daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
051d5130 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
7898deda 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
62
63 s = bfd_make_section (abfd, ".got");
64 if (s == NULL
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 67 return FALSE;
252b5132
RH
68
69 if (bed->want_got_plt)
70 {
71 s = bfd_make_section (abfd, ".got.plt");
72 if (s == NULL
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 75 return FALSE;
252b5132
RH
76 }
77
2517a57f
AM
78 if (bed->want_got_sym)
79 {
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
14a793b2 84 bh = NULL;
2517a57f
AM
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 88 return FALSE;
14a793b2 89 h = (struct elf_link_hash_entry *) bh;
2517a57f
AM
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 h->type = STT_OBJECT;
252b5132 92
36af4a4e 93 if (! info->executable
c152c796 94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 95 return FALSE;
252b5132 96
2517a57f
AM
97 elf_hash_table (info)->hgot = h;
98 }
252b5132
RH
99
100 /* The first bit of the global offset table is the header. */
eea6121a 101 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 102
b34976b6 103 return TRUE;
252b5132
RH
104}
105\f
45d6a902
AM
106/* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
252b5132 112
b34976b6 113bfd_boolean
268b6b39 114_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 115{
45d6a902
AM
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
9c5bfbb7 120 const struct elf_backend_data *bed;
252b5132 121
0eddce27 122 if (! is_elf_hash_table (info->hash))
45d6a902
AM
123 return FALSE;
124
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
127
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
133
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
135 sections. */
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
138
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
36af4a4e 141 if (info->executable)
252b5132 142 {
45d6a902
AM
143 s = bfd_make_section (abfd, ".interp");
144 if (s == NULL
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
146 return FALSE;
147 }
bb0deeff 148
0eddce27 149 if (! info->traditional_format)
45d6a902
AM
150 {
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
152 if (s == NULL
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
155 return FALSE;
156 elf_hash_table (info)->eh_info.hdr_sec = s;
157 }
bb0deeff 158
45d6a902
AM
159 bed = get_elf_backend_data (abfd);
160
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
164 if (s == NULL
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168
169 s = bfd_make_section (abfd, ".gnu.version");
170 if (s == NULL
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
173 return FALSE;
174
175 s = bfd_make_section (abfd, ".gnu.version_r");
176 if (s == NULL
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
181 s = bfd_make_section (abfd, ".dynsym");
182 if (s == NULL
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 return FALSE;
186
187 s = bfd_make_section (abfd, ".dynstr");
188 if (s == NULL
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 return FALSE;
191
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
194 {
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
197 return FALSE;
252b5132
RH
198 }
199
45d6a902
AM
200 s = bfd_make_section (abfd, ".dynamic");
201 if (s == NULL
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
214 bh = NULL;
215 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
218 return FALSE;
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
222
36af4a4e 223 if (! info->executable
c152c796 224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
225 return FALSE;
226
227 s = bfd_make_section (abfd, ".hash");
228 if (s == NULL
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
233
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 return FALSE;
239
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
241
242 return TRUE;
243}
244
245/* Create dynamic sections when linking against a dynamic object. */
246
247bfd_boolean
268b6b39 248_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
249{
250 flagword flags, pltflags;
251 asection *s;
9c5bfbb7 252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 253
252b5132
RH
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
256
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
259
260 pltflags = flags;
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
5d1634d7 263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
252b5132
RH
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
266
267 s = bfd_make_section (abfd, ".plt");
268 if (s == NULL
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 271 return FALSE;
252b5132
RH
272
273 if (bed->want_plt_sym)
274 {
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
276 .plt section. */
14a793b2
AM
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
279
252b5132 280 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 283 return FALSE;
14a793b2 284 h = (struct elf_link_hash_entry *) bh;
252b5132
RH
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
287
36af4a4e 288 if (! info->executable
c152c796 289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 290 return FALSE;
252b5132
RH
291 }
292
3e932841 293 s = bfd_make_section (abfd,
bf572ba0 294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
252b5132
RH
295 if (s == NULL
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 298 return FALSE;
252b5132
RH
299
300 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 301 return FALSE;
252b5132 302
3018b441
RH
303 if (bed->want_dynbss)
304 {
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
312 if (s == NULL
77f3d027 313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
b34976b6 314 return FALSE;
252b5132 315
3018b441 316 /* The .rel[a].bss section holds copy relocs. This section is not
252b5132
RH
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
326 copy relocs. */
3018b441
RH
327 if (! info->shared)
328 {
3e932841
KH
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
3018b441
RH
332 if (s == NULL
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 335 return FALSE;
3018b441 336 }
252b5132
RH
337 }
338
b34976b6 339 return TRUE;
252b5132
RH
340}
341\f
252b5132
RH
342/* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
348 one. */
349
b34976b6 350bfd_boolean
c152c796
AM
351bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
252b5132
RH
353{
354 if (h->dynindx == -1)
355 {
2b0f7ef9 356 struct elf_strtab_hash *dynstr;
68b6ddd0 357 char *p;
252b5132 358 const char *name;
252b5132
RH
359 bfd_size_type indx;
360
7a13edea
NC
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
366 {
367 case STV_INTERNAL:
368 case STV_HIDDEN:
9d6eee78
L
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
38048eb9
L
371 {
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
b34976b6 373 return TRUE;
7a13edea 374 }
0444bdd4 375
7a13edea
NC
376 default:
377 break;
378 }
379
252b5132
RH
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
382
383 dynstr = elf_hash_table (info)->dynstr;
384 if (dynstr == NULL)
385 {
386 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 388 if (dynstr == NULL)
b34976b6 389 return FALSE;
252b5132
RH
390 }
391
392 /* We don't put any version information in the dynamic string
aad5d350 393 table. */
252b5132
RH
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
396 if (p != NULL)
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
402 *p = 0;
403
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
405
406 if (p != NULL)
407 *p = ELF_VER_CHR;
252b5132
RH
408
409 if (indx == (bfd_size_type) -1)
b34976b6 410 return FALSE;
252b5132
RH
411 h->dynstr_index = indx;
412 }
413
b34976b6 414 return TRUE;
252b5132 415}
45d6a902
AM
416\f
417/* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
419
420bfd_boolean
268b6b39
AM
421bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
423 const char *name,
424 bfd_boolean provide)
45d6a902
AM
425{
426 struct elf_link_hash_entry *h;
427
0eddce27 428 if (!is_elf_hash_table (info->hash))
45d6a902
AM
429 return TRUE;
430
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
432 if (h == NULL)
433 return FALSE;
434
02bb6eae
AO
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
a010d60f
AM
437 may depend on this.
438 ??? Changing bfd_link_hash_undefined to bfd_link_hash_new (or
439 to bfd_link_hash_undefweak, see linker.c:link_action) runs the risk
440 of some later symbol manipulation setting the symbol back to
441 bfd_link_hash_undefined, and the linker trying to add the symbol to
442 the undefs list twice. */
02bb6eae
AO
443 if (h->root.type == bfd_link_hash_undefweak
444 || h->root.type == bfd_link_hash_undefined)
445 h->root.type = bfd_link_hash_new;
446
45d6a902
AM
447 if (h->root.type == bfd_link_hash_new)
448 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
449
450 /* If this symbol is being provided by the linker script, and it is
451 currently defined by a dynamic object, but not by a regular
452 object, then mark it as undefined so that the generic linker will
453 force the correct value. */
454 if (provide
455 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
456 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
457 h->root.type = bfd_link_hash_undefined;
458
459 /* If this symbol is not being provided by the linker script, and it is
460 currently defined by a dynamic object, but not by a regular object,
461 then clear out any version information because the symbol will not be
462 associated with the dynamic object any more. */
463 if (!provide
464 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
465 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
466 h->verinfo.verdef = NULL;
467
468 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
469
470 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
471 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
472 || info->shared)
473 && h->dynindx == -1)
474 {
c152c796 475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
476 return FALSE;
477
478 /* If this is a weak defined symbol, and we know a corresponding
479 real symbol from the same dynamic object, make sure the real
480 symbol is also made into a dynamic symbol. */
481 if (h->weakdef != NULL
482 && h->weakdef->dynindx == -1)
483 {
c152c796 484 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
45d6a902
AM
485 return FALSE;
486 }
487 }
488
489 return TRUE;
490}
42751cf3 491
8c58d23b
AM
492/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
493 success, and 2 on a failure caused by attempting to record a symbol
494 in a discarded section, eg. a discarded link-once section symbol. */
495
496int
c152c796
AM
497bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
498 bfd *input_bfd,
499 long input_indx)
8c58d23b
AM
500{
501 bfd_size_type amt;
502 struct elf_link_local_dynamic_entry *entry;
503 struct elf_link_hash_table *eht;
504 struct elf_strtab_hash *dynstr;
505 unsigned long dynstr_index;
506 char *name;
507 Elf_External_Sym_Shndx eshndx;
508 char esym[sizeof (Elf64_External_Sym)];
509
0eddce27 510 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
511 return 0;
512
513 /* See if the entry exists already. */
514 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
515 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
516 return 1;
517
518 amt = sizeof (*entry);
268b6b39 519 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
520 if (entry == NULL)
521 return 0;
522
523 /* Go find the symbol, so that we can find it's name. */
524 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 525 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
526 {
527 bfd_release (input_bfd, entry);
528 return 0;
529 }
530
531 if (entry->isym.st_shndx != SHN_UNDEF
532 && (entry->isym.st_shndx < SHN_LORESERVE
533 || entry->isym.st_shndx > SHN_HIRESERVE))
534 {
535 asection *s;
536
537 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
538 if (s == NULL || bfd_is_abs_section (s->output_section))
539 {
540 /* We can still bfd_release here as nothing has done another
541 bfd_alloc. We can't do this later in this function. */
542 bfd_release (input_bfd, entry);
543 return 2;
544 }
545 }
546
547 name = (bfd_elf_string_from_elf_section
548 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
549 entry->isym.st_name));
550
551 dynstr = elf_hash_table (info)->dynstr;
552 if (dynstr == NULL)
553 {
554 /* Create a strtab to hold the dynamic symbol names. */
555 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
556 if (dynstr == NULL)
557 return 0;
558 }
559
b34976b6 560 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
561 if (dynstr_index == (unsigned long) -1)
562 return 0;
563 entry->isym.st_name = dynstr_index;
564
565 eht = elf_hash_table (info);
566
567 entry->next = eht->dynlocal;
568 eht->dynlocal = entry;
569 entry->input_bfd = input_bfd;
570 entry->input_indx = input_indx;
571 eht->dynsymcount++;
572
573 /* Whatever binding the symbol had before, it's now local. */
574 entry->isym.st_info
575 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
576
577 /* The dynindx will be set at the end of size_dynamic_sections. */
578
579 return 1;
580}
581
30b30c21 582/* Return the dynindex of a local dynamic symbol. */
42751cf3 583
30b30c21 584long
268b6b39
AM
585_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
586 bfd *input_bfd,
587 long input_indx)
30b30c21
RH
588{
589 struct elf_link_local_dynamic_entry *e;
590
591 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
592 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
593 return e->dynindx;
594 return -1;
595}
596
597/* This function is used to renumber the dynamic symbols, if some of
598 them are removed because they are marked as local. This is called
599 via elf_link_hash_traverse. */
600
b34976b6 601static bfd_boolean
268b6b39
AM
602elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
603 void *data)
42751cf3 604{
268b6b39 605 size_t *count = data;
30b30c21 606
e92d460e
AM
607 if (h->root.type == bfd_link_hash_warning)
608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
609
42751cf3 610 if (h->dynindx != -1)
30b30c21
RH
611 h->dynindx = ++(*count);
612
b34976b6 613 return TRUE;
42751cf3 614}
30b30c21 615
aee6f5b4
AO
616/* Return true if the dynamic symbol for a given section should be
617 omitted when creating a shared library. */
618bfd_boolean
619_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
620 struct bfd_link_info *info,
621 asection *p)
622{
623 switch (elf_section_data (p)->this_hdr.sh_type)
624 {
625 case SHT_PROGBITS:
626 case SHT_NOBITS:
627 /* If sh_type is yet undecided, assume it could be
628 SHT_PROGBITS/SHT_NOBITS. */
629 case SHT_NULL:
630 if (strcmp (p->name, ".got") == 0
631 || strcmp (p->name, ".got.plt") == 0
632 || strcmp (p->name, ".plt") == 0)
633 {
634 asection *ip;
635 bfd *dynobj = elf_hash_table (info)->dynobj;
636
637 if (dynobj != NULL
638 && (ip = bfd_get_section_by_name (dynobj, p->name))
639 != NULL
640 && (ip->flags & SEC_LINKER_CREATED)
641 && ip->output_section == p)
642 return TRUE;
643 }
644 return FALSE;
645
646 /* There shouldn't be section relative relocations
647 against any other section. */
648 default:
649 return TRUE;
650 }
651}
652
062e2358 653/* Assign dynsym indices. In a shared library we generate a section
30b30c21
RH
654 symbol for each output section, which come first. Next come all of
655 the back-end allocated local dynamic syms, followed by the rest of
656 the global symbols. */
657
658unsigned long
268b6b39 659_bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
30b30c21
RH
660{
661 unsigned long dynsymcount = 0;
662
663 if (info->shared)
664 {
aee6f5b4 665 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
666 asection *p;
667 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 668 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
669 && (p->flags & SEC_ALLOC) != 0
670 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
671 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21
RH
672 }
673
674 if (elf_hash_table (info)->dynlocal)
675 {
676 struct elf_link_local_dynamic_entry *p;
677 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
678 p->dynindx = ++dynsymcount;
679 }
680
681 elf_link_hash_traverse (elf_hash_table (info),
682 elf_link_renumber_hash_table_dynsyms,
683 &dynsymcount);
684
685 /* There is an unused NULL entry at the head of the table which
686 we must account for in our count. Unless there weren't any
687 symbols, which means we'll have no table at all. */
688 if (dynsymcount != 0)
689 ++dynsymcount;
690
691 return elf_hash_table (info)->dynsymcount = dynsymcount;
692}
252b5132 693
45d6a902
AM
694/* This function is called when we want to define a new symbol. It
695 handles the various cases which arise when we find a definition in
696 a dynamic object, or when there is already a definition in a
697 dynamic object. The new symbol is described by NAME, SYM, PSEC,
698 and PVALUE. We set SYM_HASH to the hash table entry. We set
699 OVERRIDE if the old symbol is overriding a new definition. We set
700 TYPE_CHANGE_OK if it is OK for the type to change. We set
701 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
702 change, we mean that we shouldn't warn if the type or size does
0f8a2703 703 change. */
45d6a902
AM
704
705bfd_boolean
268b6b39
AM
706_bfd_elf_merge_symbol (bfd *abfd,
707 struct bfd_link_info *info,
708 const char *name,
709 Elf_Internal_Sym *sym,
710 asection **psec,
711 bfd_vma *pvalue,
712 struct elf_link_hash_entry **sym_hash,
713 bfd_boolean *skip,
714 bfd_boolean *override,
715 bfd_boolean *type_change_ok,
0f8a2703 716 bfd_boolean *size_change_ok)
252b5132 717{
45d6a902
AM
718 asection *sec;
719 struct elf_link_hash_entry *h;
720 struct elf_link_hash_entry *flip;
721 int bind;
722 bfd *oldbfd;
723 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
79349b09 724 bfd_boolean newweak, oldweak;
45d6a902
AM
725
726 *skip = FALSE;
727 *override = FALSE;
728
729 sec = *psec;
730 bind = ELF_ST_BIND (sym->st_info);
731
732 if (! bfd_is_und_section (sec))
733 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
734 else
735 h = ((struct elf_link_hash_entry *)
736 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
737 if (h == NULL)
738 return FALSE;
739 *sym_hash = h;
252b5132 740
45d6a902
AM
741 /* This code is for coping with dynamic objects, and is only useful
742 if we are doing an ELF link. */
743 if (info->hash->creator != abfd->xvec)
744 return TRUE;
252b5132 745
45d6a902
AM
746 /* For merging, we only care about real symbols. */
747
748 while (h->root.type == bfd_link_hash_indirect
749 || h->root.type == bfd_link_hash_warning)
750 h = (struct elf_link_hash_entry *) h->root.u.i.link;
751
752 /* If we just created the symbol, mark it as being an ELF symbol.
753 Other than that, there is nothing to do--there is no merge issue
754 with a newly defined symbol--so we just return. */
755
756 if (h->root.type == bfd_link_hash_new)
252b5132 757 {
45d6a902
AM
758 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
759 return TRUE;
760 }
252b5132 761
45d6a902 762 /* OLDBFD is a BFD associated with the existing symbol. */
252b5132 763
45d6a902
AM
764 switch (h->root.type)
765 {
766 default:
767 oldbfd = NULL;
768 break;
252b5132 769
45d6a902
AM
770 case bfd_link_hash_undefined:
771 case bfd_link_hash_undefweak:
772 oldbfd = h->root.u.undef.abfd;
773 break;
774
775 case bfd_link_hash_defined:
776 case bfd_link_hash_defweak:
777 oldbfd = h->root.u.def.section->owner;
778 break;
779
780 case bfd_link_hash_common:
781 oldbfd = h->root.u.c.p->section->owner;
782 break;
783 }
784
785 /* In cases involving weak versioned symbols, we may wind up trying
786 to merge a symbol with itself. Catch that here, to avoid the
787 confusion that results if we try to override a symbol with
788 itself. The additional tests catch cases like
789 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
790 dynamic object, which we do want to handle here. */
791 if (abfd == oldbfd
792 && ((abfd->flags & DYNAMIC) == 0
793 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
794 return TRUE;
795
796 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
797 respectively, is from a dynamic object. */
798
799 if ((abfd->flags & DYNAMIC) != 0)
800 newdyn = TRUE;
801 else
802 newdyn = FALSE;
803
804 if (oldbfd != NULL)
805 olddyn = (oldbfd->flags & DYNAMIC) != 0;
806 else
807 {
808 asection *hsec;
809
810 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
811 indices used by MIPS ELF. */
812 switch (h->root.type)
252b5132 813 {
45d6a902
AM
814 default:
815 hsec = NULL;
816 break;
252b5132 817
45d6a902
AM
818 case bfd_link_hash_defined:
819 case bfd_link_hash_defweak:
820 hsec = h->root.u.def.section;
821 break;
252b5132 822
45d6a902
AM
823 case bfd_link_hash_common:
824 hsec = h->root.u.c.p->section;
825 break;
252b5132 826 }
252b5132 827
45d6a902
AM
828 if (hsec == NULL)
829 olddyn = FALSE;
830 else
831 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
832 }
252b5132 833
45d6a902
AM
834 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
835 respectively, appear to be a definition rather than reference. */
836
837 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
838 newdef = FALSE;
839 else
840 newdef = TRUE;
841
842 if (h->root.type == bfd_link_hash_undefined
843 || h->root.type == bfd_link_hash_undefweak
844 || h->root.type == bfd_link_hash_common)
845 olddef = FALSE;
846 else
847 olddef = TRUE;
848
4cc11e76 849 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
850 object or is weak in all dynamic objects. Internal and hidden
851 visibility will make it unavailable to dynamic objects. */
852 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
853 {
854 if (!bfd_is_und_section (sec))
855 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
856 else
252b5132 857 {
45d6a902
AM
858 /* Check if this symbol is weak in all dynamic objects. If it
859 is the first time we see it in a dynamic object, we mark
860 if it is weak. Otherwise, we clear it. */
861 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
79349b09 862 {
45d6a902
AM
863 if (bind == STB_WEAK)
864 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
252b5132 865 }
45d6a902
AM
866 else if (bind != STB_WEAK)
867 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
252b5132 868 }
45d6a902 869 }
252b5132 870
45d6a902
AM
871 /* If the old symbol has non-default visibility, we ignore the new
872 definition from a dynamic object. */
873 if (newdyn
9c7a29a3 874 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
875 && !bfd_is_und_section (sec))
876 {
877 *skip = TRUE;
878 /* Make sure this symbol is dynamic. */
879 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
880 /* A protected symbol has external availability. Make sure it is
881 recorded as dynamic.
882
883 FIXME: Should we check type and size for protected symbol? */
884 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 885 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
886 else
887 return TRUE;
888 }
889 else if (!newdyn
9c7a29a3 890 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
45d6a902
AM
891 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
892 {
893 /* If the new symbol with non-default visibility comes from a
894 relocatable file and the old definition comes from a dynamic
895 object, we remove the old definition. */
896 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
897 h = *sym_hash;
1de1a317
L
898
899 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
900 && bfd_is_und_section (sec))
901 {
902 /* If the new symbol is undefined and the old symbol was
903 also undefined before, we need to make sure
904 _bfd_generic_link_add_one_symbol doesn't mess
905 up the linker hash table undefs list. Since the old
906 definition came from a dynamic object, it is still on the
907 undefs list. */
908 h->root.type = bfd_link_hash_undefined;
909 /* FIXME: What if the new symbol is weak undefined? */
910 h->root.u.undef.abfd = abfd;
911 }
912 else
913 {
914 h->root.type = bfd_link_hash_new;
915 h->root.u.undef.abfd = NULL;
916 }
917
45d6a902 918 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
252b5132 919 {
45d6a902 920 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
22d5e339
L
921 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
922 | ELF_LINK_DYNAMIC_DEF);
45d6a902
AM
923 }
924 /* FIXME: Should we check type and size for protected symbol? */
925 h->size = 0;
926 h->type = 0;
927 return TRUE;
928 }
14a793b2 929
79349b09
AM
930 /* Differentiate strong and weak symbols. */
931 newweak = bind == STB_WEAK;
932 oldweak = (h->root.type == bfd_link_hash_defweak
933 || h->root.type == bfd_link_hash_undefweak);
14a793b2 934
15b43f48
AM
935 /* If a new weak symbol definition comes from a regular file and the
936 old symbol comes from a dynamic library, we treat the new one as
937 strong. Similarly, an old weak symbol definition from a regular
938 file is treated as strong when the new symbol comes from a dynamic
939 library. Further, an old weak symbol from a dynamic library is
940 treated as strong if the new symbol is from a dynamic library.
941 This reflects the way glibc's ld.so works.
942
943 Do this before setting *type_change_ok or *size_change_ok so that
944 we warn properly when dynamic library symbols are overridden. */
945
946 if (newdef && !newdyn && olddyn)
0f8a2703 947 newweak = FALSE;
15b43f48 948 if (olddef && newdyn)
0f8a2703
AM
949 oldweak = FALSE;
950
79349b09
AM
951 /* It's OK to change the type if either the existing symbol or the
952 new symbol is weak. A type change is also OK if the old symbol
953 is undefined and the new symbol is defined. */
252b5132 954
79349b09
AM
955 if (oldweak
956 || newweak
957 || (newdef
958 && h->root.type == bfd_link_hash_undefined))
959 *type_change_ok = TRUE;
960
961 /* It's OK to change the size if either the existing symbol or the
962 new symbol is weak, or if the old symbol is undefined. */
963
964 if (*type_change_ok
965 || h->root.type == bfd_link_hash_undefined)
966 *size_change_ok = TRUE;
45d6a902 967
45d6a902
AM
968 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
969 symbol, respectively, appears to be a common symbol in a dynamic
970 object. If a symbol appears in an uninitialized section, and is
971 not weak, and is not a function, then it may be a common symbol
972 which was resolved when the dynamic object was created. We want
973 to treat such symbols specially, because they raise special
974 considerations when setting the symbol size: if the symbol
975 appears as a common symbol in a regular object, and the size in
976 the regular object is larger, we must make sure that we use the
977 larger size. This problematic case can always be avoided in C,
978 but it must be handled correctly when using Fortran shared
979 libraries.
980
981 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
982 likewise for OLDDYNCOMMON and OLDDEF.
983
984 Note that this test is just a heuristic, and that it is quite
985 possible to have an uninitialized symbol in a shared object which
986 is really a definition, rather than a common symbol. This could
987 lead to some minor confusion when the symbol really is a common
988 symbol in some regular object. However, I think it will be
989 harmless. */
990
991 if (newdyn
992 && newdef
79349b09 993 && !newweak
45d6a902
AM
994 && (sec->flags & SEC_ALLOC) != 0
995 && (sec->flags & SEC_LOAD) == 0
996 && sym->st_size > 0
45d6a902
AM
997 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
998 newdyncommon = TRUE;
999 else
1000 newdyncommon = FALSE;
1001
1002 if (olddyn
1003 && olddef
1004 && h->root.type == bfd_link_hash_defined
1005 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1006 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1007 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1008 && h->size > 0
1009 && h->type != STT_FUNC)
1010 olddyncommon = TRUE;
1011 else
1012 olddyncommon = FALSE;
1013
45d6a902
AM
1014 /* If both the old and the new symbols look like common symbols in a
1015 dynamic object, set the size of the symbol to the larger of the
1016 two. */
1017
1018 if (olddyncommon
1019 && newdyncommon
1020 && sym->st_size != h->size)
1021 {
1022 /* Since we think we have two common symbols, issue a multiple
1023 common warning if desired. Note that we only warn if the
1024 size is different. If the size is the same, we simply let
1025 the old symbol override the new one as normally happens with
1026 symbols defined in dynamic objects. */
1027
1028 if (! ((*info->callbacks->multiple_common)
1029 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1030 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1031 return FALSE;
252b5132 1032
45d6a902
AM
1033 if (sym->st_size > h->size)
1034 h->size = sym->st_size;
252b5132 1035
45d6a902 1036 *size_change_ok = TRUE;
252b5132
RH
1037 }
1038
45d6a902
AM
1039 /* If we are looking at a dynamic object, and we have found a
1040 definition, we need to see if the symbol was already defined by
1041 some other object. If so, we want to use the existing
1042 definition, and we do not want to report a multiple symbol
1043 definition error; we do this by clobbering *PSEC to be
1044 bfd_und_section_ptr.
1045
1046 We treat a common symbol as a definition if the symbol in the
1047 shared library is a function, since common symbols always
1048 represent variables; this can cause confusion in principle, but
1049 any such confusion would seem to indicate an erroneous program or
1050 shared library. We also permit a common symbol in a regular
79349b09 1051 object to override a weak symbol in a shared object. */
45d6a902
AM
1052
1053 if (newdyn
1054 && newdef
1055 && (olddef
1056 || (h->root.type == bfd_link_hash_common
79349b09 1057 && (newweak
0f8a2703 1058 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1059 {
1060 *override = TRUE;
1061 newdef = FALSE;
1062 newdyncommon = FALSE;
252b5132 1063
45d6a902
AM
1064 *psec = sec = bfd_und_section_ptr;
1065 *size_change_ok = TRUE;
252b5132 1066
45d6a902
AM
1067 /* If we get here when the old symbol is a common symbol, then
1068 we are explicitly letting it override a weak symbol or
1069 function in a dynamic object, and we don't want to warn about
1070 a type change. If the old symbol is a defined symbol, a type
1071 change warning may still be appropriate. */
252b5132 1072
45d6a902
AM
1073 if (h->root.type == bfd_link_hash_common)
1074 *type_change_ok = TRUE;
1075 }
1076
1077 /* Handle the special case of an old common symbol merging with a
1078 new symbol which looks like a common symbol in a shared object.
1079 We change *PSEC and *PVALUE to make the new symbol look like a
1080 common symbol, and let _bfd_generic_link_add_one_symbol will do
1081 the right thing. */
1082
1083 if (newdyncommon
1084 && h->root.type == bfd_link_hash_common)
1085 {
1086 *override = TRUE;
1087 newdef = FALSE;
1088 newdyncommon = FALSE;
1089 *pvalue = sym->st_size;
1090 *psec = sec = bfd_com_section_ptr;
1091 *size_change_ok = TRUE;
1092 }
1093
1094 /* If the old symbol is from a dynamic object, and the new symbol is
1095 a definition which is not from a dynamic object, then the new
1096 symbol overrides the old symbol. Symbols from regular files
1097 always take precedence over symbols from dynamic objects, even if
1098 they are defined after the dynamic object in the link.
1099
1100 As above, we again permit a common symbol in a regular object to
1101 override a definition in a shared object if the shared object
0f8a2703 1102 symbol is a function or is weak. */
45d6a902
AM
1103
1104 flip = NULL;
1105 if (! newdyn
1106 && (newdef
1107 || (bfd_is_com_section (sec)
79349b09
AM
1108 && (oldweak
1109 || h->type == STT_FUNC)))
45d6a902
AM
1110 && olddyn
1111 && olddef
0f8a2703 1112 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
45d6a902
AM
1113 {
1114 /* Change the hash table entry to undefined, and let
1115 _bfd_generic_link_add_one_symbol do the right thing with the
1116 new definition. */
1117
1118 h->root.type = bfd_link_hash_undefined;
1119 h->root.u.undef.abfd = h->root.u.def.section->owner;
1120 *size_change_ok = TRUE;
1121
1122 olddef = FALSE;
1123 olddyncommon = FALSE;
1124
1125 /* We again permit a type change when a common symbol may be
1126 overriding a function. */
1127
1128 if (bfd_is_com_section (sec))
1129 *type_change_ok = TRUE;
1130
1131 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1132 flip = *sym_hash;
1133 else
1134 /* This union may have been set to be non-NULL when this symbol
1135 was seen in a dynamic object. We must force the union to be
1136 NULL, so that it is correct for a regular symbol. */
1137 h->verinfo.vertree = NULL;
1138 }
1139
1140 /* Handle the special case of a new common symbol merging with an
1141 old symbol that looks like it might be a common symbol defined in
1142 a shared object. Note that we have already handled the case in
1143 which a new common symbol should simply override the definition
1144 in the shared library. */
1145
1146 if (! newdyn
1147 && bfd_is_com_section (sec)
1148 && olddyncommon)
1149 {
1150 /* It would be best if we could set the hash table entry to a
1151 common symbol, but we don't know what to use for the section
1152 or the alignment. */
1153 if (! ((*info->callbacks->multiple_common)
1154 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1155 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1156 return FALSE;
1157
4cc11e76 1158 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1159 larger, pretend that the new symbol has its size. */
1160
1161 if (h->size > *pvalue)
1162 *pvalue = h->size;
1163
1164 /* FIXME: We no longer know the alignment required by the symbol
1165 in the dynamic object, so we just wind up using the one from
1166 the regular object. */
1167
1168 olddef = FALSE;
1169 olddyncommon = FALSE;
1170
1171 h->root.type = bfd_link_hash_undefined;
1172 h->root.u.undef.abfd = h->root.u.def.section->owner;
1173
1174 *size_change_ok = TRUE;
1175 *type_change_ok = TRUE;
1176
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1178 flip = *sym_hash;
1179 else
1180 h->verinfo.vertree = NULL;
1181 }
1182
1183 if (flip != NULL)
1184 {
1185 /* Handle the case where we had a versioned symbol in a dynamic
1186 library and now find a definition in a normal object. In this
1187 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1188 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1189 flip->root.type = h->root.type;
1190 h->root.type = bfd_link_hash_indirect;
1191 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1192 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1193 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1194 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1195 {
1196 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1197 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1198 }
1199 }
1200
45d6a902
AM
1201 return TRUE;
1202}
1203
1204/* This function is called to create an indirect symbol from the
1205 default for the symbol with the default version if needed. The
1206 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1207 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1208
1209bfd_boolean
268b6b39
AM
1210_bfd_elf_add_default_symbol (bfd *abfd,
1211 struct bfd_link_info *info,
1212 struct elf_link_hash_entry *h,
1213 const char *name,
1214 Elf_Internal_Sym *sym,
1215 asection **psec,
1216 bfd_vma *value,
1217 bfd_boolean *dynsym,
0f8a2703 1218 bfd_boolean override)
45d6a902
AM
1219{
1220 bfd_boolean type_change_ok;
1221 bfd_boolean size_change_ok;
1222 bfd_boolean skip;
1223 char *shortname;
1224 struct elf_link_hash_entry *hi;
1225 struct bfd_link_hash_entry *bh;
9c5bfbb7 1226 const struct elf_backend_data *bed;
45d6a902
AM
1227 bfd_boolean collect;
1228 bfd_boolean dynamic;
1229 char *p;
1230 size_t len, shortlen;
1231 asection *sec;
1232
1233 /* If this symbol has a version, and it is the default version, we
1234 create an indirect symbol from the default name to the fully
1235 decorated name. This will cause external references which do not
1236 specify a version to be bound to this version of the symbol. */
1237 p = strchr (name, ELF_VER_CHR);
1238 if (p == NULL || p[1] != ELF_VER_CHR)
1239 return TRUE;
1240
1241 if (override)
1242 {
4cc11e76 1243 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1244 need to create the indirect symbol from the default name. */
1245 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1246 FALSE, FALSE);
1247 BFD_ASSERT (hi != NULL);
1248 if (hi == h)
1249 return TRUE;
1250 while (hi->root.type == bfd_link_hash_indirect
1251 || hi->root.type == bfd_link_hash_warning)
1252 {
1253 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1254 if (hi == h)
1255 return TRUE;
1256 }
1257 }
1258
1259 bed = get_elf_backend_data (abfd);
1260 collect = bed->collect;
1261 dynamic = (abfd->flags & DYNAMIC) != 0;
1262
1263 shortlen = p - name;
1264 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1265 if (shortname == NULL)
1266 return FALSE;
1267 memcpy (shortname, name, shortlen);
1268 shortname[shortlen] = '\0';
1269
1270 /* We are going to create a new symbol. Merge it with any existing
1271 symbol with this name. For the purposes of the merge, act as
1272 though we were defining the symbol we just defined, although we
1273 actually going to define an indirect symbol. */
1274 type_change_ok = FALSE;
1275 size_change_ok = FALSE;
1276 sec = *psec;
1277 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1278 &hi, &skip, &override, &type_change_ok,
0f8a2703 1279 &size_change_ok))
45d6a902
AM
1280 return FALSE;
1281
1282 if (skip)
1283 goto nondefault;
1284
1285 if (! override)
1286 {
1287 bh = &hi->root;
1288 if (! (_bfd_generic_link_add_one_symbol
1289 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1290 0, name, FALSE, collect, &bh)))
45d6a902
AM
1291 return FALSE;
1292 hi = (struct elf_link_hash_entry *) bh;
1293 }
1294 else
1295 {
1296 /* In this case the symbol named SHORTNAME is overriding the
1297 indirect symbol we want to add. We were planning on making
1298 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1299 is the name without a version. NAME is the fully versioned
1300 name, and it is the default version.
1301
1302 Overriding means that we already saw a definition for the
1303 symbol SHORTNAME in a regular object, and it is overriding
1304 the symbol defined in the dynamic object.
1305
1306 When this happens, we actually want to change NAME, the
1307 symbol we just added, to refer to SHORTNAME. This will cause
1308 references to NAME in the shared object to become references
1309 to SHORTNAME in the regular object. This is what we expect
1310 when we override a function in a shared object: that the
1311 references in the shared object will be mapped to the
1312 definition in the regular object. */
1313
1314 while (hi->root.type == bfd_link_hash_indirect
1315 || hi->root.type == bfd_link_hash_warning)
1316 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1317
1318 h->root.type = bfd_link_hash_indirect;
1319 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1320 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1321 {
1322 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1323 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1324 if (hi->elf_link_hash_flags
1325 & (ELF_LINK_HASH_REF_REGULAR
1326 | ELF_LINK_HASH_DEF_REGULAR))
1327 {
c152c796 1328 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1329 return FALSE;
1330 }
1331 }
1332
1333 /* Now set HI to H, so that the following code will set the
1334 other fields correctly. */
1335 hi = h;
1336 }
1337
1338 /* If there is a duplicate definition somewhere, then HI may not
1339 point to an indirect symbol. We will have reported an error to
1340 the user in that case. */
1341
1342 if (hi->root.type == bfd_link_hash_indirect)
1343 {
1344 struct elf_link_hash_entry *ht;
1345
45d6a902
AM
1346 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1347 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1348
1349 /* See if the new flags lead us to realize that the symbol must
1350 be dynamic. */
1351 if (! *dynsym)
1352 {
1353 if (! dynamic)
1354 {
1355 if (info->shared
1356 || ((hi->elf_link_hash_flags
1357 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1358 *dynsym = TRUE;
1359 }
1360 else
1361 {
1362 if ((hi->elf_link_hash_flags
1363 & ELF_LINK_HASH_REF_REGULAR) != 0)
1364 *dynsym = TRUE;
1365 }
1366 }
1367 }
1368
1369 /* We also need to define an indirection from the nondefault version
1370 of the symbol. */
1371
1372nondefault:
1373 len = strlen (name);
1374 shortname = bfd_hash_allocate (&info->hash->table, len);
1375 if (shortname == NULL)
1376 return FALSE;
1377 memcpy (shortname, name, shortlen);
1378 memcpy (shortname + shortlen, p + 1, len - shortlen);
1379
1380 /* Once again, merge with any existing symbol. */
1381 type_change_ok = FALSE;
1382 size_change_ok = FALSE;
1383 sec = *psec;
1384 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1385 &hi, &skip, &override, &type_change_ok,
0f8a2703 1386 &size_change_ok))
45d6a902
AM
1387 return FALSE;
1388
1389 if (skip)
1390 return TRUE;
1391
1392 if (override)
1393 {
1394 /* Here SHORTNAME is a versioned name, so we don't expect to see
1395 the type of override we do in the case above unless it is
4cc11e76 1396 overridden by a versioned definition. */
45d6a902
AM
1397 if (hi->root.type != bfd_link_hash_defined
1398 && hi->root.type != bfd_link_hash_defweak)
1399 (*_bfd_error_handler)
d003868e
AM
1400 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1401 abfd, shortname);
45d6a902
AM
1402 }
1403 else
1404 {
1405 bh = &hi->root;
1406 if (! (_bfd_generic_link_add_one_symbol
1407 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1408 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1409 return FALSE;
1410 hi = (struct elf_link_hash_entry *) bh;
1411
1412 /* If there is a duplicate definition somewhere, then HI may not
1413 point to an indirect symbol. We will have reported an error
1414 to the user in that case. */
1415
1416 if (hi->root.type == bfd_link_hash_indirect)
1417 {
45d6a902
AM
1418 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1419
1420 /* See if the new flags lead us to realize that the symbol
1421 must be dynamic. */
1422 if (! *dynsym)
1423 {
1424 if (! dynamic)
1425 {
1426 if (info->shared
1427 || ((hi->elf_link_hash_flags
1428 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1429 *dynsym = TRUE;
1430 }
1431 else
1432 {
1433 if ((hi->elf_link_hash_flags
1434 & ELF_LINK_HASH_REF_REGULAR) != 0)
1435 *dynsym = TRUE;
1436 }
1437 }
1438 }
1439 }
1440
1441 return TRUE;
1442}
1443\f
1444/* This routine is used to export all defined symbols into the dynamic
1445 symbol table. It is called via elf_link_hash_traverse. */
1446
1447bfd_boolean
268b6b39 1448_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1449{
268b6b39 1450 struct elf_info_failed *eif = data;
45d6a902
AM
1451
1452 /* Ignore indirect symbols. These are added by the versioning code. */
1453 if (h->root.type == bfd_link_hash_indirect)
1454 return TRUE;
1455
1456 if (h->root.type == bfd_link_hash_warning)
1457 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1458
1459 if (h->dynindx == -1
1460 && (h->elf_link_hash_flags
1461 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1462 {
1463 struct bfd_elf_version_tree *t;
1464 struct bfd_elf_version_expr *d;
1465
1466 for (t = eif->verdefs; t != NULL; t = t->next)
1467 {
108ba305 1468 if (t->globals.list != NULL)
45d6a902 1469 {
108ba305
JJ
1470 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1471 if (d != NULL)
1472 goto doit;
45d6a902
AM
1473 }
1474
108ba305 1475 if (t->locals.list != NULL)
45d6a902 1476 {
108ba305
JJ
1477 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1478 if (d != NULL)
1479 return TRUE;
45d6a902
AM
1480 }
1481 }
1482
1483 if (!eif->verdefs)
1484 {
1485 doit:
c152c796 1486 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1487 {
1488 eif->failed = TRUE;
1489 return FALSE;
1490 }
1491 }
1492 }
1493
1494 return TRUE;
1495}
1496\f
1497/* Look through the symbols which are defined in other shared
1498 libraries and referenced here. Update the list of version
1499 dependencies. This will be put into the .gnu.version_r section.
1500 This function is called via elf_link_hash_traverse. */
1501
1502bfd_boolean
268b6b39
AM
1503_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1504 void *data)
45d6a902 1505{
268b6b39 1506 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1507 Elf_Internal_Verneed *t;
1508 Elf_Internal_Vernaux *a;
1509 bfd_size_type amt;
1510
1511 if (h->root.type == bfd_link_hash_warning)
1512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1513
1514 /* We only care about symbols defined in shared objects with version
1515 information. */
1516 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1517 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1518 || h->dynindx == -1
1519 || h->verinfo.verdef == NULL)
1520 return TRUE;
1521
1522 /* See if we already know about this version. */
1523 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1524 {
1525 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1526 continue;
1527
1528 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1529 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1530 return TRUE;
1531
1532 break;
1533 }
1534
1535 /* This is a new version. Add it to tree we are building. */
1536
1537 if (t == NULL)
1538 {
1539 amt = sizeof *t;
268b6b39 1540 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1541 if (t == NULL)
1542 {
1543 rinfo->failed = TRUE;
1544 return FALSE;
1545 }
1546
1547 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1548 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1549 elf_tdata (rinfo->output_bfd)->verref = t;
1550 }
1551
1552 amt = sizeof *a;
268b6b39 1553 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1554
1555 /* Note that we are copying a string pointer here, and testing it
1556 above. If bfd_elf_string_from_elf_section is ever changed to
1557 discard the string data when low in memory, this will have to be
1558 fixed. */
1559 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1560
1561 a->vna_flags = h->verinfo.verdef->vd_flags;
1562 a->vna_nextptr = t->vn_auxptr;
1563
1564 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1565 ++rinfo->vers;
1566
1567 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1568
1569 t->vn_auxptr = a;
1570
1571 return TRUE;
1572}
1573
1574/* Figure out appropriate versions for all the symbols. We may not
1575 have the version number script until we have read all of the input
1576 files, so until that point we don't know which symbols should be
1577 local. This function is called via elf_link_hash_traverse. */
1578
1579bfd_boolean
268b6b39 1580_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1581{
1582 struct elf_assign_sym_version_info *sinfo;
1583 struct bfd_link_info *info;
9c5bfbb7 1584 const struct elf_backend_data *bed;
45d6a902
AM
1585 struct elf_info_failed eif;
1586 char *p;
1587 bfd_size_type amt;
1588
268b6b39 1589 sinfo = data;
45d6a902
AM
1590 info = sinfo->info;
1591
1592 if (h->root.type == bfd_link_hash_warning)
1593 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1594
1595 /* Fix the symbol flags. */
1596 eif.failed = FALSE;
1597 eif.info = info;
1598 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1599 {
1600 if (eif.failed)
1601 sinfo->failed = TRUE;
1602 return FALSE;
1603 }
1604
1605 /* We only need version numbers for symbols defined in regular
1606 objects. */
1607 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1608 return TRUE;
1609
1610 bed = get_elf_backend_data (sinfo->output_bfd);
1611 p = strchr (h->root.root.string, ELF_VER_CHR);
1612 if (p != NULL && h->verinfo.vertree == NULL)
1613 {
1614 struct bfd_elf_version_tree *t;
1615 bfd_boolean hidden;
1616
1617 hidden = TRUE;
1618
1619 /* There are two consecutive ELF_VER_CHR characters if this is
1620 not a hidden symbol. */
1621 ++p;
1622 if (*p == ELF_VER_CHR)
1623 {
1624 hidden = FALSE;
1625 ++p;
1626 }
1627
1628 /* If there is no version string, we can just return out. */
1629 if (*p == '\0')
1630 {
1631 if (hidden)
1632 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1633 return TRUE;
1634 }
1635
1636 /* Look for the version. If we find it, it is no longer weak. */
1637 for (t = sinfo->verdefs; t != NULL; t = t->next)
1638 {
1639 if (strcmp (t->name, p) == 0)
1640 {
1641 size_t len;
1642 char *alc;
1643 struct bfd_elf_version_expr *d;
1644
1645 len = p - h->root.root.string;
268b6b39 1646 alc = bfd_malloc (len);
45d6a902
AM
1647 if (alc == NULL)
1648 return FALSE;
1649 memcpy (alc, h->root.root.string, len - 1);
1650 alc[len - 1] = '\0';
1651 if (alc[len - 2] == ELF_VER_CHR)
1652 alc[len - 2] = '\0';
1653
1654 h->verinfo.vertree = t;
1655 t->used = TRUE;
1656 d = NULL;
1657
108ba305
JJ
1658 if (t->globals.list != NULL)
1659 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1660
1661 /* See if there is anything to force this symbol to
1662 local scope. */
108ba305 1663 if (d == NULL && t->locals.list != NULL)
45d6a902 1664 {
108ba305
JJ
1665 d = (*t->match) (&t->locals, NULL, alc);
1666 if (d != NULL
1667 && h->dynindx != -1
1668 && info->shared
1669 && ! info->export_dynamic)
1670 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1671 }
1672
1673 free (alc);
1674 break;
1675 }
1676 }
1677
1678 /* If we are building an application, we need to create a
1679 version node for this version. */
36af4a4e 1680 if (t == NULL && info->executable)
45d6a902
AM
1681 {
1682 struct bfd_elf_version_tree **pp;
1683 int version_index;
1684
1685 /* If we aren't going to export this symbol, we don't need
1686 to worry about it. */
1687 if (h->dynindx == -1)
1688 return TRUE;
1689
1690 amt = sizeof *t;
108ba305 1691 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1692 if (t == NULL)
1693 {
1694 sinfo->failed = TRUE;
1695 return FALSE;
1696 }
1697
45d6a902 1698 t->name = p;
45d6a902
AM
1699 t->name_indx = (unsigned int) -1;
1700 t->used = TRUE;
1701
1702 version_index = 1;
1703 /* Don't count anonymous version tag. */
1704 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1705 version_index = 0;
1706 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1707 ++version_index;
1708 t->vernum = version_index;
1709
1710 *pp = t;
1711
1712 h->verinfo.vertree = t;
1713 }
1714 else if (t == NULL)
1715 {
1716 /* We could not find the version for a symbol when
1717 generating a shared archive. Return an error. */
1718 (*_bfd_error_handler)
d003868e
AM
1719 (_("%B: undefined versioned symbol name %s"),
1720 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1721 bfd_set_error (bfd_error_bad_value);
1722 sinfo->failed = TRUE;
1723 return FALSE;
1724 }
1725
1726 if (hidden)
1727 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1728 }
1729
1730 /* If we don't have a version for this symbol, see if we can find
1731 something. */
1732 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1733 {
1734 struct bfd_elf_version_tree *t;
1735 struct bfd_elf_version_tree *local_ver;
1736 struct bfd_elf_version_expr *d;
1737
1738 /* See if can find what version this symbol is in. If the
1739 symbol is supposed to be local, then don't actually register
1740 it. */
1741 local_ver = NULL;
1742 for (t = sinfo->verdefs; t != NULL; t = t->next)
1743 {
108ba305 1744 if (t->globals.list != NULL)
45d6a902
AM
1745 {
1746 bfd_boolean matched;
1747
1748 matched = FALSE;
108ba305
JJ
1749 d = NULL;
1750 while ((d = (*t->match) (&t->globals, d,
1751 h->root.root.string)) != NULL)
1752 if (d->symver)
1753 matched = TRUE;
1754 else
1755 {
1756 /* There is a version without definition. Make
1757 the symbol the default definition for this
1758 version. */
1759 h->verinfo.vertree = t;
1760 local_ver = NULL;
1761 d->script = 1;
1762 break;
1763 }
45d6a902
AM
1764 if (d != NULL)
1765 break;
1766 else if (matched)
1767 /* There is no undefined version for this symbol. Hide the
1768 default one. */
1769 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1770 }
1771
108ba305 1772 if (t->locals.list != NULL)
45d6a902 1773 {
108ba305
JJ
1774 d = NULL;
1775 while ((d = (*t->match) (&t->locals, d,
1776 h->root.root.string)) != NULL)
45d6a902 1777 {
108ba305 1778 local_ver = t;
45d6a902 1779 /* If the match is "*", keep looking for a more
108ba305
JJ
1780 explicit, perhaps even global, match.
1781 XXX: Shouldn't this be !d->wildcard instead? */
1782 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1783 break;
45d6a902
AM
1784 }
1785
1786 if (d != NULL)
1787 break;
1788 }
1789 }
1790
1791 if (local_ver != NULL)
1792 {
1793 h->verinfo.vertree = local_ver;
1794 if (h->dynindx != -1
1795 && info->shared
1796 && ! info->export_dynamic)
1797 {
1798 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804}
1805\f
45d6a902
AM
1806/* Read and swap the relocs from the section indicated by SHDR. This
1807 may be either a REL or a RELA section. The relocations are
1808 translated into RELA relocations and stored in INTERNAL_RELOCS,
1809 which should have already been allocated to contain enough space.
1810 The EXTERNAL_RELOCS are a buffer where the external form of the
1811 relocations should be stored.
1812
1813 Returns FALSE if something goes wrong. */
1814
1815static bfd_boolean
268b6b39 1816elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1817 asection *sec,
268b6b39
AM
1818 Elf_Internal_Shdr *shdr,
1819 void *external_relocs,
1820 Elf_Internal_Rela *internal_relocs)
45d6a902 1821{
9c5bfbb7 1822 const struct elf_backend_data *bed;
268b6b39 1823 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1824 const bfd_byte *erela;
1825 const bfd_byte *erelaend;
1826 Elf_Internal_Rela *irela;
243ef1e0
L
1827 Elf_Internal_Shdr *symtab_hdr;
1828 size_t nsyms;
45d6a902 1829
45d6a902
AM
1830 /* Position ourselves at the start of the section. */
1831 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1832 return FALSE;
1833
1834 /* Read the relocations. */
1835 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1836 return FALSE;
1837
243ef1e0
L
1838 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1839 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1840
45d6a902
AM
1841 bed = get_elf_backend_data (abfd);
1842
1843 /* Convert the external relocations to the internal format. */
1844 if (shdr->sh_entsize == bed->s->sizeof_rel)
1845 swap_in = bed->s->swap_reloc_in;
1846 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1847 swap_in = bed->s->swap_reloca_in;
1848 else
1849 {
1850 bfd_set_error (bfd_error_wrong_format);
1851 return FALSE;
1852 }
1853
1854 erela = external_relocs;
51992aec 1855 erelaend = erela + shdr->sh_size;
45d6a902
AM
1856 irela = internal_relocs;
1857 while (erela < erelaend)
1858 {
243ef1e0
L
1859 bfd_vma r_symndx;
1860
45d6a902 1861 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1862 r_symndx = ELF32_R_SYM (irela->r_info);
1863 if (bed->s->arch_size == 64)
1864 r_symndx >>= 24;
1865 if ((size_t) r_symndx >= nsyms)
1866 {
1867 (*_bfd_error_handler)
d003868e
AM
1868 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1869 " for offset 0x%lx in section `%A'"),
1870 abfd, sec,
1871 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1872 bfd_set_error (bfd_error_bad_value);
1873 return FALSE;
1874 }
45d6a902
AM
1875 irela += bed->s->int_rels_per_ext_rel;
1876 erela += shdr->sh_entsize;
1877 }
1878
1879 return TRUE;
1880}
1881
1882/* Read and swap the relocs for a section O. They may have been
1883 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1884 not NULL, they are used as buffers to read into. They are known to
1885 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1886 the return value is allocated using either malloc or bfd_alloc,
1887 according to the KEEP_MEMORY argument. If O has two relocation
1888 sections (both REL and RELA relocations), then the REL_HDR
1889 relocations will appear first in INTERNAL_RELOCS, followed by the
1890 REL_HDR2 relocations. */
1891
1892Elf_Internal_Rela *
268b6b39
AM
1893_bfd_elf_link_read_relocs (bfd *abfd,
1894 asection *o,
1895 void *external_relocs,
1896 Elf_Internal_Rela *internal_relocs,
1897 bfd_boolean keep_memory)
45d6a902
AM
1898{
1899 Elf_Internal_Shdr *rel_hdr;
268b6b39 1900 void *alloc1 = NULL;
45d6a902 1901 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 1902 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1903
1904 if (elf_section_data (o)->relocs != NULL)
1905 return elf_section_data (o)->relocs;
1906
1907 if (o->reloc_count == 0)
1908 return NULL;
1909
1910 rel_hdr = &elf_section_data (o)->rel_hdr;
1911
1912 if (internal_relocs == NULL)
1913 {
1914 bfd_size_type size;
1915
1916 size = o->reloc_count;
1917 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1918 if (keep_memory)
268b6b39 1919 internal_relocs = bfd_alloc (abfd, size);
45d6a902 1920 else
268b6b39 1921 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
1922 if (internal_relocs == NULL)
1923 goto error_return;
1924 }
1925
1926 if (external_relocs == NULL)
1927 {
1928 bfd_size_type size = rel_hdr->sh_size;
1929
1930 if (elf_section_data (o)->rel_hdr2)
1931 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 1932 alloc1 = bfd_malloc (size);
45d6a902
AM
1933 if (alloc1 == NULL)
1934 goto error_return;
1935 external_relocs = alloc1;
1936 }
1937
243ef1e0 1938 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
1939 external_relocs,
1940 internal_relocs))
1941 goto error_return;
51992aec
AM
1942 if (elf_section_data (o)->rel_hdr2
1943 && (!elf_link_read_relocs_from_section
1944 (abfd, o,
1945 elf_section_data (o)->rel_hdr2,
1946 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1947 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1948 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
1949 goto error_return;
1950
1951 /* Cache the results for next time, if we can. */
1952 if (keep_memory)
1953 elf_section_data (o)->relocs = internal_relocs;
1954
1955 if (alloc1 != NULL)
1956 free (alloc1);
1957
1958 /* Don't free alloc2, since if it was allocated we are passing it
1959 back (under the name of internal_relocs). */
1960
1961 return internal_relocs;
1962
1963 error_return:
1964 if (alloc1 != NULL)
1965 free (alloc1);
1966 if (alloc2 != NULL)
1967 free (alloc2);
1968 return NULL;
1969}
1970
1971/* Compute the size of, and allocate space for, REL_HDR which is the
1972 section header for a section containing relocations for O. */
1973
1974bfd_boolean
268b6b39
AM
1975_bfd_elf_link_size_reloc_section (bfd *abfd,
1976 Elf_Internal_Shdr *rel_hdr,
1977 asection *o)
45d6a902
AM
1978{
1979 bfd_size_type reloc_count;
1980 bfd_size_type num_rel_hashes;
1981
1982 /* Figure out how many relocations there will be. */
1983 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1984 reloc_count = elf_section_data (o)->rel_count;
1985 else
1986 reloc_count = elf_section_data (o)->rel_count2;
1987
1988 num_rel_hashes = o->reloc_count;
1989 if (num_rel_hashes < reloc_count)
1990 num_rel_hashes = reloc_count;
1991
1992 /* That allows us to calculate the size of the section. */
1993 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1994
1995 /* The contents field must last into write_object_contents, so we
1996 allocate it with bfd_alloc rather than malloc. Also since we
1997 cannot be sure that the contents will actually be filled in,
1998 we zero the allocated space. */
268b6b39 1999 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2000 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2001 return FALSE;
2002
2003 /* We only allocate one set of hash entries, so we only do it the
2004 first time we are called. */
2005 if (elf_section_data (o)->rel_hashes == NULL
2006 && num_rel_hashes)
2007 {
2008 struct elf_link_hash_entry **p;
2009
268b6b39 2010 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2011 if (p == NULL)
2012 return FALSE;
2013
2014 elf_section_data (o)->rel_hashes = p;
2015 }
2016
2017 return TRUE;
2018}
2019
2020/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2021 originated from the section given by INPUT_REL_HDR) to the
2022 OUTPUT_BFD. */
2023
2024bfd_boolean
268b6b39
AM
2025_bfd_elf_link_output_relocs (bfd *output_bfd,
2026 asection *input_section,
2027 Elf_Internal_Shdr *input_rel_hdr,
2028 Elf_Internal_Rela *internal_relocs)
45d6a902
AM
2029{
2030 Elf_Internal_Rela *irela;
2031 Elf_Internal_Rela *irelaend;
2032 bfd_byte *erel;
2033 Elf_Internal_Shdr *output_rel_hdr;
2034 asection *output_section;
2035 unsigned int *rel_countp = NULL;
9c5bfbb7 2036 const struct elf_backend_data *bed;
268b6b39 2037 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2038
2039 output_section = input_section->output_section;
2040 output_rel_hdr = NULL;
2041
2042 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2043 == input_rel_hdr->sh_entsize)
2044 {
2045 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2046 rel_countp = &elf_section_data (output_section)->rel_count;
2047 }
2048 else if (elf_section_data (output_section)->rel_hdr2
2049 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2050 == input_rel_hdr->sh_entsize))
2051 {
2052 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2053 rel_countp = &elf_section_data (output_section)->rel_count2;
2054 }
2055 else
2056 {
2057 (*_bfd_error_handler)
d003868e
AM
2058 (_("%B: relocation size mismatch in %B section %A"),
2059 output_bfd, input_section->owner, input_section);
45d6a902
AM
2060 bfd_set_error (bfd_error_wrong_object_format);
2061 return FALSE;
2062 }
2063
2064 bed = get_elf_backend_data (output_bfd);
2065 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2066 swap_out = bed->s->swap_reloc_out;
2067 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2068 swap_out = bed->s->swap_reloca_out;
2069 else
2070 abort ();
2071
2072 erel = output_rel_hdr->contents;
2073 erel += *rel_countp * input_rel_hdr->sh_entsize;
2074 irela = internal_relocs;
2075 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2076 * bed->s->int_rels_per_ext_rel);
2077 while (irela < irelaend)
2078 {
2079 (*swap_out) (output_bfd, irela, erel);
2080 irela += bed->s->int_rels_per_ext_rel;
2081 erel += input_rel_hdr->sh_entsize;
2082 }
2083
2084 /* Bump the counter, so that we know where to add the next set of
2085 relocations. */
2086 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2087
2088 return TRUE;
2089}
2090\f
2091/* Fix up the flags for a symbol. This handles various cases which
2092 can only be fixed after all the input files are seen. This is
2093 currently called by both adjust_dynamic_symbol and
2094 assign_sym_version, which is unnecessary but perhaps more robust in
2095 the face of future changes. */
2096
2097bfd_boolean
268b6b39
AM
2098_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2099 struct elf_info_failed *eif)
45d6a902
AM
2100{
2101 /* If this symbol was mentioned in a non-ELF file, try to set
2102 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2103 permit a non-ELF file to correctly refer to a symbol defined in
2104 an ELF dynamic object. */
2105 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2106 {
2107 while (h->root.type == bfd_link_hash_indirect)
2108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2109
2110 if (h->root.type != bfd_link_hash_defined
2111 && h->root.type != bfd_link_hash_defweak)
2112 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2113 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2114 else
2115 {
2116 if (h->root.u.def.section->owner != NULL
2117 && (bfd_get_flavour (h->root.u.def.section->owner)
2118 == bfd_target_elf_flavour))
2119 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2120 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2121 else
2122 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2123 }
2124
2125 if (h->dynindx == -1
2126 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2127 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2128 {
c152c796 2129 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2130 {
2131 eif->failed = TRUE;
2132 return FALSE;
2133 }
2134 }
2135 }
2136 else
2137 {
2138 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2139 was first seen in a non-ELF file. Fortunately, if the symbol
2140 was first seen in an ELF file, we're probably OK unless the
2141 symbol was defined in a non-ELF file. Catch that case here.
2142 FIXME: We're still in trouble if the symbol was first seen in
2143 a dynamic object, and then later in a non-ELF regular object. */
2144 if ((h->root.type == bfd_link_hash_defined
2145 || h->root.type == bfd_link_hash_defweak)
2146 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2147 && (h->root.u.def.section->owner != NULL
2148 ? (bfd_get_flavour (h->root.u.def.section->owner)
2149 != bfd_target_elf_flavour)
2150 : (bfd_is_abs_section (h->root.u.def.section)
2151 && (h->elf_link_hash_flags
2152 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2153 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2154 }
2155
2156 /* If this is a final link, and the symbol was defined as a common
2157 symbol in a regular object file, and there was no definition in
2158 any dynamic object, then the linker will have allocated space for
2159 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2160 flag will not have been set. */
2161 if (h->root.type == bfd_link_hash_defined
2162 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2163 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2164 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2165 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2166 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2167
2168 /* If -Bsymbolic was used (which means to bind references to global
2169 symbols to the definition within the shared object), and this
2170 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2171 need a PLT entry. Likewise, if the symbol has non-default
2172 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2173 will force it local. */
45d6a902
AM
2174 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2175 && eif->info->shared
0eddce27 2176 && is_elf_hash_table (eif->info->hash)
45d6a902 2177 && (eif->info->symbolic
c1be741f 2178 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
45d6a902
AM
2179 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2180 {
9c5bfbb7 2181 const struct elf_backend_data *bed;
45d6a902
AM
2182 bfd_boolean force_local;
2183
2184 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2185
2186 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2187 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2188 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2189 }
2190
2191 /* If a weak undefined symbol has non-default visibility, we also
2192 hide it from the dynamic linker. */
9c7a29a3 2193 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2194 && h->root.type == bfd_link_hash_undefweak)
2195 {
9c5bfbb7 2196 const struct elf_backend_data *bed;
45d6a902
AM
2197 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2198 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2199 }
2200
2201 /* If this is a weak defined symbol in a dynamic object, and we know
2202 the real definition in the dynamic object, copy interesting flags
2203 over to the real definition. */
2204 if (h->weakdef != NULL)
2205 {
2206 struct elf_link_hash_entry *weakdef;
2207
2208 weakdef = h->weakdef;
2209 if (h->root.type == bfd_link_hash_indirect)
2210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2211
2212 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2213 || h->root.type == bfd_link_hash_defweak);
2214 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2215 || weakdef->root.type == bfd_link_hash_defweak);
2216 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2217
2218 /* If the real definition is defined by a regular object file,
2219 don't do anything special. See the longer description in
2220 _bfd_elf_adjust_dynamic_symbol, below. */
2221 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2222 h->weakdef = NULL;
2223 else
2224 {
9c5bfbb7 2225 const struct elf_backend_data *bed;
45d6a902
AM
2226
2227 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2228 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2229 }
2230 }
2231
2232 return TRUE;
2233}
2234
2235/* Make the backend pick a good value for a dynamic symbol. This is
2236 called via elf_link_hash_traverse, and also calls itself
2237 recursively. */
2238
2239bfd_boolean
268b6b39 2240_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2241{
268b6b39 2242 struct elf_info_failed *eif = data;
45d6a902 2243 bfd *dynobj;
9c5bfbb7 2244 const struct elf_backend_data *bed;
45d6a902 2245
0eddce27 2246 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2247 return FALSE;
2248
2249 if (h->root.type == bfd_link_hash_warning)
2250 {
2251 h->plt = elf_hash_table (eif->info)->init_offset;
2252 h->got = elf_hash_table (eif->info)->init_offset;
2253
2254 /* When warning symbols are created, they **replace** the "real"
2255 entry in the hash table, thus we never get to see the real
2256 symbol in a hash traversal. So look at it now. */
2257 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2258 }
2259
2260 /* Ignore indirect symbols. These are added by the versioning code. */
2261 if (h->root.type == bfd_link_hash_indirect)
2262 return TRUE;
2263
2264 /* Fix the symbol flags. */
2265 if (! _bfd_elf_fix_symbol_flags (h, eif))
2266 return FALSE;
2267
2268 /* If this symbol does not require a PLT entry, and it is not
2269 defined by a dynamic object, or is not referenced by a regular
2270 object, ignore it. We do have to handle a weak defined symbol,
2271 even if no regular object refers to it, if we decided to add it
2272 to the dynamic symbol table. FIXME: Do we normally need to worry
2273 about symbols which are defined by one dynamic object and
2274 referenced by another one? */
2275 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2276 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2277 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2278 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2279 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2280 {
2281 h->plt = elf_hash_table (eif->info)->init_offset;
2282 return TRUE;
2283 }
2284
2285 /* If we've already adjusted this symbol, don't do it again. This
2286 can happen via a recursive call. */
2287 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2288 return TRUE;
2289
2290 /* Don't look at this symbol again. Note that we must set this
2291 after checking the above conditions, because we may look at a
2292 symbol once, decide not to do anything, and then get called
2293 recursively later after REF_REGULAR is set below. */
2294 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2295
2296 /* If this is a weak definition, and we know a real definition, and
2297 the real symbol is not itself defined by a regular object file,
2298 then get a good value for the real definition. We handle the
2299 real symbol first, for the convenience of the backend routine.
2300
2301 Note that there is a confusing case here. If the real definition
2302 is defined by a regular object file, we don't get the real symbol
2303 from the dynamic object, but we do get the weak symbol. If the
2304 processor backend uses a COPY reloc, then if some routine in the
2305 dynamic object changes the real symbol, we will not see that
2306 change in the corresponding weak symbol. This is the way other
2307 ELF linkers work as well, and seems to be a result of the shared
2308 library model.
2309
2310 I will clarify this issue. Most SVR4 shared libraries define the
2311 variable _timezone and define timezone as a weak synonym. The
2312 tzset call changes _timezone. If you write
2313 extern int timezone;
2314 int _timezone = 5;
2315 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2316 you might expect that, since timezone is a synonym for _timezone,
2317 the same number will print both times. However, if the processor
2318 backend uses a COPY reloc, then actually timezone will be copied
2319 into your process image, and, since you define _timezone
2320 yourself, _timezone will not. Thus timezone and _timezone will
2321 wind up at different memory locations. The tzset call will set
2322 _timezone, leaving timezone unchanged. */
2323
2324 if (h->weakdef != NULL)
2325 {
2326 /* If we get to this point, we know there is an implicit
2327 reference by a regular object file via the weak symbol H.
2328 FIXME: Is this really true? What if the traversal finds
2329 H->WEAKDEF before it finds H? */
2330 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2331
268b6b39 2332 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
45d6a902
AM
2333 return FALSE;
2334 }
2335
2336 /* If a symbol has no type and no size and does not require a PLT
2337 entry, then we are probably about to do the wrong thing here: we
2338 are probably going to create a COPY reloc for an empty object.
2339 This case can arise when a shared object is built with assembly
2340 code, and the assembly code fails to set the symbol type. */
2341 if (h->size == 0
2342 && h->type == STT_NOTYPE
2343 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2344 (*_bfd_error_handler)
2345 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2346 h->root.root.string);
2347
2348 dynobj = elf_hash_table (eif->info)->dynobj;
2349 bed = get_elf_backend_data (dynobj);
2350 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2351 {
2352 eif->failed = TRUE;
2353 return FALSE;
2354 }
2355
2356 return TRUE;
2357}
2358
2359/* Adjust all external symbols pointing into SEC_MERGE sections
2360 to reflect the object merging within the sections. */
2361
2362bfd_boolean
268b6b39 2363_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2364{
2365 asection *sec;
2366
2367 if (h->root.type == bfd_link_hash_warning)
2368 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2369
2370 if ((h->root.type == bfd_link_hash_defined
2371 || h->root.type == bfd_link_hash_defweak)
2372 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2373 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2374 {
268b6b39 2375 bfd *output_bfd = data;
45d6a902
AM
2376
2377 h->root.u.def.value =
2378 _bfd_merged_section_offset (output_bfd,
2379 &h->root.u.def.section,
2380 elf_section_data (sec)->sec_info,
753731ee 2381 h->root.u.def.value);
45d6a902
AM
2382 }
2383
2384 return TRUE;
2385}
986a241f
RH
2386
2387/* Returns false if the symbol referred to by H should be considered
2388 to resolve local to the current module, and true if it should be
2389 considered to bind dynamically. */
2390
2391bfd_boolean
268b6b39
AM
2392_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2393 struct bfd_link_info *info,
2394 bfd_boolean ignore_protected)
986a241f
RH
2395{
2396 bfd_boolean binding_stays_local_p;
2397
2398 if (h == NULL)
2399 return FALSE;
2400
2401 while (h->root.type == bfd_link_hash_indirect
2402 || h->root.type == bfd_link_hash_warning)
2403 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2404
2405 /* If it was forced local, then clearly it's not dynamic. */
2406 if (h->dynindx == -1)
2407 return FALSE;
2408 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2409 return FALSE;
2410
2411 /* Identify the cases where name binding rules say that a
2412 visible symbol resolves locally. */
2413 binding_stays_local_p = info->executable || info->symbolic;
2414
2415 switch (ELF_ST_VISIBILITY (h->other))
2416 {
2417 case STV_INTERNAL:
2418 case STV_HIDDEN:
2419 return FALSE;
2420
2421 case STV_PROTECTED:
2422 /* Proper resolution for function pointer equality may require
2423 that these symbols perhaps be resolved dynamically, even though
2424 we should be resolving them to the current module. */
2425 if (!ignore_protected)
2426 binding_stays_local_p = TRUE;
2427 break;
2428
2429 default:
986a241f
RH
2430 break;
2431 }
2432
aa37626c
L
2433 /* If it isn't defined locally, then clearly it's dynamic. */
2434 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2435 return TRUE;
2436
986a241f
RH
2437 /* Otherwise, the symbol is dynamic if binding rules don't tell
2438 us that it remains local. */
2439 return !binding_stays_local_p;
2440}
f6c52c13
AM
2441
2442/* Return true if the symbol referred to by H should be considered
2443 to resolve local to the current module, and false otherwise. Differs
2444 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2445 undefined symbols and weak symbols. */
2446
2447bfd_boolean
268b6b39
AM
2448_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2449 struct bfd_link_info *info,
2450 bfd_boolean local_protected)
f6c52c13
AM
2451{
2452 /* If it's a local sym, of course we resolve locally. */
2453 if (h == NULL)
2454 return TRUE;
2455
7e2294f9
AO
2456 /* Common symbols that become definitions don't get the DEF_REGULAR
2457 flag set, so test it first, and don't bail out. */
2458 if (ELF_COMMON_DEF_P (h))
2459 /* Do nothing. */;
f6c52c13
AM
2460 /* If we don't have a definition in a regular file, then we can't
2461 resolve locally. The sym is either undefined or dynamic. */
7e2294f9 2462 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
f6c52c13
AM
2463 return FALSE;
2464
2465 /* Forced local symbols resolve locally. */
2466 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2467 return TRUE;
2468
2469 /* As do non-dynamic symbols. */
2470 if (h->dynindx == -1)
2471 return TRUE;
2472
2473 /* At this point, we know the symbol is defined and dynamic. In an
2474 executable it must resolve locally, likewise when building symbolic
2475 shared libraries. */
2476 if (info->executable || info->symbolic)
2477 return TRUE;
2478
2479 /* Now deal with defined dynamic symbols in shared libraries. Ones
2480 with default visibility might not resolve locally. */
2481 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2482 return FALSE;
2483
2484 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2485 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2486 return TRUE;
2487
2488 /* Function pointer equality tests may require that STV_PROTECTED
2489 symbols be treated as dynamic symbols, even when we know that the
2490 dynamic linker will resolve them locally. */
2491 return local_protected;
2492}
e1918d23
AM
2493
2494/* Caches some TLS segment info, and ensures that the TLS segment vma is
2495 aligned. Returns the first TLS output section. */
2496
2497struct bfd_section *
2498_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2499{
2500 struct bfd_section *sec, *tls;
2501 unsigned int align = 0;
2502
2503 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2504 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2505 break;
2506 tls = sec;
2507
2508 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2509 if (sec->alignment_power > align)
2510 align = sec->alignment_power;
2511
2512 elf_hash_table (info)->tls_sec = tls;
2513
2514 /* Ensure the alignment of the first section is the largest alignment,
2515 so that the tls segment starts aligned. */
2516 if (tls != NULL)
2517 tls->alignment_power = align;
2518
2519 return tls;
2520}
0ad989f9
L
2521
2522/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2523static bfd_boolean
2524is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2525 Elf_Internal_Sym *sym)
2526{
2527 /* Local symbols do not count, but target specific ones might. */
2528 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2529 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2530 return FALSE;
2531
2532 /* Function symbols do not count. */
2533 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2534 return FALSE;
2535
2536 /* If the section is undefined, then so is the symbol. */
2537 if (sym->st_shndx == SHN_UNDEF)
2538 return FALSE;
2539
2540 /* If the symbol is defined in the common section, then
2541 it is a common definition and so does not count. */
2542 if (sym->st_shndx == SHN_COMMON)
2543 return FALSE;
2544
2545 /* If the symbol is in a target specific section then we
2546 must rely upon the backend to tell us what it is. */
2547 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2548 /* FIXME - this function is not coded yet:
2549
2550 return _bfd_is_global_symbol_definition (abfd, sym);
2551
2552 Instead for now assume that the definition is not global,
2553 Even if this is wrong, at least the linker will behave
2554 in the same way that it used to do. */
2555 return FALSE;
2556
2557 return TRUE;
2558}
2559
2560/* Search the symbol table of the archive element of the archive ABFD
2561 whose archive map contains a mention of SYMDEF, and determine if
2562 the symbol is defined in this element. */
2563static bfd_boolean
2564elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2565{
2566 Elf_Internal_Shdr * hdr;
2567 bfd_size_type symcount;
2568 bfd_size_type extsymcount;
2569 bfd_size_type extsymoff;
2570 Elf_Internal_Sym *isymbuf;
2571 Elf_Internal_Sym *isym;
2572 Elf_Internal_Sym *isymend;
2573 bfd_boolean result;
2574
2575 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2576 if (abfd == NULL)
2577 return FALSE;
2578
2579 if (! bfd_check_format (abfd, bfd_object))
2580 return FALSE;
2581
2582 /* If we have already included the element containing this symbol in the
2583 link then we do not need to include it again. Just claim that any symbol
2584 it contains is not a definition, so that our caller will not decide to
2585 (re)include this element. */
2586 if (abfd->archive_pass)
2587 return FALSE;
2588
2589 /* Select the appropriate symbol table. */
2590 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2591 hdr = &elf_tdata (abfd)->symtab_hdr;
2592 else
2593 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2594
2595 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2596
2597 /* The sh_info field of the symtab header tells us where the
2598 external symbols start. We don't care about the local symbols. */
2599 if (elf_bad_symtab (abfd))
2600 {
2601 extsymcount = symcount;
2602 extsymoff = 0;
2603 }
2604 else
2605 {
2606 extsymcount = symcount - hdr->sh_info;
2607 extsymoff = hdr->sh_info;
2608 }
2609
2610 if (extsymcount == 0)
2611 return FALSE;
2612
2613 /* Read in the symbol table. */
2614 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2615 NULL, NULL, NULL);
2616 if (isymbuf == NULL)
2617 return FALSE;
2618
2619 /* Scan the symbol table looking for SYMDEF. */
2620 result = FALSE;
2621 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2622 {
2623 const char *name;
2624
2625 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2626 isym->st_name);
2627 if (name == NULL)
2628 break;
2629
2630 if (strcmp (name, symdef->name) == 0)
2631 {
2632 result = is_global_data_symbol_definition (abfd, isym);
2633 break;
2634 }
2635 }
2636
2637 free (isymbuf);
2638
2639 return result;
2640}
2641\f
5a580b3a
AM
2642/* Add an entry to the .dynamic table. */
2643
2644bfd_boolean
2645_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2646 bfd_vma tag,
2647 bfd_vma val)
2648{
2649 struct elf_link_hash_table *hash_table;
2650 const struct elf_backend_data *bed;
2651 asection *s;
2652 bfd_size_type newsize;
2653 bfd_byte *newcontents;
2654 Elf_Internal_Dyn dyn;
2655
2656 hash_table = elf_hash_table (info);
2657 if (! is_elf_hash_table (hash_table))
2658 return FALSE;
2659
2660 bed = get_elf_backend_data (hash_table->dynobj);
2661 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2662 BFD_ASSERT (s != NULL);
2663
eea6121a 2664 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2665 newcontents = bfd_realloc (s->contents, newsize);
2666 if (newcontents == NULL)
2667 return FALSE;
2668
2669 dyn.d_tag = tag;
2670 dyn.d_un.d_val = val;
eea6121a 2671 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2672
eea6121a 2673 s->size = newsize;
5a580b3a
AM
2674 s->contents = newcontents;
2675
2676 return TRUE;
2677}
2678
2679/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2680 otherwise just check whether one already exists. Returns -1 on error,
2681 1 if a DT_NEEDED tag already exists, and 0 on success. */
2682
4ad4eba5
AM
2683static int
2684elf_add_dt_needed_tag (struct bfd_link_info *info,
2685 const char *soname,
2686 bfd_boolean do_it)
5a580b3a
AM
2687{
2688 struct elf_link_hash_table *hash_table;
2689 bfd_size_type oldsize;
2690 bfd_size_type strindex;
2691
2692 hash_table = elf_hash_table (info);
2693 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2694 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2695 if (strindex == (bfd_size_type) -1)
2696 return -1;
2697
2698 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2699 {
2700 asection *sdyn;
2701 const struct elf_backend_data *bed;
2702 bfd_byte *extdyn;
2703
2704 bed = get_elf_backend_data (hash_table->dynobj);
2705 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2706 BFD_ASSERT (sdyn != NULL);
2707
2708 for (extdyn = sdyn->contents;
eea6121a 2709 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2710 extdyn += bed->s->sizeof_dyn)
2711 {
2712 Elf_Internal_Dyn dyn;
2713
2714 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2715 if (dyn.d_tag == DT_NEEDED
2716 && dyn.d_un.d_val == strindex)
2717 {
2718 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2719 return 1;
2720 }
2721 }
2722 }
2723
2724 if (do_it)
2725 {
2726 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2727 return -1;
2728 }
2729 else
2730 /* We were just checking for existence of the tag. */
2731 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2732
2733 return 0;
2734}
2735
2736/* Sort symbol by value and section. */
4ad4eba5
AM
2737static int
2738elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2739{
2740 const struct elf_link_hash_entry *h1;
2741 const struct elf_link_hash_entry *h2;
10b7e05b 2742 bfd_signed_vma vdiff;
5a580b3a
AM
2743
2744 h1 = *(const struct elf_link_hash_entry **) arg1;
2745 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2746 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2747 if (vdiff != 0)
2748 return vdiff > 0 ? 1 : -1;
2749 else
2750 {
2751 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2752 if (sdiff != 0)
2753 return sdiff > 0 ? 1 : -1;
2754 }
5a580b3a
AM
2755 return 0;
2756}
4ad4eba5 2757
5a580b3a
AM
2758/* This function is used to adjust offsets into .dynstr for
2759 dynamic symbols. This is called via elf_link_hash_traverse. */
2760
2761static bfd_boolean
2762elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2763{
2764 struct elf_strtab_hash *dynstr = data;
2765
2766 if (h->root.type == bfd_link_hash_warning)
2767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2768
2769 if (h->dynindx != -1)
2770 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2771 return TRUE;
2772}
2773
2774/* Assign string offsets in .dynstr, update all structures referencing
2775 them. */
2776
4ad4eba5
AM
2777static bfd_boolean
2778elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2779{
2780 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2781 struct elf_link_local_dynamic_entry *entry;
2782 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2783 bfd *dynobj = hash_table->dynobj;
2784 asection *sdyn;
2785 bfd_size_type size;
2786 const struct elf_backend_data *bed;
2787 bfd_byte *extdyn;
2788
2789 _bfd_elf_strtab_finalize (dynstr);
2790 size = _bfd_elf_strtab_size (dynstr);
2791
2792 bed = get_elf_backend_data (dynobj);
2793 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2794 BFD_ASSERT (sdyn != NULL);
2795
2796 /* Update all .dynamic entries referencing .dynstr strings. */
2797 for (extdyn = sdyn->contents;
eea6121a 2798 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2799 extdyn += bed->s->sizeof_dyn)
2800 {
2801 Elf_Internal_Dyn dyn;
2802
2803 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2804 switch (dyn.d_tag)
2805 {
2806 case DT_STRSZ:
2807 dyn.d_un.d_val = size;
2808 break;
2809 case DT_NEEDED:
2810 case DT_SONAME:
2811 case DT_RPATH:
2812 case DT_RUNPATH:
2813 case DT_FILTER:
2814 case DT_AUXILIARY:
2815 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2816 break;
2817 default:
2818 continue;
2819 }
2820 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2821 }
2822
2823 /* Now update local dynamic symbols. */
2824 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2825 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2826 entry->isym.st_name);
2827
2828 /* And the rest of dynamic symbols. */
2829 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2830
2831 /* Adjust version definitions. */
2832 if (elf_tdata (output_bfd)->cverdefs)
2833 {
2834 asection *s;
2835 bfd_byte *p;
2836 bfd_size_type i;
2837 Elf_Internal_Verdef def;
2838 Elf_Internal_Verdaux defaux;
2839
2840 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2841 p = s->contents;
2842 do
2843 {
2844 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2845 &def);
2846 p += sizeof (Elf_External_Verdef);
2847 for (i = 0; i < def.vd_cnt; ++i)
2848 {
2849 _bfd_elf_swap_verdaux_in (output_bfd,
2850 (Elf_External_Verdaux *) p, &defaux);
2851 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2852 defaux.vda_name);
2853 _bfd_elf_swap_verdaux_out (output_bfd,
2854 &defaux, (Elf_External_Verdaux *) p);
2855 p += sizeof (Elf_External_Verdaux);
2856 }
2857 }
2858 while (def.vd_next);
2859 }
2860
2861 /* Adjust version references. */
2862 if (elf_tdata (output_bfd)->verref)
2863 {
2864 asection *s;
2865 bfd_byte *p;
2866 bfd_size_type i;
2867 Elf_Internal_Verneed need;
2868 Elf_Internal_Vernaux needaux;
2869
2870 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2871 p = s->contents;
2872 do
2873 {
2874 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2875 &need);
2876 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2877 _bfd_elf_swap_verneed_out (output_bfd, &need,
2878 (Elf_External_Verneed *) p);
2879 p += sizeof (Elf_External_Verneed);
2880 for (i = 0; i < need.vn_cnt; ++i)
2881 {
2882 _bfd_elf_swap_vernaux_in (output_bfd,
2883 (Elf_External_Vernaux *) p, &needaux);
2884 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2885 needaux.vna_name);
2886 _bfd_elf_swap_vernaux_out (output_bfd,
2887 &needaux,
2888 (Elf_External_Vernaux *) p);
2889 p += sizeof (Elf_External_Vernaux);
2890 }
2891 }
2892 while (need.vn_next);
2893 }
2894
2895 return TRUE;
2896}
2897\f
4ad4eba5
AM
2898/* Add symbols from an ELF object file to the linker hash table. */
2899
2900static bfd_boolean
2901elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2902{
2903 bfd_boolean (*add_symbol_hook)
555cd476 2904 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
2905 const char **, flagword *, asection **, bfd_vma *);
2906 bfd_boolean (*check_relocs)
2907 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
2908 bfd_boolean (*check_directives)
2909 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
2910 bfd_boolean collect;
2911 Elf_Internal_Shdr *hdr;
2912 bfd_size_type symcount;
2913 bfd_size_type extsymcount;
2914 bfd_size_type extsymoff;
2915 struct elf_link_hash_entry **sym_hash;
2916 bfd_boolean dynamic;
2917 Elf_External_Versym *extversym = NULL;
2918 Elf_External_Versym *ever;
2919 struct elf_link_hash_entry *weaks;
2920 struct elf_link_hash_entry **nondeflt_vers = NULL;
2921 bfd_size_type nondeflt_vers_cnt = 0;
2922 Elf_Internal_Sym *isymbuf = NULL;
2923 Elf_Internal_Sym *isym;
2924 Elf_Internal_Sym *isymend;
2925 const struct elf_backend_data *bed;
2926 bfd_boolean add_needed;
2927 struct elf_link_hash_table * hash_table;
2928 bfd_size_type amt;
2929
2930 hash_table = elf_hash_table (info);
2931
2932 bed = get_elf_backend_data (abfd);
2933 add_symbol_hook = bed->elf_add_symbol_hook;
2934 collect = bed->collect;
2935
2936 if ((abfd->flags & DYNAMIC) == 0)
2937 dynamic = FALSE;
2938 else
2939 {
2940 dynamic = TRUE;
2941
2942 /* You can't use -r against a dynamic object. Also, there's no
2943 hope of using a dynamic object which does not exactly match
2944 the format of the output file. */
2945 if (info->relocatable
2946 || !is_elf_hash_table (hash_table)
2947 || hash_table->root.creator != abfd->xvec)
2948 {
2949 bfd_set_error (bfd_error_invalid_operation);
2950 goto error_return;
2951 }
2952 }
2953
2954 /* As a GNU extension, any input sections which are named
2955 .gnu.warning.SYMBOL are treated as warning symbols for the given
2956 symbol. This differs from .gnu.warning sections, which generate
2957 warnings when they are included in an output file. */
2958 if (info->executable)
2959 {
2960 asection *s;
2961
2962 for (s = abfd->sections; s != NULL; s = s->next)
2963 {
2964 const char *name;
2965
2966 name = bfd_get_section_name (abfd, s);
2967 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2968 {
2969 char *msg;
2970 bfd_size_type sz;
2971 bfd_size_type prefix_len;
2972 const char * gnu_warning_prefix = _("warning: ");
2973
2974 name += sizeof ".gnu.warning." - 1;
2975
2976 /* If this is a shared object, then look up the symbol
2977 in the hash table. If it is there, and it is already
2978 been defined, then we will not be using the entry
2979 from this shared object, so we don't need to warn.
2980 FIXME: If we see the definition in a regular object
2981 later on, we will warn, but we shouldn't. The only
2982 fix is to keep track of what warnings we are supposed
2983 to emit, and then handle them all at the end of the
2984 link. */
2985 if (dynamic)
2986 {
2987 struct elf_link_hash_entry *h;
2988
2989 h = elf_link_hash_lookup (hash_table, name,
2990 FALSE, FALSE, TRUE);
2991
2992 /* FIXME: What about bfd_link_hash_common? */
2993 if (h != NULL
2994 && (h->root.type == bfd_link_hash_defined
2995 || h->root.type == bfd_link_hash_defweak))
2996 {
2997 /* We don't want to issue this warning. Clobber
2998 the section size so that the warning does not
2999 get copied into the output file. */
eea6121a 3000 s->size = 0;
4ad4eba5
AM
3001 continue;
3002 }
3003 }
3004
eea6121a 3005 sz = s->size;
4ad4eba5
AM
3006 prefix_len = strlen (gnu_warning_prefix);
3007 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3008 if (msg == NULL)
3009 goto error_return;
3010
3011 strcpy (msg, gnu_warning_prefix);
3012 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3013 goto error_return;
3014
3015 msg[prefix_len + sz] = '\0';
3016
3017 if (! (_bfd_generic_link_add_one_symbol
3018 (info, abfd, name, BSF_WARNING, s, 0, msg,
3019 FALSE, collect, NULL)))
3020 goto error_return;
3021
3022 if (! info->relocatable)
3023 {
3024 /* Clobber the section size so that the warning does
3025 not get copied into the output file. */
eea6121a 3026 s->size = 0;
4ad4eba5
AM
3027 }
3028 }
3029 }
3030 }
3031
3032 add_needed = TRUE;
3033 if (! dynamic)
3034 {
3035 /* If we are creating a shared library, create all the dynamic
3036 sections immediately. We need to attach them to something,
3037 so we attach them to this BFD, provided it is the right
3038 format. FIXME: If there are no input BFD's of the same
3039 format as the output, we can't make a shared library. */
3040 if (info->shared
3041 && is_elf_hash_table (hash_table)
3042 && hash_table->root.creator == abfd->xvec
3043 && ! hash_table->dynamic_sections_created)
3044 {
3045 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3046 goto error_return;
3047 }
3048 }
3049 else if (!is_elf_hash_table (hash_table))
3050 goto error_return;
3051 else
3052 {
3053 asection *s;
3054 const char *soname = NULL;
3055 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3056 int ret;
3057
3058 /* ld --just-symbols and dynamic objects don't mix very well.
3059 Test for --just-symbols by looking at info set up by
3060 _bfd_elf_link_just_syms. */
3061 if ((s = abfd->sections) != NULL
3062 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3063 goto error_return;
3064
3065 /* If this dynamic lib was specified on the command line with
3066 --as-needed in effect, then we don't want to add a DT_NEEDED
3067 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3068 in by another lib's DT_NEEDED. When --no-add-needed is used
3069 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3070 any dynamic library in DT_NEEDED tags in the dynamic lib at
3071 all. */
3072 add_needed = (elf_dyn_lib_class (abfd)
3073 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3074 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3075
3076 s = bfd_get_section_by_name (abfd, ".dynamic");
3077 if (s != NULL)
3078 {
3079 bfd_byte *dynbuf;
3080 bfd_byte *extdyn;
3081 int elfsec;
3082 unsigned long shlink;
3083
eea6121a 3084 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3085 goto error_free_dyn;
3086
3087 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3088 if (elfsec == -1)
3089 goto error_free_dyn;
3090 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3091
3092 for (extdyn = dynbuf;
eea6121a 3093 extdyn < dynbuf + s->size;
4ad4eba5
AM
3094 extdyn += bed->s->sizeof_dyn)
3095 {
3096 Elf_Internal_Dyn dyn;
3097
3098 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3099 if (dyn.d_tag == DT_SONAME)
3100 {
3101 unsigned int tagv = dyn.d_un.d_val;
3102 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3103 if (soname == NULL)
3104 goto error_free_dyn;
3105 }
3106 if (dyn.d_tag == DT_NEEDED)
3107 {
3108 struct bfd_link_needed_list *n, **pn;
3109 char *fnm, *anm;
3110 unsigned int tagv = dyn.d_un.d_val;
3111
3112 amt = sizeof (struct bfd_link_needed_list);
3113 n = bfd_alloc (abfd, amt);
3114 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3115 if (n == NULL || fnm == NULL)
3116 goto error_free_dyn;
3117 amt = strlen (fnm) + 1;
3118 anm = bfd_alloc (abfd, amt);
3119 if (anm == NULL)
3120 goto error_free_dyn;
3121 memcpy (anm, fnm, amt);
3122 n->name = anm;
3123 n->by = abfd;
3124 n->next = NULL;
3125 for (pn = & hash_table->needed;
3126 *pn != NULL;
3127 pn = &(*pn)->next)
3128 ;
3129 *pn = n;
3130 }
3131 if (dyn.d_tag == DT_RUNPATH)
3132 {
3133 struct bfd_link_needed_list *n, **pn;
3134 char *fnm, *anm;
3135 unsigned int tagv = dyn.d_un.d_val;
3136
3137 amt = sizeof (struct bfd_link_needed_list);
3138 n = bfd_alloc (abfd, amt);
3139 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3140 if (n == NULL || fnm == NULL)
3141 goto error_free_dyn;
3142 amt = strlen (fnm) + 1;
3143 anm = bfd_alloc (abfd, amt);
3144 if (anm == NULL)
3145 goto error_free_dyn;
3146 memcpy (anm, fnm, amt);
3147 n->name = anm;
3148 n->by = abfd;
3149 n->next = NULL;
3150 for (pn = & runpath;
3151 *pn != NULL;
3152 pn = &(*pn)->next)
3153 ;
3154 *pn = n;
3155 }
3156 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3157 if (!runpath && dyn.d_tag == DT_RPATH)
3158 {
3159 struct bfd_link_needed_list *n, **pn;
3160 char *fnm, *anm;
3161 unsigned int tagv = dyn.d_un.d_val;
3162
3163 amt = sizeof (struct bfd_link_needed_list);
3164 n = bfd_alloc (abfd, amt);
3165 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3166 if (n == NULL || fnm == NULL)
3167 goto error_free_dyn;
3168 amt = strlen (fnm) + 1;
3169 anm = bfd_alloc (abfd, amt);
3170 if (anm == NULL)
3171 {
3172 error_free_dyn:
3173 free (dynbuf);
3174 goto error_return;
3175 }
3176 memcpy (anm, fnm, amt);
3177 n->name = anm;
3178 n->by = abfd;
3179 n->next = NULL;
3180 for (pn = & rpath;
3181 *pn != NULL;
3182 pn = &(*pn)->next)
3183 ;
3184 *pn = n;
3185 }
3186 }
3187
3188 free (dynbuf);
3189 }
3190
3191 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3192 frees all more recently bfd_alloc'd blocks as well. */
3193 if (runpath)
3194 rpath = runpath;
3195
3196 if (rpath)
3197 {
3198 struct bfd_link_needed_list **pn;
3199 for (pn = & hash_table->runpath;
3200 *pn != NULL;
3201 pn = &(*pn)->next)
3202 ;
3203 *pn = rpath;
3204 }
3205
3206 /* We do not want to include any of the sections in a dynamic
3207 object in the output file. We hack by simply clobbering the
3208 list of sections in the BFD. This could be handled more
3209 cleanly by, say, a new section flag; the existing
3210 SEC_NEVER_LOAD flag is not the one we want, because that one
3211 still implies that the section takes up space in the output
3212 file. */
3213 bfd_section_list_clear (abfd);
3214
3215 /* If this is the first dynamic object found in the link, create
3216 the special sections required for dynamic linking. */
3217 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3218 goto error_return;
3219
3220 /* Find the name to use in a DT_NEEDED entry that refers to this
3221 object. If the object has a DT_SONAME entry, we use it.
3222 Otherwise, if the generic linker stuck something in
3223 elf_dt_name, we use that. Otherwise, we just use the file
3224 name. */
3225 if (soname == NULL || *soname == '\0')
3226 {
3227 soname = elf_dt_name (abfd);
3228 if (soname == NULL || *soname == '\0')
3229 soname = bfd_get_filename (abfd);
3230 }
3231
3232 /* Save the SONAME because sometimes the linker emulation code
3233 will need to know it. */
3234 elf_dt_name (abfd) = soname;
3235
3236 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3237 if (ret < 0)
3238 goto error_return;
3239
3240 /* If we have already included this dynamic object in the
3241 link, just ignore it. There is no reason to include a
3242 particular dynamic object more than once. */
3243 if (ret > 0)
3244 return TRUE;
3245 }
3246
3247 /* If this is a dynamic object, we always link against the .dynsym
3248 symbol table, not the .symtab symbol table. The dynamic linker
3249 will only see the .dynsym symbol table, so there is no reason to
3250 look at .symtab for a dynamic object. */
3251
3252 if (! dynamic || elf_dynsymtab (abfd) == 0)
3253 hdr = &elf_tdata (abfd)->symtab_hdr;
3254 else
3255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3256
3257 symcount = hdr->sh_size / bed->s->sizeof_sym;
3258
3259 /* The sh_info field of the symtab header tells us where the
3260 external symbols start. We don't care about the local symbols at
3261 this point. */
3262 if (elf_bad_symtab (abfd))
3263 {
3264 extsymcount = symcount;
3265 extsymoff = 0;
3266 }
3267 else
3268 {
3269 extsymcount = symcount - hdr->sh_info;
3270 extsymoff = hdr->sh_info;
3271 }
3272
3273 sym_hash = NULL;
3274 if (extsymcount != 0)
3275 {
3276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3277 NULL, NULL, NULL);
3278 if (isymbuf == NULL)
3279 goto error_return;
3280
3281 /* We store a pointer to the hash table entry for each external
3282 symbol. */
3283 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3284 sym_hash = bfd_alloc (abfd, amt);
3285 if (sym_hash == NULL)
3286 goto error_free_sym;
3287 elf_sym_hashes (abfd) = sym_hash;
3288 }
3289
3290 if (dynamic)
3291 {
3292 /* Read in any version definitions. */
3293 if (! _bfd_elf_slurp_version_tables (abfd))
3294 goto error_free_sym;
3295
3296 /* Read in the symbol versions, but don't bother to convert them
3297 to internal format. */
3298 if (elf_dynversym (abfd) != 0)
3299 {
3300 Elf_Internal_Shdr *versymhdr;
3301
3302 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3303 extversym = bfd_malloc (versymhdr->sh_size);
3304 if (extversym == NULL)
3305 goto error_free_sym;
3306 amt = versymhdr->sh_size;
3307 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3308 || bfd_bread (extversym, amt, abfd) != amt)
3309 goto error_free_vers;
3310 }
3311 }
3312
3313 weaks = NULL;
3314
3315 ever = extversym != NULL ? extversym + extsymoff : NULL;
3316 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3317 isym < isymend;
3318 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3319 {
3320 int bind;
3321 bfd_vma value;
3322 asection *sec;
3323 flagword flags;
3324 const char *name;
3325 struct elf_link_hash_entry *h;
3326 bfd_boolean definition;
3327 bfd_boolean size_change_ok;
3328 bfd_boolean type_change_ok;
3329 bfd_boolean new_weakdef;
3330 bfd_boolean override;
3331 unsigned int old_alignment;
3332 bfd *old_bfd;
3333
3334 override = FALSE;
3335
3336 flags = BSF_NO_FLAGS;
3337 sec = NULL;
3338 value = isym->st_value;
3339 *sym_hash = NULL;
3340
3341 bind = ELF_ST_BIND (isym->st_info);
3342 if (bind == STB_LOCAL)
3343 {
3344 /* This should be impossible, since ELF requires that all
3345 global symbols follow all local symbols, and that sh_info
3346 point to the first global symbol. Unfortunately, Irix 5
3347 screws this up. */
3348 continue;
3349 }
3350 else if (bind == STB_GLOBAL)
3351 {
3352 if (isym->st_shndx != SHN_UNDEF
3353 && isym->st_shndx != SHN_COMMON)
3354 flags = BSF_GLOBAL;
3355 }
3356 else if (bind == STB_WEAK)
3357 flags = BSF_WEAK;
3358 else
3359 {
3360 /* Leave it up to the processor backend. */
3361 }
3362
3363 if (isym->st_shndx == SHN_UNDEF)
3364 sec = bfd_und_section_ptr;
3365 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3366 {
3367 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3368 if (sec == NULL)
3369 sec = bfd_abs_section_ptr;
3370 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3371 value -= sec->vma;
3372 }
3373 else if (isym->st_shndx == SHN_ABS)
3374 sec = bfd_abs_section_ptr;
3375 else if (isym->st_shndx == SHN_COMMON)
3376 {
3377 sec = bfd_com_section_ptr;
3378 /* What ELF calls the size we call the value. What ELF
3379 calls the value we call the alignment. */
3380 value = isym->st_size;
3381 }
3382 else
3383 {
3384 /* Leave it up to the processor backend. */
3385 }
3386
3387 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3388 isym->st_name);
3389 if (name == NULL)
3390 goto error_free_vers;
3391
3392 if (isym->st_shndx == SHN_COMMON
3393 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3394 {
3395 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3396
3397 if (tcomm == NULL)
3398 {
3399 tcomm = bfd_make_section (abfd, ".tcommon");
3400 if (tcomm == NULL
3401 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3402 | SEC_IS_COMMON
3403 | SEC_LINKER_CREATED
3404 | SEC_THREAD_LOCAL)))
3405 goto error_free_vers;
3406 }
3407 sec = tcomm;
3408 }
3409 else if (add_symbol_hook)
3410 {
3411 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3412 &value))
3413 goto error_free_vers;
3414
3415 /* The hook function sets the name to NULL if this symbol
3416 should be skipped for some reason. */
3417 if (name == NULL)
3418 continue;
3419 }
3420
3421 /* Sanity check that all possibilities were handled. */
3422 if (sec == NULL)
3423 {
3424 bfd_set_error (bfd_error_bad_value);
3425 goto error_free_vers;
3426 }
3427
3428 if (bfd_is_und_section (sec)
3429 || bfd_is_com_section (sec))
3430 definition = FALSE;
3431 else
3432 definition = TRUE;
3433
3434 size_change_ok = FALSE;
3435 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3436 old_alignment = 0;
3437 old_bfd = NULL;
3438
3439 if (is_elf_hash_table (hash_table))
3440 {
3441 Elf_Internal_Versym iver;
3442 unsigned int vernum = 0;
3443 bfd_boolean skip;
3444
3445 if (ever != NULL)
3446 {
3447 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3448 vernum = iver.vs_vers & VERSYM_VERSION;
3449
3450 /* If this is a hidden symbol, or if it is not version
3451 1, we append the version name to the symbol name.
3452 However, we do not modify a non-hidden absolute
3453 symbol, because it might be the version symbol
3454 itself. FIXME: What if it isn't? */
3455 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3456 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3457 {
3458 const char *verstr;
3459 size_t namelen, verlen, newlen;
3460 char *newname, *p;
3461
3462 if (isym->st_shndx != SHN_UNDEF)
3463 {
3464 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3465 {
3466 (*_bfd_error_handler)
d003868e
AM
3467 (_("%B: %s: invalid version %u (max %d)"),
3468 abfd, name, vernum,
4ad4eba5
AM
3469 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3470 bfd_set_error (bfd_error_bad_value);
3471 goto error_free_vers;
3472 }
3473 else if (vernum > 1)
3474 verstr =
3475 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3476 else
3477 verstr = "";
3478 }
3479 else
3480 {
3481 /* We cannot simply test for the number of
3482 entries in the VERNEED section since the
3483 numbers for the needed versions do not start
3484 at 0. */
3485 Elf_Internal_Verneed *t;
3486
3487 verstr = NULL;
3488 for (t = elf_tdata (abfd)->verref;
3489 t != NULL;
3490 t = t->vn_nextref)
3491 {
3492 Elf_Internal_Vernaux *a;
3493
3494 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3495 {
3496 if (a->vna_other == vernum)
3497 {
3498 verstr = a->vna_nodename;
3499 break;
3500 }
3501 }
3502 if (a != NULL)
3503 break;
3504 }
3505 if (verstr == NULL)
3506 {
3507 (*_bfd_error_handler)
d003868e
AM
3508 (_("%B: %s: invalid needed version %d"),
3509 abfd, name, vernum);
4ad4eba5
AM
3510 bfd_set_error (bfd_error_bad_value);
3511 goto error_free_vers;
3512 }
3513 }
3514
3515 namelen = strlen (name);
3516 verlen = strlen (verstr);
3517 newlen = namelen + verlen + 2;
3518 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3519 && isym->st_shndx != SHN_UNDEF)
3520 ++newlen;
3521
3522 newname = bfd_alloc (abfd, newlen);
3523 if (newname == NULL)
3524 goto error_free_vers;
3525 memcpy (newname, name, namelen);
3526 p = newname + namelen;
3527 *p++ = ELF_VER_CHR;
3528 /* If this is a defined non-hidden version symbol,
3529 we add another @ to the name. This indicates the
3530 default version of the symbol. */
3531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3532 && isym->st_shndx != SHN_UNDEF)
3533 *p++ = ELF_VER_CHR;
3534 memcpy (p, verstr, verlen + 1);
3535
3536 name = newname;
3537 }
3538 }
3539
3540 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3541 sym_hash, &skip, &override,
3542 &type_change_ok, &size_change_ok))
3543 goto error_free_vers;
3544
3545 if (skip)
3546 continue;
3547
3548 if (override)
3549 definition = FALSE;
3550
3551 h = *sym_hash;
3552 while (h->root.type == bfd_link_hash_indirect
3553 || h->root.type == bfd_link_hash_warning)
3554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3555
3556 /* Remember the old alignment if this is a common symbol, so
3557 that we don't reduce the alignment later on. We can't
3558 check later, because _bfd_generic_link_add_one_symbol
3559 will set a default for the alignment which we want to
3560 override. We also remember the old bfd where the existing
3561 definition comes from. */
3562 switch (h->root.type)
3563 {
3564 default:
3565 break;
3566
3567 case bfd_link_hash_defined:
3568 case bfd_link_hash_defweak:
3569 old_bfd = h->root.u.def.section->owner;
3570 break;
3571
3572 case bfd_link_hash_common:
3573 old_bfd = h->root.u.c.p->section->owner;
3574 old_alignment = h->root.u.c.p->alignment_power;
3575 break;
3576 }
3577
3578 if (elf_tdata (abfd)->verdef != NULL
3579 && ! override
3580 && vernum > 1
3581 && definition)
3582 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3583 }
3584
3585 if (! (_bfd_generic_link_add_one_symbol
3586 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3587 (struct bfd_link_hash_entry **) sym_hash)))
3588 goto error_free_vers;
3589
3590 h = *sym_hash;
3591 while (h->root.type == bfd_link_hash_indirect
3592 || h->root.type == bfd_link_hash_warning)
3593 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3594 *sym_hash = h;
3595
3596 new_weakdef = FALSE;
3597 if (dynamic
3598 && definition
3599 && (flags & BSF_WEAK) != 0
3600 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3601 && is_elf_hash_table (hash_table)
3602 && h->weakdef == NULL)
3603 {
3604 /* Keep a list of all weak defined non function symbols from
3605 a dynamic object, using the weakdef field. Later in this
3606 function we will set the weakdef field to the correct
3607 value. We only put non-function symbols from dynamic
3608 objects on this list, because that happens to be the only
3609 time we need to know the normal symbol corresponding to a
3610 weak symbol, and the information is time consuming to
3611 figure out. If the weakdef field is not already NULL,
3612 then this symbol was already defined by some previous
3613 dynamic object, and we will be using that previous
3614 definition anyhow. */
3615
3616 h->weakdef = weaks;
3617 weaks = h;
3618 new_weakdef = TRUE;
3619 }
3620
3621 /* Set the alignment of a common symbol. */
3622 if (isym->st_shndx == SHN_COMMON
3623 && h->root.type == bfd_link_hash_common)
3624 {
3625 unsigned int align;
3626
3627 align = bfd_log2 (isym->st_value);
3628 if (align > old_alignment
3629 /* Permit an alignment power of zero if an alignment of one
3630 is specified and no other alignments have been specified. */
3631 || (isym->st_value == 1 && old_alignment == 0))
3632 h->root.u.c.p->alignment_power = align;
3633 else
3634 h->root.u.c.p->alignment_power = old_alignment;
3635 }
3636
3637 if (is_elf_hash_table (hash_table))
3638 {
3639 int old_flags;
3640 bfd_boolean dynsym;
3641 int new_flag;
3642
3643 /* Check the alignment when a common symbol is involved. This
3644 can change when a common symbol is overridden by a normal
3645 definition or a common symbol is ignored due to the old
3646 normal definition. We need to make sure the maximum
3647 alignment is maintained. */
3648 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3649 && h->root.type != bfd_link_hash_common)
3650 {
3651 unsigned int common_align;
3652 unsigned int normal_align;
3653 unsigned int symbol_align;
3654 bfd *normal_bfd;
3655 bfd *common_bfd;
3656
3657 symbol_align = ffs (h->root.u.def.value) - 1;
3658 if (h->root.u.def.section->owner != NULL
3659 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3660 {
3661 normal_align = h->root.u.def.section->alignment_power;
3662 if (normal_align > symbol_align)
3663 normal_align = symbol_align;
3664 }
3665 else
3666 normal_align = symbol_align;
3667
3668 if (old_alignment)
3669 {
3670 common_align = old_alignment;
3671 common_bfd = old_bfd;
3672 normal_bfd = abfd;
3673 }
3674 else
3675 {
3676 common_align = bfd_log2 (isym->st_value);
3677 common_bfd = abfd;
3678 normal_bfd = old_bfd;
3679 }
3680
3681 if (normal_align < common_align)
3682 (*_bfd_error_handler)
d003868e
AM
3683 (_("Warning: alignment %u of symbol `%s' in %B"
3684 " is smaller than %u in %B"),
3685 normal_bfd, common_bfd,
3686 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3687 }
3688
3689 /* Remember the symbol size and type. */
3690 if (isym->st_size != 0
3691 && (definition || h->size == 0))
3692 {
3693 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3694 (*_bfd_error_handler)
d003868e
AM
3695 (_("Warning: size of symbol `%s' changed"
3696 " from %lu in %B to %lu in %B"),
3697 old_bfd, abfd,
4ad4eba5 3698 name, (unsigned long) h->size,
d003868e 3699 (unsigned long) isym->st_size);
4ad4eba5
AM
3700
3701 h->size = isym->st_size;
3702 }
3703
3704 /* If this is a common symbol, then we always want H->SIZE
3705 to be the size of the common symbol. The code just above
3706 won't fix the size if a common symbol becomes larger. We
3707 don't warn about a size change here, because that is
3708 covered by --warn-common. */
3709 if (h->root.type == bfd_link_hash_common)
3710 h->size = h->root.u.c.size;
3711
3712 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3713 && (definition || h->type == STT_NOTYPE))
3714 {
3715 if (h->type != STT_NOTYPE
3716 && h->type != ELF_ST_TYPE (isym->st_info)
3717 && ! type_change_ok)
3718 (*_bfd_error_handler)
d003868e
AM
3719 (_("Warning: type of symbol `%s' changed"
3720 " from %d to %d in %B"),
3721 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3722
3723 h->type = ELF_ST_TYPE (isym->st_info);
3724 }
3725
3726 /* If st_other has a processor-specific meaning, specific
3727 code might be needed here. We never merge the visibility
3728 attribute with the one from a dynamic object. */
3729 if (bed->elf_backend_merge_symbol_attribute)
3730 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3731 dynamic);
3732
3733 if (isym->st_other != 0 && !dynamic)
3734 {
3735 unsigned char hvis, symvis, other, nvis;
3736
3737 /* Take the balance of OTHER from the definition. */
3738 other = (definition ? isym->st_other : h->other);
3739 other &= ~ ELF_ST_VISIBILITY (-1);
3740
3741 /* Combine visibilities, using the most constraining one. */
3742 hvis = ELF_ST_VISIBILITY (h->other);
3743 symvis = ELF_ST_VISIBILITY (isym->st_other);
3744 if (! hvis)
3745 nvis = symvis;
3746 else if (! symvis)
3747 nvis = hvis;
3748 else
3749 nvis = hvis < symvis ? hvis : symvis;
3750
3751 h->other = other | nvis;
3752 }
3753
3754 /* Set a flag in the hash table entry indicating the type of
3755 reference or definition we just found. Keep a count of
3756 the number of dynamic symbols we find. A dynamic symbol
3757 is one which is referenced or defined by both a regular
3758 object and a shared object. */
3759 old_flags = h->elf_link_hash_flags;
3760 dynsym = FALSE;
3761 if (! dynamic)
3762 {
3763 if (! definition)
3764 {
3765 new_flag = ELF_LINK_HASH_REF_REGULAR;
3766 if (bind != STB_WEAK)
3767 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3768 }
3769 else
3770 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3771 if (! info->executable
3772 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3773 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3774 dynsym = TRUE;
3775 }
3776 else
3777 {
3778 if (! definition)
3779 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3780 else
3781 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3782 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3783 | ELF_LINK_HASH_REF_REGULAR)) != 0
3784 || (h->weakdef != NULL
3785 && ! new_weakdef
3786 && h->weakdef->dynindx != -1))
3787 dynsym = TRUE;
3788 }
3789
3790 h->elf_link_hash_flags |= new_flag;
3791
3792 /* Check to see if we need to add an indirect symbol for
3793 the default name. */
3794 if (definition || h->root.type == bfd_link_hash_common)
3795 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3796 &sec, &value, &dynsym,
3797 override))
3798 goto error_free_vers;
3799
3800 if (definition && !dynamic)
3801 {
3802 char *p = strchr (name, ELF_VER_CHR);
3803 if (p != NULL && p[1] != ELF_VER_CHR)
3804 {
3805 /* Queue non-default versions so that .symver x, x@FOO
3806 aliases can be checked. */
3807 if (! nondeflt_vers)
3808 {
3809 amt = (isymend - isym + 1)
3810 * sizeof (struct elf_link_hash_entry *);
3811 nondeflt_vers = bfd_malloc (amt);
3812 }
3813 nondeflt_vers [nondeflt_vers_cnt++] = h;
3814 }
3815 }
3816
3817 if (dynsym && h->dynindx == -1)
3818 {
c152c796 3819 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
3820 goto error_free_vers;
3821 if (h->weakdef != NULL
3822 && ! new_weakdef
3823 && h->weakdef->dynindx == -1)
3824 {
c152c796 3825 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
4ad4eba5
AM
3826 goto error_free_vers;
3827 }
3828 }
3829 else if (dynsym && h->dynindx != -1)
3830 /* If the symbol already has a dynamic index, but
3831 visibility says it should not be visible, turn it into
3832 a local symbol. */
3833 switch (ELF_ST_VISIBILITY (h->other))
3834 {
3835 case STV_INTERNAL:
3836 case STV_HIDDEN:
3837 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3838 dynsym = FALSE;
3839 break;
3840 }
3841
3842 if (!add_needed
3843 && definition
3844 && dynsym
3845 && (h->elf_link_hash_flags
3846 & ELF_LINK_HASH_REF_REGULAR) != 0)
3847 {
3848 int ret;
3849 const char *soname = elf_dt_name (abfd);
3850
3851 /* A symbol from a library loaded via DT_NEEDED of some
3852 other library is referenced by a regular object.
e56f61be
L
3853 Add a DT_NEEDED entry for it. Issue an error if
3854 --no-add-needed is used. */
3855 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3856 {
3857 (*_bfd_error_handler)
3858 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 3859 abfd, name);
e56f61be
L
3860 bfd_set_error (bfd_error_bad_value);
3861 goto error_free_vers;
3862 }
3863
4ad4eba5
AM
3864 add_needed = TRUE;
3865 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3866 if (ret < 0)
3867 goto error_free_vers;
3868
3869 BFD_ASSERT (ret == 0);
3870 }
3871 }
3872 }
3873
3874 /* Now that all the symbols from this input file are created, handle
3875 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3876 if (nondeflt_vers != NULL)
3877 {
3878 bfd_size_type cnt, symidx;
3879
3880 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3881 {
3882 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3883 char *shortname, *p;
3884
3885 p = strchr (h->root.root.string, ELF_VER_CHR);
3886 if (p == NULL
3887 || (h->root.type != bfd_link_hash_defined
3888 && h->root.type != bfd_link_hash_defweak))
3889 continue;
3890
3891 amt = p - h->root.root.string;
3892 shortname = bfd_malloc (amt + 1);
3893 memcpy (shortname, h->root.root.string, amt);
3894 shortname[amt] = '\0';
3895
3896 hi = (struct elf_link_hash_entry *)
3897 bfd_link_hash_lookup (&hash_table->root, shortname,
3898 FALSE, FALSE, FALSE);
3899 if (hi != NULL
3900 && hi->root.type == h->root.type
3901 && hi->root.u.def.value == h->root.u.def.value
3902 && hi->root.u.def.section == h->root.u.def.section)
3903 {
3904 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3905 hi->root.type = bfd_link_hash_indirect;
3906 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3907 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3908 sym_hash = elf_sym_hashes (abfd);
3909 if (sym_hash)
3910 for (symidx = 0; symidx < extsymcount; ++symidx)
3911 if (sym_hash[symidx] == hi)
3912 {
3913 sym_hash[symidx] = h;
3914 break;
3915 }
3916 }
3917 free (shortname);
3918 }
3919 free (nondeflt_vers);
3920 nondeflt_vers = NULL;
3921 }
3922
3923 if (extversym != NULL)
3924 {
3925 free (extversym);
3926 extversym = NULL;
3927 }
3928
3929 if (isymbuf != NULL)
3930 free (isymbuf);
3931 isymbuf = NULL;
3932
3933 /* Now set the weakdefs field correctly for all the weak defined
3934 symbols we found. The only way to do this is to search all the
3935 symbols. Since we only need the information for non functions in
3936 dynamic objects, that's the only time we actually put anything on
3937 the list WEAKS. We need this information so that if a regular
3938 object refers to a symbol defined weakly in a dynamic object, the
3939 real symbol in the dynamic object is also put in the dynamic
3940 symbols; we also must arrange for both symbols to point to the
3941 same memory location. We could handle the general case of symbol
3942 aliasing, but a general symbol alias can only be generated in
3943 assembler code, handling it correctly would be very time
3944 consuming, and other ELF linkers don't handle general aliasing
3945 either. */
3946 if (weaks != NULL)
3947 {
3948 struct elf_link_hash_entry **hpp;
3949 struct elf_link_hash_entry **hppend;
3950 struct elf_link_hash_entry **sorted_sym_hash;
3951 struct elf_link_hash_entry *h;
3952 size_t sym_count;
3953
3954 /* Since we have to search the whole symbol list for each weak
3955 defined symbol, search time for N weak defined symbols will be
3956 O(N^2). Binary search will cut it down to O(NlogN). */
3957 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3958 sorted_sym_hash = bfd_malloc (amt);
3959 if (sorted_sym_hash == NULL)
3960 goto error_return;
3961 sym_hash = sorted_sym_hash;
3962 hpp = elf_sym_hashes (abfd);
3963 hppend = hpp + extsymcount;
3964 sym_count = 0;
3965 for (; hpp < hppend; hpp++)
3966 {
3967 h = *hpp;
3968 if (h != NULL
3969 && h->root.type == bfd_link_hash_defined
3970 && h->type != STT_FUNC)
3971 {
3972 *sym_hash = h;
3973 sym_hash++;
3974 sym_count++;
3975 }
3976 }
3977
3978 qsort (sorted_sym_hash, sym_count,
3979 sizeof (struct elf_link_hash_entry *),
3980 elf_sort_symbol);
3981
3982 while (weaks != NULL)
3983 {
3984 struct elf_link_hash_entry *hlook;
3985 asection *slook;
3986 bfd_vma vlook;
3987 long ilook;
3988 size_t i, j, idx;
3989
3990 hlook = weaks;
3991 weaks = hlook->weakdef;
3992 hlook->weakdef = NULL;
3993
3994 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3995 || hlook->root.type == bfd_link_hash_defweak
3996 || hlook->root.type == bfd_link_hash_common
3997 || hlook->root.type == bfd_link_hash_indirect);
3998 slook = hlook->root.u.def.section;
3999 vlook = hlook->root.u.def.value;
4000
4001 ilook = -1;
4002 i = 0;
4003 j = sym_count;
4004 while (i < j)
4005 {
4006 bfd_signed_vma vdiff;
4007 idx = (i + j) / 2;
4008 h = sorted_sym_hash [idx];
4009 vdiff = vlook - h->root.u.def.value;
4010 if (vdiff < 0)
4011 j = idx;
4012 else if (vdiff > 0)
4013 i = idx + 1;
4014 else
4015 {
a9b881be 4016 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4017 if (sdiff < 0)
4018 j = idx;
4019 else if (sdiff > 0)
4020 i = idx + 1;
4021 else
4022 {
4023 ilook = idx;
4024 break;
4025 }
4026 }
4027 }
4028
4029 /* We didn't find a value/section match. */
4030 if (ilook == -1)
4031 continue;
4032
4033 for (i = ilook; i < sym_count; i++)
4034 {
4035 h = sorted_sym_hash [i];
4036
4037 /* Stop if value or section doesn't match. */
4038 if (h->root.u.def.value != vlook
4039 || h->root.u.def.section != slook)
4040 break;
4041 else if (h != hlook)
4042 {
4043 hlook->weakdef = h;
4044
4045 /* If the weak definition is in the list of dynamic
4046 symbols, make sure the real definition is put
4047 there as well. */
4048 if (hlook->dynindx != -1 && h->dynindx == -1)
4049 {
c152c796 4050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4051 goto error_return;
4052 }
4053
4054 /* If the real definition is in the list of dynamic
4055 symbols, make sure the weak definition is put
4056 there as well. If we don't do this, then the
4057 dynamic loader might not merge the entries for the
4058 real definition and the weak definition. */
4059 if (h->dynindx != -1 && hlook->dynindx == -1)
4060 {
c152c796 4061 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4062 goto error_return;
4063 }
4064 break;
4065 }
4066 }
4067 }
4068
4069 free (sorted_sym_hash);
4070 }
4071
85fbca6a
NC
4072 check_directives = get_elf_backend_data (abfd)->check_directives;
4073 if (check_directives)
4074 check_directives (abfd, info);
4075
4ad4eba5
AM
4076 /* If this object is the same format as the output object, and it is
4077 not a shared library, then let the backend look through the
4078 relocs.
4079
4080 This is required to build global offset table entries and to
4081 arrange for dynamic relocs. It is not required for the
4082 particular common case of linking non PIC code, even when linking
4083 against shared libraries, but unfortunately there is no way of
4084 knowing whether an object file has been compiled PIC or not.
4085 Looking through the relocs is not particularly time consuming.
4086 The problem is that we must either (1) keep the relocs in memory,
4087 which causes the linker to require additional runtime memory or
4088 (2) read the relocs twice from the input file, which wastes time.
4089 This would be a good case for using mmap.
4090
4091 I have no idea how to handle linking PIC code into a file of a
4092 different format. It probably can't be done. */
4093 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4094 if (! dynamic
4095 && is_elf_hash_table (hash_table)
4096 && hash_table->root.creator == abfd->xvec
4097 && check_relocs != NULL)
4098 {
4099 asection *o;
4100
4101 for (o = abfd->sections; o != NULL; o = o->next)
4102 {
4103 Elf_Internal_Rela *internal_relocs;
4104 bfd_boolean ok;
4105
4106 if ((o->flags & SEC_RELOC) == 0
4107 || o->reloc_count == 0
4108 || ((info->strip == strip_all || info->strip == strip_debugger)
4109 && (o->flags & SEC_DEBUGGING) != 0)
4110 || bfd_is_abs_section (o->output_section))
4111 continue;
4112
4113 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4114 info->keep_memory);
4115 if (internal_relocs == NULL)
4116 goto error_return;
4117
4118 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4119
4120 if (elf_section_data (o)->relocs != internal_relocs)
4121 free (internal_relocs);
4122
4123 if (! ok)
4124 goto error_return;
4125 }
4126 }
4127
4128 /* If this is a non-traditional link, try to optimize the handling
4129 of the .stab/.stabstr sections. */
4130 if (! dynamic
4131 && ! info->traditional_format
4132 && is_elf_hash_table (hash_table)
4133 && (info->strip != strip_all && info->strip != strip_debugger))
4134 {
4135 asection *stabstr;
4136
4137 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4138 if (stabstr != NULL)
4139 {
4140 bfd_size_type string_offset = 0;
4141 asection *stab;
4142
4143 for (stab = abfd->sections; stab; stab = stab->next)
4144 if (strncmp (".stab", stab->name, 5) == 0
4145 && (!stab->name[5] ||
4146 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4147 && (stab->flags & SEC_MERGE) == 0
4148 && !bfd_is_abs_section (stab->output_section))
4149 {
4150 struct bfd_elf_section_data *secdata;
4151
4152 secdata = elf_section_data (stab);
4153 if (! _bfd_link_section_stabs (abfd,
3722b82f 4154 &hash_table->stab_info,
4ad4eba5
AM
4155 stab, stabstr,
4156 &secdata->sec_info,
4157 &string_offset))
4158 goto error_return;
4159 if (secdata->sec_info)
4160 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4161 }
4162 }
4163 }
4164
4ad4eba5
AM
4165 if (is_elf_hash_table (hash_table))
4166 {
4167 /* Add this bfd to the loaded list. */
4168 struct elf_link_loaded_list *n;
4169
4170 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4171 if (n == NULL)
4172 goto error_return;
4173 n->abfd = abfd;
4174 n->next = hash_table->loaded;
4175 hash_table->loaded = n;
4176 }
4177
4178 return TRUE;
4179
4180 error_free_vers:
4181 if (nondeflt_vers != NULL)
4182 free (nondeflt_vers);
4183 if (extversym != NULL)
4184 free (extversym);
4185 error_free_sym:
4186 if (isymbuf != NULL)
4187 free (isymbuf);
4188 error_return:
4189 return FALSE;
4190}
4191
8387904d
AM
4192/* Return the linker hash table entry of a symbol that might be
4193 satisfied by an archive symbol. Return -1 on error. */
4194
4195struct elf_link_hash_entry *
4196_bfd_elf_archive_symbol_lookup (bfd *abfd,
4197 struct bfd_link_info *info,
4198 const char *name)
4199{
4200 struct elf_link_hash_entry *h;
4201 char *p, *copy;
4202 size_t len, first;
4203
4204 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4205 if (h != NULL)
4206 return h;
4207
4208 /* If this is a default version (the name contains @@), look up the
4209 symbol again with only one `@' as well as without the version.
4210 The effect is that references to the symbol with and without the
4211 version will be matched by the default symbol in the archive. */
4212
4213 p = strchr (name, ELF_VER_CHR);
4214 if (p == NULL || p[1] != ELF_VER_CHR)
4215 return h;
4216
4217 /* First check with only one `@'. */
4218 len = strlen (name);
4219 copy = bfd_alloc (abfd, len);
4220 if (copy == NULL)
4221 return (struct elf_link_hash_entry *) 0 - 1;
4222
4223 first = p - name + 1;
4224 memcpy (copy, name, first);
4225 memcpy (copy + first, name + first + 1, len - first);
4226
4227 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4228 if (h == NULL)
4229 {
4230 /* We also need to check references to the symbol without the
4231 version. */
4232 copy[first - 1] = '\0';
4233 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4234 FALSE, FALSE, FALSE);
4235 }
4236
4237 bfd_release (abfd, copy);
4238 return h;
4239}
4240
0ad989f9
L
4241/* Add symbols from an ELF archive file to the linker hash table. We
4242 don't use _bfd_generic_link_add_archive_symbols because of a
4243 problem which arises on UnixWare. The UnixWare libc.so is an
4244 archive which includes an entry libc.so.1 which defines a bunch of
4245 symbols. The libc.so archive also includes a number of other
4246 object files, which also define symbols, some of which are the same
4247 as those defined in libc.so.1. Correct linking requires that we
4248 consider each object file in turn, and include it if it defines any
4249 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4250 this; it looks through the list of undefined symbols, and includes
4251 any object file which defines them. When this algorithm is used on
4252 UnixWare, it winds up pulling in libc.so.1 early and defining a
4253 bunch of symbols. This means that some of the other objects in the
4254 archive are not included in the link, which is incorrect since they
4255 precede libc.so.1 in the archive.
4256
4257 Fortunately, ELF archive handling is simpler than that done by
4258 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4259 oddities. In ELF, if we find a symbol in the archive map, and the
4260 symbol is currently undefined, we know that we must pull in that
4261 object file.
4262
4263 Unfortunately, we do have to make multiple passes over the symbol
4264 table until nothing further is resolved. */
4265
4ad4eba5
AM
4266static bfd_boolean
4267elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4268{
4269 symindex c;
4270 bfd_boolean *defined = NULL;
4271 bfd_boolean *included = NULL;
4272 carsym *symdefs;
4273 bfd_boolean loop;
4274 bfd_size_type amt;
8387904d
AM
4275 const struct elf_backend_data *bed;
4276 struct elf_link_hash_entry * (*archive_symbol_lookup)
4277 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4278
4279 if (! bfd_has_map (abfd))
4280 {
4281 /* An empty archive is a special case. */
4282 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4283 return TRUE;
4284 bfd_set_error (bfd_error_no_armap);
4285 return FALSE;
4286 }
4287
4288 /* Keep track of all symbols we know to be already defined, and all
4289 files we know to be already included. This is to speed up the
4290 second and subsequent passes. */
4291 c = bfd_ardata (abfd)->symdef_count;
4292 if (c == 0)
4293 return TRUE;
4294 amt = c;
4295 amt *= sizeof (bfd_boolean);
4296 defined = bfd_zmalloc (amt);
4297 included = bfd_zmalloc (amt);
4298 if (defined == NULL || included == NULL)
4299 goto error_return;
4300
4301 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4302 bed = get_elf_backend_data (abfd);
4303 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4304
4305 do
4306 {
4307 file_ptr last;
4308 symindex i;
4309 carsym *symdef;
4310 carsym *symdefend;
4311
4312 loop = FALSE;
4313 last = -1;
4314
4315 symdef = symdefs;
4316 symdefend = symdef + c;
4317 for (i = 0; symdef < symdefend; symdef++, i++)
4318 {
4319 struct elf_link_hash_entry *h;
4320 bfd *element;
4321 struct bfd_link_hash_entry *undefs_tail;
4322 symindex mark;
4323
4324 if (defined[i] || included[i])
4325 continue;
4326 if (symdef->file_offset == last)
4327 {
4328 included[i] = TRUE;
4329 continue;
4330 }
4331
8387904d
AM
4332 h = archive_symbol_lookup (abfd, info, symdef->name);
4333 if (h == (struct elf_link_hash_entry *) 0 - 1)
4334 goto error_return;
0ad989f9
L
4335
4336 if (h == NULL)
4337 continue;
4338
4339 if (h->root.type == bfd_link_hash_common)
4340 {
4341 /* We currently have a common symbol. The archive map contains
4342 a reference to this symbol, so we may want to include it. We
4343 only want to include it however, if this archive element
4344 contains a definition of the symbol, not just another common
4345 declaration of it.
4346
4347 Unfortunately some archivers (including GNU ar) will put
4348 declarations of common symbols into their archive maps, as
4349 well as real definitions, so we cannot just go by the archive
4350 map alone. Instead we must read in the element's symbol
4351 table and check that to see what kind of symbol definition
4352 this is. */
4353 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4354 continue;
4355 }
4356 else if (h->root.type != bfd_link_hash_undefined)
4357 {
4358 if (h->root.type != bfd_link_hash_undefweak)
4359 defined[i] = TRUE;
4360 continue;
4361 }
4362
4363 /* We need to include this archive member. */
4364 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4365 if (element == NULL)
4366 goto error_return;
4367
4368 if (! bfd_check_format (element, bfd_object))
4369 goto error_return;
4370
4371 /* Doublecheck that we have not included this object
4372 already--it should be impossible, but there may be
4373 something wrong with the archive. */
4374 if (element->archive_pass != 0)
4375 {
4376 bfd_set_error (bfd_error_bad_value);
4377 goto error_return;
4378 }
4379 element->archive_pass = 1;
4380
4381 undefs_tail = info->hash->undefs_tail;
4382
4383 if (! (*info->callbacks->add_archive_element) (info, element,
4384 symdef->name))
4385 goto error_return;
4386 if (! bfd_link_add_symbols (element, info))
4387 goto error_return;
4388
4389 /* If there are any new undefined symbols, we need to make
4390 another pass through the archive in order to see whether
4391 they can be defined. FIXME: This isn't perfect, because
4392 common symbols wind up on undefs_tail and because an
4393 undefined symbol which is defined later on in this pass
4394 does not require another pass. This isn't a bug, but it
4395 does make the code less efficient than it could be. */
4396 if (undefs_tail != info->hash->undefs_tail)
4397 loop = TRUE;
4398
4399 /* Look backward to mark all symbols from this object file
4400 which we have already seen in this pass. */
4401 mark = i;
4402 do
4403 {
4404 included[mark] = TRUE;
4405 if (mark == 0)
4406 break;
4407 --mark;
4408 }
4409 while (symdefs[mark].file_offset == symdef->file_offset);
4410
4411 /* We mark subsequent symbols from this object file as we go
4412 on through the loop. */
4413 last = symdef->file_offset;
4414 }
4415 }
4416 while (loop);
4417
4418 free (defined);
4419 free (included);
4420
4421 return TRUE;
4422
4423 error_return:
4424 if (defined != NULL)
4425 free (defined);
4426 if (included != NULL)
4427 free (included);
4428 return FALSE;
4429}
4ad4eba5
AM
4430
4431/* Given an ELF BFD, add symbols to the global hash table as
4432 appropriate. */
4433
4434bfd_boolean
4435bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4436{
4437 switch (bfd_get_format (abfd))
4438 {
4439 case bfd_object:
4440 return elf_link_add_object_symbols (abfd, info);
4441 case bfd_archive:
4442 return elf_link_add_archive_symbols (abfd, info);
4443 default:
4444 bfd_set_error (bfd_error_wrong_format);
4445 return FALSE;
4446 }
4447}
5a580b3a
AM
4448\f
4449/* This function will be called though elf_link_hash_traverse to store
4450 all hash value of the exported symbols in an array. */
4451
4452static bfd_boolean
4453elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4454{
4455 unsigned long **valuep = data;
4456 const char *name;
4457 char *p;
4458 unsigned long ha;
4459 char *alc = NULL;
4460
4461 if (h->root.type == bfd_link_hash_warning)
4462 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4463
4464 /* Ignore indirect symbols. These are added by the versioning code. */
4465 if (h->dynindx == -1)
4466 return TRUE;
4467
4468 name = h->root.root.string;
4469 p = strchr (name, ELF_VER_CHR);
4470 if (p != NULL)
4471 {
4472 alc = bfd_malloc (p - name + 1);
4473 memcpy (alc, name, p - name);
4474 alc[p - name] = '\0';
4475 name = alc;
4476 }
4477
4478 /* Compute the hash value. */
4479 ha = bfd_elf_hash (name);
4480
4481 /* Store the found hash value in the array given as the argument. */
4482 *(*valuep)++ = ha;
4483
4484 /* And store it in the struct so that we can put it in the hash table
4485 later. */
4486 h->elf_hash_value = ha;
4487
4488 if (alc != NULL)
4489 free (alc);
4490
4491 return TRUE;
4492}
4493
4494/* Array used to determine the number of hash table buckets to use
4495 based on the number of symbols there are. If there are fewer than
4496 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4497 fewer than 37 we use 17 buckets, and so forth. We never use more
4498 than 32771 buckets. */
4499
4500static const size_t elf_buckets[] =
4501{
4502 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4503 16411, 32771, 0
4504};
4505
4506/* Compute bucket count for hashing table. We do not use a static set
4507 of possible tables sizes anymore. Instead we determine for all
4508 possible reasonable sizes of the table the outcome (i.e., the
4509 number of collisions etc) and choose the best solution. The
4510 weighting functions are not too simple to allow the table to grow
4511 without bounds. Instead one of the weighting factors is the size.
4512 Therefore the result is always a good payoff between few collisions
4513 (= short chain lengths) and table size. */
4514static size_t
4515compute_bucket_count (struct bfd_link_info *info)
4516{
4517 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4518 size_t best_size = 0;
4519 unsigned long int *hashcodes;
4520 unsigned long int *hashcodesp;
4521 unsigned long int i;
4522 bfd_size_type amt;
4523
4524 /* Compute the hash values for all exported symbols. At the same
4525 time store the values in an array so that we could use them for
4526 optimizations. */
4527 amt = dynsymcount;
4528 amt *= sizeof (unsigned long int);
4529 hashcodes = bfd_malloc (amt);
4530 if (hashcodes == NULL)
4531 return 0;
4532 hashcodesp = hashcodes;
4533
4534 /* Put all hash values in HASHCODES. */
4535 elf_link_hash_traverse (elf_hash_table (info),
4536 elf_collect_hash_codes, &hashcodesp);
4537
4538 /* We have a problem here. The following code to optimize the table
4539 size requires an integer type with more the 32 bits. If
4540 BFD_HOST_U_64_BIT is set we know about such a type. */
4541#ifdef BFD_HOST_U_64_BIT
4542 if (info->optimize)
4543 {
4544 unsigned long int nsyms = hashcodesp - hashcodes;
4545 size_t minsize;
4546 size_t maxsize;
4547 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4548 unsigned long int *counts ;
4549 bfd *dynobj = elf_hash_table (info)->dynobj;
4550 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4551
4552 /* Possible optimization parameters: if we have NSYMS symbols we say
4553 that the hashing table must at least have NSYMS/4 and at most
4554 2*NSYMS buckets. */
4555 minsize = nsyms / 4;
4556 if (minsize == 0)
4557 minsize = 1;
4558 best_size = maxsize = nsyms * 2;
4559
4560 /* Create array where we count the collisions in. We must use bfd_malloc
4561 since the size could be large. */
4562 amt = maxsize;
4563 amt *= sizeof (unsigned long int);
4564 counts = bfd_malloc (amt);
4565 if (counts == NULL)
4566 {
4567 free (hashcodes);
4568 return 0;
4569 }
4570
4571 /* Compute the "optimal" size for the hash table. The criteria is a
4572 minimal chain length. The minor criteria is (of course) the size
4573 of the table. */
4574 for (i = minsize; i < maxsize; ++i)
4575 {
4576 /* Walk through the array of hashcodes and count the collisions. */
4577 BFD_HOST_U_64_BIT max;
4578 unsigned long int j;
4579 unsigned long int fact;
4580
4581 memset (counts, '\0', i * sizeof (unsigned long int));
4582
4583 /* Determine how often each hash bucket is used. */
4584 for (j = 0; j < nsyms; ++j)
4585 ++counts[hashcodes[j] % i];
4586
4587 /* For the weight function we need some information about the
4588 pagesize on the target. This is information need not be 100%
4589 accurate. Since this information is not available (so far) we
4590 define it here to a reasonable default value. If it is crucial
4591 to have a better value some day simply define this value. */
4592# ifndef BFD_TARGET_PAGESIZE
4593# define BFD_TARGET_PAGESIZE (4096)
4594# endif
4595
4596 /* We in any case need 2 + NSYMS entries for the size values and
4597 the chains. */
4598 max = (2 + nsyms) * (bed->s->arch_size / 8);
4599
4600# if 1
4601 /* Variant 1: optimize for short chains. We add the squares
4602 of all the chain lengths (which favors many small chain
4603 over a few long chains). */
4604 for (j = 0; j < i; ++j)
4605 max += counts[j] * counts[j];
4606
4607 /* This adds penalties for the overall size of the table. */
4608 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4609 max *= fact * fact;
4610# else
4611 /* Variant 2: Optimize a lot more for small table. Here we
4612 also add squares of the size but we also add penalties for
4613 empty slots (the +1 term). */
4614 for (j = 0; j < i; ++j)
4615 max += (1 + counts[j]) * (1 + counts[j]);
4616
4617 /* The overall size of the table is considered, but not as
4618 strong as in variant 1, where it is squared. */
4619 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4620 max *= fact;
4621# endif
4622
4623 /* Compare with current best results. */
4624 if (max < best_chlen)
4625 {
4626 best_chlen = max;
4627 best_size = i;
4628 }
4629 }
4630
4631 free (counts);
4632 }
4633 else
4634#endif /* defined (BFD_HOST_U_64_BIT) */
4635 {
4636 /* This is the fallback solution if no 64bit type is available or if we
4637 are not supposed to spend much time on optimizations. We select the
4638 bucket count using a fixed set of numbers. */
4639 for (i = 0; elf_buckets[i] != 0; i++)
4640 {
4641 best_size = elf_buckets[i];
4642 if (dynsymcount < elf_buckets[i + 1])
4643 break;
4644 }
4645 }
4646
4647 /* Free the arrays we needed. */
4648 free (hashcodes);
4649
4650 return best_size;
4651}
4652
4653/* Set up the sizes and contents of the ELF dynamic sections. This is
4654 called by the ELF linker emulation before_allocation routine. We
4655 must set the sizes of the sections before the linker sets the
4656 addresses of the various sections. */
4657
4658bfd_boolean
4659bfd_elf_size_dynamic_sections (bfd *output_bfd,
4660 const char *soname,
4661 const char *rpath,
4662 const char *filter_shlib,
4663 const char * const *auxiliary_filters,
4664 struct bfd_link_info *info,
4665 asection **sinterpptr,
4666 struct bfd_elf_version_tree *verdefs)
4667{
4668 bfd_size_type soname_indx;
4669 bfd *dynobj;
4670 const struct elf_backend_data *bed;
4671 struct elf_assign_sym_version_info asvinfo;
4672
4673 *sinterpptr = NULL;
4674
4675 soname_indx = (bfd_size_type) -1;
4676
4677 if (!is_elf_hash_table (info->hash))
4678 return TRUE;
4679
8c37241b 4680 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4681 if (info->execstack)
4682 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4683 else if (info->noexecstack)
4684 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4685 else
4686 {
4687 bfd *inputobj;
4688 asection *notesec = NULL;
4689 int exec = 0;
4690
4691 for (inputobj = info->input_bfds;
4692 inputobj;
4693 inputobj = inputobj->link_next)
4694 {
4695 asection *s;
4696
4697 if (inputobj->flags & DYNAMIC)
4698 continue;
4699 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4700 if (s)
4701 {
4702 if (s->flags & SEC_CODE)
4703 exec = PF_X;
4704 notesec = s;
4705 }
4706 else
4707 exec = PF_X;
4708 }
4709 if (notesec)
4710 {
4711 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4712 if (exec && info->relocatable
4713 && notesec->output_section != bfd_abs_section_ptr)
4714 notesec->output_section->flags |= SEC_CODE;
4715 }
4716 }
4717
4718 /* Any syms created from now on start with -1 in
4719 got.refcount/offset and plt.refcount/offset. */
4720 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4721
4722 /* The backend may have to create some sections regardless of whether
4723 we're dynamic or not. */
4724 bed = get_elf_backend_data (output_bfd);
4725 if (bed->elf_backend_always_size_sections
4726 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4727 return FALSE;
4728
4729 dynobj = elf_hash_table (info)->dynobj;
4730
4731 /* If there were no dynamic objects in the link, there is nothing to
4732 do here. */
4733 if (dynobj == NULL)
4734 return TRUE;
4735
4736 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4737 return FALSE;
4738
4739 if (elf_hash_table (info)->dynamic_sections_created)
4740 {
4741 struct elf_info_failed eif;
4742 struct elf_link_hash_entry *h;
4743 asection *dynstr;
4744 struct bfd_elf_version_tree *t;
4745 struct bfd_elf_version_expr *d;
4746 bfd_boolean all_defined;
4747
4748 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4749 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4750
4751 if (soname != NULL)
4752 {
4753 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4754 soname, TRUE);
4755 if (soname_indx == (bfd_size_type) -1
4756 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4757 return FALSE;
4758 }
4759
4760 if (info->symbolic)
4761 {
4762 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4763 return FALSE;
4764 info->flags |= DF_SYMBOLIC;
4765 }
4766
4767 if (rpath != NULL)
4768 {
4769 bfd_size_type indx;
4770
4771 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4772 TRUE);
4773 if (indx == (bfd_size_type) -1
4774 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4775 return FALSE;
4776
4777 if (info->new_dtags)
4778 {
4779 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4780 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4781 return FALSE;
4782 }
4783 }
4784
4785 if (filter_shlib != NULL)
4786 {
4787 bfd_size_type indx;
4788
4789 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4790 filter_shlib, TRUE);
4791 if (indx == (bfd_size_type) -1
4792 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4793 return FALSE;
4794 }
4795
4796 if (auxiliary_filters != NULL)
4797 {
4798 const char * const *p;
4799
4800 for (p = auxiliary_filters; *p != NULL; p++)
4801 {
4802 bfd_size_type indx;
4803
4804 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4805 *p, TRUE);
4806 if (indx == (bfd_size_type) -1
4807 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4808 return FALSE;
4809 }
4810 }
4811
4812 eif.info = info;
4813 eif.verdefs = verdefs;
4814 eif.failed = FALSE;
4815
4816 /* If we are supposed to export all symbols into the dynamic symbol
4817 table (this is not the normal case), then do so. */
4818 if (info->export_dynamic)
4819 {
4820 elf_link_hash_traverse (elf_hash_table (info),
4821 _bfd_elf_export_symbol,
4822 &eif);
4823 if (eif.failed)
4824 return FALSE;
4825 }
4826
4827 /* Make all global versions with definition. */
4828 for (t = verdefs; t != NULL; t = t->next)
4829 for (d = t->globals.list; d != NULL; d = d->next)
4830 if (!d->symver && d->symbol)
4831 {
4832 const char *verstr, *name;
4833 size_t namelen, verlen, newlen;
4834 char *newname, *p;
4835 struct elf_link_hash_entry *newh;
4836
4837 name = d->symbol;
4838 namelen = strlen (name);
4839 verstr = t->name;
4840 verlen = strlen (verstr);
4841 newlen = namelen + verlen + 3;
4842
4843 newname = bfd_malloc (newlen);
4844 if (newname == NULL)
4845 return FALSE;
4846 memcpy (newname, name, namelen);
4847
4848 /* Check the hidden versioned definition. */
4849 p = newname + namelen;
4850 *p++ = ELF_VER_CHR;
4851 memcpy (p, verstr, verlen + 1);
4852 newh = elf_link_hash_lookup (elf_hash_table (info),
4853 newname, FALSE, FALSE,
4854 FALSE);
4855 if (newh == NULL
4856 || (newh->root.type != bfd_link_hash_defined
4857 && newh->root.type != bfd_link_hash_defweak))
4858 {
4859 /* Check the default versioned definition. */
4860 *p++ = ELF_VER_CHR;
4861 memcpy (p, verstr, verlen + 1);
4862 newh = elf_link_hash_lookup (elf_hash_table (info),
4863 newname, FALSE, FALSE,
4864 FALSE);
4865 }
4866 free (newname);
4867
4868 /* Mark this version if there is a definition and it is
4869 not defined in a shared object. */
4870 if (newh != NULL
4871 && ((newh->elf_link_hash_flags
4872 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4873 && (newh->root.type == bfd_link_hash_defined
4874 || newh->root.type == bfd_link_hash_defweak))
4875 d->symver = 1;
4876 }
4877
4878 /* Attach all the symbols to their version information. */
4879 asvinfo.output_bfd = output_bfd;
4880 asvinfo.info = info;
4881 asvinfo.verdefs = verdefs;
4882 asvinfo.failed = FALSE;
4883
4884 elf_link_hash_traverse (elf_hash_table (info),
4885 _bfd_elf_link_assign_sym_version,
4886 &asvinfo);
4887 if (asvinfo.failed)
4888 return FALSE;
4889
4890 if (!info->allow_undefined_version)
4891 {
4892 /* Check if all global versions have a definition. */
4893 all_defined = TRUE;
4894 for (t = verdefs; t != NULL; t = t->next)
4895 for (d = t->globals.list; d != NULL; d = d->next)
4896 if (!d->symver && !d->script)
4897 {
4898 (*_bfd_error_handler)
4899 (_("%s: undefined version: %s"),
4900 d->pattern, t->name);
4901 all_defined = FALSE;
4902 }
4903
4904 if (!all_defined)
4905 {
4906 bfd_set_error (bfd_error_bad_value);
4907 return FALSE;
4908 }
4909 }
4910
4911 /* Find all symbols which were defined in a dynamic object and make
4912 the backend pick a reasonable value for them. */
4913 elf_link_hash_traverse (elf_hash_table (info),
4914 _bfd_elf_adjust_dynamic_symbol,
4915 &eif);
4916 if (eif.failed)
4917 return FALSE;
4918
4919 /* Add some entries to the .dynamic section. We fill in some of the
4920 values later, in elf_bfd_final_link, but we must add the entries
4921 now so that we know the final size of the .dynamic section. */
4922
4923 /* If there are initialization and/or finalization functions to
4924 call then add the corresponding DT_INIT/DT_FINI entries. */
4925 h = (info->init_function
4926 ? elf_link_hash_lookup (elf_hash_table (info),
4927 info->init_function, FALSE,
4928 FALSE, FALSE)
4929 : NULL);
4930 if (h != NULL
4931 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4932 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4933 {
4934 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4935 return FALSE;
4936 }
4937 h = (info->fini_function
4938 ? elf_link_hash_lookup (elf_hash_table (info),
4939 info->fini_function, FALSE,
4940 FALSE, FALSE)
4941 : NULL);
4942 if (h != NULL
4943 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4944 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4945 {
4946 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4947 return FALSE;
4948 }
4949
4950 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4951 {
4952 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4953 if (! info->executable)
4954 {
4955 bfd *sub;
4956 asection *o;
4957
4958 for (sub = info->input_bfds; sub != NULL;
4959 sub = sub->link_next)
4960 for (o = sub->sections; o != NULL; o = o->next)
4961 if (elf_section_data (o)->this_hdr.sh_type
4962 == SHT_PREINIT_ARRAY)
4963 {
4964 (*_bfd_error_handler)
d003868e
AM
4965 (_("%B: .preinit_array section is not allowed in DSO"),
4966 sub);
5a580b3a
AM
4967 break;
4968 }
4969
4970 bfd_set_error (bfd_error_nonrepresentable_section);
4971 return FALSE;
4972 }
4973
4974 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4975 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4976 return FALSE;
4977 }
4978 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4979 {
4980 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4981 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4982 return FALSE;
4983 }
4984 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4985 {
4986 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4987 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4988 return FALSE;
4989 }
4990
4991 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4992 /* If .dynstr is excluded from the link, we don't want any of
4993 these tags. Strictly, we should be checking each section
4994 individually; This quick check covers for the case where
4995 someone does a /DISCARD/ : { *(*) }. */
4996 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4997 {
4998 bfd_size_type strsize;
4999
5000 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5001 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5002 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5003 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5004 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5005 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5006 bed->s->sizeof_sym))
5007 return FALSE;
5008 }
5009 }
5010
5011 /* The backend must work out the sizes of all the other dynamic
5012 sections. */
5013 if (bed->elf_backend_size_dynamic_sections
5014 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5015 return FALSE;
5016
5017 if (elf_hash_table (info)->dynamic_sections_created)
5018 {
5019 bfd_size_type dynsymcount;
5020 asection *s;
5021 size_t bucketcount = 0;
5022 size_t hash_entry_size;
5023 unsigned int dtagcount;
5024
5025 /* Set up the version definition section. */
5026 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5027 BFD_ASSERT (s != NULL);
5028
5029 /* We may have created additional version definitions if we are
5030 just linking a regular application. */
5031 verdefs = asvinfo.verdefs;
5032
5033 /* Skip anonymous version tag. */
5034 if (verdefs != NULL && verdefs->vernum == 0)
5035 verdefs = verdefs->next;
5036
5037 if (verdefs == NULL)
5038 _bfd_strip_section_from_output (info, s);
5039 else
5040 {
5041 unsigned int cdefs;
5042 bfd_size_type size;
5043 struct bfd_elf_version_tree *t;
5044 bfd_byte *p;
5045 Elf_Internal_Verdef def;
5046 Elf_Internal_Verdaux defaux;
5047
5048 cdefs = 0;
5049 size = 0;
5050
5051 /* Make space for the base version. */
5052 size += sizeof (Elf_External_Verdef);
5053 size += sizeof (Elf_External_Verdaux);
5054 ++cdefs;
5055
5056 for (t = verdefs; t != NULL; t = t->next)
5057 {
5058 struct bfd_elf_version_deps *n;
5059
5060 size += sizeof (Elf_External_Verdef);
5061 size += sizeof (Elf_External_Verdaux);
5062 ++cdefs;
5063
5064 for (n = t->deps; n != NULL; n = n->next)
5065 size += sizeof (Elf_External_Verdaux);
5066 }
5067
eea6121a
AM
5068 s->size = size;
5069 s->contents = bfd_alloc (output_bfd, s->size);
5070 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5071 return FALSE;
5072
5073 /* Fill in the version definition section. */
5074
5075 p = s->contents;
5076
5077 def.vd_version = VER_DEF_CURRENT;
5078 def.vd_flags = VER_FLG_BASE;
5079 def.vd_ndx = 1;
5080 def.vd_cnt = 1;
5081 def.vd_aux = sizeof (Elf_External_Verdef);
5082 def.vd_next = (sizeof (Elf_External_Verdef)
5083 + sizeof (Elf_External_Verdaux));
5084
5085 if (soname_indx != (bfd_size_type) -1)
5086 {
5087 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5088 soname_indx);
5089 def.vd_hash = bfd_elf_hash (soname);
5090 defaux.vda_name = soname_indx;
5091 }
5092 else
5093 {
5094 const char *name;
5095 bfd_size_type indx;
5096
5097 name = basename (output_bfd->filename);
5098 def.vd_hash = bfd_elf_hash (name);
5099 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5100 name, FALSE);
5101 if (indx == (bfd_size_type) -1)
5102 return FALSE;
5103 defaux.vda_name = indx;
5104 }
5105 defaux.vda_next = 0;
5106
5107 _bfd_elf_swap_verdef_out (output_bfd, &def,
5108 (Elf_External_Verdef *) p);
5109 p += sizeof (Elf_External_Verdef);
5110 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5111 (Elf_External_Verdaux *) p);
5112 p += sizeof (Elf_External_Verdaux);
5113
5114 for (t = verdefs; t != NULL; t = t->next)
5115 {
5116 unsigned int cdeps;
5117 struct bfd_elf_version_deps *n;
5118 struct elf_link_hash_entry *h;
5119 struct bfd_link_hash_entry *bh;
5120
5121 cdeps = 0;
5122 for (n = t->deps; n != NULL; n = n->next)
5123 ++cdeps;
5124
5125 /* Add a symbol representing this version. */
5126 bh = NULL;
5127 if (! (_bfd_generic_link_add_one_symbol
5128 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5129 0, NULL, FALSE,
5130 get_elf_backend_data (dynobj)->collect, &bh)))
5131 return FALSE;
5132 h = (struct elf_link_hash_entry *) bh;
5133 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5134 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5135 h->type = STT_OBJECT;
5136 h->verinfo.vertree = t;
5137
c152c796 5138 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5139 return FALSE;
5140
5141 def.vd_version = VER_DEF_CURRENT;
5142 def.vd_flags = 0;
5143 if (t->globals.list == NULL
5144 && t->locals.list == NULL
5145 && ! t->used)
5146 def.vd_flags |= VER_FLG_WEAK;
5147 def.vd_ndx = t->vernum + 1;
5148 def.vd_cnt = cdeps + 1;
5149 def.vd_hash = bfd_elf_hash (t->name);
5150 def.vd_aux = sizeof (Elf_External_Verdef);
5151 def.vd_next = 0;
5152 if (t->next != NULL)
5153 def.vd_next = (sizeof (Elf_External_Verdef)
5154 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5155
5156 _bfd_elf_swap_verdef_out (output_bfd, &def,
5157 (Elf_External_Verdef *) p);
5158 p += sizeof (Elf_External_Verdef);
5159
5160 defaux.vda_name = h->dynstr_index;
5161 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5162 h->dynstr_index);
5163 defaux.vda_next = 0;
5164 if (t->deps != NULL)
5165 defaux.vda_next = sizeof (Elf_External_Verdaux);
5166 t->name_indx = defaux.vda_name;
5167
5168 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5169 (Elf_External_Verdaux *) p);
5170 p += sizeof (Elf_External_Verdaux);
5171
5172 for (n = t->deps; n != NULL; n = n->next)
5173 {
5174 if (n->version_needed == NULL)
5175 {
5176 /* This can happen if there was an error in the
5177 version script. */
5178 defaux.vda_name = 0;
5179 }
5180 else
5181 {
5182 defaux.vda_name = n->version_needed->name_indx;
5183 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5184 defaux.vda_name);
5185 }
5186 if (n->next == NULL)
5187 defaux.vda_next = 0;
5188 else
5189 defaux.vda_next = sizeof (Elf_External_Verdaux);
5190
5191 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5192 (Elf_External_Verdaux *) p);
5193 p += sizeof (Elf_External_Verdaux);
5194 }
5195 }
5196
5197 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5198 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5199 return FALSE;
5200
5201 elf_tdata (output_bfd)->cverdefs = cdefs;
5202 }
5203
5204 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5205 {
5206 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5207 return FALSE;
5208 }
5209 else if (info->flags & DF_BIND_NOW)
5210 {
5211 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5212 return FALSE;
5213 }
5214
5215 if (info->flags_1)
5216 {
5217 if (info->executable)
5218 info->flags_1 &= ~ (DF_1_INITFIRST
5219 | DF_1_NODELETE
5220 | DF_1_NOOPEN);
5221 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5222 return FALSE;
5223 }
5224
5225 /* Work out the size of the version reference section. */
5226
5227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5228 BFD_ASSERT (s != NULL);
5229 {
5230 struct elf_find_verdep_info sinfo;
5231
5232 sinfo.output_bfd = output_bfd;
5233 sinfo.info = info;
5234 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5235 if (sinfo.vers == 0)
5236 sinfo.vers = 1;
5237 sinfo.failed = FALSE;
5238
5239 elf_link_hash_traverse (elf_hash_table (info),
5240 _bfd_elf_link_find_version_dependencies,
5241 &sinfo);
5242
5243 if (elf_tdata (output_bfd)->verref == NULL)
5244 _bfd_strip_section_from_output (info, s);
5245 else
5246 {
5247 Elf_Internal_Verneed *t;
5248 unsigned int size;
5249 unsigned int crefs;
5250 bfd_byte *p;
5251
5252 /* Build the version definition section. */
5253 size = 0;
5254 crefs = 0;
5255 for (t = elf_tdata (output_bfd)->verref;
5256 t != NULL;
5257 t = t->vn_nextref)
5258 {
5259 Elf_Internal_Vernaux *a;
5260
5261 size += sizeof (Elf_External_Verneed);
5262 ++crefs;
5263 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5264 size += sizeof (Elf_External_Vernaux);
5265 }
5266
eea6121a
AM
5267 s->size = size;
5268 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5269 if (s->contents == NULL)
5270 return FALSE;
5271
5272 p = s->contents;
5273 for (t = elf_tdata (output_bfd)->verref;
5274 t != NULL;
5275 t = t->vn_nextref)
5276 {
5277 unsigned int caux;
5278 Elf_Internal_Vernaux *a;
5279 bfd_size_type indx;
5280
5281 caux = 0;
5282 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5283 ++caux;
5284
5285 t->vn_version = VER_NEED_CURRENT;
5286 t->vn_cnt = caux;
5287 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5288 elf_dt_name (t->vn_bfd) != NULL
5289 ? elf_dt_name (t->vn_bfd)
5290 : basename (t->vn_bfd->filename),
5291 FALSE);
5292 if (indx == (bfd_size_type) -1)
5293 return FALSE;
5294 t->vn_file = indx;
5295 t->vn_aux = sizeof (Elf_External_Verneed);
5296 if (t->vn_nextref == NULL)
5297 t->vn_next = 0;
5298 else
5299 t->vn_next = (sizeof (Elf_External_Verneed)
5300 + caux * sizeof (Elf_External_Vernaux));
5301
5302 _bfd_elf_swap_verneed_out (output_bfd, t,
5303 (Elf_External_Verneed *) p);
5304 p += sizeof (Elf_External_Verneed);
5305
5306 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5307 {
5308 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5309 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5310 a->vna_nodename, FALSE);
5311 if (indx == (bfd_size_type) -1)
5312 return FALSE;
5313 a->vna_name = indx;
5314 if (a->vna_nextptr == NULL)
5315 a->vna_next = 0;
5316 else
5317 a->vna_next = sizeof (Elf_External_Vernaux);
5318
5319 _bfd_elf_swap_vernaux_out (output_bfd, a,
5320 (Elf_External_Vernaux *) p);
5321 p += sizeof (Elf_External_Vernaux);
5322 }
5323 }
5324
5325 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5326 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5327 return FALSE;
5328
5329 elf_tdata (output_bfd)->cverrefs = crefs;
5330 }
5331 }
5332
5333 /* Assign dynsym indicies. In a shared library we generate a
5334 section symbol for each output section, which come first.
5335 Next come all of the back-end allocated local dynamic syms,
5336 followed by the rest of the global symbols. */
5337
5338 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5339
5340 /* Work out the size of the symbol version section. */
5341 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5342 BFD_ASSERT (s != NULL);
5343 if (dynsymcount == 0
5344 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5345 {
5346 _bfd_strip_section_from_output (info, s);
5347 /* The DYNSYMCOUNT might have changed if we were going to
5348 output a dynamic symbol table entry for S. */
5349 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5350 }
5351 else
5352 {
eea6121a
AM
5353 s->size = dynsymcount * sizeof (Elf_External_Versym);
5354 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5355 if (s->contents == NULL)
5356 return FALSE;
5357
5358 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5359 return FALSE;
5360 }
5361
5362 /* Set the size of the .dynsym and .hash sections. We counted
5363 the number of dynamic symbols in elf_link_add_object_symbols.
5364 We will build the contents of .dynsym and .hash when we build
5365 the final symbol table, because until then we do not know the
5366 correct value to give the symbols. We built the .dynstr
5367 section as we went along in elf_link_add_object_symbols. */
5368 s = bfd_get_section_by_name (dynobj, ".dynsym");
5369 BFD_ASSERT (s != NULL);
eea6121a
AM
5370 s->size = dynsymcount * bed->s->sizeof_sym;
5371 s->contents = bfd_alloc (output_bfd, s->size);
5372 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5373 return FALSE;
5374
5375 if (dynsymcount != 0)
5376 {
5377 Elf_Internal_Sym isym;
5378
5379 /* The first entry in .dynsym is a dummy symbol. */
5380 isym.st_value = 0;
5381 isym.st_size = 0;
5382 isym.st_name = 0;
5383 isym.st_info = 0;
5384 isym.st_other = 0;
5385 isym.st_shndx = 0;
5386 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5387 }
5388
5389 /* Compute the size of the hashing table. As a side effect this
5390 computes the hash values for all the names we export. */
5391 bucketcount = compute_bucket_count (info);
5392
5393 s = bfd_get_section_by_name (dynobj, ".hash");
5394 BFD_ASSERT (s != NULL);
5395 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5396 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5397 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5398 if (s->contents == NULL)
5399 return FALSE;
5400
5401 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5402 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5403 s->contents + hash_entry_size);
5404
5405 elf_hash_table (info)->bucketcount = bucketcount;
5406
5407 s = bfd_get_section_by_name (dynobj, ".dynstr");
5408 BFD_ASSERT (s != NULL);
5409
4ad4eba5 5410 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5411
eea6121a 5412 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5413
5414 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5415 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5416 return FALSE;
5417 }
5418
5419 return TRUE;
5420}
c152c796
AM
5421
5422/* Final phase of ELF linker. */
5423
5424/* A structure we use to avoid passing large numbers of arguments. */
5425
5426struct elf_final_link_info
5427{
5428 /* General link information. */
5429 struct bfd_link_info *info;
5430 /* Output BFD. */
5431 bfd *output_bfd;
5432 /* Symbol string table. */
5433 struct bfd_strtab_hash *symstrtab;
5434 /* .dynsym section. */
5435 asection *dynsym_sec;
5436 /* .hash section. */
5437 asection *hash_sec;
5438 /* symbol version section (.gnu.version). */
5439 asection *symver_sec;
5440 /* Buffer large enough to hold contents of any section. */
5441 bfd_byte *contents;
5442 /* Buffer large enough to hold external relocs of any section. */
5443 void *external_relocs;
5444 /* Buffer large enough to hold internal relocs of any section. */
5445 Elf_Internal_Rela *internal_relocs;
5446 /* Buffer large enough to hold external local symbols of any input
5447 BFD. */
5448 bfd_byte *external_syms;
5449 /* And a buffer for symbol section indices. */
5450 Elf_External_Sym_Shndx *locsym_shndx;
5451 /* Buffer large enough to hold internal local symbols of any input
5452 BFD. */
5453 Elf_Internal_Sym *internal_syms;
5454 /* Array large enough to hold a symbol index for each local symbol
5455 of any input BFD. */
5456 long *indices;
5457 /* Array large enough to hold a section pointer for each local
5458 symbol of any input BFD. */
5459 asection **sections;
5460 /* Buffer to hold swapped out symbols. */
5461 bfd_byte *symbuf;
5462 /* And one for symbol section indices. */
5463 Elf_External_Sym_Shndx *symshndxbuf;
5464 /* Number of swapped out symbols in buffer. */
5465 size_t symbuf_count;
5466 /* Number of symbols which fit in symbuf. */
5467 size_t symbuf_size;
5468 /* And same for symshndxbuf. */
5469 size_t shndxbuf_size;
5470};
5471
5472/* This struct is used to pass information to elf_link_output_extsym. */
5473
5474struct elf_outext_info
5475{
5476 bfd_boolean failed;
5477 bfd_boolean localsyms;
5478 struct elf_final_link_info *finfo;
5479};
5480
5481/* When performing a relocatable link, the input relocations are
5482 preserved. But, if they reference global symbols, the indices
5483 referenced must be updated. Update all the relocations in
5484 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5485
5486static void
5487elf_link_adjust_relocs (bfd *abfd,
5488 Elf_Internal_Shdr *rel_hdr,
5489 unsigned int count,
5490 struct elf_link_hash_entry **rel_hash)
5491{
5492 unsigned int i;
5493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5494 bfd_byte *erela;
5495 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5496 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5497 bfd_vma r_type_mask;
5498 int r_sym_shift;
5499
5500 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5501 {
5502 swap_in = bed->s->swap_reloc_in;
5503 swap_out = bed->s->swap_reloc_out;
5504 }
5505 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5506 {
5507 swap_in = bed->s->swap_reloca_in;
5508 swap_out = bed->s->swap_reloca_out;
5509 }
5510 else
5511 abort ();
5512
5513 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5514 abort ();
5515
5516 if (bed->s->arch_size == 32)
5517 {
5518 r_type_mask = 0xff;
5519 r_sym_shift = 8;
5520 }
5521 else
5522 {
5523 r_type_mask = 0xffffffff;
5524 r_sym_shift = 32;
5525 }
5526
5527 erela = rel_hdr->contents;
5528 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5529 {
5530 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5531 unsigned int j;
5532
5533 if (*rel_hash == NULL)
5534 continue;
5535
5536 BFD_ASSERT ((*rel_hash)->indx >= 0);
5537
5538 (*swap_in) (abfd, erela, irela);
5539 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5540 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5541 | (irela[j].r_info & r_type_mask));
5542 (*swap_out) (abfd, irela, erela);
5543 }
5544}
5545
5546struct elf_link_sort_rela
5547{
5548 union {
5549 bfd_vma offset;
5550 bfd_vma sym_mask;
5551 } u;
5552 enum elf_reloc_type_class type;
5553 /* We use this as an array of size int_rels_per_ext_rel. */
5554 Elf_Internal_Rela rela[1];
5555};
5556
5557static int
5558elf_link_sort_cmp1 (const void *A, const void *B)
5559{
5560 const struct elf_link_sort_rela *a = A;
5561 const struct elf_link_sort_rela *b = B;
5562 int relativea, relativeb;
5563
5564 relativea = a->type == reloc_class_relative;
5565 relativeb = b->type == reloc_class_relative;
5566
5567 if (relativea < relativeb)
5568 return 1;
5569 if (relativea > relativeb)
5570 return -1;
5571 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5572 return -1;
5573 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5574 return 1;
5575 if (a->rela->r_offset < b->rela->r_offset)
5576 return -1;
5577 if (a->rela->r_offset > b->rela->r_offset)
5578 return 1;
5579 return 0;
5580}
5581
5582static int
5583elf_link_sort_cmp2 (const void *A, const void *B)
5584{
5585 const struct elf_link_sort_rela *a = A;
5586 const struct elf_link_sort_rela *b = B;
5587 int copya, copyb;
5588
5589 if (a->u.offset < b->u.offset)
5590 return -1;
5591 if (a->u.offset > b->u.offset)
5592 return 1;
5593 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5594 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5595 if (copya < copyb)
5596 return -1;
5597 if (copya > copyb)
5598 return 1;
5599 if (a->rela->r_offset < b->rela->r_offset)
5600 return -1;
5601 if (a->rela->r_offset > b->rela->r_offset)
5602 return 1;
5603 return 0;
5604}
5605
5606static size_t
5607elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5608{
5609 asection *reldyn;
5610 bfd_size_type count, size;
5611 size_t i, ret, sort_elt, ext_size;
5612 bfd_byte *sort, *s_non_relative, *p;
5613 struct elf_link_sort_rela *sq;
5614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5615 int i2e = bed->s->int_rels_per_ext_rel;
5616 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5617 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5618 struct bfd_link_order *lo;
5619 bfd_vma r_sym_mask;
5620
5621 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5622 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5623 {
5624 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5625 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5626 return 0;
5627 ext_size = bed->s->sizeof_rel;
5628 swap_in = bed->s->swap_reloc_in;
5629 swap_out = bed->s->swap_reloc_out;
5630 }
5631 else
5632 {
5633 ext_size = bed->s->sizeof_rela;
5634 swap_in = bed->s->swap_reloca_in;
5635 swap_out = bed->s->swap_reloca_out;
5636 }
eea6121a 5637 count = reldyn->size / ext_size;
c152c796
AM
5638
5639 size = 0;
5640 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5641 if (lo->type == bfd_indirect_link_order)
5642 {
5643 asection *o = lo->u.indirect.section;
eea6121a 5644 size += o->size;
c152c796
AM
5645 }
5646
eea6121a 5647 if (size != reldyn->size)
c152c796
AM
5648 return 0;
5649
5650 sort_elt = (sizeof (struct elf_link_sort_rela)
5651 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5652 sort = bfd_zmalloc (sort_elt * count);
5653 if (sort == NULL)
5654 {
5655 (*info->callbacks->warning)
5656 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5657 return 0;
5658 }
5659
5660 if (bed->s->arch_size == 32)
5661 r_sym_mask = ~(bfd_vma) 0xff;
5662 else
5663 r_sym_mask = ~(bfd_vma) 0xffffffff;
5664
5665 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5666 if (lo->type == bfd_indirect_link_order)
5667 {
5668 bfd_byte *erel, *erelend;
5669 asection *o = lo->u.indirect.section;
5670
5671 erel = o->contents;
eea6121a 5672 erelend = o->contents + o->size;
c152c796
AM
5673 p = sort + o->output_offset / ext_size * sort_elt;
5674 while (erel < erelend)
5675 {
5676 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5677 (*swap_in) (abfd, erel, s->rela);
5678 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5679 s->u.sym_mask = r_sym_mask;
5680 p += sort_elt;
5681 erel += ext_size;
5682 }
5683 }
5684
5685 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5686
5687 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5688 {
5689 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5690 if (s->type != reloc_class_relative)
5691 break;
5692 }
5693 ret = i;
5694 s_non_relative = p;
5695
5696 sq = (struct elf_link_sort_rela *) s_non_relative;
5697 for (; i < count; i++, p += sort_elt)
5698 {
5699 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5700 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5701 sq = sp;
5702 sp->u.offset = sq->rela->r_offset;
5703 }
5704
5705 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5706
5707 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5708 if (lo->type == bfd_indirect_link_order)
5709 {
5710 bfd_byte *erel, *erelend;
5711 asection *o = lo->u.indirect.section;
5712
5713 erel = o->contents;
eea6121a 5714 erelend = o->contents + o->size;
c152c796
AM
5715 p = sort + o->output_offset / ext_size * sort_elt;
5716 while (erel < erelend)
5717 {
5718 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5719 (*swap_out) (abfd, s->rela, erel);
5720 p += sort_elt;
5721 erel += ext_size;
5722 }
5723 }
5724
5725 free (sort);
5726 *psec = reldyn;
5727 return ret;
5728}
5729
5730/* Flush the output symbols to the file. */
5731
5732static bfd_boolean
5733elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5734 const struct elf_backend_data *bed)
5735{
5736 if (finfo->symbuf_count > 0)
5737 {
5738 Elf_Internal_Shdr *hdr;
5739 file_ptr pos;
5740 bfd_size_type amt;
5741
5742 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5743 pos = hdr->sh_offset + hdr->sh_size;
5744 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5745 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5746 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5747 return FALSE;
5748
5749 hdr->sh_size += amt;
5750 finfo->symbuf_count = 0;
5751 }
5752
5753 return TRUE;
5754}
5755
5756/* Add a symbol to the output symbol table. */
5757
5758static bfd_boolean
5759elf_link_output_sym (struct elf_final_link_info *finfo,
5760 const char *name,
5761 Elf_Internal_Sym *elfsym,
5762 asection *input_sec,
5763 struct elf_link_hash_entry *h)
5764{
5765 bfd_byte *dest;
5766 Elf_External_Sym_Shndx *destshndx;
5767 bfd_boolean (*output_symbol_hook)
5768 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5769 struct elf_link_hash_entry *);
5770 const struct elf_backend_data *bed;
5771
5772 bed = get_elf_backend_data (finfo->output_bfd);
5773 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5774 if (output_symbol_hook != NULL)
5775 {
5776 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5777 return FALSE;
5778 }
5779
5780 if (name == NULL || *name == '\0')
5781 elfsym->st_name = 0;
5782 else if (input_sec->flags & SEC_EXCLUDE)
5783 elfsym->st_name = 0;
5784 else
5785 {
5786 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5787 name, TRUE, FALSE);
5788 if (elfsym->st_name == (unsigned long) -1)
5789 return FALSE;
5790 }
5791
5792 if (finfo->symbuf_count >= finfo->symbuf_size)
5793 {
5794 if (! elf_link_flush_output_syms (finfo, bed))
5795 return FALSE;
5796 }
5797
5798 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5799 destshndx = finfo->symshndxbuf;
5800 if (destshndx != NULL)
5801 {
5802 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5803 {
5804 bfd_size_type amt;
5805
5806 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5807 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5808 if (destshndx == NULL)
5809 return FALSE;
5810 memset ((char *) destshndx + amt, 0, amt);
5811 finfo->shndxbuf_size *= 2;
5812 }
5813 destshndx += bfd_get_symcount (finfo->output_bfd);
5814 }
5815
5816 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5817 finfo->symbuf_count += 1;
5818 bfd_get_symcount (finfo->output_bfd) += 1;
5819
5820 return TRUE;
5821}
5822
5823/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5824 allowing an unsatisfied unversioned symbol in the DSO to match a
5825 versioned symbol that would normally require an explicit version.
5826 We also handle the case that a DSO references a hidden symbol
5827 which may be satisfied by a versioned symbol in another DSO. */
5828
5829static bfd_boolean
5830elf_link_check_versioned_symbol (struct bfd_link_info *info,
5831 const struct elf_backend_data *bed,
5832 struct elf_link_hash_entry *h)
5833{
5834 bfd *abfd;
5835 struct elf_link_loaded_list *loaded;
5836
5837 if (!is_elf_hash_table (info->hash))
5838 return FALSE;
5839
5840 switch (h->root.type)
5841 {
5842 default:
5843 abfd = NULL;
5844 break;
5845
5846 case bfd_link_hash_undefined:
5847 case bfd_link_hash_undefweak:
5848 abfd = h->root.u.undef.abfd;
5849 if ((abfd->flags & DYNAMIC) == 0
e56f61be 5850 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
5851 return FALSE;
5852 break;
5853
5854 case bfd_link_hash_defined:
5855 case bfd_link_hash_defweak:
5856 abfd = h->root.u.def.section->owner;
5857 break;
5858
5859 case bfd_link_hash_common:
5860 abfd = h->root.u.c.p->section->owner;
5861 break;
5862 }
5863 BFD_ASSERT (abfd != NULL);
5864
5865 for (loaded = elf_hash_table (info)->loaded;
5866 loaded != NULL;
5867 loaded = loaded->next)
5868 {
5869 bfd *input;
5870 Elf_Internal_Shdr *hdr;
5871 bfd_size_type symcount;
5872 bfd_size_type extsymcount;
5873 bfd_size_type extsymoff;
5874 Elf_Internal_Shdr *versymhdr;
5875 Elf_Internal_Sym *isym;
5876 Elf_Internal_Sym *isymend;
5877 Elf_Internal_Sym *isymbuf;
5878 Elf_External_Versym *ever;
5879 Elf_External_Versym *extversym;
5880
5881 input = loaded->abfd;
5882
5883 /* We check each DSO for a possible hidden versioned definition. */
5884 if (input == abfd
5885 || (input->flags & DYNAMIC) == 0
5886 || elf_dynversym (input) == 0)
5887 continue;
5888
5889 hdr = &elf_tdata (input)->dynsymtab_hdr;
5890
5891 symcount = hdr->sh_size / bed->s->sizeof_sym;
5892 if (elf_bad_symtab (input))
5893 {
5894 extsymcount = symcount;
5895 extsymoff = 0;
5896 }
5897 else
5898 {
5899 extsymcount = symcount - hdr->sh_info;
5900 extsymoff = hdr->sh_info;
5901 }
5902
5903 if (extsymcount == 0)
5904 continue;
5905
5906 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5907 NULL, NULL, NULL);
5908 if (isymbuf == NULL)
5909 return FALSE;
5910
5911 /* Read in any version definitions. */
5912 versymhdr = &elf_tdata (input)->dynversym_hdr;
5913 extversym = bfd_malloc (versymhdr->sh_size);
5914 if (extversym == NULL)
5915 goto error_ret;
5916
5917 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5918 || (bfd_bread (extversym, versymhdr->sh_size, input)
5919 != versymhdr->sh_size))
5920 {
5921 free (extversym);
5922 error_ret:
5923 free (isymbuf);
5924 return FALSE;
5925 }
5926
5927 ever = extversym + extsymoff;
5928 isymend = isymbuf + extsymcount;
5929 for (isym = isymbuf; isym < isymend; isym++, ever++)
5930 {
5931 const char *name;
5932 Elf_Internal_Versym iver;
5933 unsigned short version_index;
5934
5935 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5936 || isym->st_shndx == SHN_UNDEF)
5937 continue;
5938
5939 name = bfd_elf_string_from_elf_section (input,
5940 hdr->sh_link,
5941 isym->st_name);
5942 if (strcmp (name, h->root.root.string) != 0)
5943 continue;
5944
5945 _bfd_elf_swap_versym_in (input, ever, &iver);
5946
5947 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5948 {
5949 /* If we have a non-hidden versioned sym, then it should
5950 have provided a definition for the undefined sym. */
5951 abort ();
5952 }
5953
5954 version_index = iver.vs_vers & VERSYM_VERSION;
5955 if (version_index == 1 || version_index == 2)
5956 {
5957 /* This is the base or first version. We can use it. */
5958 free (extversym);
5959 free (isymbuf);
5960 return TRUE;
5961 }
5962 }
5963
5964 free (extversym);
5965 free (isymbuf);
5966 }
5967
5968 return FALSE;
5969}
5970
5971/* Add an external symbol to the symbol table. This is called from
5972 the hash table traversal routine. When generating a shared object,
5973 we go through the symbol table twice. The first time we output
5974 anything that might have been forced to local scope in a version
5975 script. The second time we output the symbols that are still
5976 global symbols. */
5977
5978static bfd_boolean
5979elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5980{
5981 struct elf_outext_info *eoinfo = data;
5982 struct elf_final_link_info *finfo = eoinfo->finfo;
5983 bfd_boolean strip;
5984 Elf_Internal_Sym sym;
5985 asection *input_sec;
5986 const struct elf_backend_data *bed;
5987
5988 if (h->root.type == bfd_link_hash_warning)
5989 {
5990 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5991 if (h->root.type == bfd_link_hash_new)
5992 return TRUE;
5993 }
5994
5995 /* Decide whether to output this symbol in this pass. */
5996 if (eoinfo->localsyms)
5997 {
5998 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5999 return TRUE;
6000 }
6001 else
6002 {
6003 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6004 return TRUE;
6005 }
6006
6007 bed = get_elf_backend_data (finfo->output_bfd);
6008
6009 /* If we have an undefined symbol reference here then it must have
6010 come from a shared library that is being linked in. (Undefined
6011 references in regular files have already been handled). If we
6012 are reporting errors for this situation then do so now. */
6013 if (h->root.type == bfd_link_hash_undefined
6014 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6015 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6016 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6017 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6018 {
6019 if (! ((*finfo->info->callbacks->undefined_symbol)
6020 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6021 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6022 {
6023 eoinfo->failed = TRUE;
6024 return FALSE;
6025 }
6026 }
6027
6028 /* We should also warn if a forced local symbol is referenced from
6029 shared libraries. */
6030 if (! finfo->info->relocatable
6031 && (! finfo->info->shared)
6032 && (h->elf_link_hash_flags
6033 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
6034 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
6035 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6036 {
6037 (*_bfd_error_handler)
d003868e
AM
6038 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6039 finfo->output_bfd, h->root.u.def.section->owner,
c152c796
AM
6040 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6041 ? "internal"
6042 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6043 ? "hidden" : "local",
6044 h->root.root.string);
c152c796
AM
6045 eoinfo->failed = TRUE;
6046 return FALSE;
6047 }
6048
6049 /* We don't want to output symbols that have never been mentioned by
6050 a regular file, or that we have been told to strip. However, if
6051 h->indx is set to -2, the symbol is used by a reloc and we must
6052 output it. */
6053 if (h->indx == -2)
6054 strip = FALSE;
6055 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6056 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6057 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6058 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6059 strip = TRUE;
6060 else if (finfo->info->strip == strip_all)
6061 strip = TRUE;
6062 else if (finfo->info->strip == strip_some
6063 && bfd_hash_lookup (finfo->info->keep_hash,
6064 h->root.root.string, FALSE, FALSE) == NULL)
6065 strip = TRUE;
6066 else if (finfo->info->strip_discarded
6067 && (h->root.type == bfd_link_hash_defined
6068 || h->root.type == bfd_link_hash_defweak)
6069 && elf_discarded_section (h->root.u.def.section))
6070 strip = TRUE;
6071 else
6072 strip = FALSE;
6073
6074 /* If we're stripping it, and it's not a dynamic symbol, there's
6075 nothing else to do unless it is a forced local symbol. */
6076 if (strip
6077 && h->dynindx == -1
6078 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6079 return TRUE;
6080
6081 sym.st_value = 0;
6082 sym.st_size = h->size;
6083 sym.st_other = h->other;
6084 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6085 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6086 else if (h->root.type == bfd_link_hash_undefweak
6087 || h->root.type == bfd_link_hash_defweak)
6088 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6089 else
6090 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6091
6092 switch (h->root.type)
6093 {
6094 default:
6095 case bfd_link_hash_new:
6096 case bfd_link_hash_warning:
6097 abort ();
6098 return FALSE;
6099
6100 case bfd_link_hash_undefined:
6101 case bfd_link_hash_undefweak:
6102 input_sec = bfd_und_section_ptr;
6103 sym.st_shndx = SHN_UNDEF;
6104 break;
6105
6106 case bfd_link_hash_defined:
6107 case bfd_link_hash_defweak:
6108 {
6109 input_sec = h->root.u.def.section;
6110 if (input_sec->output_section != NULL)
6111 {
6112 sym.st_shndx =
6113 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6114 input_sec->output_section);
6115 if (sym.st_shndx == SHN_BAD)
6116 {
6117 (*_bfd_error_handler)
d003868e
AM
6118 (_("%B: could not find output section %A for input section %A"),
6119 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6120 eoinfo->failed = TRUE;
6121 return FALSE;
6122 }
6123
6124 /* ELF symbols in relocatable files are section relative,
6125 but in nonrelocatable files they are virtual
6126 addresses. */
6127 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6128 if (! finfo->info->relocatable)
6129 {
6130 sym.st_value += input_sec->output_section->vma;
6131 if (h->type == STT_TLS)
6132 {
6133 /* STT_TLS symbols are relative to PT_TLS segment
6134 base. */
6135 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6136 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6137 }
6138 }
6139 }
6140 else
6141 {
6142 BFD_ASSERT (input_sec->owner == NULL
6143 || (input_sec->owner->flags & DYNAMIC) != 0);
6144 sym.st_shndx = SHN_UNDEF;
6145 input_sec = bfd_und_section_ptr;
6146 }
6147 }
6148 break;
6149
6150 case bfd_link_hash_common:
6151 input_sec = h->root.u.c.p->section;
6152 sym.st_shndx = SHN_COMMON;
6153 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6154 break;
6155
6156 case bfd_link_hash_indirect:
6157 /* These symbols are created by symbol versioning. They point
6158 to the decorated version of the name. For example, if the
6159 symbol foo@@GNU_1.2 is the default, which should be used when
6160 foo is used with no version, then we add an indirect symbol
6161 foo which points to foo@@GNU_1.2. We ignore these symbols,
6162 since the indirected symbol is already in the hash table. */
6163 return TRUE;
6164 }
6165
6166 /* Give the processor backend a chance to tweak the symbol value,
6167 and also to finish up anything that needs to be done for this
6168 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6169 forced local syms when non-shared is due to a historical quirk. */
6170 if ((h->dynindx != -1
6171 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6172 && ((finfo->info->shared
6173 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6174 || h->root.type != bfd_link_hash_undefweak))
6175 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6176 && elf_hash_table (finfo->info)->dynamic_sections_created)
6177 {
6178 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6179 (finfo->output_bfd, finfo->info, h, &sym)))
6180 {
6181 eoinfo->failed = TRUE;
6182 return FALSE;
6183 }
6184 }
6185
6186 /* If we are marking the symbol as undefined, and there are no
6187 non-weak references to this symbol from a regular object, then
6188 mark the symbol as weak undefined; if there are non-weak
6189 references, mark the symbol as strong. We can't do this earlier,
6190 because it might not be marked as undefined until the
6191 finish_dynamic_symbol routine gets through with it. */
6192 if (sym.st_shndx == SHN_UNDEF
6193 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6194 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6195 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6196 {
6197 int bindtype;
6198
6199 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6200 bindtype = STB_GLOBAL;
6201 else
6202 bindtype = STB_WEAK;
6203 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6204 }
6205
6206 /* If a non-weak symbol with non-default visibility is not defined
6207 locally, it is a fatal error. */
6208 if (! finfo->info->relocatable
6209 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6210 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6211 && h->root.type == bfd_link_hash_undefined
6212 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6213 {
6214 (*_bfd_error_handler)
d003868e
AM
6215 (_("%B: %s symbol `%s' isn't defined"),
6216 finfo->output_bfd,
6217 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6218 ? "protected"
6219 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6220 ? "internal" : "hidden",
6221 h->root.root.string);
c152c796
AM
6222 eoinfo->failed = TRUE;
6223 return FALSE;
6224 }
6225
6226 /* If this symbol should be put in the .dynsym section, then put it
6227 there now. We already know the symbol index. We also fill in
6228 the entry in the .hash section. */
6229 if (h->dynindx != -1
6230 && elf_hash_table (finfo->info)->dynamic_sections_created)
6231 {
6232 size_t bucketcount;
6233 size_t bucket;
6234 size_t hash_entry_size;
6235 bfd_byte *bucketpos;
6236 bfd_vma chain;
6237 bfd_byte *esym;
6238
6239 sym.st_name = h->dynstr_index;
6240 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6241 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6242
6243 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6244 bucket = h->elf_hash_value % bucketcount;
6245 hash_entry_size
6246 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6247 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6248 + (bucket + 2) * hash_entry_size);
6249 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6250 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6251 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6252 ((bfd_byte *) finfo->hash_sec->contents
6253 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6254
6255 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6256 {
6257 Elf_Internal_Versym iversym;
6258 Elf_External_Versym *eversym;
6259
6260 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6261 {
6262 if (h->verinfo.verdef == NULL)
6263 iversym.vs_vers = 0;
6264 else
6265 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6266 }
6267 else
6268 {
6269 if (h->verinfo.vertree == NULL)
6270 iversym.vs_vers = 1;
6271 else
6272 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6273 }
6274
6275 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6276 iversym.vs_vers |= VERSYM_HIDDEN;
6277
6278 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6279 eversym += h->dynindx;
6280 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6281 }
6282 }
6283
6284 /* If we're stripping it, then it was just a dynamic symbol, and
6285 there's nothing else to do. */
6286 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6287 return TRUE;
6288
6289 h->indx = bfd_get_symcount (finfo->output_bfd);
6290
6291 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6292 {
6293 eoinfo->failed = TRUE;
6294 return FALSE;
6295 }
6296
6297 return TRUE;
6298}
6299
cdd3575c
AM
6300/* Return TRUE if special handling is done for relocs in SEC against
6301 symbols defined in discarded sections. */
6302
c152c796
AM
6303static bfd_boolean
6304elf_section_ignore_discarded_relocs (asection *sec)
6305{
6306 const struct elf_backend_data *bed;
6307
cdd3575c
AM
6308 switch (sec->sec_info_type)
6309 {
6310 case ELF_INFO_TYPE_STABS:
6311 case ELF_INFO_TYPE_EH_FRAME:
6312 return TRUE;
6313 default:
6314 break;
6315 }
c152c796
AM
6316
6317 bed = get_elf_backend_data (sec->owner);
6318 if (bed->elf_backend_ignore_discarded_relocs != NULL
6319 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6320 return TRUE;
6321
6322 return FALSE;
6323}
6324
cdd3575c
AM
6325/* Return TRUE if we should complain about a reloc in SEC against a
6326 symbol defined in a discarded section. */
6327
6328static bfd_boolean
6329elf_section_complain_discarded (asection *sec)
6330{
6331 if (strncmp (".stab", sec->name, 5) == 0
6332 && (!sec->name[5] ||
6333 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6334 return FALSE;
6335
6336 if (strcmp (".eh_frame", sec->name) == 0)
6337 return FALSE;
6338
6339 if (strcmp (".gcc_except_table", sec->name) == 0)
6340 return FALSE;
6341
27b56da8
DA
6342 if (strcmp (".PARISC.unwind", sec->name) == 0)
6343 return FALSE;
327c1315
AM
6344
6345 if (strcmp (".fixup", sec->name) == 0)
6346 return FALSE;
27b56da8 6347
cdd3575c
AM
6348 return TRUE;
6349}
6350
3d7f7666
L
6351/* Find a match between a section and a member of a section group. */
6352
6353static asection *
6354match_group_member (asection *sec, asection *group)
6355{
6356 asection *first = elf_next_in_group (group);
6357 asection *s = first;
6358
6359 while (s != NULL)
6360 {
6361 if (bfd_elf_match_symbols_in_sections (s, sec))
6362 return s;
6363
6364 if (s == first)
6365 break;
6366 }
6367
6368 return NULL;
6369}
6370
c152c796
AM
6371/* Link an input file into the linker output file. This function
6372 handles all the sections and relocations of the input file at once.
6373 This is so that we only have to read the local symbols once, and
6374 don't have to keep them in memory. */
6375
6376static bfd_boolean
6377elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6378{
6379 bfd_boolean (*relocate_section)
6380 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6381 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6382 bfd *output_bfd;
6383 Elf_Internal_Shdr *symtab_hdr;
6384 size_t locsymcount;
6385 size_t extsymoff;
6386 Elf_Internal_Sym *isymbuf;
6387 Elf_Internal_Sym *isym;
6388 Elf_Internal_Sym *isymend;
6389 long *pindex;
6390 asection **ppsection;
6391 asection *o;
6392 const struct elf_backend_data *bed;
6393 bfd_boolean emit_relocs;
6394 struct elf_link_hash_entry **sym_hashes;
6395
6396 output_bfd = finfo->output_bfd;
6397 bed = get_elf_backend_data (output_bfd);
6398 relocate_section = bed->elf_backend_relocate_section;
6399
6400 /* If this is a dynamic object, we don't want to do anything here:
6401 we don't want the local symbols, and we don't want the section
6402 contents. */
6403 if ((input_bfd->flags & DYNAMIC) != 0)
6404 return TRUE;
6405
6406 emit_relocs = (finfo->info->relocatable
6407 || finfo->info->emitrelocations
6408 || bed->elf_backend_emit_relocs);
6409
6410 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6411 if (elf_bad_symtab (input_bfd))
6412 {
6413 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6414 extsymoff = 0;
6415 }
6416 else
6417 {
6418 locsymcount = symtab_hdr->sh_info;
6419 extsymoff = symtab_hdr->sh_info;
6420 }
6421
6422 /* Read the local symbols. */
6423 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6424 if (isymbuf == NULL && locsymcount != 0)
6425 {
6426 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6427 finfo->internal_syms,
6428 finfo->external_syms,
6429 finfo->locsym_shndx);
6430 if (isymbuf == NULL)
6431 return FALSE;
6432 }
6433
6434 /* Find local symbol sections and adjust values of symbols in
6435 SEC_MERGE sections. Write out those local symbols we know are
6436 going into the output file. */
6437 isymend = isymbuf + locsymcount;
6438 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6439 isym < isymend;
6440 isym++, pindex++, ppsection++)
6441 {
6442 asection *isec;
6443 const char *name;
6444 Elf_Internal_Sym osym;
6445
6446 *pindex = -1;
6447
6448 if (elf_bad_symtab (input_bfd))
6449 {
6450 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6451 {
6452 *ppsection = NULL;
6453 continue;
6454 }
6455 }
6456
6457 if (isym->st_shndx == SHN_UNDEF)
6458 isec = bfd_und_section_ptr;
6459 else if (isym->st_shndx < SHN_LORESERVE
6460 || isym->st_shndx > SHN_HIRESERVE)
6461 {
6462 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6463 if (isec
6464 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6465 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6466 isym->st_value =
6467 _bfd_merged_section_offset (output_bfd, &isec,
6468 elf_section_data (isec)->sec_info,
753731ee 6469 isym->st_value);
c152c796
AM
6470 }
6471 else if (isym->st_shndx == SHN_ABS)
6472 isec = bfd_abs_section_ptr;
6473 else if (isym->st_shndx == SHN_COMMON)
6474 isec = bfd_com_section_ptr;
6475 else
6476 {
6477 /* Who knows? */
6478 isec = NULL;
6479 }
6480
6481 *ppsection = isec;
6482
6483 /* Don't output the first, undefined, symbol. */
6484 if (ppsection == finfo->sections)
6485 continue;
6486
6487 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6488 {
6489 /* We never output section symbols. Instead, we use the
6490 section symbol of the corresponding section in the output
6491 file. */
6492 continue;
6493 }
6494
6495 /* If we are stripping all symbols, we don't want to output this
6496 one. */
6497 if (finfo->info->strip == strip_all)
6498 continue;
6499
6500 /* If we are discarding all local symbols, we don't want to
6501 output this one. If we are generating a relocatable output
6502 file, then some of the local symbols may be required by
6503 relocs; we output them below as we discover that they are
6504 needed. */
6505 if (finfo->info->discard == discard_all)
6506 continue;
6507
6508 /* If this symbol is defined in a section which we are
6509 discarding, we don't need to keep it, but note that
6510 linker_mark is only reliable for sections that have contents.
6511 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6512 as well as linker_mark. */
6513 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6514 && isec != NULL
6515 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6516 || (! finfo->info->relocatable
6517 && (isec->flags & SEC_EXCLUDE) != 0)))
6518 continue;
6519
6520 /* Get the name of the symbol. */
6521 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6522 isym->st_name);
6523 if (name == NULL)
6524 return FALSE;
6525
6526 /* See if we are discarding symbols with this name. */
6527 if ((finfo->info->strip == strip_some
6528 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6529 == NULL))
6530 || (((finfo->info->discard == discard_sec_merge
6531 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6532 || finfo->info->discard == discard_l)
6533 && bfd_is_local_label_name (input_bfd, name)))
6534 continue;
6535
6536 /* If we get here, we are going to output this symbol. */
6537
6538 osym = *isym;
6539
6540 /* Adjust the section index for the output file. */
6541 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6542 isec->output_section);
6543 if (osym.st_shndx == SHN_BAD)
6544 return FALSE;
6545
6546 *pindex = bfd_get_symcount (output_bfd);
6547
6548 /* ELF symbols in relocatable files are section relative, but
6549 in executable files they are virtual addresses. Note that
6550 this code assumes that all ELF sections have an associated
6551 BFD section with a reasonable value for output_offset; below
6552 we assume that they also have a reasonable value for
6553 output_section. Any special sections must be set up to meet
6554 these requirements. */
6555 osym.st_value += isec->output_offset;
6556 if (! finfo->info->relocatable)
6557 {
6558 osym.st_value += isec->output_section->vma;
6559 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6560 {
6561 /* STT_TLS symbols are relative to PT_TLS segment base. */
6562 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6563 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6564 }
6565 }
6566
6567 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6568 return FALSE;
6569 }
6570
6571 /* Relocate the contents of each section. */
6572 sym_hashes = elf_sym_hashes (input_bfd);
6573 for (o = input_bfd->sections; o != NULL; o = o->next)
6574 {
6575 bfd_byte *contents;
6576
6577 if (! o->linker_mark)
6578 {
6579 /* This section was omitted from the link. */
6580 continue;
6581 }
6582
6583 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6584 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6585 continue;
6586
6587 if ((o->flags & SEC_LINKER_CREATED) != 0)
6588 {
6589 /* Section was created by _bfd_elf_link_create_dynamic_sections
6590 or somesuch. */
6591 continue;
6592 }
6593
6594 /* Get the contents of the section. They have been cached by a
6595 relaxation routine. Note that o is a section in an input
6596 file, so the contents field will not have been set by any of
6597 the routines which work on output files. */
6598 if (elf_section_data (o)->this_hdr.contents != NULL)
6599 contents = elf_section_data (o)->this_hdr.contents;
6600 else
6601 {
eea6121a
AM
6602 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6603
c152c796 6604 contents = finfo->contents;
eea6121a 6605 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6606 return FALSE;
6607 }
6608
6609 if ((o->flags & SEC_RELOC) != 0)
6610 {
6611 Elf_Internal_Rela *internal_relocs;
6612 bfd_vma r_type_mask;
6613 int r_sym_shift;
6614
6615 /* Get the swapped relocs. */
6616 internal_relocs
6617 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6618 finfo->internal_relocs, FALSE);
6619 if (internal_relocs == NULL
6620 && o->reloc_count > 0)
6621 return FALSE;
6622
6623 if (bed->s->arch_size == 32)
6624 {
6625 r_type_mask = 0xff;
6626 r_sym_shift = 8;
6627 }
6628 else
6629 {
6630 r_type_mask = 0xffffffff;
6631 r_sym_shift = 32;
6632 }
6633
6634 /* Run through the relocs looking for any against symbols
6635 from discarded sections and section symbols from
6636 removed link-once sections. Complain about relocs
6637 against discarded sections. Zero relocs against removed
6638 link-once sections. Preserve debug information as much
6639 as we can. */
6640 if (!elf_section_ignore_discarded_relocs (o))
6641 {
6642 Elf_Internal_Rela *rel, *relend;
cdd3575c 6643 bfd_boolean complain = elf_section_complain_discarded (o);
c152c796
AM
6644
6645 rel = internal_relocs;
6646 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6647 for ( ; rel < relend; rel++)
6648 {
6649 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
6650 asection **ps, *sec;
6651 struct elf_link_hash_entry *h = NULL;
6652 const char *sym_name;
c152c796
AM
6653
6654 if (r_symndx >= locsymcount
6655 || (elf_bad_symtab (input_bfd)
6656 && finfo->sections[r_symndx] == NULL))
6657 {
c152c796
AM
6658 h = sym_hashes[r_symndx - extsymoff];
6659 while (h->root.type == bfd_link_hash_indirect
6660 || h->root.type == bfd_link_hash_warning)
6661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6662
cdd3575c
AM
6663 if (h->root.type != bfd_link_hash_defined
6664 && h->root.type != bfd_link_hash_defweak)
6665 continue;
6666
6667 ps = &h->root.u.def.section;
6668 sym_name = h->root.root.string;
c152c796
AM
6669 }
6670 else
6671 {
cdd3575c
AM
6672 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6673 ps = &finfo->sections[r_symndx];
6674 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6675 }
c152c796 6676
cdd3575c
AM
6677 /* Complain if the definition comes from a
6678 discarded section. */
6679 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6680 {
6681 if ((o->flags & SEC_DEBUGGING) != 0)
c152c796 6682 {
cdd3575c
AM
6683 BFD_ASSERT (r_symndx != 0);
6684
6685 /* Try to preserve debug information.
6686 FIXME: This is quite broken. Modifying
6687 the symbol here means we will be changing
6688 all uses of the symbol, not just those in
6689 debug sections. The only thing that makes
6690 this half reasonable is that debug sections
6691 tend to come after other sections. Of
6692 course, that doesn't help with globals.
6693 ??? All link-once sections of the same name
6694 ought to define the same set of symbols, so
6695 it would seem that globals ought to always
6696 be defined in the kept section. */
3d7f7666 6697 if (sec->kept_section != NULL)
c152c796 6698 {
3d7f7666
L
6699 asection *member;
6700
6701 /* Check if it is a linkonce section or
6702 member of a comdat group. */
6703 if (elf_sec_group (sec) == NULL
6704 && sec->size == sec->kept_section->size)
6705 {
6706 *ps = sec->kept_section;
6707 continue;
6708 }
6709 else if (elf_sec_group (sec) != NULL
6710 && (member = match_group_member (sec, sec->kept_section))
6711 && sec->size == member->size)
6712 {
6713 *ps = member;
6714 continue;
6715 }
c152c796
AM
6716 }
6717 }
cdd3575c
AM
6718 else if (complain)
6719 {
d003868e
AM
6720 (*_bfd_error_handler)
6721 (_("`%s' referenced in section `%A' of %B: "
6722 "defined in discarded section `%A' of %B\n"),
6723 o, input_bfd, sec, sec->owner, sym_name);
cdd3575c
AM
6724 }
6725
6726 /* Remove the symbol reference from the reloc, but
6727 don't kill the reloc completely. This is so that
6728 a zero value will be written into the section,
6729 which may have non-zero contents put there by the
6730 assembler. Zero in things like an eh_frame fde
6731 pc_begin allows stack unwinders to recognize the
6732 fde as bogus. */
6733 rel->r_info &= r_type_mask;
6734 rel->r_addend = 0;
c152c796
AM
6735 }
6736 }
6737 }
6738
6739 /* Relocate the section by invoking a back end routine.
6740
6741 The back end routine is responsible for adjusting the
6742 section contents as necessary, and (if using Rela relocs
6743 and generating a relocatable output file) adjusting the
6744 reloc addend as necessary.
6745
6746 The back end routine does not have to worry about setting
6747 the reloc address or the reloc symbol index.
6748
6749 The back end routine is given a pointer to the swapped in
6750 internal symbols, and can access the hash table entries
6751 for the external symbols via elf_sym_hashes (input_bfd).
6752
6753 When generating relocatable output, the back end routine
6754 must handle STB_LOCAL/STT_SECTION symbols specially. The
6755 output symbol is going to be a section symbol
6756 corresponding to the output section, which will require
6757 the addend to be adjusted. */
6758
6759 if (! (*relocate_section) (output_bfd, finfo->info,
6760 input_bfd, o, contents,
6761 internal_relocs,
6762 isymbuf,
6763 finfo->sections))
6764 return FALSE;
6765
6766 if (emit_relocs)
6767 {
6768 Elf_Internal_Rela *irela;
6769 Elf_Internal_Rela *irelaend;
6770 bfd_vma last_offset;
6771 struct elf_link_hash_entry **rel_hash;
6772 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6773 unsigned int next_erel;
6774 bfd_boolean (*reloc_emitter)
6775 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6776 bfd_boolean rela_normal;
6777
6778 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6779 rela_normal = (bed->rela_normal
6780 && (input_rel_hdr->sh_entsize
6781 == bed->s->sizeof_rela));
6782
6783 /* Adjust the reloc addresses and symbol indices. */
6784
6785 irela = internal_relocs;
6786 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6787 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6788 + elf_section_data (o->output_section)->rel_count
6789 + elf_section_data (o->output_section)->rel_count2);
6790 last_offset = o->output_offset;
6791 if (!finfo->info->relocatable)
6792 last_offset += o->output_section->vma;
6793 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6794 {
6795 unsigned long r_symndx;
6796 asection *sec;
6797 Elf_Internal_Sym sym;
6798
6799 if (next_erel == bed->s->int_rels_per_ext_rel)
6800 {
6801 rel_hash++;
6802 next_erel = 0;
6803 }
6804
6805 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6806 finfo->info, o,
6807 irela->r_offset);
6808 if (irela->r_offset >= (bfd_vma) -2)
6809 {
6810 /* This is a reloc for a deleted entry or somesuch.
6811 Turn it into an R_*_NONE reloc, at the same
6812 offset as the last reloc. elf_eh_frame.c and
6813 elf_bfd_discard_info rely on reloc offsets
6814 being ordered. */
6815 irela->r_offset = last_offset;
6816 irela->r_info = 0;
6817 irela->r_addend = 0;
6818 continue;
6819 }
6820
6821 irela->r_offset += o->output_offset;
6822
6823 /* Relocs in an executable have to be virtual addresses. */
6824 if (!finfo->info->relocatable)
6825 irela->r_offset += o->output_section->vma;
6826
6827 last_offset = irela->r_offset;
6828
6829 r_symndx = irela->r_info >> r_sym_shift;
6830 if (r_symndx == STN_UNDEF)
6831 continue;
6832
6833 if (r_symndx >= locsymcount
6834 || (elf_bad_symtab (input_bfd)
6835 && finfo->sections[r_symndx] == NULL))
6836 {
6837 struct elf_link_hash_entry *rh;
6838 unsigned long indx;
6839
6840 /* This is a reloc against a global symbol. We
6841 have not yet output all the local symbols, so
6842 we do not know the symbol index of any global
6843 symbol. We set the rel_hash entry for this
6844 reloc to point to the global hash table entry
6845 for this symbol. The symbol index is then
6846 set at the end of elf_bfd_final_link. */
6847 indx = r_symndx - extsymoff;
6848 rh = elf_sym_hashes (input_bfd)[indx];
6849 while (rh->root.type == bfd_link_hash_indirect
6850 || rh->root.type == bfd_link_hash_warning)
6851 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6852
6853 /* Setting the index to -2 tells
6854 elf_link_output_extsym that this symbol is
6855 used by a reloc. */
6856 BFD_ASSERT (rh->indx < 0);
6857 rh->indx = -2;
6858
6859 *rel_hash = rh;
6860
6861 continue;
6862 }
6863
6864 /* This is a reloc against a local symbol. */
6865
6866 *rel_hash = NULL;
6867 sym = isymbuf[r_symndx];
6868 sec = finfo->sections[r_symndx];
6869 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6870 {
6871 /* I suppose the backend ought to fill in the
6872 section of any STT_SECTION symbol against a
6a8d1586
AM
6873 processor specific section. */
6874 r_symndx = 0;
6875 if (bfd_is_abs_section (sec))
6876 ;
c152c796
AM
6877 else if (sec == NULL || sec->owner == NULL)
6878 {
6879 bfd_set_error (bfd_error_bad_value);
6880 return FALSE;
6881 }
6882 else
6883 {
6a8d1586
AM
6884 asection *osec = sec->output_section;
6885
6886 /* If we have discarded a section, the output
6887 section will be the absolute section. In
6888 case of discarded link-once and discarded
6889 SEC_MERGE sections, use the kept section. */
6890 if (bfd_is_abs_section (osec)
6891 && sec->kept_section != NULL
6892 && sec->kept_section->output_section != NULL)
6893 {
6894 osec = sec->kept_section->output_section;
6895 irela->r_addend -= osec->vma;
6896 }
6897
6898 if (!bfd_is_abs_section (osec))
6899 {
6900 r_symndx = osec->target_index;
6901 BFD_ASSERT (r_symndx != 0);
6902 }
c152c796
AM
6903 }
6904
6905 /* Adjust the addend according to where the
6906 section winds up in the output section. */
6907 if (rela_normal)
6908 irela->r_addend += sec->output_offset;
6909 }
6910 else
6911 {
6912 if (finfo->indices[r_symndx] == -1)
6913 {
6914 unsigned long shlink;
6915 const char *name;
6916 asection *osec;
6917
6918 if (finfo->info->strip == strip_all)
6919 {
6920 /* You can't do ld -r -s. */
6921 bfd_set_error (bfd_error_invalid_operation);
6922 return FALSE;
6923 }
6924
6925 /* This symbol was skipped earlier, but
6926 since it is needed by a reloc, we
6927 must output it now. */
6928 shlink = symtab_hdr->sh_link;
6929 name = (bfd_elf_string_from_elf_section
6930 (input_bfd, shlink, sym.st_name));
6931 if (name == NULL)
6932 return FALSE;
6933
6934 osec = sec->output_section;
6935 sym.st_shndx =
6936 _bfd_elf_section_from_bfd_section (output_bfd,
6937 osec);
6938 if (sym.st_shndx == SHN_BAD)
6939 return FALSE;
6940
6941 sym.st_value += sec->output_offset;
6942 if (! finfo->info->relocatable)
6943 {
6944 sym.st_value += osec->vma;
6945 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6946 {
6947 /* STT_TLS symbols are relative to PT_TLS
6948 segment base. */
6949 BFD_ASSERT (elf_hash_table (finfo->info)
6950 ->tls_sec != NULL);
6951 sym.st_value -= (elf_hash_table (finfo->info)
6952 ->tls_sec->vma);
6953 }
6954 }
6955
6956 finfo->indices[r_symndx]
6957 = bfd_get_symcount (output_bfd);
6958
6959 if (! elf_link_output_sym (finfo, name, &sym, sec,
6960 NULL))
6961 return FALSE;
6962 }
6963
6964 r_symndx = finfo->indices[r_symndx];
6965 }
6966
6967 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6968 | (irela->r_info & r_type_mask));
6969 }
6970
6971 /* Swap out the relocs. */
6972 if (bed->elf_backend_emit_relocs
6973 && !(finfo->info->relocatable
6974 || finfo->info->emitrelocations))
6975 reloc_emitter = bed->elf_backend_emit_relocs;
6976 else
6977 reloc_emitter = _bfd_elf_link_output_relocs;
6978
6979 if (input_rel_hdr->sh_size != 0
6980 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6981 internal_relocs))
6982 return FALSE;
6983
6984 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6985 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6986 {
6987 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6988 * bed->s->int_rels_per_ext_rel);
6989 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6990 internal_relocs))
6991 return FALSE;
6992 }
6993 }
6994 }
6995
6996 /* Write out the modified section contents. */
6997 if (bed->elf_backend_write_section
6998 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6999 {
7000 /* Section written out. */
7001 }
7002 else switch (o->sec_info_type)
7003 {
7004 case ELF_INFO_TYPE_STABS:
7005 if (! (_bfd_write_section_stabs
7006 (output_bfd,
7007 &elf_hash_table (finfo->info)->stab_info,
7008 o, &elf_section_data (o)->sec_info, contents)))
7009 return FALSE;
7010 break;
7011 case ELF_INFO_TYPE_MERGE:
7012 if (! _bfd_write_merged_section (output_bfd, o,
7013 elf_section_data (o)->sec_info))
7014 return FALSE;
7015 break;
7016 case ELF_INFO_TYPE_EH_FRAME:
7017 {
7018 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7019 o, contents))
7020 return FALSE;
7021 }
7022 break;
7023 default:
7024 {
c152c796
AM
7025 if (! (o->flags & SEC_EXCLUDE)
7026 && ! bfd_set_section_contents (output_bfd, o->output_section,
7027 contents,
7028 (file_ptr) o->output_offset,
eea6121a 7029 o->size))
c152c796
AM
7030 return FALSE;
7031 }
7032 break;
7033 }
7034 }
7035
7036 return TRUE;
7037}
7038
7039/* Generate a reloc when linking an ELF file. This is a reloc
7040 requested by the linker, and does come from any input file. This
7041 is used to build constructor and destructor tables when linking
7042 with -Ur. */
7043
7044static bfd_boolean
7045elf_reloc_link_order (bfd *output_bfd,
7046 struct bfd_link_info *info,
7047 asection *output_section,
7048 struct bfd_link_order *link_order)
7049{
7050 reloc_howto_type *howto;
7051 long indx;
7052 bfd_vma offset;
7053 bfd_vma addend;
7054 struct elf_link_hash_entry **rel_hash_ptr;
7055 Elf_Internal_Shdr *rel_hdr;
7056 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7057 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7058 bfd_byte *erel;
7059 unsigned int i;
7060
7061 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7062 if (howto == NULL)
7063 {
7064 bfd_set_error (bfd_error_bad_value);
7065 return FALSE;
7066 }
7067
7068 addend = link_order->u.reloc.p->addend;
7069
7070 /* Figure out the symbol index. */
7071 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7072 + elf_section_data (output_section)->rel_count
7073 + elf_section_data (output_section)->rel_count2);
7074 if (link_order->type == bfd_section_reloc_link_order)
7075 {
7076 indx = link_order->u.reloc.p->u.section->target_index;
7077 BFD_ASSERT (indx != 0);
7078 *rel_hash_ptr = NULL;
7079 }
7080 else
7081 {
7082 struct elf_link_hash_entry *h;
7083
7084 /* Treat a reloc against a defined symbol as though it were
7085 actually against the section. */
7086 h = ((struct elf_link_hash_entry *)
7087 bfd_wrapped_link_hash_lookup (output_bfd, info,
7088 link_order->u.reloc.p->u.name,
7089 FALSE, FALSE, TRUE));
7090 if (h != NULL
7091 && (h->root.type == bfd_link_hash_defined
7092 || h->root.type == bfd_link_hash_defweak))
7093 {
7094 asection *section;
7095
7096 section = h->root.u.def.section;
7097 indx = section->output_section->target_index;
7098 *rel_hash_ptr = NULL;
7099 /* It seems that we ought to add the symbol value to the
7100 addend here, but in practice it has already been added
7101 because it was passed to constructor_callback. */
7102 addend += section->output_section->vma + section->output_offset;
7103 }
7104 else if (h != NULL)
7105 {
7106 /* Setting the index to -2 tells elf_link_output_extsym that
7107 this symbol is used by a reloc. */
7108 h->indx = -2;
7109 *rel_hash_ptr = h;
7110 indx = 0;
7111 }
7112 else
7113 {
7114 if (! ((*info->callbacks->unattached_reloc)
7115 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7116 return FALSE;
7117 indx = 0;
7118 }
7119 }
7120
7121 /* If this is an inplace reloc, we must write the addend into the
7122 object file. */
7123 if (howto->partial_inplace && addend != 0)
7124 {
7125 bfd_size_type size;
7126 bfd_reloc_status_type rstat;
7127 bfd_byte *buf;
7128 bfd_boolean ok;
7129 const char *sym_name;
7130
7131 size = bfd_get_reloc_size (howto);
7132 buf = bfd_zmalloc (size);
7133 if (buf == NULL)
7134 return FALSE;
7135 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7136 switch (rstat)
7137 {
7138 case bfd_reloc_ok:
7139 break;
7140
7141 default:
7142 case bfd_reloc_outofrange:
7143 abort ();
7144
7145 case bfd_reloc_overflow:
7146 if (link_order->type == bfd_section_reloc_link_order)
7147 sym_name = bfd_section_name (output_bfd,
7148 link_order->u.reloc.p->u.section);
7149 else
7150 sym_name = link_order->u.reloc.p->u.name;
7151 if (! ((*info->callbacks->reloc_overflow)
7152 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7153 {
7154 free (buf);
7155 return FALSE;
7156 }
7157 break;
7158 }
7159 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7160 link_order->offset, size);
7161 free (buf);
7162 if (! ok)
7163 return FALSE;
7164 }
7165
7166 /* The address of a reloc is relative to the section in a
7167 relocatable file, and is a virtual address in an executable
7168 file. */
7169 offset = link_order->offset;
7170 if (! info->relocatable)
7171 offset += output_section->vma;
7172
7173 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7174 {
7175 irel[i].r_offset = offset;
7176 irel[i].r_info = 0;
7177 irel[i].r_addend = 0;
7178 }
7179 if (bed->s->arch_size == 32)
7180 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7181 else
7182 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7183
7184 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7185 erel = rel_hdr->contents;
7186 if (rel_hdr->sh_type == SHT_REL)
7187 {
7188 erel += (elf_section_data (output_section)->rel_count
7189 * bed->s->sizeof_rel);
7190 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7191 }
7192 else
7193 {
7194 irel[0].r_addend = addend;
7195 erel += (elf_section_data (output_section)->rel_count
7196 * bed->s->sizeof_rela);
7197 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7198 }
7199
7200 ++elf_section_data (output_section)->rel_count;
7201
7202 return TRUE;
7203}
7204
0b52efa6
PB
7205
7206/* Get the output vma of the section pointed to by the sh_link field. */
7207
7208static bfd_vma
7209elf_get_linked_section_vma (struct bfd_link_order *p)
7210{
7211 Elf_Internal_Shdr **elf_shdrp;
7212 asection *s;
7213 int elfsec;
7214
7215 s = p->u.indirect.section;
7216 elf_shdrp = elf_elfsections (s->owner);
7217 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7218 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7219 /* PR 290:
7220 The Intel C compiler generates SHT_IA_64_UNWIND with
7221 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7222 sh_info fields. Hence we could get the situation
7223 where elfsec is 0. */
7224 if (elfsec == 0)
7225 {
7226 const struct elf_backend_data *bed
7227 = get_elf_backend_data (s->owner);
7228 if (bed->link_order_error_handler)
d003868e
AM
7229 bed->link_order_error_handler
7230 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7231 return 0;
7232 }
7233 else
7234 {
7235 s = elf_shdrp[elfsec]->bfd_section;
7236 return s->output_section->vma + s->output_offset;
7237 }
0b52efa6
PB
7238}
7239
7240
7241/* Compare two sections based on the locations of the sections they are
7242 linked to. Used by elf_fixup_link_order. */
7243
7244static int
7245compare_link_order (const void * a, const void * b)
7246{
7247 bfd_vma apos;
7248 bfd_vma bpos;
7249
7250 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7251 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7252 if (apos < bpos)
7253 return -1;
7254 return apos > bpos;
7255}
7256
7257
7258/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7259 order as their linked sections. Returns false if this could not be done
7260 because an output section includes both ordered and unordered
7261 sections. Ideally we'd do this in the linker proper. */
7262
7263static bfd_boolean
7264elf_fixup_link_order (bfd *abfd, asection *o)
7265{
7266 int seen_linkorder;
7267 int seen_other;
7268 int n;
7269 struct bfd_link_order *p;
7270 bfd *sub;
7271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7272 int elfsec;
7273 struct bfd_link_order **sections;
7274 asection *s;
7275 bfd_vma offset;
7276
7277 seen_other = 0;
7278 seen_linkorder = 0;
7279 for (p = o->link_order_head; p != NULL; p = p->next)
7280 {
7281 if (p->type == bfd_indirect_link_order
7282 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7283 == bfd_target_elf_flavour)
7284 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7285 {
7286 s = p->u.indirect.section;
7287 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7288 if (elfsec != -1
7289 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7290 seen_linkorder++;
7291 else
7292 seen_other++;
7293 }
7294 else
7295 seen_other++;
7296 }
7297
7298 if (!seen_linkorder)
7299 return TRUE;
7300
7301 if (seen_other && seen_linkorder)
08ccf96b 7302 {
d003868e
AM
7303 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7304 o);
08ccf96b
L
7305 bfd_set_error (bfd_error_bad_value);
7306 return FALSE;
7307 }
0b52efa6
PB
7308
7309 sections = (struct bfd_link_order **)
7310 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7311 seen_linkorder = 0;
7312
7313 for (p = o->link_order_head; p != NULL; p = p->next)
7314 {
7315 sections[seen_linkorder++] = p;
7316 }
7317 /* Sort the input sections in the order of their linked section. */
7318 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7319 compare_link_order);
7320
7321 /* Change the offsets of the sections. */
7322 offset = 0;
7323 for (n = 0; n < seen_linkorder; n++)
7324 {
7325 s = sections[n]->u.indirect.section;
7326 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7327 s->output_offset = offset;
7328 sections[n]->offset = offset;
7329 offset += sections[n]->size;
7330 }
7331
7332 return TRUE;
7333}
7334
7335
c152c796
AM
7336/* Do the final step of an ELF link. */
7337
7338bfd_boolean
7339bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7340{
7341 bfd_boolean dynamic;
7342 bfd_boolean emit_relocs;
7343 bfd *dynobj;
7344 struct elf_final_link_info finfo;
7345 register asection *o;
7346 register struct bfd_link_order *p;
7347 register bfd *sub;
7348 bfd_size_type max_contents_size;
7349 bfd_size_type max_external_reloc_size;
7350 bfd_size_type max_internal_reloc_count;
7351 bfd_size_type max_sym_count;
7352 bfd_size_type max_sym_shndx_count;
7353 file_ptr off;
7354 Elf_Internal_Sym elfsym;
7355 unsigned int i;
7356 Elf_Internal_Shdr *symtab_hdr;
7357 Elf_Internal_Shdr *symtab_shndx_hdr;
7358 Elf_Internal_Shdr *symstrtab_hdr;
7359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7360 struct elf_outext_info eoinfo;
7361 bfd_boolean merged;
7362 size_t relativecount = 0;
7363 asection *reldyn = 0;
7364 bfd_size_type amt;
7365
7366 if (! is_elf_hash_table (info->hash))
7367 return FALSE;
7368
7369 if (info->shared)
7370 abfd->flags |= DYNAMIC;
7371
7372 dynamic = elf_hash_table (info)->dynamic_sections_created;
7373 dynobj = elf_hash_table (info)->dynobj;
7374
7375 emit_relocs = (info->relocatable
7376 || info->emitrelocations
7377 || bed->elf_backend_emit_relocs);
7378
7379 finfo.info = info;
7380 finfo.output_bfd = abfd;
7381 finfo.symstrtab = _bfd_elf_stringtab_init ();
7382 if (finfo.symstrtab == NULL)
7383 return FALSE;
7384
7385 if (! dynamic)
7386 {
7387 finfo.dynsym_sec = NULL;
7388 finfo.hash_sec = NULL;
7389 finfo.symver_sec = NULL;
7390 }
7391 else
7392 {
7393 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7394 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7395 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7396 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7397 /* Note that it is OK if symver_sec is NULL. */
7398 }
7399
7400 finfo.contents = NULL;
7401 finfo.external_relocs = NULL;
7402 finfo.internal_relocs = NULL;
7403 finfo.external_syms = NULL;
7404 finfo.locsym_shndx = NULL;
7405 finfo.internal_syms = NULL;
7406 finfo.indices = NULL;
7407 finfo.sections = NULL;
7408 finfo.symbuf = NULL;
7409 finfo.symshndxbuf = NULL;
7410 finfo.symbuf_count = 0;
7411 finfo.shndxbuf_size = 0;
7412
7413 /* Count up the number of relocations we will output for each output
7414 section, so that we know the sizes of the reloc sections. We
7415 also figure out some maximum sizes. */
7416 max_contents_size = 0;
7417 max_external_reloc_size = 0;
7418 max_internal_reloc_count = 0;
7419 max_sym_count = 0;
7420 max_sym_shndx_count = 0;
7421 merged = FALSE;
7422 for (o = abfd->sections; o != NULL; o = o->next)
7423 {
7424 struct bfd_elf_section_data *esdo = elf_section_data (o);
7425 o->reloc_count = 0;
7426
7427 for (p = o->link_order_head; p != NULL; p = p->next)
7428 {
7429 unsigned int reloc_count = 0;
7430 struct bfd_elf_section_data *esdi = NULL;
7431 unsigned int *rel_count1;
7432
7433 if (p->type == bfd_section_reloc_link_order
7434 || p->type == bfd_symbol_reloc_link_order)
7435 reloc_count = 1;
7436 else if (p->type == bfd_indirect_link_order)
7437 {
7438 asection *sec;
7439
7440 sec = p->u.indirect.section;
7441 esdi = elf_section_data (sec);
7442
7443 /* Mark all sections which are to be included in the
7444 link. This will normally be every section. We need
7445 to do this so that we can identify any sections which
7446 the linker has decided to not include. */
7447 sec->linker_mark = TRUE;
7448
7449 if (sec->flags & SEC_MERGE)
7450 merged = TRUE;
7451
7452 if (info->relocatable || info->emitrelocations)
7453 reloc_count = sec->reloc_count;
7454 else if (bed->elf_backend_count_relocs)
7455 {
7456 Elf_Internal_Rela * relocs;
7457
7458 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7459 info->keep_memory);
7460
7461 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7462
7463 if (elf_section_data (o)->relocs != relocs)
7464 free (relocs);
7465 }
7466
eea6121a
AM
7467 if (sec->rawsize > max_contents_size)
7468 max_contents_size = sec->rawsize;
7469 if (sec->size > max_contents_size)
7470 max_contents_size = sec->size;
c152c796
AM
7471
7472 /* We are interested in just local symbols, not all
7473 symbols. */
7474 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7475 && (sec->owner->flags & DYNAMIC) == 0)
7476 {
7477 size_t sym_count;
7478
7479 if (elf_bad_symtab (sec->owner))
7480 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7481 / bed->s->sizeof_sym);
7482 else
7483 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7484
7485 if (sym_count > max_sym_count)
7486 max_sym_count = sym_count;
7487
7488 if (sym_count > max_sym_shndx_count
7489 && elf_symtab_shndx (sec->owner) != 0)
7490 max_sym_shndx_count = sym_count;
7491
7492 if ((sec->flags & SEC_RELOC) != 0)
7493 {
7494 size_t ext_size;
7495
7496 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7497 if (ext_size > max_external_reloc_size)
7498 max_external_reloc_size = ext_size;
7499 if (sec->reloc_count > max_internal_reloc_count)
7500 max_internal_reloc_count = sec->reloc_count;
7501 }
7502 }
7503 }
7504
7505 if (reloc_count == 0)
7506 continue;
7507
7508 o->reloc_count += reloc_count;
7509
7510 /* MIPS may have a mix of REL and RELA relocs on sections.
7511 To support this curious ABI we keep reloc counts in
7512 elf_section_data too. We must be careful to add the
7513 relocations from the input section to the right output
7514 count. FIXME: Get rid of one count. We have
7515 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7516 rel_count1 = &esdo->rel_count;
7517 if (esdi != NULL)
7518 {
7519 bfd_boolean same_size;
7520 bfd_size_type entsize1;
7521
7522 entsize1 = esdi->rel_hdr.sh_entsize;
7523 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7524 || entsize1 == bed->s->sizeof_rela);
7525 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7526
7527 if (!same_size)
7528 rel_count1 = &esdo->rel_count2;
7529
7530 if (esdi->rel_hdr2 != NULL)
7531 {
7532 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7533 unsigned int alt_count;
7534 unsigned int *rel_count2;
7535
7536 BFD_ASSERT (entsize2 != entsize1
7537 && (entsize2 == bed->s->sizeof_rel
7538 || entsize2 == bed->s->sizeof_rela));
7539
7540 rel_count2 = &esdo->rel_count2;
7541 if (!same_size)
7542 rel_count2 = &esdo->rel_count;
7543
7544 /* The following is probably too simplistic if the
7545 backend counts output relocs unusually. */
7546 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7547 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7548 *rel_count2 += alt_count;
7549 reloc_count -= alt_count;
7550 }
7551 }
7552 *rel_count1 += reloc_count;
7553 }
7554
7555 if (o->reloc_count > 0)
7556 o->flags |= SEC_RELOC;
7557 else
7558 {
7559 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7560 set it (this is probably a bug) and if it is set
7561 assign_section_numbers will create a reloc section. */
7562 o->flags &=~ SEC_RELOC;
7563 }
7564
7565 /* If the SEC_ALLOC flag is not set, force the section VMA to
7566 zero. This is done in elf_fake_sections as well, but forcing
7567 the VMA to 0 here will ensure that relocs against these
7568 sections are handled correctly. */
7569 if ((o->flags & SEC_ALLOC) == 0
7570 && ! o->user_set_vma)
7571 o->vma = 0;
7572 }
7573
7574 if (! info->relocatable && merged)
7575 elf_link_hash_traverse (elf_hash_table (info),
7576 _bfd_elf_link_sec_merge_syms, abfd);
7577
7578 /* Figure out the file positions for everything but the symbol table
7579 and the relocs. We set symcount to force assign_section_numbers
7580 to create a symbol table. */
7581 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7582 BFD_ASSERT (! abfd->output_has_begun);
7583 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7584 goto error_return;
7585
7586 /* That created the reloc sections. Set their sizes, and assign
7587 them file positions, and allocate some buffers. */
7588 for (o = abfd->sections; o != NULL; o = o->next)
7589 {
7590 if ((o->flags & SEC_RELOC) != 0)
7591 {
7592 if (!(_bfd_elf_link_size_reloc_section
7593 (abfd, &elf_section_data (o)->rel_hdr, o)))
7594 goto error_return;
7595
7596 if (elf_section_data (o)->rel_hdr2
7597 && !(_bfd_elf_link_size_reloc_section
7598 (abfd, elf_section_data (o)->rel_hdr2, o)))
7599 goto error_return;
7600 }
7601
7602 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7603 to count upwards while actually outputting the relocations. */
7604 elf_section_data (o)->rel_count = 0;
7605 elf_section_data (o)->rel_count2 = 0;
7606 }
7607
7608 _bfd_elf_assign_file_positions_for_relocs (abfd);
7609
7610 /* We have now assigned file positions for all the sections except
7611 .symtab and .strtab. We start the .symtab section at the current
7612 file position, and write directly to it. We build the .strtab
7613 section in memory. */
7614 bfd_get_symcount (abfd) = 0;
7615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7616 /* sh_name is set in prep_headers. */
7617 symtab_hdr->sh_type = SHT_SYMTAB;
7618 /* sh_flags, sh_addr and sh_size all start off zero. */
7619 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7620 /* sh_link is set in assign_section_numbers. */
7621 /* sh_info is set below. */
7622 /* sh_offset is set just below. */
7623 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7624
7625 off = elf_tdata (abfd)->next_file_pos;
7626 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7627
7628 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7629 incorrect. We do not yet know the size of the .symtab section.
7630 We correct next_file_pos below, after we do know the size. */
7631
7632 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7633 continuously seeking to the right position in the file. */
7634 if (! info->keep_memory || max_sym_count < 20)
7635 finfo.symbuf_size = 20;
7636 else
7637 finfo.symbuf_size = max_sym_count;
7638 amt = finfo.symbuf_size;
7639 amt *= bed->s->sizeof_sym;
7640 finfo.symbuf = bfd_malloc (amt);
7641 if (finfo.symbuf == NULL)
7642 goto error_return;
7643 if (elf_numsections (abfd) > SHN_LORESERVE)
7644 {
7645 /* Wild guess at number of output symbols. realloc'd as needed. */
7646 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7647 finfo.shndxbuf_size = amt;
7648 amt *= sizeof (Elf_External_Sym_Shndx);
7649 finfo.symshndxbuf = bfd_zmalloc (amt);
7650 if (finfo.symshndxbuf == NULL)
7651 goto error_return;
7652 }
7653
7654 /* Start writing out the symbol table. The first symbol is always a
7655 dummy symbol. */
7656 if (info->strip != strip_all
7657 || emit_relocs)
7658 {
7659 elfsym.st_value = 0;
7660 elfsym.st_size = 0;
7661 elfsym.st_info = 0;
7662 elfsym.st_other = 0;
7663 elfsym.st_shndx = SHN_UNDEF;
7664 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7665 NULL))
7666 goto error_return;
7667 }
7668
7669#if 0
7670 /* Some standard ELF linkers do this, but we don't because it causes
7671 bootstrap comparison failures. */
7672 /* Output a file symbol for the output file as the second symbol.
7673 We output this even if we are discarding local symbols, although
7674 I'm not sure if this is correct. */
7675 elfsym.st_value = 0;
7676 elfsym.st_size = 0;
7677 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7678 elfsym.st_other = 0;
7679 elfsym.st_shndx = SHN_ABS;
7680 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7681 &elfsym, bfd_abs_section_ptr, NULL))
7682 goto error_return;
7683#endif
7684
7685 /* Output a symbol for each section. We output these even if we are
7686 discarding local symbols, since they are used for relocs. These
7687 symbols have no names. We store the index of each one in the
7688 index field of the section, so that we can find it again when
7689 outputting relocs. */
7690 if (info->strip != strip_all
7691 || emit_relocs)
7692 {
7693 elfsym.st_size = 0;
7694 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7695 elfsym.st_other = 0;
7696 for (i = 1; i < elf_numsections (abfd); i++)
7697 {
7698 o = bfd_section_from_elf_index (abfd, i);
7699 if (o != NULL)
7700 o->target_index = bfd_get_symcount (abfd);
7701 elfsym.st_shndx = i;
7702 if (info->relocatable || o == NULL)
7703 elfsym.st_value = 0;
7704 else
7705 elfsym.st_value = o->vma;
7706 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7707 goto error_return;
7708 if (i == SHN_LORESERVE - 1)
7709 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7710 }
7711 }
7712
7713 /* Allocate some memory to hold information read in from the input
7714 files. */
7715 if (max_contents_size != 0)
7716 {
7717 finfo.contents = bfd_malloc (max_contents_size);
7718 if (finfo.contents == NULL)
7719 goto error_return;
7720 }
7721
7722 if (max_external_reloc_size != 0)
7723 {
7724 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7725 if (finfo.external_relocs == NULL)
7726 goto error_return;
7727 }
7728
7729 if (max_internal_reloc_count != 0)
7730 {
7731 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7732 amt *= sizeof (Elf_Internal_Rela);
7733 finfo.internal_relocs = bfd_malloc (amt);
7734 if (finfo.internal_relocs == NULL)
7735 goto error_return;
7736 }
7737
7738 if (max_sym_count != 0)
7739 {
7740 amt = max_sym_count * bed->s->sizeof_sym;
7741 finfo.external_syms = bfd_malloc (amt);
7742 if (finfo.external_syms == NULL)
7743 goto error_return;
7744
7745 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7746 finfo.internal_syms = bfd_malloc (amt);
7747 if (finfo.internal_syms == NULL)
7748 goto error_return;
7749
7750 amt = max_sym_count * sizeof (long);
7751 finfo.indices = bfd_malloc (amt);
7752 if (finfo.indices == NULL)
7753 goto error_return;
7754
7755 amt = max_sym_count * sizeof (asection *);
7756 finfo.sections = bfd_malloc (amt);
7757 if (finfo.sections == NULL)
7758 goto error_return;
7759 }
7760
7761 if (max_sym_shndx_count != 0)
7762 {
7763 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7764 finfo.locsym_shndx = bfd_malloc (amt);
7765 if (finfo.locsym_shndx == NULL)
7766 goto error_return;
7767 }
7768
7769 if (elf_hash_table (info)->tls_sec)
7770 {
7771 bfd_vma base, end = 0;
7772 asection *sec;
7773
7774 for (sec = elf_hash_table (info)->tls_sec;
7775 sec && (sec->flags & SEC_THREAD_LOCAL);
7776 sec = sec->next)
7777 {
eea6121a 7778 bfd_vma size = sec->size;
c152c796
AM
7779
7780 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7781 {
7782 struct bfd_link_order *o;
7783
7784 for (o = sec->link_order_head; o != NULL; o = o->next)
7785 if (size < o->offset + o->size)
7786 size = o->offset + o->size;
7787 }
7788 end = sec->vma + size;
7789 }
7790 base = elf_hash_table (info)->tls_sec->vma;
7791 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7792 elf_hash_table (info)->tls_size = end - base;
7793 }
7794
0b52efa6
PB
7795 /* Reorder SHF_LINK_ORDER sections. */
7796 for (o = abfd->sections; o != NULL; o = o->next)
7797 {
7798 if (!elf_fixup_link_order (abfd, o))
7799 return FALSE;
7800 }
7801
c152c796
AM
7802 /* Since ELF permits relocations to be against local symbols, we
7803 must have the local symbols available when we do the relocations.
7804 Since we would rather only read the local symbols once, and we
7805 would rather not keep them in memory, we handle all the
7806 relocations for a single input file at the same time.
7807
7808 Unfortunately, there is no way to know the total number of local
7809 symbols until we have seen all of them, and the local symbol
7810 indices precede the global symbol indices. This means that when
7811 we are generating relocatable output, and we see a reloc against
7812 a global symbol, we can not know the symbol index until we have
7813 finished examining all the local symbols to see which ones we are
7814 going to output. To deal with this, we keep the relocations in
7815 memory, and don't output them until the end of the link. This is
7816 an unfortunate waste of memory, but I don't see a good way around
7817 it. Fortunately, it only happens when performing a relocatable
7818 link, which is not the common case. FIXME: If keep_memory is set
7819 we could write the relocs out and then read them again; I don't
7820 know how bad the memory loss will be. */
7821
7822 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7823 sub->output_has_begun = FALSE;
7824 for (o = abfd->sections; o != NULL; o = o->next)
7825 {
7826 for (p = o->link_order_head; p != NULL; p = p->next)
7827 {
7828 if (p->type == bfd_indirect_link_order
7829 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7830 == bfd_target_elf_flavour)
7831 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7832 {
7833 if (! sub->output_has_begun)
7834 {
7835 if (! elf_link_input_bfd (&finfo, sub))
7836 goto error_return;
7837 sub->output_has_begun = TRUE;
7838 }
7839 }
7840 else if (p->type == bfd_section_reloc_link_order
7841 || p->type == bfd_symbol_reloc_link_order)
7842 {
7843 if (! elf_reloc_link_order (abfd, info, o, p))
7844 goto error_return;
7845 }
7846 else
7847 {
7848 if (! _bfd_default_link_order (abfd, info, o, p))
7849 goto error_return;
7850 }
7851 }
7852 }
7853
7854 /* Output any global symbols that got converted to local in a
7855 version script or due to symbol visibility. We do this in a
7856 separate step since ELF requires all local symbols to appear
7857 prior to any global symbols. FIXME: We should only do this if
7858 some global symbols were, in fact, converted to become local.
7859 FIXME: Will this work correctly with the Irix 5 linker? */
7860 eoinfo.failed = FALSE;
7861 eoinfo.finfo = &finfo;
7862 eoinfo.localsyms = TRUE;
7863 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7864 &eoinfo);
7865 if (eoinfo.failed)
7866 return FALSE;
7867
7868 /* That wrote out all the local symbols. Finish up the symbol table
7869 with the global symbols. Even if we want to strip everything we
7870 can, we still need to deal with those global symbols that got
7871 converted to local in a version script. */
7872
7873 /* The sh_info field records the index of the first non local symbol. */
7874 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7875
7876 if (dynamic
7877 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7878 {
7879 Elf_Internal_Sym sym;
7880 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7881 long last_local = 0;
7882
7883 /* Write out the section symbols for the output sections. */
7884 if (info->shared)
7885 {
7886 asection *s;
7887
7888 sym.st_size = 0;
7889 sym.st_name = 0;
7890 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7891 sym.st_other = 0;
7892
7893 for (s = abfd->sections; s != NULL; s = s->next)
7894 {
7895 int indx;
7896 bfd_byte *dest;
7897 long dynindx;
7898
c152c796 7899 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
7900 if (dynindx <= 0)
7901 continue;
7902 indx = elf_section_data (s)->this_idx;
c152c796
AM
7903 BFD_ASSERT (indx > 0);
7904 sym.st_shndx = indx;
7905 sym.st_value = s->vma;
7906 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
7907 if (last_local < dynindx)
7908 last_local = dynindx;
c152c796
AM
7909 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7910 }
c152c796
AM
7911 }
7912
7913 /* Write out the local dynsyms. */
7914 if (elf_hash_table (info)->dynlocal)
7915 {
7916 struct elf_link_local_dynamic_entry *e;
7917 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7918 {
7919 asection *s;
7920 bfd_byte *dest;
7921
7922 sym.st_size = e->isym.st_size;
7923 sym.st_other = e->isym.st_other;
7924
7925 /* Copy the internal symbol as is.
7926 Note that we saved a word of storage and overwrote
7927 the original st_name with the dynstr_index. */
7928 sym = e->isym;
7929
7930 if (e->isym.st_shndx != SHN_UNDEF
7931 && (e->isym.st_shndx < SHN_LORESERVE
7932 || e->isym.st_shndx > SHN_HIRESERVE))
7933 {
7934 s = bfd_section_from_elf_index (e->input_bfd,
7935 e->isym.st_shndx);
7936
7937 sym.st_shndx =
7938 elf_section_data (s->output_section)->this_idx;
7939 sym.st_value = (s->output_section->vma
7940 + s->output_offset
7941 + e->isym.st_value);
7942 }
7943
7944 if (last_local < e->dynindx)
7945 last_local = e->dynindx;
7946
7947 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7948 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7949 }
7950 }
7951
7952 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7953 last_local + 1;
7954 }
7955
7956 /* We get the global symbols from the hash table. */
7957 eoinfo.failed = FALSE;
7958 eoinfo.localsyms = FALSE;
7959 eoinfo.finfo = &finfo;
7960 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7961 &eoinfo);
7962 if (eoinfo.failed)
7963 return FALSE;
7964
7965 /* If backend needs to output some symbols not present in the hash
7966 table, do it now. */
7967 if (bed->elf_backend_output_arch_syms)
7968 {
7969 typedef bfd_boolean (*out_sym_func)
7970 (void *, const char *, Elf_Internal_Sym *, asection *,
7971 struct elf_link_hash_entry *);
7972
7973 if (! ((*bed->elf_backend_output_arch_syms)
7974 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7975 return FALSE;
7976 }
7977
7978 /* Flush all symbols to the file. */
7979 if (! elf_link_flush_output_syms (&finfo, bed))
7980 return FALSE;
7981
7982 /* Now we know the size of the symtab section. */
7983 off += symtab_hdr->sh_size;
7984
7985 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7986 if (symtab_shndx_hdr->sh_name != 0)
7987 {
7988 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7989 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7990 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7991 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7992 symtab_shndx_hdr->sh_size = amt;
7993
7994 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7995 off, TRUE);
7996
7997 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7998 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7999 return FALSE;
8000 }
8001
8002
8003 /* Finish up and write out the symbol string table (.strtab)
8004 section. */
8005 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8006 /* sh_name was set in prep_headers. */
8007 symstrtab_hdr->sh_type = SHT_STRTAB;
8008 symstrtab_hdr->sh_flags = 0;
8009 symstrtab_hdr->sh_addr = 0;
8010 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8011 symstrtab_hdr->sh_entsize = 0;
8012 symstrtab_hdr->sh_link = 0;
8013 symstrtab_hdr->sh_info = 0;
8014 /* sh_offset is set just below. */
8015 symstrtab_hdr->sh_addralign = 1;
8016
8017 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8018 elf_tdata (abfd)->next_file_pos = off;
8019
8020 if (bfd_get_symcount (abfd) > 0)
8021 {
8022 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8023 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8024 return FALSE;
8025 }
8026
8027 /* Adjust the relocs to have the correct symbol indices. */
8028 for (o = abfd->sections; o != NULL; o = o->next)
8029 {
8030 if ((o->flags & SEC_RELOC) == 0)
8031 continue;
8032
8033 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8034 elf_section_data (o)->rel_count,
8035 elf_section_data (o)->rel_hashes);
8036 if (elf_section_data (o)->rel_hdr2 != NULL)
8037 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8038 elf_section_data (o)->rel_count2,
8039 (elf_section_data (o)->rel_hashes
8040 + elf_section_data (o)->rel_count));
8041
8042 /* Set the reloc_count field to 0 to prevent write_relocs from
8043 trying to swap the relocs out itself. */
8044 o->reloc_count = 0;
8045 }
8046
8047 if (dynamic && info->combreloc && dynobj != NULL)
8048 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8049
8050 /* If we are linking against a dynamic object, or generating a
8051 shared library, finish up the dynamic linking information. */
8052 if (dynamic)
8053 {
8054 bfd_byte *dyncon, *dynconend;
8055
8056 /* Fix up .dynamic entries. */
8057 o = bfd_get_section_by_name (dynobj, ".dynamic");
8058 BFD_ASSERT (o != NULL);
8059
8060 dyncon = o->contents;
eea6121a 8061 dynconend = o->contents + o->size;
c152c796
AM
8062 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8063 {
8064 Elf_Internal_Dyn dyn;
8065 const char *name;
8066 unsigned int type;
8067
8068 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8069
8070 switch (dyn.d_tag)
8071 {
8072 default:
8073 continue;
8074 case DT_NULL:
8075 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8076 {
8077 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8078 {
8079 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8080 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8081 default: continue;
8082 }
8083 dyn.d_un.d_val = relativecount;
8084 relativecount = 0;
8085 break;
8086 }
8087 continue;
8088
8089 case DT_INIT:
8090 name = info->init_function;
8091 goto get_sym;
8092 case DT_FINI:
8093 name = info->fini_function;
8094 get_sym:
8095 {
8096 struct elf_link_hash_entry *h;
8097
8098 h = elf_link_hash_lookup (elf_hash_table (info), name,
8099 FALSE, FALSE, TRUE);
8100 if (h != NULL
8101 && (h->root.type == bfd_link_hash_defined
8102 || h->root.type == bfd_link_hash_defweak))
8103 {
8104 dyn.d_un.d_val = h->root.u.def.value;
8105 o = h->root.u.def.section;
8106 if (o->output_section != NULL)
8107 dyn.d_un.d_val += (o->output_section->vma
8108 + o->output_offset);
8109 else
8110 {
8111 /* The symbol is imported from another shared
8112 library and does not apply to this one. */
8113 dyn.d_un.d_val = 0;
8114 }
8115 break;
8116 }
8117 }
8118 continue;
8119
8120 case DT_PREINIT_ARRAYSZ:
8121 name = ".preinit_array";
8122 goto get_size;
8123 case DT_INIT_ARRAYSZ:
8124 name = ".init_array";
8125 goto get_size;
8126 case DT_FINI_ARRAYSZ:
8127 name = ".fini_array";
8128 get_size:
8129 o = bfd_get_section_by_name (abfd, name);
8130 if (o == NULL)
8131 {
8132 (*_bfd_error_handler)
d003868e 8133 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8134 goto error_return;
8135 }
eea6121a 8136 if (o->size == 0)
c152c796
AM
8137 (*_bfd_error_handler)
8138 (_("warning: %s section has zero size"), name);
eea6121a 8139 dyn.d_un.d_val = o->size;
c152c796
AM
8140 break;
8141
8142 case DT_PREINIT_ARRAY:
8143 name = ".preinit_array";
8144 goto get_vma;
8145 case DT_INIT_ARRAY:
8146 name = ".init_array";
8147 goto get_vma;
8148 case DT_FINI_ARRAY:
8149 name = ".fini_array";
8150 goto get_vma;
8151
8152 case DT_HASH:
8153 name = ".hash";
8154 goto get_vma;
8155 case DT_STRTAB:
8156 name = ".dynstr";
8157 goto get_vma;
8158 case DT_SYMTAB:
8159 name = ".dynsym";
8160 goto get_vma;
8161 case DT_VERDEF:
8162 name = ".gnu.version_d";
8163 goto get_vma;
8164 case DT_VERNEED:
8165 name = ".gnu.version_r";
8166 goto get_vma;
8167 case DT_VERSYM:
8168 name = ".gnu.version";
8169 get_vma:
8170 o = bfd_get_section_by_name (abfd, name);
8171 if (o == NULL)
8172 {
8173 (*_bfd_error_handler)
d003868e 8174 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8175 goto error_return;
8176 }
8177 dyn.d_un.d_ptr = o->vma;
8178 break;
8179
8180 case DT_REL:
8181 case DT_RELA:
8182 case DT_RELSZ:
8183 case DT_RELASZ:
8184 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8185 type = SHT_REL;
8186 else
8187 type = SHT_RELA;
8188 dyn.d_un.d_val = 0;
8189 for (i = 1; i < elf_numsections (abfd); i++)
8190 {
8191 Elf_Internal_Shdr *hdr;
8192
8193 hdr = elf_elfsections (abfd)[i];
8194 if (hdr->sh_type == type
8195 && (hdr->sh_flags & SHF_ALLOC) != 0)
8196 {
8197 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8198 dyn.d_un.d_val += hdr->sh_size;
8199 else
8200 {
8201 if (dyn.d_un.d_val == 0
8202 || hdr->sh_addr < dyn.d_un.d_val)
8203 dyn.d_un.d_val = hdr->sh_addr;
8204 }
8205 }
8206 }
8207 break;
8208 }
8209 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8210 }
8211 }
8212
8213 /* If we have created any dynamic sections, then output them. */
8214 if (dynobj != NULL)
8215 {
8216 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8217 goto error_return;
8218
8219 for (o = dynobj->sections; o != NULL; o = o->next)
8220 {
8221 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8222 || o->size == 0
c152c796
AM
8223 || o->output_section == bfd_abs_section_ptr)
8224 continue;
8225 if ((o->flags & SEC_LINKER_CREATED) == 0)
8226 {
8227 /* At this point, we are only interested in sections
8228 created by _bfd_elf_link_create_dynamic_sections. */
8229 continue;
8230 }
3722b82f
AM
8231 if (elf_hash_table (info)->stab_info.stabstr == o)
8232 continue;
eea6121a
AM
8233 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8234 continue;
c152c796
AM
8235 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8236 != SHT_STRTAB)
8237 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8238 {
8239 if (! bfd_set_section_contents (abfd, o->output_section,
8240 o->contents,
8241 (file_ptr) o->output_offset,
eea6121a 8242 o->size))
c152c796
AM
8243 goto error_return;
8244 }
8245 else
8246 {
8247 /* The contents of the .dynstr section are actually in a
8248 stringtab. */
8249 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8250 if (bfd_seek (abfd, off, SEEK_SET) != 0
8251 || ! _bfd_elf_strtab_emit (abfd,
8252 elf_hash_table (info)->dynstr))
8253 goto error_return;
8254 }
8255 }
8256 }
8257
8258 if (info->relocatable)
8259 {
8260 bfd_boolean failed = FALSE;
8261
8262 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8263 if (failed)
8264 goto error_return;
8265 }
8266
8267 /* If we have optimized stabs strings, output them. */
3722b82f 8268 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8269 {
8270 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8271 goto error_return;
8272 }
8273
8274 if (info->eh_frame_hdr)
8275 {
8276 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8277 goto error_return;
8278 }
8279
8280 if (finfo.symstrtab != NULL)
8281 _bfd_stringtab_free (finfo.symstrtab);
8282 if (finfo.contents != NULL)
8283 free (finfo.contents);
8284 if (finfo.external_relocs != NULL)
8285 free (finfo.external_relocs);
8286 if (finfo.internal_relocs != NULL)
8287 free (finfo.internal_relocs);
8288 if (finfo.external_syms != NULL)
8289 free (finfo.external_syms);
8290 if (finfo.locsym_shndx != NULL)
8291 free (finfo.locsym_shndx);
8292 if (finfo.internal_syms != NULL)
8293 free (finfo.internal_syms);
8294 if (finfo.indices != NULL)
8295 free (finfo.indices);
8296 if (finfo.sections != NULL)
8297 free (finfo.sections);
8298 if (finfo.symbuf != NULL)
8299 free (finfo.symbuf);
8300 if (finfo.symshndxbuf != NULL)
8301 free (finfo.symshndxbuf);
8302 for (o = abfd->sections; o != NULL; o = o->next)
8303 {
8304 if ((o->flags & SEC_RELOC) != 0
8305 && elf_section_data (o)->rel_hashes != NULL)
8306 free (elf_section_data (o)->rel_hashes);
8307 }
8308
8309 elf_tdata (abfd)->linker = TRUE;
8310
8311 return TRUE;
8312
8313 error_return:
8314 if (finfo.symstrtab != NULL)
8315 _bfd_stringtab_free (finfo.symstrtab);
8316 if (finfo.contents != NULL)
8317 free (finfo.contents);
8318 if (finfo.external_relocs != NULL)
8319 free (finfo.external_relocs);
8320 if (finfo.internal_relocs != NULL)
8321 free (finfo.internal_relocs);
8322 if (finfo.external_syms != NULL)
8323 free (finfo.external_syms);
8324 if (finfo.locsym_shndx != NULL)
8325 free (finfo.locsym_shndx);
8326 if (finfo.internal_syms != NULL)
8327 free (finfo.internal_syms);
8328 if (finfo.indices != NULL)
8329 free (finfo.indices);
8330 if (finfo.sections != NULL)
8331 free (finfo.sections);
8332 if (finfo.symbuf != NULL)
8333 free (finfo.symbuf);
8334 if (finfo.symshndxbuf != NULL)
8335 free (finfo.symshndxbuf);
8336 for (o = abfd->sections; o != NULL; o = o->next)
8337 {
8338 if ((o->flags & SEC_RELOC) != 0
8339 && elf_section_data (o)->rel_hashes != NULL)
8340 free (elf_section_data (o)->rel_hashes);
8341 }
8342
8343 return FALSE;
8344}
8345\f
8346/* Garbage collect unused sections. */
8347
8348/* The mark phase of garbage collection. For a given section, mark
8349 it and any sections in this section's group, and all the sections
8350 which define symbols to which it refers. */
8351
8352typedef asection * (*gc_mark_hook_fn)
8353 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8354 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8355
ccfa59ea
AM
8356bfd_boolean
8357_bfd_elf_gc_mark (struct bfd_link_info *info,
8358 asection *sec,
8359 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8360{
8361 bfd_boolean ret;
8362 asection *group_sec;
8363
8364 sec->gc_mark = 1;
8365
8366 /* Mark all the sections in the group. */
8367 group_sec = elf_section_data (sec)->next_in_group;
8368 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8369 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8370 return FALSE;
8371
8372 /* Look through the section relocs. */
8373 ret = TRUE;
8374 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8375 {
8376 Elf_Internal_Rela *relstart, *rel, *relend;
8377 Elf_Internal_Shdr *symtab_hdr;
8378 struct elf_link_hash_entry **sym_hashes;
8379 size_t nlocsyms;
8380 size_t extsymoff;
8381 bfd *input_bfd = sec->owner;
8382 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8383 Elf_Internal_Sym *isym = NULL;
8384 int r_sym_shift;
8385
8386 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8387 sym_hashes = elf_sym_hashes (input_bfd);
8388
8389 /* Read the local symbols. */
8390 if (elf_bad_symtab (input_bfd))
8391 {
8392 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8393 extsymoff = 0;
8394 }
8395 else
8396 extsymoff = nlocsyms = symtab_hdr->sh_info;
8397
8398 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8399 if (isym == NULL && nlocsyms != 0)
8400 {
8401 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8402 NULL, NULL, NULL);
8403 if (isym == NULL)
8404 return FALSE;
8405 }
8406
8407 /* Read the relocations. */
8408 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8409 info->keep_memory);
8410 if (relstart == NULL)
8411 {
8412 ret = FALSE;
8413 goto out1;
8414 }
8415 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8416
8417 if (bed->s->arch_size == 32)
8418 r_sym_shift = 8;
8419 else
8420 r_sym_shift = 32;
8421
8422 for (rel = relstart; rel < relend; rel++)
8423 {
8424 unsigned long r_symndx;
8425 asection *rsec;
8426 struct elf_link_hash_entry *h;
8427
8428 r_symndx = rel->r_info >> r_sym_shift;
8429 if (r_symndx == 0)
8430 continue;
8431
8432 if (r_symndx >= nlocsyms
8433 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8434 {
8435 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8436 while (h->root.type == bfd_link_hash_indirect
8437 || h->root.type == bfd_link_hash_warning)
8438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8439 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8440 }
8441 else
8442 {
8443 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8444 }
8445
8446 if (rsec && !rsec->gc_mark)
8447 {
8448 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8449 rsec->gc_mark = 1;
ccfa59ea 8450 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8451 {
8452 ret = FALSE;
8453 goto out2;
8454 }
8455 }
8456 }
8457
8458 out2:
8459 if (elf_section_data (sec)->relocs != relstart)
8460 free (relstart);
8461 out1:
8462 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8463 {
8464 if (! info->keep_memory)
8465 free (isym);
8466 else
8467 symtab_hdr->contents = (unsigned char *) isym;
8468 }
8469 }
8470
8471 return ret;
8472}
8473
8474/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8475
8476static bfd_boolean
8477elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8478{
8479 int *idx = idxptr;
8480
8481 if (h->root.type == bfd_link_hash_warning)
8482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8483
8484 if (h->dynindx != -1
8485 && ((h->root.type != bfd_link_hash_defined
8486 && h->root.type != bfd_link_hash_defweak)
8487 || h->root.u.def.section->gc_mark))
8488 h->dynindx = (*idx)++;
8489
8490 return TRUE;
8491}
8492
8493/* The sweep phase of garbage collection. Remove all garbage sections. */
8494
8495typedef bfd_boolean (*gc_sweep_hook_fn)
8496 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8497
8498static bfd_boolean
8499elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8500{
8501 bfd *sub;
8502
8503 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8504 {
8505 asection *o;
8506
8507 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8508 continue;
8509
8510 for (o = sub->sections; o != NULL; o = o->next)
8511 {
7c2c8505
AM
8512 /* Keep debug and special sections. */
8513 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8514 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8515 o->gc_mark = 1;
8516
8517 if (o->gc_mark)
8518 continue;
8519
8520 /* Skip sweeping sections already excluded. */
8521 if (o->flags & SEC_EXCLUDE)
8522 continue;
8523
8524 /* Since this is early in the link process, it is simple
8525 to remove a section from the output. */
8526 o->flags |= SEC_EXCLUDE;
8527
8528 /* But we also have to update some of the relocation
8529 info we collected before. */
8530 if (gc_sweep_hook
8531 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8532 {
8533 Elf_Internal_Rela *internal_relocs;
8534 bfd_boolean r;
8535
8536 internal_relocs
8537 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8538 info->keep_memory);
8539 if (internal_relocs == NULL)
8540 return FALSE;
8541
8542 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8543
8544 if (elf_section_data (o)->relocs != internal_relocs)
8545 free (internal_relocs);
8546
8547 if (!r)
8548 return FALSE;
8549 }
8550 }
8551 }
8552
8553 /* Remove the symbols that were in the swept sections from the dynamic
8554 symbol table. GCFIXME: Anyone know how to get them out of the
8555 static symbol table as well? */
8556 {
8557 int i = 0;
8558
8559 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8560
8561 elf_hash_table (info)->dynsymcount = i;
8562 }
8563
8564 return TRUE;
8565}
8566
8567/* Propagate collected vtable information. This is called through
8568 elf_link_hash_traverse. */
8569
8570static bfd_boolean
8571elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8572{
8573 if (h->root.type == bfd_link_hash_warning)
8574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8575
8576 /* Those that are not vtables. */
8577 if (h->vtable_parent == NULL)
8578 return TRUE;
8579
8580 /* Those vtables that do not have parents, we cannot merge. */
8581 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8582 return TRUE;
8583
8584 /* If we've already been done, exit. */
8585 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8586 return TRUE;
8587
8588 /* Make sure the parent's table is up to date. */
8589 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8590
8591 if (h->vtable_entries_used == NULL)
8592 {
8593 /* None of this table's entries were referenced. Re-use the
8594 parent's table. */
8595 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8596 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8597 }
8598 else
8599 {
8600 size_t n;
8601 bfd_boolean *cu, *pu;
8602
8603 /* Or the parent's entries into ours. */
8604 cu = h->vtable_entries_used;
8605 cu[-1] = TRUE;
8606 pu = h->vtable_parent->vtable_entries_used;
8607 if (pu != NULL)
8608 {
8609 const struct elf_backend_data *bed;
8610 unsigned int log_file_align;
8611
8612 bed = get_elf_backend_data (h->root.u.def.section->owner);
8613 log_file_align = bed->s->log_file_align;
8614 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8615 while (n--)
8616 {
8617 if (*pu)
8618 *cu = TRUE;
8619 pu++;
8620 cu++;
8621 }
8622 }
8623 }
8624
8625 return TRUE;
8626}
8627
8628static bfd_boolean
8629elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8630{
8631 asection *sec;
8632 bfd_vma hstart, hend;
8633 Elf_Internal_Rela *relstart, *relend, *rel;
8634 const struct elf_backend_data *bed;
8635 unsigned int log_file_align;
8636
8637 if (h->root.type == bfd_link_hash_warning)
8638 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8639
8640 /* Take care of both those symbols that do not describe vtables as
8641 well as those that are not loaded. */
8642 if (h->vtable_parent == NULL)
8643 return TRUE;
8644
8645 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8646 || h->root.type == bfd_link_hash_defweak);
8647
8648 sec = h->root.u.def.section;
8649 hstart = h->root.u.def.value;
8650 hend = hstart + h->size;
8651
8652 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8653 if (!relstart)
8654 return *(bfd_boolean *) okp = FALSE;
8655 bed = get_elf_backend_data (sec->owner);
8656 log_file_align = bed->s->log_file_align;
8657
8658 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8659
8660 for (rel = relstart; rel < relend; ++rel)
8661 if (rel->r_offset >= hstart && rel->r_offset < hend)
8662 {
8663 /* If the entry is in use, do nothing. */
8664 if (h->vtable_entries_used
8665 && (rel->r_offset - hstart) < h->vtable_entries_size)
8666 {
8667 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8668 if (h->vtable_entries_used[entry])
8669 continue;
8670 }
8671 /* Otherwise, kill it. */
8672 rel->r_offset = rel->r_info = rel->r_addend = 0;
8673 }
8674
8675 return TRUE;
8676}
8677
715df9b8
EB
8678/* Mark sections containing dynamically referenced symbols. This is called
8679 through elf_link_hash_traverse. */
8680
8681static bfd_boolean
8682elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8683 void *okp ATTRIBUTE_UNUSED)
8684{
8685 if (h->root.type == bfd_link_hash_warning)
8686 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8687
8688 if ((h->root.type == bfd_link_hash_defined
8689 || h->root.type == bfd_link_hash_defweak)
8690 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8691 h->root.u.def.section->flags |= SEC_KEEP;
8692
8693 return TRUE;
8694}
8695
c152c796
AM
8696/* Do mark and sweep of unused sections. */
8697
8698bfd_boolean
8699bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8700{
8701 bfd_boolean ok = TRUE;
8702 bfd *sub;
8703 asection * (*gc_mark_hook)
8704 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8705 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8706
8707 if (!get_elf_backend_data (abfd)->can_gc_sections
8708 || info->relocatable
8709 || info->emitrelocations
715df9b8
EB
8710 || info->shared
8711 || !is_elf_hash_table (info->hash))
c152c796
AM
8712 {
8713 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8714 return TRUE;
8715 }
8716
8717 /* Apply transitive closure to the vtable entry usage info. */
8718 elf_link_hash_traverse (elf_hash_table (info),
8719 elf_gc_propagate_vtable_entries_used,
8720 &ok);
8721 if (!ok)
8722 return FALSE;
8723
8724 /* Kill the vtable relocations that were not used. */
8725 elf_link_hash_traverse (elf_hash_table (info),
8726 elf_gc_smash_unused_vtentry_relocs,
8727 &ok);
8728 if (!ok)
8729 return FALSE;
8730
715df9b8
EB
8731 /* Mark dynamically referenced symbols. */
8732 if (elf_hash_table (info)->dynamic_sections_created)
8733 elf_link_hash_traverse (elf_hash_table (info),
8734 elf_gc_mark_dynamic_ref_symbol,
8735 &ok);
8736 if (!ok)
8737 return FALSE;
c152c796 8738
715df9b8 8739 /* Grovel through relocs to find out who stays ... */
c152c796
AM
8740 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8741 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8742 {
8743 asection *o;
8744
8745 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8746 continue;
8747
8748 for (o = sub->sections; o != NULL; o = o->next)
8749 {
8750 if (o->flags & SEC_KEEP)
715df9b8
EB
8751 {
8752 /* _bfd_elf_discard_section_eh_frame knows how to discard
8753 orphaned FDEs so don't mark sections referenced by the
8754 EH frame section. */
8755 if (strcmp (o->name, ".eh_frame") == 0)
8756 o->gc_mark = 1;
ccfa59ea 8757 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
715df9b8
EB
8758 return FALSE;
8759 }
c152c796
AM
8760 }
8761 }
8762
8763 /* ... and mark SEC_EXCLUDE for those that go. */
8764 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8765 return FALSE;
8766
8767 return TRUE;
8768}
8769\f
8770/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8771
8772bfd_boolean
8773bfd_elf_gc_record_vtinherit (bfd *abfd,
8774 asection *sec,
8775 struct elf_link_hash_entry *h,
8776 bfd_vma offset)
8777{
8778 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8779 struct elf_link_hash_entry **search, *child;
8780 bfd_size_type extsymcount;
8781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8782
8783 /* The sh_info field of the symtab header tells us where the
8784 external symbols start. We don't care about the local symbols at
8785 this point. */
8786 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8787 if (!elf_bad_symtab (abfd))
8788 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8789
8790 sym_hashes = elf_sym_hashes (abfd);
8791 sym_hashes_end = sym_hashes + extsymcount;
8792
8793 /* Hunt down the child symbol, which is in this section at the same
8794 offset as the relocation. */
8795 for (search = sym_hashes; search != sym_hashes_end; ++search)
8796 {
8797 if ((child = *search) != NULL
8798 && (child->root.type == bfd_link_hash_defined
8799 || child->root.type == bfd_link_hash_defweak)
8800 && child->root.u.def.section == sec
8801 && child->root.u.def.value == offset)
8802 goto win;
8803 }
8804
d003868e
AM
8805 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
8806 abfd, sec, (unsigned long) offset);
c152c796
AM
8807 bfd_set_error (bfd_error_invalid_operation);
8808 return FALSE;
8809
8810 win:
8811 if (!h)
8812 {
8813 /* This *should* only be the absolute section. It could potentially
8814 be that someone has defined a non-global vtable though, which
8815 would be bad. It isn't worth paging in the local symbols to be
8816 sure though; that case should simply be handled by the assembler. */
8817
8818 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8819 }
8820 else
8821 child->vtable_parent = h;
8822
8823 return TRUE;
8824}
8825
8826/* Called from check_relocs to record the existence of a VTENTRY reloc. */
8827
8828bfd_boolean
8829bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8830 asection *sec ATTRIBUTE_UNUSED,
8831 struct elf_link_hash_entry *h,
8832 bfd_vma addend)
8833{
8834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8835 unsigned int log_file_align = bed->s->log_file_align;
8836
8837 if (addend >= h->vtable_entries_size)
8838 {
8839 size_t size, bytes, file_align;
8840 bfd_boolean *ptr = h->vtable_entries_used;
8841
8842 /* While the symbol is undefined, we have to be prepared to handle
8843 a zero size. */
8844 file_align = 1 << log_file_align;
8845 if (h->root.type == bfd_link_hash_undefined)
8846 size = addend + file_align;
8847 else
8848 {
8849 size = h->size;
8850 if (addend >= size)
8851 {
8852 /* Oops! We've got a reference past the defined end of
8853 the table. This is probably a bug -- shall we warn? */
8854 size = addend + file_align;
8855 }
8856 }
8857 size = (size + file_align - 1) & -file_align;
8858
8859 /* Allocate one extra entry for use as a "done" flag for the
8860 consolidation pass. */
8861 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8862
8863 if (ptr)
8864 {
8865 ptr = bfd_realloc (ptr - 1, bytes);
8866
8867 if (ptr != NULL)
8868 {
8869 size_t oldbytes;
8870
8871 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8872 * sizeof (bfd_boolean));
8873 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8874 }
8875 }
8876 else
8877 ptr = bfd_zmalloc (bytes);
8878
8879 if (ptr == NULL)
8880 return FALSE;
8881
8882 /* And arrange for that done flag to be at index -1. */
8883 h->vtable_entries_used = ptr + 1;
8884 h->vtable_entries_size = size;
8885 }
8886
8887 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8888
8889 return TRUE;
8890}
8891
8892struct alloc_got_off_arg {
8893 bfd_vma gotoff;
8894 unsigned int got_elt_size;
8895};
8896
8897/* We need a special top-level link routine to convert got reference counts
8898 to real got offsets. */
8899
8900static bfd_boolean
8901elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8902{
8903 struct alloc_got_off_arg *gofarg = arg;
8904
8905 if (h->root.type == bfd_link_hash_warning)
8906 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8907
8908 if (h->got.refcount > 0)
8909 {
8910 h->got.offset = gofarg->gotoff;
8911 gofarg->gotoff += gofarg->got_elt_size;
8912 }
8913 else
8914 h->got.offset = (bfd_vma) -1;
8915
8916 return TRUE;
8917}
8918
8919/* And an accompanying bit to work out final got entry offsets once
8920 we're done. Should be called from final_link. */
8921
8922bfd_boolean
8923bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8924 struct bfd_link_info *info)
8925{
8926 bfd *i;
8927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8928 bfd_vma gotoff;
8929 unsigned int got_elt_size = bed->s->arch_size / 8;
8930 struct alloc_got_off_arg gofarg;
8931
8932 if (! is_elf_hash_table (info->hash))
8933 return FALSE;
8934
8935 /* The GOT offset is relative to the .got section, but the GOT header is
8936 put into the .got.plt section, if the backend uses it. */
8937 if (bed->want_got_plt)
8938 gotoff = 0;
8939 else
8940 gotoff = bed->got_header_size;
8941
8942 /* Do the local .got entries first. */
8943 for (i = info->input_bfds; i; i = i->link_next)
8944 {
8945 bfd_signed_vma *local_got;
8946 bfd_size_type j, locsymcount;
8947 Elf_Internal_Shdr *symtab_hdr;
8948
8949 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8950 continue;
8951
8952 local_got = elf_local_got_refcounts (i);
8953 if (!local_got)
8954 continue;
8955
8956 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8957 if (elf_bad_symtab (i))
8958 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8959 else
8960 locsymcount = symtab_hdr->sh_info;
8961
8962 for (j = 0; j < locsymcount; ++j)
8963 {
8964 if (local_got[j] > 0)
8965 {
8966 local_got[j] = gotoff;
8967 gotoff += got_elt_size;
8968 }
8969 else
8970 local_got[j] = (bfd_vma) -1;
8971 }
8972 }
8973
8974 /* Then the global .got entries. .plt refcounts are handled by
8975 adjust_dynamic_symbol */
8976 gofarg.gotoff = gotoff;
8977 gofarg.got_elt_size = got_elt_size;
8978 elf_link_hash_traverse (elf_hash_table (info),
8979 elf_gc_allocate_got_offsets,
8980 &gofarg);
8981 return TRUE;
8982}
8983
8984/* Many folk need no more in the way of final link than this, once
8985 got entry reference counting is enabled. */
8986
8987bfd_boolean
8988bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8989{
8990 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8991 return FALSE;
8992
8993 /* Invoke the regular ELF backend linker to do all the work. */
8994 return bfd_elf_final_link (abfd, info);
8995}
8996
8997bfd_boolean
8998bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8999{
9000 struct elf_reloc_cookie *rcookie = cookie;
9001
9002 if (rcookie->bad_symtab)
9003 rcookie->rel = rcookie->rels;
9004
9005 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9006 {
9007 unsigned long r_symndx;
9008
9009 if (! rcookie->bad_symtab)
9010 if (rcookie->rel->r_offset > offset)
9011 return FALSE;
9012 if (rcookie->rel->r_offset != offset)
9013 continue;
9014
9015 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9016 if (r_symndx == SHN_UNDEF)
9017 return TRUE;
9018
9019 if (r_symndx >= rcookie->locsymcount
9020 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9021 {
9022 struct elf_link_hash_entry *h;
9023
9024 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9025
9026 while (h->root.type == bfd_link_hash_indirect
9027 || h->root.type == bfd_link_hash_warning)
9028 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9029
9030 if ((h->root.type == bfd_link_hash_defined
9031 || h->root.type == bfd_link_hash_defweak)
9032 && elf_discarded_section (h->root.u.def.section))
9033 return TRUE;
9034 else
9035 return FALSE;
9036 }
9037 else
9038 {
9039 /* It's not a relocation against a global symbol,
9040 but it could be a relocation against a local
9041 symbol for a discarded section. */
9042 asection *isec;
9043 Elf_Internal_Sym *isym;
9044
9045 /* Need to: get the symbol; get the section. */
9046 isym = &rcookie->locsyms[r_symndx];
9047 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9048 {
9049 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9050 if (isec != NULL && elf_discarded_section (isec))
9051 return TRUE;
9052 }
9053 }
9054 return FALSE;
9055 }
9056 return FALSE;
9057}
9058
9059/* Discard unneeded references to discarded sections.
9060 Returns TRUE if any section's size was changed. */
9061/* This function assumes that the relocations are in sorted order,
9062 which is true for all known assemblers. */
9063
9064bfd_boolean
9065bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9066{
9067 struct elf_reloc_cookie cookie;
9068 asection *stab, *eh;
9069 Elf_Internal_Shdr *symtab_hdr;
9070 const struct elf_backend_data *bed;
9071 bfd *abfd;
9072 unsigned int count;
9073 bfd_boolean ret = FALSE;
9074
9075 if (info->traditional_format
9076 || !is_elf_hash_table (info->hash))
9077 return FALSE;
9078
9079 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9080 {
9081 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9082 continue;
9083
9084 bed = get_elf_backend_data (abfd);
9085
9086 if ((abfd->flags & DYNAMIC) != 0)
9087 continue;
9088
9089 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9090 if (info->relocatable
9091 || (eh != NULL
eea6121a 9092 && (eh->size == 0
c152c796
AM
9093 || bfd_is_abs_section (eh->output_section))))
9094 eh = NULL;
9095
9096 stab = bfd_get_section_by_name (abfd, ".stab");
9097 if (stab != NULL
eea6121a 9098 && (stab->size == 0
c152c796
AM
9099 || bfd_is_abs_section (stab->output_section)
9100 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9101 stab = NULL;
9102
9103 if (stab == NULL
9104 && eh == NULL
9105 && bed->elf_backend_discard_info == NULL)
9106 continue;
9107
9108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9109 cookie.abfd = abfd;
9110 cookie.sym_hashes = elf_sym_hashes (abfd);
9111 cookie.bad_symtab = elf_bad_symtab (abfd);
9112 if (cookie.bad_symtab)
9113 {
9114 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9115 cookie.extsymoff = 0;
9116 }
9117 else
9118 {
9119 cookie.locsymcount = symtab_hdr->sh_info;
9120 cookie.extsymoff = symtab_hdr->sh_info;
9121 }
9122
9123 if (bed->s->arch_size == 32)
9124 cookie.r_sym_shift = 8;
9125 else
9126 cookie.r_sym_shift = 32;
9127
9128 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9129 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9130 {
9131 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9132 cookie.locsymcount, 0,
9133 NULL, NULL, NULL);
9134 if (cookie.locsyms == NULL)
9135 return FALSE;
9136 }
9137
9138 if (stab != NULL)
9139 {
9140 cookie.rels = NULL;
9141 count = stab->reloc_count;
9142 if (count != 0)
9143 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9144 info->keep_memory);
9145 if (cookie.rels != NULL)
9146 {
9147 cookie.rel = cookie.rels;
9148 cookie.relend = cookie.rels;
9149 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9150 if (_bfd_discard_section_stabs (abfd, stab,
9151 elf_section_data (stab)->sec_info,
9152 bfd_elf_reloc_symbol_deleted_p,
9153 &cookie))
9154 ret = TRUE;
9155 if (elf_section_data (stab)->relocs != cookie.rels)
9156 free (cookie.rels);
9157 }
9158 }
9159
9160 if (eh != NULL)
9161 {
9162 cookie.rels = NULL;
9163 count = eh->reloc_count;
9164 if (count != 0)
9165 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9166 info->keep_memory);
9167 cookie.rel = cookie.rels;
9168 cookie.relend = cookie.rels;
9169 if (cookie.rels != NULL)
9170 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9171
9172 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9173 bfd_elf_reloc_symbol_deleted_p,
9174 &cookie))
9175 ret = TRUE;
9176
9177 if (cookie.rels != NULL
9178 && elf_section_data (eh)->relocs != cookie.rels)
9179 free (cookie.rels);
9180 }
9181
9182 if (bed->elf_backend_discard_info != NULL
9183 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9184 ret = TRUE;
9185
9186 if (cookie.locsyms != NULL
9187 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9188 {
9189 if (! info->keep_memory)
9190 free (cookie.locsyms);
9191 else
9192 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9193 }
9194 }
9195
9196 if (info->eh_frame_hdr
9197 && !info->relocatable
9198 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9199 ret = TRUE;
9200
9201 return ret;
9202}
082b7297 9203
3d7f7666
L
9204struct already_linked_section
9205{
9206 asection *sec;
9207 asection *linked;
9208};
9209
9210/* Check if the member of a single member comdat group matches a
9211 linkonce section and vice versa. */
9212static bfd_boolean
9213try_match_symbols_in_sections
9214 (struct bfd_section_already_linked_hash_entry *h, void *info)
9215{
9216 struct bfd_section_already_linked *l;
9217 struct already_linked_section *s
9218 = (struct already_linked_section *) info;
9219
9220 if (elf_sec_group (s->sec) == NULL)
9221 {
9222 /* It is a linkonce section. Try to match it with the member of a
9223 single member comdat group. */
9224 for (l = h->entry; l != NULL; l = l->next)
9225 if ((l->sec->flags & SEC_GROUP))
9226 {
9227 asection *first = elf_next_in_group (l->sec);
9228
9229 if (first != NULL
9230 && elf_next_in_group (first) == first
9231 && bfd_elf_match_symbols_in_sections (first, s->sec))
9232 {
9233 s->linked = first;
9234 return FALSE;
9235 }
9236 }
9237 }
9238 else
9239 {
9240 /* It is the member of a single member comdat group. Try to match
9241 it with a linkonce section. */
9242 for (l = h->entry; l != NULL; l = l->next)
9243 if ((l->sec->flags & SEC_GROUP) == 0
9244 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9245 && bfd_elf_match_symbols_in_sections (l->sec, s->sec))
9246 {
9247 s->linked = l->sec;
9248 return FALSE;
9249 }
9250 }
9251
9252 return TRUE;
9253}
9254
9255static bfd_boolean
9256already_linked (asection *sec, asection *group)
9257{
9258 struct already_linked_section result;
9259
9260 result.sec = sec;
9261 result.linked = NULL;
9262
9263 bfd_section_already_linked_table_traverse
9264 (try_match_symbols_in_sections, &result);
9265
9266 if (result.linked)
9267 {
9268 sec->output_section = bfd_abs_section_ptr;
9269 sec->kept_section = result.linked;
9270
9271 /* Also discard the group section. */
9272 if (group)
9273 group->output_section = bfd_abs_section_ptr;
9274
9275 return TRUE;
9276 }
9277
9278 return FALSE;
9279}
9280
082b7297
L
9281void
9282_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9283{
9284 flagword flags;
9285 const char *name;
9286 struct bfd_section_already_linked *l;
9287 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9288 asection *group;
9289
9290 /* A single member comdat group section may be discarded by a
9291 linkonce section. See below. */
9292 if (sec->output_section == bfd_abs_section_ptr)
9293 return;
082b7297
L
9294
9295 flags = sec->flags;
3d7f7666
L
9296
9297 /* Check if it belongs to a section group. */
9298 group = elf_sec_group (sec);
9299
9300 /* Return if it isn't a linkonce section nor a member of a group. A
9301 comdat group section also has SEC_LINK_ONCE set. */
9302 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9303 return;
9304
3d7f7666
L
9305 if (group)
9306 {
9307 /* If this is the member of a single member comdat group, check if
9308 the group should be discarded. */
9309 if (elf_next_in_group (sec) == sec
9310 && (group->flags & SEC_LINK_ONCE) != 0)
9311 sec = group;
9312 else
9313 return;
9314 }
9315
082b7297
L
9316 /* FIXME: When doing a relocatable link, we may have trouble
9317 copying relocations in other sections that refer to local symbols
9318 in the section being discarded. Those relocations will have to
9319 be converted somehow; as of this writing I'm not sure that any of
9320 the backends handle that correctly.
9321
9322 It is tempting to instead not discard link once sections when
9323 doing a relocatable link (technically, they should be discarded
9324 whenever we are building constructors). However, that fails,
9325 because the linker winds up combining all the link once sections
9326 into a single large link once section, which defeats the purpose
9327 of having link once sections in the first place.
9328
9329 Also, not merging link once sections in a relocatable link
9330 causes trouble for MIPS ELF, which relies on link once semantics
9331 to handle the .reginfo section correctly. */
9332
9333 name = bfd_get_section_name (abfd, sec);
9334
9335 already_linked_list = bfd_section_already_linked_table_lookup (name);
9336
9337 for (l = already_linked_list->entry; l != NULL; l = l->next)
9338 {
9339 /* We may have 3 different sections on the list: group section,
9340 comdat section and linkonce section. SEC may be a linkonce or
9341 group section. We match a group section with a group section,
9342 a linkonce section with a linkonce section, and ignore comdat
9343 section. */
3d7f7666 9344 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
082b7297
L
9345 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9346 {
9347 /* The section has already been linked. See if we should
9348 issue a warning. */
9349 switch (flags & SEC_LINK_DUPLICATES)
9350 {
9351 default:
9352 abort ();
9353
9354 case SEC_LINK_DUPLICATES_DISCARD:
9355 break;
9356
9357 case SEC_LINK_DUPLICATES_ONE_ONLY:
9358 (*_bfd_error_handler)
d003868e
AM
9359 (_("%B: ignoring duplicate section `%A'\n"),
9360 abfd, sec);
082b7297
L
9361 break;
9362
9363 case SEC_LINK_DUPLICATES_SAME_SIZE:
9364 if (sec->size != l->sec->size)
9365 (*_bfd_error_handler)
d003868e
AM
9366 (_("%B: duplicate section `%A' has different size\n"),
9367 abfd, sec);
082b7297
L
9368 break;
9369 }
9370
9371 /* Set the output_section field so that lang_add_section
9372 does not create a lang_input_section structure for this
9373 section. Since there might be a symbol in the section
9374 being discarded, we must retain a pointer to the section
9375 which we are really going to use. */
9376 sec->output_section = bfd_abs_section_ptr;
9377 sec->kept_section = l->sec;
9378
9379 if (flags & SEC_GROUP)
3d7f7666
L
9380 {
9381 asection *first = elf_next_in_group (sec);
9382 asection *s = first;
9383
9384 while (s != NULL)
9385 {
9386 s->output_section = bfd_abs_section_ptr;
9387 /* Record which group discards it. */
9388 s->kept_section = l->sec;
9389 s = elf_next_in_group (s);
9390 /* These lists are circular. */
9391 if (s == first)
9392 break;
9393 }
9394 }
082b7297
L
9395
9396 return;
9397 }
9398 }
9399
3d7f7666
L
9400 if (group)
9401 {
9402 /* If this is the member of a single member comdat group and the
9403 group hasn't be discarded, we check if it matches a linkonce
9404 section. We only record the discarded comdat group. Otherwise
9405 the undiscarded group will be discarded incorrectly later since
9406 itself has been recorded. */
9407 if (! already_linked (elf_next_in_group (sec), group))
9408 return;
9409 }
9410 else
9411 /* There is no direct match. But for linkonce section, we should
9412 check if there is a match with comdat group member. We always
9413 record the linkonce section, discarded or not. */
9414 already_linked (sec, group);
9415
082b7297
L
9416 /* This is the first section with this name. Record it. */
9417 bfd_section_already_linked_table_insert (already_linked_list, sec);
9418}
This page took 0.956578 seconds and 4 git commands to generate.