2005-05-06 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
e5a52504 60 flags = bed->dynamic_sec_flags;
252b5132 61
3496cb2a 62 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 63 if (s == NULL
252b5132 64 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 65 return FALSE;
252b5132
RH
66
67 if (bed->want_got_plt)
68 {
3496cb2a 69 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 70 if (s == NULL
252b5132 71 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 72 return FALSE;
252b5132
RH
73 }
74
2517a57f
AM
75 if (bed->want_got_sym)
76 {
77 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
78 (or .got.plt) section. We don't do this in the linker script
79 because we don't want to define the symbol if we are not creating
80 a global offset table. */
14a793b2 81 bh = NULL;
2517a57f
AM
82 if (!(_bfd_generic_link_add_one_symbol
83 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 84 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 85 return FALSE;
14a793b2 86 h = (struct elf_link_hash_entry *) bh;
f5385ebf 87 h->def_regular = 1;
2517a57f 88 h->type = STT_OBJECT;
e6857c0c 89 h->other = STV_HIDDEN;
252b5132 90
36af4a4e 91 if (! info->executable
c152c796 92 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 93 return FALSE;
252b5132 94
2517a57f
AM
95 elf_hash_table (info)->hgot = h;
96 }
252b5132
RH
97
98 /* The first bit of the global offset table is the header. */
eea6121a 99 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 100
b34976b6 101 return TRUE;
252b5132
RH
102}
103\f
7e9f0867
AM
104/* Create a strtab to hold the dynamic symbol names. */
105static bfd_boolean
106_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
107{
108 struct elf_link_hash_table *hash_table;
109
110 hash_table = elf_hash_table (info);
111 if (hash_table->dynobj == NULL)
112 hash_table->dynobj = abfd;
113
114 if (hash_table->dynstr == NULL)
115 {
116 hash_table->dynstr = _bfd_elf_strtab_init ();
117 if (hash_table->dynstr == NULL)
118 return FALSE;
119 }
120 return TRUE;
121}
122
45d6a902
AM
123/* Create some sections which will be filled in with dynamic linking
124 information. ABFD is an input file which requires dynamic sections
125 to be created. The dynamic sections take up virtual memory space
126 when the final executable is run, so we need to create them before
127 addresses are assigned to the output sections. We work out the
128 actual contents and size of these sections later. */
252b5132 129
b34976b6 130bfd_boolean
268b6b39 131_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 132{
45d6a902
AM
133 flagword flags;
134 register asection *s;
135 struct elf_link_hash_entry *h;
136 struct bfd_link_hash_entry *bh;
9c5bfbb7 137 const struct elf_backend_data *bed;
252b5132 138
0eddce27 139 if (! is_elf_hash_table (info->hash))
45d6a902
AM
140 return FALSE;
141
142 if (elf_hash_table (info)->dynamic_sections_created)
143 return TRUE;
144
7e9f0867
AM
145 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
146 return FALSE;
45d6a902 147
7e9f0867 148 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
149 bed = get_elf_backend_data (abfd);
150
151 flags = bed->dynamic_sec_flags;
45d6a902
AM
152
153 /* A dynamically linked executable has a .interp section, but a
154 shared library does not. */
36af4a4e 155 if (info->executable)
252b5132 156 {
3496cb2a
L
157 s = bfd_make_section_with_flags (abfd, ".interp",
158 flags | SEC_READONLY);
159 if (s == NULL)
45d6a902
AM
160 return FALSE;
161 }
bb0deeff 162
0eddce27 163 if (! info->traditional_format)
45d6a902 164 {
3496cb2a
L
165 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
166 flags | SEC_READONLY);
45d6a902 167 if (s == NULL
45d6a902
AM
168 || ! bfd_set_section_alignment (abfd, s, 2))
169 return FALSE;
170 elf_hash_table (info)->eh_info.hdr_sec = s;
171 }
bb0deeff 172
45d6a902
AM
173 /* Create sections to hold version informations. These are removed
174 if they are not needed. */
3496cb2a
L
175 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
176 flags | SEC_READONLY);
45d6a902 177 if (s == NULL
45d6a902
AM
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
3496cb2a
L
181 s = bfd_make_section_with_flags (abfd, ".gnu.version",
182 flags | SEC_READONLY);
45d6a902 183 if (s == NULL
45d6a902
AM
184 || ! bfd_set_section_alignment (abfd, s, 1))
185 return FALSE;
186
3496cb2a
L
187 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
188 flags | SEC_READONLY);
45d6a902 189 if (s == NULL
45d6a902
AM
190 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
191 return FALSE;
192
3496cb2a
L
193 s = bfd_make_section_with_flags (abfd, ".dynsym",
194 flags | SEC_READONLY);
45d6a902 195 if (s == NULL
45d6a902
AM
196 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
197 return FALSE;
198
3496cb2a
L
199 s = bfd_make_section_with_flags (abfd, ".dynstr",
200 flags | SEC_READONLY);
201 if (s == NULL)
45d6a902
AM
202 return FALSE;
203
3496cb2a 204 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 205 if (s == NULL
45d6a902
AM
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
210 .dynamic section. We could set _DYNAMIC in a linker script, but we
211 only want to define it if we are, in fact, creating a .dynamic
212 section. We don't want to define it if there is no .dynamic
213 section, since on some ELF platforms the start up code examines it
214 to decide how to initialize the process. */
215 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
216 FALSE, FALSE, FALSE);
217 if (h != NULL)
218 {
219 /* Zap symbol defined in an as-needed lib that wasn't linked.
220 This is a symptom of a larger problem: Absolute symbols
221 defined in shared libraries can't be overridden, because we
222 lose the link to the bfd which is via the symbol section. */
223 h->root.type = bfd_link_hash_new;
224 }
225 bh = &h->root;
45d6a902 226 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
227 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
228 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
229 return FALSE;
230 h = (struct elf_link_hash_entry *) bh;
f5385ebf 231 h->def_regular = 1;
45d6a902
AM
232 h->type = STT_OBJECT;
233
36af4a4e 234 if (! info->executable
c152c796 235 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
236 return FALSE;
237
3496cb2a
L
238 s = bfd_make_section_with_flags (abfd, ".hash",
239 flags | SEC_READONLY);
45d6a902 240 if (s == NULL
45d6a902
AM
241 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 return FALSE;
243 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
244
245 /* Let the backend create the rest of the sections. This lets the
246 backend set the right flags. The backend will normally create
247 the .got and .plt sections. */
248 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
249 return FALSE;
250
251 elf_hash_table (info)->dynamic_sections_created = TRUE;
252
253 return TRUE;
254}
255
256/* Create dynamic sections when linking against a dynamic object. */
257
258bfd_boolean
268b6b39 259_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
260{
261 flagword flags, pltflags;
262 asection *s;
9c5bfbb7 263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 264
252b5132
RH
265 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
266 .rel[a].bss sections. */
e5a52504 267 flags = bed->dynamic_sec_flags;
252b5132
RH
268
269 pltflags = flags;
252b5132 270 if (bed->plt_not_loaded)
6df4d94c
MM
271 /* We do not clear SEC_ALLOC here because we still want the OS to
272 allocate space for the section; it's just that there's nothing
273 to read in from the object file. */
5d1634d7 274 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
275 else
276 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
277 if (bed->plt_readonly)
278 pltflags |= SEC_READONLY;
279
3496cb2a 280 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 281 if (s == NULL
252b5132 282 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 283 return FALSE;
252b5132
RH
284
285 if (bed->want_plt_sym)
286 {
287 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
288 .plt section. */
14a793b2
AM
289 struct elf_link_hash_entry *h;
290 struct bfd_link_hash_entry *bh = NULL;
291
252b5132 292 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
293 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
294 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 295 return FALSE;
14a793b2 296 h = (struct elf_link_hash_entry *) bh;
f5385ebf 297 h->def_regular = 1;
252b5132
RH
298 h->type = STT_OBJECT;
299
36af4a4e 300 if (! info->executable
c152c796 301 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 302 return FALSE;
252b5132
RH
303 }
304
3496cb2a
L
305 s = bfd_make_section_with_flags (abfd,
306 (bed->default_use_rela_p
307 ? ".rela.plt" : ".rel.plt"),
308 flags | SEC_READONLY);
252b5132 309 if (s == NULL
45d6a902 310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 311 return FALSE;
252b5132
RH
312
313 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 314 return FALSE;
252b5132 315
3018b441
RH
316 if (bed->want_dynbss)
317 {
318 /* The .dynbss section is a place to put symbols which are defined
319 by dynamic objects, are referenced by regular objects, and are
320 not functions. We must allocate space for them in the process
321 image and use a R_*_COPY reloc to tell the dynamic linker to
322 initialize them at run time. The linker script puts the .dynbss
323 section into the .bss section of the final image. */
3496cb2a
L
324 s = bfd_make_section_with_flags (abfd, ".dynbss",
325 (SEC_ALLOC
326 | SEC_LINKER_CREATED));
327 if (s == NULL)
b34976b6 328 return FALSE;
252b5132 329
3018b441 330 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
331 normally needed. We need to create it here, though, so that the
332 linker will map it to an output section. We can't just create it
333 only if we need it, because we will not know whether we need it
334 until we have seen all the input files, and the first time the
335 main linker code calls BFD after examining all the input files
336 (size_dynamic_sections) the input sections have already been
337 mapped to the output sections. If the section turns out not to
338 be needed, we can discard it later. We will never need this
339 section when generating a shared object, since they do not use
340 copy relocs. */
3018b441
RH
341 if (! info->shared)
342 {
3496cb2a
L
343 s = bfd_make_section_with_flags (abfd,
344 (bed->default_use_rela_p
345 ? ".rela.bss" : ".rel.bss"),
346 flags | SEC_READONLY);
3018b441 347 if (s == NULL
45d6a902 348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 349 return FALSE;
3018b441 350 }
252b5132
RH
351 }
352
b34976b6 353 return TRUE;
252b5132
RH
354}
355\f
252b5132
RH
356/* Record a new dynamic symbol. We record the dynamic symbols as we
357 read the input files, since we need to have a list of all of them
358 before we can determine the final sizes of the output sections.
359 Note that we may actually call this function even though we are not
360 going to output any dynamic symbols; in some cases we know that a
361 symbol should be in the dynamic symbol table, but only if there is
362 one. */
363
b34976b6 364bfd_boolean
c152c796
AM
365bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
366 struct elf_link_hash_entry *h)
252b5132
RH
367{
368 if (h->dynindx == -1)
369 {
2b0f7ef9 370 struct elf_strtab_hash *dynstr;
68b6ddd0 371 char *p;
252b5132 372 const char *name;
252b5132
RH
373 bfd_size_type indx;
374
7a13edea
NC
375 /* XXX: The ABI draft says the linker must turn hidden and
376 internal symbols into STB_LOCAL symbols when producing the
377 DSO. However, if ld.so honors st_other in the dynamic table,
378 this would not be necessary. */
379 switch (ELF_ST_VISIBILITY (h->other))
380 {
381 case STV_INTERNAL:
382 case STV_HIDDEN:
9d6eee78
L
383 if (h->root.type != bfd_link_hash_undefined
384 && h->root.type != bfd_link_hash_undefweak)
38048eb9 385 {
f5385ebf 386 h->forced_local = 1;
67687978
PB
387 if (!elf_hash_table (info)->is_relocatable_executable)
388 return TRUE;
7a13edea 389 }
0444bdd4 390
7a13edea
NC
391 default:
392 break;
393 }
394
252b5132
RH
395 h->dynindx = elf_hash_table (info)->dynsymcount;
396 ++elf_hash_table (info)->dynsymcount;
397
398 dynstr = elf_hash_table (info)->dynstr;
399 if (dynstr == NULL)
400 {
401 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 402 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 403 if (dynstr == NULL)
b34976b6 404 return FALSE;
252b5132
RH
405 }
406
407 /* We don't put any version information in the dynamic string
aad5d350 408 table. */
252b5132
RH
409 name = h->root.root.string;
410 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
411 if (p != NULL)
412 /* We know that the p points into writable memory. In fact,
413 there are only a few symbols that have read-only names, being
414 those like _GLOBAL_OFFSET_TABLE_ that are created specially
415 by the backends. Most symbols will have names pointing into
416 an ELF string table read from a file, or to objalloc memory. */
417 *p = 0;
418
419 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
420
421 if (p != NULL)
422 *p = ELF_VER_CHR;
252b5132
RH
423
424 if (indx == (bfd_size_type) -1)
b34976b6 425 return FALSE;
252b5132
RH
426 h->dynstr_index = indx;
427 }
428
b34976b6 429 return TRUE;
252b5132 430}
45d6a902
AM
431\f
432/* Record an assignment to a symbol made by a linker script. We need
433 this in case some dynamic object refers to this symbol. */
434
435bfd_boolean
268b6b39
AM
436bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
437 struct bfd_link_info *info,
438 const char *name,
439 bfd_boolean provide)
45d6a902
AM
440{
441 struct elf_link_hash_entry *h;
4ea42fb7 442 struct elf_link_hash_table *htab;
45d6a902 443
0eddce27 444 if (!is_elf_hash_table (info->hash))
45d6a902
AM
445 return TRUE;
446
4ea42fb7
AM
447 htab = elf_hash_table (info);
448 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 449 if (h == NULL)
4ea42fb7 450 return provide;
45d6a902 451
02bb6eae
AO
452 /* Since we're defining the symbol, don't let it seem to have not
453 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 454 may depend on this. */
02bb6eae
AO
455 if (h->root.type == bfd_link_hash_undefweak
456 || h->root.type == bfd_link_hash_undefined)
77cfaee6 457 {
4ea42fb7 458 h->root.type = bfd_link_hash_new;
77cfaee6
AM
459 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
460 bfd_link_repair_undef_list (&htab->root);
77cfaee6 461 }
02bb6eae 462
45d6a902 463 if (h->root.type == bfd_link_hash_new)
f5385ebf 464 h->non_elf = 0;
45d6a902
AM
465
466 /* If this symbol is being provided by the linker script, and it is
467 currently defined by a dynamic object, but not by a regular
468 object, then mark it as undefined so that the generic linker will
469 force the correct value. */
470 if (provide
f5385ebf
AM
471 && h->def_dynamic
472 && !h->def_regular)
45d6a902
AM
473 h->root.type = bfd_link_hash_undefined;
474
475 /* If this symbol is not being provided by the linker script, and it is
476 currently defined by a dynamic object, but not by a regular object,
477 then clear out any version information because the symbol will not be
478 associated with the dynamic object any more. */
479 if (!provide
f5385ebf
AM
480 && h->def_dynamic
481 && !h->def_regular)
45d6a902
AM
482 h->verinfo.verdef = NULL;
483
f5385ebf 484 h->def_regular = 1;
45d6a902 485
6fa3860b
PB
486 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
487 and executables. */
488 if (!info->relocatable
489 && h->dynindx != -1
490 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
491 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
492 h->forced_local = 1;
493
f5385ebf
AM
494 if ((h->def_dynamic
495 || h->ref_dynamic
67687978
PB
496 || info->shared
497 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
498 && h->dynindx == -1)
499 {
c152c796 500 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
501 return FALSE;
502
503 /* If this is a weak defined symbol, and we know a corresponding
504 real symbol from the same dynamic object, make sure the real
505 symbol is also made into a dynamic symbol. */
f6e332e6
AM
506 if (h->u.weakdef != NULL
507 && h->u.weakdef->dynindx == -1)
45d6a902 508 {
f6e332e6 509 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
510 return FALSE;
511 }
512 }
513
514 return TRUE;
515}
42751cf3 516
8c58d23b
AM
517/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
518 success, and 2 on a failure caused by attempting to record a symbol
519 in a discarded section, eg. a discarded link-once section symbol. */
520
521int
c152c796
AM
522bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
523 bfd *input_bfd,
524 long input_indx)
8c58d23b
AM
525{
526 bfd_size_type amt;
527 struct elf_link_local_dynamic_entry *entry;
528 struct elf_link_hash_table *eht;
529 struct elf_strtab_hash *dynstr;
530 unsigned long dynstr_index;
531 char *name;
532 Elf_External_Sym_Shndx eshndx;
533 char esym[sizeof (Elf64_External_Sym)];
534
0eddce27 535 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
536 return 0;
537
538 /* See if the entry exists already. */
539 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
540 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
541 return 1;
542
543 amt = sizeof (*entry);
268b6b39 544 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
545 if (entry == NULL)
546 return 0;
547
548 /* Go find the symbol, so that we can find it's name. */
549 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 550 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
551 {
552 bfd_release (input_bfd, entry);
553 return 0;
554 }
555
556 if (entry->isym.st_shndx != SHN_UNDEF
557 && (entry->isym.st_shndx < SHN_LORESERVE
558 || entry->isym.st_shndx > SHN_HIRESERVE))
559 {
560 asection *s;
561
562 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
563 if (s == NULL || bfd_is_abs_section (s->output_section))
564 {
565 /* We can still bfd_release here as nothing has done another
566 bfd_alloc. We can't do this later in this function. */
567 bfd_release (input_bfd, entry);
568 return 2;
569 }
570 }
571
572 name = (bfd_elf_string_from_elf_section
573 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
574 entry->isym.st_name));
575
576 dynstr = elf_hash_table (info)->dynstr;
577 if (dynstr == NULL)
578 {
579 /* Create a strtab to hold the dynamic symbol names. */
580 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
581 if (dynstr == NULL)
582 return 0;
583 }
584
b34976b6 585 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
586 if (dynstr_index == (unsigned long) -1)
587 return 0;
588 entry->isym.st_name = dynstr_index;
589
590 eht = elf_hash_table (info);
591
592 entry->next = eht->dynlocal;
593 eht->dynlocal = entry;
594 entry->input_bfd = input_bfd;
595 entry->input_indx = input_indx;
596 eht->dynsymcount++;
597
598 /* Whatever binding the symbol had before, it's now local. */
599 entry->isym.st_info
600 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
601
602 /* The dynindx will be set at the end of size_dynamic_sections. */
603
604 return 1;
605}
606
30b30c21 607/* Return the dynindex of a local dynamic symbol. */
42751cf3 608
30b30c21 609long
268b6b39
AM
610_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
611 bfd *input_bfd,
612 long input_indx)
30b30c21
RH
613{
614 struct elf_link_local_dynamic_entry *e;
615
616 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
617 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
618 return e->dynindx;
619 return -1;
620}
621
622/* This function is used to renumber the dynamic symbols, if some of
623 them are removed because they are marked as local. This is called
624 via elf_link_hash_traverse. */
625
b34976b6 626static bfd_boolean
268b6b39
AM
627elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
628 void *data)
42751cf3 629{
268b6b39 630 size_t *count = data;
30b30c21 631
e92d460e
AM
632 if (h->root.type == bfd_link_hash_warning)
633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
634
6fa3860b
PB
635 if (h->forced_local)
636 return TRUE;
637
638 if (h->dynindx != -1)
639 h->dynindx = ++(*count);
640
641 return TRUE;
642}
643
644
645/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
646 STB_LOCAL binding. */
647
648static bfd_boolean
649elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
650 void *data)
651{
652 size_t *count = data;
653
654 if (h->root.type == bfd_link_hash_warning)
655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
656
657 if (!h->forced_local)
658 return TRUE;
659
42751cf3 660 if (h->dynindx != -1)
30b30c21
RH
661 h->dynindx = ++(*count);
662
b34976b6 663 return TRUE;
42751cf3 664}
30b30c21 665
aee6f5b4
AO
666/* Return true if the dynamic symbol for a given section should be
667 omitted when creating a shared library. */
668bfd_boolean
669_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
670 struct bfd_link_info *info,
671 asection *p)
672{
673 switch (elf_section_data (p)->this_hdr.sh_type)
674 {
675 case SHT_PROGBITS:
676 case SHT_NOBITS:
677 /* If sh_type is yet undecided, assume it could be
678 SHT_PROGBITS/SHT_NOBITS. */
679 case SHT_NULL:
680 if (strcmp (p->name, ".got") == 0
681 || strcmp (p->name, ".got.plt") == 0
682 || strcmp (p->name, ".plt") == 0)
683 {
684 asection *ip;
685 bfd *dynobj = elf_hash_table (info)->dynobj;
686
687 if (dynobj != NULL
1da212d6 688 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
689 && (ip->flags & SEC_LINKER_CREATED)
690 && ip->output_section == p)
691 return TRUE;
692 }
693 return FALSE;
694
695 /* There shouldn't be section relative relocations
696 against any other section. */
697 default:
698 return TRUE;
699 }
700}
701
062e2358 702/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
703 symbol for each output section, which come first. Next come symbols
704 which have been forced to local binding. Then all of the back-end
705 allocated local dynamic syms, followed by the rest of the global
706 symbols. */
30b30c21 707
554220db
AM
708static unsigned long
709_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
710 struct bfd_link_info *info,
711 unsigned long *section_sym_count)
30b30c21
RH
712{
713 unsigned long dynsymcount = 0;
714
67687978 715 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 716 {
aee6f5b4 717 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
718 asection *p;
719 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 720 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
721 && (p->flags & SEC_ALLOC) != 0
722 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
723 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21 724 }
554220db 725 *section_sym_count = dynsymcount;
30b30c21 726
6fa3860b
PB
727 elf_link_hash_traverse (elf_hash_table (info),
728 elf_link_renumber_local_hash_table_dynsyms,
729 &dynsymcount);
730
30b30c21
RH
731 if (elf_hash_table (info)->dynlocal)
732 {
733 struct elf_link_local_dynamic_entry *p;
734 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
735 p->dynindx = ++dynsymcount;
736 }
737
738 elf_link_hash_traverse (elf_hash_table (info),
739 elf_link_renumber_hash_table_dynsyms,
740 &dynsymcount);
741
742 /* There is an unused NULL entry at the head of the table which
743 we must account for in our count. Unless there weren't any
744 symbols, which means we'll have no table at all. */
745 if (dynsymcount != 0)
746 ++dynsymcount;
747
748 return elf_hash_table (info)->dynsymcount = dynsymcount;
749}
252b5132 750
45d6a902
AM
751/* This function is called when we want to define a new symbol. It
752 handles the various cases which arise when we find a definition in
753 a dynamic object, or when there is already a definition in a
754 dynamic object. The new symbol is described by NAME, SYM, PSEC,
755 and PVALUE. We set SYM_HASH to the hash table entry. We set
756 OVERRIDE if the old symbol is overriding a new definition. We set
757 TYPE_CHANGE_OK if it is OK for the type to change. We set
758 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
759 change, we mean that we shouldn't warn if the type or size does
af44c138
L
760 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
761 object is overridden by a regular object. */
45d6a902
AM
762
763bfd_boolean
268b6b39
AM
764_bfd_elf_merge_symbol (bfd *abfd,
765 struct bfd_link_info *info,
766 const char *name,
767 Elf_Internal_Sym *sym,
768 asection **psec,
769 bfd_vma *pvalue,
af44c138 770 unsigned int *pold_alignment,
268b6b39
AM
771 struct elf_link_hash_entry **sym_hash,
772 bfd_boolean *skip,
773 bfd_boolean *override,
774 bfd_boolean *type_change_ok,
0f8a2703 775 bfd_boolean *size_change_ok)
252b5132 776{
7479dfd4 777 asection *sec, *oldsec;
45d6a902
AM
778 struct elf_link_hash_entry *h;
779 struct elf_link_hash_entry *flip;
780 int bind;
781 bfd *oldbfd;
782 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 783 bfd_boolean newweak, oldweak;
45d6a902
AM
784
785 *skip = FALSE;
786 *override = FALSE;
787
788 sec = *psec;
789 bind = ELF_ST_BIND (sym->st_info);
790
791 if (! bfd_is_und_section (sec))
792 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
793 else
794 h = ((struct elf_link_hash_entry *)
795 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
796 if (h == NULL)
797 return FALSE;
798 *sym_hash = h;
252b5132 799
45d6a902
AM
800 /* This code is for coping with dynamic objects, and is only useful
801 if we are doing an ELF link. */
802 if (info->hash->creator != abfd->xvec)
803 return TRUE;
252b5132 804
45d6a902
AM
805 /* For merging, we only care about real symbols. */
806
807 while (h->root.type == bfd_link_hash_indirect
808 || h->root.type == bfd_link_hash_warning)
809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
810
811 /* If we just created the symbol, mark it as being an ELF symbol.
812 Other than that, there is nothing to do--there is no merge issue
813 with a newly defined symbol--so we just return. */
814
815 if (h->root.type == bfd_link_hash_new)
252b5132 816 {
f5385ebf 817 h->non_elf = 0;
45d6a902
AM
818 return TRUE;
819 }
252b5132 820
7479dfd4
L
821 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
822 existing symbol. */
252b5132 823
45d6a902
AM
824 switch (h->root.type)
825 {
826 default:
827 oldbfd = NULL;
7479dfd4 828 oldsec = NULL;
45d6a902 829 break;
252b5132 830
45d6a902
AM
831 case bfd_link_hash_undefined:
832 case bfd_link_hash_undefweak:
833 oldbfd = h->root.u.undef.abfd;
7479dfd4 834 oldsec = NULL;
45d6a902
AM
835 break;
836
837 case bfd_link_hash_defined:
838 case bfd_link_hash_defweak:
839 oldbfd = h->root.u.def.section->owner;
7479dfd4 840 oldsec = h->root.u.def.section;
45d6a902
AM
841 break;
842
843 case bfd_link_hash_common:
844 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 845 oldsec = h->root.u.c.p->section;
45d6a902
AM
846 break;
847 }
848
849 /* In cases involving weak versioned symbols, we may wind up trying
850 to merge a symbol with itself. Catch that here, to avoid the
851 confusion that results if we try to override a symbol with
852 itself. The additional tests catch cases like
853 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
854 dynamic object, which we do want to handle here. */
855 if (abfd == oldbfd
856 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 857 || !h->def_regular))
45d6a902
AM
858 return TRUE;
859
860 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
861 respectively, is from a dynamic object. */
862
863 if ((abfd->flags & DYNAMIC) != 0)
864 newdyn = TRUE;
865 else
866 newdyn = FALSE;
867
868 if (oldbfd != NULL)
869 olddyn = (oldbfd->flags & DYNAMIC) != 0;
870 else
871 {
872 asection *hsec;
873
874 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
875 indices used by MIPS ELF. */
876 switch (h->root.type)
252b5132 877 {
45d6a902
AM
878 default:
879 hsec = NULL;
880 break;
252b5132 881
45d6a902
AM
882 case bfd_link_hash_defined:
883 case bfd_link_hash_defweak:
884 hsec = h->root.u.def.section;
885 break;
252b5132 886
45d6a902
AM
887 case bfd_link_hash_common:
888 hsec = h->root.u.c.p->section;
889 break;
252b5132 890 }
252b5132 891
45d6a902
AM
892 if (hsec == NULL)
893 olddyn = FALSE;
894 else
895 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
896 }
252b5132 897
45d6a902
AM
898 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
899 respectively, appear to be a definition rather than reference. */
900
901 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
902 newdef = FALSE;
903 else
904 newdef = TRUE;
905
906 if (h->root.type == bfd_link_hash_undefined
907 || h->root.type == bfd_link_hash_undefweak
908 || h->root.type == bfd_link_hash_common)
909 olddef = FALSE;
910 else
911 olddef = TRUE;
912
7479dfd4
L
913 /* Check TLS symbol. */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type)
916 {
917 bfd *ntbfd, *tbfd;
918 bfd_boolean ntdef, tdef;
919 asection *ntsec, *tsec;
920
921 if (h->type == STT_TLS)
922 {
923 ntbfd = abfd;
924 ntsec = sec;
925 ntdef = newdef;
926 tbfd = oldbfd;
927 tsec = oldsec;
928 tdef = olddef;
929 }
930 else
931 {
932 ntbfd = oldbfd;
933 ntsec = oldsec;
934 ntdef = olddef;
935 tbfd = abfd;
936 tsec = sec;
937 tdef = newdef;
938 }
939
940 if (tdef && ntdef)
941 (*_bfd_error_handler)
942 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
943 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
944 else if (!tdef && !ntdef)
945 (*_bfd_error_handler)
946 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
947 tbfd, ntbfd, h->root.root.string);
948 else if (tdef)
949 (*_bfd_error_handler)
950 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
951 tbfd, tsec, ntbfd, h->root.root.string);
952 else
953 (*_bfd_error_handler)
954 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
955 tbfd, ntbfd, ntsec, h->root.root.string);
956
957 bfd_set_error (bfd_error_bad_value);
958 return FALSE;
959 }
960
4cc11e76 961 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
962 object or is weak in all dynamic objects. Internal and hidden
963 visibility will make it unavailable to dynamic objects. */
f5385ebf 964 if (newdyn && !h->dynamic_def)
45d6a902
AM
965 {
966 if (!bfd_is_und_section (sec))
f5385ebf 967 h->dynamic_def = 1;
45d6a902 968 else
252b5132 969 {
45d6a902
AM
970 /* Check if this symbol is weak in all dynamic objects. If it
971 is the first time we see it in a dynamic object, we mark
972 if it is weak. Otherwise, we clear it. */
f5385ebf 973 if (!h->ref_dynamic)
79349b09 974 {
45d6a902 975 if (bind == STB_WEAK)
f5385ebf 976 h->dynamic_weak = 1;
252b5132 977 }
45d6a902 978 else if (bind != STB_WEAK)
f5385ebf 979 h->dynamic_weak = 0;
252b5132 980 }
45d6a902 981 }
252b5132 982
45d6a902
AM
983 /* If the old symbol has non-default visibility, we ignore the new
984 definition from a dynamic object. */
985 if (newdyn
9c7a29a3 986 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
987 && !bfd_is_und_section (sec))
988 {
989 *skip = TRUE;
990 /* Make sure this symbol is dynamic. */
f5385ebf 991 h->ref_dynamic = 1;
45d6a902
AM
992 /* A protected symbol has external availability. Make sure it is
993 recorded as dynamic.
994
995 FIXME: Should we check type and size for protected symbol? */
996 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 997 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
998 else
999 return TRUE;
1000 }
1001 else if (!newdyn
9c7a29a3 1002 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1003 && h->def_dynamic)
45d6a902
AM
1004 {
1005 /* If the new symbol with non-default visibility comes from a
1006 relocatable file and the old definition comes from a dynamic
1007 object, we remove the old definition. */
1008 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1009 h = *sym_hash;
1de1a317 1010
f6e332e6 1011 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1012 && bfd_is_und_section (sec))
1013 {
1014 /* If the new symbol is undefined and the old symbol was
1015 also undefined before, we need to make sure
1016 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1017 up the linker hash table undefs list. Since the old
1de1a317
L
1018 definition came from a dynamic object, it is still on the
1019 undefs list. */
1020 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1021 h->root.u.undef.abfd = abfd;
1022 }
1023 else
1024 {
1025 h->root.type = bfd_link_hash_new;
1026 h->root.u.undef.abfd = NULL;
1027 }
1028
f5385ebf 1029 if (h->def_dynamic)
252b5132 1030 {
f5385ebf
AM
1031 h->def_dynamic = 0;
1032 h->ref_dynamic = 1;
1033 h->dynamic_def = 1;
45d6a902
AM
1034 }
1035 /* FIXME: Should we check type and size for protected symbol? */
1036 h->size = 0;
1037 h->type = 0;
1038 return TRUE;
1039 }
14a793b2 1040
79349b09
AM
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1045
15b43f48
AM
1046 /* If a new weak symbol definition comes from a regular file and the
1047 old symbol comes from a dynamic library, we treat the new one as
1048 strong. Similarly, an old weak symbol definition from a regular
1049 file is treated as strong when the new symbol comes from a dynamic
1050 library. Further, an old weak symbol from a dynamic library is
1051 treated as strong if the new symbol is from a dynamic library.
1052 This reflects the way glibc's ld.so works.
1053
1054 Do this before setting *type_change_ok or *size_change_ok so that
1055 we warn properly when dynamic library symbols are overridden. */
1056
1057 if (newdef && !newdyn && olddyn)
0f8a2703 1058 newweak = FALSE;
15b43f48 1059 if (olddef && newdyn)
0f8a2703
AM
1060 oldweak = FALSE;
1061
79349b09
AM
1062 /* It's OK to change the type if either the existing symbol or the
1063 new symbol is weak. A type change is also OK if the old symbol
1064 is undefined and the new symbol is defined. */
252b5132 1065
79349b09
AM
1066 if (oldweak
1067 || newweak
1068 || (newdef
1069 && h->root.type == bfd_link_hash_undefined))
1070 *type_change_ok = TRUE;
1071
1072 /* It's OK to change the size if either the existing symbol or the
1073 new symbol is weak, or if the old symbol is undefined. */
1074
1075 if (*type_change_ok
1076 || h->root.type == bfd_link_hash_undefined)
1077 *size_change_ok = TRUE;
45d6a902 1078
45d6a902
AM
1079 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1080 symbol, respectively, appears to be a common symbol in a dynamic
1081 object. If a symbol appears in an uninitialized section, and is
1082 not weak, and is not a function, then it may be a common symbol
1083 which was resolved when the dynamic object was created. We want
1084 to treat such symbols specially, because they raise special
1085 considerations when setting the symbol size: if the symbol
1086 appears as a common symbol in a regular object, and the size in
1087 the regular object is larger, we must make sure that we use the
1088 larger size. This problematic case can always be avoided in C,
1089 but it must be handled correctly when using Fortran shared
1090 libraries.
1091
1092 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1093 likewise for OLDDYNCOMMON and OLDDEF.
1094
1095 Note that this test is just a heuristic, and that it is quite
1096 possible to have an uninitialized symbol in a shared object which
1097 is really a definition, rather than a common symbol. This could
1098 lead to some minor confusion when the symbol really is a common
1099 symbol in some regular object. However, I think it will be
1100 harmless. */
1101
1102 if (newdyn
1103 && newdef
79349b09 1104 && !newweak
45d6a902
AM
1105 && (sec->flags & SEC_ALLOC) != 0
1106 && (sec->flags & SEC_LOAD) == 0
1107 && sym->st_size > 0
45d6a902
AM
1108 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1109 newdyncommon = TRUE;
1110 else
1111 newdyncommon = FALSE;
1112
1113 if (olddyn
1114 && olddef
1115 && h->root.type == bfd_link_hash_defined
f5385ebf 1116 && h->def_dynamic
45d6a902
AM
1117 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1118 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1119 && h->size > 0
1120 && h->type != STT_FUNC)
1121 olddyncommon = TRUE;
1122 else
1123 olddyncommon = FALSE;
1124
45d6a902
AM
1125 /* If both the old and the new symbols look like common symbols in a
1126 dynamic object, set the size of the symbol to the larger of the
1127 two. */
1128
1129 if (olddyncommon
1130 && newdyncommon
1131 && sym->st_size != h->size)
1132 {
1133 /* Since we think we have two common symbols, issue a multiple
1134 common warning if desired. Note that we only warn if the
1135 size is different. If the size is the same, we simply let
1136 the old symbol override the new one as normally happens with
1137 symbols defined in dynamic objects. */
1138
1139 if (! ((*info->callbacks->multiple_common)
1140 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1141 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1142 return FALSE;
252b5132 1143
45d6a902
AM
1144 if (sym->st_size > h->size)
1145 h->size = sym->st_size;
252b5132 1146
45d6a902 1147 *size_change_ok = TRUE;
252b5132
RH
1148 }
1149
45d6a902
AM
1150 /* If we are looking at a dynamic object, and we have found a
1151 definition, we need to see if the symbol was already defined by
1152 some other object. If so, we want to use the existing
1153 definition, and we do not want to report a multiple symbol
1154 definition error; we do this by clobbering *PSEC to be
1155 bfd_und_section_ptr.
1156
1157 We treat a common symbol as a definition if the symbol in the
1158 shared library is a function, since common symbols always
1159 represent variables; this can cause confusion in principle, but
1160 any such confusion would seem to indicate an erroneous program or
1161 shared library. We also permit a common symbol in a regular
79349b09 1162 object to override a weak symbol in a shared object. */
45d6a902
AM
1163
1164 if (newdyn
1165 && newdef
77cfaee6 1166 && (olddef
45d6a902 1167 || (h->root.type == bfd_link_hash_common
79349b09 1168 && (newweak
0f8a2703 1169 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1170 {
1171 *override = TRUE;
1172 newdef = FALSE;
1173 newdyncommon = FALSE;
252b5132 1174
45d6a902
AM
1175 *psec = sec = bfd_und_section_ptr;
1176 *size_change_ok = TRUE;
252b5132 1177
45d6a902
AM
1178 /* If we get here when the old symbol is a common symbol, then
1179 we are explicitly letting it override a weak symbol or
1180 function in a dynamic object, and we don't want to warn about
1181 a type change. If the old symbol is a defined symbol, a type
1182 change warning may still be appropriate. */
252b5132 1183
45d6a902
AM
1184 if (h->root.type == bfd_link_hash_common)
1185 *type_change_ok = TRUE;
1186 }
1187
1188 /* Handle the special case of an old common symbol merging with a
1189 new symbol which looks like a common symbol in a shared object.
1190 We change *PSEC and *PVALUE to make the new symbol look like a
1191 common symbol, and let _bfd_generic_link_add_one_symbol will do
1192 the right thing. */
1193
1194 if (newdyncommon
1195 && h->root.type == bfd_link_hash_common)
1196 {
1197 *override = TRUE;
1198 newdef = FALSE;
1199 newdyncommon = FALSE;
1200 *pvalue = sym->st_size;
1201 *psec = sec = bfd_com_section_ptr;
1202 *size_change_ok = TRUE;
1203 }
1204
c5e2cead
L
1205 /* Skip weak definitions of symbols that are already defined. */
1206 if (newdef && olddef && newweak && !oldweak)
1207 *skip = TRUE;
1208
45d6a902
AM
1209 /* If the old symbol is from a dynamic object, and the new symbol is
1210 a definition which is not from a dynamic object, then the new
1211 symbol overrides the old symbol. Symbols from regular files
1212 always take precedence over symbols from dynamic objects, even if
1213 they are defined after the dynamic object in the link.
1214
1215 As above, we again permit a common symbol in a regular object to
1216 override a definition in a shared object if the shared object
0f8a2703 1217 symbol is a function or is weak. */
45d6a902
AM
1218
1219 flip = NULL;
77cfaee6 1220 if (!newdyn
45d6a902
AM
1221 && (newdef
1222 || (bfd_is_com_section (sec)
79349b09
AM
1223 && (oldweak
1224 || h->type == STT_FUNC)))
45d6a902
AM
1225 && olddyn
1226 && olddef
f5385ebf 1227 && h->def_dynamic)
45d6a902
AM
1228 {
1229 /* Change the hash table entry to undefined, and let
1230 _bfd_generic_link_add_one_symbol do the right thing with the
1231 new definition. */
1232
1233 h->root.type = bfd_link_hash_undefined;
1234 h->root.u.undef.abfd = h->root.u.def.section->owner;
1235 *size_change_ok = TRUE;
1236
1237 olddef = FALSE;
1238 olddyncommon = FALSE;
1239
1240 /* We again permit a type change when a common symbol may be
1241 overriding a function. */
1242
1243 if (bfd_is_com_section (sec))
1244 *type_change_ok = TRUE;
1245
1246 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1247 flip = *sym_hash;
1248 else
1249 /* This union may have been set to be non-NULL when this symbol
1250 was seen in a dynamic object. We must force the union to be
1251 NULL, so that it is correct for a regular symbol. */
1252 h->verinfo.vertree = NULL;
1253 }
1254
1255 /* Handle the special case of a new common symbol merging with an
1256 old symbol that looks like it might be a common symbol defined in
1257 a shared object. Note that we have already handled the case in
1258 which a new common symbol should simply override the definition
1259 in the shared library. */
1260
1261 if (! newdyn
1262 && bfd_is_com_section (sec)
1263 && olddyncommon)
1264 {
1265 /* It would be best if we could set the hash table entry to a
1266 common symbol, but we don't know what to use for the section
1267 or the alignment. */
1268 if (! ((*info->callbacks->multiple_common)
1269 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1270 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1271 return FALSE;
1272
4cc11e76 1273 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1274 larger, pretend that the new symbol has its size. */
1275
1276 if (h->size > *pvalue)
1277 *pvalue = h->size;
1278
af44c138
L
1279 /* We need to remember the alignment required by the symbol
1280 in the dynamic object. */
1281 BFD_ASSERT (pold_alignment);
1282 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1283
1284 olddef = FALSE;
1285 olddyncommon = FALSE;
1286
1287 h->root.type = bfd_link_hash_undefined;
1288 h->root.u.undef.abfd = h->root.u.def.section->owner;
1289
1290 *size_change_ok = TRUE;
1291 *type_change_ok = TRUE;
1292
1293 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1294 flip = *sym_hash;
1295 else
1296 h->verinfo.vertree = NULL;
1297 }
1298
1299 if (flip != NULL)
1300 {
1301 /* Handle the case where we had a versioned symbol in a dynamic
1302 library and now find a definition in a normal object. In this
1303 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1305 flip->root.type = h->root.type;
1306 h->root.type = bfd_link_hash_indirect;
1307 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1308 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1309 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1310 if (h->def_dynamic)
45d6a902 1311 {
f5385ebf
AM
1312 h->def_dynamic = 0;
1313 flip->ref_dynamic = 1;
45d6a902
AM
1314 }
1315 }
1316
45d6a902
AM
1317 return TRUE;
1318}
1319
1320/* This function is called to create an indirect symbol from the
1321 default for the symbol with the default version if needed. The
1322 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1323 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1324
1325bfd_boolean
268b6b39
AM
1326_bfd_elf_add_default_symbol (bfd *abfd,
1327 struct bfd_link_info *info,
1328 struct elf_link_hash_entry *h,
1329 const char *name,
1330 Elf_Internal_Sym *sym,
1331 asection **psec,
1332 bfd_vma *value,
1333 bfd_boolean *dynsym,
0f8a2703 1334 bfd_boolean override)
45d6a902
AM
1335{
1336 bfd_boolean type_change_ok;
1337 bfd_boolean size_change_ok;
1338 bfd_boolean skip;
1339 char *shortname;
1340 struct elf_link_hash_entry *hi;
1341 struct bfd_link_hash_entry *bh;
9c5bfbb7 1342 const struct elf_backend_data *bed;
45d6a902
AM
1343 bfd_boolean collect;
1344 bfd_boolean dynamic;
1345 char *p;
1346 size_t len, shortlen;
1347 asection *sec;
1348
1349 /* If this symbol has a version, and it is the default version, we
1350 create an indirect symbol from the default name to the fully
1351 decorated name. This will cause external references which do not
1352 specify a version to be bound to this version of the symbol. */
1353 p = strchr (name, ELF_VER_CHR);
1354 if (p == NULL || p[1] != ELF_VER_CHR)
1355 return TRUE;
1356
1357 if (override)
1358 {
4cc11e76 1359 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1360 need to create the indirect symbol from the default name. */
1361 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1362 FALSE, FALSE);
1363 BFD_ASSERT (hi != NULL);
1364 if (hi == h)
1365 return TRUE;
1366 while (hi->root.type == bfd_link_hash_indirect
1367 || hi->root.type == bfd_link_hash_warning)
1368 {
1369 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1370 if (hi == h)
1371 return TRUE;
1372 }
1373 }
1374
1375 bed = get_elf_backend_data (abfd);
1376 collect = bed->collect;
1377 dynamic = (abfd->flags & DYNAMIC) != 0;
1378
1379 shortlen = p - name;
1380 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1381 if (shortname == NULL)
1382 return FALSE;
1383 memcpy (shortname, name, shortlen);
1384 shortname[shortlen] = '\0';
1385
1386 /* We are going to create a new symbol. Merge it with any existing
1387 symbol with this name. For the purposes of the merge, act as
1388 though we were defining the symbol we just defined, although we
1389 actually going to define an indirect symbol. */
1390 type_change_ok = FALSE;
1391 size_change_ok = FALSE;
1392 sec = *psec;
1393 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1394 NULL, &hi, &skip, &override,
1395 &type_change_ok, &size_change_ok))
45d6a902
AM
1396 return FALSE;
1397
1398 if (skip)
1399 goto nondefault;
1400
1401 if (! override)
1402 {
1403 bh = &hi->root;
1404 if (! (_bfd_generic_link_add_one_symbol
1405 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1406 0, name, FALSE, collect, &bh)))
45d6a902
AM
1407 return FALSE;
1408 hi = (struct elf_link_hash_entry *) bh;
1409 }
1410 else
1411 {
1412 /* In this case the symbol named SHORTNAME is overriding the
1413 indirect symbol we want to add. We were planning on making
1414 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1415 is the name without a version. NAME is the fully versioned
1416 name, and it is the default version.
1417
1418 Overriding means that we already saw a definition for the
1419 symbol SHORTNAME in a regular object, and it is overriding
1420 the symbol defined in the dynamic object.
1421
1422 When this happens, we actually want to change NAME, the
1423 symbol we just added, to refer to SHORTNAME. This will cause
1424 references to NAME in the shared object to become references
1425 to SHORTNAME in the regular object. This is what we expect
1426 when we override a function in a shared object: that the
1427 references in the shared object will be mapped to the
1428 definition in the regular object. */
1429
1430 while (hi->root.type == bfd_link_hash_indirect
1431 || hi->root.type == bfd_link_hash_warning)
1432 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1433
1434 h->root.type = bfd_link_hash_indirect;
1435 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1436 if (h->def_dynamic)
45d6a902 1437 {
f5385ebf
AM
1438 h->def_dynamic = 0;
1439 hi->ref_dynamic = 1;
1440 if (hi->ref_regular
1441 || hi->def_regular)
45d6a902 1442 {
c152c796 1443 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1444 return FALSE;
1445 }
1446 }
1447
1448 /* Now set HI to H, so that the following code will set the
1449 other fields correctly. */
1450 hi = h;
1451 }
1452
1453 /* If there is a duplicate definition somewhere, then HI may not
1454 point to an indirect symbol. We will have reported an error to
1455 the user in that case. */
1456
1457 if (hi->root.type == bfd_link_hash_indirect)
1458 {
1459 struct elf_link_hash_entry *ht;
1460
45d6a902
AM
1461 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1462 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1463
1464 /* See if the new flags lead us to realize that the symbol must
1465 be dynamic. */
1466 if (! *dynsym)
1467 {
1468 if (! dynamic)
1469 {
1470 if (info->shared
f5385ebf 1471 || hi->ref_dynamic)
45d6a902
AM
1472 *dynsym = TRUE;
1473 }
1474 else
1475 {
f5385ebf 1476 if (hi->ref_regular)
45d6a902
AM
1477 *dynsym = TRUE;
1478 }
1479 }
1480 }
1481
1482 /* We also need to define an indirection from the nondefault version
1483 of the symbol. */
1484
1485nondefault:
1486 len = strlen (name);
1487 shortname = bfd_hash_allocate (&info->hash->table, len);
1488 if (shortname == NULL)
1489 return FALSE;
1490 memcpy (shortname, name, shortlen);
1491 memcpy (shortname + shortlen, p + 1, len - shortlen);
1492
1493 /* Once again, merge with any existing symbol. */
1494 type_change_ok = FALSE;
1495 size_change_ok = FALSE;
1496 sec = *psec;
1497 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1498 NULL, &hi, &skip, &override,
1499 &type_change_ok, &size_change_ok))
45d6a902
AM
1500 return FALSE;
1501
1502 if (skip)
1503 return TRUE;
1504
1505 if (override)
1506 {
1507 /* Here SHORTNAME is a versioned name, so we don't expect to see
1508 the type of override we do in the case above unless it is
4cc11e76 1509 overridden by a versioned definition. */
45d6a902
AM
1510 if (hi->root.type != bfd_link_hash_defined
1511 && hi->root.type != bfd_link_hash_defweak)
1512 (*_bfd_error_handler)
d003868e
AM
1513 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1514 abfd, shortname);
45d6a902
AM
1515 }
1516 else
1517 {
1518 bh = &hi->root;
1519 if (! (_bfd_generic_link_add_one_symbol
1520 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1521 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1522 return FALSE;
1523 hi = (struct elf_link_hash_entry *) bh;
1524
1525 /* If there is a duplicate definition somewhere, then HI may not
1526 point to an indirect symbol. We will have reported an error
1527 to the user in that case. */
1528
1529 if (hi->root.type == bfd_link_hash_indirect)
1530 {
45d6a902
AM
1531 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1532
1533 /* See if the new flags lead us to realize that the symbol
1534 must be dynamic. */
1535 if (! *dynsym)
1536 {
1537 if (! dynamic)
1538 {
1539 if (info->shared
f5385ebf 1540 || hi->ref_dynamic)
45d6a902
AM
1541 *dynsym = TRUE;
1542 }
1543 else
1544 {
f5385ebf 1545 if (hi->ref_regular)
45d6a902
AM
1546 *dynsym = TRUE;
1547 }
1548 }
1549 }
1550 }
1551
1552 return TRUE;
1553}
1554\f
1555/* This routine is used to export all defined symbols into the dynamic
1556 symbol table. It is called via elf_link_hash_traverse. */
1557
1558bfd_boolean
268b6b39 1559_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1560{
268b6b39 1561 struct elf_info_failed *eif = data;
45d6a902
AM
1562
1563 /* Ignore indirect symbols. These are added by the versioning code. */
1564 if (h->root.type == bfd_link_hash_indirect)
1565 return TRUE;
1566
1567 if (h->root.type == bfd_link_hash_warning)
1568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1569
1570 if (h->dynindx == -1
f5385ebf
AM
1571 && (h->def_regular
1572 || h->ref_regular))
45d6a902
AM
1573 {
1574 struct bfd_elf_version_tree *t;
1575 struct bfd_elf_version_expr *d;
1576
1577 for (t = eif->verdefs; t != NULL; t = t->next)
1578 {
108ba305 1579 if (t->globals.list != NULL)
45d6a902 1580 {
108ba305
JJ
1581 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1582 if (d != NULL)
1583 goto doit;
45d6a902
AM
1584 }
1585
108ba305 1586 if (t->locals.list != NULL)
45d6a902 1587 {
108ba305
JJ
1588 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1589 if (d != NULL)
1590 return TRUE;
45d6a902
AM
1591 }
1592 }
1593
1594 if (!eif->verdefs)
1595 {
1596 doit:
c152c796 1597 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1598 {
1599 eif->failed = TRUE;
1600 return FALSE;
1601 }
1602 }
1603 }
1604
1605 return TRUE;
1606}
1607\f
1608/* Look through the symbols which are defined in other shared
1609 libraries and referenced here. Update the list of version
1610 dependencies. This will be put into the .gnu.version_r section.
1611 This function is called via elf_link_hash_traverse. */
1612
1613bfd_boolean
268b6b39
AM
1614_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1615 void *data)
45d6a902 1616{
268b6b39 1617 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1618 Elf_Internal_Verneed *t;
1619 Elf_Internal_Vernaux *a;
1620 bfd_size_type amt;
1621
1622 if (h->root.type == bfd_link_hash_warning)
1623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1624
1625 /* We only care about symbols defined in shared objects with version
1626 information. */
f5385ebf
AM
1627 if (!h->def_dynamic
1628 || h->def_regular
45d6a902
AM
1629 || h->dynindx == -1
1630 || h->verinfo.verdef == NULL)
1631 return TRUE;
1632
1633 /* See if we already know about this version. */
1634 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1635 {
1636 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1637 continue;
1638
1639 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1640 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1641 return TRUE;
1642
1643 break;
1644 }
1645
1646 /* This is a new version. Add it to tree we are building. */
1647
1648 if (t == NULL)
1649 {
1650 amt = sizeof *t;
268b6b39 1651 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1652 if (t == NULL)
1653 {
1654 rinfo->failed = TRUE;
1655 return FALSE;
1656 }
1657
1658 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1659 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1660 elf_tdata (rinfo->output_bfd)->verref = t;
1661 }
1662
1663 amt = sizeof *a;
268b6b39 1664 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1665
1666 /* Note that we are copying a string pointer here, and testing it
1667 above. If bfd_elf_string_from_elf_section is ever changed to
1668 discard the string data when low in memory, this will have to be
1669 fixed. */
1670 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1671
1672 a->vna_flags = h->verinfo.verdef->vd_flags;
1673 a->vna_nextptr = t->vn_auxptr;
1674
1675 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1676 ++rinfo->vers;
1677
1678 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1679
1680 t->vn_auxptr = a;
1681
1682 return TRUE;
1683}
1684
1685/* Figure out appropriate versions for all the symbols. We may not
1686 have the version number script until we have read all of the input
1687 files, so until that point we don't know which symbols should be
1688 local. This function is called via elf_link_hash_traverse. */
1689
1690bfd_boolean
268b6b39 1691_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1692{
1693 struct elf_assign_sym_version_info *sinfo;
1694 struct bfd_link_info *info;
9c5bfbb7 1695 const struct elf_backend_data *bed;
45d6a902
AM
1696 struct elf_info_failed eif;
1697 char *p;
1698 bfd_size_type amt;
1699
268b6b39 1700 sinfo = data;
45d6a902
AM
1701 info = sinfo->info;
1702
1703 if (h->root.type == bfd_link_hash_warning)
1704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1705
1706 /* Fix the symbol flags. */
1707 eif.failed = FALSE;
1708 eif.info = info;
1709 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1710 {
1711 if (eif.failed)
1712 sinfo->failed = TRUE;
1713 return FALSE;
1714 }
1715
1716 /* We only need version numbers for symbols defined in regular
1717 objects. */
f5385ebf 1718 if (!h->def_regular)
45d6a902
AM
1719 return TRUE;
1720
1721 bed = get_elf_backend_data (sinfo->output_bfd);
1722 p = strchr (h->root.root.string, ELF_VER_CHR);
1723 if (p != NULL && h->verinfo.vertree == NULL)
1724 {
1725 struct bfd_elf_version_tree *t;
1726 bfd_boolean hidden;
1727
1728 hidden = TRUE;
1729
1730 /* There are two consecutive ELF_VER_CHR characters if this is
1731 not a hidden symbol. */
1732 ++p;
1733 if (*p == ELF_VER_CHR)
1734 {
1735 hidden = FALSE;
1736 ++p;
1737 }
1738
1739 /* If there is no version string, we can just return out. */
1740 if (*p == '\0')
1741 {
1742 if (hidden)
f5385ebf 1743 h->hidden = 1;
45d6a902
AM
1744 return TRUE;
1745 }
1746
1747 /* Look for the version. If we find it, it is no longer weak. */
1748 for (t = sinfo->verdefs; t != NULL; t = t->next)
1749 {
1750 if (strcmp (t->name, p) == 0)
1751 {
1752 size_t len;
1753 char *alc;
1754 struct bfd_elf_version_expr *d;
1755
1756 len = p - h->root.root.string;
268b6b39 1757 alc = bfd_malloc (len);
45d6a902
AM
1758 if (alc == NULL)
1759 return FALSE;
1760 memcpy (alc, h->root.root.string, len - 1);
1761 alc[len - 1] = '\0';
1762 if (alc[len - 2] == ELF_VER_CHR)
1763 alc[len - 2] = '\0';
1764
1765 h->verinfo.vertree = t;
1766 t->used = TRUE;
1767 d = NULL;
1768
108ba305
JJ
1769 if (t->globals.list != NULL)
1770 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1771
1772 /* See if there is anything to force this symbol to
1773 local scope. */
108ba305 1774 if (d == NULL && t->locals.list != NULL)
45d6a902 1775 {
108ba305
JJ
1776 d = (*t->match) (&t->locals, NULL, alc);
1777 if (d != NULL
1778 && h->dynindx != -1
108ba305
JJ
1779 && ! info->export_dynamic)
1780 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1781 }
1782
1783 free (alc);
1784 break;
1785 }
1786 }
1787
1788 /* If we are building an application, we need to create a
1789 version node for this version. */
36af4a4e 1790 if (t == NULL && info->executable)
45d6a902
AM
1791 {
1792 struct bfd_elf_version_tree **pp;
1793 int version_index;
1794
1795 /* If we aren't going to export this symbol, we don't need
1796 to worry about it. */
1797 if (h->dynindx == -1)
1798 return TRUE;
1799
1800 amt = sizeof *t;
108ba305 1801 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1802 if (t == NULL)
1803 {
1804 sinfo->failed = TRUE;
1805 return FALSE;
1806 }
1807
45d6a902 1808 t->name = p;
45d6a902
AM
1809 t->name_indx = (unsigned int) -1;
1810 t->used = TRUE;
1811
1812 version_index = 1;
1813 /* Don't count anonymous version tag. */
1814 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1815 version_index = 0;
1816 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1817 ++version_index;
1818 t->vernum = version_index;
1819
1820 *pp = t;
1821
1822 h->verinfo.vertree = t;
1823 }
1824 else if (t == NULL)
1825 {
1826 /* We could not find the version for a symbol when
1827 generating a shared archive. Return an error. */
1828 (*_bfd_error_handler)
d003868e
AM
1829 (_("%B: undefined versioned symbol name %s"),
1830 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1831 bfd_set_error (bfd_error_bad_value);
1832 sinfo->failed = TRUE;
1833 return FALSE;
1834 }
1835
1836 if (hidden)
f5385ebf 1837 h->hidden = 1;
45d6a902
AM
1838 }
1839
1840 /* If we don't have a version for this symbol, see if we can find
1841 something. */
1842 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1843 {
1844 struct bfd_elf_version_tree *t;
1845 struct bfd_elf_version_tree *local_ver;
1846 struct bfd_elf_version_expr *d;
1847
1848 /* See if can find what version this symbol is in. If the
1849 symbol is supposed to be local, then don't actually register
1850 it. */
1851 local_ver = NULL;
1852 for (t = sinfo->verdefs; t != NULL; t = t->next)
1853 {
108ba305 1854 if (t->globals.list != NULL)
45d6a902
AM
1855 {
1856 bfd_boolean matched;
1857
1858 matched = FALSE;
108ba305
JJ
1859 d = NULL;
1860 while ((d = (*t->match) (&t->globals, d,
1861 h->root.root.string)) != NULL)
1862 if (d->symver)
1863 matched = TRUE;
1864 else
1865 {
1866 /* There is a version without definition. Make
1867 the symbol the default definition for this
1868 version. */
1869 h->verinfo.vertree = t;
1870 local_ver = NULL;
1871 d->script = 1;
1872 break;
1873 }
45d6a902
AM
1874 if (d != NULL)
1875 break;
1876 else if (matched)
1877 /* There is no undefined version for this symbol. Hide the
1878 default one. */
1879 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1880 }
1881
108ba305 1882 if (t->locals.list != NULL)
45d6a902 1883 {
108ba305
JJ
1884 d = NULL;
1885 while ((d = (*t->match) (&t->locals, d,
1886 h->root.root.string)) != NULL)
45d6a902 1887 {
108ba305 1888 local_ver = t;
45d6a902 1889 /* If the match is "*", keep looking for a more
108ba305
JJ
1890 explicit, perhaps even global, match.
1891 XXX: Shouldn't this be !d->wildcard instead? */
1892 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1893 break;
45d6a902
AM
1894 }
1895
1896 if (d != NULL)
1897 break;
1898 }
1899 }
1900
1901 if (local_ver != NULL)
1902 {
1903 h->verinfo.vertree = local_ver;
1904 if (h->dynindx != -1
45d6a902
AM
1905 && ! info->export_dynamic)
1906 {
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913}
1914\f
45d6a902
AM
1915/* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1921
1922 Returns FALSE if something goes wrong. */
1923
1924static bfd_boolean
268b6b39 1925elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1926 asection *sec,
268b6b39
AM
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
45d6a902 1930{
9c5bfbb7 1931 const struct elf_backend_data *bed;
268b6b39 1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
243ef1e0
L
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
45d6a902 1938
45d6a902
AM
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1942
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1946
243ef1e0
L
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1949
45d6a902
AM
1950 bed = get_elf_backend_data (abfd);
1951
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1961 }
1962
1963 erela = external_relocs;
51992aec 1964 erelaend = erela + shdr->sh_size;
45d6a902
AM
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1967 {
243ef1e0
L
1968 bfd_vma r_symndx;
1969
45d6a902 1970 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1975 {
1976 (*_bfd_error_handler)
d003868e
AM
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1983 }
45d6a902
AM
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1986 }
1987
1988 return TRUE;
1989}
1990
1991/* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2000
2001Elf_Internal_Rela *
268b6b39
AM
2002_bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
45d6a902
AM
2007{
2008 Elf_Internal_Shdr *rel_hdr;
268b6b39 2009 void *alloc1 = NULL;
45d6a902 2010 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2012
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2015
2016 if (o->reloc_count == 0)
2017 return NULL;
2018
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2020
2021 if (internal_relocs == NULL)
2022 {
2023 bfd_size_type size;
2024
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
268b6b39 2028 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2029 else
268b6b39 2030 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2031 if (internal_relocs == NULL)
2032 goto error_return;
2033 }
2034
2035 if (external_relocs == NULL)
2036 {
2037 bfd_size_type size = rel_hdr->sh_size;
2038
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2041 alloc1 = bfd_malloc (size);
45d6a902
AM
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2045 }
2046
243ef1e0 2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
51992aec
AM
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2058 goto error_return;
2059
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2063
2064 if (alloc1 != NULL)
2065 free (alloc1);
2066
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2069
2070 return internal_relocs;
2071
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2078}
2079
2080/* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2082
2083bfd_boolean
268b6b39
AM
2084_bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
45d6a902
AM
2087{
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2090
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2096
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2100
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2103
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
268b6b39 2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2111
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2116 {
2117 struct elf_link_hash_entry **p;
2118
268b6b39 2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2120 if (p == NULL)
2121 return FALSE;
2122
2123 elf_section_data (o)->rel_hashes = p;
2124 }
2125
2126 return TRUE;
2127}
2128
2129/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2132
2133bfd_boolean
268b6b39
AM
2134_bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2137 Elf_Internal_Rela *internal_relocs,
2138 struct elf_link_hash_entry **rel_hash
2139 ATTRIBUTE_UNUSED)
45d6a902
AM
2140{
2141 Elf_Internal_Rela *irela;
2142 Elf_Internal_Rela *irelaend;
2143 bfd_byte *erel;
2144 Elf_Internal_Shdr *output_rel_hdr;
2145 asection *output_section;
2146 unsigned int *rel_countp = NULL;
9c5bfbb7 2147 const struct elf_backend_data *bed;
268b6b39 2148 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2149
2150 output_section = input_section->output_section;
2151 output_rel_hdr = NULL;
2152
2153 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2154 == input_rel_hdr->sh_entsize)
2155 {
2156 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2157 rel_countp = &elf_section_data (output_section)->rel_count;
2158 }
2159 else if (elf_section_data (output_section)->rel_hdr2
2160 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2161 == input_rel_hdr->sh_entsize))
2162 {
2163 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2164 rel_countp = &elf_section_data (output_section)->rel_count2;
2165 }
2166 else
2167 {
2168 (*_bfd_error_handler)
d003868e
AM
2169 (_("%B: relocation size mismatch in %B section %A"),
2170 output_bfd, input_section->owner, input_section);
45d6a902
AM
2171 bfd_set_error (bfd_error_wrong_object_format);
2172 return FALSE;
2173 }
2174
2175 bed = get_elf_backend_data (output_bfd);
2176 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2177 swap_out = bed->s->swap_reloc_out;
2178 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2179 swap_out = bed->s->swap_reloca_out;
2180 else
2181 abort ();
2182
2183 erel = output_rel_hdr->contents;
2184 erel += *rel_countp * input_rel_hdr->sh_entsize;
2185 irela = internal_relocs;
2186 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2187 * bed->s->int_rels_per_ext_rel);
2188 while (irela < irelaend)
2189 {
2190 (*swap_out) (output_bfd, irela, erel);
2191 irela += bed->s->int_rels_per_ext_rel;
2192 erel += input_rel_hdr->sh_entsize;
2193 }
2194
2195 /* Bump the counter, so that we know where to add the next set of
2196 relocations. */
2197 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2198
2199 return TRUE;
2200}
2201\f
2202/* Fix up the flags for a symbol. This handles various cases which
2203 can only be fixed after all the input files are seen. This is
2204 currently called by both adjust_dynamic_symbol and
2205 assign_sym_version, which is unnecessary but perhaps more robust in
2206 the face of future changes. */
2207
2208bfd_boolean
268b6b39
AM
2209_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2210 struct elf_info_failed *eif)
45d6a902
AM
2211{
2212 /* If this symbol was mentioned in a non-ELF file, try to set
2213 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2214 permit a non-ELF file to correctly refer to a symbol defined in
2215 an ELF dynamic object. */
f5385ebf 2216 if (h->non_elf)
45d6a902
AM
2217 {
2218 while (h->root.type == bfd_link_hash_indirect)
2219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2220
2221 if (h->root.type != bfd_link_hash_defined
2222 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2223 {
2224 h->ref_regular = 1;
2225 h->ref_regular_nonweak = 1;
2226 }
45d6a902
AM
2227 else
2228 {
2229 if (h->root.u.def.section->owner != NULL
2230 && (bfd_get_flavour (h->root.u.def.section->owner)
2231 == bfd_target_elf_flavour))
f5385ebf
AM
2232 {
2233 h->ref_regular = 1;
2234 h->ref_regular_nonweak = 1;
2235 }
45d6a902 2236 else
f5385ebf 2237 h->def_regular = 1;
45d6a902
AM
2238 }
2239
2240 if (h->dynindx == -1
f5385ebf
AM
2241 && (h->def_dynamic
2242 || h->ref_dynamic))
45d6a902 2243 {
c152c796 2244 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2245 {
2246 eif->failed = TRUE;
2247 return FALSE;
2248 }
2249 }
2250 }
2251 else
2252 {
f5385ebf 2253 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2254 was first seen in a non-ELF file. Fortunately, if the symbol
2255 was first seen in an ELF file, we're probably OK unless the
2256 symbol was defined in a non-ELF file. Catch that case here.
2257 FIXME: We're still in trouble if the symbol was first seen in
2258 a dynamic object, and then later in a non-ELF regular object. */
2259 if ((h->root.type == bfd_link_hash_defined
2260 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2261 && !h->def_regular
45d6a902
AM
2262 && (h->root.u.def.section->owner != NULL
2263 ? (bfd_get_flavour (h->root.u.def.section->owner)
2264 != bfd_target_elf_flavour)
2265 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2266 && !h->def_dynamic)))
2267 h->def_regular = 1;
45d6a902
AM
2268 }
2269
2270 /* If this is a final link, and the symbol was defined as a common
2271 symbol in a regular object file, and there was no definition in
2272 any dynamic object, then the linker will have allocated space for
f5385ebf 2273 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2274 flag will not have been set. */
2275 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2276 && !h->def_regular
2277 && h->ref_regular
2278 && !h->def_dynamic
45d6a902 2279 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2280 h->def_regular = 1;
45d6a902
AM
2281
2282 /* If -Bsymbolic was used (which means to bind references to global
2283 symbols to the definition within the shared object), and this
2284 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2285 need a PLT entry. Likewise, if the symbol has non-default
2286 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2287 will force it local. */
f5385ebf 2288 if (h->needs_plt
45d6a902 2289 && eif->info->shared
0eddce27 2290 && is_elf_hash_table (eif->info->hash)
45d6a902 2291 && (eif->info->symbolic
c1be741f 2292 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2293 && h->def_regular)
45d6a902 2294 {
9c5bfbb7 2295 const struct elf_backend_data *bed;
45d6a902
AM
2296 bfd_boolean force_local;
2297
2298 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2299
2300 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2301 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2302 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2303 }
2304
2305 /* If a weak undefined symbol has non-default visibility, we also
2306 hide it from the dynamic linker. */
9c7a29a3 2307 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2308 && h->root.type == bfd_link_hash_undefweak)
2309 {
9c5bfbb7 2310 const struct elf_backend_data *bed;
45d6a902
AM
2311 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2312 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2313 }
2314
2315 /* If this is a weak defined symbol in a dynamic object, and we know
2316 the real definition in the dynamic object, copy interesting flags
2317 over to the real definition. */
f6e332e6 2318 if (h->u.weakdef != NULL)
45d6a902
AM
2319 {
2320 struct elf_link_hash_entry *weakdef;
2321
f6e332e6 2322 weakdef = h->u.weakdef;
45d6a902
AM
2323 if (h->root.type == bfd_link_hash_indirect)
2324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2325
2326 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2327 || h->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2329 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2330 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2331
2332 /* If the real definition is defined by a regular object file,
2333 don't do anything special. See the longer description in
2334 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2335 if (weakdef->def_regular)
f6e332e6 2336 h->u.weakdef = NULL;
45d6a902
AM
2337 else
2338 {
9c5bfbb7 2339 const struct elf_backend_data *bed;
45d6a902
AM
2340
2341 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2342 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2343 }
2344 }
2345
2346 return TRUE;
2347}
2348
2349/* Make the backend pick a good value for a dynamic symbol. This is
2350 called via elf_link_hash_traverse, and also calls itself
2351 recursively. */
2352
2353bfd_boolean
268b6b39 2354_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2355{
268b6b39 2356 struct elf_info_failed *eif = data;
45d6a902 2357 bfd *dynobj;
9c5bfbb7 2358 const struct elf_backend_data *bed;
45d6a902 2359
0eddce27 2360 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2361 return FALSE;
2362
2363 if (h->root.type == bfd_link_hash_warning)
2364 {
2365 h->plt = elf_hash_table (eif->info)->init_offset;
2366 h->got = elf_hash_table (eif->info)->init_offset;
2367
2368 /* When warning symbols are created, they **replace** the "real"
2369 entry in the hash table, thus we never get to see the real
2370 symbol in a hash traversal. So look at it now. */
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2372 }
2373
2374 /* Ignore indirect symbols. These are added by the versioning code. */
2375 if (h->root.type == bfd_link_hash_indirect)
2376 return TRUE;
2377
2378 /* Fix the symbol flags. */
2379 if (! _bfd_elf_fix_symbol_flags (h, eif))
2380 return FALSE;
2381
2382 /* If this symbol does not require a PLT entry, and it is not
2383 defined by a dynamic object, or is not referenced by a regular
2384 object, ignore it. We do have to handle a weak defined symbol,
2385 even if no regular object refers to it, if we decided to add it
2386 to the dynamic symbol table. FIXME: Do we normally need to worry
2387 about symbols which are defined by one dynamic object and
2388 referenced by another one? */
f5385ebf
AM
2389 if (!h->needs_plt
2390 && (h->def_regular
2391 || !h->def_dynamic
2392 || (!h->ref_regular
f6e332e6 2393 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902
AM
2394 {
2395 h->plt = elf_hash_table (eif->info)->init_offset;
2396 return TRUE;
2397 }
2398
2399 /* If we've already adjusted this symbol, don't do it again. This
2400 can happen via a recursive call. */
f5385ebf 2401 if (h->dynamic_adjusted)
45d6a902
AM
2402 return TRUE;
2403
2404 /* Don't look at this symbol again. Note that we must set this
2405 after checking the above conditions, because we may look at a
2406 symbol once, decide not to do anything, and then get called
2407 recursively later after REF_REGULAR is set below. */
f5385ebf 2408 h->dynamic_adjusted = 1;
45d6a902
AM
2409
2410 /* If this is a weak definition, and we know a real definition, and
2411 the real symbol is not itself defined by a regular object file,
2412 then get a good value for the real definition. We handle the
2413 real symbol first, for the convenience of the backend routine.
2414
2415 Note that there is a confusing case here. If the real definition
2416 is defined by a regular object file, we don't get the real symbol
2417 from the dynamic object, but we do get the weak symbol. If the
2418 processor backend uses a COPY reloc, then if some routine in the
2419 dynamic object changes the real symbol, we will not see that
2420 change in the corresponding weak symbol. This is the way other
2421 ELF linkers work as well, and seems to be a result of the shared
2422 library model.
2423
2424 I will clarify this issue. Most SVR4 shared libraries define the
2425 variable _timezone and define timezone as a weak synonym. The
2426 tzset call changes _timezone. If you write
2427 extern int timezone;
2428 int _timezone = 5;
2429 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2430 you might expect that, since timezone is a synonym for _timezone,
2431 the same number will print both times. However, if the processor
2432 backend uses a COPY reloc, then actually timezone will be copied
2433 into your process image, and, since you define _timezone
2434 yourself, _timezone will not. Thus timezone and _timezone will
2435 wind up at different memory locations. The tzset call will set
2436 _timezone, leaving timezone unchanged. */
2437
f6e332e6 2438 if (h->u.weakdef != NULL)
45d6a902
AM
2439 {
2440 /* If we get to this point, we know there is an implicit
2441 reference by a regular object file via the weak symbol H.
2442 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2443 H->U.WEAKDEF before it finds H? */
2444 h->u.weakdef->ref_regular = 1;
45d6a902 2445
f6e332e6 2446 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2447 return FALSE;
2448 }
2449
2450 /* If a symbol has no type and no size and does not require a PLT
2451 entry, then we are probably about to do the wrong thing here: we
2452 are probably going to create a COPY reloc for an empty object.
2453 This case can arise when a shared object is built with assembly
2454 code, and the assembly code fails to set the symbol type. */
2455 if (h->size == 0
2456 && h->type == STT_NOTYPE
f5385ebf 2457 && !h->needs_plt)
45d6a902
AM
2458 (*_bfd_error_handler)
2459 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2460 h->root.root.string);
2461
2462 dynobj = elf_hash_table (eif->info)->dynobj;
2463 bed = get_elf_backend_data (dynobj);
2464 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2465 {
2466 eif->failed = TRUE;
2467 return FALSE;
2468 }
2469
2470 return TRUE;
2471}
2472
2473/* Adjust all external symbols pointing into SEC_MERGE sections
2474 to reflect the object merging within the sections. */
2475
2476bfd_boolean
268b6b39 2477_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2478{
2479 asection *sec;
2480
2481 if (h->root.type == bfd_link_hash_warning)
2482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2483
2484 if ((h->root.type == bfd_link_hash_defined
2485 || h->root.type == bfd_link_hash_defweak)
2486 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2487 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2488 {
268b6b39 2489 bfd *output_bfd = data;
45d6a902
AM
2490
2491 h->root.u.def.value =
2492 _bfd_merged_section_offset (output_bfd,
2493 &h->root.u.def.section,
2494 elf_section_data (sec)->sec_info,
753731ee 2495 h->root.u.def.value);
45d6a902
AM
2496 }
2497
2498 return TRUE;
2499}
986a241f
RH
2500
2501/* Returns false if the symbol referred to by H should be considered
2502 to resolve local to the current module, and true if it should be
2503 considered to bind dynamically. */
2504
2505bfd_boolean
268b6b39
AM
2506_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2507 struct bfd_link_info *info,
2508 bfd_boolean ignore_protected)
986a241f
RH
2509{
2510 bfd_boolean binding_stays_local_p;
2511
2512 if (h == NULL)
2513 return FALSE;
2514
2515 while (h->root.type == bfd_link_hash_indirect
2516 || h->root.type == bfd_link_hash_warning)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 /* If it was forced local, then clearly it's not dynamic. */
2520 if (h->dynindx == -1)
2521 return FALSE;
f5385ebf 2522 if (h->forced_local)
986a241f
RH
2523 return FALSE;
2524
2525 /* Identify the cases where name binding rules say that a
2526 visible symbol resolves locally. */
2527 binding_stays_local_p = info->executable || info->symbolic;
2528
2529 switch (ELF_ST_VISIBILITY (h->other))
2530 {
2531 case STV_INTERNAL:
2532 case STV_HIDDEN:
2533 return FALSE;
2534
2535 case STV_PROTECTED:
2536 /* Proper resolution for function pointer equality may require
2537 that these symbols perhaps be resolved dynamically, even though
2538 we should be resolving them to the current module. */
1c16dfa5 2539 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2540 binding_stays_local_p = TRUE;
2541 break;
2542
2543 default:
986a241f
RH
2544 break;
2545 }
2546
aa37626c 2547 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2548 if (!h->def_regular)
aa37626c
L
2549 return TRUE;
2550
986a241f
RH
2551 /* Otherwise, the symbol is dynamic if binding rules don't tell
2552 us that it remains local. */
2553 return !binding_stays_local_p;
2554}
f6c52c13
AM
2555
2556/* Return true if the symbol referred to by H should be considered
2557 to resolve local to the current module, and false otherwise. Differs
2558 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2559 undefined symbols and weak symbols. */
2560
2561bfd_boolean
268b6b39
AM
2562_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2563 struct bfd_link_info *info,
2564 bfd_boolean local_protected)
f6c52c13
AM
2565{
2566 /* If it's a local sym, of course we resolve locally. */
2567 if (h == NULL)
2568 return TRUE;
2569
7e2294f9
AO
2570 /* Common symbols that become definitions don't get the DEF_REGULAR
2571 flag set, so test it first, and don't bail out. */
2572 if (ELF_COMMON_DEF_P (h))
2573 /* Do nothing. */;
f6c52c13
AM
2574 /* If we don't have a definition in a regular file, then we can't
2575 resolve locally. The sym is either undefined or dynamic. */
f5385ebf 2576 else if (!h->def_regular)
f6c52c13
AM
2577 return FALSE;
2578
2579 /* Forced local symbols resolve locally. */
f5385ebf 2580 if (h->forced_local)
f6c52c13
AM
2581 return TRUE;
2582
2583 /* As do non-dynamic symbols. */
2584 if (h->dynindx == -1)
2585 return TRUE;
2586
2587 /* At this point, we know the symbol is defined and dynamic. In an
2588 executable it must resolve locally, likewise when building symbolic
2589 shared libraries. */
2590 if (info->executable || info->symbolic)
2591 return TRUE;
2592
2593 /* Now deal with defined dynamic symbols in shared libraries. Ones
2594 with default visibility might not resolve locally. */
2595 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2596 return FALSE;
2597
2598 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2599 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2600 return TRUE;
2601
1c16dfa5
L
2602 /* STV_PROTECTED non-function symbols are local. */
2603 if (h->type != STT_FUNC)
2604 return TRUE;
2605
f6c52c13
AM
2606 /* Function pointer equality tests may require that STV_PROTECTED
2607 symbols be treated as dynamic symbols, even when we know that the
2608 dynamic linker will resolve them locally. */
2609 return local_protected;
2610}
e1918d23
AM
2611
2612/* Caches some TLS segment info, and ensures that the TLS segment vma is
2613 aligned. Returns the first TLS output section. */
2614
2615struct bfd_section *
2616_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2617{
2618 struct bfd_section *sec, *tls;
2619 unsigned int align = 0;
2620
2621 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2622 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2623 break;
2624 tls = sec;
2625
2626 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2627 if (sec->alignment_power > align)
2628 align = sec->alignment_power;
2629
2630 elf_hash_table (info)->tls_sec = tls;
2631
2632 /* Ensure the alignment of the first section is the largest alignment,
2633 so that the tls segment starts aligned. */
2634 if (tls != NULL)
2635 tls->alignment_power = align;
2636
2637 return tls;
2638}
0ad989f9
L
2639
2640/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2641static bfd_boolean
2642is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2643 Elf_Internal_Sym *sym)
2644{
2645 /* Local symbols do not count, but target specific ones might. */
2646 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2647 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2648 return FALSE;
2649
2650 /* Function symbols do not count. */
2651 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2652 return FALSE;
2653
2654 /* If the section is undefined, then so is the symbol. */
2655 if (sym->st_shndx == SHN_UNDEF)
2656 return FALSE;
2657
2658 /* If the symbol is defined in the common section, then
2659 it is a common definition and so does not count. */
2660 if (sym->st_shndx == SHN_COMMON)
2661 return FALSE;
2662
2663 /* If the symbol is in a target specific section then we
2664 must rely upon the backend to tell us what it is. */
2665 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2666 /* FIXME - this function is not coded yet:
2667
2668 return _bfd_is_global_symbol_definition (abfd, sym);
2669
2670 Instead for now assume that the definition is not global,
2671 Even if this is wrong, at least the linker will behave
2672 in the same way that it used to do. */
2673 return FALSE;
2674
2675 return TRUE;
2676}
2677
2678/* Search the symbol table of the archive element of the archive ABFD
2679 whose archive map contains a mention of SYMDEF, and determine if
2680 the symbol is defined in this element. */
2681static bfd_boolean
2682elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2683{
2684 Elf_Internal_Shdr * hdr;
2685 bfd_size_type symcount;
2686 bfd_size_type extsymcount;
2687 bfd_size_type extsymoff;
2688 Elf_Internal_Sym *isymbuf;
2689 Elf_Internal_Sym *isym;
2690 Elf_Internal_Sym *isymend;
2691 bfd_boolean result;
2692
2693 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2694 if (abfd == NULL)
2695 return FALSE;
2696
2697 if (! bfd_check_format (abfd, bfd_object))
2698 return FALSE;
2699
2700 /* If we have already included the element containing this symbol in the
2701 link then we do not need to include it again. Just claim that any symbol
2702 it contains is not a definition, so that our caller will not decide to
2703 (re)include this element. */
2704 if (abfd->archive_pass)
2705 return FALSE;
2706
2707 /* Select the appropriate symbol table. */
2708 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2709 hdr = &elf_tdata (abfd)->symtab_hdr;
2710 else
2711 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2712
2713 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2714
2715 /* The sh_info field of the symtab header tells us where the
2716 external symbols start. We don't care about the local symbols. */
2717 if (elf_bad_symtab (abfd))
2718 {
2719 extsymcount = symcount;
2720 extsymoff = 0;
2721 }
2722 else
2723 {
2724 extsymcount = symcount - hdr->sh_info;
2725 extsymoff = hdr->sh_info;
2726 }
2727
2728 if (extsymcount == 0)
2729 return FALSE;
2730
2731 /* Read in the symbol table. */
2732 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2733 NULL, NULL, NULL);
2734 if (isymbuf == NULL)
2735 return FALSE;
2736
2737 /* Scan the symbol table looking for SYMDEF. */
2738 result = FALSE;
2739 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2740 {
2741 const char *name;
2742
2743 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2744 isym->st_name);
2745 if (name == NULL)
2746 break;
2747
2748 if (strcmp (name, symdef->name) == 0)
2749 {
2750 result = is_global_data_symbol_definition (abfd, isym);
2751 break;
2752 }
2753 }
2754
2755 free (isymbuf);
2756
2757 return result;
2758}
2759\f
5a580b3a
AM
2760/* Add an entry to the .dynamic table. */
2761
2762bfd_boolean
2763_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2764 bfd_vma tag,
2765 bfd_vma val)
2766{
2767 struct elf_link_hash_table *hash_table;
2768 const struct elf_backend_data *bed;
2769 asection *s;
2770 bfd_size_type newsize;
2771 bfd_byte *newcontents;
2772 Elf_Internal_Dyn dyn;
2773
2774 hash_table = elf_hash_table (info);
2775 if (! is_elf_hash_table (hash_table))
2776 return FALSE;
2777
8fdd7217
NC
2778 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2779 _bfd_error_handler
2780 (_("warning: creating a DT_TEXTREL in a shared object."));
2781
5a580b3a
AM
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2784 BFD_ASSERT (s != NULL);
2785
eea6121a 2786 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2787 newcontents = bfd_realloc (s->contents, newsize);
2788 if (newcontents == NULL)
2789 return FALSE;
2790
2791 dyn.d_tag = tag;
2792 dyn.d_un.d_val = val;
eea6121a 2793 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2794
eea6121a 2795 s->size = newsize;
5a580b3a
AM
2796 s->contents = newcontents;
2797
2798 return TRUE;
2799}
2800
2801/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2802 otherwise just check whether one already exists. Returns -1 on error,
2803 1 if a DT_NEEDED tag already exists, and 0 on success. */
2804
4ad4eba5 2805static int
7e9f0867
AM
2806elf_add_dt_needed_tag (bfd *abfd,
2807 struct bfd_link_info *info,
4ad4eba5
AM
2808 const char *soname,
2809 bfd_boolean do_it)
5a580b3a
AM
2810{
2811 struct elf_link_hash_table *hash_table;
2812 bfd_size_type oldsize;
2813 bfd_size_type strindex;
2814
7e9f0867
AM
2815 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2816 return -1;
2817
5a580b3a
AM
2818 hash_table = elf_hash_table (info);
2819 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2820 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2821 if (strindex == (bfd_size_type) -1)
2822 return -1;
2823
2824 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2825 {
2826 asection *sdyn;
2827 const struct elf_backend_data *bed;
2828 bfd_byte *extdyn;
2829
2830 bed = get_elf_backend_data (hash_table->dynobj);
2831 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2832 if (sdyn != NULL)
2833 for (extdyn = sdyn->contents;
2834 extdyn < sdyn->contents + sdyn->size;
2835 extdyn += bed->s->sizeof_dyn)
2836 {
2837 Elf_Internal_Dyn dyn;
5a580b3a 2838
7e9f0867
AM
2839 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2840 if (dyn.d_tag == DT_NEEDED
2841 && dyn.d_un.d_val == strindex)
2842 {
2843 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2844 return 1;
2845 }
2846 }
5a580b3a
AM
2847 }
2848
2849 if (do_it)
2850 {
7e9f0867
AM
2851 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2852 return -1;
2853
5a580b3a
AM
2854 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2855 return -1;
2856 }
2857 else
2858 /* We were just checking for existence of the tag. */
2859 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2860
2861 return 0;
2862}
2863
77cfaee6
AM
2864/* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2865 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
ec13b3bb
AM
2866 references from regular objects to these symbols.
2867
2868 ??? Should we do something about references from other dynamic
2869 obects? If not, we potentially lose some warnings about undefined
2870 symbols. But how can we recover the initial undefined / undefweak
2871 state? */
77cfaee6
AM
2872
2873struct elf_smash_syms_data
2874{
2875 bfd *not_needed;
2876 struct elf_link_hash_table *htab;
2877 bfd_boolean twiddled;
2878};
2879
2880static bfd_boolean
2881elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2882{
2883 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2884 struct bfd_link_hash_entry *bh;
2885
2886 switch (h->root.type)
2887 {
2888 default:
2889 case bfd_link_hash_new:
2890 return TRUE;
2891
2892 case bfd_link_hash_undefined:
11f25ea6
AM
2893 if (h->root.u.undef.abfd != inf->not_needed)
2894 return TRUE;
4ea42fb7
AM
2895 if (h->root.u.undef.weak != NULL
2896 && h->root.u.undef.weak != inf->not_needed)
11f25ea6
AM
2897 {
2898 /* Symbol was undefweak in u.undef.weak bfd, and has become
2899 undefined in as-needed lib. Restore weak. */
2900 h->root.type = bfd_link_hash_undefweak;
2901 h->root.u.undef.abfd = h->root.u.undef.weak;
2902 if (h->root.u.undef.next != NULL
2903 || inf->htab->root.undefs_tail == &h->root)
2904 inf->twiddled = TRUE;
2905 return TRUE;
2906 }
2907 break;
2908
77cfaee6
AM
2909 case bfd_link_hash_undefweak:
2910 if (h->root.u.undef.abfd != inf->not_needed)
2911 return TRUE;
2912 break;
2913
2914 case bfd_link_hash_defined:
2915 case bfd_link_hash_defweak:
2916 if (h->root.u.def.section->owner != inf->not_needed)
2917 return TRUE;
2918 break;
2919
2920 case bfd_link_hash_common:
2921 if (h->root.u.c.p->section->owner != inf->not_needed)
2922 return TRUE;
2923 break;
2924
2925 case bfd_link_hash_warning:
2926 case bfd_link_hash_indirect:
2927 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2928 if (h->root.u.i.link->type != bfd_link_hash_new)
2929 return TRUE;
2930 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2931 return TRUE;
2932 break;
2933 }
2934
11f25ea6
AM
2935 /* There is no way we can undo symbol table state from defined or
2936 defweak back to undefined. */
2937 if (h->ref_regular)
2938 abort ();
2939
2e8b3a61
AM
2940 /* Set sym back to newly created state, but keep undef.next if it is
2941 being used as a list pointer. */
77cfaee6 2942 bh = h->root.u.undef.next;
2e8b3a61
AM
2943 if (bh == &h->root)
2944 bh = NULL;
77cfaee6
AM
2945 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2946 inf->twiddled = TRUE;
2947 (*inf->htab->root.table.newfunc) (&h->root.root,
2948 &inf->htab->root.table,
2949 h->root.root.string);
2950 h->root.u.undef.next = bh;
2951 h->root.u.undef.abfd = inf->not_needed;
2952 h->non_elf = 0;
2953 return TRUE;
2954}
2955
5a580b3a 2956/* Sort symbol by value and section. */
4ad4eba5
AM
2957static int
2958elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2959{
2960 const struct elf_link_hash_entry *h1;
2961 const struct elf_link_hash_entry *h2;
10b7e05b 2962 bfd_signed_vma vdiff;
5a580b3a
AM
2963
2964 h1 = *(const struct elf_link_hash_entry **) arg1;
2965 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2966 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2967 if (vdiff != 0)
2968 return vdiff > 0 ? 1 : -1;
2969 else
2970 {
2971 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2972 if (sdiff != 0)
2973 return sdiff > 0 ? 1 : -1;
2974 }
5a580b3a
AM
2975 return 0;
2976}
4ad4eba5 2977
5a580b3a
AM
2978/* This function is used to adjust offsets into .dynstr for
2979 dynamic symbols. This is called via elf_link_hash_traverse. */
2980
2981static bfd_boolean
2982elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2983{
2984 struct elf_strtab_hash *dynstr = data;
2985
2986 if (h->root.type == bfd_link_hash_warning)
2987 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2988
2989 if (h->dynindx != -1)
2990 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2991 return TRUE;
2992}
2993
2994/* Assign string offsets in .dynstr, update all structures referencing
2995 them. */
2996
4ad4eba5
AM
2997static bfd_boolean
2998elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2999{
3000 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3001 struct elf_link_local_dynamic_entry *entry;
3002 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3003 bfd *dynobj = hash_table->dynobj;
3004 asection *sdyn;
3005 bfd_size_type size;
3006 const struct elf_backend_data *bed;
3007 bfd_byte *extdyn;
3008
3009 _bfd_elf_strtab_finalize (dynstr);
3010 size = _bfd_elf_strtab_size (dynstr);
3011
3012 bed = get_elf_backend_data (dynobj);
3013 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3014 BFD_ASSERT (sdyn != NULL);
3015
3016 /* Update all .dynamic entries referencing .dynstr strings. */
3017 for (extdyn = sdyn->contents;
eea6121a 3018 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3019 extdyn += bed->s->sizeof_dyn)
3020 {
3021 Elf_Internal_Dyn dyn;
3022
3023 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3024 switch (dyn.d_tag)
3025 {
3026 case DT_STRSZ:
3027 dyn.d_un.d_val = size;
3028 break;
3029 case DT_NEEDED:
3030 case DT_SONAME:
3031 case DT_RPATH:
3032 case DT_RUNPATH:
3033 case DT_FILTER:
3034 case DT_AUXILIARY:
3035 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3036 break;
3037 default:
3038 continue;
3039 }
3040 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3041 }
3042
3043 /* Now update local dynamic symbols. */
3044 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3045 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3046 entry->isym.st_name);
3047
3048 /* And the rest of dynamic symbols. */
3049 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3050
3051 /* Adjust version definitions. */
3052 if (elf_tdata (output_bfd)->cverdefs)
3053 {
3054 asection *s;
3055 bfd_byte *p;
3056 bfd_size_type i;
3057 Elf_Internal_Verdef def;
3058 Elf_Internal_Verdaux defaux;
3059
3060 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3061 p = s->contents;
3062 do
3063 {
3064 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3065 &def);
3066 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3067 if (def.vd_aux != sizeof (Elf_External_Verdef))
3068 continue;
5a580b3a
AM
3069 for (i = 0; i < def.vd_cnt; ++i)
3070 {
3071 _bfd_elf_swap_verdaux_in (output_bfd,
3072 (Elf_External_Verdaux *) p, &defaux);
3073 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3074 defaux.vda_name);
3075 _bfd_elf_swap_verdaux_out (output_bfd,
3076 &defaux, (Elf_External_Verdaux *) p);
3077 p += sizeof (Elf_External_Verdaux);
3078 }
3079 }
3080 while (def.vd_next);
3081 }
3082
3083 /* Adjust version references. */
3084 if (elf_tdata (output_bfd)->verref)
3085 {
3086 asection *s;
3087 bfd_byte *p;
3088 bfd_size_type i;
3089 Elf_Internal_Verneed need;
3090 Elf_Internal_Vernaux needaux;
3091
3092 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3093 p = s->contents;
3094 do
3095 {
3096 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3097 &need);
3098 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3099 _bfd_elf_swap_verneed_out (output_bfd, &need,
3100 (Elf_External_Verneed *) p);
3101 p += sizeof (Elf_External_Verneed);
3102 for (i = 0; i < need.vn_cnt; ++i)
3103 {
3104 _bfd_elf_swap_vernaux_in (output_bfd,
3105 (Elf_External_Vernaux *) p, &needaux);
3106 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3107 needaux.vna_name);
3108 _bfd_elf_swap_vernaux_out (output_bfd,
3109 &needaux,
3110 (Elf_External_Vernaux *) p);
3111 p += sizeof (Elf_External_Vernaux);
3112 }
3113 }
3114 while (need.vn_next);
3115 }
3116
3117 return TRUE;
3118}
3119\f
4ad4eba5
AM
3120/* Add symbols from an ELF object file to the linker hash table. */
3121
3122static bfd_boolean
3123elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3124{
3125 bfd_boolean (*add_symbol_hook)
555cd476 3126 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
3127 const char **, flagword *, asection **, bfd_vma *);
3128 bfd_boolean (*check_relocs)
3129 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
3130 bfd_boolean (*check_directives)
3131 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
3132 bfd_boolean collect;
3133 Elf_Internal_Shdr *hdr;
3134 bfd_size_type symcount;
3135 bfd_size_type extsymcount;
3136 bfd_size_type extsymoff;
3137 struct elf_link_hash_entry **sym_hash;
3138 bfd_boolean dynamic;
3139 Elf_External_Versym *extversym = NULL;
3140 Elf_External_Versym *ever;
3141 struct elf_link_hash_entry *weaks;
3142 struct elf_link_hash_entry **nondeflt_vers = NULL;
3143 bfd_size_type nondeflt_vers_cnt = 0;
3144 Elf_Internal_Sym *isymbuf = NULL;
3145 Elf_Internal_Sym *isym;
3146 Elf_Internal_Sym *isymend;
3147 const struct elf_backend_data *bed;
3148 bfd_boolean add_needed;
3149 struct elf_link_hash_table * hash_table;
3150 bfd_size_type amt;
3151
3152 hash_table = elf_hash_table (info);
3153
3154 bed = get_elf_backend_data (abfd);
3155 add_symbol_hook = bed->elf_add_symbol_hook;
3156 collect = bed->collect;
3157
3158 if ((abfd->flags & DYNAMIC) == 0)
3159 dynamic = FALSE;
3160 else
3161 {
3162 dynamic = TRUE;
3163
3164 /* You can't use -r against a dynamic object. Also, there's no
3165 hope of using a dynamic object which does not exactly match
3166 the format of the output file. */
3167 if (info->relocatable
3168 || !is_elf_hash_table (hash_table)
3169 || hash_table->root.creator != abfd->xvec)
3170 {
9a0789ec
NC
3171 if (info->relocatable)
3172 bfd_set_error (bfd_error_invalid_operation);
3173 else
3174 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3175 goto error_return;
3176 }
3177 }
3178
3179 /* As a GNU extension, any input sections which are named
3180 .gnu.warning.SYMBOL are treated as warning symbols for the given
3181 symbol. This differs from .gnu.warning sections, which generate
3182 warnings when they are included in an output file. */
3183 if (info->executable)
3184 {
3185 asection *s;
3186
3187 for (s = abfd->sections; s != NULL; s = s->next)
3188 {
3189 const char *name;
3190
3191 name = bfd_get_section_name (abfd, s);
3192 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3193 {
3194 char *msg;
3195 bfd_size_type sz;
4ad4eba5
AM
3196
3197 name += sizeof ".gnu.warning." - 1;
3198
3199 /* If this is a shared object, then look up the symbol
3200 in the hash table. If it is there, and it is already
3201 been defined, then we will not be using the entry
3202 from this shared object, so we don't need to warn.
3203 FIXME: If we see the definition in a regular object
3204 later on, we will warn, but we shouldn't. The only
3205 fix is to keep track of what warnings we are supposed
3206 to emit, and then handle them all at the end of the
3207 link. */
3208 if (dynamic)
3209 {
3210 struct elf_link_hash_entry *h;
3211
3212 h = elf_link_hash_lookup (hash_table, name,
3213 FALSE, FALSE, TRUE);
3214
3215 /* FIXME: What about bfd_link_hash_common? */
3216 if (h != NULL
3217 && (h->root.type == bfd_link_hash_defined
3218 || h->root.type == bfd_link_hash_defweak))
3219 {
3220 /* We don't want to issue this warning. Clobber
3221 the section size so that the warning does not
3222 get copied into the output file. */
eea6121a 3223 s->size = 0;
4ad4eba5
AM
3224 continue;
3225 }
3226 }
3227
eea6121a 3228 sz = s->size;
370a0e1b 3229 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3230 if (msg == NULL)
3231 goto error_return;
3232
370a0e1b 3233 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3234 goto error_return;
3235
370a0e1b 3236 msg[sz] = '\0';
4ad4eba5
AM
3237
3238 if (! (_bfd_generic_link_add_one_symbol
3239 (info, abfd, name, BSF_WARNING, s, 0, msg,
3240 FALSE, collect, NULL)))
3241 goto error_return;
3242
3243 if (! info->relocatable)
3244 {
3245 /* Clobber the section size so that the warning does
3246 not get copied into the output file. */
eea6121a 3247 s->size = 0;
11d2f718
AM
3248
3249 /* Also set SEC_EXCLUDE, so that symbols defined in
3250 the warning section don't get copied to the output. */
3251 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3252 }
3253 }
3254 }
3255 }
3256
3257 add_needed = TRUE;
3258 if (! dynamic)
3259 {
3260 /* If we are creating a shared library, create all the dynamic
3261 sections immediately. We need to attach them to something,
3262 so we attach them to this BFD, provided it is the right
3263 format. FIXME: If there are no input BFD's of the same
3264 format as the output, we can't make a shared library. */
3265 if (info->shared
3266 && is_elf_hash_table (hash_table)
3267 && hash_table->root.creator == abfd->xvec
3268 && ! hash_table->dynamic_sections_created)
3269 {
3270 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3271 goto error_return;
3272 }
3273 }
3274 else if (!is_elf_hash_table (hash_table))
3275 goto error_return;
3276 else
3277 {
3278 asection *s;
3279 const char *soname = NULL;
3280 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3281 int ret;
3282
3283 /* ld --just-symbols and dynamic objects don't mix very well.
3284 Test for --just-symbols by looking at info set up by
3285 _bfd_elf_link_just_syms. */
3286 if ((s = abfd->sections) != NULL
3287 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3288 goto error_return;
3289
3290 /* If this dynamic lib was specified on the command line with
3291 --as-needed in effect, then we don't want to add a DT_NEEDED
3292 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3293 in by another lib's DT_NEEDED. When --no-add-needed is used
3294 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3295 any dynamic library in DT_NEEDED tags in the dynamic lib at
3296 all. */
3297 add_needed = (elf_dyn_lib_class (abfd)
3298 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3299 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3300
3301 s = bfd_get_section_by_name (abfd, ".dynamic");
3302 if (s != NULL)
3303 {
3304 bfd_byte *dynbuf;
3305 bfd_byte *extdyn;
3306 int elfsec;
3307 unsigned long shlink;
3308
eea6121a 3309 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3310 goto error_free_dyn;
3311
3312 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3313 if (elfsec == -1)
3314 goto error_free_dyn;
3315 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3316
3317 for (extdyn = dynbuf;
eea6121a 3318 extdyn < dynbuf + s->size;
4ad4eba5
AM
3319 extdyn += bed->s->sizeof_dyn)
3320 {
3321 Elf_Internal_Dyn dyn;
3322
3323 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3324 if (dyn.d_tag == DT_SONAME)
3325 {
3326 unsigned int tagv = dyn.d_un.d_val;
3327 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3328 if (soname == NULL)
3329 goto error_free_dyn;
3330 }
3331 if (dyn.d_tag == DT_NEEDED)
3332 {
3333 struct bfd_link_needed_list *n, **pn;
3334 char *fnm, *anm;
3335 unsigned int tagv = dyn.d_un.d_val;
3336
3337 amt = sizeof (struct bfd_link_needed_list);
3338 n = bfd_alloc (abfd, amt);
3339 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3340 if (n == NULL || fnm == NULL)
3341 goto error_free_dyn;
3342 amt = strlen (fnm) + 1;
3343 anm = bfd_alloc (abfd, amt);
3344 if (anm == NULL)
3345 goto error_free_dyn;
3346 memcpy (anm, fnm, amt);
3347 n->name = anm;
3348 n->by = abfd;
3349 n->next = NULL;
3350 for (pn = & hash_table->needed;
3351 *pn != NULL;
3352 pn = &(*pn)->next)
3353 ;
3354 *pn = n;
3355 }
3356 if (dyn.d_tag == DT_RUNPATH)
3357 {
3358 struct bfd_link_needed_list *n, **pn;
3359 char *fnm, *anm;
3360 unsigned int tagv = dyn.d_un.d_val;
3361
3362 amt = sizeof (struct bfd_link_needed_list);
3363 n = bfd_alloc (abfd, amt);
3364 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3365 if (n == NULL || fnm == NULL)
3366 goto error_free_dyn;
3367 amt = strlen (fnm) + 1;
3368 anm = bfd_alloc (abfd, amt);
3369 if (anm == NULL)
3370 goto error_free_dyn;
3371 memcpy (anm, fnm, amt);
3372 n->name = anm;
3373 n->by = abfd;
3374 n->next = NULL;
3375 for (pn = & runpath;
3376 *pn != NULL;
3377 pn = &(*pn)->next)
3378 ;
3379 *pn = n;
3380 }
3381 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3382 if (!runpath && dyn.d_tag == DT_RPATH)
3383 {
3384 struct bfd_link_needed_list *n, **pn;
3385 char *fnm, *anm;
3386 unsigned int tagv = dyn.d_un.d_val;
3387
3388 amt = sizeof (struct bfd_link_needed_list);
3389 n = bfd_alloc (abfd, amt);
3390 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3391 if (n == NULL || fnm == NULL)
3392 goto error_free_dyn;
3393 amt = strlen (fnm) + 1;
3394 anm = bfd_alloc (abfd, amt);
3395 if (anm == NULL)
3396 {
3397 error_free_dyn:
3398 free (dynbuf);
3399 goto error_return;
3400 }
3401 memcpy (anm, fnm, amt);
3402 n->name = anm;
3403 n->by = abfd;
3404 n->next = NULL;
3405 for (pn = & rpath;
3406 *pn != NULL;
3407 pn = &(*pn)->next)
3408 ;
3409 *pn = n;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3417 frees all more recently bfd_alloc'd blocks as well. */
3418 if (runpath)
3419 rpath = runpath;
3420
3421 if (rpath)
3422 {
3423 struct bfd_link_needed_list **pn;
3424 for (pn = & hash_table->runpath;
3425 *pn != NULL;
3426 pn = &(*pn)->next)
3427 ;
3428 *pn = rpath;
3429 }
3430
3431 /* We do not want to include any of the sections in a dynamic
3432 object in the output file. We hack by simply clobbering the
3433 list of sections in the BFD. This could be handled more
3434 cleanly by, say, a new section flag; the existing
3435 SEC_NEVER_LOAD flag is not the one we want, because that one
3436 still implies that the section takes up space in the output
3437 file. */
3438 bfd_section_list_clear (abfd);
3439
4ad4eba5
AM
3440 /* Find the name to use in a DT_NEEDED entry that refers to this
3441 object. If the object has a DT_SONAME entry, we use it.
3442 Otherwise, if the generic linker stuck something in
3443 elf_dt_name, we use that. Otherwise, we just use the file
3444 name. */
3445 if (soname == NULL || *soname == '\0')
3446 {
3447 soname = elf_dt_name (abfd);
3448 if (soname == NULL || *soname == '\0')
3449 soname = bfd_get_filename (abfd);
3450 }
3451
3452 /* Save the SONAME because sometimes the linker emulation code
3453 will need to know it. */
3454 elf_dt_name (abfd) = soname;
3455
7e9f0867 3456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3457 if (ret < 0)
3458 goto error_return;
3459
3460 /* If we have already included this dynamic object in the
3461 link, just ignore it. There is no reason to include a
3462 particular dynamic object more than once. */
3463 if (ret > 0)
3464 return TRUE;
3465 }
3466
3467 /* If this is a dynamic object, we always link against the .dynsym
3468 symbol table, not the .symtab symbol table. The dynamic linker
3469 will only see the .dynsym symbol table, so there is no reason to
3470 look at .symtab for a dynamic object. */
3471
3472 if (! dynamic || elf_dynsymtab (abfd) == 0)
3473 hdr = &elf_tdata (abfd)->symtab_hdr;
3474 else
3475 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3476
3477 symcount = hdr->sh_size / bed->s->sizeof_sym;
3478
3479 /* The sh_info field of the symtab header tells us where the
3480 external symbols start. We don't care about the local symbols at
3481 this point. */
3482 if (elf_bad_symtab (abfd))
3483 {
3484 extsymcount = symcount;
3485 extsymoff = 0;
3486 }
3487 else
3488 {
3489 extsymcount = symcount - hdr->sh_info;
3490 extsymoff = hdr->sh_info;
3491 }
3492
3493 sym_hash = NULL;
3494 if (extsymcount != 0)
3495 {
3496 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3497 NULL, NULL, NULL);
3498 if (isymbuf == NULL)
3499 goto error_return;
3500
3501 /* We store a pointer to the hash table entry for each external
3502 symbol. */
3503 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3504 sym_hash = bfd_alloc (abfd, amt);
3505 if (sym_hash == NULL)
3506 goto error_free_sym;
3507 elf_sym_hashes (abfd) = sym_hash;
3508 }
3509
3510 if (dynamic)
3511 {
3512 /* Read in any version definitions. */
fc0e6df6
PB
3513 if (!_bfd_elf_slurp_version_tables (abfd,
3514 info->default_imported_symver))
4ad4eba5
AM
3515 goto error_free_sym;
3516
3517 /* Read in the symbol versions, but don't bother to convert them
3518 to internal format. */
3519 if (elf_dynversym (abfd) != 0)
3520 {
3521 Elf_Internal_Shdr *versymhdr;
3522
3523 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3524 extversym = bfd_malloc (versymhdr->sh_size);
3525 if (extversym == NULL)
3526 goto error_free_sym;
3527 amt = versymhdr->sh_size;
3528 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3529 || bfd_bread (extversym, amt, abfd) != amt)
3530 goto error_free_vers;
3531 }
3532 }
3533
3534 weaks = NULL;
3535
3536 ever = extversym != NULL ? extversym + extsymoff : NULL;
3537 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3538 isym < isymend;
3539 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3540 {
3541 int bind;
3542 bfd_vma value;
af44c138 3543 asection *sec, *new_sec;
4ad4eba5
AM
3544 flagword flags;
3545 const char *name;
3546 struct elf_link_hash_entry *h;
3547 bfd_boolean definition;
3548 bfd_boolean size_change_ok;
3549 bfd_boolean type_change_ok;
3550 bfd_boolean new_weakdef;
3551 bfd_boolean override;
3552 unsigned int old_alignment;
3553 bfd *old_bfd;
3554
3555 override = FALSE;
3556
3557 flags = BSF_NO_FLAGS;
3558 sec = NULL;
3559 value = isym->st_value;
3560 *sym_hash = NULL;
3561
3562 bind = ELF_ST_BIND (isym->st_info);
3563 if (bind == STB_LOCAL)
3564 {
3565 /* This should be impossible, since ELF requires that all
3566 global symbols follow all local symbols, and that sh_info
3567 point to the first global symbol. Unfortunately, Irix 5
3568 screws this up. */
3569 continue;
3570 }
3571 else if (bind == STB_GLOBAL)
3572 {
3573 if (isym->st_shndx != SHN_UNDEF
3574 && isym->st_shndx != SHN_COMMON)
3575 flags = BSF_GLOBAL;
3576 }
3577 else if (bind == STB_WEAK)
3578 flags = BSF_WEAK;
3579 else
3580 {
3581 /* Leave it up to the processor backend. */
3582 }
3583
3584 if (isym->st_shndx == SHN_UNDEF)
3585 sec = bfd_und_section_ptr;
3586 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3587 {
3588 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3589 if (sec == NULL)
3590 sec = bfd_abs_section_ptr;
529fcb95
PB
3591 else if (sec->kept_section)
3592 {
1f02cbd9
JB
3593 /* Symbols from discarded section are undefined, and have
3594 default visibility. */
529fcb95
PB
3595 sec = bfd_und_section_ptr;
3596 isym->st_shndx = SHN_UNDEF;
1f02cbd9
JB
3597 isym->st_other = STV_DEFAULT
3598 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
529fcb95 3599 }
4ad4eba5
AM
3600 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3601 value -= sec->vma;
3602 }
3603 else if (isym->st_shndx == SHN_ABS)
3604 sec = bfd_abs_section_ptr;
3605 else if (isym->st_shndx == SHN_COMMON)
3606 {
3607 sec = bfd_com_section_ptr;
3608 /* What ELF calls the size we call the value. What ELF
3609 calls the value we call the alignment. */
3610 value = isym->st_size;
3611 }
3612 else
3613 {
3614 /* Leave it up to the processor backend. */
3615 }
3616
3617 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3618 isym->st_name);
3619 if (name == NULL)
3620 goto error_free_vers;
3621
3622 if (isym->st_shndx == SHN_COMMON
3623 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3624 {
3625 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3626
3627 if (tcomm == NULL)
3628 {
3496cb2a
L
3629 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3630 (SEC_ALLOC
3631 | SEC_IS_COMMON
3632 | SEC_LINKER_CREATED
3633 | SEC_THREAD_LOCAL));
3634 if (tcomm == NULL)
4ad4eba5
AM
3635 goto error_free_vers;
3636 }
3637 sec = tcomm;
3638 }
3639 else if (add_symbol_hook)
3640 {
3641 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3642 &value))
3643 goto error_free_vers;
3644
3645 /* The hook function sets the name to NULL if this symbol
3646 should be skipped for some reason. */
3647 if (name == NULL)
3648 continue;
3649 }
3650
3651 /* Sanity check that all possibilities were handled. */
3652 if (sec == NULL)
3653 {
3654 bfd_set_error (bfd_error_bad_value);
3655 goto error_free_vers;
3656 }
3657
3658 if (bfd_is_und_section (sec)
3659 || bfd_is_com_section (sec))
3660 definition = FALSE;
3661 else
3662 definition = TRUE;
3663
3664 size_change_ok = FALSE;
3665 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3666 old_alignment = 0;
3667 old_bfd = NULL;
af44c138 3668 new_sec = sec;
4ad4eba5
AM
3669
3670 if (is_elf_hash_table (hash_table))
3671 {
3672 Elf_Internal_Versym iver;
3673 unsigned int vernum = 0;
3674 bfd_boolean skip;
3675
fc0e6df6 3676 if (ever == NULL)
4ad4eba5 3677 {
fc0e6df6
PB
3678 if (info->default_imported_symver)
3679 /* Use the default symbol version created earlier. */
3680 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3681 else
3682 iver.vs_vers = 0;
3683 }
3684 else
3685 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3686
3687 vernum = iver.vs_vers & VERSYM_VERSION;
3688
3689 /* If this is a hidden symbol, or if it is not version
3690 1, we append the version name to the symbol name.
3691 However, we do not modify a non-hidden absolute
3692 symbol, because it might be the version symbol
3693 itself. FIXME: What if it isn't? */
3694 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3695 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3696 {
3697 const char *verstr;
3698 size_t namelen, verlen, newlen;
3699 char *newname, *p;
3700
3701 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3702 {
fc0e6df6
PB
3703 if (vernum > elf_tdata (abfd)->cverdefs)
3704 verstr = NULL;
3705 else if (vernum > 1)
3706 verstr =
3707 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3708 else
3709 verstr = "";
4ad4eba5 3710
fc0e6df6 3711 if (verstr == NULL)
4ad4eba5 3712 {
fc0e6df6
PB
3713 (*_bfd_error_handler)
3714 (_("%B: %s: invalid version %u (max %d)"),
3715 abfd, name, vernum,
3716 elf_tdata (abfd)->cverdefs);
3717 bfd_set_error (bfd_error_bad_value);
3718 goto error_free_vers;
4ad4eba5 3719 }
fc0e6df6
PB
3720 }
3721 else
3722 {
3723 /* We cannot simply test for the number of
3724 entries in the VERNEED section since the
3725 numbers for the needed versions do not start
3726 at 0. */
3727 Elf_Internal_Verneed *t;
3728
3729 verstr = NULL;
3730 for (t = elf_tdata (abfd)->verref;
3731 t != NULL;
3732 t = t->vn_nextref)
4ad4eba5 3733 {
fc0e6df6 3734 Elf_Internal_Vernaux *a;
4ad4eba5 3735
fc0e6df6
PB
3736 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3737 {
3738 if (a->vna_other == vernum)
4ad4eba5 3739 {
fc0e6df6
PB
3740 verstr = a->vna_nodename;
3741 break;
4ad4eba5 3742 }
4ad4eba5 3743 }
fc0e6df6
PB
3744 if (a != NULL)
3745 break;
3746 }
3747 if (verstr == NULL)
3748 {
3749 (*_bfd_error_handler)
3750 (_("%B: %s: invalid needed version %d"),
3751 abfd, name, vernum);
3752 bfd_set_error (bfd_error_bad_value);
3753 goto error_free_vers;
4ad4eba5 3754 }
4ad4eba5 3755 }
fc0e6df6
PB
3756
3757 namelen = strlen (name);
3758 verlen = strlen (verstr);
3759 newlen = namelen + verlen + 2;
3760 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3761 && isym->st_shndx != SHN_UNDEF)
3762 ++newlen;
3763
3764 newname = bfd_alloc (abfd, newlen);
3765 if (newname == NULL)
3766 goto error_free_vers;
3767 memcpy (newname, name, namelen);
3768 p = newname + namelen;
3769 *p++ = ELF_VER_CHR;
3770 /* If this is a defined non-hidden version symbol,
3771 we add another @ to the name. This indicates the
3772 default version of the symbol. */
3773 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3774 && isym->st_shndx != SHN_UNDEF)
3775 *p++ = ELF_VER_CHR;
3776 memcpy (p, verstr, verlen + 1);
3777
3778 name = newname;
4ad4eba5
AM
3779 }
3780
af44c138
L
3781 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3782 &value, &old_alignment,
4ad4eba5
AM
3783 sym_hash, &skip, &override,
3784 &type_change_ok, &size_change_ok))
3785 goto error_free_vers;
3786
3787 if (skip)
3788 continue;
3789
3790 if (override)
3791 definition = FALSE;
3792
3793 h = *sym_hash;
3794 while (h->root.type == bfd_link_hash_indirect
3795 || h->root.type == bfd_link_hash_warning)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3797
3798 /* Remember the old alignment if this is a common symbol, so
3799 that we don't reduce the alignment later on. We can't
3800 check later, because _bfd_generic_link_add_one_symbol
3801 will set a default for the alignment which we want to
3802 override. We also remember the old bfd where the existing
3803 definition comes from. */
3804 switch (h->root.type)
3805 {
3806 default:
3807 break;
3808
3809 case bfd_link_hash_defined:
3810 case bfd_link_hash_defweak:
3811 old_bfd = h->root.u.def.section->owner;
3812 break;
3813
3814 case bfd_link_hash_common:
3815 old_bfd = h->root.u.c.p->section->owner;
3816 old_alignment = h->root.u.c.p->alignment_power;
3817 break;
3818 }
3819
3820 if (elf_tdata (abfd)->verdef != NULL
3821 && ! override
3822 && vernum > 1
3823 && definition)
3824 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3825 }
3826
3827 if (! (_bfd_generic_link_add_one_symbol
3828 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3829 (struct bfd_link_hash_entry **) sym_hash)))
3830 goto error_free_vers;
3831
3832 h = *sym_hash;
3833 while (h->root.type == bfd_link_hash_indirect
3834 || h->root.type == bfd_link_hash_warning)
3835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3836 *sym_hash = h;
3837
3838 new_weakdef = FALSE;
3839 if (dynamic
3840 && definition
3841 && (flags & BSF_WEAK) != 0
3842 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3843 && is_elf_hash_table (hash_table)
f6e332e6 3844 && h->u.weakdef == NULL)
4ad4eba5
AM
3845 {
3846 /* Keep a list of all weak defined non function symbols from
3847 a dynamic object, using the weakdef field. Later in this
3848 function we will set the weakdef field to the correct
3849 value. We only put non-function symbols from dynamic
3850 objects on this list, because that happens to be the only
3851 time we need to know the normal symbol corresponding to a
3852 weak symbol, and the information is time consuming to
3853 figure out. If the weakdef field is not already NULL,
3854 then this symbol was already defined by some previous
3855 dynamic object, and we will be using that previous
3856 definition anyhow. */
3857
f6e332e6 3858 h->u.weakdef = weaks;
4ad4eba5
AM
3859 weaks = h;
3860 new_weakdef = TRUE;
3861 }
3862
3863 /* Set the alignment of a common symbol. */
af44c138
L
3864 if ((isym->st_shndx == SHN_COMMON
3865 || bfd_is_com_section (sec))
4ad4eba5
AM
3866 && h->root.type == bfd_link_hash_common)
3867 {
3868 unsigned int align;
3869
af44c138
L
3870 if (isym->st_shndx == SHN_COMMON)
3871 align = bfd_log2 (isym->st_value);
3872 else
3873 {
3874 /* The new symbol is a common symbol in a shared object.
3875 We need to get the alignment from the section. */
3876 align = new_sec->alignment_power;
3877 }
4ad4eba5
AM
3878 if (align > old_alignment
3879 /* Permit an alignment power of zero if an alignment of one
3880 is specified and no other alignments have been specified. */
3881 || (isym->st_value == 1 && old_alignment == 0))
3882 h->root.u.c.p->alignment_power = align;
3883 else
3884 h->root.u.c.p->alignment_power = old_alignment;
3885 }
3886
3887 if (is_elf_hash_table (hash_table))
3888 {
4ad4eba5 3889 bfd_boolean dynsym;
4ad4eba5
AM
3890
3891 /* Check the alignment when a common symbol is involved. This
3892 can change when a common symbol is overridden by a normal
3893 definition or a common symbol is ignored due to the old
3894 normal definition. We need to make sure the maximum
3895 alignment is maintained. */
3896 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3897 && h->root.type != bfd_link_hash_common)
3898 {
3899 unsigned int common_align;
3900 unsigned int normal_align;
3901 unsigned int symbol_align;
3902 bfd *normal_bfd;
3903 bfd *common_bfd;
3904
3905 symbol_align = ffs (h->root.u.def.value) - 1;
3906 if (h->root.u.def.section->owner != NULL
3907 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3908 {
3909 normal_align = h->root.u.def.section->alignment_power;
3910 if (normal_align > symbol_align)
3911 normal_align = symbol_align;
3912 }
3913 else
3914 normal_align = symbol_align;
3915
3916 if (old_alignment)
3917 {
3918 common_align = old_alignment;
3919 common_bfd = old_bfd;
3920 normal_bfd = abfd;
3921 }
3922 else
3923 {
3924 common_align = bfd_log2 (isym->st_value);
3925 common_bfd = abfd;
3926 normal_bfd = old_bfd;
3927 }
3928
3929 if (normal_align < common_align)
3930 (*_bfd_error_handler)
d003868e
AM
3931 (_("Warning: alignment %u of symbol `%s' in %B"
3932 " is smaller than %u in %B"),
3933 normal_bfd, common_bfd,
3934 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3935 }
3936
3937 /* Remember the symbol size and type. */
3938 if (isym->st_size != 0
3939 && (definition || h->size == 0))
3940 {
3941 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3942 (*_bfd_error_handler)
d003868e
AM
3943 (_("Warning: size of symbol `%s' changed"
3944 " from %lu in %B to %lu in %B"),
3945 old_bfd, abfd,
4ad4eba5 3946 name, (unsigned long) h->size,
d003868e 3947 (unsigned long) isym->st_size);
4ad4eba5
AM
3948
3949 h->size = isym->st_size;
3950 }
3951
3952 /* If this is a common symbol, then we always want H->SIZE
3953 to be the size of the common symbol. The code just above
3954 won't fix the size if a common symbol becomes larger. We
3955 don't warn about a size change here, because that is
3956 covered by --warn-common. */
3957 if (h->root.type == bfd_link_hash_common)
3958 h->size = h->root.u.c.size;
3959
3960 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3961 && (definition || h->type == STT_NOTYPE))
3962 {
3963 if (h->type != STT_NOTYPE
3964 && h->type != ELF_ST_TYPE (isym->st_info)
3965 && ! type_change_ok)
3966 (*_bfd_error_handler)
d003868e
AM
3967 (_("Warning: type of symbol `%s' changed"
3968 " from %d to %d in %B"),
3969 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3970
3971 h->type = ELF_ST_TYPE (isym->st_info);
3972 }
3973
3974 /* If st_other has a processor-specific meaning, specific
3975 code might be needed here. We never merge the visibility
3976 attribute with the one from a dynamic object. */
3977 if (bed->elf_backend_merge_symbol_attribute)
3978 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3979 dynamic);
3980
b58f81ae
DJ
3981 /* If this symbol has default visibility and the user has requested
3982 we not re-export it, then mark it as hidden. */
3983 if (definition && !dynamic
3984 && (abfd->no_export
3985 || (abfd->my_archive && abfd->my_archive->no_export))
3986 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3987 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3988
4ad4eba5
AM
3989 if (isym->st_other != 0 && !dynamic)
3990 {
3991 unsigned char hvis, symvis, other, nvis;
3992
3993 /* Take the balance of OTHER from the definition. */
3994 other = (definition ? isym->st_other : h->other);
3995 other &= ~ ELF_ST_VISIBILITY (-1);
3996
3997 /* Combine visibilities, using the most constraining one. */
3998 hvis = ELF_ST_VISIBILITY (h->other);
3999 symvis = ELF_ST_VISIBILITY (isym->st_other);
4000 if (! hvis)
4001 nvis = symvis;
4002 else if (! symvis)
4003 nvis = hvis;
4004 else
4005 nvis = hvis < symvis ? hvis : symvis;
4006
4007 h->other = other | nvis;
4008 }
4009
4010 /* Set a flag in the hash table entry indicating the type of
4011 reference or definition we just found. Keep a count of
4012 the number of dynamic symbols we find. A dynamic symbol
4013 is one which is referenced or defined by both a regular
4014 object and a shared object. */
4ad4eba5
AM
4015 dynsym = FALSE;
4016 if (! dynamic)
4017 {
4018 if (! definition)
4019 {
f5385ebf 4020 h->ref_regular = 1;
4ad4eba5 4021 if (bind != STB_WEAK)
f5385ebf 4022 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4023 }
4024 else
f5385ebf 4025 h->def_regular = 1;
4ad4eba5 4026 if (! info->executable
f5385ebf
AM
4027 || h->def_dynamic
4028 || h->ref_dynamic)
4ad4eba5
AM
4029 dynsym = TRUE;
4030 }
4031 else
4032 {
4033 if (! definition)
f5385ebf 4034 h->ref_dynamic = 1;
4ad4eba5 4035 else
f5385ebf
AM
4036 h->def_dynamic = 1;
4037 if (h->def_regular
4038 || h->ref_regular
f6e332e6 4039 || (h->u.weakdef != NULL
4ad4eba5 4040 && ! new_weakdef
f6e332e6 4041 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4042 dynsym = TRUE;
4043 }
4044
4ad4eba5
AM
4045 /* Check to see if we need to add an indirect symbol for
4046 the default name. */
4047 if (definition || h->root.type == bfd_link_hash_common)
4048 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4049 &sec, &value, &dynsym,
4050 override))
4051 goto error_free_vers;
4052
4053 if (definition && !dynamic)
4054 {
4055 char *p = strchr (name, ELF_VER_CHR);
4056 if (p != NULL && p[1] != ELF_VER_CHR)
4057 {
4058 /* Queue non-default versions so that .symver x, x@FOO
4059 aliases can be checked. */
4060 if (! nondeflt_vers)
4061 {
4062 amt = (isymend - isym + 1)
4063 * sizeof (struct elf_link_hash_entry *);
4064 nondeflt_vers = bfd_malloc (amt);
4065 }
4066 nondeflt_vers [nondeflt_vers_cnt++] = h;
4067 }
4068 }
4069
4070 if (dynsym && h->dynindx == -1)
4071 {
c152c796 4072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4073 goto error_free_vers;
f6e332e6 4074 if (h->u.weakdef != NULL
4ad4eba5 4075 && ! new_weakdef
f6e332e6 4076 && h->u.weakdef->dynindx == -1)
4ad4eba5 4077 {
f6e332e6 4078 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4079 goto error_free_vers;
4080 }
4081 }
4082 else if (dynsym && h->dynindx != -1)
4083 /* If the symbol already has a dynamic index, but
4084 visibility says it should not be visible, turn it into
4085 a local symbol. */
4086 switch (ELF_ST_VISIBILITY (h->other))
4087 {
4088 case STV_INTERNAL:
4089 case STV_HIDDEN:
4090 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4091 dynsym = FALSE;
4092 break;
4093 }
4094
4095 if (!add_needed
4096 && definition
4097 && dynsym
f5385ebf 4098 && h->ref_regular)
4ad4eba5
AM
4099 {
4100 int ret;
4101 const char *soname = elf_dt_name (abfd);
4102
4103 /* A symbol from a library loaded via DT_NEEDED of some
4104 other library is referenced by a regular object.
e56f61be
L
4105 Add a DT_NEEDED entry for it. Issue an error if
4106 --no-add-needed is used. */
4107 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4108 {
4109 (*_bfd_error_handler)
4110 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4111 abfd, name);
e56f61be
L
4112 bfd_set_error (bfd_error_bad_value);
4113 goto error_free_vers;
4114 }
4115
a5db907e
AM
4116 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4117
4ad4eba5 4118 add_needed = TRUE;
7e9f0867 4119 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4120 if (ret < 0)
4121 goto error_free_vers;
4122
4123 BFD_ASSERT (ret == 0);
4124 }
4125 }
4126 }
4127
4128 /* Now that all the symbols from this input file are created, handle
4129 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4130 if (nondeflt_vers != NULL)
4131 {
4132 bfd_size_type cnt, symidx;
4133
4134 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4135 {
4136 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4137 char *shortname, *p;
4138
4139 p = strchr (h->root.root.string, ELF_VER_CHR);
4140 if (p == NULL
4141 || (h->root.type != bfd_link_hash_defined
4142 && h->root.type != bfd_link_hash_defweak))
4143 continue;
4144
4145 amt = p - h->root.root.string;
4146 shortname = bfd_malloc (amt + 1);
4147 memcpy (shortname, h->root.root.string, amt);
4148 shortname[amt] = '\0';
4149
4150 hi = (struct elf_link_hash_entry *)
4151 bfd_link_hash_lookup (&hash_table->root, shortname,
4152 FALSE, FALSE, FALSE);
4153 if (hi != NULL
4154 && hi->root.type == h->root.type
4155 && hi->root.u.def.value == h->root.u.def.value
4156 && hi->root.u.def.section == h->root.u.def.section)
4157 {
4158 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4159 hi->root.type = bfd_link_hash_indirect;
4160 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4161 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4162 sym_hash = elf_sym_hashes (abfd);
4163 if (sym_hash)
4164 for (symidx = 0; symidx < extsymcount; ++symidx)
4165 if (sym_hash[symidx] == hi)
4166 {
4167 sym_hash[symidx] = h;
4168 break;
4169 }
4170 }
4171 free (shortname);
4172 }
4173 free (nondeflt_vers);
4174 nondeflt_vers = NULL;
4175 }
4176
4177 if (extversym != NULL)
4178 {
4179 free (extversym);
4180 extversym = NULL;
4181 }
4182
4183 if (isymbuf != NULL)
4184 free (isymbuf);
4185 isymbuf = NULL;
4186
ec13b3bb
AM
4187 if (!add_needed
4188 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
77cfaee6 4189 {
ec13b3bb
AM
4190 /* Remove symbols defined in an as-needed shared lib that wasn't
4191 needed. */
77cfaee6
AM
4192 struct elf_smash_syms_data inf;
4193 inf.not_needed = abfd;
4194 inf.htab = hash_table;
4195 inf.twiddled = FALSE;
4196 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4197 if (inf.twiddled)
4198 bfd_link_repair_undef_list (&hash_table->root);
4199 weaks = NULL;
4200 }
4201
4ad4eba5
AM
4202 /* Now set the weakdefs field correctly for all the weak defined
4203 symbols we found. The only way to do this is to search all the
4204 symbols. Since we only need the information for non functions in
4205 dynamic objects, that's the only time we actually put anything on
4206 the list WEAKS. We need this information so that if a regular
4207 object refers to a symbol defined weakly in a dynamic object, the
4208 real symbol in the dynamic object is also put in the dynamic
4209 symbols; we also must arrange for both symbols to point to the
4210 same memory location. We could handle the general case of symbol
4211 aliasing, but a general symbol alias can only be generated in
4212 assembler code, handling it correctly would be very time
4213 consuming, and other ELF linkers don't handle general aliasing
4214 either. */
4215 if (weaks != NULL)
4216 {
4217 struct elf_link_hash_entry **hpp;
4218 struct elf_link_hash_entry **hppend;
4219 struct elf_link_hash_entry **sorted_sym_hash;
4220 struct elf_link_hash_entry *h;
4221 size_t sym_count;
4222
4223 /* Since we have to search the whole symbol list for each weak
4224 defined symbol, search time for N weak defined symbols will be
4225 O(N^2). Binary search will cut it down to O(NlogN). */
4226 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4227 sorted_sym_hash = bfd_malloc (amt);
4228 if (sorted_sym_hash == NULL)
4229 goto error_return;
4230 sym_hash = sorted_sym_hash;
4231 hpp = elf_sym_hashes (abfd);
4232 hppend = hpp + extsymcount;
4233 sym_count = 0;
4234 for (; hpp < hppend; hpp++)
4235 {
4236 h = *hpp;
4237 if (h != NULL
4238 && h->root.type == bfd_link_hash_defined
4239 && h->type != STT_FUNC)
4240 {
4241 *sym_hash = h;
4242 sym_hash++;
4243 sym_count++;
4244 }
4245 }
4246
4247 qsort (sorted_sym_hash, sym_count,
4248 sizeof (struct elf_link_hash_entry *),
4249 elf_sort_symbol);
4250
4251 while (weaks != NULL)
4252 {
4253 struct elf_link_hash_entry *hlook;
4254 asection *slook;
4255 bfd_vma vlook;
4256 long ilook;
4257 size_t i, j, idx;
4258
4259 hlook = weaks;
f6e332e6
AM
4260 weaks = hlook->u.weakdef;
4261 hlook->u.weakdef = NULL;
4ad4eba5
AM
4262
4263 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4264 || hlook->root.type == bfd_link_hash_defweak
4265 || hlook->root.type == bfd_link_hash_common
4266 || hlook->root.type == bfd_link_hash_indirect);
4267 slook = hlook->root.u.def.section;
4268 vlook = hlook->root.u.def.value;
4269
4270 ilook = -1;
4271 i = 0;
4272 j = sym_count;
4273 while (i < j)
4274 {
4275 bfd_signed_vma vdiff;
4276 idx = (i + j) / 2;
4277 h = sorted_sym_hash [idx];
4278 vdiff = vlook - h->root.u.def.value;
4279 if (vdiff < 0)
4280 j = idx;
4281 else if (vdiff > 0)
4282 i = idx + 1;
4283 else
4284 {
a9b881be 4285 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4286 if (sdiff < 0)
4287 j = idx;
4288 else if (sdiff > 0)
4289 i = idx + 1;
4290 else
4291 {
4292 ilook = idx;
4293 break;
4294 }
4295 }
4296 }
4297
4298 /* We didn't find a value/section match. */
4299 if (ilook == -1)
4300 continue;
4301
4302 for (i = ilook; i < sym_count; i++)
4303 {
4304 h = sorted_sym_hash [i];
4305
4306 /* Stop if value or section doesn't match. */
4307 if (h->root.u.def.value != vlook
4308 || h->root.u.def.section != slook)
4309 break;
4310 else if (h != hlook)
4311 {
f6e332e6 4312 hlook->u.weakdef = h;
4ad4eba5
AM
4313
4314 /* If the weak definition is in the list of dynamic
4315 symbols, make sure the real definition is put
4316 there as well. */
4317 if (hlook->dynindx != -1 && h->dynindx == -1)
4318 {
c152c796 4319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4320 goto error_return;
4321 }
4322
4323 /* If the real definition is in the list of dynamic
4324 symbols, make sure the weak definition is put
4325 there as well. If we don't do this, then the
4326 dynamic loader might not merge the entries for the
4327 real definition and the weak definition. */
4328 if (h->dynindx != -1 && hlook->dynindx == -1)
4329 {
c152c796 4330 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4331 goto error_return;
4332 }
4333 break;
4334 }
4335 }
4336 }
4337
4338 free (sorted_sym_hash);
4339 }
4340
85fbca6a
NC
4341 check_directives = get_elf_backend_data (abfd)->check_directives;
4342 if (check_directives)
4343 check_directives (abfd, info);
4344
4ad4eba5
AM
4345 /* If this object is the same format as the output object, and it is
4346 not a shared library, then let the backend look through the
4347 relocs.
4348
4349 This is required to build global offset table entries and to
4350 arrange for dynamic relocs. It is not required for the
4351 particular common case of linking non PIC code, even when linking
4352 against shared libraries, but unfortunately there is no way of
4353 knowing whether an object file has been compiled PIC or not.
4354 Looking through the relocs is not particularly time consuming.
4355 The problem is that we must either (1) keep the relocs in memory,
4356 which causes the linker to require additional runtime memory or
4357 (2) read the relocs twice from the input file, which wastes time.
4358 This would be a good case for using mmap.
4359
4360 I have no idea how to handle linking PIC code into a file of a
4361 different format. It probably can't be done. */
4362 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4363 if (! dynamic
4364 && is_elf_hash_table (hash_table)
4365 && hash_table->root.creator == abfd->xvec
4366 && check_relocs != NULL)
4367 {
4368 asection *o;
4369
4370 for (o = abfd->sections; o != NULL; o = o->next)
4371 {
4372 Elf_Internal_Rela *internal_relocs;
4373 bfd_boolean ok;
4374
4375 if ((o->flags & SEC_RELOC) == 0
4376 || o->reloc_count == 0
4377 || ((info->strip == strip_all || info->strip == strip_debugger)
4378 && (o->flags & SEC_DEBUGGING) != 0)
4379 || bfd_is_abs_section (o->output_section))
4380 continue;
4381
4382 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4383 info->keep_memory);
4384 if (internal_relocs == NULL)
4385 goto error_return;
4386
4387 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4388
4389 if (elf_section_data (o)->relocs != internal_relocs)
4390 free (internal_relocs);
4391
4392 if (! ok)
4393 goto error_return;
4394 }
4395 }
4396
4397 /* If this is a non-traditional link, try to optimize the handling
4398 of the .stab/.stabstr sections. */
4399 if (! dynamic
4400 && ! info->traditional_format
4401 && is_elf_hash_table (hash_table)
4402 && (info->strip != strip_all && info->strip != strip_debugger))
4403 {
4404 asection *stabstr;
4405
4406 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4407 if (stabstr != NULL)
4408 {
4409 bfd_size_type string_offset = 0;
4410 asection *stab;
4411
4412 for (stab = abfd->sections; stab; stab = stab->next)
4413 if (strncmp (".stab", stab->name, 5) == 0
4414 && (!stab->name[5] ||
4415 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4416 && (stab->flags & SEC_MERGE) == 0
4417 && !bfd_is_abs_section (stab->output_section))
4418 {
4419 struct bfd_elf_section_data *secdata;
4420
4421 secdata = elf_section_data (stab);
4422 if (! _bfd_link_section_stabs (abfd,
3722b82f 4423 &hash_table->stab_info,
4ad4eba5
AM
4424 stab, stabstr,
4425 &secdata->sec_info,
4426 &string_offset))
4427 goto error_return;
4428 if (secdata->sec_info)
4429 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4430 }
4431 }
4432 }
4433
77cfaee6 4434 if (is_elf_hash_table (hash_table) && add_needed)
4ad4eba5
AM
4435 {
4436 /* Add this bfd to the loaded list. */
4437 struct elf_link_loaded_list *n;
4438
4439 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4440 if (n == NULL)
4441 goto error_return;
4442 n->abfd = abfd;
4443 n->next = hash_table->loaded;
4444 hash_table->loaded = n;
4445 }
4446
4447 return TRUE;
4448
4449 error_free_vers:
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 if (extversym != NULL)
4453 free (extversym);
4454 error_free_sym:
4455 if (isymbuf != NULL)
4456 free (isymbuf);
4457 error_return:
4458 return FALSE;
4459}
4460
8387904d
AM
4461/* Return the linker hash table entry of a symbol that might be
4462 satisfied by an archive symbol. Return -1 on error. */
4463
4464struct elf_link_hash_entry *
4465_bfd_elf_archive_symbol_lookup (bfd *abfd,
4466 struct bfd_link_info *info,
4467 const char *name)
4468{
4469 struct elf_link_hash_entry *h;
4470 char *p, *copy;
4471 size_t len, first;
4472
4473 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4474 if (h != NULL)
4475 return h;
4476
4477 /* If this is a default version (the name contains @@), look up the
4478 symbol again with only one `@' as well as without the version.
4479 The effect is that references to the symbol with and without the
4480 version will be matched by the default symbol in the archive. */
4481
4482 p = strchr (name, ELF_VER_CHR);
4483 if (p == NULL || p[1] != ELF_VER_CHR)
4484 return h;
4485
4486 /* First check with only one `@'. */
4487 len = strlen (name);
4488 copy = bfd_alloc (abfd, len);
4489 if (copy == NULL)
4490 return (struct elf_link_hash_entry *) 0 - 1;
4491
4492 first = p - name + 1;
4493 memcpy (copy, name, first);
4494 memcpy (copy + first, name + first + 1, len - first);
4495
4496 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4497 if (h == NULL)
4498 {
4499 /* We also need to check references to the symbol without the
4500 version. */
4501 copy[first - 1] = '\0';
4502 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4503 FALSE, FALSE, FALSE);
4504 }
4505
4506 bfd_release (abfd, copy);
4507 return h;
4508}
4509
0ad989f9
L
4510/* Add symbols from an ELF archive file to the linker hash table. We
4511 don't use _bfd_generic_link_add_archive_symbols because of a
4512 problem which arises on UnixWare. The UnixWare libc.so is an
4513 archive which includes an entry libc.so.1 which defines a bunch of
4514 symbols. The libc.so archive also includes a number of other
4515 object files, which also define symbols, some of which are the same
4516 as those defined in libc.so.1. Correct linking requires that we
4517 consider each object file in turn, and include it if it defines any
4518 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4519 this; it looks through the list of undefined symbols, and includes
4520 any object file which defines them. When this algorithm is used on
4521 UnixWare, it winds up pulling in libc.so.1 early and defining a
4522 bunch of symbols. This means that some of the other objects in the
4523 archive are not included in the link, which is incorrect since they
4524 precede libc.so.1 in the archive.
4525
4526 Fortunately, ELF archive handling is simpler than that done by
4527 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4528 oddities. In ELF, if we find a symbol in the archive map, and the
4529 symbol is currently undefined, we know that we must pull in that
4530 object file.
4531
4532 Unfortunately, we do have to make multiple passes over the symbol
4533 table until nothing further is resolved. */
4534
4ad4eba5
AM
4535static bfd_boolean
4536elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4537{
4538 symindex c;
4539 bfd_boolean *defined = NULL;
4540 bfd_boolean *included = NULL;
4541 carsym *symdefs;
4542 bfd_boolean loop;
4543 bfd_size_type amt;
8387904d
AM
4544 const struct elf_backend_data *bed;
4545 struct elf_link_hash_entry * (*archive_symbol_lookup)
4546 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4547
4548 if (! bfd_has_map (abfd))
4549 {
4550 /* An empty archive is a special case. */
4551 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4552 return TRUE;
4553 bfd_set_error (bfd_error_no_armap);
4554 return FALSE;
4555 }
4556
4557 /* Keep track of all symbols we know to be already defined, and all
4558 files we know to be already included. This is to speed up the
4559 second and subsequent passes. */
4560 c = bfd_ardata (abfd)->symdef_count;
4561 if (c == 0)
4562 return TRUE;
4563 amt = c;
4564 amt *= sizeof (bfd_boolean);
4565 defined = bfd_zmalloc (amt);
4566 included = bfd_zmalloc (amt);
4567 if (defined == NULL || included == NULL)
4568 goto error_return;
4569
4570 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4571 bed = get_elf_backend_data (abfd);
4572 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4573
4574 do
4575 {
4576 file_ptr last;
4577 symindex i;
4578 carsym *symdef;
4579 carsym *symdefend;
4580
4581 loop = FALSE;
4582 last = -1;
4583
4584 symdef = symdefs;
4585 symdefend = symdef + c;
4586 for (i = 0; symdef < symdefend; symdef++, i++)
4587 {
4588 struct elf_link_hash_entry *h;
4589 bfd *element;
4590 struct bfd_link_hash_entry *undefs_tail;
4591 symindex mark;
4592
4593 if (defined[i] || included[i])
4594 continue;
4595 if (symdef->file_offset == last)
4596 {
4597 included[i] = TRUE;
4598 continue;
4599 }
4600
8387904d
AM
4601 h = archive_symbol_lookup (abfd, info, symdef->name);
4602 if (h == (struct elf_link_hash_entry *) 0 - 1)
4603 goto error_return;
0ad989f9
L
4604
4605 if (h == NULL)
4606 continue;
4607
4608 if (h->root.type == bfd_link_hash_common)
4609 {
4610 /* We currently have a common symbol. The archive map contains
4611 a reference to this symbol, so we may want to include it. We
4612 only want to include it however, if this archive element
4613 contains a definition of the symbol, not just another common
4614 declaration of it.
4615
4616 Unfortunately some archivers (including GNU ar) will put
4617 declarations of common symbols into their archive maps, as
4618 well as real definitions, so we cannot just go by the archive
4619 map alone. Instead we must read in the element's symbol
4620 table and check that to see what kind of symbol definition
4621 this is. */
4622 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4623 continue;
4624 }
4625 else if (h->root.type != bfd_link_hash_undefined)
4626 {
4627 if (h->root.type != bfd_link_hash_undefweak)
4628 defined[i] = TRUE;
4629 continue;
4630 }
4631
4632 /* We need to include this archive member. */
4633 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4634 if (element == NULL)
4635 goto error_return;
4636
4637 if (! bfd_check_format (element, bfd_object))
4638 goto error_return;
4639
4640 /* Doublecheck that we have not included this object
4641 already--it should be impossible, but there may be
4642 something wrong with the archive. */
4643 if (element->archive_pass != 0)
4644 {
4645 bfd_set_error (bfd_error_bad_value);
4646 goto error_return;
4647 }
4648 element->archive_pass = 1;
4649
4650 undefs_tail = info->hash->undefs_tail;
4651
4652 if (! (*info->callbacks->add_archive_element) (info, element,
4653 symdef->name))
4654 goto error_return;
4655 if (! bfd_link_add_symbols (element, info))
4656 goto error_return;
4657
4658 /* If there are any new undefined symbols, we need to make
4659 another pass through the archive in order to see whether
4660 they can be defined. FIXME: This isn't perfect, because
4661 common symbols wind up on undefs_tail and because an
4662 undefined symbol which is defined later on in this pass
4663 does not require another pass. This isn't a bug, but it
4664 does make the code less efficient than it could be. */
4665 if (undefs_tail != info->hash->undefs_tail)
4666 loop = TRUE;
4667
4668 /* Look backward to mark all symbols from this object file
4669 which we have already seen in this pass. */
4670 mark = i;
4671 do
4672 {
4673 included[mark] = TRUE;
4674 if (mark == 0)
4675 break;
4676 --mark;
4677 }
4678 while (symdefs[mark].file_offset == symdef->file_offset);
4679
4680 /* We mark subsequent symbols from this object file as we go
4681 on through the loop. */
4682 last = symdef->file_offset;
4683 }
4684 }
4685 while (loop);
4686
4687 free (defined);
4688 free (included);
4689
4690 return TRUE;
4691
4692 error_return:
4693 if (defined != NULL)
4694 free (defined);
4695 if (included != NULL)
4696 free (included);
4697 return FALSE;
4698}
4ad4eba5
AM
4699
4700/* Given an ELF BFD, add symbols to the global hash table as
4701 appropriate. */
4702
4703bfd_boolean
4704bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4705{
4706 switch (bfd_get_format (abfd))
4707 {
4708 case bfd_object:
4709 return elf_link_add_object_symbols (abfd, info);
4710 case bfd_archive:
4711 return elf_link_add_archive_symbols (abfd, info);
4712 default:
4713 bfd_set_error (bfd_error_wrong_format);
4714 return FALSE;
4715 }
4716}
5a580b3a
AM
4717\f
4718/* This function will be called though elf_link_hash_traverse to store
4719 all hash value of the exported symbols in an array. */
4720
4721static bfd_boolean
4722elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4723{
4724 unsigned long **valuep = data;
4725 const char *name;
4726 char *p;
4727 unsigned long ha;
4728 char *alc = NULL;
4729
4730 if (h->root.type == bfd_link_hash_warning)
4731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4732
4733 /* Ignore indirect symbols. These are added by the versioning code. */
4734 if (h->dynindx == -1)
4735 return TRUE;
4736
4737 name = h->root.root.string;
4738 p = strchr (name, ELF_VER_CHR);
4739 if (p != NULL)
4740 {
4741 alc = bfd_malloc (p - name + 1);
4742 memcpy (alc, name, p - name);
4743 alc[p - name] = '\0';
4744 name = alc;
4745 }
4746
4747 /* Compute the hash value. */
4748 ha = bfd_elf_hash (name);
4749
4750 /* Store the found hash value in the array given as the argument. */
4751 *(*valuep)++ = ha;
4752
4753 /* And store it in the struct so that we can put it in the hash table
4754 later. */
f6e332e6 4755 h->u.elf_hash_value = ha;
5a580b3a
AM
4756
4757 if (alc != NULL)
4758 free (alc);
4759
4760 return TRUE;
4761}
4762
4763/* Array used to determine the number of hash table buckets to use
4764 based on the number of symbols there are. If there are fewer than
4765 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4766 fewer than 37 we use 17 buckets, and so forth. We never use more
4767 than 32771 buckets. */
4768
4769static const size_t elf_buckets[] =
4770{
4771 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4772 16411, 32771, 0
4773};
4774
4775/* Compute bucket count for hashing table. We do not use a static set
4776 of possible tables sizes anymore. Instead we determine for all
4777 possible reasonable sizes of the table the outcome (i.e., the
4778 number of collisions etc) and choose the best solution. The
4779 weighting functions are not too simple to allow the table to grow
4780 without bounds. Instead one of the weighting factors is the size.
4781 Therefore the result is always a good payoff between few collisions
4782 (= short chain lengths) and table size. */
4783static size_t
4784compute_bucket_count (struct bfd_link_info *info)
4785{
4786 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4787 size_t best_size = 0;
4788 unsigned long int *hashcodes;
4789 unsigned long int *hashcodesp;
4790 unsigned long int i;
4791 bfd_size_type amt;
4792
4793 /* Compute the hash values for all exported symbols. At the same
4794 time store the values in an array so that we could use them for
4795 optimizations. */
4796 amt = dynsymcount;
4797 amt *= sizeof (unsigned long int);
4798 hashcodes = bfd_malloc (amt);
4799 if (hashcodes == NULL)
4800 return 0;
4801 hashcodesp = hashcodes;
4802
4803 /* Put all hash values in HASHCODES. */
4804 elf_link_hash_traverse (elf_hash_table (info),
4805 elf_collect_hash_codes, &hashcodesp);
4806
4807 /* We have a problem here. The following code to optimize the table
4808 size requires an integer type with more the 32 bits. If
4809 BFD_HOST_U_64_BIT is set we know about such a type. */
4810#ifdef BFD_HOST_U_64_BIT
4811 if (info->optimize)
4812 {
4813 unsigned long int nsyms = hashcodesp - hashcodes;
4814 size_t minsize;
4815 size_t maxsize;
4816 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4817 unsigned long int *counts ;
4818 bfd *dynobj = elf_hash_table (info)->dynobj;
4819 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4820
4821 /* Possible optimization parameters: if we have NSYMS symbols we say
4822 that the hashing table must at least have NSYMS/4 and at most
4823 2*NSYMS buckets. */
4824 minsize = nsyms / 4;
4825 if (minsize == 0)
4826 minsize = 1;
4827 best_size = maxsize = nsyms * 2;
4828
4829 /* Create array where we count the collisions in. We must use bfd_malloc
4830 since the size could be large. */
4831 amt = maxsize;
4832 amt *= sizeof (unsigned long int);
4833 counts = bfd_malloc (amt);
4834 if (counts == NULL)
4835 {
4836 free (hashcodes);
4837 return 0;
4838 }
4839
4840 /* Compute the "optimal" size for the hash table. The criteria is a
4841 minimal chain length. The minor criteria is (of course) the size
4842 of the table. */
4843 for (i = minsize; i < maxsize; ++i)
4844 {
4845 /* Walk through the array of hashcodes and count the collisions. */
4846 BFD_HOST_U_64_BIT max;
4847 unsigned long int j;
4848 unsigned long int fact;
4849
4850 memset (counts, '\0', i * sizeof (unsigned long int));
4851
4852 /* Determine how often each hash bucket is used. */
4853 for (j = 0; j < nsyms; ++j)
4854 ++counts[hashcodes[j] % i];
4855
4856 /* For the weight function we need some information about the
4857 pagesize on the target. This is information need not be 100%
4858 accurate. Since this information is not available (so far) we
4859 define it here to a reasonable default value. If it is crucial
4860 to have a better value some day simply define this value. */
4861# ifndef BFD_TARGET_PAGESIZE
4862# define BFD_TARGET_PAGESIZE (4096)
4863# endif
4864
4865 /* We in any case need 2 + NSYMS entries for the size values and
4866 the chains. */
4867 max = (2 + nsyms) * (bed->s->arch_size / 8);
4868
4869# if 1
4870 /* Variant 1: optimize for short chains. We add the squares
4871 of all the chain lengths (which favors many small chain
4872 over a few long chains). */
4873 for (j = 0; j < i; ++j)
4874 max += counts[j] * counts[j];
4875
4876 /* This adds penalties for the overall size of the table. */
4877 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4878 max *= fact * fact;
4879# else
4880 /* Variant 2: Optimize a lot more for small table. Here we
4881 also add squares of the size but we also add penalties for
4882 empty slots (the +1 term). */
4883 for (j = 0; j < i; ++j)
4884 max += (1 + counts[j]) * (1 + counts[j]);
4885
4886 /* The overall size of the table is considered, but not as
4887 strong as in variant 1, where it is squared. */
4888 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4889 max *= fact;
4890# endif
4891
4892 /* Compare with current best results. */
4893 if (max < best_chlen)
4894 {
4895 best_chlen = max;
4896 best_size = i;
4897 }
4898 }
4899
4900 free (counts);
4901 }
4902 else
4903#endif /* defined (BFD_HOST_U_64_BIT) */
4904 {
4905 /* This is the fallback solution if no 64bit type is available or if we
4906 are not supposed to spend much time on optimizations. We select the
4907 bucket count using a fixed set of numbers. */
4908 for (i = 0; elf_buckets[i] != 0; i++)
4909 {
4910 best_size = elf_buckets[i];
4911 if (dynsymcount < elf_buckets[i + 1])
4912 break;
4913 }
4914 }
4915
4916 /* Free the arrays we needed. */
4917 free (hashcodes);
4918
4919 return best_size;
4920}
4921
4922/* Set up the sizes and contents of the ELF dynamic sections. This is
4923 called by the ELF linker emulation before_allocation routine. We
4924 must set the sizes of the sections before the linker sets the
4925 addresses of the various sections. */
4926
4927bfd_boolean
4928bfd_elf_size_dynamic_sections (bfd *output_bfd,
4929 const char *soname,
4930 const char *rpath,
4931 const char *filter_shlib,
4932 const char * const *auxiliary_filters,
4933 struct bfd_link_info *info,
4934 asection **sinterpptr,
4935 struct bfd_elf_version_tree *verdefs)
4936{
4937 bfd_size_type soname_indx;
4938 bfd *dynobj;
4939 const struct elf_backend_data *bed;
4940 struct elf_assign_sym_version_info asvinfo;
4941
4942 *sinterpptr = NULL;
4943
4944 soname_indx = (bfd_size_type) -1;
4945
4946 if (!is_elf_hash_table (info->hash))
4947 return TRUE;
4948
8c37241b 4949 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4950 if (info->execstack)
4951 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4952 else if (info->noexecstack)
4953 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4954 else
4955 {
4956 bfd *inputobj;
4957 asection *notesec = NULL;
4958 int exec = 0;
4959
4960 for (inputobj = info->input_bfds;
4961 inputobj;
4962 inputobj = inputobj->link_next)
4963 {
4964 asection *s;
4965
d457dcf6 4966 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
4967 continue;
4968 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4969 if (s)
4970 {
4971 if (s->flags & SEC_CODE)
4972 exec = PF_X;
4973 notesec = s;
4974 }
4975 else
4976 exec = PF_X;
4977 }
4978 if (notesec)
4979 {
4980 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4981 if (exec && info->relocatable
4982 && notesec->output_section != bfd_abs_section_ptr)
4983 notesec->output_section->flags |= SEC_CODE;
4984 }
4985 }
4986
4987 /* Any syms created from now on start with -1 in
4988 got.refcount/offset and plt.refcount/offset. */
4989 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4990
4991 /* The backend may have to create some sections regardless of whether
4992 we're dynamic or not. */
4993 bed = get_elf_backend_data (output_bfd);
4994 if (bed->elf_backend_always_size_sections
4995 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4996 return FALSE;
4997
4998 dynobj = elf_hash_table (info)->dynobj;
4999
5000 /* If there were no dynamic objects in the link, there is nothing to
5001 do here. */
5002 if (dynobj == NULL)
5003 return TRUE;
5004
5005 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5006 return FALSE;
5007
5008 if (elf_hash_table (info)->dynamic_sections_created)
5009 {
5010 struct elf_info_failed eif;
5011 struct elf_link_hash_entry *h;
5012 asection *dynstr;
5013 struct bfd_elf_version_tree *t;
5014 struct bfd_elf_version_expr *d;
5015 bfd_boolean all_defined;
5016
5017 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5018 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5019
5020 if (soname != NULL)
5021 {
5022 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5023 soname, TRUE);
5024 if (soname_indx == (bfd_size_type) -1
5025 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5026 return FALSE;
5027 }
5028
5029 if (info->symbolic)
5030 {
5031 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5032 return FALSE;
5033 info->flags |= DF_SYMBOLIC;
5034 }
5035
5036 if (rpath != NULL)
5037 {
5038 bfd_size_type indx;
5039
5040 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5041 TRUE);
5042 if (indx == (bfd_size_type) -1
5043 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5044 return FALSE;
5045
5046 if (info->new_dtags)
5047 {
5048 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5049 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5050 return FALSE;
5051 }
5052 }
5053
5054 if (filter_shlib != NULL)
5055 {
5056 bfd_size_type indx;
5057
5058 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5059 filter_shlib, TRUE);
5060 if (indx == (bfd_size_type) -1
5061 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5062 return FALSE;
5063 }
5064
5065 if (auxiliary_filters != NULL)
5066 {
5067 const char * const *p;
5068
5069 for (p = auxiliary_filters; *p != NULL; p++)
5070 {
5071 bfd_size_type indx;
5072
5073 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5074 *p, TRUE);
5075 if (indx == (bfd_size_type) -1
5076 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5077 return FALSE;
5078 }
5079 }
5080
5081 eif.info = info;
5082 eif.verdefs = verdefs;
5083 eif.failed = FALSE;
5084
5085 /* If we are supposed to export all symbols into the dynamic symbol
5086 table (this is not the normal case), then do so. */
5087 if (info->export_dynamic)
5088 {
5089 elf_link_hash_traverse (elf_hash_table (info),
5090 _bfd_elf_export_symbol,
5091 &eif);
5092 if (eif.failed)
5093 return FALSE;
5094 }
5095
5096 /* Make all global versions with definition. */
5097 for (t = verdefs; t != NULL; t = t->next)
5098 for (d = t->globals.list; d != NULL; d = d->next)
5099 if (!d->symver && d->symbol)
5100 {
5101 const char *verstr, *name;
5102 size_t namelen, verlen, newlen;
5103 char *newname, *p;
5104 struct elf_link_hash_entry *newh;
5105
5106 name = d->symbol;
5107 namelen = strlen (name);
5108 verstr = t->name;
5109 verlen = strlen (verstr);
5110 newlen = namelen + verlen + 3;
5111
5112 newname = bfd_malloc (newlen);
5113 if (newname == NULL)
5114 return FALSE;
5115 memcpy (newname, name, namelen);
5116
5117 /* Check the hidden versioned definition. */
5118 p = newname + namelen;
5119 *p++ = ELF_VER_CHR;
5120 memcpy (p, verstr, verlen + 1);
5121 newh = elf_link_hash_lookup (elf_hash_table (info),
5122 newname, FALSE, FALSE,
5123 FALSE);
5124 if (newh == NULL
5125 || (newh->root.type != bfd_link_hash_defined
5126 && newh->root.type != bfd_link_hash_defweak))
5127 {
5128 /* Check the default versioned definition. */
5129 *p++ = ELF_VER_CHR;
5130 memcpy (p, verstr, verlen + 1);
5131 newh = elf_link_hash_lookup (elf_hash_table (info),
5132 newname, FALSE, FALSE,
5133 FALSE);
5134 }
5135 free (newname);
5136
5137 /* Mark this version if there is a definition and it is
5138 not defined in a shared object. */
5139 if (newh != NULL
f5385ebf 5140 && !newh->def_dynamic
5a580b3a
AM
5141 && (newh->root.type == bfd_link_hash_defined
5142 || newh->root.type == bfd_link_hash_defweak))
5143 d->symver = 1;
5144 }
5145
5146 /* Attach all the symbols to their version information. */
5147 asvinfo.output_bfd = output_bfd;
5148 asvinfo.info = info;
5149 asvinfo.verdefs = verdefs;
5150 asvinfo.failed = FALSE;
5151
5152 elf_link_hash_traverse (elf_hash_table (info),
5153 _bfd_elf_link_assign_sym_version,
5154 &asvinfo);
5155 if (asvinfo.failed)
5156 return FALSE;
5157
5158 if (!info->allow_undefined_version)
5159 {
5160 /* Check if all global versions have a definition. */
5161 all_defined = TRUE;
5162 for (t = verdefs; t != NULL; t = t->next)
5163 for (d = t->globals.list; d != NULL; d = d->next)
5164 if (!d->symver && !d->script)
5165 {
5166 (*_bfd_error_handler)
5167 (_("%s: undefined version: %s"),
5168 d->pattern, t->name);
5169 all_defined = FALSE;
5170 }
5171
5172 if (!all_defined)
5173 {
5174 bfd_set_error (bfd_error_bad_value);
5175 return FALSE;
5176 }
5177 }
5178
5179 /* Find all symbols which were defined in a dynamic object and make
5180 the backend pick a reasonable value for them. */
5181 elf_link_hash_traverse (elf_hash_table (info),
5182 _bfd_elf_adjust_dynamic_symbol,
5183 &eif);
5184 if (eif.failed)
5185 return FALSE;
5186
5187 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5188 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5189 now so that we know the final size of the .dynamic section. */
5190
5191 /* If there are initialization and/or finalization functions to
5192 call then add the corresponding DT_INIT/DT_FINI entries. */
5193 h = (info->init_function
5194 ? elf_link_hash_lookup (elf_hash_table (info),
5195 info->init_function, FALSE,
5196 FALSE, FALSE)
5197 : NULL);
5198 if (h != NULL
f5385ebf
AM
5199 && (h->ref_regular
5200 || h->def_regular))
5a580b3a
AM
5201 {
5202 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5203 return FALSE;
5204 }
5205 h = (info->fini_function
5206 ? elf_link_hash_lookup (elf_hash_table (info),
5207 info->fini_function, FALSE,
5208 FALSE, FALSE)
5209 : NULL);
5210 if (h != NULL
f5385ebf
AM
5211 && (h->ref_regular
5212 || h->def_regular))
5a580b3a
AM
5213 {
5214 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5215 return FALSE;
5216 }
5217
5218 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5219 {
5220 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5221 if (! info->executable)
5222 {
5223 bfd *sub;
5224 asection *o;
5225
5226 for (sub = info->input_bfds; sub != NULL;
5227 sub = sub->link_next)
5228 for (o = sub->sections; o != NULL; o = o->next)
5229 if (elf_section_data (o)->this_hdr.sh_type
5230 == SHT_PREINIT_ARRAY)
5231 {
5232 (*_bfd_error_handler)
d003868e
AM
5233 (_("%B: .preinit_array section is not allowed in DSO"),
5234 sub);
5a580b3a
AM
5235 break;
5236 }
5237
5238 bfd_set_error (bfd_error_nonrepresentable_section);
5239 return FALSE;
5240 }
5241
5242 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5243 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5244 return FALSE;
5245 }
5246 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5247 {
5248 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5249 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5250 return FALSE;
5251 }
5252 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5253 {
5254 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5255 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5256 return FALSE;
5257 }
5258
5259 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5260 /* If .dynstr is excluded from the link, we don't want any of
5261 these tags. Strictly, we should be checking each section
5262 individually; This quick check covers for the case where
5263 someone does a /DISCARD/ : { *(*) }. */
5264 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5265 {
5266 bfd_size_type strsize;
5267
5268 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5269 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5270 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5271 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5272 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5273 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5274 bed->s->sizeof_sym))
5275 return FALSE;
5276 }
5277 }
5278
5279 /* The backend must work out the sizes of all the other dynamic
5280 sections. */
5281 if (bed->elf_backend_size_dynamic_sections
5282 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5283 return FALSE;
5284
5285 if (elf_hash_table (info)->dynamic_sections_created)
5286 {
554220db 5287 unsigned long section_sym_count;
5a580b3a 5288 asection *s;
5a580b3a
AM
5289
5290 /* Set up the version definition section. */
5291 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5292 BFD_ASSERT (s != NULL);
5293
5294 /* We may have created additional version definitions if we are
5295 just linking a regular application. */
5296 verdefs = asvinfo.verdefs;
5297
5298 /* Skip anonymous version tag. */
5299 if (verdefs != NULL && verdefs->vernum == 0)
5300 verdefs = verdefs->next;
5301
3e3b46e5 5302 if (verdefs == NULL && !info->create_default_symver)
8423293d 5303 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5304 else
5305 {
5306 unsigned int cdefs;
5307 bfd_size_type size;
5308 struct bfd_elf_version_tree *t;
5309 bfd_byte *p;
5310 Elf_Internal_Verdef def;
5311 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5312 struct bfd_link_hash_entry *bh;
5313 struct elf_link_hash_entry *h;
5314 const char *name;
5a580b3a
AM
5315
5316 cdefs = 0;
5317 size = 0;
5318
5319 /* Make space for the base version. */
5320 size += sizeof (Elf_External_Verdef);
5321 size += sizeof (Elf_External_Verdaux);
5322 ++cdefs;
5323
3e3b46e5
PB
5324 /* Make space for the default version. */
5325 if (info->create_default_symver)
5326 {
5327 size += sizeof (Elf_External_Verdef);
5328 ++cdefs;
5329 }
5330
5a580b3a
AM
5331 for (t = verdefs; t != NULL; t = t->next)
5332 {
5333 struct bfd_elf_version_deps *n;
5334
5335 size += sizeof (Elf_External_Verdef);
5336 size += sizeof (Elf_External_Verdaux);
5337 ++cdefs;
5338
5339 for (n = t->deps; n != NULL; n = n->next)
5340 size += sizeof (Elf_External_Verdaux);
5341 }
5342
eea6121a
AM
5343 s->size = size;
5344 s->contents = bfd_alloc (output_bfd, s->size);
5345 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5346 return FALSE;
5347
5348 /* Fill in the version definition section. */
5349
5350 p = s->contents;
5351
5352 def.vd_version = VER_DEF_CURRENT;
5353 def.vd_flags = VER_FLG_BASE;
5354 def.vd_ndx = 1;
5355 def.vd_cnt = 1;
3e3b46e5
PB
5356 if (info->create_default_symver)
5357 {
5358 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5359 def.vd_next = sizeof (Elf_External_Verdef);
5360 }
5361 else
5362 {
5363 def.vd_aux = sizeof (Elf_External_Verdef);
5364 def.vd_next = (sizeof (Elf_External_Verdef)
5365 + sizeof (Elf_External_Verdaux));
5366 }
5a580b3a
AM
5367
5368 if (soname_indx != (bfd_size_type) -1)
5369 {
5370 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5371 soname_indx);
5372 def.vd_hash = bfd_elf_hash (soname);
5373 defaux.vda_name = soname_indx;
3e3b46e5 5374 name = soname;
5a580b3a
AM
5375 }
5376 else
5377 {
5a580b3a
AM
5378 bfd_size_type indx;
5379
5380 name = basename (output_bfd->filename);
5381 def.vd_hash = bfd_elf_hash (name);
5382 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5383 name, FALSE);
5384 if (indx == (bfd_size_type) -1)
5385 return FALSE;
5386 defaux.vda_name = indx;
5387 }
5388 defaux.vda_next = 0;
5389
5390 _bfd_elf_swap_verdef_out (output_bfd, &def,
5391 (Elf_External_Verdef *) p);
5392 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5393 if (info->create_default_symver)
5394 {
5395 /* Add a symbol representing this version. */
5396 bh = NULL;
5397 if (! (_bfd_generic_link_add_one_symbol
5398 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5399 0, NULL, FALSE,
5400 get_elf_backend_data (dynobj)->collect, &bh)))
5401 return FALSE;
5402 h = (struct elf_link_hash_entry *) bh;
5403 h->non_elf = 0;
5404 h->def_regular = 1;
5405 h->type = STT_OBJECT;
5406 h->verinfo.vertree = NULL;
5407
5408 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5409 return FALSE;
5410
5411 /* Create a duplicate of the base version with the same
5412 aux block, but different flags. */
5413 def.vd_flags = 0;
5414 def.vd_ndx = 2;
5415 def.vd_aux = sizeof (Elf_External_Verdef);
5416 if (verdefs)
5417 def.vd_next = (sizeof (Elf_External_Verdef)
5418 + sizeof (Elf_External_Verdaux));
5419 else
5420 def.vd_next = 0;
5421 _bfd_elf_swap_verdef_out (output_bfd, &def,
5422 (Elf_External_Verdef *) p);
5423 p += sizeof (Elf_External_Verdef);
5424 }
5a580b3a
AM
5425 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5426 (Elf_External_Verdaux *) p);
5427 p += sizeof (Elf_External_Verdaux);
5428
5429 for (t = verdefs; t != NULL; t = t->next)
5430 {
5431 unsigned int cdeps;
5432 struct bfd_elf_version_deps *n;
5a580b3a
AM
5433
5434 cdeps = 0;
5435 for (n = t->deps; n != NULL; n = n->next)
5436 ++cdeps;
5437
5438 /* Add a symbol representing this version. */
5439 bh = NULL;
5440 if (! (_bfd_generic_link_add_one_symbol
5441 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5442 0, NULL, FALSE,
5443 get_elf_backend_data (dynobj)->collect, &bh)))
5444 return FALSE;
5445 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5446 h->non_elf = 0;
5447 h->def_regular = 1;
5a580b3a
AM
5448 h->type = STT_OBJECT;
5449 h->verinfo.vertree = t;
5450
c152c796 5451 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5452 return FALSE;
5453
5454 def.vd_version = VER_DEF_CURRENT;
5455 def.vd_flags = 0;
5456 if (t->globals.list == NULL
5457 && t->locals.list == NULL
5458 && ! t->used)
5459 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5460 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5461 def.vd_cnt = cdeps + 1;
5462 def.vd_hash = bfd_elf_hash (t->name);
5463 def.vd_aux = sizeof (Elf_External_Verdef);
5464 def.vd_next = 0;
5465 if (t->next != NULL)
5466 def.vd_next = (sizeof (Elf_External_Verdef)
5467 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5468
5469 _bfd_elf_swap_verdef_out (output_bfd, &def,
5470 (Elf_External_Verdef *) p);
5471 p += sizeof (Elf_External_Verdef);
5472
5473 defaux.vda_name = h->dynstr_index;
5474 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5475 h->dynstr_index);
5476 defaux.vda_next = 0;
5477 if (t->deps != NULL)
5478 defaux.vda_next = sizeof (Elf_External_Verdaux);
5479 t->name_indx = defaux.vda_name;
5480
5481 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5482 (Elf_External_Verdaux *) p);
5483 p += sizeof (Elf_External_Verdaux);
5484
5485 for (n = t->deps; n != NULL; n = n->next)
5486 {
5487 if (n->version_needed == NULL)
5488 {
5489 /* This can happen if there was an error in the
5490 version script. */
5491 defaux.vda_name = 0;
5492 }
5493 else
5494 {
5495 defaux.vda_name = n->version_needed->name_indx;
5496 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5497 defaux.vda_name);
5498 }
5499 if (n->next == NULL)
5500 defaux.vda_next = 0;
5501 else
5502 defaux.vda_next = sizeof (Elf_External_Verdaux);
5503
5504 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5505 (Elf_External_Verdaux *) p);
5506 p += sizeof (Elf_External_Verdaux);
5507 }
5508 }
5509
5510 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5511 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5512 return FALSE;
5513
5514 elf_tdata (output_bfd)->cverdefs = cdefs;
5515 }
5516
5517 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5518 {
5519 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5520 return FALSE;
5521 }
5522 else if (info->flags & DF_BIND_NOW)
5523 {
5524 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5525 return FALSE;
5526 }
5527
5528 if (info->flags_1)
5529 {
5530 if (info->executable)
5531 info->flags_1 &= ~ (DF_1_INITFIRST
5532 | DF_1_NODELETE
5533 | DF_1_NOOPEN);
5534 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5535 return FALSE;
5536 }
5537
5538 /* Work out the size of the version reference section. */
5539
5540 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5541 BFD_ASSERT (s != NULL);
5542 {
5543 struct elf_find_verdep_info sinfo;
5544
5545 sinfo.output_bfd = output_bfd;
5546 sinfo.info = info;
5547 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5548 if (sinfo.vers == 0)
5549 sinfo.vers = 1;
5550 sinfo.failed = FALSE;
5551
5552 elf_link_hash_traverse (elf_hash_table (info),
5553 _bfd_elf_link_find_version_dependencies,
5554 &sinfo);
5555
5556 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 5557 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5558 else
5559 {
5560 Elf_Internal_Verneed *t;
5561 unsigned int size;
5562 unsigned int crefs;
5563 bfd_byte *p;
5564
5565 /* Build the version definition section. */
5566 size = 0;
5567 crefs = 0;
5568 for (t = elf_tdata (output_bfd)->verref;
5569 t != NULL;
5570 t = t->vn_nextref)
5571 {
5572 Elf_Internal_Vernaux *a;
5573
5574 size += sizeof (Elf_External_Verneed);
5575 ++crefs;
5576 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5577 size += sizeof (Elf_External_Vernaux);
5578 }
5579
eea6121a
AM
5580 s->size = size;
5581 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5582 if (s->contents == NULL)
5583 return FALSE;
5584
5585 p = s->contents;
5586 for (t = elf_tdata (output_bfd)->verref;
5587 t != NULL;
5588 t = t->vn_nextref)
5589 {
5590 unsigned int caux;
5591 Elf_Internal_Vernaux *a;
5592 bfd_size_type indx;
5593
5594 caux = 0;
5595 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5596 ++caux;
5597
5598 t->vn_version = VER_NEED_CURRENT;
5599 t->vn_cnt = caux;
5600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5601 elf_dt_name (t->vn_bfd) != NULL
5602 ? elf_dt_name (t->vn_bfd)
5603 : basename (t->vn_bfd->filename),
5604 FALSE);
5605 if (indx == (bfd_size_type) -1)
5606 return FALSE;
5607 t->vn_file = indx;
5608 t->vn_aux = sizeof (Elf_External_Verneed);
5609 if (t->vn_nextref == NULL)
5610 t->vn_next = 0;
5611 else
5612 t->vn_next = (sizeof (Elf_External_Verneed)
5613 + caux * sizeof (Elf_External_Vernaux));
5614
5615 _bfd_elf_swap_verneed_out (output_bfd, t,
5616 (Elf_External_Verneed *) p);
5617 p += sizeof (Elf_External_Verneed);
5618
5619 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5620 {
5621 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5623 a->vna_nodename, FALSE);
5624 if (indx == (bfd_size_type) -1)
5625 return FALSE;
5626 a->vna_name = indx;
5627 if (a->vna_nextptr == NULL)
5628 a->vna_next = 0;
5629 else
5630 a->vna_next = sizeof (Elf_External_Vernaux);
5631
5632 _bfd_elf_swap_vernaux_out (output_bfd, a,
5633 (Elf_External_Vernaux *) p);
5634 p += sizeof (Elf_External_Vernaux);
5635 }
5636 }
5637
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5639 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5640 return FALSE;
5641
5642 elf_tdata (output_bfd)->cverrefs = crefs;
5643 }
5644 }
5645
8423293d
AM
5646 if ((elf_tdata (output_bfd)->cverrefs == 0
5647 && elf_tdata (output_bfd)->cverdefs == 0)
5648 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5649 &section_sym_count) == 0)
5650 {
5651 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5652 s->flags |= SEC_EXCLUDE;
5653 }
5654 }
5655 return TRUE;
5656}
5657
5658bfd_boolean
5659bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5660{
5661 if (!is_elf_hash_table (info->hash))
5662 return TRUE;
5663
5664 if (elf_hash_table (info)->dynamic_sections_created)
5665 {
5666 bfd *dynobj;
5667 const struct elf_backend_data *bed;
5668 asection *s;
5669 bfd_size_type dynsymcount;
5670 unsigned long section_sym_count;
5671 size_t bucketcount = 0;
5672 size_t hash_entry_size;
5673 unsigned int dtagcount;
5674
5675 dynobj = elf_hash_table (info)->dynobj;
5676
5a580b3a
AM
5677 /* Assign dynsym indicies. In a shared library we generate a
5678 section symbol for each output section, which come first.
5679 Next come all of the back-end allocated local dynamic syms,
5680 followed by the rest of the global symbols. */
5681
554220db
AM
5682 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5683 &section_sym_count);
5a580b3a
AM
5684
5685 /* Work out the size of the symbol version section. */
5686 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5687 BFD_ASSERT (s != NULL);
8423293d
AM
5688 if (dynsymcount != 0
5689 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 5690 {
eea6121a
AM
5691 s->size = dynsymcount * sizeof (Elf_External_Versym);
5692 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5693 if (s->contents == NULL)
5694 return FALSE;
5695
5696 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5697 return FALSE;
5698 }
5699
5700 /* Set the size of the .dynsym and .hash sections. We counted
5701 the number of dynamic symbols in elf_link_add_object_symbols.
5702 We will build the contents of .dynsym and .hash when we build
5703 the final symbol table, because until then we do not know the
5704 correct value to give the symbols. We built the .dynstr
5705 section as we went along in elf_link_add_object_symbols. */
5706 s = bfd_get_section_by_name (dynobj, ".dynsym");
5707 BFD_ASSERT (s != NULL);
8423293d 5708 bed = get_elf_backend_data (output_bfd);
eea6121a 5709 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
5710
5711 if (dynsymcount != 0)
5712 {
554220db
AM
5713 s->contents = bfd_alloc (output_bfd, s->size);
5714 if (s->contents == NULL)
5715 return FALSE;
5a580b3a 5716
554220db
AM
5717 /* The first entry in .dynsym is a dummy symbol.
5718 Clear all the section syms, in case we don't output them all. */
5719 ++section_sym_count;
5720 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
5721 }
5722
5723 /* Compute the size of the hashing table. As a side effect this
5724 computes the hash values for all the names we export. */
5725 bucketcount = compute_bucket_count (info);
5726
5727 s = bfd_get_section_by_name (dynobj, ".hash");
5728 BFD_ASSERT (s != NULL);
5729 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5730 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5731 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5732 if (s->contents == NULL)
5733 return FALSE;
5734
5735 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5736 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5737 s->contents + hash_entry_size);
5738
5739 elf_hash_table (info)->bucketcount = bucketcount;
5740
5741 s = bfd_get_section_by_name (dynobj, ".dynstr");
5742 BFD_ASSERT (s != NULL);
5743
4ad4eba5 5744 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5745
eea6121a 5746 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5747
5748 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5749 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5750 return FALSE;
5751 }
5752
5753 return TRUE;
5754}
c152c796
AM
5755
5756/* Final phase of ELF linker. */
5757
5758/* A structure we use to avoid passing large numbers of arguments. */
5759
5760struct elf_final_link_info
5761{
5762 /* General link information. */
5763 struct bfd_link_info *info;
5764 /* Output BFD. */
5765 bfd *output_bfd;
5766 /* Symbol string table. */
5767 struct bfd_strtab_hash *symstrtab;
5768 /* .dynsym section. */
5769 asection *dynsym_sec;
5770 /* .hash section. */
5771 asection *hash_sec;
5772 /* symbol version section (.gnu.version). */
5773 asection *symver_sec;
5774 /* Buffer large enough to hold contents of any section. */
5775 bfd_byte *contents;
5776 /* Buffer large enough to hold external relocs of any section. */
5777 void *external_relocs;
5778 /* Buffer large enough to hold internal relocs of any section. */
5779 Elf_Internal_Rela *internal_relocs;
5780 /* Buffer large enough to hold external local symbols of any input
5781 BFD. */
5782 bfd_byte *external_syms;
5783 /* And a buffer for symbol section indices. */
5784 Elf_External_Sym_Shndx *locsym_shndx;
5785 /* Buffer large enough to hold internal local symbols of any input
5786 BFD. */
5787 Elf_Internal_Sym *internal_syms;
5788 /* Array large enough to hold a symbol index for each local symbol
5789 of any input BFD. */
5790 long *indices;
5791 /* Array large enough to hold a section pointer for each local
5792 symbol of any input BFD. */
5793 asection **sections;
5794 /* Buffer to hold swapped out symbols. */
5795 bfd_byte *symbuf;
5796 /* And one for symbol section indices. */
5797 Elf_External_Sym_Shndx *symshndxbuf;
5798 /* Number of swapped out symbols in buffer. */
5799 size_t symbuf_count;
5800 /* Number of symbols which fit in symbuf. */
5801 size_t symbuf_size;
5802 /* And same for symshndxbuf. */
5803 size_t shndxbuf_size;
5804};
5805
5806/* This struct is used to pass information to elf_link_output_extsym. */
5807
5808struct elf_outext_info
5809{
5810 bfd_boolean failed;
5811 bfd_boolean localsyms;
5812 struct elf_final_link_info *finfo;
5813};
5814
5815/* When performing a relocatable link, the input relocations are
5816 preserved. But, if they reference global symbols, the indices
5817 referenced must be updated. Update all the relocations in
5818 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5819
5820static void
5821elf_link_adjust_relocs (bfd *abfd,
5822 Elf_Internal_Shdr *rel_hdr,
5823 unsigned int count,
5824 struct elf_link_hash_entry **rel_hash)
5825{
5826 unsigned int i;
5827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5828 bfd_byte *erela;
5829 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5830 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5831 bfd_vma r_type_mask;
5832 int r_sym_shift;
5833
5834 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5835 {
5836 swap_in = bed->s->swap_reloc_in;
5837 swap_out = bed->s->swap_reloc_out;
5838 }
5839 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5840 {
5841 swap_in = bed->s->swap_reloca_in;
5842 swap_out = bed->s->swap_reloca_out;
5843 }
5844 else
5845 abort ();
5846
5847 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5848 abort ();
5849
5850 if (bed->s->arch_size == 32)
5851 {
5852 r_type_mask = 0xff;
5853 r_sym_shift = 8;
5854 }
5855 else
5856 {
5857 r_type_mask = 0xffffffff;
5858 r_sym_shift = 32;
5859 }
5860
5861 erela = rel_hdr->contents;
5862 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5863 {
5864 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5865 unsigned int j;
5866
5867 if (*rel_hash == NULL)
5868 continue;
5869
5870 BFD_ASSERT ((*rel_hash)->indx >= 0);
5871
5872 (*swap_in) (abfd, erela, irela);
5873 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5874 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5875 | (irela[j].r_info & r_type_mask));
5876 (*swap_out) (abfd, irela, erela);
5877 }
5878}
5879
5880struct elf_link_sort_rela
5881{
5882 union {
5883 bfd_vma offset;
5884 bfd_vma sym_mask;
5885 } u;
5886 enum elf_reloc_type_class type;
5887 /* We use this as an array of size int_rels_per_ext_rel. */
5888 Elf_Internal_Rela rela[1];
5889};
5890
5891static int
5892elf_link_sort_cmp1 (const void *A, const void *B)
5893{
5894 const struct elf_link_sort_rela *a = A;
5895 const struct elf_link_sort_rela *b = B;
5896 int relativea, relativeb;
5897
5898 relativea = a->type == reloc_class_relative;
5899 relativeb = b->type == reloc_class_relative;
5900
5901 if (relativea < relativeb)
5902 return 1;
5903 if (relativea > relativeb)
5904 return -1;
5905 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5906 return -1;
5907 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5908 return 1;
5909 if (a->rela->r_offset < b->rela->r_offset)
5910 return -1;
5911 if (a->rela->r_offset > b->rela->r_offset)
5912 return 1;
5913 return 0;
5914}
5915
5916static int
5917elf_link_sort_cmp2 (const void *A, const void *B)
5918{
5919 const struct elf_link_sort_rela *a = A;
5920 const struct elf_link_sort_rela *b = B;
5921 int copya, copyb;
5922
5923 if (a->u.offset < b->u.offset)
5924 return -1;
5925 if (a->u.offset > b->u.offset)
5926 return 1;
5927 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5928 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5929 if (copya < copyb)
5930 return -1;
5931 if (copya > copyb)
5932 return 1;
5933 if (a->rela->r_offset < b->rela->r_offset)
5934 return -1;
5935 if (a->rela->r_offset > b->rela->r_offset)
5936 return 1;
5937 return 0;
5938}
5939
5940static size_t
5941elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5942{
5943 asection *reldyn;
5944 bfd_size_type count, size;
5945 size_t i, ret, sort_elt, ext_size;
5946 bfd_byte *sort, *s_non_relative, *p;
5947 struct elf_link_sort_rela *sq;
5948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5949 int i2e = bed->s->int_rels_per_ext_rel;
5950 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5951 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5952 struct bfd_link_order *lo;
5953 bfd_vma r_sym_mask;
5954
5955 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5956 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5957 {
5958 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5959 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5960 return 0;
5961 ext_size = bed->s->sizeof_rel;
5962 swap_in = bed->s->swap_reloc_in;
5963 swap_out = bed->s->swap_reloc_out;
5964 }
5965 else
5966 {
5967 ext_size = bed->s->sizeof_rela;
5968 swap_in = bed->s->swap_reloca_in;
5969 swap_out = bed->s->swap_reloca_out;
5970 }
eea6121a 5971 count = reldyn->size / ext_size;
c152c796
AM
5972
5973 size = 0;
8423293d 5974 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
5975 if (lo->type == bfd_indirect_link_order)
5976 {
5977 asection *o = lo->u.indirect.section;
eea6121a 5978 size += o->size;
c152c796
AM
5979 }
5980
eea6121a 5981 if (size != reldyn->size)
c152c796
AM
5982 return 0;
5983
5984 sort_elt = (sizeof (struct elf_link_sort_rela)
5985 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5986 sort = bfd_zmalloc (sort_elt * count);
5987 if (sort == NULL)
5988 {
5989 (*info->callbacks->warning)
5990 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5991 return 0;
5992 }
5993
5994 if (bed->s->arch_size == 32)
5995 r_sym_mask = ~(bfd_vma) 0xff;
5996 else
5997 r_sym_mask = ~(bfd_vma) 0xffffffff;
5998
8423293d 5999 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6000 if (lo->type == bfd_indirect_link_order)
6001 {
6002 bfd_byte *erel, *erelend;
6003 asection *o = lo->u.indirect.section;
6004
1da212d6
AM
6005 if (o->contents == NULL && o->size != 0)
6006 {
6007 /* This is a reloc section that is being handled as a normal
6008 section. See bfd_section_from_shdr. We can't combine
6009 relocs in this case. */
6010 free (sort);
6011 return 0;
6012 }
c152c796 6013 erel = o->contents;
eea6121a 6014 erelend = o->contents + o->size;
c152c796
AM
6015 p = sort + o->output_offset / ext_size * sort_elt;
6016 while (erel < erelend)
6017 {
6018 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6019 (*swap_in) (abfd, erel, s->rela);
6020 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6021 s->u.sym_mask = r_sym_mask;
6022 p += sort_elt;
6023 erel += ext_size;
6024 }
6025 }
6026
6027 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6028
6029 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6030 {
6031 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6032 if (s->type != reloc_class_relative)
6033 break;
6034 }
6035 ret = i;
6036 s_non_relative = p;
6037
6038 sq = (struct elf_link_sort_rela *) s_non_relative;
6039 for (; i < count; i++, p += sort_elt)
6040 {
6041 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6042 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6043 sq = sp;
6044 sp->u.offset = sq->rela->r_offset;
6045 }
6046
6047 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6048
8423293d 6049 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6050 if (lo->type == bfd_indirect_link_order)
6051 {
6052 bfd_byte *erel, *erelend;
6053 asection *o = lo->u.indirect.section;
6054
6055 erel = o->contents;
eea6121a 6056 erelend = o->contents + o->size;
c152c796
AM
6057 p = sort + o->output_offset / ext_size * sort_elt;
6058 while (erel < erelend)
6059 {
6060 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6061 (*swap_out) (abfd, s->rela, erel);
6062 p += sort_elt;
6063 erel += ext_size;
6064 }
6065 }
6066
6067 free (sort);
6068 *psec = reldyn;
6069 return ret;
6070}
6071
6072/* Flush the output symbols to the file. */
6073
6074static bfd_boolean
6075elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6076 const struct elf_backend_data *bed)
6077{
6078 if (finfo->symbuf_count > 0)
6079 {
6080 Elf_Internal_Shdr *hdr;
6081 file_ptr pos;
6082 bfd_size_type amt;
6083
6084 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6085 pos = hdr->sh_offset + hdr->sh_size;
6086 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6087 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6088 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6089 return FALSE;
6090
6091 hdr->sh_size += amt;
6092 finfo->symbuf_count = 0;
6093 }
6094
6095 return TRUE;
6096}
6097
6098/* Add a symbol to the output symbol table. */
6099
6100static bfd_boolean
6101elf_link_output_sym (struct elf_final_link_info *finfo,
6102 const char *name,
6103 Elf_Internal_Sym *elfsym,
6104 asection *input_sec,
6105 struct elf_link_hash_entry *h)
6106{
6107 bfd_byte *dest;
6108 Elf_External_Sym_Shndx *destshndx;
6109 bfd_boolean (*output_symbol_hook)
6110 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6111 struct elf_link_hash_entry *);
6112 const struct elf_backend_data *bed;
6113
6114 bed = get_elf_backend_data (finfo->output_bfd);
6115 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6116 if (output_symbol_hook != NULL)
6117 {
6118 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6119 return FALSE;
6120 }
6121
6122 if (name == NULL || *name == '\0')
6123 elfsym->st_name = 0;
6124 else if (input_sec->flags & SEC_EXCLUDE)
6125 elfsym->st_name = 0;
6126 else
6127 {
6128 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6129 name, TRUE, FALSE);
6130 if (elfsym->st_name == (unsigned long) -1)
6131 return FALSE;
6132 }
6133
6134 if (finfo->symbuf_count >= finfo->symbuf_size)
6135 {
6136 if (! elf_link_flush_output_syms (finfo, bed))
6137 return FALSE;
6138 }
6139
6140 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6141 destshndx = finfo->symshndxbuf;
6142 if (destshndx != NULL)
6143 {
6144 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6145 {
6146 bfd_size_type amt;
6147
6148 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6149 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6150 if (destshndx == NULL)
6151 return FALSE;
6152 memset ((char *) destshndx + amt, 0, amt);
6153 finfo->shndxbuf_size *= 2;
6154 }
6155 destshndx += bfd_get_symcount (finfo->output_bfd);
6156 }
6157
6158 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6159 finfo->symbuf_count += 1;
6160 bfd_get_symcount (finfo->output_bfd) += 1;
6161
6162 return TRUE;
6163}
6164
6165/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6166 allowing an unsatisfied unversioned symbol in the DSO to match a
6167 versioned symbol that would normally require an explicit version.
6168 We also handle the case that a DSO references a hidden symbol
6169 which may be satisfied by a versioned symbol in another DSO. */
6170
6171static bfd_boolean
6172elf_link_check_versioned_symbol (struct bfd_link_info *info,
6173 const struct elf_backend_data *bed,
6174 struct elf_link_hash_entry *h)
6175{
6176 bfd *abfd;
6177 struct elf_link_loaded_list *loaded;
6178
6179 if (!is_elf_hash_table (info->hash))
6180 return FALSE;
6181
6182 switch (h->root.type)
6183 {
6184 default:
6185 abfd = NULL;
6186 break;
6187
6188 case bfd_link_hash_undefined:
6189 case bfd_link_hash_undefweak:
6190 abfd = h->root.u.undef.abfd;
6191 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6192 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6193 return FALSE;
6194 break;
6195
6196 case bfd_link_hash_defined:
6197 case bfd_link_hash_defweak:
6198 abfd = h->root.u.def.section->owner;
6199 break;
6200
6201 case bfd_link_hash_common:
6202 abfd = h->root.u.c.p->section->owner;
6203 break;
6204 }
6205 BFD_ASSERT (abfd != NULL);
6206
6207 for (loaded = elf_hash_table (info)->loaded;
6208 loaded != NULL;
6209 loaded = loaded->next)
6210 {
6211 bfd *input;
6212 Elf_Internal_Shdr *hdr;
6213 bfd_size_type symcount;
6214 bfd_size_type extsymcount;
6215 bfd_size_type extsymoff;
6216 Elf_Internal_Shdr *versymhdr;
6217 Elf_Internal_Sym *isym;
6218 Elf_Internal_Sym *isymend;
6219 Elf_Internal_Sym *isymbuf;
6220 Elf_External_Versym *ever;
6221 Elf_External_Versym *extversym;
6222
6223 input = loaded->abfd;
6224
6225 /* We check each DSO for a possible hidden versioned definition. */
6226 if (input == abfd
6227 || (input->flags & DYNAMIC) == 0
6228 || elf_dynversym (input) == 0)
6229 continue;
6230
6231 hdr = &elf_tdata (input)->dynsymtab_hdr;
6232
6233 symcount = hdr->sh_size / bed->s->sizeof_sym;
6234 if (elf_bad_symtab (input))
6235 {
6236 extsymcount = symcount;
6237 extsymoff = 0;
6238 }
6239 else
6240 {
6241 extsymcount = symcount - hdr->sh_info;
6242 extsymoff = hdr->sh_info;
6243 }
6244
6245 if (extsymcount == 0)
6246 continue;
6247
6248 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6249 NULL, NULL, NULL);
6250 if (isymbuf == NULL)
6251 return FALSE;
6252
6253 /* Read in any version definitions. */
6254 versymhdr = &elf_tdata (input)->dynversym_hdr;
6255 extversym = bfd_malloc (versymhdr->sh_size);
6256 if (extversym == NULL)
6257 goto error_ret;
6258
6259 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6260 || (bfd_bread (extversym, versymhdr->sh_size, input)
6261 != versymhdr->sh_size))
6262 {
6263 free (extversym);
6264 error_ret:
6265 free (isymbuf);
6266 return FALSE;
6267 }
6268
6269 ever = extversym + extsymoff;
6270 isymend = isymbuf + extsymcount;
6271 for (isym = isymbuf; isym < isymend; isym++, ever++)
6272 {
6273 const char *name;
6274 Elf_Internal_Versym iver;
6275 unsigned short version_index;
6276
6277 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6278 || isym->st_shndx == SHN_UNDEF)
6279 continue;
6280
6281 name = bfd_elf_string_from_elf_section (input,
6282 hdr->sh_link,
6283 isym->st_name);
6284 if (strcmp (name, h->root.root.string) != 0)
6285 continue;
6286
6287 _bfd_elf_swap_versym_in (input, ever, &iver);
6288
6289 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6290 {
6291 /* If we have a non-hidden versioned sym, then it should
6292 have provided a definition for the undefined sym. */
6293 abort ();
6294 }
6295
6296 version_index = iver.vs_vers & VERSYM_VERSION;
6297 if (version_index == 1 || version_index == 2)
6298 {
6299 /* This is the base or first version. We can use it. */
6300 free (extversym);
6301 free (isymbuf);
6302 return TRUE;
6303 }
6304 }
6305
6306 free (extversym);
6307 free (isymbuf);
6308 }
6309
6310 return FALSE;
6311}
6312
6313/* Add an external symbol to the symbol table. This is called from
6314 the hash table traversal routine. When generating a shared object,
6315 we go through the symbol table twice. The first time we output
6316 anything that might have been forced to local scope in a version
6317 script. The second time we output the symbols that are still
6318 global symbols. */
6319
6320static bfd_boolean
6321elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6322{
6323 struct elf_outext_info *eoinfo = data;
6324 struct elf_final_link_info *finfo = eoinfo->finfo;
6325 bfd_boolean strip;
6326 Elf_Internal_Sym sym;
6327 asection *input_sec;
6328 const struct elf_backend_data *bed;
6329
6330 if (h->root.type == bfd_link_hash_warning)
6331 {
6332 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6333 if (h->root.type == bfd_link_hash_new)
6334 return TRUE;
6335 }
6336
6337 /* Decide whether to output this symbol in this pass. */
6338 if (eoinfo->localsyms)
6339 {
f5385ebf 6340 if (!h->forced_local)
c152c796
AM
6341 return TRUE;
6342 }
6343 else
6344 {
f5385ebf 6345 if (h->forced_local)
c152c796
AM
6346 return TRUE;
6347 }
6348
6349 bed = get_elf_backend_data (finfo->output_bfd);
6350
6351 /* If we have an undefined symbol reference here then it must have
6352 come from a shared library that is being linked in. (Undefined
6353 references in regular files have already been handled). If we
6354 are reporting errors for this situation then do so now. */
6355 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6356 && h->ref_dynamic
6357 && !h->ref_regular
c152c796
AM
6358 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6359 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6360 {
6361 if (! ((*finfo->info->callbacks->undefined_symbol)
6362 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6363 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6364 {
6365 eoinfo->failed = TRUE;
6366 return FALSE;
6367 }
6368 }
6369
6370 /* We should also warn if a forced local symbol is referenced from
6371 shared libraries. */
6372 if (! finfo->info->relocatable
6373 && (! finfo->info->shared)
f5385ebf
AM
6374 && h->forced_local
6375 && h->ref_dynamic
6376 && !h->dynamic_def
6377 && !h->dynamic_weak
c152c796
AM
6378 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6379 {
6380 (*_bfd_error_handler)
d003868e
AM
6381 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6382 finfo->output_bfd, h->root.u.def.section->owner,
c152c796
AM
6383 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6384 ? "internal"
6385 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6386 ? "hidden" : "local",
6387 h->root.root.string);
c152c796
AM
6388 eoinfo->failed = TRUE;
6389 return FALSE;
6390 }
6391
6392 /* We don't want to output symbols that have never been mentioned by
6393 a regular file, or that we have been told to strip. However, if
6394 h->indx is set to -2, the symbol is used by a reloc and we must
6395 output it. */
6396 if (h->indx == -2)
6397 strip = FALSE;
f5385ebf 6398 else if ((h->def_dynamic
77cfaee6
AM
6399 || h->ref_dynamic
6400 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6401 && !h->def_regular
6402 && !h->ref_regular)
c152c796
AM
6403 strip = TRUE;
6404 else if (finfo->info->strip == strip_all)
6405 strip = TRUE;
6406 else if (finfo->info->strip == strip_some
6407 && bfd_hash_lookup (finfo->info->keep_hash,
6408 h->root.root.string, FALSE, FALSE) == NULL)
6409 strip = TRUE;
6410 else if (finfo->info->strip_discarded
6411 && (h->root.type == bfd_link_hash_defined
6412 || h->root.type == bfd_link_hash_defweak)
6413 && elf_discarded_section (h->root.u.def.section))
6414 strip = TRUE;
6415 else
6416 strip = FALSE;
6417
6418 /* If we're stripping it, and it's not a dynamic symbol, there's
6419 nothing else to do unless it is a forced local symbol. */
6420 if (strip
6421 && h->dynindx == -1
f5385ebf 6422 && !h->forced_local)
c152c796
AM
6423 return TRUE;
6424
6425 sym.st_value = 0;
6426 sym.st_size = h->size;
6427 sym.st_other = h->other;
f5385ebf 6428 if (h->forced_local)
c152c796
AM
6429 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6430 else if (h->root.type == bfd_link_hash_undefweak
6431 || h->root.type == bfd_link_hash_defweak)
6432 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6433 else
6434 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6435
6436 switch (h->root.type)
6437 {
6438 default:
6439 case bfd_link_hash_new:
6440 case bfd_link_hash_warning:
6441 abort ();
6442 return FALSE;
6443
6444 case bfd_link_hash_undefined:
6445 case bfd_link_hash_undefweak:
6446 input_sec = bfd_und_section_ptr;
6447 sym.st_shndx = SHN_UNDEF;
6448 break;
6449
6450 case bfd_link_hash_defined:
6451 case bfd_link_hash_defweak:
6452 {
6453 input_sec = h->root.u.def.section;
6454 if (input_sec->output_section != NULL)
6455 {
6456 sym.st_shndx =
6457 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6458 input_sec->output_section);
6459 if (sym.st_shndx == SHN_BAD)
6460 {
6461 (*_bfd_error_handler)
d003868e
AM
6462 (_("%B: could not find output section %A for input section %A"),
6463 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6464 eoinfo->failed = TRUE;
6465 return FALSE;
6466 }
6467
6468 /* ELF symbols in relocatable files are section relative,
6469 but in nonrelocatable files they are virtual
6470 addresses. */
6471 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6472 if (! finfo->info->relocatable)
6473 {
6474 sym.st_value += input_sec->output_section->vma;
6475 if (h->type == STT_TLS)
6476 {
6477 /* STT_TLS symbols are relative to PT_TLS segment
6478 base. */
6479 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6480 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6481 }
6482 }
6483 }
6484 else
6485 {
6486 BFD_ASSERT (input_sec->owner == NULL
6487 || (input_sec->owner->flags & DYNAMIC) != 0);
6488 sym.st_shndx = SHN_UNDEF;
6489 input_sec = bfd_und_section_ptr;
6490 }
6491 }
6492 break;
6493
6494 case bfd_link_hash_common:
6495 input_sec = h->root.u.c.p->section;
6496 sym.st_shndx = SHN_COMMON;
6497 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6498 break;
6499
6500 case bfd_link_hash_indirect:
6501 /* These symbols are created by symbol versioning. They point
6502 to the decorated version of the name. For example, if the
6503 symbol foo@@GNU_1.2 is the default, which should be used when
6504 foo is used with no version, then we add an indirect symbol
6505 foo which points to foo@@GNU_1.2. We ignore these symbols,
6506 since the indirected symbol is already in the hash table. */
6507 return TRUE;
6508 }
6509
6510 /* Give the processor backend a chance to tweak the symbol value,
6511 and also to finish up anything that needs to be done for this
6512 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6513 forced local syms when non-shared is due to a historical quirk. */
6514 if ((h->dynindx != -1
f5385ebf 6515 || h->forced_local)
c152c796
AM
6516 && ((finfo->info->shared
6517 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6518 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6519 || !h->forced_local)
c152c796
AM
6520 && elf_hash_table (finfo->info)->dynamic_sections_created)
6521 {
6522 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6523 (finfo->output_bfd, finfo->info, h, &sym)))
6524 {
6525 eoinfo->failed = TRUE;
6526 return FALSE;
6527 }
6528 }
6529
6530 /* If we are marking the symbol as undefined, and there are no
6531 non-weak references to this symbol from a regular object, then
6532 mark the symbol as weak undefined; if there are non-weak
6533 references, mark the symbol as strong. We can't do this earlier,
6534 because it might not be marked as undefined until the
6535 finish_dynamic_symbol routine gets through with it. */
6536 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6537 && h->ref_regular
c152c796
AM
6538 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6539 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6540 {
6541 int bindtype;
6542
f5385ebf 6543 if (h->ref_regular_nonweak)
c152c796
AM
6544 bindtype = STB_GLOBAL;
6545 else
6546 bindtype = STB_WEAK;
6547 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6548 }
6549
6550 /* If a non-weak symbol with non-default visibility is not defined
6551 locally, it is a fatal error. */
6552 if (! finfo->info->relocatable
6553 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6554 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6555 && h->root.type == bfd_link_hash_undefined
f5385ebf 6556 && !h->def_regular)
c152c796
AM
6557 {
6558 (*_bfd_error_handler)
d003868e
AM
6559 (_("%B: %s symbol `%s' isn't defined"),
6560 finfo->output_bfd,
6561 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6562 ? "protected"
6563 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6564 ? "internal" : "hidden",
6565 h->root.root.string);
c152c796
AM
6566 eoinfo->failed = TRUE;
6567 return FALSE;
6568 }
6569
6570 /* If this symbol should be put in the .dynsym section, then put it
6571 there now. We already know the symbol index. We also fill in
6572 the entry in the .hash section. */
6573 if (h->dynindx != -1
6574 && elf_hash_table (finfo->info)->dynamic_sections_created)
6575 {
6576 size_t bucketcount;
6577 size_t bucket;
6578 size_t hash_entry_size;
6579 bfd_byte *bucketpos;
6580 bfd_vma chain;
6581 bfd_byte *esym;
6582
6583 sym.st_name = h->dynstr_index;
6584 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6585 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6586
6587 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6588 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6589 hash_entry_size
6590 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6591 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6592 + (bucket + 2) * hash_entry_size);
6593 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6594 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6595 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6596 ((bfd_byte *) finfo->hash_sec->contents
6597 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6598
6599 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6600 {
6601 Elf_Internal_Versym iversym;
6602 Elf_External_Versym *eversym;
6603
f5385ebf 6604 if (!h->def_regular)
c152c796
AM
6605 {
6606 if (h->verinfo.verdef == NULL)
6607 iversym.vs_vers = 0;
6608 else
6609 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6610 }
6611 else
6612 {
6613 if (h->verinfo.vertree == NULL)
6614 iversym.vs_vers = 1;
6615 else
6616 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6617 if (finfo->info->create_default_symver)
6618 iversym.vs_vers++;
c152c796
AM
6619 }
6620
f5385ebf 6621 if (h->hidden)
c152c796
AM
6622 iversym.vs_vers |= VERSYM_HIDDEN;
6623
6624 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6625 eversym += h->dynindx;
6626 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6627 }
6628 }
6629
6630 /* If we're stripping it, then it was just a dynamic symbol, and
6631 there's nothing else to do. */
6632 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6633 return TRUE;
6634
6635 h->indx = bfd_get_symcount (finfo->output_bfd);
6636
6637 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6638 {
6639 eoinfo->failed = TRUE;
6640 return FALSE;
6641 }
6642
6643 return TRUE;
6644}
6645
cdd3575c
AM
6646/* Return TRUE if special handling is done for relocs in SEC against
6647 symbols defined in discarded sections. */
6648
c152c796
AM
6649static bfd_boolean
6650elf_section_ignore_discarded_relocs (asection *sec)
6651{
6652 const struct elf_backend_data *bed;
6653
cdd3575c
AM
6654 switch (sec->sec_info_type)
6655 {
6656 case ELF_INFO_TYPE_STABS:
6657 case ELF_INFO_TYPE_EH_FRAME:
6658 return TRUE;
6659 default:
6660 break;
6661 }
c152c796
AM
6662
6663 bed = get_elf_backend_data (sec->owner);
6664 if (bed->elf_backend_ignore_discarded_relocs != NULL
6665 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6666 return TRUE;
6667
6668 return FALSE;
6669}
6670
9e66c942
AM
6671enum action_discarded
6672 {
6673 COMPLAIN = 1,
6674 PRETEND = 2
6675 };
6676
6677/* Return a mask saying how ld should treat relocations in SEC against
6678 symbols defined in discarded sections. If this function returns
6679 COMPLAIN set, ld will issue a warning message. If this function
6680 returns PRETEND set, and the discarded section was link-once and the
6681 same size as the kept link-once section, ld will pretend that the
6682 symbol was actually defined in the kept section. Otherwise ld will
6683 zero the reloc (at least that is the intent, but some cooperation by
6684 the target dependent code is needed, particularly for REL targets). */
6685
6686static unsigned int
6687elf_action_discarded (asection *sec)
cdd3575c 6688{
9e66c942
AM
6689 if (sec->flags & SEC_DEBUGGING)
6690 return PRETEND;
cdd3575c
AM
6691
6692 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6693 return 0;
cdd3575c
AM
6694
6695 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6696 return 0;
cdd3575c 6697
27b56da8 6698 if (strcmp (".PARISC.unwind", sec->name) == 0)
9e66c942 6699 return 0;
327c1315
AM
6700
6701 if (strcmp (".fixup", sec->name) == 0)
9e66c942 6702 return 0;
27b56da8 6703
9e66c942 6704 return COMPLAIN | PRETEND;
cdd3575c
AM
6705}
6706
3d7f7666
L
6707/* Find a match between a section and a member of a section group. */
6708
6709static asection *
6710match_group_member (asection *sec, asection *group)
6711{
6712 asection *first = elf_next_in_group (group);
6713 asection *s = first;
6714
6715 while (s != NULL)
6716 {
6717 if (bfd_elf_match_symbols_in_sections (s, sec))
6718 return s;
6719
6720 if (s == first)
6721 break;
6722 }
6723
6724 return NULL;
6725}
6726
01b3c8ab
L
6727/* Check if the kept section of a discarded section SEC can be used
6728 to replace it. Return the replacement if it is OK. Otherwise return
6729 NULL. */
6730
6731asection *
6732_bfd_elf_check_kept_section (asection *sec)
6733{
6734 asection *kept;
6735
6736 kept = sec->kept_section;
6737 if (kept != NULL)
6738 {
6739 if (elf_sec_group (sec) != NULL)
6740 kept = match_group_member (sec, kept);
6741 if (kept != NULL && sec->size != kept->size)
6742 kept = NULL;
6743 }
6744 return kept;
6745}
6746
c152c796
AM
6747/* Link an input file into the linker output file. This function
6748 handles all the sections and relocations of the input file at once.
6749 This is so that we only have to read the local symbols once, and
6750 don't have to keep them in memory. */
6751
6752static bfd_boolean
6753elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6754{
6755 bfd_boolean (*relocate_section)
6756 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6757 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6758 bfd *output_bfd;
6759 Elf_Internal_Shdr *symtab_hdr;
6760 size_t locsymcount;
6761 size_t extsymoff;
6762 Elf_Internal_Sym *isymbuf;
6763 Elf_Internal_Sym *isym;
6764 Elf_Internal_Sym *isymend;
6765 long *pindex;
6766 asection **ppsection;
6767 asection *o;
6768 const struct elf_backend_data *bed;
6769 bfd_boolean emit_relocs;
6770 struct elf_link_hash_entry **sym_hashes;
6771
6772 output_bfd = finfo->output_bfd;
6773 bed = get_elf_backend_data (output_bfd);
6774 relocate_section = bed->elf_backend_relocate_section;
6775
6776 /* If this is a dynamic object, we don't want to do anything here:
6777 we don't want the local symbols, and we don't want the section
6778 contents. */
6779 if ((input_bfd->flags & DYNAMIC) != 0)
6780 return TRUE;
6781
6782 emit_relocs = (finfo->info->relocatable
eac338cf 6783 || finfo->info->emitrelocations);
c152c796
AM
6784
6785 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6786 if (elf_bad_symtab (input_bfd))
6787 {
6788 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6789 extsymoff = 0;
6790 }
6791 else
6792 {
6793 locsymcount = symtab_hdr->sh_info;
6794 extsymoff = symtab_hdr->sh_info;
6795 }
6796
6797 /* Read the local symbols. */
6798 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6799 if (isymbuf == NULL && locsymcount != 0)
6800 {
6801 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6802 finfo->internal_syms,
6803 finfo->external_syms,
6804 finfo->locsym_shndx);
6805 if (isymbuf == NULL)
6806 return FALSE;
6807 }
6808
6809 /* Find local symbol sections and adjust values of symbols in
6810 SEC_MERGE sections. Write out those local symbols we know are
6811 going into the output file. */
6812 isymend = isymbuf + locsymcount;
6813 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6814 isym < isymend;
6815 isym++, pindex++, ppsection++)
6816 {
6817 asection *isec;
6818 const char *name;
6819 Elf_Internal_Sym osym;
6820
6821 *pindex = -1;
6822
6823 if (elf_bad_symtab (input_bfd))
6824 {
6825 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6826 {
6827 *ppsection = NULL;
6828 continue;
6829 }
6830 }
6831
6832 if (isym->st_shndx == SHN_UNDEF)
6833 isec = bfd_und_section_ptr;
6834 else if (isym->st_shndx < SHN_LORESERVE
6835 || isym->st_shndx > SHN_HIRESERVE)
6836 {
6837 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6838 if (isec
6839 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6840 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6841 isym->st_value =
6842 _bfd_merged_section_offset (output_bfd, &isec,
6843 elf_section_data (isec)->sec_info,
753731ee 6844 isym->st_value);
c152c796
AM
6845 }
6846 else if (isym->st_shndx == SHN_ABS)
6847 isec = bfd_abs_section_ptr;
6848 else if (isym->st_shndx == SHN_COMMON)
6849 isec = bfd_com_section_ptr;
6850 else
6851 {
6852 /* Who knows? */
6853 isec = NULL;
6854 }
6855
6856 *ppsection = isec;
6857
6858 /* Don't output the first, undefined, symbol. */
6859 if (ppsection == finfo->sections)
6860 continue;
6861
6862 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6863 {
6864 /* We never output section symbols. Instead, we use the
6865 section symbol of the corresponding section in the output
6866 file. */
6867 continue;
6868 }
6869
6870 /* If we are stripping all symbols, we don't want to output this
6871 one. */
6872 if (finfo->info->strip == strip_all)
6873 continue;
6874
6875 /* If we are discarding all local symbols, we don't want to
6876 output this one. If we are generating a relocatable output
6877 file, then some of the local symbols may be required by
6878 relocs; we output them below as we discover that they are
6879 needed. */
6880 if (finfo->info->discard == discard_all)
6881 continue;
6882
6883 /* If this symbol is defined in a section which we are
6884 discarding, we don't need to keep it, but note that
6885 linker_mark is only reliable for sections that have contents.
6886 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6887 as well as linker_mark. */
6888 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610
PB
6889 && (isec == NULL
6890 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
c152c796
AM
6891 || (! finfo->info->relocatable
6892 && (isec->flags & SEC_EXCLUDE) != 0)))
6893 continue;
6894
e75a280b
L
6895 /* If the section is not in the output BFD's section list, it is not
6896 being output. */
6897 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6898 continue;
6899
c152c796
AM
6900 /* Get the name of the symbol. */
6901 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6902 isym->st_name);
6903 if (name == NULL)
6904 return FALSE;
6905
6906 /* See if we are discarding symbols with this name. */
6907 if ((finfo->info->strip == strip_some
6908 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6909 == NULL))
6910 || (((finfo->info->discard == discard_sec_merge
6911 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6912 || finfo->info->discard == discard_l)
6913 && bfd_is_local_label_name (input_bfd, name)))
6914 continue;
6915
6916 /* If we get here, we are going to output this symbol. */
6917
6918 osym = *isym;
6919
6920 /* Adjust the section index for the output file. */
6921 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6922 isec->output_section);
6923 if (osym.st_shndx == SHN_BAD)
6924 return FALSE;
6925
6926 *pindex = bfd_get_symcount (output_bfd);
6927
6928 /* ELF symbols in relocatable files are section relative, but
6929 in executable files they are virtual addresses. Note that
6930 this code assumes that all ELF sections have an associated
6931 BFD section with a reasonable value for output_offset; below
6932 we assume that they also have a reasonable value for
6933 output_section. Any special sections must be set up to meet
6934 these requirements. */
6935 osym.st_value += isec->output_offset;
6936 if (! finfo->info->relocatable)
6937 {
6938 osym.st_value += isec->output_section->vma;
6939 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6940 {
6941 /* STT_TLS symbols are relative to PT_TLS segment base. */
6942 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6943 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6944 }
6945 }
6946
6947 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6948 return FALSE;
6949 }
6950
6951 /* Relocate the contents of each section. */
6952 sym_hashes = elf_sym_hashes (input_bfd);
6953 for (o = input_bfd->sections; o != NULL; o = o->next)
6954 {
6955 bfd_byte *contents;
6956
6957 if (! o->linker_mark)
6958 {
6959 /* This section was omitted from the link. */
6960 continue;
6961 }
6962
6963 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6964 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6965 continue;
6966
6967 if ((o->flags & SEC_LINKER_CREATED) != 0)
6968 {
6969 /* Section was created by _bfd_elf_link_create_dynamic_sections
6970 or somesuch. */
6971 continue;
6972 }
6973
6974 /* Get the contents of the section. They have been cached by a
6975 relaxation routine. Note that o is a section in an input
6976 file, so the contents field will not have been set by any of
6977 the routines which work on output files. */
6978 if (elf_section_data (o)->this_hdr.contents != NULL)
6979 contents = elf_section_data (o)->this_hdr.contents;
6980 else
6981 {
eea6121a
AM
6982 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6983
c152c796 6984 contents = finfo->contents;
eea6121a 6985 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6986 return FALSE;
6987 }
6988
6989 if ((o->flags & SEC_RELOC) != 0)
6990 {
6991 Elf_Internal_Rela *internal_relocs;
6992 bfd_vma r_type_mask;
6993 int r_sym_shift;
6994
6995 /* Get the swapped relocs. */
6996 internal_relocs
6997 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6998 finfo->internal_relocs, FALSE);
6999 if (internal_relocs == NULL
7000 && o->reloc_count > 0)
7001 return FALSE;
7002
7003 if (bed->s->arch_size == 32)
7004 {
7005 r_type_mask = 0xff;
7006 r_sym_shift = 8;
7007 }
7008 else
7009 {
7010 r_type_mask = 0xffffffff;
7011 r_sym_shift = 32;
7012 }
7013
7014 /* Run through the relocs looking for any against symbols
7015 from discarded sections and section symbols from
7016 removed link-once sections. Complain about relocs
7017 against discarded sections. Zero relocs against removed
7018 link-once sections. Preserve debug information as much
7019 as we can. */
7020 if (!elf_section_ignore_discarded_relocs (o))
7021 {
7022 Elf_Internal_Rela *rel, *relend;
9e66c942 7023 unsigned int action = elf_action_discarded (o);
c152c796
AM
7024
7025 rel = internal_relocs;
7026 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7027 for ( ; rel < relend; rel++)
7028 {
7029 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
7030 asection **ps, *sec;
7031 struct elf_link_hash_entry *h = NULL;
7032 const char *sym_name;
c152c796 7033
ee75fd95
AM
7034 if (r_symndx == STN_UNDEF)
7035 continue;
7036
c152c796
AM
7037 if (r_symndx >= locsymcount
7038 || (elf_bad_symtab (input_bfd)
7039 && finfo->sections[r_symndx] == NULL))
7040 {
c152c796 7041 h = sym_hashes[r_symndx - extsymoff];
dce669a1 7042
8c19749a
NC
7043 /* Badly formatted input files can contain relocs that
7044 reference non-existant symbols. Check here so that
7045 we do not seg fault. */
7046 if (h == NULL)
7047 {
7048 char buffer [32];
7049
7050 sprintf_vma (buffer, rel->r_info);
7051 (*_bfd_error_handler)
7052 (_("error: %B contains a reloc (0x%s) for section %A "
7053 "that references a non-existent global symbol"),
7054 input_bfd, o, buffer);
7055 bfd_set_error (bfd_error_bad_value);
7056 return FALSE;
7057 }
7058
c152c796
AM
7059 while (h->root.type == bfd_link_hash_indirect
7060 || h->root.type == bfd_link_hash_warning)
7061 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7062
cdd3575c
AM
7063 if (h->root.type != bfd_link_hash_defined
7064 && h->root.type != bfd_link_hash_defweak)
7065 continue;
7066
7067 ps = &h->root.u.def.section;
7068 sym_name = h->root.root.string;
c152c796
AM
7069 }
7070 else
7071 {
cdd3575c
AM
7072 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7073 ps = &finfo->sections[r_symndx];
26c61ae5
L
7074 sym_name = bfd_elf_sym_name (input_bfd,
7075 symtab_hdr,
7076 sym, *ps);
cdd3575c 7077 }
c152c796 7078
cdd3575c
AM
7079 /* Complain if the definition comes from a
7080 discarded section. */
7081 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7082 {
87e5235d 7083 BFD_ASSERT (r_symndx != 0);
9e66c942 7084 if (action & COMPLAIN)
cdd3575c 7085 {
d003868e
AM
7086 (*_bfd_error_handler)
7087 (_("`%s' referenced in section `%A' of %B: "
c93625e2 7088 "defined in discarded section `%A' of %B"),
d003868e 7089 o, input_bfd, sec, sec->owner, sym_name);
6d633fd2
L
7090 bfd_set_error (bfd_error_bad_value);
7091 return FALSE;
cdd3575c
AM
7092 }
7093
87e5235d
AM
7094 /* Try to do the best we can to support buggy old
7095 versions of gcc. If we've warned, or this is
7096 debugging info, pretend that the symbol is
7097 really defined in the kept linkonce section.
7098 FIXME: This is quite broken. Modifying the
7099 symbol here means we will be changing all later
7100 uses of the symbol, not just in this section.
7101 The only thing that makes this half reasonable
7102 is that we warn in non-debug sections, and
7103 debug sections tend to come after other
7104 sections. */
01b3c8ab 7105 if (action & PRETEND)
87e5235d 7106 {
01b3c8ab
L
7107 asection *kept;
7108
7109 kept = _bfd_elf_check_kept_section (sec);
7110 if (kept != NULL)
87e5235d
AM
7111 {
7112 *ps = kept;
7113 continue;
7114 }
7115 }
7116
cdd3575c
AM
7117 /* Remove the symbol reference from the reloc, but
7118 don't kill the reloc completely. This is so that
7119 a zero value will be written into the section,
7120 which may have non-zero contents put there by the
7121 assembler. Zero in things like an eh_frame fde
7122 pc_begin allows stack unwinders to recognize the
7123 fde as bogus. */
7124 rel->r_info &= r_type_mask;
7125 rel->r_addend = 0;
c152c796
AM
7126 }
7127 }
7128 }
7129
7130 /* Relocate the section by invoking a back end routine.
7131
7132 The back end routine is responsible for adjusting the
7133 section contents as necessary, and (if using Rela relocs
7134 and generating a relocatable output file) adjusting the
7135 reloc addend as necessary.
7136
7137 The back end routine does not have to worry about setting
7138 the reloc address or the reloc symbol index.
7139
7140 The back end routine is given a pointer to the swapped in
7141 internal symbols, and can access the hash table entries
7142 for the external symbols via elf_sym_hashes (input_bfd).
7143
7144 When generating relocatable output, the back end routine
7145 must handle STB_LOCAL/STT_SECTION symbols specially. The
7146 output symbol is going to be a section symbol
7147 corresponding to the output section, which will require
7148 the addend to be adjusted. */
7149
7150 if (! (*relocate_section) (output_bfd, finfo->info,
7151 input_bfd, o, contents,
7152 internal_relocs,
7153 isymbuf,
7154 finfo->sections))
7155 return FALSE;
7156
7157 if (emit_relocs)
7158 {
7159 Elf_Internal_Rela *irela;
7160 Elf_Internal_Rela *irelaend;
7161 bfd_vma last_offset;
7162 struct elf_link_hash_entry **rel_hash;
eac338cf 7163 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
7164 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7165 unsigned int next_erel;
c152c796
AM
7166 bfd_boolean rela_normal;
7167
7168 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7169 rela_normal = (bed->rela_normal
7170 && (input_rel_hdr->sh_entsize
7171 == bed->s->sizeof_rela));
7172
7173 /* Adjust the reloc addresses and symbol indices. */
7174
7175 irela = internal_relocs;
7176 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7177 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7178 + elf_section_data (o->output_section)->rel_count
7179 + elf_section_data (o->output_section)->rel_count2);
eac338cf 7180 rel_hash_list = rel_hash;
c152c796
AM
7181 last_offset = o->output_offset;
7182 if (!finfo->info->relocatable)
7183 last_offset += o->output_section->vma;
7184 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7185 {
7186 unsigned long r_symndx;
7187 asection *sec;
7188 Elf_Internal_Sym sym;
7189
7190 if (next_erel == bed->s->int_rels_per_ext_rel)
7191 {
7192 rel_hash++;
7193 next_erel = 0;
7194 }
7195
7196 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7197 finfo->info, o,
7198 irela->r_offset);
7199 if (irela->r_offset >= (bfd_vma) -2)
7200 {
7201 /* This is a reloc for a deleted entry or somesuch.
7202 Turn it into an R_*_NONE reloc, at the same
7203 offset as the last reloc. elf_eh_frame.c and
7204 elf_bfd_discard_info rely on reloc offsets
7205 being ordered. */
7206 irela->r_offset = last_offset;
7207 irela->r_info = 0;
7208 irela->r_addend = 0;
7209 continue;
7210 }
7211
7212 irela->r_offset += o->output_offset;
7213
7214 /* Relocs in an executable have to be virtual addresses. */
7215 if (!finfo->info->relocatable)
7216 irela->r_offset += o->output_section->vma;
7217
7218 last_offset = irela->r_offset;
7219
7220 r_symndx = irela->r_info >> r_sym_shift;
7221 if (r_symndx == STN_UNDEF)
7222 continue;
7223
7224 if (r_symndx >= locsymcount
7225 || (elf_bad_symtab (input_bfd)
7226 && finfo->sections[r_symndx] == NULL))
7227 {
7228 struct elf_link_hash_entry *rh;
7229 unsigned long indx;
7230
7231 /* This is a reloc against a global symbol. We
7232 have not yet output all the local symbols, so
7233 we do not know the symbol index of any global
7234 symbol. We set the rel_hash entry for this
7235 reloc to point to the global hash table entry
7236 for this symbol. The symbol index is then
ee75fd95 7237 set at the end of bfd_elf_final_link. */
c152c796
AM
7238 indx = r_symndx - extsymoff;
7239 rh = elf_sym_hashes (input_bfd)[indx];
7240 while (rh->root.type == bfd_link_hash_indirect
7241 || rh->root.type == bfd_link_hash_warning)
7242 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7243
7244 /* Setting the index to -2 tells
7245 elf_link_output_extsym that this symbol is
7246 used by a reloc. */
7247 BFD_ASSERT (rh->indx < 0);
7248 rh->indx = -2;
7249
7250 *rel_hash = rh;
7251
7252 continue;
7253 }
7254
7255 /* This is a reloc against a local symbol. */
7256
7257 *rel_hash = NULL;
7258 sym = isymbuf[r_symndx];
7259 sec = finfo->sections[r_symndx];
7260 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7261 {
7262 /* I suppose the backend ought to fill in the
7263 section of any STT_SECTION symbol against a
6a8d1586
AM
7264 processor specific section. */
7265 r_symndx = 0;
7266 if (bfd_is_abs_section (sec))
7267 ;
c152c796
AM
7268 else if (sec == NULL || sec->owner == NULL)
7269 {
7270 bfd_set_error (bfd_error_bad_value);
7271 return FALSE;
7272 }
7273 else
7274 {
6a8d1586
AM
7275 asection *osec = sec->output_section;
7276
7277 /* If we have discarded a section, the output
7278 section will be the absolute section. In
7279 case of discarded link-once and discarded
7280 SEC_MERGE sections, use the kept section. */
7281 if (bfd_is_abs_section (osec)
7282 && sec->kept_section != NULL
7283 && sec->kept_section->output_section != NULL)
7284 {
7285 osec = sec->kept_section->output_section;
7286 irela->r_addend -= osec->vma;
7287 }
7288
7289 if (!bfd_is_abs_section (osec))
7290 {
7291 r_symndx = osec->target_index;
7292 BFD_ASSERT (r_symndx != 0);
7293 }
c152c796
AM
7294 }
7295
7296 /* Adjust the addend according to where the
7297 section winds up in the output section. */
7298 if (rela_normal)
7299 irela->r_addend += sec->output_offset;
7300 }
7301 else
7302 {
7303 if (finfo->indices[r_symndx] == -1)
7304 {
7305 unsigned long shlink;
7306 const char *name;
7307 asection *osec;
7308
7309 if (finfo->info->strip == strip_all)
7310 {
7311 /* You can't do ld -r -s. */
7312 bfd_set_error (bfd_error_invalid_operation);
7313 return FALSE;
7314 }
7315
7316 /* This symbol was skipped earlier, but
7317 since it is needed by a reloc, we
7318 must output it now. */
7319 shlink = symtab_hdr->sh_link;
7320 name = (bfd_elf_string_from_elf_section
7321 (input_bfd, shlink, sym.st_name));
7322 if (name == NULL)
7323 return FALSE;
7324
7325 osec = sec->output_section;
7326 sym.st_shndx =
7327 _bfd_elf_section_from_bfd_section (output_bfd,
7328 osec);
7329 if (sym.st_shndx == SHN_BAD)
7330 return FALSE;
7331
7332 sym.st_value += sec->output_offset;
7333 if (! finfo->info->relocatable)
7334 {
7335 sym.st_value += osec->vma;
7336 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7337 {
7338 /* STT_TLS symbols are relative to PT_TLS
7339 segment base. */
7340 BFD_ASSERT (elf_hash_table (finfo->info)
7341 ->tls_sec != NULL);
7342 sym.st_value -= (elf_hash_table (finfo->info)
7343 ->tls_sec->vma);
7344 }
7345 }
7346
7347 finfo->indices[r_symndx]
7348 = bfd_get_symcount (output_bfd);
7349
7350 if (! elf_link_output_sym (finfo, name, &sym, sec,
7351 NULL))
7352 return FALSE;
7353 }
7354
7355 r_symndx = finfo->indices[r_symndx];
7356 }
7357
7358 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7359 | (irela->r_info & r_type_mask));
7360 }
7361
7362 /* Swap out the relocs. */
c152c796 7363 if (input_rel_hdr->sh_size != 0
eac338cf
PB
7364 && !bed->elf_backend_emit_relocs (output_bfd, o,
7365 input_rel_hdr,
7366 internal_relocs,
7367 rel_hash_list))
c152c796
AM
7368 return FALSE;
7369
7370 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7371 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7372 {
7373 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7374 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
7375 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7376 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7377 input_rel_hdr2,
7378 internal_relocs,
7379 rel_hash_list))
c152c796
AM
7380 return FALSE;
7381 }
7382 }
7383 }
7384
7385 /* Write out the modified section contents. */
7386 if (bed->elf_backend_write_section
7387 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7388 {
7389 /* Section written out. */
7390 }
7391 else switch (o->sec_info_type)
7392 {
7393 case ELF_INFO_TYPE_STABS:
7394 if (! (_bfd_write_section_stabs
7395 (output_bfd,
7396 &elf_hash_table (finfo->info)->stab_info,
7397 o, &elf_section_data (o)->sec_info, contents)))
7398 return FALSE;
7399 break;
7400 case ELF_INFO_TYPE_MERGE:
7401 if (! _bfd_write_merged_section (output_bfd, o,
7402 elf_section_data (o)->sec_info))
7403 return FALSE;
7404 break;
7405 case ELF_INFO_TYPE_EH_FRAME:
7406 {
7407 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7408 o, contents))
7409 return FALSE;
7410 }
7411 break;
7412 default:
7413 {
c152c796
AM
7414 if (! (o->flags & SEC_EXCLUDE)
7415 && ! bfd_set_section_contents (output_bfd, o->output_section,
7416 contents,
7417 (file_ptr) o->output_offset,
eea6121a 7418 o->size))
c152c796
AM
7419 return FALSE;
7420 }
7421 break;
7422 }
7423 }
7424
7425 return TRUE;
7426}
7427
7428/* Generate a reloc when linking an ELF file. This is a reloc
7429 requested by the linker, and does come from any input file. This
7430 is used to build constructor and destructor tables when linking
7431 with -Ur. */
7432
7433static bfd_boolean
7434elf_reloc_link_order (bfd *output_bfd,
7435 struct bfd_link_info *info,
7436 asection *output_section,
7437 struct bfd_link_order *link_order)
7438{
7439 reloc_howto_type *howto;
7440 long indx;
7441 bfd_vma offset;
7442 bfd_vma addend;
7443 struct elf_link_hash_entry **rel_hash_ptr;
7444 Elf_Internal_Shdr *rel_hdr;
7445 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7446 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7447 bfd_byte *erel;
7448 unsigned int i;
7449
7450 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7451 if (howto == NULL)
7452 {
7453 bfd_set_error (bfd_error_bad_value);
7454 return FALSE;
7455 }
7456
7457 addend = link_order->u.reloc.p->addend;
7458
7459 /* Figure out the symbol index. */
7460 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7461 + elf_section_data (output_section)->rel_count
7462 + elf_section_data (output_section)->rel_count2);
7463 if (link_order->type == bfd_section_reloc_link_order)
7464 {
7465 indx = link_order->u.reloc.p->u.section->target_index;
7466 BFD_ASSERT (indx != 0);
7467 *rel_hash_ptr = NULL;
7468 }
7469 else
7470 {
7471 struct elf_link_hash_entry *h;
7472
7473 /* Treat a reloc against a defined symbol as though it were
7474 actually against the section. */
7475 h = ((struct elf_link_hash_entry *)
7476 bfd_wrapped_link_hash_lookup (output_bfd, info,
7477 link_order->u.reloc.p->u.name,
7478 FALSE, FALSE, TRUE));
7479 if (h != NULL
7480 && (h->root.type == bfd_link_hash_defined
7481 || h->root.type == bfd_link_hash_defweak))
7482 {
7483 asection *section;
7484
7485 section = h->root.u.def.section;
7486 indx = section->output_section->target_index;
7487 *rel_hash_ptr = NULL;
7488 /* It seems that we ought to add the symbol value to the
7489 addend here, but in practice it has already been added
7490 because it was passed to constructor_callback. */
7491 addend += section->output_section->vma + section->output_offset;
7492 }
7493 else if (h != NULL)
7494 {
7495 /* Setting the index to -2 tells elf_link_output_extsym that
7496 this symbol is used by a reloc. */
7497 h->indx = -2;
7498 *rel_hash_ptr = h;
7499 indx = 0;
7500 }
7501 else
7502 {
7503 if (! ((*info->callbacks->unattached_reloc)
7504 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7505 return FALSE;
7506 indx = 0;
7507 }
7508 }
7509
7510 /* If this is an inplace reloc, we must write the addend into the
7511 object file. */
7512 if (howto->partial_inplace && addend != 0)
7513 {
7514 bfd_size_type size;
7515 bfd_reloc_status_type rstat;
7516 bfd_byte *buf;
7517 bfd_boolean ok;
7518 const char *sym_name;
7519
7520 size = bfd_get_reloc_size (howto);
7521 buf = bfd_zmalloc (size);
7522 if (buf == NULL)
7523 return FALSE;
7524 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7525 switch (rstat)
7526 {
7527 case bfd_reloc_ok:
7528 break;
7529
7530 default:
7531 case bfd_reloc_outofrange:
7532 abort ();
7533
7534 case bfd_reloc_overflow:
7535 if (link_order->type == bfd_section_reloc_link_order)
7536 sym_name = bfd_section_name (output_bfd,
7537 link_order->u.reloc.p->u.section);
7538 else
7539 sym_name = link_order->u.reloc.p->u.name;
7540 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7541 (info, NULL, sym_name, howto->name, addend, NULL,
7542 NULL, (bfd_vma) 0)))
c152c796
AM
7543 {
7544 free (buf);
7545 return FALSE;
7546 }
7547 break;
7548 }
7549 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7550 link_order->offset, size);
7551 free (buf);
7552 if (! ok)
7553 return FALSE;
7554 }
7555
7556 /* The address of a reloc is relative to the section in a
7557 relocatable file, and is a virtual address in an executable
7558 file. */
7559 offset = link_order->offset;
7560 if (! info->relocatable)
7561 offset += output_section->vma;
7562
7563 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7564 {
7565 irel[i].r_offset = offset;
7566 irel[i].r_info = 0;
7567 irel[i].r_addend = 0;
7568 }
7569 if (bed->s->arch_size == 32)
7570 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7571 else
7572 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7573
7574 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7575 erel = rel_hdr->contents;
7576 if (rel_hdr->sh_type == SHT_REL)
7577 {
7578 erel += (elf_section_data (output_section)->rel_count
7579 * bed->s->sizeof_rel);
7580 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7581 }
7582 else
7583 {
7584 irel[0].r_addend = addend;
7585 erel += (elf_section_data (output_section)->rel_count
7586 * bed->s->sizeof_rela);
7587 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7588 }
7589
7590 ++elf_section_data (output_section)->rel_count;
7591
7592 return TRUE;
7593}
7594
0b52efa6
PB
7595
7596/* Get the output vma of the section pointed to by the sh_link field. */
7597
7598static bfd_vma
7599elf_get_linked_section_vma (struct bfd_link_order *p)
7600{
7601 Elf_Internal_Shdr **elf_shdrp;
7602 asection *s;
7603 int elfsec;
7604
7605 s = p->u.indirect.section;
7606 elf_shdrp = elf_elfsections (s->owner);
7607 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7608 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7609 /* PR 290:
7610 The Intel C compiler generates SHT_IA_64_UNWIND with
7611 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7612 sh_info fields. Hence we could get the situation
7613 where elfsec is 0. */
7614 if (elfsec == 0)
7615 {
7616 const struct elf_backend_data *bed
7617 = get_elf_backend_data (s->owner);
7618 if (bed->link_order_error_handler)
d003868e
AM
7619 bed->link_order_error_handler
7620 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7621 return 0;
7622 }
7623 else
7624 {
7625 s = elf_shdrp[elfsec]->bfd_section;
7626 return s->output_section->vma + s->output_offset;
7627 }
0b52efa6
PB
7628}
7629
7630
7631/* Compare two sections based on the locations of the sections they are
7632 linked to. Used by elf_fixup_link_order. */
7633
7634static int
7635compare_link_order (const void * a, const void * b)
7636{
7637 bfd_vma apos;
7638 bfd_vma bpos;
7639
7640 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7641 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7642 if (apos < bpos)
7643 return -1;
7644 return apos > bpos;
7645}
7646
7647
7648/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7649 order as their linked sections. Returns false if this could not be done
7650 because an output section includes both ordered and unordered
7651 sections. Ideally we'd do this in the linker proper. */
7652
7653static bfd_boolean
7654elf_fixup_link_order (bfd *abfd, asection *o)
7655{
7656 int seen_linkorder;
7657 int seen_other;
7658 int n;
7659 struct bfd_link_order *p;
7660 bfd *sub;
7661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7662 int elfsec;
7663 struct bfd_link_order **sections;
7664 asection *s;
7665 bfd_vma offset;
7666
7667 seen_other = 0;
7668 seen_linkorder = 0;
8423293d 7669 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7670 {
7671 if (p->type == bfd_indirect_link_order
7672 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7673 == bfd_target_elf_flavour)
7674 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7675 {
7676 s = p->u.indirect.section;
7677 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7678 if (elfsec != -1
7679 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7680 seen_linkorder++;
7681 else
7682 seen_other++;
7683 }
7684 else
7685 seen_other++;
7686 }
7687
7688 if (!seen_linkorder)
7689 return TRUE;
7690
7691 if (seen_other && seen_linkorder)
08ccf96b 7692 {
d003868e
AM
7693 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7694 o);
08ccf96b
L
7695 bfd_set_error (bfd_error_bad_value);
7696 return FALSE;
7697 }
0b52efa6
PB
7698
7699 sections = (struct bfd_link_order **)
7700 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7701 seen_linkorder = 0;
7702
8423293d 7703 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7704 {
7705 sections[seen_linkorder++] = p;
7706 }
7707 /* Sort the input sections in the order of their linked section. */
7708 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7709 compare_link_order);
7710
7711 /* Change the offsets of the sections. */
7712 offset = 0;
7713 for (n = 0; n < seen_linkorder; n++)
7714 {
7715 s = sections[n]->u.indirect.section;
7716 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7717 s->output_offset = offset;
7718 sections[n]->offset = offset;
7719 offset += sections[n]->size;
7720 }
7721
7722 return TRUE;
7723}
7724
7725
c152c796
AM
7726/* Do the final step of an ELF link. */
7727
7728bfd_boolean
7729bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7730{
7731 bfd_boolean dynamic;
7732 bfd_boolean emit_relocs;
7733 bfd *dynobj;
7734 struct elf_final_link_info finfo;
7735 register asection *o;
7736 register struct bfd_link_order *p;
7737 register bfd *sub;
7738 bfd_size_type max_contents_size;
7739 bfd_size_type max_external_reloc_size;
7740 bfd_size_type max_internal_reloc_count;
7741 bfd_size_type max_sym_count;
7742 bfd_size_type max_sym_shndx_count;
7743 file_ptr off;
7744 Elf_Internal_Sym elfsym;
7745 unsigned int i;
7746 Elf_Internal_Shdr *symtab_hdr;
7747 Elf_Internal_Shdr *symtab_shndx_hdr;
7748 Elf_Internal_Shdr *symstrtab_hdr;
7749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7750 struct elf_outext_info eoinfo;
7751 bfd_boolean merged;
7752 size_t relativecount = 0;
7753 asection *reldyn = 0;
7754 bfd_size_type amt;
7755
7756 if (! is_elf_hash_table (info->hash))
7757 return FALSE;
7758
7759 if (info->shared)
7760 abfd->flags |= DYNAMIC;
7761
7762 dynamic = elf_hash_table (info)->dynamic_sections_created;
7763 dynobj = elf_hash_table (info)->dynobj;
7764
7765 emit_relocs = (info->relocatable
7766 || info->emitrelocations
7767 || bed->elf_backend_emit_relocs);
7768
7769 finfo.info = info;
7770 finfo.output_bfd = abfd;
7771 finfo.symstrtab = _bfd_elf_stringtab_init ();
7772 if (finfo.symstrtab == NULL)
7773 return FALSE;
7774
7775 if (! dynamic)
7776 {
7777 finfo.dynsym_sec = NULL;
7778 finfo.hash_sec = NULL;
7779 finfo.symver_sec = NULL;
7780 }
7781 else
7782 {
7783 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7784 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7785 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7786 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7787 /* Note that it is OK if symver_sec is NULL. */
7788 }
7789
7790 finfo.contents = NULL;
7791 finfo.external_relocs = NULL;
7792 finfo.internal_relocs = NULL;
7793 finfo.external_syms = NULL;
7794 finfo.locsym_shndx = NULL;
7795 finfo.internal_syms = NULL;
7796 finfo.indices = NULL;
7797 finfo.sections = NULL;
7798 finfo.symbuf = NULL;
7799 finfo.symshndxbuf = NULL;
7800 finfo.symbuf_count = 0;
7801 finfo.shndxbuf_size = 0;
7802
7803 /* Count up the number of relocations we will output for each output
7804 section, so that we know the sizes of the reloc sections. We
7805 also figure out some maximum sizes. */
7806 max_contents_size = 0;
7807 max_external_reloc_size = 0;
7808 max_internal_reloc_count = 0;
7809 max_sym_count = 0;
7810 max_sym_shndx_count = 0;
7811 merged = FALSE;
7812 for (o = abfd->sections; o != NULL; o = o->next)
7813 {
7814 struct bfd_elf_section_data *esdo = elf_section_data (o);
7815 o->reloc_count = 0;
7816
8423293d 7817 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
7818 {
7819 unsigned int reloc_count = 0;
7820 struct bfd_elf_section_data *esdi = NULL;
7821 unsigned int *rel_count1;
7822
7823 if (p->type == bfd_section_reloc_link_order
7824 || p->type == bfd_symbol_reloc_link_order)
7825 reloc_count = 1;
7826 else if (p->type == bfd_indirect_link_order)
7827 {
7828 asection *sec;
7829
7830 sec = p->u.indirect.section;
7831 esdi = elf_section_data (sec);
7832
7833 /* Mark all sections which are to be included in the
7834 link. This will normally be every section. We need
7835 to do this so that we can identify any sections which
7836 the linker has decided to not include. */
7837 sec->linker_mark = TRUE;
7838
7839 if (sec->flags & SEC_MERGE)
7840 merged = TRUE;
7841
7842 if (info->relocatable || info->emitrelocations)
7843 reloc_count = sec->reloc_count;
7844 else if (bed->elf_backend_count_relocs)
7845 {
7846 Elf_Internal_Rela * relocs;
7847
7848 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7849 info->keep_memory);
7850
7851 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7852
7853 if (elf_section_data (o)->relocs != relocs)
7854 free (relocs);
7855 }
7856
eea6121a
AM
7857 if (sec->rawsize > max_contents_size)
7858 max_contents_size = sec->rawsize;
7859 if (sec->size > max_contents_size)
7860 max_contents_size = sec->size;
c152c796
AM
7861
7862 /* We are interested in just local symbols, not all
7863 symbols. */
7864 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7865 && (sec->owner->flags & DYNAMIC) == 0)
7866 {
7867 size_t sym_count;
7868
7869 if (elf_bad_symtab (sec->owner))
7870 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7871 / bed->s->sizeof_sym);
7872 else
7873 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7874
7875 if (sym_count > max_sym_count)
7876 max_sym_count = sym_count;
7877
7878 if (sym_count > max_sym_shndx_count
7879 && elf_symtab_shndx (sec->owner) != 0)
7880 max_sym_shndx_count = sym_count;
7881
7882 if ((sec->flags & SEC_RELOC) != 0)
7883 {
7884 size_t ext_size;
7885
7886 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7887 if (ext_size > max_external_reloc_size)
7888 max_external_reloc_size = ext_size;
7889 if (sec->reloc_count > max_internal_reloc_count)
7890 max_internal_reloc_count = sec->reloc_count;
7891 }
7892 }
7893 }
7894
7895 if (reloc_count == 0)
7896 continue;
7897
7898 o->reloc_count += reloc_count;
7899
7900 /* MIPS may have a mix of REL and RELA relocs on sections.
7901 To support this curious ABI we keep reloc counts in
7902 elf_section_data too. We must be careful to add the
7903 relocations from the input section to the right output
7904 count. FIXME: Get rid of one count. We have
7905 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7906 rel_count1 = &esdo->rel_count;
7907 if (esdi != NULL)
7908 {
7909 bfd_boolean same_size;
7910 bfd_size_type entsize1;
7911
7912 entsize1 = esdi->rel_hdr.sh_entsize;
7913 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7914 || entsize1 == bed->s->sizeof_rela);
7915 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7916
7917 if (!same_size)
7918 rel_count1 = &esdo->rel_count2;
7919
7920 if (esdi->rel_hdr2 != NULL)
7921 {
7922 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7923 unsigned int alt_count;
7924 unsigned int *rel_count2;
7925
7926 BFD_ASSERT (entsize2 != entsize1
7927 && (entsize2 == bed->s->sizeof_rel
7928 || entsize2 == bed->s->sizeof_rela));
7929
7930 rel_count2 = &esdo->rel_count2;
7931 if (!same_size)
7932 rel_count2 = &esdo->rel_count;
7933
7934 /* The following is probably too simplistic if the
7935 backend counts output relocs unusually. */
7936 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7937 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7938 *rel_count2 += alt_count;
7939 reloc_count -= alt_count;
7940 }
7941 }
7942 *rel_count1 += reloc_count;
7943 }
7944
7945 if (o->reloc_count > 0)
7946 o->flags |= SEC_RELOC;
7947 else
7948 {
7949 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7950 set it (this is probably a bug) and if it is set
7951 assign_section_numbers will create a reloc section. */
7952 o->flags &=~ SEC_RELOC;
7953 }
7954
7955 /* If the SEC_ALLOC flag is not set, force the section VMA to
7956 zero. This is done in elf_fake_sections as well, but forcing
7957 the VMA to 0 here will ensure that relocs against these
7958 sections are handled correctly. */
7959 if ((o->flags & SEC_ALLOC) == 0
7960 && ! o->user_set_vma)
7961 o->vma = 0;
7962 }
7963
7964 if (! info->relocatable && merged)
7965 elf_link_hash_traverse (elf_hash_table (info),
7966 _bfd_elf_link_sec_merge_syms, abfd);
7967
7968 /* Figure out the file positions for everything but the symbol table
7969 and the relocs. We set symcount to force assign_section_numbers
7970 to create a symbol table. */
7971 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7972 BFD_ASSERT (! abfd->output_has_begun);
7973 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7974 goto error_return;
7975
ee75fd95 7976 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7977 for (o = abfd->sections; o != NULL; o = o->next)
7978 {
7979 if ((o->flags & SEC_RELOC) != 0)
7980 {
7981 if (!(_bfd_elf_link_size_reloc_section
7982 (abfd, &elf_section_data (o)->rel_hdr, o)))
7983 goto error_return;
7984
7985 if (elf_section_data (o)->rel_hdr2
7986 && !(_bfd_elf_link_size_reloc_section
7987 (abfd, elf_section_data (o)->rel_hdr2, o)))
7988 goto error_return;
7989 }
7990
7991 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7992 to count upwards while actually outputting the relocations. */
7993 elf_section_data (o)->rel_count = 0;
7994 elf_section_data (o)->rel_count2 = 0;
7995 }
7996
7997 _bfd_elf_assign_file_positions_for_relocs (abfd);
7998
7999 /* We have now assigned file positions for all the sections except
8000 .symtab and .strtab. We start the .symtab section at the current
8001 file position, and write directly to it. We build the .strtab
8002 section in memory. */
8003 bfd_get_symcount (abfd) = 0;
8004 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8005 /* sh_name is set in prep_headers. */
8006 symtab_hdr->sh_type = SHT_SYMTAB;
8007 /* sh_flags, sh_addr and sh_size all start off zero. */
8008 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8009 /* sh_link is set in assign_section_numbers. */
8010 /* sh_info is set below. */
8011 /* sh_offset is set just below. */
8012 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8013
8014 off = elf_tdata (abfd)->next_file_pos;
8015 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8016
8017 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8018 incorrect. We do not yet know the size of the .symtab section.
8019 We correct next_file_pos below, after we do know the size. */
8020
8021 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8022 continuously seeking to the right position in the file. */
8023 if (! info->keep_memory || max_sym_count < 20)
8024 finfo.symbuf_size = 20;
8025 else
8026 finfo.symbuf_size = max_sym_count;
8027 amt = finfo.symbuf_size;
8028 amt *= bed->s->sizeof_sym;
8029 finfo.symbuf = bfd_malloc (amt);
8030 if (finfo.symbuf == NULL)
8031 goto error_return;
8032 if (elf_numsections (abfd) > SHN_LORESERVE)
8033 {
8034 /* Wild guess at number of output symbols. realloc'd as needed. */
8035 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8036 finfo.shndxbuf_size = amt;
8037 amt *= sizeof (Elf_External_Sym_Shndx);
8038 finfo.symshndxbuf = bfd_zmalloc (amt);
8039 if (finfo.symshndxbuf == NULL)
8040 goto error_return;
8041 }
8042
8043 /* Start writing out the symbol table. The first symbol is always a
8044 dummy symbol. */
8045 if (info->strip != strip_all
8046 || emit_relocs)
8047 {
8048 elfsym.st_value = 0;
8049 elfsym.st_size = 0;
8050 elfsym.st_info = 0;
8051 elfsym.st_other = 0;
8052 elfsym.st_shndx = SHN_UNDEF;
8053 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8054 NULL))
8055 goto error_return;
8056 }
8057
c152c796
AM
8058 /* Output a symbol for each section. We output these even if we are
8059 discarding local symbols, since they are used for relocs. These
8060 symbols have no names. We store the index of each one in the
8061 index field of the section, so that we can find it again when
8062 outputting relocs. */
8063 if (info->strip != strip_all
8064 || emit_relocs)
8065 {
8066 elfsym.st_size = 0;
8067 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8068 elfsym.st_other = 0;
8069 for (i = 1; i < elf_numsections (abfd); i++)
8070 {
8071 o = bfd_section_from_elf_index (abfd, i);
8072 if (o != NULL)
8073 o->target_index = bfd_get_symcount (abfd);
8074 elfsym.st_shndx = i;
8075 if (info->relocatable || o == NULL)
8076 elfsym.st_value = 0;
8077 else
8078 elfsym.st_value = o->vma;
8079 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8080 goto error_return;
8081 if (i == SHN_LORESERVE - 1)
8082 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8083 }
8084 }
8085
8086 /* Allocate some memory to hold information read in from the input
8087 files. */
8088 if (max_contents_size != 0)
8089 {
8090 finfo.contents = bfd_malloc (max_contents_size);
8091 if (finfo.contents == NULL)
8092 goto error_return;
8093 }
8094
8095 if (max_external_reloc_size != 0)
8096 {
8097 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8098 if (finfo.external_relocs == NULL)
8099 goto error_return;
8100 }
8101
8102 if (max_internal_reloc_count != 0)
8103 {
8104 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8105 amt *= sizeof (Elf_Internal_Rela);
8106 finfo.internal_relocs = bfd_malloc (amt);
8107 if (finfo.internal_relocs == NULL)
8108 goto error_return;
8109 }
8110
8111 if (max_sym_count != 0)
8112 {
8113 amt = max_sym_count * bed->s->sizeof_sym;
8114 finfo.external_syms = bfd_malloc (amt);
8115 if (finfo.external_syms == NULL)
8116 goto error_return;
8117
8118 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8119 finfo.internal_syms = bfd_malloc (amt);
8120 if (finfo.internal_syms == NULL)
8121 goto error_return;
8122
8123 amt = max_sym_count * sizeof (long);
8124 finfo.indices = bfd_malloc (amt);
8125 if (finfo.indices == NULL)
8126 goto error_return;
8127
8128 amt = max_sym_count * sizeof (asection *);
8129 finfo.sections = bfd_malloc (amt);
8130 if (finfo.sections == NULL)
8131 goto error_return;
8132 }
8133
8134 if (max_sym_shndx_count != 0)
8135 {
8136 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8137 finfo.locsym_shndx = bfd_malloc (amt);
8138 if (finfo.locsym_shndx == NULL)
8139 goto error_return;
8140 }
8141
8142 if (elf_hash_table (info)->tls_sec)
8143 {
8144 bfd_vma base, end = 0;
8145 asection *sec;
8146
8147 for (sec = elf_hash_table (info)->tls_sec;
8148 sec && (sec->flags & SEC_THREAD_LOCAL);
8149 sec = sec->next)
8150 {
eea6121a 8151 bfd_vma size = sec->size;
c152c796
AM
8152
8153 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8154 {
8155 struct bfd_link_order *o;
8156
8423293d 8157 for (o = sec->map_head.link_order; o != NULL; o = o->next)
c152c796
AM
8158 if (size < o->offset + o->size)
8159 size = o->offset + o->size;
8160 }
8161 end = sec->vma + size;
8162 }
8163 base = elf_hash_table (info)->tls_sec->vma;
8164 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8165 elf_hash_table (info)->tls_size = end - base;
8166 }
8167
0b52efa6
PB
8168 /* Reorder SHF_LINK_ORDER sections. */
8169 for (o = abfd->sections; o != NULL; o = o->next)
8170 {
8171 if (!elf_fixup_link_order (abfd, o))
8172 return FALSE;
8173 }
8174
c152c796
AM
8175 /* Since ELF permits relocations to be against local symbols, we
8176 must have the local symbols available when we do the relocations.
8177 Since we would rather only read the local symbols once, and we
8178 would rather not keep them in memory, we handle all the
8179 relocations for a single input file at the same time.
8180
8181 Unfortunately, there is no way to know the total number of local
8182 symbols until we have seen all of them, and the local symbol
8183 indices precede the global symbol indices. This means that when
8184 we are generating relocatable output, and we see a reloc against
8185 a global symbol, we can not know the symbol index until we have
8186 finished examining all the local symbols to see which ones we are
8187 going to output. To deal with this, we keep the relocations in
8188 memory, and don't output them until the end of the link. This is
8189 an unfortunate waste of memory, but I don't see a good way around
8190 it. Fortunately, it only happens when performing a relocatable
8191 link, which is not the common case. FIXME: If keep_memory is set
8192 we could write the relocs out and then read them again; I don't
8193 know how bad the memory loss will be. */
8194
8195 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8196 sub->output_has_begun = FALSE;
8197 for (o = abfd->sections; o != NULL; o = o->next)
8198 {
8423293d 8199 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8200 {
8201 if (p->type == bfd_indirect_link_order
8202 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8203 == bfd_target_elf_flavour)
8204 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8205 {
8206 if (! sub->output_has_begun)
8207 {
8208 if (! elf_link_input_bfd (&finfo, sub))
8209 goto error_return;
8210 sub->output_has_begun = TRUE;
8211 }
8212 }
8213 else if (p->type == bfd_section_reloc_link_order
8214 || p->type == bfd_symbol_reloc_link_order)
8215 {
8216 if (! elf_reloc_link_order (abfd, info, o, p))
8217 goto error_return;
8218 }
8219 else
8220 {
8221 if (! _bfd_default_link_order (abfd, info, o, p))
8222 goto error_return;
8223 }
8224 }
8225 }
8226
8227 /* Output any global symbols that got converted to local in a
8228 version script or due to symbol visibility. We do this in a
8229 separate step since ELF requires all local symbols to appear
8230 prior to any global symbols. FIXME: We should only do this if
8231 some global symbols were, in fact, converted to become local.
8232 FIXME: Will this work correctly with the Irix 5 linker? */
8233 eoinfo.failed = FALSE;
8234 eoinfo.finfo = &finfo;
8235 eoinfo.localsyms = TRUE;
8236 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8237 &eoinfo);
8238 if (eoinfo.failed)
8239 return FALSE;
8240
8241 /* That wrote out all the local symbols. Finish up the symbol table
8242 with the global symbols. Even if we want to strip everything we
8243 can, we still need to deal with those global symbols that got
8244 converted to local in a version script. */
8245
8246 /* The sh_info field records the index of the first non local symbol. */
8247 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8248
8249 if (dynamic
8250 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8251 {
8252 Elf_Internal_Sym sym;
8253 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8254 long last_local = 0;
8255
8256 /* Write out the section symbols for the output sections. */
67687978 8257 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8258 {
8259 asection *s;
8260
8261 sym.st_size = 0;
8262 sym.st_name = 0;
8263 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8264 sym.st_other = 0;
8265
8266 for (s = abfd->sections; s != NULL; s = s->next)
8267 {
8268 int indx;
8269 bfd_byte *dest;
8270 long dynindx;
8271
c152c796 8272 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8273 if (dynindx <= 0)
8274 continue;
8275 indx = elf_section_data (s)->this_idx;
c152c796
AM
8276 BFD_ASSERT (indx > 0);
8277 sym.st_shndx = indx;
8278 sym.st_value = s->vma;
8279 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8280 if (last_local < dynindx)
8281 last_local = dynindx;
c152c796
AM
8282 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8283 }
c152c796
AM
8284 }
8285
8286 /* Write out the local dynsyms. */
8287 if (elf_hash_table (info)->dynlocal)
8288 {
8289 struct elf_link_local_dynamic_entry *e;
8290 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8291 {
8292 asection *s;
8293 bfd_byte *dest;
8294
8295 sym.st_size = e->isym.st_size;
8296 sym.st_other = e->isym.st_other;
8297
8298 /* Copy the internal symbol as is.
8299 Note that we saved a word of storage and overwrote
8300 the original st_name with the dynstr_index. */
8301 sym = e->isym;
8302
8303 if (e->isym.st_shndx != SHN_UNDEF
8304 && (e->isym.st_shndx < SHN_LORESERVE
8305 || e->isym.st_shndx > SHN_HIRESERVE))
8306 {
8307 s = bfd_section_from_elf_index (e->input_bfd,
8308 e->isym.st_shndx);
8309
8310 sym.st_shndx =
8311 elf_section_data (s->output_section)->this_idx;
8312 sym.st_value = (s->output_section->vma
8313 + s->output_offset
8314 + e->isym.st_value);
8315 }
8316
8317 if (last_local < e->dynindx)
8318 last_local = e->dynindx;
8319
8320 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8321 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8322 }
8323 }
8324
8325 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8326 last_local + 1;
8327 }
8328
8329 /* We get the global symbols from the hash table. */
8330 eoinfo.failed = FALSE;
8331 eoinfo.localsyms = FALSE;
8332 eoinfo.finfo = &finfo;
8333 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8334 &eoinfo);
8335 if (eoinfo.failed)
8336 return FALSE;
8337
8338 /* If backend needs to output some symbols not present in the hash
8339 table, do it now. */
8340 if (bed->elf_backend_output_arch_syms)
8341 {
8342 typedef bfd_boolean (*out_sym_func)
8343 (void *, const char *, Elf_Internal_Sym *, asection *,
8344 struct elf_link_hash_entry *);
8345
8346 if (! ((*bed->elf_backend_output_arch_syms)
8347 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8348 return FALSE;
8349 }
8350
8351 /* Flush all symbols to the file. */
8352 if (! elf_link_flush_output_syms (&finfo, bed))
8353 return FALSE;
8354
8355 /* Now we know the size of the symtab section. */
8356 off += symtab_hdr->sh_size;
8357
8358 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8359 if (symtab_shndx_hdr->sh_name != 0)
8360 {
8361 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8362 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8363 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8364 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8365 symtab_shndx_hdr->sh_size = amt;
8366
8367 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8368 off, TRUE);
8369
8370 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8371 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8372 return FALSE;
8373 }
8374
8375
8376 /* Finish up and write out the symbol string table (.strtab)
8377 section. */
8378 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8379 /* sh_name was set in prep_headers. */
8380 symstrtab_hdr->sh_type = SHT_STRTAB;
8381 symstrtab_hdr->sh_flags = 0;
8382 symstrtab_hdr->sh_addr = 0;
8383 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8384 symstrtab_hdr->sh_entsize = 0;
8385 symstrtab_hdr->sh_link = 0;
8386 symstrtab_hdr->sh_info = 0;
8387 /* sh_offset is set just below. */
8388 symstrtab_hdr->sh_addralign = 1;
8389
8390 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8391 elf_tdata (abfd)->next_file_pos = off;
8392
8393 if (bfd_get_symcount (abfd) > 0)
8394 {
8395 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8396 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8397 return FALSE;
8398 }
8399
8400 /* Adjust the relocs to have the correct symbol indices. */
8401 for (o = abfd->sections; o != NULL; o = o->next)
8402 {
8403 if ((o->flags & SEC_RELOC) == 0)
8404 continue;
8405
8406 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8407 elf_section_data (o)->rel_count,
8408 elf_section_data (o)->rel_hashes);
8409 if (elf_section_data (o)->rel_hdr2 != NULL)
8410 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8411 elf_section_data (o)->rel_count2,
8412 (elf_section_data (o)->rel_hashes
8413 + elf_section_data (o)->rel_count));
8414
8415 /* Set the reloc_count field to 0 to prevent write_relocs from
8416 trying to swap the relocs out itself. */
8417 o->reloc_count = 0;
8418 }
8419
8420 if (dynamic && info->combreloc && dynobj != NULL)
8421 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8422
8423 /* If we are linking against a dynamic object, or generating a
8424 shared library, finish up the dynamic linking information. */
8425 if (dynamic)
8426 {
8427 bfd_byte *dyncon, *dynconend;
8428
8429 /* Fix up .dynamic entries. */
8430 o = bfd_get_section_by_name (dynobj, ".dynamic");
8431 BFD_ASSERT (o != NULL);
8432
8433 dyncon = o->contents;
eea6121a 8434 dynconend = o->contents + o->size;
c152c796
AM
8435 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8436 {
8437 Elf_Internal_Dyn dyn;
8438 const char *name;
8439 unsigned int type;
8440
8441 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8442
8443 switch (dyn.d_tag)
8444 {
8445 default:
8446 continue;
8447 case DT_NULL:
8448 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8449 {
8450 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8451 {
8452 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8453 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8454 default: continue;
8455 }
8456 dyn.d_un.d_val = relativecount;
8457 relativecount = 0;
8458 break;
8459 }
8460 continue;
8461
8462 case DT_INIT:
8463 name = info->init_function;
8464 goto get_sym;
8465 case DT_FINI:
8466 name = info->fini_function;
8467 get_sym:
8468 {
8469 struct elf_link_hash_entry *h;
8470
8471 h = elf_link_hash_lookup (elf_hash_table (info), name,
8472 FALSE, FALSE, TRUE);
8473 if (h != NULL
8474 && (h->root.type == bfd_link_hash_defined
8475 || h->root.type == bfd_link_hash_defweak))
8476 {
8477 dyn.d_un.d_val = h->root.u.def.value;
8478 o = h->root.u.def.section;
8479 if (o->output_section != NULL)
8480 dyn.d_un.d_val += (o->output_section->vma
8481 + o->output_offset);
8482 else
8483 {
8484 /* The symbol is imported from another shared
8485 library and does not apply to this one. */
8486 dyn.d_un.d_val = 0;
8487 }
8488 break;
8489 }
8490 }
8491 continue;
8492
8493 case DT_PREINIT_ARRAYSZ:
8494 name = ".preinit_array";
8495 goto get_size;
8496 case DT_INIT_ARRAYSZ:
8497 name = ".init_array";
8498 goto get_size;
8499 case DT_FINI_ARRAYSZ:
8500 name = ".fini_array";
8501 get_size:
8502 o = bfd_get_section_by_name (abfd, name);
8503 if (o == NULL)
8504 {
8505 (*_bfd_error_handler)
d003868e 8506 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8507 goto error_return;
8508 }
eea6121a 8509 if (o->size == 0)
c152c796
AM
8510 (*_bfd_error_handler)
8511 (_("warning: %s section has zero size"), name);
eea6121a 8512 dyn.d_un.d_val = o->size;
c152c796
AM
8513 break;
8514
8515 case DT_PREINIT_ARRAY:
8516 name = ".preinit_array";
8517 goto get_vma;
8518 case DT_INIT_ARRAY:
8519 name = ".init_array";
8520 goto get_vma;
8521 case DT_FINI_ARRAY:
8522 name = ".fini_array";
8523 goto get_vma;
8524
8525 case DT_HASH:
8526 name = ".hash";
8527 goto get_vma;
8528 case DT_STRTAB:
8529 name = ".dynstr";
8530 goto get_vma;
8531 case DT_SYMTAB:
8532 name = ".dynsym";
8533 goto get_vma;
8534 case DT_VERDEF:
8535 name = ".gnu.version_d";
8536 goto get_vma;
8537 case DT_VERNEED:
8538 name = ".gnu.version_r";
8539 goto get_vma;
8540 case DT_VERSYM:
8541 name = ".gnu.version";
8542 get_vma:
8543 o = bfd_get_section_by_name (abfd, name);
8544 if (o == NULL)
8545 {
8546 (*_bfd_error_handler)
d003868e 8547 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8548 goto error_return;
8549 }
8550 dyn.d_un.d_ptr = o->vma;
8551 break;
8552
8553 case DT_REL:
8554 case DT_RELA:
8555 case DT_RELSZ:
8556 case DT_RELASZ:
8557 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8558 type = SHT_REL;
8559 else
8560 type = SHT_RELA;
8561 dyn.d_un.d_val = 0;
8562 for (i = 1; i < elf_numsections (abfd); i++)
8563 {
8564 Elf_Internal_Shdr *hdr;
8565
8566 hdr = elf_elfsections (abfd)[i];
8567 if (hdr->sh_type == type
8568 && (hdr->sh_flags & SHF_ALLOC) != 0)
8569 {
8570 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8571 dyn.d_un.d_val += hdr->sh_size;
8572 else
8573 {
8574 if (dyn.d_un.d_val == 0
8575 || hdr->sh_addr < dyn.d_un.d_val)
8576 dyn.d_un.d_val = hdr->sh_addr;
8577 }
8578 }
8579 }
8580 break;
8581 }
8582 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8583 }
8584 }
8585
8586 /* If we have created any dynamic sections, then output them. */
8587 if (dynobj != NULL)
8588 {
8589 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8590 goto error_return;
8591
8592 for (o = dynobj->sections; o != NULL; o = o->next)
8593 {
8594 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8595 || o->size == 0
c152c796
AM
8596 || o->output_section == bfd_abs_section_ptr)
8597 continue;
8598 if ((o->flags & SEC_LINKER_CREATED) == 0)
8599 {
8600 /* At this point, we are only interested in sections
8601 created by _bfd_elf_link_create_dynamic_sections. */
8602 continue;
8603 }
3722b82f
AM
8604 if (elf_hash_table (info)->stab_info.stabstr == o)
8605 continue;
eea6121a
AM
8606 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8607 continue;
c152c796
AM
8608 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8609 != SHT_STRTAB)
8610 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8611 {
8612 if (! bfd_set_section_contents (abfd, o->output_section,
8613 o->contents,
8614 (file_ptr) o->output_offset,
eea6121a 8615 o->size))
c152c796
AM
8616 goto error_return;
8617 }
8618 else
8619 {
8620 /* The contents of the .dynstr section are actually in a
8621 stringtab. */
8622 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8623 if (bfd_seek (abfd, off, SEEK_SET) != 0
8624 || ! _bfd_elf_strtab_emit (abfd,
8625 elf_hash_table (info)->dynstr))
8626 goto error_return;
8627 }
8628 }
8629 }
8630
8631 if (info->relocatable)
8632 {
8633 bfd_boolean failed = FALSE;
8634
8635 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8636 if (failed)
8637 goto error_return;
8638 }
8639
8640 /* If we have optimized stabs strings, output them. */
3722b82f 8641 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8642 {
8643 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8644 goto error_return;
8645 }
8646
8647 if (info->eh_frame_hdr)
8648 {
8649 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8650 goto error_return;
8651 }
8652
8653 if (finfo.symstrtab != NULL)
8654 _bfd_stringtab_free (finfo.symstrtab);
8655 if (finfo.contents != NULL)
8656 free (finfo.contents);
8657 if (finfo.external_relocs != NULL)
8658 free (finfo.external_relocs);
8659 if (finfo.internal_relocs != NULL)
8660 free (finfo.internal_relocs);
8661 if (finfo.external_syms != NULL)
8662 free (finfo.external_syms);
8663 if (finfo.locsym_shndx != NULL)
8664 free (finfo.locsym_shndx);
8665 if (finfo.internal_syms != NULL)
8666 free (finfo.internal_syms);
8667 if (finfo.indices != NULL)
8668 free (finfo.indices);
8669 if (finfo.sections != NULL)
8670 free (finfo.sections);
8671 if (finfo.symbuf != NULL)
8672 free (finfo.symbuf);
8673 if (finfo.symshndxbuf != NULL)
8674 free (finfo.symshndxbuf);
8675 for (o = abfd->sections; o != NULL; o = o->next)
8676 {
8677 if ((o->flags & SEC_RELOC) != 0
8678 && elf_section_data (o)->rel_hashes != NULL)
8679 free (elf_section_data (o)->rel_hashes);
8680 }
8681
8682 elf_tdata (abfd)->linker = TRUE;
8683
8684 return TRUE;
8685
8686 error_return:
8687 if (finfo.symstrtab != NULL)
8688 _bfd_stringtab_free (finfo.symstrtab);
8689 if (finfo.contents != NULL)
8690 free (finfo.contents);
8691 if (finfo.external_relocs != NULL)
8692 free (finfo.external_relocs);
8693 if (finfo.internal_relocs != NULL)
8694 free (finfo.internal_relocs);
8695 if (finfo.external_syms != NULL)
8696 free (finfo.external_syms);
8697 if (finfo.locsym_shndx != NULL)
8698 free (finfo.locsym_shndx);
8699 if (finfo.internal_syms != NULL)
8700 free (finfo.internal_syms);
8701 if (finfo.indices != NULL)
8702 free (finfo.indices);
8703 if (finfo.sections != NULL)
8704 free (finfo.sections);
8705 if (finfo.symbuf != NULL)
8706 free (finfo.symbuf);
8707 if (finfo.symshndxbuf != NULL)
8708 free (finfo.symshndxbuf);
8709 for (o = abfd->sections; o != NULL; o = o->next)
8710 {
8711 if ((o->flags & SEC_RELOC) != 0
8712 && elf_section_data (o)->rel_hashes != NULL)
8713 free (elf_section_data (o)->rel_hashes);
8714 }
8715
8716 return FALSE;
8717}
8718\f
8719/* Garbage collect unused sections. */
8720
8721/* The mark phase of garbage collection. For a given section, mark
8722 it and any sections in this section's group, and all the sections
8723 which define symbols to which it refers. */
8724
8725typedef asection * (*gc_mark_hook_fn)
8726 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8727 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8728
ccfa59ea
AM
8729bfd_boolean
8730_bfd_elf_gc_mark (struct bfd_link_info *info,
8731 asection *sec,
8732 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8733{
8734 bfd_boolean ret;
8735 asection *group_sec;
8736
8737 sec->gc_mark = 1;
8738
8739 /* Mark all the sections in the group. */
8740 group_sec = elf_section_data (sec)->next_in_group;
8741 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8742 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8743 return FALSE;
8744
8745 /* Look through the section relocs. */
8746 ret = TRUE;
8747 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8748 {
8749 Elf_Internal_Rela *relstart, *rel, *relend;
8750 Elf_Internal_Shdr *symtab_hdr;
8751 struct elf_link_hash_entry **sym_hashes;
8752 size_t nlocsyms;
8753 size_t extsymoff;
8754 bfd *input_bfd = sec->owner;
8755 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8756 Elf_Internal_Sym *isym = NULL;
8757 int r_sym_shift;
8758
8759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8760 sym_hashes = elf_sym_hashes (input_bfd);
8761
8762 /* Read the local symbols. */
8763 if (elf_bad_symtab (input_bfd))
8764 {
8765 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8766 extsymoff = 0;
8767 }
8768 else
8769 extsymoff = nlocsyms = symtab_hdr->sh_info;
8770
8771 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8772 if (isym == NULL && nlocsyms != 0)
8773 {
8774 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8775 NULL, NULL, NULL);
8776 if (isym == NULL)
8777 return FALSE;
8778 }
8779
8780 /* Read the relocations. */
8781 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8782 info->keep_memory);
8783 if (relstart == NULL)
8784 {
8785 ret = FALSE;
8786 goto out1;
8787 }
8788 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8789
8790 if (bed->s->arch_size == 32)
8791 r_sym_shift = 8;
8792 else
8793 r_sym_shift = 32;
8794
8795 for (rel = relstart; rel < relend; rel++)
8796 {
8797 unsigned long r_symndx;
8798 asection *rsec;
8799 struct elf_link_hash_entry *h;
8800
8801 r_symndx = rel->r_info >> r_sym_shift;
8802 if (r_symndx == 0)
8803 continue;
8804
8805 if (r_symndx >= nlocsyms
8806 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8807 {
8808 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8809 while (h->root.type == bfd_link_hash_indirect
8810 || h->root.type == bfd_link_hash_warning)
8811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8812 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8813 }
8814 else
8815 {
8816 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8817 }
8818
8819 if (rsec && !rsec->gc_mark)
8820 {
8821 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8822 rsec->gc_mark = 1;
ccfa59ea 8823 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8824 {
8825 ret = FALSE;
8826 goto out2;
8827 }
8828 }
8829 }
8830
8831 out2:
8832 if (elf_section_data (sec)->relocs != relstart)
8833 free (relstart);
8834 out1:
8835 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8836 {
8837 if (! info->keep_memory)
8838 free (isym);
8839 else
8840 symtab_hdr->contents = (unsigned char *) isym;
8841 }
8842 }
8843
8844 return ret;
8845}
8846
8847/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8848
8849static bfd_boolean
8850elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8851{
8852 int *idx = idxptr;
8853
8854 if (h->root.type == bfd_link_hash_warning)
8855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8856
8857 if (h->dynindx != -1
8858 && ((h->root.type != bfd_link_hash_defined
8859 && h->root.type != bfd_link_hash_defweak)
8860 || h->root.u.def.section->gc_mark))
8861 h->dynindx = (*idx)++;
8862
8863 return TRUE;
8864}
8865
8866/* The sweep phase of garbage collection. Remove all garbage sections. */
8867
8868typedef bfd_boolean (*gc_sweep_hook_fn)
8869 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8870
8871static bfd_boolean
8872elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8873{
8874 bfd *sub;
8875
8876 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8877 {
8878 asection *o;
8879
8880 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8881 continue;
8882
8883 for (o = sub->sections; o != NULL; o = o->next)
8884 {
7c2c8505
AM
8885 /* Keep debug and special sections. */
8886 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8887 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8888 o->gc_mark = 1;
8889
8890 if (o->gc_mark)
8891 continue;
8892
8893 /* Skip sweeping sections already excluded. */
8894 if (o->flags & SEC_EXCLUDE)
8895 continue;
8896
8897 /* Since this is early in the link process, it is simple
8898 to remove a section from the output. */
8899 o->flags |= SEC_EXCLUDE;
8900
8901 /* But we also have to update some of the relocation
8902 info we collected before. */
8903 if (gc_sweep_hook
8904 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8905 {
8906 Elf_Internal_Rela *internal_relocs;
8907 bfd_boolean r;
8908
8909 internal_relocs
8910 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8911 info->keep_memory);
8912 if (internal_relocs == NULL)
8913 return FALSE;
8914
8915 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8916
8917 if (elf_section_data (o)->relocs != internal_relocs)
8918 free (internal_relocs);
8919
8920 if (!r)
8921 return FALSE;
8922 }
8923 }
8924 }
8925
8926 /* Remove the symbols that were in the swept sections from the dynamic
8927 symbol table. GCFIXME: Anyone know how to get them out of the
8928 static symbol table as well? */
8929 {
8930 int i = 0;
8931
8932 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8933
8934 elf_hash_table (info)->dynsymcount = i;
8935 }
8936
8937 return TRUE;
8938}
8939
8940/* Propagate collected vtable information. This is called through
8941 elf_link_hash_traverse. */
8942
8943static bfd_boolean
8944elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8945{
8946 if (h->root.type == bfd_link_hash_warning)
8947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8948
8949 /* Those that are not vtables. */
f6e332e6 8950 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8951 return TRUE;
8952
8953 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8954 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8955 return TRUE;
8956
8957 /* If we've already been done, exit. */
f6e332e6 8958 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
8959 return TRUE;
8960
8961 /* Make sure the parent's table is up to date. */
f6e332e6 8962 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 8963
f6e332e6 8964 if (h->vtable->used == NULL)
c152c796
AM
8965 {
8966 /* None of this table's entries were referenced. Re-use the
8967 parent's table. */
f6e332e6
AM
8968 h->vtable->used = h->vtable->parent->vtable->used;
8969 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
8970 }
8971 else
8972 {
8973 size_t n;
8974 bfd_boolean *cu, *pu;
8975
8976 /* Or the parent's entries into ours. */
f6e332e6 8977 cu = h->vtable->used;
c152c796 8978 cu[-1] = TRUE;
f6e332e6 8979 pu = h->vtable->parent->vtable->used;
c152c796
AM
8980 if (pu != NULL)
8981 {
8982 const struct elf_backend_data *bed;
8983 unsigned int log_file_align;
8984
8985 bed = get_elf_backend_data (h->root.u.def.section->owner);
8986 log_file_align = bed->s->log_file_align;
f6e332e6 8987 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
8988 while (n--)
8989 {
8990 if (*pu)
8991 *cu = TRUE;
8992 pu++;
8993 cu++;
8994 }
8995 }
8996 }
8997
8998 return TRUE;
8999}
9000
9001static bfd_boolean
9002elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9003{
9004 asection *sec;
9005 bfd_vma hstart, hend;
9006 Elf_Internal_Rela *relstart, *relend, *rel;
9007 const struct elf_backend_data *bed;
9008 unsigned int log_file_align;
9009
9010 if (h->root.type == bfd_link_hash_warning)
9011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9012
9013 /* Take care of both those symbols that do not describe vtables as
9014 well as those that are not loaded. */
f6e332e6 9015 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9016 return TRUE;
9017
9018 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9019 || h->root.type == bfd_link_hash_defweak);
9020
9021 sec = h->root.u.def.section;
9022 hstart = h->root.u.def.value;
9023 hend = hstart + h->size;
9024
9025 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9026 if (!relstart)
9027 return *(bfd_boolean *) okp = FALSE;
9028 bed = get_elf_backend_data (sec->owner);
9029 log_file_align = bed->s->log_file_align;
9030
9031 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9032
9033 for (rel = relstart; rel < relend; ++rel)
9034 if (rel->r_offset >= hstart && rel->r_offset < hend)
9035 {
9036 /* If the entry is in use, do nothing. */
f6e332e6
AM
9037 if (h->vtable->used
9038 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
9039 {
9040 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 9041 if (h->vtable->used[entry])
c152c796
AM
9042 continue;
9043 }
9044 /* Otherwise, kill it. */
9045 rel->r_offset = rel->r_info = rel->r_addend = 0;
9046 }
9047
9048 return TRUE;
9049}
9050
715df9b8
EB
9051/* Mark sections containing dynamically referenced symbols. This is called
9052 through elf_link_hash_traverse. */
9053
9054static bfd_boolean
9055elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9056 void *okp ATTRIBUTE_UNUSED)
9057{
9058 if (h->root.type == bfd_link_hash_warning)
9059 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9060
9061 if ((h->root.type == bfd_link_hash_defined
9062 || h->root.type == bfd_link_hash_defweak)
f5385ebf 9063 && h->ref_dynamic)
715df9b8
EB
9064 h->root.u.def.section->flags |= SEC_KEEP;
9065
9066 return TRUE;
9067}
57316bff
L
9068
9069/* Mark sections containing global symbols. This is called through
9070 elf_link_hash_traverse. */
715df9b8 9071
57316bff
L
9072static bfd_boolean
9073elf_mark_used_section (struct elf_link_hash_entry *h,
554220db 9074 void *data ATTRIBUTE_UNUSED)
57316bff
L
9075{
9076 if (h->root.type == bfd_link_hash_warning)
9077 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9078
554220db
AM
9079 if (h->root.type == bfd_link_hash_defined
9080 || h->root.type == bfd_link_hash_defweak)
57316bff 9081 {
554220db 9082 asection *s = h->root.u.def.section;
7451fd89 9083 if (s != NULL && s->output_section != NULL)
554220db 9084 s->output_section->flags |= SEC_KEEP;
57316bff
L
9085 }
9086
9087 return TRUE;
9088}
9089
c152c796
AM
9090/* Do mark and sweep of unused sections. */
9091
9092bfd_boolean
9093bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9094{
9095 bfd_boolean ok = TRUE;
9096 bfd *sub;
9097 asection * (*gc_mark_hook)
9098 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9099 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9100
57316bff
L
9101 if (!info->gc_sections)
9102 {
9103 /* If we are called when info->gc_sections is 0, we will mark
554220db 9104 all sections containing global symbols for non-relocatable
57316bff
L
9105 link. */
9106 if (!info->relocatable)
9107 elf_link_hash_traverse (elf_hash_table (info),
9108 elf_mark_used_section, NULL);
9109 return TRUE;
9110 }
9111
c152c796
AM
9112 if (!get_elf_backend_data (abfd)->can_gc_sections
9113 || info->relocatable
9114 || info->emitrelocations
715df9b8
EB
9115 || info->shared
9116 || !is_elf_hash_table (info->hash))
c152c796
AM
9117 {
9118 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9119 return TRUE;
9120 }
9121
9122 /* Apply transitive closure to the vtable entry usage info. */
9123 elf_link_hash_traverse (elf_hash_table (info),
9124 elf_gc_propagate_vtable_entries_used,
9125 &ok);
9126 if (!ok)
9127 return FALSE;
9128
9129 /* Kill the vtable relocations that were not used. */
9130 elf_link_hash_traverse (elf_hash_table (info),
9131 elf_gc_smash_unused_vtentry_relocs,
9132 &ok);
9133 if (!ok)
9134 return FALSE;
9135
715df9b8
EB
9136 /* Mark dynamically referenced symbols. */
9137 if (elf_hash_table (info)->dynamic_sections_created)
9138 elf_link_hash_traverse (elf_hash_table (info),
9139 elf_gc_mark_dynamic_ref_symbol,
9140 &ok);
9141 if (!ok)
9142 return FALSE;
c152c796 9143
715df9b8 9144 /* Grovel through relocs to find out who stays ... */
c152c796
AM
9145 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9146 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9147 {
9148 asection *o;
9149
9150 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9151 continue;
9152
9153 for (o = sub->sections; o != NULL; o = o->next)
9154 {
9155 if (o->flags & SEC_KEEP)
715df9b8
EB
9156 {
9157 /* _bfd_elf_discard_section_eh_frame knows how to discard
9158 orphaned FDEs so don't mark sections referenced by the
9159 EH frame section. */
9160 if (strcmp (o->name, ".eh_frame") == 0)
9161 o->gc_mark = 1;
ccfa59ea 9162 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
715df9b8
EB
9163 return FALSE;
9164 }
c152c796
AM
9165 }
9166 }
9167
9168 /* ... and mark SEC_EXCLUDE for those that go. */
9169 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9170 return FALSE;
9171
9172 return TRUE;
9173}
9174\f
9175/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9176
9177bfd_boolean
9178bfd_elf_gc_record_vtinherit (bfd *abfd,
9179 asection *sec,
9180 struct elf_link_hash_entry *h,
9181 bfd_vma offset)
9182{
9183 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9184 struct elf_link_hash_entry **search, *child;
9185 bfd_size_type extsymcount;
9186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9187
9188 /* The sh_info field of the symtab header tells us where the
9189 external symbols start. We don't care about the local symbols at
9190 this point. */
9191 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9192 if (!elf_bad_symtab (abfd))
9193 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9194
9195 sym_hashes = elf_sym_hashes (abfd);
9196 sym_hashes_end = sym_hashes + extsymcount;
9197
9198 /* Hunt down the child symbol, which is in this section at the same
9199 offset as the relocation. */
9200 for (search = sym_hashes; search != sym_hashes_end; ++search)
9201 {
9202 if ((child = *search) != NULL
9203 && (child->root.type == bfd_link_hash_defined
9204 || child->root.type == bfd_link_hash_defweak)
9205 && child->root.u.def.section == sec
9206 && child->root.u.def.value == offset)
9207 goto win;
9208 }
9209
d003868e
AM
9210 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9211 abfd, sec, (unsigned long) offset);
c152c796
AM
9212 bfd_set_error (bfd_error_invalid_operation);
9213 return FALSE;
9214
9215 win:
f6e332e6
AM
9216 if (!child->vtable)
9217 {
9218 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9219 if (!child->vtable)
9220 return FALSE;
9221 }
c152c796
AM
9222 if (!h)
9223 {
9224 /* This *should* only be the absolute section. It could potentially
9225 be that someone has defined a non-global vtable though, which
9226 would be bad. It isn't worth paging in the local symbols to be
9227 sure though; that case should simply be handled by the assembler. */
9228
f6e332e6 9229 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9230 }
9231 else
f6e332e6 9232 child->vtable->parent = h;
c152c796
AM
9233
9234 return TRUE;
9235}
9236
9237/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9238
9239bfd_boolean
9240bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9241 asection *sec ATTRIBUTE_UNUSED,
9242 struct elf_link_hash_entry *h,
9243 bfd_vma addend)
9244{
9245 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9246 unsigned int log_file_align = bed->s->log_file_align;
9247
f6e332e6
AM
9248 if (!h->vtable)
9249 {
9250 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9251 if (!h->vtable)
9252 return FALSE;
9253 }
9254
9255 if (addend >= h->vtable->size)
c152c796
AM
9256 {
9257 size_t size, bytes, file_align;
f6e332e6 9258 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9259
9260 /* While the symbol is undefined, we have to be prepared to handle
9261 a zero size. */
9262 file_align = 1 << log_file_align;
9263 if (h->root.type == bfd_link_hash_undefined)
9264 size = addend + file_align;
9265 else
9266 {
9267 size = h->size;
9268 if (addend >= size)
9269 {
9270 /* Oops! We've got a reference past the defined end of
9271 the table. This is probably a bug -- shall we warn? */
9272 size = addend + file_align;
9273 }
9274 }
9275 size = (size + file_align - 1) & -file_align;
9276
9277 /* Allocate one extra entry for use as a "done" flag for the
9278 consolidation pass. */
9279 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9280
9281 if (ptr)
9282 {
9283 ptr = bfd_realloc (ptr - 1, bytes);
9284
9285 if (ptr != NULL)
9286 {
9287 size_t oldbytes;
9288
f6e332e6 9289 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9290 * sizeof (bfd_boolean));
9291 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9292 }
9293 }
9294 else
9295 ptr = bfd_zmalloc (bytes);
9296
9297 if (ptr == NULL)
9298 return FALSE;
9299
9300 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9301 h->vtable->used = ptr + 1;
9302 h->vtable->size = size;
c152c796
AM
9303 }
9304
f6e332e6 9305 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9306
9307 return TRUE;
9308}
9309
9310struct alloc_got_off_arg {
9311 bfd_vma gotoff;
9312 unsigned int got_elt_size;
9313};
9314
9315/* We need a special top-level link routine to convert got reference counts
9316 to real got offsets. */
9317
9318static bfd_boolean
9319elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9320{
9321 struct alloc_got_off_arg *gofarg = arg;
9322
9323 if (h->root.type == bfd_link_hash_warning)
9324 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9325
9326 if (h->got.refcount > 0)
9327 {
9328 h->got.offset = gofarg->gotoff;
9329 gofarg->gotoff += gofarg->got_elt_size;
9330 }
9331 else
9332 h->got.offset = (bfd_vma) -1;
9333
9334 return TRUE;
9335}
9336
9337/* And an accompanying bit to work out final got entry offsets once
9338 we're done. Should be called from final_link. */
9339
9340bfd_boolean
9341bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9342 struct bfd_link_info *info)
9343{
9344 bfd *i;
9345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9346 bfd_vma gotoff;
9347 unsigned int got_elt_size = bed->s->arch_size / 8;
9348 struct alloc_got_off_arg gofarg;
9349
9350 if (! is_elf_hash_table (info->hash))
9351 return FALSE;
9352
9353 /* The GOT offset is relative to the .got section, but the GOT header is
9354 put into the .got.plt section, if the backend uses it. */
9355 if (bed->want_got_plt)
9356 gotoff = 0;
9357 else
9358 gotoff = bed->got_header_size;
9359
9360 /* Do the local .got entries first. */
9361 for (i = info->input_bfds; i; i = i->link_next)
9362 {
9363 bfd_signed_vma *local_got;
9364 bfd_size_type j, locsymcount;
9365 Elf_Internal_Shdr *symtab_hdr;
9366
9367 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9368 continue;
9369
9370 local_got = elf_local_got_refcounts (i);
9371 if (!local_got)
9372 continue;
9373
9374 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9375 if (elf_bad_symtab (i))
9376 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9377 else
9378 locsymcount = symtab_hdr->sh_info;
9379
9380 for (j = 0; j < locsymcount; ++j)
9381 {
9382 if (local_got[j] > 0)
9383 {
9384 local_got[j] = gotoff;
9385 gotoff += got_elt_size;
9386 }
9387 else
9388 local_got[j] = (bfd_vma) -1;
9389 }
9390 }
9391
9392 /* Then the global .got entries. .plt refcounts are handled by
9393 adjust_dynamic_symbol */
9394 gofarg.gotoff = gotoff;
9395 gofarg.got_elt_size = got_elt_size;
9396 elf_link_hash_traverse (elf_hash_table (info),
9397 elf_gc_allocate_got_offsets,
9398 &gofarg);
9399 return TRUE;
9400}
9401
9402/* Many folk need no more in the way of final link than this, once
9403 got entry reference counting is enabled. */
9404
9405bfd_boolean
9406bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9407{
9408 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9409 return FALSE;
9410
9411 /* Invoke the regular ELF backend linker to do all the work. */
9412 return bfd_elf_final_link (abfd, info);
9413}
9414
9415bfd_boolean
9416bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9417{
9418 struct elf_reloc_cookie *rcookie = cookie;
9419
9420 if (rcookie->bad_symtab)
9421 rcookie->rel = rcookie->rels;
9422
9423 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9424 {
9425 unsigned long r_symndx;
9426
9427 if (! rcookie->bad_symtab)
9428 if (rcookie->rel->r_offset > offset)
9429 return FALSE;
9430 if (rcookie->rel->r_offset != offset)
9431 continue;
9432
9433 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9434 if (r_symndx == SHN_UNDEF)
9435 return TRUE;
9436
9437 if (r_symndx >= rcookie->locsymcount
9438 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9439 {
9440 struct elf_link_hash_entry *h;
9441
9442 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9443
9444 while (h->root.type == bfd_link_hash_indirect
9445 || h->root.type == bfd_link_hash_warning)
9446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9447
9448 if ((h->root.type == bfd_link_hash_defined
9449 || h->root.type == bfd_link_hash_defweak)
9450 && elf_discarded_section (h->root.u.def.section))
9451 return TRUE;
9452 else
9453 return FALSE;
9454 }
9455 else
9456 {
9457 /* It's not a relocation against a global symbol,
9458 but it could be a relocation against a local
9459 symbol for a discarded section. */
9460 asection *isec;
9461 Elf_Internal_Sym *isym;
9462
9463 /* Need to: get the symbol; get the section. */
9464 isym = &rcookie->locsyms[r_symndx];
9465 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9466 {
9467 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9468 if (isec != NULL && elf_discarded_section (isec))
9469 return TRUE;
9470 }
9471 }
9472 return FALSE;
9473 }
9474 return FALSE;
9475}
9476
9477/* Discard unneeded references to discarded sections.
9478 Returns TRUE if any section's size was changed. */
9479/* This function assumes that the relocations are in sorted order,
9480 which is true for all known assemblers. */
9481
9482bfd_boolean
9483bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9484{
9485 struct elf_reloc_cookie cookie;
9486 asection *stab, *eh;
9487 Elf_Internal_Shdr *symtab_hdr;
9488 const struct elf_backend_data *bed;
9489 bfd *abfd;
9490 unsigned int count;
9491 bfd_boolean ret = FALSE;
9492
9493 if (info->traditional_format
9494 || !is_elf_hash_table (info->hash))
9495 return FALSE;
9496
9497 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9498 {
9499 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9500 continue;
9501
9502 bed = get_elf_backend_data (abfd);
9503
9504 if ((abfd->flags & DYNAMIC) != 0)
9505 continue;
9506
9507 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9508 if (info->relocatable
9509 || (eh != NULL
eea6121a 9510 && (eh->size == 0
c152c796
AM
9511 || bfd_is_abs_section (eh->output_section))))
9512 eh = NULL;
9513
9514 stab = bfd_get_section_by_name (abfd, ".stab");
9515 if (stab != NULL
eea6121a 9516 && (stab->size == 0
c152c796
AM
9517 || bfd_is_abs_section (stab->output_section)
9518 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9519 stab = NULL;
9520
9521 if (stab == NULL
9522 && eh == NULL
9523 && bed->elf_backend_discard_info == NULL)
9524 continue;
9525
9526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9527 cookie.abfd = abfd;
9528 cookie.sym_hashes = elf_sym_hashes (abfd);
9529 cookie.bad_symtab = elf_bad_symtab (abfd);
9530 if (cookie.bad_symtab)
9531 {
9532 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9533 cookie.extsymoff = 0;
9534 }
9535 else
9536 {
9537 cookie.locsymcount = symtab_hdr->sh_info;
9538 cookie.extsymoff = symtab_hdr->sh_info;
9539 }
9540
9541 if (bed->s->arch_size == 32)
9542 cookie.r_sym_shift = 8;
9543 else
9544 cookie.r_sym_shift = 32;
9545
9546 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9547 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9548 {
9549 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9550 cookie.locsymcount, 0,
9551 NULL, NULL, NULL);
9552 if (cookie.locsyms == NULL)
9553 return FALSE;
9554 }
9555
9556 if (stab != NULL)
9557 {
9558 cookie.rels = NULL;
9559 count = stab->reloc_count;
9560 if (count != 0)
9561 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9562 info->keep_memory);
9563 if (cookie.rels != NULL)
9564 {
9565 cookie.rel = cookie.rels;
9566 cookie.relend = cookie.rels;
9567 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9568 if (_bfd_discard_section_stabs (abfd, stab,
9569 elf_section_data (stab)->sec_info,
9570 bfd_elf_reloc_symbol_deleted_p,
9571 &cookie))
9572 ret = TRUE;
9573 if (elf_section_data (stab)->relocs != cookie.rels)
9574 free (cookie.rels);
9575 }
9576 }
9577
9578 if (eh != NULL)
9579 {
9580 cookie.rels = NULL;
9581 count = eh->reloc_count;
9582 if (count != 0)
9583 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9584 info->keep_memory);
9585 cookie.rel = cookie.rels;
9586 cookie.relend = cookie.rels;
9587 if (cookie.rels != NULL)
9588 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9589
9590 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9591 bfd_elf_reloc_symbol_deleted_p,
9592 &cookie))
9593 ret = TRUE;
9594
9595 if (cookie.rels != NULL
9596 && elf_section_data (eh)->relocs != cookie.rels)
9597 free (cookie.rels);
9598 }
9599
9600 if (bed->elf_backend_discard_info != NULL
9601 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9602 ret = TRUE;
9603
9604 if (cookie.locsyms != NULL
9605 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9606 {
9607 if (! info->keep_memory)
9608 free (cookie.locsyms);
9609 else
9610 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9611 }
9612 }
9613
9614 if (info->eh_frame_hdr
9615 && !info->relocatable
9616 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9617 ret = TRUE;
9618
9619 return ret;
9620}
082b7297
L
9621
9622void
9623_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9624{
9625 flagword flags;
6d2cd210 9626 const char *name, *p;
082b7297
L
9627 struct bfd_section_already_linked *l;
9628 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9629 asection *group;
9630
9631 /* A single member comdat group section may be discarded by a
9632 linkonce section. See below. */
9633 if (sec->output_section == bfd_abs_section_ptr)
9634 return;
082b7297
L
9635
9636 flags = sec->flags;
3d7f7666
L
9637
9638 /* Check if it belongs to a section group. */
9639 group = elf_sec_group (sec);
9640
9641 /* Return if it isn't a linkonce section nor a member of a group. A
9642 comdat group section also has SEC_LINK_ONCE set. */
9643 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9644 return;
9645
3d7f7666
L
9646 if (group)
9647 {
9648 /* If this is the member of a single member comdat group, check if
9649 the group should be discarded. */
9650 if (elf_next_in_group (sec) == sec
9651 && (group->flags & SEC_LINK_ONCE) != 0)
9652 sec = group;
9653 else
9654 return;
9655 }
9656
082b7297
L
9657 /* FIXME: When doing a relocatable link, we may have trouble
9658 copying relocations in other sections that refer to local symbols
9659 in the section being discarded. Those relocations will have to
9660 be converted somehow; as of this writing I'm not sure that any of
9661 the backends handle that correctly.
9662
9663 It is tempting to instead not discard link once sections when
9664 doing a relocatable link (technically, they should be discarded
9665 whenever we are building constructors). However, that fails,
9666 because the linker winds up combining all the link once sections
9667 into a single large link once section, which defeats the purpose
9668 of having link once sections in the first place.
9669
9670 Also, not merging link once sections in a relocatable link
9671 causes trouble for MIPS ELF, which relies on link once semantics
9672 to handle the .reginfo section correctly. */
9673
9674 name = bfd_get_section_name (abfd, sec);
9675
6d2cd210
JJ
9676 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9677 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9678 p++;
9679 else
9680 p = name;
9681
9682 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9683
9684 for (l = already_linked_list->entry; l != NULL; l = l->next)
9685 {
9686 /* We may have 3 different sections on the list: group section,
9687 comdat section and linkonce section. SEC may be a linkonce or
9688 group section. We match a group section with a group section,
9689 a linkonce section with a linkonce section, and ignore comdat
9690 section. */
3d7f7666 9691 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9692 && strcmp (name, l->sec->name) == 0
082b7297
L
9693 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9694 {
9695 /* The section has already been linked. See if we should
6d2cd210 9696 issue a warning. */
082b7297
L
9697 switch (flags & SEC_LINK_DUPLICATES)
9698 {
9699 default:
9700 abort ();
9701
9702 case SEC_LINK_DUPLICATES_DISCARD:
9703 break;
9704
9705 case SEC_LINK_DUPLICATES_ONE_ONLY:
9706 (*_bfd_error_handler)
c93625e2 9707 (_("%B: ignoring duplicate section `%A'"),
d003868e 9708 abfd, sec);
082b7297
L
9709 break;
9710
9711 case SEC_LINK_DUPLICATES_SAME_SIZE:
9712 if (sec->size != l->sec->size)
9713 (*_bfd_error_handler)
c93625e2 9714 (_("%B: duplicate section `%A' has different size"),
d003868e 9715 abfd, sec);
082b7297 9716 break;
ea5158d8
DJ
9717
9718 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9719 if (sec->size != l->sec->size)
9720 (*_bfd_error_handler)
c93625e2 9721 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
9722 abfd, sec);
9723 else if (sec->size != 0)
9724 {
9725 bfd_byte *sec_contents, *l_sec_contents;
9726
9727 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9728 (*_bfd_error_handler)
c93625e2 9729 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9730 abfd, sec);
9731 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9732 &l_sec_contents))
9733 (*_bfd_error_handler)
c93625e2 9734 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9735 l->sec->owner, l->sec);
9736 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9737 (*_bfd_error_handler)
c93625e2 9738 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
9739 abfd, sec);
9740
9741 if (sec_contents)
9742 free (sec_contents);
9743 if (l_sec_contents)
9744 free (l_sec_contents);
9745 }
9746 break;
082b7297
L
9747 }
9748
9749 /* Set the output_section field so that lang_add_section
9750 does not create a lang_input_section structure for this
9751 section. Since there might be a symbol in the section
9752 being discarded, we must retain a pointer to the section
9753 which we are really going to use. */
9754 sec->output_section = bfd_abs_section_ptr;
9755 sec->kept_section = l->sec;
9756
9757 if (flags & SEC_GROUP)
3d7f7666
L
9758 {
9759 asection *first = elf_next_in_group (sec);
9760 asection *s = first;
9761
9762 while (s != NULL)
9763 {
9764 s->output_section = bfd_abs_section_ptr;
9765 /* Record which group discards it. */
9766 s->kept_section = l->sec;
9767 s = elf_next_in_group (s);
9768 /* These lists are circular. */
9769 if (s == first)
9770 break;
9771 }
9772 }
082b7297
L
9773
9774 return;
9775 }
9776 }
9777
3d7f7666
L
9778 if (group)
9779 {
9780 /* If this is the member of a single member comdat group and the
9781 group hasn't be discarded, we check if it matches a linkonce
9782 section. We only record the discarded comdat group. Otherwise
9783 the undiscarded group will be discarded incorrectly later since
9784 itself has been recorded. */
6d2cd210
JJ
9785 for (l = already_linked_list->entry; l != NULL; l = l->next)
9786 if ((l->sec->flags & SEC_GROUP) == 0
9787 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9788 && bfd_elf_match_symbols_in_sections (l->sec,
9789 elf_next_in_group (sec)))
9790 {
9791 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9792 elf_next_in_group (sec)->kept_section = l->sec;
9793 group->output_section = bfd_abs_section_ptr;
9794 break;
9795 }
9796 if (l == NULL)
3d7f7666
L
9797 return;
9798 }
9799 else
9800 /* There is no direct match. But for linkonce section, we should
9801 check if there is a match with comdat group member. We always
9802 record the linkonce section, discarded or not. */
6d2cd210
JJ
9803 for (l = already_linked_list->entry; l != NULL; l = l->next)
9804 if (l->sec->flags & SEC_GROUP)
9805 {
9806 asection *first = elf_next_in_group (l->sec);
9807
9808 if (first != NULL
9809 && elf_next_in_group (first) == first
9810 && bfd_elf_match_symbols_in_sections (first, sec))
9811 {
9812 sec->output_section = bfd_abs_section_ptr;
9813 sec->kept_section = l->sec;
9814 break;
9815 }
9816 }
9817
082b7297
L
9818 /* This is the first section with this name. Record it. */
9819 bfd_section_already_linked_table_insert (already_linked_list, sec);
9820}
81e1b023 9821
f652615e
L
9822static void
9823bfd_elf_set_symbol (struct elf_link_hash_entry *h, bfd_vma val)
9824{
9825 h->root.type = bfd_link_hash_defined;
9826 h->root.u.def.section = bfd_abs_section_ptr;
9827 h->root.u.def.value = val;
9828 h->def_regular = 1;
9829 h->type = STT_OBJECT;
9830 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9831 h->forced_local = 1;
9832}
9833
81e1b023
L
9834/* Set NAME to VAL if the symbol exists and is undefined. */
9835
9836void
9837_bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
9838 bfd_vma val)
9839{
9840 struct elf_link_hash_entry *h;
0291d291 9841
81e1b023
L
9842 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9843 FALSE);
0291d291
NC
9844 if (h != NULL && (h->root.type == bfd_link_hash_undefined
9845 || h->root.type == bfd_link_hash_undefweak))
f652615e
L
9846 bfd_elf_set_symbol (h, val);
9847}
9848
9849/* Set START and END to boundaries of SEC if they exist and are
9850 undefined. */
9851
9852void
9853_bfd_elf_provide_section_bound_symbols (struct bfd_link_info *info,
9854 asection *sec,
9855 const char *start,
9856 const char *end)
9857{
9858 struct elf_link_hash_entry *hs, *he;
9859 bfd_vma start_val, end_val;
9860 bfd_boolean do_start, do_end;
9861
9862 /* Check if we need them or not first. */
9863 hs = elf_link_hash_lookup (elf_hash_table (info), start, FALSE,
9864 FALSE, FALSE);
9865 do_start = (hs != NULL
9866 && (hs->root.type == bfd_link_hash_undefined
9867 || hs->root.type == bfd_link_hash_undefweak));
9868
9869 he = elf_link_hash_lookup (elf_hash_table (info), end, FALSE,
9870 FALSE, FALSE);
9871 do_end = (he != NULL
9872 && (he->root.type == bfd_link_hash_undefined
9873 || he->root.type == bfd_link_hash_undefweak));
9874
9875 if (!do_start && !do_end)
9876 return;
9877
9878 if (sec != NULL)
81e1b023 9879 {
f652615e
L
9880 start_val = sec->vma;
9881 end_val = start_val + sec->size;
81e1b023 9882 }
f652615e
L
9883 else
9884 {
9885 /* We have to choose those values very carefully. Some targets,
01d9ad14 9886 like alpha, may have relocation overflow with 0. "__bss_start"
f652615e
L
9887 should be defined in all cases. */
9888 struct elf_link_hash_entry *h
01d9ad14 9889 = elf_link_hash_lookup (elf_hash_table (info), "__bss_start",
f652615e
L
9890 FALSE, FALSE, FALSE);
9891 if (h != NULL && h->root.type == bfd_link_hash_defined)
9892 start_val = h->root.u.def.value;
9893 else
9894 start_val = 0;
9895 end_val = start_val;
9896 }
9897
9898 if (do_start)
9899 bfd_elf_set_symbol (hs, start_val);
9900
9901 if (do_end)
9902 bfd_elf_set_symbol (he, end_val);
81e1b023 9903}
This page took 0.7976 seconds and 4 git commands to generate.