Revise way in which mappings are allocated/searched.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132 1/* ELF linker support.
7898deda
NC
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* ELF linker code. */
22
23/* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26struct elf_info_failed
27{
28 boolean failed;
29 struct bfd_link_info *info;
30};
31
32static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
456981d7 39 boolean *, boolean *, boolean *, boolean));
252b5132
RH
40static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
52static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
3e932841 54static boolean elf_link_read_relocs_from_section
6b5bd373 55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
56static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
3e932841
KH
60static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
31367b81 62 struct elf_link_hash_entry **));
252b5132
RH
63
64/* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
66
67boolean
68elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
71{
72 switch (bfd_get_format (abfd))
73 {
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
81 }
82}
83\f
7da9d88f 84/* Return true iff this is a non-common, definition of a non-function symbol. */
48dfb430 85static boolean
7da9d88f 86is_global_data_symbol_definition (abfd, sym)
86033394 87 bfd * abfd ATTRIBUTE_UNUSED;
48dfb430
NC
88 Elf_Internal_Sym * sym;
89{
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
93 return false;
94
7da9d88f
NC
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
97 return false;
98
48dfb430
NC
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
101 return false;
3e932841 102
48dfb430
NC
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
106 return false;
107
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
3e932841 112
48dfb430 113 return _bfd_is_global_symbol_definition (abfd, sym);
3e932841 114
48dfb430
NC
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
118 return false;
3e932841 119
48dfb430
NC
120 return true;
121}
122
a3a8c91d 123/* Search the symbol table of the archive element of the archive ABFD
7da9d88f 124 whoes archive map contains a mention of SYMDEF, and determine if
a3a8c91d
NC
125 the symbol is defined in this element. */
126static boolean
127elf_link_is_defined_archive_symbol (abfd, symdef)
128 bfd * abfd;
129 carsym * symdef;
130{
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
135 size_t symcount;
136 size_t extsymcount;
137 size_t extsymoff;
138 boolean result = false;
3e932841 139
a3a8c91d
NC
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
142 return false;
143
144 if (! bfd_check_format (abfd, bfd_object))
145 return false;
146
48dfb430
NC
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
152 return false;
3e932841 153
a3a8c91d
NC
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
157 else
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
159
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
161
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
165 {
166 extsymcount = symcount;
167 extsymoff = 0;
168 }
169 else
170 {
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
173 }
174
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
178 return false;
179
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
182 if (bfd_seek (abfd,
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
184 SEEK_SET) != 0
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
187 {
188 free (buf);
189 return false;
190 }
191
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
194 for (esym = buf;
195 esym < esymend;
196 esym++)
197 {
198 Elf_Internal_Sym sym;
199 const char * name;
200
201 elf_swap_symbol_in (abfd, esym, & sym);
202
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
205 break;
206
207 if (strcmp (name, symdef->name) == 0)
208 {
7da9d88f 209 result = is_global_data_symbol_definition (abfd, & sym);
a3a8c91d
NC
210 break;
211 }
212 }
213
214 free (buf);
3e932841 215
a3a8c91d
NC
216 return result;
217}
218\f
252b5132
RH
219/* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
234
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
239 object file.
240
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
243
244static boolean
245elf_link_add_archive_symbols (abfd, info)
246 bfd *abfd;
247 struct bfd_link_info *info;
248{
249 symindex c;
250 boolean *defined = NULL;
251 boolean *included = NULL;
252 carsym *symdefs;
253 boolean loop;
254
255 if (! bfd_has_map (abfd))
256 {
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
259 return true;
260 bfd_set_error (bfd_error_no_armap);
261 return false;
262 }
263
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
268 if (c == 0)
269 return true;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
273 goto error_return;
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
276
277 symdefs = bfd_ardata (abfd)->symdefs;
278
279 do
280 {
281 file_ptr last;
282 symindex i;
283 carsym *symdef;
284 carsym *symdefend;
285
286 loop = false;
287 last = -1;
288
289 symdef = symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
292 {
293 struct elf_link_hash_entry *h;
294 bfd *element;
295 struct bfd_link_hash_entry *undefs_tail;
296 symindex mark;
297
298 if (defined[i] || included[i])
299 continue;
300 if (symdef->file_offset == last)
301 {
302 included[i] = true;
303 continue;
304 }
305
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
308
309 if (h == NULL)
310 {
311 char *p, *copy;
312
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
317 archive. */
318
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
321 continue;
322
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
324 if (copy == NULL)
325 goto error_return;
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
328
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
331
332 bfd_release (abfd, copy);
333 }
334
335 if (h == NULL)
336 continue;
337
a3a8c91d
NC
338 if (h->root.type == bfd_link_hash_common)
339 {
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
344 declaration of it.
345
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
351 this is. */
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
353 continue;
354 }
355 else if (h->root.type != bfd_link_hash_undefined)
252b5132
RH
356 {
357 if (h->root.type != bfd_link_hash_undefweak)
358 defined[i] = true;
359 continue;
360 }
361
362 /* We need to include this archive member. */
252b5132
RH
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
365 goto error_return;
366
367 if (! bfd_check_format (element, bfd_object))
368 goto error_return;
369
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
374 {
375 bfd_set_error (bfd_error_bad_value);
376 goto error_return;
377 }
378 element->archive_pass = 1;
379
380 undefs_tail = info->hash->undefs_tail;
381
382 if (! (*info->callbacks->add_archive_element) (info, element,
383 symdef->name))
384 goto error_return;
385 if (! elf_link_add_object_symbols (element, info))
386 goto error_return;
387
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
396 loop = true;
397
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
400 mark = i;
401 do
402 {
403 included[mark] = true;
404 if (mark == 0)
405 break;
406 --mark;
407 }
408 while (symdefs[mark].file_offset == symdef->file_offset);
409
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
413 }
414 }
415 while (loop);
416
417 free (defined);
418 free (included);
419
420 return true;
421
422 error_return:
423 if (defined != (boolean *) NULL)
424 free (defined);
425 if (included != (boolean *) NULL)
426 free (included);
427 return false;
428}
429
430/* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
456981d7
L
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
440 a shared object. */
252b5132
RH
441
442static boolean
443elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
456981d7 444 override, type_change_ok, size_change_ok, dt_needed)
252b5132
RH
445 bfd *abfd;
446 struct bfd_link_info *info;
447 const char *name;
448 Elf_Internal_Sym *sym;
449 asection **psec;
450 bfd_vma *pvalue;
451 struct elf_link_hash_entry **sym_hash;
452 boolean *override;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
456981d7 455 boolean dt_needed;
252b5132
RH
456{
457 asection *sec;
458 struct elf_link_hash_entry *h;
459 int bind;
460 bfd *oldbfd;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
462
463 *override = false;
464
465 sec = *psec;
466 bind = ELF_ST_BIND (sym->st_info);
467
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
470 else
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
473 if (h == NULL)
474 return false;
475 *sym_hash = h;
476
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
480 return true;
481
482 /* For merging, we only care about real symbols. */
483
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
487
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
491
492 if (h->root.type == bfd_link_hash_new)
493 {
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
495 return true;
496 }
497
498 /* OLDBFD is a BFD associated with the existing symbol. */
499
500 switch (h->root.type)
501 {
502 default:
503 oldbfd = NULL;
504 break;
505
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
509 break;
510
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
514 break;
515
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
518 break;
519 }
520
b4536acd
ILT
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
accc7f69
ILT
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
527 if (abfd == oldbfd
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
530 return true;
531
252b5132
RH
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
534
535 if ((abfd->flags & DYNAMIC) != 0)
536 newdyn = true;
537 else
538 newdyn = false;
539
0035bd7b
ILT
540 if (oldbfd != NULL)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
252b5132 542 else
0035bd7b
ILT
543 {
544 asection *hsec;
545
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
549 {
550 default:
551 hsec = NULL;
552 break;
553
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
557 break;
558
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
561 break;
562 }
563
564 if (hsec == NULL)
565 olddyn = false;
566 else
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
568 }
252b5132
RH
569
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
572
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
574 newdef = false;
575 else
576 newdef = true;
577
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
581 olddef = false;
582 else
583 olddef = true;
584
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
596 libraries.
597
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
600
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
606 harmless. */
607
608 if (newdyn
609 && newdef
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
612 && sym->st_size > 0
613 && bind != STB_WEAK
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
615 newdyncommon = true;
616 else
617 newdyncommon = false;
618
619 if (olddyn
620 && olddef
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
625 && h->size > 0
626 && h->type != STT_FUNC)
627 olddyncommon = true;
628 else
629 olddyncommon = false;
630
631 /* It's OK to change the type if either the existing symbol or the
456981d7
L
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
3e932841 634 required at the run time. */
252b5132 635
456981d7 636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
252b5132
RH
637 || h->root.type == bfd_link_hash_undefweak
638 || bind == STB_WEAK)
639 *type_change_ok = true;
640
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
643
644 if (*type_change_ok
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
647
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
650 two. */
651
652 if (olddyncommon
653 && newdyncommon
654 && sym->st_size != h->size)
655 {
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
661
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
665 return false;
666
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
669
670 *size_change_ok = true;
671 }
672
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
678 bfd_und_section_ptr.
679
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
0525d26e
ILT
685 object to override a weak symbol in a shared object.
686
687 We prefer a non-weak definition in a shared library to a weak
456981d7
L
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
3e932841 690 may not be required at the run time. */
252b5132
RH
691
692 if (newdyn
693 && newdef
694 && (olddef
695 || (h->root.type == bfd_link_hash_common
696 && (bind == STB_WEAK
0525d26e 697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
3e932841 698 && (h->root.type != bfd_link_hash_defweak
456981d7 699 || dt_needed
0525d26e 700 || bind == STB_WEAK))
252b5132
RH
701 {
702 *override = true;
703 newdef = false;
704 newdyncommon = false;
705
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
708
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
714
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
717 }
718
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
723 the right thing. */
724
725 if (newdyncommon
726 && h->root.type == bfd_link_hash_common)
727 {
728 *override = true;
729 newdef = false;
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
734 }
735
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
741
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
0525d26e
ILT
744 symbol is a function or is weak.
745
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
252b5132
RH
748
749 if (! newdyn
750 && (newdef
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
754 && olddyn
755 && olddef
0525d26e
ILT
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
757 && (bind != STB_WEAK
758 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
759 {
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
762 new definition. */
763
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
767
768 olddef = false;
769 olddyncommon = false;
770
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
773
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
776
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
780
781 h->verinfo.vertree = NULL;
782
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
789 *sym_hash = h;
790 }
791
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
797
798 if (! newdyn
799 && bfd_is_com_section (sec)
800 && olddyncommon)
801 {
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
804 or the alignment. */
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
808 return false;
809
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
812
813 if (h->size > *pvalue)
814 *pvalue = h->size;
815
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
819
820 olddef = false;
821 olddyncommon = false;
822
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
825
826 *size_change_ok = true;
827 *type_change_ok = true;
828
829 h->verinfo.vertree = NULL;
830 }
831
0525d26e
ILT
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
456981d7
L
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
3e932841 836 the DT_NEEDED entry may not be required at the run time. */
0525d26e 837 if (olddef
456981d7 838 && ! dt_needed
0525d26e
ILT
839 && h->root.type == bfd_link_hash_defweak
840 && newdef
841 && newdyn
842 && bind != STB_WEAK)
b4536acd
ILT
843 {
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
846 definition. */
64df8d0b
ILT
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
b4536acd
ILT
853
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
858 *sym_hash = h;
859 }
0525d26e
ILT
860
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
865 as a definition. */
866 if (olddef
867 && olddyn
868 && h->root.type != bfd_link_hash_defweak
869 && newdef
870 && ! newdyn
871 && bind == STB_WEAK)
872 *override = true;
873
252b5132
RH
874 return true;
875}
876
877/* Add symbols from an ELF object file to the linker hash table. */
878
879static boolean
880elf_link_add_object_symbols (abfd, info)
881 bfd *abfd;
882 struct bfd_link_info *info;
883{
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
890 boolean collect;
891 Elf_Internal_Shdr *hdr;
892 size_t symcount;
893 size_t extsymcount;
894 size_t extsymoff;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
897 boolean dynamic;
898 bfd_byte *dynver = NULL;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
c61b8717 905 struct elf_backend_data *bed;
74816898 906 boolean dt_needed;
252b5132 907
c61b8717
RH
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
252b5132
RH
911
912 if ((abfd->flags & DYNAMIC) == 0)
913 dynamic = false;
914 else
915 {
916 dynamic = true;
917
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
922 {
923 bfd_set_error (bfd_error_invalid_operation);
924 goto error_return;
925 }
926 }
927
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
932 if (! info->shared)
933 {
934 asection *s;
935
936 for (s = abfd->sections; s != NULL; s = s->next)
937 {
938 const char *name;
939
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
942 {
943 char *msg;
944 bfd_size_type sz;
945
946 name += sizeof ".gnu.warning." - 1;
947
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
956 link. */
957 if (dynamic && abfd->xvec == info->hash->creator)
958 {
959 struct elf_link_hash_entry *h;
960
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
962 false, false, true);
963
964 /* FIXME: What about bfd_link_hash_common? */
965 if (h != NULL
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
968 {
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
972 s->_raw_size = 0;
973 continue;
974 }
975 }
976
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
979 if (msg == NULL)
980 goto error_return;
981
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983 goto error_return;
984
985 msg[sz] = '\0';
986
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
990 goto error_return;
991
992 if (! info->relocateable)
993 {
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
996 s->_raw_size = 0;
997 }
998 }
999 }
1000 }
1001
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1006
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1009 else
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1011
1012 if (dynamic)
1013 {
1014 /* Read in any version definitions. */
1015
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1017 goto error_return;
1018
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1022 {
1023 Elf_Internal_Shdr *versymhdr;
1024
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1027 if (extversym == NULL)
1028 goto error_return;
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1032 goto error_return;
1033 }
1034 }
1035
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1037
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1040 this point. */
1041 if (elf_bad_symtab (abfd))
1042 {
1043 extsymcount = symcount;
1044 extsymoff = 0;
1045 }
1046 else
1047 {
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1050 }
1051
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1055 goto error_return;
1056
1057 /* We store a pointer to the hash table entry for each external
1058 symbol. */
1059 sym_hash = ((struct elf_link_hash_entry **)
1060 bfd_alloc (abfd,
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1063 goto error_return;
1064 elf_sym_hashes (abfd) = sym_hash;
1065
74816898
L
1066 dt_needed = false;
1067
252b5132
RH
1068 if (! dynamic)
1069 {
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1075 if (info->shared
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1078 {
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1080 goto error_return;
1081 }
1082 }
1083 else
1084 {
1085 asection *s;
1086 boolean add_needed;
1087 const char *name;
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1090
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1098 add_needed = true;
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1101 {
1102 name = elf_dt_name (abfd);
1103 if (*name == '\0')
74816898
L
1104 {
1105 if (elf_dt_soname (abfd) != NULL)
1106 dt_needed = true;
1107
1108 add_needed = false;
1109 }
252b5132
RH
1110 }
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1112 if (s != NULL)
1113 {
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1116 int elfsec;
1117 unsigned long link;
a963dc6a
L
1118 int rpath;
1119 int runpath;
252b5132
RH
1120
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122 if (dynbuf == NULL)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1127 goto error_return;
1128
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1133
20e29382
JL
1134 {
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1139 instead. */
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1142 {
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145 if (elfsec == -1)
1146 goto error_return;
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1148 }
1149 }
1150
252b5132
RH
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
a963dc6a
L
1153 rpath = 0;
1154 runpath = 0;
252b5132
RH
1155 for (; extdyn < extdynend; extdyn++)
1156 {
1157 Elf_Internal_Dyn dyn;
1158
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1161 {
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1163 dyn.d_un.d_val);
1164 if (name == NULL)
1165 goto error_return;
1166 }
1167 if (dyn.d_tag == DT_NEEDED)
1168 {
1169 struct bfd_link_needed_list *n, **pn;
1170 char *fnm, *anm;
1171
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1175 dyn.d_un.d_val);
1176 if (n == NULL || fnm == NULL)
1177 goto error_return;
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179 if (anm == NULL)
1180 goto error_return;
1181 strcpy (anm, fnm);
1182 n->name = anm;
1183 n->by = abfd;
1184 n->next = NULL;
1185 for (pn = &elf_hash_table (info)->needed;
1186 *pn != NULL;
1187 pn = &(*pn)->next)
1188 ;
1189 *pn = n;
1190 }
a963dc6a
L
1191 if (dyn.d_tag == DT_RUNPATH)
1192 {
1193 struct bfd_link_needed_list *n, **pn;
1194 char *fnm, *anm;
1195
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
512a2384
AM
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1199 well. */
a963dc6a 1200 if (rpath && elf_hash_table (info)->runpath)
512a2384 1201 elf_hash_table (info)->runpath = NULL;
a963dc6a
L
1202
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1206 dyn.d_un.d_val);
1207 if (n == NULL || fnm == NULL)
1208 goto error_return;
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210 if (anm == NULL)
1211 goto error_return;
1212 strcpy (anm, fnm);
1213 n->name = anm;
1214 n->by = abfd;
1215 n->next = NULL;
1216 for (pn = &elf_hash_table (info)->runpath;
1217 *pn != NULL;
1218 pn = &(*pn)->next)
1219 ;
1220 *pn = n;
1221 runpath = 1;
1222 rpath = 0;
1223 }
3e932841 1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
a963dc6a
L
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1226 {
1227 struct bfd_link_needed_list *n, **pn;
1228 char *fnm, *anm;
1229
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1233 dyn.d_un.d_val);
1234 if (n == NULL || fnm == NULL)
1235 goto error_return;
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237 if (anm == NULL)
1238 goto error_return;
1239 strcpy (anm, fnm);
1240 n->name = anm;
1241 n->by = abfd;
1242 n->next = NULL;
1243 for (pn = &elf_hash_table (info)->runpath;
1244 *pn != NULL;
1245 pn = &(*pn)->next)
1246 ;
1247 *pn = n;
1248 rpath = 1;
1249 }
252b5132
RH
1250 }
1251
1252 free (dynbuf);
1253 dynbuf = NULL;
1254 }
1255
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1262 file. */
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1265
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1269 {
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1271 goto error_return;
1272 }
1273
1274 if (add_needed)
1275 {
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279 true, false);
1280 if (strindex == (bfd_size_type) -1)
1281 goto error_return;
1282
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1284 {
1285 asection *sdyn;
1286 Elf_External_Dyn *dyncon, *dynconend;
1287
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294 ".dynamic");
1295 BFD_ASSERT (sdyn != NULL);
1296
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299 sdyn->_raw_size);
1300 for (; dyncon < dynconend; dyncon++)
1301 {
1302 Elf_Internal_Dyn dyn;
1303
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305 &dyn);
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1308 {
1309 if (buf != NULL)
1310 free (buf);
1311 if (extversym != NULL)
1312 free (extversym);
1313 return true;
1314 }
1315 }
1316 }
1317
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319 goto error_return;
1320 }
1321
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1324 if (*name == '\0')
1325 name = bfd_get_filename (abfd);
1326 elf_dt_name (abfd) = name;
1327 }
1328
1329 if (bfd_seek (abfd,
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331 SEEK_SET) != 0
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1334 goto error_return;
1335
1336 weaks = NULL;
1337
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1340 for (esym = buf;
1341 esym < esymend;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1343 {
1344 Elf_Internal_Sym sym;
1345 int bind;
1346 bfd_vma value;
1347 asection *sec;
1348 flagword flags;
1349 const char *name;
1350 struct elf_link_hash_entry *h;
1351 boolean definition;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1355
1356 elf_swap_symbol_in (abfd, esym, &sym);
1357
1358 flags = BSF_NO_FLAGS;
1359 sec = NULL;
1360 value = sym.st_value;
1361 *sym_hash = NULL;
1362
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1365 {
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1369 screws this up. */
1370 continue;
1371 }
1372 else if (bind == STB_GLOBAL)
1373 {
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1376 flags = BSF_GLOBAL;
252b5132
RH
1377 }
1378 else if (bind == STB_WEAK)
1379 flags = BSF_WEAK;
1380 else
1381 {
1382 /* Leave it up to the processor backend. */
1383 }
1384
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1388 {
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1390 if (sec == NULL)
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393 value -= sec->vma;
1394 }
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1398 {
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1403 }
1404 else
1405 {
1406 /* Leave it up to the processor backend. */
1407 }
1408
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1411 goto error_return;
1412
1413 if (add_symbol_hook)
1414 {
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416 &value))
1417 goto error_return;
1418
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1422 continue;
1423 }
1424
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1427 {
1428 bfd_set_error (bfd_error_bad_value);
1429 goto error_return;
1430 }
1431
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1434 definition = false;
1435 else
1436 definition = true;
1437
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440 old_alignment = 0;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1442 {
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1445 boolean override;
1446
1447 if (ever != NULL)
1448 {
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1451
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1459 {
1460 const char *verstr;
1461 int namelen, newlen;
1462 char *newname, *p;
1463
1464 if (sym.st_shndx != SHN_UNDEF)
1465 {
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1467 {
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1473 goto error_return;
1474 }
1475 else if (vernum > 1)
1476 verstr =
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478 else
1479 verstr = "";
1480 }
1481 else
1482 {
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1486 at 0. */
1487 Elf_Internal_Verneed *t;
1488
1489 verstr = NULL;
1490 for (t = elf_tdata (abfd)->verref;
1491 t != NULL;
1492 t = t->vn_nextref)
1493 {
1494 Elf_Internal_Vernaux *a;
1495
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1497 {
1498 if (a->vna_other == vernum)
1499 {
1500 verstr = a->vna_nodename;
1501 break;
1502 }
1503 }
1504 if (a != NULL)
1505 break;
1506 }
1507 if (verstr == NULL)
1508 {
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1513 goto error_return;
1514 }
1515 }
1516
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520 ++newlen;
1521
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1524 goto error_return;
1525 strcpy (newname, name);
1526 p = newname + namelen;
1527 *p++ = ELF_VER_CHR;
1287d1cc
ILT
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
252b5132
RH
1533 *p++ = ELF_VER_CHR;
1534 strcpy (p, verstr);
1535
1536 name = newname;
1537 }
1538 }
1539
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
456981d7 1542 &size_change_ok, dt_needed))
252b5132
RH
1543 goto error_return;
1544
1545 if (override)
1546 definition = false;
1547
1548 h = *sym_hash;
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1557 override. */
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1560
1561 if (elf_tdata (abfd)->verdef != NULL
1562 && ! override
1563 && vernum > 1
1564 && definition)
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1566 }
1567
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571 goto error_return;
1572
1573 h = *sym_hash;
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577 *sym_hash = h;
1578
1579 new_weakdef = false;
1580 if (dynamic
1581 && definition
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1586 {
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1598
1599 h->weakdef = weaks;
1600 weaks = h;
1601 new_weakdef = true;
1602 }
1603
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 unsigned int align;
1609
1610 align = bfd_log2 (sym.st_value);
724982f6
NC
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
252b5132
RH
1615 h->root.u.c.p->alignment_power = align;
1616 }
1617
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1619 {
1620 int old_flags;
1621 boolean dynsym;
1622 int new_flag;
1623
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1627 {
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1633
1634 h->size = sym.st_size;
1635 }
1636
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1644
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1647 {
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1655
1656 h->type = ELF_ST_TYPE (sym.st_info);
1657 }
1658
7a13edea
NC
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1662 {
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
3e932841 1666
7a13edea 1667 if (symvis && (hvis > symvis || hvis == 0))
38048eb9 1668 h->other = sym.st_other;
3e932841 1669
7a13edea
NC
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1676 }
252b5132
RH
1677
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1684 dynsym = false;
1685 if (! dynamic)
1686 {
1687 if (! definition)
1688 {
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1692 }
1693 else
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695 if (info->shared
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698 dynsym = true;
1699 }
1700 else
1701 {
1702 if (! definition)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704 else
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1709 && ! new_weakdef
1710 && h->weakdef->dynindx != -1))
1711 dynsym = true;
1712 }
1713
1714 h->elf_link_hash_flags |= new_flag;
1715
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
051b8577 1721 if (definition || h->root.type == bfd_link_hash_common)
252b5132
RH
1722 {
1723 char *p;
1724
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1727 {
1728 char *shortname;
1729 struct elf_link_hash_entry *hi;
1730 boolean override;
1731
1732 shortname = bfd_hash_allocate (&info->hash->table,
1733 p - name + 1);
1734 if (shortname == NULL)
1735 goto error_return;
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1738
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
456981d7
L
1748 &type_change_ok,
1749 &size_change_ok, dt_needed))
252b5132
RH
1750 goto error_return;
1751
1752 if (! override)
1753 {
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1758 goto error_return;
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1768 version.
1769
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1774
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1784 object. */
1785
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1789
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1793 {
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1799 {
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1801 hi))
1802 goto error_return;
1803 }
1804 }
1805
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1808 hi = h;
1809 }
1810
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1814 case. */
1815
1816 if (hi->root.type == bfd_link_hash_indirect)
1817 {
1818 struct elf_link_hash_entry *ht;
1819
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1825 == 0);
1826
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
c61b8717 1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
252b5132
RH
1829
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1832 if (! dynsym)
1833 {
1834 if (! dynamic)
1835 {
1836 if (info->shared
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1839 != 0))
1840 dynsym = true;
1841 }
1842 else
1843 {
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1846 dynsym = true;
1847 }
1848 }
1849 }
1850
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1853
1854 shortname = bfd_hash_allocate (&info->hash->table,
1855 strlen (name));
1856 if (shortname == NULL)
1857 goto error_return;
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1860
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
456981d7
L
1866 &type_change_ok,
1867 &size_change_ok, dt_needed))
252b5132
RH
1868 goto error_return;
1869
1870 if (override)
1871 {
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1878 }
1879 else
1880 {
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1885 goto error_return;
1886
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1890 that case. */
1891
1892 if (hi->root.type == bfd_link_hash_indirect)
1893 {
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1896 before. */
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1900 == 0);
1901
c61b8717 1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
252b5132
RH
1903
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1906 if (! dynsym)
1907 {
1908 if (! dynamic)
1909 {
1910 if (info->shared
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1913 != 0))
1914 dynsym = true;
1915 }
1916 else
1917 {
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1920 dynsym = true;
1921 }
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 if (dynsym && h->dynindx == -1)
1929 {
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931 goto error_return;
1932 if (h->weakdef != NULL
1933 && ! new_weakdef
1934 && h->weakdef->dynindx == -1)
1935 {
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1937 h->weakdef))
1938 goto error_return;
1939 }
1940 }
38048eb9 1941 else if (dynsym && h->dynindx != -1)
0444bdd4
L
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1944 a local symbol. */
1945 switch (ELF_ST_VISIBILITY (h->other))
1946 {
1947 case STV_INTERNAL:
3e932841 1948 case STV_HIDDEN:
0444bdd4 1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 1950 (*bed->elf_backend_hide_symbol) (info, h);
0444bdd4
L
1951 break;
1952 }
74816898
L
1953
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1957 {
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1960
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
3e932841 1963 have to make sure there is a DT_NEEDED entry for it. */
74816898
L
1964
1965 dt_needed = false;
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1969 true, false);
1970 if (strindex == (bfd_size_type) -1)
1971 goto error_return;
1972
1973 if (oldsize
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1975 {
1976 asection *sdyn;
1977 Elf_External_Dyn *dyncon, *dynconend;
1978
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980 ".dynamic");
1981 BFD_ASSERT (sdyn != NULL);
1982
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985 sdyn->_raw_size);
1986 for (; dyncon < dynconend; dyncon++)
1987 {
1988 Elf_Internal_Dyn dyn;
1989
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991 dyncon, &dyn);
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1994 }
1995 }
1996
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998 goto error_return;
1999 }
252b5132
RH
2000 }
2001 }
2002
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2015 either. */
2016 while (weaks != NULL)
2017 {
2018 struct elf_link_hash_entry *hlook;
2019 asection *slook;
2020 bfd_vma vlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2023
2024 hlook = weaks;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2027
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2034
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2038 {
2039 struct elf_link_hash_entry *h;
2040
2041 h = *hpp;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2046 {
2047 hlook->weakdef = h;
2048
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2051 as well. */
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2054 {
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056 goto error_return;
2057 }
2058
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2066 {
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068 goto error_return;
2069 }
2070
2071 break;
2072 }
2073 }
2074 }
2075
2076 if (buf != NULL)
2077 {
2078 free (buf);
2079 buf = NULL;
2080 }
2081
2082 if (extversym != NULL)
2083 {
2084 free (extversym);
2085 extversym = NULL;
2086 }
2087
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2090 relocs.
2091
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2102
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106 if (! dynamic
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2109 {
2110 asection *o;
2111
2112 for (o = abfd->sections; o != NULL; o = o->next)
2113 {
2114 Elf_Internal_Rela *internal_relocs;
2115 boolean ok;
2116
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2122 continue;
2123
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2129 goto error_return;
2130
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2132
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2135
2136 if (! ok)
2137 goto error_return;
2138 }
2139 }
2140
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2143 if (! dynamic
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2148 {
2149 asection *stab, *stabstr;
2150
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2152 if (stab != NULL)
2153 {
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2155
2156 if (stabstr != NULL)
2157 {
2158 struct bfd_elf_section_data *secdata;
2159
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2163 stab, stabstr,
2164 &secdata->stab_info))
2165 goto error_return;
2166 }
2167 }
2168 }
2169
2170 return true;
2171
2172 error_return:
2173 if (buf != NULL)
2174 free (buf);
2175 if (dynbuf != NULL)
2176 free (dynbuf);
2177 if (dynver != NULL)
2178 free (dynver);
2179 if (extversym != NULL)
2180 free (extversym);
2181 return false;
2182}
2183
2184/* Create some sections which will be filled in with dynamic linking
2185 information. ABFD is an input file which requires dynamic sections
2186 to be created. The dynamic sections take up virtual memory space
2187 when the final executable is run, so we need to create them before
2188 addresses are assigned to the output sections. We work out the
2189 actual contents and size of these sections later. */
2190
2191boolean
2192elf_link_create_dynamic_sections (abfd, info)
2193 bfd *abfd;
2194 struct bfd_link_info *info;
2195{
2196 flagword flags;
2197 register asection *s;
2198 struct elf_link_hash_entry *h;
2199 struct elf_backend_data *bed;
2200
2201 if (elf_hash_table (info)->dynamic_sections_created)
2202 return true;
2203
2204 /* Make sure that all dynamic sections use the same input BFD. */
2205 if (elf_hash_table (info)->dynobj == NULL)
2206 elf_hash_table (info)->dynobj = abfd;
2207 else
2208 abfd = elf_hash_table (info)->dynobj;
2209
2210 /* Note that we set the SEC_IN_MEMORY flag for all of these
2211 sections. */
2212 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2213 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2214
2215 /* A dynamically linked executable has a .interp section, but a
2216 shared library does not. */
2217 if (! info->shared)
2218 {
2219 s = bfd_make_section (abfd, ".interp");
2220 if (s == NULL
2221 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2222 return false;
2223 }
2224
2225 /* Create sections to hold version informations. These are removed
2226 if they are not needed. */
2227 s = bfd_make_section (abfd, ".gnu.version_d");
2228 if (s == NULL
2229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2230 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2231 return false;
2232
2233 s = bfd_make_section (abfd, ".gnu.version");
2234 if (s == NULL
2235 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2236 || ! bfd_set_section_alignment (abfd, s, 1))
2237 return false;
2238
2239 s = bfd_make_section (abfd, ".gnu.version_r");
2240 if (s == NULL
2241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2242 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2243 return false;
2244
2245 s = bfd_make_section (abfd, ".dynsym");
2246 if (s == NULL
2247 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2248 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2249 return false;
2250
2251 s = bfd_make_section (abfd, ".dynstr");
2252 if (s == NULL
2253 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2254 return false;
2255
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 if (elf_hash_table (info)->dynstr == NULL)
2258 {
2259 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2260 if (elf_hash_table (info)->dynstr == NULL)
2261 return false;
2262 }
2263
2264 s = bfd_make_section (abfd, ".dynamic");
2265 if (s == NULL
2266 || ! bfd_set_section_flags (abfd, s, flags)
2267 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2268 return false;
2269
2270 /* The special symbol _DYNAMIC is always set to the start of the
2271 .dynamic section. This call occurs before we have processed the
2272 symbols for any dynamic object, so we don't have to worry about
2273 overriding a dynamic definition. We could set _DYNAMIC in a
2274 linker script, but we only want to define it if we are, in fact,
2275 creating a .dynamic section. We don't want to define it if there
2276 is no .dynamic section, since on some ELF platforms the start up
2277 code examines it to decide how to initialize the process. */
2278 h = NULL;
2279 if (! (_bfd_generic_link_add_one_symbol
2280 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2281 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2282 (struct bfd_link_hash_entry **) &h)))
2283 return false;
2284 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2285 h->type = STT_OBJECT;
2286
2287 if (info->shared
2288 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2289 return false;
2290
c7ac6ff8
MM
2291 bed = get_elf_backend_data (abfd);
2292
252b5132
RH
2293 s = bfd_make_section (abfd, ".hash");
2294 if (s == NULL
2295 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2296 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2297 return false;
c7ac6ff8 2298 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2299
2300 /* Let the backend create the rest of the sections. This lets the
2301 backend set the right flags. The backend will normally create
2302 the .got and .plt sections. */
252b5132
RH
2303 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2304 return false;
2305
2306 elf_hash_table (info)->dynamic_sections_created = true;
2307
2308 return true;
2309}
2310
2311/* Add an entry to the .dynamic table. */
2312
2313boolean
2314elf_add_dynamic_entry (info, tag, val)
2315 struct bfd_link_info *info;
2316 bfd_vma tag;
2317 bfd_vma val;
2318{
2319 Elf_Internal_Dyn dyn;
2320 bfd *dynobj;
2321 asection *s;
2322 size_t newsize;
2323 bfd_byte *newcontents;
2324
2325 dynobj = elf_hash_table (info)->dynobj;
2326
2327 s = bfd_get_section_by_name (dynobj, ".dynamic");
2328 BFD_ASSERT (s != NULL);
2329
2330 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2331 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2332 if (newcontents == NULL)
2333 return false;
2334
2335 dyn.d_tag = tag;
2336 dyn.d_un.d_val = val;
2337 elf_swap_dyn_out (dynobj, &dyn,
2338 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2339
2340 s->_raw_size = newsize;
2341 s->contents = newcontents;
2342
2343 return true;
2344}
30b30c21
RH
2345
2346/* Record a new local dynamic symbol. */
2347
2348boolean
2349elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2350 struct bfd_link_info *info;
2351 bfd *input_bfd;
2352 long input_indx;
2353{
2354 struct elf_link_local_dynamic_entry *entry;
2355 struct elf_link_hash_table *eht;
2356 struct bfd_strtab_hash *dynstr;
2357 Elf_External_Sym esym;
2358 unsigned long dynstr_index;
2359 char *name;
30b30c21
RH
2360
2361 /* See if the entry exists already. */
2362 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2363 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2364 return true;
2365
2366 entry = (struct elf_link_local_dynamic_entry *)
2367 bfd_alloc (input_bfd, sizeof (*entry));
2368 if (entry == NULL)
2369 return false;
2370
2371 /* Go find the symbol, so that we can find it's name. */
2372 if (bfd_seek (input_bfd,
2373 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2374 + input_indx * sizeof (Elf_External_Sym)),
2375 SEEK_SET) != 0
2376 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2377 != sizeof (Elf_External_Sym)))
2378 return false;
2379 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2380
2381 name = (bfd_elf_string_from_elf_section
2382 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2383 entry->isym.st_name));
2384
2385 dynstr = elf_hash_table (info)->dynstr;
2386 if (dynstr == NULL)
2387 {
2388 /* Create a strtab to hold the dynamic symbol names. */
2389 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2390 if (dynstr == NULL)
2391 return false;
2392 }
2393
2394 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2395 if (dynstr_index == (unsigned long) -1)
2396 return false;
2397 entry->isym.st_name = dynstr_index;
2398
2399 eht = elf_hash_table (info);
2400
2401 entry->next = eht->dynlocal;
2402 eht->dynlocal = entry;
2403 entry->input_bfd = input_bfd;
2404 entry->input_indx = input_indx;
2405 eht->dynsymcount++;
2406
587ff49e
RH
2407 /* Whatever binding the symbol had before, it's now local. */
2408 entry->isym.st_info
2409 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2410
30b30c21
RH
2411 /* The dynindx will be set at the end of size_dynamic_sections. */
2412
2413 return true;
2414}
252b5132 2415\f
6b5bd373
MM
2416/* Read and swap the relocs from the section indicated by SHDR. This
2417 may be either a REL or a RELA section. The relocations are
2418 translated into RELA relocations and stored in INTERNAL_RELOCS,
2419 which should have already been allocated to contain enough space.
2420 The EXTERNAL_RELOCS are a buffer where the external form of the
2421 relocations should be stored.
2422
2423 Returns false if something goes wrong. */
2424
2425static boolean
2426elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2427 internal_relocs)
2428 bfd *abfd;
2429 Elf_Internal_Shdr *shdr;
2430 PTR external_relocs;
2431 Elf_Internal_Rela *internal_relocs;
2432{
c7ac6ff8
MM
2433 struct elf_backend_data *bed;
2434
6b5bd373
MM
2435 /* If there aren't any relocations, that's OK. */
2436 if (!shdr)
2437 return true;
2438
2439 /* Position ourselves at the start of the section. */
2440 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2441 return false;
2442
2443 /* Read the relocations. */
2444 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2445 != shdr->sh_size)
2446 return false;
2447
c7ac6ff8
MM
2448 bed = get_elf_backend_data (abfd);
2449
6b5bd373
MM
2450 /* Convert the external relocations to the internal format. */
2451 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2452 {
2453 Elf_External_Rel *erel;
2454 Elf_External_Rel *erelend;
2455 Elf_Internal_Rela *irela;
c7ac6ff8 2456 Elf_Internal_Rel *irel;
6b5bd373
MM
2457
2458 erel = (Elf_External_Rel *) external_relocs;
2459 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2460 irela = internal_relocs;
c7ac6ff8
MM
2461 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rel)));
2463 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2464 {
65388f2d 2465 unsigned char i;
c7ac6ff8
MM
2466
2467 if (bed->s->swap_reloc_in)
2468 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2469 else
2470 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2471
c7ac6ff8
MM
2472 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2473 {
2474 irela[i].r_offset = irel[i].r_offset;
2475 irela[i].r_info = irel[i].r_info;
2476 irela[i].r_addend = 0;
2477 }
6b5bd373
MM
2478 }
2479 }
2480 else
2481 {
2482 Elf_External_Rela *erela;
2483 Elf_External_Rela *erelaend;
2484 Elf_Internal_Rela *irela;
2485
2486 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2487
2488 erela = (Elf_External_Rela *) external_relocs;
2489 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2490 irela = internal_relocs;
c7ac6ff8
MM
2491 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2492 {
2493 if (bed->s->swap_reloca_in)
2494 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2495 else
2496 elf_swap_reloca_in (abfd, erela, irela);
2497 }
6b5bd373
MM
2498 }
2499
2500 return true;
2501}
2502
23bc299b
MM
2503/* Read and swap the relocs for a section O. They may have been
2504 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2505 not NULL, they are used as buffers to read into. They are known to
2506 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2507 the return value is allocated using either malloc or bfd_alloc,
2508 according to the KEEP_MEMORY argument. If O has two relocation
2509 sections (both REL and RELA relocations), then the REL_HDR
2510 relocations will appear first in INTERNAL_RELOCS, followed by the
2511 REL_HDR2 relocations. */
252b5132
RH
2512
2513Elf_Internal_Rela *
2514NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2515 keep_memory)
2516 bfd *abfd;
2517 asection *o;
2518 PTR external_relocs;
2519 Elf_Internal_Rela *internal_relocs;
2520 boolean keep_memory;
2521{
2522 Elf_Internal_Shdr *rel_hdr;
2523 PTR alloc1 = NULL;
2524 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2525 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2526
2527 if (elf_section_data (o)->relocs != NULL)
2528 return elf_section_data (o)->relocs;
2529
2530 if (o->reloc_count == 0)
2531 return NULL;
2532
2533 rel_hdr = &elf_section_data (o)->rel_hdr;
2534
2535 if (internal_relocs == NULL)
2536 {
2537 size_t size;
2538
3e932841 2539 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
c7ac6ff8 2540 * sizeof (Elf_Internal_Rela));
252b5132
RH
2541 if (keep_memory)
2542 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2543 else
2544 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2545 if (internal_relocs == NULL)
2546 goto error_return;
2547 }
2548
2549 if (external_relocs == NULL)
2550 {
6b5bd373
MM
2551 size_t size = (size_t) rel_hdr->sh_size;
2552
2553 if (elf_section_data (o)->rel_hdr2)
2554 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2555 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2556 if (alloc1 == NULL)
2557 goto error_return;
2558 external_relocs = alloc1;
2559 }
2560
6b5bd373
MM
2561 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2562 external_relocs,
2563 internal_relocs))
2564 goto error_return;
3e932841
KH
2565 if (!elf_link_read_relocs_from_section
2566 (abfd,
6b5bd373 2567 elf_section_data (o)->rel_hdr2,
2f5116e2 2568 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2569 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2570 * bed->s->int_rels_per_ext_rel)))
252b5132 2571 goto error_return;
252b5132
RH
2572
2573 /* Cache the results for next time, if we can. */
2574 if (keep_memory)
2575 elf_section_data (o)->relocs = internal_relocs;
2576
2577 if (alloc1 != NULL)
2578 free (alloc1);
2579
2580 /* Don't free alloc2, since if it was allocated we are passing it
2581 back (under the name of internal_relocs). */
2582
2583 return internal_relocs;
2584
2585 error_return:
2586 if (alloc1 != NULL)
2587 free (alloc1);
2588 if (alloc2 != NULL)
2589 free (alloc2);
2590 return NULL;
2591}
2592\f
252b5132
RH
2593/* Record an assignment to a symbol made by a linker script. We need
2594 this in case some dynamic object refers to this symbol. */
2595
2596/*ARGSUSED*/
2597boolean
2598NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2599 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2600 struct bfd_link_info *info;
2601 const char *name;
2602 boolean provide;
2603{
2604 struct elf_link_hash_entry *h;
2605
2606 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2607 return true;
2608
2609 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2610 if (h == NULL)
2611 return false;
2612
2613 if (h->root.type == bfd_link_hash_new)
2614 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2615
2616 /* If this symbol is being provided by the linker script, and it is
2617 currently defined by a dynamic object, but not by a regular
2618 object, then mark it as undefined so that the generic linker will
2619 force the correct value. */
2620 if (provide
2621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2623 h->root.type = bfd_link_hash_undefined;
2624
2625 /* If this symbol is not being provided by the linker script, and it is
2626 currently defined by a dynamic object, but not by a regular object,
2627 then clear out any version information because the symbol will not be
2628 associated with the dynamic object any more. */
2629 if (!provide
2630 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2632 h->verinfo.verdef = NULL;
2633
2634 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
994819d2
NC
2635
2636 /* When possible, keep the original type of the symbol */
2637 if (h->type == STT_NOTYPE)
2638 h->type = STT_OBJECT;
252b5132
RH
2639
2640 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2641 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2642 || info->shared)
2643 && h->dynindx == -1)
2644 {
2645 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2646 return false;
2647
2648 /* If this is a weak defined symbol, and we know a corresponding
2649 real symbol from the same dynamic object, make sure the real
2650 symbol is also made into a dynamic symbol. */
2651 if (h->weakdef != NULL
2652 && h->weakdef->dynindx == -1)
2653 {
2654 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2655 return false;
2656 }
2657 }
2658
2659 return true;
2660}
2661\f
2662/* This structure is used to pass information to
2663 elf_link_assign_sym_version. */
2664
2665struct elf_assign_sym_version_info
2666{
2667 /* Output BFD. */
2668 bfd *output_bfd;
2669 /* General link information. */
2670 struct bfd_link_info *info;
2671 /* Version tree. */
2672 struct bfd_elf_version_tree *verdefs;
2673 /* Whether we are exporting all dynamic symbols. */
2674 boolean export_dynamic;
252b5132
RH
2675 /* Whether we had a failure. */
2676 boolean failed;
2677};
2678
2679/* This structure is used to pass information to
2680 elf_link_find_version_dependencies. */
2681
2682struct elf_find_verdep_info
2683{
2684 /* Output BFD. */
2685 bfd *output_bfd;
2686 /* General link information. */
2687 struct bfd_link_info *info;
2688 /* The number of dependencies. */
2689 unsigned int vers;
2690 /* Whether we had a failure. */
2691 boolean failed;
2692};
2693
2694/* Array used to determine the number of hash table buckets to use
2695 based on the number of symbols there are. If there are fewer than
2696 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2697 fewer than 37 we use 17 buckets, and so forth. We never use more
2698 than 32771 buckets. */
2699
2700static const size_t elf_buckets[] =
2701{
2702 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2703 16411, 32771, 0
2704};
2705
2706/* Compute bucket count for hashing table. We do not use a static set
2707 of possible tables sizes anymore. Instead we determine for all
2708 possible reasonable sizes of the table the outcome (i.e., the
2709 number of collisions etc) and choose the best solution. The
2710 weighting functions are not too simple to allow the table to grow
2711 without bounds. Instead one of the weighting factors is the size.
2712 Therefore the result is always a good payoff between few collisions
2713 (= short chain lengths) and table size. */
2714static size_t
2715compute_bucket_count (info)
2716 struct bfd_link_info *info;
2717{
2718 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2719 size_t best_size = 0;
252b5132
RH
2720 unsigned long int *hashcodes;
2721 unsigned long int *hashcodesp;
2722 unsigned long int i;
2723
2724 /* Compute the hash values for all exported symbols. At the same
2725 time store the values in an array so that we could use them for
2726 optimizations. */
2727 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2728 * sizeof (unsigned long int));
2729 if (hashcodes == NULL)
2730 return 0;
2731 hashcodesp = hashcodes;
2732
2733 /* Put all hash values in HASHCODES. */
2734 elf_link_hash_traverse (elf_hash_table (info),
2735 elf_collect_hash_codes, &hashcodesp);
2736
2737/* We have a problem here. The following code to optimize the table
2738 size requires an integer type with more the 32 bits. If
2739 BFD_HOST_U_64_BIT is set we know about such a type. */
2740#ifdef BFD_HOST_U_64_BIT
2741 if (info->optimize == true)
2742 {
2743 unsigned long int nsyms = hashcodesp - hashcodes;
2744 size_t minsize;
2745 size_t maxsize;
2746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2747 unsigned long int *counts ;
2748
2749 /* Possible optimization parameters: if we have NSYMS symbols we say
2750 that the hashing table must at least have NSYMS/4 and at most
2751 2*NSYMS buckets. */
2752 minsize = nsyms / 4;
2753 if (minsize == 0)
2754 minsize = 1;
2755 best_size = maxsize = nsyms * 2;
2756
2757 /* Create array where we count the collisions in. We must use bfd_malloc
2758 since the size could be large. */
2759 counts = (unsigned long int *) bfd_malloc (maxsize
2760 * sizeof (unsigned long int));
2761 if (counts == NULL)
2762 {
2763 free (hashcodes);
2764 return 0;
2765 }
2766
2767 /* Compute the "optimal" size for the hash table. The criteria is a
2768 minimal chain length. The minor criteria is (of course) the size
2769 of the table. */
2770 for (i = minsize; i < maxsize; ++i)
2771 {
2772 /* Walk through the array of hashcodes and count the collisions. */
2773 BFD_HOST_U_64_BIT max;
2774 unsigned long int j;
2775 unsigned long int fact;
2776
2777 memset (counts, '\0', i * sizeof (unsigned long int));
2778
2779 /* Determine how often each hash bucket is used. */
2780 for (j = 0; j < nsyms; ++j)
2781 ++counts[hashcodes[j] % i];
2782
2783 /* For the weight function we need some information about the
2784 pagesize on the target. This is information need not be 100%
2785 accurate. Since this information is not available (so far) we
2786 define it here to a reasonable default value. If it is crucial
2787 to have a better value some day simply define this value. */
2788# ifndef BFD_TARGET_PAGESIZE
2789# define BFD_TARGET_PAGESIZE (4096)
2790# endif
2791
2792 /* We in any case need 2 + NSYMS entries for the size values and
2793 the chains. */
2794 max = (2 + nsyms) * (ARCH_SIZE / 8);
2795
2796# if 1
2797 /* Variant 1: optimize for short chains. We add the squares
2798 of all the chain lengths (which favous many small chain
2799 over a few long chains). */
2800 for (j = 0; j < i; ++j)
2801 max += counts[j] * counts[j];
2802
2803 /* This adds penalties for the overall size of the table. */
2804 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2805 max *= fact * fact;
2806# else
2807 /* Variant 2: Optimize a lot more for small table. Here we
2808 also add squares of the size but we also add penalties for
2809 empty slots (the +1 term). */
2810 for (j = 0; j < i; ++j)
2811 max += (1 + counts[j]) * (1 + counts[j]);
2812
2813 /* The overall size of the table is considered, but not as
2814 strong as in variant 1, where it is squared. */
2815 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2816 max *= fact;
2817# endif
2818
2819 /* Compare with current best results. */
2820 if (max < best_chlen)
2821 {
2822 best_chlen = max;
2823 best_size = i;
2824 }
2825 }
2826
2827 free (counts);
2828 }
2829 else
2830#endif /* defined (BFD_HOST_U_64_BIT) */
2831 {
2832 /* This is the fallback solution if no 64bit type is available or if we
2833 are not supposed to spend much time on optimizations. We select the
2834 bucket count using a fixed set of numbers. */
2835 for (i = 0; elf_buckets[i] != 0; i++)
2836 {
2837 best_size = elf_buckets[i];
2838 if (dynsymcount < elf_buckets[i + 1])
2839 break;
2840 }
2841 }
2842
2843 /* Free the arrays we needed. */
2844 free (hashcodes);
2845
2846 return best_size;
2847}
2848
2849/* Set up the sizes and contents of the ELF dynamic sections. This is
2850 called by the ELF linker emulation before_allocation routine. We
2851 must set the sizes of the sections before the linker sets the
2852 addresses of the various sections. */
2853
2854boolean
2855NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2856 export_dynamic, filter_shlib,
2857 auxiliary_filters, info, sinterpptr,
2858 verdefs)
2859 bfd *output_bfd;
2860 const char *soname;
2861 const char *rpath;
2862 boolean export_dynamic;
2863 const char *filter_shlib;
2864 const char * const *auxiliary_filters;
2865 struct bfd_link_info *info;
2866 asection **sinterpptr;
2867 struct bfd_elf_version_tree *verdefs;
2868{
2869 bfd_size_type soname_indx;
2870 bfd *dynobj;
2871 struct elf_backend_data *bed;
252b5132
RH
2872 struct elf_assign_sym_version_info asvinfo;
2873
2874 *sinterpptr = NULL;
2875
2876 soname_indx = (bfd_size_type) -1;
2877
2878 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2879 return true;
2880
2881 /* The backend may have to create some sections regardless of whether
2882 we're dynamic or not. */
2883 bed = get_elf_backend_data (output_bfd);
2884 if (bed->elf_backend_always_size_sections
2885 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2886 return false;
2887
2888 dynobj = elf_hash_table (info)->dynobj;
2889
2890 /* If there were no dynamic objects in the link, there is nothing to
2891 do here. */
2892 if (dynobj == NULL)
2893 return true;
2894
252b5132
RH
2895 if (elf_hash_table (info)->dynamic_sections_created)
2896 {
2897 struct elf_info_failed eif;
2898 struct elf_link_hash_entry *h;
fc8c40a0 2899 asection *dynstr;
252b5132
RH
2900
2901 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2902 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2903
2904 if (soname != NULL)
2905 {
2906 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2907 soname, true, true);
2908 if (soname_indx == (bfd_size_type) -1
2909 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2910 return false;
2911 }
2912
2913 if (info->symbolic)
2914 {
2915 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2916 return false;
d6cf2879 2917 info->flags |= DF_SYMBOLIC;
252b5132
RH
2918 }
2919
2920 if (rpath != NULL)
2921 {
2922 bfd_size_type indx;
2923
2924 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2925 true, true);
2926 if (indx == (bfd_size_type) -1
d6cf2879 2927 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
c25373b7
L
2928 || (info->new_dtags
2929 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
252b5132
RH
2930 return false;
2931 }
2932
2933 if (filter_shlib != NULL)
2934 {
2935 bfd_size_type indx;
2936
2937 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2938 filter_shlib, true, true);
2939 if (indx == (bfd_size_type) -1
2940 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2941 return false;
2942 }
2943
2944 if (auxiliary_filters != NULL)
2945 {
2946 const char * const *p;
2947
2948 for (p = auxiliary_filters; *p != NULL; p++)
2949 {
2950 bfd_size_type indx;
2951
2952 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2953 *p, true, true);
2954 if (indx == (bfd_size_type) -1
2955 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2956 return false;
2957 }
2958 }
2959
391a809a
AM
2960 eif.info = info;
2961 eif.failed = false;
2962
ea44b734
RH
2963 /* If we are supposed to export all symbols into the dynamic symbol
2964 table (this is not the normal case), then do so. */
2965 if (export_dynamic)
2966 {
ea44b734
RH
2967 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2968 (PTR) &eif);
2969 if (eif.failed)
2970 return false;
2971 }
2972
252b5132
RH
2973 /* Attach all the symbols to their version information. */
2974 asvinfo.output_bfd = output_bfd;
2975 asvinfo.info = info;
2976 asvinfo.verdefs = verdefs;
2977 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2978 asvinfo.failed = false;
2979
2980 elf_link_hash_traverse (elf_hash_table (info),
2981 elf_link_assign_sym_version,
2982 (PTR) &asvinfo);
2983 if (asvinfo.failed)
2984 return false;
2985
2986 /* Find all symbols which were defined in a dynamic object and make
2987 the backend pick a reasonable value for them. */
252b5132
RH
2988 elf_link_hash_traverse (elf_hash_table (info),
2989 elf_adjust_dynamic_symbol,
2990 (PTR) &eif);
2991 if (eif.failed)
2992 return false;
2993
2994 /* Add some entries to the .dynamic section. We fill in some of the
2995 values later, in elf_bfd_final_link, but we must add the entries
2996 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2997
2998 /* If there are initialization and/or finalization functions to
2999 call then add the corresponding DT_INIT/DT_FINI entries. */
3000 h = (info->init_function
3e932841 3001 ? elf_link_hash_lookup (elf_hash_table (info),
f0c2e336
MM
3002 info->init_function, false,
3003 false, false)
3004 : NULL);
252b5132
RH
3005 if (h != NULL
3006 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3007 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3008 {
3009 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3010 return false;
3011 }
f0c2e336 3012 h = (info->fini_function
3e932841 3013 ? elf_link_hash_lookup (elf_hash_table (info),
f0c2e336
MM
3014 info->fini_function, false,
3015 false, false)
3016 : NULL);
252b5132
RH
3017 if (h != NULL
3018 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3019 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3020 {
3021 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3022 return false;
3023 }
f0c2e336 3024
fc8c40a0
AM
3025 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3026 /* If .dynstr is excluded from the link, we don't want any of
3027 these tags. Strictly, we should be checking each section
3028 individually; This quick check covers for the case where
3029 someone does a /DISCARD/ : { *(*) }. */
3030 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3031 {
3032 bfd_size_type strsize;
3033
3034 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3035 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3036 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3037 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3038 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3039 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3040 sizeof (Elf_External_Sym)))
3041 return false;
3042 }
252b5132
RH
3043 }
3044
3045 /* The backend must work out the sizes of all the other dynamic
3046 sections. */
252b5132
RH
3047 if (bed->elf_backend_size_dynamic_sections
3048 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3049 return false;
3050
3051 if (elf_hash_table (info)->dynamic_sections_created)
3052 {
3053 size_t dynsymcount;
3054 asection *s;
3055 size_t bucketcount = 0;
c7ac6ff8 3056 size_t hash_entry_size;
252b5132
RH
3057
3058 /* Set up the version definition section. */
3059 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3060 BFD_ASSERT (s != NULL);
3061
3062 /* We may have created additional version definitions if we are
3063 just linking a regular application. */
3064 verdefs = asvinfo.verdefs;
3065
3066 if (verdefs == NULL)
7f8d5fc9 3067 _bfd_strip_section_from_output (info, s);
252b5132
RH
3068 else
3069 {
3070 unsigned int cdefs;
3071 bfd_size_type size;
3072 struct bfd_elf_version_tree *t;
3073 bfd_byte *p;
3074 Elf_Internal_Verdef def;
3075 Elf_Internal_Verdaux defaux;
3076
252b5132
RH
3077 cdefs = 0;
3078 size = 0;
3079
3080 /* Make space for the base version. */
3081 size += sizeof (Elf_External_Verdef);
3082 size += sizeof (Elf_External_Verdaux);
3083 ++cdefs;
3084
3085 for (t = verdefs; t != NULL; t = t->next)
3086 {
3087 struct bfd_elf_version_deps *n;
3088
3089 size += sizeof (Elf_External_Verdef);
3090 size += sizeof (Elf_External_Verdaux);
3091 ++cdefs;
3092
3093 for (n = t->deps; n != NULL; n = n->next)
3094 size += sizeof (Elf_External_Verdaux);
3095 }
3096
3097 s->_raw_size = size;
3098 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3099 if (s->contents == NULL && s->_raw_size != 0)
3100 return false;
3101
3102 /* Fill in the version definition section. */
3103
3104 p = s->contents;
3105
3106 def.vd_version = VER_DEF_CURRENT;
3107 def.vd_flags = VER_FLG_BASE;
3108 def.vd_ndx = 1;
3109 def.vd_cnt = 1;
3110 def.vd_aux = sizeof (Elf_External_Verdef);
3111 def.vd_next = (sizeof (Elf_External_Verdef)
3112 + sizeof (Elf_External_Verdaux));
3113
3114 if (soname_indx != (bfd_size_type) -1)
3115 {
3a99b017 3116 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
3117 defaux.vda_name = soname_indx;
3118 }
3119 else
3120 {
3121 const char *name;
3122 bfd_size_type indx;
3123
3124 name = output_bfd->filename;
3a99b017 3125 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
3126 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3127 name, true, false);
3128 if (indx == (bfd_size_type) -1)
3129 return false;
3130 defaux.vda_name = indx;
3131 }
3132 defaux.vda_next = 0;
3133
3134 _bfd_elf_swap_verdef_out (output_bfd, &def,
3135 (Elf_External_Verdef *)p);
3136 p += sizeof (Elf_External_Verdef);
3137 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3138 (Elf_External_Verdaux *) p);
3139 p += sizeof (Elf_External_Verdaux);
3140
3141 for (t = verdefs; t != NULL; t = t->next)
3142 {
3143 unsigned int cdeps;
3144 struct bfd_elf_version_deps *n;
3145 struct elf_link_hash_entry *h;
3146
3147 cdeps = 0;
3148 for (n = t->deps; n != NULL; n = n->next)
3149 ++cdeps;
3150
3151 /* Add a symbol representing this version. */
3152 h = NULL;
3153 if (! (_bfd_generic_link_add_one_symbol
3154 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3155 (bfd_vma) 0, (const char *) NULL, false,
3156 get_elf_backend_data (dynobj)->collect,
3157 (struct bfd_link_hash_entry **) &h)))
3158 return false;
3159 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3160 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3161 h->type = STT_OBJECT;
3162 h->verinfo.vertree = t;
3163
3164 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3165 return false;
3166
3167 def.vd_version = VER_DEF_CURRENT;
3168 def.vd_flags = 0;
3169 if (t->globals == NULL && t->locals == NULL && ! t->used)
3170 def.vd_flags |= VER_FLG_WEAK;
3171 def.vd_ndx = t->vernum + 1;
3172 def.vd_cnt = cdeps + 1;
3a99b017 3173 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
3174 def.vd_aux = sizeof (Elf_External_Verdef);
3175 if (t->next != NULL)
3176 def.vd_next = (sizeof (Elf_External_Verdef)
3177 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3178 else
3179 def.vd_next = 0;
3180
3181 _bfd_elf_swap_verdef_out (output_bfd, &def,
3182 (Elf_External_Verdef *) p);
3183 p += sizeof (Elf_External_Verdef);
3184
3185 defaux.vda_name = h->dynstr_index;
3186 if (t->deps == NULL)
3187 defaux.vda_next = 0;
3188 else
3189 defaux.vda_next = sizeof (Elf_External_Verdaux);
3190 t->name_indx = defaux.vda_name;
3191
3192 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3193 (Elf_External_Verdaux *) p);
3194 p += sizeof (Elf_External_Verdaux);
3195
3196 for (n = t->deps; n != NULL; n = n->next)
3197 {
3198 if (n->version_needed == NULL)
3199 {
3200 /* This can happen if there was an error in the
3201 version script. */
3202 defaux.vda_name = 0;
3203 }
3204 else
3205 defaux.vda_name = n->version_needed->name_indx;
3206 if (n->next == NULL)
3207 defaux.vda_next = 0;
3208 else
3209 defaux.vda_next = sizeof (Elf_External_Verdaux);
3210
3211 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3212 (Elf_External_Verdaux *) p);
3213 p += sizeof (Elf_External_Verdaux);
3214 }
3215 }
3216
3217 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3218 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3219 return false;
3220
3221 elf_tdata (output_bfd)->cverdefs = cdefs;
3222 }
3223
c25373b7 3224 if (info->new_dtags && info->flags)
d6cf2879
L
3225 {
3226 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3227 return false;
3228 }
3229
4d538889 3230 if (info->flags_1)
d6cf2879
L
3231 {
3232 if (! info->shared)
3233 info->flags_1 &= ~ (DF_1_INITFIRST
3234 | DF_1_NODELETE
3235 | DF_1_NOOPEN);
3236 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3237 return false;
3238 }
3239
252b5132
RH
3240 /* Work out the size of the version reference section. */
3241
3242 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3243 BFD_ASSERT (s != NULL);
3244 {
3245 struct elf_find_verdep_info sinfo;
3246
3247 sinfo.output_bfd = output_bfd;
3248 sinfo.info = info;
3249 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3250 if (sinfo.vers == 0)
3251 sinfo.vers = 1;
3252 sinfo.failed = false;
3253
3254 elf_link_hash_traverse (elf_hash_table (info),
3255 elf_link_find_version_dependencies,
3256 (PTR) &sinfo);
3257
3258 if (elf_tdata (output_bfd)->verref == NULL)
7f8d5fc9 3259 _bfd_strip_section_from_output (info, s);
252b5132
RH
3260 else
3261 {
3262 Elf_Internal_Verneed *t;
3263 unsigned int size;
3264 unsigned int crefs;
3265 bfd_byte *p;
3266
3267 /* Build the version definition section. */
3268 size = 0;
3269 crefs = 0;
3270 for (t = elf_tdata (output_bfd)->verref;
3271 t != NULL;
3272 t = t->vn_nextref)
3273 {
3274 Elf_Internal_Vernaux *a;
3275
3276 size += sizeof (Elf_External_Verneed);
3277 ++crefs;
3278 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3279 size += sizeof (Elf_External_Vernaux);
3280 }
3281
3282 s->_raw_size = size;
3283 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3284 if (s->contents == NULL)
3285 return false;
3286
3287 p = s->contents;
3288 for (t = elf_tdata (output_bfd)->verref;
3289 t != NULL;
3290 t = t->vn_nextref)
3291 {
3292 unsigned int caux;
3293 Elf_Internal_Vernaux *a;
3294 bfd_size_type indx;
3295
3296 caux = 0;
3297 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3298 ++caux;
3299
3300 t->vn_version = VER_NEED_CURRENT;
3301 t->vn_cnt = caux;
3302 if (elf_dt_name (t->vn_bfd) != NULL)
3303 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3304 elf_dt_name (t->vn_bfd),
3305 true, false);
3306 else
3307 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3308 t->vn_bfd->filename, true, false);
3309 if (indx == (bfd_size_type) -1)
3310 return false;
3311 t->vn_file = indx;
3312 t->vn_aux = sizeof (Elf_External_Verneed);
3313 if (t->vn_nextref == NULL)
3314 t->vn_next = 0;
3315 else
3316 t->vn_next = (sizeof (Elf_External_Verneed)
3317 + caux * sizeof (Elf_External_Vernaux));
3318
3319 _bfd_elf_swap_verneed_out (output_bfd, t,
3320 (Elf_External_Verneed *) p);
3321 p += sizeof (Elf_External_Verneed);
3322
3323 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3324 {
3a99b017 3325 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3326 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3327 a->vna_nodename, true, false);
3328 if (indx == (bfd_size_type) -1)
3329 return false;
3330 a->vna_name = indx;
3331 if (a->vna_nextptr == NULL)
3332 a->vna_next = 0;
3333 else
3334 a->vna_next = sizeof (Elf_External_Vernaux);
3335
3336 _bfd_elf_swap_vernaux_out (output_bfd, a,
3337 (Elf_External_Vernaux *) p);
3338 p += sizeof (Elf_External_Vernaux);
3339 }
3340 }
3341
3342 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3343 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3344 return false;
3345
3346 elf_tdata (output_bfd)->cverrefs = crefs;
3347 }
3348 }
3349
3e932841 3350 /* Assign dynsym indicies. In a shared library we generate a
30b30c21
RH
3351 section symbol for each output section, which come first.
3352 Next come all of the back-end allocated local dynamic syms,
3353 followed by the rest of the global symbols. */
3354
3355 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3356
3357 /* Work out the size of the symbol version section. */
3358 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3359 BFD_ASSERT (s != NULL);
3360 if (dynsymcount == 0
3361 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3362 {
7f8d5fc9 3363 _bfd_strip_section_from_output (info, s);
42751cf3
MM
3364 /* The DYNSYMCOUNT might have changed if we were going to
3365 output a dynamic symbol table entry for S. */
30b30c21 3366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3367 }
3368 else
3369 {
3370 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3371 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3372 if (s->contents == NULL)
3373 return false;
3374
3375 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3376 return false;
3377 }
3378
3379 /* Set the size of the .dynsym and .hash sections. We counted
3380 the number of dynamic symbols in elf_link_add_object_symbols.
3381 We will build the contents of .dynsym and .hash when we build
3382 the final symbol table, because until then we do not know the
3383 correct value to give the symbols. We built the .dynstr
3384 section as we went along in elf_link_add_object_symbols. */
3385 s = bfd_get_section_by_name (dynobj, ".dynsym");
3386 BFD_ASSERT (s != NULL);
3387 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3388 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3389 if (s->contents == NULL && s->_raw_size != 0)
3390 return false;
3391
fc8c40a0
AM
3392 if (dynsymcount != 0)
3393 {
3394 Elf_Internal_Sym isym;
3395
3396 /* The first entry in .dynsym is a dummy symbol. */
3397 isym.st_value = 0;
3398 isym.st_size = 0;
3399 isym.st_name = 0;
3400 isym.st_info = 0;
3401 isym.st_other = 0;
3402 isym.st_shndx = 0;
3403 elf_swap_symbol_out (output_bfd, &isym,
3404 (PTR) (Elf_External_Sym *) s->contents);
3405 }
252b5132
RH
3406
3407 /* Compute the size of the hashing table. As a side effect this
3408 computes the hash values for all the names we export. */
3409 bucketcount = compute_bucket_count (info);
3410
3411 s = bfd_get_section_by_name (dynobj, ".hash");
3412 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3413 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3414 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3415 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3416 if (s->contents == NULL)
3417 return false;
3418 memset (s->contents, 0, (size_t) s->_raw_size);
3419
c7ac6ff8 3420 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3e932841 3421 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
c7ac6ff8 3422 s->contents + hash_entry_size);
252b5132
RH
3423
3424 elf_hash_table (info)->bucketcount = bucketcount;
3425
3426 s = bfd_get_section_by_name (dynobj, ".dynstr");
3427 BFD_ASSERT (s != NULL);
3428 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3429
3430 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3431 return false;
3432 }
3433
3434 return true;
3435}
3436\f
3437/* Fix up the flags for a symbol. This handles various cases which
3438 can only be fixed after all the input files are seen. This is
3439 currently called by both adjust_dynamic_symbol and
3440 assign_sym_version, which is unnecessary but perhaps more robust in
3441 the face of future changes. */
3442
3443static boolean
3444elf_fix_symbol_flags (h, eif)
3445 struct elf_link_hash_entry *h;
3446 struct elf_info_failed *eif;
3447{
3448 /* If this symbol was mentioned in a non-ELF file, try to set
3449 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3450 permit a non-ELF file to correctly refer to a symbol defined in
3451 an ELF dynamic object. */
3452 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3453 {
94b6c40a
L
3454 while (h->root.type == bfd_link_hash_indirect)
3455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3456
252b5132
RH
3457 if (h->root.type != bfd_link_hash_defined
3458 && h->root.type != bfd_link_hash_defweak)
3459 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3460 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3461 else
3462 {
3463 if (h->root.u.def.section->owner != NULL
3464 && (bfd_get_flavour (h->root.u.def.section->owner)
3465 == bfd_target_elf_flavour))
3466 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3467 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3468 else
3469 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3470 }
3471
3472 if (h->dynindx == -1
3473 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3474 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3475 {
3476 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3477 {
3478 eif->failed = true;
3479 return false;
3480 }
3481 }
3482 }
3483 else
3484 {
3485 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3486 was first seen in a non-ELF file. Fortunately, if the symbol
3487 was first seen in an ELF file, we're probably OK unless the
3488 symbol was defined in a non-ELF file. Catch that case here.
3489 FIXME: We're still in trouble if the symbol was first seen in
3490 a dynamic object, and then later in a non-ELF regular object. */
3491 if ((h->root.type == bfd_link_hash_defined
3492 || h->root.type == bfd_link_hash_defweak)
3493 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3494 && (h->root.u.def.section->owner != NULL
3495 ? (bfd_get_flavour (h->root.u.def.section->owner)
3496 != bfd_target_elf_flavour)
3497 : (bfd_is_abs_section (h->root.u.def.section)
3498 && (h->elf_link_hash_flags
3499 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3500 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3501 }
3502
3503 /* If this is a final link, and the symbol was defined as a common
3504 symbol in a regular object file, and there was no definition in
3505 any dynamic object, then the linker will have allocated space for
3506 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3507 flag will not have been set. */
3508 if (h->root.type == bfd_link_hash_defined
3509 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3510 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3511 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3513 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3514
3515 /* If -Bsymbolic was used (which means to bind references to global
3516 symbols to the definition within the shared object), and this
3517 symbol was defined in a regular object, then it actually doesn't
d954b040
HPN
3518 need a PLT entry, and we can accomplish that by forcing it local.
3519 Likewise, if the symbol has hidden or internal visibility.
3520 FIXME: It might be that we also do not need a PLT for other
3521 non-hidden visibilities, but we would have to tell that to the
3522 backend specifically; we can't just clear PLT-related data here. */
252b5132
RH
3523 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3524 && eif->info->shared
d954b040
HPN
3525 && (eif->info->symbolic
3526 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3527 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
252b5132
RH
3528 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3529 {
391a809a
AM
3530 struct elf_backend_data *bed;
3531 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3532 (*bed->elf_backend_hide_symbol) (eif->info, h);
252b5132
RH
3533 }
3534
fc4cc5bb
ILT
3535 /* If this is a weak defined symbol in a dynamic object, and we know
3536 the real definition in the dynamic object, copy interesting flags
3537 over to the real definition. */
3538 if (h->weakdef != NULL)
3539 {
3540 struct elf_link_hash_entry *weakdef;
3541
3542 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3543 || h->root.type == bfd_link_hash_defweak);
3544 weakdef = h->weakdef;
3545 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3546 || weakdef->root.type == bfd_link_hash_defweak);
3547 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3548
3549 /* If the real definition is defined by a regular object file,
3550 don't do anything special. See the longer description in
3551 elf_adjust_dynamic_symbol, below. */
3552 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3553 h->weakdef = NULL;
3554 else
3555 weakdef->elf_link_hash_flags |=
3556 (h->elf_link_hash_flags
3557 & (ELF_LINK_HASH_REF_REGULAR
3558 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3559 | ELF_LINK_NON_GOT_REF));
3560 }
3561
252b5132
RH
3562 return true;
3563}
3564
3565/* Make the backend pick a good value for a dynamic symbol. This is
3566 called via elf_link_hash_traverse, and also calls itself
3567 recursively. */
3568
3569static boolean
3570elf_adjust_dynamic_symbol (h, data)
3571 struct elf_link_hash_entry *h;
3572 PTR data;
3573{
3574 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3575 bfd *dynobj;
3576 struct elf_backend_data *bed;
3577
3578 /* Ignore indirect symbols. These are added by the versioning code. */
3579 if (h->root.type == bfd_link_hash_indirect)
3580 return true;
3581
3582 /* Fix the symbol flags. */
3583 if (! elf_fix_symbol_flags (h, eif))
3584 return false;
3585
3586 /* If this symbol does not require a PLT entry, and it is not
3587 defined by a dynamic object, or is not referenced by a regular
3588 object, ignore it. We do have to handle a weak defined symbol,
3589 even if no regular object refers to it, if we decided to add it
3590 to the dynamic symbol table. FIXME: Do we normally need to worry
3591 about symbols which are defined by one dynamic object and
3592 referenced by another one? */
3593 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3594 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3595 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3596 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3597 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3598 {
3599 h->plt.offset = (bfd_vma) -1;
3600 return true;
3601 }
3602
3603 /* If we've already adjusted this symbol, don't do it again. This
3604 can happen via a recursive call. */
3605 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3606 return true;
3607
3608 /* Don't look at this symbol again. Note that we must set this
3609 after checking the above conditions, because we may look at a
3610 symbol once, decide not to do anything, and then get called
3611 recursively later after REF_REGULAR is set below. */
3612 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3613
3614 /* If this is a weak definition, and we know a real definition, and
3615 the real symbol is not itself defined by a regular object file,
3616 then get a good value for the real definition. We handle the
3617 real symbol first, for the convenience of the backend routine.
3618
3619 Note that there is a confusing case here. If the real definition
3620 is defined by a regular object file, we don't get the real symbol
3621 from the dynamic object, but we do get the weak symbol. If the
3622 processor backend uses a COPY reloc, then if some routine in the
3623 dynamic object changes the real symbol, we will not see that
3624 change in the corresponding weak symbol. This is the way other
3625 ELF linkers work as well, and seems to be a result of the shared
3626 library model.
3627
3628 I will clarify this issue. Most SVR4 shared libraries define the
3629 variable _timezone and define timezone as a weak synonym. The
3630 tzset call changes _timezone. If you write
3631 extern int timezone;
3632 int _timezone = 5;
3633 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3634 you might expect that, since timezone is a synonym for _timezone,
3635 the same number will print both times. However, if the processor
3636 backend uses a COPY reloc, then actually timezone will be copied
3637 into your process image, and, since you define _timezone
3638 yourself, _timezone will not. Thus timezone and _timezone will
3639 wind up at different memory locations. The tzset call will set
3640 _timezone, leaving timezone unchanged. */
3641
3642 if (h->weakdef != NULL)
3643 {
fc4cc5bb
ILT
3644 /* If we get to this point, we know there is an implicit
3645 reference by a regular object file via the weak symbol H.
3646 FIXME: Is this really true? What if the traversal finds
3647 H->WEAKDEF before it finds H? */
3648 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
252b5132 3649
fc4cc5bb
ILT
3650 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3651 return false;
252b5132
RH
3652 }
3653
3654 /* If a symbol has no type and no size and does not require a PLT
3655 entry, then we are probably about to do the wrong thing here: we
3656 are probably going to create a COPY reloc for an empty object.
3657 This case can arise when a shared object is built with assembly
3658 code, and the assembly code fails to set the symbol type. */
3659 if (h->size == 0
3660 && h->type == STT_NOTYPE
3661 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3662 (*_bfd_error_handler)
3663 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3664 h->root.root.string);
3665
3666 dynobj = elf_hash_table (eif->info)->dynobj;
3667 bed = get_elf_backend_data (dynobj);
3668 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3669 {
3670 eif->failed = true;
3671 return false;
3672 }
3673
3674 return true;
3675}
3676\f
3677/* This routine is used to export all defined symbols into the dynamic
3678 symbol table. It is called via elf_link_hash_traverse. */
3679
3680static boolean
3681elf_export_symbol (h, data)
3682 struct elf_link_hash_entry *h;
3683 PTR data;
3684{
3685 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3686
3687 /* Ignore indirect symbols. These are added by the versioning code. */
3688 if (h->root.type == bfd_link_hash_indirect)
3689 return true;
3690
3691 if (h->dynindx == -1
3692 && (h->elf_link_hash_flags
3693 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3694 {
3695 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3696 {
3697 eif->failed = true;
3698 return false;
3699 }
3700 }
3701
3702 return true;
3703}
3704\f
3705/* Look through the symbols which are defined in other shared
3706 libraries and referenced here. Update the list of version
3707 dependencies. This will be put into the .gnu.version_r section.
3708 This function is called via elf_link_hash_traverse. */
3709
3710static boolean
3711elf_link_find_version_dependencies (h, data)
3712 struct elf_link_hash_entry *h;
3713 PTR data;
3714{
3715 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3716 Elf_Internal_Verneed *t;
3717 Elf_Internal_Vernaux *a;
3718
3719 /* We only care about symbols defined in shared objects with version
3720 information. */
3721 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3722 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3723 || h->dynindx == -1
3724 || h->verinfo.verdef == NULL)
3725 return true;
3726
3727 /* See if we already know about this version. */
3728 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3729 {
3730 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3731 continue;
3732
3733 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3734 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3735 return true;
3736
3737 break;
3738 }
3739
3740 /* This is a new version. Add it to tree we are building. */
3741
3742 if (t == NULL)
3743 {
3744 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3745 if (t == NULL)
3746 {
3747 rinfo->failed = true;
3748 return false;
3749 }
3750
3751 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3752 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3753 elf_tdata (rinfo->output_bfd)->verref = t;
3754 }
3755
3756 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3757
3758 /* Note that we are copying a string pointer here, and testing it
3759 above. If bfd_elf_string_from_elf_section is ever changed to
3760 discard the string data when low in memory, this will have to be
3761 fixed. */
3762 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3763
3764 a->vna_flags = h->verinfo.verdef->vd_flags;
3765 a->vna_nextptr = t->vn_auxptr;
3766
3767 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3768 ++rinfo->vers;
3769
3770 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3771
3772 t->vn_auxptr = a;
3773
3774 return true;
3775}
3776
3777/* Figure out appropriate versions for all the symbols. We may not
3778 have the version number script until we have read all of the input
3779 files, so until that point we don't know which symbols should be
3780 local. This function is called via elf_link_hash_traverse. */
3781
3782static boolean
3783elf_link_assign_sym_version (h, data)
3784 struct elf_link_hash_entry *h;
3785 PTR data;
3786{
3787 struct elf_assign_sym_version_info *sinfo =
3788 (struct elf_assign_sym_version_info *) data;
3789 struct bfd_link_info *info = sinfo->info;
c61b8717 3790 struct elf_backend_data *bed;
252b5132
RH
3791 struct elf_info_failed eif;
3792 char *p;
3793
3794 /* Fix the symbol flags. */
3795 eif.failed = false;
3796 eif.info = info;
3797 if (! elf_fix_symbol_flags (h, &eif))
3798 {
3799 if (eif.failed)
3800 sinfo->failed = true;
3801 return false;
3802 }
3803
3804 /* We only need version numbers for symbols defined in regular
3805 objects. */
3806 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3807 return true;
3808
c61b8717 3809 bed = get_elf_backend_data (sinfo->output_bfd);
252b5132
RH
3810 p = strchr (h->root.root.string, ELF_VER_CHR);
3811 if (p != NULL && h->verinfo.vertree == NULL)
3812 {
3813 struct bfd_elf_version_tree *t;
3814 boolean hidden;
3815
3816 hidden = true;
3817
3818 /* There are two consecutive ELF_VER_CHR characters if this is
3819 not a hidden symbol. */
3820 ++p;
3821 if (*p == ELF_VER_CHR)
3822 {
3823 hidden = false;
3824 ++p;
3825 }
3826
3827 /* If there is no version string, we can just return out. */
3828 if (*p == '\0')
3829 {
3830 if (hidden)
3831 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3832 return true;
3833 }
3834
3835 /* Look for the version. If we find it, it is no longer weak. */
3836 for (t = sinfo->verdefs; t != NULL; t = t->next)
3837 {
3838 if (strcmp (t->name, p) == 0)
3839 {
3840 int len;
3841 char *alc;
3842 struct bfd_elf_version_expr *d;
3843
3844 len = p - h->root.root.string;
3845 alc = bfd_alloc (sinfo->output_bfd, len);
3846 if (alc == NULL)
3847 return false;
3848 strncpy (alc, h->root.root.string, len - 1);
3849 alc[len - 1] = '\0';
3850 if (alc[len - 2] == ELF_VER_CHR)
3851 alc[len - 2] = '\0';
3852
3853 h->verinfo.vertree = t;
3854 t->used = true;
3855 d = NULL;
3856
3857 if (t->globals != NULL)
3858 {
3859 for (d = t->globals; d != NULL; d = d->next)
3860 if ((*d->match) (d, alc))
3861 break;
3862 }
3863
3864 /* See if there is anything to force this symbol to
3865 local scope. */
3866 if (d == NULL && t->locals != NULL)
3867 {
3868 for (d = t->locals; d != NULL; d = d->next)
3869 {
3870 if ((*d->match) (d, alc))
3871 {
3872 if (h->dynindx != -1
3873 && info->shared
3874 && ! sinfo->export_dynamic)
3875 {
252b5132 3876 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3877 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3878 /* FIXME: The name of the symbol has
3879 already been recorded in the dynamic
3880 string table section. */
3881 }
3882
3883 break;
3884 }
3885 }
3886 }
3887
3888 bfd_release (sinfo->output_bfd, alc);
3889 break;
3890 }
3891 }
3892
3893 /* If we are building an application, we need to create a
3894 version node for this version. */
3895 if (t == NULL && ! info->shared)
3896 {
3897 struct bfd_elf_version_tree **pp;
3898 int version_index;
3899
3900 /* If we aren't going to export this symbol, we don't need
3e932841 3901 to worry about it. */
252b5132
RH
3902 if (h->dynindx == -1)
3903 return true;
3904
3905 t = ((struct bfd_elf_version_tree *)
3906 bfd_alloc (sinfo->output_bfd, sizeof *t));
3907 if (t == NULL)
3908 {
3909 sinfo->failed = true;
3910 return false;
3911 }
3912
3913 t->next = NULL;
3914 t->name = p;
3915 t->globals = NULL;
3916 t->locals = NULL;
3917 t->deps = NULL;
3918 t->name_indx = (unsigned int) -1;
3919 t->used = true;
3920
3921 version_index = 1;
3922 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3923 ++version_index;
3924 t->vernum = version_index;
3925
3926 *pp = t;
3927
3928 h->verinfo.vertree = t;
3929 }
3930 else if (t == NULL)
3931 {
3932 /* We could not find the version for a symbol when
3933 generating a shared archive. Return an error. */
3934 (*_bfd_error_handler)
3935 (_("%s: undefined versioned symbol name %s"),
3936 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3937 bfd_set_error (bfd_error_bad_value);
3938 sinfo->failed = true;
3939 return false;
3940 }
3941
3942 if (hidden)
3943 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3944 }
3945
3946 /* If we don't have a version for this symbol, see if we can find
3947 something. */
3948 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3949 {
3950 struct bfd_elf_version_tree *t;
3951 struct bfd_elf_version_tree *deflt;
3952 struct bfd_elf_version_expr *d;
3953
3954 /* See if can find what version this symbol is in. If the
3955 symbol is supposed to be local, then don't actually register
3956 it. */
3957 deflt = NULL;
3958 for (t = sinfo->verdefs; t != NULL; t = t->next)
3959 {
3960 if (t->globals != NULL)
3961 {
3962 for (d = t->globals; d != NULL; d = d->next)
3963 {
3964 if ((*d->match) (d, h->root.root.string))
3965 {
3966 h->verinfo.vertree = t;
3967 break;
3968 }
3969 }
3970
3971 if (d != NULL)
3972 break;
3973 }
3974
3975 if (t->locals != NULL)
3976 {
3977 for (d = t->locals; d != NULL; d = d->next)
3978 {
3979 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3980 deflt = t;
3981 else if ((*d->match) (d, h->root.root.string))
3982 {
3983 h->verinfo.vertree = t;
3984 if (h->dynindx != -1
3985 && info->shared
3986 && ! sinfo->export_dynamic)
3987 {
252b5132 3988 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3989 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3990 /* FIXME: The name of the symbol has already
3991 been recorded in the dynamic string table
3992 section. */
3993 }
3994 break;
3995 }
3996 }
3997
3998 if (d != NULL)
3999 break;
4000 }
4001 }
4002
4003 if (deflt != NULL && h->verinfo.vertree == NULL)
4004 {
4005 h->verinfo.vertree = deflt;
4006 if (h->dynindx != -1
4007 && info->shared
4008 && ! sinfo->export_dynamic)
4009 {
252b5132 4010 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 4011 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
4012 /* FIXME: The name of the symbol has already been
4013 recorded in the dynamic string table section. */
4014 }
4015 }
4016 }
4017
4018 return true;
4019}
252b5132
RH
4020\f
4021/* Final phase of ELF linker. */
4022
4023/* A structure we use to avoid passing large numbers of arguments. */
4024
4025struct elf_final_link_info
4026{
4027 /* General link information. */
4028 struct bfd_link_info *info;
4029 /* Output BFD. */
4030 bfd *output_bfd;
4031 /* Symbol string table. */
4032 struct bfd_strtab_hash *symstrtab;
4033 /* .dynsym section. */
4034 asection *dynsym_sec;
4035 /* .hash section. */
4036 asection *hash_sec;
4037 /* symbol version section (.gnu.version). */
4038 asection *symver_sec;
4039 /* Buffer large enough to hold contents of any section. */
4040 bfd_byte *contents;
4041 /* Buffer large enough to hold external relocs of any section. */
4042 PTR external_relocs;
4043 /* Buffer large enough to hold internal relocs of any section. */
4044 Elf_Internal_Rela *internal_relocs;
4045 /* Buffer large enough to hold external local symbols of any input
4046 BFD. */
4047 Elf_External_Sym *external_syms;
4048 /* Buffer large enough to hold internal local symbols of any input
4049 BFD. */
4050 Elf_Internal_Sym *internal_syms;
4051 /* Array large enough to hold a symbol index for each local symbol
4052 of any input BFD. */
4053 long *indices;
4054 /* Array large enough to hold a section pointer for each local
4055 symbol of any input BFD. */
4056 asection **sections;
4057 /* Buffer to hold swapped out symbols. */
4058 Elf_External_Sym *symbuf;
4059 /* Number of swapped out symbols in buffer. */
4060 size_t symbuf_count;
4061 /* Number of symbols which fit in symbuf. */
4062 size_t symbuf_size;
4063};
4064
4065static boolean elf_link_output_sym
4066 PARAMS ((struct elf_final_link_info *, const char *,
4067 Elf_Internal_Sym *, asection *));
4068static boolean elf_link_flush_output_syms
4069 PARAMS ((struct elf_final_link_info *));
4070static boolean elf_link_output_extsym
4071 PARAMS ((struct elf_link_hash_entry *, PTR));
4072static boolean elf_link_input_bfd
4073 PARAMS ((struct elf_final_link_info *, bfd *));
4074static boolean elf_reloc_link_order
4075 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4076 struct bfd_link_order *));
4077
4078/* This struct is used to pass information to elf_link_output_extsym. */
4079
4080struct elf_outext_info
4081{
4082 boolean failed;
4083 boolean localsyms;
4084 struct elf_final_link_info *finfo;
4085};
4086
23bc299b
MM
4087/* Compute the size of, and allocate space for, REL_HDR which is the
4088 section header for a section containing relocations for O. */
4089
4090static boolean
4091elf_link_size_reloc_section (abfd, rel_hdr, o)
4092 bfd *abfd;
4093 Elf_Internal_Shdr *rel_hdr;
4094 asection *o;
4095{
4096 register struct elf_link_hash_entry **p, **pend;
b037af20 4097 unsigned reloc_count;
23bc299b 4098
b037af20
MM
4099 /* Figure out how many relocations there will be. */
4100 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4101 reloc_count = elf_section_data (o)->rel_count;
4102 else
4103 reloc_count = elf_section_data (o)->rel_count2;
4104
4105 /* That allows us to calculate the size of the section. */
4106 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
23bc299b
MM
4107
4108 /* The contents field must last into write_object_contents, so we
755cfd29
NC
4109 allocate it with bfd_alloc rather than malloc. Also since we
4110 cannot be sure that the contents will actually be filled in,
4111 we zero the allocated space. */
4112 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
23bc299b
MM
4113 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4114 return false;
3e932841 4115
b037af20
MM
4116 /* We only allocate one set of hash entries, so we only do it the
4117 first time we are called. */
4118 if (elf_section_data (o)->rel_hashes == NULL)
4119 {
4120 p = ((struct elf_link_hash_entry **)
4121 bfd_malloc (o->reloc_count
4122 * sizeof (struct elf_link_hash_entry *)));
4123 if (p == NULL && o->reloc_count != 0)
4124 return false;
23bc299b 4125
b037af20
MM
4126 elf_section_data (o)->rel_hashes = p;
4127 pend = p + o->reloc_count;
4128 for (; p < pend; p++)
4129 *p = NULL;
4130 }
23bc299b
MM
4131
4132 return true;
4133}
4134
31367b81
MM
4135/* When performing a relocateable link, the input relocations are
4136 preserved. But, if they reference global symbols, the indices
4137 referenced must be updated. Update all the relocations in
4138 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4139
4140static void
4141elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4142 bfd *abfd;
4143 Elf_Internal_Shdr *rel_hdr;
4144 unsigned int count;
4145 struct elf_link_hash_entry **rel_hash;
4146{
4147 unsigned int i;
32f0787a 4148 struct elf_backend_data *bed = get_elf_backend_data (abfd);
31367b81
MM
4149
4150 for (i = 0; i < count; i++, rel_hash++)
4151 {
4152 if (*rel_hash == NULL)
4153 continue;
4154
4155 BFD_ASSERT ((*rel_hash)->indx >= 0);
4156
4157 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4158 {
4159 Elf_External_Rel *erel;
4160 Elf_Internal_Rel irel;
3e932841 4161
31367b81 4162 erel = (Elf_External_Rel *) rel_hdr->contents + i;
32f0787a
UC
4163 if (bed->s->swap_reloc_in)
4164 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4165 else
4166 elf_swap_reloc_in (abfd, erel, &irel);
31367b81
MM
4167 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4168 ELF_R_TYPE (irel.r_info));
32f0787a
UC
4169 if (bed->s->swap_reloc_out)
4170 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4171 else
4172 elf_swap_reloc_out (abfd, &irel, erel);
31367b81
MM
4173 }
4174 else
4175 {
4176 Elf_External_Rela *erela;
4177 Elf_Internal_Rela irela;
3e932841 4178
31367b81
MM
4179 BFD_ASSERT (rel_hdr->sh_entsize
4180 == sizeof (Elf_External_Rela));
3e932841 4181
31367b81 4182 erela = (Elf_External_Rela *) rel_hdr->contents + i;
32f0787a
UC
4183 if (bed->s->swap_reloca_in)
4184 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4185 else
4186 elf_swap_reloca_in (abfd, erela, &irela);
31367b81
MM
4187 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4188 ELF_R_TYPE (irela.r_info));
32f0787a
UC
4189 if (bed->s->swap_reloca_out)
4190 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4191 else
4192 elf_swap_reloca_out (abfd, &irela, erela);
31367b81
MM
4193 }
4194 }
4195}
4196
252b5132
RH
4197/* Do the final step of an ELF link. */
4198
4199boolean
4200elf_bfd_final_link (abfd, info)
4201 bfd *abfd;
4202 struct bfd_link_info *info;
4203{
4204 boolean dynamic;
4205 bfd *dynobj;
4206 struct elf_final_link_info finfo;
4207 register asection *o;
4208 register struct bfd_link_order *p;
4209 register bfd *sub;
4210 size_t max_contents_size;
4211 size_t max_external_reloc_size;
4212 size_t max_internal_reloc_count;
4213 size_t max_sym_count;
4214 file_ptr off;
4215 Elf_Internal_Sym elfsym;
4216 unsigned int i;
4217 Elf_Internal_Shdr *symtab_hdr;
4218 Elf_Internal_Shdr *symstrtab_hdr;
4219 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4220 struct elf_outext_info eoinfo;
4221
4222 if (info->shared)
4223 abfd->flags |= DYNAMIC;
4224
4225 dynamic = elf_hash_table (info)->dynamic_sections_created;
4226 dynobj = elf_hash_table (info)->dynobj;
4227
4228 finfo.info = info;
4229 finfo.output_bfd = abfd;
4230 finfo.symstrtab = elf_stringtab_init ();
4231 if (finfo.symstrtab == NULL)
4232 return false;
4233
4234 if (! dynamic)
4235 {
4236 finfo.dynsym_sec = NULL;
4237 finfo.hash_sec = NULL;
4238 finfo.symver_sec = NULL;
4239 }
4240 else
4241 {
4242 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4243 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4244 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4245 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4246 /* Note that it is OK if symver_sec is NULL. */
4247 }
4248
4249 finfo.contents = NULL;
4250 finfo.external_relocs = NULL;
4251 finfo.internal_relocs = NULL;
4252 finfo.external_syms = NULL;
4253 finfo.internal_syms = NULL;
4254 finfo.indices = NULL;
4255 finfo.sections = NULL;
4256 finfo.symbuf = NULL;
4257 finfo.symbuf_count = 0;
4258
4259 /* Count up the number of relocations we will output for each output
4260 section, so that we know the sizes of the reloc sections. We
4261 also figure out some maximum sizes. */
4262 max_contents_size = 0;
4263 max_external_reloc_size = 0;
4264 max_internal_reloc_count = 0;
4265 max_sym_count = 0;
4266 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4267 {
4268 o->reloc_count = 0;
4269
4270 for (p = o->link_order_head; p != NULL; p = p->next)
4271 {
4272 if (p->type == bfd_section_reloc_link_order
4273 || p->type == bfd_symbol_reloc_link_order)
4274 ++o->reloc_count;
4275 else if (p->type == bfd_indirect_link_order)
4276 {
4277 asection *sec;
4278
4279 sec = p->u.indirect.section;
4280
4281 /* Mark all sections which are to be included in the
4282 link. This will normally be every section. We need
4283 to do this so that we can identify any sections which
4284 the linker has decided to not include. */
4285 sec->linker_mark = true;
4286
a712da20 4287 if (info->relocateable || info->emitrelocations)
252b5132
RH
4288 o->reloc_count += sec->reloc_count;
4289
4290 if (sec->_raw_size > max_contents_size)
4291 max_contents_size = sec->_raw_size;
4292 if (sec->_cooked_size > max_contents_size)
4293 max_contents_size = sec->_cooked_size;
4294
4295 /* We are interested in just local symbols, not all
4296 symbols. */
4297 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4298 && (sec->owner->flags & DYNAMIC) == 0)
4299 {
4300 size_t sym_count;
4301
4302 if (elf_bad_symtab (sec->owner))
4303 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4304 / sizeof (Elf_External_Sym));
4305 else
4306 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4307
4308 if (sym_count > max_sym_count)
4309 max_sym_count = sym_count;
4310
4311 if ((sec->flags & SEC_RELOC) != 0)
4312 {
4313 size_t ext_size;
4314
4315 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4316 if (ext_size > max_external_reloc_size)
4317 max_external_reloc_size = ext_size;
4318 if (sec->reloc_count > max_internal_reloc_count)
4319 max_internal_reloc_count = sec->reloc_count;
4320 }
4321 }
4322 }
4323 }
4324
4325 if (o->reloc_count > 0)
4326 o->flags |= SEC_RELOC;
4327 else
4328 {
4329 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4330 set it (this is probably a bug) and if it is set
4331 assign_section_numbers will create a reloc section. */
4332 o->flags &=~ SEC_RELOC;
4333 }
4334
4335 /* If the SEC_ALLOC flag is not set, force the section VMA to
4336 zero. This is done in elf_fake_sections as well, but forcing
4337 the VMA to 0 here will ensure that relocs against these
4338 sections are handled correctly. */
4339 if ((o->flags & SEC_ALLOC) == 0
4340 && ! o->user_set_vma)
4341 o->vma = 0;
4342 }
4343
4344 /* Figure out the file positions for everything but the symbol table
4345 and the relocs. We set symcount to force assign_section_numbers
4346 to create a symbol table. */
4347 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4348 BFD_ASSERT (! abfd->output_has_begun);
4349 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4350 goto error_return;
4351
b037af20
MM
4352 /* Figure out how many relocations we will have in each section.
4353 Just using RELOC_COUNT isn't good enough since that doesn't
4354 maintain a separate value for REL vs. RELA relocations. */
a712da20 4355 if (info->relocateable || info->emitrelocations)
b037af20
MM
4356 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4357 for (o = sub->sections; o != NULL; o = o->next)
4358 {
814fe68a 4359 asection *output_section;
b037af20 4360
814fe68a
ILT
4361 if (! o->linker_mark)
4362 {
4363 /* This section was omitted from the link. */
4364 continue;
4365 }
4366
4367 output_section = o->output_section;
4368
4369 if (output_section != NULL
4370 && (o->flags & SEC_RELOC) != 0)
b037af20 4371 {
3e932841 4372 struct bfd_elf_section_data *esdi
b037af20 4373 = elf_section_data (o);
3e932841 4374 struct bfd_elf_section_data *esdo
b037af20 4375 = elf_section_data (output_section);
ce006217
MM
4376 unsigned int *rel_count;
4377 unsigned int *rel_count2;
b037af20 4378
ce006217
MM
4379 /* We must be careful to add the relocation froms the
4380 input section to the right output count. */
4381 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4382 {
4383 rel_count = &esdo->rel_count;
4384 rel_count2 = &esdo->rel_count2;
4385 }
4386 else
4387 {
4388 rel_count = &esdo->rel_count2;
4389 rel_count2 = &esdo->rel_count;
4390 }
3e932841
KH
4391
4392 *rel_count += (esdi->rel_hdr.sh_size
ce006217 4393 / esdi->rel_hdr.sh_entsize);
b037af20 4394 if (esdi->rel_hdr2)
3e932841 4395 *rel_count2 += (esdi->rel_hdr2->sh_size
ce006217 4396 / esdi->rel_hdr2->sh_entsize);
b037af20
MM
4397 }
4398 }
4399
252b5132
RH
4400 /* That created the reloc sections. Set their sizes, and assign
4401 them file positions, and allocate some buffers. */
4402 for (o = abfd->sections; o != NULL; o = o->next)
4403 {
4404 if ((o->flags & SEC_RELOC) != 0)
4405 {
23bc299b
MM
4406 if (!elf_link_size_reloc_section (abfd,
4407 &elf_section_data (o)->rel_hdr,
4408 o))
252b5132
RH
4409 goto error_return;
4410
23bc299b
MM
4411 if (elf_section_data (o)->rel_hdr2
4412 && !elf_link_size_reloc_section (abfd,
4413 elf_section_data (o)->rel_hdr2,
4414 o))
252b5132 4415 goto error_return;
252b5132 4416 }
b037af20
MM
4417
4418 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
3e932841 4419 to count upwards while actually outputting the relocations. */
b037af20
MM
4420 elf_section_data (o)->rel_count = 0;
4421 elf_section_data (o)->rel_count2 = 0;
252b5132
RH
4422 }
4423
4424 _bfd_elf_assign_file_positions_for_relocs (abfd);
4425
4426 /* We have now assigned file positions for all the sections except
4427 .symtab and .strtab. We start the .symtab section at the current
4428 file position, and write directly to it. We build the .strtab
4429 section in memory. */
4430 bfd_get_symcount (abfd) = 0;
4431 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4432 /* sh_name is set in prep_headers. */
4433 symtab_hdr->sh_type = SHT_SYMTAB;
4434 symtab_hdr->sh_flags = 0;
4435 symtab_hdr->sh_addr = 0;
4436 symtab_hdr->sh_size = 0;
4437 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4438 /* sh_link is set in assign_section_numbers. */
4439 /* sh_info is set below. */
4440 /* sh_offset is set just below. */
f0e1d18a 4441 symtab_hdr->sh_addralign = bed->s->file_align;
252b5132
RH
4442
4443 off = elf_tdata (abfd)->next_file_pos;
4444 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4445
4446 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4447 incorrect. We do not yet know the size of the .symtab section.
4448 We correct next_file_pos below, after we do know the size. */
4449
4450 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4451 continuously seeking to the right position in the file. */
4452 if (! info->keep_memory || max_sym_count < 20)
4453 finfo.symbuf_size = 20;
4454 else
4455 finfo.symbuf_size = max_sym_count;
4456 finfo.symbuf = ((Elf_External_Sym *)
4457 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4458 if (finfo.symbuf == NULL)
4459 goto error_return;
4460
4461 /* Start writing out the symbol table. The first symbol is always a
4462 dummy symbol. */
a712da20 4463 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4464 {
4465 elfsym.st_value = 0;
4466 elfsym.st_size = 0;
4467 elfsym.st_info = 0;
4468 elfsym.st_other = 0;
4469 elfsym.st_shndx = SHN_UNDEF;
4470 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4471 &elfsym, bfd_und_section_ptr))
4472 goto error_return;
4473 }
4474
4475#if 0
4476 /* Some standard ELF linkers do this, but we don't because it causes
4477 bootstrap comparison failures. */
4478 /* Output a file symbol for the output file as the second symbol.
4479 We output this even if we are discarding local symbols, although
4480 I'm not sure if this is correct. */
4481 elfsym.st_value = 0;
4482 elfsym.st_size = 0;
4483 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4484 elfsym.st_other = 0;
4485 elfsym.st_shndx = SHN_ABS;
4486 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4487 &elfsym, bfd_abs_section_ptr))
4488 goto error_return;
4489#endif
4490
4491 /* Output a symbol for each section. We output these even if we are
4492 discarding local symbols, since they are used for relocs. These
4493 symbols have no names. We store the index of each one in the
4494 index field of the section, so that we can find it again when
4495 outputting relocs. */
a712da20 4496 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4497 {
4498 elfsym.st_size = 0;
4499 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4500 elfsym.st_other = 0;
4501 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4502 {
4503 o = section_from_elf_index (abfd, i);
4504 if (o != NULL)
4505 o->target_index = bfd_get_symcount (abfd);
4506 elfsym.st_shndx = i;
7ad34365 4507 if (info->relocateable || o == NULL)
252b5132
RH
4508 elfsym.st_value = 0;
4509 else
4510 elfsym.st_value = o->vma;
4511 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4512 &elfsym, o))
4513 goto error_return;
4514 }
4515 }
4516
4517 /* Allocate some memory to hold information read in from the input
4518 files. */
4519 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4520 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4521 finfo.internal_relocs = ((Elf_Internal_Rela *)
4522 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4523 * sizeof (Elf_Internal_Rela)
4524 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4525 finfo.external_syms = ((Elf_External_Sym *)
4526 bfd_malloc (max_sym_count
4527 * sizeof (Elf_External_Sym)));
4528 finfo.internal_syms = ((Elf_Internal_Sym *)
4529 bfd_malloc (max_sym_count
4530 * sizeof (Elf_Internal_Sym)));
4531 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4532 finfo.sections = ((asection **)
4533 bfd_malloc (max_sym_count * sizeof (asection *)));
4534 if ((finfo.contents == NULL && max_contents_size != 0)
4535 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4536 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4537 || (finfo.external_syms == NULL && max_sym_count != 0)
4538 || (finfo.internal_syms == NULL && max_sym_count != 0)
4539 || (finfo.indices == NULL && max_sym_count != 0)
4540 || (finfo.sections == NULL && max_sym_count != 0))
4541 goto error_return;
4542
4543 /* Since ELF permits relocations to be against local symbols, we
4544 must have the local symbols available when we do the relocations.
4545 Since we would rather only read the local symbols once, and we
4546 would rather not keep them in memory, we handle all the
4547 relocations for a single input file at the same time.
4548
4549 Unfortunately, there is no way to know the total number of local
4550 symbols until we have seen all of them, and the local symbol
4551 indices precede the global symbol indices. This means that when
4552 we are generating relocateable output, and we see a reloc against
4553 a global symbol, we can not know the symbol index until we have
4554 finished examining all the local symbols to see which ones we are
4555 going to output. To deal with this, we keep the relocations in
4556 memory, and don't output them until the end of the link. This is
4557 an unfortunate waste of memory, but I don't see a good way around
4558 it. Fortunately, it only happens when performing a relocateable
4559 link, which is not the common case. FIXME: If keep_memory is set
4560 we could write the relocs out and then read them again; I don't
4561 know how bad the memory loss will be. */
4562
4563 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4564 sub->output_has_begun = false;
4565 for (o = abfd->sections; o != NULL; o = o->next)
4566 {
4567 for (p = o->link_order_head; p != NULL; p = p->next)
4568 {
4569 if (p->type == bfd_indirect_link_order
4570 && (bfd_get_flavour (p->u.indirect.section->owner)
4571 == bfd_target_elf_flavour))
4572 {
4573 sub = p->u.indirect.section->owner;
4574 if (! sub->output_has_begun)
4575 {
4576 if (! elf_link_input_bfd (&finfo, sub))
4577 goto error_return;
4578 sub->output_has_begun = true;
4579 }
4580 }
4581 else if (p->type == bfd_section_reloc_link_order
4582 || p->type == bfd_symbol_reloc_link_order)
4583 {
4584 if (! elf_reloc_link_order (abfd, info, o, p))
4585 goto error_return;
4586 }
4587 else
4588 {
4589 if (! _bfd_default_link_order (abfd, info, o, p))
4590 goto error_return;
4591 }
4592 }
4593 }
4594
4595 /* That wrote out all the local symbols. Finish up the symbol table
5cc7c785
L
4596 with the global symbols. Even if we want to strip everything we
4597 can, we still need to deal with those global symbols that got
3e932841 4598 converted to local in a version script. */
252b5132 4599
2bd171e0 4600 if (info->shared)
252b5132
RH
4601 {
4602 /* Output any global symbols that got converted to local in a
4603 version script. We do this in a separate step since ELF
4604 requires all local symbols to appear prior to any global
4605 symbols. FIXME: We should only do this if some global
4606 symbols were, in fact, converted to become local. FIXME:
4607 Will this work correctly with the Irix 5 linker? */
4608 eoinfo.failed = false;
4609 eoinfo.finfo = &finfo;
4610 eoinfo.localsyms = true;
4611 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4612 (PTR) &eoinfo);
4613 if (eoinfo.failed)
4614 return false;
4615 }
4616
30b30c21 4617 /* The sh_info field records the index of the first non local symbol. */
252b5132 4618 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4619
fc8c40a0
AM
4620 if (dynamic
4621 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
30b30c21
RH
4622 {
4623 Elf_Internal_Sym sym;
4624 Elf_External_Sym *dynsym =
4625 (Elf_External_Sym *)finfo.dynsym_sec->contents;
71a40b32 4626 long last_local = 0;
30b30c21
RH
4627
4628 /* Write out the section symbols for the output sections. */
4629 if (info->shared)
4630 {
4631 asection *s;
4632
4633 sym.st_size = 0;
4634 sym.st_name = 0;
4635 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4636 sym.st_other = 0;
4637
4638 for (s = abfd->sections; s != NULL; s = s->next)
4639 {
4640 int indx;
4641 indx = elf_section_data (s)->this_idx;
4642 BFD_ASSERT (indx > 0);
4643 sym.st_shndx = indx;
4644 sym.st_value = s->vma;
4645
4646 elf_swap_symbol_out (abfd, &sym,
4647 dynsym + elf_section_data (s)->dynindx);
4648 }
4649
4650 last_local = bfd_count_sections (abfd);
4651 }
4652
4653 /* Write out the local dynsyms. */
4654 if (elf_hash_table (info)->dynlocal)
4655 {
4656 struct elf_link_local_dynamic_entry *e;
4657 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4658 {
318da145 4659 asection *s;
30b30c21 4660
b037af20
MM
4661 sym.st_size = e->isym.st_size;
4662 sym.st_other = e->isym.st_other;
4663
1fa0ddb3
RH
4664 /* Copy the internal symbol as is.
4665 Note that we saved a word of storage and overwrote
30b30c21 4666 the original st_name with the dynstr_index. */
1fa0ddb3 4667 sym = e->isym;
30b30c21 4668
1fa0ddb3 4669 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
587ff49e
RH
4670 {
4671 s = bfd_section_from_elf_index (e->input_bfd,
4672 e->isym.st_shndx);
4673
4674 sym.st_shndx =
4675 elf_section_data (s->output_section)->this_idx;
4676 sym.st_value = (s->output_section->vma
4677 + s->output_offset
4678 + e->isym.st_value);
4679 }
30b30c21
RH
4680
4681 if (last_local < e->dynindx)
4682 last_local = e->dynindx;
4683
4684 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4685 }
4686 }
4687
71a40b32
ILT
4688 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4689 last_local + 1;
30b30c21 4690 }
252b5132
RH
4691
4692 /* We get the global symbols from the hash table. */
4693 eoinfo.failed = false;
4694 eoinfo.localsyms = false;
4695 eoinfo.finfo = &finfo;
4696 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4697 (PTR) &eoinfo);
4698 if (eoinfo.failed)
4699 return false;
4700
587ff49e
RH
4701 /* If backend needs to output some symbols not present in the hash
4702 table, do it now. */
4703 if (bed->elf_backend_output_arch_syms)
4704 {
4705 if (! (*bed->elf_backend_output_arch_syms)
4706 (abfd, info, (PTR) &finfo,
4707 (boolean (*) PARAMS ((PTR, const char *,
4708 Elf_Internal_Sym *, asection *)))
4709 elf_link_output_sym))
4710 return false;
3e932841 4711 }
587ff49e 4712
252b5132
RH
4713 /* Flush all symbols to the file. */
4714 if (! elf_link_flush_output_syms (&finfo))
4715 return false;
4716
4717 /* Now we know the size of the symtab section. */
4718 off += symtab_hdr->sh_size;
4719
4720 /* Finish up and write out the symbol string table (.strtab)
4721 section. */
4722 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4723 /* sh_name was set in prep_headers. */
4724 symstrtab_hdr->sh_type = SHT_STRTAB;
4725 symstrtab_hdr->sh_flags = 0;
4726 symstrtab_hdr->sh_addr = 0;
4727 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4728 symstrtab_hdr->sh_entsize = 0;
4729 symstrtab_hdr->sh_link = 0;
4730 symstrtab_hdr->sh_info = 0;
4731 /* sh_offset is set just below. */
4732 symstrtab_hdr->sh_addralign = 1;
4733
4734 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4735 elf_tdata (abfd)->next_file_pos = off;
4736
4737 if (bfd_get_symcount (abfd) > 0)
4738 {
4739 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4740 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4741 return false;
4742 }
4743
4744 /* Adjust the relocs to have the correct symbol indices. */
4745 for (o = abfd->sections; o != NULL; o = o->next)
4746 {
252b5132
RH
4747 if ((o->flags & SEC_RELOC) == 0)
4748 continue;
4749
3e932841 4750 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
31367b81
MM
4751 elf_section_data (o)->rel_count,
4752 elf_section_data (o)->rel_hashes);
4753 if (elf_section_data (o)->rel_hdr2 != NULL)
4754 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4755 elf_section_data (o)->rel_count2,
3e932841 4756 (elf_section_data (o)->rel_hashes
31367b81 4757 + elf_section_data (o)->rel_count));
252b5132
RH
4758
4759 /* Set the reloc_count field to 0 to prevent write_relocs from
4760 trying to swap the relocs out itself. */
4761 o->reloc_count = 0;
4762 }
4763
4764 /* If we are linking against a dynamic object, or generating a
4765 shared library, finish up the dynamic linking information. */
4766 if (dynamic)
4767 {
4768 Elf_External_Dyn *dyncon, *dynconend;
4769
4770 /* Fix up .dynamic entries. */
4771 o = bfd_get_section_by_name (dynobj, ".dynamic");
4772 BFD_ASSERT (o != NULL);
4773
4774 dyncon = (Elf_External_Dyn *) o->contents;
4775 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4776 for (; dyncon < dynconend; dyncon++)
4777 {
4778 Elf_Internal_Dyn dyn;
4779 const char *name;
4780 unsigned int type;
4781
4782 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4783
4784 switch (dyn.d_tag)
4785 {
4786 default:
4787 break;
252b5132 4788 case DT_INIT:
f0c2e336 4789 name = info->init_function;
252b5132
RH
4790 goto get_sym;
4791 case DT_FINI:
f0c2e336 4792 name = info->fini_function;
252b5132
RH
4793 get_sym:
4794 {
4795 struct elf_link_hash_entry *h;
4796
4797 h = elf_link_hash_lookup (elf_hash_table (info), name,
4798 false, false, true);
4799 if (h != NULL
4800 && (h->root.type == bfd_link_hash_defined
4801 || h->root.type == bfd_link_hash_defweak))
4802 {
4803 dyn.d_un.d_val = h->root.u.def.value;
4804 o = h->root.u.def.section;
4805 if (o->output_section != NULL)
4806 dyn.d_un.d_val += (o->output_section->vma
4807 + o->output_offset);
4808 else
4809 {
4810 /* The symbol is imported from another shared
4811 library and does not apply to this one. */
4812 dyn.d_un.d_val = 0;
4813 }
4814
4815 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4816 }
4817 }
4818 break;
4819
4820 case DT_HASH:
4821 name = ".hash";
4822 goto get_vma;
4823 case DT_STRTAB:
4824 name = ".dynstr";
4825 goto get_vma;
4826 case DT_SYMTAB:
4827 name = ".dynsym";
4828 goto get_vma;
4829 case DT_VERDEF:
4830 name = ".gnu.version_d";
4831 goto get_vma;
4832 case DT_VERNEED:
4833 name = ".gnu.version_r";
4834 goto get_vma;
4835 case DT_VERSYM:
4836 name = ".gnu.version";
4837 get_vma:
4838 o = bfd_get_section_by_name (abfd, name);
4839 BFD_ASSERT (o != NULL);
4840 dyn.d_un.d_ptr = o->vma;
4841 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4842 break;
4843
4844 case DT_REL:
4845 case DT_RELA:
4846 case DT_RELSZ:
4847 case DT_RELASZ:
4848 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4849 type = SHT_REL;
4850 else
4851 type = SHT_RELA;
4852 dyn.d_un.d_val = 0;
4853 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4854 {
4855 Elf_Internal_Shdr *hdr;
4856
4857 hdr = elf_elfsections (abfd)[i];
4858 if (hdr->sh_type == type
4859 && (hdr->sh_flags & SHF_ALLOC) != 0)
4860 {
4861 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4862 dyn.d_un.d_val += hdr->sh_size;
4863 else
4864 {
4865 if (dyn.d_un.d_val == 0
4866 || hdr->sh_addr < dyn.d_un.d_val)
4867 dyn.d_un.d_val = hdr->sh_addr;
4868 }
4869 }
4870 }
4871 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4872 break;
4873 }
4874 }
4875 }
4876
4877 /* If we have created any dynamic sections, then output them. */
4878 if (dynobj != NULL)
4879 {
4880 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4881 goto error_return;
4882
4883 for (o = dynobj->sections; o != NULL; o = o->next)
4884 {
4885 if ((o->flags & SEC_HAS_CONTENTS) == 0
fc8c40a0
AM
4886 || o->_raw_size == 0
4887 || o->output_section == bfd_abs_section_ptr)
252b5132
RH
4888 continue;
4889 if ((o->flags & SEC_LINKER_CREATED) == 0)
4890 {
4891 /* At this point, we are only interested in sections
4892 created by elf_link_create_dynamic_sections. */
4893 continue;
4894 }
4895 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4896 != SHT_STRTAB)
4897 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4898 {
4899 if (! bfd_set_section_contents (abfd, o->output_section,
4900 o->contents, o->output_offset,
4901 o->_raw_size))
4902 goto error_return;
4903 }
4904 else
4905 {
4906 file_ptr off;
4907
4908 /* The contents of the .dynstr section are actually in a
4909 stringtab. */
4910 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4911 if (bfd_seek (abfd, off, SEEK_SET) != 0
4912 || ! _bfd_stringtab_emit (abfd,
4913 elf_hash_table (info)->dynstr))
4914 goto error_return;
4915 }
4916 }
4917 }
4918
4919 /* If we have optimized stabs strings, output them. */
4920 if (elf_hash_table (info)->stab_info != NULL)
4921 {
4922 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4923 goto error_return;
4924 }
4925
4926 if (finfo.symstrtab != NULL)
4927 _bfd_stringtab_free (finfo.symstrtab);
4928 if (finfo.contents != NULL)
4929 free (finfo.contents);
4930 if (finfo.external_relocs != NULL)
4931 free (finfo.external_relocs);
4932 if (finfo.internal_relocs != NULL)
4933 free (finfo.internal_relocs);
4934 if (finfo.external_syms != NULL)
4935 free (finfo.external_syms);
4936 if (finfo.internal_syms != NULL)
4937 free (finfo.internal_syms);
4938 if (finfo.indices != NULL)
4939 free (finfo.indices);
4940 if (finfo.sections != NULL)
4941 free (finfo.sections);
4942 if (finfo.symbuf != NULL)
4943 free (finfo.symbuf);
4944 for (o = abfd->sections; o != NULL; o = o->next)
4945 {
4946 if ((o->flags & SEC_RELOC) != 0
4947 && elf_section_data (o)->rel_hashes != NULL)
4948 free (elf_section_data (o)->rel_hashes);
4949 }
4950
4951 elf_tdata (abfd)->linker = true;
4952
4953 return true;
4954
4955 error_return:
4956 if (finfo.symstrtab != NULL)
4957 _bfd_stringtab_free (finfo.symstrtab);
4958 if (finfo.contents != NULL)
4959 free (finfo.contents);
4960 if (finfo.external_relocs != NULL)
4961 free (finfo.external_relocs);
4962 if (finfo.internal_relocs != NULL)
4963 free (finfo.internal_relocs);
4964 if (finfo.external_syms != NULL)
4965 free (finfo.external_syms);
4966 if (finfo.internal_syms != NULL)
4967 free (finfo.internal_syms);
4968 if (finfo.indices != NULL)
4969 free (finfo.indices);
4970 if (finfo.sections != NULL)
4971 free (finfo.sections);
4972 if (finfo.symbuf != NULL)
4973 free (finfo.symbuf);
4974 for (o = abfd->sections; o != NULL; o = o->next)
4975 {
4976 if ((o->flags & SEC_RELOC) != 0
4977 && elf_section_data (o)->rel_hashes != NULL)
4978 free (elf_section_data (o)->rel_hashes);
4979 }
4980
4981 return false;
4982}
4983
4984/* Add a symbol to the output symbol table. */
4985
4986static boolean
4987elf_link_output_sym (finfo, name, elfsym, input_sec)
4988 struct elf_final_link_info *finfo;
4989 const char *name;
4990 Elf_Internal_Sym *elfsym;
4991 asection *input_sec;
4992{
4993 boolean (*output_symbol_hook) PARAMS ((bfd *,
4994 struct bfd_link_info *info,
4995 const char *,
4996 Elf_Internal_Sym *,
4997 asection *));
4998
4999 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5000 elf_backend_link_output_symbol_hook;
5001 if (output_symbol_hook != NULL)
5002 {
5003 if (! ((*output_symbol_hook)
5004 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5005 return false;
5006 }
5007
5008 if (name == (const char *) NULL || *name == '\0')
5009 elfsym->st_name = 0;
5010 else if (input_sec->flags & SEC_EXCLUDE)
5011 elfsym->st_name = 0;
5012 else
5013 {
5014 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5015 name, true,
5016 false);
5017 if (elfsym->st_name == (unsigned long) -1)
5018 return false;
5019 }
5020
5021 if (finfo->symbuf_count >= finfo->symbuf_size)
5022 {
5023 if (! elf_link_flush_output_syms (finfo))
5024 return false;
5025 }
5026
5027 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5028 (PTR) (finfo->symbuf + finfo->symbuf_count));
5029 ++finfo->symbuf_count;
5030
5031 ++ bfd_get_symcount (finfo->output_bfd);
5032
5033 return true;
5034}
5035
5036/* Flush the output symbols to the file. */
5037
5038static boolean
5039elf_link_flush_output_syms (finfo)
5040 struct elf_final_link_info *finfo;
5041{
5042 if (finfo->symbuf_count > 0)
5043 {
5044 Elf_Internal_Shdr *symtab;
5045
5046 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5047
5048 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5049 SEEK_SET) != 0
5050 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5051 sizeof (Elf_External_Sym), finfo->output_bfd)
5052 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5053 return false;
5054
5055 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5056
5057 finfo->symbuf_count = 0;
5058 }
5059
5060 return true;
5061}
5062
5063/* Add an external symbol to the symbol table. This is called from
5064 the hash table traversal routine. When generating a shared object,
5065 we go through the symbol table twice. The first time we output
5066 anything that might have been forced to local scope in a version
5067 script. The second time we output the symbols that are still
5068 global symbols. */
5069
5070static boolean
5071elf_link_output_extsym (h, data)
5072 struct elf_link_hash_entry *h;
5073 PTR data;
5074{
5075 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5076 struct elf_final_link_info *finfo = eoinfo->finfo;
5077 boolean strip;
5078 Elf_Internal_Sym sym;
5079 asection *input_sec;
5080
5081 /* Decide whether to output this symbol in this pass. */
5082 if (eoinfo->localsyms)
5083 {
5084 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5085 return true;
5086 }
5087 else
5088 {
5089 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5090 return true;
5091 }
5092
5093 /* If we are not creating a shared library, and this symbol is
5094 referenced by a shared library but is not defined anywhere, then
5095 warn that it is undefined. If we do not do this, the runtime
5096 linker will complain that the symbol is undefined when the
5097 program is run. We don't have to worry about symbols that are
5098 referenced by regular files, because we will already have issued
5099 warnings for them. */
5100 if (! finfo->info->relocateable
b79e8c78 5101 && ! finfo->info->allow_shlib_undefined
252b5132 5102 && ! (finfo->info->shared
252b5132
RH
5103 && !finfo->info->no_undefined)
5104 && h->root.type == bfd_link_hash_undefined
5105 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5106 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5107 {
5108 if (! ((*finfo->info->callbacks->undefined_symbol)
5109 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5cc7c785 5110 (asection *) NULL, 0, true)))
252b5132
RH
5111 {
5112 eoinfo->failed = true;
5113 return false;
5114 }
5115 }
5116
5117 /* We don't want to output symbols that have never been mentioned by
5118 a regular file, or that we have been told to strip. However, if
5119 h->indx is set to -2, the symbol is used by a reloc and we must
5120 output it. */
5121 if (h->indx == -2)
5122 strip = false;
5123 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5124 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5125 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5126 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5127 strip = true;
5128 else if (finfo->info->strip == strip_all
5129 || (finfo->info->strip == strip_some
5130 && bfd_hash_lookup (finfo->info->keep_hash,
5131 h->root.root.string,
5132 false, false) == NULL))
5133 strip = true;
5134 else
5135 strip = false;
5136
5137 /* If we're stripping it, and it's not a dynamic symbol, there's
2bd171e0
ILT
5138 nothing else to do unless it is a forced local symbol. */
5139 if (strip
5140 && h->dynindx == -1
5141 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
252b5132
RH
5142 return true;
5143
5144 sym.st_value = 0;
5145 sym.st_size = h->size;
5146 sym.st_other = h->other;
5147 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5148 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5149 else if (h->root.type == bfd_link_hash_undefweak
5150 || h->root.type == bfd_link_hash_defweak)
5151 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5152 else
5153 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5154
5155 switch (h->root.type)
5156 {
5157 default:
5158 case bfd_link_hash_new:
5159 abort ();
5160 return false;
5161
5162 case bfd_link_hash_undefined:
5163 input_sec = bfd_und_section_ptr;
5164 sym.st_shndx = SHN_UNDEF;
5165 break;
5166
5167 case bfd_link_hash_undefweak:
5168 input_sec = bfd_und_section_ptr;
5169 sym.st_shndx = SHN_UNDEF;
5170 break;
5171
5172 case bfd_link_hash_defined:
5173 case bfd_link_hash_defweak:
5174 {
5175 input_sec = h->root.u.def.section;
5176 if (input_sec->output_section != NULL)
5177 {
5178 sym.st_shndx =
5179 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5180 input_sec->output_section);
5181 if (sym.st_shndx == (unsigned short) -1)
5182 {
5183 (*_bfd_error_handler)
5184 (_("%s: could not find output section %s for input section %s"),
5185 bfd_get_filename (finfo->output_bfd),
5186 input_sec->output_section->name,
5187 input_sec->name);
5188 eoinfo->failed = true;
5189 return false;
5190 }
5191
5192 /* ELF symbols in relocateable files are section relative,
5193 but in nonrelocateable files they are virtual
5194 addresses. */
5195 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5196 if (! finfo->info->relocateable)
5197 sym.st_value += input_sec->output_section->vma;
5198 }
5199 else
5200 {
5201 BFD_ASSERT (input_sec->owner == NULL
5202 || (input_sec->owner->flags & DYNAMIC) != 0);
5203 sym.st_shndx = SHN_UNDEF;
5204 input_sec = bfd_und_section_ptr;
5205 }
5206 }
5207 break;
5208
5209 case bfd_link_hash_common:
5210 input_sec = h->root.u.c.p->section;
5211 sym.st_shndx = SHN_COMMON;
5212 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5213 break;
5214
5215 case bfd_link_hash_indirect:
5216 /* These symbols are created by symbol versioning. They point
5217 to the decorated version of the name. For example, if the
5218 symbol foo@@GNU_1.2 is the default, which should be used when
5219 foo is used with no version, then we add an indirect symbol
5220 foo which points to foo@@GNU_1.2. We ignore these symbols,
94b6c40a
L
5221 since the indirected symbol is already in the hash table. */
5222 return true;
252b5132 5223
252b5132
RH
5224 case bfd_link_hash_warning:
5225 /* We can't represent these symbols in ELF, although a warning
5226 symbol may have come from a .gnu.warning.SYMBOL section. We
5227 just put the target symbol in the hash table. If the target
5228 symbol does not really exist, don't do anything. */
5229 if (h->root.u.i.link->type == bfd_link_hash_new)
5230 return true;
5231 return (elf_link_output_extsym
5232 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5233 }
5234
5235 /* Give the processor backend a chance to tweak the symbol value,
5236 and also to finish up anything that needs to be done for this
5237 symbol. */
5238 if ((h->dynindx != -1
5239 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5240 && elf_hash_table (finfo->info)->dynamic_sections_created)
5241 {
5242 struct elf_backend_data *bed;
5243
5244 bed = get_elf_backend_data (finfo->output_bfd);
5245 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5246 (finfo->output_bfd, finfo->info, h, &sym)))
5247 {
5248 eoinfo->failed = true;
5249 return false;
5250 }
5251 }
5252
5253 /* If we are marking the symbol as undefined, and there are no
5254 non-weak references to this symbol from a regular object, then
91d3970e
ILT
5255 mark the symbol as weak undefined; if there are non-weak
5256 references, mark the symbol as strong. We can't do this earlier,
252b5132
RH
5257 because it might not be marked as undefined until the
5258 finish_dynamic_symbol routine gets through with it. */
5259 if (sym.st_shndx == SHN_UNDEF
252b5132 5260 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
91d3970e
ILT
5261 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5262 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5263 {
5264 int bindtype;
5265
5266 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5267 bindtype = STB_GLOBAL;
5268 else
5269 bindtype = STB_WEAK;
5270 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5271 }
252b5132 5272
32c092c3 5273 /* If a symbol is not defined locally, we clear the visibility
3e932841 5274 field. */
32c092c3
L
5275 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5276 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5277
252b5132
RH
5278 /* If this symbol should be put in the .dynsym section, then put it
5279 there now. We have already know the symbol index. We also fill
5280 in the entry in the .hash section. */
5281 if (h->dynindx != -1
5282 && elf_hash_table (finfo->info)->dynamic_sections_created)
5283 {
5284 size_t bucketcount;
5285 size_t bucket;
c7ac6ff8 5286 size_t hash_entry_size;
252b5132
RH
5287 bfd_byte *bucketpos;
5288 bfd_vma chain;
5289
5290 sym.st_name = h->dynstr_index;
5291
5292 elf_swap_symbol_out (finfo->output_bfd, &sym,
5293 (PTR) (((Elf_External_Sym *)
5294 finfo->dynsym_sec->contents)
5295 + h->dynindx));
5296
5297 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5298 bucket = h->elf_hash_value % bucketcount;
3e932841 5299 hash_entry_size
c7ac6ff8 5300 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 5301 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
5302 + (bucket + 2) * hash_entry_size);
5303 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5304 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5305 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5306 ((bfd_byte *) finfo->hash_sec->contents
5307 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
5308
5309 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5310 {
5311 Elf_Internal_Versym iversym;
5312
5313 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5314 {
5315 if (h->verinfo.verdef == NULL)
5316 iversym.vs_vers = 0;
5317 else
5318 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5319 }
5320 else
5321 {
5322 if (h->verinfo.vertree == NULL)
5323 iversym.vs_vers = 1;
5324 else
5325 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5326 }
5327
5328 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5329 iversym.vs_vers |= VERSYM_HIDDEN;
5330
5331 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5332 (((Elf_External_Versym *)
5333 finfo->symver_sec->contents)
5334 + h->dynindx));
5335 }
5336 }
5337
5338 /* If we're stripping it, then it was just a dynamic symbol, and
5339 there's nothing else to do. */
5340 if (strip)
5341 return true;
5342
5343 h->indx = bfd_get_symcount (finfo->output_bfd);
5344
5345 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5346 {
5347 eoinfo->failed = true;
5348 return false;
5349 }
5350
5351 return true;
5352}
5353
23bc299b
MM
5354/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5355 originated from the section given by INPUT_REL_HDR) to the
5356 OUTPUT_BFD. */
5357
5358static void
3e932841 5359elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
23bc299b
MM
5360 internal_relocs)
5361 bfd *output_bfd;
5362 asection *input_section;
5363 Elf_Internal_Shdr *input_rel_hdr;
5364 Elf_Internal_Rela *internal_relocs;
5365{
5366 Elf_Internal_Rela *irela;
5367 Elf_Internal_Rela *irelaend;
5368 Elf_Internal_Shdr *output_rel_hdr;
5369 asection *output_section;
7442e600 5370 unsigned int *rel_countp = NULL;
32f0787a 5371 struct elf_backend_data *bed;
23bc299b
MM
5372
5373 output_section = input_section->output_section;
5374 output_rel_hdr = NULL;
5375
3e932841 5376 if (elf_section_data (output_section)->rel_hdr.sh_entsize
23bc299b
MM
5377 == input_rel_hdr->sh_entsize)
5378 {
5379 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5380 rel_countp = &elf_section_data (output_section)->rel_count;
5381 }
5382 else if (elf_section_data (output_section)->rel_hdr2
5383 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5384 == input_rel_hdr->sh_entsize))
5385 {
5386 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5387 rel_countp = &elf_section_data (output_section)->rel_count2;
5388 }
5389
5390 BFD_ASSERT (output_rel_hdr != NULL);
32f0787a
UC
5391
5392 bed = get_elf_backend_data (output_bfd);
23bc299b
MM
5393 irela = internal_relocs;
5394 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5395 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5396 {
5397 Elf_External_Rel *erel;
5398
5399 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5400 for (; irela < irelaend; irela++, erel++)
5401 {
5402 Elf_Internal_Rel irel;
5403
5404 irel.r_offset = irela->r_offset;
5405 irel.r_info = irela->r_info;
5406 BFD_ASSERT (irela->r_addend == 0);
32f0787a
UC
5407 if (bed->s->swap_reloc_out)
5408 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5409 else
5410 elf_swap_reloc_out (output_bfd, &irel, erel);
23bc299b
MM
5411 }
5412 }
5413 else
5414 {
5415 Elf_External_Rela *erela;
5416
5417 BFD_ASSERT (input_rel_hdr->sh_entsize
5418 == sizeof (Elf_External_Rela));
5419 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5420 for (; irela < irelaend; irela++, erela++)
32f0787a
UC
5421 if (bed->s->swap_reloca_out)
5422 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5423 else
5424 elf_swap_reloca_out (output_bfd, irela, erela);
23bc299b
MM
5425 }
5426
5427 /* Bump the counter, so that we know where to add the next set of
5428 relocations. */
5429 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5430}
5431
252b5132
RH
5432/* Link an input file into the linker output file. This function
5433 handles all the sections and relocations of the input file at once.
5434 This is so that we only have to read the local symbols once, and
5435 don't have to keep them in memory. */
5436
5437static boolean
5438elf_link_input_bfd (finfo, input_bfd)
5439 struct elf_final_link_info *finfo;
5440 bfd *input_bfd;
5441{
5442 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5443 bfd *, asection *, bfd_byte *,
5444 Elf_Internal_Rela *,
5445 Elf_Internal_Sym *, asection **));
5446 bfd *output_bfd;
5447 Elf_Internal_Shdr *symtab_hdr;
5448 size_t locsymcount;
5449 size_t extsymoff;
5450 Elf_External_Sym *external_syms;
5451 Elf_External_Sym *esym;
5452 Elf_External_Sym *esymend;
5453 Elf_Internal_Sym *isym;
5454 long *pindex;
5455 asection **ppsection;
5456 asection *o;
c7ac6ff8 5457 struct elf_backend_data *bed;
252b5132
RH
5458
5459 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5460 bed = get_elf_backend_data (output_bfd);
5461 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5462
5463 /* If this is a dynamic object, we don't want to do anything here:
5464 we don't want the local symbols, and we don't want the section
5465 contents. */
5466 if ((input_bfd->flags & DYNAMIC) != 0)
5467 return true;
5468
5469 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5470 if (elf_bad_symtab (input_bfd))
5471 {
5472 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5473 extsymoff = 0;
5474 }
5475 else
5476 {
5477 locsymcount = symtab_hdr->sh_info;
5478 extsymoff = symtab_hdr->sh_info;
5479 }
5480
5481 /* Read the local symbols. */
5482 if (symtab_hdr->contents != NULL)
5483 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5484 else if (locsymcount == 0)
5485 external_syms = NULL;
5486 else
5487 {
5488 external_syms = finfo->external_syms;
5489 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5490 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5491 locsymcount, input_bfd)
5492 != locsymcount * sizeof (Elf_External_Sym)))
5493 return false;
5494 }
5495
5496 /* Swap in the local symbols and write out the ones which we know
5497 are going into the output file. */
5498 esym = external_syms;
5499 esymend = esym + locsymcount;
5500 isym = finfo->internal_syms;
5501 pindex = finfo->indices;
5502 ppsection = finfo->sections;
5503 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5504 {
5505 asection *isec;
5506 const char *name;
5507 Elf_Internal_Sym osym;
5508
5509 elf_swap_symbol_in (input_bfd, esym, isym);
5510 *pindex = -1;
5511
5512 if (elf_bad_symtab (input_bfd))
5513 {
5514 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5515 {
5516 *ppsection = NULL;
5517 continue;
5518 }
5519 }
5520
ea412e04 5521 name = NULL;
252b5132 5522 if (isym->st_shndx == SHN_UNDEF)
ea412e04
L
5523 {
5524 isec = bfd_und_section_ptr;
5525 name = isec->name;
5526 }
252b5132
RH
5527 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5528 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5529 else if (isym->st_shndx == SHN_ABS)
ea412e04
L
5530 {
5531 isec = bfd_abs_section_ptr;
5532 name = isec->name;
5533 }
252b5132 5534 else if (isym->st_shndx == SHN_COMMON)
ea412e04
L
5535 {
5536 isec = bfd_com_section_ptr;
5537 name = isec->name;
5538 }
252b5132
RH
5539 else
5540 {
5541 /* Who knows? */
5542 isec = NULL;
5543 }
5544
5545 *ppsection = isec;
5546
5547 /* Don't output the first, undefined, symbol. */
5548 if (esym == external_syms)
5549 continue;
5550
24376d1b
AM
5551 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5552 {
5553 asection *ksec;
5554
5555 /* Save away all section symbol values. */
5556 if (isec != NULL)
ea412e04
L
5557 {
5558 if (name)
5559 {
5560 if (isec->symbol->value != isym->st_value)
5561 (*_bfd_error_handler)
5562 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5563 bfd_get_filename (input_bfd), isym->st_shndx,
5564 name);
5565 continue;
5566 }
5567 isec->symbol->value = isym->st_value;
5568 }
24376d1b
AM
5569
5570 /* If this is a discarded link-once section symbol, update
5571 it's value to that of the kept section symbol. The
5572 linker will keep the first of any matching link-once
5573 sections, so we should have already seen it's section
5574 symbol. I trust no-one will have the bright idea of
5575 re-ordering the bfd list... */
5576 if (isec != NULL
5577 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5578 && (ksec = isec->kept_section) != NULL)
5579 {
5580 isym->st_value = ksec->symbol->value;
5581
5582 /* That put the value right, but the section info is all
5583 wrong. I hope this works. */
5584 isec->output_offset = ksec->output_offset;
5585 isec->output_section = ksec->output_section;
5586 }
5587
5588 /* We never output section symbols. Instead, we use the
5589 section symbol of the corresponding section in the output
5590 file. */
5591 continue;
5592 }
5593
252b5132
RH
5594 /* If we are stripping all symbols, we don't want to output this
5595 one. */
5596 if (finfo->info->strip == strip_all)
5597 continue;
5598
252b5132
RH
5599 /* If we are discarding all local symbols, we don't want to
5600 output this one. If we are generating a relocateable output
5601 file, then some of the local symbols may be required by
5602 relocs; we output them below as we discover that they are
5603 needed. */
5604 if (finfo->info->discard == discard_all)
5605 continue;
5606
5607 /* If this symbol is defined in a section which we are
5608 discarding, we don't need to keep it, but note that
5609 linker_mark is only reliable for sections that have contents.
5610 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5611 as well as linker_mark. */
5612 if (isym->st_shndx > 0
5613 && isym->st_shndx < SHN_LORESERVE
5614 && isec != NULL
5615 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5616 || (! finfo->info->relocateable
5617 && (isec->flags & SEC_EXCLUDE) != 0)))
5618 continue;
5619
5620 /* Get the name of the symbol. */
5621 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5622 isym->st_name);
5623 if (name == NULL)
5624 return false;
5625
5626 /* See if we are discarding symbols with this name. */
5627 if ((finfo->info->strip == strip_some
5628 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5629 == NULL))
5630 || (finfo->info->discard == discard_l
5631 && bfd_is_local_label_name (input_bfd, name)))
5632 continue;
5633
5634 /* If we get here, we are going to output this symbol. */
5635
5636 osym = *isym;
5637
5638 /* Adjust the section index for the output file. */
5639 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5640 isec->output_section);
5641 if (osym.st_shndx == (unsigned short) -1)
5642 return false;
5643
5644 *pindex = bfd_get_symcount (output_bfd);
5645
5646 /* ELF symbols in relocateable files are section relative, but
5647 in executable files they are virtual addresses. Note that
5648 this code assumes that all ELF sections have an associated
5649 BFD section with a reasonable value for output_offset; below
5650 we assume that they also have a reasonable value for
5651 output_section. Any special sections must be set up to meet
5652 these requirements. */
5653 osym.st_value += isec->output_offset;
5654 if (! finfo->info->relocateable)
5655 osym.st_value += isec->output_section->vma;
5656
5657 if (! elf_link_output_sym (finfo, name, &osym, isec))
5658 return false;
5659 }
5660
5661 /* Relocate the contents of each section. */
5662 for (o = input_bfd->sections; o != NULL; o = o->next)
5663 {
5664 bfd_byte *contents;
5665
5666 if (! o->linker_mark)
5667 {
5668 /* This section was omitted from the link. */
5669 continue;
5670 }
5671
5672 if ((o->flags & SEC_HAS_CONTENTS) == 0
5673 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5674 continue;
5675
5676 if ((o->flags & SEC_LINKER_CREATED) != 0)
5677 {
5678 /* Section was created by elf_link_create_dynamic_sections
5679 or somesuch. */
5680 continue;
5681 }
5682
5683 /* Get the contents of the section. They have been cached by a
5684 relaxation routine. Note that o is a section in an input
5685 file, so the contents field will not have been set by any of
5686 the routines which work on output files. */
5687 if (elf_section_data (o)->this_hdr.contents != NULL)
5688 contents = elf_section_data (o)->this_hdr.contents;
5689 else
5690 {
5691 contents = finfo->contents;
5692 if (! bfd_get_section_contents (input_bfd, o, contents,
5693 (file_ptr) 0, o->_raw_size))
5694 return false;
5695 }
5696
5697 if ((o->flags & SEC_RELOC) != 0)
5698 {
5699 Elf_Internal_Rela *internal_relocs;
5700
5701 /* Get the swapped relocs. */
5702 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5703 (input_bfd, o, finfo->external_relocs,
5704 finfo->internal_relocs, false));
5705 if (internal_relocs == NULL
5706 && o->reloc_count > 0)
5707 return false;
5708
5709 /* Relocate the section by invoking a back end routine.
5710
5711 The back end routine is responsible for adjusting the
5712 section contents as necessary, and (if using Rela relocs
5713 and generating a relocateable output file) adjusting the
5714 reloc addend as necessary.
5715
5716 The back end routine does not have to worry about setting
5717 the reloc address or the reloc symbol index.
5718
5719 The back end routine is given a pointer to the swapped in
5720 internal symbols, and can access the hash table entries
5721 for the external symbols via elf_sym_hashes (input_bfd).
5722
5723 When generating relocateable output, the back end routine
5724 must handle STB_LOCAL/STT_SECTION symbols specially. The
5725 output symbol is going to be a section symbol
5726 corresponding to the output section, which will require
5727 the addend to be adjusted. */
5728
5729 if (! (*relocate_section) (output_bfd, finfo->info,
5730 input_bfd, o, contents,
5731 internal_relocs,
5732 finfo->internal_syms,
5733 finfo->sections))
5734 return false;
5735
a712da20 5736 if (finfo->info->relocateable || finfo->info->emitrelocations)
252b5132
RH
5737 {
5738 Elf_Internal_Rela *irela;
5739 Elf_Internal_Rela *irelaend;
5740 struct elf_link_hash_entry **rel_hash;
5741 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5742
5743 /* Adjust the reloc addresses and symbol indices. */
5744
5745 irela = internal_relocs;
3e932841 5746 irelaend =
c7ac6ff8 5747 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5748 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5749 + elf_section_data (o->output_section)->rel_count
5750 + elf_section_data (o->output_section)->rel_count2);
252b5132
RH
5751 for (; irela < irelaend; irela++, rel_hash++)
5752 {
5753 unsigned long r_symndx;
5754 Elf_Internal_Sym *isym;
5755 asection *sec;
5756
5757 irela->r_offset += o->output_offset;
5758
7ad34365
NC
5759 /* Relocs in an executable have to be virtual addresses. */
5760 if (finfo->info->emitrelocations)
5761 irela->r_offset += o->output_section->vma;
5762
252b5132
RH
5763 r_symndx = ELF_R_SYM (irela->r_info);
5764
5765 if (r_symndx == 0)
5766 continue;
5767
5768 if (r_symndx >= locsymcount
5769 || (elf_bad_symtab (input_bfd)
5770 && finfo->sections[r_symndx] == NULL))
5771 {
5772 struct elf_link_hash_entry *rh;
5773 long indx;
5774
5775 /* This is a reloc against a global symbol. We
5776 have not yet output all the local symbols, so
5777 we do not know the symbol index of any global
5778 symbol. We set the rel_hash entry for this
5779 reloc to point to the global hash table entry
5780 for this symbol. The symbol index is then
5781 set at the end of elf_bfd_final_link. */
5782 indx = r_symndx - extsymoff;
5783 rh = elf_sym_hashes (input_bfd)[indx];
5784 while (rh->root.type == bfd_link_hash_indirect
5785 || rh->root.type == bfd_link_hash_warning)
5786 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5787
5788 /* Setting the index to -2 tells
5789 elf_link_output_extsym that this symbol is
5790 used by a reloc. */
5791 BFD_ASSERT (rh->indx < 0);
5792 rh->indx = -2;
5793
5794 *rel_hash = rh;
5795
5796 continue;
5797 }
5798
3e932841 5799 /* This is a reloc against a local symbol. */
252b5132
RH
5800
5801 *rel_hash = NULL;
5802 isym = finfo->internal_syms + r_symndx;
5803 sec = finfo->sections[r_symndx];
5804 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5805 {
5806 /* I suppose the backend ought to fill in the
5807 section of any STT_SECTION symbol against a
5808 processor specific section. If we have
5809 discarded a section, the output_section will
5810 be the absolute section. */
5811 if (sec != NULL
5812 && (bfd_is_abs_section (sec)
5813 || (sec->output_section != NULL
5814 && bfd_is_abs_section (sec->output_section))))
5815 r_symndx = 0;
5816 else if (sec == NULL || sec->owner == NULL)
5817 {
5818 bfd_set_error (bfd_error_bad_value);
5819 return false;
5820 }
5821 else
5822 {
5823 r_symndx = sec->output_section->target_index;
5824 BFD_ASSERT (r_symndx != 0);
5825 }
5826 }
5827 else
5828 {
5829 if (finfo->indices[r_symndx] == -1)
5830 {
5831 unsigned long link;
5832 const char *name;
5833 asection *osec;
5834
5835 if (finfo->info->strip == strip_all)
5836 {
5837 /* You can't do ld -r -s. */
5838 bfd_set_error (bfd_error_invalid_operation);
5839 return false;
5840 }
5841
5842 /* This symbol was skipped earlier, but
5843 since it is needed by a reloc, we
5844 must output it now. */
5845 link = symtab_hdr->sh_link;
5846 name = bfd_elf_string_from_elf_section (input_bfd,
5847 link,
5848 isym->st_name);
5849 if (name == NULL)
5850 return false;
5851
5852 osec = sec->output_section;
5853 isym->st_shndx =
5854 _bfd_elf_section_from_bfd_section (output_bfd,
5855 osec);
5856 if (isym->st_shndx == (unsigned short) -1)
5857 return false;
5858
5859 isym->st_value += sec->output_offset;
5860 if (! finfo->info->relocateable)
5861 isym->st_value += osec->vma;
5862
5863 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5864
5865 if (! elf_link_output_sym (finfo, name, isym, sec))
5866 return false;
5867 }
5868
5869 r_symndx = finfo->indices[r_symndx];
5870 }
5871
5872 irela->r_info = ELF_R_INFO (r_symndx,
5873 ELF_R_TYPE (irela->r_info));
5874 }
5875
5876 /* Swap out the relocs. */
5877 input_rel_hdr = &elf_section_data (o)->rel_hdr;
3e932841 5878 elf_link_output_relocs (output_bfd, o,
23bc299b
MM
5879 input_rel_hdr,
5880 internal_relocs);
3e932841 5881 internal_relocs
23bc299b
MM
5882 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5883 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5884 if (input_rel_hdr)
3e932841 5885 elf_link_output_relocs (output_bfd, o,
23bc299b
MM
5886 input_rel_hdr,
5887 internal_relocs);
252b5132
RH
5888 }
5889 }
5890
5891 /* Write out the modified section contents. */
5892 if (elf_section_data (o)->stab_info == NULL)
5893 {
5894 if (! (o->flags & SEC_EXCLUDE) &&
5895 ! bfd_set_section_contents (output_bfd, o->output_section,
5896 contents, o->output_offset,
5897 (o->_cooked_size != 0
5898 ? o->_cooked_size
5899 : o->_raw_size)))
5900 return false;
5901 }
5902 else
5903 {
5904 if (! (_bfd_write_section_stabs
5905 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5906 o, &elf_section_data (o)->stab_info, contents)))
5907 return false;
5908 }
5909 }
5910
5911 return true;
5912}
5913
5914/* Generate a reloc when linking an ELF file. This is a reloc
5915 requested by the linker, and does come from any input file. This
5916 is used to build constructor and destructor tables when linking
5917 with -Ur. */
5918
5919static boolean
5920elf_reloc_link_order (output_bfd, info, output_section, link_order)
5921 bfd *output_bfd;
5922 struct bfd_link_info *info;
5923 asection *output_section;
5924 struct bfd_link_order *link_order;
5925{
5926 reloc_howto_type *howto;
5927 long indx;
5928 bfd_vma offset;
5929 bfd_vma addend;
5930 struct elf_link_hash_entry **rel_hash_ptr;
5931 Elf_Internal_Shdr *rel_hdr;
32f0787a 5932 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
252b5132
RH
5933
5934 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5935 if (howto == NULL)
5936 {
5937 bfd_set_error (bfd_error_bad_value);
5938 return false;
5939 }
5940
5941 addend = link_order->u.reloc.p->addend;
5942
5943 /* Figure out the symbol index. */
5944 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
5945 + elf_section_data (output_section)->rel_count
5946 + elf_section_data (output_section)->rel_count2);
252b5132
RH
5947 if (link_order->type == bfd_section_reloc_link_order)
5948 {
5949 indx = link_order->u.reloc.p->u.section->target_index;
5950 BFD_ASSERT (indx != 0);
5951 *rel_hash_ptr = NULL;
5952 }
5953 else
5954 {
5955 struct elf_link_hash_entry *h;
5956
5957 /* Treat a reloc against a defined symbol as though it were
5958 actually against the section. */
5959 h = ((struct elf_link_hash_entry *)
5960 bfd_wrapped_link_hash_lookup (output_bfd, info,
5961 link_order->u.reloc.p->u.name,
5962 false, false, true));
5963 if (h != NULL
5964 && (h->root.type == bfd_link_hash_defined
5965 || h->root.type == bfd_link_hash_defweak))
5966 {
5967 asection *section;
5968
5969 section = h->root.u.def.section;
5970 indx = section->output_section->target_index;
5971 *rel_hash_ptr = NULL;
5972 /* It seems that we ought to add the symbol value to the
5973 addend here, but in practice it has already been added
5974 because it was passed to constructor_callback. */
5975 addend += section->output_section->vma + section->output_offset;
5976 }
5977 else if (h != NULL)
5978 {
5979 /* Setting the index to -2 tells elf_link_output_extsym that
5980 this symbol is used by a reloc. */
5981 h->indx = -2;
5982 *rel_hash_ptr = h;
5983 indx = 0;
5984 }
5985 else
5986 {
5987 if (! ((*info->callbacks->unattached_reloc)
5988 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5989 (asection *) NULL, (bfd_vma) 0)))
5990 return false;
5991 indx = 0;
5992 }
5993 }
5994
5995 /* If this is an inplace reloc, we must write the addend into the
5996 object file. */
5997 if (howto->partial_inplace && addend != 0)
5998 {
5999 bfd_size_type size;
6000 bfd_reloc_status_type rstat;
6001 bfd_byte *buf;
6002 boolean ok;
6003
6004 size = bfd_get_reloc_size (howto);
6005 buf = (bfd_byte *) bfd_zmalloc (size);
6006 if (buf == (bfd_byte *) NULL)
6007 return false;
6008 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6009 switch (rstat)
6010 {
6011 case bfd_reloc_ok:
6012 break;
6013 default:
6014 case bfd_reloc_outofrange:
6015 abort ();
6016 case bfd_reloc_overflow:
6017 if (! ((*info->callbacks->reloc_overflow)
6018 (info,
6019 (link_order->type == bfd_section_reloc_link_order
6020 ? bfd_section_name (output_bfd,
6021 link_order->u.reloc.p->u.section)
6022 : link_order->u.reloc.p->u.name),
6023 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6024 (bfd_vma) 0)))
6025 {
6026 free (buf);
6027 return false;
6028 }
6029 break;
6030 }
6031 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6032 (file_ptr) link_order->offset, size);
6033 free (buf);
6034 if (! ok)
6035 return false;
6036 }
6037
6038 /* The address of a reloc is relative to the section in a
6039 relocateable file, and is a virtual address in an executable
6040 file. */
6041 offset = link_order->offset;
6042 if (! info->relocateable)
6043 offset += output_section->vma;
6044
6045 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6046
6047 if (rel_hdr->sh_type == SHT_REL)
6048 {
6049 Elf_Internal_Rel irel;
6050 Elf_External_Rel *erel;
6051
6052 irel.r_offset = offset;
6053 irel.r_info = ELF_R_INFO (indx, howto->type);
6054 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 6055 + elf_section_data (output_section)->rel_count);
32f0787a
UC
6056 if (bed->s->swap_reloc_out)
6057 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
6058 else
6059 elf_swap_reloc_out (output_bfd, &irel, erel);
252b5132
RH
6060 }
6061 else
6062 {
6063 Elf_Internal_Rela irela;
6064 Elf_External_Rela *erela;
6065
6066 irela.r_offset = offset;
6067 irela.r_info = ELF_R_INFO (indx, howto->type);
6068 irela.r_addend = addend;
6069 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 6070 + elf_section_data (output_section)->rel_count);
32f0787a
UC
6071 if (bed->s->swap_reloca_out)
6072 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6073 else
6074 elf_swap_reloca_out (output_bfd, &irela, erela);
252b5132
RH
6075 }
6076
0525d26e 6077 ++elf_section_data (output_section)->rel_count;
252b5132
RH
6078
6079 return true;
6080}
252b5132
RH
6081\f
6082/* Allocate a pointer to live in a linker created section. */
6083
6084boolean
6085elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6086 bfd *abfd;
6087 struct bfd_link_info *info;
6088 elf_linker_section_t *lsect;
6089 struct elf_link_hash_entry *h;
6090 const Elf_Internal_Rela *rel;
6091{
6092 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6093 elf_linker_section_pointers_t *linker_section_ptr;
6094 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6095
6096 BFD_ASSERT (lsect != NULL);
6097
6098 /* Is this a global symbol? */
6099 if (h != NULL)
6100 {
6101 /* Has this symbol already been allocated, if so, our work is done */
6102 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6103 rel->r_addend,
6104 lsect->which))
6105 return true;
6106
6107 ptr_linker_section_ptr = &h->linker_section_pointer;
6108 /* Make sure this symbol is output as a dynamic symbol. */
6109 if (h->dynindx == -1)
6110 {
6111 if (! elf_link_record_dynamic_symbol (info, h))
6112 return false;
6113 }
6114
6115 if (lsect->rel_section)
6116 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6117 }
6118
6119 else /* Allocation of a pointer to a local symbol */
6120 {
6121 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6122
6123 /* Allocate a table to hold the local symbols if first time */
6124 if (!ptr)
6125 {
6126 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6127 register unsigned int i;
6128
6129 ptr = (elf_linker_section_pointers_t **)
6130 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6131
6132 if (!ptr)
6133 return false;
6134
6135 elf_local_ptr_offsets (abfd) = ptr;
6136 for (i = 0; i < num_symbols; i++)
6137 ptr[i] = (elf_linker_section_pointers_t *)0;
6138 }
6139
6140 /* Has this symbol already been allocated, if so, our work is done */
6141 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6142 rel->r_addend,
6143 lsect->which))
6144 return true;
6145
6146 ptr_linker_section_ptr = &ptr[r_symndx];
6147
6148 if (info->shared)
6149 {
6150 /* If we are generating a shared object, we need to
6151 output a R_<xxx>_RELATIVE reloc so that the
6152 dynamic linker can adjust this GOT entry. */
6153 BFD_ASSERT (lsect->rel_section != NULL);
6154 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6155 }
6156 }
6157
6158 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6159 from internal memory. */
6160 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6161 linker_section_ptr = (elf_linker_section_pointers_t *)
6162 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6163
6164 if (!linker_section_ptr)
6165 return false;
6166
6167 linker_section_ptr->next = *ptr_linker_section_ptr;
6168 linker_section_ptr->addend = rel->r_addend;
6169 linker_section_ptr->which = lsect->which;
6170 linker_section_ptr->written_address_p = false;
6171 *ptr_linker_section_ptr = linker_section_ptr;
6172
6173#if 0
6174 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6175 {
6176 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6177 lsect->hole_offset += ARCH_SIZE / 8;
6178 lsect->sym_offset += ARCH_SIZE / 8;
6179 if (lsect->sym_hash) /* Bump up symbol value if needed */
6180 {
6181 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6182#ifdef DEBUG
6183 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6184 lsect->sym_hash->root.root.string,
6185 (long)ARCH_SIZE / 8,
6186 (long)lsect->sym_hash->root.u.def.value);
6187#endif
6188 }
6189 }
6190 else
6191#endif
6192 linker_section_ptr->offset = lsect->section->_raw_size;
6193
6194 lsect->section->_raw_size += ARCH_SIZE / 8;
6195
6196#ifdef DEBUG
6197 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6198 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6199#endif
6200
6201 return true;
6202}
252b5132
RH
6203\f
6204#if ARCH_SIZE==64
6205#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6206#endif
6207#if ARCH_SIZE==32
6208#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6209#endif
6210
6211/* Fill in the address for a pointer generated in alinker section. */
6212
6213bfd_vma
6214elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6215 bfd *output_bfd;
6216 bfd *input_bfd;
6217 struct bfd_link_info *info;
6218 elf_linker_section_t *lsect;
6219 struct elf_link_hash_entry *h;
6220 bfd_vma relocation;
6221 const Elf_Internal_Rela *rel;
6222 int relative_reloc;
6223{
6224 elf_linker_section_pointers_t *linker_section_ptr;
6225
6226 BFD_ASSERT (lsect != NULL);
6227
6228 if (h != NULL) /* global symbol */
6229 {
6230 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6231 rel->r_addend,
6232 lsect->which);
6233
6234 BFD_ASSERT (linker_section_ptr != NULL);
6235
6236 if (! elf_hash_table (info)->dynamic_sections_created
6237 || (info->shared
6238 && info->symbolic
6239 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6240 {
6241 /* This is actually a static link, or it is a
6242 -Bsymbolic link and the symbol is defined
6243 locally. We must initialize this entry in the
6244 global section.
6245
6246 When doing a dynamic link, we create a .rela.<xxx>
6247 relocation entry to initialize the value. This
6248 is done in the finish_dynamic_symbol routine. */
6249 if (!linker_section_ptr->written_address_p)
6250 {
6251 linker_section_ptr->written_address_p = true;
6252 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6253 lsect->section->contents + linker_section_ptr->offset);
6254 }
6255 }
6256 }
6257 else /* local symbol */
6258 {
6259 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6260 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6261 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6262 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6263 rel->r_addend,
6264 lsect->which);
6265
6266 BFD_ASSERT (linker_section_ptr != NULL);
6267
6268 /* Write out pointer if it hasn't been rewritten out before */
6269 if (!linker_section_ptr->written_address_p)
6270 {
6271 linker_section_ptr->written_address_p = true;
6272 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6273 lsect->section->contents + linker_section_ptr->offset);
6274
6275 if (info->shared)
6276 {
6277 asection *srel = lsect->rel_section;
6278 Elf_Internal_Rela outrel;
6279
6280 /* We need to generate a relative reloc for the dynamic linker. */
6281 if (!srel)
6282 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6283 lsect->rel_name);
6284
6285 BFD_ASSERT (srel != NULL);
6286
6287 outrel.r_offset = (lsect->section->output_section->vma
6288 + lsect->section->output_offset
6289 + linker_section_ptr->offset);
6290 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6291 outrel.r_addend = 0;
6292 elf_swap_reloca_out (output_bfd, &outrel,
6293 (((Elf_External_Rela *)
6294 lsect->section->contents)
0525d26e
ILT
6295 + elf_section_data (lsect->section)->rel_count));
6296 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
6297 }
6298 }
6299 }
6300
6301 relocation = (lsect->section->output_offset
6302 + linker_section_ptr->offset
6303 - lsect->hole_offset
6304 - lsect->sym_offset);
6305
6306#ifdef DEBUG
6307 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6308 lsect->name, (long)relocation, (long)relocation);
6309#endif
6310
6311 /* Subtract out the addend, because it will get added back in by the normal
6312 processing. */
6313 return relocation - linker_section_ptr->addend;
6314}
6315\f
6316/* Garbage collect unused sections. */
6317
6318static boolean elf_gc_mark
6319 PARAMS ((struct bfd_link_info *info, asection *sec,
6320 asection * (*gc_mark_hook)
6321 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6322 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6323
6324static boolean elf_gc_sweep
6325 PARAMS ((struct bfd_link_info *info,
6326 boolean (*gc_sweep_hook)
6327 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6328 const Elf_Internal_Rela *relocs))));
6329
6330static boolean elf_gc_sweep_symbol
6331 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6332
6333static boolean elf_gc_allocate_got_offsets
6334 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6335
6336static boolean elf_gc_propagate_vtable_entries_used
6337 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6338
6339static boolean elf_gc_smash_unused_vtentry_relocs
6340 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6341
6342/* The mark phase of garbage collection. For a given section, mark
6343 it, and all the sections which define symbols to which it refers. */
6344
6345static boolean
6346elf_gc_mark (info, sec, gc_mark_hook)
6347 struct bfd_link_info *info;
6348 asection *sec;
6349 asection * (*gc_mark_hook)
6350 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6351 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6352{
6353 boolean ret = true;
6354
6355 sec->gc_mark = 1;
6356
6357 /* Look through the section relocs. */
6358
6359 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6360 {
6361 Elf_Internal_Rela *relstart, *rel, *relend;
6362 Elf_Internal_Shdr *symtab_hdr;
6363 struct elf_link_hash_entry **sym_hashes;
6364 size_t nlocsyms;
6365 size_t extsymoff;
6366 Elf_External_Sym *locsyms, *freesyms = NULL;
6367 bfd *input_bfd = sec->owner;
c7ac6ff8 6368 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
6369
6370 /* GCFIXME: how to arrange so that relocs and symbols are not
6371 reread continually? */
6372
6373 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6374 sym_hashes = elf_sym_hashes (input_bfd);
6375
6376 /* Read the local symbols. */
6377 if (elf_bad_symtab (input_bfd))
6378 {
6379 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6380 extsymoff = 0;
6381 }
6382 else
6383 extsymoff = nlocsyms = symtab_hdr->sh_info;
6384 if (symtab_hdr->contents)
6385 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6386 else if (nlocsyms == 0)
6387 locsyms = NULL;
6388 else
6389 {
6390 locsyms = freesyms =
6391 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6392 if (freesyms == NULL
6393 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6394 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6395 nlocsyms, input_bfd)
6396 != nlocsyms * sizeof (Elf_External_Sym)))
6397 {
6398 ret = false;
6399 goto out1;
6400 }
6401 }
6402
6403 /* Read the relocations. */
6404 relstart = (NAME(_bfd_elf,link_read_relocs)
6405 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6406 info->keep_memory));
6407 if (relstart == NULL)
6408 {
6409 ret = false;
6410 goto out1;
6411 }
c7ac6ff8 6412 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6413
6414 for (rel = relstart; rel < relend; rel++)
6415 {
6416 unsigned long r_symndx;
6417 asection *rsec;
6418 struct elf_link_hash_entry *h;
6419 Elf_Internal_Sym s;
6420
6421 r_symndx = ELF_R_SYM (rel->r_info);
6422 if (r_symndx == 0)
6423 continue;
6424
6425 if (elf_bad_symtab (sec->owner))
6426 {
6427 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6428 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
3e932841 6429 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
252b5132
RH
6430 else
6431 {
6432 h = sym_hashes[r_symndx - extsymoff];
3e932841 6433 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
252b5132
RH
6434 }
6435 }
6436 else if (r_symndx >= nlocsyms)
6437 {
6438 h = sym_hashes[r_symndx - extsymoff];
3e932841 6439 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
252b5132
RH
6440 }
6441 else
6442 {
6443 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
3e932841 6444 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
252b5132
RH
6445 }
6446
6447 if (rsec && !rsec->gc_mark)
6448 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6449 {
6450 ret = false;
6451 goto out2;
6452 }
6453 }
6454
6455 out2:
6456 if (!info->keep_memory)
6457 free (relstart);
6458 out1:
6459 if (freesyms)
6460 free (freesyms);
6461 }
6462
6463 return ret;
6464}
6465
6466/* The sweep phase of garbage collection. Remove all garbage sections. */
6467
6468static boolean
6469elf_gc_sweep (info, gc_sweep_hook)
6470 struct bfd_link_info *info;
6471 boolean (*gc_sweep_hook)
6472 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6473 const Elf_Internal_Rela *relocs));
6474{
6475 bfd *sub;
6476
6477 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6478 {
6479 asection *o;
6480
f6af82bd
AM
6481 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6482 continue;
6483
252b5132
RH
6484 for (o = sub->sections; o != NULL; o = o->next)
6485 {
6486 /* Keep special sections. Keep .debug sections. */
6487 if ((o->flags & SEC_LINKER_CREATED)
6488 || (o->flags & SEC_DEBUGGING))
6489 o->gc_mark = 1;
6490
6491 if (o->gc_mark)
6492 continue;
6493
6494 /* Skip sweeping sections already excluded. */
6495 if (o->flags & SEC_EXCLUDE)
6496 continue;
6497
6498 /* Since this is early in the link process, it is simple
6499 to remove a section from the output. */
6500 o->flags |= SEC_EXCLUDE;
6501
6502 /* But we also have to update some of the relocation
6503 info we collected before. */
6504 if (gc_sweep_hook
6505 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6506 {
6507 Elf_Internal_Rela *internal_relocs;
6508 boolean r;
6509
6510 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6511 (o->owner, o, NULL, NULL, info->keep_memory));
6512 if (internal_relocs == NULL)
6513 return false;
6514
3e932841 6515 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
252b5132
RH
6516
6517 if (!info->keep_memory)
6518 free (internal_relocs);
6519
6520 if (!r)
6521 return false;
6522 }
6523 }
6524 }
6525
6526 /* Remove the symbols that were in the swept sections from the dynamic
6527 symbol table. GCFIXME: Anyone know how to get them out of the
6528 static symbol table as well? */
6529 {
6530 int i = 0;
6531
6532 elf_link_hash_traverse (elf_hash_table (info),
6533 elf_gc_sweep_symbol,
6534 (PTR) &i);
6535
6536 elf_hash_table (info)->dynsymcount = i;
6537 }
6538
6539 return true;
6540}
6541
6542/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6543
6544static boolean
6545elf_gc_sweep_symbol (h, idxptr)
6546 struct elf_link_hash_entry *h;
6547 PTR idxptr;
6548{
6549 int *idx = (int *) idxptr;
6550
6551 if (h->dynindx != -1
6552 && ((h->root.type != bfd_link_hash_defined
6553 && h->root.type != bfd_link_hash_defweak)
6554 || h->root.u.def.section->gc_mark))
6555 h->dynindx = (*idx)++;
6556
6557 return true;
6558}
6559
6560/* Propogate collected vtable information. This is called through
6561 elf_link_hash_traverse. */
6562
6563static boolean
6564elf_gc_propagate_vtable_entries_used (h, okp)
6565 struct elf_link_hash_entry *h;
6566 PTR okp;
6567{
3e932841 6568 /* Those that are not vtables. */
252b5132
RH
6569 if (h->vtable_parent == NULL)
6570 return true;
6571
6572 /* Those vtables that do not have parents, we cannot merge. */
6573 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6574 return true;
6575
6576 /* If we've already been done, exit. */
6577 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6578 return true;
6579
6580 /* Make sure the parent's table is up to date. */
6581 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6582
6583 if (h->vtable_entries_used == NULL)
6584 {
6585 /* None of this table's entries were referenced. Re-use the
6586 parent's table. */
6587 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6588 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6589 }
6590 else
6591 {
6592 size_t n;
6593 boolean *cu, *pu;
6594
6595 /* Or the parent's entries into ours. */
6596 cu = h->vtable_entries_used;
6597 cu[-1] = true;
6598 pu = h->vtable_parent->vtable_entries_used;
6599 if (pu != NULL)
6600 {
6601 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6602 while (--n != 0)
6603 {
6604 if (*pu) *cu = true;
6605 pu++, cu++;
6606 }
6607 }
6608 }
6609
6610 return true;
6611}
6612
6613static boolean
6614elf_gc_smash_unused_vtentry_relocs (h, okp)
6615 struct elf_link_hash_entry *h;
6616 PTR okp;
6617{
6618 asection *sec;
6619 bfd_vma hstart, hend;
6620 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6621 struct elf_backend_data *bed;
252b5132
RH
6622
6623 /* Take care of both those symbols that do not describe vtables as
6624 well as those that are not loaded. */
6625 if (h->vtable_parent == NULL)
6626 return true;
6627
6628 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6629 || h->root.type == bfd_link_hash_defweak);
6630
6631 sec = h->root.u.def.section;
6632 hstart = h->root.u.def.value;
6633 hend = hstart + h->size;
6634
6635 relstart = (NAME(_bfd_elf,link_read_relocs)
6636 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6637 if (!relstart)
6638 return *(boolean *)okp = false;
c7ac6ff8
MM
6639 bed = get_elf_backend_data (sec->owner);
6640 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6641
6642 for (rel = relstart; rel < relend; ++rel)
6643 if (rel->r_offset >= hstart && rel->r_offset < hend)
6644 {
6645 /* If the entry is in use, do nothing. */
6646 if (h->vtable_entries_used
6647 && (rel->r_offset - hstart) < h->vtable_entries_size)
6648 {
6649 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6650 if (h->vtable_entries_used[entry])
6651 continue;
6652 }
6653 /* Otherwise, kill it. */
6654 rel->r_offset = rel->r_info = rel->r_addend = 0;
6655 }
6656
6657 return true;
6658}
6659
6660/* Do mark and sweep of unused sections. */
6661
6662boolean
6663elf_gc_sections (abfd, info)
6664 bfd *abfd;
6665 struct bfd_link_info *info;
6666{
6667 boolean ok = true;
6668 bfd *sub;
6669 asection * (*gc_mark_hook)
6670 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6671 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6672
6673 if (!get_elf_backend_data (abfd)->can_gc_sections
6d3e950b 6674 || info->relocateable || info->emitrelocations
252b5132
RH
6675 || elf_hash_table (info)->dynamic_sections_created)
6676 return true;
6677
6678 /* Apply transitive closure to the vtable entry usage info. */
6679 elf_link_hash_traverse (elf_hash_table (info),
6680 elf_gc_propagate_vtable_entries_used,
6681 (PTR) &ok);
6682 if (!ok)
6683 return false;
6684
6685 /* Kill the vtable relocations that were not used. */
6686 elf_link_hash_traverse (elf_hash_table (info),
6687 elf_gc_smash_unused_vtentry_relocs,
6688 (PTR) &ok);
6689 if (!ok)
6690 return false;
6691
6692 /* Grovel through relocs to find out who stays ... */
6693
6694 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6695 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6696 {
6697 asection *o;
f6af82bd
AM
6698
6699 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6700 continue;
6701
252b5132
RH
6702 for (o = sub->sections; o != NULL; o = o->next)
6703 {
6704 if (o->flags & SEC_KEEP)
6705 if (!elf_gc_mark (info, o, gc_mark_hook))
6706 return false;
6707 }
6708 }
6709
6710 /* ... and mark SEC_EXCLUDE for those that go. */
6711 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6712 return false;
6713
6714 return true;
6715}
6716\f
6717/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6718
6719boolean
6720elf_gc_record_vtinherit (abfd, sec, h, offset)
6721 bfd *abfd;
6722 asection *sec;
6723 struct elf_link_hash_entry *h;
6724 bfd_vma offset;
6725{
6726 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6727 struct elf_link_hash_entry **search, *child;
6728 bfd_size_type extsymcount;
6729
6730 /* The sh_info field of the symtab header tells us where the
6731 external symbols start. We don't care about the local symbols at
6732 this point. */
6733 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6734 if (!elf_bad_symtab (abfd))
6735 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6736
6737 sym_hashes = elf_sym_hashes (abfd);
6738 sym_hashes_end = sym_hashes + extsymcount;
6739
6740 /* Hunt down the child symbol, which is in this section at the same
6741 offset as the relocation. */
6742 for (search = sym_hashes; search != sym_hashes_end; ++search)
6743 {
6744 if ((child = *search) != NULL
6745 && (child->root.type == bfd_link_hash_defined
6746 || child->root.type == bfd_link_hash_defweak)
6747 && child->root.u.def.section == sec
6748 && child->root.u.def.value == offset)
6749 goto win;
6750 }
6751
6752 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6753 bfd_get_filename (abfd), sec->name,
6754 (unsigned long)offset);
6755 bfd_set_error (bfd_error_invalid_operation);
6756 return false;
6757
6758win:
6759 if (!h)
6760 {
6761 /* This *should* only be the absolute section. It could potentially
6762 be that someone has defined a non-global vtable though, which
6763 would be bad. It isn't worth paging in the local symbols to be
6764 sure though; that case should simply be handled by the assembler. */
6765
6766 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6767 }
6768 else
6769 child->vtable_parent = h;
6770
6771 return true;
6772}
6773
6774/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6775
6776boolean
6777elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6778 bfd *abfd ATTRIBUTE_UNUSED;
6779 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6780 struct elf_link_hash_entry *h;
6781 bfd_vma addend;
6782{
6783 if (addend >= h->vtable_entries_size)
6784 {
6785 size_t size, bytes;
6786 boolean *ptr = h->vtable_entries_used;
6787
6788 /* While the symbol is undefined, we have to be prepared to handle
6789 a zero size. */
6790 if (h->root.type == bfd_link_hash_undefined)
6791 size = addend;
6792 else
6793 {
6794 size = h->size;
6795 if (size < addend)
6796 {
6797 /* Oops! We've got a reference past the defined end of
6798 the table. This is probably a bug -- shall we warn? */
6799 size = addend;
6800 }
6801 }
6802
6803 /* Allocate one extra entry for use as a "done" flag for the
6804 consolidation pass. */
fed79cc6 6805 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
252b5132
RH
6806
6807 if (ptr)
6808 {
fed79cc6 6809 ptr = bfd_realloc (ptr - 1, bytes);
3e932841 6810
fed79cc6
NC
6811 if (ptr != NULL)
6812 {
6813 size_t oldbytes;
252b5132 6814
fed79cc6
NC
6815 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6816 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6817 }
252b5132
RH
6818 }
6819 else
fed79cc6 6820 ptr = bfd_zmalloc (bytes);
252b5132 6821
fed79cc6
NC
6822 if (ptr == NULL)
6823 return false;
3e932841 6824
252b5132 6825 /* And arrange for that done flag to be at index -1. */
fed79cc6 6826 h->vtable_entries_used = ptr + 1;
252b5132
RH
6827 h->vtable_entries_size = size;
6828 }
3e932841 6829
252b5132
RH
6830 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6831
6832 return true;
6833}
6834
6835/* And an accompanying bit to work out final got entry offsets once
6836 we're done. Should be called from final_link. */
6837
6838boolean
6839elf_gc_common_finalize_got_offsets (abfd, info)
6840 bfd *abfd;
6841 struct bfd_link_info *info;
6842{
6843 bfd *i;
6844 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6845 bfd_vma gotoff;
6846
6847 /* The GOT offset is relative to the .got section, but the GOT header is
6848 put into the .got.plt section, if the backend uses it. */
6849 if (bed->want_got_plt)
6850 gotoff = 0;
6851 else
6852 gotoff = bed->got_header_size;
6853
6854 /* Do the local .got entries first. */
6855 for (i = info->input_bfds; i; i = i->link_next)
6856 {
f6af82bd 6857 bfd_signed_vma *local_got;
252b5132
RH
6858 bfd_size_type j, locsymcount;
6859 Elf_Internal_Shdr *symtab_hdr;
6860
f6af82bd
AM
6861 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6862 continue;
6863
6864 local_got = elf_local_got_refcounts (i);
252b5132
RH
6865 if (!local_got)
6866 continue;
6867
6868 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6869 if (elf_bad_symtab (i))
6870 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6871 else
6872 locsymcount = symtab_hdr->sh_info;
6873
6874 for (j = 0; j < locsymcount; ++j)
6875 {
6876 if (local_got[j] > 0)
6877 {
6878 local_got[j] = gotoff;
6879 gotoff += ARCH_SIZE / 8;
6880 }
6881 else
6882 local_got[j] = (bfd_vma) -1;
6883 }
6884 }
6885
dd5724d5
AM
6886 /* Then the global .got entries. .plt refcounts are handled by
6887 adjust_dynamic_symbol */
252b5132
RH
6888 elf_link_hash_traverse (elf_hash_table (info),
6889 elf_gc_allocate_got_offsets,
6890 (PTR) &gotoff);
6891 return true;
6892}
6893
6894/* We need a special top-level link routine to convert got reference counts
6895 to real got offsets. */
6896
6897static boolean
6898elf_gc_allocate_got_offsets (h, offarg)
6899 struct elf_link_hash_entry *h;
6900 PTR offarg;
6901{
6902 bfd_vma *off = (bfd_vma *) offarg;
6903
6904 if (h->got.refcount > 0)
6905 {
6906 h->got.offset = off[0];
6907 off[0] += ARCH_SIZE / 8;
6908 }
6909 else
6910 h->got.offset = (bfd_vma) -1;
6911
6912 return true;
6913}
6914
6915/* Many folk need no more in the way of final link than this, once
6916 got entry reference counting is enabled. */
6917
6918boolean
6919elf_gc_common_final_link (abfd, info)
6920 bfd *abfd;
6921 struct bfd_link_info *info;
6922{
6923 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6924 return false;
6925
6926 /* Invoke the regular ELF backend linker to do all the work. */
6927 return elf_bfd_final_link (abfd, info);
6928}
6929
6930/* This function will be called though elf_link_hash_traverse to store
6931 all hash value of the exported symbols in an array. */
6932
6933static boolean
6934elf_collect_hash_codes (h, data)
6935 struct elf_link_hash_entry *h;
6936 PTR data;
6937{
6938 unsigned long **valuep = (unsigned long **) data;
6939 const char *name;
6940 char *p;
6941 unsigned long ha;
6942 char *alc = NULL;
6943
6944 /* Ignore indirect symbols. These are added by the versioning code. */
6945 if (h->dynindx == -1)
6946 return true;
6947
6948 name = h->root.root.string;
6949 p = strchr (name, ELF_VER_CHR);
6950 if (p != NULL)
6951 {
6952 alc = bfd_malloc (p - name + 1);
6953 memcpy (alc, name, p - name);
6954 alc[p - name] = '\0';
6955 name = alc;
6956 }
6957
6958 /* Compute the hash value. */
6959 ha = bfd_elf_hash (name);
6960
6961 /* Store the found hash value in the array given as the argument. */
6962 *(*valuep)++ = ha;
6963
6964 /* And store it in the struct so that we can put it in the hash table
6965 later. */
6966 h->elf_hash_value = ha;
6967
6968 if (alc != NULL)
6969 free (alc);
6970
6971 return true;
6972}
This page took 0.41691 seconds and 4 git commands to generate.