Fix spelling typo in comment
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
e5a52504 60 flags = bed->dynamic_sec_flags;
252b5132 61
3496cb2a 62 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 63 if (s == NULL
252b5132 64 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 65 return FALSE;
252b5132
RH
66
67 if (bed->want_got_plt)
68 {
3496cb2a 69 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 70 if (s == NULL
252b5132 71 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 72 return FALSE;
252b5132
RH
73 }
74
2517a57f
AM
75 if (bed->want_got_sym)
76 {
77 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
78 (or .got.plt) section. We don't do this in the linker script
79 because we don't want to define the symbol if we are not creating
80 a global offset table. */
14a793b2 81 bh = NULL;
2517a57f
AM
82 if (!(_bfd_generic_link_add_one_symbol
83 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3b36f7e6 84 0, NULL, FALSE, bed->collect, &bh)))
b34976b6 85 return FALSE;
14a793b2 86 h = (struct elf_link_hash_entry *) bh;
f5385ebf 87 h->def_regular = 1;
2517a57f 88 h->type = STT_OBJECT;
e6857c0c 89 h->other = STV_HIDDEN;
252b5132 90
36af4a4e 91 if (! info->executable
c152c796 92 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 93 return FALSE;
252b5132 94
2517a57f
AM
95 elf_hash_table (info)->hgot = h;
96 }
252b5132
RH
97
98 /* The first bit of the global offset table is the header. */
3b36f7e6 99 s->size += bed->got_header_size;
252b5132 100
b34976b6 101 return TRUE;
252b5132
RH
102}
103\f
7e9f0867
AM
104/* Create a strtab to hold the dynamic symbol names. */
105static bfd_boolean
106_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
107{
108 struct elf_link_hash_table *hash_table;
109
110 hash_table = elf_hash_table (info);
111 if (hash_table->dynobj == NULL)
112 hash_table->dynobj = abfd;
113
114 if (hash_table->dynstr == NULL)
115 {
116 hash_table->dynstr = _bfd_elf_strtab_init ();
117 if (hash_table->dynstr == NULL)
118 return FALSE;
119 }
120 return TRUE;
121}
122
45d6a902
AM
123/* Create some sections which will be filled in with dynamic linking
124 information. ABFD is an input file which requires dynamic sections
125 to be created. The dynamic sections take up virtual memory space
126 when the final executable is run, so we need to create them before
127 addresses are assigned to the output sections. We work out the
128 actual contents and size of these sections later. */
252b5132 129
b34976b6 130bfd_boolean
268b6b39 131_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 132{
45d6a902
AM
133 flagword flags;
134 register asection *s;
135 struct elf_link_hash_entry *h;
136 struct bfd_link_hash_entry *bh;
9c5bfbb7 137 const struct elf_backend_data *bed;
252b5132 138
0eddce27 139 if (! is_elf_hash_table (info->hash))
45d6a902
AM
140 return FALSE;
141
142 if (elf_hash_table (info)->dynamic_sections_created)
143 return TRUE;
144
7e9f0867
AM
145 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
146 return FALSE;
45d6a902 147
7e9f0867 148 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
149 bed = get_elf_backend_data (abfd);
150
151 flags = bed->dynamic_sec_flags;
45d6a902
AM
152
153 /* A dynamically linked executable has a .interp section, but a
154 shared library does not. */
36af4a4e 155 if (info->executable)
252b5132 156 {
3496cb2a
L
157 s = bfd_make_section_with_flags (abfd, ".interp",
158 flags | SEC_READONLY);
159 if (s == NULL)
45d6a902
AM
160 return FALSE;
161 }
bb0deeff 162
0eddce27 163 if (! info->traditional_format)
45d6a902 164 {
3496cb2a
L
165 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
166 flags | SEC_READONLY);
45d6a902 167 if (s == NULL
45d6a902
AM
168 || ! bfd_set_section_alignment (abfd, s, 2))
169 return FALSE;
170 elf_hash_table (info)->eh_info.hdr_sec = s;
171 }
bb0deeff 172
45d6a902
AM
173 /* Create sections to hold version informations. These are removed
174 if they are not needed. */
3496cb2a
L
175 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
176 flags | SEC_READONLY);
45d6a902 177 if (s == NULL
45d6a902
AM
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
3496cb2a
L
181 s = bfd_make_section_with_flags (abfd, ".gnu.version",
182 flags | SEC_READONLY);
45d6a902 183 if (s == NULL
45d6a902
AM
184 || ! bfd_set_section_alignment (abfd, s, 1))
185 return FALSE;
186
3496cb2a
L
187 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
188 flags | SEC_READONLY);
45d6a902 189 if (s == NULL
45d6a902
AM
190 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
191 return FALSE;
192
3496cb2a
L
193 s = bfd_make_section_with_flags (abfd, ".dynsym",
194 flags | SEC_READONLY);
45d6a902 195 if (s == NULL
45d6a902
AM
196 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
197 return FALSE;
198
3496cb2a
L
199 s = bfd_make_section_with_flags (abfd, ".dynstr",
200 flags | SEC_READONLY);
201 if (s == NULL)
45d6a902
AM
202 return FALSE;
203
3496cb2a 204 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 205 if (s == NULL
45d6a902
AM
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
210 .dynamic section. We could set _DYNAMIC in a linker script, but we
211 only want to define it if we are, in fact, creating a .dynamic
212 section. We don't want to define it if there is no .dynamic
213 section, since on some ELF platforms the start up code examines it
214 to decide how to initialize the process. */
215 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
216 FALSE, FALSE, FALSE);
217 if (h != NULL)
218 {
219 /* Zap symbol defined in an as-needed lib that wasn't linked.
220 This is a symptom of a larger problem: Absolute symbols
221 defined in shared libraries can't be overridden, because we
222 lose the link to the bfd which is via the symbol section. */
223 h->root.type = bfd_link_hash_new;
224 }
225 bh = &h->root;
45d6a902 226 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
227 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
228 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
229 return FALSE;
230 h = (struct elf_link_hash_entry *) bh;
f5385ebf 231 h->def_regular = 1;
45d6a902
AM
232 h->type = STT_OBJECT;
233
36af4a4e 234 if (! info->executable
c152c796 235 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
236 return FALSE;
237
3496cb2a
L
238 s = bfd_make_section_with_flags (abfd, ".hash",
239 flags | SEC_READONLY);
45d6a902 240 if (s == NULL
45d6a902
AM
241 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 return FALSE;
243 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
244
245 /* Let the backend create the rest of the sections. This lets the
246 backend set the right flags. The backend will normally create
247 the .got and .plt sections. */
248 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
249 return FALSE;
250
251 elf_hash_table (info)->dynamic_sections_created = TRUE;
252
253 return TRUE;
254}
255
256/* Create dynamic sections when linking against a dynamic object. */
257
258bfd_boolean
268b6b39 259_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
260{
261 flagword flags, pltflags;
262 asection *s;
9c5bfbb7 263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 264
252b5132
RH
265 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
266 .rel[a].bss sections. */
e5a52504 267 flags = bed->dynamic_sec_flags;
252b5132
RH
268
269 pltflags = flags;
252b5132 270 if (bed->plt_not_loaded)
6df4d94c
MM
271 /* We do not clear SEC_ALLOC here because we still want the OS to
272 allocate space for the section; it's just that there's nothing
273 to read in from the object file. */
5d1634d7 274 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
275 else
276 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
277 if (bed->plt_readonly)
278 pltflags |= SEC_READONLY;
279
3496cb2a 280 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 281 if (s == NULL
252b5132 282 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 283 return FALSE;
252b5132
RH
284
285 if (bed->want_plt_sym)
286 {
287 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
288 .plt section. */
14a793b2
AM
289 struct elf_link_hash_entry *h;
290 struct bfd_link_hash_entry *bh = NULL;
291
252b5132 292 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
293 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
294 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 295 return FALSE;
14a793b2 296 h = (struct elf_link_hash_entry *) bh;
f5385ebf 297 h->def_regular = 1;
252b5132
RH
298 h->type = STT_OBJECT;
299
36af4a4e 300 if (! info->executable
c152c796 301 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 302 return FALSE;
252b5132
RH
303 }
304
3496cb2a
L
305 s = bfd_make_section_with_flags (abfd,
306 (bed->default_use_rela_p
307 ? ".rela.plt" : ".rel.plt"),
308 flags | SEC_READONLY);
252b5132 309 if (s == NULL
45d6a902 310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 311 return FALSE;
252b5132
RH
312
313 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 314 return FALSE;
252b5132 315
3018b441
RH
316 if (bed->want_dynbss)
317 {
318 /* The .dynbss section is a place to put symbols which are defined
319 by dynamic objects, are referenced by regular objects, and are
320 not functions. We must allocate space for them in the process
321 image and use a R_*_COPY reloc to tell the dynamic linker to
322 initialize them at run time. The linker script puts the .dynbss
323 section into the .bss section of the final image. */
3496cb2a
L
324 s = bfd_make_section_with_flags (abfd, ".dynbss",
325 (SEC_ALLOC
326 | SEC_LINKER_CREATED));
327 if (s == NULL)
b34976b6 328 return FALSE;
252b5132 329
3018b441 330 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
331 normally needed. We need to create it here, though, so that the
332 linker will map it to an output section. We can't just create it
333 only if we need it, because we will not know whether we need it
334 until we have seen all the input files, and the first time the
335 main linker code calls BFD after examining all the input files
336 (size_dynamic_sections) the input sections have already been
337 mapped to the output sections. If the section turns out not to
338 be needed, we can discard it later. We will never need this
339 section when generating a shared object, since they do not use
340 copy relocs. */
3018b441
RH
341 if (! info->shared)
342 {
3496cb2a
L
343 s = bfd_make_section_with_flags (abfd,
344 (bed->default_use_rela_p
345 ? ".rela.bss" : ".rel.bss"),
346 flags | SEC_READONLY);
3018b441 347 if (s == NULL
45d6a902 348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 349 return FALSE;
3018b441 350 }
252b5132
RH
351 }
352
b34976b6 353 return TRUE;
252b5132
RH
354}
355\f
252b5132
RH
356/* Record a new dynamic symbol. We record the dynamic symbols as we
357 read the input files, since we need to have a list of all of them
358 before we can determine the final sizes of the output sections.
359 Note that we may actually call this function even though we are not
360 going to output any dynamic symbols; in some cases we know that a
361 symbol should be in the dynamic symbol table, but only if there is
362 one. */
363
b34976b6 364bfd_boolean
c152c796
AM
365bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
366 struct elf_link_hash_entry *h)
252b5132
RH
367{
368 if (h->dynindx == -1)
369 {
2b0f7ef9 370 struct elf_strtab_hash *dynstr;
68b6ddd0 371 char *p;
252b5132 372 const char *name;
252b5132
RH
373 bfd_size_type indx;
374
7a13edea
NC
375 /* XXX: The ABI draft says the linker must turn hidden and
376 internal symbols into STB_LOCAL symbols when producing the
377 DSO. However, if ld.so honors st_other in the dynamic table,
378 this would not be necessary. */
379 switch (ELF_ST_VISIBILITY (h->other))
380 {
381 case STV_INTERNAL:
382 case STV_HIDDEN:
9d6eee78
L
383 if (h->root.type != bfd_link_hash_undefined
384 && h->root.type != bfd_link_hash_undefweak)
38048eb9 385 {
f5385ebf 386 h->forced_local = 1;
67687978
PB
387 if (!elf_hash_table (info)->is_relocatable_executable)
388 return TRUE;
7a13edea 389 }
0444bdd4 390
7a13edea
NC
391 default:
392 break;
393 }
394
252b5132
RH
395 h->dynindx = elf_hash_table (info)->dynsymcount;
396 ++elf_hash_table (info)->dynsymcount;
397
398 dynstr = elf_hash_table (info)->dynstr;
399 if (dynstr == NULL)
400 {
401 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 402 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 403 if (dynstr == NULL)
b34976b6 404 return FALSE;
252b5132
RH
405 }
406
407 /* We don't put any version information in the dynamic string
aad5d350 408 table. */
252b5132
RH
409 name = h->root.root.string;
410 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
411 if (p != NULL)
412 /* We know that the p points into writable memory. In fact,
413 there are only a few symbols that have read-only names, being
414 those like _GLOBAL_OFFSET_TABLE_ that are created specially
415 by the backends. Most symbols will have names pointing into
416 an ELF string table read from a file, or to objalloc memory. */
417 *p = 0;
418
419 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
420
421 if (p != NULL)
422 *p = ELF_VER_CHR;
252b5132
RH
423
424 if (indx == (bfd_size_type) -1)
b34976b6 425 return FALSE;
252b5132
RH
426 h->dynstr_index = indx;
427 }
428
b34976b6 429 return TRUE;
252b5132 430}
45d6a902
AM
431\f
432/* Record an assignment to a symbol made by a linker script. We need
433 this in case some dynamic object refers to this symbol. */
434
435bfd_boolean
268b6b39
AM
436bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
437 struct bfd_link_info *info,
438 const char *name,
439 bfd_boolean provide)
45d6a902
AM
440{
441 struct elf_link_hash_entry *h;
4ea42fb7 442 struct elf_link_hash_table *htab;
45d6a902 443
0eddce27 444 if (!is_elf_hash_table (info->hash))
45d6a902
AM
445 return TRUE;
446
4ea42fb7
AM
447 htab = elf_hash_table (info);
448 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 449 if (h == NULL)
4ea42fb7 450 return provide;
45d6a902 451
02bb6eae
AO
452 /* Since we're defining the symbol, don't let it seem to have not
453 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 454 may depend on this. */
02bb6eae
AO
455 if (h->root.type == bfd_link_hash_undefweak
456 || h->root.type == bfd_link_hash_undefined)
77cfaee6 457 {
4ea42fb7 458 h->root.type = bfd_link_hash_new;
77cfaee6
AM
459 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
460 bfd_link_repair_undef_list (&htab->root);
77cfaee6 461 }
02bb6eae 462
45d6a902 463 if (h->root.type == bfd_link_hash_new)
f5385ebf 464 h->non_elf = 0;
45d6a902
AM
465
466 /* If this symbol is being provided by the linker script, and it is
467 currently defined by a dynamic object, but not by a regular
468 object, then mark it as undefined so that the generic linker will
469 force the correct value. */
470 if (provide
f5385ebf
AM
471 && h->def_dynamic
472 && !h->def_regular)
45d6a902
AM
473 h->root.type = bfd_link_hash_undefined;
474
475 /* If this symbol is not being provided by the linker script, and it is
476 currently defined by a dynamic object, but not by a regular object,
477 then clear out any version information because the symbol will not be
478 associated with the dynamic object any more. */
479 if (!provide
f5385ebf
AM
480 && h->def_dynamic
481 && !h->def_regular)
45d6a902
AM
482 h->verinfo.verdef = NULL;
483
f5385ebf 484 h->def_regular = 1;
45d6a902 485
6fa3860b
PB
486 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
487 and executables. */
488 if (!info->relocatable
489 && h->dynindx != -1
490 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
491 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
492 h->forced_local = 1;
493
f5385ebf
AM
494 if ((h->def_dynamic
495 || h->ref_dynamic
67687978
PB
496 || info->shared
497 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
498 && h->dynindx == -1)
499 {
c152c796 500 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
501 return FALSE;
502
503 /* If this is a weak defined symbol, and we know a corresponding
504 real symbol from the same dynamic object, make sure the real
505 symbol is also made into a dynamic symbol. */
f6e332e6
AM
506 if (h->u.weakdef != NULL
507 && h->u.weakdef->dynindx == -1)
45d6a902 508 {
f6e332e6 509 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
510 return FALSE;
511 }
512 }
513
514 return TRUE;
515}
42751cf3 516
8c58d23b
AM
517/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
518 success, and 2 on a failure caused by attempting to record a symbol
519 in a discarded section, eg. a discarded link-once section symbol. */
520
521int
c152c796
AM
522bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
523 bfd *input_bfd,
524 long input_indx)
8c58d23b
AM
525{
526 bfd_size_type amt;
527 struct elf_link_local_dynamic_entry *entry;
528 struct elf_link_hash_table *eht;
529 struct elf_strtab_hash *dynstr;
530 unsigned long dynstr_index;
531 char *name;
532 Elf_External_Sym_Shndx eshndx;
533 char esym[sizeof (Elf64_External_Sym)];
534
0eddce27 535 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
536 return 0;
537
538 /* See if the entry exists already. */
539 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
540 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
541 return 1;
542
543 amt = sizeof (*entry);
268b6b39 544 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
545 if (entry == NULL)
546 return 0;
547
548 /* Go find the symbol, so that we can find it's name. */
549 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 550 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
551 {
552 bfd_release (input_bfd, entry);
553 return 0;
554 }
555
556 if (entry->isym.st_shndx != SHN_UNDEF
557 && (entry->isym.st_shndx < SHN_LORESERVE
558 || entry->isym.st_shndx > SHN_HIRESERVE))
559 {
560 asection *s;
561
562 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
563 if (s == NULL || bfd_is_abs_section (s->output_section))
564 {
565 /* We can still bfd_release here as nothing has done another
566 bfd_alloc. We can't do this later in this function. */
567 bfd_release (input_bfd, entry);
568 return 2;
569 }
570 }
571
572 name = (bfd_elf_string_from_elf_section
573 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
574 entry->isym.st_name));
575
576 dynstr = elf_hash_table (info)->dynstr;
577 if (dynstr == NULL)
578 {
579 /* Create a strtab to hold the dynamic symbol names. */
580 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
581 if (dynstr == NULL)
582 return 0;
583 }
584
b34976b6 585 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
586 if (dynstr_index == (unsigned long) -1)
587 return 0;
588 entry->isym.st_name = dynstr_index;
589
590 eht = elf_hash_table (info);
591
592 entry->next = eht->dynlocal;
593 eht->dynlocal = entry;
594 entry->input_bfd = input_bfd;
595 entry->input_indx = input_indx;
596 eht->dynsymcount++;
597
598 /* Whatever binding the symbol had before, it's now local. */
599 entry->isym.st_info
600 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
601
602 /* The dynindx will be set at the end of size_dynamic_sections. */
603
604 return 1;
605}
606
30b30c21 607/* Return the dynindex of a local dynamic symbol. */
42751cf3 608
30b30c21 609long
268b6b39
AM
610_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
611 bfd *input_bfd,
612 long input_indx)
30b30c21
RH
613{
614 struct elf_link_local_dynamic_entry *e;
615
616 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
617 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
618 return e->dynindx;
619 return -1;
620}
621
622/* This function is used to renumber the dynamic symbols, if some of
623 them are removed because they are marked as local. This is called
624 via elf_link_hash_traverse. */
625
b34976b6 626static bfd_boolean
268b6b39
AM
627elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
628 void *data)
42751cf3 629{
268b6b39 630 size_t *count = data;
30b30c21 631
e92d460e
AM
632 if (h->root.type == bfd_link_hash_warning)
633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
634
6fa3860b
PB
635 if (h->forced_local)
636 return TRUE;
637
638 if (h->dynindx != -1)
639 h->dynindx = ++(*count);
640
641 return TRUE;
642}
643
644
645/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
646 STB_LOCAL binding. */
647
648static bfd_boolean
649elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
650 void *data)
651{
652 size_t *count = data;
653
654 if (h->root.type == bfd_link_hash_warning)
655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
656
657 if (!h->forced_local)
658 return TRUE;
659
42751cf3 660 if (h->dynindx != -1)
30b30c21
RH
661 h->dynindx = ++(*count);
662
b34976b6 663 return TRUE;
42751cf3 664}
30b30c21 665
aee6f5b4
AO
666/* Return true if the dynamic symbol for a given section should be
667 omitted when creating a shared library. */
668bfd_boolean
669_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
670 struct bfd_link_info *info,
671 asection *p)
672{
673 switch (elf_section_data (p)->this_hdr.sh_type)
674 {
675 case SHT_PROGBITS:
676 case SHT_NOBITS:
677 /* If sh_type is yet undecided, assume it could be
678 SHT_PROGBITS/SHT_NOBITS. */
679 case SHT_NULL:
680 if (strcmp (p->name, ".got") == 0
681 || strcmp (p->name, ".got.plt") == 0
682 || strcmp (p->name, ".plt") == 0)
683 {
684 asection *ip;
685 bfd *dynobj = elf_hash_table (info)->dynobj;
686
687 if (dynobj != NULL
1da212d6 688 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
689 && (ip->flags & SEC_LINKER_CREATED)
690 && ip->output_section == p)
691 return TRUE;
692 }
693 return FALSE;
694
695 /* There shouldn't be section relative relocations
696 against any other section. */
697 default:
698 return TRUE;
699 }
700}
701
062e2358 702/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
703 symbol for each output section, which come first. Next come symbols
704 which have been forced to local binding. Then all of the back-end
705 allocated local dynamic syms, followed by the rest of the global
706 symbols. */
30b30c21 707
554220db
AM
708static unsigned long
709_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
710 struct bfd_link_info *info,
711 unsigned long *section_sym_count)
30b30c21
RH
712{
713 unsigned long dynsymcount = 0;
714
67687978 715 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 716 {
aee6f5b4 717 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
718 asection *p;
719 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 720 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
721 && (p->flags & SEC_ALLOC) != 0
722 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
723 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21 724 }
554220db 725 *section_sym_count = dynsymcount;
30b30c21 726
6fa3860b
PB
727 elf_link_hash_traverse (elf_hash_table (info),
728 elf_link_renumber_local_hash_table_dynsyms,
729 &dynsymcount);
730
30b30c21
RH
731 if (elf_hash_table (info)->dynlocal)
732 {
733 struct elf_link_local_dynamic_entry *p;
734 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
735 p->dynindx = ++dynsymcount;
736 }
737
738 elf_link_hash_traverse (elf_hash_table (info),
739 elf_link_renumber_hash_table_dynsyms,
740 &dynsymcount);
741
742 /* There is an unused NULL entry at the head of the table which
743 we must account for in our count. Unless there weren't any
744 symbols, which means we'll have no table at all. */
745 if (dynsymcount != 0)
746 ++dynsymcount;
747
748 return elf_hash_table (info)->dynsymcount = dynsymcount;
749}
252b5132 750
45d6a902
AM
751/* This function is called when we want to define a new symbol. It
752 handles the various cases which arise when we find a definition in
753 a dynamic object, or when there is already a definition in a
754 dynamic object. The new symbol is described by NAME, SYM, PSEC,
755 and PVALUE. We set SYM_HASH to the hash table entry. We set
756 OVERRIDE if the old symbol is overriding a new definition. We set
757 TYPE_CHANGE_OK if it is OK for the type to change. We set
758 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
759 change, we mean that we shouldn't warn if the type or size does
af44c138
L
760 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
761 object is overridden by a regular object. */
45d6a902
AM
762
763bfd_boolean
268b6b39
AM
764_bfd_elf_merge_symbol (bfd *abfd,
765 struct bfd_link_info *info,
766 const char *name,
767 Elf_Internal_Sym *sym,
768 asection **psec,
769 bfd_vma *pvalue,
af44c138 770 unsigned int *pold_alignment,
268b6b39
AM
771 struct elf_link_hash_entry **sym_hash,
772 bfd_boolean *skip,
773 bfd_boolean *override,
774 bfd_boolean *type_change_ok,
0f8a2703 775 bfd_boolean *size_change_ok)
252b5132 776{
7479dfd4 777 asection *sec, *oldsec;
45d6a902
AM
778 struct elf_link_hash_entry *h;
779 struct elf_link_hash_entry *flip;
780 int bind;
781 bfd *oldbfd;
782 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 783 bfd_boolean newweak, oldweak;
45d6a902
AM
784
785 *skip = FALSE;
786 *override = FALSE;
787
788 sec = *psec;
789 bind = ELF_ST_BIND (sym->st_info);
790
791 if (! bfd_is_und_section (sec))
792 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
793 else
794 h = ((struct elf_link_hash_entry *)
795 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
796 if (h == NULL)
797 return FALSE;
798 *sym_hash = h;
252b5132 799
45d6a902
AM
800 /* This code is for coping with dynamic objects, and is only useful
801 if we are doing an ELF link. */
802 if (info->hash->creator != abfd->xvec)
803 return TRUE;
252b5132 804
45d6a902
AM
805 /* For merging, we only care about real symbols. */
806
807 while (h->root.type == bfd_link_hash_indirect
808 || h->root.type == bfd_link_hash_warning)
809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
810
811 /* If we just created the symbol, mark it as being an ELF symbol.
812 Other than that, there is nothing to do--there is no merge issue
813 with a newly defined symbol--so we just return. */
814
815 if (h->root.type == bfd_link_hash_new)
252b5132 816 {
f5385ebf 817 h->non_elf = 0;
45d6a902
AM
818 return TRUE;
819 }
252b5132 820
7479dfd4
L
821 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
822 existing symbol. */
252b5132 823
45d6a902
AM
824 switch (h->root.type)
825 {
826 default:
827 oldbfd = NULL;
7479dfd4 828 oldsec = NULL;
45d6a902 829 break;
252b5132 830
45d6a902
AM
831 case bfd_link_hash_undefined:
832 case bfd_link_hash_undefweak:
833 oldbfd = h->root.u.undef.abfd;
7479dfd4 834 oldsec = NULL;
45d6a902
AM
835 break;
836
837 case bfd_link_hash_defined:
838 case bfd_link_hash_defweak:
839 oldbfd = h->root.u.def.section->owner;
7479dfd4 840 oldsec = h->root.u.def.section;
45d6a902
AM
841 break;
842
843 case bfd_link_hash_common:
844 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 845 oldsec = h->root.u.c.p->section;
45d6a902
AM
846 break;
847 }
848
849 /* In cases involving weak versioned symbols, we may wind up trying
850 to merge a symbol with itself. Catch that here, to avoid the
851 confusion that results if we try to override a symbol with
852 itself. The additional tests catch cases like
853 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
854 dynamic object, which we do want to handle here. */
855 if (abfd == oldbfd
856 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 857 || !h->def_regular))
45d6a902
AM
858 return TRUE;
859
860 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
861 respectively, is from a dynamic object. */
862
863 if ((abfd->flags & DYNAMIC) != 0)
864 newdyn = TRUE;
865 else
866 newdyn = FALSE;
867
868 if (oldbfd != NULL)
869 olddyn = (oldbfd->flags & DYNAMIC) != 0;
870 else
871 {
872 asection *hsec;
873
874 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
875 indices used by MIPS ELF. */
876 switch (h->root.type)
252b5132 877 {
45d6a902
AM
878 default:
879 hsec = NULL;
880 break;
252b5132 881
45d6a902
AM
882 case bfd_link_hash_defined:
883 case bfd_link_hash_defweak:
884 hsec = h->root.u.def.section;
885 break;
252b5132 886
45d6a902
AM
887 case bfd_link_hash_common:
888 hsec = h->root.u.c.p->section;
889 break;
252b5132 890 }
252b5132 891
45d6a902
AM
892 if (hsec == NULL)
893 olddyn = FALSE;
894 else
895 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
896 }
252b5132 897
45d6a902
AM
898 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
899 respectively, appear to be a definition rather than reference. */
900
901 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
902 newdef = FALSE;
903 else
904 newdef = TRUE;
905
906 if (h->root.type == bfd_link_hash_undefined
907 || h->root.type == bfd_link_hash_undefweak
908 || h->root.type == bfd_link_hash_common)
909 olddef = FALSE;
910 else
911 olddef = TRUE;
912
7479dfd4
L
913 /* Check TLS symbol. */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type)
916 {
917 bfd *ntbfd, *tbfd;
918 bfd_boolean ntdef, tdef;
919 asection *ntsec, *tsec;
920
921 if (h->type == STT_TLS)
922 {
3b36f7e6 923 ntbfd = abfd;
7479dfd4
L
924 ntsec = sec;
925 ntdef = newdef;
926 tbfd = oldbfd;
927 tsec = oldsec;
928 tdef = olddef;
929 }
930 else
931 {
932 ntbfd = oldbfd;
933 ntsec = oldsec;
934 ntdef = olddef;
935 tbfd = abfd;
936 tsec = sec;
937 tdef = newdef;
938 }
939
940 if (tdef && ntdef)
941 (*_bfd_error_handler)
942 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
943 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
944 else if (!tdef && !ntdef)
945 (*_bfd_error_handler)
946 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
947 tbfd, ntbfd, h->root.root.string);
948 else if (tdef)
949 (*_bfd_error_handler)
950 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
951 tbfd, tsec, ntbfd, h->root.root.string);
952 else
953 (*_bfd_error_handler)
954 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
955 tbfd, ntbfd, ntsec, h->root.root.string);
956
957 bfd_set_error (bfd_error_bad_value);
958 return FALSE;
959 }
960
4cc11e76 961 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
962 object or is weak in all dynamic objects. Internal and hidden
963 visibility will make it unavailable to dynamic objects. */
f5385ebf 964 if (newdyn && !h->dynamic_def)
45d6a902
AM
965 {
966 if (!bfd_is_und_section (sec))
f5385ebf 967 h->dynamic_def = 1;
45d6a902 968 else
252b5132 969 {
45d6a902
AM
970 /* Check if this symbol is weak in all dynamic objects. If it
971 is the first time we see it in a dynamic object, we mark
972 if it is weak. Otherwise, we clear it. */
f5385ebf 973 if (!h->ref_dynamic)
79349b09 974 {
45d6a902 975 if (bind == STB_WEAK)
f5385ebf 976 h->dynamic_weak = 1;
252b5132 977 }
45d6a902 978 else if (bind != STB_WEAK)
f5385ebf 979 h->dynamic_weak = 0;
252b5132 980 }
45d6a902 981 }
252b5132 982
45d6a902
AM
983 /* If the old symbol has non-default visibility, we ignore the new
984 definition from a dynamic object. */
985 if (newdyn
9c7a29a3 986 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
987 && !bfd_is_und_section (sec))
988 {
989 *skip = TRUE;
990 /* Make sure this symbol is dynamic. */
f5385ebf 991 h->ref_dynamic = 1;
45d6a902
AM
992 /* A protected symbol has external availability. Make sure it is
993 recorded as dynamic.
994
995 FIXME: Should we check type and size for protected symbol? */
996 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 997 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
998 else
999 return TRUE;
1000 }
1001 else if (!newdyn
9c7a29a3 1002 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1003 && h->def_dynamic)
45d6a902
AM
1004 {
1005 /* If the new symbol with non-default visibility comes from a
1006 relocatable file and the old definition comes from a dynamic
1007 object, we remove the old definition. */
1008 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1009 h = *sym_hash;
1de1a317 1010
f6e332e6 1011 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1012 && bfd_is_und_section (sec))
1013 {
1014 /* If the new symbol is undefined and the old symbol was
1015 also undefined before, we need to make sure
1016 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1017 up the linker hash table undefs list. Since the old
1de1a317
L
1018 definition came from a dynamic object, it is still on the
1019 undefs list. */
1020 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1021 h->root.u.undef.abfd = abfd;
1022 }
1023 else
1024 {
1025 h->root.type = bfd_link_hash_new;
1026 h->root.u.undef.abfd = NULL;
1027 }
1028
f5385ebf 1029 if (h->def_dynamic)
252b5132 1030 {
f5385ebf
AM
1031 h->def_dynamic = 0;
1032 h->ref_dynamic = 1;
1033 h->dynamic_def = 1;
45d6a902
AM
1034 }
1035 /* FIXME: Should we check type and size for protected symbol? */
1036 h->size = 0;
1037 h->type = 0;
1038 return TRUE;
1039 }
14a793b2 1040
79349b09
AM
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1045
15b43f48
AM
1046 /* If a new weak symbol definition comes from a regular file and the
1047 old symbol comes from a dynamic library, we treat the new one as
1048 strong. Similarly, an old weak symbol definition from a regular
1049 file is treated as strong when the new symbol comes from a dynamic
1050 library. Further, an old weak symbol from a dynamic library is
1051 treated as strong if the new symbol is from a dynamic library.
1052 This reflects the way glibc's ld.so works.
1053
1054 Do this before setting *type_change_ok or *size_change_ok so that
1055 we warn properly when dynamic library symbols are overridden. */
1056
1057 if (newdef && !newdyn && olddyn)
0f8a2703 1058 newweak = FALSE;
15b43f48 1059 if (olddef && newdyn)
0f8a2703
AM
1060 oldweak = FALSE;
1061
79349b09
AM
1062 /* It's OK to change the type if either the existing symbol or the
1063 new symbol is weak. A type change is also OK if the old symbol
1064 is undefined and the new symbol is defined. */
252b5132 1065
79349b09
AM
1066 if (oldweak
1067 || newweak
1068 || (newdef
1069 && h->root.type == bfd_link_hash_undefined))
1070 *type_change_ok = TRUE;
1071
1072 /* It's OK to change the size if either the existing symbol or the
1073 new symbol is weak, or if the old symbol is undefined. */
1074
1075 if (*type_change_ok
1076 || h->root.type == bfd_link_hash_undefined)
1077 *size_change_ok = TRUE;
45d6a902 1078
45d6a902
AM
1079 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1080 symbol, respectively, appears to be a common symbol in a dynamic
1081 object. If a symbol appears in an uninitialized section, and is
1082 not weak, and is not a function, then it may be a common symbol
1083 which was resolved when the dynamic object was created. We want
1084 to treat such symbols specially, because they raise special
1085 considerations when setting the symbol size: if the symbol
1086 appears as a common symbol in a regular object, and the size in
1087 the regular object is larger, we must make sure that we use the
1088 larger size. This problematic case can always be avoided in C,
1089 but it must be handled correctly when using Fortran shared
1090 libraries.
1091
1092 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1093 likewise for OLDDYNCOMMON and OLDDEF.
1094
1095 Note that this test is just a heuristic, and that it is quite
1096 possible to have an uninitialized symbol in a shared object which
1097 is really a definition, rather than a common symbol. This could
1098 lead to some minor confusion when the symbol really is a common
1099 symbol in some regular object. However, I think it will be
1100 harmless. */
1101
1102 if (newdyn
1103 && newdef
79349b09 1104 && !newweak
45d6a902
AM
1105 && (sec->flags & SEC_ALLOC) != 0
1106 && (sec->flags & SEC_LOAD) == 0
1107 && sym->st_size > 0
45d6a902
AM
1108 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1109 newdyncommon = TRUE;
1110 else
1111 newdyncommon = FALSE;
1112
1113 if (olddyn
1114 && olddef
1115 && h->root.type == bfd_link_hash_defined
f5385ebf 1116 && h->def_dynamic
45d6a902
AM
1117 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1118 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1119 && h->size > 0
1120 && h->type != STT_FUNC)
1121 olddyncommon = TRUE;
1122 else
1123 olddyncommon = FALSE;
1124
45d6a902
AM
1125 /* If both the old and the new symbols look like common symbols in a
1126 dynamic object, set the size of the symbol to the larger of the
1127 two. */
1128
1129 if (olddyncommon
1130 && newdyncommon
1131 && sym->st_size != h->size)
1132 {
1133 /* Since we think we have two common symbols, issue a multiple
1134 common warning if desired. Note that we only warn if the
1135 size is different. If the size is the same, we simply let
1136 the old symbol override the new one as normally happens with
1137 symbols defined in dynamic objects. */
1138
1139 if (! ((*info->callbacks->multiple_common)
1140 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1141 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1142 return FALSE;
252b5132 1143
45d6a902
AM
1144 if (sym->st_size > h->size)
1145 h->size = sym->st_size;
252b5132 1146
45d6a902 1147 *size_change_ok = TRUE;
252b5132
RH
1148 }
1149
45d6a902
AM
1150 /* If we are looking at a dynamic object, and we have found a
1151 definition, we need to see if the symbol was already defined by
1152 some other object. If so, we want to use the existing
1153 definition, and we do not want to report a multiple symbol
1154 definition error; we do this by clobbering *PSEC to be
1155 bfd_und_section_ptr.
1156
1157 We treat a common symbol as a definition if the symbol in the
1158 shared library is a function, since common symbols always
1159 represent variables; this can cause confusion in principle, but
1160 any such confusion would seem to indicate an erroneous program or
1161 shared library. We also permit a common symbol in a regular
79349b09 1162 object to override a weak symbol in a shared object. */
45d6a902
AM
1163
1164 if (newdyn
1165 && newdef
77cfaee6 1166 && (olddef
45d6a902 1167 || (h->root.type == bfd_link_hash_common
79349b09 1168 && (newweak
0f8a2703 1169 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1170 {
1171 *override = TRUE;
1172 newdef = FALSE;
1173 newdyncommon = FALSE;
252b5132 1174
45d6a902
AM
1175 *psec = sec = bfd_und_section_ptr;
1176 *size_change_ok = TRUE;
252b5132 1177
45d6a902
AM
1178 /* If we get here when the old symbol is a common symbol, then
1179 we are explicitly letting it override a weak symbol or
1180 function in a dynamic object, and we don't want to warn about
1181 a type change. If the old symbol is a defined symbol, a type
1182 change warning may still be appropriate. */
252b5132 1183
45d6a902
AM
1184 if (h->root.type == bfd_link_hash_common)
1185 *type_change_ok = TRUE;
1186 }
1187
1188 /* Handle the special case of an old common symbol merging with a
1189 new symbol which looks like a common symbol in a shared object.
1190 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1191 common symbol, and let _bfd_generic_link_add_one_symbol do the
1192 right thing. */
45d6a902
AM
1193
1194 if (newdyncommon
1195 && h->root.type == bfd_link_hash_common)
1196 {
1197 *override = TRUE;
1198 newdef = FALSE;
1199 newdyncommon = FALSE;
1200 *pvalue = sym->st_size;
1201 *psec = sec = bfd_com_section_ptr;
1202 *size_change_ok = TRUE;
1203 }
1204
c5e2cead
L
1205 /* Skip weak definitions of symbols that are already defined. */
1206 if (newdef && olddef && newweak && !oldweak)
1207 *skip = TRUE;
1208
45d6a902
AM
1209 /* If the old symbol is from a dynamic object, and the new symbol is
1210 a definition which is not from a dynamic object, then the new
1211 symbol overrides the old symbol. Symbols from regular files
1212 always take precedence over symbols from dynamic objects, even if
1213 they are defined after the dynamic object in the link.
1214
1215 As above, we again permit a common symbol in a regular object to
1216 override a definition in a shared object if the shared object
0f8a2703 1217 symbol is a function or is weak. */
45d6a902
AM
1218
1219 flip = NULL;
77cfaee6 1220 if (!newdyn
45d6a902
AM
1221 && (newdef
1222 || (bfd_is_com_section (sec)
79349b09
AM
1223 && (oldweak
1224 || h->type == STT_FUNC)))
45d6a902
AM
1225 && olddyn
1226 && olddef
f5385ebf 1227 && h->def_dynamic)
45d6a902
AM
1228 {
1229 /* Change the hash table entry to undefined, and let
1230 _bfd_generic_link_add_one_symbol do the right thing with the
1231 new definition. */
1232
1233 h->root.type = bfd_link_hash_undefined;
1234 h->root.u.undef.abfd = h->root.u.def.section->owner;
1235 *size_change_ok = TRUE;
1236
1237 olddef = FALSE;
1238 olddyncommon = FALSE;
1239
1240 /* We again permit a type change when a common symbol may be
1241 overriding a function. */
1242
1243 if (bfd_is_com_section (sec))
1244 *type_change_ok = TRUE;
1245
1246 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1247 flip = *sym_hash;
1248 else
1249 /* This union may have been set to be non-NULL when this symbol
1250 was seen in a dynamic object. We must force the union to be
1251 NULL, so that it is correct for a regular symbol. */
1252 h->verinfo.vertree = NULL;
1253 }
1254
1255 /* Handle the special case of a new common symbol merging with an
1256 old symbol that looks like it might be a common symbol defined in
1257 a shared object. Note that we have already handled the case in
1258 which a new common symbol should simply override the definition
1259 in the shared library. */
1260
1261 if (! newdyn
1262 && bfd_is_com_section (sec)
1263 && olddyncommon)
1264 {
1265 /* It would be best if we could set the hash table entry to a
1266 common symbol, but we don't know what to use for the section
1267 or the alignment. */
1268 if (! ((*info->callbacks->multiple_common)
1269 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1270 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1271 return FALSE;
1272
4cc11e76 1273 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1274 larger, pretend that the new symbol has its size. */
1275
1276 if (h->size > *pvalue)
1277 *pvalue = h->size;
1278
af44c138
L
1279 /* We need to remember the alignment required by the symbol
1280 in the dynamic object. */
1281 BFD_ASSERT (pold_alignment);
1282 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1283
1284 olddef = FALSE;
1285 olddyncommon = FALSE;
1286
1287 h->root.type = bfd_link_hash_undefined;
1288 h->root.u.undef.abfd = h->root.u.def.section->owner;
1289
1290 *size_change_ok = TRUE;
1291 *type_change_ok = TRUE;
1292
1293 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1294 flip = *sym_hash;
1295 else
1296 h->verinfo.vertree = NULL;
1297 }
1298
1299 if (flip != NULL)
1300 {
1301 /* Handle the case where we had a versioned symbol in a dynamic
1302 library and now find a definition in a normal object. In this
1303 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1305 flip->root.type = h->root.type;
1306 h->root.type = bfd_link_hash_indirect;
1307 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1308 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1309 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1310 if (h->def_dynamic)
45d6a902 1311 {
f5385ebf
AM
1312 h->def_dynamic = 0;
1313 flip->ref_dynamic = 1;
45d6a902
AM
1314 }
1315 }
1316
45d6a902
AM
1317 return TRUE;
1318}
1319
1320/* This function is called to create an indirect symbol from the
1321 default for the symbol with the default version if needed. The
1322 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1323 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1324
1325bfd_boolean
268b6b39
AM
1326_bfd_elf_add_default_symbol (bfd *abfd,
1327 struct bfd_link_info *info,
1328 struct elf_link_hash_entry *h,
1329 const char *name,
1330 Elf_Internal_Sym *sym,
1331 asection **psec,
1332 bfd_vma *value,
1333 bfd_boolean *dynsym,
0f8a2703 1334 bfd_boolean override)
45d6a902
AM
1335{
1336 bfd_boolean type_change_ok;
1337 bfd_boolean size_change_ok;
1338 bfd_boolean skip;
1339 char *shortname;
1340 struct elf_link_hash_entry *hi;
1341 struct bfd_link_hash_entry *bh;
9c5bfbb7 1342 const struct elf_backend_data *bed;
45d6a902
AM
1343 bfd_boolean collect;
1344 bfd_boolean dynamic;
1345 char *p;
1346 size_t len, shortlen;
1347 asection *sec;
1348
1349 /* If this symbol has a version, and it is the default version, we
1350 create an indirect symbol from the default name to the fully
1351 decorated name. This will cause external references which do not
1352 specify a version to be bound to this version of the symbol. */
1353 p = strchr (name, ELF_VER_CHR);
1354 if (p == NULL || p[1] != ELF_VER_CHR)
1355 return TRUE;
1356
1357 if (override)
1358 {
4cc11e76 1359 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1360 need to create the indirect symbol from the default name. */
1361 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1362 FALSE, FALSE);
1363 BFD_ASSERT (hi != NULL);
1364 if (hi == h)
1365 return TRUE;
1366 while (hi->root.type == bfd_link_hash_indirect
1367 || hi->root.type == bfd_link_hash_warning)
1368 {
1369 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1370 if (hi == h)
1371 return TRUE;
1372 }
1373 }
1374
1375 bed = get_elf_backend_data (abfd);
1376 collect = bed->collect;
1377 dynamic = (abfd->flags & DYNAMIC) != 0;
1378
1379 shortlen = p - name;
1380 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1381 if (shortname == NULL)
1382 return FALSE;
1383 memcpy (shortname, name, shortlen);
1384 shortname[shortlen] = '\0';
1385
1386 /* We are going to create a new symbol. Merge it with any existing
1387 symbol with this name. For the purposes of the merge, act as
1388 though we were defining the symbol we just defined, although we
1389 actually going to define an indirect symbol. */
1390 type_change_ok = FALSE;
1391 size_change_ok = FALSE;
1392 sec = *psec;
1393 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1394 NULL, &hi, &skip, &override,
1395 &type_change_ok, &size_change_ok))
45d6a902
AM
1396 return FALSE;
1397
1398 if (skip)
1399 goto nondefault;
1400
1401 if (! override)
1402 {
1403 bh = &hi->root;
1404 if (! (_bfd_generic_link_add_one_symbol
1405 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1406 0, name, FALSE, collect, &bh)))
45d6a902
AM
1407 return FALSE;
1408 hi = (struct elf_link_hash_entry *) bh;
1409 }
1410 else
1411 {
1412 /* In this case the symbol named SHORTNAME is overriding the
1413 indirect symbol we want to add. We were planning on making
1414 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1415 is the name without a version. NAME is the fully versioned
1416 name, and it is the default version.
1417
1418 Overriding means that we already saw a definition for the
1419 symbol SHORTNAME in a regular object, and it is overriding
1420 the symbol defined in the dynamic object.
1421
1422 When this happens, we actually want to change NAME, the
1423 symbol we just added, to refer to SHORTNAME. This will cause
1424 references to NAME in the shared object to become references
1425 to SHORTNAME in the regular object. This is what we expect
1426 when we override a function in a shared object: that the
1427 references in the shared object will be mapped to the
1428 definition in the regular object. */
1429
1430 while (hi->root.type == bfd_link_hash_indirect
1431 || hi->root.type == bfd_link_hash_warning)
1432 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1433
1434 h->root.type = bfd_link_hash_indirect;
1435 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1436 if (h->def_dynamic)
45d6a902 1437 {
f5385ebf
AM
1438 h->def_dynamic = 0;
1439 hi->ref_dynamic = 1;
1440 if (hi->ref_regular
1441 || hi->def_regular)
45d6a902 1442 {
c152c796 1443 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1444 return FALSE;
1445 }
1446 }
1447
1448 /* Now set HI to H, so that the following code will set the
1449 other fields correctly. */
1450 hi = h;
1451 }
1452
1453 /* If there is a duplicate definition somewhere, then HI may not
1454 point to an indirect symbol. We will have reported an error to
1455 the user in that case. */
1456
1457 if (hi->root.type == bfd_link_hash_indirect)
1458 {
1459 struct elf_link_hash_entry *ht;
1460
45d6a902
AM
1461 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1462 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1463
1464 /* See if the new flags lead us to realize that the symbol must
1465 be dynamic. */
1466 if (! *dynsym)
1467 {
1468 if (! dynamic)
1469 {
1470 if (info->shared
f5385ebf 1471 || hi->ref_dynamic)
45d6a902
AM
1472 *dynsym = TRUE;
1473 }
1474 else
1475 {
f5385ebf 1476 if (hi->ref_regular)
45d6a902
AM
1477 *dynsym = TRUE;
1478 }
1479 }
1480 }
1481
1482 /* We also need to define an indirection from the nondefault version
1483 of the symbol. */
1484
1485nondefault:
1486 len = strlen (name);
1487 shortname = bfd_hash_allocate (&info->hash->table, len);
1488 if (shortname == NULL)
1489 return FALSE;
1490 memcpy (shortname, name, shortlen);
1491 memcpy (shortname + shortlen, p + 1, len - shortlen);
1492
1493 /* Once again, merge with any existing symbol. */
1494 type_change_ok = FALSE;
1495 size_change_ok = FALSE;
1496 sec = *psec;
1497 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1498 NULL, &hi, &skip, &override,
1499 &type_change_ok, &size_change_ok))
45d6a902
AM
1500 return FALSE;
1501
1502 if (skip)
1503 return TRUE;
1504
1505 if (override)
1506 {
1507 /* Here SHORTNAME is a versioned name, so we don't expect to see
1508 the type of override we do in the case above unless it is
4cc11e76 1509 overridden by a versioned definition. */
45d6a902
AM
1510 if (hi->root.type != bfd_link_hash_defined
1511 && hi->root.type != bfd_link_hash_defweak)
1512 (*_bfd_error_handler)
d003868e
AM
1513 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1514 abfd, shortname);
45d6a902
AM
1515 }
1516 else
1517 {
1518 bh = &hi->root;
1519 if (! (_bfd_generic_link_add_one_symbol
1520 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1521 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1522 return FALSE;
1523 hi = (struct elf_link_hash_entry *) bh;
1524
1525 /* If there is a duplicate definition somewhere, then HI may not
1526 point to an indirect symbol. We will have reported an error
1527 to the user in that case. */
1528
1529 if (hi->root.type == bfd_link_hash_indirect)
1530 {
45d6a902
AM
1531 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1532
1533 /* See if the new flags lead us to realize that the symbol
1534 must be dynamic. */
1535 if (! *dynsym)
1536 {
1537 if (! dynamic)
1538 {
1539 if (info->shared
f5385ebf 1540 || hi->ref_dynamic)
45d6a902
AM
1541 *dynsym = TRUE;
1542 }
1543 else
1544 {
f5385ebf 1545 if (hi->ref_regular)
45d6a902
AM
1546 *dynsym = TRUE;
1547 }
1548 }
1549 }
1550 }
1551
1552 return TRUE;
1553}
1554\f
1555/* This routine is used to export all defined symbols into the dynamic
1556 symbol table. It is called via elf_link_hash_traverse. */
1557
1558bfd_boolean
268b6b39 1559_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1560{
268b6b39 1561 struct elf_info_failed *eif = data;
45d6a902
AM
1562
1563 /* Ignore indirect symbols. These are added by the versioning code. */
1564 if (h->root.type == bfd_link_hash_indirect)
1565 return TRUE;
1566
1567 if (h->root.type == bfd_link_hash_warning)
1568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1569
1570 if (h->dynindx == -1
f5385ebf
AM
1571 && (h->def_regular
1572 || h->ref_regular))
45d6a902
AM
1573 {
1574 struct bfd_elf_version_tree *t;
1575 struct bfd_elf_version_expr *d;
1576
1577 for (t = eif->verdefs; t != NULL; t = t->next)
1578 {
108ba305 1579 if (t->globals.list != NULL)
45d6a902 1580 {
108ba305
JJ
1581 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1582 if (d != NULL)
1583 goto doit;
45d6a902
AM
1584 }
1585
108ba305 1586 if (t->locals.list != NULL)
45d6a902 1587 {
108ba305
JJ
1588 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1589 if (d != NULL)
1590 return TRUE;
45d6a902
AM
1591 }
1592 }
1593
1594 if (!eif->verdefs)
1595 {
1596 doit:
c152c796 1597 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1598 {
1599 eif->failed = TRUE;
1600 return FALSE;
1601 }
1602 }
1603 }
1604
1605 return TRUE;
1606}
1607\f
1608/* Look through the symbols which are defined in other shared
1609 libraries and referenced here. Update the list of version
1610 dependencies. This will be put into the .gnu.version_r section.
1611 This function is called via elf_link_hash_traverse. */
1612
1613bfd_boolean
268b6b39
AM
1614_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1615 void *data)
45d6a902 1616{
268b6b39 1617 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1618 Elf_Internal_Verneed *t;
1619 Elf_Internal_Vernaux *a;
1620 bfd_size_type amt;
1621
1622 if (h->root.type == bfd_link_hash_warning)
1623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1624
1625 /* We only care about symbols defined in shared objects with version
1626 information. */
f5385ebf
AM
1627 if (!h->def_dynamic
1628 || h->def_regular
45d6a902
AM
1629 || h->dynindx == -1
1630 || h->verinfo.verdef == NULL)
1631 return TRUE;
1632
1633 /* See if we already know about this version. */
1634 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1635 {
1636 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1637 continue;
1638
1639 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1640 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1641 return TRUE;
1642
1643 break;
1644 }
1645
1646 /* This is a new version. Add it to tree we are building. */
1647
1648 if (t == NULL)
1649 {
1650 amt = sizeof *t;
268b6b39 1651 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1652 if (t == NULL)
1653 {
1654 rinfo->failed = TRUE;
1655 return FALSE;
1656 }
1657
1658 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1659 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1660 elf_tdata (rinfo->output_bfd)->verref = t;
1661 }
1662
1663 amt = sizeof *a;
268b6b39 1664 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1665
1666 /* Note that we are copying a string pointer here, and testing it
1667 above. If bfd_elf_string_from_elf_section is ever changed to
1668 discard the string data when low in memory, this will have to be
1669 fixed. */
1670 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1671
1672 a->vna_flags = h->verinfo.verdef->vd_flags;
1673 a->vna_nextptr = t->vn_auxptr;
1674
1675 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1676 ++rinfo->vers;
1677
1678 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1679
1680 t->vn_auxptr = a;
1681
1682 return TRUE;
1683}
1684
1685/* Figure out appropriate versions for all the symbols. We may not
1686 have the version number script until we have read all of the input
1687 files, so until that point we don't know which symbols should be
1688 local. This function is called via elf_link_hash_traverse. */
1689
1690bfd_boolean
268b6b39 1691_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1692{
1693 struct elf_assign_sym_version_info *sinfo;
1694 struct bfd_link_info *info;
9c5bfbb7 1695 const struct elf_backend_data *bed;
45d6a902
AM
1696 struct elf_info_failed eif;
1697 char *p;
1698 bfd_size_type amt;
1699
268b6b39 1700 sinfo = data;
45d6a902
AM
1701 info = sinfo->info;
1702
1703 if (h->root.type == bfd_link_hash_warning)
1704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1705
1706 /* Fix the symbol flags. */
1707 eif.failed = FALSE;
1708 eif.info = info;
1709 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1710 {
1711 if (eif.failed)
1712 sinfo->failed = TRUE;
1713 return FALSE;
1714 }
1715
1716 /* We only need version numbers for symbols defined in regular
1717 objects. */
f5385ebf 1718 if (!h->def_regular)
45d6a902
AM
1719 return TRUE;
1720
1721 bed = get_elf_backend_data (sinfo->output_bfd);
1722 p = strchr (h->root.root.string, ELF_VER_CHR);
1723 if (p != NULL && h->verinfo.vertree == NULL)
1724 {
1725 struct bfd_elf_version_tree *t;
1726 bfd_boolean hidden;
1727
1728 hidden = TRUE;
1729
1730 /* There are two consecutive ELF_VER_CHR characters if this is
1731 not a hidden symbol. */
1732 ++p;
1733 if (*p == ELF_VER_CHR)
1734 {
1735 hidden = FALSE;
1736 ++p;
1737 }
1738
1739 /* If there is no version string, we can just return out. */
1740 if (*p == '\0')
1741 {
1742 if (hidden)
f5385ebf 1743 h->hidden = 1;
45d6a902
AM
1744 return TRUE;
1745 }
1746
1747 /* Look for the version. If we find it, it is no longer weak. */
1748 for (t = sinfo->verdefs; t != NULL; t = t->next)
1749 {
1750 if (strcmp (t->name, p) == 0)
1751 {
1752 size_t len;
1753 char *alc;
1754 struct bfd_elf_version_expr *d;
1755
1756 len = p - h->root.root.string;
268b6b39 1757 alc = bfd_malloc (len);
45d6a902
AM
1758 if (alc == NULL)
1759 return FALSE;
1760 memcpy (alc, h->root.root.string, len - 1);
1761 alc[len - 1] = '\0';
1762 if (alc[len - 2] == ELF_VER_CHR)
1763 alc[len - 2] = '\0';
1764
1765 h->verinfo.vertree = t;
1766 t->used = TRUE;
1767 d = NULL;
1768
108ba305
JJ
1769 if (t->globals.list != NULL)
1770 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1771
1772 /* See if there is anything to force this symbol to
1773 local scope. */
108ba305 1774 if (d == NULL && t->locals.list != NULL)
45d6a902 1775 {
108ba305
JJ
1776 d = (*t->match) (&t->locals, NULL, alc);
1777 if (d != NULL
1778 && h->dynindx != -1
108ba305
JJ
1779 && ! info->export_dynamic)
1780 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1781 }
1782
1783 free (alc);
1784 break;
1785 }
1786 }
1787
1788 /* If we are building an application, we need to create a
1789 version node for this version. */
36af4a4e 1790 if (t == NULL && info->executable)
45d6a902
AM
1791 {
1792 struct bfd_elf_version_tree **pp;
1793 int version_index;
1794
1795 /* If we aren't going to export this symbol, we don't need
1796 to worry about it. */
1797 if (h->dynindx == -1)
1798 return TRUE;
1799
1800 amt = sizeof *t;
108ba305 1801 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1802 if (t == NULL)
1803 {
1804 sinfo->failed = TRUE;
1805 return FALSE;
1806 }
1807
45d6a902 1808 t->name = p;
45d6a902
AM
1809 t->name_indx = (unsigned int) -1;
1810 t->used = TRUE;
1811
1812 version_index = 1;
1813 /* Don't count anonymous version tag. */
1814 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1815 version_index = 0;
1816 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1817 ++version_index;
1818 t->vernum = version_index;
1819
1820 *pp = t;
1821
1822 h->verinfo.vertree = t;
1823 }
1824 else if (t == NULL)
1825 {
1826 /* We could not find the version for a symbol when
1827 generating a shared archive. Return an error. */
1828 (*_bfd_error_handler)
d003868e
AM
1829 (_("%B: undefined versioned symbol name %s"),
1830 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1831 bfd_set_error (bfd_error_bad_value);
1832 sinfo->failed = TRUE;
1833 return FALSE;
1834 }
1835
1836 if (hidden)
f5385ebf 1837 h->hidden = 1;
45d6a902
AM
1838 }
1839
1840 /* If we don't have a version for this symbol, see if we can find
1841 something. */
1842 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1843 {
1844 struct bfd_elf_version_tree *t;
1845 struct bfd_elf_version_tree *local_ver;
1846 struct bfd_elf_version_expr *d;
1847
1848 /* See if can find what version this symbol is in. If the
1849 symbol is supposed to be local, then don't actually register
1850 it. */
1851 local_ver = NULL;
1852 for (t = sinfo->verdefs; t != NULL; t = t->next)
1853 {
108ba305 1854 if (t->globals.list != NULL)
45d6a902
AM
1855 {
1856 bfd_boolean matched;
1857
1858 matched = FALSE;
108ba305
JJ
1859 d = NULL;
1860 while ((d = (*t->match) (&t->globals, d,
1861 h->root.root.string)) != NULL)
1862 if (d->symver)
1863 matched = TRUE;
1864 else
1865 {
1866 /* There is a version without definition. Make
1867 the symbol the default definition for this
1868 version. */
1869 h->verinfo.vertree = t;
1870 local_ver = NULL;
1871 d->script = 1;
1872 break;
1873 }
45d6a902
AM
1874 if (d != NULL)
1875 break;
1876 else if (matched)
1877 /* There is no undefined version for this symbol. Hide the
1878 default one. */
1879 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1880 }
1881
108ba305 1882 if (t->locals.list != NULL)
45d6a902 1883 {
108ba305
JJ
1884 d = NULL;
1885 while ((d = (*t->match) (&t->locals, d,
1886 h->root.root.string)) != NULL)
45d6a902 1887 {
108ba305 1888 local_ver = t;
45d6a902 1889 /* If the match is "*", keep looking for a more
108ba305
JJ
1890 explicit, perhaps even global, match.
1891 XXX: Shouldn't this be !d->wildcard instead? */
1892 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1893 break;
45d6a902
AM
1894 }
1895
1896 if (d != NULL)
1897 break;
1898 }
1899 }
1900
1901 if (local_ver != NULL)
1902 {
1903 h->verinfo.vertree = local_ver;
1904 if (h->dynindx != -1
45d6a902
AM
1905 && ! info->export_dynamic)
1906 {
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913}
1914\f
45d6a902
AM
1915/* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1921
1922 Returns FALSE if something goes wrong. */
1923
1924static bfd_boolean
268b6b39 1925elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1926 asection *sec,
268b6b39
AM
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
45d6a902 1930{
9c5bfbb7 1931 const struct elf_backend_data *bed;
268b6b39 1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
243ef1e0
L
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
45d6a902 1938
45d6a902
AM
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1942
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1946
243ef1e0
L
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1949
45d6a902
AM
1950 bed = get_elf_backend_data (abfd);
1951
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1961 }
1962
1963 erela = external_relocs;
51992aec 1964 erelaend = erela + shdr->sh_size;
45d6a902
AM
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1967 {
243ef1e0
L
1968 bfd_vma r_symndx;
1969
45d6a902 1970 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1975 {
1976 (*_bfd_error_handler)
d003868e
AM
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1983 }
45d6a902
AM
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1986 }
1987
1988 return TRUE;
1989}
1990
1991/* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2000
2001Elf_Internal_Rela *
268b6b39
AM
2002_bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
45d6a902
AM
2007{
2008 Elf_Internal_Shdr *rel_hdr;
268b6b39 2009 void *alloc1 = NULL;
45d6a902 2010 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2012
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2015
2016 if (o->reloc_count == 0)
2017 return NULL;
2018
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2020
2021 if (internal_relocs == NULL)
2022 {
2023 bfd_size_type size;
2024
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
268b6b39 2028 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2029 else
268b6b39 2030 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2031 if (internal_relocs == NULL)
2032 goto error_return;
2033 }
2034
2035 if (external_relocs == NULL)
2036 {
2037 bfd_size_type size = rel_hdr->sh_size;
2038
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2041 alloc1 = bfd_malloc (size);
45d6a902
AM
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2045 }
2046
243ef1e0 2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
51992aec
AM
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2058 goto error_return;
2059
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2063
2064 if (alloc1 != NULL)
2065 free (alloc1);
2066
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2069
2070 return internal_relocs;
2071
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2078}
2079
2080/* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2082
2083bfd_boolean
268b6b39
AM
2084_bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
45d6a902
AM
2087{
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2090
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2096
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2100
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2103
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
268b6b39 2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2111
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2116 {
2117 struct elf_link_hash_entry **p;
2118
268b6b39 2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2120 if (p == NULL)
2121 return FALSE;
2122
2123 elf_section_data (o)->rel_hashes = p;
2124 }
2125
2126 return TRUE;
2127}
2128
2129/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2132
2133bfd_boolean
268b6b39
AM
2134_bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2137 Elf_Internal_Rela *internal_relocs,
2138 struct elf_link_hash_entry **rel_hash
2139 ATTRIBUTE_UNUSED)
45d6a902
AM
2140{
2141 Elf_Internal_Rela *irela;
2142 Elf_Internal_Rela *irelaend;
2143 bfd_byte *erel;
2144 Elf_Internal_Shdr *output_rel_hdr;
2145 asection *output_section;
2146 unsigned int *rel_countp = NULL;
9c5bfbb7 2147 const struct elf_backend_data *bed;
268b6b39 2148 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2149
2150 output_section = input_section->output_section;
2151 output_rel_hdr = NULL;
2152
2153 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2154 == input_rel_hdr->sh_entsize)
2155 {
2156 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2157 rel_countp = &elf_section_data (output_section)->rel_count;
2158 }
2159 else if (elf_section_data (output_section)->rel_hdr2
2160 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2161 == input_rel_hdr->sh_entsize))
2162 {
2163 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2164 rel_countp = &elf_section_data (output_section)->rel_count2;
2165 }
2166 else
2167 {
2168 (*_bfd_error_handler)
d003868e
AM
2169 (_("%B: relocation size mismatch in %B section %A"),
2170 output_bfd, input_section->owner, input_section);
45d6a902
AM
2171 bfd_set_error (bfd_error_wrong_object_format);
2172 return FALSE;
2173 }
2174
2175 bed = get_elf_backend_data (output_bfd);
2176 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2177 swap_out = bed->s->swap_reloc_out;
2178 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2179 swap_out = bed->s->swap_reloca_out;
2180 else
2181 abort ();
2182
2183 erel = output_rel_hdr->contents;
2184 erel += *rel_countp * input_rel_hdr->sh_entsize;
2185 irela = internal_relocs;
2186 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2187 * bed->s->int_rels_per_ext_rel);
2188 while (irela < irelaend)
2189 {
2190 (*swap_out) (output_bfd, irela, erel);
2191 irela += bed->s->int_rels_per_ext_rel;
2192 erel += input_rel_hdr->sh_entsize;
2193 }
2194
2195 /* Bump the counter, so that we know where to add the next set of
2196 relocations. */
2197 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2198
2199 return TRUE;
2200}
2201\f
2202/* Fix up the flags for a symbol. This handles various cases which
2203 can only be fixed after all the input files are seen. This is
2204 currently called by both adjust_dynamic_symbol and
2205 assign_sym_version, which is unnecessary but perhaps more robust in
2206 the face of future changes. */
2207
2208bfd_boolean
268b6b39
AM
2209_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2210 struct elf_info_failed *eif)
45d6a902
AM
2211{
2212 /* If this symbol was mentioned in a non-ELF file, try to set
2213 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2214 permit a non-ELF file to correctly refer to a symbol defined in
2215 an ELF dynamic object. */
f5385ebf 2216 if (h->non_elf)
45d6a902
AM
2217 {
2218 while (h->root.type == bfd_link_hash_indirect)
2219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2220
2221 if (h->root.type != bfd_link_hash_defined
2222 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2223 {
2224 h->ref_regular = 1;
2225 h->ref_regular_nonweak = 1;
2226 }
45d6a902
AM
2227 else
2228 {
2229 if (h->root.u.def.section->owner != NULL
2230 && (bfd_get_flavour (h->root.u.def.section->owner)
2231 == bfd_target_elf_flavour))
f5385ebf
AM
2232 {
2233 h->ref_regular = 1;
2234 h->ref_regular_nonweak = 1;
2235 }
45d6a902 2236 else
f5385ebf 2237 h->def_regular = 1;
45d6a902
AM
2238 }
2239
2240 if (h->dynindx == -1
f5385ebf
AM
2241 && (h->def_dynamic
2242 || h->ref_dynamic))
45d6a902 2243 {
c152c796 2244 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2245 {
2246 eif->failed = TRUE;
2247 return FALSE;
2248 }
2249 }
2250 }
2251 else
2252 {
f5385ebf 2253 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2254 was first seen in a non-ELF file. Fortunately, if the symbol
2255 was first seen in an ELF file, we're probably OK unless the
2256 symbol was defined in a non-ELF file. Catch that case here.
2257 FIXME: We're still in trouble if the symbol was first seen in
2258 a dynamic object, and then later in a non-ELF regular object. */
2259 if ((h->root.type == bfd_link_hash_defined
2260 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2261 && !h->def_regular
45d6a902
AM
2262 && (h->root.u.def.section->owner != NULL
2263 ? (bfd_get_flavour (h->root.u.def.section->owner)
2264 != bfd_target_elf_flavour)
2265 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2266 && !h->def_dynamic)))
2267 h->def_regular = 1;
45d6a902
AM
2268 }
2269
2270 /* If this is a final link, and the symbol was defined as a common
2271 symbol in a regular object file, and there was no definition in
2272 any dynamic object, then the linker will have allocated space for
f5385ebf 2273 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2274 flag will not have been set. */
2275 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2276 && !h->def_regular
2277 && h->ref_regular
2278 && !h->def_dynamic
45d6a902 2279 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2280 h->def_regular = 1;
45d6a902
AM
2281
2282 /* If -Bsymbolic was used (which means to bind references to global
2283 symbols to the definition within the shared object), and this
2284 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2285 need a PLT entry. Likewise, if the symbol has non-default
2286 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2287 will force it local. */
f5385ebf 2288 if (h->needs_plt
45d6a902 2289 && eif->info->shared
0eddce27 2290 && is_elf_hash_table (eif->info->hash)
45d6a902 2291 && (eif->info->symbolic
c1be741f 2292 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2293 && h->def_regular)
45d6a902 2294 {
9c5bfbb7 2295 const struct elf_backend_data *bed;
45d6a902
AM
2296 bfd_boolean force_local;
2297
2298 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2299
2300 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2301 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2302 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2303 }
2304
2305 /* If a weak undefined symbol has non-default visibility, we also
2306 hide it from the dynamic linker. */
9c7a29a3 2307 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2308 && h->root.type == bfd_link_hash_undefweak)
2309 {
9c5bfbb7 2310 const struct elf_backend_data *bed;
45d6a902
AM
2311 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2312 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2313 }
2314
2315 /* If this is a weak defined symbol in a dynamic object, and we know
2316 the real definition in the dynamic object, copy interesting flags
2317 over to the real definition. */
f6e332e6 2318 if (h->u.weakdef != NULL)
45d6a902
AM
2319 {
2320 struct elf_link_hash_entry *weakdef;
2321
f6e332e6 2322 weakdef = h->u.weakdef;
45d6a902
AM
2323 if (h->root.type == bfd_link_hash_indirect)
2324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2325
2326 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2327 || h->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2329 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2330 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2331
2332 /* If the real definition is defined by a regular object file,
2333 don't do anything special. See the longer description in
2334 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2335 if (weakdef->def_regular)
f6e332e6 2336 h->u.weakdef = NULL;
45d6a902
AM
2337 else
2338 {
9c5bfbb7 2339 const struct elf_backend_data *bed;
45d6a902
AM
2340
2341 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2342 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2343 }
2344 }
2345
2346 return TRUE;
2347}
2348
2349/* Make the backend pick a good value for a dynamic symbol. This is
2350 called via elf_link_hash_traverse, and also calls itself
2351 recursively. */
2352
2353bfd_boolean
268b6b39 2354_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2355{
268b6b39 2356 struct elf_info_failed *eif = data;
45d6a902 2357 bfd *dynobj;
9c5bfbb7 2358 const struct elf_backend_data *bed;
45d6a902 2359
0eddce27 2360 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2361 return FALSE;
2362
2363 if (h->root.type == bfd_link_hash_warning)
2364 {
a6aa5195
AM
2365 h->got = elf_hash_table (eif->info)->init_got_offset;
2366 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2367
2368 /* When warning symbols are created, they **replace** the "real"
2369 entry in the hash table, thus we never get to see the real
2370 symbol in a hash traversal. So look at it now. */
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2372 }
2373
2374 /* Ignore indirect symbols. These are added by the versioning code. */
2375 if (h->root.type == bfd_link_hash_indirect)
2376 return TRUE;
2377
2378 /* Fix the symbol flags. */
2379 if (! _bfd_elf_fix_symbol_flags (h, eif))
2380 return FALSE;
2381
2382 /* If this symbol does not require a PLT entry, and it is not
2383 defined by a dynamic object, or is not referenced by a regular
2384 object, ignore it. We do have to handle a weak defined symbol,
2385 even if no regular object refers to it, if we decided to add it
2386 to the dynamic symbol table. FIXME: Do we normally need to worry
2387 about symbols which are defined by one dynamic object and
2388 referenced by another one? */
f5385ebf
AM
2389 if (!h->needs_plt
2390 && (h->def_regular
2391 || !h->def_dynamic
2392 || (!h->ref_regular
f6e332e6 2393 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2394 {
a6aa5195 2395 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2396 return TRUE;
2397 }
2398
2399 /* If we've already adjusted this symbol, don't do it again. This
2400 can happen via a recursive call. */
f5385ebf 2401 if (h->dynamic_adjusted)
45d6a902
AM
2402 return TRUE;
2403
2404 /* Don't look at this symbol again. Note that we must set this
2405 after checking the above conditions, because we may look at a
2406 symbol once, decide not to do anything, and then get called
2407 recursively later after REF_REGULAR is set below. */
f5385ebf 2408 h->dynamic_adjusted = 1;
45d6a902
AM
2409
2410 /* If this is a weak definition, and we know a real definition, and
2411 the real symbol is not itself defined by a regular object file,
2412 then get a good value for the real definition. We handle the
2413 real symbol first, for the convenience of the backend routine.
2414
2415 Note that there is a confusing case here. If the real definition
2416 is defined by a regular object file, we don't get the real symbol
2417 from the dynamic object, but we do get the weak symbol. If the
2418 processor backend uses a COPY reloc, then if some routine in the
2419 dynamic object changes the real symbol, we will not see that
2420 change in the corresponding weak symbol. This is the way other
2421 ELF linkers work as well, and seems to be a result of the shared
2422 library model.
2423
2424 I will clarify this issue. Most SVR4 shared libraries define the
2425 variable _timezone and define timezone as a weak synonym. The
2426 tzset call changes _timezone. If you write
2427 extern int timezone;
2428 int _timezone = 5;
2429 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2430 you might expect that, since timezone is a synonym for _timezone,
2431 the same number will print both times. However, if the processor
2432 backend uses a COPY reloc, then actually timezone will be copied
2433 into your process image, and, since you define _timezone
2434 yourself, _timezone will not. Thus timezone and _timezone will
2435 wind up at different memory locations. The tzset call will set
2436 _timezone, leaving timezone unchanged. */
2437
f6e332e6 2438 if (h->u.weakdef != NULL)
45d6a902
AM
2439 {
2440 /* If we get to this point, we know there is an implicit
2441 reference by a regular object file via the weak symbol H.
2442 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2443 H->U.WEAKDEF before it finds H? */
2444 h->u.weakdef->ref_regular = 1;
45d6a902 2445
f6e332e6 2446 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2447 return FALSE;
2448 }
2449
2450 /* If a symbol has no type and no size and does not require a PLT
2451 entry, then we are probably about to do the wrong thing here: we
2452 are probably going to create a COPY reloc for an empty object.
2453 This case can arise when a shared object is built with assembly
2454 code, and the assembly code fails to set the symbol type. */
2455 if (h->size == 0
2456 && h->type == STT_NOTYPE
f5385ebf 2457 && !h->needs_plt)
45d6a902
AM
2458 (*_bfd_error_handler)
2459 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2460 h->root.root.string);
2461
2462 dynobj = elf_hash_table (eif->info)->dynobj;
2463 bed = get_elf_backend_data (dynobj);
2464 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2465 {
2466 eif->failed = TRUE;
2467 return FALSE;
2468 }
2469
2470 return TRUE;
2471}
2472
2473/* Adjust all external symbols pointing into SEC_MERGE sections
2474 to reflect the object merging within the sections. */
2475
2476bfd_boolean
268b6b39 2477_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2478{
2479 asection *sec;
2480
2481 if (h->root.type == bfd_link_hash_warning)
2482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2483
2484 if ((h->root.type == bfd_link_hash_defined
2485 || h->root.type == bfd_link_hash_defweak)
2486 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2487 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2488 {
268b6b39 2489 bfd *output_bfd = data;
45d6a902
AM
2490
2491 h->root.u.def.value =
2492 _bfd_merged_section_offset (output_bfd,
2493 &h->root.u.def.section,
2494 elf_section_data (sec)->sec_info,
753731ee 2495 h->root.u.def.value);
45d6a902
AM
2496 }
2497
2498 return TRUE;
2499}
986a241f
RH
2500
2501/* Returns false if the symbol referred to by H should be considered
2502 to resolve local to the current module, and true if it should be
2503 considered to bind dynamically. */
2504
2505bfd_boolean
268b6b39
AM
2506_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2507 struct bfd_link_info *info,
2508 bfd_boolean ignore_protected)
986a241f
RH
2509{
2510 bfd_boolean binding_stays_local_p;
2511
2512 if (h == NULL)
2513 return FALSE;
2514
2515 while (h->root.type == bfd_link_hash_indirect
2516 || h->root.type == bfd_link_hash_warning)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 /* If it was forced local, then clearly it's not dynamic. */
2520 if (h->dynindx == -1)
2521 return FALSE;
f5385ebf 2522 if (h->forced_local)
986a241f
RH
2523 return FALSE;
2524
2525 /* Identify the cases where name binding rules say that a
2526 visible symbol resolves locally. */
2527 binding_stays_local_p = info->executable || info->symbolic;
2528
2529 switch (ELF_ST_VISIBILITY (h->other))
2530 {
2531 case STV_INTERNAL:
2532 case STV_HIDDEN:
2533 return FALSE;
2534
2535 case STV_PROTECTED:
2536 /* Proper resolution for function pointer equality may require
2537 that these symbols perhaps be resolved dynamically, even though
2538 we should be resolving them to the current module. */
1c16dfa5 2539 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2540 binding_stays_local_p = TRUE;
2541 break;
2542
2543 default:
986a241f
RH
2544 break;
2545 }
2546
aa37626c 2547 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2548 if (!h->def_regular)
aa37626c
L
2549 return TRUE;
2550
986a241f
RH
2551 /* Otherwise, the symbol is dynamic if binding rules don't tell
2552 us that it remains local. */
2553 return !binding_stays_local_p;
2554}
f6c52c13
AM
2555
2556/* Return true if the symbol referred to by H should be considered
2557 to resolve local to the current module, and false otherwise. Differs
2558 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2559 undefined symbols and weak symbols. */
2560
2561bfd_boolean
268b6b39
AM
2562_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2563 struct bfd_link_info *info,
2564 bfd_boolean local_protected)
f6c52c13
AM
2565{
2566 /* If it's a local sym, of course we resolve locally. */
2567 if (h == NULL)
2568 return TRUE;
2569
7e2294f9
AO
2570 /* Common symbols that become definitions don't get the DEF_REGULAR
2571 flag set, so test it first, and don't bail out. */
2572 if (ELF_COMMON_DEF_P (h))
2573 /* Do nothing. */;
f6c52c13 2574 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2575 resolve locally. The sym is either undefined or dynamic. */
2576 else if (!h->def_regular)
f6c52c13
AM
2577 return FALSE;
2578
2579 /* Forced local symbols resolve locally. */
f5385ebf 2580 if (h->forced_local)
f6c52c13
AM
2581 return TRUE;
2582
2583 /* As do non-dynamic symbols. */
2584 if (h->dynindx == -1)
2585 return TRUE;
2586
2587 /* At this point, we know the symbol is defined and dynamic. In an
2588 executable it must resolve locally, likewise when building symbolic
2589 shared libraries. */
2590 if (info->executable || info->symbolic)
2591 return TRUE;
2592
2593 /* Now deal with defined dynamic symbols in shared libraries. Ones
2594 with default visibility might not resolve locally. */
2595 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2596 return FALSE;
2597
2598 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2599 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2600 return TRUE;
2601
1c16dfa5
L
2602 /* STV_PROTECTED non-function symbols are local. */
2603 if (h->type != STT_FUNC)
2604 return TRUE;
2605
f6c52c13
AM
2606 /* Function pointer equality tests may require that STV_PROTECTED
2607 symbols be treated as dynamic symbols, even when we know that the
2608 dynamic linker will resolve them locally. */
2609 return local_protected;
2610}
e1918d23
AM
2611
2612/* Caches some TLS segment info, and ensures that the TLS segment vma is
2613 aligned. Returns the first TLS output section. */
2614
2615struct bfd_section *
2616_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2617{
2618 struct bfd_section *sec, *tls;
2619 unsigned int align = 0;
2620
2621 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2622 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2623 break;
2624 tls = sec;
2625
2626 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2627 if (sec->alignment_power > align)
2628 align = sec->alignment_power;
2629
2630 elf_hash_table (info)->tls_sec = tls;
2631
2632 /* Ensure the alignment of the first section is the largest alignment,
2633 so that the tls segment starts aligned. */
2634 if (tls != NULL)
2635 tls->alignment_power = align;
2636
2637 return tls;
2638}
0ad989f9
L
2639
2640/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2641static bfd_boolean
2642is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2643 Elf_Internal_Sym *sym)
2644{
2645 /* Local symbols do not count, but target specific ones might. */
2646 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2647 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2648 return FALSE;
2649
2650 /* Function symbols do not count. */
2651 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2652 return FALSE;
2653
2654 /* If the section is undefined, then so is the symbol. */
2655 if (sym->st_shndx == SHN_UNDEF)
2656 return FALSE;
2657
2658 /* If the symbol is defined in the common section, then
2659 it is a common definition and so does not count. */
2660 if (sym->st_shndx == SHN_COMMON)
2661 return FALSE;
2662
2663 /* If the symbol is in a target specific section then we
2664 must rely upon the backend to tell us what it is. */
2665 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2666 /* FIXME - this function is not coded yet:
2667
2668 return _bfd_is_global_symbol_definition (abfd, sym);
2669
2670 Instead for now assume that the definition is not global,
2671 Even if this is wrong, at least the linker will behave
2672 in the same way that it used to do. */
2673 return FALSE;
2674
2675 return TRUE;
2676}
2677
2678/* Search the symbol table of the archive element of the archive ABFD
2679 whose archive map contains a mention of SYMDEF, and determine if
2680 the symbol is defined in this element. */
2681static bfd_boolean
2682elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2683{
2684 Elf_Internal_Shdr * hdr;
2685 bfd_size_type symcount;
2686 bfd_size_type extsymcount;
2687 bfd_size_type extsymoff;
2688 Elf_Internal_Sym *isymbuf;
2689 Elf_Internal_Sym *isym;
2690 Elf_Internal_Sym *isymend;
2691 bfd_boolean result;
2692
2693 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2694 if (abfd == NULL)
2695 return FALSE;
2696
2697 if (! bfd_check_format (abfd, bfd_object))
2698 return FALSE;
2699
2700 /* If we have already included the element containing this symbol in the
2701 link then we do not need to include it again. Just claim that any symbol
2702 it contains is not a definition, so that our caller will not decide to
2703 (re)include this element. */
2704 if (abfd->archive_pass)
2705 return FALSE;
2706
2707 /* Select the appropriate symbol table. */
2708 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2709 hdr = &elf_tdata (abfd)->symtab_hdr;
2710 else
2711 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2712
2713 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2714
2715 /* The sh_info field of the symtab header tells us where the
2716 external symbols start. We don't care about the local symbols. */
2717 if (elf_bad_symtab (abfd))
2718 {
2719 extsymcount = symcount;
2720 extsymoff = 0;
2721 }
2722 else
2723 {
2724 extsymcount = symcount - hdr->sh_info;
2725 extsymoff = hdr->sh_info;
2726 }
2727
2728 if (extsymcount == 0)
2729 return FALSE;
2730
2731 /* Read in the symbol table. */
2732 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2733 NULL, NULL, NULL);
2734 if (isymbuf == NULL)
2735 return FALSE;
2736
2737 /* Scan the symbol table looking for SYMDEF. */
2738 result = FALSE;
2739 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2740 {
2741 const char *name;
2742
2743 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2744 isym->st_name);
2745 if (name == NULL)
2746 break;
2747
2748 if (strcmp (name, symdef->name) == 0)
2749 {
2750 result = is_global_data_symbol_definition (abfd, isym);
2751 break;
2752 }
2753 }
2754
2755 free (isymbuf);
2756
2757 return result;
2758}
2759\f
5a580b3a
AM
2760/* Add an entry to the .dynamic table. */
2761
2762bfd_boolean
2763_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2764 bfd_vma tag,
2765 bfd_vma val)
2766{
2767 struct elf_link_hash_table *hash_table;
2768 const struct elf_backend_data *bed;
2769 asection *s;
2770 bfd_size_type newsize;
2771 bfd_byte *newcontents;
2772 Elf_Internal_Dyn dyn;
2773
2774 hash_table = elf_hash_table (info);
2775 if (! is_elf_hash_table (hash_table))
2776 return FALSE;
2777
8fdd7217
NC
2778 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2779 _bfd_error_handler
2780 (_("warning: creating a DT_TEXTREL in a shared object."));
2781
5a580b3a
AM
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2784 BFD_ASSERT (s != NULL);
2785
eea6121a 2786 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2787 newcontents = bfd_realloc (s->contents, newsize);
2788 if (newcontents == NULL)
2789 return FALSE;
2790
2791 dyn.d_tag = tag;
2792 dyn.d_un.d_val = val;
eea6121a 2793 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2794
eea6121a 2795 s->size = newsize;
5a580b3a
AM
2796 s->contents = newcontents;
2797
2798 return TRUE;
2799}
2800
2801/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2802 otherwise just check whether one already exists. Returns -1 on error,
2803 1 if a DT_NEEDED tag already exists, and 0 on success. */
2804
4ad4eba5 2805static int
7e9f0867
AM
2806elf_add_dt_needed_tag (bfd *abfd,
2807 struct bfd_link_info *info,
4ad4eba5
AM
2808 const char *soname,
2809 bfd_boolean do_it)
5a580b3a
AM
2810{
2811 struct elf_link_hash_table *hash_table;
2812 bfd_size_type oldsize;
2813 bfd_size_type strindex;
2814
7e9f0867
AM
2815 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2816 return -1;
2817
5a580b3a
AM
2818 hash_table = elf_hash_table (info);
2819 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2820 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2821 if (strindex == (bfd_size_type) -1)
2822 return -1;
2823
2824 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2825 {
2826 asection *sdyn;
2827 const struct elf_backend_data *bed;
2828 bfd_byte *extdyn;
2829
2830 bed = get_elf_backend_data (hash_table->dynobj);
2831 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2832 if (sdyn != NULL)
2833 for (extdyn = sdyn->contents;
2834 extdyn < sdyn->contents + sdyn->size;
2835 extdyn += bed->s->sizeof_dyn)
2836 {
2837 Elf_Internal_Dyn dyn;
5a580b3a 2838
7e9f0867
AM
2839 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2840 if (dyn.d_tag == DT_NEEDED
2841 && dyn.d_un.d_val == strindex)
2842 {
2843 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2844 return 1;
2845 }
2846 }
5a580b3a
AM
2847 }
2848
2849 if (do_it)
2850 {
7e9f0867
AM
2851 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2852 return -1;
2853
5a580b3a
AM
2854 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2855 return -1;
2856 }
2857 else
2858 /* We were just checking for existence of the tag. */
2859 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2860
2861 return 0;
2862}
2863
77cfaee6
AM
2864/* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2865 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
ec13b3bb
AM
2866 references from regular objects to these symbols.
2867
2868 ??? Should we do something about references from other dynamic
2869 obects? If not, we potentially lose some warnings about undefined
2870 symbols. But how can we recover the initial undefined / undefweak
2871 state? */
77cfaee6
AM
2872
2873struct elf_smash_syms_data
2874{
2875 bfd *not_needed;
2876 struct elf_link_hash_table *htab;
2877 bfd_boolean twiddled;
2878};
2879
2880static bfd_boolean
2881elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2882{
2883 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2884 struct bfd_link_hash_entry *bh;
2885
2886 switch (h->root.type)
2887 {
2888 default:
2889 case bfd_link_hash_new:
2890 return TRUE;
2891
2892 case bfd_link_hash_undefined:
11f25ea6
AM
2893 if (h->root.u.undef.abfd != inf->not_needed)
2894 return TRUE;
4ea42fb7
AM
2895 if (h->root.u.undef.weak != NULL
2896 && h->root.u.undef.weak != inf->not_needed)
11f25ea6
AM
2897 {
2898 /* Symbol was undefweak in u.undef.weak bfd, and has become
2899 undefined in as-needed lib. Restore weak. */
2900 h->root.type = bfd_link_hash_undefweak;
2901 h->root.u.undef.abfd = h->root.u.undef.weak;
2902 if (h->root.u.undef.next != NULL
2903 || inf->htab->root.undefs_tail == &h->root)
2904 inf->twiddled = TRUE;
2905 return TRUE;
2906 }
2907 break;
2908
77cfaee6
AM
2909 case bfd_link_hash_undefweak:
2910 if (h->root.u.undef.abfd != inf->not_needed)
2911 return TRUE;
2912 break;
2913
2914 case bfd_link_hash_defined:
2915 case bfd_link_hash_defweak:
2916 if (h->root.u.def.section->owner != inf->not_needed)
2917 return TRUE;
2918 break;
2919
2920 case bfd_link_hash_common:
2921 if (h->root.u.c.p->section->owner != inf->not_needed)
2922 return TRUE;
2923 break;
2924
2925 case bfd_link_hash_warning:
2926 case bfd_link_hash_indirect:
2927 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2928 if (h->root.u.i.link->type != bfd_link_hash_new)
2929 return TRUE;
2930 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2931 return TRUE;
2932 break;
2933 }
2934
11f25ea6
AM
2935 /* There is no way we can undo symbol table state from defined or
2936 defweak back to undefined. */
2937 if (h->ref_regular)
2938 abort ();
2939
2e8b3a61
AM
2940 /* Set sym back to newly created state, but keep undef.next if it is
2941 being used as a list pointer. */
77cfaee6 2942 bh = h->root.u.undef.next;
2e8b3a61
AM
2943 if (bh == &h->root)
2944 bh = NULL;
77cfaee6
AM
2945 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2946 inf->twiddled = TRUE;
2947 (*inf->htab->root.table.newfunc) (&h->root.root,
2948 &inf->htab->root.table,
2949 h->root.root.string);
2950 h->root.u.undef.next = bh;
2951 h->root.u.undef.abfd = inf->not_needed;
2952 h->non_elf = 0;
2953 return TRUE;
2954}
2955
5a580b3a 2956/* Sort symbol by value and section. */
4ad4eba5
AM
2957static int
2958elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2959{
2960 const struct elf_link_hash_entry *h1;
2961 const struct elf_link_hash_entry *h2;
10b7e05b 2962 bfd_signed_vma vdiff;
5a580b3a
AM
2963
2964 h1 = *(const struct elf_link_hash_entry **) arg1;
2965 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2966 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2967 if (vdiff != 0)
2968 return vdiff > 0 ? 1 : -1;
2969 else
2970 {
2971 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2972 if (sdiff != 0)
2973 return sdiff > 0 ? 1 : -1;
2974 }
5a580b3a
AM
2975 return 0;
2976}
4ad4eba5 2977
5a580b3a
AM
2978/* This function is used to adjust offsets into .dynstr for
2979 dynamic symbols. This is called via elf_link_hash_traverse. */
2980
2981static bfd_boolean
2982elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2983{
2984 struct elf_strtab_hash *dynstr = data;
2985
2986 if (h->root.type == bfd_link_hash_warning)
2987 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2988
2989 if (h->dynindx != -1)
2990 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2991 return TRUE;
2992}
2993
2994/* Assign string offsets in .dynstr, update all structures referencing
2995 them. */
2996
4ad4eba5
AM
2997static bfd_boolean
2998elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2999{
3000 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3001 struct elf_link_local_dynamic_entry *entry;
3002 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3003 bfd *dynobj = hash_table->dynobj;
3004 asection *sdyn;
3005 bfd_size_type size;
3006 const struct elf_backend_data *bed;
3007 bfd_byte *extdyn;
3008
3009 _bfd_elf_strtab_finalize (dynstr);
3010 size = _bfd_elf_strtab_size (dynstr);
3011
3012 bed = get_elf_backend_data (dynobj);
3013 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3014 BFD_ASSERT (sdyn != NULL);
3015
3016 /* Update all .dynamic entries referencing .dynstr strings. */
3017 for (extdyn = sdyn->contents;
eea6121a 3018 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3019 extdyn += bed->s->sizeof_dyn)
3020 {
3021 Elf_Internal_Dyn dyn;
3022
3023 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3024 switch (dyn.d_tag)
3025 {
3026 case DT_STRSZ:
3027 dyn.d_un.d_val = size;
3028 break;
3029 case DT_NEEDED:
3030 case DT_SONAME:
3031 case DT_RPATH:
3032 case DT_RUNPATH:
3033 case DT_FILTER:
3034 case DT_AUXILIARY:
3035 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3036 break;
3037 default:
3038 continue;
3039 }
3040 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3041 }
3042
3043 /* Now update local dynamic symbols. */
3044 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3045 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3046 entry->isym.st_name);
3047
3048 /* And the rest of dynamic symbols. */
3049 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3050
3051 /* Adjust version definitions. */
3052 if (elf_tdata (output_bfd)->cverdefs)
3053 {
3054 asection *s;
3055 bfd_byte *p;
3056 bfd_size_type i;
3057 Elf_Internal_Verdef def;
3058 Elf_Internal_Verdaux defaux;
3059
3060 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3061 p = s->contents;
3062 do
3063 {
3064 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3065 &def);
3066 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3067 if (def.vd_aux != sizeof (Elf_External_Verdef))
3068 continue;
5a580b3a
AM
3069 for (i = 0; i < def.vd_cnt; ++i)
3070 {
3071 _bfd_elf_swap_verdaux_in (output_bfd,
3072 (Elf_External_Verdaux *) p, &defaux);
3073 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3074 defaux.vda_name);
3075 _bfd_elf_swap_verdaux_out (output_bfd,
3076 &defaux, (Elf_External_Verdaux *) p);
3077 p += sizeof (Elf_External_Verdaux);
3078 }
3079 }
3080 while (def.vd_next);
3081 }
3082
3083 /* Adjust version references. */
3084 if (elf_tdata (output_bfd)->verref)
3085 {
3086 asection *s;
3087 bfd_byte *p;
3088 bfd_size_type i;
3089 Elf_Internal_Verneed need;
3090 Elf_Internal_Vernaux needaux;
3091
3092 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3093 p = s->contents;
3094 do
3095 {
3096 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3097 &need);
3098 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3099 _bfd_elf_swap_verneed_out (output_bfd, &need,
3100 (Elf_External_Verneed *) p);
3101 p += sizeof (Elf_External_Verneed);
3102 for (i = 0; i < need.vn_cnt; ++i)
3103 {
3104 _bfd_elf_swap_vernaux_in (output_bfd,
3105 (Elf_External_Vernaux *) p, &needaux);
3106 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3107 needaux.vna_name);
3108 _bfd_elf_swap_vernaux_out (output_bfd,
3109 &needaux,
3110 (Elf_External_Vernaux *) p);
3111 p += sizeof (Elf_External_Vernaux);
3112 }
3113 }
3114 while (need.vn_next);
3115 }
3116
3117 return TRUE;
3118}
3119\f
4ad4eba5
AM
3120/* Add symbols from an ELF object file to the linker hash table. */
3121
3122static bfd_boolean
3123elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3124{
3125 bfd_boolean (*add_symbol_hook)
555cd476 3126 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
3127 const char **, flagword *, asection **, bfd_vma *);
3128 bfd_boolean (*check_relocs)
3129 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
3130 bfd_boolean (*check_directives)
3131 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
3132 bfd_boolean collect;
3133 Elf_Internal_Shdr *hdr;
3134 bfd_size_type symcount;
3135 bfd_size_type extsymcount;
3136 bfd_size_type extsymoff;
3137 struct elf_link_hash_entry **sym_hash;
3138 bfd_boolean dynamic;
3139 Elf_External_Versym *extversym = NULL;
3140 Elf_External_Versym *ever;
3141 struct elf_link_hash_entry *weaks;
3142 struct elf_link_hash_entry **nondeflt_vers = NULL;
3143 bfd_size_type nondeflt_vers_cnt = 0;
3144 Elf_Internal_Sym *isymbuf = NULL;
3145 Elf_Internal_Sym *isym;
3146 Elf_Internal_Sym *isymend;
3147 const struct elf_backend_data *bed;
3148 bfd_boolean add_needed;
3149 struct elf_link_hash_table * hash_table;
3150 bfd_size_type amt;
3151
3152 hash_table = elf_hash_table (info);
3153
3154 bed = get_elf_backend_data (abfd);
3155 add_symbol_hook = bed->elf_add_symbol_hook;
3156 collect = bed->collect;
3157
3158 if ((abfd->flags & DYNAMIC) == 0)
3159 dynamic = FALSE;
3160 else
3161 {
3162 dynamic = TRUE;
3163
3164 /* You can't use -r against a dynamic object. Also, there's no
3165 hope of using a dynamic object which does not exactly match
3166 the format of the output file. */
3167 if (info->relocatable
3168 || !is_elf_hash_table (hash_table)
3169 || hash_table->root.creator != abfd->xvec)
3170 {
9a0789ec
NC
3171 if (info->relocatable)
3172 bfd_set_error (bfd_error_invalid_operation);
3173 else
3174 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3175 goto error_return;
3176 }
3177 }
3178
3179 /* As a GNU extension, any input sections which are named
3180 .gnu.warning.SYMBOL are treated as warning symbols for the given
3181 symbol. This differs from .gnu.warning sections, which generate
3182 warnings when they are included in an output file. */
3183 if (info->executable)
3184 {
3185 asection *s;
3186
3187 for (s = abfd->sections; s != NULL; s = s->next)
3188 {
3189 const char *name;
3190
3191 name = bfd_get_section_name (abfd, s);
3192 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3193 {
3194 char *msg;
3195 bfd_size_type sz;
4ad4eba5
AM
3196
3197 name += sizeof ".gnu.warning." - 1;
3198
3199 /* If this is a shared object, then look up the symbol
3200 in the hash table. If it is there, and it is already
3201 been defined, then we will not be using the entry
3202 from this shared object, so we don't need to warn.
3203 FIXME: If we see the definition in a regular object
3204 later on, we will warn, but we shouldn't. The only
3205 fix is to keep track of what warnings we are supposed
3206 to emit, and then handle them all at the end of the
3207 link. */
3208 if (dynamic)
3209 {
3210 struct elf_link_hash_entry *h;
3211
3212 h = elf_link_hash_lookup (hash_table, name,
3213 FALSE, FALSE, TRUE);
3214
3215 /* FIXME: What about bfd_link_hash_common? */
3216 if (h != NULL
3217 && (h->root.type == bfd_link_hash_defined
3218 || h->root.type == bfd_link_hash_defweak))
3219 {
3220 /* We don't want to issue this warning. Clobber
3221 the section size so that the warning does not
3222 get copied into the output file. */
eea6121a 3223 s->size = 0;
4ad4eba5
AM
3224 continue;
3225 }
3226 }
3227
eea6121a 3228 sz = s->size;
370a0e1b 3229 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3230 if (msg == NULL)
3231 goto error_return;
3232
370a0e1b 3233 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3234 goto error_return;
3235
370a0e1b 3236 msg[sz] = '\0';
4ad4eba5
AM
3237
3238 if (! (_bfd_generic_link_add_one_symbol
3239 (info, abfd, name, BSF_WARNING, s, 0, msg,
3240 FALSE, collect, NULL)))
3241 goto error_return;
3242
3243 if (! info->relocatable)
3244 {
3245 /* Clobber the section size so that the warning does
3246 not get copied into the output file. */
eea6121a 3247 s->size = 0;
11d2f718
AM
3248
3249 /* Also set SEC_EXCLUDE, so that symbols defined in
3250 the warning section don't get copied to the output. */
3251 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3252 }
3253 }
3254 }
3255 }
3256
3257 add_needed = TRUE;
3258 if (! dynamic)
3259 {
3260 /* If we are creating a shared library, create all the dynamic
3261 sections immediately. We need to attach them to something,
3262 so we attach them to this BFD, provided it is the right
3263 format. FIXME: If there are no input BFD's of the same
3264 format as the output, we can't make a shared library. */
3265 if (info->shared
3266 && is_elf_hash_table (hash_table)
3267 && hash_table->root.creator == abfd->xvec
3268 && ! hash_table->dynamic_sections_created)
3269 {
3270 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3271 goto error_return;
3272 }
3273 }
3274 else if (!is_elf_hash_table (hash_table))
3275 goto error_return;
3276 else
3277 {
3278 asection *s;
3279 const char *soname = NULL;
3280 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3281 int ret;
3282
3283 /* ld --just-symbols and dynamic objects don't mix very well.
3284 Test for --just-symbols by looking at info set up by
3285 _bfd_elf_link_just_syms. */
3286 if ((s = abfd->sections) != NULL
3287 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3288 goto error_return;
3289
3290 /* If this dynamic lib was specified on the command line with
3291 --as-needed in effect, then we don't want to add a DT_NEEDED
3292 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3293 in by another lib's DT_NEEDED. When --no-add-needed is used
3294 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3295 any dynamic library in DT_NEEDED tags in the dynamic lib at
3296 all. */
3297 add_needed = (elf_dyn_lib_class (abfd)
3298 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3299 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3300
3301 s = bfd_get_section_by_name (abfd, ".dynamic");
3302 if (s != NULL)
3303 {
3304 bfd_byte *dynbuf;
3305 bfd_byte *extdyn;
3306 int elfsec;
3307 unsigned long shlink;
3308
eea6121a 3309 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3310 goto error_free_dyn;
3311
3312 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3313 if (elfsec == -1)
3314 goto error_free_dyn;
3315 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3316
3317 for (extdyn = dynbuf;
eea6121a 3318 extdyn < dynbuf + s->size;
4ad4eba5
AM
3319 extdyn += bed->s->sizeof_dyn)
3320 {
3321 Elf_Internal_Dyn dyn;
3322
3323 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3324 if (dyn.d_tag == DT_SONAME)
3325 {
3326 unsigned int tagv = dyn.d_un.d_val;
3327 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3328 if (soname == NULL)
3329 goto error_free_dyn;
3330 }
3331 if (dyn.d_tag == DT_NEEDED)
3332 {
3333 struct bfd_link_needed_list *n, **pn;
3334 char *fnm, *anm;
3335 unsigned int tagv = dyn.d_un.d_val;
3336
3337 amt = sizeof (struct bfd_link_needed_list);
3338 n = bfd_alloc (abfd, amt);
3339 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3340 if (n == NULL || fnm == NULL)
3341 goto error_free_dyn;
3342 amt = strlen (fnm) + 1;
3343 anm = bfd_alloc (abfd, amt);
3344 if (anm == NULL)
3345 goto error_free_dyn;
3346 memcpy (anm, fnm, amt);
3347 n->name = anm;
3348 n->by = abfd;
3349 n->next = NULL;
3350 for (pn = & hash_table->needed;
3351 *pn != NULL;
3352 pn = &(*pn)->next)
3353 ;
3354 *pn = n;
3355 }
3356 if (dyn.d_tag == DT_RUNPATH)
3357 {
3358 struct bfd_link_needed_list *n, **pn;
3359 char *fnm, *anm;
3360 unsigned int tagv = dyn.d_un.d_val;
3361
3362 amt = sizeof (struct bfd_link_needed_list);
3363 n = bfd_alloc (abfd, amt);
3364 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3365 if (n == NULL || fnm == NULL)
3366 goto error_free_dyn;
3367 amt = strlen (fnm) + 1;
3368 anm = bfd_alloc (abfd, amt);
3369 if (anm == NULL)
3370 goto error_free_dyn;
3371 memcpy (anm, fnm, amt);
3372 n->name = anm;
3373 n->by = abfd;
3374 n->next = NULL;
3375 for (pn = & runpath;
3376 *pn != NULL;
3377 pn = &(*pn)->next)
3378 ;
3379 *pn = n;
3380 }
3381 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3382 if (!runpath && dyn.d_tag == DT_RPATH)
3383 {
3384 struct bfd_link_needed_list *n, **pn;
3385 char *fnm, *anm;
3386 unsigned int tagv = dyn.d_un.d_val;
3387
3388 amt = sizeof (struct bfd_link_needed_list);
3389 n = bfd_alloc (abfd, amt);
3390 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3391 if (n == NULL || fnm == NULL)
3392 goto error_free_dyn;
3393 amt = strlen (fnm) + 1;
3394 anm = bfd_alloc (abfd, amt);
3395 if (anm == NULL)
3396 {
3397 error_free_dyn:
3398 free (dynbuf);
3399 goto error_return;
3400 }
3401 memcpy (anm, fnm, amt);
3402 n->name = anm;
3403 n->by = abfd;
3404 n->next = NULL;
3405 for (pn = & rpath;
3406 *pn != NULL;
3407 pn = &(*pn)->next)
3408 ;
3409 *pn = n;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3417 frees all more recently bfd_alloc'd blocks as well. */
3418 if (runpath)
3419 rpath = runpath;
3420
3421 if (rpath)
3422 {
3423 struct bfd_link_needed_list **pn;
3424 for (pn = & hash_table->runpath;
3425 *pn != NULL;
3426 pn = &(*pn)->next)
3427 ;
3428 *pn = rpath;
3429 }
3430
3431 /* We do not want to include any of the sections in a dynamic
3432 object in the output file. We hack by simply clobbering the
3433 list of sections in the BFD. This could be handled more
3434 cleanly by, say, a new section flag; the existing
3435 SEC_NEVER_LOAD flag is not the one we want, because that one
3436 still implies that the section takes up space in the output
3437 file. */
3438 bfd_section_list_clear (abfd);
3439
4ad4eba5
AM
3440 /* Find the name to use in a DT_NEEDED entry that refers to this
3441 object. If the object has a DT_SONAME entry, we use it.
3442 Otherwise, if the generic linker stuck something in
3443 elf_dt_name, we use that. Otherwise, we just use the file
3444 name. */
3445 if (soname == NULL || *soname == '\0')
3446 {
3447 soname = elf_dt_name (abfd);
3448 if (soname == NULL || *soname == '\0')
3449 soname = bfd_get_filename (abfd);
3450 }
3451
3452 /* Save the SONAME because sometimes the linker emulation code
3453 will need to know it. */
3454 elf_dt_name (abfd) = soname;
3455
7e9f0867 3456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3457 if (ret < 0)
3458 goto error_return;
3459
3460 /* If we have already included this dynamic object in the
3461 link, just ignore it. There is no reason to include a
3462 particular dynamic object more than once. */
3463 if (ret > 0)
3464 return TRUE;
3465 }
3466
3467 /* If this is a dynamic object, we always link against the .dynsym
3468 symbol table, not the .symtab symbol table. The dynamic linker
3469 will only see the .dynsym symbol table, so there is no reason to
3470 look at .symtab for a dynamic object. */
3471
3472 if (! dynamic || elf_dynsymtab (abfd) == 0)
3473 hdr = &elf_tdata (abfd)->symtab_hdr;
3474 else
3475 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3476
3477 symcount = hdr->sh_size / bed->s->sizeof_sym;
3478
3479 /* The sh_info field of the symtab header tells us where the
3480 external symbols start. We don't care about the local symbols at
3481 this point. */
3482 if (elf_bad_symtab (abfd))
3483 {
3484 extsymcount = symcount;
3485 extsymoff = 0;
3486 }
3487 else
3488 {
3489 extsymcount = symcount - hdr->sh_info;
3490 extsymoff = hdr->sh_info;
3491 }
3492
3493 sym_hash = NULL;
3494 if (extsymcount != 0)
3495 {
3496 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3497 NULL, NULL, NULL);
3498 if (isymbuf == NULL)
3499 goto error_return;
3500
3501 /* We store a pointer to the hash table entry for each external
3502 symbol. */
3503 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3504 sym_hash = bfd_alloc (abfd, amt);
3505 if (sym_hash == NULL)
3506 goto error_free_sym;
3507 elf_sym_hashes (abfd) = sym_hash;
3508 }
3509
3510 if (dynamic)
3511 {
3512 /* Read in any version definitions. */
fc0e6df6
PB
3513 if (!_bfd_elf_slurp_version_tables (abfd,
3514 info->default_imported_symver))
4ad4eba5
AM
3515 goto error_free_sym;
3516
3517 /* Read in the symbol versions, but don't bother to convert them
3518 to internal format. */
3519 if (elf_dynversym (abfd) != 0)
3520 {
3521 Elf_Internal_Shdr *versymhdr;
3522
3523 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3524 extversym = bfd_malloc (versymhdr->sh_size);
3525 if (extversym == NULL)
3526 goto error_free_sym;
3527 amt = versymhdr->sh_size;
3528 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3529 || bfd_bread (extversym, amt, abfd) != amt)
3530 goto error_free_vers;
3531 }
3532 }
3533
3534 weaks = NULL;
3535
3536 ever = extversym != NULL ? extversym + extsymoff : NULL;
3537 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3538 isym < isymend;
3539 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3540 {
3541 int bind;
3542 bfd_vma value;
af44c138 3543 asection *sec, *new_sec;
4ad4eba5
AM
3544 flagword flags;
3545 const char *name;
3546 struct elf_link_hash_entry *h;
3547 bfd_boolean definition;
3548 bfd_boolean size_change_ok;
3549 bfd_boolean type_change_ok;
3550 bfd_boolean new_weakdef;
3551 bfd_boolean override;
3552 unsigned int old_alignment;
3553 bfd *old_bfd;
3554
3555 override = FALSE;
3556
3557 flags = BSF_NO_FLAGS;
3558 sec = NULL;
3559 value = isym->st_value;
3560 *sym_hash = NULL;
3561
3562 bind = ELF_ST_BIND (isym->st_info);
3563 if (bind == STB_LOCAL)
3564 {
3565 /* This should be impossible, since ELF requires that all
3566 global symbols follow all local symbols, and that sh_info
3567 point to the first global symbol. Unfortunately, Irix 5
3568 screws this up. */
3569 continue;
3570 }
3571 else if (bind == STB_GLOBAL)
3572 {
3573 if (isym->st_shndx != SHN_UNDEF
3574 && isym->st_shndx != SHN_COMMON)
3575 flags = BSF_GLOBAL;
3576 }
3577 else if (bind == STB_WEAK)
3578 flags = BSF_WEAK;
3579 else
3580 {
3581 /* Leave it up to the processor backend. */
3582 }
3583
3584 if (isym->st_shndx == SHN_UNDEF)
3585 sec = bfd_und_section_ptr;
3586 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3587 {
3588 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3589 if (sec == NULL)
3590 sec = bfd_abs_section_ptr;
529fcb95
PB
3591 else if (sec->kept_section)
3592 {
1f02cbd9 3593 /* Symbols from discarded section are undefined, and have
3b36f7e6 3594 default visibility. */
529fcb95
PB
3595 sec = bfd_und_section_ptr;
3596 isym->st_shndx = SHN_UNDEF;
1f02cbd9
JB
3597 isym->st_other = STV_DEFAULT
3598 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
529fcb95 3599 }
4ad4eba5
AM
3600 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3601 value -= sec->vma;
3602 }
3603 else if (isym->st_shndx == SHN_ABS)
3604 sec = bfd_abs_section_ptr;
3605 else if (isym->st_shndx == SHN_COMMON)
3606 {
3607 sec = bfd_com_section_ptr;
3608 /* What ELF calls the size we call the value. What ELF
3609 calls the value we call the alignment. */
3610 value = isym->st_size;
3611 }
3612 else
3613 {
3614 /* Leave it up to the processor backend. */
3615 }
3616
3617 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3618 isym->st_name);
3619 if (name == NULL)
3620 goto error_free_vers;
3621
3622 if (isym->st_shndx == SHN_COMMON
3623 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3624 {
3625 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3626
3627 if (tcomm == NULL)
3628 {
3496cb2a
L
3629 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3630 (SEC_ALLOC
3631 | SEC_IS_COMMON
3632 | SEC_LINKER_CREATED
3633 | SEC_THREAD_LOCAL));
3634 if (tcomm == NULL)
4ad4eba5
AM
3635 goto error_free_vers;
3636 }
3637 sec = tcomm;
3638 }
3639 else if (add_symbol_hook)
3640 {
3641 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3642 &value))
3643 goto error_free_vers;
3644
3645 /* The hook function sets the name to NULL if this symbol
3646 should be skipped for some reason. */
3647 if (name == NULL)
3648 continue;
3649 }
3650
3651 /* Sanity check that all possibilities were handled. */
3652 if (sec == NULL)
3653 {
3654 bfd_set_error (bfd_error_bad_value);
3655 goto error_free_vers;
3656 }
3657
3658 if (bfd_is_und_section (sec)
3659 || bfd_is_com_section (sec))
3660 definition = FALSE;
3661 else
3662 definition = TRUE;
3663
3664 size_change_ok = FALSE;
3665 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3666 old_alignment = 0;
3667 old_bfd = NULL;
af44c138 3668 new_sec = sec;
4ad4eba5
AM
3669
3670 if (is_elf_hash_table (hash_table))
3671 {
3672 Elf_Internal_Versym iver;
3673 unsigned int vernum = 0;
3674 bfd_boolean skip;
3675
fc0e6df6 3676 if (ever == NULL)
4ad4eba5 3677 {
fc0e6df6
PB
3678 if (info->default_imported_symver)
3679 /* Use the default symbol version created earlier. */
3680 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3681 else
3682 iver.vs_vers = 0;
3683 }
3684 else
3685 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3686
3687 vernum = iver.vs_vers & VERSYM_VERSION;
3688
3689 /* If this is a hidden symbol, or if it is not version
3690 1, we append the version name to the symbol name.
3691 However, we do not modify a non-hidden absolute
3692 symbol, because it might be the version symbol
3693 itself. FIXME: What if it isn't? */
3694 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3695 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3696 {
3697 const char *verstr;
3698 size_t namelen, verlen, newlen;
3699 char *newname, *p;
3700
3701 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3702 {
fc0e6df6
PB
3703 if (vernum > elf_tdata (abfd)->cverdefs)
3704 verstr = NULL;
3705 else if (vernum > 1)
3706 verstr =
3707 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3708 else
3709 verstr = "";
4ad4eba5 3710
fc0e6df6 3711 if (verstr == NULL)
4ad4eba5 3712 {
fc0e6df6
PB
3713 (*_bfd_error_handler)
3714 (_("%B: %s: invalid version %u (max %d)"),
3715 abfd, name, vernum,
3716 elf_tdata (abfd)->cverdefs);
3717 bfd_set_error (bfd_error_bad_value);
3718 goto error_free_vers;
4ad4eba5 3719 }
fc0e6df6
PB
3720 }
3721 else
3722 {
3723 /* We cannot simply test for the number of
3724 entries in the VERNEED section since the
3725 numbers for the needed versions do not start
3726 at 0. */
3727 Elf_Internal_Verneed *t;
3728
3729 verstr = NULL;
3730 for (t = elf_tdata (abfd)->verref;
3731 t != NULL;
3732 t = t->vn_nextref)
4ad4eba5 3733 {
fc0e6df6 3734 Elf_Internal_Vernaux *a;
4ad4eba5 3735
fc0e6df6
PB
3736 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3737 {
3738 if (a->vna_other == vernum)
4ad4eba5 3739 {
fc0e6df6
PB
3740 verstr = a->vna_nodename;
3741 break;
4ad4eba5 3742 }
4ad4eba5 3743 }
fc0e6df6
PB
3744 if (a != NULL)
3745 break;
3746 }
3747 if (verstr == NULL)
3748 {
3749 (*_bfd_error_handler)
3750 (_("%B: %s: invalid needed version %d"),
3751 abfd, name, vernum);
3752 bfd_set_error (bfd_error_bad_value);
3753 goto error_free_vers;
4ad4eba5 3754 }
4ad4eba5 3755 }
fc0e6df6
PB
3756
3757 namelen = strlen (name);
3758 verlen = strlen (verstr);
3759 newlen = namelen + verlen + 2;
3760 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3761 && isym->st_shndx != SHN_UNDEF)
3762 ++newlen;
3763
3764 newname = bfd_alloc (abfd, newlen);
3765 if (newname == NULL)
3766 goto error_free_vers;
3767 memcpy (newname, name, namelen);
3768 p = newname + namelen;
3769 *p++ = ELF_VER_CHR;
3770 /* If this is a defined non-hidden version symbol,
3771 we add another @ to the name. This indicates the
3772 default version of the symbol. */
3773 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3774 && isym->st_shndx != SHN_UNDEF)
3775 *p++ = ELF_VER_CHR;
3776 memcpy (p, verstr, verlen + 1);
3777
3778 name = newname;
4ad4eba5
AM
3779 }
3780
af44c138
L
3781 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3782 &value, &old_alignment,
4ad4eba5
AM
3783 sym_hash, &skip, &override,
3784 &type_change_ok, &size_change_ok))
3785 goto error_free_vers;
3786
3787 if (skip)
3788 continue;
3789
3790 if (override)
3791 definition = FALSE;
3792
3793 h = *sym_hash;
3794 while (h->root.type == bfd_link_hash_indirect
3795 || h->root.type == bfd_link_hash_warning)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3797
3798 /* Remember the old alignment if this is a common symbol, so
3799 that we don't reduce the alignment later on. We can't
3800 check later, because _bfd_generic_link_add_one_symbol
3801 will set a default for the alignment which we want to
3802 override. We also remember the old bfd where the existing
3803 definition comes from. */
3804 switch (h->root.type)
3805 {
3806 default:
3807 break;
3808
3809 case bfd_link_hash_defined:
3810 case bfd_link_hash_defweak:
3811 old_bfd = h->root.u.def.section->owner;
3812 break;
3813
3814 case bfd_link_hash_common:
3815 old_bfd = h->root.u.c.p->section->owner;
3816 old_alignment = h->root.u.c.p->alignment_power;
3817 break;
3818 }
3819
3820 if (elf_tdata (abfd)->verdef != NULL
3821 && ! override
3822 && vernum > 1
3823 && definition)
3824 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3825 }
3826
3827 if (! (_bfd_generic_link_add_one_symbol
3828 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3829 (struct bfd_link_hash_entry **) sym_hash)))
3830 goto error_free_vers;
3831
3832 h = *sym_hash;
3833 while (h->root.type == bfd_link_hash_indirect
3834 || h->root.type == bfd_link_hash_warning)
3835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3836 *sym_hash = h;
3837
3838 new_weakdef = FALSE;
3839 if (dynamic
3840 && definition
3841 && (flags & BSF_WEAK) != 0
3842 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3843 && is_elf_hash_table (hash_table)
f6e332e6 3844 && h->u.weakdef == NULL)
4ad4eba5
AM
3845 {
3846 /* Keep a list of all weak defined non function symbols from
3847 a dynamic object, using the weakdef field. Later in this
3848 function we will set the weakdef field to the correct
3849 value. We only put non-function symbols from dynamic
3850 objects on this list, because that happens to be the only
3851 time we need to know the normal symbol corresponding to a
3852 weak symbol, and the information is time consuming to
3853 figure out. If the weakdef field is not already NULL,
3854 then this symbol was already defined by some previous
3855 dynamic object, and we will be using that previous
3856 definition anyhow. */
3857
f6e332e6 3858 h->u.weakdef = weaks;
4ad4eba5
AM
3859 weaks = h;
3860 new_weakdef = TRUE;
3861 }
3862
3863 /* Set the alignment of a common symbol. */
af44c138
L
3864 if ((isym->st_shndx == SHN_COMMON
3865 || bfd_is_com_section (sec))
4ad4eba5
AM
3866 && h->root.type == bfd_link_hash_common)
3867 {
3868 unsigned int align;
3869
af44c138
L
3870 if (isym->st_shndx == SHN_COMMON)
3871 align = bfd_log2 (isym->st_value);
3872 else
3873 {
3874 /* The new symbol is a common symbol in a shared object.
3875 We need to get the alignment from the section. */
3876 align = new_sec->alignment_power;
3877 }
4ad4eba5
AM
3878 if (align > old_alignment
3879 /* Permit an alignment power of zero if an alignment of one
3880 is specified and no other alignments have been specified. */
3881 || (isym->st_value == 1 && old_alignment == 0))
3882 h->root.u.c.p->alignment_power = align;
3883 else
3884 h->root.u.c.p->alignment_power = old_alignment;
3885 }
3886
3887 if (is_elf_hash_table (hash_table))
3888 {
4ad4eba5 3889 bfd_boolean dynsym;
4ad4eba5
AM
3890
3891 /* Check the alignment when a common symbol is involved. This
3892 can change when a common symbol is overridden by a normal
3893 definition or a common symbol is ignored due to the old
3894 normal definition. We need to make sure the maximum
3895 alignment is maintained. */
3896 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3897 && h->root.type != bfd_link_hash_common)
3898 {
3899 unsigned int common_align;
3900 unsigned int normal_align;
3901 unsigned int symbol_align;
3902 bfd *normal_bfd;
3903 bfd *common_bfd;
3904
3905 symbol_align = ffs (h->root.u.def.value) - 1;
3906 if (h->root.u.def.section->owner != NULL
3907 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3908 {
3909 normal_align = h->root.u.def.section->alignment_power;
3910 if (normal_align > symbol_align)
3911 normal_align = symbol_align;
3912 }
3913 else
3914 normal_align = symbol_align;
3915
3916 if (old_alignment)
3917 {
3918 common_align = old_alignment;
3919 common_bfd = old_bfd;
3920 normal_bfd = abfd;
3921 }
3922 else
3923 {
3924 common_align = bfd_log2 (isym->st_value);
3925 common_bfd = abfd;
3926 normal_bfd = old_bfd;
3927 }
3928
3929 if (normal_align < common_align)
3930 (*_bfd_error_handler)
d003868e
AM
3931 (_("Warning: alignment %u of symbol `%s' in %B"
3932 " is smaller than %u in %B"),
3933 normal_bfd, common_bfd,
3934 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3935 }
3936
3937 /* Remember the symbol size and type. */
3938 if (isym->st_size != 0
3939 && (definition || h->size == 0))
3940 {
3941 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3942 (*_bfd_error_handler)
d003868e
AM
3943 (_("Warning: size of symbol `%s' changed"
3944 " from %lu in %B to %lu in %B"),
3945 old_bfd, abfd,
4ad4eba5 3946 name, (unsigned long) h->size,
d003868e 3947 (unsigned long) isym->st_size);
4ad4eba5
AM
3948
3949 h->size = isym->st_size;
3950 }
3951
3952 /* If this is a common symbol, then we always want H->SIZE
3953 to be the size of the common symbol. The code just above
3954 won't fix the size if a common symbol becomes larger. We
3955 don't warn about a size change here, because that is
3956 covered by --warn-common. */
3957 if (h->root.type == bfd_link_hash_common)
3958 h->size = h->root.u.c.size;
3959
3960 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3961 && (definition || h->type == STT_NOTYPE))
3962 {
3963 if (h->type != STT_NOTYPE
3964 && h->type != ELF_ST_TYPE (isym->st_info)
3965 && ! type_change_ok)
3966 (*_bfd_error_handler)
d003868e
AM
3967 (_("Warning: type of symbol `%s' changed"
3968 " from %d to %d in %B"),
3969 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3970
3971 h->type = ELF_ST_TYPE (isym->st_info);
3972 }
3973
3974 /* If st_other has a processor-specific meaning, specific
3975 code might be needed here. We never merge the visibility
3976 attribute with the one from a dynamic object. */
3977 if (bed->elf_backend_merge_symbol_attribute)
3978 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3979 dynamic);
3980
b58f81ae
DJ
3981 /* If this symbol has default visibility and the user has requested
3982 we not re-export it, then mark it as hidden. */
3983 if (definition && !dynamic
3984 && (abfd->no_export
3985 || (abfd->my_archive && abfd->my_archive->no_export))
3986 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3987 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3988
4ad4eba5
AM
3989 if (isym->st_other != 0 && !dynamic)
3990 {
3991 unsigned char hvis, symvis, other, nvis;
3992
3993 /* Take the balance of OTHER from the definition. */
3994 other = (definition ? isym->st_other : h->other);
3995 other &= ~ ELF_ST_VISIBILITY (-1);
3996
3997 /* Combine visibilities, using the most constraining one. */
3998 hvis = ELF_ST_VISIBILITY (h->other);
3999 symvis = ELF_ST_VISIBILITY (isym->st_other);
4000 if (! hvis)
4001 nvis = symvis;
4002 else if (! symvis)
4003 nvis = hvis;
4004 else
4005 nvis = hvis < symvis ? hvis : symvis;
4006
4007 h->other = other | nvis;
4008 }
4009
4010 /* Set a flag in the hash table entry indicating the type of
4011 reference or definition we just found. Keep a count of
4012 the number of dynamic symbols we find. A dynamic symbol
4013 is one which is referenced or defined by both a regular
4014 object and a shared object. */
4ad4eba5
AM
4015 dynsym = FALSE;
4016 if (! dynamic)
4017 {
4018 if (! definition)
4019 {
f5385ebf 4020 h->ref_regular = 1;
4ad4eba5 4021 if (bind != STB_WEAK)
f5385ebf 4022 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4023 }
4024 else
f5385ebf 4025 h->def_regular = 1;
4ad4eba5 4026 if (! info->executable
f5385ebf
AM
4027 || h->def_dynamic
4028 || h->ref_dynamic)
4ad4eba5
AM
4029 dynsym = TRUE;
4030 }
4031 else
4032 {
4033 if (! definition)
f5385ebf 4034 h->ref_dynamic = 1;
4ad4eba5 4035 else
f5385ebf
AM
4036 h->def_dynamic = 1;
4037 if (h->def_regular
4038 || h->ref_regular
f6e332e6 4039 || (h->u.weakdef != NULL
4ad4eba5 4040 && ! new_weakdef
f6e332e6 4041 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4042 dynsym = TRUE;
4043 }
4044
4ad4eba5
AM
4045 /* Check to see if we need to add an indirect symbol for
4046 the default name. */
4047 if (definition || h->root.type == bfd_link_hash_common)
4048 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4049 &sec, &value, &dynsym,
4050 override))
4051 goto error_free_vers;
4052
4053 if (definition && !dynamic)
4054 {
4055 char *p = strchr (name, ELF_VER_CHR);
4056 if (p != NULL && p[1] != ELF_VER_CHR)
4057 {
4058 /* Queue non-default versions so that .symver x, x@FOO
4059 aliases can be checked. */
4060 if (! nondeflt_vers)
4061 {
4062 amt = (isymend - isym + 1)
4063 * sizeof (struct elf_link_hash_entry *);
4064 nondeflt_vers = bfd_malloc (amt);
4065 }
4066 nondeflt_vers [nondeflt_vers_cnt++] = h;
4067 }
4068 }
4069
4070 if (dynsym && h->dynindx == -1)
4071 {
c152c796 4072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4073 goto error_free_vers;
f6e332e6 4074 if (h->u.weakdef != NULL
4ad4eba5 4075 && ! new_weakdef
f6e332e6 4076 && h->u.weakdef->dynindx == -1)
4ad4eba5 4077 {
f6e332e6 4078 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4079 goto error_free_vers;
4080 }
4081 }
4082 else if (dynsym && h->dynindx != -1)
4083 /* If the symbol already has a dynamic index, but
4084 visibility says it should not be visible, turn it into
4085 a local symbol. */
4086 switch (ELF_ST_VISIBILITY (h->other))
4087 {
4088 case STV_INTERNAL:
4089 case STV_HIDDEN:
4090 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4091 dynsym = FALSE;
4092 break;
4093 }
4094
4095 if (!add_needed
4096 && definition
4097 && dynsym
f5385ebf 4098 && h->ref_regular)
4ad4eba5
AM
4099 {
4100 int ret;
4101 const char *soname = elf_dt_name (abfd);
4102
4103 /* A symbol from a library loaded via DT_NEEDED of some
4104 other library is referenced by a regular object.
e56f61be
L
4105 Add a DT_NEEDED entry for it. Issue an error if
4106 --no-add-needed is used. */
4107 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4108 {
4109 (*_bfd_error_handler)
4110 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4111 abfd, name);
e56f61be
L
4112 bfd_set_error (bfd_error_bad_value);
4113 goto error_free_vers;
4114 }
4115
a5db907e
AM
4116 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4117
4ad4eba5 4118 add_needed = TRUE;
7e9f0867 4119 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4120 if (ret < 0)
4121 goto error_free_vers;
4122
4123 BFD_ASSERT (ret == 0);
4124 }
4125 }
4126 }
4127
4128 /* Now that all the symbols from this input file are created, handle
4129 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4130 if (nondeflt_vers != NULL)
4131 {
4132 bfd_size_type cnt, symidx;
4133
4134 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4135 {
4136 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4137 char *shortname, *p;
4138
4139 p = strchr (h->root.root.string, ELF_VER_CHR);
4140 if (p == NULL
4141 || (h->root.type != bfd_link_hash_defined
4142 && h->root.type != bfd_link_hash_defweak))
4143 continue;
4144
4145 amt = p - h->root.root.string;
4146 shortname = bfd_malloc (amt + 1);
4147 memcpy (shortname, h->root.root.string, amt);
4148 shortname[amt] = '\0';
4149
4150 hi = (struct elf_link_hash_entry *)
4151 bfd_link_hash_lookup (&hash_table->root, shortname,
4152 FALSE, FALSE, FALSE);
4153 if (hi != NULL
4154 && hi->root.type == h->root.type
4155 && hi->root.u.def.value == h->root.u.def.value
4156 && hi->root.u.def.section == h->root.u.def.section)
4157 {
4158 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4159 hi->root.type = bfd_link_hash_indirect;
4160 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4161 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4162 sym_hash = elf_sym_hashes (abfd);
4163 if (sym_hash)
4164 for (symidx = 0; symidx < extsymcount; ++symidx)
4165 if (sym_hash[symidx] == hi)
4166 {
4167 sym_hash[symidx] = h;
4168 break;
4169 }
4170 }
4171 free (shortname);
4172 }
4173 free (nondeflt_vers);
4174 nondeflt_vers = NULL;
4175 }
4176
4177 if (extversym != NULL)
4178 {
4179 free (extversym);
4180 extversym = NULL;
4181 }
4182
4183 if (isymbuf != NULL)
4184 free (isymbuf);
4185 isymbuf = NULL;
4186
ec13b3bb
AM
4187 if (!add_needed
4188 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
77cfaee6 4189 {
ec13b3bb
AM
4190 /* Remove symbols defined in an as-needed shared lib that wasn't
4191 needed. */
77cfaee6
AM
4192 struct elf_smash_syms_data inf;
4193 inf.not_needed = abfd;
4194 inf.htab = hash_table;
4195 inf.twiddled = FALSE;
4196 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4197 if (inf.twiddled)
4198 bfd_link_repair_undef_list (&hash_table->root);
4199 weaks = NULL;
4200 }
4201
4ad4eba5
AM
4202 /* Now set the weakdefs field correctly for all the weak defined
4203 symbols we found. The only way to do this is to search all the
4204 symbols. Since we only need the information for non functions in
4205 dynamic objects, that's the only time we actually put anything on
4206 the list WEAKS. We need this information so that if a regular
4207 object refers to a symbol defined weakly in a dynamic object, the
4208 real symbol in the dynamic object is also put in the dynamic
4209 symbols; we also must arrange for both symbols to point to the
4210 same memory location. We could handle the general case of symbol
4211 aliasing, but a general symbol alias can only be generated in
4212 assembler code, handling it correctly would be very time
4213 consuming, and other ELF linkers don't handle general aliasing
4214 either. */
4215 if (weaks != NULL)
4216 {
4217 struct elf_link_hash_entry **hpp;
4218 struct elf_link_hash_entry **hppend;
4219 struct elf_link_hash_entry **sorted_sym_hash;
4220 struct elf_link_hash_entry *h;
4221 size_t sym_count;
4222
4223 /* Since we have to search the whole symbol list for each weak
4224 defined symbol, search time for N weak defined symbols will be
4225 O(N^2). Binary search will cut it down to O(NlogN). */
4226 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4227 sorted_sym_hash = bfd_malloc (amt);
4228 if (sorted_sym_hash == NULL)
4229 goto error_return;
4230 sym_hash = sorted_sym_hash;
4231 hpp = elf_sym_hashes (abfd);
4232 hppend = hpp + extsymcount;
4233 sym_count = 0;
4234 for (; hpp < hppend; hpp++)
4235 {
4236 h = *hpp;
4237 if (h != NULL
4238 && h->root.type == bfd_link_hash_defined
4239 && h->type != STT_FUNC)
4240 {
4241 *sym_hash = h;
4242 sym_hash++;
4243 sym_count++;
4244 }
4245 }
4246
4247 qsort (sorted_sym_hash, sym_count,
4248 sizeof (struct elf_link_hash_entry *),
4249 elf_sort_symbol);
4250
4251 while (weaks != NULL)
4252 {
4253 struct elf_link_hash_entry *hlook;
4254 asection *slook;
4255 bfd_vma vlook;
4256 long ilook;
4257 size_t i, j, idx;
4258
4259 hlook = weaks;
f6e332e6
AM
4260 weaks = hlook->u.weakdef;
4261 hlook->u.weakdef = NULL;
4ad4eba5
AM
4262
4263 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4264 || hlook->root.type == bfd_link_hash_defweak
4265 || hlook->root.type == bfd_link_hash_common
4266 || hlook->root.type == bfd_link_hash_indirect);
4267 slook = hlook->root.u.def.section;
4268 vlook = hlook->root.u.def.value;
4269
4270 ilook = -1;
4271 i = 0;
4272 j = sym_count;
4273 while (i < j)
4274 {
4275 bfd_signed_vma vdiff;
4276 idx = (i + j) / 2;
4277 h = sorted_sym_hash [idx];
4278 vdiff = vlook - h->root.u.def.value;
4279 if (vdiff < 0)
4280 j = idx;
4281 else if (vdiff > 0)
4282 i = idx + 1;
4283 else
4284 {
a9b881be 4285 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4286 if (sdiff < 0)
4287 j = idx;
4288 else if (sdiff > 0)
4289 i = idx + 1;
4290 else
4291 {
4292 ilook = idx;
4293 break;
4294 }
4295 }
4296 }
4297
4298 /* We didn't find a value/section match. */
4299 if (ilook == -1)
4300 continue;
4301
4302 for (i = ilook; i < sym_count; i++)
4303 {
4304 h = sorted_sym_hash [i];
4305
4306 /* Stop if value or section doesn't match. */
4307 if (h->root.u.def.value != vlook
4308 || h->root.u.def.section != slook)
4309 break;
4310 else if (h != hlook)
4311 {
f6e332e6 4312 hlook->u.weakdef = h;
4ad4eba5
AM
4313
4314 /* If the weak definition is in the list of dynamic
4315 symbols, make sure the real definition is put
4316 there as well. */
4317 if (hlook->dynindx != -1 && h->dynindx == -1)
4318 {
c152c796 4319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4320 goto error_return;
4321 }
4322
4323 /* If the real definition is in the list of dynamic
4324 symbols, make sure the weak definition is put
4325 there as well. If we don't do this, then the
4326 dynamic loader might not merge the entries for the
4327 real definition and the weak definition. */
4328 if (h->dynindx != -1 && hlook->dynindx == -1)
4329 {
c152c796 4330 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4331 goto error_return;
4332 }
4333 break;
4334 }
4335 }
4336 }
4337
4338 free (sorted_sym_hash);
4339 }
4340
85fbca6a
NC
4341 check_directives = get_elf_backend_data (abfd)->check_directives;
4342 if (check_directives)
4343 check_directives (abfd, info);
4344
4ad4eba5
AM
4345 /* If this object is the same format as the output object, and it is
4346 not a shared library, then let the backend look through the
4347 relocs.
4348
4349 This is required to build global offset table entries and to
4350 arrange for dynamic relocs. It is not required for the
4351 particular common case of linking non PIC code, even when linking
4352 against shared libraries, but unfortunately there is no way of
4353 knowing whether an object file has been compiled PIC or not.
4354 Looking through the relocs is not particularly time consuming.
4355 The problem is that we must either (1) keep the relocs in memory,
4356 which causes the linker to require additional runtime memory or
4357 (2) read the relocs twice from the input file, which wastes time.
4358 This would be a good case for using mmap.
4359
4360 I have no idea how to handle linking PIC code into a file of a
4361 different format. It probably can't be done. */
4362 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4363 if (! dynamic
4364 && is_elf_hash_table (hash_table)
4365 && hash_table->root.creator == abfd->xvec
4366 && check_relocs != NULL)
4367 {
4368 asection *o;
4369
4370 for (o = abfd->sections; o != NULL; o = o->next)
4371 {
4372 Elf_Internal_Rela *internal_relocs;
4373 bfd_boolean ok;
4374
4375 if ((o->flags & SEC_RELOC) == 0
4376 || o->reloc_count == 0
4377 || ((info->strip == strip_all || info->strip == strip_debugger)
4378 && (o->flags & SEC_DEBUGGING) != 0)
4379 || bfd_is_abs_section (o->output_section))
4380 continue;
4381
4382 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4383 info->keep_memory);
4384 if (internal_relocs == NULL)
4385 goto error_return;
4386
4387 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4388
4389 if (elf_section_data (o)->relocs != internal_relocs)
4390 free (internal_relocs);
4391
4392 if (! ok)
4393 goto error_return;
4394 }
4395 }
4396
4397 /* If this is a non-traditional link, try to optimize the handling
4398 of the .stab/.stabstr sections. */
4399 if (! dynamic
4400 && ! info->traditional_format
4401 && is_elf_hash_table (hash_table)
4402 && (info->strip != strip_all && info->strip != strip_debugger))
4403 {
4404 asection *stabstr;
4405
4406 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4407 if (stabstr != NULL)
4408 {
4409 bfd_size_type string_offset = 0;
4410 asection *stab;
4411
4412 for (stab = abfd->sections; stab; stab = stab->next)
4413 if (strncmp (".stab", stab->name, 5) == 0
4414 && (!stab->name[5] ||
4415 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4416 && (stab->flags & SEC_MERGE) == 0
4417 && !bfd_is_abs_section (stab->output_section))
4418 {
4419 struct bfd_elf_section_data *secdata;
4420
4421 secdata = elf_section_data (stab);
4422 if (! _bfd_link_section_stabs (abfd,
3722b82f 4423 &hash_table->stab_info,
4ad4eba5
AM
4424 stab, stabstr,
4425 &secdata->sec_info,
4426 &string_offset))
4427 goto error_return;
4428 if (secdata->sec_info)
4429 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4430 }
4431 }
4432 }
4433
77cfaee6 4434 if (is_elf_hash_table (hash_table) && add_needed)
4ad4eba5
AM
4435 {
4436 /* Add this bfd to the loaded list. */
4437 struct elf_link_loaded_list *n;
4438
4439 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4440 if (n == NULL)
4441 goto error_return;
4442 n->abfd = abfd;
4443 n->next = hash_table->loaded;
4444 hash_table->loaded = n;
4445 }
4446
4447 return TRUE;
4448
4449 error_free_vers:
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 if (extversym != NULL)
4453 free (extversym);
4454 error_free_sym:
4455 if (isymbuf != NULL)
4456 free (isymbuf);
4457 error_return:
4458 return FALSE;
4459}
4460
8387904d
AM
4461/* Return the linker hash table entry of a symbol that might be
4462 satisfied by an archive symbol. Return -1 on error. */
4463
4464struct elf_link_hash_entry *
4465_bfd_elf_archive_symbol_lookup (bfd *abfd,
4466 struct bfd_link_info *info,
4467 const char *name)
4468{
4469 struct elf_link_hash_entry *h;
4470 char *p, *copy;
4471 size_t len, first;
4472
4473 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4474 if (h != NULL)
4475 return h;
4476
4477 /* If this is a default version (the name contains @@), look up the
4478 symbol again with only one `@' as well as without the version.
4479 The effect is that references to the symbol with and without the
4480 version will be matched by the default symbol in the archive. */
4481
4482 p = strchr (name, ELF_VER_CHR);
4483 if (p == NULL || p[1] != ELF_VER_CHR)
4484 return h;
4485
4486 /* First check with only one `@'. */
4487 len = strlen (name);
4488 copy = bfd_alloc (abfd, len);
4489 if (copy == NULL)
4490 return (struct elf_link_hash_entry *) 0 - 1;
4491
4492 first = p - name + 1;
4493 memcpy (copy, name, first);
4494 memcpy (copy + first, name + first + 1, len - first);
4495
4496 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4497 if (h == NULL)
4498 {
4499 /* We also need to check references to the symbol without the
4500 version. */
4501 copy[first - 1] = '\0';
4502 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4503 FALSE, FALSE, FALSE);
4504 }
4505
4506 bfd_release (abfd, copy);
4507 return h;
4508}
4509
0ad989f9
L
4510/* Add symbols from an ELF archive file to the linker hash table. We
4511 don't use _bfd_generic_link_add_archive_symbols because of a
4512 problem which arises on UnixWare. The UnixWare libc.so is an
4513 archive which includes an entry libc.so.1 which defines a bunch of
4514 symbols. The libc.so archive also includes a number of other
4515 object files, which also define symbols, some of which are the same
4516 as those defined in libc.so.1. Correct linking requires that we
4517 consider each object file in turn, and include it if it defines any
4518 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4519 this; it looks through the list of undefined symbols, and includes
4520 any object file which defines them. When this algorithm is used on
4521 UnixWare, it winds up pulling in libc.so.1 early and defining a
4522 bunch of symbols. This means that some of the other objects in the
4523 archive are not included in the link, which is incorrect since they
4524 precede libc.so.1 in the archive.
4525
4526 Fortunately, ELF archive handling is simpler than that done by
4527 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4528 oddities. In ELF, if we find a symbol in the archive map, and the
4529 symbol is currently undefined, we know that we must pull in that
4530 object file.
4531
4532 Unfortunately, we do have to make multiple passes over the symbol
4533 table until nothing further is resolved. */
4534
4ad4eba5
AM
4535static bfd_boolean
4536elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4537{
4538 symindex c;
4539 bfd_boolean *defined = NULL;
4540 bfd_boolean *included = NULL;
4541 carsym *symdefs;
4542 bfd_boolean loop;
4543 bfd_size_type amt;
8387904d
AM
4544 const struct elf_backend_data *bed;
4545 struct elf_link_hash_entry * (*archive_symbol_lookup)
4546 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4547
4548 if (! bfd_has_map (abfd))
4549 {
4550 /* An empty archive is a special case. */
4551 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4552 return TRUE;
4553 bfd_set_error (bfd_error_no_armap);
4554 return FALSE;
4555 }
4556
4557 /* Keep track of all symbols we know to be already defined, and all
4558 files we know to be already included. This is to speed up the
4559 second and subsequent passes. */
4560 c = bfd_ardata (abfd)->symdef_count;
4561 if (c == 0)
4562 return TRUE;
4563 amt = c;
4564 amt *= sizeof (bfd_boolean);
4565 defined = bfd_zmalloc (amt);
4566 included = bfd_zmalloc (amt);
4567 if (defined == NULL || included == NULL)
4568 goto error_return;
4569
4570 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4571 bed = get_elf_backend_data (abfd);
4572 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4573
4574 do
4575 {
4576 file_ptr last;
4577 symindex i;
4578 carsym *symdef;
4579 carsym *symdefend;
4580
4581 loop = FALSE;
4582 last = -1;
4583
4584 symdef = symdefs;
4585 symdefend = symdef + c;
4586 for (i = 0; symdef < symdefend; symdef++, i++)
4587 {
4588 struct elf_link_hash_entry *h;
4589 bfd *element;
4590 struct bfd_link_hash_entry *undefs_tail;
4591 symindex mark;
4592
4593 if (defined[i] || included[i])
4594 continue;
4595 if (symdef->file_offset == last)
4596 {
4597 included[i] = TRUE;
4598 continue;
4599 }
4600
8387904d
AM
4601 h = archive_symbol_lookup (abfd, info, symdef->name);
4602 if (h == (struct elf_link_hash_entry *) 0 - 1)
4603 goto error_return;
0ad989f9
L
4604
4605 if (h == NULL)
4606 continue;
4607
4608 if (h->root.type == bfd_link_hash_common)
4609 {
4610 /* We currently have a common symbol. The archive map contains
4611 a reference to this symbol, so we may want to include it. We
4612 only want to include it however, if this archive element
4613 contains a definition of the symbol, not just another common
4614 declaration of it.
4615
4616 Unfortunately some archivers (including GNU ar) will put
4617 declarations of common symbols into their archive maps, as
4618 well as real definitions, so we cannot just go by the archive
4619 map alone. Instead we must read in the element's symbol
4620 table and check that to see what kind of symbol definition
4621 this is. */
4622 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4623 continue;
4624 }
4625 else if (h->root.type != bfd_link_hash_undefined)
4626 {
4627 if (h->root.type != bfd_link_hash_undefweak)
4628 defined[i] = TRUE;
4629 continue;
4630 }
4631
4632 /* We need to include this archive member. */
4633 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4634 if (element == NULL)
4635 goto error_return;
4636
4637 if (! bfd_check_format (element, bfd_object))
4638 goto error_return;
4639
4640 /* Doublecheck that we have not included this object
4641 already--it should be impossible, but there may be
4642 something wrong with the archive. */
4643 if (element->archive_pass != 0)
4644 {
4645 bfd_set_error (bfd_error_bad_value);
4646 goto error_return;
4647 }
4648 element->archive_pass = 1;
4649
4650 undefs_tail = info->hash->undefs_tail;
4651
4652 if (! (*info->callbacks->add_archive_element) (info, element,
4653 symdef->name))
4654 goto error_return;
4655 if (! bfd_link_add_symbols (element, info))
4656 goto error_return;
4657
4658 /* If there are any new undefined symbols, we need to make
4659 another pass through the archive in order to see whether
4660 they can be defined. FIXME: This isn't perfect, because
4661 common symbols wind up on undefs_tail and because an
4662 undefined symbol which is defined later on in this pass
4663 does not require another pass. This isn't a bug, but it
4664 does make the code less efficient than it could be. */
4665 if (undefs_tail != info->hash->undefs_tail)
4666 loop = TRUE;
4667
4668 /* Look backward to mark all symbols from this object file
4669 which we have already seen in this pass. */
4670 mark = i;
4671 do
4672 {
4673 included[mark] = TRUE;
4674 if (mark == 0)
4675 break;
4676 --mark;
4677 }
4678 while (symdefs[mark].file_offset == symdef->file_offset);
4679
4680 /* We mark subsequent symbols from this object file as we go
4681 on through the loop. */
4682 last = symdef->file_offset;
4683 }
4684 }
4685 while (loop);
4686
4687 free (defined);
4688 free (included);
4689
4690 return TRUE;
4691
4692 error_return:
4693 if (defined != NULL)
4694 free (defined);
4695 if (included != NULL)
4696 free (included);
4697 return FALSE;
4698}
4ad4eba5
AM
4699
4700/* Given an ELF BFD, add symbols to the global hash table as
4701 appropriate. */
4702
4703bfd_boolean
4704bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4705{
4706 switch (bfd_get_format (abfd))
4707 {
4708 case bfd_object:
4709 return elf_link_add_object_symbols (abfd, info);
4710 case bfd_archive:
4711 return elf_link_add_archive_symbols (abfd, info);
4712 default:
4713 bfd_set_error (bfd_error_wrong_format);
4714 return FALSE;
4715 }
4716}
5a580b3a
AM
4717\f
4718/* This function will be called though elf_link_hash_traverse to store
4719 all hash value of the exported symbols in an array. */
4720
4721static bfd_boolean
4722elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4723{
4724 unsigned long **valuep = data;
4725 const char *name;
4726 char *p;
4727 unsigned long ha;
4728 char *alc = NULL;
4729
4730 if (h->root.type == bfd_link_hash_warning)
4731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4732
4733 /* Ignore indirect symbols. These are added by the versioning code. */
4734 if (h->dynindx == -1)
4735 return TRUE;
4736
4737 name = h->root.root.string;
4738 p = strchr (name, ELF_VER_CHR);
4739 if (p != NULL)
4740 {
4741 alc = bfd_malloc (p - name + 1);
4742 memcpy (alc, name, p - name);
4743 alc[p - name] = '\0';
4744 name = alc;
4745 }
4746
4747 /* Compute the hash value. */
4748 ha = bfd_elf_hash (name);
4749
4750 /* Store the found hash value in the array given as the argument. */
4751 *(*valuep)++ = ha;
4752
4753 /* And store it in the struct so that we can put it in the hash table
4754 later. */
f6e332e6 4755 h->u.elf_hash_value = ha;
5a580b3a
AM
4756
4757 if (alc != NULL)
4758 free (alc);
4759
4760 return TRUE;
4761}
4762
4763/* Array used to determine the number of hash table buckets to use
4764 based on the number of symbols there are. If there are fewer than
4765 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4766 fewer than 37 we use 17 buckets, and so forth. We never use more
4767 than 32771 buckets. */
4768
4769static const size_t elf_buckets[] =
4770{
4771 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4772 16411, 32771, 0
4773};
4774
4775/* Compute bucket count for hashing table. We do not use a static set
4776 of possible tables sizes anymore. Instead we determine for all
4777 possible reasonable sizes of the table the outcome (i.e., the
4778 number of collisions etc) and choose the best solution. The
4779 weighting functions are not too simple to allow the table to grow
4780 without bounds. Instead one of the weighting factors is the size.
4781 Therefore the result is always a good payoff between few collisions
4782 (= short chain lengths) and table size. */
4783static size_t
4784compute_bucket_count (struct bfd_link_info *info)
4785{
4786 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4787 size_t best_size = 0;
4788 unsigned long int *hashcodes;
4789 unsigned long int *hashcodesp;
4790 unsigned long int i;
4791 bfd_size_type amt;
4792
4793 /* Compute the hash values for all exported symbols. At the same
4794 time store the values in an array so that we could use them for
4795 optimizations. */
4796 amt = dynsymcount;
4797 amt *= sizeof (unsigned long int);
4798 hashcodes = bfd_malloc (amt);
4799 if (hashcodes == NULL)
4800 return 0;
4801 hashcodesp = hashcodes;
4802
4803 /* Put all hash values in HASHCODES. */
4804 elf_link_hash_traverse (elf_hash_table (info),
4805 elf_collect_hash_codes, &hashcodesp);
4806
4807 /* We have a problem here. The following code to optimize the table
4808 size requires an integer type with more the 32 bits. If
4809 BFD_HOST_U_64_BIT is set we know about such a type. */
4810#ifdef BFD_HOST_U_64_BIT
4811 if (info->optimize)
4812 {
4813 unsigned long int nsyms = hashcodesp - hashcodes;
4814 size_t minsize;
4815 size_t maxsize;
4816 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4817 unsigned long int *counts ;
4818 bfd *dynobj = elf_hash_table (info)->dynobj;
4819 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4820
4821 /* Possible optimization parameters: if we have NSYMS symbols we say
4822 that the hashing table must at least have NSYMS/4 and at most
4823 2*NSYMS buckets. */
4824 minsize = nsyms / 4;
4825 if (minsize == 0)
4826 minsize = 1;
4827 best_size = maxsize = nsyms * 2;
4828
4829 /* Create array where we count the collisions in. We must use bfd_malloc
4830 since the size could be large. */
4831 amt = maxsize;
4832 amt *= sizeof (unsigned long int);
4833 counts = bfd_malloc (amt);
4834 if (counts == NULL)
4835 {
4836 free (hashcodes);
4837 return 0;
4838 }
4839
4840 /* Compute the "optimal" size for the hash table. The criteria is a
4841 minimal chain length. The minor criteria is (of course) the size
4842 of the table. */
4843 for (i = minsize; i < maxsize; ++i)
4844 {
4845 /* Walk through the array of hashcodes and count the collisions. */
4846 BFD_HOST_U_64_BIT max;
4847 unsigned long int j;
4848 unsigned long int fact;
4849
4850 memset (counts, '\0', i * sizeof (unsigned long int));
4851
4852 /* Determine how often each hash bucket is used. */
4853 for (j = 0; j < nsyms; ++j)
4854 ++counts[hashcodes[j] % i];
4855
4856 /* For the weight function we need some information about the
4857 pagesize on the target. This is information need not be 100%
4858 accurate. Since this information is not available (so far) we
4859 define it here to a reasonable default value. If it is crucial
4860 to have a better value some day simply define this value. */
4861# ifndef BFD_TARGET_PAGESIZE
4862# define BFD_TARGET_PAGESIZE (4096)
4863# endif
4864
4865 /* We in any case need 2 + NSYMS entries for the size values and
4866 the chains. */
4867 max = (2 + nsyms) * (bed->s->arch_size / 8);
4868
4869# if 1
4870 /* Variant 1: optimize for short chains. We add the squares
4871 of all the chain lengths (which favors many small chain
4872 over a few long chains). */
4873 for (j = 0; j < i; ++j)
4874 max += counts[j] * counts[j];
4875
4876 /* This adds penalties for the overall size of the table. */
4877 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4878 max *= fact * fact;
4879# else
4880 /* Variant 2: Optimize a lot more for small table. Here we
4881 also add squares of the size but we also add penalties for
4882 empty slots (the +1 term). */
4883 for (j = 0; j < i; ++j)
4884 max += (1 + counts[j]) * (1 + counts[j]);
4885
4886 /* The overall size of the table is considered, but not as
4887 strong as in variant 1, where it is squared. */
4888 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4889 max *= fact;
4890# endif
4891
4892 /* Compare with current best results. */
4893 if (max < best_chlen)
4894 {
4895 best_chlen = max;
4896 best_size = i;
4897 }
4898 }
4899
4900 free (counts);
4901 }
4902 else
4903#endif /* defined (BFD_HOST_U_64_BIT) */
4904 {
4905 /* This is the fallback solution if no 64bit type is available or if we
4906 are not supposed to spend much time on optimizations. We select the
4907 bucket count using a fixed set of numbers. */
4908 for (i = 0; elf_buckets[i] != 0; i++)
4909 {
4910 best_size = elf_buckets[i];
4911 if (dynsymcount < elf_buckets[i + 1])
4912 break;
4913 }
4914 }
4915
4916 /* Free the arrays we needed. */
4917 free (hashcodes);
4918
4919 return best_size;
4920}
4921
4922/* Set up the sizes and contents of the ELF dynamic sections. This is
4923 called by the ELF linker emulation before_allocation routine. We
4924 must set the sizes of the sections before the linker sets the
4925 addresses of the various sections. */
4926
4927bfd_boolean
4928bfd_elf_size_dynamic_sections (bfd *output_bfd,
4929 const char *soname,
4930 const char *rpath,
4931 const char *filter_shlib,
4932 const char * const *auxiliary_filters,
4933 struct bfd_link_info *info,
4934 asection **sinterpptr,
4935 struct bfd_elf_version_tree *verdefs)
4936{
4937 bfd_size_type soname_indx;
4938 bfd *dynobj;
4939 const struct elf_backend_data *bed;
4940 struct elf_assign_sym_version_info asvinfo;
4941
4942 *sinterpptr = NULL;
4943
4944 soname_indx = (bfd_size_type) -1;
4945
4946 if (!is_elf_hash_table (info->hash))
4947 return TRUE;
4948
8c37241b 4949 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4950 if (info->execstack)
4951 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4952 else if (info->noexecstack)
4953 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4954 else
4955 {
4956 bfd *inputobj;
4957 asection *notesec = NULL;
4958 int exec = 0;
4959
4960 for (inputobj = info->input_bfds;
4961 inputobj;
4962 inputobj = inputobj->link_next)
4963 {
4964 asection *s;
4965
d457dcf6 4966 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
4967 continue;
4968 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4969 if (s)
4970 {
4971 if (s->flags & SEC_CODE)
4972 exec = PF_X;
4973 notesec = s;
4974 }
4975 else
4976 exec = PF_X;
4977 }
4978 if (notesec)
4979 {
4980 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4981 if (exec && info->relocatable
4982 && notesec->output_section != bfd_abs_section_ptr)
4983 notesec->output_section->flags |= SEC_CODE;
4984 }
4985 }
4986
4987 /* Any syms created from now on start with -1 in
4988 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
4989 elf_hash_table (info)->init_got_refcount
4990 = elf_hash_table (info)->init_got_offset;
4991 elf_hash_table (info)->init_plt_refcount
4992 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
4993
4994 /* The backend may have to create some sections regardless of whether
4995 we're dynamic or not. */
4996 bed = get_elf_backend_data (output_bfd);
4997 if (bed->elf_backend_always_size_sections
4998 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4999 return FALSE;
5000
5001 dynobj = elf_hash_table (info)->dynobj;
5002
5003 /* If there were no dynamic objects in the link, there is nothing to
5004 do here. */
5005 if (dynobj == NULL)
5006 return TRUE;
5007
5008 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5009 return FALSE;
5010
5011 if (elf_hash_table (info)->dynamic_sections_created)
5012 {
5013 struct elf_info_failed eif;
5014 struct elf_link_hash_entry *h;
5015 asection *dynstr;
5016 struct bfd_elf_version_tree *t;
5017 struct bfd_elf_version_expr *d;
5018 bfd_boolean all_defined;
5019
5020 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5021 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5022
5023 if (soname != NULL)
5024 {
5025 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5026 soname, TRUE);
5027 if (soname_indx == (bfd_size_type) -1
5028 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5029 return FALSE;
5030 }
5031
5032 if (info->symbolic)
5033 {
5034 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5035 return FALSE;
5036 info->flags |= DF_SYMBOLIC;
5037 }
5038
5039 if (rpath != NULL)
5040 {
5041 bfd_size_type indx;
5042
5043 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5044 TRUE);
5045 if (indx == (bfd_size_type) -1
5046 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5047 return FALSE;
5048
5049 if (info->new_dtags)
5050 {
5051 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5052 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5053 return FALSE;
5054 }
5055 }
5056
5057 if (filter_shlib != NULL)
5058 {
5059 bfd_size_type indx;
5060
5061 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5062 filter_shlib, TRUE);
5063 if (indx == (bfd_size_type) -1
5064 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5065 return FALSE;
5066 }
5067
5068 if (auxiliary_filters != NULL)
5069 {
5070 const char * const *p;
5071
5072 for (p = auxiliary_filters; *p != NULL; p++)
5073 {
5074 bfd_size_type indx;
5075
5076 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5077 *p, TRUE);
5078 if (indx == (bfd_size_type) -1
5079 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5080 return FALSE;
5081 }
5082 }
5083
5084 eif.info = info;
5085 eif.verdefs = verdefs;
5086 eif.failed = FALSE;
5087
5088 /* If we are supposed to export all symbols into the dynamic symbol
5089 table (this is not the normal case), then do so. */
5090 if (info->export_dynamic)
5091 {
5092 elf_link_hash_traverse (elf_hash_table (info),
5093 _bfd_elf_export_symbol,
5094 &eif);
5095 if (eif.failed)
5096 return FALSE;
5097 }
5098
5099 /* Make all global versions with definition. */
5100 for (t = verdefs; t != NULL; t = t->next)
5101 for (d = t->globals.list; d != NULL; d = d->next)
5102 if (!d->symver && d->symbol)
5103 {
5104 const char *verstr, *name;
5105 size_t namelen, verlen, newlen;
5106 char *newname, *p;
5107 struct elf_link_hash_entry *newh;
5108
5109 name = d->symbol;
5110 namelen = strlen (name);
5111 verstr = t->name;
5112 verlen = strlen (verstr);
5113 newlen = namelen + verlen + 3;
5114
5115 newname = bfd_malloc (newlen);
5116 if (newname == NULL)
5117 return FALSE;
5118 memcpy (newname, name, namelen);
5119
5120 /* Check the hidden versioned definition. */
5121 p = newname + namelen;
5122 *p++ = ELF_VER_CHR;
5123 memcpy (p, verstr, verlen + 1);
5124 newh = elf_link_hash_lookup (elf_hash_table (info),
5125 newname, FALSE, FALSE,
5126 FALSE);
5127 if (newh == NULL
5128 || (newh->root.type != bfd_link_hash_defined
5129 && newh->root.type != bfd_link_hash_defweak))
5130 {
5131 /* Check the default versioned definition. */
5132 *p++ = ELF_VER_CHR;
5133 memcpy (p, verstr, verlen + 1);
5134 newh = elf_link_hash_lookup (elf_hash_table (info),
5135 newname, FALSE, FALSE,
5136 FALSE);
5137 }
5138 free (newname);
5139
5140 /* Mark this version if there is a definition and it is
5141 not defined in a shared object. */
5142 if (newh != NULL
f5385ebf 5143 && !newh->def_dynamic
5a580b3a
AM
5144 && (newh->root.type == bfd_link_hash_defined
5145 || newh->root.type == bfd_link_hash_defweak))
5146 d->symver = 1;
5147 }
5148
5149 /* Attach all the symbols to their version information. */
5150 asvinfo.output_bfd = output_bfd;
5151 asvinfo.info = info;
5152 asvinfo.verdefs = verdefs;
5153 asvinfo.failed = FALSE;
5154
5155 elf_link_hash_traverse (elf_hash_table (info),
5156 _bfd_elf_link_assign_sym_version,
5157 &asvinfo);
5158 if (asvinfo.failed)
5159 return FALSE;
5160
5161 if (!info->allow_undefined_version)
5162 {
5163 /* Check if all global versions have a definition. */
5164 all_defined = TRUE;
5165 for (t = verdefs; t != NULL; t = t->next)
5166 for (d = t->globals.list; d != NULL; d = d->next)
5167 if (!d->symver && !d->script)
5168 {
5169 (*_bfd_error_handler)
5170 (_("%s: undefined version: %s"),
5171 d->pattern, t->name);
5172 all_defined = FALSE;
5173 }
5174
5175 if (!all_defined)
5176 {
5177 bfd_set_error (bfd_error_bad_value);
5178 return FALSE;
5179 }
5180 }
5181
5182 /* Find all symbols which were defined in a dynamic object and make
5183 the backend pick a reasonable value for them. */
5184 elf_link_hash_traverse (elf_hash_table (info),
5185 _bfd_elf_adjust_dynamic_symbol,
5186 &eif);
5187 if (eif.failed)
5188 return FALSE;
5189
5190 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5191 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5192 now so that we know the final size of the .dynamic section. */
5193
5194 /* If there are initialization and/or finalization functions to
5195 call then add the corresponding DT_INIT/DT_FINI entries. */
5196 h = (info->init_function
5197 ? elf_link_hash_lookup (elf_hash_table (info),
5198 info->init_function, FALSE,
5199 FALSE, FALSE)
5200 : NULL);
5201 if (h != NULL
f5385ebf
AM
5202 && (h->ref_regular
5203 || h->def_regular))
5a580b3a
AM
5204 {
5205 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5206 return FALSE;
5207 }
5208 h = (info->fini_function
5209 ? elf_link_hash_lookup (elf_hash_table (info),
5210 info->fini_function, FALSE,
5211 FALSE, FALSE)
5212 : NULL);
5213 if (h != NULL
f5385ebf
AM
5214 && (h->ref_regular
5215 || h->def_regular))
5a580b3a
AM
5216 {
5217 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5218 return FALSE;
5219 }
5220
5221 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5222 {
5223 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5224 if (! info->executable)
5225 {
5226 bfd *sub;
5227 asection *o;
5228
5229 for (sub = info->input_bfds; sub != NULL;
5230 sub = sub->link_next)
5231 for (o = sub->sections; o != NULL; o = o->next)
5232 if (elf_section_data (o)->this_hdr.sh_type
5233 == SHT_PREINIT_ARRAY)
5234 {
5235 (*_bfd_error_handler)
d003868e
AM
5236 (_("%B: .preinit_array section is not allowed in DSO"),
5237 sub);
5a580b3a
AM
5238 break;
5239 }
5240
5241 bfd_set_error (bfd_error_nonrepresentable_section);
5242 return FALSE;
5243 }
5244
5245 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5246 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5247 return FALSE;
5248 }
5249 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5250 {
5251 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5252 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5253 return FALSE;
5254 }
5255 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5256 {
5257 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5258 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5259 return FALSE;
5260 }
5261
5262 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5263 /* If .dynstr is excluded from the link, we don't want any of
5264 these tags. Strictly, we should be checking each section
5265 individually; This quick check covers for the case where
5266 someone does a /DISCARD/ : { *(*) }. */
5267 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5268 {
5269 bfd_size_type strsize;
5270
5271 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5272 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5273 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5274 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5275 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5276 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5277 bed->s->sizeof_sym))
5278 return FALSE;
5279 }
5280 }
5281
5282 /* The backend must work out the sizes of all the other dynamic
5283 sections. */
5284 if (bed->elf_backend_size_dynamic_sections
5285 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5286 return FALSE;
5287
5288 if (elf_hash_table (info)->dynamic_sections_created)
5289 {
554220db 5290 unsigned long section_sym_count;
5a580b3a 5291 asection *s;
5a580b3a
AM
5292
5293 /* Set up the version definition section. */
5294 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5295 BFD_ASSERT (s != NULL);
5296
5297 /* We may have created additional version definitions if we are
5298 just linking a regular application. */
5299 verdefs = asvinfo.verdefs;
5300
5301 /* Skip anonymous version tag. */
5302 if (verdefs != NULL && verdefs->vernum == 0)
5303 verdefs = verdefs->next;
5304
3e3b46e5 5305 if (verdefs == NULL && !info->create_default_symver)
8423293d 5306 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5307 else
5308 {
5309 unsigned int cdefs;
5310 bfd_size_type size;
5311 struct bfd_elf_version_tree *t;
5312 bfd_byte *p;
5313 Elf_Internal_Verdef def;
5314 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5315 struct bfd_link_hash_entry *bh;
5316 struct elf_link_hash_entry *h;
5317 const char *name;
5a580b3a
AM
5318
5319 cdefs = 0;
5320 size = 0;
5321
5322 /* Make space for the base version. */
5323 size += sizeof (Elf_External_Verdef);
5324 size += sizeof (Elf_External_Verdaux);
5325 ++cdefs;
5326
3e3b46e5
PB
5327 /* Make space for the default version. */
5328 if (info->create_default_symver)
5329 {
5330 size += sizeof (Elf_External_Verdef);
5331 ++cdefs;
5332 }
5333
5a580b3a
AM
5334 for (t = verdefs; t != NULL; t = t->next)
5335 {
5336 struct bfd_elf_version_deps *n;
5337
5338 size += sizeof (Elf_External_Verdef);
5339 size += sizeof (Elf_External_Verdaux);
5340 ++cdefs;
5341
5342 for (n = t->deps; n != NULL; n = n->next)
5343 size += sizeof (Elf_External_Verdaux);
5344 }
5345
eea6121a
AM
5346 s->size = size;
5347 s->contents = bfd_alloc (output_bfd, s->size);
5348 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5349 return FALSE;
5350
5351 /* Fill in the version definition section. */
5352
5353 p = s->contents;
5354
5355 def.vd_version = VER_DEF_CURRENT;
5356 def.vd_flags = VER_FLG_BASE;
5357 def.vd_ndx = 1;
5358 def.vd_cnt = 1;
3e3b46e5
PB
5359 if (info->create_default_symver)
5360 {
5361 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5362 def.vd_next = sizeof (Elf_External_Verdef);
5363 }
5364 else
5365 {
5366 def.vd_aux = sizeof (Elf_External_Verdef);
5367 def.vd_next = (sizeof (Elf_External_Verdef)
5368 + sizeof (Elf_External_Verdaux));
5369 }
5a580b3a
AM
5370
5371 if (soname_indx != (bfd_size_type) -1)
5372 {
5373 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5374 soname_indx);
5375 def.vd_hash = bfd_elf_hash (soname);
5376 defaux.vda_name = soname_indx;
3e3b46e5 5377 name = soname;
5a580b3a
AM
5378 }
5379 else
5380 {
5a580b3a
AM
5381 bfd_size_type indx;
5382
06084812 5383 name = lbasename (output_bfd->filename);
5a580b3a
AM
5384 def.vd_hash = bfd_elf_hash (name);
5385 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5386 name, FALSE);
5387 if (indx == (bfd_size_type) -1)
5388 return FALSE;
5389 defaux.vda_name = indx;
5390 }
5391 defaux.vda_next = 0;
5392
5393 _bfd_elf_swap_verdef_out (output_bfd, &def,
5394 (Elf_External_Verdef *) p);
5395 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5396 if (info->create_default_symver)
5397 {
5398 /* Add a symbol representing this version. */
5399 bh = NULL;
5400 if (! (_bfd_generic_link_add_one_symbol
5401 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5402 0, NULL, FALSE,
5403 get_elf_backend_data (dynobj)->collect, &bh)))
5404 return FALSE;
5405 h = (struct elf_link_hash_entry *) bh;
5406 h->non_elf = 0;
5407 h->def_regular = 1;
5408 h->type = STT_OBJECT;
5409 h->verinfo.vertree = NULL;
5410
5411 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5412 return FALSE;
5413
5414 /* Create a duplicate of the base version with the same
5415 aux block, but different flags. */
5416 def.vd_flags = 0;
5417 def.vd_ndx = 2;
5418 def.vd_aux = sizeof (Elf_External_Verdef);
5419 if (verdefs)
5420 def.vd_next = (sizeof (Elf_External_Verdef)
5421 + sizeof (Elf_External_Verdaux));
5422 else
5423 def.vd_next = 0;
5424 _bfd_elf_swap_verdef_out (output_bfd, &def,
5425 (Elf_External_Verdef *) p);
5426 p += sizeof (Elf_External_Verdef);
5427 }
5a580b3a
AM
5428 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5429 (Elf_External_Verdaux *) p);
5430 p += sizeof (Elf_External_Verdaux);
5431
5432 for (t = verdefs; t != NULL; t = t->next)
5433 {
5434 unsigned int cdeps;
5435 struct bfd_elf_version_deps *n;
5a580b3a
AM
5436
5437 cdeps = 0;
5438 for (n = t->deps; n != NULL; n = n->next)
5439 ++cdeps;
5440
5441 /* Add a symbol representing this version. */
5442 bh = NULL;
5443 if (! (_bfd_generic_link_add_one_symbol
5444 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5445 0, NULL, FALSE,
5446 get_elf_backend_data (dynobj)->collect, &bh)))
5447 return FALSE;
5448 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5449 h->non_elf = 0;
5450 h->def_regular = 1;
5a580b3a
AM
5451 h->type = STT_OBJECT;
5452 h->verinfo.vertree = t;
5453
c152c796 5454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5455 return FALSE;
5456
5457 def.vd_version = VER_DEF_CURRENT;
5458 def.vd_flags = 0;
5459 if (t->globals.list == NULL
5460 && t->locals.list == NULL
5461 && ! t->used)
5462 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5463 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5464 def.vd_cnt = cdeps + 1;
5465 def.vd_hash = bfd_elf_hash (t->name);
5466 def.vd_aux = sizeof (Elf_External_Verdef);
5467 def.vd_next = 0;
5468 if (t->next != NULL)
5469 def.vd_next = (sizeof (Elf_External_Verdef)
5470 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5471
5472 _bfd_elf_swap_verdef_out (output_bfd, &def,
5473 (Elf_External_Verdef *) p);
5474 p += sizeof (Elf_External_Verdef);
5475
5476 defaux.vda_name = h->dynstr_index;
5477 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5478 h->dynstr_index);
5479 defaux.vda_next = 0;
5480 if (t->deps != NULL)
5481 defaux.vda_next = sizeof (Elf_External_Verdaux);
5482 t->name_indx = defaux.vda_name;
5483
5484 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5485 (Elf_External_Verdaux *) p);
5486 p += sizeof (Elf_External_Verdaux);
5487
5488 for (n = t->deps; n != NULL; n = n->next)
5489 {
5490 if (n->version_needed == NULL)
5491 {
5492 /* This can happen if there was an error in the
5493 version script. */
5494 defaux.vda_name = 0;
5495 }
5496 else
5497 {
5498 defaux.vda_name = n->version_needed->name_indx;
5499 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5500 defaux.vda_name);
5501 }
5502 if (n->next == NULL)
5503 defaux.vda_next = 0;
5504 else
5505 defaux.vda_next = sizeof (Elf_External_Verdaux);
5506
5507 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5508 (Elf_External_Verdaux *) p);
5509 p += sizeof (Elf_External_Verdaux);
5510 }
5511 }
5512
5513 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5514 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5515 return FALSE;
5516
5517 elf_tdata (output_bfd)->cverdefs = cdefs;
5518 }
5519
5520 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5521 {
5522 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5523 return FALSE;
5524 }
5525 else if (info->flags & DF_BIND_NOW)
5526 {
5527 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5528 return FALSE;
5529 }
5530
5531 if (info->flags_1)
5532 {
5533 if (info->executable)
5534 info->flags_1 &= ~ (DF_1_INITFIRST
5535 | DF_1_NODELETE
5536 | DF_1_NOOPEN);
5537 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5538 return FALSE;
5539 }
5540
5541 /* Work out the size of the version reference section. */
5542
5543 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5544 BFD_ASSERT (s != NULL);
5545 {
5546 struct elf_find_verdep_info sinfo;
5547
5548 sinfo.output_bfd = output_bfd;
5549 sinfo.info = info;
5550 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5551 if (sinfo.vers == 0)
5552 sinfo.vers = 1;
5553 sinfo.failed = FALSE;
5554
5555 elf_link_hash_traverse (elf_hash_table (info),
5556 _bfd_elf_link_find_version_dependencies,
5557 &sinfo);
5558
5559 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 5560 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5561 else
5562 {
5563 Elf_Internal_Verneed *t;
5564 unsigned int size;
5565 unsigned int crefs;
5566 bfd_byte *p;
5567
5568 /* Build the version definition section. */
5569 size = 0;
5570 crefs = 0;
5571 for (t = elf_tdata (output_bfd)->verref;
5572 t != NULL;
5573 t = t->vn_nextref)
5574 {
5575 Elf_Internal_Vernaux *a;
5576
5577 size += sizeof (Elf_External_Verneed);
5578 ++crefs;
5579 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5580 size += sizeof (Elf_External_Vernaux);
5581 }
5582
eea6121a
AM
5583 s->size = size;
5584 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5585 if (s->contents == NULL)
5586 return FALSE;
5587
5588 p = s->contents;
5589 for (t = elf_tdata (output_bfd)->verref;
5590 t != NULL;
5591 t = t->vn_nextref)
5592 {
5593 unsigned int caux;
5594 Elf_Internal_Vernaux *a;
5595 bfd_size_type indx;
5596
5597 caux = 0;
5598 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5599 ++caux;
5600
5601 t->vn_version = VER_NEED_CURRENT;
5602 t->vn_cnt = caux;
5603 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5604 elf_dt_name (t->vn_bfd) != NULL
5605 ? elf_dt_name (t->vn_bfd)
06084812 5606 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
5607 FALSE);
5608 if (indx == (bfd_size_type) -1)
5609 return FALSE;
5610 t->vn_file = indx;
5611 t->vn_aux = sizeof (Elf_External_Verneed);
5612 if (t->vn_nextref == NULL)
5613 t->vn_next = 0;
5614 else
5615 t->vn_next = (sizeof (Elf_External_Verneed)
5616 + caux * sizeof (Elf_External_Vernaux));
5617
5618 _bfd_elf_swap_verneed_out (output_bfd, t,
5619 (Elf_External_Verneed *) p);
5620 p += sizeof (Elf_External_Verneed);
5621
5622 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5623 {
5624 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 a->vna_nodename, FALSE);
5627 if (indx == (bfd_size_type) -1)
5628 return FALSE;
5629 a->vna_name = indx;
5630 if (a->vna_nextptr == NULL)
5631 a->vna_next = 0;
5632 else
5633 a->vna_next = sizeof (Elf_External_Vernaux);
5634
5635 _bfd_elf_swap_vernaux_out (output_bfd, a,
5636 (Elf_External_Vernaux *) p);
5637 p += sizeof (Elf_External_Vernaux);
5638 }
5639 }
5640
5641 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5642 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5643 return FALSE;
5644
5645 elf_tdata (output_bfd)->cverrefs = crefs;
5646 }
5647 }
5648
8423293d
AM
5649 if ((elf_tdata (output_bfd)->cverrefs == 0
5650 && elf_tdata (output_bfd)->cverdefs == 0)
5651 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5652 &section_sym_count) == 0)
5653 {
5654 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5655 s->flags |= SEC_EXCLUDE;
5656 }
5657 }
5658 return TRUE;
5659}
5660
5661bfd_boolean
5662bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5663{
5664 if (!is_elf_hash_table (info->hash))
5665 return TRUE;
5666
5667 if (elf_hash_table (info)->dynamic_sections_created)
5668 {
5669 bfd *dynobj;
5670 const struct elf_backend_data *bed;
5671 asection *s;
5672 bfd_size_type dynsymcount;
5673 unsigned long section_sym_count;
5674 size_t bucketcount = 0;
5675 size_t hash_entry_size;
5676 unsigned int dtagcount;
5677
5678 dynobj = elf_hash_table (info)->dynobj;
5679
5a580b3a
AM
5680 /* Assign dynsym indicies. In a shared library we generate a
5681 section symbol for each output section, which come first.
5682 Next come all of the back-end allocated local dynamic syms,
5683 followed by the rest of the global symbols. */
5684
554220db
AM
5685 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5686 &section_sym_count);
5a580b3a
AM
5687
5688 /* Work out the size of the symbol version section. */
5689 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5690 BFD_ASSERT (s != NULL);
8423293d
AM
5691 if (dynsymcount != 0
5692 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 5693 {
eea6121a
AM
5694 s->size = dynsymcount * sizeof (Elf_External_Versym);
5695 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5696 if (s->contents == NULL)
5697 return FALSE;
5698
5699 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5700 return FALSE;
5701 }
5702
5703 /* Set the size of the .dynsym and .hash sections. We counted
5704 the number of dynamic symbols in elf_link_add_object_symbols.
5705 We will build the contents of .dynsym and .hash when we build
5706 the final symbol table, because until then we do not know the
5707 correct value to give the symbols. We built the .dynstr
5708 section as we went along in elf_link_add_object_symbols. */
5709 s = bfd_get_section_by_name (dynobj, ".dynsym");
5710 BFD_ASSERT (s != NULL);
8423293d 5711 bed = get_elf_backend_data (output_bfd);
eea6121a 5712 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
5713
5714 if (dynsymcount != 0)
5715 {
554220db
AM
5716 s->contents = bfd_alloc (output_bfd, s->size);
5717 if (s->contents == NULL)
5718 return FALSE;
5a580b3a 5719
554220db
AM
5720 /* The first entry in .dynsym is a dummy symbol.
5721 Clear all the section syms, in case we don't output them all. */
5722 ++section_sym_count;
5723 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
5724 }
5725
5726 /* Compute the size of the hashing table. As a side effect this
5727 computes the hash values for all the names we export. */
5728 bucketcount = compute_bucket_count (info);
5729
5730 s = bfd_get_section_by_name (dynobj, ".hash");
5731 BFD_ASSERT (s != NULL);
5732 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5733 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5734 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5735 if (s->contents == NULL)
5736 return FALSE;
5737
5738 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5739 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5740 s->contents + hash_entry_size);
5741
5742 elf_hash_table (info)->bucketcount = bucketcount;
5743
5744 s = bfd_get_section_by_name (dynobj, ".dynstr");
5745 BFD_ASSERT (s != NULL);
5746
4ad4eba5 5747 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5748
eea6121a 5749 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5750
5751 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5752 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5753 return FALSE;
5754 }
5755
5756 return TRUE;
5757}
c152c796
AM
5758
5759/* Final phase of ELF linker. */
5760
5761/* A structure we use to avoid passing large numbers of arguments. */
5762
5763struct elf_final_link_info
5764{
5765 /* General link information. */
5766 struct bfd_link_info *info;
5767 /* Output BFD. */
5768 bfd *output_bfd;
5769 /* Symbol string table. */
5770 struct bfd_strtab_hash *symstrtab;
5771 /* .dynsym section. */
5772 asection *dynsym_sec;
5773 /* .hash section. */
5774 asection *hash_sec;
5775 /* symbol version section (.gnu.version). */
5776 asection *symver_sec;
5777 /* Buffer large enough to hold contents of any section. */
5778 bfd_byte *contents;
5779 /* Buffer large enough to hold external relocs of any section. */
5780 void *external_relocs;
5781 /* Buffer large enough to hold internal relocs of any section. */
5782 Elf_Internal_Rela *internal_relocs;
5783 /* Buffer large enough to hold external local symbols of any input
5784 BFD. */
5785 bfd_byte *external_syms;
5786 /* And a buffer for symbol section indices. */
5787 Elf_External_Sym_Shndx *locsym_shndx;
5788 /* Buffer large enough to hold internal local symbols of any input
5789 BFD. */
5790 Elf_Internal_Sym *internal_syms;
5791 /* Array large enough to hold a symbol index for each local symbol
5792 of any input BFD. */
5793 long *indices;
5794 /* Array large enough to hold a section pointer for each local
5795 symbol of any input BFD. */
5796 asection **sections;
5797 /* Buffer to hold swapped out symbols. */
5798 bfd_byte *symbuf;
5799 /* And one for symbol section indices. */
5800 Elf_External_Sym_Shndx *symshndxbuf;
5801 /* Number of swapped out symbols in buffer. */
5802 size_t symbuf_count;
5803 /* Number of symbols which fit in symbuf. */
5804 size_t symbuf_size;
5805 /* And same for symshndxbuf. */
5806 size_t shndxbuf_size;
5807};
5808
5809/* This struct is used to pass information to elf_link_output_extsym. */
5810
5811struct elf_outext_info
5812{
5813 bfd_boolean failed;
5814 bfd_boolean localsyms;
5815 struct elf_final_link_info *finfo;
5816};
5817
5818/* When performing a relocatable link, the input relocations are
5819 preserved. But, if they reference global symbols, the indices
5820 referenced must be updated. Update all the relocations in
5821 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5822
5823static void
5824elf_link_adjust_relocs (bfd *abfd,
5825 Elf_Internal_Shdr *rel_hdr,
5826 unsigned int count,
5827 struct elf_link_hash_entry **rel_hash)
5828{
5829 unsigned int i;
5830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5831 bfd_byte *erela;
5832 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5833 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5834 bfd_vma r_type_mask;
5835 int r_sym_shift;
5836
5837 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5838 {
5839 swap_in = bed->s->swap_reloc_in;
5840 swap_out = bed->s->swap_reloc_out;
5841 }
5842 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5843 {
5844 swap_in = bed->s->swap_reloca_in;
5845 swap_out = bed->s->swap_reloca_out;
5846 }
5847 else
5848 abort ();
5849
5850 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5851 abort ();
5852
5853 if (bed->s->arch_size == 32)
5854 {
5855 r_type_mask = 0xff;
5856 r_sym_shift = 8;
5857 }
5858 else
5859 {
5860 r_type_mask = 0xffffffff;
5861 r_sym_shift = 32;
5862 }
5863
5864 erela = rel_hdr->contents;
5865 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5866 {
5867 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5868 unsigned int j;
5869
5870 if (*rel_hash == NULL)
5871 continue;
5872
5873 BFD_ASSERT ((*rel_hash)->indx >= 0);
5874
5875 (*swap_in) (abfd, erela, irela);
5876 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5877 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5878 | (irela[j].r_info & r_type_mask));
5879 (*swap_out) (abfd, irela, erela);
5880 }
5881}
5882
5883struct elf_link_sort_rela
5884{
5885 union {
5886 bfd_vma offset;
5887 bfd_vma sym_mask;
5888 } u;
5889 enum elf_reloc_type_class type;
5890 /* We use this as an array of size int_rels_per_ext_rel. */
5891 Elf_Internal_Rela rela[1];
5892};
5893
5894static int
5895elf_link_sort_cmp1 (const void *A, const void *B)
5896{
5897 const struct elf_link_sort_rela *a = A;
5898 const struct elf_link_sort_rela *b = B;
5899 int relativea, relativeb;
5900
5901 relativea = a->type == reloc_class_relative;
5902 relativeb = b->type == reloc_class_relative;
5903
5904 if (relativea < relativeb)
5905 return 1;
5906 if (relativea > relativeb)
5907 return -1;
5908 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5909 return -1;
5910 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5911 return 1;
5912 if (a->rela->r_offset < b->rela->r_offset)
5913 return -1;
5914 if (a->rela->r_offset > b->rela->r_offset)
5915 return 1;
5916 return 0;
5917}
5918
5919static int
5920elf_link_sort_cmp2 (const void *A, const void *B)
5921{
5922 const struct elf_link_sort_rela *a = A;
5923 const struct elf_link_sort_rela *b = B;
5924 int copya, copyb;
5925
5926 if (a->u.offset < b->u.offset)
5927 return -1;
5928 if (a->u.offset > b->u.offset)
5929 return 1;
5930 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5931 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5932 if (copya < copyb)
5933 return -1;
5934 if (copya > copyb)
5935 return 1;
5936 if (a->rela->r_offset < b->rela->r_offset)
5937 return -1;
5938 if (a->rela->r_offset > b->rela->r_offset)
5939 return 1;
5940 return 0;
5941}
5942
5943static size_t
5944elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5945{
5946 asection *reldyn;
5947 bfd_size_type count, size;
5948 size_t i, ret, sort_elt, ext_size;
5949 bfd_byte *sort, *s_non_relative, *p;
5950 struct elf_link_sort_rela *sq;
5951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5952 int i2e = bed->s->int_rels_per_ext_rel;
5953 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5954 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5955 struct bfd_link_order *lo;
5956 bfd_vma r_sym_mask;
5957
5958 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5959 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5960 {
5961 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5962 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5963 return 0;
5964 ext_size = bed->s->sizeof_rel;
5965 swap_in = bed->s->swap_reloc_in;
5966 swap_out = bed->s->swap_reloc_out;
5967 }
5968 else
5969 {
5970 ext_size = bed->s->sizeof_rela;
5971 swap_in = bed->s->swap_reloca_in;
5972 swap_out = bed->s->swap_reloca_out;
5973 }
eea6121a 5974 count = reldyn->size / ext_size;
c152c796
AM
5975
5976 size = 0;
8423293d 5977 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
5978 if (lo->type == bfd_indirect_link_order)
5979 {
5980 asection *o = lo->u.indirect.section;
eea6121a 5981 size += o->size;
c152c796
AM
5982 }
5983
eea6121a 5984 if (size != reldyn->size)
c152c796
AM
5985 return 0;
5986
5987 sort_elt = (sizeof (struct elf_link_sort_rela)
5988 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5989 sort = bfd_zmalloc (sort_elt * count);
5990 if (sort == NULL)
5991 {
5992 (*info->callbacks->warning)
5993 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5994 return 0;
5995 }
5996
5997 if (bed->s->arch_size == 32)
5998 r_sym_mask = ~(bfd_vma) 0xff;
5999 else
6000 r_sym_mask = ~(bfd_vma) 0xffffffff;
6001
8423293d 6002 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6003 if (lo->type == bfd_indirect_link_order)
6004 {
6005 bfd_byte *erel, *erelend;
6006 asection *o = lo->u.indirect.section;
6007
1da212d6
AM
6008 if (o->contents == NULL && o->size != 0)
6009 {
6010 /* This is a reloc section that is being handled as a normal
6011 section. See bfd_section_from_shdr. We can't combine
6012 relocs in this case. */
6013 free (sort);
6014 return 0;
6015 }
c152c796 6016 erel = o->contents;
eea6121a 6017 erelend = o->contents + o->size;
c152c796
AM
6018 p = sort + o->output_offset / ext_size * sort_elt;
6019 while (erel < erelend)
6020 {
6021 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6022 (*swap_in) (abfd, erel, s->rela);
6023 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6024 s->u.sym_mask = r_sym_mask;
6025 p += sort_elt;
6026 erel += ext_size;
6027 }
6028 }
6029
6030 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6031
6032 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6033 {
6034 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6035 if (s->type != reloc_class_relative)
6036 break;
6037 }
6038 ret = i;
6039 s_non_relative = p;
6040
6041 sq = (struct elf_link_sort_rela *) s_non_relative;
6042 for (; i < count; i++, p += sort_elt)
6043 {
6044 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6045 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6046 sq = sp;
6047 sp->u.offset = sq->rela->r_offset;
6048 }
6049
6050 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6051
8423293d 6052 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6053 if (lo->type == bfd_indirect_link_order)
6054 {
6055 bfd_byte *erel, *erelend;
6056 asection *o = lo->u.indirect.section;
6057
6058 erel = o->contents;
eea6121a 6059 erelend = o->contents + o->size;
c152c796
AM
6060 p = sort + o->output_offset / ext_size * sort_elt;
6061 while (erel < erelend)
6062 {
6063 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6064 (*swap_out) (abfd, s->rela, erel);
6065 p += sort_elt;
6066 erel += ext_size;
6067 }
6068 }
6069
6070 free (sort);
6071 *psec = reldyn;
6072 return ret;
6073}
6074
6075/* Flush the output symbols to the file. */
6076
6077static bfd_boolean
6078elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6079 const struct elf_backend_data *bed)
6080{
6081 if (finfo->symbuf_count > 0)
6082 {
6083 Elf_Internal_Shdr *hdr;
6084 file_ptr pos;
6085 bfd_size_type amt;
6086
6087 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6088 pos = hdr->sh_offset + hdr->sh_size;
6089 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6090 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6091 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6092 return FALSE;
6093
6094 hdr->sh_size += amt;
6095 finfo->symbuf_count = 0;
6096 }
6097
6098 return TRUE;
6099}
6100
6101/* Add a symbol to the output symbol table. */
6102
6103static bfd_boolean
6104elf_link_output_sym (struct elf_final_link_info *finfo,
6105 const char *name,
6106 Elf_Internal_Sym *elfsym,
6107 asection *input_sec,
6108 struct elf_link_hash_entry *h)
6109{
6110 bfd_byte *dest;
6111 Elf_External_Sym_Shndx *destshndx;
6112 bfd_boolean (*output_symbol_hook)
6113 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6114 struct elf_link_hash_entry *);
6115 const struct elf_backend_data *bed;
6116
6117 bed = get_elf_backend_data (finfo->output_bfd);
6118 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6119 if (output_symbol_hook != NULL)
6120 {
6121 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6122 return FALSE;
6123 }
6124
6125 if (name == NULL || *name == '\0')
6126 elfsym->st_name = 0;
6127 else if (input_sec->flags & SEC_EXCLUDE)
6128 elfsym->st_name = 0;
6129 else
6130 {
6131 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6132 name, TRUE, FALSE);
6133 if (elfsym->st_name == (unsigned long) -1)
6134 return FALSE;
6135 }
6136
6137 if (finfo->symbuf_count >= finfo->symbuf_size)
6138 {
6139 if (! elf_link_flush_output_syms (finfo, bed))
6140 return FALSE;
6141 }
6142
6143 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6144 destshndx = finfo->symshndxbuf;
6145 if (destshndx != NULL)
6146 {
6147 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6148 {
6149 bfd_size_type amt;
6150
6151 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6152 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6153 if (destshndx == NULL)
6154 return FALSE;
6155 memset ((char *) destshndx + amt, 0, amt);
6156 finfo->shndxbuf_size *= 2;
6157 }
6158 destshndx += bfd_get_symcount (finfo->output_bfd);
6159 }
6160
6161 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6162 finfo->symbuf_count += 1;
6163 bfd_get_symcount (finfo->output_bfd) += 1;
6164
6165 return TRUE;
6166}
6167
6168/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6169 allowing an unsatisfied unversioned symbol in the DSO to match a
6170 versioned symbol that would normally require an explicit version.
6171 We also handle the case that a DSO references a hidden symbol
6172 which may be satisfied by a versioned symbol in another DSO. */
6173
6174static bfd_boolean
6175elf_link_check_versioned_symbol (struct bfd_link_info *info,
6176 const struct elf_backend_data *bed,
6177 struct elf_link_hash_entry *h)
6178{
6179 bfd *abfd;
6180 struct elf_link_loaded_list *loaded;
6181
6182 if (!is_elf_hash_table (info->hash))
6183 return FALSE;
6184
6185 switch (h->root.type)
6186 {
6187 default:
6188 abfd = NULL;
6189 break;
6190
6191 case bfd_link_hash_undefined:
6192 case bfd_link_hash_undefweak:
6193 abfd = h->root.u.undef.abfd;
6194 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6195 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6196 return FALSE;
6197 break;
6198
6199 case bfd_link_hash_defined:
6200 case bfd_link_hash_defweak:
6201 abfd = h->root.u.def.section->owner;
6202 break;
6203
6204 case bfd_link_hash_common:
6205 abfd = h->root.u.c.p->section->owner;
6206 break;
6207 }
6208 BFD_ASSERT (abfd != NULL);
6209
6210 for (loaded = elf_hash_table (info)->loaded;
6211 loaded != NULL;
6212 loaded = loaded->next)
6213 {
6214 bfd *input;
6215 Elf_Internal_Shdr *hdr;
6216 bfd_size_type symcount;
6217 bfd_size_type extsymcount;
6218 bfd_size_type extsymoff;
6219 Elf_Internal_Shdr *versymhdr;
6220 Elf_Internal_Sym *isym;
6221 Elf_Internal_Sym *isymend;
6222 Elf_Internal_Sym *isymbuf;
6223 Elf_External_Versym *ever;
6224 Elf_External_Versym *extversym;
6225
6226 input = loaded->abfd;
6227
6228 /* We check each DSO for a possible hidden versioned definition. */
6229 if (input == abfd
6230 || (input->flags & DYNAMIC) == 0
6231 || elf_dynversym (input) == 0)
6232 continue;
6233
6234 hdr = &elf_tdata (input)->dynsymtab_hdr;
6235
6236 symcount = hdr->sh_size / bed->s->sizeof_sym;
6237 if (elf_bad_symtab (input))
6238 {
6239 extsymcount = symcount;
6240 extsymoff = 0;
6241 }
6242 else
6243 {
6244 extsymcount = symcount - hdr->sh_info;
6245 extsymoff = hdr->sh_info;
6246 }
6247
6248 if (extsymcount == 0)
6249 continue;
6250
6251 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6252 NULL, NULL, NULL);
6253 if (isymbuf == NULL)
6254 return FALSE;
6255
6256 /* Read in any version definitions. */
6257 versymhdr = &elf_tdata (input)->dynversym_hdr;
6258 extversym = bfd_malloc (versymhdr->sh_size);
6259 if (extversym == NULL)
6260 goto error_ret;
6261
6262 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6263 || (bfd_bread (extversym, versymhdr->sh_size, input)
6264 != versymhdr->sh_size))
6265 {
6266 free (extversym);
6267 error_ret:
6268 free (isymbuf);
6269 return FALSE;
6270 }
6271
6272 ever = extversym + extsymoff;
6273 isymend = isymbuf + extsymcount;
6274 for (isym = isymbuf; isym < isymend; isym++, ever++)
6275 {
6276 const char *name;
6277 Elf_Internal_Versym iver;
6278 unsigned short version_index;
6279
6280 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6281 || isym->st_shndx == SHN_UNDEF)
6282 continue;
6283
6284 name = bfd_elf_string_from_elf_section (input,
6285 hdr->sh_link,
6286 isym->st_name);
6287 if (strcmp (name, h->root.root.string) != 0)
6288 continue;
6289
6290 _bfd_elf_swap_versym_in (input, ever, &iver);
6291
6292 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6293 {
6294 /* If we have a non-hidden versioned sym, then it should
6295 have provided a definition for the undefined sym. */
6296 abort ();
6297 }
6298
6299 version_index = iver.vs_vers & VERSYM_VERSION;
6300 if (version_index == 1 || version_index == 2)
6301 {
6302 /* This is the base or first version. We can use it. */
6303 free (extversym);
6304 free (isymbuf);
6305 return TRUE;
6306 }
6307 }
6308
6309 free (extversym);
6310 free (isymbuf);
6311 }
6312
6313 return FALSE;
6314}
6315
6316/* Add an external symbol to the symbol table. This is called from
6317 the hash table traversal routine. When generating a shared object,
6318 we go through the symbol table twice. The first time we output
6319 anything that might have been forced to local scope in a version
6320 script. The second time we output the symbols that are still
6321 global symbols. */
6322
6323static bfd_boolean
6324elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6325{
6326 struct elf_outext_info *eoinfo = data;
6327 struct elf_final_link_info *finfo = eoinfo->finfo;
6328 bfd_boolean strip;
6329 Elf_Internal_Sym sym;
6330 asection *input_sec;
6331 const struct elf_backend_data *bed;
6332
6333 if (h->root.type == bfd_link_hash_warning)
6334 {
6335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6336 if (h->root.type == bfd_link_hash_new)
6337 return TRUE;
6338 }
6339
6340 /* Decide whether to output this symbol in this pass. */
6341 if (eoinfo->localsyms)
6342 {
f5385ebf 6343 if (!h->forced_local)
c152c796
AM
6344 return TRUE;
6345 }
6346 else
6347 {
f5385ebf 6348 if (h->forced_local)
c152c796
AM
6349 return TRUE;
6350 }
6351
6352 bed = get_elf_backend_data (finfo->output_bfd);
6353
6354 /* If we have an undefined symbol reference here then it must have
6355 come from a shared library that is being linked in. (Undefined
6356 references in regular files have already been handled). If we
6357 are reporting errors for this situation then do so now. */
6358 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6359 && h->ref_dynamic
6360 && !h->ref_regular
c152c796
AM
6361 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6362 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6363 {
6364 if (! ((*finfo->info->callbacks->undefined_symbol)
6365 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6366 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6367 {
6368 eoinfo->failed = TRUE;
6369 return FALSE;
6370 }
6371 }
6372
6373 /* We should also warn if a forced local symbol is referenced from
6374 shared libraries. */
6375 if (! finfo->info->relocatable
6376 && (! finfo->info->shared)
f5385ebf
AM
6377 && h->forced_local
6378 && h->ref_dynamic
6379 && !h->dynamic_def
6380 && !h->dynamic_weak
c152c796
AM
6381 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6382 {
6383 (*_bfd_error_handler)
d003868e 6384 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
6385 finfo->output_bfd,
6386 h->root.u.def.section == bfd_abs_section_ptr
6387 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
6388 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6389 ? "internal"
6390 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6391 ? "hidden" : "local",
6392 h->root.root.string);
c152c796
AM
6393 eoinfo->failed = TRUE;
6394 return FALSE;
6395 }
6396
6397 /* We don't want to output symbols that have never been mentioned by
6398 a regular file, or that we have been told to strip. However, if
6399 h->indx is set to -2, the symbol is used by a reloc and we must
6400 output it. */
6401 if (h->indx == -2)
6402 strip = FALSE;
f5385ebf 6403 else if ((h->def_dynamic
77cfaee6
AM
6404 || h->ref_dynamic
6405 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6406 && !h->def_regular
6407 && !h->ref_regular)
c152c796
AM
6408 strip = TRUE;
6409 else if (finfo->info->strip == strip_all)
6410 strip = TRUE;
6411 else if (finfo->info->strip == strip_some
6412 && bfd_hash_lookup (finfo->info->keep_hash,
6413 h->root.root.string, FALSE, FALSE) == NULL)
6414 strip = TRUE;
6415 else if (finfo->info->strip_discarded
6416 && (h->root.type == bfd_link_hash_defined
6417 || h->root.type == bfd_link_hash_defweak)
6418 && elf_discarded_section (h->root.u.def.section))
6419 strip = TRUE;
6420 else
6421 strip = FALSE;
6422
6423 /* If we're stripping it, and it's not a dynamic symbol, there's
6424 nothing else to do unless it is a forced local symbol. */
6425 if (strip
6426 && h->dynindx == -1
f5385ebf 6427 && !h->forced_local)
c152c796
AM
6428 return TRUE;
6429
6430 sym.st_value = 0;
6431 sym.st_size = h->size;
6432 sym.st_other = h->other;
f5385ebf 6433 if (h->forced_local)
c152c796
AM
6434 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6435 else if (h->root.type == bfd_link_hash_undefweak
6436 || h->root.type == bfd_link_hash_defweak)
6437 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6438 else
6439 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6440
6441 switch (h->root.type)
6442 {
6443 default:
6444 case bfd_link_hash_new:
6445 case bfd_link_hash_warning:
6446 abort ();
6447 return FALSE;
6448
6449 case bfd_link_hash_undefined:
6450 case bfd_link_hash_undefweak:
6451 input_sec = bfd_und_section_ptr;
6452 sym.st_shndx = SHN_UNDEF;
6453 break;
6454
6455 case bfd_link_hash_defined:
6456 case bfd_link_hash_defweak:
6457 {
6458 input_sec = h->root.u.def.section;
6459 if (input_sec->output_section != NULL)
6460 {
6461 sym.st_shndx =
6462 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6463 input_sec->output_section);
6464 if (sym.st_shndx == SHN_BAD)
6465 {
6466 (*_bfd_error_handler)
d003868e
AM
6467 (_("%B: could not find output section %A for input section %A"),
6468 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6469 eoinfo->failed = TRUE;
6470 return FALSE;
6471 }
6472
6473 /* ELF symbols in relocatable files are section relative,
6474 but in nonrelocatable files they are virtual
6475 addresses. */
6476 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6477 if (! finfo->info->relocatable)
6478 {
6479 sym.st_value += input_sec->output_section->vma;
6480 if (h->type == STT_TLS)
6481 {
6482 /* STT_TLS symbols are relative to PT_TLS segment
6483 base. */
6484 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6485 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6486 }
6487 }
6488 }
6489 else
6490 {
6491 BFD_ASSERT (input_sec->owner == NULL
6492 || (input_sec->owner->flags & DYNAMIC) != 0);
6493 sym.st_shndx = SHN_UNDEF;
6494 input_sec = bfd_und_section_ptr;
6495 }
6496 }
6497 break;
6498
6499 case bfd_link_hash_common:
6500 input_sec = h->root.u.c.p->section;
6501 sym.st_shndx = SHN_COMMON;
6502 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6503 break;
6504
6505 case bfd_link_hash_indirect:
6506 /* These symbols are created by symbol versioning. They point
6507 to the decorated version of the name. For example, if the
6508 symbol foo@@GNU_1.2 is the default, which should be used when
6509 foo is used with no version, then we add an indirect symbol
6510 foo which points to foo@@GNU_1.2. We ignore these symbols,
6511 since the indirected symbol is already in the hash table. */
6512 return TRUE;
6513 }
6514
6515 /* Give the processor backend a chance to tweak the symbol value,
6516 and also to finish up anything that needs to be done for this
6517 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6518 forced local syms when non-shared is due to a historical quirk. */
6519 if ((h->dynindx != -1
f5385ebf 6520 || h->forced_local)
c152c796
AM
6521 && ((finfo->info->shared
6522 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6523 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6524 || !h->forced_local)
c152c796
AM
6525 && elf_hash_table (finfo->info)->dynamic_sections_created)
6526 {
6527 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6528 (finfo->output_bfd, finfo->info, h, &sym)))
6529 {
6530 eoinfo->failed = TRUE;
6531 return FALSE;
6532 }
6533 }
6534
6535 /* If we are marking the symbol as undefined, and there are no
6536 non-weak references to this symbol from a regular object, then
6537 mark the symbol as weak undefined; if there are non-weak
6538 references, mark the symbol as strong. We can't do this earlier,
6539 because it might not be marked as undefined until the
6540 finish_dynamic_symbol routine gets through with it. */
6541 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6542 && h->ref_regular
c152c796
AM
6543 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6544 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6545 {
6546 int bindtype;
6547
f5385ebf 6548 if (h->ref_regular_nonweak)
c152c796
AM
6549 bindtype = STB_GLOBAL;
6550 else
6551 bindtype = STB_WEAK;
6552 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6553 }
6554
6555 /* If a non-weak symbol with non-default visibility is not defined
6556 locally, it is a fatal error. */
6557 if (! finfo->info->relocatable
6558 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6559 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6560 && h->root.type == bfd_link_hash_undefined
f5385ebf 6561 && !h->def_regular)
c152c796
AM
6562 {
6563 (*_bfd_error_handler)
d003868e
AM
6564 (_("%B: %s symbol `%s' isn't defined"),
6565 finfo->output_bfd,
6566 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6567 ? "protected"
6568 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6569 ? "internal" : "hidden",
6570 h->root.root.string);
c152c796
AM
6571 eoinfo->failed = TRUE;
6572 return FALSE;
6573 }
6574
6575 /* If this symbol should be put in the .dynsym section, then put it
6576 there now. We already know the symbol index. We also fill in
6577 the entry in the .hash section. */
6578 if (h->dynindx != -1
6579 && elf_hash_table (finfo->info)->dynamic_sections_created)
6580 {
6581 size_t bucketcount;
6582 size_t bucket;
6583 size_t hash_entry_size;
6584 bfd_byte *bucketpos;
6585 bfd_vma chain;
6586 bfd_byte *esym;
6587
6588 sym.st_name = h->dynstr_index;
6589 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6590 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6591
6592 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6593 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6594 hash_entry_size
6595 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6596 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6597 + (bucket + 2) * hash_entry_size);
6598 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6599 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6600 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6601 ((bfd_byte *) finfo->hash_sec->contents
6602 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6603
6604 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6605 {
6606 Elf_Internal_Versym iversym;
6607 Elf_External_Versym *eversym;
6608
f5385ebf 6609 if (!h->def_regular)
c152c796
AM
6610 {
6611 if (h->verinfo.verdef == NULL)
6612 iversym.vs_vers = 0;
6613 else
6614 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6615 }
6616 else
6617 {
6618 if (h->verinfo.vertree == NULL)
6619 iversym.vs_vers = 1;
6620 else
6621 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6622 if (finfo->info->create_default_symver)
6623 iversym.vs_vers++;
c152c796
AM
6624 }
6625
f5385ebf 6626 if (h->hidden)
c152c796
AM
6627 iversym.vs_vers |= VERSYM_HIDDEN;
6628
6629 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6630 eversym += h->dynindx;
6631 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6632 }
6633 }
6634
6635 /* If we're stripping it, then it was just a dynamic symbol, and
6636 there's nothing else to do. */
6637 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6638 return TRUE;
6639
6640 h->indx = bfd_get_symcount (finfo->output_bfd);
6641
6642 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6643 {
6644 eoinfo->failed = TRUE;
6645 return FALSE;
6646 }
6647
6648 return TRUE;
6649}
6650
cdd3575c
AM
6651/* Return TRUE if special handling is done for relocs in SEC against
6652 symbols defined in discarded sections. */
6653
c152c796
AM
6654static bfd_boolean
6655elf_section_ignore_discarded_relocs (asection *sec)
6656{
6657 const struct elf_backend_data *bed;
6658
cdd3575c
AM
6659 switch (sec->sec_info_type)
6660 {
6661 case ELF_INFO_TYPE_STABS:
6662 case ELF_INFO_TYPE_EH_FRAME:
6663 return TRUE;
6664 default:
6665 break;
6666 }
c152c796
AM
6667
6668 bed = get_elf_backend_data (sec->owner);
6669 if (bed->elf_backend_ignore_discarded_relocs != NULL
6670 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6671 return TRUE;
6672
6673 return FALSE;
6674}
6675
9e66c942
AM
6676enum action_discarded
6677 {
6678 COMPLAIN = 1,
6679 PRETEND = 2
6680 };
6681
6682/* Return a mask saying how ld should treat relocations in SEC against
6683 symbols defined in discarded sections. If this function returns
6684 COMPLAIN set, ld will issue a warning message. If this function
6685 returns PRETEND set, and the discarded section was link-once and the
6686 same size as the kept link-once section, ld will pretend that the
6687 symbol was actually defined in the kept section. Otherwise ld will
6688 zero the reloc (at least that is the intent, but some cooperation by
6689 the target dependent code is needed, particularly for REL targets). */
6690
6691static unsigned int
6692elf_action_discarded (asection *sec)
cdd3575c 6693{
9e66c942
AM
6694 if (sec->flags & SEC_DEBUGGING)
6695 return PRETEND;
cdd3575c
AM
6696
6697 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6698 return 0;
cdd3575c
AM
6699
6700 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6701 return 0;
cdd3575c 6702
27b56da8 6703 if (strcmp (".PARISC.unwind", sec->name) == 0)
9e66c942 6704 return 0;
327c1315
AM
6705
6706 if (strcmp (".fixup", sec->name) == 0)
9e66c942 6707 return 0;
27b56da8 6708
9e66c942 6709 return COMPLAIN | PRETEND;
cdd3575c
AM
6710}
6711
3d7f7666
L
6712/* Find a match between a section and a member of a section group. */
6713
6714static asection *
6715match_group_member (asection *sec, asection *group)
6716{
6717 asection *first = elf_next_in_group (group);
6718 asection *s = first;
6719
6720 while (s != NULL)
6721 {
6722 if (bfd_elf_match_symbols_in_sections (s, sec))
6723 return s;
6724
6725 if (s == first)
6726 break;
6727 }
6728
6729 return NULL;
6730}
6731
01b3c8ab
L
6732/* Check if the kept section of a discarded section SEC can be used
6733 to replace it. Return the replacement if it is OK. Otherwise return
6734 NULL. */
6735
6736asection *
6737_bfd_elf_check_kept_section (asection *sec)
6738{
6739 asection *kept;
6740
6741 kept = sec->kept_section;
6742 if (kept != NULL)
6743 {
6744 if (elf_sec_group (sec) != NULL)
6745 kept = match_group_member (sec, kept);
6746 if (kept != NULL && sec->size != kept->size)
6747 kept = NULL;
6748 }
6749 return kept;
6750}
6751
c152c796
AM
6752/* Link an input file into the linker output file. This function
6753 handles all the sections and relocations of the input file at once.
6754 This is so that we only have to read the local symbols once, and
6755 don't have to keep them in memory. */
6756
6757static bfd_boolean
6758elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6759{
6760 bfd_boolean (*relocate_section)
6761 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6762 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6763 bfd *output_bfd;
6764 Elf_Internal_Shdr *symtab_hdr;
6765 size_t locsymcount;
6766 size_t extsymoff;
6767 Elf_Internal_Sym *isymbuf;
6768 Elf_Internal_Sym *isym;
6769 Elf_Internal_Sym *isymend;
6770 long *pindex;
6771 asection **ppsection;
6772 asection *o;
6773 const struct elf_backend_data *bed;
6774 bfd_boolean emit_relocs;
6775 struct elf_link_hash_entry **sym_hashes;
6776
6777 output_bfd = finfo->output_bfd;
6778 bed = get_elf_backend_data (output_bfd);
6779 relocate_section = bed->elf_backend_relocate_section;
6780
6781 /* If this is a dynamic object, we don't want to do anything here:
6782 we don't want the local symbols, and we don't want the section
6783 contents. */
6784 if ((input_bfd->flags & DYNAMIC) != 0)
6785 return TRUE;
6786
6787 emit_relocs = (finfo->info->relocatable
eac338cf 6788 || finfo->info->emitrelocations);
c152c796
AM
6789
6790 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6791 if (elf_bad_symtab (input_bfd))
6792 {
6793 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6794 extsymoff = 0;
6795 }
6796 else
6797 {
6798 locsymcount = symtab_hdr->sh_info;
6799 extsymoff = symtab_hdr->sh_info;
6800 }
6801
6802 /* Read the local symbols. */
6803 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6804 if (isymbuf == NULL && locsymcount != 0)
6805 {
6806 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6807 finfo->internal_syms,
6808 finfo->external_syms,
6809 finfo->locsym_shndx);
6810 if (isymbuf == NULL)
6811 return FALSE;
6812 }
6813
6814 /* Find local symbol sections and adjust values of symbols in
6815 SEC_MERGE sections. Write out those local symbols we know are
6816 going into the output file. */
6817 isymend = isymbuf + locsymcount;
6818 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6819 isym < isymend;
6820 isym++, pindex++, ppsection++)
6821 {
6822 asection *isec;
6823 const char *name;
6824 Elf_Internal_Sym osym;
6825
6826 *pindex = -1;
6827
6828 if (elf_bad_symtab (input_bfd))
6829 {
6830 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6831 {
6832 *ppsection = NULL;
6833 continue;
6834 }
6835 }
6836
6837 if (isym->st_shndx == SHN_UNDEF)
6838 isec = bfd_und_section_ptr;
6839 else if (isym->st_shndx < SHN_LORESERVE
6840 || isym->st_shndx > SHN_HIRESERVE)
6841 {
6842 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6843 if (isec
6844 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6845 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6846 isym->st_value =
6847 _bfd_merged_section_offset (output_bfd, &isec,
6848 elf_section_data (isec)->sec_info,
753731ee 6849 isym->st_value);
c152c796
AM
6850 }
6851 else if (isym->st_shndx == SHN_ABS)
6852 isec = bfd_abs_section_ptr;
6853 else if (isym->st_shndx == SHN_COMMON)
6854 isec = bfd_com_section_ptr;
6855 else
6856 {
6857 /* Who knows? */
6858 isec = NULL;
6859 }
6860
6861 *ppsection = isec;
6862
6863 /* Don't output the first, undefined, symbol. */
6864 if (ppsection == finfo->sections)
6865 continue;
6866
6867 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6868 {
6869 /* We never output section symbols. Instead, we use the
6870 section symbol of the corresponding section in the output
6871 file. */
6872 continue;
6873 }
6874
6875 /* If we are stripping all symbols, we don't want to output this
6876 one. */
6877 if (finfo->info->strip == strip_all)
6878 continue;
6879
6880 /* If we are discarding all local symbols, we don't want to
6881 output this one. If we are generating a relocatable output
6882 file, then some of the local symbols may be required by
6883 relocs; we output them below as we discover that they are
6884 needed. */
6885 if (finfo->info->discard == discard_all)
6886 continue;
6887
6888 /* If this symbol is defined in a section which we are
6889 discarding, we don't need to keep it, but note that
6890 linker_mark is only reliable for sections that have contents.
6891 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6892 as well as linker_mark. */
6893 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610
PB
6894 && (isec == NULL
6895 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
c152c796
AM
6896 || (! finfo->info->relocatable
6897 && (isec->flags & SEC_EXCLUDE) != 0)))
6898 continue;
6899
e75a280b
L
6900 /* If the section is not in the output BFD's section list, it is not
6901 being output. */
6902 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6903 continue;
6904
c152c796
AM
6905 /* Get the name of the symbol. */
6906 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6907 isym->st_name);
6908 if (name == NULL)
6909 return FALSE;
6910
6911 /* See if we are discarding symbols with this name. */
6912 if ((finfo->info->strip == strip_some
6913 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6914 == NULL))
6915 || (((finfo->info->discard == discard_sec_merge
6916 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6917 || finfo->info->discard == discard_l)
6918 && bfd_is_local_label_name (input_bfd, name)))
6919 continue;
6920
6921 /* If we get here, we are going to output this symbol. */
6922
6923 osym = *isym;
6924
6925 /* Adjust the section index for the output file. */
6926 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6927 isec->output_section);
6928 if (osym.st_shndx == SHN_BAD)
6929 return FALSE;
6930
6931 *pindex = bfd_get_symcount (output_bfd);
6932
6933 /* ELF symbols in relocatable files are section relative, but
6934 in executable files they are virtual addresses. Note that
6935 this code assumes that all ELF sections have an associated
6936 BFD section with a reasonable value for output_offset; below
6937 we assume that they also have a reasonable value for
6938 output_section. Any special sections must be set up to meet
6939 these requirements. */
6940 osym.st_value += isec->output_offset;
6941 if (! finfo->info->relocatable)
6942 {
6943 osym.st_value += isec->output_section->vma;
6944 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6945 {
6946 /* STT_TLS symbols are relative to PT_TLS segment base. */
6947 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6948 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6949 }
6950 }
6951
6952 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6953 return FALSE;
6954 }
6955
6956 /* Relocate the contents of each section. */
6957 sym_hashes = elf_sym_hashes (input_bfd);
6958 for (o = input_bfd->sections; o != NULL; o = o->next)
6959 {
6960 bfd_byte *contents;
6961
6962 if (! o->linker_mark)
6963 {
6964 /* This section was omitted from the link. */
6965 continue;
6966 }
6967
6968 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6969 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6970 continue;
6971
6972 if ((o->flags & SEC_LINKER_CREATED) != 0)
6973 {
6974 /* Section was created by _bfd_elf_link_create_dynamic_sections
6975 or somesuch. */
6976 continue;
6977 }
6978
6979 /* Get the contents of the section. They have been cached by a
6980 relaxation routine. Note that o is a section in an input
6981 file, so the contents field will not have been set by any of
6982 the routines which work on output files. */
6983 if (elf_section_data (o)->this_hdr.contents != NULL)
6984 contents = elf_section_data (o)->this_hdr.contents;
6985 else
6986 {
eea6121a
AM
6987 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6988
c152c796 6989 contents = finfo->contents;
eea6121a 6990 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6991 return FALSE;
6992 }
6993
6994 if ((o->flags & SEC_RELOC) != 0)
6995 {
6996 Elf_Internal_Rela *internal_relocs;
6997 bfd_vma r_type_mask;
6998 int r_sym_shift;
6999
7000 /* Get the swapped relocs. */
7001 internal_relocs
7002 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7003 finfo->internal_relocs, FALSE);
7004 if (internal_relocs == NULL
7005 && o->reloc_count > 0)
7006 return FALSE;
7007
7008 if (bed->s->arch_size == 32)
7009 {
7010 r_type_mask = 0xff;
7011 r_sym_shift = 8;
7012 }
7013 else
7014 {
7015 r_type_mask = 0xffffffff;
7016 r_sym_shift = 32;
7017 }
7018
7019 /* Run through the relocs looking for any against symbols
7020 from discarded sections and section symbols from
7021 removed link-once sections. Complain about relocs
7022 against discarded sections. Zero relocs against removed
7023 link-once sections. Preserve debug information as much
7024 as we can. */
7025 if (!elf_section_ignore_discarded_relocs (o))
7026 {
7027 Elf_Internal_Rela *rel, *relend;
9e66c942 7028 unsigned int action = elf_action_discarded (o);
c152c796
AM
7029
7030 rel = internal_relocs;
7031 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7032 for ( ; rel < relend; rel++)
7033 {
7034 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
7035 asection **ps, *sec;
7036 struct elf_link_hash_entry *h = NULL;
7037 const char *sym_name;
c152c796 7038
ee75fd95
AM
7039 if (r_symndx == STN_UNDEF)
7040 continue;
7041
c152c796
AM
7042 if (r_symndx >= locsymcount
7043 || (elf_bad_symtab (input_bfd)
7044 && finfo->sections[r_symndx] == NULL))
7045 {
c152c796 7046 h = sym_hashes[r_symndx - extsymoff];
dce669a1 7047
8c19749a
NC
7048 /* Badly formatted input files can contain relocs that
7049 reference non-existant symbols. Check here so that
7050 we do not seg fault. */
7051 if (h == NULL)
7052 {
7053 char buffer [32];
7054
7055 sprintf_vma (buffer, rel->r_info);
7056 (*_bfd_error_handler)
7057 (_("error: %B contains a reloc (0x%s) for section %A "
7058 "that references a non-existent global symbol"),
7059 input_bfd, o, buffer);
7060 bfd_set_error (bfd_error_bad_value);
7061 return FALSE;
7062 }
3b36f7e6 7063
c152c796
AM
7064 while (h->root.type == bfd_link_hash_indirect
7065 || h->root.type == bfd_link_hash_warning)
7066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7067
cdd3575c
AM
7068 if (h->root.type != bfd_link_hash_defined
7069 && h->root.type != bfd_link_hash_defweak)
7070 continue;
7071
7072 ps = &h->root.u.def.section;
7073 sym_name = h->root.root.string;
c152c796
AM
7074 }
7075 else
7076 {
cdd3575c
AM
7077 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7078 ps = &finfo->sections[r_symndx];
26c61ae5
L
7079 sym_name = bfd_elf_sym_name (input_bfd,
7080 symtab_hdr,
7081 sym, *ps);
cdd3575c 7082 }
c152c796 7083
cdd3575c
AM
7084 /* Complain if the definition comes from a
7085 discarded section. */
7086 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7087 {
87e5235d 7088 BFD_ASSERT (r_symndx != 0);
9e66c942 7089 if (action & COMPLAIN)
e1fffbe6
AM
7090 (*finfo->info->callbacks->einfo)
7091 (_("%X`%s' referenced in section `%A' of %B: "
7092 "defined in discarded section `%A' of %B"),
7093 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 7094
87e5235d
AM
7095 /* Try to do the best we can to support buggy old
7096 versions of gcc. If we've warned, or this is
7097 debugging info, pretend that the symbol is
7098 really defined in the kept linkonce section.
7099 FIXME: This is quite broken. Modifying the
7100 symbol here means we will be changing all later
7101 uses of the symbol, not just in this section.
7102 The only thing that makes this half reasonable
7103 is that we warn in non-debug sections, and
7104 debug sections tend to come after other
7105 sections. */
01b3c8ab 7106 if (action & PRETEND)
87e5235d 7107 {
01b3c8ab
L
7108 asection *kept;
7109
7110 kept = _bfd_elf_check_kept_section (sec);
7111 if (kept != NULL)
87e5235d
AM
7112 {
7113 *ps = kept;
7114 continue;
7115 }
7116 }
7117
cdd3575c
AM
7118 /* Remove the symbol reference from the reloc, but
7119 don't kill the reloc completely. This is so that
7120 a zero value will be written into the section,
7121 which may have non-zero contents put there by the
7122 assembler. Zero in things like an eh_frame fde
7123 pc_begin allows stack unwinders to recognize the
7124 fde as bogus. */
7125 rel->r_info &= r_type_mask;
7126 rel->r_addend = 0;
c152c796
AM
7127 }
7128 }
7129 }
7130
7131 /* Relocate the section by invoking a back end routine.
7132
7133 The back end routine is responsible for adjusting the
7134 section contents as necessary, and (if using Rela relocs
7135 and generating a relocatable output file) adjusting the
7136 reloc addend as necessary.
7137
7138 The back end routine does not have to worry about setting
7139 the reloc address or the reloc symbol index.
7140
7141 The back end routine is given a pointer to the swapped in
7142 internal symbols, and can access the hash table entries
7143 for the external symbols via elf_sym_hashes (input_bfd).
7144
7145 When generating relocatable output, the back end routine
7146 must handle STB_LOCAL/STT_SECTION symbols specially. The
7147 output symbol is going to be a section symbol
7148 corresponding to the output section, which will require
7149 the addend to be adjusted. */
7150
7151 if (! (*relocate_section) (output_bfd, finfo->info,
7152 input_bfd, o, contents,
7153 internal_relocs,
7154 isymbuf,
7155 finfo->sections))
7156 return FALSE;
7157
7158 if (emit_relocs)
7159 {
7160 Elf_Internal_Rela *irela;
7161 Elf_Internal_Rela *irelaend;
7162 bfd_vma last_offset;
7163 struct elf_link_hash_entry **rel_hash;
eac338cf 7164 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
7165 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7166 unsigned int next_erel;
c152c796
AM
7167 bfd_boolean rela_normal;
7168
7169 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7170 rela_normal = (bed->rela_normal
7171 && (input_rel_hdr->sh_entsize
7172 == bed->s->sizeof_rela));
7173
7174 /* Adjust the reloc addresses and symbol indices. */
7175
7176 irela = internal_relocs;
7177 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7178 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7179 + elf_section_data (o->output_section)->rel_count
7180 + elf_section_data (o->output_section)->rel_count2);
eac338cf 7181 rel_hash_list = rel_hash;
c152c796
AM
7182 last_offset = o->output_offset;
7183 if (!finfo->info->relocatable)
7184 last_offset += o->output_section->vma;
7185 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7186 {
7187 unsigned long r_symndx;
7188 asection *sec;
7189 Elf_Internal_Sym sym;
7190
7191 if (next_erel == bed->s->int_rels_per_ext_rel)
7192 {
7193 rel_hash++;
7194 next_erel = 0;
7195 }
7196
7197 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7198 finfo->info, o,
7199 irela->r_offset);
7200 if (irela->r_offset >= (bfd_vma) -2)
7201 {
7202 /* This is a reloc for a deleted entry or somesuch.
7203 Turn it into an R_*_NONE reloc, at the same
7204 offset as the last reloc. elf_eh_frame.c and
7205 elf_bfd_discard_info rely on reloc offsets
7206 being ordered. */
7207 irela->r_offset = last_offset;
7208 irela->r_info = 0;
7209 irela->r_addend = 0;
7210 continue;
7211 }
7212
7213 irela->r_offset += o->output_offset;
7214
7215 /* Relocs in an executable have to be virtual addresses. */
7216 if (!finfo->info->relocatable)
7217 irela->r_offset += o->output_section->vma;
7218
7219 last_offset = irela->r_offset;
7220
7221 r_symndx = irela->r_info >> r_sym_shift;
7222 if (r_symndx == STN_UNDEF)
7223 continue;
7224
7225 if (r_symndx >= locsymcount
7226 || (elf_bad_symtab (input_bfd)
7227 && finfo->sections[r_symndx] == NULL))
7228 {
7229 struct elf_link_hash_entry *rh;
7230 unsigned long indx;
7231
7232 /* This is a reloc against a global symbol. We
7233 have not yet output all the local symbols, so
7234 we do not know the symbol index of any global
7235 symbol. We set the rel_hash entry for this
7236 reloc to point to the global hash table entry
7237 for this symbol. The symbol index is then
ee75fd95 7238 set at the end of bfd_elf_final_link. */
c152c796
AM
7239 indx = r_symndx - extsymoff;
7240 rh = elf_sym_hashes (input_bfd)[indx];
7241 while (rh->root.type == bfd_link_hash_indirect
7242 || rh->root.type == bfd_link_hash_warning)
7243 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7244
7245 /* Setting the index to -2 tells
7246 elf_link_output_extsym that this symbol is
7247 used by a reloc. */
7248 BFD_ASSERT (rh->indx < 0);
7249 rh->indx = -2;
7250
7251 *rel_hash = rh;
7252
7253 continue;
7254 }
7255
7256 /* This is a reloc against a local symbol. */
7257
7258 *rel_hash = NULL;
7259 sym = isymbuf[r_symndx];
7260 sec = finfo->sections[r_symndx];
7261 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7262 {
7263 /* I suppose the backend ought to fill in the
7264 section of any STT_SECTION symbol against a
6a8d1586
AM
7265 processor specific section. */
7266 r_symndx = 0;
7267 if (bfd_is_abs_section (sec))
7268 ;
c152c796
AM
7269 else if (sec == NULL || sec->owner == NULL)
7270 {
7271 bfd_set_error (bfd_error_bad_value);
7272 return FALSE;
7273 }
7274 else
7275 {
6a8d1586
AM
7276 asection *osec = sec->output_section;
7277
7278 /* If we have discarded a section, the output
7279 section will be the absolute section. In
7280 case of discarded link-once and discarded
7281 SEC_MERGE sections, use the kept section. */
7282 if (bfd_is_abs_section (osec)
7283 && sec->kept_section != NULL
7284 && sec->kept_section->output_section != NULL)
7285 {
7286 osec = sec->kept_section->output_section;
7287 irela->r_addend -= osec->vma;
7288 }
7289
7290 if (!bfd_is_abs_section (osec))
7291 {
7292 r_symndx = osec->target_index;
7293 BFD_ASSERT (r_symndx != 0);
7294 }
c152c796
AM
7295 }
7296
7297 /* Adjust the addend according to where the
7298 section winds up in the output section. */
7299 if (rela_normal)
7300 irela->r_addend += sec->output_offset;
7301 }
7302 else
7303 {
7304 if (finfo->indices[r_symndx] == -1)
7305 {
7306 unsigned long shlink;
7307 const char *name;
7308 asection *osec;
7309
7310 if (finfo->info->strip == strip_all)
7311 {
7312 /* You can't do ld -r -s. */
7313 bfd_set_error (bfd_error_invalid_operation);
7314 return FALSE;
7315 }
7316
7317 /* This symbol was skipped earlier, but
7318 since it is needed by a reloc, we
7319 must output it now. */
7320 shlink = symtab_hdr->sh_link;
7321 name = (bfd_elf_string_from_elf_section
7322 (input_bfd, shlink, sym.st_name));
7323 if (name == NULL)
7324 return FALSE;
7325
7326 osec = sec->output_section;
7327 sym.st_shndx =
7328 _bfd_elf_section_from_bfd_section (output_bfd,
7329 osec);
7330 if (sym.st_shndx == SHN_BAD)
7331 return FALSE;
7332
7333 sym.st_value += sec->output_offset;
7334 if (! finfo->info->relocatable)
7335 {
7336 sym.st_value += osec->vma;
7337 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7338 {
7339 /* STT_TLS symbols are relative to PT_TLS
7340 segment base. */
7341 BFD_ASSERT (elf_hash_table (finfo->info)
7342 ->tls_sec != NULL);
7343 sym.st_value -= (elf_hash_table (finfo->info)
7344 ->tls_sec->vma);
7345 }
7346 }
7347
7348 finfo->indices[r_symndx]
7349 = bfd_get_symcount (output_bfd);
7350
7351 if (! elf_link_output_sym (finfo, name, &sym, sec,
7352 NULL))
7353 return FALSE;
7354 }
7355
7356 r_symndx = finfo->indices[r_symndx];
7357 }
7358
7359 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7360 | (irela->r_info & r_type_mask));
7361 }
7362
7363 /* Swap out the relocs. */
c152c796 7364 if (input_rel_hdr->sh_size != 0
eac338cf
PB
7365 && !bed->elf_backend_emit_relocs (output_bfd, o,
7366 input_rel_hdr,
7367 internal_relocs,
7368 rel_hash_list))
c152c796
AM
7369 return FALSE;
7370
7371 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7372 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7373 {
7374 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7375 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
7376 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7377 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7378 input_rel_hdr2,
7379 internal_relocs,
7380 rel_hash_list))
c152c796
AM
7381 return FALSE;
7382 }
7383 }
7384 }
7385
7386 /* Write out the modified section contents. */
7387 if (bed->elf_backend_write_section
7388 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7389 {
7390 /* Section written out. */
7391 }
7392 else switch (o->sec_info_type)
7393 {
7394 case ELF_INFO_TYPE_STABS:
7395 if (! (_bfd_write_section_stabs
7396 (output_bfd,
7397 &elf_hash_table (finfo->info)->stab_info,
7398 o, &elf_section_data (o)->sec_info, contents)))
7399 return FALSE;
7400 break;
7401 case ELF_INFO_TYPE_MERGE:
7402 if (! _bfd_write_merged_section (output_bfd, o,
7403 elf_section_data (o)->sec_info))
7404 return FALSE;
7405 break;
7406 case ELF_INFO_TYPE_EH_FRAME:
7407 {
7408 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7409 o, contents))
7410 return FALSE;
7411 }
7412 break;
7413 default:
7414 {
c152c796
AM
7415 if (! (o->flags & SEC_EXCLUDE)
7416 && ! bfd_set_section_contents (output_bfd, o->output_section,
7417 contents,
7418 (file_ptr) o->output_offset,
eea6121a 7419 o->size))
c152c796
AM
7420 return FALSE;
7421 }
7422 break;
7423 }
7424 }
7425
7426 return TRUE;
7427}
7428
7429/* Generate a reloc when linking an ELF file. This is a reloc
7430 requested by the linker, and does come from any input file. This
7431 is used to build constructor and destructor tables when linking
7432 with -Ur. */
7433
7434static bfd_boolean
7435elf_reloc_link_order (bfd *output_bfd,
7436 struct bfd_link_info *info,
7437 asection *output_section,
7438 struct bfd_link_order *link_order)
7439{
7440 reloc_howto_type *howto;
7441 long indx;
7442 bfd_vma offset;
7443 bfd_vma addend;
7444 struct elf_link_hash_entry **rel_hash_ptr;
7445 Elf_Internal_Shdr *rel_hdr;
7446 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7447 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7448 bfd_byte *erel;
7449 unsigned int i;
7450
7451 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7452 if (howto == NULL)
7453 {
7454 bfd_set_error (bfd_error_bad_value);
7455 return FALSE;
7456 }
7457
7458 addend = link_order->u.reloc.p->addend;
7459
7460 /* Figure out the symbol index. */
7461 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7462 + elf_section_data (output_section)->rel_count
7463 + elf_section_data (output_section)->rel_count2);
7464 if (link_order->type == bfd_section_reloc_link_order)
7465 {
7466 indx = link_order->u.reloc.p->u.section->target_index;
7467 BFD_ASSERT (indx != 0);
7468 *rel_hash_ptr = NULL;
7469 }
7470 else
7471 {
7472 struct elf_link_hash_entry *h;
7473
7474 /* Treat a reloc against a defined symbol as though it were
7475 actually against the section. */
7476 h = ((struct elf_link_hash_entry *)
7477 bfd_wrapped_link_hash_lookup (output_bfd, info,
7478 link_order->u.reloc.p->u.name,
7479 FALSE, FALSE, TRUE));
7480 if (h != NULL
7481 && (h->root.type == bfd_link_hash_defined
7482 || h->root.type == bfd_link_hash_defweak))
7483 {
7484 asection *section;
7485
7486 section = h->root.u.def.section;
7487 indx = section->output_section->target_index;
7488 *rel_hash_ptr = NULL;
7489 /* It seems that we ought to add the symbol value to the
7490 addend here, but in practice it has already been added
7491 because it was passed to constructor_callback. */
7492 addend += section->output_section->vma + section->output_offset;
7493 }
7494 else if (h != NULL)
7495 {
7496 /* Setting the index to -2 tells elf_link_output_extsym that
7497 this symbol is used by a reloc. */
7498 h->indx = -2;
7499 *rel_hash_ptr = h;
7500 indx = 0;
7501 }
7502 else
7503 {
7504 if (! ((*info->callbacks->unattached_reloc)
7505 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7506 return FALSE;
7507 indx = 0;
7508 }
7509 }
7510
7511 /* If this is an inplace reloc, we must write the addend into the
7512 object file. */
7513 if (howto->partial_inplace && addend != 0)
7514 {
7515 bfd_size_type size;
7516 bfd_reloc_status_type rstat;
7517 bfd_byte *buf;
7518 bfd_boolean ok;
7519 const char *sym_name;
7520
7521 size = bfd_get_reloc_size (howto);
7522 buf = bfd_zmalloc (size);
7523 if (buf == NULL)
7524 return FALSE;
7525 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7526 switch (rstat)
7527 {
7528 case bfd_reloc_ok:
7529 break;
7530
7531 default:
7532 case bfd_reloc_outofrange:
7533 abort ();
7534
7535 case bfd_reloc_overflow:
7536 if (link_order->type == bfd_section_reloc_link_order)
7537 sym_name = bfd_section_name (output_bfd,
7538 link_order->u.reloc.p->u.section);
7539 else
7540 sym_name = link_order->u.reloc.p->u.name;
7541 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7542 (info, NULL, sym_name, howto->name, addend, NULL,
7543 NULL, (bfd_vma) 0)))
c152c796
AM
7544 {
7545 free (buf);
7546 return FALSE;
7547 }
7548 break;
7549 }
7550 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7551 link_order->offset, size);
7552 free (buf);
7553 if (! ok)
7554 return FALSE;
7555 }
7556
7557 /* The address of a reloc is relative to the section in a
7558 relocatable file, and is a virtual address in an executable
7559 file. */
7560 offset = link_order->offset;
7561 if (! info->relocatable)
7562 offset += output_section->vma;
7563
7564 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7565 {
7566 irel[i].r_offset = offset;
7567 irel[i].r_info = 0;
7568 irel[i].r_addend = 0;
7569 }
7570 if (bed->s->arch_size == 32)
7571 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7572 else
7573 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7574
7575 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7576 erel = rel_hdr->contents;
7577 if (rel_hdr->sh_type == SHT_REL)
7578 {
7579 erel += (elf_section_data (output_section)->rel_count
7580 * bed->s->sizeof_rel);
7581 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7582 }
7583 else
7584 {
7585 irel[0].r_addend = addend;
7586 erel += (elf_section_data (output_section)->rel_count
7587 * bed->s->sizeof_rela);
7588 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7589 }
7590
7591 ++elf_section_data (output_section)->rel_count;
7592
7593 return TRUE;
7594}
7595
0b52efa6
PB
7596
7597/* Get the output vma of the section pointed to by the sh_link field. */
7598
7599static bfd_vma
7600elf_get_linked_section_vma (struct bfd_link_order *p)
7601{
7602 Elf_Internal_Shdr **elf_shdrp;
7603 asection *s;
7604 int elfsec;
7605
7606 s = p->u.indirect.section;
7607 elf_shdrp = elf_elfsections (s->owner);
7608 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7609 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7610 /* PR 290:
7611 The Intel C compiler generates SHT_IA_64_UNWIND with
7612 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7613 sh_info fields. Hence we could get the situation
7614 where elfsec is 0. */
7615 if (elfsec == 0)
7616 {
7617 const struct elf_backend_data *bed
7618 = get_elf_backend_data (s->owner);
7619 if (bed->link_order_error_handler)
d003868e
AM
7620 bed->link_order_error_handler
7621 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7622 return 0;
7623 }
7624 else
7625 {
7626 s = elf_shdrp[elfsec]->bfd_section;
7627 return s->output_section->vma + s->output_offset;
7628 }
0b52efa6
PB
7629}
7630
7631
7632/* Compare two sections based on the locations of the sections they are
7633 linked to. Used by elf_fixup_link_order. */
7634
7635static int
7636compare_link_order (const void * a, const void * b)
7637{
7638 bfd_vma apos;
7639 bfd_vma bpos;
7640
7641 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7642 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7643 if (apos < bpos)
7644 return -1;
7645 return apos > bpos;
7646}
7647
7648
7649/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7650 order as their linked sections. Returns false if this could not be done
7651 because an output section includes both ordered and unordered
7652 sections. Ideally we'd do this in the linker proper. */
7653
7654static bfd_boolean
7655elf_fixup_link_order (bfd *abfd, asection *o)
7656{
7657 int seen_linkorder;
7658 int seen_other;
7659 int n;
7660 struct bfd_link_order *p;
7661 bfd *sub;
7662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7663 int elfsec;
7664 struct bfd_link_order **sections;
7665 asection *s;
7666 bfd_vma offset;
3b36f7e6 7667
0b52efa6
PB
7668 seen_other = 0;
7669 seen_linkorder = 0;
8423293d 7670 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7671 {
7672 if (p->type == bfd_indirect_link_order
7673 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7674 == bfd_target_elf_flavour)
7675 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7676 {
7677 s = p->u.indirect.section;
7678 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7679 if (elfsec != -1
7680 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7681 seen_linkorder++;
7682 else
7683 seen_other++;
7684 }
7685 else
7686 seen_other++;
7687 }
7688
7689 if (!seen_linkorder)
7690 return TRUE;
7691
7692 if (seen_other && seen_linkorder)
08ccf96b 7693 {
d003868e
AM
7694 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7695 o);
08ccf96b
L
7696 bfd_set_error (bfd_error_bad_value);
7697 return FALSE;
7698 }
3b36f7e6 7699
0b52efa6
PB
7700 sections = (struct bfd_link_order **)
7701 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7702 seen_linkorder = 0;
3b36f7e6 7703
8423293d 7704 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7705 {
7706 sections[seen_linkorder++] = p;
7707 }
7708 /* Sort the input sections in the order of their linked section. */
7709 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7710 compare_link_order);
7711
7712 /* Change the offsets of the sections. */
7713 offset = 0;
7714 for (n = 0; n < seen_linkorder; n++)
7715 {
7716 s = sections[n]->u.indirect.section;
7717 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7718 s->output_offset = offset;
7719 sections[n]->offset = offset;
7720 offset += sections[n]->size;
7721 }
7722
7723 return TRUE;
7724}
7725
7726
c152c796
AM
7727/* Do the final step of an ELF link. */
7728
7729bfd_boolean
7730bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7731{
7732 bfd_boolean dynamic;
7733 bfd_boolean emit_relocs;
7734 bfd *dynobj;
7735 struct elf_final_link_info finfo;
7736 register asection *o;
7737 register struct bfd_link_order *p;
7738 register bfd *sub;
7739 bfd_size_type max_contents_size;
7740 bfd_size_type max_external_reloc_size;
7741 bfd_size_type max_internal_reloc_count;
7742 bfd_size_type max_sym_count;
7743 bfd_size_type max_sym_shndx_count;
7744 file_ptr off;
7745 Elf_Internal_Sym elfsym;
7746 unsigned int i;
7747 Elf_Internal_Shdr *symtab_hdr;
7748 Elf_Internal_Shdr *symtab_shndx_hdr;
7749 Elf_Internal_Shdr *symstrtab_hdr;
7750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7751 struct elf_outext_info eoinfo;
7752 bfd_boolean merged;
7753 size_t relativecount = 0;
7754 asection *reldyn = 0;
7755 bfd_size_type amt;
7756
7757 if (! is_elf_hash_table (info->hash))
7758 return FALSE;
7759
7760 if (info->shared)
7761 abfd->flags |= DYNAMIC;
7762
7763 dynamic = elf_hash_table (info)->dynamic_sections_created;
7764 dynobj = elf_hash_table (info)->dynobj;
7765
7766 emit_relocs = (info->relocatable
7767 || info->emitrelocations
7768 || bed->elf_backend_emit_relocs);
7769
7770 finfo.info = info;
7771 finfo.output_bfd = abfd;
7772 finfo.symstrtab = _bfd_elf_stringtab_init ();
7773 if (finfo.symstrtab == NULL)
7774 return FALSE;
7775
7776 if (! dynamic)
7777 {
7778 finfo.dynsym_sec = NULL;
7779 finfo.hash_sec = NULL;
7780 finfo.symver_sec = NULL;
7781 }
7782 else
7783 {
7784 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7785 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7786 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7787 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7788 /* Note that it is OK if symver_sec is NULL. */
7789 }
7790
7791 finfo.contents = NULL;
7792 finfo.external_relocs = NULL;
7793 finfo.internal_relocs = NULL;
7794 finfo.external_syms = NULL;
7795 finfo.locsym_shndx = NULL;
7796 finfo.internal_syms = NULL;
7797 finfo.indices = NULL;
7798 finfo.sections = NULL;
7799 finfo.symbuf = NULL;
7800 finfo.symshndxbuf = NULL;
7801 finfo.symbuf_count = 0;
7802 finfo.shndxbuf_size = 0;
7803
7804 /* Count up the number of relocations we will output for each output
7805 section, so that we know the sizes of the reloc sections. We
7806 also figure out some maximum sizes. */
7807 max_contents_size = 0;
7808 max_external_reloc_size = 0;
7809 max_internal_reloc_count = 0;
7810 max_sym_count = 0;
7811 max_sym_shndx_count = 0;
7812 merged = FALSE;
7813 for (o = abfd->sections; o != NULL; o = o->next)
7814 {
7815 struct bfd_elf_section_data *esdo = elf_section_data (o);
7816 o->reloc_count = 0;
7817
8423293d 7818 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
7819 {
7820 unsigned int reloc_count = 0;
7821 struct bfd_elf_section_data *esdi = NULL;
7822 unsigned int *rel_count1;
7823
7824 if (p->type == bfd_section_reloc_link_order
7825 || p->type == bfd_symbol_reloc_link_order)
7826 reloc_count = 1;
7827 else if (p->type == bfd_indirect_link_order)
7828 {
7829 asection *sec;
7830
7831 sec = p->u.indirect.section;
7832 esdi = elf_section_data (sec);
7833
7834 /* Mark all sections which are to be included in the
7835 link. This will normally be every section. We need
7836 to do this so that we can identify any sections which
7837 the linker has decided to not include. */
7838 sec->linker_mark = TRUE;
7839
7840 if (sec->flags & SEC_MERGE)
7841 merged = TRUE;
7842
7843 if (info->relocatable || info->emitrelocations)
7844 reloc_count = sec->reloc_count;
7845 else if (bed->elf_backend_count_relocs)
7846 {
7847 Elf_Internal_Rela * relocs;
7848
7849 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7850 info->keep_memory);
7851
7852 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7853
7854 if (elf_section_data (o)->relocs != relocs)
7855 free (relocs);
7856 }
7857
eea6121a
AM
7858 if (sec->rawsize > max_contents_size)
7859 max_contents_size = sec->rawsize;
7860 if (sec->size > max_contents_size)
7861 max_contents_size = sec->size;
c152c796
AM
7862
7863 /* We are interested in just local symbols, not all
7864 symbols. */
7865 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7866 && (sec->owner->flags & DYNAMIC) == 0)
7867 {
7868 size_t sym_count;
7869
7870 if (elf_bad_symtab (sec->owner))
7871 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7872 / bed->s->sizeof_sym);
7873 else
7874 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7875
7876 if (sym_count > max_sym_count)
7877 max_sym_count = sym_count;
7878
7879 if (sym_count > max_sym_shndx_count
7880 && elf_symtab_shndx (sec->owner) != 0)
7881 max_sym_shndx_count = sym_count;
7882
7883 if ((sec->flags & SEC_RELOC) != 0)
7884 {
7885 size_t ext_size;
7886
7887 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7888 if (ext_size > max_external_reloc_size)
7889 max_external_reloc_size = ext_size;
7890 if (sec->reloc_count > max_internal_reloc_count)
7891 max_internal_reloc_count = sec->reloc_count;
7892 }
7893 }
7894 }
7895
7896 if (reloc_count == 0)
7897 continue;
7898
7899 o->reloc_count += reloc_count;
7900
7901 /* MIPS may have a mix of REL and RELA relocs on sections.
7902 To support this curious ABI we keep reloc counts in
7903 elf_section_data too. We must be careful to add the
7904 relocations from the input section to the right output
7905 count. FIXME: Get rid of one count. We have
7906 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7907 rel_count1 = &esdo->rel_count;
7908 if (esdi != NULL)
7909 {
7910 bfd_boolean same_size;
7911 bfd_size_type entsize1;
7912
7913 entsize1 = esdi->rel_hdr.sh_entsize;
7914 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7915 || entsize1 == bed->s->sizeof_rela);
7916 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7917
7918 if (!same_size)
7919 rel_count1 = &esdo->rel_count2;
7920
7921 if (esdi->rel_hdr2 != NULL)
7922 {
7923 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7924 unsigned int alt_count;
7925 unsigned int *rel_count2;
7926
7927 BFD_ASSERT (entsize2 != entsize1
7928 && (entsize2 == bed->s->sizeof_rel
7929 || entsize2 == bed->s->sizeof_rela));
7930
7931 rel_count2 = &esdo->rel_count2;
7932 if (!same_size)
7933 rel_count2 = &esdo->rel_count;
7934
7935 /* The following is probably too simplistic if the
7936 backend counts output relocs unusually. */
7937 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7938 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7939 *rel_count2 += alt_count;
7940 reloc_count -= alt_count;
7941 }
7942 }
7943 *rel_count1 += reloc_count;
7944 }
7945
7946 if (o->reloc_count > 0)
7947 o->flags |= SEC_RELOC;
7948 else
7949 {
7950 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7951 set it (this is probably a bug) and if it is set
7952 assign_section_numbers will create a reloc section. */
7953 o->flags &=~ SEC_RELOC;
7954 }
7955
7956 /* If the SEC_ALLOC flag is not set, force the section VMA to
7957 zero. This is done in elf_fake_sections as well, but forcing
7958 the VMA to 0 here will ensure that relocs against these
7959 sections are handled correctly. */
7960 if ((o->flags & SEC_ALLOC) == 0
7961 && ! o->user_set_vma)
7962 o->vma = 0;
7963 }
7964
7965 if (! info->relocatable && merged)
7966 elf_link_hash_traverse (elf_hash_table (info),
7967 _bfd_elf_link_sec_merge_syms, abfd);
7968
7969 /* Figure out the file positions for everything but the symbol table
7970 and the relocs. We set symcount to force assign_section_numbers
7971 to create a symbol table. */
7972 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7973 BFD_ASSERT (! abfd->output_has_begun);
7974 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7975 goto error_return;
7976
ee75fd95 7977 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7978 for (o = abfd->sections; o != NULL; o = o->next)
7979 {
7980 if ((o->flags & SEC_RELOC) != 0)
7981 {
7982 if (!(_bfd_elf_link_size_reloc_section
7983 (abfd, &elf_section_data (o)->rel_hdr, o)))
7984 goto error_return;
7985
7986 if (elf_section_data (o)->rel_hdr2
7987 && !(_bfd_elf_link_size_reloc_section
7988 (abfd, elf_section_data (o)->rel_hdr2, o)))
7989 goto error_return;
7990 }
7991
7992 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7993 to count upwards while actually outputting the relocations. */
7994 elf_section_data (o)->rel_count = 0;
7995 elf_section_data (o)->rel_count2 = 0;
7996 }
7997
7998 _bfd_elf_assign_file_positions_for_relocs (abfd);
7999
8000 /* We have now assigned file positions for all the sections except
8001 .symtab and .strtab. We start the .symtab section at the current
8002 file position, and write directly to it. We build the .strtab
8003 section in memory. */
8004 bfd_get_symcount (abfd) = 0;
8005 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8006 /* sh_name is set in prep_headers. */
8007 symtab_hdr->sh_type = SHT_SYMTAB;
8008 /* sh_flags, sh_addr and sh_size all start off zero. */
8009 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8010 /* sh_link is set in assign_section_numbers. */
8011 /* sh_info is set below. */
8012 /* sh_offset is set just below. */
8013 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8014
8015 off = elf_tdata (abfd)->next_file_pos;
8016 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8017
8018 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8019 incorrect. We do not yet know the size of the .symtab section.
8020 We correct next_file_pos below, after we do know the size. */
8021
8022 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8023 continuously seeking to the right position in the file. */
8024 if (! info->keep_memory || max_sym_count < 20)
8025 finfo.symbuf_size = 20;
8026 else
8027 finfo.symbuf_size = max_sym_count;
8028 amt = finfo.symbuf_size;
8029 amt *= bed->s->sizeof_sym;
8030 finfo.symbuf = bfd_malloc (amt);
8031 if (finfo.symbuf == NULL)
8032 goto error_return;
8033 if (elf_numsections (abfd) > SHN_LORESERVE)
8034 {
8035 /* Wild guess at number of output symbols. realloc'd as needed. */
8036 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8037 finfo.shndxbuf_size = amt;
8038 amt *= sizeof (Elf_External_Sym_Shndx);
8039 finfo.symshndxbuf = bfd_zmalloc (amt);
8040 if (finfo.symshndxbuf == NULL)
8041 goto error_return;
8042 }
8043
8044 /* Start writing out the symbol table. The first symbol is always a
8045 dummy symbol. */
8046 if (info->strip != strip_all
8047 || emit_relocs)
8048 {
8049 elfsym.st_value = 0;
8050 elfsym.st_size = 0;
8051 elfsym.st_info = 0;
8052 elfsym.st_other = 0;
8053 elfsym.st_shndx = SHN_UNDEF;
8054 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8055 NULL))
8056 goto error_return;
8057 }
8058
c152c796
AM
8059 /* Output a symbol for each section. We output these even if we are
8060 discarding local symbols, since they are used for relocs. These
8061 symbols have no names. We store the index of each one in the
8062 index field of the section, so that we can find it again when
8063 outputting relocs. */
8064 if (info->strip != strip_all
8065 || emit_relocs)
8066 {
8067 elfsym.st_size = 0;
8068 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8069 elfsym.st_other = 0;
8070 for (i = 1; i < elf_numsections (abfd); i++)
8071 {
8072 o = bfd_section_from_elf_index (abfd, i);
8073 if (o != NULL)
8074 o->target_index = bfd_get_symcount (abfd);
8075 elfsym.st_shndx = i;
8076 if (info->relocatable || o == NULL)
8077 elfsym.st_value = 0;
8078 else
8079 elfsym.st_value = o->vma;
8080 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8081 goto error_return;
8082 if (i == SHN_LORESERVE - 1)
8083 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8084 }
8085 }
8086
8087 /* Allocate some memory to hold information read in from the input
8088 files. */
8089 if (max_contents_size != 0)
8090 {
8091 finfo.contents = bfd_malloc (max_contents_size);
8092 if (finfo.contents == NULL)
8093 goto error_return;
8094 }
8095
8096 if (max_external_reloc_size != 0)
8097 {
8098 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8099 if (finfo.external_relocs == NULL)
8100 goto error_return;
8101 }
8102
8103 if (max_internal_reloc_count != 0)
8104 {
8105 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8106 amt *= sizeof (Elf_Internal_Rela);
8107 finfo.internal_relocs = bfd_malloc (amt);
8108 if (finfo.internal_relocs == NULL)
8109 goto error_return;
8110 }
8111
8112 if (max_sym_count != 0)
8113 {
8114 amt = max_sym_count * bed->s->sizeof_sym;
8115 finfo.external_syms = bfd_malloc (amt);
8116 if (finfo.external_syms == NULL)
8117 goto error_return;
8118
8119 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8120 finfo.internal_syms = bfd_malloc (amt);
8121 if (finfo.internal_syms == NULL)
8122 goto error_return;
8123
8124 amt = max_sym_count * sizeof (long);
8125 finfo.indices = bfd_malloc (amt);
8126 if (finfo.indices == NULL)
8127 goto error_return;
8128
8129 amt = max_sym_count * sizeof (asection *);
8130 finfo.sections = bfd_malloc (amt);
8131 if (finfo.sections == NULL)
8132 goto error_return;
8133 }
8134
8135 if (max_sym_shndx_count != 0)
8136 {
8137 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8138 finfo.locsym_shndx = bfd_malloc (amt);
8139 if (finfo.locsym_shndx == NULL)
8140 goto error_return;
8141 }
8142
8143 if (elf_hash_table (info)->tls_sec)
8144 {
8145 bfd_vma base, end = 0;
8146 asection *sec;
8147
8148 for (sec = elf_hash_table (info)->tls_sec;
8149 sec && (sec->flags & SEC_THREAD_LOCAL);
8150 sec = sec->next)
8151 {
eea6121a 8152 bfd_vma size = sec->size;
c152c796
AM
8153
8154 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8155 {
8156 struct bfd_link_order *o;
8157
8423293d 8158 for (o = sec->map_head.link_order; o != NULL; o = o->next)
c152c796
AM
8159 if (size < o->offset + o->size)
8160 size = o->offset + o->size;
8161 }
8162 end = sec->vma + size;
8163 }
8164 base = elf_hash_table (info)->tls_sec->vma;
8165 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8166 elf_hash_table (info)->tls_size = end - base;
8167 }
8168
0b52efa6
PB
8169 /* Reorder SHF_LINK_ORDER sections. */
8170 for (o = abfd->sections; o != NULL; o = o->next)
8171 {
8172 if (!elf_fixup_link_order (abfd, o))
8173 return FALSE;
8174 }
8175
c152c796
AM
8176 /* Since ELF permits relocations to be against local symbols, we
8177 must have the local symbols available when we do the relocations.
8178 Since we would rather only read the local symbols once, and we
8179 would rather not keep them in memory, we handle all the
8180 relocations for a single input file at the same time.
8181
8182 Unfortunately, there is no way to know the total number of local
8183 symbols until we have seen all of them, and the local symbol
8184 indices precede the global symbol indices. This means that when
8185 we are generating relocatable output, and we see a reloc against
8186 a global symbol, we can not know the symbol index until we have
8187 finished examining all the local symbols to see which ones we are
8188 going to output. To deal with this, we keep the relocations in
8189 memory, and don't output them until the end of the link. This is
8190 an unfortunate waste of memory, but I don't see a good way around
8191 it. Fortunately, it only happens when performing a relocatable
8192 link, which is not the common case. FIXME: If keep_memory is set
8193 we could write the relocs out and then read them again; I don't
8194 know how bad the memory loss will be. */
8195
8196 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8197 sub->output_has_begun = FALSE;
8198 for (o = abfd->sections; o != NULL; o = o->next)
8199 {
8423293d 8200 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8201 {
8202 if (p->type == bfd_indirect_link_order
8203 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8204 == bfd_target_elf_flavour)
8205 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8206 {
8207 if (! sub->output_has_begun)
8208 {
8209 if (! elf_link_input_bfd (&finfo, sub))
8210 goto error_return;
8211 sub->output_has_begun = TRUE;
8212 }
8213 }
8214 else if (p->type == bfd_section_reloc_link_order
8215 || p->type == bfd_symbol_reloc_link_order)
8216 {
8217 if (! elf_reloc_link_order (abfd, info, o, p))
8218 goto error_return;
8219 }
8220 else
8221 {
8222 if (! _bfd_default_link_order (abfd, info, o, p))
8223 goto error_return;
8224 }
8225 }
8226 }
8227
8228 /* Output any global symbols that got converted to local in a
8229 version script or due to symbol visibility. We do this in a
8230 separate step since ELF requires all local symbols to appear
8231 prior to any global symbols. FIXME: We should only do this if
8232 some global symbols were, in fact, converted to become local.
8233 FIXME: Will this work correctly with the Irix 5 linker? */
8234 eoinfo.failed = FALSE;
8235 eoinfo.finfo = &finfo;
8236 eoinfo.localsyms = TRUE;
8237 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8238 &eoinfo);
8239 if (eoinfo.failed)
8240 return FALSE;
8241
8242 /* That wrote out all the local symbols. Finish up the symbol table
8243 with the global symbols. Even if we want to strip everything we
8244 can, we still need to deal with those global symbols that got
8245 converted to local in a version script. */
8246
8247 /* The sh_info field records the index of the first non local symbol. */
8248 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8249
8250 if (dynamic
8251 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8252 {
8253 Elf_Internal_Sym sym;
8254 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8255 long last_local = 0;
8256
8257 /* Write out the section symbols for the output sections. */
67687978 8258 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8259 {
8260 asection *s;
8261
8262 sym.st_size = 0;
8263 sym.st_name = 0;
8264 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8265 sym.st_other = 0;
8266
8267 for (s = abfd->sections; s != NULL; s = s->next)
8268 {
8269 int indx;
8270 bfd_byte *dest;
8271 long dynindx;
8272
c152c796 8273 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8274 if (dynindx <= 0)
8275 continue;
8276 indx = elf_section_data (s)->this_idx;
c152c796
AM
8277 BFD_ASSERT (indx > 0);
8278 sym.st_shndx = indx;
8279 sym.st_value = s->vma;
8280 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8281 if (last_local < dynindx)
8282 last_local = dynindx;
c152c796
AM
8283 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8284 }
c152c796
AM
8285 }
8286
8287 /* Write out the local dynsyms. */
8288 if (elf_hash_table (info)->dynlocal)
8289 {
8290 struct elf_link_local_dynamic_entry *e;
8291 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8292 {
8293 asection *s;
8294 bfd_byte *dest;
8295
8296 sym.st_size = e->isym.st_size;
8297 sym.st_other = e->isym.st_other;
8298
8299 /* Copy the internal symbol as is.
8300 Note that we saved a word of storage and overwrote
8301 the original st_name with the dynstr_index. */
8302 sym = e->isym;
8303
8304 if (e->isym.st_shndx != SHN_UNDEF
8305 && (e->isym.st_shndx < SHN_LORESERVE
8306 || e->isym.st_shndx > SHN_HIRESERVE))
8307 {
8308 s = bfd_section_from_elf_index (e->input_bfd,
8309 e->isym.st_shndx);
8310
8311 sym.st_shndx =
8312 elf_section_data (s->output_section)->this_idx;
8313 sym.st_value = (s->output_section->vma
8314 + s->output_offset
8315 + e->isym.st_value);
8316 }
8317
8318 if (last_local < e->dynindx)
8319 last_local = e->dynindx;
8320
8321 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8322 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8323 }
8324 }
8325
8326 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8327 last_local + 1;
8328 }
8329
8330 /* We get the global symbols from the hash table. */
8331 eoinfo.failed = FALSE;
8332 eoinfo.localsyms = FALSE;
8333 eoinfo.finfo = &finfo;
8334 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8335 &eoinfo);
8336 if (eoinfo.failed)
8337 return FALSE;
8338
8339 /* If backend needs to output some symbols not present in the hash
8340 table, do it now. */
8341 if (bed->elf_backend_output_arch_syms)
8342 {
8343 typedef bfd_boolean (*out_sym_func)
8344 (void *, const char *, Elf_Internal_Sym *, asection *,
8345 struct elf_link_hash_entry *);
8346
8347 if (! ((*bed->elf_backend_output_arch_syms)
8348 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8349 return FALSE;
8350 }
8351
8352 /* Flush all symbols to the file. */
8353 if (! elf_link_flush_output_syms (&finfo, bed))
8354 return FALSE;
8355
8356 /* Now we know the size of the symtab section. */
8357 off += symtab_hdr->sh_size;
8358
8359 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8360 if (symtab_shndx_hdr->sh_name != 0)
8361 {
8362 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8363 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8364 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8365 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8366 symtab_shndx_hdr->sh_size = amt;
8367
8368 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8369 off, TRUE);
8370
8371 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8372 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8373 return FALSE;
8374 }
8375
8376
8377 /* Finish up and write out the symbol string table (.strtab)
8378 section. */
8379 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8380 /* sh_name was set in prep_headers. */
8381 symstrtab_hdr->sh_type = SHT_STRTAB;
8382 symstrtab_hdr->sh_flags = 0;
8383 symstrtab_hdr->sh_addr = 0;
8384 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8385 symstrtab_hdr->sh_entsize = 0;
8386 symstrtab_hdr->sh_link = 0;
8387 symstrtab_hdr->sh_info = 0;
8388 /* sh_offset is set just below. */
8389 symstrtab_hdr->sh_addralign = 1;
8390
8391 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8392 elf_tdata (abfd)->next_file_pos = off;
8393
8394 if (bfd_get_symcount (abfd) > 0)
8395 {
8396 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8397 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8398 return FALSE;
8399 }
8400
8401 /* Adjust the relocs to have the correct symbol indices. */
8402 for (o = abfd->sections; o != NULL; o = o->next)
8403 {
8404 if ((o->flags & SEC_RELOC) == 0)
8405 continue;
8406
8407 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8408 elf_section_data (o)->rel_count,
8409 elf_section_data (o)->rel_hashes);
8410 if (elf_section_data (o)->rel_hdr2 != NULL)
8411 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8412 elf_section_data (o)->rel_count2,
8413 (elf_section_data (o)->rel_hashes
8414 + elf_section_data (o)->rel_count));
8415
8416 /* Set the reloc_count field to 0 to prevent write_relocs from
8417 trying to swap the relocs out itself. */
8418 o->reloc_count = 0;
8419 }
8420
8421 if (dynamic && info->combreloc && dynobj != NULL)
8422 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8423
8424 /* If we are linking against a dynamic object, or generating a
8425 shared library, finish up the dynamic linking information. */
8426 if (dynamic)
8427 {
8428 bfd_byte *dyncon, *dynconend;
8429
8430 /* Fix up .dynamic entries. */
8431 o = bfd_get_section_by_name (dynobj, ".dynamic");
8432 BFD_ASSERT (o != NULL);
8433
8434 dyncon = o->contents;
eea6121a 8435 dynconend = o->contents + o->size;
c152c796
AM
8436 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8437 {
8438 Elf_Internal_Dyn dyn;
8439 const char *name;
8440 unsigned int type;
8441
8442 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8443
8444 switch (dyn.d_tag)
8445 {
8446 default:
8447 continue;
8448 case DT_NULL:
8449 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8450 {
8451 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8452 {
8453 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8454 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8455 default: continue;
8456 }
8457 dyn.d_un.d_val = relativecount;
8458 relativecount = 0;
8459 break;
8460 }
8461 continue;
8462
8463 case DT_INIT:
8464 name = info->init_function;
8465 goto get_sym;
8466 case DT_FINI:
8467 name = info->fini_function;
8468 get_sym:
8469 {
8470 struct elf_link_hash_entry *h;
8471
8472 h = elf_link_hash_lookup (elf_hash_table (info), name,
8473 FALSE, FALSE, TRUE);
8474 if (h != NULL
8475 && (h->root.type == bfd_link_hash_defined
8476 || h->root.type == bfd_link_hash_defweak))
8477 {
8478 dyn.d_un.d_val = h->root.u.def.value;
8479 o = h->root.u.def.section;
8480 if (o->output_section != NULL)
8481 dyn.d_un.d_val += (o->output_section->vma
8482 + o->output_offset);
8483 else
8484 {
8485 /* The symbol is imported from another shared
8486 library and does not apply to this one. */
8487 dyn.d_un.d_val = 0;
8488 }
8489 break;
8490 }
8491 }
8492 continue;
8493
8494 case DT_PREINIT_ARRAYSZ:
8495 name = ".preinit_array";
8496 goto get_size;
8497 case DT_INIT_ARRAYSZ:
8498 name = ".init_array";
8499 goto get_size;
8500 case DT_FINI_ARRAYSZ:
8501 name = ".fini_array";
8502 get_size:
8503 o = bfd_get_section_by_name (abfd, name);
8504 if (o == NULL)
8505 {
8506 (*_bfd_error_handler)
d003868e 8507 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8508 goto error_return;
8509 }
eea6121a 8510 if (o->size == 0)
c152c796
AM
8511 (*_bfd_error_handler)
8512 (_("warning: %s section has zero size"), name);
eea6121a 8513 dyn.d_un.d_val = o->size;
c152c796
AM
8514 break;
8515
8516 case DT_PREINIT_ARRAY:
8517 name = ".preinit_array";
8518 goto get_vma;
8519 case DT_INIT_ARRAY:
8520 name = ".init_array";
8521 goto get_vma;
8522 case DT_FINI_ARRAY:
8523 name = ".fini_array";
8524 goto get_vma;
8525
8526 case DT_HASH:
8527 name = ".hash";
8528 goto get_vma;
8529 case DT_STRTAB:
8530 name = ".dynstr";
8531 goto get_vma;
8532 case DT_SYMTAB:
8533 name = ".dynsym";
8534 goto get_vma;
8535 case DT_VERDEF:
8536 name = ".gnu.version_d";
8537 goto get_vma;
8538 case DT_VERNEED:
8539 name = ".gnu.version_r";
8540 goto get_vma;
8541 case DT_VERSYM:
8542 name = ".gnu.version";
8543 get_vma:
8544 o = bfd_get_section_by_name (abfd, name);
8545 if (o == NULL)
8546 {
8547 (*_bfd_error_handler)
d003868e 8548 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8549 goto error_return;
8550 }
8551 dyn.d_un.d_ptr = o->vma;
8552 break;
8553
8554 case DT_REL:
8555 case DT_RELA:
8556 case DT_RELSZ:
8557 case DT_RELASZ:
8558 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8559 type = SHT_REL;
8560 else
8561 type = SHT_RELA;
8562 dyn.d_un.d_val = 0;
8563 for (i = 1; i < elf_numsections (abfd); i++)
8564 {
8565 Elf_Internal_Shdr *hdr;
8566
8567 hdr = elf_elfsections (abfd)[i];
8568 if (hdr->sh_type == type
8569 && (hdr->sh_flags & SHF_ALLOC) != 0)
8570 {
8571 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8572 dyn.d_un.d_val += hdr->sh_size;
8573 else
8574 {
8575 if (dyn.d_un.d_val == 0
8576 || hdr->sh_addr < dyn.d_un.d_val)
8577 dyn.d_un.d_val = hdr->sh_addr;
8578 }
8579 }
8580 }
8581 break;
8582 }
8583 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8584 }
8585 }
8586
8587 /* If we have created any dynamic sections, then output them. */
8588 if (dynobj != NULL)
8589 {
8590 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8591 goto error_return;
8592
8593 for (o = dynobj->sections; o != NULL; o = o->next)
8594 {
8595 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8596 || o->size == 0
c152c796
AM
8597 || o->output_section == bfd_abs_section_ptr)
8598 continue;
8599 if ((o->flags & SEC_LINKER_CREATED) == 0)
8600 {
8601 /* At this point, we are only interested in sections
8602 created by _bfd_elf_link_create_dynamic_sections. */
8603 continue;
8604 }
3722b82f
AM
8605 if (elf_hash_table (info)->stab_info.stabstr == o)
8606 continue;
eea6121a
AM
8607 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8608 continue;
c152c796
AM
8609 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8610 != SHT_STRTAB)
8611 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8612 {
8613 if (! bfd_set_section_contents (abfd, o->output_section,
8614 o->contents,
8615 (file_ptr) o->output_offset,
eea6121a 8616 o->size))
c152c796
AM
8617 goto error_return;
8618 }
8619 else
8620 {
8621 /* The contents of the .dynstr section are actually in a
8622 stringtab. */
8623 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8624 if (bfd_seek (abfd, off, SEEK_SET) != 0
8625 || ! _bfd_elf_strtab_emit (abfd,
8626 elf_hash_table (info)->dynstr))
8627 goto error_return;
8628 }
8629 }
8630 }
8631
8632 if (info->relocatable)
8633 {
8634 bfd_boolean failed = FALSE;
8635
8636 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8637 if (failed)
8638 goto error_return;
8639 }
8640
8641 /* If we have optimized stabs strings, output them. */
3722b82f 8642 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8643 {
8644 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8645 goto error_return;
8646 }
8647
8648 if (info->eh_frame_hdr)
8649 {
8650 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8651 goto error_return;
8652 }
8653
8654 if (finfo.symstrtab != NULL)
8655 _bfd_stringtab_free (finfo.symstrtab);
8656 if (finfo.contents != NULL)
8657 free (finfo.contents);
8658 if (finfo.external_relocs != NULL)
8659 free (finfo.external_relocs);
8660 if (finfo.internal_relocs != NULL)
8661 free (finfo.internal_relocs);
8662 if (finfo.external_syms != NULL)
8663 free (finfo.external_syms);
8664 if (finfo.locsym_shndx != NULL)
8665 free (finfo.locsym_shndx);
8666 if (finfo.internal_syms != NULL)
8667 free (finfo.internal_syms);
8668 if (finfo.indices != NULL)
8669 free (finfo.indices);
8670 if (finfo.sections != NULL)
8671 free (finfo.sections);
8672 if (finfo.symbuf != NULL)
8673 free (finfo.symbuf);
8674 if (finfo.symshndxbuf != NULL)
8675 free (finfo.symshndxbuf);
8676 for (o = abfd->sections; o != NULL; o = o->next)
8677 {
8678 if ((o->flags & SEC_RELOC) != 0
8679 && elf_section_data (o)->rel_hashes != NULL)
8680 free (elf_section_data (o)->rel_hashes);
8681 }
8682
8683 elf_tdata (abfd)->linker = TRUE;
8684
8685 return TRUE;
8686
8687 error_return:
8688 if (finfo.symstrtab != NULL)
8689 _bfd_stringtab_free (finfo.symstrtab);
8690 if (finfo.contents != NULL)
8691 free (finfo.contents);
8692 if (finfo.external_relocs != NULL)
8693 free (finfo.external_relocs);
8694 if (finfo.internal_relocs != NULL)
8695 free (finfo.internal_relocs);
8696 if (finfo.external_syms != NULL)
8697 free (finfo.external_syms);
8698 if (finfo.locsym_shndx != NULL)
8699 free (finfo.locsym_shndx);
8700 if (finfo.internal_syms != NULL)
8701 free (finfo.internal_syms);
8702 if (finfo.indices != NULL)
8703 free (finfo.indices);
8704 if (finfo.sections != NULL)
8705 free (finfo.sections);
8706 if (finfo.symbuf != NULL)
8707 free (finfo.symbuf);
8708 if (finfo.symshndxbuf != NULL)
8709 free (finfo.symshndxbuf);
8710 for (o = abfd->sections; o != NULL; o = o->next)
8711 {
8712 if ((o->flags & SEC_RELOC) != 0
8713 && elf_section_data (o)->rel_hashes != NULL)
8714 free (elf_section_data (o)->rel_hashes);
8715 }
8716
8717 return FALSE;
8718}
8719\f
8720/* Garbage collect unused sections. */
8721
8722/* The mark phase of garbage collection. For a given section, mark
8723 it and any sections in this section's group, and all the sections
8724 which define symbols to which it refers. */
8725
8726typedef asection * (*gc_mark_hook_fn)
8727 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8728 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8729
ccfa59ea
AM
8730bfd_boolean
8731_bfd_elf_gc_mark (struct bfd_link_info *info,
8732 asection *sec,
8733 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8734{
8735 bfd_boolean ret;
39c2f51b 8736 bfd_boolean is_eh;
c152c796
AM
8737 asection *group_sec;
8738
8739 sec->gc_mark = 1;
8740
8741 /* Mark all the sections in the group. */
8742 group_sec = elf_section_data (sec)->next_in_group;
8743 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8744 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8745 return FALSE;
8746
8747 /* Look through the section relocs. */
8748 ret = TRUE;
39c2f51b 8749 is_eh = strcmp (sec->name, ".eh_frame") == 0;
c152c796
AM
8750 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8751 {
8752 Elf_Internal_Rela *relstart, *rel, *relend;
8753 Elf_Internal_Shdr *symtab_hdr;
8754 struct elf_link_hash_entry **sym_hashes;
8755 size_t nlocsyms;
8756 size_t extsymoff;
8757 bfd *input_bfd = sec->owner;
8758 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8759 Elf_Internal_Sym *isym = NULL;
8760 int r_sym_shift;
8761
8762 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8763 sym_hashes = elf_sym_hashes (input_bfd);
8764
8765 /* Read the local symbols. */
8766 if (elf_bad_symtab (input_bfd))
8767 {
8768 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8769 extsymoff = 0;
8770 }
8771 else
8772 extsymoff = nlocsyms = symtab_hdr->sh_info;
8773
8774 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8775 if (isym == NULL && nlocsyms != 0)
8776 {
8777 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8778 NULL, NULL, NULL);
8779 if (isym == NULL)
8780 return FALSE;
8781 }
8782
8783 /* Read the relocations. */
8784 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8785 info->keep_memory);
8786 if (relstart == NULL)
8787 {
8788 ret = FALSE;
8789 goto out1;
8790 }
8791 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8792
8793 if (bed->s->arch_size == 32)
8794 r_sym_shift = 8;
8795 else
8796 r_sym_shift = 32;
8797
8798 for (rel = relstart; rel < relend; rel++)
8799 {
8800 unsigned long r_symndx;
8801 asection *rsec;
8802 struct elf_link_hash_entry *h;
8803
8804 r_symndx = rel->r_info >> r_sym_shift;
8805 if (r_symndx == 0)
8806 continue;
8807
8808 if (r_symndx >= nlocsyms
8809 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8810 {
8811 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8812 while (h->root.type == bfd_link_hash_indirect
8813 || h->root.type == bfd_link_hash_warning)
8814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8815 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8816 }
8817 else
8818 {
8819 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8820 }
8821
8822 if (rsec && !rsec->gc_mark)
8823 {
8824 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8825 rsec->gc_mark = 1;
39c2f51b
AM
8826 else if (is_eh)
8827 rsec->gc_mark_from_eh = 1;
ccfa59ea 8828 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8829 {
8830 ret = FALSE;
8831 goto out2;
8832 }
8833 }
8834 }
8835
8836 out2:
8837 if (elf_section_data (sec)->relocs != relstart)
8838 free (relstart);
8839 out1:
8840 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8841 {
8842 if (! info->keep_memory)
8843 free (isym);
8844 else
8845 symtab_hdr->contents = (unsigned char *) isym;
8846 }
8847 }
8848
8849 return ret;
8850}
8851
8852/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8853
8854static bfd_boolean
8855elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8856{
8857 int *idx = idxptr;
8858
8859 if (h->root.type == bfd_link_hash_warning)
8860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8861
8862 if (h->dynindx != -1
8863 && ((h->root.type != bfd_link_hash_defined
8864 && h->root.type != bfd_link_hash_defweak)
8865 || h->root.u.def.section->gc_mark))
8866 h->dynindx = (*idx)++;
8867
8868 return TRUE;
8869}
8870
8871/* The sweep phase of garbage collection. Remove all garbage sections. */
8872
8873typedef bfd_boolean (*gc_sweep_hook_fn)
8874 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8875
8876static bfd_boolean
8877elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8878{
8879 bfd *sub;
8880
8881 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8882 {
8883 asection *o;
8884
8885 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8886 continue;
8887
8888 for (o = sub->sections; o != NULL; o = o->next)
8889 {
7c2c8505
AM
8890 /* Keep debug and special sections. */
8891 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8892 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8893 o->gc_mark = 1;
8894
8895 if (o->gc_mark)
8896 continue;
8897
39c2f51b
AM
8898 /* Keep .gcc_except_table.* if the associated .text.* is
8899 marked. This isn't very nice, but the proper solution,
8900 splitting .eh_frame up and using comdat doesn't pan out
8901 easily due to needing special relocs to handle the
8902 difference of two symbols in separate sections.
8903 Don't keep code sections referenced by .eh_frame. */
8904 if (o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
8905 {
8906 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
8907 {
8908 unsigned long len;
8909 char *fn_name;
8910 asection *fn_text;
8911
8912 len = strlen (o->name + 18) + 1;
8913 fn_name = bfd_malloc (len + 6);
8914 if (fn_name == NULL)
8915 return FALSE;
8916 memcpy (fn_name, ".text.", 6);
8917 memcpy (fn_name + 6, o->name + 18, len);
8918 fn_text = bfd_get_section_by_name (sub, fn_name);
8919 free (fn_name);
8920 if (fn_text != NULL && fn_text->gc_mark)
8921 o->gc_mark = 1;
8922 }
8923
8924 /* If not using specially named exception table section,
8925 then keep whatever we are using. */
8926 else
8927 o->gc_mark = 1;
8928
8929 if (o->gc_mark)
8930 continue;
8931 }
8932
c152c796
AM
8933 /* Skip sweeping sections already excluded. */
8934 if (o->flags & SEC_EXCLUDE)
8935 continue;
8936
8937 /* Since this is early in the link process, it is simple
8938 to remove a section from the output. */
8939 o->flags |= SEC_EXCLUDE;
8940
8941 /* But we also have to update some of the relocation
8942 info we collected before. */
8943 if (gc_sweep_hook
e8aaee2a
AM
8944 && (o->flags & SEC_RELOC) != 0
8945 && o->reloc_count > 0
8946 && !bfd_is_abs_section (o->output_section))
c152c796
AM
8947 {
8948 Elf_Internal_Rela *internal_relocs;
8949 bfd_boolean r;
8950
8951 internal_relocs
8952 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8953 info->keep_memory);
8954 if (internal_relocs == NULL)
8955 return FALSE;
8956
8957 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8958
8959 if (elf_section_data (o)->relocs != internal_relocs)
8960 free (internal_relocs);
8961
8962 if (!r)
8963 return FALSE;
8964 }
8965 }
8966 }
8967
8968 /* Remove the symbols that were in the swept sections from the dynamic
8969 symbol table. GCFIXME: Anyone know how to get them out of the
8970 static symbol table as well? */
8971 {
8972 int i = 0;
8973
8974 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8975
8976 elf_hash_table (info)->dynsymcount = i;
8977 }
8978
8979 return TRUE;
8980}
8981
8982/* Propagate collected vtable information. This is called through
8983 elf_link_hash_traverse. */
8984
8985static bfd_boolean
8986elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8987{
8988 if (h->root.type == bfd_link_hash_warning)
8989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8990
8991 /* Those that are not vtables. */
f6e332e6 8992 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8993 return TRUE;
8994
8995 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8996 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8997 return TRUE;
8998
8999 /* If we've already been done, exit. */
f6e332e6 9000 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
9001 return TRUE;
9002
9003 /* Make sure the parent's table is up to date. */
f6e332e6 9004 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 9005
f6e332e6 9006 if (h->vtable->used == NULL)
c152c796
AM
9007 {
9008 /* None of this table's entries were referenced. Re-use the
9009 parent's table. */
f6e332e6
AM
9010 h->vtable->used = h->vtable->parent->vtable->used;
9011 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
9012 }
9013 else
9014 {
9015 size_t n;
9016 bfd_boolean *cu, *pu;
9017
9018 /* Or the parent's entries into ours. */
f6e332e6 9019 cu = h->vtable->used;
c152c796 9020 cu[-1] = TRUE;
f6e332e6 9021 pu = h->vtable->parent->vtable->used;
c152c796
AM
9022 if (pu != NULL)
9023 {
9024 const struct elf_backend_data *bed;
9025 unsigned int log_file_align;
9026
9027 bed = get_elf_backend_data (h->root.u.def.section->owner);
9028 log_file_align = bed->s->log_file_align;
f6e332e6 9029 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
9030 while (n--)
9031 {
9032 if (*pu)
9033 *cu = TRUE;
9034 pu++;
9035 cu++;
9036 }
9037 }
9038 }
9039
9040 return TRUE;
9041}
9042
9043static bfd_boolean
9044elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9045{
9046 asection *sec;
9047 bfd_vma hstart, hend;
9048 Elf_Internal_Rela *relstart, *relend, *rel;
9049 const struct elf_backend_data *bed;
9050 unsigned int log_file_align;
9051
9052 if (h->root.type == bfd_link_hash_warning)
9053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9054
9055 /* Take care of both those symbols that do not describe vtables as
9056 well as those that are not loaded. */
f6e332e6 9057 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9058 return TRUE;
9059
9060 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9061 || h->root.type == bfd_link_hash_defweak);
9062
9063 sec = h->root.u.def.section;
9064 hstart = h->root.u.def.value;
9065 hend = hstart + h->size;
9066
9067 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9068 if (!relstart)
9069 return *(bfd_boolean *) okp = FALSE;
9070 bed = get_elf_backend_data (sec->owner);
9071 log_file_align = bed->s->log_file_align;
9072
9073 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9074
9075 for (rel = relstart; rel < relend; ++rel)
9076 if (rel->r_offset >= hstart && rel->r_offset < hend)
9077 {
9078 /* If the entry is in use, do nothing. */
f6e332e6
AM
9079 if (h->vtable->used
9080 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
9081 {
9082 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 9083 if (h->vtable->used[entry])
c152c796
AM
9084 continue;
9085 }
9086 /* Otherwise, kill it. */
9087 rel->r_offset = rel->r_info = rel->r_addend = 0;
9088 }
9089
9090 return TRUE;
9091}
9092
715df9b8
EB
9093/* Mark sections containing dynamically referenced symbols. This is called
9094 through elf_link_hash_traverse. */
9095
9096static bfd_boolean
9097elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9098 void *okp ATTRIBUTE_UNUSED)
9099{
9100 if (h->root.type == bfd_link_hash_warning)
9101 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9102
9103 if ((h->root.type == bfd_link_hash_defined
9104 || h->root.type == bfd_link_hash_defweak)
f5385ebf 9105 && h->ref_dynamic)
715df9b8
EB
9106 h->root.u.def.section->flags |= SEC_KEEP;
9107
9108 return TRUE;
9109}
3b36f7e6 9110
c152c796
AM
9111/* Do mark and sweep of unused sections. */
9112
9113bfd_boolean
9114bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9115{
9116 bfd_boolean ok = TRUE;
9117 bfd *sub;
9118 asection * (*gc_mark_hook)
9119 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9120 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9121
57316bff 9122 if (!info->gc_sections)
0e58fcf3 9123 return bfd_generic_gc_sections (abfd, info);
57316bff 9124
c152c796
AM
9125 if (!get_elf_backend_data (abfd)->can_gc_sections
9126 || info->relocatable
9127 || info->emitrelocations
715df9b8
EB
9128 || info->shared
9129 || !is_elf_hash_table (info->hash))
c152c796
AM
9130 {
9131 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9132 return TRUE;
9133 }
9134
9135 /* Apply transitive closure to the vtable entry usage info. */
9136 elf_link_hash_traverse (elf_hash_table (info),
9137 elf_gc_propagate_vtable_entries_used,
9138 &ok);
9139 if (!ok)
9140 return FALSE;
9141
9142 /* Kill the vtable relocations that were not used. */
9143 elf_link_hash_traverse (elf_hash_table (info),
9144 elf_gc_smash_unused_vtentry_relocs,
9145 &ok);
9146 if (!ok)
9147 return FALSE;
9148
715df9b8
EB
9149 /* Mark dynamically referenced symbols. */
9150 if (elf_hash_table (info)->dynamic_sections_created)
9151 elf_link_hash_traverse (elf_hash_table (info),
9152 elf_gc_mark_dynamic_ref_symbol,
9153 &ok);
9154 if (!ok)
9155 return FALSE;
c152c796 9156
715df9b8 9157 /* Grovel through relocs to find out who stays ... */
c152c796
AM
9158 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9159 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9160 {
9161 asection *o;
9162
9163 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9164 continue;
9165
9166 for (o = sub->sections; o != NULL; o = o->next)
39c2f51b
AM
9167 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9168 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9169 return FALSE;
c152c796
AM
9170 }
9171
9172 /* ... and mark SEC_EXCLUDE for those that go. */
9173 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9174 return FALSE;
9175
9176 return TRUE;
9177}
9178\f
9179/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9180
9181bfd_boolean
9182bfd_elf_gc_record_vtinherit (bfd *abfd,
9183 asection *sec,
9184 struct elf_link_hash_entry *h,
9185 bfd_vma offset)
9186{
9187 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9188 struct elf_link_hash_entry **search, *child;
9189 bfd_size_type extsymcount;
9190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9191
9192 /* The sh_info field of the symtab header tells us where the
9193 external symbols start. We don't care about the local symbols at
9194 this point. */
9195 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9196 if (!elf_bad_symtab (abfd))
9197 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9198
9199 sym_hashes = elf_sym_hashes (abfd);
9200 sym_hashes_end = sym_hashes + extsymcount;
9201
9202 /* Hunt down the child symbol, which is in this section at the same
9203 offset as the relocation. */
9204 for (search = sym_hashes; search != sym_hashes_end; ++search)
9205 {
9206 if ((child = *search) != NULL
9207 && (child->root.type == bfd_link_hash_defined
9208 || child->root.type == bfd_link_hash_defweak)
9209 && child->root.u.def.section == sec
9210 && child->root.u.def.value == offset)
9211 goto win;
9212 }
9213
d003868e
AM
9214 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9215 abfd, sec, (unsigned long) offset);
c152c796
AM
9216 bfd_set_error (bfd_error_invalid_operation);
9217 return FALSE;
9218
9219 win:
f6e332e6
AM
9220 if (!child->vtable)
9221 {
9222 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9223 if (!child->vtable)
9224 return FALSE;
9225 }
c152c796
AM
9226 if (!h)
9227 {
9228 /* This *should* only be the absolute section. It could potentially
9229 be that someone has defined a non-global vtable though, which
9230 would be bad. It isn't worth paging in the local symbols to be
9231 sure though; that case should simply be handled by the assembler. */
9232
f6e332e6 9233 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9234 }
9235 else
f6e332e6 9236 child->vtable->parent = h;
c152c796
AM
9237
9238 return TRUE;
9239}
9240
9241/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9242
9243bfd_boolean
9244bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9245 asection *sec ATTRIBUTE_UNUSED,
9246 struct elf_link_hash_entry *h,
9247 bfd_vma addend)
9248{
9249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9250 unsigned int log_file_align = bed->s->log_file_align;
9251
f6e332e6
AM
9252 if (!h->vtable)
9253 {
9254 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9255 if (!h->vtable)
9256 return FALSE;
9257 }
9258
9259 if (addend >= h->vtable->size)
c152c796
AM
9260 {
9261 size_t size, bytes, file_align;
f6e332e6 9262 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9263
9264 /* While the symbol is undefined, we have to be prepared to handle
9265 a zero size. */
9266 file_align = 1 << log_file_align;
9267 if (h->root.type == bfd_link_hash_undefined)
9268 size = addend + file_align;
9269 else
9270 {
9271 size = h->size;
9272 if (addend >= size)
9273 {
9274 /* Oops! We've got a reference past the defined end of
9275 the table. This is probably a bug -- shall we warn? */
9276 size = addend + file_align;
9277 }
9278 }
9279 size = (size + file_align - 1) & -file_align;
9280
9281 /* Allocate one extra entry for use as a "done" flag for the
9282 consolidation pass. */
9283 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9284
9285 if (ptr)
9286 {
9287 ptr = bfd_realloc (ptr - 1, bytes);
9288
9289 if (ptr != NULL)
9290 {
9291 size_t oldbytes;
9292
f6e332e6 9293 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9294 * sizeof (bfd_boolean));
9295 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9296 }
9297 }
9298 else
9299 ptr = bfd_zmalloc (bytes);
9300
9301 if (ptr == NULL)
9302 return FALSE;
9303
9304 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9305 h->vtable->used = ptr + 1;
9306 h->vtable->size = size;
c152c796
AM
9307 }
9308
f6e332e6 9309 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9310
9311 return TRUE;
9312}
9313
9314struct alloc_got_off_arg {
9315 bfd_vma gotoff;
9316 unsigned int got_elt_size;
9317};
9318
9319/* We need a special top-level link routine to convert got reference counts
9320 to real got offsets. */
9321
9322static bfd_boolean
9323elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9324{
9325 struct alloc_got_off_arg *gofarg = arg;
9326
9327 if (h->root.type == bfd_link_hash_warning)
9328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9329
9330 if (h->got.refcount > 0)
9331 {
9332 h->got.offset = gofarg->gotoff;
9333 gofarg->gotoff += gofarg->got_elt_size;
9334 }
9335 else
9336 h->got.offset = (bfd_vma) -1;
9337
9338 return TRUE;
9339}
9340
9341/* And an accompanying bit to work out final got entry offsets once
9342 we're done. Should be called from final_link. */
9343
9344bfd_boolean
9345bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9346 struct bfd_link_info *info)
9347{
9348 bfd *i;
9349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9350 bfd_vma gotoff;
9351 unsigned int got_elt_size = bed->s->arch_size / 8;
9352 struct alloc_got_off_arg gofarg;
9353
9354 if (! is_elf_hash_table (info->hash))
9355 return FALSE;
9356
9357 /* The GOT offset is relative to the .got section, but the GOT header is
9358 put into the .got.plt section, if the backend uses it. */
9359 if (bed->want_got_plt)
9360 gotoff = 0;
9361 else
9362 gotoff = bed->got_header_size;
9363
9364 /* Do the local .got entries first. */
9365 for (i = info->input_bfds; i; i = i->link_next)
9366 {
9367 bfd_signed_vma *local_got;
9368 bfd_size_type j, locsymcount;
9369 Elf_Internal_Shdr *symtab_hdr;
9370
9371 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9372 continue;
9373
9374 local_got = elf_local_got_refcounts (i);
9375 if (!local_got)
9376 continue;
9377
9378 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9379 if (elf_bad_symtab (i))
9380 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9381 else
9382 locsymcount = symtab_hdr->sh_info;
9383
9384 for (j = 0; j < locsymcount; ++j)
9385 {
9386 if (local_got[j] > 0)
9387 {
9388 local_got[j] = gotoff;
9389 gotoff += got_elt_size;
9390 }
9391 else
9392 local_got[j] = (bfd_vma) -1;
9393 }
9394 }
9395
9396 /* Then the global .got entries. .plt refcounts are handled by
9397 adjust_dynamic_symbol */
9398 gofarg.gotoff = gotoff;
9399 gofarg.got_elt_size = got_elt_size;
9400 elf_link_hash_traverse (elf_hash_table (info),
9401 elf_gc_allocate_got_offsets,
9402 &gofarg);
9403 return TRUE;
9404}
9405
9406/* Many folk need no more in the way of final link than this, once
9407 got entry reference counting is enabled. */
9408
9409bfd_boolean
9410bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9411{
9412 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9413 return FALSE;
9414
9415 /* Invoke the regular ELF backend linker to do all the work. */
9416 return bfd_elf_final_link (abfd, info);
9417}
9418
9419bfd_boolean
9420bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9421{
9422 struct elf_reloc_cookie *rcookie = cookie;
9423
9424 if (rcookie->bad_symtab)
9425 rcookie->rel = rcookie->rels;
9426
9427 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9428 {
9429 unsigned long r_symndx;
9430
9431 if (! rcookie->bad_symtab)
9432 if (rcookie->rel->r_offset > offset)
9433 return FALSE;
9434 if (rcookie->rel->r_offset != offset)
9435 continue;
9436
9437 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9438 if (r_symndx == SHN_UNDEF)
9439 return TRUE;
9440
9441 if (r_symndx >= rcookie->locsymcount
9442 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9443 {
9444 struct elf_link_hash_entry *h;
9445
9446 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9447
9448 while (h->root.type == bfd_link_hash_indirect
9449 || h->root.type == bfd_link_hash_warning)
9450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9451
9452 if ((h->root.type == bfd_link_hash_defined
9453 || h->root.type == bfd_link_hash_defweak)
9454 && elf_discarded_section (h->root.u.def.section))
9455 return TRUE;
9456 else
9457 return FALSE;
9458 }
9459 else
9460 {
9461 /* It's not a relocation against a global symbol,
9462 but it could be a relocation against a local
9463 symbol for a discarded section. */
9464 asection *isec;
9465 Elf_Internal_Sym *isym;
9466
9467 /* Need to: get the symbol; get the section. */
9468 isym = &rcookie->locsyms[r_symndx];
9469 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9470 {
9471 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9472 if (isec != NULL && elf_discarded_section (isec))
9473 return TRUE;
9474 }
9475 }
9476 return FALSE;
9477 }
9478 return FALSE;
9479}
9480
9481/* Discard unneeded references to discarded sections.
9482 Returns TRUE if any section's size was changed. */
9483/* This function assumes that the relocations are in sorted order,
9484 which is true for all known assemblers. */
9485
9486bfd_boolean
9487bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9488{
9489 struct elf_reloc_cookie cookie;
9490 asection *stab, *eh;
9491 Elf_Internal_Shdr *symtab_hdr;
9492 const struct elf_backend_data *bed;
9493 bfd *abfd;
9494 unsigned int count;
9495 bfd_boolean ret = FALSE;
9496
9497 if (info->traditional_format
9498 || !is_elf_hash_table (info->hash))
9499 return FALSE;
9500
9501 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9502 {
9503 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9504 continue;
9505
9506 bed = get_elf_backend_data (abfd);
9507
9508 if ((abfd->flags & DYNAMIC) != 0)
9509 continue;
9510
9511 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9512 if (info->relocatable
9513 || (eh != NULL
eea6121a 9514 && (eh->size == 0
c152c796
AM
9515 || bfd_is_abs_section (eh->output_section))))
9516 eh = NULL;
9517
9518 stab = bfd_get_section_by_name (abfd, ".stab");
9519 if (stab != NULL
eea6121a 9520 && (stab->size == 0
c152c796
AM
9521 || bfd_is_abs_section (stab->output_section)
9522 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9523 stab = NULL;
9524
9525 if (stab == NULL
9526 && eh == NULL
9527 && bed->elf_backend_discard_info == NULL)
9528 continue;
9529
9530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9531 cookie.abfd = abfd;
9532 cookie.sym_hashes = elf_sym_hashes (abfd);
9533 cookie.bad_symtab = elf_bad_symtab (abfd);
9534 if (cookie.bad_symtab)
9535 {
9536 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9537 cookie.extsymoff = 0;
9538 }
9539 else
9540 {
9541 cookie.locsymcount = symtab_hdr->sh_info;
9542 cookie.extsymoff = symtab_hdr->sh_info;
9543 }
9544
9545 if (bed->s->arch_size == 32)
9546 cookie.r_sym_shift = 8;
9547 else
9548 cookie.r_sym_shift = 32;
9549
9550 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9551 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9552 {
9553 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9554 cookie.locsymcount, 0,
9555 NULL, NULL, NULL);
9556 if (cookie.locsyms == NULL)
9557 return FALSE;
9558 }
9559
9560 if (stab != NULL)
9561 {
9562 cookie.rels = NULL;
9563 count = stab->reloc_count;
9564 if (count != 0)
9565 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9566 info->keep_memory);
9567 if (cookie.rels != NULL)
9568 {
9569 cookie.rel = cookie.rels;
9570 cookie.relend = cookie.rels;
9571 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9572 if (_bfd_discard_section_stabs (abfd, stab,
9573 elf_section_data (stab)->sec_info,
9574 bfd_elf_reloc_symbol_deleted_p,
9575 &cookie))
9576 ret = TRUE;
9577 if (elf_section_data (stab)->relocs != cookie.rels)
9578 free (cookie.rels);
9579 }
9580 }
9581
9582 if (eh != NULL)
9583 {
9584 cookie.rels = NULL;
9585 count = eh->reloc_count;
9586 if (count != 0)
9587 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9588 info->keep_memory);
9589 cookie.rel = cookie.rels;
9590 cookie.relend = cookie.rels;
9591 if (cookie.rels != NULL)
9592 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9593
9594 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9595 bfd_elf_reloc_symbol_deleted_p,
9596 &cookie))
9597 ret = TRUE;
9598
9599 if (cookie.rels != NULL
9600 && elf_section_data (eh)->relocs != cookie.rels)
9601 free (cookie.rels);
9602 }
9603
9604 if (bed->elf_backend_discard_info != NULL
9605 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9606 ret = TRUE;
9607
9608 if (cookie.locsyms != NULL
9609 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9610 {
9611 if (! info->keep_memory)
9612 free (cookie.locsyms);
9613 else
9614 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9615 }
9616 }
9617
9618 if (info->eh_frame_hdr
9619 && !info->relocatable
9620 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9621 ret = TRUE;
9622
9623 return ret;
9624}
082b7297
L
9625
9626void
9627_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9628{
9629 flagword flags;
6d2cd210 9630 const char *name, *p;
082b7297
L
9631 struct bfd_section_already_linked *l;
9632 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9633 asection *group;
9634
9635 /* A single member comdat group section may be discarded by a
9636 linkonce section. See below. */
9637 if (sec->output_section == bfd_abs_section_ptr)
9638 return;
082b7297
L
9639
9640 flags = sec->flags;
3d7f7666
L
9641
9642 /* Check if it belongs to a section group. */
9643 group = elf_sec_group (sec);
9644
9645 /* Return if it isn't a linkonce section nor a member of a group. A
9646 comdat group section also has SEC_LINK_ONCE set. */
9647 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9648 return;
9649
3d7f7666
L
9650 if (group)
9651 {
9652 /* If this is the member of a single member comdat group, check if
9653 the group should be discarded. */
9654 if (elf_next_in_group (sec) == sec
9655 && (group->flags & SEC_LINK_ONCE) != 0)
9656 sec = group;
9657 else
9658 return;
9659 }
9660
082b7297
L
9661 /* FIXME: When doing a relocatable link, we may have trouble
9662 copying relocations in other sections that refer to local symbols
9663 in the section being discarded. Those relocations will have to
9664 be converted somehow; as of this writing I'm not sure that any of
9665 the backends handle that correctly.
9666
9667 It is tempting to instead not discard link once sections when
9668 doing a relocatable link (technically, they should be discarded
9669 whenever we are building constructors). However, that fails,
9670 because the linker winds up combining all the link once sections
9671 into a single large link once section, which defeats the purpose
9672 of having link once sections in the first place.
9673
9674 Also, not merging link once sections in a relocatable link
9675 causes trouble for MIPS ELF, which relies on link once semantics
9676 to handle the .reginfo section correctly. */
9677
9678 name = bfd_get_section_name (abfd, sec);
9679
6d2cd210
JJ
9680 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9681 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9682 p++;
9683 else
9684 p = name;
9685
9686 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9687
9688 for (l = already_linked_list->entry; l != NULL; l = l->next)
9689 {
9690 /* We may have 3 different sections on the list: group section,
9691 comdat section and linkonce section. SEC may be a linkonce or
9692 group section. We match a group section with a group section,
9693 a linkonce section with a linkonce section, and ignore comdat
9694 section. */
3d7f7666 9695 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9696 && strcmp (name, l->sec->name) == 0
082b7297
L
9697 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9698 {
9699 /* The section has already been linked. See if we should
6d2cd210 9700 issue a warning. */
082b7297
L
9701 switch (flags & SEC_LINK_DUPLICATES)
9702 {
9703 default:
9704 abort ();
9705
9706 case SEC_LINK_DUPLICATES_DISCARD:
9707 break;
9708
9709 case SEC_LINK_DUPLICATES_ONE_ONLY:
9710 (*_bfd_error_handler)
c93625e2 9711 (_("%B: ignoring duplicate section `%A'"),
d003868e 9712 abfd, sec);
082b7297
L
9713 break;
9714
9715 case SEC_LINK_DUPLICATES_SAME_SIZE:
9716 if (sec->size != l->sec->size)
9717 (*_bfd_error_handler)
c93625e2 9718 (_("%B: duplicate section `%A' has different size"),
d003868e 9719 abfd, sec);
082b7297 9720 break;
ea5158d8
DJ
9721
9722 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9723 if (sec->size != l->sec->size)
9724 (*_bfd_error_handler)
c93625e2 9725 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
9726 abfd, sec);
9727 else if (sec->size != 0)
9728 {
9729 bfd_byte *sec_contents, *l_sec_contents;
9730
9731 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9732 (*_bfd_error_handler)
c93625e2 9733 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9734 abfd, sec);
9735 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9736 &l_sec_contents))
9737 (*_bfd_error_handler)
c93625e2 9738 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9739 l->sec->owner, l->sec);
9740 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9741 (*_bfd_error_handler)
c93625e2 9742 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
9743 abfd, sec);
9744
9745 if (sec_contents)
9746 free (sec_contents);
9747 if (l_sec_contents)
9748 free (l_sec_contents);
9749 }
9750 break;
082b7297
L
9751 }
9752
9753 /* Set the output_section field so that lang_add_section
9754 does not create a lang_input_section structure for this
9755 section. Since there might be a symbol in the section
9756 being discarded, we must retain a pointer to the section
9757 which we are really going to use. */
9758 sec->output_section = bfd_abs_section_ptr;
9759 sec->kept_section = l->sec;
3b36f7e6 9760
082b7297 9761 if (flags & SEC_GROUP)
3d7f7666
L
9762 {
9763 asection *first = elf_next_in_group (sec);
9764 asection *s = first;
9765
9766 while (s != NULL)
9767 {
9768 s->output_section = bfd_abs_section_ptr;
9769 /* Record which group discards it. */
9770 s->kept_section = l->sec;
9771 s = elf_next_in_group (s);
9772 /* These lists are circular. */
9773 if (s == first)
9774 break;
9775 }
9776 }
082b7297
L
9777
9778 return;
9779 }
9780 }
9781
3d7f7666
L
9782 if (group)
9783 {
9784 /* If this is the member of a single member comdat group and the
9785 group hasn't be discarded, we check if it matches a linkonce
9786 section. We only record the discarded comdat group. Otherwise
9787 the undiscarded group will be discarded incorrectly later since
9788 itself has been recorded. */
6d2cd210
JJ
9789 for (l = already_linked_list->entry; l != NULL; l = l->next)
9790 if ((l->sec->flags & SEC_GROUP) == 0
9791 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9792 && bfd_elf_match_symbols_in_sections (l->sec,
9793 elf_next_in_group (sec)))
9794 {
9795 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9796 elf_next_in_group (sec)->kept_section = l->sec;
9797 group->output_section = bfd_abs_section_ptr;
9798 break;
9799 }
9800 if (l == NULL)
3d7f7666
L
9801 return;
9802 }
9803 else
9804 /* There is no direct match. But for linkonce section, we should
9805 check if there is a match with comdat group member. We always
9806 record the linkonce section, discarded or not. */
6d2cd210
JJ
9807 for (l = already_linked_list->entry; l != NULL; l = l->next)
9808 if (l->sec->flags & SEC_GROUP)
9809 {
9810 asection *first = elf_next_in_group (l->sec);
9811
9812 if (first != NULL
9813 && elf_next_in_group (first) == first
9814 && bfd_elf_match_symbols_in_sections (first, sec))
9815 {
9816 sec->output_section = bfd_abs_section_ptr;
9817 sec->kept_section = l->sec;
9818 break;
9819 }
9820 }
9821
082b7297
L
9822 /* This is the first section with this name. Record it. */
9823 bfd_section_already_linked_table_insert (already_linked_list, sec);
9824}
81e1b023 9825
f652615e 9826static void
3b2175db
PB
9827bfd_elf_set_symbol (struct elf_link_hash_entry *h, bfd_vma val,
9828 struct bfd_section *s)
f652615e
L
9829{
9830 h->root.type = bfd_link_hash_defined;
3b2175db 9831 h->root.u.def.section = s ? s : bfd_abs_section_ptr;
f652615e
L
9832 h->root.u.def.value = val;
9833 h->def_regular = 1;
9834 h->type = STT_OBJECT;
9835 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9836 h->forced_local = 1;
9837}
9838
b116d4a7
AM
9839/* Set NAME to VAL if the symbol exists and is not defined in a regular
9840 object file. If S is NULL it is an absolute symbol, otherwise it is
9841 relative to that section. */
81e1b023
L
9842
9843void
9844_bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
3b2175db 9845 bfd_vma val, struct bfd_section *s)
81e1b023
L
9846{
9847 struct elf_link_hash_entry *h;
0291d291 9848
81e1b023
L
9849 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9850 FALSE);
b116d4a7 9851 if (h != NULL && !h->def_regular)
3b2175db 9852 bfd_elf_set_symbol (h, val, s);
f652615e
L
9853}
9854
b116d4a7
AM
9855/* Set START and END to boundaries of SEC if they exist and are not
9856 defined in regular object files. */
f652615e
L
9857
9858void
9859_bfd_elf_provide_section_bound_symbols (struct bfd_link_info *info,
9860 asection *sec,
9861 const char *start,
9862 const char *end)
9863{
9864 struct elf_link_hash_entry *hs, *he;
9865 bfd_vma start_val, end_val;
9866 bfd_boolean do_start, do_end;
9867
9868 /* Check if we need them or not first. */
9869 hs = elf_link_hash_lookup (elf_hash_table (info), start, FALSE,
9870 FALSE, FALSE);
b116d4a7 9871 do_start = hs != NULL && !hs->def_regular;
f652615e
L
9872
9873 he = elf_link_hash_lookup (elf_hash_table (info), end, FALSE,
9874 FALSE, FALSE);
b116d4a7 9875 do_end = he != NULL && !he->def_regular;
f652615e
L
9876
9877 if (!do_start && !do_end)
9878 return;
9879
9880 if (sec != NULL)
81e1b023 9881 {
f652615e
L
9882 start_val = sec->vma;
9883 end_val = start_val + sec->size;
81e1b023 9884 }
f652615e
L
9885 else
9886 {
9887 /* We have to choose those values very carefully. Some targets,
01d9ad14 9888 like alpha, may have relocation overflow with 0. "__bss_start"
f652615e
L
9889 should be defined in all cases. */
9890 struct elf_link_hash_entry *h
01d9ad14 9891 = elf_link_hash_lookup (elf_hash_table (info), "__bss_start",
f652615e
L
9892 FALSE, FALSE, FALSE);
9893 if (h != NULL && h->root.type == bfd_link_hash_defined)
9894 start_val = h->root.u.def.value;
9895 else
9896 start_val = 0;
9897 end_val = start_val;
9898 }
9899
9900 if (do_start)
3b2175db 9901 bfd_elf_set_symbol (hs, start_val, NULL);
f652615e
L
9902
9903 if (do_end)
3b2175db 9904 bfd_elf_set_symbol (he, end_val, NULL);
81e1b023 9905}
This page took 0.884812 seconds and 4 git commands to generate.