956 | bfd_elf_gc_record_vtinherit (bfd *abfd, | |
11957 | asection *sec, | |
11958 | struct elf_link_hash_entry *h, | |
11959 | bfd_vma offset) | |
11960 | { | |
11961 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
11962 | struct elf_link_hash_entry **search, *child; | |
11963 | bfd_size_type extsymcount; | |
11964 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
11965 | ||
11966 | /* The sh_info field of the symtab header tells us where the | |
11967 | external symbols start. We don't care about the local symbols at | |
11968 | this point. */ | |
11969 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; | |
11970 | if (!elf_bad_symtab (abfd)) | |
11971 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
11972 | ||
11973 | sym_hashes = elf_sym_hashes (abfd); | |
11974 | sym_hashes_end = sym_hashes + extsymcount; | |
11975 | ||
11976 | /* Hunt down the child symbol, which is in this section at the same | |
11977 | offset as the relocation. */ | |
11978 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
11979 | { | |
11980 | if ((child = *search) != NULL | |
11981 | && (child->root.type == bfd_link_hash_defined | |
11982 | || child->root.type == bfd_link_hash_defweak) | |
11983 | && child->root.u.def.section == sec | |
11984 | && child->root.u.def.value == offset) | |
11985 | goto win; | |
11986 | } | |
11987 | ||
d003868e AM |
11988 | (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT", |
11989 | abfd, sec, (unsigned long) offset); | |
c152c796 AM |
11990 | bfd_set_error (bfd_error_invalid_operation); |
11991 | return FALSE; | |
11992 | ||
11993 | win: | |
f6e332e6 AM |
11994 | if (!child->vtable) |
11995 | { | |
a50b1753 NC |
11996 | child->vtable = (struct elf_link_virtual_table_entry *) |
11997 | bfd_zalloc (abfd, sizeof (*child->vtable)); | |
f6e332e6 AM |
11998 | if (!child->vtable) |
11999 | return FALSE; | |
12000 | } | |
c152c796 AM |
12001 | if (!h) |
12002 | { | |
12003 | /* This *should* only be the absolute section. It could potentially | |
12004 | be that someone has defined a non-global vtable though, which | |
12005 | would be bad. It isn't worth paging in the local symbols to be | |
12006 | sure though; that case should simply be handled by the assembler. */ | |
12007 | ||
f6e332e6 | 12008 | child->vtable->parent = (struct elf_link_hash_entry *) -1; |
c152c796 AM |
12009 | } |
12010 | else | |
f6e332e6 | 12011 | child->vtable->parent = h; |
c152c796 AM |
12012 | |
12013 | return TRUE; | |
12014 | } | |
12015 | ||
12016 | /* Called from check_relocs to record the existence of a VTENTRY reloc. */ | |
12017 | ||
12018 | bfd_boolean | |
12019 | bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED, | |
12020 | asection *sec ATTRIBUTE_UNUSED, | |
12021 | struct elf_link_hash_entry *h, | |
12022 | bfd_vma addend) | |
12023 | { | |
12024 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12025 | unsigned int log_file_align = bed->s->log_file_align; | |
12026 | ||
f6e332e6 AM |
12027 | if (!h->vtable) |
12028 | { | |
a50b1753 NC |
12029 | h->vtable = (struct elf_link_virtual_table_entry *) |
12030 | bfd_zalloc (abfd, sizeof (*h->vtable)); | |
f6e332e6 AM |
12031 | if (!h->vtable) |
12032 | return FALSE; | |
12033 | } | |
12034 | ||
12035 | if (addend >= h->vtable->size) | |
c152c796 AM |
12036 | { |
12037 | size_t size, bytes, file_align; | |
f6e332e6 | 12038 | bfd_boolean *ptr = h->vtable->used; |
c152c796 AM |
12039 | |
12040 | /* While the symbol is undefined, we have to be prepared to handle | |
12041 | a zero size. */ | |
12042 | file_align = 1 << log_file_align; | |
12043 | if (h->root.type == bfd_link_hash_undefined) | |
12044 | size = addend + file_align; | |
12045 | else | |
12046 | { | |
12047 | size = h->size; | |
12048 | if (addend >= size) | |
12049 | { | |
12050 | /* Oops! We've got a reference past the defined end of | |
12051 | the table. This is probably a bug -- shall we warn? */ | |
12052 | size = addend + file_align; | |
12053 | } | |
12054 | } | |
12055 | size = (size + file_align - 1) & -file_align; | |
12056 | ||
12057 | /* Allocate one extra entry for use as a "done" flag for the | |
12058 | consolidation pass. */ | |
12059 | bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); | |
12060 | ||
12061 | if (ptr) | |
12062 | { | |
a50b1753 | 12063 | ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); |
c152c796 AM |
12064 | |
12065 | if (ptr != NULL) | |
12066 | { | |
12067 | size_t oldbytes; | |
12068 | ||
f6e332e6 | 12069 | oldbytes = (((h->vtable->size >> log_file_align) + 1) |
c152c796 AM |
12070 | * sizeof (bfd_boolean)); |
12071 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | |
12072 | } | |
12073 | } | |
12074 | else | |
a50b1753 | 12075 | ptr = (bfd_boolean *) bfd_zmalloc (bytes); |
c152c796 AM |
12076 | |
12077 | if (ptr == NULL) | |
12078 | return FALSE; | |
12079 | ||
12080 | /* And arrange for that done flag to be at index -1. */ | |
f6e332e6 AM |
12081 | h->vtable->used = ptr + 1; |
12082 | h->vtable->size = size; | |
c152c796 AM |
12083 | } |
12084 | ||
f6e332e6 | 12085 | h->vtable->used[addend >> log_file_align] = TRUE; |
c152c796 AM |
12086 | |
12087 | return TRUE; | |
12088 | } | |
12089 | ||
12090 | struct alloc_got_off_arg { | |
12091 | bfd_vma gotoff; | |
10455f89 | 12092 | struct bfd_link_info *info; |
c152c796 AM |
12093 | }; |
12094 | ||
12095 | /* We need a special top-level link routine to convert got reference counts | |
12096 | to real got offsets. */ | |
12097 | ||
12098 | static bfd_boolean | |
12099 | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) | |
12100 | { | |
a50b1753 | 12101 | struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; |
10455f89 HPN |
12102 | bfd *obfd = gofarg->info->output_bfd; |
12103 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
c152c796 AM |
12104 | |
12105 | if (h->root.type == bfd_link_hash_warning) | |
12106 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
12107 | ||
12108 | if (h->got.refcount > 0) | |
12109 | { | |
12110 | h->got.offset = gofarg->gotoff; | |
10455f89 | 12111 | gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); |
c152c796 AM |
12112 | } |
12113 | else | |
12114 | h->got.offset = (bfd_vma) -1; | |
12115 | ||
12116 | return TRUE; | |
12117 | } | |
12118 | ||
12119 | /* And an accompanying bit to work out final got entry offsets once | |
12120 | we're done. Should be called from final_link. */ | |
12121 | ||
12122 | bfd_boolean | |
12123 | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, | |
12124 | struct bfd_link_info *info) | |
12125 | { | |
12126 | bfd *i; | |
12127 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12128 | bfd_vma gotoff; | |
c152c796 AM |
12129 | struct alloc_got_off_arg gofarg; |
12130 | ||
10455f89 HPN |
12131 | BFD_ASSERT (abfd == info->output_bfd); |
12132 | ||
c152c796 AM |
12133 | if (! is_elf_hash_table (info->hash)) |
12134 | return FALSE; | |
12135 | ||
12136 | /* The GOT offset is relative to the .got section, but the GOT header is | |
12137 | put into the .got.plt section, if the backend uses it. */ | |
12138 | if (bed->want_got_plt) | |
12139 | gotoff = 0; | |
12140 | else | |
12141 | gotoff = bed->got_header_size; | |
12142 | ||
12143 | /* Do the local .got entries first. */ | |
12144 | for (i = info->input_bfds; i; i = i->link_next) | |
12145 | { | |
12146 | bfd_signed_vma *local_got; | |
12147 | bfd_size_type j, locsymcount; | |
12148 | Elf_Internal_Shdr *symtab_hdr; | |
12149 | ||
12150 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) | |
12151 | continue; | |
12152 | ||
12153 | local_got = elf_local_got_refcounts (i); | |
12154 | if (!local_got) | |
12155 | continue; | |
12156 | ||
12157 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
12158 | if (elf_bad_symtab (i)) | |
12159 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
12160 | else | |
12161 | locsymcount = symtab_hdr->sh_info; | |
12162 | ||
12163 | for (j = 0; j < locsymcount; ++j) | |
12164 | { | |
12165 | if (local_got[j] > 0) | |
12166 | { | |
12167 | local_got[j] = gotoff; | |
10455f89 | 12168 | gotoff += bed->got_elt_size (abfd, info, NULL, i, j); |
c152c796 AM |
12169 | } |
12170 | else | |
12171 | local_got[j] = (bfd_vma) -1; | |
12172 | } | |
12173 | } | |
12174 | ||
12175 | /* Then the global .got entries. .plt refcounts are handled by | |
12176 | adjust_dynamic_symbol */ | |
12177 | gofarg.gotoff = gotoff; | |
10455f89 | 12178 | gofarg.info = info; |
c152c796 AM |
12179 | elf_link_hash_traverse (elf_hash_table (info), |
12180 | elf_gc_allocate_got_offsets, | |
12181 | &gofarg); | |
12182 | return TRUE; | |
12183 | } | |
12184 | ||
12185 | /* Many folk need no more in the way of final link than this, once | |
12186 | got entry reference counting is enabled. */ | |
12187 | ||
12188 | bfd_boolean | |
12189 | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) | |
12190 | { | |
12191 | if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) | |
12192 | return FALSE; | |
12193 | ||
12194 | /* Invoke the regular ELF backend linker to do all the work. */ | |
12195 | return bfd_elf_final_link (abfd, info); | |
12196 | } | |
12197 | ||
12198 | bfd_boolean | |
12199 | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) | |
12200 | { | |
a50b1753 | 12201 | struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; |
c152c796 AM |
12202 | |
12203 | if (rcookie->bad_symtab) | |
12204 | rcookie->rel = rcookie->rels; | |
12205 | ||
12206 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) | |
12207 | { | |
12208 | unsigned long r_symndx; | |
12209 | ||
12210 | if (! rcookie->bad_symtab) | |
12211 | if (rcookie->rel->r_offset > offset) | |
12212 | return FALSE; | |
12213 | if (rcookie->rel->r_offset != offset) | |
12214 | continue; | |
12215 | ||
12216 | r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; | |
2c2fa401 | 12217 | if (r_symndx == STN_UNDEF) |
c152c796 AM |
12218 | return TRUE; |
12219 | ||
12220 | if (r_symndx >= rcookie->locsymcount | |
12221 | || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) | |
12222 | { | |
12223 | struct elf_link_hash_entry *h; | |
12224 | ||
12225 | h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; | |
12226 | ||
12227 | while (h->root.type == bfd_link_hash_indirect | |
12228 | || h->root.type == bfd_link_hash_warning) | |
12229 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
12230 | ||
12231 | if ((h->root.type == bfd_link_hash_defined | |
12232 | || h->root.type == bfd_link_hash_defweak) | |
12233 | && elf_discarded_section (h->root.u.def.section)) | |
12234 | return TRUE; | |
12235 | else | |
12236 | return FALSE; | |
12237 | } | |
12238 | else | |
12239 | { | |
12240 | /* It's not a relocation against a global symbol, | |
12241 | but it could be a relocation against a local | |
12242 | symbol for a discarded section. */ | |
12243 | asection *isec; | |
12244 | Elf_Internal_Sym *isym; | |
12245 | ||
12246 | /* Need to: get the symbol; get the section. */ | |
12247 | isym = &rcookie->locsyms[r_symndx]; | |
cb33740c AM |
12248 | isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); |
12249 | if (isec != NULL && elf_discarded_section (isec)) | |
12250 | return TRUE; | |
c152c796 AM |
12251 | } |
12252 | return FALSE; | |
12253 | } | |
12254 | return FALSE; | |
12255 | } | |
12256 | ||
12257 | /* Discard unneeded references to discarded sections. | |
12258 | Returns TRUE if any section's size was changed. */ | |
12259 | /* This function assumes that the relocations are in sorted order, | |
12260 | which is true for all known assemblers. */ | |
12261 | ||
12262 | bfd_boolean | |
12263 | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) | |
12264 | { | |
12265 | struct elf_reloc_cookie cookie; | |
12266 | asection *stab, *eh; | |
c152c796 AM |
12267 | const struct elf_backend_data *bed; |
12268 | bfd *abfd; | |
c152c796 AM |
12269 | bfd_boolean ret = FALSE; |
12270 | ||
12271 | if (info->traditional_format | |
12272 | || !is_elf_hash_table (info->hash)) | |
12273 | return FALSE; | |
12274 | ||
ca92cecb | 12275 | _bfd_elf_begin_eh_frame_parsing (info); |
c152c796 AM |
12276 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
12277 | { | |
12278 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
12279 | continue; | |
12280 | ||
12281 | bed = get_elf_backend_data (abfd); | |
12282 | ||
12283 | if ((abfd->flags & DYNAMIC) != 0) | |
12284 | continue; | |
12285 | ||
8da3dbc5 AM |
12286 | eh = NULL; |
12287 | if (!info->relocatable) | |
12288 | { | |
12289 | eh = bfd_get_section_by_name (abfd, ".eh_frame"); | |
12290 | if (eh != NULL | |
eea6121a | 12291 | && (eh->size == 0 |
8da3dbc5 AM |
12292 | || bfd_is_abs_section (eh->output_section))) |
12293 | eh = NULL; | |
12294 | } | |
c152c796 AM |
12295 | |
12296 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
12297 | if (stab != NULL | |
eea6121a | 12298 | && (stab->size == 0 |
c152c796 AM |
12299 | || bfd_is_abs_section (stab->output_section) |
12300 | || stab->sec_info_type != ELF_INFO_TYPE_STABS)) | |
12301 | stab = NULL; | |
12302 | ||
12303 | if (stab == NULL | |
12304 | && eh == NULL | |
12305 | && bed->elf_backend_discard_info == NULL) | |
12306 | continue; | |
12307 | ||
5241d853 RS |
12308 | if (!init_reloc_cookie (&cookie, info, abfd)) |
12309 | return FALSE; | |
c152c796 | 12310 | |
5241d853 RS |
12311 | if (stab != NULL |
12312 | && stab->reloc_count > 0 | |
12313 | && init_reloc_cookie_rels (&cookie, info, abfd, stab)) | |
c152c796 | 12314 | { |
5241d853 RS |
12315 | if (_bfd_discard_section_stabs (abfd, stab, |
12316 | elf_section_data (stab)->sec_info, | |
12317 | bfd_elf_reloc_symbol_deleted_p, | |
12318 | &cookie)) | |
12319 | ret = TRUE; | |
12320 | fini_reloc_cookie_rels (&cookie, stab); | |
c152c796 AM |
12321 | } |
12322 | ||
5241d853 RS |
12323 | if (eh != NULL |
12324 | && init_reloc_cookie_rels (&cookie, info, abfd, eh)) | |
c152c796 | 12325 | { |
ca92cecb | 12326 | _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie); |
c152c796 AM |
12327 | if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, |
12328 | bfd_elf_reloc_symbol_deleted_p, | |
12329 | &cookie)) | |
12330 | ret = TRUE; | |
5241d853 | 12331 | fini_reloc_cookie_rels (&cookie, eh); |
c152c796 AM |
12332 | } |
12333 | ||
12334 | if (bed->elf_backend_discard_info != NULL | |
12335 | && (*bed->elf_backend_discard_info) (abfd, &cookie, info)) | |
12336 | ret = TRUE; | |
12337 | ||
5241d853 | 12338 | fini_reloc_cookie (&cookie, abfd); |
c152c796 | 12339 | } |
ca92cecb | 12340 | _bfd_elf_end_eh_frame_parsing (info); |
c152c796 AM |
12341 | |
12342 | if (info->eh_frame_hdr | |
12343 | && !info->relocatable | |
12344 | && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) | |
12345 | ret = TRUE; | |
12346 | ||
12347 | return ret; | |
12348 | } | |
082b7297 | 12349 | |
9659de1c AM |
12350 | /* For a SHT_GROUP section, return the group signature. For other |
12351 | sections, return the normal section name. */ | |
12352 | ||
12353 | static const char * | |
12354 | section_signature (asection *sec) | |
12355 | { | |
12356 | if ((sec->flags & SEC_GROUP) != 0 | |
12357 | && elf_next_in_group (sec) != NULL | |
12358 | && elf_group_name (elf_next_in_group (sec)) != NULL) | |
12359 | return elf_group_name (elf_next_in_group (sec)); | |
12360 | return sec->name; | |
12361 | } | |
12362 | ||
082b7297 | 12363 | void |
9659de1c | 12364 | _bfd_elf_section_already_linked (bfd *abfd, asection *sec, |
c0f00686 | 12365 | struct bfd_link_info *info) |
082b7297 L |
12366 | { |
12367 | flagword flags; | |
6d2cd210 | 12368 | const char *name, *p; |
082b7297 L |
12369 | struct bfd_section_already_linked *l; |
12370 | struct bfd_section_already_linked_hash_entry *already_linked_list; | |
3d7f7666 | 12371 | |
3d7f7666 L |
12372 | if (sec->output_section == bfd_abs_section_ptr) |
12373 | return; | |
082b7297 L |
12374 | |
12375 | flags = sec->flags; | |
3d7f7666 | 12376 | |
c2370991 AM |
12377 | /* Return if it isn't a linkonce section. A comdat group section |
12378 | also has SEC_LINK_ONCE set. */ | |
12379 | if ((flags & SEC_LINK_ONCE) == 0) | |
082b7297 L |
12380 | return; |
12381 | ||
c2370991 AM |
12382 | /* Don't put group member sections on our list of already linked |
12383 | sections. They are handled as a group via their group section. */ | |
12384 | if (elf_sec_group (sec) != NULL) | |
12385 | return; | |
3d7f7666 | 12386 | |
082b7297 L |
12387 | /* FIXME: When doing a relocatable link, we may have trouble |
12388 | copying relocations in other sections that refer to local symbols | |
12389 | in the section being discarded. Those relocations will have to | |
12390 | be converted somehow; as of this writing I'm not sure that any of | |
12391 | the backends handle that correctly. | |
12392 | ||
12393 | It is tempting to instead not discard link once sections when | |
12394 | doing a relocatable link (technically, they should be discarded | |
12395 | whenever we are building constructors). However, that fails, | |
12396 | because the linker winds up combining all the link once sections | |
12397 | into a single large link once section, which defeats the purpose | |
12398 | of having link once sections in the first place. | |
12399 | ||
12400 | Also, not merging link once sections in a relocatable link | |
12401 | causes trouble for MIPS ELF, which relies on link once semantics | |
12402 | to handle the .reginfo section correctly. */ | |
12403 | ||
9659de1c | 12404 | name = section_signature (sec); |
082b7297 | 12405 | |
0112cd26 | 12406 | if (CONST_STRNEQ (name, ".gnu.linkonce.") |
6d2cd210 JJ |
12407 | && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) |
12408 | p++; | |
12409 | else | |
12410 | p = name; | |
12411 | ||
12412 | already_linked_list = bfd_section_already_linked_table_lookup (p); | |
082b7297 L |
12413 | |
12414 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12415 | { | |
c2370991 AM |
12416 | /* We may have 2 different types of sections on the list: group |
12417 | sections and linkonce sections. Match like sections. */ | |
3d7f7666 | 12418 | if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) |
9659de1c | 12419 | && strcmp (name, section_signature (l->sec)) == 0 |
082b7297 L |
12420 | && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL) |
12421 | { | |
12422 | /* The section has already been linked. See if we should | |
6d2cd210 | 12423 | issue a warning. */ |
082b7297 L |
12424 | switch (flags & SEC_LINK_DUPLICATES) |
12425 | { | |
12426 | default: | |
12427 | abort (); | |
12428 | ||
12429 | case SEC_LINK_DUPLICATES_DISCARD: | |
12430 | break; | |
12431 | ||
12432 | case SEC_LINK_DUPLICATES_ONE_ONLY: | |
12433 | (*_bfd_error_handler) | |
c93625e2 | 12434 | (_("%B: ignoring duplicate section `%A'"), |
d003868e | 12435 | abfd, sec); |
082b7297 L |
12436 | break; |
12437 | ||
12438 | case SEC_LINK_DUPLICATES_SAME_SIZE: | |
12439 | if (sec->size != l->sec->size) | |
12440 | (*_bfd_error_handler) | |
c93625e2 | 12441 | (_("%B: duplicate section `%A' has different size"), |
d003868e | 12442 | abfd, sec); |
082b7297 | 12443 | break; |
ea5158d8 DJ |
12444 | |
12445 | case SEC_LINK_DUPLICATES_SAME_CONTENTS: | |
12446 | if (sec->size != l->sec->size) | |
12447 | (*_bfd_error_handler) | |
c93625e2 | 12448 | (_("%B: duplicate section `%A' has different size"), |
ea5158d8 DJ |
12449 | abfd, sec); |
12450 | else if (sec->size != 0) | |
12451 | { | |
12452 | bfd_byte *sec_contents, *l_sec_contents; | |
12453 | ||
12454 | if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents)) | |
12455 | (*_bfd_error_handler) | |
c93625e2 | 12456 | (_("%B: warning: could not read contents of section `%A'"), |
ea5158d8 DJ |
12457 | abfd, sec); |
12458 | else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec, | |
12459 | &l_sec_contents)) | |
12460 | (*_bfd_error_handler) | |
c93625e2 | 12461 | (_("%B: warning: could not read contents of section `%A'"), |
ea5158d8 DJ |
12462 | l->sec->owner, l->sec); |
12463 | else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) | |
12464 | (*_bfd_error_handler) | |
c93625e2 | 12465 | (_("%B: warning: duplicate section `%A' has different contents"), |
ea5158d8 DJ |
12466 | abfd, sec); |
12467 | ||
12468 | if (sec_contents) | |
12469 | free (sec_contents); | |
12470 | if (l_sec_contents) | |
12471 | free (l_sec_contents); | |
12472 | } | |
12473 | break; | |
082b7297 L |
12474 | } |
12475 | ||
12476 | /* Set the output_section field so that lang_add_section | |
12477 | does not create a lang_input_section structure for this | |
12478 | section. Since there might be a symbol in the section | |
12479 | being discarded, we must retain a pointer to the section | |
12480 | which we are really going to use. */ | |
12481 | sec->output_section = bfd_abs_section_ptr; | |
12482 | sec->kept_section = l->sec; | |
3b36f7e6 | 12483 | |
082b7297 | 12484 | if (flags & SEC_GROUP) |
3d7f7666 L |
12485 | { |
12486 | asection *first = elf_next_in_group (sec); | |
12487 | asection *s = first; | |
12488 | ||
12489 | while (s != NULL) | |
12490 | { | |
12491 | s->output_section = bfd_abs_section_ptr; | |
12492 | /* Record which group discards it. */ | |
12493 | s->kept_section = l->sec; | |
12494 | s = elf_next_in_group (s); | |
12495 | /* These lists are circular. */ | |
12496 | if (s == first) | |
12497 | break; | |
12498 | } | |
12499 | } | |
082b7297 L |
12500 | |
12501 | return; | |
12502 | } | |
12503 | } | |
12504 | ||
c2370991 AM |
12505 | /* A single member comdat group section may be discarded by a |
12506 | linkonce section and vice versa. */ | |
12507 | ||
12508 | if ((flags & SEC_GROUP) != 0) | |
3d7f7666 | 12509 | { |
c2370991 AM |
12510 | asection *first = elf_next_in_group (sec); |
12511 | ||
12512 | if (first != NULL && elf_next_in_group (first) == first) | |
12513 | /* Check this single member group against linkonce sections. */ | |
12514 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12515 | if ((l->sec->flags & SEC_GROUP) == 0 | |
12516 | && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL | |
12517 | && bfd_elf_match_symbols_in_sections (l->sec, first, info)) | |
12518 | { | |
12519 | first->output_section = bfd_abs_section_ptr; | |
12520 | first->kept_section = l->sec; | |
12521 | sec->output_section = bfd_abs_section_ptr; | |
12522 | break; | |
12523 | } | |
3d7f7666 L |
12524 | } |
12525 | else | |
c2370991 | 12526 | /* Check this linkonce section against single member groups. */ |
6d2cd210 JJ |
12527 | for (l = already_linked_list->entry; l != NULL; l = l->next) |
12528 | if (l->sec->flags & SEC_GROUP) | |
12529 | { | |
12530 | asection *first = elf_next_in_group (l->sec); | |
12531 | ||
12532 | if (first != NULL | |
12533 | && elf_next_in_group (first) == first | |
c0f00686 | 12534 | && bfd_elf_match_symbols_in_sections (first, sec, info)) |
6d2cd210 JJ |
12535 | { |
12536 | sec->output_section = bfd_abs_section_ptr; | |
c2370991 | 12537 | sec->kept_section = first; |
6d2cd210 JJ |
12538 | break; |
12539 | } | |
12540 | } | |
12541 | ||
80c29487 JK |
12542 | /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' |
12543 | referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 | |
12544 | specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' | |
12545 | prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its | |
12546 | matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded | |
12547 | but its `.gnu.linkonce.t.F' is discarded means we chose one-only | |
12548 | `.gnu.linkonce.t.F' section from a different bfd not requiring any | |
12549 | `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. | |
12550 | The reverse order cannot happen as there is never a bfd with only the | |
12551 | `.gnu.linkonce.r.F' section. The order of sections in a bfd does not | |
12552 | matter as here were are looking only for cross-bfd sections. */ | |
12553 | ||
12554 | if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) | |
12555 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12556 | if ((l->sec->flags & SEC_GROUP) == 0 | |
12557 | && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) | |
12558 | { | |
12559 | if (abfd != l->sec->owner) | |
12560 | sec->output_section = bfd_abs_section_ptr; | |
12561 | break; | |
12562 | } | |
12563 | ||
082b7297 | 12564 | /* This is the first section with this name. Record it. */ |
a6626e8c | 12565 | if (! bfd_section_already_linked_table_insert (already_linked_list, sec)) |
bb6198d2 | 12566 | info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); |
082b7297 | 12567 | } |
81e1b023 | 12568 | |
a4d8e49b L |
12569 | bfd_boolean |
12570 | _bfd_elf_common_definition (Elf_Internal_Sym *sym) | |
12571 | { | |
12572 | return sym->st_shndx == SHN_COMMON; | |
12573 | } | |
12574 | ||
12575 | unsigned int | |
12576 | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) | |
12577 | { | |
12578 | return SHN_COMMON; | |
12579 | } | |
12580 | ||
12581 | asection * | |
12582 | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) | |
12583 | { | |
12584 | return bfd_com_section_ptr; | |
12585 | } | |
10455f89 HPN |
12586 | |
12587 | bfd_vma | |
12588 | _bfd_elf_default_got_elt_size (bfd *abfd, | |
12589 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
12590 | struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, | |
12591 | bfd *ibfd ATTRIBUTE_UNUSED, | |
12592 | unsigned long symndx ATTRIBUTE_UNUSED) | |
12593 | { | |
12594 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12595 | return bed->s->arch_size / 8; | |
12596 | } | |
83bac4b0 NC |
12597 | |
12598 | /* Routines to support the creation of dynamic relocs. */ | |
12599 | ||
12600 | /* Return true if NAME is a name of a relocation | |
12601 | section associated with section S. */ | |
12602 | ||
12603 | static bfd_boolean | |
12604 | is_reloc_section (bfd_boolean rela, const char * name, asection * s) | |
12605 | { | |
12606 | if (rela) | |
12607 | return CONST_STRNEQ (name, ".rela") | |
12608 | && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0; | |
12609 | ||
12610 | return CONST_STRNEQ (name, ".rel") | |
12611 | && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0; | |
12612 | } | |
12613 | ||
12614 | /* Returns the name of the dynamic reloc section associated with SEC. */ | |
12615 | ||
12616 | static const char * | |
12617 | get_dynamic_reloc_section_name (bfd * abfd, | |
12618 | asection * sec, | |
12619 | bfd_boolean is_rela) | |
12620 | { | |
12621 | const char * name; | |
12622 | unsigned int strndx = elf_elfheader (abfd)->e_shstrndx; | |
d4730f92 | 12623 | unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name; |
83bac4b0 NC |
12624 | |
12625 | name = bfd_elf_string_from_elf_section (abfd, strndx, shnam); | |
12626 | if (name == NULL) | |
12627 | return NULL; | |
12628 | ||
12629 | if (! is_reloc_section (is_rela, name, sec)) | |
12630 | { | |
12631 | static bfd_boolean complained = FALSE; | |
12632 | ||
12633 | if (! complained) | |
12634 | { | |
12635 | (*_bfd_error_handler) | |
12636 | (_("%B: bad relocation section name `%s\'"), abfd, name); | |
12637 | complained = TRUE; | |
12638 | } | |
12639 | name = NULL; | |
12640 | } | |
12641 | ||
12642 | return name; | |
12643 | } | |
12644 | ||
12645 | /* Returns the dynamic reloc section associated with SEC. | |
12646 | If necessary compute the name of the dynamic reloc section based | |
12647 | on SEC's name (looked up in ABFD's string table) and the setting | |
12648 | of IS_RELA. */ | |
12649 | ||
12650 | asection * | |
12651 | _bfd_elf_get_dynamic_reloc_section (bfd * abfd, | |
12652 | asection * sec, | |
12653 | bfd_boolean is_rela) | |
12654 | { | |
12655 | asection * reloc_sec = elf_section_data (sec)->sreloc; | |
12656 | ||
12657 | if (reloc_sec == NULL) | |
12658 | { | |
12659 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
12660 | ||
12661 | if (name != NULL) | |
12662 | { | |
12663 | reloc_sec = bfd_get_section_by_name (abfd, name); | |
12664 | ||
12665 | if (reloc_sec != NULL) | |
12666 | elf_section_data (sec)->sreloc = reloc_sec; | |
12667 | } | |
12668 | } | |
12669 | ||
12670 | return reloc_sec; | |
12671 | } | |
12672 | ||
12673 | /* Returns the dynamic reloc section associated with SEC. If the | |
12674 | section does not exist it is created and attached to the DYNOBJ | |
12675 | bfd and stored in the SRELOC field of SEC's elf_section_data | |
12676 | structure. | |
f8076f98 | 12677 | |
83bac4b0 NC |
12678 | ALIGNMENT is the alignment for the newly created section and |
12679 | IS_RELA defines whether the name should be .rela.<SEC's name> | |
12680 | or .rel.<SEC's name>. The section name is looked up in the | |
12681 | string table associated with ABFD. */ | |
12682 | ||
12683 | asection * | |
12684 | _bfd_elf_make_dynamic_reloc_section (asection * sec, | |
12685 | bfd * dynobj, | |
12686 | unsigned int alignment, | |
12687 | bfd * abfd, | |
12688 | bfd_boolean is_rela) | |
12689 | { | |
12690 | asection * reloc_sec = elf_section_data (sec)->sreloc; | |
12691 | ||
12692 | if (reloc_sec == NULL) | |
12693 | { | |
12694 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
12695 | ||
12696 | if (name == NULL) | |
12697 | return NULL; | |
12698 | ||
12699 | reloc_sec = bfd_get_section_by_name (dynobj, name); | |
12700 | ||
12701 | if (reloc_sec == NULL) | |
12702 | { | |
12703 | flagword flags; | |
12704 | ||
12705 | flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
12706 | if ((sec->flags & SEC_ALLOC) != 0) | |
12707 | flags |= SEC_ALLOC | SEC_LOAD; | |
12708 | ||
12709 | reloc_sec = bfd_make_section_with_flags (dynobj, name, flags); | |
12710 | if (reloc_sec != NULL) | |
12711 | { | |
12712 | if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment)) | |
12713 | reloc_sec = NULL; | |
12714 | } | |
12715 | } | |
12716 | ||
12717 | elf_section_data (sec)->sreloc = reloc_sec; | |
12718 | } | |
12719 | ||
12720 | return reloc_sec; | |
12721 | } | |
1338dd10 PB |
12722 | |
12723 | /* Copy the ELF symbol type associated with a linker hash entry. */ | |
12724 | void | |
12725 | _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED, | |
12726 | struct bfd_link_hash_entry * hdest, | |
12727 | struct bfd_link_hash_entry * hsrc) | |
12728 | { | |
12729 | struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest; | |
12730 | struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc; | |
12731 | ||
12732 | ehdest->type = ehsrc->type; | |
12733 | } | |
351f65ca L |
12734 | |
12735 | /* Append a RELA relocation REL to section S in BFD. */ | |
12736 | ||
12737 | void | |
12738 | elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
12739 | { | |
12740 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12741 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | |
12742 | BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); | |
12743 | bed->s->swap_reloca_out (abfd, rel, loc); | |
12744 | } | |
12745 | ||
12746 | /* Append a REL relocation REL to section S in BFD. */ | |
12747 | ||
12748 | void | |
12749 | elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
12750 | { | |
12751 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12752 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); | |
12753 | BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); | |
12754 | bed->s->swap_reloca_out (abfd, rel, loc); | |
12755 | } |