merge from gcc
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
e5a52504 60 flags = bed->dynamic_sec_flags;
252b5132
RH
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 66 return FALSE;
252b5132
RH
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 74 return FALSE;
252b5132
RH
75 }
76
2517a57f
AM
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
14a793b2 83 bh = NULL;
2517a57f
AM
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 87 return FALSE;
14a793b2 88 h = (struct elf_link_hash_entry *) bh;
f5385ebf 89 h->def_regular = 1;
2517a57f 90 h->type = STT_OBJECT;
e6857c0c 91 h->other = STV_HIDDEN;
252b5132 92
36af4a4e 93 if (! info->executable
c152c796 94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 95 return FALSE;
252b5132 96
2517a57f
AM
97 elf_hash_table (info)->hgot = h;
98 }
252b5132
RH
99
100 /* The first bit of the global offset table is the header. */
eea6121a 101 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 102
b34976b6 103 return TRUE;
252b5132
RH
104}
105\f
7e9f0867
AM
106/* Create a strtab to hold the dynamic symbol names. */
107static bfd_boolean
108_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
109{
110 struct elf_link_hash_table *hash_table;
111
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
115
116 if (hash_table->dynstr == NULL)
117 {
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
121 }
122 return TRUE;
123}
124
45d6a902
AM
125/* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
252b5132 131
b34976b6 132bfd_boolean
268b6b39 133_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 134{
45d6a902
AM
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
9c5bfbb7 139 const struct elf_backend_data *bed;
252b5132 140
0eddce27 141 if (! is_elf_hash_table (info->hash))
45d6a902
AM
142 return FALSE;
143
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
146
7e9f0867
AM
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
45d6a902 149
7e9f0867 150 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
151 bed = get_elf_backend_data (abfd);
152
153 flags = bed->dynamic_sec_flags;
45d6a902
AM
154
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
36af4a4e 157 if (info->executable)
252b5132 158 {
45d6a902
AM
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
163 }
bb0deeff 164
0eddce27 165 if (! info->traditional_format)
45d6a902
AM
166 {
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
173 }
bb0deeff 174
45d6a902
AM
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
182
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
188
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
194
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
200
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
205
45d6a902
AM
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
211
212 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
220 if (h != NULL)
221 {
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
227 }
228 bh = &h->root;
45d6a902 229 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
232 return FALSE;
233 h = (struct elf_link_hash_entry *) bh;
f5385ebf 234 h->def_regular = 1;
45d6a902
AM
235 h->type = STT_OBJECT;
236
36af4a4e 237 if (! info->executable
c152c796 238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
239 return FALSE;
240
241 s = bfd_make_section (abfd, ".hash");
242 if (s == NULL
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
245 return FALSE;
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
247
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
252 return FALSE;
253
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
255
256 return TRUE;
257}
258
259/* Create dynamic sections when linking against a dynamic object. */
260
261bfd_boolean
268b6b39 262_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
263{
264 flagword flags, pltflags;
265 asection *s;
9c5bfbb7 266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 267
252b5132
RH
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
e5a52504 270 flags = bed->dynamic_sec_flags;
252b5132
RH
271
272 pltflags = flags;
252b5132 273 if (bed->plt_not_loaded)
6df4d94c
MM
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
5d1634d7 277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
278 else
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
282
283 s = bfd_make_section (abfd, ".plt");
284 if (s == NULL
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 287 return FALSE;
252b5132
RH
288
289 if (bed->want_plt_sym)
290 {
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
14a793b2
AM
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
295
252b5132 296 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 299 return FALSE;
14a793b2 300 h = (struct elf_link_hash_entry *) bh;
f5385ebf 301 h->def_regular = 1;
252b5132
RH
302 h->type = STT_OBJECT;
303
36af4a4e 304 if (! info->executable
c152c796 305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 306 return FALSE;
252b5132
RH
307 }
308
3e932841 309 s = bfd_make_section (abfd,
bf572ba0 310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
252b5132
RH
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 314 return FALSE;
252b5132
RH
315
316 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 317 return FALSE;
252b5132 318
3018b441
RH
319 if (bed->want_dynbss)
320 {
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
328 if (s == NULL
77f3d027 329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
b34976b6 330 return FALSE;
252b5132 331
3018b441 332 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
342 copy relocs. */
3018b441
RH
343 if (! info->shared)
344 {
3e932841
KH
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
3018b441
RH
348 if (s == NULL
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 351 return FALSE;
3018b441 352 }
252b5132
RH
353 }
354
b34976b6 355 return TRUE;
252b5132
RH
356}
357\f
252b5132
RH
358/* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
364 one. */
365
b34976b6 366bfd_boolean
c152c796
AM
367bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
252b5132
RH
369{
370 if (h->dynindx == -1)
371 {
2b0f7ef9 372 struct elf_strtab_hash *dynstr;
68b6ddd0 373 char *p;
252b5132 374 const char *name;
252b5132
RH
375 bfd_size_type indx;
376
7a13edea
NC
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
382 {
383 case STV_INTERNAL:
384 case STV_HIDDEN:
9d6eee78
L
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
38048eb9 387 {
f5385ebf 388 h->forced_local = 1;
67687978
PB
389 if (!elf_hash_table (info)->is_relocatable_executable)
390 return TRUE;
7a13edea 391 }
0444bdd4 392
7a13edea
NC
393 default:
394 break;
395 }
396
252b5132
RH
397 h->dynindx = elf_hash_table (info)->dynsymcount;
398 ++elf_hash_table (info)->dynsymcount;
399
400 dynstr = elf_hash_table (info)->dynstr;
401 if (dynstr == NULL)
402 {
403 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 404 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 405 if (dynstr == NULL)
b34976b6 406 return FALSE;
252b5132
RH
407 }
408
409 /* We don't put any version information in the dynamic string
aad5d350 410 table. */
252b5132
RH
411 name = h->root.root.string;
412 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
413 if (p != NULL)
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
419 *p = 0;
420
421 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
422
423 if (p != NULL)
424 *p = ELF_VER_CHR;
252b5132
RH
425
426 if (indx == (bfd_size_type) -1)
b34976b6 427 return FALSE;
252b5132
RH
428 h->dynstr_index = indx;
429 }
430
b34976b6 431 return TRUE;
252b5132 432}
45d6a902
AM
433\f
434/* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
436
437bfd_boolean
268b6b39
AM
438bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
439 struct bfd_link_info *info,
440 const char *name,
441 bfd_boolean provide)
45d6a902
AM
442{
443 struct elf_link_hash_entry *h;
4ea42fb7 444 struct elf_link_hash_table *htab;
45d6a902 445
0eddce27 446 if (!is_elf_hash_table (info->hash))
45d6a902
AM
447 return TRUE;
448
4ea42fb7
AM
449 htab = elf_hash_table (info);
450 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 451 if (h == NULL)
4ea42fb7 452 return provide;
45d6a902 453
02bb6eae
AO
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 456 may depend on this. */
02bb6eae
AO
457 if (h->root.type == bfd_link_hash_undefweak
458 || h->root.type == bfd_link_hash_undefined)
77cfaee6 459 {
4ea42fb7 460 h->root.type = bfd_link_hash_new;
77cfaee6
AM
461 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
462 bfd_link_repair_undef_list (&htab->root);
77cfaee6 463 }
02bb6eae 464
45d6a902 465 if (h->root.type == bfd_link_hash_new)
f5385ebf 466 h->non_elf = 0;
45d6a902
AM
467
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
472 if (provide
f5385ebf
AM
473 && h->def_dynamic
474 && !h->def_regular)
45d6a902
AM
475 h->root.type = bfd_link_hash_undefined;
476
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
481 if (!provide
f5385ebf
AM
482 && h->def_dynamic
483 && !h->def_regular)
45d6a902
AM
484 h->verinfo.verdef = NULL;
485
f5385ebf 486 h->def_regular = 1;
45d6a902 487
6fa3860b
PB
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
489 and executables. */
490 if (!info->relocatable
491 && h->dynindx != -1
492 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
494 h->forced_local = 1;
495
f5385ebf
AM
496 if ((h->def_dynamic
497 || h->ref_dynamic
67687978
PB
498 || info->shared
499 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
500 && h->dynindx == -1)
501 {
c152c796 502 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
503 return FALSE;
504
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
f6e332e6
AM
508 if (h->u.weakdef != NULL
509 && h->u.weakdef->dynindx == -1)
45d6a902 510 {
f6e332e6 511 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
512 return FALSE;
513 }
514 }
515
516 return TRUE;
517}
42751cf3 518
8c58d23b
AM
519/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
522
523int
c152c796
AM
524bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
525 bfd *input_bfd,
526 long input_indx)
8c58d23b
AM
527{
528 bfd_size_type amt;
529 struct elf_link_local_dynamic_entry *entry;
530 struct elf_link_hash_table *eht;
531 struct elf_strtab_hash *dynstr;
532 unsigned long dynstr_index;
533 char *name;
534 Elf_External_Sym_Shndx eshndx;
535 char esym[sizeof (Elf64_External_Sym)];
536
0eddce27 537 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
538 return 0;
539
540 /* See if the entry exists already. */
541 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
542 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
543 return 1;
544
545 amt = sizeof (*entry);
268b6b39 546 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
547 if (entry == NULL)
548 return 0;
549
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 552 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
553 {
554 bfd_release (input_bfd, entry);
555 return 0;
556 }
557
558 if (entry->isym.st_shndx != SHN_UNDEF
559 && (entry->isym.st_shndx < SHN_LORESERVE
560 || entry->isym.st_shndx > SHN_HIRESERVE))
561 {
562 asection *s;
563
564 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
565 if (s == NULL || bfd_is_abs_section (s->output_section))
566 {
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd, entry);
570 return 2;
571 }
572 }
573
574 name = (bfd_elf_string_from_elf_section
575 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
576 entry->isym.st_name));
577
578 dynstr = elf_hash_table (info)->dynstr;
579 if (dynstr == NULL)
580 {
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
583 if (dynstr == NULL)
584 return 0;
585 }
586
b34976b6 587 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
588 if (dynstr_index == (unsigned long) -1)
589 return 0;
590 entry->isym.st_name = dynstr_index;
591
592 eht = elf_hash_table (info);
593
594 entry->next = eht->dynlocal;
595 eht->dynlocal = entry;
596 entry->input_bfd = input_bfd;
597 entry->input_indx = input_indx;
598 eht->dynsymcount++;
599
600 /* Whatever binding the symbol had before, it's now local. */
601 entry->isym.st_info
602 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
603
604 /* The dynindx will be set at the end of size_dynamic_sections. */
605
606 return 1;
607}
608
30b30c21 609/* Return the dynindex of a local dynamic symbol. */
42751cf3 610
30b30c21 611long
268b6b39
AM
612_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
613 bfd *input_bfd,
614 long input_indx)
30b30c21
RH
615{
616 struct elf_link_local_dynamic_entry *e;
617
618 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
619 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
620 return e->dynindx;
621 return -1;
622}
623
624/* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
627
b34976b6 628static bfd_boolean
268b6b39
AM
629elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
630 void *data)
42751cf3 631{
268b6b39 632 size_t *count = data;
30b30c21 633
e92d460e
AM
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
636
6fa3860b
PB
637 if (h->forced_local)
638 return TRUE;
639
640 if (h->dynindx != -1)
641 h->dynindx = ++(*count);
642
643 return TRUE;
644}
645
646
647/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
649
650static bfd_boolean
651elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
652 void *data)
653{
654 size_t *count = data;
655
656 if (h->root.type == bfd_link_hash_warning)
657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
658
659 if (!h->forced_local)
660 return TRUE;
661
42751cf3 662 if (h->dynindx != -1)
30b30c21
RH
663 h->dynindx = ++(*count);
664
b34976b6 665 return TRUE;
42751cf3 666}
30b30c21 667
aee6f5b4
AO
668/* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
670bfd_boolean
671_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
672 struct bfd_link_info *info,
673 asection *p)
674{
675 switch (elf_section_data (p)->this_hdr.sh_type)
676 {
677 case SHT_PROGBITS:
678 case SHT_NOBITS:
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
681 case SHT_NULL:
682 if (strcmp (p->name, ".got") == 0
683 || strcmp (p->name, ".got.plt") == 0
684 || strcmp (p->name, ".plt") == 0)
685 {
686 asection *ip;
687 bfd *dynobj = elf_hash_table (info)->dynobj;
688
689 if (dynobj != NULL
1da212d6 690 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
691 && (ip->flags & SEC_LINKER_CREATED)
692 && ip->output_section == p)
693 return TRUE;
694 }
695 return FALSE;
696
697 /* There shouldn't be section relative relocations
698 against any other section. */
699 default:
700 return TRUE;
701 }
702}
703
062e2358 704/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
708 symbols. */
30b30c21 709
554220db
AM
710static unsigned long
711_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
712 struct bfd_link_info *info,
713 unsigned long *section_sym_count)
30b30c21
RH
714{
715 unsigned long dynsymcount = 0;
716
67687978 717 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 718 {
aee6f5b4 719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
720 asection *p;
721 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 722 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
723 && (p->flags & SEC_ALLOC) != 0
724 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
725 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21 726 }
554220db 727 *section_sym_count = dynsymcount;
30b30c21 728
6fa3860b
PB
729 elf_link_hash_traverse (elf_hash_table (info),
730 elf_link_renumber_local_hash_table_dynsyms,
731 &dynsymcount);
732
30b30c21
RH
733 if (elf_hash_table (info)->dynlocal)
734 {
735 struct elf_link_local_dynamic_entry *p;
736 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
737 p->dynindx = ++dynsymcount;
738 }
739
740 elf_link_hash_traverse (elf_hash_table (info),
741 elf_link_renumber_hash_table_dynsyms,
742 &dynsymcount);
743
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount != 0)
748 ++dynsymcount;
749
750 return elf_hash_table (info)->dynsymcount = dynsymcount;
751}
252b5132 752
45d6a902
AM
753/* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
af44c138
L
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
45d6a902
AM
764
765bfd_boolean
268b6b39
AM
766_bfd_elf_merge_symbol (bfd *abfd,
767 struct bfd_link_info *info,
768 const char *name,
769 Elf_Internal_Sym *sym,
770 asection **psec,
771 bfd_vma *pvalue,
af44c138 772 unsigned int *pold_alignment,
268b6b39
AM
773 struct elf_link_hash_entry **sym_hash,
774 bfd_boolean *skip,
775 bfd_boolean *override,
776 bfd_boolean *type_change_ok,
0f8a2703 777 bfd_boolean *size_change_ok)
252b5132 778{
7479dfd4 779 asection *sec, *oldsec;
45d6a902
AM
780 struct elf_link_hash_entry *h;
781 struct elf_link_hash_entry *flip;
782 int bind;
783 bfd *oldbfd;
784 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 785 bfd_boolean newweak, oldweak;
45d6a902
AM
786
787 *skip = FALSE;
788 *override = FALSE;
789
790 sec = *psec;
791 bind = ELF_ST_BIND (sym->st_info);
792
793 if (! bfd_is_und_section (sec))
794 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
795 else
796 h = ((struct elf_link_hash_entry *)
797 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
798 if (h == NULL)
799 return FALSE;
800 *sym_hash = h;
252b5132 801
45d6a902
AM
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info->hash->creator != abfd->xvec)
805 return TRUE;
252b5132 806
45d6a902
AM
807 /* For merging, we only care about real symbols. */
808
809 while (h->root.type == bfd_link_hash_indirect
810 || h->root.type == bfd_link_hash_warning)
811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
812
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
816
817 if (h->root.type == bfd_link_hash_new)
252b5132 818 {
f5385ebf 819 h->non_elf = 0;
45d6a902
AM
820 return TRUE;
821 }
252b5132 822
7479dfd4
L
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
824 existing symbol. */
252b5132 825
45d6a902
AM
826 switch (h->root.type)
827 {
828 default:
829 oldbfd = NULL;
7479dfd4 830 oldsec = NULL;
45d6a902 831 break;
252b5132 832
45d6a902
AM
833 case bfd_link_hash_undefined:
834 case bfd_link_hash_undefweak:
835 oldbfd = h->root.u.undef.abfd;
7479dfd4 836 oldsec = NULL;
45d6a902
AM
837 break;
838
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 oldbfd = h->root.u.def.section->owner;
7479dfd4 842 oldsec = h->root.u.def.section;
45d6a902
AM
843 break;
844
845 case bfd_link_hash_common:
846 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 847 oldsec = h->root.u.c.p->section;
45d6a902
AM
848 break;
849 }
850
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
857 if (abfd == oldbfd
858 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 859 || !h->def_regular))
45d6a902
AM
860 return TRUE;
861
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
864
865 if ((abfd->flags & DYNAMIC) != 0)
866 newdyn = TRUE;
867 else
868 newdyn = FALSE;
869
870 if (oldbfd != NULL)
871 olddyn = (oldbfd->flags & DYNAMIC) != 0;
872 else
873 {
874 asection *hsec;
875
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h->root.type)
252b5132 879 {
45d6a902
AM
880 default:
881 hsec = NULL;
882 break;
252b5132 883
45d6a902
AM
884 case bfd_link_hash_defined:
885 case bfd_link_hash_defweak:
886 hsec = h->root.u.def.section;
887 break;
252b5132 888
45d6a902
AM
889 case bfd_link_hash_common:
890 hsec = h->root.u.c.p->section;
891 break;
252b5132 892 }
252b5132 893
45d6a902
AM
894 if (hsec == NULL)
895 olddyn = FALSE;
896 else
897 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
898 }
252b5132 899
45d6a902
AM
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
902
903 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
904 newdef = FALSE;
905 else
906 newdef = TRUE;
907
908 if (h->root.type == bfd_link_hash_undefined
909 || h->root.type == bfd_link_hash_undefweak
910 || h->root.type == bfd_link_hash_common)
911 olddef = FALSE;
912 else
913 olddef = TRUE;
914
7479dfd4
L
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
917 && ELF_ST_TYPE (sym->st_info) != h->type)
918 {
919 bfd *ntbfd, *tbfd;
920 bfd_boolean ntdef, tdef;
921 asection *ntsec, *tsec;
922
923 if (h->type == STT_TLS)
924 {
925 ntbfd = abfd;
926 ntsec = sec;
927 ntdef = newdef;
928 tbfd = oldbfd;
929 tsec = oldsec;
930 tdef = olddef;
931 }
932 else
933 {
934 ntbfd = oldbfd;
935 ntsec = oldsec;
936 ntdef = olddef;
937 tbfd = abfd;
938 tsec = sec;
939 tdef = newdef;
940 }
941
942 if (tdef && ntdef)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
946 else if (!tdef && !ntdef)
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd, ntbfd, h->root.root.string);
950 else if (tdef)
951 (*_bfd_error_handler)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd, tsec, ntbfd, h->root.root.string);
954 else
955 (*_bfd_error_handler)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd, ntbfd, ntsec, h->root.root.string);
958
959 bfd_set_error (bfd_error_bad_value);
960 return FALSE;
961 }
962
4cc11e76 963 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
f5385ebf 966 if (newdyn && !h->dynamic_def)
45d6a902
AM
967 {
968 if (!bfd_is_und_section (sec))
f5385ebf 969 h->dynamic_def = 1;
45d6a902 970 else
252b5132 971 {
45d6a902
AM
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
f5385ebf 975 if (!h->ref_dynamic)
79349b09 976 {
45d6a902 977 if (bind == STB_WEAK)
f5385ebf 978 h->dynamic_weak = 1;
252b5132 979 }
45d6a902 980 else if (bind != STB_WEAK)
f5385ebf 981 h->dynamic_weak = 0;
252b5132 982 }
45d6a902 983 }
252b5132 984
45d6a902
AM
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
987 if (newdyn
9c7a29a3 988 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
989 && !bfd_is_und_section (sec))
990 {
991 *skip = TRUE;
992 /* Make sure this symbol is dynamic. */
f5385ebf 993 h->ref_dynamic = 1;
45d6a902
AM
994 /* A protected symbol has external availability. Make sure it is
995 recorded as dynamic.
996
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 999 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1000 else
1001 return TRUE;
1002 }
1003 else if (!newdyn
9c7a29a3 1004 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1005 && h->def_dynamic)
45d6a902
AM
1006 {
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1011 h = *sym_hash;
1de1a317 1012
f6e332e6 1013 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1014 && bfd_is_und_section (sec))
1015 {
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1019 up the linker hash table undefs list. Since the old
1de1a317
L
1020 definition came from a dynamic object, it is still on the
1021 undefs list. */
1022 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1023 h->root.u.undef.abfd = abfd;
1024 }
1025 else
1026 {
1027 h->root.type = bfd_link_hash_new;
1028 h->root.u.undef.abfd = NULL;
1029 }
1030
f5385ebf 1031 if (h->def_dynamic)
252b5132 1032 {
f5385ebf
AM
1033 h->def_dynamic = 0;
1034 h->ref_dynamic = 1;
1035 h->dynamic_def = 1;
45d6a902
AM
1036 }
1037 /* FIXME: Should we check type and size for protected symbol? */
1038 h->size = 0;
1039 h->type = 0;
1040 return TRUE;
1041 }
14a793b2 1042
79349b09
AM
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1047
15b43f48
AM
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1055
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1058
1059 if (newdef && !newdyn && olddyn)
0f8a2703 1060 newweak = FALSE;
15b43f48 1061 if (olddef && newdyn)
0f8a2703
AM
1062 oldweak = FALSE;
1063
79349b09
AM
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
252b5132 1067
79349b09
AM
1068 if (oldweak
1069 || newweak
1070 || (newdef
1071 && h->root.type == bfd_link_hash_undefined))
1072 *type_change_ok = TRUE;
1073
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1076
1077 if (*type_change_ok
1078 || h->root.type == bfd_link_hash_undefined)
1079 *size_change_ok = TRUE;
45d6a902 1080
45d6a902
AM
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1092 libraries.
1093
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1096
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1102 harmless. */
1103
1104 if (newdyn
1105 && newdef
79349b09 1106 && !newweak
45d6a902
AM
1107 && (sec->flags & SEC_ALLOC) != 0
1108 && (sec->flags & SEC_LOAD) == 0
1109 && sym->st_size > 0
45d6a902
AM
1110 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1111 newdyncommon = TRUE;
1112 else
1113 newdyncommon = FALSE;
1114
1115 if (olddyn
1116 && olddef
1117 && h->root.type == bfd_link_hash_defined
f5385ebf 1118 && h->def_dynamic
45d6a902
AM
1119 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1120 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1121 && h->size > 0
1122 && h->type != STT_FUNC)
1123 olddyncommon = TRUE;
1124 else
1125 olddyncommon = FALSE;
1126
45d6a902
AM
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1129 two. */
1130
1131 if (olddyncommon
1132 && newdyncommon
1133 && sym->st_size != h->size)
1134 {
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1140
1141 if (! ((*info->callbacks->multiple_common)
1142 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1143 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1144 return FALSE;
252b5132 1145
45d6a902
AM
1146 if (sym->st_size > h->size)
1147 h->size = sym->st_size;
252b5132 1148
45d6a902 1149 *size_change_ok = TRUE;
252b5132
RH
1150 }
1151
45d6a902
AM
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1158
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
79349b09 1164 object to override a weak symbol in a shared object. */
45d6a902
AM
1165
1166 if (newdyn
1167 && newdef
77cfaee6 1168 && (olddef
45d6a902 1169 || (h->root.type == bfd_link_hash_common
79349b09 1170 && (newweak
0f8a2703 1171 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1172 {
1173 *override = TRUE;
1174 newdef = FALSE;
1175 newdyncommon = FALSE;
252b5132 1176
45d6a902
AM
1177 *psec = sec = bfd_und_section_ptr;
1178 *size_change_ok = TRUE;
252b5132 1179
45d6a902
AM
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
252b5132 1185
45d6a902
AM
1186 if (h->root.type == bfd_link_hash_common)
1187 *type_change_ok = TRUE;
1188 }
1189
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1194 the right thing. */
1195
1196 if (newdyncommon
1197 && h->root.type == bfd_link_hash_common)
1198 {
1199 *override = TRUE;
1200 newdef = FALSE;
1201 newdyncommon = FALSE;
1202 *pvalue = sym->st_size;
1203 *psec = sec = bfd_com_section_ptr;
1204 *size_change_ok = TRUE;
1205 }
1206
1207 /* If the old symbol is from a dynamic object, and the new symbol is
1208 a definition which is not from a dynamic object, then the new
1209 symbol overrides the old symbol. Symbols from regular files
1210 always take precedence over symbols from dynamic objects, even if
1211 they are defined after the dynamic object in the link.
1212
1213 As above, we again permit a common symbol in a regular object to
1214 override a definition in a shared object if the shared object
0f8a2703 1215 symbol is a function or is weak. */
45d6a902
AM
1216
1217 flip = NULL;
77cfaee6 1218 if (!newdyn
45d6a902
AM
1219 && (newdef
1220 || (bfd_is_com_section (sec)
79349b09
AM
1221 && (oldweak
1222 || h->type == STT_FUNC)))
45d6a902
AM
1223 && olddyn
1224 && olddef
f5385ebf 1225 && h->def_dynamic)
45d6a902
AM
1226 {
1227 /* Change the hash table entry to undefined, and let
1228 _bfd_generic_link_add_one_symbol do the right thing with the
1229 new definition. */
1230
1231 h->root.type = bfd_link_hash_undefined;
1232 h->root.u.undef.abfd = h->root.u.def.section->owner;
1233 *size_change_ok = TRUE;
1234
1235 olddef = FALSE;
1236 olddyncommon = FALSE;
1237
1238 /* We again permit a type change when a common symbol may be
1239 overriding a function. */
1240
1241 if (bfd_is_com_section (sec))
1242 *type_change_ok = TRUE;
1243
1244 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1245 flip = *sym_hash;
1246 else
1247 /* This union may have been set to be non-NULL when this symbol
1248 was seen in a dynamic object. We must force the union to be
1249 NULL, so that it is correct for a regular symbol. */
1250 h->verinfo.vertree = NULL;
1251 }
1252
1253 /* Handle the special case of a new common symbol merging with an
1254 old symbol that looks like it might be a common symbol defined in
1255 a shared object. Note that we have already handled the case in
1256 which a new common symbol should simply override the definition
1257 in the shared library. */
1258
1259 if (! newdyn
1260 && bfd_is_com_section (sec)
1261 && olddyncommon)
1262 {
1263 /* It would be best if we could set the hash table entry to a
1264 common symbol, but we don't know what to use for the section
1265 or the alignment. */
1266 if (! ((*info->callbacks->multiple_common)
1267 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1268 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1269 return FALSE;
1270
4cc11e76 1271 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1272 larger, pretend that the new symbol has its size. */
1273
1274 if (h->size > *pvalue)
1275 *pvalue = h->size;
1276
af44c138
L
1277 /* We need to remember the alignment required by the symbol
1278 in the dynamic object. */
1279 BFD_ASSERT (pold_alignment);
1280 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1281
1282 olddef = FALSE;
1283 olddyncommon = FALSE;
1284
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = h->root.u.def.section->owner;
1287
1288 *size_change_ok = TRUE;
1289 *type_change_ok = TRUE;
1290
1291 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1292 flip = *sym_hash;
1293 else
1294 h->verinfo.vertree = NULL;
1295 }
1296
1297 if (flip != NULL)
1298 {
1299 /* Handle the case where we had a versioned symbol in a dynamic
1300 library and now find a definition in a normal object. In this
1301 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1303 flip->root.type = h->root.type;
1304 h->root.type = bfd_link_hash_indirect;
1305 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1306 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1307 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1308 if (h->def_dynamic)
45d6a902 1309 {
f5385ebf
AM
1310 h->def_dynamic = 0;
1311 flip->ref_dynamic = 1;
45d6a902
AM
1312 }
1313 }
1314
45d6a902
AM
1315 return TRUE;
1316}
1317
1318/* This function is called to create an indirect symbol from the
1319 default for the symbol with the default version if needed. The
1320 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1321 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1322
1323bfd_boolean
268b6b39
AM
1324_bfd_elf_add_default_symbol (bfd *abfd,
1325 struct bfd_link_info *info,
1326 struct elf_link_hash_entry *h,
1327 const char *name,
1328 Elf_Internal_Sym *sym,
1329 asection **psec,
1330 bfd_vma *value,
1331 bfd_boolean *dynsym,
0f8a2703 1332 bfd_boolean override)
45d6a902
AM
1333{
1334 bfd_boolean type_change_ok;
1335 bfd_boolean size_change_ok;
1336 bfd_boolean skip;
1337 char *shortname;
1338 struct elf_link_hash_entry *hi;
1339 struct bfd_link_hash_entry *bh;
9c5bfbb7 1340 const struct elf_backend_data *bed;
45d6a902
AM
1341 bfd_boolean collect;
1342 bfd_boolean dynamic;
1343 char *p;
1344 size_t len, shortlen;
1345 asection *sec;
1346
1347 /* If this symbol has a version, and it is the default version, we
1348 create an indirect symbol from the default name to the fully
1349 decorated name. This will cause external references which do not
1350 specify a version to be bound to this version of the symbol. */
1351 p = strchr (name, ELF_VER_CHR);
1352 if (p == NULL || p[1] != ELF_VER_CHR)
1353 return TRUE;
1354
1355 if (override)
1356 {
4cc11e76 1357 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1358 need to create the indirect symbol from the default name. */
1359 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1360 FALSE, FALSE);
1361 BFD_ASSERT (hi != NULL);
1362 if (hi == h)
1363 return TRUE;
1364 while (hi->root.type == bfd_link_hash_indirect
1365 || hi->root.type == bfd_link_hash_warning)
1366 {
1367 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1368 if (hi == h)
1369 return TRUE;
1370 }
1371 }
1372
1373 bed = get_elf_backend_data (abfd);
1374 collect = bed->collect;
1375 dynamic = (abfd->flags & DYNAMIC) != 0;
1376
1377 shortlen = p - name;
1378 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1379 if (shortname == NULL)
1380 return FALSE;
1381 memcpy (shortname, name, shortlen);
1382 shortname[shortlen] = '\0';
1383
1384 /* We are going to create a new symbol. Merge it with any existing
1385 symbol with this name. For the purposes of the merge, act as
1386 though we were defining the symbol we just defined, although we
1387 actually going to define an indirect symbol. */
1388 type_change_ok = FALSE;
1389 size_change_ok = FALSE;
1390 sec = *psec;
1391 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1392 NULL, &hi, &skip, &override,
1393 &type_change_ok, &size_change_ok))
45d6a902
AM
1394 return FALSE;
1395
1396 if (skip)
1397 goto nondefault;
1398
1399 if (! override)
1400 {
1401 bh = &hi->root;
1402 if (! (_bfd_generic_link_add_one_symbol
1403 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1404 0, name, FALSE, collect, &bh)))
45d6a902
AM
1405 return FALSE;
1406 hi = (struct elf_link_hash_entry *) bh;
1407 }
1408 else
1409 {
1410 /* In this case the symbol named SHORTNAME is overriding the
1411 indirect symbol we want to add. We were planning on making
1412 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1413 is the name without a version. NAME is the fully versioned
1414 name, and it is the default version.
1415
1416 Overriding means that we already saw a definition for the
1417 symbol SHORTNAME in a regular object, and it is overriding
1418 the symbol defined in the dynamic object.
1419
1420 When this happens, we actually want to change NAME, the
1421 symbol we just added, to refer to SHORTNAME. This will cause
1422 references to NAME in the shared object to become references
1423 to SHORTNAME in the regular object. This is what we expect
1424 when we override a function in a shared object: that the
1425 references in the shared object will be mapped to the
1426 definition in the regular object. */
1427
1428 while (hi->root.type == bfd_link_hash_indirect
1429 || hi->root.type == bfd_link_hash_warning)
1430 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1431
1432 h->root.type = bfd_link_hash_indirect;
1433 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1434 if (h->def_dynamic)
45d6a902 1435 {
f5385ebf
AM
1436 h->def_dynamic = 0;
1437 hi->ref_dynamic = 1;
1438 if (hi->ref_regular
1439 || hi->def_regular)
45d6a902 1440 {
c152c796 1441 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1442 return FALSE;
1443 }
1444 }
1445
1446 /* Now set HI to H, so that the following code will set the
1447 other fields correctly. */
1448 hi = h;
1449 }
1450
1451 /* If there is a duplicate definition somewhere, then HI may not
1452 point to an indirect symbol. We will have reported an error to
1453 the user in that case. */
1454
1455 if (hi->root.type == bfd_link_hash_indirect)
1456 {
1457 struct elf_link_hash_entry *ht;
1458
45d6a902
AM
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1461
1462 /* See if the new flags lead us to realize that the symbol must
1463 be dynamic. */
1464 if (! *dynsym)
1465 {
1466 if (! dynamic)
1467 {
1468 if (info->shared
f5385ebf 1469 || hi->ref_dynamic)
45d6a902
AM
1470 *dynsym = TRUE;
1471 }
1472 else
1473 {
f5385ebf 1474 if (hi->ref_regular)
45d6a902
AM
1475 *dynsym = TRUE;
1476 }
1477 }
1478 }
1479
1480 /* We also need to define an indirection from the nondefault version
1481 of the symbol. */
1482
1483nondefault:
1484 len = strlen (name);
1485 shortname = bfd_hash_allocate (&info->hash->table, len);
1486 if (shortname == NULL)
1487 return FALSE;
1488 memcpy (shortname, name, shortlen);
1489 memcpy (shortname + shortlen, p + 1, len - shortlen);
1490
1491 /* Once again, merge with any existing symbol. */
1492 type_change_ok = FALSE;
1493 size_change_ok = FALSE;
1494 sec = *psec;
1495 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1496 NULL, &hi, &skip, &override,
1497 &type_change_ok, &size_change_ok))
45d6a902
AM
1498 return FALSE;
1499
1500 if (skip)
1501 return TRUE;
1502
1503 if (override)
1504 {
1505 /* Here SHORTNAME is a versioned name, so we don't expect to see
1506 the type of override we do in the case above unless it is
4cc11e76 1507 overridden by a versioned definition. */
45d6a902
AM
1508 if (hi->root.type != bfd_link_hash_defined
1509 && hi->root.type != bfd_link_hash_defweak)
1510 (*_bfd_error_handler)
d003868e
AM
1511 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1512 abfd, shortname);
45d6a902
AM
1513 }
1514 else
1515 {
1516 bh = &hi->root;
1517 if (! (_bfd_generic_link_add_one_symbol
1518 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1519 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1520 return FALSE;
1521 hi = (struct elf_link_hash_entry *) bh;
1522
1523 /* If there is a duplicate definition somewhere, then HI may not
1524 point to an indirect symbol. We will have reported an error
1525 to the user in that case. */
1526
1527 if (hi->root.type == bfd_link_hash_indirect)
1528 {
45d6a902
AM
1529 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1530
1531 /* See if the new flags lead us to realize that the symbol
1532 must be dynamic. */
1533 if (! *dynsym)
1534 {
1535 if (! dynamic)
1536 {
1537 if (info->shared
f5385ebf 1538 || hi->ref_dynamic)
45d6a902
AM
1539 *dynsym = TRUE;
1540 }
1541 else
1542 {
f5385ebf 1543 if (hi->ref_regular)
45d6a902
AM
1544 *dynsym = TRUE;
1545 }
1546 }
1547 }
1548 }
1549
1550 return TRUE;
1551}
1552\f
1553/* This routine is used to export all defined symbols into the dynamic
1554 symbol table. It is called via elf_link_hash_traverse. */
1555
1556bfd_boolean
268b6b39 1557_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1558{
268b6b39 1559 struct elf_info_failed *eif = data;
45d6a902
AM
1560
1561 /* Ignore indirect symbols. These are added by the versioning code. */
1562 if (h->root.type == bfd_link_hash_indirect)
1563 return TRUE;
1564
1565 if (h->root.type == bfd_link_hash_warning)
1566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1567
1568 if (h->dynindx == -1
f5385ebf
AM
1569 && (h->def_regular
1570 || h->ref_regular))
45d6a902
AM
1571 {
1572 struct bfd_elf_version_tree *t;
1573 struct bfd_elf_version_expr *d;
1574
1575 for (t = eif->verdefs; t != NULL; t = t->next)
1576 {
108ba305 1577 if (t->globals.list != NULL)
45d6a902 1578 {
108ba305
JJ
1579 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1580 if (d != NULL)
1581 goto doit;
45d6a902
AM
1582 }
1583
108ba305 1584 if (t->locals.list != NULL)
45d6a902 1585 {
108ba305
JJ
1586 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1587 if (d != NULL)
1588 return TRUE;
45d6a902
AM
1589 }
1590 }
1591
1592 if (!eif->verdefs)
1593 {
1594 doit:
c152c796 1595 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1596 {
1597 eif->failed = TRUE;
1598 return FALSE;
1599 }
1600 }
1601 }
1602
1603 return TRUE;
1604}
1605\f
1606/* Look through the symbols which are defined in other shared
1607 libraries and referenced here. Update the list of version
1608 dependencies. This will be put into the .gnu.version_r section.
1609 This function is called via elf_link_hash_traverse. */
1610
1611bfd_boolean
268b6b39
AM
1612_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1613 void *data)
45d6a902 1614{
268b6b39 1615 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1616 Elf_Internal_Verneed *t;
1617 Elf_Internal_Vernaux *a;
1618 bfd_size_type amt;
1619
1620 if (h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622
1623 /* We only care about symbols defined in shared objects with version
1624 information. */
f5385ebf
AM
1625 if (!h->def_dynamic
1626 || h->def_regular
45d6a902
AM
1627 || h->dynindx == -1
1628 || h->verinfo.verdef == NULL)
1629 return TRUE;
1630
1631 /* See if we already know about this version. */
1632 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1633 {
1634 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1635 continue;
1636
1637 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1638 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1639 return TRUE;
1640
1641 break;
1642 }
1643
1644 /* This is a new version. Add it to tree we are building. */
1645
1646 if (t == NULL)
1647 {
1648 amt = sizeof *t;
268b6b39 1649 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1650 if (t == NULL)
1651 {
1652 rinfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1657 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1658 elf_tdata (rinfo->output_bfd)->verref = t;
1659 }
1660
1661 amt = sizeof *a;
268b6b39 1662 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1663
1664 /* Note that we are copying a string pointer here, and testing it
1665 above. If bfd_elf_string_from_elf_section is ever changed to
1666 discard the string data when low in memory, this will have to be
1667 fixed. */
1668 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1669
1670 a->vna_flags = h->verinfo.verdef->vd_flags;
1671 a->vna_nextptr = t->vn_auxptr;
1672
1673 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1674 ++rinfo->vers;
1675
1676 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1677
1678 t->vn_auxptr = a;
1679
1680 return TRUE;
1681}
1682
1683/* Figure out appropriate versions for all the symbols. We may not
1684 have the version number script until we have read all of the input
1685 files, so until that point we don't know which symbols should be
1686 local. This function is called via elf_link_hash_traverse. */
1687
1688bfd_boolean
268b6b39 1689_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1690{
1691 struct elf_assign_sym_version_info *sinfo;
1692 struct bfd_link_info *info;
9c5bfbb7 1693 const struct elf_backend_data *bed;
45d6a902
AM
1694 struct elf_info_failed eif;
1695 char *p;
1696 bfd_size_type amt;
1697
268b6b39 1698 sinfo = data;
45d6a902
AM
1699 info = sinfo->info;
1700
1701 if (h->root.type == bfd_link_hash_warning)
1702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1703
1704 /* Fix the symbol flags. */
1705 eif.failed = FALSE;
1706 eif.info = info;
1707 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1708 {
1709 if (eif.failed)
1710 sinfo->failed = TRUE;
1711 return FALSE;
1712 }
1713
1714 /* We only need version numbers for symbols defined in regular
1715 objects. */
f5385ebf 1716 if (!h->def_regular)
45d6a902
AM
1717 return TRUE;
1718
1719 bed = get_elf_backend_data (sinfo->output_bfd);
1720 p = strchr (h->root.root.string, ELF_VER_CHR);
1721 if (p != NULL && h->verinfo.vertree == NULL)
1722 {
1723 struct bfd_elf_version_tree *t;
1724 bfd_boolean hidden;
1725
1726 hidden = TRUE;
1727
1728 /* There are two consecutive ELF_VER_CHR characters if this is
1729 not a hidden symbol. */
1730 ++p;
1731 if (*p == ELF_VER_CHR)
1732 {
1733 hidden = FALSE;
1734 ++p;
1735 }
1736
1737 /* If there is no version string, we can just return out. */
1738 if (*p == '\0')
1739 {
1740 if (hidden)
f5385ebf 1741 h->hidden = 1;
45d6a902
AM
1742 return TRUE;
1743 }
1744
1745 /* Look for the version. If we find it, it is no longer weak. */
1746 for (t = sinfo->verdefs; t != NULL; t = t->next)
1747 {
1748 if (strcmp (t->name, p) == 0)
1749 {
1750 size_t len;
1751 char *alc;
1752 struct bfd_elf_version_expr *d;
1753
1754 len = p - h->root.root.string;
268b6b39 1755 alc = bfd_malloc (len);
45d6a902
AM
1756 if (alc == NULL)
1757 return FALSE;
1758 memcpy (alc, h->root.root.string, len - 1);
1759 alc[len - 1] = '\0';
1760 if (alc[len - 2] == ELF_VER_CHR)
1761 alc[len - 2] = '\0';
1762
1763 h->verinfo.vertree = t;
1764 t->used = TRUE;
1765 d = NULL;
1766
108ba305
JJ
1767 if (t->globals.list != NULL)
1768 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1769
1770 /* See if there is anything to force this symbol to
1771 local scope. */
108ba305 1772 if (d == NULL && t->locals.list != NULL)
45d6a902 1773 {
108ba305
JJ
1774 d = (*t->match) (&t->locals, NULL, alc);
1775 if (d != NULL
1776 && h->dynindx != -1
1777 && info->shared
1778 && ! info->export_dynamic)
1779 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1780 }
1781
1782 free (alc);
1783 break;
1784 }
1785 }
1786
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
36af4a4e 1789 if (t == NULL && info->executable)
45d6a902
AM
1790 {
1791 struct bfd_elf_version_tree **pp;
1792 int version_index;
1793
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h->dynindx == -1)
1797 return TRUE;
1798
1799 amt = sizeof *t;
108ba305 1800 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1801 if (t == NULL)
1802 {
1803 sinfo->failed = TRUE;
1804 return FALSE;
1805 }
1806
45d6a902 1807 t->name = p;
45d6a902
AM
1808 t->name_indx = (unsigned int) -1;
1809 t->used = TRUE;
1810
1811 version_index = 1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1814 version_index = 0;
1815 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1816 ++version_index;
1817 t->vernum = version_index;
1818
1819 *pp = t;
1820
1821 h->verinfo.vertree = t;
1822 }
1823 else if (t == NULL)
1824 {
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler)
d003868e
AM
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1830 bfd_set_error (bfd_error_bad_value);
1831 sinfo->failed = TRUE;
1832 return FALSE;
1833 }
1834
1835 if (hidden)
f5385ebf 1836 h->hidden = 1;
45d6a902
AM
1837 }
1838
1839 /* If we don't have a version for this symbol, see if we can find
1840 something. */
1841 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1842 {
1843 struct bfd_elf_version_tree *t;
1844 struct bfd_elf_version_tree *local_ver;
1845 struct bfd_elf_version_expr *d;
1846
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1849 it. */
1850 local_ver = NULL;
1851 for (t = sinfo->verdefs; t != NULL; t = t->next)
1852 {
108ba305 1853 if (t->globals.list != NULL)
45d6a902
AM
1854 {
1855 bfd_boolean matched;
1856
1857 matched = FALSE;
108ba305
JJ
1858 d = NULL;
1859 while ((d = (*t->match) (&t->globals, d,
1860 h->root.root.string)) != NULL)
1861 if (d->symver)
1862 matched = TRUE;
1863 else
1864 {
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1867 version. */
1868 h->verinfo.vertree = t;
1869 local_ver = NULL;
1870 d->script = 1;
1871 break;
1872 }
45d6a902
AM
1873 if (d != NULL)
1874 break;
1875 else if (matched)
1876 /* There is no undefined version for this symbol. Hide the
1877 default one. */
1878 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1879 }
1880
108ba305 1881 if (t->locals.list != NULL)
45d6a902 1882 {
108ba305
JJ
1883 d = NULL;
1884 while ((d = (*t->match) (&t->locals, d,
1885 h->root.root.string)) != NULL)
45d6a902 1886 {
108ba305 1887 local_ver = t;
45d6a902 1888 /* If the match is "*", keep looking for a more
108ba305
JJ
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1892 break;
45d6a902
AM
1893 }
1894
1895 if (d != NULL)
1896 break;
1897 }
1898 }
1899
1900 if (local_ver != NULL)
1901 {
1902 h->verinfo.vertree = local_ver;
1903 if (h->dynindx != -1
1904 && info->shared
1905 && ! info->export_dynamic)
1906 {
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913}
1914\f
45d6a902
AM
1915/* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1921
1922 Returns FALSE if something goes wrong. */
1923
1924static bfd_boolean
268b6b39 1925elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1926 asection *sec,
268b6b39
AM
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
45d6a902 1930{
9c5bfbb7 1931 const struct elf_backend_data *bed;
268b6b39 1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
243ef1e0
L
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
45d6a902 1938
45d6a902
AM
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1942
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1946
243ef1e0
L
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1949
45d6a902
AM
1950 bed = get_elf_backend_data (abfd);
1951
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1961 }
1962
1963 erela = external_relocs;
51992aec 1964 erelaend = erela + shdr->sh_size;
45d6a902
AM
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1967 {
243ef1e0
L
1968 bfd_vma r_symndx;
1969
45d6a902 1970 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1975 {
1976 (*_bfd_error_handler)
d003868e
AM
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1983 }
45d6a902
AM
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1986 }
1987
1988 return TRUE;
1989}
1990
1991/* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2000
2001Elf_Internal_Rela *
268b6b39
AM
2002_bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
45d6a902
AM
2007{
2008 Elf_Internal_Shdr *rel_hdr;
268b6b39 2009 void *alloc1 = NULL;
45d6a902 2010 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2012
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2015
2016 if (o->reloc_count == 0)
2017 return NULL;
2018
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2020
2021 if (internal_relocs == NULL)
2022 {
2023 bfd_size_type size;
2024
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
268b6b39 2028 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2029 else
268b6b39 2030 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2031 if (internal_relocs == NULL)
2032 goto error_return;
2033 }
2034
2035 if (external_relocs == NULL)
2036 {
2037 bfd_size_type size = rel_hdr->sh_size;
2038
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2041 alloc1 = bfd_malloc (size);
45d6a902
AM
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2045 }
2046
243ef1e0 2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
51992aec
AM
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2058 goto error_return;
2059
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2063
2064 if (alloc1 != NULL)
2065 free (alloc1);
2066
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2069
2070 return internal_relocs;
2071
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2078}
2079
2080/* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2082
2083bfd_boolean
268b6b39
AM
2084_bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
45d6a902
AM
2087{
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2090
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2096
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2100
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2103
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
268b6b39 2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2111
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2116 {
2117 struct elf_link_hash_entry **p;
2118
268b6b39 2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2120 if (p == NULL)
2121 return FALSE;
2122
2123 elf_section_data (o)->rel_hashes = p;
2124 }
2125
2126 return TRUE;
2127}
2128
2129/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2132
2133bfd_boolean
268b6b39
AM
2134_bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
2137 Elf_Internal_Rela *internal_relocs)
45d6a902
AM
2138{
2139 Elf_Internal_Rela *irela;
2140 Elf_Internal_Rela *irelaend;
2141 bfd_byte *erel;
2142 Elf_Internal_Shdr *output_rel_hdr;
2143 asection *output_section;
2144 unsigned int *rel_countp = NULL;
9c5bfbb7 2145 const struct elf_backend_data *bed;
268b6b39 2146 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2147
2148 output_section = input_section->output_section;
2149 output_rel_hdr = NULL;
2150
2151 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2152 == input_rel_hdr->sh_entsize)
2153 {
2154 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2155 rel_countp = &elf_section_data (output_section)->rel_count;
2156 }
2157 else if (elf_section_data (output_section)->rel_hdr2
2158 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2159 == input_rel_hdr->sh_entsize))
2160 {
2161 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2162 rel_countp = &elf_section_data (output_section)->rel_count2;
2163 }
2164 else
2165 {
2166 (*_bfd_error_handler)
d003868e
AM
2167 (_("%B: relocation size mismatch in %B section %A"),
2168 output_bfd, input_section->owner, input_section);
45d6a902
AM
2169 bfd_set_error (bfd_error_wrong_object_format);
2170 return FALSE;
2171 }
2172
2173 bed = get_elf_backend_data (output_bfd);
2174 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2175 swap_out = bed->s->swap_reloc_out;
2176 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2177 swap_out = bed->s->swap_reloca_out;
2178 else
2179 abort ();
2180
2181 erel = output_rel_hdr->contents;
2182 erel += *rel_countp * input_rel_hdr->sh_entsize;
2183 irela = internal_relocs;
2184 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2185 * bed->s->int_rels_per_ext_rel);
2186 while (irela < irelaend)
2187 {
2188 (*swap_out) (output_bfd, irela, erel);
2189 irela += bed->s->int_rels_per_ext_rel;
2190 erel += input_rel_hdr->sh_entsize;
2191 }
2192
2193 /* Bump the counter, so that we know where to add the next set of
2194 relocations. */
2195 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2196
2197 return TRUE;
2198}
2199\f
2200/* Fix up the flags for a symbol. This handles various cases which
2201 can only be fixed after all the input files are seen. This is
2202 currently called by both adjust_dynamic_symbol and
2203 assign_sym_version, which is unnecessary but perhaps more robust in
2204 the face of future changes. */
2205
2206bfd_boolean
268b6b39
AM
2207_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2208 struct elf_info_failed *eif)
45d6a902
AM
2209{
2210 /* If this symbol was mentioned in a non-ELF file, try to set
2211 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2212 permit a non-ELF file to correctly refer to a symbol defined in
2213 an ELF dynamic object. */
f5385ebf 2214 if (h->non_elf)
45d6a902
AM
2215 {
2216 while (h->root.type == bfd_link_hash_indirect)
2217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2218
2219 if (h->root.type != bfd_link_hash_defined
2220 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2221 {
2222 h->ref_regular = 1;
2223 h->ref_regular_nonweak = 1;
2224 }
45d6a902
AM
2225 else
2226 {
2227 if (h->root.u.def.section->owner != NULL
2228 && (bfd_get_flavour (h->root.u.def.section->owner)
2229 == bfd_target_elf_flavour))
f5385ebf
AM
2230 {
2231 h->ref_regular = 1;
2232 h->ref_regular_nonweak = 1;
2233 }
45d6a902 2234 else
f5385ebf 2235 h->def_regular = 1;
45d6a902
AM
2236 }
2237
2238 if (h->dynindx == -1
f5385ebf
AM
2239 && (h->def_dynamic
2240 || h->ref_dynamic))
45d6a902 2241 {
c152c796 2242 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2243 {
2244 eif->failed = TRUE;
2245 return FALSE;
2246 }
2247 }
2248 }
2249 else
2250 {
f5385ebf 2251 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2252 was first seen in a non-ELF file. Fortunately, if the symbol
2253 was first seen in an ELF file, we're probably OK unless the
2254 symbol was defined in a non-ELF file. Catch that case here.
2255 FIXME: We're still in trouble if the symbol was first seen in
2256 a dynamic object, and then later in a non-ELF regular object. */
2257 if ((h->root.type == bfd_link_hash_defined
2258 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2259 && !h->def_regular
45d6a902
AM
2260 && (h->root.u.def.section->owner != NULL
2261 ? (bfd_get_flavour (h->root.u.def.section->owner)
2262 != bfd_target_elf_flavour)
2263 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2264 && !h->def_dynamic)))
2265 h->def_regular = 1;
45d6a902
AM
2266 }
2267
2268 /* If this is a final link, and the symbol was defined as a common
2269 symbol in a regular object file, and there was no definition in
2270 any dynamic object, then the linker will have allocated space for
f5385ebf 2271 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2272 flag will not have been set. */
2273 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2274 && !h->def_regular
2275 && h->ref_regular
2276 && !h->def_dynamic
45d6a902 2277 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2278 h->def_regular = 1;
45d6a902
AM
2279
2280 /* If -Bsymbolic was used (which means to bind references to global
2281 symbols to the definition within the shared object), and this
2282 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2283 need a PLT entry. Likewise, if the symbol has non-default
2284 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2285 will force it local. */
f5385ebf 2286 if (h->needs_plt
45d6a902 2287 && eif->info->shared
0eddce27 2288 && is_elf_hash_table (eif->info->hash)
45d6a902 2289 && (eif->info->symbolic
c1be741f 2290 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2291 && h->def_regular)
45d6a902 2292 {
9c5bfbb7 2293 const struct elf_backend_data *bed;
45d6a902
AM
2294 bfd_boolean force_local;
2295
2296 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2297
2298 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2299 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2300 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2301 }
2302
2303 /* If a weak undefined symbol has non-default visibility, we also
2304 hide it from the dynamic linker. */
9c7a29a3 2305 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2306 && h->root.type == bfd_link_hash_undefweak)
2307 {
9c5bfbb7 2308 const struct elf_backend_data *bed;
45d6a902
AM
2309 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2310 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2311 }
2312
2313 /* If this is a weak defined symbol in a dynamic object, and we know
2314 the real definition in the dynamic object, copy interesting flags
2315 over to the real definition. */
f6e332e6 2316 if (h->u.weakdef != NULL)
45d6a902
AM
2317 {
2318 struct elf_link_hash_entry *weakdef;
2319
f6e332e6 2320 weakdef = h->u.weakdef;
45d6a902
AM
2321 if (h->root.type == bfd_link_hash_indirect)
2322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2323
2324 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2325 || h->root.type == bfd_link_hash_defweak);
2326 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2327 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2328 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2329
2330 /* If the real definition is defined by a regular object file,
2331 don't do anything special. See the longer description in
2332 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2333 if (weakdef->def_regular)
f6e332e6 2334 h->u.weakdef = NULL;
45d6a902
AM
2335 else
2336 {
9c5bfbb7 2337 const struct elf_backend_data *bed;
45d6a902
AM
2338
2339 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2340 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2341 }
2342 }
2343
2344 return TRUE;
2345}
2346
2347/* Make the backend pick a good value for a dynamic symbol. This is
2348 called via elf_link_hash_traverse, and also calls itself
2349 recursively. */
2350
2351bfd_boolean
268b6b39 2352_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2353{
268b6b39 2354 struct elf_info_failed *eif = data;
45d6a902 2355 bfd *dynobj;
9c5bfbb7 2356 const struct elf_backend_data *bed;
45d6a902 2357
0eddce27 2358 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2359 return FALSE;
2360
2361 if (h->root.type == bfd_link_hash_warning)
2362 {
2363 h->plt = elf_hash_table (eif->info)->init_offset;
2364 h->got = elf_hash_table (eif->info)->init_offset;
2365
2366 /* When warning symbols are created, they **replace** the "real"
2367 entry in the hash table, thus we never get to see the real
2368 symbol in a hash traversal. So look at it now. */
2369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2370 }
2371
2372 /* Ignore indirect symbols. These are added by the versioning code. */
2373 if (h->root.type == bfd_link_hash_indirect)
2374 return TRUE;
2375
2376 /* Fix the symbol flags. */
2377 if (! _bfd_elf_fix_symbol_flags (h, eif))
2378 return FALSE;
2379
2380 /* If this symbol does not require a PLT entry, and it is not
2381 defined by a dynamic object, or is not referenced by a regular
2382 object, ignore it. We do have to handle a weak defined symbol,
2383 even if no regular object refers to it, if we decided to add it
2384 to the dynamic symbol table. FIXME: Do we normally need to worry
2385 about symbols which are defined by one dynamic object and
2386 referenced by another one? */
f5385ebf
AM
2387 if (!h->needs_plt
2388 && (h->def_regular
2389 || !h->def_dynamic
2390 || (!h->ref_regular
f6e332e6 2391 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902
AM
2392 {
2393 h->plt = elf_hash_table (eif->info)->init_offset;
2394 return TRUE;
2395 }
2396
2397 /* If we've already adjusted this symbol, don't do it again. This
2398 can happen via a recursive call. */
f5385ebf 2399 if (h->dynamic_adjusted)
45d6a902
AM
2400 return TRUE;
2401
2402 /* Don't look at this symbol again. Note that we must set this
2403 after checking the above conditions, because we may look at a
2404 symbol once, decide not to do anything, and then get called
2405 recursively later after REF_REGULAR is set below. */
f5385ebf 2406 h->dynamic_adjusted = 1;
45d6a902
AM
2407
2408 /* If this is a weak definition, and we know a real definition, and
2409 the real symbol is not itself defined by a regular object file,
2410 then get a good value for the real definition. We handle the
2411 real symbol first, for the convenience of the backend routine.
2412
2413 Note that there is a confusing case here. If the real definition
2414 is defined by a regular object file, we don't get the real symbol
2415 from the dynamic object, but we do get the weak symbol. If the
2416 processor backend uses a COPY reloc, then if some routine in the
2417 dynamic object changes the real symbol, we will not see that
2418 change in the corresponding weak symbol. This is the way other
2419 ELF linkers work as well, and seems to be a result of the shared
2420 library model.
2421
2422 I will clarify this issue. Most SVR4 shared libraries define the
2423 variable _timezone and define timezone as a weak synonym. The
2424 tzset call changes _timezone. If you write
2425 extern int timezone;
2426 int _timezone = 5;
2427 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2428 you might expect that, since timezone is a synonym for _timezone,
2429 the same number will print both times. However, if the processor
2430 backend uses a COPY reloc, then actually timezone will be copied
2431 into your process image, and, since you define _timezone
2432 yourself, _timezone will not. Thus timezone and _timezone will
2433 wind up at different memory locations. The tzset call will set
2434 _timezone, leaving timezone unchanged. */
2435
f6e332e6 2436 if (h->u.weakdef != NULL)
45d6a902
AM
2437 {
2438 /* If we get to this point, we know there is an implicit
2439 reference by a regular object file via the weak symbol H.
2440 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2441 H->U.WEAKDEF before it finds H? */
2442 h->u.weakdef->ref_regular = 1;
45d6a902 2443
f6e332e6 2444 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2445 return FALSE;
2446 }
2447
2448 /* If a symbol has no type and no size and does not require a PLT
2449 entry, then we are probably about to do the wrong thing here: we
2450 are probably going to create a COPY reloc for an empty object.
2451 This case can arise when a shared object is built with assembly
2452 code, and the assembly code fails to set the symbol type. */
2453 if (h->size == 0
2454 && h->type == STT_NOTYPE
f5385ebf 2455 && !h->needs_plt)
45d6a902
AM
2456 (*_bfd_error_handler)
2457 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2458 h->root.root.string);
2459
2460 dynobj = elf_hash_table (eif->info)->dynobj;
2461 bed = get_elf_backend_data (dynobj);
2462 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2463 {
2464 eif->failed = TRUE;
2465 return FALSE;
2466 }
2467
2468 return TRUE;
2469}
2470
2471/* Adjust all external symbols pointing into SEC_MERGE sections
2472 to reflect the object merging within the sections. */
2473
2474bfd_boolean
268b6b39 2475_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2476{
2477 asection *sec;
2478
2479 if (h->root.type == bfd_link_hash_warning)
2480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2481
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2485 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2486 {
268b6b39 2487 bfd *output_bfd = data;
45d6a902
AM
2488
2489 h->root.u.def.value =
2490 _bfd_merged_section_offset (output_bfd,
2491 &h->root.u.def.section,
2492 elf_section_data (sec)->sec_info,
753731ee 2493 h->root.u.def.value);
45d6a902
AM
2494 }
2495
2496 return TRUE;
2497}
986a241f
RH
2498
2499/* Returns false if the symbol referred to by H should be considered
2500 to resolve local to the current module, and true if it should be
2501 considered to bind dynamically. */
2502
2503bfd_boolean
268b6b39
AM
2504_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2505 struct bfd_link_info *info,
2506 bfd_boolean ignore_protected)
986a241f
RH
2507{
2508 bfd_boolean binding_stays_local_p;
2509
2510 if (h == NULL)
2511 return FALSE;
2512
2513 while (h->root.type == bfd_link_hash_indirect
2514 || h->root.type == bfd_link_hash_warning)
2515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2516
2517 /* If it was forced local, then clearly it's not dynamic. */
2518 if (h->dynindx == -1)
2519 return FALSE;
f5385ebf 2520 if (h->forced_local)
986a241f
RH
2521 return FALSE;
2522
2523 /* Identify the cases where name binding rules say that a
2524 visible symbol resolves locally. */
2525 binding_stays_local_p = info->executable || info->symbolic;
2526
2527 switch (ELF_ST_VISIBILITY (h->other))
2528 {
2529 case STV_INTERNAL:
2530 case STV_HIDDEN:
2531 return FALSE;
2532
2533 case STV_PROTECTED:
2534 /* Proper resolution for function pointer equality may require
2535 that these symbols perhaps be resolved dynamically, even though
2536 we should be resolving them to the current module. */
1c16dfa5 2537 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2538 binding_stays_local_p = TRUE;
2539 break;
2540
2541 default:
986a241f
RH
2542 break;
2543 }
2544
aa37626c 2545 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2546 if (!h->def_regular)
aa37626c
L
2547 return TRUE;
2548
986a241f
RH
2549 /* Otherwise, the symbol is dynamic if binding rules don't tell
2550 us that it remains local. */
2551 return !binding_stays_local_p;
2552}
f6c52c13
AM
2553
2554/* Return true if the symbol referred to by H should be considered
2555 to resolve local to the current module, and false otherwise. Differs
2556 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2557 undefined symbols and weak symbols. */
2558
2559bfd_boolean
268b6b39
AM
2560_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2561 struct bfd_link_info *info,
2562 bfd_boolean local_protected)
f6c52c13
AM
2563{
2564 /* If it's a local sym, of course we resolve locally. */
2565 if (h == NULL)
2566 return TRUE;
2567
7e2294f9
AO
2568 /* Common symbols that become definitions don't get the DEF_REGULAR
2569 flag set, so test it first, and don't bail out. */
2570 if (ELF_COMMON_DEF_P (h))
2571 /* Do nothing. */;
f6c52c13
AM
2572 /* If we don't have a definition in a regular file, then we can't
2573 resolve locally. The sym is either undefined or dynamic. */
f5385ebf 2574 else if (!h->def_regular)
f6c52c13
AM
2575 return FALSE;
2576
2577 /* Forced local symbols resolve locally. */
f5385ebf 2578 if (h->forced_local)
f6c52c13
AM
2579 return TRUE;
2580
2581 /* As do non-dynamic symbols. */
2582 if (h->dynindx == -1)
2583 return TRUE;
2584
2585 /* At this point, we know the symbol is defined and dynamic. In an
2586 executable it must resolve locally, likewise when building symbolic
2587 shared libraries. */
2588 if (info->executable || info->symbolic)
2589 return TRUE;
2590
2591 /* Now deal with defined dynamic symbols in shared libraries. Ones
2592 with default visibility might not resolve locally. */
2593 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2594 return FALSE;
2595
2596 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2597 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2598 return TRUE;
2599
1c16dfa5
L
2600 /* STV_PROTECTED non-function symbols are local. */
2601 if (h->type != STT_FUNC)
2602 return TRUE;
2603
f6c52c13
AM
2604 /* Function pointer equality tests may require that STV_PROTECTED
2605 symbols be treated as dynamic symbols, even when we know that the
2606 dynamic linker will resolve them locally. */
2607 return local_protected;
2608}
e1918d23
AM
2609
2610/* Caches some TLS segment info, and ensures that the TLS segment vma is
2611 aligned. Returns the first TLS output section. */
2612
2613struct bfd_section *
2614_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2615{
2616 struct bfd_section *sec, *tls;
2617 unsigned int align = 0;
2618
2619 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2620 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2621 break;
2622 tls = sec;
2623
2624 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2625 if (sec->alignment_power > align)
2626 align = sec->alignment_power;
2627
2628 elf_hash_table (info)->tls_sec = tls;
2629
2630 /* Ensure the alignment of the first section is the largest alignment,
2631 so that the tls segment starts aligned. */
2632 if (tls != NULL)
2633 tls->alignment_power = align;
2634
2635 return tls;
2636}
0ad989f9
L
2637
2638/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2639static bfd_boolean
2640is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2641 Elf_Internal_Sym *sym)
2642{
2643 /* Local symbols do not count, but target specific ones might. */
2644 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2645 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2646 return FALSE;
2647
2648 /* Function symbols do not count. */
2649 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2650 return FALSE;
2651
2652 /* If the section is undefined, then so is the symbol. */
2653 if (sym->st_shndx == SHN_UNDEF)
2654 return FALSE;
2655
2656 /* If the symbol is defined in the common section, then
2657 it is a common definition and so does not count. */
2658 if (sym->st_shndx == SHN_COMMON)
2659 return FALSE;
2660
2661 /* If the symbol is in a target specific section then we
2662 must rely upon the backend to tell us what it is. */
2663 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2664 /* FIXME - this function is not coded yet:
2665
2666 return _bfd_is_global_symbol_definition (abfd, sym);
2667
2668 Instead for now assume that the definition is not global,
2669 Even if this is wrong, at least the linker will behave
2670 in the same way that it used to do. */
2671 return FALSE;
2672
2673 return TRUE;
2674}
2675
2676/* Search the symbol table of the archive element of the archive ABFD
2677 whose archive map contains a mention of SYMDEF, and determine if
2678 the symbol is defined in this element. */
2679static bfd_boolean
2680elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2681{
2682 Elf_Internal_Shdr * hdr;
2683 bfd_size_type symcount;
2684 bfd_size_type extsymcount;
2685 bfd_size_type extsymoff;
2686 Elf_Internal_Sym *isymbuf;
2687 Elf_Internal_Sym *isym;
2688 Elf_Internal_Sym *isymend;
2689 bfd_boolean result;
2690
2691 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2692 if (abfd == NULL)
2693 return FALSE;
2694
2695 if (! bfd_check_format (abfd, bfd_object))
2696 return FALSE;
2697
2698 /* If we have already included the element containing this symbol in the
2699 link then we do not need to include it again. Just claim that any symbol
2700 it contains is not a definition, so that our caller will not decide to
2701 (re)include this element. */
2702 if (abfd->archive_pass)
2703 return FALSE;
2704
2705 /* Select the appropriate symbol table. */
2706 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2707 hdr = &elf_tdata (abfd)->symtab_hdr;
2708 else
2709 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2710
2711 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2712
2713 /* The sh_info field of the symtab header tells us where the
2714 external symbols start. We don't care about the local symbols. */
2715 if (elf_bad_symtab (abfd))
2716 {
2717 extsymcount = symcount;
2718 extsymoff = 0;
2719 }
2720 else
2721 {
2722 extsymcount = symcount - hdr->sh_info;
2723 extsymoff = hdr->sh_info;
2724 }
2725
2726 if (extsymcount == 0)
2727 return FALSE;
2728
2729 /* Read in the symbol table. */
2730 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2731 NULL, NULL, NULL);
2732 if (isymbuf == NULL)
2733 return FALSE;
2734
2735 /* Scan the symbol table looking for SYMDEF. */
2736 result = FALSE;
2737 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2738 {
2739 const char *name;
2740
2741 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2742 isym->st_name);
2743 if (name == NULL)
2744 break;
2745
2746 if (strcmp (name, symdef->name) == 0)
2747 {
2748 result = is_global_data_symbol_definition (abfd, isym);
2749 break;
2750 }
2751 }
2752
2753 free (isymbuf);
2754
2755 return result;
2756}
2757\f
5a580b3a
AM
2758/* Add an entry to the .dynamic table. */
2759
2760bfd_boolean
2761_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2762 bfd_vma tag,
2763 bfd_vma val)
2764{
2765 struct elf_link_hash_table *hash_table;
2766 const struct elf_backend_data *bed;
2767 asection *s;
2768 bfd_size_type newsize;
2769 bfd_byte *newcontents;
2770 Elf_Internal_Dyn dyn;
2771
2772 hash_table = elf_hash_table (info);
2773 if (! is_elf_hash_table (hash_table))
2774 return FALSE;
2775
8fdd7217
NC
2776 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2777 _bfd_error_handler
2778 (_("warning: creating a DT_TEXTREL in a shared object."));
2779
5a580b3a
AM
2780 bed = get_elf_backend_data (hash_table->dynobj);
2781 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2782 BFD_ASSERT (s != NULL);
2783
eea6121a 2784 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2785 newcontents = bfd_realloc (s->contents, newsize);
2786 if (newcontents == NULL)
2787 return FALSE;
2788
2789 dyn.d_tag = tag;
2790 dyn.d_un.d_val = val;
eea6121a 2791 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2792
eea6121a 2793 s->size = newsize;
5a580b3a
AM
2794 s->contents = newcontents;
2795
2796 return TRUE;
2797}
2798
2799/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2800 otherwise just check whether one already exists. Returns -1 on error,
2801 1 if a DT_NEEDED tag already exists, and 0 on success. */
2802
4ad4eba5 2803static int
7e9f0867
AM
2804elf_add_dt_needed_tag (bfd *abfd,
2805 struct bfd_link_info *info,
4ad4eba5
AM
2806 const char *soname,
2807 bfd_boolean do_it)
5a580b3a
AM
2808{
2809 struct elf_link_hash_table *hash_table;
2810 bfd_size_type oldsize;
2811 bfd_size_type strindex;
2812
7e9f0867
AM
2813 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2814 return -1;
2815
5a580b3a
AM
2816 hash_table = elf_hash_table (info);
2817 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2818 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2819 if (strindex == (bfd_size_type) -1)
2820 return -1;
2821
2822 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2823 {
2824 asection *sdyn;
2825 const struct elf_backend_data *bed;
2826 bfd_byte *extdyn;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2830 if (sdyn != NULL)
2831 for (extdyn = sdyn->contents;
2832 extdyn < sdyn->contents + sdyn->size;
2833 extdyn += bed->s->sizeof_dyn)
2834 {
2835 Elf_Internal_Dyn dyn;
5a580b3a 2836
7e9f0867
AM
2837 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2838 if (dyn.d_tag == DT_NEEDED
2839 && dyn.d_un.d_val == strindex)
2840 {
2841 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2842 return 1;
2843 }
2844 }
5a580b3a
AM
2845 }
2846
2847 if (do_it)
2848 {
7e9f0867
AM
2849 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2850 return -1;
2851
5a580b3a
AM
2852 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2853 return -1;
2854 }
2855 else
2856 /* We were just checking for existence of the tag. */
2857 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2858
2859 return 0;
2860}
2861
77cfaee6
AM
2862/* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2863 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
ec13b3bb
AM
2864 references from regular objects to these symbols.
2865
2866 ??? Should we do something about references from other dynamic
2867 obects? If not, we potentially lose some warnings about undefined
2868 symbols. But how can we recover the initial undefined / undefweak
2869 state? */
77cfaee6
AM
2870
2871struct elf_smash_syms_data
2872{
2873 bfd *not_needed;
2874 struct elf_link_hash_table *htab;
2875 bfd_boolean twiddled;
2876};
2877
2878static bfd_boolean
2879elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2880{
2881 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2882 struct bfd_link_hash_entry *bh;
2883
2884 switch (h->root.type)
2885 {
2886 default:
2887 case bfd_link_hash_new:
2888 return TRUE;
2889
2890 case bfd_link_hash_undefined:
11f25ea6
AM
2891 if (h->root.u.undef.abfd != inf->not_needed)
2892 return TRUE;
4ea42fb7
AM
2893 if (h->root.u.undef.weak != NULL
2894 && h->root.u.undef.weak != inf->not_needed)
11f25ea6
AM
2895 {
2896 /* Symbol was undefweak in u.undef.weak bfd, and has become
2897 undefined in as-needed lib. Restore weak. */
2898 h->root.type = bfd_link_hash_undefweak;
2899 h->root.u.undef.abfd = h->root.u.undef.weak;
2900 if (h->root.u.undef.next != NULL
2901 || inf->htab->root.undefs_tail == &h->root)
2902 inf->twiddled = TRUE;
2903 return TRUE;
2904 }
2905 break;
2906
77cfaee6
AM
2907 case bfd_link_hash_undefweak:
2908 if (h->root.u.undef.abfd != inf->not_needed)
2909 return TRUE;
2910 break;
2911
2912 case bfd_link_hash_defined:
2913 case bfd_link_hash_defweak:
2914 if (h->root.u.def.section->owner != inf->not_needed)
2915 return TRUE;
2916 break;
2917
2918 case bfd_link_hash_common:
2919 if (h->root.u.c.p->section->owner != inf->not_needed)
2920 return TRUE;
2921 break;
2922
2923 case bfd_link_hash_warning:
2924 case bfd_link_hash_indirect:
2925 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2926 if (h->root.u.i.link->type != bfd_link_hash_new)
2927 return TRUE;
2928 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2929 return TRUE;
2930 break;
2931 }
2932
11f25ea6
AM
2933 /* There is no way we can undo symbol table state from defined or
2934 defweak back to undefined. */
2935 if (h->ref_regular)
2936 abort ();
2937
77cfaee6
AM
2938 /* Set sym back to newly created state, but keep undefs list pointer. */
2939 bh = h->root.u.undef.next;
2940 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2941 inf->twiddled = TRUE;
2942 (*inf->htab->root.table.newfunc) (&h->root.root,
2943 &inf->htab->root.table,
2944 h->root.root.string);
2945 h->root.u.undef.next = bh;
2946 h->root.u.undef.abfd = inf->not_needed;
2947 h->non_elf = 0;
2948 return TRUE;
2949}
2950
5a580b3a 2951/* Sort symbol by value and section. */
4ad4eba5
AM
2952static int
2953elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2954{
2955 const struct elf_link_hash_entry *h1;
2956 const struct elf_link_hash_entry *h2;
10b7e05b 2957 bfd_signed_vma vdiff;
5a580b3a
AM
2958
2959 h1 = *(const struct elf_link_hash_entry **) arg1;
2960 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2961 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2962 if (vdiff != 0)
2963 return vdiff > 0 ? 1 : -1;
2964 else
2965 {
2966 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2967 if (sdiff != 0)
2968 return sdiff > 0 ? 1 : -1;
2969 }
5a580b3a
AM
2970 return 0;
2971}
4ad4eba5 2972
5a580b3a
AM
2973/* This function is used to adjust offsets into .dynstr for
2974 dynamic symbols. This is called via elf_link_hash_traverse. */
2975
2976static bfd_boolean
2977elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2978{
2979 struct elf_strtab_hash *dynstr = data;
2980
2981 if (h->root.type == bfd_link_hash_warning)
2982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2983
2984 if (h->dynindx != -1)
2985 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2986 return TRUE;
2987}
2988
2989/* Assign string offsets in .dynstr, update all structures referencing
2990 them. */
2991
4ad4eba5
AM
2992static bfd_boolean
2993elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2994{
2995 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2996 struct elf_link_local_dynamic_entry *entry;
2997 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2998 bfd *dynobj = hash_table->dynobj;
2999 asection *sdyn;
3000 bfd_size_type size;
3001 const struct elf_backend_data *bed;
3002 bfd_byte *extdyn;
3003
3004 _bfd_elf_strtab_finalize (dynstr);
3005 size = _bfd_elf_strtab_size (dynstr);
3006
3007 bed = get_elf_backend_data (dynobj);
3008 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3009 BFD_ASSERT (sdyn != NULL);
3010
3011 /* Update all .dynamic entries referencing .dynstr strings. */
3012 for (extdyn = sdyn->contents;
eea6121a 3013 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3014 extdyn += bed->s->sizeof_dyn)
3015 {
3016 Elf_Internal_Dyn dyn;
3017
3018 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3019 switch (dyn.d_tag)
3020 {
3021 case DT_STRSZ:
3022 dyn.d_un.d_val = size;
3023 break;
3024 case DT_NEEDED:
3025 case DT_SONAME:
3026 case DT_RPATH:
3027 case DT_RUNPATH:
3028 case DT_FILTER:
3029 case DT_AUXILIARY:
3030 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3031 break;
3032 default:
3033 continue;
3034 }
3035 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3036 }
3037
3038 /* Now update local dynamic symbols. */
3039 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3040 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3041 entry->isym.st_name);
3042
3043 /* And the rest of dynamic symbols. */
3044 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3045
3046 /* Adjust version definitions. */
3047 if (elf_tdata (output_bfd)->cverdefs)
3048 {
3049 asection *s;
3050 bfd_byte *p;
3051 bfd_size_type i;
3052 Elf_Internal_Verdef def;
3053 Elf_Internal_Verdaux defaux;
3054
3055 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3056 p = s->contents;
3057 do
3058 {
3059 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3060 &def);
3061 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3062 if (def.vd_aux != sizeof (Elf_External_Verdef))
3063 continue;
5a580b3a
AM
3064 for (i = 0; i < def.vd_cnt; ++i)
3065 {
3066 _bfd_elf_swap_verdaux_in (output_bfd,
3067 (Elf_External_Verdaux *) p, &defaux);
3068 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3069 defaux.vda_name);
3070 _bfd_elf_swap_verdaux_out (output_bfd,
3071 &defaux, (Elf_External_Verdaux *) p);
3072 p += sizeof (Elf_External_Verdaux);
3073 }
3074 }
3075 while (def.vd_next);
3076 }
3077
3078 /* Adjust version references. */
3079 if (elf_tdata (output_bfd)->verref)
3080 {
3081 asection *s;
3082 bfd_byte *p;
3083 bfd_size_type i;
3084 Elf_Internal_Verneed need;
3085 Elf_Internal_Vernaux needaux;
3086
3087 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3088 p = s->contents;
3089 do
3090 {
3091 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3092 &need);
3093 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3094 _bfd_elf_swap_verneed_out (output_bfd, &need,
3095 (Elf_External_Verneed *) p);
3096 p += sizeof (Elf_External_Verneed);
3097 for (i = 0; i < need.vn_cnt; ++i)
3098 {
3099 _bfd_elf_swap_vernaux_in (output_bfd,
3100 (Elf_External_Vernaux *) p, &needaux);
3101 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3102 needaux.vna_name);
3103 _bfd_elf_swap_vernaux_out (output_bfd,
3104 &needaux,
3105 (Elf_External_Vernaux *) p);
3106 p += sizeof (Elf_External_Vernaux);
3107 }
3108 }
3109 while (need.vn_next);
3110 }
3111
3112 return TRUE;
3113}
3114\f
4ad4eba5
AM
3115/* Add symbols from an ELF object file to the linker hash table. */
3116
3117static bfd_boolean
3118elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3119{
3120 bfd_boolean (*add_symbol_hook)
555cd476 3121 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
3122 const char **, flagword *, asection **, bfd_vma *);
3123 bfd_boolean (*check_relocs)
3124 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
3125 bfd_boolean (*check_directives)
3126 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
3127 bfd_boolean collect;
3128 Elf_Internal_Shdr *hdr;
3129 bfd_size_type symcount;
3130 bfd_size_type extsymcount;
3131 bfd_size_type extsymoff;
3132 struct elf_link_hash_entry **sym_hash;
3133 bfd_boolean dynamic;
3134 Elf_External_Versym *extversym = NULL;
3135 Elf_External_Versym *ever;
3136 struct elf_link_hash_entry *weaks;
3137 struct elf_link_hash_entry **nondeflt_vers = NULL;
3138 bfd_size_type nondeflt_vers_cnt = 0;
3139 Elf_Internal_Sym *isymbuf = NULL;
3140 Elf_Internal_Sym *isym;
3141 Elf_Internal_Sym *isymend;
3142 const struct elf_backend_data *bed;
3143 bfd_boolean add_needed;
3144 struct elf_link_hash_table * hash_table;
3145 bfd_size_type amt;
3146
3147 hash_table = elf_hash_table (info);
3148
3149 bed = get_elf_backend_data (abfd);
3150 add_symbol_hook = bed->elf_add_symbol_hook;
3151 collect = bed->collect;
3152
3153 if ((abfd->flags & DYNAMIC) == 0)
3154 dynamic = FALSE;
3155 else
3156 {
3157 dynamic = TRUE;
3158
3159 /* You can't use -r against a dynamic object. Also, there's no
3160 hope of using a dynamic object which does not exactly match
3161 the format of the output file. */
3162 if (info->relocatable
3163 || !is_elf_hash_table (hash_table)
3164 || hash_table->root.creator != abfd->xvec)
3165 {
9a0789ec
NC
3166 if (info->relocatable)
3167 bfd_set_error (bfd_error_invalid_operation);
3168 else
3169 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3170 goto error_return;
3171 }
3172 }
3173
3174 /* As a GNU extension, any input sections which are named
3175 .gnu.warning.SYMBOL are treated as warning symbols for the given
3176 symbol. This differs from .gnu.warning sections, which generate
3177 warnings when they are included in an output file. */
3178 if (info->executable)
3179 {
3180 asection *s;
3181
3182 for (s = abfd->sections; s != NULL; s = s->next)
3183 {
3184 const char *name;
3185
3186 name = bfd_get_section_name (abfd, s);
3187 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3188 {
3189 char *msg;
3190 bfd_size_type sz;
4ad4eba5
AM
3191
3192 name += sizeof ".gnu.warning." - 1;
3193
3194 /* If this is a shared object, then look up the symbol
3195 in the hash table. If it is there, and it is already
3196 been defined, then we will not be using the entry
3197 from this shared object, so we don't need to warn.
3198 FIXME: If we see the definition in a regular object
3199 later on, we will warn, but we shouldn't. The only
3200 fix is to keep track of what warnings we are supposed
3201 to emit, and then handle them all at the end of the
3202 link. */
3203 if (dynamic)
3204 {
3205 struct elf_link_hash_entry *h;
3206
3207 h = elf_link_hash_lookup (hash_table, name,
3208 FALSE, FALSE, TRUE);
3209
3210 /* FIXME: What about bfd_link_hash_common? */
3211 if (h != NULL
3212 && (h->root.type == bfd_link_hash_defined
3213 || h->root.type == bfd_link_hash_defweak))
3214 {
3215 /* We don't want to issue this warning. Clobber
3216 the section size so that the warning does not
3217 get copied into the output file. */
eea6121a 3218 s->size = 0;
4ad4eba5
AM
3219 continue;
3220 }
3221 }
3222
eea6121a 3223 sz = s->size;
370a0e1b 3224 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3225 if (msg == NULL)
3226 goto error_return;
3227
370a0e1b 3228 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3229 goto error_return;
3230
370a0e1b 3231 msg[sz] = '\0';
4ad4eba5
AM
3232
3233 if (! (_bfd_generic_link_add_one_symbol
3234 (info, abfd, name, BSF_WARNING, s, 0, msg,
3235 FALSE, collect, NULL)))
3236 goto error_return;
3237
3238 if (! info->relocatable)
3239 {
3240 /* Clobber the section size so that the warning does
3241 not get copied into the output file. */
eea6121a 3242 s->size = 0;
11d2f718
AM
3243
3244 /* Also set SEC_EXCLUDE, so that symbols defined in
3245 the warning section don't get copied to the output. */
3246 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3247 }
3248 }
3249 }
3250 }
3251
3252 add_needed = TRUE;
3253 if (! dynamic)
3254 {
3255 /* If we are creating a shared library, create all the dynamic
3256 sections immediately. We need to attach them to something,
3257 so we attach them to this BFD, provided it is the right
3258 format. FIXME: If there are no input BFD's of the same
3259 format as the output, we can't make a shared library. */
3260 if (info->shared
3261 && is_elf_hash_table (hash_table)
3262 && hash_table->root.creator == abfd->xvec
3263 && ! hash_table->dynamic_sections_created)
3264 {
3265 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3266 goto error_return;
3267 }
3268 }
3269 else if (!is_elf_hash_table (hash_table))
3270 goto error_return;
3271 else
3272 {
3273 asection *s;
3274 const char *soname = NULL;
3275 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3276 int ret;
3277
3278 /* ld --just-symbols and dynamic objects don't mix very well.
3279 Test for --just-symbols by looking at info set up by
3280 _bfd_elf_link_just_syms. */
3281 if ((s = abfd->sections) != NULL
3282 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3283 goto error_return;
3284
3285 /* If this dynamic lib was specified on the command line with
3286 --as-needed in effect, then we don't want to add a DT_NEEDED
3287 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3288 in by another lib's DT_NEEDED. When --no-add-needed is used
3289 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3290 any dynamic library in DT_NEEDED tags in the dynamic lib at
3291 all. */
3292 add_needed = (elf_dyn_lib_class (abfd)
3293 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3294 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3295
3296 s = bfd_get_section_by_name (abfd, ".dynamic");
3297 if (s != NULL)
3298 {
3299 bfd_byte *dynbuf;
3300 bfd_byte *extdyn;
3301 int elfsec;
3302 unsigned long shlink;
3303
eea6121a 3304 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3305 goto error_free_dyn;
3306
3307 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3308 if (elfsec == -1)
3309 goto error_free_dyn;
3310 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3311
3312 for (extdyn = dynbuf;
eea6121a 3313 extdyn < dynbuf + s->size;
4ad4eba5
AM
3314 extdyn += bed->s->sizeof_dyn)
3315 {
3316 Elf_Internal_Dyn dyn;
3317
3318 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3319 if (dyn.d_tag == DT_SONAME)
3320 {
3321 unsigned int tagv = dyn.d_un.d_val;
3322 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3323 if (soname == NULL)
3324 goto error_free_dyn;
3325 }
3326 if (dyn.d_tag == DT_NEEDED)
3327 {
3328 struct bfd_link_needed_list *n, **pn;
3329 char *fnm, *anm;
3330 unsigned int tagv = dyn.d_un.d_val;
3331
3332 amt = sizeof (struct bfd_link_needed_list);
3333 n = bfd_alloc (abfd, amt);
3334 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3335 if (n == NULL || fnm == NULL)
3336 goto error_free_dyn;
3337 amt = strlen (fnm) + 1;
3338 anm = bfd_alloc (abfd, amt);
3339 if (anm == NULL)
3340 goto error_free_dyn;
3341 memcpy (anm, fnm, amt);
3342 n->name = anm;
3343 n->by = abfd;
3344 n->next = NULL;
3345 for (pn = & hash_table->needed;
3346 *pn != NULL;
3347 pn = &(*pn)->next)
3348 ;
3349 *pn = n;
3350 }
3351 if (dyn.d_tag == DT_RUNPATH)
3352 {
3353 struct bfd_link_needed_list *n, **pn;
3354 char *fnm, *anm;
3355 unsigned int tagv = dyn.d_un.d_val;
3356
3357 amt = sizeof (struct bfd_link_needed_list);
3358 n = bfd_alloc (abfd, amt);
3359 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3360 if (n == NULL || fnm == NULL)
3361 goto error_free_dyn;
3362 amt = strlen (fnm) + 1;
3363 anm = bfd_alloc (abfd, amt);
3364 if (anm == NULL)
3365 goto error_free_dyn;
3366 memcpy (anm, fnm, amt);
3367 n->name = anm;
3368 n->by = abfd;
3369 n->next = NULL;
3370 for (pn = & runpath;
3371 *pn != NULL;
3372 pn = &(*pn)->next)
3373 ;
3374 *pn = n;
3375 }
3376 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3377 if (!runpath && dyn.d_tag == DT_RPATH)
3378 {
3379 struct bfd_link_needed_list *n, **pn;
3380 char *fnm, *anm;
3381 unsigned int tagv = dyn.d_un.d_val;
3382
3383 amt = sizeof (struct bfd_link_needed_list);
3384 n = bfd_alloc (abfd, amt);
3385 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3386 if (n == NULL || fnm == NULL)
3387 goto error_free_dyn;
3388 amt = strlen (fnm) + 1;
3389 anm = bfd_alloc (abfd, amt);
3390 if (anm == NULL)
3391 {
3392 error_free_dyn:
3393 free (dynbuf);
3394 goto error_return;
3395 }
3396 memcpy (anm, fnm, amt);
3397 n->name = anm;
3398 n->by = abfd;
3399 n->next = NULL;
3400 for (pn = & rpath;
3401 *pn != NULL;
3402 pn = &(*pn)->next)
3403 ;
3404 *pn = n;
3405 }
3406 }
3407
3408 free (dynbuf);
3409 }
3410
3411 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3412 frees all more recently bfd_alloc'd blocks as well. */
3413 if (runpath)
3414 rpath = runpath;
3415
3416 if (rpath)
3417 {
3418 struct bfd_link_needed_list **pn;
3419 for (pn = & hash_table->runpath;
3420 *pn != NULL;
3421 pn = &(*pn)->next)
3422 ;
3423 *pn = rpath;
3424 }
3425
3426 /* We do not want to include any of the sections in a dynamic
3427 object in the output file. We hack by simply clobbering the
3428 list of sections in the BFD. This could be handled more
3429 cleanly by, say, a new section flag; the existing
3430 SEC_NEVER_LOAD flag is not the one we want, because that one
3431 still implies that the section takes up space in the output
3432 file. */
3433 bfd_section_list_clear (abfd);
3434
4ad4eba5
AM
3435 /* Find the name to use in a DT_NEEDED entry that refers to this
3436 object. If the object has a DT_SONAME entry, we use it.
3437 Otherwise, if the generic linker stuck something in
3438 elf_dt_name, we use that. Otherwise, we just use the file
3439 name. */
3440 if (soname == NULL || *soname == '\0')
3441 {
3442 soname = elf_dt_name (abfd);
3443 if (soname == NULL || *soname == '\0')
3444 soname = bfd_get_filename (abfd);
3445 }
3446
3447 /* Save the SONAME because sometimes the linker emulation code
3448 will need to know it. */
3449 elf_dt_name (abfd) = soname;
3450
7e9f0867 3451 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3452 if (ret < 0)
3453 goto error_return;
3454
3455 /* If we have already included this dynamic object in the
3456 link, just ignore it. There is no reason to include a
3457 particular dynamic object more than once. */
3458 if (ret > 0)
3459 return TRUE;
3460 }
3461
3462 /* If this is a dynamic object, we always link against the .dynsym
3463 symbol table, not the .symtab symbol table. The dynamic linker
3464 will only see the .dynsym symbol table, so there is no reason to
3465 look at .symtab for a dynamic object. */
3466
3467 if (! dynamic || elf_dynsymtab (abfd) == 0)
3468 hdr = &elf_tdata (abfd)->symtab_hdr;
3469 else
3470 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3471
3472 symcount = hdr->sh_size / bed->s->sizeof_sym;
3473
3474 /* The sh_info field of the symtab header tells us where the
3475 external symbols start. We don't care about the local symbols at
3476 this point. */
3477 if (elf_bad_symtab (abfd))
3478 {
3479 extsymcount = symcount;
3480 extsymoff = 0;
3481 }
3482 else
3483 {
3484 extsymcount = symcount - hdr->sh_info;
3485 extsymoff = hdr->sh_info;
3486 }
3487
3488 sym_hash = NULL;
3489 if (extsymcount != 0)
3490 {
3491 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3492 NULL, NULL, NULL);
3493 if (isymbuf == NULL)
3494 goto error_return;
3495
3496 /* We store a pointer to the hash table entry for each external
3497 symbol. */
3498 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3499 sym_hash = bfd_alloc (abfd, amt);
3500 if (sym_hash == NULL)
3501 goto error_free_sym;
3502 elf_sym_hashes (abfd) = sym_hash;
3503 }
3504
3505 if (dynamic)
3506 {
3507 /* Read in any version definitions. */
fc0e6df6
PB
3508 if (!_bfd_elf_slurp_version_tables (abfd,
3509 info->default_imported_symver))
4ad4eba5
AM
3510 goto error_free_sym;
3511
3512 /* Read in the symbol versions, but don't bother to convert them
3513 to internal format. */
3514 if (elf_dynversym (abfd) != 0)
3515 {
3516 Elf_Internal_Shdr *versymhdr;
3517
3518 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3519 extversym = bfd_malloc (versymhdr->sh_size);
3520 if (extversym == NULL)
3521 goto error_free_sym;
3522 amt = versymhdr->sh_size;
3523 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3524 || bfd_bread (extversym, amt, abfd) != amt)
3525 goto error_free_vers;
3526 }
3527 }
3528
3529 weaks = NULL;
3530
3531 ever = extversym != NULL ? extversym + extsymoff : NULL;
3532 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3533 isym < isymend;
3534 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3535 {
3536 int bind;
3537 bfd_vma value;
af44c138 3538 asection *sec, *new_sec;
4ad4eba5
AM
3539 flagword flags;
3540 const char *name;
3541 struct elf_link_hash_entry *h;
3542 bfd_boolean definition;
3543 bfd_boolean size_change_ok;
3544 bfd_boolean type_change_ok;
3545 bfd_boolean new_weakdef;
3546 bfd_boolean override;
3547 unsigned int old_alignment;
3548 bfd *old_bfd;
3549
3550 override = FALSE;
3551
3552 flags = BSF_NO_FLAGS;
3553 sec = NULL;
3554 value = isym->st_value;
3555 *sym_hash = NULL;
3556
3557 bind = ELF_ST_BIND (isym->st_info);
3558 if (bind == STB_LOCAL)
3559 {
3560 /* This should be impossible, since ELF requires that all
3561 global symbols follow all local symbols, and that sh_info
3562 point to the first global symbol. Unfortunately, Irix 5
3563 screws this up. */
3564 continue;
3565 }
3566 else if (bind == STB_GLOBAL)
3567 {
3568 if (isym->st_shndx != SHN_UNDEF
3569 && isym->st_shndx != SHN_COMMON)
3570 flags = BSF_GLOBAL;
3571 }
3572 else if (bind == STB_WEAK)
3573 flags = BSF_WEAK;
3574 else
3575 {
3576 /* Leave it up to the processor backend. */
3577 }
3578
3579 if (isym->st_shndx == SHN_UNDEF)
3580 sec = bfd_und_section_ptr;
3581 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3582 {
3583 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3584 if (sec == NULL)
3585 sec = bfd_abs_section_ptr;
529fcb95
PB
3586 else if (sec->kept_section)
3587 {
1f02cbd9
JB
3588 /* Symbols from discarded section are undefined, and have
3589 default visibility. */
529fcb95
PB
3590 sec = bfd_und_section_ptr;
3591 isym->st_shndx = SHN_UNDEF;
1f02cbd9
JB
3592 isym->st_other = STV_DEFAULT
3593 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
529fcb95 3594 }
4ad4eba5
AM
3595 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3596 value -= sec->vma;
3597 }
3598 else if (isym->st_shndx == SHN_ABS)
3599 sec = bfd_abs_section_ptr;
3600 else if (isym->st_shndx == SHN_COMMON)
3601 {
3602 sec = bfd_com_section_ptr;
3603 /* What ELF calls the size we call the value. What ELF
3604 calls the value we call the alignment. */
3605 value = isym->st_size;
3606 }
3607 else
3608 {
3609 /* Leave it up to the processor backend. */
3610 }
3611
3612 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3613 isym->st_name);
3614 if (name == NULL)
3615 goto error_free_vers;
3616
3617 if (isym->st_shndx == SHN_COMMON
3618 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3619 {
3620 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3621
3622 if (tcomm == NULL)
3623 {
3624 tcomm = bfd_make_section (abfd, ".tcommon");
3625 if (tcomm == NULL
3626 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3627 | SEC_IS_COMMON
3628 | SEC_LINKER_CREATED
3629 | SEC_THREAD_LOCAL)))
3630 goto error_free_vers;
3631 }
3632 sec = tcomm;
3633 }
3634 else if (add_symbol_hook)
3635 {
3636 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3637 &value))
3638 goto error_free_vers;
3639
3640 /* The hook function sets the name to NULL if this symbol
3641 should be skipped for some reason. */
3642 if (name == NULL)
3643 continue;
3644 }
3645
3646 /* Sanity check that all possibilities were handled. */
3647 if (sec == NULL)
3648 {
3649 bfd_set_error (bfd_error_bad_value);
3650 goto error_free_vers;
3651 }
3652
3653 if (bfd_is_und_section (sec)
3654 || bfd_is_com_section (sec))
3655 definition = FALSE;
3656 else
3657 definition = TRUE;
3658
3659 size_change_ok = FALSE;
3660 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3661 old_alignment = 0;
3662 old_bfd = NULL;
af44c138 3663 new_sec = sec;
4ad4eba5
AM
3664
3665 if (is_elf_hash_table (hash_table))
3666 {
3667 Elf_Internal_Versym iver;
3668 unsigned int vernum = 0;
3669 bfd_boolean skip;
3670
fc0e6df6 3671 if (ever == NULL)
4ad4eba5 3672 {
fc0e6df6
PB
3673 if (info->default_imported_symver)
3674 /* Use the default symbol version created earlier. */
3675 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3676 else
3677 iver.vs_vers = 0;
3678 }
3679 else
3680 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3681
3682 vernum = iver.vs_vers & VERSYM_VERSION;
3683
3684 /* If this is a hidden symbol, or if it is not version
3685 1, we append the version name to the symbol name.
3686 However, we do not modify a non-hidden absolute
3687 symbol, because it might be the version symbol
3688 itself. FIXME: What if it isn't? */
3689 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3690 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3691 {
3692 const char *verstr;
3693 size_t namelen, verlen, newlen;
3694 char *newname, *p;
3695
3696 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3697 {
fc0e6df6
PB
3698 if (vernum > elf_tdata (abfd)->cverdefs)
3699 verstr = NULL;
3700 else if (vernum > 1)
3701 verstr =
3702 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3703 else
3704 verstr = "";
4ad4eba5 3705
fc0e6df6 3706 if (verstr == NULL)
4ad4eba5 3707 {
fc0e6df6
PB
3708 (*_bfd_error_handler)
3709 (_("%B: %s: invalid version %u (max %d)"),
3710 abfd, name, vernum,
3711 elf_tdata (abfd)->cverdefs);
3712 bfd_set_error (bfd_error_bad_value);
3713 goto error_free_vers;
4ad4eba5 3714 }
fc0e6df6
PB
3715 }
3716 else
3717 {
3718 /* We cannot simply test for the number of
3719 entries in the VERNEED section since the
3720 numbers for the needed versions do not start
3721 at 0. */
3722 Elf_Internal_Verneed *t;
3723
3724 verstr = NULL;
3725 for (t = elf_tdata (abfd)->verref;
3726 t != NULL;
3727 t = t->vn_nextref)
4ad4eba5 3728 {
fc0e6df6 3729 Elf_Internal_Vernaux *a;
4ad4eba5 3730
fc0e6df6
PB
3731 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3732 {
3733 if (a->vna_other == vernum)
4ad4eba5 3734 {
fc0e6df6
PB
3735 verstr = a->vna_nodename;
3736 break;
4ad4eba5 3737 }
4ad4eba5 3738 }
fc0e6df6
PB
3739 if (a != NULL)
3740 break;
3741 }
3742 if (verstr == NULL)
3743 {
3744 (*_bfd_error_handler)
3745 (_("%B: %s: invalid needed version %d"),
3746 abfd, name, vernum);
3747 bfd_set_error (bfd_error_bad_value);
3748 goto error_free_vers;
4ad4eba5 3749 }
4ad4eba5 3750 }
fc0e6df6
PB
3751
3752 namelen = strlen (name);
3753 verlen = strlen (verstr);
3754 newlen = namelen + verlen + 2;
3755 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3756 && isym->st_shndx != SHN_UNDEF)
3757 ++newlen;
3758
3759 newname = bfd_alloc (abfd, newlen);
3760 if (newname == NULL)
3761 goto error_free_vers;
3762 memcpy (newname, name, namelen);
3763 p = newname + namelen;
3764 *p++ = ELF_VER_CHR;
3765 /* If this is a defined non-hidden version symbol,
3766 we add another @ to the name. This indicates the
3767 default version of the symbol. */
3768 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3769 && isym->st_shndx != SHN_UNDEF)
3770 *p++ = ELF_VER_CHR;
3771 memcpy (p, verstr, verlen + 1);
3772
3773 name = newname;
4ad4eba5
AM
3774 }
3775
af44c138
L
3776 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3777 &value, &old_alignment,
4ad4eba5
AM
3778 sym_hash, &skip, &override,
3779 &type_change_ok, &size_change_ok))
3780 goto error_free_vers;
3781
3782 if (skip)
3783 continue;
3784
3785 if (override)
3786 definition = FALSE;
3787
3788 h = *sym_hash;
3789 while (h->root.type == bfd_link_hash_indirect
3790 || h->root.type == bfd_link_hash_warning)
3791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3792
3793 /* Remember the old alignment if this is a common symbol, so
3794 that we don't reduce the alignment later on. We can't
3795 check later, because _bfd_generic_link_add_one_symbol
3796 will set a default for the alignment which we want to
3797 override. We also remember the old bfd where the existing
3798 definition comes from. */
3799 switch (h->root.type)
3800 {
3801 default:
3802 break;
3803
3804 case bfd_link_hash_defined:
3805 case bfd_link_hash_defweak:
3806 old_bfd = h->root.u.def.section->owner;
3807 break;
3808
3809 case bfd_link_hash_common:
3810 old_bfd = h->root.u.c.p->section->owner;
3811 old_alignment = h->root.u.c.p->alignment_power;
3812 break;
3813 }
3814
3815 if (elf_tdata (abfd)->verdef != NULL
3816 && ! override
3817 && vernum > 1
3818 && definition)
3819 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3820 }
3821
3822 if (! (_bfd_generic_link_add_one_symbol
3823 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3824 (struct bfd_link_hash_entry **) sym_hash)))
3825 goto error_free_vers;
3826
3827 h = *sym_hash;
3828 while (h->root.type == bfd_link_hash_indirect
3829 || h->root.type == bfd_link_hash_warning)
3830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3831 *sym_hash = h;
3832
3833 new_weakdef = FALSE;
3834 if (dynamic
3835 && definition
3836 && (flags & BSF_WEAK) != 0
3837 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3838 && is_elf_hash_table (hash_table)
f6e332e6 3839 && h->u.weakdef == NULL)
4ad4eba5
AM
3840 {
3841 /* Keep a list of all weak defined non function symbols from
3842 a dynamic object, using the weakdef field. Later in this
3843 function we will set the weakdef field to the correct
3844 value. We only put non-function symbols from dynamic
3845 objects on this list, because that happens to be the only
3846 time we need to know the normal symbol corresponding to a
3847 weak symbol, and the information is time consuming to
3848 figure out. If the weakdef field is not already NULL,
3849 then this symbol was already defined by some previous
3850 dynamic object, and we will be using that previous
3851 definition anyhow. */
3852
f6e332e6 3853 h->u.weakdef = weaks;
4ad4eba5
AM
3854 weaks = h;
3855 new_weakdef = TRUE;
3856 }
3857
3858 /* Set the alignment of a common symbol. */
af44c138
L
3859 if ((isym->st_shndx == SHN_COMMON
3860 || bfd_is_com_section (sec))
4ad4eba5
AM
3861 && h->root.type == bfd_link_hash_common)
3862 {
3863 unsigned int align;
3864
af44c138
L
3865 if (isym->st_shndx == SHN_COMMON)
3866 align = bfd_log2 (isym->st_value);
3867 else
3868 {
3869 /* The new symbol is a common symbol in a shared object.
3870 We need to get the alignment from the section. */
3871 align = new_sec->alignment_power;
3872 }
4ad4eba5
AM
3873 if (align > old_alignment
3874 /* Permit an alignment power of zero if an alignment of one
3875 is specified and no other alignments have been specified. */
3876 || (isym->st_value == 1 && old_alignment == 0))
3877 h->root.u.c.p->alignment_power = align;
3878 else
3879 h->root.u.c.p->alignment_power = old_alignment;
3880 }
3881
3882 if (is_elf_hash_table (hash_table))
3883 {
4ad4eba5 3884 bfd_boolean dynsym;
4ad4eba5
AM
3885
3886 /* Check the alignment when a common symbol is involved. This
3887 can change when a common symbol is overridden by a normal
3888 definition or a common symbol is ignored due to the old
3889 normal definition. We need to make sure the maximum
3890 alignment is maintained. */
3891 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3892 && h->root.type != bfd_link_hash_common)
3893 {
3894 unsigned int common_align;
3895 unsigned int normal_align;
3896 unsigned int symbol_align;
3897 bfd *normal_bfd;
3898 bfd *common_bfd;
3899
3900 symbol_align = ffs (h->root.u.def.value) - 1;
3901 if (h->root.u.def.section->owner != NULL
3902 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3903 {
3904 normal_align = h->root.u.def.section->alignment_power;
3905 if (normal_align > symbol_align)
3906 normal_align = symbol_align;
3907 }
3908 else
3909 normal_align = symbol_align;
3910
3911 if (old_alignment)
3912 {
3913 common_align = old_alignment;
3914 common_bfd = old_bfd;
3915 normal_bfd = abfd;
3916 }
3917 else
3918 {
3919 common_align = bfd_log2 (isym->st_value);
3920 common_bfd = abfd;
3921 normal_bfd = old_bfd;
3922 }
3923
3924 if (normal_align < common_align)
3925 (*_bfd_error_handler)
d003868e
AM
3926 (_("Warning: alignment %u of symbol `%s' in %B"
3927 " is smaller than %u in %B"),
3928 normal_bfd, common_bfd,
3929 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3930 }
3931
3932 /* Remember the symbol size and type. */
3933 if (isym->st_size != 0
3934 && (definition || h->size == 0))
3935 {
3936 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3937 (*_bfd_error_handler)
d003868e
AM
3938 (_("Warning: size of symbol `%s' changed"
3939 " from %lu in %B to %lu in %B"),
3940 old_bfd, abfd,
4ad4eba5 3941 name, (unsigned long) h->size,
d003868e 3942 (unsigned long) isym->st_size);
4ad4eba5
AM
3943
3944 h->size = isym->st_size;
3945 }
3946
3947 /* If this is a common symbol, then we always want H->SIZE
3948 to be the size of the common symbol. The code just above
3949 won't fix the size if a common symbol becomes larger. We
3950 don't warn about a size change here, because that is
3951 covered by --warn-common. */
3952 if (h->root.type == bfd_link_hash_common)
3953 h->size = h->root.u.c.size;
3954
3955 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3956 && (definition || h->type == STT_NOTYPE))
3957 {
3958 if (h->type != STT_NOTYPE
3959 && h->type != ELF_ST_TYPE (isym->st_info)
3960 && ! type_change_ok)
3961 (*_bfd_error_handler)
d003868e
AM
3962 (_("Warning: type of symbol `%s' changed"
3963 " from %d to %d in %B"),
3964 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3965
3966 h->type = ELF_ST_TYPE (isym->st_info);
3967 }
3968
3969 /* If st_other has a processor-specific meaning, specific
3970 code might be needed here. We never merge the visibility
3971 attribute with the one from a dynamic object. */
3972 if (bed->elf_backend_merge_symbol_attribute)
3973 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3974 dynamic);
3975
b58f81ae
DJ
3976 /* If this symbol has default visibility and the user has requested
3977 we not re-export it, then mark it as hidden. */
3978 if (definition && !dynamic
3979 && (abfd->no_export
3980 || (abfd->my_archive && abfd->my_archive->no_export))
3981 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3982 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3983
4ad4eba5
AM
3984 if (isym->st_other != 0 && !dynamic)
3985 {
3986 unsigned char hvis, symvis, other, nvis;
3987
3988 /* Take the balance of OTHER from the definition. */
3989 other = (definition ? isym->st_other : h->other);
3990 other &= ~ ELF_ST_VISIBILITY (-1);
3991
3992 /* Combine visibilities, using the most constraining one. */
3993 hvis = ELF_ST_VISIBILITY (h->other);
3994 symvis = ELF_ST_VISIBILITY (isym->st_other);
3995 if (! hvis)
3996 nvis = symvis;
3997 else if (! symvis)
3998 nvis = hvis;
3999 else
4000 nvis = hvis < symvis ? hvis : symvis;
4001
4002 h->other = other | nvis;
4003 }
4004
4005 /* Set a flag in the hash table entry indicating the type of
4006 reference or definition we just found. Keep a count of
4007 the number of dynamic symbols we find. A dynamic symbol
4008 is one which is referenced or defined by both a regular
4009 object and a shared object. */
4ad4eba5
AM
4010 dynsym = FALSE;
4011 if (! dynamic)
4012 {
4013 if (! definition)
4014 {
f5385ebf 4015 h->ref_regular = 1;
4ad4eba5 4016 if (bind != STB_WEAK)
f5385ebf 4017 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4018 }
4019 else
f5385ebf 4020 h->def_regular = 1;
4ad4eba5 4021 if (! info->executable
f5385ebf
AM
4022 || h->def_dynamic
4023 || h->ref_dynamic)
4ad4eba5
AM
4024 dynsym = TRUE;
4025 }
4026 else
4027 {
4028 if (! definition)
f5385ebf 4029 h->ref_dynamic = 1;
4ad4eba5 4030 else
f5385ebf
AM
4031 h->def_dynamic = 1;
4032 if (h->def_regular
4033 || h->ref_regular
f6e332e6 4034 || (h->u.weakdef != NULL
4ad4eba5 4035 && ! new_weakdef
f6e332e6 4036 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4037 dynsym = TRUE;
4038 }
4039
4ad4eba5
AM
4040 /* Check to see if we need to add an indirect symbol for
4041 the default name. */
4042 if (definition || h->root.type == bfd_link_hash_common)
4043 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4044 &sec, &value, &dynsym,
4045 override))
4046 goto error_free_vers;
4047
4048 if (definition && !dynamic)
4049 {
4050 char *p = strchr (name, ELF_VER_CHR);
4051 if (p != NULL && p[1] != ELF_VER_CHR)
4052 {
4053 /* Queue non-default versions so that .symver x, x@FOO
4054 aliases can be checked. */
4055 if (! nondeflt_vers)
4056 {
4057 amt = (isymend - isym + 1)
4058 * sizeof (struct elf_link_hash_entry *);
4059 nondeflt_vers = bfd_malloc (amt);
4060 }
4061 nondeflt_vers [nondeflt_vers_cnt++] = h;
4062 }
4063 }
4064
4065 if (dynsym && h->dynindx == -1)
4066 {
c152c796 4067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4068 goto error_free_vers;
f6e332e6 4069 if (h->u.weakdef != NULL
4ad4eba5 4070 && ! new_weakdef
f6e332e6 4071 && h->u.weakdef->dynindx == -1)
4ad4eba5 4072 {
f6e332e6 4073 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4074 goto error_free_vers;
4075 }
4076 }
4077 else if (dynsym && h->dynindx != -1)
4078 /* If the symbol already has a dynamic index, but
4079 visibility says it should not be visible, turn it into
4080 a local symbol. */
4081 switch (ELF_ST_VISIBILITY (h->other))
4082 {
4083 case STV_INTERNAL:
4084 case STV_HIDDEN:
4085 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4086 dynsym = FALSE;
4087 break;
4088 }
4089
4090 if (!add_needed
4091 && definition
4092 && dynsym
f5385ebf 4093 && h->ref_regular)
4ad4eba5
AM
4094 {
4095 int ret;
4096 const char *soname = elf_dt_name (abfd);
4097
4098 /* A symbol from a library loaded via DT_NEEDED of some
4099 other library is referenced by a regular object.
e56f61be
L
4100 Add a DT_NEEDED entry for it. Issue an error if
4101 --no-add-needed is used. */
4102 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4103 {
4104 (*_bfd_error_handler)
4105 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4106 abfd, name);
e56f61be
L
4107 bfd_set_error (bfd_error_bad_value);
4108 goto error_free_vers;
4109 }
4110
a5db907e
AM
4111 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4112
4ad4eba5 4113 add_needed = TRUE;
7e9f0867 4114 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4115 if (ret < 0)
4116 goto error_free_vers;
4117
4118 BFD_ASSERT (ret == 0);
4119 }
4120 }
4121 }
4122
4123 /* Now that all the symbols from this input file are created, handle
4124 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4125 if (nondeflt_vers != NULL)
4126 {
4127 bfd_size_type cnt, symidx;
4128
4129 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4130 {
4131 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4132 char *shortname, *p;
4133
4134 p = strchr (h->root.root.string, ELF_VER_CHR);
4135 if (p == NULL
4136 || (h->root.type != bfd_link_hash_defined
4137 && h->root.type != bfd_link_hash_defweak))
4138 continue;
4139
4140 amt = p - h->root.root.string;
4141 shortname = bfd_malloc (amt + 1);
4142 memcpy (shortname, h->root.root.string, amt);
4143 shortname[amt] = '\0';
4144
4145 hi = (struct elf_link_hash_entry *)
4146 bfd_link_hash_lookup (&hash_table->root, shortname,
4147 FALSE, FALSE, FALSE);
4148 if (hi != NULL
4149 && hi->root.type == h->root.type
4150 && hi->root.u.def.value == h->root.u.def.value
4151 && hi->root.u.def.section == h->root.u.def.section)
4152 {
4153 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4154 hi->root.type = bfd_link_hash_indirect;
4155 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4156 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4157 sym_hash = elf_sym_hashes (abfd);
4158 if (sym_hash)
4159 for (symidx = 0; symidx < extsymcount; ++symidx)
4160 if (sym_hash[symidx] == hi)
4161 {
4162 sym_hash[symidx] = h;
4163 break;
4164 }
4165 }
4166 free (shortname);
4167 }
4168 free (nondeflt_vers);
4169 nondeflt_vers = NULL;
4170 }
4171
4172 if (extversym != NULL)
4173 {
4174 free (extversym);
4175 extversym = NULL;
4176 }
4177
4178 if (isymbuf != NULL)
4179 free (isymbuf);
4180 isymbuf = NULL;
4181
ec13b3bb
AM
4182 if (!add_needed
4183 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
77cfaee6 4184 {
ec13b3bb
AM
4185 /* Remove symbols defined in an as-needed shared lib that wasn't
4186 needed. */
77cfaee6
AM
4187 struct elf_smash_syms_data inf;
4188 inf.not_needed = abfd;
4189 inf.htab = hash_table;
4190 inf.twiddled = FALSE;
4191 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4192 if (inf.twiddled)
4193 bfd_link_repair_undef_list (&hash_table->root);
4194 weaks = NULL;
4195 }
4196
4ad4eba5
AM
4197 /* Now set the weakdefs field correctly for all the weak defined
4198 symbols we found. The only way to do this is to search all the
4199 symbols. Since we only need the information for non functions in
4200 dynamic objects, that's the only time we actually put anything on
4201 the list WEAKS. We need this information so that if a regular
4202 object refers to a symbol defined weakly in a dynamic object, the
4203 real symbol in the dynamic object is also put in the dynamic
4204 symbols; we also must arrange for both symbols to point to the
4205 same memory location. We could handle the general case of symbol
4206 aliasing, but a general symbol alias can only be generated in
4207 assembler code, handling it correctly would be very time
4208 consuming, and other ELF linkers don't handle general aliasing
4209 either. */
4210 if (weaks != NULL)
4211 {
4212 struct elf_link_hash_entry **hpp;
4213 struct elf_link_hash_entry **hppend;
4214 struct elf_link_hash_entry **sorted_sym_hash;
4215 struct elf_link_hash_entry *h;
4216 size_t sym_count;
4217
4218 /* Since we have to search the whole symbol list for each weak
4219 defined symbol, search time for N weak defined symbols will be
4220 O(N^2). Binary search will cut it down to O(NlogN). */
4221 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4222 sorted_sym_hash = bfd_malloc (amt);
4223 if (sorted_sym_hash == NULL)
4224 goto error_return;
4225 sym_hash = sorted_sym_hash;
4226 hpp = elf_sym_hashes (abfd);
4227 hppend = hpp + extsymcount;
4228 sym_count = 0;
4229 for (; hpp < hppend; hpp++)
4230 {
4231 h = *hpp;
4232 if (h != NULL
4233 && h->root.type == bfd_link_hash_defined
4234 && h->type != STT_FUNC)
4235 {
4236 *sym_hash = h;
4237 sym_hash++;
4238 sym_count++;
4239 }
4240 }
4241
4242 qsort (sorted_sym_hash, sym_count,
4243 sizeof (struct elf_link_hash_entry *),
4244 elf_sort_symbol);
4245
4246 while (weaks != NULL)
4247 {
4248 struct elf_link_hash_entry *hlook;
4249 asection *slook;
4250 bfd_vma vlook;
4251 long ilook;
4252 size_t i, j, idx;
4253
4254 hlook = weaks;
f6e332e6
AM
4255 weaks = hlook->u.weakdef;
4256 hlook->u.weakdef = NULL;
4ad4eba5
AM
4257
4258 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4259 || hlook->root.type == bfd_link_hash_defweak
4260 || hlook->root.type == bfd_link_hash_common
4261 || hlook->root.type == bfd_link_hash_indirect);
4262 slook = hlook->root.u.def.section;
4263 vlook = hlook->root.u.def.value;
4264
4265 ilook = -1;
4266 i = 0;
4267 j = sym_count;
4268 while (i < j)
4269 {
4270 bfd_signed_vma vdiff;
4271 idx = (i + j) / 2;
4272 h = sorted_sym_hash [idx];
4273 vdiff = vlook - h->root.u.def.value;
4274 if (vdiff < 0)
4275 j = idx;
4276 else if (vdiff > 0)
4277 i = idx + 1;
4278 else
4279 {
a9b881be 4280 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4281 if (sdiff < 0)
4282 j = idx;
4283 else if (sdiff > 0)
4284 i = idx + 1;
4285 else
4286 {
4287 ilook = idx;
4288 break;
4289 }
4290 }
4291 }
4292
4293 /* We didn't find a value/section match. */
4294 if (ilook == -1)
4295 continue;
4296
4297 for (i = ilook; i < sym_count; i++)
4298 {
4299 h = sorted_sym_hash [i];
4300
4301 /* Stop if value or section doesn't match. */
4302 if (h->root.u.def.value != vlook
4303 || h->root.u.def.section != slook)
4304 break;
4305 else if (h != hlook)
4306 {
f6e332e6 4307 hlook->u.weakdef = h;
4ad4eba5
AM
4308
4309 /* If the weak definition is in the list of dynamic
4310 symbols, make sure the real definition is put
4311 there as well. */
4312 if (hlook->dynindx != -1 && h->dynindx == -1)
4313 {
c152c796 4314 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4315 goto error_return;
4316 }
4317
4318 /* If the real definition is in the list of dynamic
4319 symbols, make sure the weak definition is put
4320 there as well. If we don't do this, then the
4321 dynamic loader might not merge the entries for the
4322 real definition and the weak definition. */
4323 if (h->dynindx != -1 && hlook->dynindx == -1)
4324 {
c152c796 4325 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4326 goto error_return;
4327 }
4328 break;
4329 }
4330 }
4331 }
4332
4333 free (sorted_sym_hash);
4334 }
4335
85fbca6a
NC
4336 check_directives = get_elf_backend_data (abfd)->check_directives;
4337 if (check_directives)
4338 check_directives (abfd, info);
4339
4ad4eba5
AM
4340 /* If this object is the same format as the output object, and it is
4341 not a shared library, then let the backend look through the
4342 relocs.
4343
4344 This is required to build global offset table entries and to
4345 arrange for dynamic relocs. It is not required for the
4346 particular common case of linking non PIC code, even when linking
4347 against shared libraries, but unfortunately there is no way of
4348 knowing whether an object file has been compiled PIC or not.
4349 Looking through the relocs is not particularly time consuming.
4350 The problem is that we must either (1) keep the relocs in memory,
4351 which causes the linker to require additional runtime memory or
4352 (2) read the relocs twice from the input file, which wastes time.
4353 This would be a good case for using mmap.
4354
4355 I have no idea how to handle linking PIC code into a file of a
4356 different format. It probably can't be done. */
4357 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4358 if (! dynamic
4359 && is_elf_hash_table (hash_table)
4360 && hash_table->root.creator == abfd->xvec
4361 && check_relocs != NULL)
4362 {
4363 asection *o;
4364
4365 for (o = abfd->sections; o != NULL; o = o->next)
4366 {
4367 Elf_Internal_Rela *internal_relocs;
4368 bfd_boolean ok;
4369
4370 if ((o->flags & SEC_RELOC) == 0
4371 || o->reloc_count == 0
4372 || ((info->strip == strip_all || info->strip == strip_debugger)
4373 && (o->flags & SEC_DEBUGGING) != 0)
4374 || bfd_is_abs_section (o->output_section))
4375 continue;
4376
4377 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4378 info->keep_memory);
4379 if (internal_relocs == NULL)
4380 goto error_return;
4381
4382 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4383
4384 if (elf_section_data (o)->relocs != internal_relocs)
4385 free (internal_relocs);
4386
4387 if (! ok)
4388 goto error_return;
4389 }
4390 }
4391
4392 /* If this is a non-traditional link, try to optimize the handling
4393 of the .stab/.stabstr sections. */
4394 if (! dynamic
4395 && ! info->traditional_format
4396 && is_elf_hash_table (hash_table)
4397 && (info->strip != strip_all && info->strip != strip_debugger))
4398 {
4399 asection *stabstr;
4400
4401 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4402 if (stabstr != NULL)
4403 {
4404 bfd_size_type string_offset = 0;
4405 asection *stab;
4406
4407 for (stab = abfd->sections; stab; stab = stab->next)
4408 if (strncmp (".stab", stab->name, 5) == 0
4409 && (!stab->name[5] ||
4410 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4411 && (stab->flags & SEC_MERGE) == 0
4412 && !bfd_is_abs_section (stab->output_section))
4413 {
4414 struct bfd_elf_section_data *secdata;
4415
4416 secdata = elf_section_data (stab);
4417 if (! _bfd_link_section_stabs (abfd,
3722b82f 4418 &hash_table->stab_info,
4ad4eba5
AM
4419 stab, stabstr,
4420 &secdata->sec_info,
4421 &string_offset))
4422 goto error_return;
4423 if (secdata->sec_info)
4424 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4425 }
4426 }
4427 }
4428
77cfaee6 4429 if (is_elf_hash_table (hash_table) && add_needed)
4ad4eba5
AM
4430 {
4431 /* Add this bfd to the loaded list. */
4432 struct elf_link_loaded_list *n;
4433
4434 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4435 if (n == NULL)
4436 goto error_return;
4437 n->abfd = abfd;
4438 n->next = hash_table->loaded;
4439 hash_table->loaded = n;
4440 }
4441
4442 return TRUE;
4443
4444 error_free_vers:
4445 if (nondeflt_vers != NULL)
4446 free (nondeflt_vers);
4447 if (extversym != NULL)
4448 free (extversym);
4449 error_free_sym:
4450 if (isymbuf != NULL)
4451 free (isymbuf);
4452 error_return:
4453 return FALSE;
4454}
4455
8387904d
AM
4456/* Return the linker hash table entry of a symbol that might be
4457 satisfied by an archive symbol. Return -1 on error. */
4458
4459struct elf_link_hash_entry *
4460_bfd_elf_archive_symbol_lookup (bfd *abfd,
4461 struct bfd_link_info *info,
4462 const char *name)
4463{
4464 struct elf_link_hash_entry *h;
4465 char *p, *copy;
4466 size_t len, first;
4467
4468 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4469 if (h != NULL)
4470 return h;
4471
4472 /* If this is a default version (the name contains @@), look up the
4473 symbol again with only one `@' as well as without the version.
4474 The effect is that references to the symbol with and without the
4475 version will be matched by the default symbol in the archive. */
4476
4477 p = strchr (name, ELF_VER_CHR);
4478 if (p == NULL || p[1] != ELF_VER_CHR)
4479 return h;
4480
4481 /* First check with only one `@'. */
4482 len = strlen (name);
4483 copy = bfd_alloc (abfd, len);
4484 if (copy == NULL)
4485 return (struct elf_link_hash_entry *) 0 - 1;
4486
4487 first = p - name + 1;
4488 memcpy (copy, name, first);
4489 memcpy (copy + first, name + first + 1, len - first);
4490
4491 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4492 if (h == NULL)
4493 {
4494 /* We also need to check references to the symbol without the
4495 version. */
4496 copy[first - 1] = '\0';
4497 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4498 FALSE, FALSE, FALSE);
4499 }
4500
4501 bfd_release (abfd, copy);
4502 return h;
4503}
4504
0ad989f9
L
4505/* Add symbols from an ELF archive file to the linker hash table. We
4506 don't use _bfd_generic_link_add_archive_symbols because of a
4507 problem which arises on UnixWare. The UnixWare libc.so is an
4508 archive which includes an entry libc.so.1 which defines a bunch of
4509 symbols. The libc.so archive also includes a number of other
4510 object files, which also define symbols, some of which are the same
4511 as those defined in libc.so.1. Correct linking requires that we
4512 consider each object file in turn, and include it if it defines any
4513 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4514 this; it looks through the list of undefined symbols, and includes
4515 any object file which defines them. When this algorithm is used on
4516 UnixWare, it winds up pulling in libc.so.1 early and defining a
4517 bunch of symbols. This means that some of the other objects in the
4518 archive are not included in the link, which is incorrect since they
4519 precede libc.so.1 in the archive.
4520
4521 Fortunately, ELF archive handling is simpler than that done by
4522 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4523 oddities. In ELF, if we find a symbol in the archive map, and the
4524 symbol is currently undefined, we know that we must pull in that
4525 object file.
4526
4527 Unfortunately, we do have to make multiple passes over the symbol
4528 table until nothing further is resolved. */
4529
4ad4eba5
AM
4530static bfd_boolean
4531elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4532{
4533 symindex c;
4534 bfd_boolean *defined = NULL;
4535 bfd_boolean *included = NULL;
4536 carsym *symdefs;
4537 bfd_boolean loop;
4538 bfd_size_type amt;
8387904d
AM
4539 const struct elf_backend_data *bed;
4540 struct elf_link_hash_entry * (*archive_symbol_lookup)
4541 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4542
4543 if (! bfd_has_map (abfd))
4544 {
4545 /* An empty archive is a special case. */
4546 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4547 return TRUE;
4548 bfd_set_error (bfd_error_no_armap);
4549 return FALSE;
4550 }
4551
4552 /* Keep track of all symbols we know to be already defined, and all
4553 files we know to be already included. This is to speed up the
4554 second and subsequent passes. */
4555 c = bfd_ardata (abfd)->symdef_count;
4556 if (c == 0)
4557 return TRUE;
4558 amt = c;
4559 amt *= sizeof (bfd_boolean);
4560 defined = bfd_zmalloc (amt);
4561 included = bfd_zmalloc (amt);
4562 if (defined == NULL || included == NULL)
4563 goto error_return;
4564
4565 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4566 bed = get_elf_backend_data (abfd);
4567 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4568
4569 do
4570 {
4571 file_ptr last;
4572 symindex i;
4573 carsym *symdef;
4574 carsym *symdefend;
4575
4576 loop = FALSE;
4577 last = -1;
4578
4579 symdef = symdefs;
4580 symdefend = symdef + c;
4581 for (i = 0; symdef < symdefend; symdef++, i++)
4582 {
4583 struct elf_link_hash_entry *h;
4584 bfd *element;
4585 struct bfd_link_hash_entry *undefs_tail;
4586 symindex mark;
4587
4588 if (defined[i] || included[i])
4589 continue;
4590 if (symdef->file_offset == last)
4591 {
4592 included[i] = TRUE;
4593 continue;
4594 }
4595
8387904d
AM
4596 h = archive_symbol_lookup (abfd, info, symdef->name);
4597 if (h == (struct elf_link_hash_entry *) 0 - 1)
4598 goto error_return;
0ad989f9
L
4599
4600 if (h == NULL)
4601 continue;
4602
4603 if (h->root.type == bfd_link_hash_common)
4604 {
4605 /* We currently have a common symbol. The archive map contains
4606 a reference to this symbol, so we may want to include it. We
4607 only want to include it however, if this archive element
4608 contains a definition of the symbol, not just another common
4609 declaration of it.
4610
4611 Unfortunately some archivers (including GNU ar) will put
4612 declarations of common symbols into their archive maps, as
4613 well as real definitions, so we cannot just go by the archive
4614 map alone. Instead we must read in the element's symbol
4615 table and check that to see what kind of symbol definition
4616 this is. */
4617 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4618 continue;
4619 }
4620 else if (h->root.type != bfd_link_hash_undefined)
4621 {
4622 if (h->root.type != bfd_link_hash_undefweak)
4623 defined[i] = TRUE;
4624 continue;
4625 }
4626
4627 /* We need to include this archive member. */
4628 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4629 if (element == NULL)
4630 goto error_return;
4631
4632 if (! bfd_check_format (element, bfd_object))
4633 goto error_return;
4634
4635 /* Doublecheck that we have not included this object
4636 already--it should be impossible, but there may be
4637 something wrong with the archive. */
4638 if (element->archive_pass != 0)
4639 {
4640 bfd_set_error (bfd_error_bad_value);
4641 goto error_return;
4642 }
4643 element->archive_pass = 1;
4644
4645 undefs_tail = info->hash->undefs_tail;
4646
4647 if (! (*info->callbacks->add_archive_element) (info, element,
4648 symdef->name))
4649 goto error_return;
4650 if (! bfd_link_add_symbols (element, info))
4651 goto error_return;
4652
4653 /* If there are any new undefined symbols, we need to make
4654 another pass through the archive in order to see whether
4655 they can be defined. FIXME: This isn't perfect, because
4656 common symbols wind up on undefs_tail and because an
4657 undefined symbol which is defined later on in this pass
4658 does not require another pass. This isn't a bug, but it
4659 does make the code less efficient than it could be. */
4660 if (undefs_tail != info->hash->undefs_tail)
4661 loop = TRUE;
4662
4663 /* Look backward to mark all symbols from this object file
4664 which we have already seen in this pass. */
4665 mark = i;
4666 do
4667 {
4668 included[mark] = TRUE;
4669 if (mark == 0)
4670 break;
4671 --mark;
4672 }
4673 while (symdefs[mark].file_offset == symdef->file_offset);
4674
4675 /* We mark subsequent symbols from this object file as we go
4676 on through the loop. */
4677 last = symdef->file_offset;
4678 }
4679 }
4680 while (loop);
4681
4682 free (defined);
4683 free (included);
4684
4685 return TRUE;
4686
4687 error_return:
4688 if (defined != NULL)
4689 free (defined);
4690 if (included != NULL)
4691 free (included);
4692 return FALSE;
4693}
4ad4eba5
AM
4694
4695/* Given an ELF BFD, add symbols to the global hash table as
4696 appropriate. */
4697
4698bfd_boolean
4699bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4700{
4701 switch (bfd_get_format (abfd))
4702 {
4703 case bfd_object:
4704 return elf_link_add_object_symbols (abfd, info);
4705 case bfd_archive:
4706 return elf_link_add_archive_symbols (abfd, info);
4707 default:
4708 bfd_set_error (bfd_error_wrong_format);
4709 return FALSE;
4710 }
4711}
5a580b3a
AM
4712\f
4713/* This function will be called though elf_link_hash_traverse to store
4714 all hash value of the exported symbols in an array. */
4715
4716static bfd_boolean
4717elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4718{
4719 unsigned long **valuep = data;
4720 const char *name;
4721 char *p;
4722 unsigned long ha;
4723 char *alc = NULL;
4724
4725 if (h->root.type == bfd_link_hash_warning)
4726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4727
4728 /* Ignore indirect symbols. These are added by the versioning code. */
4729 if (h->dynindx == -1)
4730 return TRUE;
4731
4732 name = h->root.root.string;
4733 p = strchr (name, ELF_VER_CHR);
4734 if (p != NULL)
4735 {
4736 alc = bfd_malloc (p - name + 1);
4737 memcpy (alc, name, p - name);
4738 alc[p - name] = '\0';
4739 name = alc;
4740 }
4741
4742 /* Compute the hash value. */
4743 ha = bfd_elf_hash (name);
4744
4745 /* Store the found hash value in the array given as the argument. */
4746 *(*valuep)++ = ha;
4747
4748 /* And store it in the struct so that we can put it in the hash table
4749 later. */
f6e332e6 4750 h->u.elf_hash_value = ha;
5a580b3a
AM
4751
4752 if (alc != NULL)
4753 free (alc);
4754
4755 return TRUE;
4756}
4757
4758/* Array used to determine the number of hash table buckets to use
4759 based on the number of symbols there are. If there are fewer than
4760 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4761 fewer than 37 we use 17 buckets, and so forth. We never use more
4762 than 32771 buckets. */
4763
4764static const size_t elf_buckets[] =
4765{
4766 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4767 16411, 32771, 0
4768};
4769
4770/* Compute bucket count for hashing table. We do not use a static set
4771 of possible tables sizes anymore. Instead we determine for all
4772 possible reasonable sizes of the table the outcome (i.e., the
4773 number of collisions etc) and choose the best solution. The
4774 weighting functions are not too simple to allow the table to grow
4775 without bounds. Instead one of the weighting factors is the size.
4776 Therefore the result is always a good payoff between few collisions
4777 (= short chain lengths) and table size. */
4778static size_t
4779compute_bucket_count (struct bfd_link_info *info)
4780{
4781 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4782 size_t best_size = 0;
4783 unsigned long int *hashcodes;
4784 unsigned long int *hashcodesp;
4785 unsigned long int i;
4786 bfd_size_type amt;
4787
4788 /* Compute the hash values for all exported symbols. At the same
4789 time store the values in an array so that we could use them for
4790 optimizations. */
4791 amt = dynsymcount;
4792 amt *= sizeof (unsigned long int);
4793 hashcodes = bfd_malloc (amt);
4794 if (hashcodes == NULL)
4795 return 0;
4796 hashcodesp = hashcodes;
4797
4798 /* Put all hash values in HASHCODES. */
4799 elf_link_hash_traverse (elf_hash_table (info),
4800 elf_collect_hash_codes, &hashcodesp);
4801
4802 /* We have a problem here. The following code to optimize the table
4803 size requires an integer type with more the 32 bits. If
4804 BFD_HOST_U_64_BIT is set we know about such a type. */
4805#ifdef BFD_HOST_U_64_BIT
4806 if (info->optimize)
4807 {
4808 unsigned long int nsyms = hashcodesp - hashcodes;
4809 size_t minsize;
4810 size_t maxsize;
4811 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4812 unsigned long int *counts ;
4813 bfd *dynobj = elf_hash_table (info)->dynobj;
4814 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4815
4816 /* Possible optimization parameters: if we have NSYMS symbols we say
4817 that the hashing table must at least have NSYMS/4 and at most
4818 2*NSYMS buckets. */
4819 minsize = nsyms / 4;
4820 if (minsize == 0)
4821 minsize = 1;
4822 best_size = maxsize = nsyms * 2;
4823
4824 /* Create array where we count the collisions in. We must use bfd_malloc
4825 since the size could be large. */
4826 amt = maxsize;
4827 amt *= sizeof (unsigned long int);
4828 counts = bfd_malloc (amt);
4829 if (counts == NULL)
4830 {
4831 free (hashcodes);
4832 return 0;
4833 }
4834
4835 /* Compute the "optimal" size for the hash table. The criteria is a
4836 minimal chain length. The minor criteria is (of course) the size
4837 of the table. */
4838 for (i = minsize; i < maxsize; ++i)
4839 {
4840 /* Walk through the array of hashcodes and count the collisions. */
4841 BFD_HOST_U_64_BIT max;
4842 unsigned long int j;
4843 unsigned long int fact;
4844
4845 memset (counts, '\0', i * sizeof (unsigned long int));
4846
4847 /* Determine how often each hash bucket is used. */
4848 for (j = 0; j < nsyms; ++j)
4849 ++counts[hashcodes[j] % i];
4850
4851 /* For the weight function we need some information about the
4852 pagesize on the target. This is information need not be 100%
4853 accurate. Since this information is not available (so far) we
4854 define it here to a reasonable default value. If it is crucial
4855 to have a better value some day simply define this value. */
4856# ifndef BFD_TARGET_PAGESIZE
4857# define BFD_TARGET_PAGESIZE (4096)
4858# endif
4859
4860 /* We in any case need 2 + NSYMS entries for the size values and
4861 the chains. */
4862 max = (2 + nsyms) * (bed->s->arch_size / 8);
4863
4864# if 1
4865 /* Variant 1: optimize for short chains. We add the squares
4866 of all the chain lengths (which favors many small chain
4867 over a few long chains). */
4868 for (j = 0; j < i; ++j)
4869 max += counts[j] * counts[j];
4870
4871 /* This adds penalties for the overall size of the table. */
4872 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4873 max *= fact * fact;
4874# else
4875 /* Variant 2: Optimize a lot more for small table. Here we
4876 also add squares of the size but we also add penalties for
4877 empty slots (the +1 term). */
4878 for (j = 0; j < i; ++j)
4879 max += (1 + counts[j]) * (1 + counts[j]);
4880
4881 /* The overall size of the table is considered, but not as
4882 strong as in variant 1, where it is squared. */
4883 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4884 max *= fact;
4885# endif
4886
4887 /* Compare with current best results. */
4888 if (max < best_chlen)
4889 {
4890 best_chlen = max;
4891 best_size = i;
4892 }
4893 }
4894
4895 free (counts);
4896 }
4897 else
4898#endif /* defined (BFD_HOST_U_64_BIT) */
4899 {
4900 /* This is the fallback solution if no 64bit type is available or if we
4901 are not supposed to spend much time on optimizations. We select the
4902 bucket count using a fixed set of numbers. */
4903 for (i = 0; elf_buckets[i] != 0; i++)
4904 {
4905 best_size = elf_buckets[i];
4906 if (dynsymcount < elf_buckets[i + 1])
4907 break;
4908 }
4909 }
4910
4911 /* Free the arrays we needed. */
4912 free (hashcodes);
4913
4914 return best_size;
4915}
4916
4917/* Set up the sizes and contents of the ELF dynamic sections. This is
4918 called by the ELF linker emulation before_allocation routine. We
4919 must set the sizes of the sections before the linker sets the
4920 addresses of the various sections. */
4921
4922bfd_boolean
4923bfd_elf_size_dynamic_sections (bfd *output_bfd,
4924 const char *soname,
4925 const char *rpath,
4926 const char *filter_shlib,
4927 const char * const *auxiliary_filters,
4928 struct bfd_link_info *info,
4929 asection **sinterpptr,
4930 struct bfd_elf_version_tree *verdefs)
4931{
4932 bfd_size_type soname_indx;
4933 bfd *dynobj;
4934 const struct elf_backend_data *bed;
4935 struct elf_assign_sym_version_info asvinfo;
4936
4937 *sinterpptr = NULL;
4938
4939 soname_indx = (bfd_size_type) -1;
4940
4941 if (!is_elf_hash_table (info->hash))
4942 return TRUE;
4943
8c37241b 4944 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4945 if (info->execstack)
4946 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4947 else if (info->noexecstack)
4948 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4949 else
4950 {
4951 bfd *inputobj;
4952 asection *notesec = NULL;
4953 int exec = 0;
4954
4955 for (inputobj = info->input_bfds;
4956 inputobj;
4957 inputobj = inputobj->link_next)
4958 {
4959 asection *s;
4960
d457dcf6 4961 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
4962 continue;
4963 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4964 if (s)
4965 {
4966 if (s->flags & SEC_CODE)
4967 exec = PF_X;
4968 notesec = s;
4969 }
4970 else
4971 exec = PF_X;
4972 }
4973 if (notesec)
4974 {
4975 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4976 if (exec && info->relocatable
4977 && notesec->output_section != bfd_abs_section_ptr)
4978 notesec->output_section->flags |= SEC_CODE;
4979 }
4980 }
4981
4982 /* Any syms created from now on start with -1 in
4983 got.refcount/offset and plt.refcount/offset. */
4984 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4985
4986 /* The backend may have to create some sections regardless of whether
4987 we're dynamic or not. */
4988 bed = get_elf_backend_data (output_bfd);
4989 if (bed->elf_backend_always_size_sections
4990 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4991 return FALSE;
4992
4993 dynobj = elf_hash_table (info)->dynobj;
4994
4995 /* If there were no dynamic objects in the link, there is nothing to
4996 do here. */
4997 if (dynobj == NULL)
4998 return TRUE;
4999
5000 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5001 return FALSE;
5002
5003 if (elf_hash_table (info)->dynamic_sections_created)
5004 {
5005 struct elf_info_failed eif;
5006 struct elf_link_hash_entry *h;
5007 asection *dynstr;
5008 struct bfd_elf_version_tree *t;
5009 struct bfd_elf_version_expr *d;
5010 bfd_boolean all_defined;
5011
5012 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5013 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5014
5015 if (soname != NULL)
5016 {
5017 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5018 soname, TRUE);
5019 if (soname_indx == (bfd_size_type) -1
5020 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5021 return FALSE;
5022 }
5023
5024 if (info->symbolic)
5025 {
5026 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5027 return FALSE;
5028 info->flags |= DF_SYMBOLIC;
5029 }
5030
5031 if (rpath != NULL)
5032 {
5033 bfd_size_type indx;
5034
5035 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5036 TRUE);
5037 if (indx == (bfd_size_type) -1
5038 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5039 return FALSE;
5040
5041 if (info->new_dtags)
5042 {
5043 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5044 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5045 return FALSE;
5046 }
5047 }
5048
5049 if (filter_shlib != NULL)
5050 {
5051 bfd_size_type indx;
5052
5053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5054 filter_shlib, TRUE);
5055 if (indx == (bfd_size_type) -1
5056 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5057 return FALSE;
5058 }
5059
5060 if (auxiliary_filters != NULL)
5061 {
5062 const char * const *p;
5063
5064 for (p = auxiliary_filters; *p != NULL; p++)
5065 {
5066 bfd_size_type indx;
5067
5068 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5069 *p, TRUE);
5070 if (indx == (bfd_size_type) -1
5071 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5072 return FALSE;
5073 }
5074 }
5075
5076 eif.info = info;
5077 eif.verdefs = verdefs;
5078 eif.failed = FALSE;
5079
5080 /* If we are supposed to export all symbols into the dynamic symbol
5081 table (this is not the normal case), then do so. */
5082 if (info->export_dynamic)
5083 {
5084 elf_link_hash_traverse (elf_hash_table (info),
5085 _bfd_elf_export_symbol,
5086 &eif);
5087 if (eif.failed)
5088 return FALSE;
5089 }
5090
5091 /* Make all global versions with definition. */
5092 for (t = verdefs; t != NULL; t = t->next)
5093 for (d = t->globals.list; d != NULL; d = d->next)
5094 if (!d->symver && d->symbol)
5095 {
5096 const char *verstr, *name;
5097 size_t namelen, verlen, newlen;
5098 char *newname, *p;
5099 struct elf_link_hash_entry *newh;
5100
5101 name = d->symbol;
5102 namelen = strlen (name);
5103 verstr = t->name;
5104 verlen = strlen (verstr);
5105 newlen = namelen + verlen + 3;
5106
5107 newname = bfd_malloc (newlen);
5108 if (newname == NULL)
5109 return FALSE;
5110 memcpy (newname, name, namelen);
5111
5112 /* Check the hidden versioned definition. */
5113 p = newname + namelen;
5114 *p++ = ELF_VER_CHR;
5115 memcpy (p, verstr, verlen + 1);
5116 newh = elf_link_hash_lookup (elf_hash_table (info),
5117 newname, FALSE, FALSE,
5118 FALSE);
5119 if (newh == NULL
5120 || (newh->root.type != bfd_link_hash_defined
5121 && newh->root.type != bfd_link_hash_defweak))
5122 {
5123 /* Check the default versioned definition. */
5124 *p++ = ELF_VER_CHR;
5125 memcpy (p, verstr, verlen + 1);
5126 newh = elf_link_hash_lookup (elf_hash_table (info),
5127 newname, FALSE, FALSE,
5128 FALSE);
5129 }
5130 free (newname);
5131
5132 /* Mark this version if there is a definition and it is
5133 not defined in a shared object. */
5134 if (newh != NULL
f5385ebf 5135 && !newh->def_dynamic
5a580b3a
AM
5136 && (newh->root.type == bfd_link_hash_defined
5137 || newh->root.type == bfd_link_hash_defweak))
5138 d->symver = 1;
5139 }
5140
5141 /* Attach all the symbols to their version information. */
5142 asvinfo.output_bfd = output_bfd;
5143 asvinfo.info = info;
5144 asvinfo.verdefs = verdefs;
5145 asvinfo.failed = FALSE;
5146
5147 elf_link_hash_traverse (elf_hash_table (info),
5148 _bfd_elf_link_assign_sym_version,
5149 &asvinfo);
5150 if (asvinfo.failed)
5151 return FALSE;
5152
5153 if (!info->allow_undefined_version)
5154 {
5155 /* Check if all global versions have a definition. */
5156 all_defined = TRUE;
5157 for (t = verdefs; t != NULL; t = t->next)
5158 for (d = t->globals.list; d != NULL; d = d->next)
5159 if (!d->symver && !d->script)
5160 {
5161 (*_bfd_error_handler)
5162 (_("%s: undefined version: %s"),
5163 d->pattern, t->name);
5164 all_defined = FALSE;
5165 }
5166
5167 if (!all_defined)
5168 {
5169 bfd_set_error (bfd_error_bad_value);
5170 return FALSE;
5171 }
5172 }
5173
5174 /* Find all symbols which were defined in a dynamic object and make
5175 the backend pick a reasonable value for them. */
5176 elf_link_hash_traverse (elf_hash_table (info),
5177 _bfd_elf_adjust_dynamic_symbol,
5178 &eif);
5179 if (eif.failed)
5180 return FALSE;
5181
5182 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5183 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5184 now so that we know the final size of the .dynamic section. */
5185
5186 /* If there are initialization and/or finalization functions to
5187 call then add the corresponding DT_INIT/DT_FINI entries. */
5188 h = (info->init_function
5189 ? elf_link_hash_lookup (elf_hash_table (info),
5190 info->init_function, FALSE,
5191 FALSE, FALSE)
5192 : NULL);
5193 if (h != NULL
f5385ebf
AM
5194 && (h->ref_regular
5195 || h->def_regular))
5a580b3a
AM
5196 {
5197 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5198 return FALSE;
5199 }
5200 h = (info->fini_function
5201 ? elf_link_hash_lookup (elf_hash_table (info),
5202 info->fini_function, FALSE,
5203 FALSE, FALSE)
5204 : NULL);
5205 if (h != NULL
f5385ebf
AM
5206 && (h->ref_regular
5207 || h->def_regular))
5a580b3a
AM
5208 {
5209 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5210 return FALSE;
5211 }
5212
5213 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5214 {
5215 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5216 if (! info->executable)
5217 {
5218 bfd *sub;
5219 asection *o;
5220
5221 for (sub = info->input_bfds; sub != NULL;
5222 sub = sub->link_next)
5223 for (o = sub->sections; o != NULL; o = o->next)
5224 if (elf_section_data (o)->this_hdr.sh_type
5225 == SHT_PREINIT_ARRAY)
5226 {
5227 (*_bfd_error_handler)
d003868e
AM
5228 (_("%B: .preinit_array section is not allowed in DSO"),
5229 sub);
5a580b3a
AM
5230 break;
5231 }
5232
5233 bfd_set_error (bfd_error_nonrepresentable_section);
5234 return FALSE;
5235 }
5236
5237 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5238 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5239 return FALSE;
5240 }
5241 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5242 {
5243 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5244 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5245 return FALSE;
5246 }
5247 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5248 {
5249 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5250 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5251 return FALSE;
5252 }
5253
5254 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5255 /* If .dynstr is excluded from the link, we don't want any of
5256 these tags. Strictly, we should be checking each section
5257 individually; This quick check covers for the case where
5258 someone does a /DISCARD/ : { *(*) }. */
5259 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5260 {
5261 bfd_size_type strsize;
5262
5263 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5264 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5265 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5266 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5267 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5268 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5269 bed->s->sizeof_sym))
5270 return FALSE;
5271 }
5272 }
5273
5274 /* The backend must work out the sizes of all the other dynamic
5275 sections. */
5276 if (bed->elf_backend_size_dynamic_sections
5277 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5278 return FALSE;
5279
5280 if (elf_hash_table (info)->dynamic_sections_created)
5281 {
5282 bfd_size_type dynsymcount;
554220db 5283 unsigned long section_sym_count;
5a580b3a
AM
5284 asection *s;
5285 size_t bucketcount = 0;
5286 size_t hash_entry_size;
5287 unsigned int dtagcount;
5288
5289 /* Set up the version definition section. */
5290 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5291 BFD_ASSERT (s != NULL);
5292
5293 /* We may have created additional version definitions if we are
5294 just linking a regular application. */
5295 verdefs = asvinfo.verdefs;
5296
5297 /* Skip anonymous version tag. */
5298 if (verdefs != NULL && verdefs->vernum == 0)
5299 verdefs = verdefs->next;
5300
3e3b46e5 5301 if (verdefs == NULL && !info->create_default_symver)
5a580b3a
AM
5302 _bfd_strip_section_from_output (info, s);
5303 else
5304 {
5305 unsigned int cdefs;
5306 bfd_size_type size;
5307 struct bfd_elf_version_tree *t;
5308 bfd_byte *p;
5309 Elf_Internal_Verdef def;
5310 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5311 struct bfd_link_hash_entry *bh;
5312 struct elf_link_hash_entry *h;
5313 const char *name;
5a580b3a
AM
5314
5315 cdefs = 0;
5316 size = 0;
5317
5318 /* Make space for the base version. */
5319 size += sizeof (Elf_External_Verdef);
5320 size += sizeof (Elf_External_Verdaux);
5321 ++cdefs;
5322
3e3b46e5
PB
5323 /* Make space for the default version. */
5324 if (info->create_default_symver)
5325 {
5326 size += sizeof (Elf_External_Verdef);
5327 ++cdefs;
5328 }
5329
5a580b3a
AM
5330 for (t = verdefs; t != NULL; t = t->next)
5331 {
5332 struct bfd_elf_version_deps *n;
5333
5334 size += sizeof (Elf_External_Verdef);
5335 size += sizeof (Elf_External_Verdaux);
5336 ++cdefs;
5337
5338 for (n = t->deps; n != NULL; n = n->next)
5339 size += sizeof (Elf_External_Verdaux);
5340 }
5341
eea6121a
AM
5342 s->size = size;
5343 s->contents = bfd_alloc (output_bfd, s->size);
5344 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5345 return FALSE;
5346
5347 /* Fill in the version definition section. */
5348
5349 p = s->contents;
5350
5351 def.vd_version = VER_DEF_CURRENT;
5352 def.vd_flags = VER_FLG_BASE;
5353 def.vd_ndx = 1;
5354 def.vd_cnt = 1;
3e3b46e5
PB
5355 if (info->create_default_symver)
5356 {
5357 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5358 def.vd_next = sizeof (Elf_External_Verdef);
5359 }
5360 else
5361 {
5362 def.vd_aux = sizeof (Elf_External_Verdef);
5363 def.vd_next = (sizeof (Elf_External_Verdef)
5364 + sizeof (Elf_External_Verdaux));
5365 }
5a580b3a
AM
5366
5367 if (soname_indx != (bfd_size_type) -1)
5368 {
5369 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5370 soname_indx);
5371 def.vd_hash = bfd_elf_hash (soname);
5372 defaux.vda_name = soname_indx;
3e3b46e5 5373 name = soname;
5a580b3a
AM
5374 }
5375 else
5376 {
5a580b3a
AM
5377 bfd_size_type indx;
5378
5379 name = basename (output_bfd->filename);
5380 def.vd_hash = bfd_elf_hash (name);
5381 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5382 name, FALSE);
5383 if (indx == (bfd_size_type) -1)
5384 return FALSE;
5385 defaux.vda_name = indx;
5386 }
5387 defaux.vda_next = 0;
5388
5389 _bfd_elf_swap_verdef_out (output_bfd, &def,
5390 (Elf_External_Verdef *) p);
5391 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5392 if (info->create_default_symver)
5393 {
5394 /* Add a symbol representing this version. */
5395 bh = NULL;
5396 if (! (_bfd_generic_link_add_one_symbol
5397 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5398 0, NULL, FALSE,
5399 get_elf_backend_data (dynobj)->collect, &bh)))
5400 return FALSE;
5401 h = (struct elf_link_hash_entry *) bh;
5402 h->non_elf = 0;
5403 h->def_regular = 1;
5404 h->type = STT_OBJECT;
5405 h->verinfo.vertree = NULL;
5406
5407 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5408 return FALSE;
5409
5410 /* Create a duplicate of the base version with the same
5411 aux block, but different flags. */
5412 def.vd_flags = 0;
5413 def.vd_ndx = 2;
5414 def.vd_aux = sizeof (Elf_External_Verdef);
5415 if (verdefs)
5416 def.vd_next = (sizeof (Elf_External_Verdef)
5417 + sizeof (Elf_External_Verdaux));
5418 else
5419 def.vd_next = 0;
5420 _bfd_elf_swap_verdef_out (output_bfd, &def,
5421 (Elf_External_Verdef *) p);
5422 p += sizeof (Elf_External_Verdef);
5423 }
5a580b3a
AM
5424 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5425 (Elf_External_Verdaux *) p);
5426 p += sizeof (Elf_External_Verdaux);
5427
5428 for (t = verdefs; t != NULL; t = t->next)
5429 {
5430 unsigned int cdeps;
5431 struct bfd_elf_version_deps *n;
5a580b3a
AM
5432
5433 cdeps = 0;
5434 for (n = t->deps; n != NULL; n = n->next)
5435 ++cdeps;
5436
5437 /* Add a symbol representing this version. */
5438 bh = NULL;
5439 if (! (_bfd_generic_link_add_one_symbol
5440 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5441 0, NULL, FALSE,
5442 get_elf_backend_data (dynobj)->collect, &bh)))
5443 return FALSE;
5444 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5445 h->non_elf = 0;
5446 h->def_regular = 1;
5a580b3a
AM
5447 h->type = STT_OBJECT;
5448 h->verinfo.vertree = t;
5449
c152c796 5450 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5451 return FALSE;
5452
5453 def.vd_version = VER_DEF_CURRENT;
5454 def.vd_flags = 0;
5455 if (t->globals.list == NULL
5456 && t->locals.list == NULL
5457 && ! t->used)
5458 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5459 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5460 def.vd_cnt = cdeps + 1;
5461 def.vd_hash = bfd_elf_hash (t->name);
5462 def.vd_aux = sizeof (Elf_External_Verdef);
5463 def.vd_next = 0;
5464 if (t->next != NULL)
5465 def.vd_next = (sizeof (Elf_External_Verdef)
5466 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5467
5468 _bfd_elf_swap_verdef_out (output_bfd, &def,
5469 (Elf_External_Verdef *) p);
5470 p += sizeof (Elf_External_Verdef);
5471
5472 defaux.vda_name = h->dynstr_index;
5473 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5474 h->dynstr_index);
5475 defaux.vda_next = 0;
5476 if (t->deps != NULL)
5477 defaux.vda_next = sizeof (Elf_External_Verdaux);
5478 t->name_indx = defaux.vda_name;
5479
5480 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5481 (Elf_External_Verdaux *) p);
5482 p += sizeof (Elf_External_Verdaux);
5483
5484 for (n = t->deps; n != NULL; n = n->next)
5485 {
5486 if (n->version_needed == NULL)
5487 {
5488 /* This can happen if there was an error in the
5489 version script. */
5490 defaux.vda_name = 0;
5491 }
5492 else
5493 {
5494 defaux.vda_name = n->version_needed->name_indx;
5495 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5496 defaux.vda_name);
5497 }
5498 if (n->next == NULL)
5499 defaux.vda_next = 0;
5500 else
5501 defaux.vda_next = sizeof (Elf_External_Verdaux);
5502
5503 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5504 (Elf_External_Verdaux *) p);
5505 p += sizeof (Elf_External_Verdaux);
5506 }
5507 }
5508
5509 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5510 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5511 return FALSE;
5512
5513 elf_tdata (output_bfd)->cverdefs = cdefs;
5514 }
5515
5516 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5517 {
5518 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5519 return FALSE;
5520 }
5521 else if (info->flags & DF_BIND_NOW)
5522 {
5523 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5524 return FALSE;
5525 }
5526
5527 if (info->flags_1)
5528 {
5529 if (info->executable)
5530 info->flags_1 &= ~ (DF_1_INITFIRST
5531 | DF_1_NODELETE
5532 | DF_1_NOOPEN);
5533 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5534 return FALSE;
5535 }
5536
5537 /* Work out the size of the version reference section. */
5538
5539 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5540 BFD_ASSERT (s != NULL);
5541 {
5542 struct elf_find_verdep_info sinfo;
5543
5544 sinfo.output_bfd = output_bfd;
5545 sinfo.info = info;
5546 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5547 if (sinfo.vers == 0)
5548 sinfo.vers = 1;
5549 sinfo.failed = FALSE;
5550
5551 elf_link_hash_traverse (elf_hash_table (info),
5552 _bfd_elf_link_find_version_dependencies,
5553 &sinfo);
5554
5555 if (elf_tdata (output_bfd)->verref == NULL)
5556 _bfd_strip_section_from_output (info, s);
5557 else
5558 {
5559 Elf_Internal_Verneed *t;
5560 unsigned int size;
5561 unsigned int crefs;
5562 bfd_byte *p;
5563
5564 /* Build the version definition section. */
5565 size = 0;
5566 crefs = 0;
5567 for (t = elf_tdata (output_bfd)->verref;
5568 t != NULL;
5569 t = t->vn_nextref)
5570 {
5571 Elf_Internal_Vernaux *a;
5572
5573 size += sizeof (Elf_External_Verneed);
5574 ++crefs;
5575 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5576 size += sizeof (Elf_External_Vernaux);
5577 }
5578
eea6121a
AM
5579 s->size = size;
5580 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5581 if (s->contents == NULL)
5582 return FALSE;
5583
5584 p = s->contents;
5585 for (t = elf_tdata (output_bfd)->verref;
5586 t != NULL;
5587 t = t->vn_nextref)
5588 {
5589 unsigned int caux;
5590 Elf_Internal_Vernaux *a;
5591 bfd_size_type indx;
5592
5593 caux = 0;
5594 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5595 ++caux;
5596
5597 t->vn_version = VER_NEED_CURRENT;
5598 t->vn_cnt = caux;
5599 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5600 elf_dt_name (t->vn_bfd) != NULL
5601 ? elf_dt_name (t->vn_bfd)
5602 : basename (t->vn_bfd->filename),
5603 FALSE);
5604 if (indx == (bfd_size_type) -1)
5605 return FALSE;
5606 t->vn_file = indx;
5607 t->vn_aux = sizeof (Elf_External_Verneed);
5608 if (t->vn_nextref == NULL)
5609 t->vn_next = 0;
5610 else
5611 t->vn_next = (sizeof (Elf_External_Verneed)
5612 + caux * sizeof (Elf_External_Vernaux));
5613
5614 _bfd_elf_swap_verneed_out (output_bfd, t,
5615 (Elf_External_Verneed *) p);
5616 p += sizeof (Elf_External_Verneed);
5617
5618 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5619 {
5620 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5621 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5622 a->vna_nodename, FALSE);
5623 if (indx == (bfd_size_type) -1)
5624 return FALSE;
5625 a->vna_name = indx;
5626 if (a->vna_nextptr == NULL)
5627 a->vna_next = 0;
5628 else
5629 a->vna_next = sizeof (Elf_External_Vernaux);
5630
5631 _bfd_elf_swap_vernaux_out (output_bfd, a,
5632 (Elf_External_Vernaux *) p);
5633 p += sizeof (Elf_External_Vernaux);
5634 }
5635 }
5636
5637 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5638 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5639 return FALSE;
5640
5641 elf_tdata (output_bfd)->cverrefs = crefs;
5642 }
5643 }
5644
5645 /* Assign dynsym indicies. In a shared library we generate a
5646 section symbol for each output section, which come first.
5647 Next come all of the back-end allocated local dynamic syms,
5648 followed by the rest of the global symbols. */
5649
554220db
AM
5650 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5651 &section_sym_count);
5a580b3a
AM
5652
5653 /* Work out the size of the symbol version section. */
5654 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5655 BFD_ASSERT (s != NULL);
5656 if (dynsymcount == 0
3e3b46e5
PB
5657 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5658 && !info->create_default_symver))
5a580b3a
AM
5659 {
5660 _bfd_strip_section_from_output (info, s);
5661 /* The DYNSYMCOUNT might have changed if we were going to
5662 output a dynamic symbol table entry for S. */
554220db
AM
5663 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5664 &section_sym_count);
5a580b3a
AM
5665 }
5666 else
5667 {
eea6121a
AM
5668 s->size = dynsymcount * sizeof (Elf_External_Versym);
5669 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5670 if (s->contents == NULL)
5671 return FALSE;
5672
5673 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5674 return FALSE;
5675 }
5676
5677 /* Set the size of the .dynsym and .hash sections. We counted
5678 the number of dynamic symbols in elf_link_add_object_symbols.
5679 We will build the contents of .dynsym and .hash when we build
5680 the final symbol table, because until then we do not know the
5681 correct value to give the symbols. We built the .dynstr
5682 section as we went along in elf_link_add_object_symbols. */
5683 s = bfd_get_section_by_name (dynobj, ".dynsym");
5684 BFD_ASSERT (s != NULL);
eea6121a 5685 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
5686
5687 if (dynsymcount != 0)
5688 {
554220db
AM
5689 s->contents = bfd_alloc (output_bfd, s->size);
5690 if (s->contents == NULL)
5691 return FALSE;
5a580b3a 5692
554220db
AM
5693 /* The first entry in .dynsym is a dummy symbol.
5694 Clear all the section syms, in case we don't output them all. */
5695 ++section_sym_count;
5696 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
5697 }
5698
5699 /* Compute the size of the hashing table. As a side effect this
5700 computes the hash values for all the names we export. */
5701 bucketcount = compute_bucket_count (info);
5702
5703 s = bfd_get_section_by_name (dynobj, ".hash");
5704 BFD_ASSERT (s != NULL);
5705 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5706 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5707 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5708 if (s->contents == NULL)
5709 return FALSE;
5710
5711 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5712 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5713 s->contents + hash_entry_size);
5714
5715 elf_hash_table (info)->bucketcount = bucketcount;
5716
5717 s = bfd_get_section_by_name (dynobj, ".dynstr");
5718 BFD_ASSERT (s != NULL);
5719
4ad4eba5 5720 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5721
eea6121a 5722 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5723
5724 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5725 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5726 return FALSE;
5727 }
5728
5729 return TRUE;
5730}
c152c796
AM
5731
5732/* Final phase of ELF linker. */
5733
5734/* A structure we use to avoid passing large numbers of arguments. */
5735
5736struct elf_final_link_info
5737{
5738 /* General link information. */
5739 struct bfd_link_info *info;
5740 /* Output BFD. */
5741 bfd *output_bfd;
5742 /* Symbol string table. */
5743 struct bfd_strtab_hash *symstrtab;
5744 /* .dynsym section. */
5745 asection *dynsym_sec;
5746 /* .hash section. */
5747 asection *hash_sec;
5748 /* symbol version section (.gnu.version). */
5749 asection *symver_sec;
5750 /* Buffer large enough to hold contents of any section. */
5751 bfd_byte *contents;
5752 /* Buffer large enough to hold external relocs of any section. */
5753 void *external_relocs;
5754 /* Buffer large enough to hold internal relocs of any section. */
5755 Elf_Internal_Rela *internal_relocs;
5756 /* Buffer large enough to hold external local symbols of any input
5757 BFD. */
5758 bfd_byte *external_syms;
5759 /* And a buffer for symbol section indices. */
5760 Elf_External_Sym_Shndx *locsym_shndx;
5761 /* Buffer large enough to hold internal local symbols of any input
5762 BFD. */
5763 Elf_Internal_Sym *internal_syms;
5764 /* Array large enough to hold a symbol index for each local symbol
5765 of any input BFD. */
5766 long *indices;
5767 /* Array large enough to hold a section pointer for each local
5768 symbol of any input BFD. */
5769 asection **sections;
5770 /* Buffer to hold swapped out symbols. */
5771 bfd_byte *symbuf;
5772 /* And one for symbol section indices. */
5773 Elf_External_Sym_Shndx *symshndxbuf;
5774 /* Number of swapped out symbols in buffer. */
5775 size_t symbuf_count;
5776 /* Number of symbols which fit in symbuf. */
5777 size_t symbuf_size;
5778 /* And same for symshndxbuf. */
5779 size_t shndxbuf_size;
5780};
5781
5782/* This struct is used to pass information to elf_link_output_extsym. */
5783
5784struct elf_outext_info
5785{
5786 bfd_boolean failed;
5787 bfd_boolean localsyms;
5788 struct elf_final_link_info *finfo;
5789};
5790
5791/* When performing a relocatable link, the input relocations are
5792 preserved. But, if they reference global symbols, the indices
5793 referenced must be updated. Update all the relocations in
5794 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5795
5796static void
5797elf_link_adjust_relocs (bfd *abfd,
5798 Elf_Internal_Shdr *rel_hdr,
5799 unsigned int count,
5800 struct elf_link_hash_entry **rel_hash)
5801{
5802 unsigned int i;
5803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5804 bfd_byte *erela;
5805 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5806 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5807 bfd_vma r_type_mask;
5808 int r_sym_shift;
5809
5810 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5811 {
5812 swap_in = bed->s->swap_reloc_in;
5813 swap_out = bed->s->swap_reloc_out;
5814 }
5815 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5816 {
5817 swap_in = bed->s->swap_reloca_in;
5818 swap_out = bed->s->swap_reloca_out;
5819 }
5820 else
5821 abort ();
5822
5823 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5824 abort ();
5825
5826 if (bed->s->arch_size == 32)
5827 {
5828 r_type_mask = 0xff;
5829 r_sym_shift = 8;
5830 }
5831 else
5832 {
5833 r_type_mask = 0xffffffff;
5834 r_sym_shift = 32;
5835 }
5836
5837 erela = rel_hdr->contents;
5838 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5839 {
5840 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5841 unsigned int j;
5842
5843 if (*rel_hash == NULL)
5844 continue;
5845
5846 BFD_ASSERT ((*rel_hash)->indx >= 0);
5847
5848 (*swap_in) (abfd, erela, irela);
5849 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5850 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5851 | (irela[j].r_info & r_type_mask));
5852 (*swap_out) (abfd, irela, erela);
5853 }
5854}
5855
5856struct elf_link_sort_rela
5857{
5858 union {
5859 bfd_vma offset;
5860 bfd_vma sym_mask;
5861 } u;
5862 enum elf_reloc_type_class type;
5863 /* We use this as an array of size int_rels_per_ext_rel. */
5864 Elf_Internal_Rela rela[1];
5865};
5866
5867static int
5868elf_link_sort_cmp1 (const void *A, const void *B)
5869{
5870 const struct elf_link_sort_rela *a = A;
5871 const struct elf_link_sort_rela *b = B;
5872 int relativea, relativeb;
5873
5874 relativea = a->type == reloc_class_relative;
5875 relativeb = b->type == reloc_class_relative;
5876
5877 if (relativea < relativeb)
5878 return 1;
5879 if (relativea > relativeb)
5880 return -1;
5881 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5882 return -1;
5883 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5884 return 1;
5885 if (a->rela->r_offset < b->rela->r_offset)
5886 return -1;
5887 if (a->rela->r_offset > b->rela->r_offset)
5888 return 1;
5889 return 0;
5890}
5891
5892static int
5893elf_link_sort_cmp2 (const void *A, const void *B)
5894{
5895 const struct elf_link_sort_rela *a = A;
5896 const struct elf_link_sort_rela *b = B;
5897 int copya, copyb;
5898
5899 if (a->u.offset < b->u.offset)
5900 return -1;
5901 if (a->u.offset > b->u.offset)
5902 return 1;
5903 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5904 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5905 if (copya < copyb)
5906 return -1;
5907 if (copya > copyb)
5908 return 1;
5909 if (a->rela->r_offset < b->rela->r_offset)
5910 return -1;
5911 if (a->rela->r_offset > b->rela->r_offset)
5912 return 1;
5913 return 0;
5914}
5915
5916static size_t
5917elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5918{
5919 asection *reldyn;
5920 bfd_size_type count, size;
5921 size_t i, ret, sort_elt, ext_size;
5922 bfd_byte *sort, *s_non_relative, *p;
5923 struct elf_link_sort_rela *sq;
5924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5925 int i2e = bed->s->int_rels_per_ext_rel;
5926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5928 struct bfd_link_order *lo;
5929 bfd_vma r_sym_mask;
5930
5931 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5932 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5933 {
5934 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5935 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5936 return 0;
5937 ext_size = bed->s->sizeof_rel;
5938 swap_in = bed->s->swap_reloc_in;
5939 swap_out = bed->s->swap_reloc_out;
5940 }
5941 else
5942 {
5943 ext_size = bed->s->sizeof_rela;
5944 swap_in = bed->s->swap_reloca_in;
5945 swap_out = bed->s->swap_reloca_out;
5946 }
eea6121a 5947 count = reldyn->size / ext_size;
c152c796
AM
5948
5949 size = 0;
5950 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5951 if (lo->type == bfd_indirect_link_order)
5952 {
5953 asection *o = lo->u.indirect.section;
eea6121a 5954 size += o->size;
c152c796
AM
5955 }
5956
eea6121a 5957 if (size != reldyn->size)
c152c796
AM
5958 return 0;
5959
5960 sort_elt = (sizeof (struct elf_link_sort_rela)
5961 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5962 sort = bfd_zmalloc (sort_elt * count);
5963 if (sort == NULL)
5964 {
5965 (*info->callbacks->warning)
5966 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5967 return 0;
5968 }
5969
5970 if (bed->s->arch_size == 32)
5971 r_sym_mask = ~(bfd_vma) 0xff;
5972 else
5973 r_sym_mask = ~(bfd_vma) 0xffffffff;
5974
5975 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5976 if (lo->type == bfd_indirect_link_order)
5977 {
5978 bfd_byte *erel, *erelend;
5979 asection *o = lo->u.indirect.section;
5980
1da212d6
AM
5981 if (o->contents == NULL && o->size != 0)
5982 {
5983 /* This is a reloc section that is being handled as a normal
5984 section. See bfd_section_from_shdr. We can't combine
5985 relocs in this case. */
5986 free (sort);
5987 return 0;
5988 }
c152c796 5989 erel = o->contents;
eea6121a 5990 erelend = o->contents + o->size;
c152c796
AM
5991 p = sort + o->output_offset / ext_size * sort_elt;
5992 while (erel < erelend)
5993 {
5994 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5995 (*swap_in) (abfd, erel, s->rela);
5996 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5997 s->u.sym_mask = r_sym_mask;
5998 p += sort_elt;
5999 erel += ext_size;
6000 }
6001 }
6002
6003 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6004
6005 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6006 {
6007 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6008 if (s->type != reloc_class_relative)
6009 break;
6010 }
6011 ret = i;
6012 s_non_relative = p;
6013
6014 sq = (struct elf_link_sort_rela *) s_non_relative;
6015 for (; i < count; i++, p += sort_elt)
6016 {
6017 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6018 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6019 sq = sp;
6020 sp->u.offset = sq->rela->r_offset;
6021 }
6022
6023 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6024
6025 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
6026 if (lo->type == bfd_indirect_link_order)
6027 {
6028 bfd_byte *erel, *erelend;
6029 asection *o = lo->u.indirect.section;
6030
6031 erel = o->contents;
eea6121a 6032 erelend = o->contents + o->size;
c152c796
AM
6033 p = sort + o->output_offset / ext_size * sort_elt;
6034 while (erel < erelend)
6035 {
6036 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6037 (*swap_out) (abfd, s->rela, erel);
6038 p += sort_elt;
6039 erel += ext_size;
6040 }
6041 }
6042
6043 free (sort);
6044 *psec = reldyn;
6045 return ret;
6046}
6047
6048/* Flush the output symbols to the file. */
6049
6050static bfd_boolean
6051elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6052 const struct elf_backend_data *bed)
6053{
6054 if (finfo->symbuf_count > 0)
6055 {
6056 Elf_Internal_Shdr *hdr;
6057 file_ptr pos;
6058 bfd_size_type amt;
6059
6060 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6061 pos = hdr->sh_offset + hdr->sh_size;
6062 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6063 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6064 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6065 return FALSE;
6066
6067 hdr->sh_size += amt;
6068 finfo->symbuf_count = 0;
6069 }
6070
6071 return TRUE;
6072}
6073
6074/* Add a symbol to the output symbol table. */
6075
6076static bfd_boolean
6077elf_link_output_sym (struct elf_final_link_info *finfo,
6078 const char *name,
6079 Elf_Internal_Sym *elfsym,
6080 asection *input_sec,
6081 struct elf_link_hash_entry *h)
6082{
6083 bfd_byte *dest;
6084 Elf_External_Sym_Shndx *destshndx;
6085 bfd_boolean (*output_symbol_hook)
6086 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6087 struct elf_link_hash_entry *);
6088 const struct elf_backend_data *bed;
6089
6090 bed = get_elf_backend_data (finfo->output_bfd);
6091 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6092 if (output_symbol_hook != NULL)
6093 {
6094 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6095 return FALSE;
6096 }
6097
6098 if (name == NULL || *name == '\0')
6099 elfsym->st_name = 0;
6100 else if (input_sec->flags & SEC_EXCLUDE)
6101 elfsym->st_name = 0;
6102 else
6103 {
6104 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6105 name, TRUE, FALSE);
6106 if (elfsym->st_name == (unsigned long) -1)
6107 return FALSE;
6108 }
6109
6110 if (finfo->symbuf_count >= finfo->symbuf_size)
6111 {
6112 if (! elf_link_flush_output_syms (finfo, bed))
6113 return FALSE;
6114 }
6115
6116 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6117 destshndx = finfo->symshndxbuf;
6118 if (destshndx != NULL)
6119 {
6120 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6121 {
6122 bfd_size_type amt;
6123
6124 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6125 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6126 if (destshndx == NULL)
6127 return FALSE;
6128 memset ((char *) destshndx + amt, 0, amt);
6129 finfo->shndxbuf_size *= 2;
6130 }
6131 destshndx += bfd_get_symcount (finfo->output_bfd);
6132 }
6133
6134 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6135 finfo->symbuf_count += 1;
6136 bfd_get_symcount (finfo->output_bfd) += 1;
6137
6138 return TRUE;
6139}
6140
6141/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6142 allowing an unsatisfied unversioned symbol in the DSO to match a
6143 versioned symbol that would normally require an explicit version.
6144 We also handle the case that a DSO references a hidden symbol
6145 which may be satisfied by a versioned symbol in another DSO. */
6146
6147static bfd_boolean
6148elf_link_check_versioned_symbol (struct bfd_link_info *info,
6149 const struct elf_backend_data *bed,
6150 struct elf_link_hash_entry *h)
6151{
6152 bfd *abfd;
6153 struct elf_link_loaded_list *loaded;
6154
6155 if (!is_elf_hash_table (info->hash))
6156 return FALSE;
6157
6158 switch (h->root.type)
6159 {
6160 default:
6161 abfd = NULL;
6162 break;
6163
6164 case bfd_link_hash_undefined:
6165 case bfd_link_hash_undefweak:
6166 abfd = h->root.u.undef.abfd;
6167 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6168 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6169 return FALSE;
6170 break;
6171
6172 case bfd_link_hash_defined:
6173 case bfd_link_hash_defweak:
6174 abfd = h->root.u.def.section->owner;
6175 break;
6176
6177 case bfd_link_hash_common:
6178 abfd = h->root.u.c.p->section->owner;
6179 break;
6180 }
6181 BFD_ASSERT (abfd != NULL);
6182
6183 for (loaded = elf_hash_table (info)->loaded;
6184 loaded != NULL;
6185 loaded = loaded->next)
6186 {
6187 bfd *input;
6188 Elf_Internal_Shdr *hdr;
6189 bfd_size_type symcount;
6190 bfd_size_type extsymcount;
6191 bfd_size_type extsymoff;
6192 Elf_Internal_Shdr *versymhdr;
6193 Elf_Internal_Sym *isym;
6194 Elf_Internal_Sym *isymend;
6195 Elf_Internal_Sym *isymbuf;
6196 Elf_External_Versym *ever;
6197 Elf_External_Versym *extversym;
6198
6199 input = loaded->abfd;
6200
6201 /* We check each DSO for a possible hidden versioned definition. */
6202 if (input == abfd
6203 || (input->flags & DYNAMIC) == 0
6204 || elf_dynversym (input) == 0)
6205 continue;
6206
6207 hdr = &elf_tdata (input)->dynsymtab_hdr;
6208
6209 symcount = hdr->sh_size / bed->s->sizeof_sym;
6210 if (elf_bad_symtab (input))
6211 {
6212 extsymcount = symcount;
6213 extsymoff = 0;
6214 }
6215 else
6216 {
6217 extsymcount = symcount - hdr->sh_info;
6218 extsymoff = hdr->sh_info;
6219 }
6220
6221 if (extsymcount == 0)
6222 continue;
6223
6224 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6225 NULL, NULL, NULL);
6226 if (isymbuf == NULL)
6227 return FALSE;
6228
6229 /* Read in any version definitions. */
6230 versymhdr = &elf_tdata (input)->dynversym_hdr;
6231 extversym = bfd_malloc (versymhdr->sh_size);
6232 if (extversym == NULL)
6233 goto error_ret;
6234
6235 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6236 || (bfd_bread (extversym, versymhdr->sh_size, input)
6237 != versymhdr->sh_size))
6238 {
6239 free (extversym);
6240 error_ret:
6241 free (isymbuf);
6242 return FALSE;
6243 }
6244
6245 ever = extversym + extsymoff;
6246 isymend = isymbuf + extsymcount;
6247 for (isym = isymbuf; isym < isymend; isym++, ever++)
6248 {
6249 const char *name;
6250 Elf_Internal_Versym iver;
6251 unsigned short version_index;
6252
6253 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6254 || isym->st_shndx == SHN_UNDEF)
6255 continue;
6256
6257 name = bfd_elf_string_from_elf_section (input,
6258 hdr->sh_link,
6259 isym->st_name);
6260 if (strcmp (name, h->root.root.string) != 0)
6261 continue;
6262
6263 _bfd_elf_swap_versym_in (input, ever, &iver);
6264
6265 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6266 {
6267 /* If we have a non-hidden versioned sym, then it should
6268 have provided a definition for the undefined sym. */
6269 abort ();
6270 }
6271
6272 version_index = iver.vs_vers & VERSYM_VERSION;
6273 if (version_index == 1 || version_index == 2)
6274 {
6275 /* This is the base or first version. We can use it. */
6276 free (extversym);
6277 free (isymbuf);
6278 return TRUE;
6279 }
6280 }
6281
6282 free (extversym);
6283 free (isymbuf);
6284 }
6285
6286 return FALSE;
6287}
6288
6289/* Add an external symbol to the symbol table. This is called from
6290 the hash table traversal routine. When generating a shared object,
6291 we go through the symbol table twice. The first time we output
6292 anything that might have been forced to local scope in a version
6293 script. The second time we output the symbols that are still
6294 global symbols. */
6295
6296static bfd_boolean
6297elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6298{
6299 struct elf_outext_info *eoinfo = data;
6300 struct elf_final_link_info *finfo = eoinfo->finfo;
6301 bfd_boolean strip;
6302 Elf_Internal_Sym sym;
6303 asection *input_sec;
6304 const struct elf_backend_data *bed;
6305
6306 if (h->root.type == bfd_link_hash_warning)
6307 {
6308 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6309 if (h->root.type == bfd_link_hash_new)
6310 return TRUE;
6311 }
6312
6313 /* Decide whether to output this symbol in this pass. */
6314 if (eoinfo->localsyms)
6315 {
f5385ebf 6316 if (!h->forced_local)
c152c796
AM
6317 return TRUE;
6318 }
6319 else
6320 {
f5385ebf 6321 if (h->forced_local)
c152c796
AM
6322 return TRUE;
6323 }
6324
6325 bed = get_elf_backend_data (finfo->output_bfd);
6326
6327 /* If we have an undefined symbol reference here then it must have
6328 come from a shared library that is being linked in. (Undefined
6329 references in regular files have already been handled). If we
6330 are reporting errors for this situation then do so now. */
6331 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6332 && h->ref_dynamic
6333 && !h->ref_regular
c152c796
AM
6334 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6335 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6336 {
6337 if (! ((*finfo->info->callbacks->undefined_symbol)
6338 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6339 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6340 {
6341 eoinfo->failed = TRUE;
6342 return FALSE;
6343 }
6344 }
6345
6346 /* We should also warn if a forced local symbol is referenced from
6347 shared libraries. */
6348 if (! finfo->info->relocatable
6349 && (! finfo->info->shared)
f5385ebf
AM
6350 && h->forced_local
6351 && h->ref_dynamic
6352 && !h->dynamic_def
6353 && !h->dynamic_weak
c152c796
AM
6354 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6355 {
6356 (*_bfd_error_handler)
d003868e
AM
6357 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6358 finfo->output_bfd, h->root.u.def.section->owner,
c152c796
AM
6359 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6360 ? "internal"
6361 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6362 ? "hidden" : "local",
6363 h->root.root.string);
c152c796
AM
6364 eoinfo->failed = TRUE;
6365 return FALSE;
6366 }
6367
6368 /* We don't want to output symbols that have never been mentioned by
6369 a regular file, or that we have been told to strip. However, if
6370 h->indx is set to -2, the symbol is used by a reloc and we must
6371 output it. */
6372 if (h->indx == -2)
6373 strip = FALSE;
f5385ebf 6374 else if ((h->def_dynamic
77cfaee6
AM
6375 || h->ref_dynamic
6376 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6377 && !h->def_regular
6378 && !h->ref_regular)
c152c796
AM
6379 strip = TRUE;
6380 else if (finfo->info->strip == strip_all)
6381 strip = TRUE;
6382 else if (finfo->info->strip == strip_some
6383 && bfd_hash_lookup (finfo->info->keep_hash,
6384 h->root.root.string, FALSE, FALSE) == NULL)
6385 strip = TRUE;
6386 else if (finfo->info->strip_discarded
6387 && (h->root.type == bfd_link_hash_defined
6388 || h->root.type == bfd_link_hash_defweak)
6389 && elf_discarded_section (h->root.u.def.section))
6390 strip = TRUE;
6391 else
6392 strip = FALSE;
6393
6394 /* If we're stripping it, and it's not a dynamic symbol, there's
6395 nothing else to do unless it is a forced local symbol. */
6396 if (strip
6397 && h->dynindx == -1
f5385ebf 6398 && !h->forced_local)
c152c796
AM
6399 return TRUE;
6400
6401 sym.st_value = 0;
6402 sym.st_size = h->size;
6403 sym.st_other = h->other;
f5385ebf 6404 if (h->forced_local)
c152c796
AM
6405 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6406 else if (h->root.type == bfd_link_hash_undefweak
6407 || h->root.type == bfd_link_hash_defweak)
6408 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6409 else
6410 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6411
6412 switch (h->root.type)
6413 {
6414 default:
6415 case bfd_link_hash_new:
6416 case bfd_link_hash_warning:
6417 abort ();
6418 return FALSE;
6419
6420 case bfd_link_hash_undefined:
6421 case bfd_link_hash_undefweak:
6422 input_sec = bfd_und_section_ptr;
6423 sym.st_shndx = SHN_UNDEF;
6424 break;
6425
6426 case bfd_link_hash_defined:
6427 case bfd_link_hash_defweak:
6428 {
6429 input_sec = h->root.u.def.section;
6430 if (input_sec->output_section != NULL)
6431 {
6432 sym.st_shndx =
6433 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6434 input_sec->output_section);
6435 if (sym.st_shndx == SHN_BAD)
6436 {
6437 (*_bfd_error_handler)
d003868e
AM
6438 (_("%B: could not find output section %A for input section %A"),
6439 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6440 eoinfo->failed = TRUE;
6441 return FALSE;
6442 }
6443
6444 /* ELF symbols in relocatable files are section relative,
6445 but in nonrelocatable files they are virtual
6446 addresses. */
6447 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6448 if (! finfo->info->relocatable)
6449 {
6450 sym.st_value += input_sec->output_section->vma;
6451 if (h->type == STT_TLS)
6452 {
6453 /* STT_TLS symbols are relative to PT_TLS segment
6454 base. */
6455 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6456 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6457 }
6458 }
6459 }
6460 else
6461 {
6462 BFD_ASSERT (input_sec->owner == NULL
6463 || (input_sec->owner->flags & DYNAMIC) != 0);
6464 sym.st_shndx = SHN_UNDEF;
6465 input_sec = bfd_und_section_ptr;
6466 }
6467 }
6468 break;
6469
6470 case bfd_link_hash_common:
6471 input_sec = h->root.u.c.p->section;
6472 sym.st_shndx = SHN_COMMON;
6473 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6474 break;
6475
6476 case bfd_link_hash_indirect:
6477 /* These symbols are created by symbol versioning. They point
6478 to the decorated version of the name. For example, if the
6479 symbol foo@@GNU_1.2 is the default, which should be used when
6480 foo is used with no version, then we add an indirect symbol
6481 foo which points to foo@@GNU_1.2. We ignore these symbols,
6482 since the indirected symbol is already in the hash table. */
6483 return TRUE;
6484 }
6485
6486 /* Give the processor backend a chance to tweak the symbol value,
6487 and also to finish up anything that needs to be done for this
6488 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6489 forced local syms when non-shared is due to a historical quirk. */
6490 if ((h->dynindx != -1
f5385ebf 6491 || h->forced_local)
c152c796
AM
6492 && ((finfo->info->shared
6493 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6494 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6495 || !h->forced_local)
c152c796
AM
6496 && elf_hash_table (finfo->info)->dynamic_sections_created)
6497 {
6498 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6499 (finfo->output_bfd, finfo->info, h, &sym)))
6500 {
6501 eoinfo->failed = TRUE;
6502 return FALSE;
6503 }
6504 }
6505
6506 /* If we are marking the symbol as undefined, and there are no
6507 non-weak references to this symbol from a regular object, then
6508 mark the symbol as weak undefined; if there are non-weak
6509 references, mark the symbol as strong. We can't do this earlier,
6510 because it might not be marked as undefined until the
6511 finish_dynamic_symbol routine gets through with it. */
6512 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6513 && h->ref_regular
c152c796
AM
6514 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6515 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6516 {
6517 int bindtype;
6518
f5385ebf 6519 if (h->ref_regular_nonweak)
c152c796
AM
6520 bindtype = STB_GLOBAL;
6521 else
6522 bindtype = STB_WEAK;
6523 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6524 }
6525
6526 /* If a non-weak symbol with non-default visibility is not defined
6527 locally, it is a fatal error. */
6528 if (! finfo->info->relocatable
6529 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6530 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6531 && h->root.type == bfd_link_hash_undefined
f5385ebf 6532 && !h->def_regular)
c152c796
AM
6533 {
6534 (*_bfd_error_handler)
d003868e
AM
6535 (_("%B: %s symbol `%s' isn't defined"),
6536 finfo->output_bfd,
6537 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6538 ? "protected"
6539 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6540 ? "internal" : "hidden",
6541 h->root.root.string);
c152c796
AM
6542 eoinfo->failed = TRUE;
6543 return FALSE;
6544 }
6545
6546 /* If this symbol should be put in the .dynsym section, then put it
6547 there now. We already know the symbol index. We also fill in
6548 the entry in the .hash section. */
6549 if (h->dynindx != -1
6550 && elf_hash_table (finfo->info)->dynamic_sections_created)
6551 {
6552 size_t bucketcount;
6553 size_t bucket;
6554 size_t hash_entry_size;
6555 bfd_byte *bucketpos;
6556 bfd_vma chain;
6557 bfd_byte *esym;
6558
6559 sym.st_name = h->dynstr_index;
6560 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6561 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6562
6563 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6564 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6565 hash_entry_size
6566 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6567 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6568 + (bucket + 2) * hash_entry_size);
6569 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6570 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6571 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6572 ((bfd_byte *) finfo->hash_sec->contents
6573 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6574
6575 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6576 {
6577 Elf_Internal_Versym iversym;
6578 Elf_External_Versym *eversym;
6579
f5385ebf 6580 if (!h->def_regular)
c152c796
AM
6581 {
6582 if (h->verinfo.verdef == NULL)
6583 iversym.vs_vers = 0;
6584 else
6585 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6586 }
6587 else
6588 {
6589 if (h->verinfo.vertree == NULL)
6590 iversym.vs_vers = 1;
6591 else
6592 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6593 if (finfo->info->create_default_symver)
6594 iversym.vs_vers++;
c152c796
AM
6595 }
6596
f5385ebf 6597 if (h->hidden)
c152c796
AM
6598 iversym.vs_vers |= VERSYM_HIDDEN;
6599
6600 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6601 eversym += h->dynindx;
6602 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6603 }
6604 }
6605
6606 /* If we're stripping it, then it was just a dynamic symbol, and
6607 there's nothing else to do. */
6608 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6609 return TRUE;
6610
6611 h->indx = bfd_get_symcount (finfo->output_bfd);
6612
6613 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6614 {
6615 eoinfo->failed = TRUE;
6616 return FALSE;
6617 }
6618
6619 return TRUE;
6620}
6621
cdd3575c
AM
6622/* Return TRUE if special handling is done for relocs in SEC against
6623 symbols defined in discarded sections. */
6624
c152c796
AM
6625static bfd_boolean
6626elf_section_ignore_discarded_relocs (asection *sec)
6627{
6628 const struct elf_backend_data *bed;
6629
cdd3575c
AM
6630 switch (sec->sec_info_type)
6631 {
6632 case ELF_INFO_TYPE_STABS:
6633 case ELF_INFO_TYPE_EH_FRAME:
6634 return TRUE;
6635 default:
6636 break;
6637 }
c152c796
AM
6638
6639 bed = get_elf_backend_data (sec->owner);
6640 if (bed->elf_backend_ignore_discarded_relocs != NULL
6641 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6642 return TRUE;
6643
6644 return FALSE;
6645}
6646
9e66c942
AM
6647enum action_discarded
6648 {
6649 COMPLAIN = 1,
6650 PRETEND = 2
6651 };
6652
6653/* Return a mask saying how ld should treat relocations in SEC against
6654 symbols defined in discarded sections. If this function returns
6655 COMPLAIN set, ld will issue a warning message. If this function
6656 returns PRETEND set, and the discarded section was link-once and the
6657 same size as the kept link-once section, ld will pretend that the
6658 symbol was actually defined in the kept section. Otherwise ld will
6659 zero the reloc (at least that is the intent, but some cooperation by
6660 the target dependent code is needed, particularly for REL targets). */
6661
6662static unsigned int
6663elf_action_discarded (asection *sec)
cdd3575c 6664{
9e66c942
AM
6665 if (sec->flags & SEC_DEBUGGING)
6666 return PRETEND;
cdd3575c
AM
6667
6668 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6669 return 0;
cdd3575c
AM
6670
6671 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6672 return 0;
cdd3575c 6673
27b56da8 6674 if (strcmp (".PARISC.unwind", sec->name) == 0)
9e66c942 6675 return 0;
327c1315
AM
6676
6677 if (strcmp (".fixup", sec->name) == 0)
9e66c942 6678 return 0;
27b56da8 6679
9e66c942 6680 return COMPLAIN | PRETEND;
cdd3575c
AM
6681}
6682
3d7f7666
L
6683/* Find a match between a section and a member of a section group. */
6684
6685static asection *
6686match_group_member (asection *sec, asection *group)
6687{
6688 asection *first = elf_next_in_group (group);
6689 asection *s = first;
6690
6691 while (s != NULL)
6692 {
6693 if (bfd_elf_match_symbols_in_sections (s, sec))
6694 return s;
6695
6696 if (s == first)
6697 break;
6698 }
6699
6700 return NULL;
6701}
6702
c152c796
AM
6703/* Link an input file into the linker output file. This function
6704 handles all the sections and relocations of the input file at once.
6705 This is so that we only have to read the local symbols once, and
6706 don't have to keep them in memory. */
6707
6708static bfd_boolean
6709elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6710{
6711 bfd_boolean (*relocate_section)
6712 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6713 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6714 bfd *output_bfd;
6715 Elf_Internal_Shdr *symtab_hdr;
6716 size_t locsymcount;
6717 size_t extsymoff;
6718 Elf_Internal_Sym *isymbuf;
6719 Elf_Internal_Sym *isym;
6720 Elf_Internal_Sym *isymend;
6721 long *pindex;
6722 asection **ppsection;
6723 asection *o;
6724 const struct elf_backend_data *bed;
6725 bfd_boolean emit_relocs;
6726 struct elf_link_hash_entry **sym_hashes;
6727
6728 output_bfd = finfo->output_bfd;
6729 bed = get_elf_backend_data (output_bfd);
6730 relocate_section = bed->elf_backend_relocate_section;
6731
6732 /* If this is a dynamic object, we don't want to do anything here:
6733 we don't want the local symbols, and we don't want the section
6734 contents. */
6735 if ((input_bfd->flags & DYNAMIC) != 0)
6736 return TRUE;
6737
6738 emit_relocs = (finfo->info->relocatable
6739 || finfo->info->emitrelocations
6740 || bed->elf_backend_emit_relocs);
6741
6742 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6743 if (elf_bad_symtab (input_bfd))
6744 {
6745 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6746 extsymoff = 0;
6747 }
6748 else
6749 {
6750 locsymcount = symtab_hdr->sh_info;
6751 extsymoff = symtab_hdr->sh_info;
6752 }
6753
6754 /* Read the local symbols. */
6755 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6756 if (isymbuf == NULL && locsymcount != 0)
6757 {
6758 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6759 finfo->internal_syms,
6760 finfo->external_syms,
6761 finfo->locsym_shndx);
6762 if (isymbuf == NULL)
6763 return FALSE;
6764 }
6765
6766 /* Find local symbol sections and adjust values of symbols in
6767 SEC_MERGE sections. Write out those local symbols we know are
6768 going into the output file. */
6769 isymend = isymbuf + locsymcount;
6770 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6771 isym < isymend;
6772 isym++, pindex++, ppsection++)
6773 {
6774 asection *isec;
6775 const char *name;
6776 Elf_Internal_Sym osym;
6777
6778 *pindex = -1;
6779
6780 if (elf_bad_symtab (input_bfd))
6781 {
6782 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6783 {
6784 *ppsection = NULL;
6785 continue;
6786 }
6787 }
6788
6789 if (isym->st_shndx == SHN_UNDEF)
6790 isec = bfd_und_section_ptr;
6791 else if (isym->st_shndx < SHN_LORESERVE
6792 || isym->st_shndx > SHN_HIRESERVE)
6793 {
6794 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6795 if (isec
6796 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6797 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6798 isym->st_value =
6799 _bfd_merged_section_offset (output_bfd, &isec,
6800 elf_section_data (isec)->sec_info,
753731ee 6801 isym->st_value);
c152c796
AM
6802 }
6803 else if (isym->st_shndx == SHN_ABS)
6804 isec = bfd_abs_section_ptr;
6805 else if (isym->st_shndx == SHN_COMMON)
6806 isec = bfd_com_section_ptr;
6807 else
6808 {
6809 /* Who knows? */
6810 isec = NULL;
6811 }
6812
6813 *ppsection = isec;
6814
6815 /* Don't output the first, undefined, symbol. */
6816 if (ppsection == finfo->sections)
6817 continue;
6818
6819 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6820 {
6821 /* We never output section symbols. Instead, we use the
6822 section symbol of the corresponding section in the output
6823 file. */
6824 continue;
6825 }
6826
6827 /* If we are stripping all symbols, we don't want to output this
6828 one. */
6829 if (finfo->info->strip == strip_all)
6830 continue;
6831
6832 /* If we are discarding all local symbols, we don't want to
6833 output this one. If we are generating a relocatable output
6834 file, then some of the local symbols may be required by
6835 relocs; we output them below as we discover that they are
6836 needed. */
6837 if (finfo->info->discard == discard_all)
6838 continue;
6839
6840 /* If this symbol is defined in a section which we are
6841 discarding, we don't need to keep it, but note that
6842 linker_mark is only reliable for sections that have contents.
6843 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6844 as well as linker_mark. */
6845 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610
PB
6846 && (isec == NULL
6847 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
c152c796
AM
6848 || (! finfo->info->relocatable
6849 && (isec->flags & SEC_EXCLUDE) != 0)))
6850 continue;
6851
6852 /* Get the name of the symbol. */
6853 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6854 isym->st_name);
6855 if (name == NULL)
6856 return FALSE;
6857
6858 /* See if we are discarding symbols with this name. */
6859 if ((finfo->info->strip == strip_some
6860 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6861 == NULL))
6862 || (((finfo->info->discard == discard_sec_merge
6863 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6864 || finfo->info->discard == discard_l)
6865 && bfd_is_local_label_name (input_bfd, name)))
6866 continue;
6867
6868 /* If we get here, we are going to output this symbol. */
6869
6870 osym = *isym;
6871
6872 /* Adjust the section index for the output file. */
6873 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6874 isec->output_section);
6875 if (osym.st_shndx == SHN_BAD)
6876 return FALSE;
6877
6878 *pindex = bfd_get_symcount (output_bfd);
6879
6880 /* ELF symbols in relocatable files are section relative, but
6881 in executable files they are virtual addresses. Note that
6882 this code assumes that all ELF sections have an associated
6883 BFD section with a reasonable value for output_offset; below
6884 we assume that they also have a reasonable value for
6885 output_section. Any special sections must be set up to meet
6886 these requirements. */
6887 osym.st_value += isec->output_offset;
6888 if (! finfo->info->relocatable)
6889 {
6890 osym.st_value += isec->output_section->vma;
6891 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6892 {
6893 /* STT_TLS symbols are relative to PT_TLS segment base. */
6894 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6895 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6896 }
6897 }
6898
6899 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6900 return FALSE;
6901 }
6902
6903 /* Relocate the contents of each section. */
6904 sym_hashes = elf_sym_hashes (input_bfd);
6905 for (o = input_bfd->sections; o != NULL; o = o->next)
6906 {
6907 bfd_byte *contents;
6908
6909 if (! o->linker_mark)
6910 {
6911 /* This section was omitted from the link. */
6912 continue;
6913 }
6914
6915 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6916 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6917 continue;
6918
6919 if ((o->flags & SEC_LINKER_CREATED) != 0)
6920 {
6921 /* Section was created by _bfd_elf_link_create_dynamic_sections
6922 or somesuch. */
6923 continue;
6924 }
6925
6926 /* Get the contents of the section. They have been cached by a
6927 relaxation routine. Note that o is a section in an input
6928 file, so the contents field will not have been set by any of
6929 the routines which work on output files. */
6930 if (elf_section_data (o)->this_hdr.contents != NULL)
6931 contents = elf_section_data (o)->this_hdr.contents;
6932 else
6933 {
eea6121a
AM
6934 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6935
c152c796 6936 contents = finfo->contents;
eea6121a 6937 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6938 return FALSE;
6939 }
6940
6941 if ((o->flags & SEC_RELOC) != 0)
6942 {
6943 Elf_Internal_Rela *internal_relocs;
6944 bfd_vma r_type_mask;
6945 int r_sym_shift;
6946
6947 /* Get the swapped relocs. */
6948 internal_relocs
6949 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6950 finfo->internal_relocs, FALSE);
6951 if (internal_relocs == NULL
6952 && o->reloc_count > 0)
6953 return FALSE;
6954
6955 if (bed->s->arch_size == 32)
6956 {
6957 r_type_mask = 0xff;
6958 r_sym_shift = 8;
6959 }
6960 else
6961 {
6962 r_type_mask = 0xffffffff;
6963 r_sym_shift = 32;
6964 }
6965
6966 /* Run through the relocs looking for any against symbols
6967 from discarded sections and section symbols from
6968 removed link-once sections. Complain about relocs
6969 against discarded sections. Zero relocs against removed
6970 link-once sections. Preserve debug information as much
6971 as we can. */
6972 if (!elf_section_ignore_discarded_relocs (o))
6973 {
6974 Elf_Internal_Rela *rel, *relend;
9e66c942 6975 unsigned int action = elf_action_discarded (o);
c152c796
AM
6976
6977 rel = internal_relocs;
6978 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6979 for ( ; rel < relend; rel++)
6980 {
6981 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
6982 asection **ps, *sec;
6983 struct elf_link_hash_entry *h = NULL;
6984 const char *sym_name;
c152c796 6985
ee75fd95
AM
6986 if (r_symndx == STN_UNDEF)
6987 continue;
6988
c152c796
AM
6989 if (r_symndx >= locsymcount
6990 || (elf_bad_symtab (input_bfd)
6991 && finfo->sections[r_symndx] == NULL))
6992 {
c152c796
AM
6993 h = sym_hashes[r_symndx - extsymoff];
6994 while (h->root.type == bfd_link_hash_indirect
6995 || h->root.type == bfd_link_hash_warning)
6996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6997
cdd3575c
AM
6998 if (h->root.type != bfd_link_hash_defined
6999 && h->root.type != bfd_link_hash_defweak)
7000 continue;
7001
7002 ps = &h->root.u.def.section;
7003 sym_name = h->root.root.string;
c152c796
AM
7004 }
7005 else
7006 {
cdd3575c
AM
7007 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7008 ps = &finfo->sections[r_symndx];
be8dd2ca 7009 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
cdd3575c 7010 }
c152c796 7011
cdd3575c
AM
7012 /* Complain if the definition comes from a
7013 discarded section. */
7014 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7015 {
87e5235d 7016 asection *kept;
3d7f7666 7017
87e5235d 7018 BFD_ASSERT (r_symndx != 0);
9e66c942 7019 if (action & COMPLAIN)
cdd3575c 7020 {
d003868e
AM
7021 (*_bfd_error_handler)
7022 (_("`%s' referenced in section `%A' of %B: "
7023 "defined in discarded section `%A' of %B\n"),
7024 o, input_bfd, sec, sec->owner, sym_name);
cdd3575c
AM
7025 }
7026
87e5235d
AM
7027 /* Try to do the best we can to support buggy old
7028 versions of gcc. If we've warned, or this is
7029 debugging info, pretend that the symbol is
7030 really defined in the kept linkonce section.
7031 FIXME: This is quite broken. Modifying the
7032 symbol here means we will be changing all later
7033 uses of the symbol, not just in this section.
7034 The only thing that makes this half reasonable
7035 is that we warn in non-debug sections, and
7036 debug sections tend to come after other
7037 sections. */
7038 kept = sec->kept_section;
9e66c942 7039 if (kept != NULL && (action & PRETEND))
87e5235d
AM
7040 {
7041 if (elf_sec_group (sec) != NULL)
7042 kept = match_group_member (sec, kept);
7043 if (kept != NULL
7044 && sec->size == kept->size)
7045 {
7046 *ps = kept;
7047 continue;
7048 }
7049 }
7050
cdd3575c
AM
7051 /* Remove the symbol reference from the reloc, but
7052 don't kill the reloc completely. This is so that
7053 a zero value will be written into the section,
7054 which may have non-zero contents put there by the
7055 assembler. Zero in things like an eh_frame fde
7056 pc_begin allows stack unwinders to recognize the
7057 fde as bogus. */
7058 rel->r_info &= r_type_mask;
7059 rel->r_addend = 0;
c152c796
AM
7060 }
7061 }
7062 }
7063
7064 /* Relocate the section by invoking a back end routine.
7065
7066 The back end routine is responsible for adjusting the
7067 section contents as necessary, and (if using Rela relocs
7068 and generating a relocatable output file) adjusting the
7069 reloc addend as necessary.
7070
7071 The back end routine does not have to worry about setting
7072 the reloc address or the reloc symbol index.
7073
7074 The back end routine is given a pointer to the swapped in
7075 internal symbols, and can access the hash table entries
7076 for the external symbols via elf_sym_hashes (input_bfd).
7077
7078 When generating relocatable output, the back end routine
7079 must handle STB_LOCAL/STT_SECTION symbols specially. The
7080 output symbol is going to be a section symbol
7081 corresponding to the output section, which will require
7082 the addend to be adjusted. */
7083
7084 if (! (*relocate_section) (output_bfd, finfo->info,
7085 input_bfd, o, contents,
7086 internal_relocs,
7087 isymbuf,
7088 finfo->sections))
7089 return FALSE;
7090
7091 if (emit_relocs)
7092 {
7093 Elf_Internal_Rela *irela;
7094 Elf_Internal_Rela *irelaend;
7095 bfd_vma last_offset;
7096 struct elf_link_hash_entry **rel_hash;
7097 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7098 unsigned int next_erel;
7099 bfd_boolean (*reloc_emitter)
7100 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7101 bfd_boolean rela_normal;
7102
7103 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7104 rela_normal = (bed->rela_normal
7105 && (input_rel_hdr->sh_entsize
7106 == bed->s->sizeof_rela));
7107
7108 /* Adjust the reloc addresses and symbol indices. */
7109
7110 irela = internal_relocs;
7111 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7112 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7113 + elf_section_data (o->output_section)->rel_count
7114 + elf_section_data (o->output_section)->rel_count2);
7115 last_offset = o->output_offset;
7116 if (!finfo->info->relocatable)
7117 last_offset += o->output_section->vma;
7118 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7119 {
7120 unsigned long r_symndx;
7121 asection *sec;
7122 Elf_Internal_Sym sym;
7123
7124 if (next_erel == bed->s->int_rels_per_ext_rel)
7125 {
7126 rel_hash++;
7127 next_erel = 0;
7128 }
7129
7130 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7131 finfo->info, o,
7132 irela->r_offset);
7133 if (irela->r_offset >= (bfd_vma) -2)
7134 {
7135 /* This is a reloc for a deleted entry or somesuch.
7136 Turn it into an R_*_NONE reloc, at the same
7137 offset as the last reloc. elf_eh_frame.c and
7138 elf_bfd_discard_info rely on reloc offsets
7139 being ordered. */
7140 irela->r_offset = last_offset;
7141 irela->r_info = 0;
7142 irela->r_addend = 0;
7143 continue;
7144 }
7145
7146 irela->r_offset += o->output_offset;
7147
7148 /* Relocs in an executable have to be virtual addresses. */
7149 if (!finfo->info->relocatable)
7150 irela->r_offset += o->output_section->vma;
7151
7152 last_offset = irela->r_offset;
7153
7154 r_symndx = irela->r_info >> r_sym_shift;
7155 if (r_symndx == STN_UNDEF)
7156 continue;
7157
7158 if (r_symndx >= locsymcount
7159 || (elf_bad_symtab (input_bfd)
7160 && finfo->sections[r_symndx] == NULL))
7161 {
7162 struct elf_link_hash_entry *rh;
7163 unsigned long indx;
7164
7165 /* This is a reloc against a global symbol. We
7166 have not yet output all the local symbols, so
7167 we do not know the symbol index of any global
7168 symbol. We set the rel_hash entry for this
7169 reloc to point to the global hash table entry
7170 for this symbol. The symbol index is then
ee75fd95 7171 set at the end of bfd_elf_final_link. */
c152c796
AM
7172 indx = r_symndx - extsymoff;
7173 rh = elf_sym_hashes (input_bfd)[indx];
7174 while (rh->root.type == bfd_link_hash_indirect
7175 || rh->root.type == bfd_link_hash_warning)
7176 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7177
7178 /* Setting the index to -2 tells
7179 elf_link_output_extsym that this symbol is
7180 used by a reloc. */
7181 BFD_ASSERT (rh->indx < 0);
7182 rh->indx = -2;
7183
7184 *rel_hash = rh;
7185
7186 continue;
7187 }
7188
7189 /* This is a reloc against a local symbol. */
7190
7191 *rel_hash = NULL;
7192 sym = isymbuf[r_symndx];
7193 sec = finfo->sections[r_symndx];
7194 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7195 {
7196 /* I suppose the backend ought to fill in the
7197 section of any STT_SECTION symbol against a
6a8d1586
AM
7198 processor specific section. */
7199 r_symndx = 0;
7200 if (bfd_is_abs_section (sec))
7201 ;
c152c796
AM
7202 else if (sec == NULL || sec->owner == NULL)
7203 {
7204 bfd_set_error (bfd_error_bad_value);
7205 return FALSE;
7206 }
7207 else
7208 {
6a8d1586
AM
7209 asection *osec = sec->output_section;
7210
7211 /* If we have discarded a section, the output
7212 section will be the absolute section. In
7213 case of discarded link-once and discarded
7214 SEC_MERGE sections, use the kept section. */
7215 if (bfd_is_abs_section (osec)
7216 && sec->kept_section != NULL
7217 && sec->kept_section->output_section != NULL)
7218 {
7219 osec = sec->kept_section->output_section;
7220 irela->r_addend -= osec->vma;
7221 }
7222
7223 if (!bfd_is_abs_section (osec))
7224 {
7225 r_symndx = osec->target_index;
7226 BFD_ASSERT (r_symndx != 0);
7227 }
c152c796
AM
7228 }
7229
7230 /* Adjust the addend according to where the
7231 section winds up in the output section. */
7232 if (rela_normal)
7233 irela->r_addend += sec->output_offset;
7234 }
7235 else
7236 {
7237 if (finfo->indices[r_symndx] == -1)
7238 {
7239 unsigned long shlink;
7240 const char *name;
7241 asection *osec;
7242
7243 if (finfo->info->strip == strip_all)
7244 {
7245 /* You can't do ld -r -s. */
7246 bfd_set_error (bfd_error_invalid_operation);
7247 return FALSE;
7248 }
7249
7250 /* This symbol was skipped earlier, but
7251 since it is needed by a reloc, we
7252 must output it now. */
7253 shlink = symtab_hdr->sh_link;
7254 name = (bfd_elf_string_from_elf_section
7255 (input_bfd, shlink, sym.st_name));
7256 if (name == NULL)
7257 return FALSE;
7258
7259 osec = sec->output_section;
7260 sym.st_shndx =
7261 _bfd_elf_section_from_bfd_section (output_bfd,
7262 osec);
7263 if (sym.st_shndx == SHN_BAD)
7264 return FALSE;
7265
7266 sym.st_value += sec->output_offset;
7267 if (! finfo->info->relocatable)
7268 {
7269 sym.st_value += osec->vma;
7270 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7271 {
7272 /* STT_TLS symbols are relative to PT_TLS
7273 segment base. */
7274 BFD_ASSERT (elf_hash_table (finfo->info)
7275 ->tls_sec != NULL);
7276 sym.st_value -= (elf_hash_table (finfo->info)
7277 ->tls_sec->vma);
7278 }
7279 }
7280
7281 finfo->indices[r_symndx]
7282 = bfd_get_symcount (output_bfd);
7283
7284 if (! elf_link_output_sym (finfo, name, &sym, sec,
7285 NULL))
7286 return FALSE;
7287 }
7288
7289 r_symndx = finfo->indices[r_symndx];
7290 }
7291
7292 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7293 | (irela->r_info & r_type_mask));
7294 }
7295
7296 /* Swap out the relocs. */
7297 if (bed->elf_backend_emit_relocs
7298 && !(finfo->info->relocatable
7299 || finfo->info->emitrelocations))
7300 reloc_emitter = bed->elf_backend_emit_relocs;
7301 else
7302 reloc_emitter = _bfd_elf_link_output_relocs;
7303
7304 if (input_rel_hdr->sh_size != 0
7305 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7306 internal_relocs))
7307 return FALSE;
7308
7309 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7310 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7311 {
7312 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7313 * bed->s->int_rels_per_ext_rel);
7314 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7315 internal_relocs))
7316 return FALSE;
7317 }
7318 }
7319 }
7320
7321 /* Write out the modified section contents. */
7322 if (bed->elf_backend_write_section
7323 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7324 {
7325 /* Section written out. */
7326 }
7327 else switch (o->sec_info_type)
7328 {
7329 case ELF_INFO_TYPE_STABS:
7330 if (! (_bfd_write_section_stabs
7331 (output_bfd,
7332 &elf_hash_table (finfo->info)->stab_info,
7333 o, &elf_section_data (o)->sec_info, contents)))
7334 return FALSE;
7335 break;
7336 case ELF_INFO_TYPE_MERGE:
7337 if (! _bfd_write_merged_section (output_bfd, o,
7338 elf_section_data (o)->sec_info))
7339 return FALSE;
7340 break;
7341 case ELF_INFO_TYPE_EH_FRAME:
7342 {
7343 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7344 o, contents))
7345 return FALSE;
7346 }
7347 break;
7348 default:
7349 {
c152c796
AM
7350 if (! (o->flags & SEC_EXCLUDE)
7351 && ! bfd_set_section_contents (output_bfd, o->output_section,
7352 contents,
7353 (file_ptr) o->output_offset,
eea6121a 7354 o->size))
c152c796
AM
7355 return FALSE;
7356 }
7357 break;
7358 }
7359 }
7360
7361 return TRUE;
7362}
7363
7364/* Generate a reloc when linking an ELF file. This is a reloc
7365 requested by the linker, and does come from any input file. This
7366 is used to build constructor and destructor tables when linking
7367 with -Ur. */
7368
7369static bfd_boolean
7370elf_reloc_link_order (bfd *output_bfd,
7371 struct bfd_link_info *info,
7372 asection *output_section,
7373 struct bfd_link_order *link_order)
7374{
7375 reloc_howto_type *howto;
7376 long indx;
7377 bfd_vma offset;
7378 bfd_vma addend;
7379 struct elf_link_hash_entry **rel_hash_ptr;
7380 Elf_Internal_Shdr *rel_hdr;
7381 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7382 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7383 bfd_byte *erel;
7384 unsigned int i;
7385
7386 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7387 if (howto == NULL)
7388 {
7389 bfd_set_error (bfd_error_bad_value);
7390 return FALSE;
7391 }
7392
7393 addend = link_order->u.reloc.p->addend;
7394
7395 /* Figure out the symbol index. */
7396 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7397 + elf_section_data (output_section)->rel_count
7398 + elf_section_data (output_section)->rel_count2);
7399 if (link_order->type == bfd_section_reloc_link_order)
7400 {
7401 indx = link_order->u.reloc.p->u.section->target_index;
7402 BFD_ASSERT (indx != 0);
7403 *rel_hash_ptr = NULL;
7404 }
7405 else
7406 {
7407 struct elf_link_hash_entry *h;
7408
7409 /* Treat a reloc against a defined symbol as though it were
7410 actually against the section. */
7411 h = ((struct elf_link_hash_entry *)
7412 bfd_wrapped_link_hash_lookup (output_bfd, info,
7413 link_order->u.reloc.p->u.name,
7414 FALSE, FALSE, TRUE));
7415 if (h != NULL
7416 && (h->root.type == bfd_link_hash_defined
7417 || h->root.type == bfd_link_hash_defweak))
7418 {
7419 asection *section;
7420
7421 section = h->root.u.def.section;
7422 indx = section->output_section->target_index;
7423 *rel_hash_ptr = NULL;
7424 /* It seems that we ought to add the symbol value to the
7425 addend here, but in practice it has already been added
7426 because it was passed to constructor_callback. */
7427 addend += section->output_section->vma + section->output_offset;
7428 }
7429 else if (h != NULL)
7430 {
7431 /* Setting the index to -2 tells elf_link_output_extsym that
7432 this symbol is used by a reloc. */
7433 h->indx = -2;
7434 *rel_hash_ptr = h;
7435 indx = 0;
7436 }
7437 else
7438 {
7439 if (! ((*info->callbacks->unattached_reloc)
7440 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7441 return FALSE;
7442 indx = 0;
7443 }
7444 }
7445
7446 /* If this is an inplace reloc, we must write the addend into the
7447 object file. */
7448 if (howto->partial_inplace && addend != 0)
7449 {
7450 bfd_size_type size;
7451 bfd_reloc_status_type rstat;
7452 bfd_byte *buf;
7453 bfd_boolean ok;
7454 const char *sym_name;
7455
7456 size = bfd_get_reloc_size (howto);
7457 buf = bfd_zmalloc (size);
7458 if (buf == NULL)
7459 return FALSE;
7460 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7461 switch (rstat)
7462 {
7463 case bfd_reloc_ok:
7464 break;
7465
7466 default:
7467 case bfd_reloc_outofrange:
7468 abort ();
7469
7470 case bfd_reloc_overflow:
7471 if (link_order->type == bfd_section_reloc_link_order)
7472 sym_name = bfd_section_name (output_bfd,
7473 link_order->u.reloc.p->u.section);
7474 else
7475 sym_name = link_order->u.reloc.p->u.name;
7476 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7477 (info, NULL, sym_name, howto->name, addend, NULL,
7478 NULL, (bfd_vma) 0)))
c152c796
AM
7479 {
7480 free (buf);
7481 return FALSE;
7482 }
7483 break;
7484 }
7485 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7486 link_order->offset, size);
7487 free (buf);
7488 if (! ok)
7489 return FALSE;
7490 }
7491
7492 /* The address of a reloc is relative to the section in a
7493 relocatable file, and is a virtual address in an executable
7494 file. */
7495 offset = link_order->offset;
7496 if (! info->relocatable)
7497 offset += output_section->vma;
7498
7499 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7500 {
7501 irel[i].r_offset = offset;
7502 irel[i].r_info = 0;
7503 irel[i].r_addend = 0;
7504 }
7505 if (bed->s->arch_size == 32)
7506 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7507 else
7508 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7509
7510 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7511 erel = rel_hdr->contents;
7512 if (rel_hdr->sh_type == SHT_REL)
7513 {
7514 erel += (elf_section_data (output_section)->rel_count
7515 * bed->s->sizeof_rel);
7516 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7517 }
7518 else
7519 {
7520 irel[0].r_addend = addend;
7521 erel += (elf_section_data (output_section)->rel_count
7522 * bed->s->sizeof_rela);
7523 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7524 }
7525
7526 ++elf_section_data (output_section)->rel_count;
7527
7528 return TRUE;
7529}
7530
0b52efa6
PB
7531
7532/* Get the output vma of the section pointed to by the sh_link field. */
7533
7534static bfd_vma
7535elf_get_linked_section_vma (struct bfd_link_order *p)
7536{
7537 Elf_Internal_Shdr **elf_shdrp;
7538 asection *s;
7539 int elfsec;
7540
7541 s = p->u.indirect.section;
7542 elf_shdrp = elf_elfsections (s->owner);
7543 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7544 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7545 /* PR 290:
7546 The Intel C compiler generates SHT_IA_64_UNWIND with
7547 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7548 sh_info fields. Hence we could get the situation
7549 where elfsec is 0. */
7550 if (elfsec == 0)
7551 {
7552 const struct elf_backend_data *bed
7553 = get_elf_backend_data (s->owner);
7554 if (bed->link_order_error_handler)
d003868e
AM
7555 bed->link_order_error_handler
7556 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7557 return 0;
7558 }
7559 else
7560 {
7561 s = elf_shdrp[elfsec]->bfd_section;
7562 return s->output_section->vma + s->output_offset;
7563 }
0b52efa6
PB
7564}
7565
7566
7567/* Compare two sections based on the locations of the sections they are
7568 linked to. Used by elf_fixup_link_order. */
7569
7570static int
7571compare_link_order (const void * a, const void * b)
7572{
7573 bfd_vma apos;
7574 bfd_vma bpos;
7575
7576 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7577 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7578 if (apos < bpos)
7579 return -1;
7580 return apos > bpos;
7581}
7582
7583
7584/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7585 order as their linked sections. Returns false if this could not be done
7586 because an output section includes both ordered and unordered
7587 sections. Ideally we'd do this in the linker proper. */
7588
7589static bfd_boolean
7590elf_fixup_link_order (bfd *abfd, asection *o)
7591{
7592 int seen_linkorder;
7593 int seen_other;
7594 int n;
7595 struct bfd_link_order *p;
7596 bfd *sub;
7597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7598 int elfsec;
7599 struct bfd_link_order **sections;
7600 asection *s;
7601 bfd_vma offset;
7602
7603 seen_other = 0;
7604 seen_linkorder = 0;
7605 for (p = o->link_order_head; p != NULL; p = p->next)
7606 {
7607 if (p->type == bfd_indirect_link_order
7608 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7609 == bfd_target_elf_flavour)
7610 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7611 {
7612 s = p->u.indirect.section;
7613 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7614 if (elfsec != -1
7615 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7616 seen_linkorder++;
7617 else
7618 seen_other++;
7619 }
7620 else
7621 seen_other++;
7622 }
7623
7624 if (!seen_linkorder)
7625 return TRUE;
7626
7627 if (seen_other && seen_linkorder)
08ccf96b 7628 {
d003868e
AM
7629 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7630 o);
08ccf96b
L
7631 bfd_set_error (bfd_error_bad_value);
7632 return FALSE;
7633 }
0b52efa6
PB
7634
7635 sections = (struct bfd_link_order **)
7636 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7637 seen_linkorder = 0;
7638
7639 for (p = o->link_order_head; p != NULL; p = p->next)
7640 {
7641 sections[seen_linkorder++] = p;
7642 }
7643 /* Sort the input sections in the order of their linked section. */
7644 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7645 compare_link_order);
7646
7647 /* Change the offsets of the sections. */
7648 offset = 0;
7649 for (n = 0; n < seen_linkorder; n++)
7650 {
7651 s = sections[n]->u.indirect.section;
7652 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7653 s->output_offset = offset;
7654 sections[n]->offset = offset;
7655 offset += sections[n]->size;
7656 }
7657
7658 return TRUE;
7659}
7660
7661
c152c796
AM
7662/* Do the final step of an ELF link. */
7663
7664bfd_boolean
7665bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7666{
7667 bfd_boolean dynamic;
7668 bfd_boolean emit_relocs;
7669 bfd *dynobj;
7670 struct elf_final_link_info finfo;
7671 register asection *o;
7672 register struct bfd_link_order *p;
7673 register bfd *sub;
7674 bfd_size_type max_contents_size;
7675 bfd_size_type max_external_reloc_size;
7676 bfd_size_type max_internal_reloc_count;
7677 bfd_size_type max_sym_count;
7678 bfd_size_type max_sym_shndx_count;
7679 file_ptr off;
7680 Elf_Internal_Sym elfsym;
7681 unsigned int i;
7682 Elf_Internal_Shdr *symtab_hdr;
7683 Elf_Internal_Shdr *symtab_shndx_hdr;
7684 Elf_Internal_Shdr *symstrtab_hdr;
7685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7686 struct elf_outext_info eoinfo;
7687 bfd_boolean merged;
7688 size_t relativecount = 0;
7689 asection *reldyn = 0;
7690 bfd_size_type amt;
7691
7692 if (! is_elf_hash_table (info->hash))
7693 return FALSE;
7694
7695 if (info->shared)
7696 abfd->flags |= DYNAMIC;
7697
7698 dynamic = elf_hash_table (info)->dynamic_sections_created;
7699 dynobj = elf_hash_table (info)->dynobj;
7700
7701 emit_relocs = (info->relocatable
7702 || info->emitrelocations
7703 || bed->elf_backend_emit_relocs);
7704
7705 finfo.info = info;
7706 finfo.output_bfd = abfd;
7707 finfo.symstrtab = _bfd_elf_stringtab_init ();
7708 if (finfo.symstrtab == NULL)
7709 return FALSE;
7710
7711 if (! dynamic)
7712 {
7713 finfo.dynsym_sec = NULL;
7714 finfo.hash_sec = NULL;
7715 finfo.symver_sec = NULL;
7716 }
7717 else
7718 {
7719 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7720 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7721 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7722 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7723 /* Note that it is OK if symver_sec is NULL. */
7724 }
7725
7726 finfo.contents = NULL;
7727 finfo.external_relocs = NULL;
7728 finfo.internal_relocs = NULL;
7729 finfo.external_syms = NULL;
7730 finfo.locsym_shndx = NULL;
7731 finfo.internal_syms = NULL;
7732 finfo.indices = NULL;
7733 finfo.sections = NULL;
7734 finfo.symbuf = NULL;
7735 finfo.symshndxbuf = NULL;
7736 finfo.symbuf_count = 0;
7737 finfo.shndxbuf_size = 0;
7738
7739 /* Count up the number of relocations we will output for each output
7740 section, so that we know the sizes of the reloc sections. We
7741 also figure out some maximum sizes. */
7742 max_contents_size = 0;
7743 max_external_reloc_size = 0;
7744 max_internal_reloc_count = 0;
7745 max_sym_count = 0;
7746 max_sym_shndx_count = 0;
7747 merged = FALSE;
7748 for (o = abfd->sections; o != NULL; o = o->next)
7749 {
7750 struct bfd_elf_section_data *esdo = elf_section_data (o);
7751 o->reloc_count = 0;
7752
7753 for (p = o->link_order_head; p != NULL; p = p->next)
7754 {
7755 unsigned int reloc_count = 0;
7756 struct bfd_elf_section_data *esdi = NULL;
7757 unsigned int *rel_count1;
7758
7759 if (p->type == bfd_section_reloc_link_order
7760 || p->type == bfd_symbol_reloc_link_order)
7761 reloc_count = 1;
7762 else if (p->type == bfd_indirect_link_order)
7763 {
7764 asection *sec;
7765
7766 sec = p->u.indirect.section;
7767 esdi = elf_section_data (sec);
7768
7769 /* Mark all sections which are to be included in the
7770 link. This will normally be every section. We need
7771 to do this so that we can identify any sections which
7772 the linker has decided to not include. */
7773 sec->linker_mark = TRUE;
7774
7775 if (sec->flags & SEC_MERGE)
7776 merged = TRUE;
7777
7778 if (info->relocatable || info->emitrelocations)
7779 reloc_count = sec->reloc_count;
7780 else if (bed->elf_backend_count_relocs)
7781 {
7782 Elf_Internal_Rela * relocs;
7783
7784 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7785 info->keep_memory);
7786
7787 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7788
7789 if (elf_section_data (o)->relocs != relocs)
7790 free (relocs);
7791 }
7792
eea6121a
AM
7793 if (sec->rawsize > max_contents_size)
7794 max_contents_size = sec->rawsize;
7795 if (sec->size > max_contents_size)
7796 max_contents_size = sec->size;
c152c796
AM
7797
7798 /* We are interested in just local symbols, not all
7799 symbols. */
7800 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7801 && (sec->owner->flags & DYNAMIC) == 0)
7802 {
7803 size_t sym_count;
7804
7805 if (elf_bad_symtab (sec->owner))
7806 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7807 / bed->s->sizeof_sym);
7808 else
7809 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7810
7811 if (sym_count > max_sym_count)
7812 max_sym_count = sym_count;
7813
7814 if (sym_count > max_sym_shndx_count
7815 && elf_symtab_shndx (sec->owner) != 0)
7816 max_sym_shndx_count = sym_count;
7817
7818 if ((sec->flags & SEC_RELOC) != 0)
7819 {
7820 size_t ext_size;
7821
7822 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7823 if (ext_size > max_external_reloc_size)
7824 max_external_reloc_size = ext_size;
7825 if (sec->reloc_count > max_internal_reloc_count)
7826 max_internal_reloc_count = sec->reloc_count;
7827 }
7828 }
7829 }
7830
7831 if (reloc_count == 0)
7832 continue;
7833
7834 o->reloc_count += reloc_count;
7835
7836 /* MIPS may have a mix of REL and RELA relocs on sections.
7837 To support this curious ABI we keep reloc counts in
7838 elf_section_data too. We must be careful to add the
7839 relocations from the input section to the right output
7840 count. FIXME: Get rid of one count. We have
7841 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7842 rel_count1 = &esdo->rel_count;
7843 if (esdi != NULL)
7844 {
7845 bfd_boolean same_size;
7846 bfd_size_type entsize1;
7847
7848 entsize1 = esdi->rel_hdr.sh_entsize;
7849 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7850 || entsize1 == bed->s->sizeof_rela);
7851 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7852
7853 if (!same_size)
7854 rel_count1 = &esdo->rel_count2;
7855
7856 if (esdi->rel_hdr2 != NULL)
7857 {
7858 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7859 unsigned int alt_count;
7860 unsigned int *rel_count2;
7861
7862 BFD_ASSERT (entsize2 != entsize1
7863 && (entsize2 == bed->s->sizeof_rel
7864 || entsize2 == bed->s->sizeof_rela));
7865
7866 rel_count2 = &esdo->rel_count2;
7867 if (!same_size)
7868 rel_count2 = &esdo->rel_count;
7869
7870 /* The following is probably too simplistic if the
7871 backend counts output relocs unusually. */
7872 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7873 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7874 *rel_count2 += alt_count;
7875 reloc_count -= alt_count;
7876 }
7877 }
7878 *rel_count1 += reloc_count;
7879 }
7880
7881 if (o->reloc_count > 0)
7882 o->flags |= SEC_RELOC;
7883 else
7884 {
7885 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7886 set it (this is probably a bug) and if it is set
7887 assign_section_numbers will create a reloc section. */
7888 o->flags &=~ SEC_RELOC;
7889 }
7890
7891 /* If the SEC_ALLOC flag is not set, force the section VMA to
7892 zero. This is done in elf_fake_sections as well, but forcing
7893 the VMA to 0 here will ensure that relocs against these
7894 sections are handled correctly. */
7895 if ((o->flags & SEC_ALLOC) == 0
7896 && ! o->user_set_vma)
7897 o->vma = 0;
7898 }
7899
7900 if (! info->relocatable && merged)
7901 elf_link_hash_traverse (elf_hash_table (info),
7902 _bfd_elf_link_sec_merge_syms, abfd);
7903
7904 /* Figure out the file positions for everything but the symbol table
7905 and the relocs. We set symcount to force assign_section_numbers
7906 to create a symbol table. */
7907 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7908 BFD_ASSERT (! abfd->output_has_begun);
7909 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7910 goto error_return;
7911
ee75fd95 7912 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7913 for (o = abfd->sections; o != NULL; o = o->next)
7914 {
7915 if ((o->flags & SEC_RELOC) != 0)
7916 {
7917 if (!(_bfd_elf_link_size_reloc_section
7918 (abfd, &elf_section_data (o)->rel_hdr, o)))
7919 goto error_return;
7920
7921 if (elf_section_data (o)->rel_hdr2
7922 && !(_bfd_elf_link_size_reloc_section
7923 (abfd, elf_section_data (o)->rel_hdr2, o)))
7924 goto error_return;
7925 }
7926
7927 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7928 to count upwards while actually outputting the relocations. */
7929 elf_section_data (o)->rel_count = 0;
7930 elf_section_data (o)->rel_count2 = 0;
7931 }
7932
7933 _bfd_elf_assign_file_positions_for_relocs (abfd);
7934
7935 /* We have now assigned file positions for all the sections except
7936 .symtab and .strtab. We start the .symtab section at the current
7937 file position, and write directly to it. We build the .strtab
7938 section in memory. */
7939 bfd_get_symcount (abfd) = 0;
7940 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7941 /* sh_name is set in prep_headers. */
7942 symtab_hdr->sh_type = SHT_SYMTAB;
7943 /* sh_flags, sh_addr and sh_size all start off zero. */
7944 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7945 /* sh_link is set in assign_section_numbers. */
7946 /* sh_info is set below. */
7947 /* sh_offset is set just below. */
7948 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7949
7950 off = elf_tdata (abfd)->next_file_pos;
7951 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7952
7953 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7954 incorrect. We do not yet know the size of the .symtab section.
7955 We correct next_file_pos below, after we do know the size. */
7956
7957 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7958 continuously seeking to the right position in the file. */
7959 if (! info->keep_memory || max_sym_count < 20)
7960 finfo.symbuf_size = 20;
7961 else
7962 finfo.symbuf_size = max_sym_count;
7963 amt = finfo.symbuf_size;
7964 amt *= bed->s->sizeof_sym;
7965 finfo.symbuf = bfd_malloc (amt);
7966 if (finfo.symbuf == NULL)
7967 goto error_return;
7968 if (elf_numsections (abfd) > SHN_LORESERVE)
7969 {
7970 /* Wild guess at number of output symbols. realloc'd as needed. */
7971 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7972 finfo.shndxbuf_size = amt;
7973 amt *= sizeof (Elf_External_Sym_Shndx);
7974 finfo.symshndxbuf = bfd_zmalloc (amt);
7975 if (finfo.symshndxbuf == NULL)
7976 goto error_return;
7977 }
7978
7979 /* Start writing out the symbol table. The first symbol is always a
7980 dummy symbol. */
7981 if (info->strip != strip_all
7982 || emit_relocs)
7983 {
7984 elfsym.st_value = 0;
7985 elfsym.st_size = 0;
7986 elfsym.st_info = 0;
7987 elfsym.st_other = 0;
7988 elfsym.st_shndx = SHN_UNDEF;
7989 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7990 NULL))
7991 goto error_return;
7992 }
7993
c152c796
AM
7994 /* Output a symbol for each section. We output these even if we are
7995 discarding local symbols, since they are used for relocs. These
7996 symbols have no names. We store the index of each one in the
7997 index field of the section, so that we can find it again when
7998 outputting relocs. */
7999 if (info->strip != strip_all
8000 || emit_relocs)
8001 {
8002 elfsym.st_size = 0;
8003 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8004 elfsym.st_other = 0;
8005 for (i = 1; i < elf_numsections (abfd); i++)
8006 {
8007 o = bfd_section_from_elf_index (abfd, i);
8008 if (o != NULL)
8009 o->target_index = bfd_get_symcount (abfd);
8010 elfsym.st_shndx = i;
8011 if (info->relocatable || o == NULL)
8012 elfsym.st_value = 0;
8013 else
8014 elfsym.st_value = o->vma;
8015 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8016 goto error_return;
8017 if (i == SHN_LORESERVE - 1)
8018 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8019 }
8020 }
8021
8022 /* Allocate some memory to hold information read in from the input
8023 files. */
8024 if (max_contents_size != 0)
8025 {
8026 finfo.contents = bfd_malloc (max_contents_size);
8027 if (finfo.contents == NULL)
8028 goto error_return;
8029 }
8030
8031 if (max_external_reloc_size != 0)
8032 {
8033 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8034 if (finfo.external_relocs == NULL)
8035 goto error_return;
8036 }
8037
8038 if (max_internal_reloc_count != 0)
8039 {
8040 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8041 amt *= sizeof (Elf_Internal_Rela);
8042 finfo.internal_relocs = bfd_malloc (amt);
8043 if (finfo.internal_relocs == NULL)
8044 goto error_return;
8045 }
8046
8047 if (max_sym_count != 0)
8048 {
8049 amt = max_sym_count * bed->s->sizeof_sym;
8050 finfo.external_syms = bfd_malloc (amt);
8051 if (finfo.external_syms == NULL)
8052 goto error_return;
8053
8054 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8055 finfo.internal_syms = bfd_malloc (amt);
8056 if (finfo.internal_syms == NULL)
8057 goto error_return;
8058
8059 amt = max_sym_count * sizeof (long);
8060 finfo.indices = bfd_malloc (amt);
8061 if (finfo.indices == NULL)
8062 goto error_return;
8063
8064 amt = max_sym_count * sizeof (asection *);
8065 finfo.sections = bfd_malloc (amt);
8066 if (finfo.sections == NULL)
8067 goto error_return;
8068 }
8069
8070 if (max_sym_shndx_count != 0)
8071 {
8072 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8073 finfo.locsym_shndx = bfd_malloc (amt);
8074 if (finfo.locsym_shndx == NULL)
8075 goto error_return;
8076 }
8077
8078 if (elf_hash_table (info)->tls_sec)
8079 {
8080 bfd_vma base, end = 0;
8081 asection *sec;
8082
8083 for (sec = elf_hash_table (info)->tls_sec;
8084 sec && (sec->flags & SEC_THREAD_LOCAL);
8085 sec = sec->next)
8086 {
eea6121a 8087 bfd_vma size = sec->size;
c152c796
AM
8088
8089 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8090 {
8091 struct bfd_link_order *o;
8092
8093 for (o = sec->link_order_head; o != NULL; o = o->next)
8094 if (size < o->offset + o->size)
8095 size = o->offset + o->size;
8096 }
8097 end = sec->vma + size;
8098 }
8099 base = elf_hash_table (info)->tls_sec->vma;
8100 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8101 elf_hash_table (info)->tls_size = end - base;
8102 }
8103
0b52efa6
PB
8104 /* Reorder SHF_LINK_ORDER sections. */
8105 for (o = abfd->sections; o != NULL; o = o->next)
8106 {
8107 if (!elf_fixup_link_order (abfd, o))
8108 return FALSE;
8109 }
8110
c152c796
AM
8111 /* Since ELF permits relocations to be against local symbols, we
8112 must have the local symbols available when we do the relocations.
8113 Since we would rather only read the local symbols once, and we
8114 would rather not keep them in memory, we handle all the
8115 relocations for a single input file at the same time.
8116
8117 Unfortunately, there is no way to know the total number of local
8118 symbols until we have seen all of them, and the local symbol
8119 indices precede the global symbol indices. This means that when
8120 we are generating relocatable output, and we see a reloc against
8121 a global symbol, we can not know the symbol index until we have
8122 finished examining all the local symbols to see which ones we are
8123 going to output. To deal with this, we keep the relocations in
8124 memory, and don't output them until the end of the link. This is
8125 an unfortunate waste of memory, but I don't see a good way around
8126 it. Fortunately, it only happens when performing a relocatable
8127 link, which is not the common case. FIXME: If keep_memory is set
8128 we could write the relocs out and then read them again; I don't
8129 know how bad the memory loss will be. */
8130
8131 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8132 sub->output_has_begun = FALSE;
8133 for (o = abfd->sections; o != NULL; o = o->next)
8134 {
8135 for (p = o->link_order_head; p != NULL; p = p->next)
8136 {
8137 if (p->type == bfd_indirect_link_order
8138 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8139 == bfd_target_elf_flavour)
8140 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8141 {
8142 if (! sub->output_has_begun)
8143 {
8144 if (! elf_link_input_bfd (&finfo, sub))
8145 goto error_return;
8146 sub->output_has_begun = TRUE;
8147 }
8148 }
8149 else if (p->type == bfd_section_reloc_link_order
8150 || p->type == bfd_symbol_reloc_link_order)
8151 {
8152 if (! elf_reloc_link_order (abfd, info, o, p))
8153 goto error_return;
8154 }
8155 else
8156 {
8157 if (! _bfd_default_link_order (abfd, info, o, p))
8158 goto error_return;
8159 }
8160 }
8161 }
8162
8163 /* Output any global symbols that got converted to local in a
8164 version script or due to symbol visibility. We do this in a
8165 separate step since ELF requires all local symbols to appear
8166 prior to any global symbols. FIXME: We should only do this if
8167 some global symbols were, in fact, converted to become local.
8168 FIXME: Will this work correctly with the Irix 5 linker? */
8169 eoinfo.failed = FALSE;
8170 eoinfo.finfo = &finfo;
8171 eoinfo.localsyms = TRUE;
8172 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8173 &eoinfo);
8174 if (eoinfo.failed)
8175 return FALSE;
8176
8177 /* That wrote out all the local symbols. Finish up the symbol table
8178 with the global symbols. Even if we want to strip everything we
8179 can, we still need to deal with those global symbols that got
8180 converted to local in a version script. */
8181
8182 /* The sh_info field records the index of the first non local symbol. */
8183 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8184
8185 if (dynamic
8186 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8187 {
8188 Elf_Internal_Sym sym;
8189 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8190 long last_local = 0;
8191
8192 /* Write out the section symbols for the output sections. */
67687978 8193 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8194 {
8195 asection *s;
8196
8197 sym.st_size = 0;
8198 sym.st_name = 0;
8199 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8200 sym.st_other = 0;
8201
8202 for (s = abfd->sections; s != NULL; s = s->next)
8203 {
8204 int indx;
8205 bfd_byte *dest;
8206 long dynindx;
8207
c152c796 8208 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8209 if (dynindx <= 0)
8210 continue;
8211 indx = elf_section_data (s)->this_idx;
c152c796
AM
8212 BFD_ASSERT (indx > 0);
8213 sym.st_shndx = indx;
8214 sym.st_value = s->vma;
8215 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8216 if (last_local < dynindx)
8217 last_local = dynindx;
c152c796
AM
8218 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8219 }
c152c796
AM
8220 }
8221
8222 /* Write out the local dynsyms. */
8223 if (elf_hash_table (info)->dynlocal)
8224 {
8225 struct elf_link_local_dynamic_entry *e;
8226 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8227 {
8228 asection *s;
8229 bfd_byte *dest;
8230
8231 sym.st_size = e->isym.st_size;
8232 sym.st_other = e->isym.st_other;
8233
8234 /* Copy the internal symbol as is.
8235 Note that we saved a word of storage and overwrote
8236 the original st_name with the dynstr_index. */
8237 sym = e->isym;
8238
8239 if (e->isym.st_shndx != SHN_UNDEF
8240 && (e->isym.st_shndx < SHN_LORESERVE
8241 || e->isym.st_shndx > SHN_HIRESERVE))
8242 {
8243 s = bfd_section_from_elf_index (e->input_bfd,
8244 e->isym.st_shndx);
8245
8246 sym.st_shndx =
8247 elf_section_data (s->output_section)->this_idx;
8248 sym.st_value = (s->output_section->vma
8249 + s->output_offset
8250 + e->isym.st_value);
8251 }
8252
8253 if (last_local < e->dynindx)
8254 last_local = e->dynindx;
8255
8256 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8257 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8258 }
8259 }
8260
8261 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8262 last_local + 1;
8263 }
8264
8265 /* We get the global symbols from the hash table. */
8266 eoinfo.failed = FALSE;
8267 eoinfo.localsyms = FALSE;
8268 eoinfo.finfo = &finfo;
8269 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8270 &eoinfo);
8271 if (eoinfo.failed)
8272 return FALSE;
8273
8274 /* If backend needs to output some symbols not present in the hash
8275 table, do it now. */
8276 if (bed->elf_backend_output_arch_syms)
8277 {
8278 typedef bfd_boolean (*out_sym_func)
8279 (void *, const char *, Elf_Internal_Sym *, asection *,
8280 struct elf_link_hash_entry *);
8281
8282 if (! ((*bed->elf_backend_output_arch_syms)
8283 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8284 return FALSE;
8285 }
8286
8287 /* Flush all symbols to the file. */
8288 if (! elf_link_flush_output_syms (&finfo, bed))
8289 return FALSE;
8290
8291 /* Now we know the size of the symtab section. */
8292 off += symtab_hdr->sh_size;
8293
8294 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8295 if (symtab_shndx_hdr->sh_name != 0)
8296 {
8297 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8298 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8299 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8300 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8301 symtab_shndx_hdr->sh_size = amt;
8302
8303 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8304 off, TRUE);
8305
8306 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8307 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8308 return FALSE;
8309 }
8310
8311
8312 /* Finish up and write out the symbol string table (.strtab)
8313 section. */
8314 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8315 /* sh_name was set in prep_headers. */
8316 symstrtab_hdr->sh_type = SHT_STRTAB;
8317 symstrtab_hdr->sh_flags = 0;
8318 symstrtab_hdr->sh_addr = 0;
8319 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8320 symstrtab_hdr->sh_entsize = 0;
8321 symstrtab_hdr->sh_link = 0;
8322 symstrtab_hdr->sh_info = 0;
8323 /* sh_offset is set just below. */
8324 symstrtab_hdr->sh_addralign = 1;
8325
8326 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8327 elf_tdata (abfd)->next_file_pos = off;
8328
8329 if (bfd_get_symcount (abfd) > 0)
8330 {
8331 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8332 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8333 return FALSE;
8334 }
8335
8336 /* Adjust the relocs to have the correct symbol indices. */
8337 for (o = abfd->sections; o != NULL; o = o->next)
8338 {
8339 if ((o->flags & SEC_RELOC) == 0)
8340 continue;
8341
8342 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8343 elf_section_data (o)->rel_count,
8344 elf_section_data (o)->rel_hashes);
8345 if (elf_section_data (o)->rel_hdr2 != NULL)
8346 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8347 elf_section_data (o)->rel_count2,
8348 (elf_section_data (o)->rel_hashes
8349 + elf_section_data (o)->rel_count));
8350
8351 /* Set the reloc_count field to 0 to prevent write_relocs from
8352 trying to swap the relocs out itself. */
8353 o->reloc_count = 0;
8354 }
8355
8356 if (dynamic && info->combreloc && dynobj != NULL)
8357 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8358
8359 /* If we are linking against a dynamic object, or generating a
8360 shared library, finish up the dynamic linking information. */
8361 if (dynamic)
8362 {
8363 bfd_byte *dyncon, *dynconend;
8364
8365 /* Fix up .dynamic entries. */
8366 o = bfd_get_section_by_name (dynobj, ".dynamic");
8367 BFD_ASSERT (o != NULL);
8368
8369 dyncon = o->contents;
eea6121a 8370 dynconend = o->contents + o->size;
c152c796
AM
8371 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8372 {
8373 Elf_Internal_Dyn dyn;
8374 const char *name;
8375 unsigned int type;
8376
8377 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8378
8379 switch (dyn.d_tag)
8380 {
8381 default:
8382 continue;
8383 case DT_NULL:
8384 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8385 {
8386 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8387 {
8388 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8389 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8390 default: continue;
8391 }
8392 dyn.d_un.d_val = relativecount;
8393 relativecount = 0;
8394 break;
8395 }
8396 continue;
8397
8398 case DT_INIT:
8399 name = info->init_function;
8400 goto get_sym;
8401 case DT_FINI:
8402 name = info->fini_function;
8403 get_sym:
8404 {
8405 struct elf_link_hash_entry *h;
8406
8407 h = elf_link_hash_lookup (elf_hash_table (info), name,
8408 FALSE, FALSE, TRUE);
8409 if (h != NULL
8410 && (h->root.type == bfd_link_hash_defined
8411 || h->root.type == bfd_link_hash_defweak))
8412 {
8413 dyn.d_un.d_val = h->root.u.def.value;
8414 o = h->root.u.def.section;
8415 if (o->output_section != NULL)
8416 dyn.d_un.d_val += (o->output_section->vma
8417 + o->output_offset);
8418 else
8419 {
8420 /* The symbol is imported from another shared
8421 library and does not apply to this one. */
8422 dyn.d_un.d_val = 0;
8423 }
8424 break;
8425 }
8426 }
8427 continue;
8428
8429 case DT_PREINIT_ARRAYSZ:
8430 name = ".preinit_array";
8431 goto get_size;
8432 case DT_INIT_ARRAYSZ:
8433 name = ".init_array";
8434 goto get_size;
8435 case DT_FINI_ARRAYSZ:
8436 name = ".fini_array";
8437 get_size:
8438 o = bfd_get_section_by_name (abfd, name);
8439 if (o == NULL)
8440 {
8441 (*_bfd_error_handler)
d003868e 8442 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8443 goto error_return;
8444 }
eea6121a 8445 if (o->size == 0)
c152c796
AM
8446 (*_bfd_error_handler)
8447 (_("warning: %s section has zero size"), name);
eea6121a 8448 dyn.d_un.d_val = o->size;
c152c796
AM
8449 break;
8450
8451 case DT_PREINIT_ARRAY:
8452 name = ".preinit_array";
8453 goto get_vma;
8454 case DT_INIT_ARRAY:
8455 name = ".init_array";
8456 goto get_vma;
8457 case DT_FINI_ARRAY:
8458 name = ".fini_array";
8459 goto get_vma;
8460
8461 case DT_HASH:
8462 name = ".hash";
8463 goto get_vma;
8464 case DT_STRTAB:
8465 name = ".dynstr";
8466 goto get_vma;
8467 case DT_SYMTAB:
8468 name = ".dynsym";
8469 goto get_vma;
8470 case DT_VERDEF:
8471 name = ".gnu.version_d";
8472 goto get_vma;
8473 case DT_VERNEED:
8474 name = ".gnu.version_r";
8475 goto get_vma;
8476 case DT_VERSYM:
8477 name = ".gnu.version";
8478 get_vma:
8479 o = bfd_get_section_by_name (abfd, name);
8480 if (o == NULL)
8481 {
8482 (*_bfd_error_handler)
d003868e 8483 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8484 goto error_return;
8485 }
8486 dyn.d_un.d_ptr = o->vma;
8487 break;
8488
8489 case DT_REL:
8490 case DT_RELA:
8491 case DT_RELSZ:
8492 case DT_RELASZ:
8493 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8494 type = SHT_REL;
8495 else
8496 type = SHT_RELA;
8497 dyn.d_un.d_val = 0;
8498 for (i = 1; i < elf_numsections (abfd); i++)
8499 {
8500 Elf_Internal_Shdr *hdr;
8501
8502 hdr = elf_elfsections (abfd)[i];
8503 if (hdr->sh_type == type
8504 && (hdr->sh_flags & SHF_ALLOC) != 0)
8505 {
8506 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8507 dyn.d_un.d_val += hdr->sh_size;
8508 else
8509 {
8510 if (dyn.d_un.d_val == 0
8511 || hdr->sh_addr < dyn.d_un.d_val)
8512 dyn.d_un.d_val = hdr->sh_addr;
8513 }
8514 }
8515 }
8516 break;
8517 }
8518 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8519 }
8520 }
8521
8522 /* If we have created any dynamic sections, then output them. */
8523 if (dynobj != NULL)
8524 {
8525 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8526 goto error_return;
8527
8528 for (o = dynobj->sections; o != NULL; o = o->next)
8529 {
8530 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8531 || o->size == 0
c152c796
AM
8532 || o->output_section == bfd_abs_section_ptr)
8533 continue;
8534 if ((o->flags & SEC_LINKER_CREATED) == 0)
8535 {
8536 /* At this point, we are only interested in sections
8537 created by _bfd_elf_link_create_dynamic_sections. */
8538 continue;
8539 }
3722b82f
AM
8540 if (elf_hash_table (info)->stab_info.stabstr == o)
8541 continue;
eea6121a
AM
8542 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8543 continue;
c152c796
AM
8544 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8545 != SHT_STRTAB)
8546 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8547 {
8548 if (! bfd_set_section_contents (abfd, o->output_section,
8549 o->contents,
8550 (file_ptr) o->output_offset,
eea6121a 8551 o->size))
c152c796
AM
8552 goto error_return;
8553 }
8554 else
8555 {
8556 /* The contents of the .dynstr section are actually in a
8557 stringtab. */
8558 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8559 if (bfd_seek (abfd, off, SEEK_SET) != 0
8560 || ! _bfd_elf_strtab_emit (abfd,
8561 elf_hash_table (info)->dynstr))
8562 goto error_return;
8563 }
8564 }
8565 }
8566
8567 if (info->relocatable)
8568 {
8569 bfd_boolean failed = FALSE;
8570
8571 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8572 if (failed)
8573 goto error_return;
8574 }
8575
8576 /* If we have optimized stabs strings, output them. */
3722b82f 8577 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8578 {
8579 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8580 goto error_return;
8581 }
8582
8583 if (info->eh_frame_hdr)
8584 {
8585 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8586 goto error_return;
8587 }
8588
8589 if (finfo.symstrtab != NULL)
8590 _bfd_stringtab_free (finfo.symstrtab);
8591 if (finfo.contents != NULL)
8592 free (finfo.contents);
8593 if (finfo.external_relocs != NULL)
8594 free (finfo.external_relocs);
8595 if (finfo.internal_relocs != NULL)
8596 free (finfo.internal_relocs);
8597 if (finfo.external_syms != NULL)
8598 free (finfo.external_syms);
8599 if (finfo.locsym_shndx != NULL)
8600 free (finfo.locsym_shndx);
8601 if (finfo.internal_syms != NULL)
8602 free (finfo.internal_syms);
8603 if (finfo.indices != NULL)
8604 free (finfo.indices);
8605 if (finfo.sections != NULL)
8606 free (finfo.sections);
8607 if (finfo.symbuf != NULL)
8608 free (finfo.symbuf);
8609 if (finfo.symshndxbuf != NULL)
8610 free (finfo.symshndxbuf);
8611 for (o = abfd->sections; o != NULL; o = o->next)
8612 {
8613 if ((o->flags & SEC_RELOC) != 0
8614 && elf_section_data (o)->rel_hashes != NULL)
8615 free (elf_section_data (o)->rel_hashes);
8616 }
8617
8618 elf_tdata (abfd)->linker = TRUE;
8619
8620 return TRUE;
8621
8622 error_return:
8623 if (finfo.symstrtab != NULL)
8624 _bfd_stringtab_free (finfo.symstrtab);
8625 if (finfo.contents != NULL)
8626 free (finfo.contents);
8627 if (finfo.external_relocs != NULL)
8628 free (finfo.external_relocs);
8629 if (finfo.internal_relocs != NULL)
8630 free (finfo.internal_relocs);
8631 if (finfo.external_syms != NULL)
8632 free (finfo.external_syms);
8633 if (finfo.locsym_shndx != NULL)
8634 free (finfo.locsym_shndx);
8635 if (finfo.internal_syms != NULL)
8636 free (finfo.internal_syms);
8637 if (finfo.indices != NULL)
8638 free (finfo.indices);
8639 if (finfo.sections != NULL)
8640 free (finfo.sections);
8641 if (finfo.symbuf != NULL)
8642 free (finfo.symbuf);
8643 if (finfo.symshndxbuf != NULL)
8644 free (finfo.symshndxbuf);
8645 for (o = abfd->sections; o != NULL; o = o->next)
8646 {
8647 if ((o->flags & SEC_RELOC) != 0
8648 && elf_section_data (o)->rel_hashes != NULL)
8649 free (elf_section_data (o)->rel_hashes);
8650 }
8651
8652 return FALSE;
8653}
8654\f
8655/* Garbage collect unused sections. */
8656
8657/* The mark phase of garbage collection. For a given section, mark
8658 it and any sections in this section's group, and all the sections
8659 which define symbols to which it refers. */
8660
8661typedef asection * (*gc_mark_hook_fn)
8662 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8663 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8664
ccfa59ea
AM
8665bfd_boolean
8666_bfd_elf_gc_mark (struct bfd_link_info *info,
8667 asection *sec,
8668 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8669{
8670 bfd_boolean ret;
8671 asection *group_sec;
8672
8673 sec->gc_mark = 1;
8674
8675 /* Mark all the sections in the group. */
8676 group_sec = elf_section_data (sec)->next_in_group;
8677 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8678 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8679 return FALSE;
8680
8681 /* Look through the section relocs. */
8682 ret = TRUE;
8683 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8684 {
8685 Elf_Internal_Rela *relstart, *rel, *relend;
8686 Elf_Internal_Shdr *symtab_hdr;
8687 struct elf_link_hash_entry **sym_hashes;
8688 size_t nlocsyms;
8689 size_t extsymoff;
8690 bfd *input_bfd = sec->owner;
8691 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8692 Elf_Internal_Sym *isym = NULL;
8693 int r_sym_shift;
8694
8695 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8696 sym_hashes = elf_sym_hashes (input_bfd);
8697
8698 /* Read the local symbols. */
8699 if (elf_bad_symtab (input_bfd))
8700 {
8701 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8702 extsymoff = 0;
8703 }
8704 else
8705 extsymoff = nlocsyms = symtab_hdr->sh_info;
8706
8707 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8708 if (isym == NULL && nlocsyms != 0)
8709 {
8710 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8711 NULL, NULL, NULL);
8712 if (isym == NULL)
8713 return FALSE;
8714 }
8715
8716 /* Read the relocations. */
8717 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8718 info->keep_memory);
8719 if (relstart == NULL)
8720 {
8721 ret = FALSE;
8722 goto out1;
8723 }
8724 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8725
8726 if (bed->s->arch_size == 32)
8727 r_sym_shift = 8;
8728 else
8729 r_sym_shift = 32;
8730
8731 for (rel = relstart; rel < relend; rel++)
8732 {
8733 unsigned long r_symndx;
8734 asection *rsec;
8735 struct elf_link_hash_entry *h;
8736
8737 r_symndx = rel->r_info >> r_sym_shift;
8738 if (r_symndx == 0)
8739 continue;
8740
8741 if (r_symndx >= nlocsyms
8742 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8743 {
8744 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8745 while (h->root.type == bfd_link_hash_indirect
8746 || h->root.type == bfd_link_hash_warning)
8747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8748 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8749 }
8750 else
8751 {
8752 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8753 }
8754
8755 if (rsec && !rsec->gc_mark)
8756 {
8757 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8758 rsec->gc_mark = 1;
ccfa59ea 8759 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8760 {
8761 ret = FALSE;
8762 goto out2;
8763 }
8764 }
8765 }
8766
8767 out2:
8768 if (elf_section_data (sec)->relocs != relstart)
8769 free (relstart);
8770 out1:
8771 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8772 {
8773 if (! info->keep_memory)
8774 free (isym);
8775 else
8776 symtab_hdr->contents = (unsigned char *) isym;
8777 }
8778 }
8779
8780 return ret;
8781}
8782
8783/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8784
8785static bfd_boolean
8786elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8787{
8788 int *idx = idxptr;
8789
8790 if (h->root.type == bfd_link_hash_warning)
8791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8792
8793 if (h->dynindx != -1
8794 && ((h->root.type != bfd_link_hash_defined
8795 && h->root.type != bfd_link_hash_defweak)
8796 || h->root.u.def.section->gc_mark))
8797 h->dynindx = (*idx)++;
8798
8799 return TRUE;
8800}
8801
8802/* The sweep phase of garbage collection. Remove all garbage sections. */
8803
8804typedef bfd_boolean (*gc_sweep_hook_fn)
8805 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8806
8807static bfd_boolean
8808elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8809{
8810 bfd *sub;
8811
8812 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8813 {
8814 asection *o;
8815
8816 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8817 continue;
8818
8819 for (o = sub->sections; o != NULL; o = o->next)
8820 {
7c2c8505
AM
8821 /* Keep debug and special sections. */
8822 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8823 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8824 o->gc_mark = 1;
8825
8826 if (o->gc_mark)
8827 continue;
8828
8829 /* Skip sweeping sections already excluded. */
8830 if (o->flags & SEC_EXCLUDE)
8831 continue;
8832
8833 /* Since this is early in the link process, it is simple
8834 to remove a section from the output. */
8835 o->flags |= SEC_EXCLUDE;
8836
8837 /* But we also have to update some of the relocation
8838 info we collected before. */
8839 if (gc_sweep_hook
8840 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8841 {
8842 Elf_Internal_Rela *internal_relocs;
8843 bfd_boolean r;
8844
8845 internal_relocs
8846 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8847 info->keep_memory);
8848 if (internal_relocs == NULL)
8849 return FALSE;
8850
8851 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8852
8853 if (elf_section_data (o)->relocs != internal_relocs)
8854 free (internal_relocs);
8855
8856 if (!r)
8857 return FALSE;
8858 }
8859 }
8860 }
8861
8862 /* Remove the symbols that were in the swept sections from the dynamic
8863 symbol table. GCFIXME: Anyone know how to get them out of the
8864 static symbol table as well? */
8865 {
8866 int i = 0;
8867
8868 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8869
8870 elf_hash_table (info)->dynsymcount = i;
8871 }
8872
8873 return TRUE;
8874}
8875
8876/* Propagate collected vtable information. This is called through
8877 elf_link_hash_traverse. */
8878
8879static bfd_boolean
8880elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8881{
8882 if (h->root.type == bfd_link_hash_warning)
8883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8884
8885 /* Those that are not vtables. */
f6e332e6 8886 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8887 return TRUE;
8888
8889 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8890 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8891 return TRUE;
8892
8893 /* If we've already been done, exit. */
f6e332e6 8894 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
8895 return TRUE;
8896
8897 /* Make sure the parent's table is up to date. */
f6e332e6 8898 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 8899
f6e332e6 8900 if (h->vtable->used == NULL)
c152c796
AM
8901 {
8902 /* None of this table's entries were referenced. Re-use the
8903 parent's table. */
f6e332e6
AM
8904 h->vtable->used = h->vtable->parent->vtable->used;
8905 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
8906 }
8907 else
8908 {
8909 size_t n;
8910 bfd_boolean *cu, *pu;
8911
8912 /* Or the parent's entries into ours. */
f6e332e6 8913 cu = h->vtable->used;
c152c796 8914 cu[-1] = TRUE;
f6e332e6 8915 pu = h->vtable->parent->vtable->used;
c152c796
AM
8916 if (pu != NULL)
8917 {
8918 const struct elf_backend_data *bed;
8919 unsigned int log_file_align;
8920
8921 bed = get_elf_backend_data (h->root.u.def.section->owner);
8922 log_file_align = bed->s->log_file_align;
f6e332e6 8923 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
8924 while (n--)
8925 {
8926 if (*pu)
8927 *cu = TRUE;
8928 pu++;
8929 cu++;
8930 }
8931 }
8932 }
8933
8934 return TRUE;
8935}
8936
8937static bfd_boolean
8938elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8939{
8940 asection *sec;
8941 bfd_vma hstart, hend;
8942 Elf_Internal_Rela *relstart, *relend, *rel;
8943 const struct elf_backend_data *bed;
8944 unsigned int log_file_align;
8945
8946 if (h->root.type == bfd_link_hash_warning)
8947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8948
8949 /* Take care of both those symbols that do not describe vtables as
8950 well as those that are not loaded. */
f6e332e6 8951 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8952 return TRUE;
8953
8954 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8955 || h->root.type == bfd_link_hash_defweak);
8956
8957 sec = h->root.u.def.section;
8958 hstart = h->root.u.def.value;
8959 hend = hstart + h->size;
8960
8961 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8962 if (!relstart)
8963 return *(bfd_boolean *) okp = FALSE;
8964 bed = get_elf_backend_data (sec->owner);
8965 log_file_align = bed->s->log_file_align;
8966
8967 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8968
8969 for (rel = relstart; rel < relend; ++rel)
8970 if (rel->r_offset >= hstart && rel->r_offset < hend)
8971 {
8972 /* If the entry is in use, do nothing. */
f6e332e6
AM
8973 if (h->vtable->used
8974 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
8975 {
8976 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 8977 if (h->vtable->used[entry])
c152c796
AM
8978 continue;
8979 }
8980 /* Otherwise, kill it. */
8981 rel->r_offset = rel->r_info = rel->r_addend = 0;
8982 }
8983
8984 return TRUE;
8985}
8986
715df9b8
EB
8987/* Mark sections containing dynamically referenced symbols. This is called
8988 through elf_link_hash_traverse. */
8989
8990static bfd_boolean
8991elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8992 void *okp ATTRIBUTE_UNUSED)
8993{
8994 if (h->root.type == bfd_link_hash_warning)
8995 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8996
8997 if ((h->root.type == bfd_link_hash_defined
8998 || h->root.type == bfd_link_hash_defweak)
f5385ebf 8999 && h->ref_dynamic)
715df9b8
EB
9000 h->root.u.def.section->flags |= SEC_KEEP;
9001
9002 return TRUE;
9003}
57316bff
L
9004
9005/* Mark sections containing global symbols. This is called through
9006 elf_link_hash_traverse. */
715df9b8 9007
57316bff
L
9008static bfd_boolean
9009elf_mark_used_section (struct elf_link_hash_entry *h,
554220db 9010 void *data ATTRIBUTE_UNUSED)
57316bff
L
9011{
9012 if (h->root.type == bfd_link_hash_warning)
9013 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9014
554220db
AM
9015 if (h->root.type == bfd_link_hash_defined
9016 || h->root.type == bfd_link_hash_defweak)
57316bff 9017 {
554220db 9018 asection *s = h->root.u.def.section;
7451fd89 9019 if (s != NULL && s->output_section != NULL)
554220db 9020 s->output_section->flags |= SEC_KEEP;
57316bff
L
9021 }
9022
9023 return TRUE;
9024}
9025
c152c796
AM
9026/* Do mark and sweep of unused sections. */
9027
9028bfd_boolean
9029bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9030{
9031 bfd_boolean ok = TRUE;
9032 bfd *sub;
9033 asection * (*gc_mark_hook)
9034 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9035 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9036
57316bff
L
9037 if (!info->gc_sections)
9038 {
9039 /* If we are called when info->gc_sections is 0, we will mark
554220db 9040 all sections containing global symbols for non-relocatable
57316bff
L
9041 link. */
9042 if (!info->relocatable)
9043 elf_link_hash_traverse (elf_hash_table (info),
9044 elf_mark_used_section, NULL);
9045 return TRUE;
9046 }
9047
c152c796
AM
9048 if (!get_elf_backend_data (abfd)->can_gc_sections
9049 || info->relocatable
9050 || info->emitrelocations
715df9b8
EB
9051 || info->shared
9052 || !is_elf_hash_table (info->hash))
c152c796
AM
9053 {
9054 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9055 return TRUE;
9056 }
9057
9058 /* Apply transitive closure to the vtable entry usage info. */
9059 elf_link_hash_traverse (elf_hash_table (info),
9060 elf_gc_propagate_vtable_entries_used,
9061 &ok);
9062 if (!ok)
9063 return FALSE;
9064
9065 /* Kill the vtable relocations that were not used. */
9066 elf_link_hash_traverse (elf_hash_table (info),
9067 elf_gc_smash_unused_vtentry_relocs,
9068 &ok);
9069 if (!ok)
9070 return FALSE;
9071
715df9b8
EB
9072 /* Mark dynamically referenced symbols. */
9073 if (elf_hash_table (info)->dynamic_sections_created)
9074 elf_link_hash_traverse (elf_hash_table (info),
9075 elf_gc_mark_dynamic_ref_symbol,
9076 &ok);
9077 if (!ok)
9078 return FALSE;
c152c796 9079
715df9b8 9080 /* Grovel through relocs to find out who stays ... */
c152c796
AM
9081 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9082 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9083 {
9084 asection *o;
9085
9086 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9087 continue;
9088
9089 for (o = sub->sections; o != NULL; o = o->next)
9090 {
9091 if (o->flags & SEC_KEEP)
715df9b8
EB
9092 {
9093 /* _bfd_elf_discard_section_eh_frame knows how to discard
9094 orphaned FDEs so don't mark sections referenced by the
9095 EH frame section. */
9096 if (strcmp (o->name, ".eh_frame") == 0)
9097 o->gc_mark = 1;
ccfa59ea 9098 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
715df9b8
EB
9099 return FALSE;
9100 }
c152c796
AM
9101 }
9102 }
9103
9104 /* ... and mark SEC_EXCLUDE for those that go. */
9105 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9106 return FALSE;
9107
9108 return TRUE;
9109}
9110\f
9111/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9112
9113bfd_boolean
9114bfd_elf_gc_record_vtinherit (bfd *abfd,
9115 asection *sec,
9116 struct elf_link_hash_entry *h,
9117 bfd_vma offset)
9118{
9119 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9120 struct elf_link_hash_entry **search, *child;
9121 bfd_size_type extsymcount;
9122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9123
9124 /* The sh_info field of the symtab header tells us where the
9125 external symbols start. We don't care about the local symbols at
9126 this point. */
9127 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9128 if (!elf_bad_symtab (abfd))
9129 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9130
9131 sym_hashes = elf_sym_hashes (abfd);
9132 sym_hashes_end = sym_hashes + extsymcount;
9133
9134 /* Hunt down the child symbol, which is in this section at the same
9135 offset as the relocation. */
9136 for (search = sym_hashes; search != sym_hashes_end; ++search)
9137 {
9138 if ((child = *search) != NULL
9139 && (child->root.type == bfd_link_hash_defined
9140 || child->root.type == bfd_link_hash_defweak)
9141 && child->root.u.def.section == sec
9142 && child->root.u.def.value == offset)
9143 goto win;
9144 }
9145
d003868e
AM
9146 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9147 abfd, sec, (unsigned long) offset);
c152c796
AM
9148 bfd_set_error (bfd_error_invalid_operation);
9149 return FALSE;
9150
9151 win:
f6e332e6
AM
9152 if (!child->vtable)
9153 {
9154 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9155 if (!child->vtable)
9156 return FALSE;
9157 }
c152c796
AM
9158 if (!h)
9159 {
9160 /* This *should* only be the absolute section. It could potentially
9161 be that someone has defined a non-global vtable though, which
9162 would be bad. It isn't worth paging in the local symbols to be
9163 sure though; that case should simply be handled by the assembler. */
9164
f6e332e6 9165 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9166 }
9167 else
f6e332e6 9168 child->vtable->parent = h;
c152c796
AM
9169
9170 return TRUE;
9171}
9172
9173/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9174
9175bfd_boolean
9176bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9177 asection *sec ATTRIBUTE_UNUSED,
9178 struct elf_link_hash_entry *h,
9179 bfd_vma addend)
9180{
9181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9182 unsigned int log_file_align = bed->s->log_file_align;
9183
f6e332e6
AM
9184 if (!h->vtable)
9185 {
9186 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9187 if (!h->vtable)
9188 return FALSE;
9189 }
9190
9191 if (addend >= h->vtable->size)
c152c796
AM
9192 {
9193 size_t size, bytes, file_align;
f6e332e6 9194 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9195
9196 /* While the symbol is undefined, we have to be prepared to handle
9197 a zero size. */
9198 file_align = 1 << log_file_align;
9199 if (h->root.type == bfd_link_hash_undefined)
9200 size = addend + file_align;
9201 else
9202 {
9203 size = h->size;
9204 if (addend >= size)
9205 {
9206 /* Oops! We've got a reference past the defined end of
9207 the table. This is probably a bug -- shall we warn? */
9208 size = addend + file_align;
9209 }
9210 }
9211 size = (size + file_align - 1) & -file_align;
9212
9213 /* Allocate one extra entry for use as a "done" flag for the
9214 consolidation pass. */
9215 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9216
9217 if (ptr)
9218 {
9219 ptr = bfd_realloc (ptr - 1, bytes);
9220
9221 if (ptr != NULL)
9222 {
9223 size_t oldbytes;
9224
f6e332e6 9225 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9226 * sizeof (bfd_boolean));
9227 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9228 }
9229 }
9230 else
9231 ptr = bfd_zmalloc (bytes);
9232
9233 if (ptr == NULL)
9234 return FALSE;
9235
9236 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9237 h->vtable->used = ptr + 1;
9238 h->vtable->size = size;
c152c796
AM
9239 }
9240
f6e332e6 9241 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9242
9243 return TRUE;
9244}
9245
9246struct alloc_got_off_arg {
9247 bfd_vma gotoff;
9248 unsigned int got_elt_size;
9249};
9250
9251/* We need a special top-level link routine to convert got reference counts
9252 to real got offsets. */
9253
9254static bfd_boolean
9255elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9256{
9257 struct alloc_got_off_arg *gofarg = arg;
9258
9259 if (h->root.type == bfd_link_hash_warning)
9260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9261
9262 if (h->got.refcount > 0)
9263 {
9264 h->got.offset = gofarg->gotoff;
9265 gofarg->gotoff += gofarg->got_elt_size;
9266 }
9267 else
9268 h->got.offset = (bfd_vma) -1;
9269
9270 return TRUE;
9271}
9272
9273/* And an accompanying bit to work out final got entry offsets once
9274 we're done. Should be called from final_link. */
9275
9276bfd_boolean
9277bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9278 struct bfd_link_info *info)
9279{
9280 bfd *i;
9281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9282 bfd_vma gotoff;
9283 unsigned int got_elt_size = bed->s->arch_size / 8;
9284 struct alloc_got_off_arg gofarg;
9285
9286 if (! is_elf_hash_table (info->hash))
9287 return FALSE;
9288
9289 /* The GOT offset is relative to the .got section, but the GOT header is
9290 put into the .got.plt section, if the backend uses it. */
9291 if (bed->want_got_plt)
9292 gotoff = 0;
9293 else
9294 gotoff = bed->got_header_size;
9295
9296 /* Do the local .got entries first. */
9297 for (i = info->input_bfds; i; i = i->link_next)
9298 {
9299 bfd_signed_vma *local_got;
9300 bfd_size_type j, locsymcount;
9301 Elf_Internal_Shdr *symtab_hdr;
9302
9303 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9304 continue;
9305
9306 local_got = elf_local_got_refcounts (i);
9307 if (!local_got)
9308 continue;
9309
9310 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9311 if (elf_bad_symtab (i))
9312 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9313 else
9314 locsymcount = symtab_hdr->sh_info;
9315
9316 for (j = 0; j < locsymcount; ++j)
9317 {
9318 if (local_got[j] > 0)
9319 {
9320 local_got[j] = gotoff;
9321 gotoff += got_elt_size;
9322 }
9323 else
9324 local_got[j] = (bfd_vma) -1;
9325 }
9326 }
9327
9328 /* Then the global .got entries. .plt refcounts are handled by
9329 adjust_dynamic_symbol */
9330 gofarg.gotoff = gotoff;
9331 gofarg.got_elt_size = got_elt_size;
9332 elf_link_hash_traverse (elf_hash_table (info),
9333 elf_gc_allocate_got_offsets,
9334 &gofarg);
9335 return TRUE;
9336}
9337
9338/* Many folk need no more in the way of final link than this, once
9339 got entry reference counting is enabled. */
9340
9341bfd_boolean
9342bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9343{
9344 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9345 return FALSE;
9346
9347 /* Invoke the regular ELF backend linker to do all the work. */
9348 return bfd_elf_final_link (abfd, info);
9349}
9350
9351bfd_boolean
9352bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9353{
9354 struct elf_reloc_cookie *rcookie = cookie;
9355
9356 if (rcookie->bad_symtab)
9357 rcookie->rel = rcookie->rels;
9358
9359 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9360 {
9361 unsigned long r_symndx;
9362
9363 if (! rcookie->bad_symtab)
9364 if (rcookie->rel->r_offset > offset)
9365 return FALSE;
9366 if (rcookie->rel->r_offset != offset)
9367 continue;
9368
9369 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9370 if (r_symndx == SHN_UNDEF)
9371 return TRUE;
9372
9373 if (r_symndx >= rcookie->locsymcount
9374 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9375 {
9376 struct elf_link_hash_entry *h;
9377
9378 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9379
9380 while (h->root.type == bfd_link_hash_indirect
9381 || h->root.type == bfd_link_hash_warning)
9382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9383
9384 if ((h->root.type == bfd_link_hash_defined
9385 || h->root.type == bfd_link_hash_defweak)
9386 && elf_discarded_section (h->root.u.def.section))
9387 return TRUE;
9388 else
9389 return FALSE;
9390 }
9391 else
9392 {
9393 /* It's not a relocation against a global symbol,
9394 but it could be a relocation against a local
9395 symbol for a discarded section. */
9396 asection *isec;
9397 Elf_Internal_Sym *isym;
9398
9399 /* Need to: get the symbol; get the section. */
9400 isym = &rcookie->locsyms[r_symndx];
9401 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9402 {
9403 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9404 if (isec != NULL && elf_discarded_section (isec))
9405 return TRUE;
9406 }
9407 }
9408 return FALSE;
9409 }
9410 return FALSE;
9411}
9412
9413/* Discard unneeded references to discarded sections.
9414 Returns TRUE if any section's size was changed. */
9415/* This function assumes that the relocations are in sorted order,
9416 which is true for all known assemblers. */
9417
9418bfd_boolean
9419bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9420{
9421 struct elf_reloc_cookie cookie;
9422 asection *stab, *eh;
9423 Elf_Internal_Shdr *symtab_hdr;
9424 const struct elf_backend_data *bed;
9425 bfd *abfd;
9426 unsigned int count;
9427 bfd_boolean ret = FALSE;
9428
9429 if (info->traditional_format
9430 || !is_elf_hash_table (info->hash))
9431 return FALSE;
9432
9433 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9434 {
9435 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9436 continue;
9437
9438 bed = get_elf_backend_data (abfd);
9439
9440 if ((abfd->flags & DYNAMIC) != 0)
9441 continue;
9442
9443 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9444 if (info->relocatable
9445 || (eh != NULL
eea6121a 9446 && (eh->size == 0
c152c796
AM
9447 || bfd_is_abs_section (eh->output_section))))
9448 eh = NULL;
9449
9450 stab = bfd_get_section_by_name (abfd, ".stab");
9451 if (stab != NULL
eea6121a 9452 && (stab->size == 0
c152c796
AM
9453 || bfd_is_abs_section (stab->output_section)
9454 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9455 stab = NULL;
9456
9457 if (stab == NULL
9458 && eh == NULL
9459 && bed->elf_backend_discard_info == NULL)
9460 continue;
9461
9462 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9463 cookie.abfd = abfd;
9464 cookie.sym_hashes = elf_sym_hashes (abfd);
9465 cookie.bad_symtab = elf_bad_symtab (abfd);
9466 if (cookie.bad_symtab)
9467 {
9468 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9469 cookie.extsymoff = 0;
9470 }
9471 else
9472 {
9473 cookie.locsymcount = symtab_hdr->sh_info;
9474 cookie.extsymoff = symtab_hdr->sh_info;
9475 }
9476
9477 if (bed->s->arch_size == 32)
9478 cookie.r_sym_shift = 8;
9479 else
9480 cookie.r_sym_shift = 32;
9481
9482 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9483 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9484 {
9485 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9486 cookie.locsymcount, 0,
9487 NULL, NULL, NULL);
9488 if (cookie.locsyms == NULL)
9489 return FALSE;
9490 }
9491
9492 if (stab != NULL)
9493 {
9494 cookie.rels = NULL;
9495 count = stab->reloc_count;
9496 if (count != 0)
9497 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9498 info->keep_memory);
9499 if (cookie.rels != NULL)
9500 {
9501 cookie.rel = cookie.rels;
9502 cookie.relend = cookie.rels;
9503 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9504 if (_bfd_discard_section_stabs (abfd, stab,
9505 elf_section_data (stab)->sec_info,
9506 bfd_elf_reloc_symbol_deleted_p,
9507 &cookie))
9508 ret = TRUE;
9509 if (elf_section_data (stab)->relocs != cookie.rels)
9510 free (cookie.rels);
9511 }
9512 }
9513
9514 if (eh != NULL)
9515 {
9516 cookie.rels = NULL;
9517 count = eh->reloc_count;
9518 if (count != 0)
9519 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9520 info->keep_memory);
9521 cookie.rel = cookie.rels;
9522 cookie.relend = cookie.rels;
9523 if (cookie.rels != NULL)
9524 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9525
9526 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9527 bfd_elf_reloc_symbol_deleted_p,
9528 &cookie))
9529 ret = TRUE;
9530
9531 if (cookie.rels != NULL
9532 && elf_section_data (eh)->relocs != cookie.rels)
9533 free (cookie.rels);
9534 }
9535
9536 if (bed->elf_backend_discard_info != NULL
9537 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9538 ret = TRUE;
9539
9540 if (cookie.locsyms != NULL
9541 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9542 {
9543 if (! info->keep_memory)
9544 free (cookie.locsyms);
9545 else
9546 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9547 }
9548 }
9549
9550 if (info->eh_frame_hdr
9551 && !info->relocatable
9552 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9553 ret = TRUE;
9554
9555 return ret;
9556}
082b7297
L
9557
9558void
9559_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9560{
9561 flagword flags;
6d2cd210 9562 const char *name, *p;
082b7297
L
9563 struct bfd_section_already_linked *l;
9564 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9565 asection *group;
9566
9567 /* A single member comdat group section may be discarded by a
9568 linkonce section. See below. */
9569 if (sec->output_section == bfd_abs_section_ptr)
9570 return;
082b7297
L
9571
9572 flags = sec->flags;
3d7f7666
L
9573
9574 /* Check if it belongs to a section group. */
9575 group = elf_sec_group (sec);
9576
9577 /* Return if it isn't a linkonce section nor a member of a group. A
9578 comdat group section also has SEC_LINK_ONCE set. */
9579 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9580 return;
9581
3d7f7666
L
9582 if (group)
9583 {
9584 /* If this is the member of a single member comdat group, check if
9585 the group should be discarded. */
9586 if (elf_next_in_group (sec) == sec
9587 && (group->flags & SEC_LINK_ONCE) != 0)
9588 sec = group;
9589 else
9590 return;
9591 }
9592
082b7297
L
9593 /* FIXME: When doing a relocatable link, we may have trouble
9594 copying relocations in other sections that refer to local symbols
9595 in the section being discarded. Those relocations will have to
9596 be converted somehow; as of this writing I'm not sure that any of
9597 the backends handle that correctly.
9598
9599 It is tempting to instead not discard link once sections when
9600 doing a relocatable link (technically, they should be discarded
9601 whenever we are building constructors). However, that fails,
9602 because the linker winds up combining all the link once sections
9603 into a single large link once section, which defeats the purpose
9604 of having link once sections in the first place.
9605
9606 Also, not merging link once sections in a relocatable link
9607 causes trouble for MIPS ELF, which relies on link once semantics
9608 to handle the .reginfo section correctly. */
9609
9610 name = bfd_get_section_name (abfd, sec);
9611
6d2cd210
JJ
9612 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9613 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9614 p++;
9615 else
9616 p = name;
9617
9618 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9619
9620 for (l = already_linked_list->entry; l != NULL; l = l->next)
9621 {
9622 /* We may have 3 different sections on the list: group section,
9623 comdat section and linkonce section. SEC may be a linkonce or
9624 group section. We match a group section with a group section,
9625 a linkonce section with a linkonce section, and ignore comdat
9626 section. */
3d7f7666 9627 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9628 && strcmp (name, l->sec->name) == 0
082b7297
L
9629 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9630 {
9631 /* The section has already been linked. See if we should
6d2cd210 9632 issue a warning. */
082b7297
L
9633 switch (flags & SEC_LINK_DUPLICATES)
9634 {
9635 default:
9636 abort ();
9637
9638 case SEC_LINK_DUPLICATES_DISCARD:
9639 break;
9640
9641 case SEC_LINK_DUPLICATES_ONE_ONLY:
9642 (*_bfd_error_handler)
d003868e
AM
9643 (_("%B: ignoring duplicate section `%A'\n"),
9644 abfd, sec);
082b7297
L
9645 break;
9646
9647 case SEC_LINK_DUPLICATES_SAME_SIZE:
9648 if (sec->size != l->sec->size)
9649 (*_bfd_error_handler)
d003868e
AM
9650 (_("%B: duplicate section `%A' has different size\n"),
9651 abfd, sec);
082b7297 9652 break;
ea5158d8
DJ
9653
9654 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9655 if (sec->size != l->sec->size)
9656 (*_bfd_error_handler)
9657 (_("%B: duplicate section `%A' has different size\n"),
9658 abfd, sec);
9659 else if (sec->size != 0)
9660 {
9661 bfd_byte *sec_contents, *l_sec_contents;
9662
9663 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9664 (*_bfd_error_handler)
9665 (_("%B: warning: could not read contents of section `%A'\n"),
9666 abfd, sec);
9667 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9668 &l_sec_contents))
9669 (*_bfd_error_handler)
9670 (_("%B: warning: could not read contents of section `%A'\n"),
9671 l->sec->owner, l->sec);
9672 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9673 (*_bfd_error_handler)
9674 (_("%B: warning: duplicate section `%A' has different contents\n"),
9675 abfd, sec);
9676
9677 if (sec_contents)
9678 free (sec_contents);
9679 if (l_sec_contents)
9680 free (l_sec_contents);
9681 }
9682 break;
082b7297
L
9683 }
9684
9685 /* Set the output_section field so that lang_add_section
9686 does not create a lang_input_section structure for this
9687 section. Since there might be a symbol in the section
9688 being discarded, we must retain a pointer to the section
9689 which we are really going to use. */
9690 sec->output_section = bfd_abs_section_ptr;
9691 sec->kept_section = l->sec;
9692
9693 if (flags & SEC_GROUP)
3d7f7666
L
9694 {
9695 asection *first = elf_next_in_group (sec);
9696 asection *s = first;
9697
9698 while (s != NULL)
9699 {
9700 s->output_section = bfd_abs_section_ptr;
9701 /* Record which group discards it. */
9702 s->kept_section = l->sec;
9703 s = elf_next_in_group (s);
9704 /* These lists are circular. */
9705 if (s == first)
9706 break;
9707 }
9708 }
082b7297
L
9709
9710 return;
9711 }
9712 }
9713
3d7f7666
L
9714 if (group)
9715 {
9716 /* If this is the member of a single member comdat group and the
9717 group hasn't be discarded, we check if it matches a linkonce
9718 section. We only record the discarded comdat group. Otherwise
9719 the undiscarded group will be discarded incorrectly later since
9720 itself has been recorded. */
6d2cd210
JJ
9721 for (l = already_linked_list->entry; l != NULL; l = l->next)
9722 if ((l->sec->flags & SEC_GROUP) == 0
9723 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9724 && bfd_elf_match_symbols_in_sections (l->sec,
9725 elf_next_in_group (sec)))
9726 {
9727 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9728 elf_next_in_group (sec)->kept_section = l->sec;
9729 group->output_section = bfd_abs_section_ptr;
9730 break;
9731 }
9732 if (l == NULL)
3d7f7666
L
9733 return;
9734 }
9735 else
9736 /* There is no direct match. But for linkonce section, we should
9737 check if there is a match with comdat group member. We always
9738 record the linkonce section, discarded or not. */
6d2cd210
JJ
9739 for (l = already_linked_list->entry; l != NULL; l = l->next)
9740 if (l->sec->flags & SEC_GROUP)
9741 {
9742 asection *first = elf_next_in_group (l->sec);
9743
9744 if (first != NULL
9745 && elf_next_in_group (first) == first
9746 && bfd_elf_match_symbols_in_sections (first, sec))
9747 {
9748 sec->output_section = bfd_abs_section_ptr;
9749 sec->kept_section = l->sec;
9750 break;
9751 }
9752 }
9753
082b7297
L
9754 /* This is the first section with this name. Record it. */
9755 bfd_section_already_linked_table_insert (already_linked_list, sec);
9756}
This page took 0.753569 seconds and 4 git commands to generate.