Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* ELF linker support. |
2 | Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
19 | ||
20 | /* ELF linker code. */ | |
21 | ||
22 | /* This struct is used to pass information to routines called via | |
23 | elf_link_hash_traverse which must return failure. */ | |
24 | ||
25 | struct elf_info_failed | |
26 | { | |
27 | boolean failed; | |
28 | struct bfd_link_info *info; | |
29 | }; | |
30 | ||
31 | static boolean elf_link_add_object_symbols | |
32 | PARAMS ((bfd *, struct bfd_link_info *)); | |
33 | static boolean elf_link_add_archive_symbols | |
34 | PARAMS ((bfd *, struct bfd_link_info *)); | |
35 | static boolean elf_merge_symbol | |
36 | PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, | |
37 | asection **, bfd_vma *, struct elf_link_hash_entry **, | |
38 | boolean *, boolean *, boolean *)); | |
39 | static boolean elf_export_symbol | |
40 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
41 | static boolean elf_fix_symbol_flags | |
42 | PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); | |
43 | static boolean elf_adjust_dynamic_symbol | |
44 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
45 | static boolean elf_link_find_version_dependencies | |
46 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
47 | static boolean elf_link_find_version_dependencies | |
48 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
49 | static boolean elf_link_assign_sym_version | |
50 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
252b5132 RH |
51 | static boolean elf_collect_hash_codes |
52 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6b5bd373 MM |
53 | static boolean elf_link_read_relocs_from_section |
54 | PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *)); | |
23bc299b MM |
55 | static void elf_link_output_relocs |
56 | PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *)); | |
57 | static boolean elf_link_size_reloc_section | |
58 | PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); | |
31367b81 MM |
59 | static void elf_link_adjust_relocs |
60 | PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int, | |
61 | struct elf_link_hash_entry **)); | |
252b5132 RH |
62 | |
63 | /* Given an ELF BFD, add symbols to the global hash table as | |
64 | appropriate. */ | |
65 | ||
66 | boolean | |
67 | elf_bfd_link_add_symbols (abfd, info) | |
68 | bfd *abfd; | |
69 | struct bfd_link_info *info; | |
70 | { | |
71 | switch (bfd_get_format (abfd)) | |
72 | { | |
73 | case bfd_object: | |
74 | return elf_link_add_object_symbols (abfd, info); | |
75 | case bfd_archive: | |
76 | return elf_link_add_archive_symbols (abfd, info); | |
77 | default: | |
78 | bfd_set_error (bfd_error_wrong_format); | |
79 | return false; | |
80 | } | |
81 | } | |
82 | \f | |
83 | ||
84 | /* Add symbols from an ELF archive file to the linker hash table. We | |
85 | don't use _bfd_generic_link_add_archive_symbols because of a | |
86 | problem which arises on UnixWare. The UnixWare libc.so is an | |
87 | archive which includes an entry libc.so.1 which defines a bunch of | |
88 | symbols. The libc.so archive also includes a number of other | |
89 | object files, which also define symbols, some of which are the same | |
90 | as those defined in libc.so.1. Correct linking requires that we | |
91 | consider each object file in turn, and include it if it defines any | |
92 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
93 | this; it looks through the list of undefined symbols, and includes | |
94 | any object file which defines them. When this algorithm is used on | |
95 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
96 | bunch of symbols. This means that some of the other objects in the | |
97 | archive are not included in the link, which is incorrect since they | |
98 | precede libc.so.1 in the archive. | |
99 | ||
100 | Fortunately, ELF archive handling is simpler than that done by | |
101 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
102 | oddities. In ELF, if we find a symbol in the archive map, and the | |
103 | symbol is currently undefined, we know that we must pull in that | |
104 | object file. | |
105 | ||
106 | Unfortunately, we do have to make multiple passes over the symbol | |
107 | table until nothing further is resolved. */ | |
108 | ||
109 | static boolean | |
110 | elf_link_add_archive_symbols (abfd, info) | |
111 | bfd *abfd; | |
112 | struct bfd_link_info *info; | |
113 | { | |
114 | symindex c; | |
115 | boolean *defined = NULL; | |
116 | boolean *included = NULL; | |
117 | carsym *symdefs; | |
118 | boolean loop; | |
119 | ||
120 | if (! bfd_has_map (abfd)) | |
121 | { | |
122 | /* An empty archive is a special case. */ | |
123 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
124 | return true; | |
125 | bfd_set_error (bfd_error_no_armap); | |
126 | return false; | |
127 | } | |
128 | ||
129 | /* Keep track of all symbols we know to be already defined, and all | |
130 | files we know to be already included. This is to speed up the | |
131 | second and subsequent passes. */ | |
132 | c = bfd_ardata (abfd)->symdef_count; | |
133 | if (c == 0) | |
134 | return true; | |
135 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
136 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
137 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
138 | goto error_return; | |
139 | memset (defined, 0, c * sizeof (boolean)); | |
140 | memset (included, 0, c * sizeof (boolean)); | |
141 | ||
142 | symdefs = bfd_ardata (abfd)->symdefs; | |
143 | ||
144 | do | |
145 | { | |
146 | file_ptr last; | |
147 | symindex i; | |
148 | carsym *symdef; | |
149 | carsym *symdefend; | |
150 | ||
151 | loop = false; | |
152 | last = -1; | |
153 | ||
154 | symdef = symdefs; | |
155 | symdefend = symdef + c; | |
156 | for (i = 0; symdef < symdefend; symdef++, i++) | |
157 | { | |
158 | struct elf_link_hash_entry *h; | |
159 | bfd *element; | |
160 | struct bfd_link_hash_entry *undefs_tail; | |
161 | symindex mark; | |
162 | ||
163 | if (defined[i] || included[i]) | |
164 | continue; | |
165 | if (symdef->file_offset == last) | |
166 | { | |
167 | included[i] = true; | |
168 | continue; | |
169 | } | |
170 | ||
171 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
172 | false, false, false); | |
173 | ||
174 | if (h == NULL) | |
175 | { | |
176 | char *p, *copy; | |
177 | ||
178 | /* If this is a default version (the name contains @@), | |
179 | look up the symbol again without the version. The | |
180 | effect is that references to the symbol without the | |
181 | version will be matched by the default symbol in the | |
182 | archive. */ | |
183 | ||
184 | p = strchr (symdef->name, ELF_VER_CHR); | |
185 | if (p == NULL || p[1] != ELF_VER_CHR) | |
186 | continue; | |
187 | ||
188 | copy = bfd_alloc (abfd, p - symdef->name + 1); | |
189 | if (copy == NULL) | |
190 | goto error_return; | |
191 | memcpy (copy, symdef->name, p - symdef->name); | |
192 | copy[p - symdef->name] = '\0'; | |
193 | ||
194 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
195 | false, false, false); | |
196 | ||
197 | bfd_release (abfd, copy); | |
198 | } | |
199 | ||
200 | if (h == NULL) | |
201 | continue; | |
202 | ||
203 | if (h->root.type != bfd_link_hash_undefined) | |
204 | { | |
205 | if (h->root.type != bfd_link_hash_undefweak) | |
206 | defined[i] = true; | |
207 | continue; | |
208 | } | |
209 | ||
210 | /* We need to include this archive member. */ | |
211 | ||
212 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
213 | if (element == (bfd *) NULL) | |
214 | goto error_return; | |
215 | ||
216 | if (! bfd_check_format (element, bfd_object)) | |
217 | goto error_return; | |
218 | ||
219 | /* Doublecheck that we have not included this object | |
220 | already--it should be impossible, but there may be | |
221 | something wrong with the archive. */ | |
222 | if (element->archive_pass != 0) | |
223 | { | |
224 | bfd_set_error (bfd_error_bad_value); | |
225 | goto error_return; | |
226 | } | |
227 | element->archive_pass = 1; | |
228 | ||
229 | undefs_tail = info->hash->undefs_tail; | |
230 | ||
231 | if (! (*info->callbacks->add_archive_element) (info, element, | |
232 | symdef->name)) | |
233 | goto error_return; | |
234 | if (! elf_link_add_object_symbols (element, info)) | |
235 | goto error_return; | |
236 | ||
237 | /* If there are any new undefined symbols, we need to make | |
238 | another pass through the archive in order to see whether | |
239 | they can be defined. FIXME: This isn't perfect, because | |
240 | common symbols wind up on undefs_tail and because an | |
241 | undefined symbol which is defined later on in this pass | |
242 | does not require another pass. This isn't a bug, but it | |
243 | does make the code less efficient than it could be. */ | |
244 | if (undefs_tail != info->hash->undefs_tail) | |
245 | loop = true; | |
246 | ||
247 | /* Look backward to mark all symbols from this object file | |
248 | which we have already seen in this pass. */ | |
249 | mark = i; | |
250 | do | |
251 | { | |
252 | included[mark] = true; | |
253 | if (mark == 0) | |
254 | break; | |
255 | --mark; | |
256 | } | |
257 | while (symdefs[mark].file_offset == symdef->file_offset); | |
258 | ||
259 | /* We mark subsequent symbols from this object file as we go | |
260 | on through the loop. */ | |
261 | last = symdef->file_offset; | |
262 | } | |
263 | } | |
264 | while (loop); | |
265 | ||
266 | free (defined); | |
267 | free (included); | |
268 | ||
269 | return true; | |
270 | ||
271 | error_return: | |
272 | if (defined != (boolean *) NULL) | |
273 | free (defined); | |
274 | if (included != (boolean *) NULL) | |
275 | free (included); | |
276 | return false; | |
277 | } | |
278 | ||
279 | /* This function is called when we want to define a new symbol. It | |
280 | handles the various cases which arise when we find a definition in | |
281 | a dynamic object, or when there is already a definition in a | |
282 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |
283 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |
284 | OVERRIDE if the old symbol is overriding a new definition. We set | |
285 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |
286 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |
287 | change, we mean that we shouldn't warn if the type or size does | |
288 | change. */ | |
289 | ||
290 | static boolean | |
291 | elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, | |
292 | override, type_change_ok, size_change_ok) | |
293 | bfd *abfd; | |
294 | struct bfd_link_info *info; | |
295 | const char *name; | |
296 | Elf_Internal_Sym *sym; | |
297 | asection **psec; | |
298 | bfd_vma *pvalue; | |
299 | struct elf_link_hash_entry **sym_hash; | |
300 | boolean *override; | |
301 | boolean *type_change_ok; | |
302 | boolean *size_change_ok; | |
303 | { | |
304 | asection *sec; | |
305 | struct elf_link_hash_entry *h; | |
306 | int bind; | |
307 | bfd *oldbfd; | |
308 | boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
309 | ||
310 | *override = false; | |
311 | ||
312 | sec = *psec; | |
313 | bind = ELF_ST_BIND (sym->st_info); | |
314 | ||
315 | if (! bfd_is_und_section (sec)) | |
316 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | |
317 | else | |
318 | h = ((struct elf_link_hash_entry *) | |
319 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | |
320 | if (h == NULL) | |
321 | return false; | |
322 | *sym_hash = h; | |
323 | ||
324 | /* This code is for coping with dynamic objects, and is only useful | |
325 | if we are doing an ELF link. */ | |
326 | if (info->hash->creator != abfd->xvec) | |
327 | return true; | |
328 | ||
329 | /* For merging, we only care about real symbols. */ | |
330 | ||
331 | while (h->root.type == bfd_link_hash_indirect | |
332 | || h->root.type == bfd_link_hash_warning) | |
333 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
334 | ||
335 | /* If we just created the symbol, mark it as being an ELF symbol. | |
336 | Other than that, there is nothing to do--there is no merge issue | |
337 | with a newly defined symbol--so we just return. */ | |
338 | ||
339 | if (h->root.type == bfd_link_hash_new) | |
340 | { | |
341 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
342 | return true; | |
343 | } | |
344 | ||
345 | /* OLDBFD is a BFD associated with the existing symbol. */ | |
346 | ||
347 | switch (h->root.type) | |
348 | { | |
349 | default: | |
350 | oldbfd = NULL; | |
351 | break; | |
352 | ||
353 | case bfd_link_hash_undefined: | |
354 | case bfd_link_hash_undefweak: | |
355 | oldbfd = h->root.u.undef.abfd; | |
356 | break; | |
357 | ||
358 | case bfd_link_hash_defined: | |
359 | case bfd_link_hash_defweak: | |
360 | oldbfd = h->root.u.def.section->owner; | |
361 | break; | |
362 | ||
363 | case bfd_link_hash_common: | |
364 | oldbfd = h->root.u.c.p->section->owner; | |
365 | break; | |
366 | } | |
367 | ||
b4536acd ILT |
368 | /* In cases involving weak versioned symbols, we may wind up trying |
369 | to merge a symbol with itself. Catch that here, to avoid the | |
370 | confusion that results if we try to override a symbol with | |
accc7f69 ILT |
371 | itself. The additional tests catch cases like |
372 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
373 | dynamic object, which we do want to handle here. */ | |
374 | if (abfd == oldbfd | |
375 | && ((abfd->flags & DYNAMIC) == 0 | |
376 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
b4536acd ILT |
377 | return true; |
378 | ||
252b5132 RH |
379 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
380 | respectively, is from a dynamic object. */ | |
381 | ||
382 | if ((abfd->flags & DYNAMIC) != 0) | |
383 | newdyn = true; | |
384 | else | |
385 | newdyn = false; | |
386 | ||
387 | if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0) | |
388 | olddyn = false; | |
389 | else | |
390 | olddyn = true; | |
391 | ||
392 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |
393 | respectively, appear to be a definition rather than reference. */ | |
394 | ||
395 | if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) | |
396 | newdef = false; | |
397 | else | |
398 | newdef = true; | |
399 | ||
400 | if (h->root.type == bfd_link_hash_undefined | |
401 | || h->root.type == bfd_link_hash_undefweak | |
402 | || h->root.type == bfd_link_hash_common) | |
403 | olddef = false; | |
404 | else | |
405 | olddef = true; | |
406 | ||
407 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
408 | symbol, respectively, appears to be a common symbol in a dynamic | |
409 | object. If a symbol appears in an uninitialized section, and is | |
410 | not weak, and is not a function, then it may be a common symbol | |
411 | which was resolved when the dynamic object was created. We want | |
412 | to treat such symbols specially, because they raise special | |
413 | considerations when setting the symbol size: if the symbol | |
414 | appears as a common symbol in a regular object, and the size in | |
415 | the regular object is larger, we must make sure that we use the | |
416 | larger size. This problematic case can always be avoided in C, | |
417 | but it must be handled correctly when using Fortran shared | |
418 | libraries. | |
419 | ||
420 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
421 | likewise for OLDDYNCOMMON and OLDDEF. | |
422 | ||
423 | Note that this test is just a heuristic, and that it is quite | |
424 | possible to have an uninitialized symbol in a shared object which | |
425 | is really a definition, rather than a common symbol. This could | |
426 | lead to some minor confusion when the symbol really is a common | |
427 | symbol in some regular object. However, I think it will be | |
428 | harmless. */ | |
429 | ||
430 | if (newdyn | |
431 | && newdef | |
432 | && (sec->flags & SEC_ALLOC) != 0 | |
433 | && (sec->flags & SEC_LOAD) == 0 | |
434 | && sym->st_size > 0 | |
435 | && bind != STB_WEAK | |
436 | && ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
437 | newdyncommon = true; | |
438 | else | |
439 | newdyncommon = false; | |
440 | ||
441 | if (olddyn | |
442 | && olddef | |
443 | && h->root.type == bfd_link_hash_defined | |
444 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
445 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
446 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
447 | && h->size > 0 | |
448 | && h->type != STT_FUNC) | |
449 | olddyncommon = true; | |
450 | else | |
451 | olddyncommon = false; | |
452 | ||
453 | /* It's OK to change the type if either the existing symbol or the | |
454 | new symbol is weak. */ | |
455 | ||
456 | if (h->root.type == bfd_link_hash_defweak | |
457 | || h->root.type == bfd_link_hash_undefweak | |
458 | || bind == STB_WEAK) | |
459 | *type_change_ok = true; | |
460 | ||
461 | /* It's OK to change the size if either the existing symbol or the | |
462 | new symbol is weak, or if the old symbol is undefined. */ | |
463 | ||
464 | if (*type_change_ok | |
465 | || h->root.type == bfd_link_hash_undefined) | |
466 | *size_change_ok = true; | |
467 | ||
468 | /* If both the old and the new symbols look like common symbols in a | |
469 | dynamic object, set the size of the symbol to the larger of the | |
470 | two. */ | |
471 | ||
472 | if (olddyncommon | |
473 | && newdyncommon | |
474 | && sym->st_size != h->size) | |
475 | { | |
476 | /* Since we think we have two common symbols, issue a multiple | |
477 | common warning if desired. Note that we only warn if the | |
478 | size is different. If the size is the same, we simply let | |
479 | the old symbol override the new one as normally happens with | |
480 | symbols defined in dynamic objects. */ | |
481 | ||
482 | if (! ((*info->callbacks->multiple_common) | |
483 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
484 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
485 | return false; | |
486 | ||
487 | if (sym->st_size > h->size) | |
488 | h->size = sym->st_size; | |
489 | ||
490 | *size_change_ok = true; | |
491 | } | |
492 | ||
493 | /* If we are looking at a dynamic object, and we have found a | |
494 | definition, we need to see if the symbol was already defined by | |
495 | some other object. If so, we want to use the existing | |
496 | definition, and we do not want to report a multiple symbol | |
497 | definition error; we do this by clobbering *PSEC to be | |
498 | bfd_und_section_ptr. | |
499 | ||
500 | We treat a common symbol as a definition if the symbol in the | |
501 | shared library is a function, since common symbols always | |
502 | represent variables; this can cause confusion in principle, but | |
503 | any such confusion would seem to indicate an erroneous program or | |
504 | shared library. We also permit a common symbol in a regular | |
0525d26e ILT |
505 | object to override a weak symbol in a shared object. |
506 | ||
507 | We prefer a non-weak definition in a shared library to a weak | |
508 | definition in the executable. */ | |
252b5132 RH |
509 | |
510 | if (newdyn | |
511 | && newdef | |
512 | && (olddef | |
513 | || (h->root.type == bfd_link_hash_common | |
514 | && (bind == STB_WEAK | |
0525d26e ILT |
515 | || ELF_ST_TYPE (sym->st_info) == STT_FUNC))) |
516 | && (h->root.type != bfd_link_hash_defweak | |
517 | || bind == STB_WEAK)) | |
252b5132 RH |
518 | { |
519 | *override = true; | |
520 | newdef = false; | |
521 | newdyncommon = false; | |
522 | ||
523 | *psec = sec = bfd_und_section_ptr; | |
524 | *size_change_ok = true; | |
525 | ||
526 | /* If we get here when the old symbol is a common symbol, then | |
527 | we are explicitly letting it override a weak symbol or | |
528 | function in a dynamic object, and we don't want to warn about | |
529 | a type change. If the old symbol is a defined symbol, a type | |
530 | change warning may still be appropriate. */ | |
531 | ||
532 | if (h->root.type == bfd_link_hash_common) | |
533 | *type_change_ok = true; | |
534 | } | |
535 | ||
536 | /* Handle the special case of an old common symbol merging with a | |
537 | new symbol which looks like a common symbol in a shared object. | |
538 | We change *PSEC and *PVALUE to make the new symbol look like a | |
539 | common symbol, and let _bfd_generic_link_add_one_symbol will do | |
540 | the right thing. */ | |
541 | ||
542 | if (newdyncommon | |
543 | && h->root.type == bfd_link_hash_common) | |
544 | { | |
545 | *override = true; | |
546 | newdef = false; | |
547 | newdyncommon = false; | |
548 | *pvalue = sym->st_size; | |
549 | *psec = sec = bfd_com_section_ptr; | |
550 | *size_change_ok = true; | |
551 | } | |
552 | ||
553 | /* If the old symbol is from a dynamic object, and the new symbol is | |
554 | a definition which is not from a dynamic object, then the new | |
555 | symbol overrides the old symbol. Symbols from regular files | |
556 | always take precedence over symbols from dynamic objects, even if | |
557 | they are defined after the dynamic object in the link. | |
558 | ||
559 | As above, we again permit a common symbol in a regular object to | |
560 | override a definition in a shared object if the shared object | |
0525d26e ILT |
561 | symbol is a function or is weak. |
562 | ||
563 | As above, we permit a non-weak definition in a shared object to | |
564 | override a weak definition in a regular object. */ | |
252b5132 RH |
565 | |
566 | if (! newdyn | |
567 | && (newdef | |
568 | || (bfd_is_com_section (sec) | |
569 | && (h->root.type == bfd_link_hash_defweak | |
570 | || h->type == STT_FUNC))) | |
571 | && olddyn | |
572 | && olddef | |
0525d26e ILT |
573 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
574 | && (bind != STB_WEAK | |
575 | || h->root.type == bfd_link_hash_defweak)) | |
252b5132 RH |
576 | { |
577 | /* Change the hash table entry to undefined, and let | |
578 | _bfd_generic_link_add_one_symbol do the right thing with the | |
579 | new definition. */ | |
580 | ||
581 | h->root.type = bfd_link_hash_undefined; | |
582 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
583 | *size_change_ok = true; | |
584 | ||
585 | olddef = false; | |
586 | olddyncommon = false; | |
587 | ||
588 | /* We again permit a type change when a common symbol may be | |
589 | overriding a function. */ | |
590 | ||
591 | if (bfd_is_com_section (sec)) | |
592 | *type_change_ok = true; | |
593 | ||
594 | /* This union may have been set to be non-NULL when this symbol | |
595 | was seen in a dynamic object. We must force the union to be | |
596 | NULL, so that it is correct for a regular symbol. */ | |
597 | ||
598 | h->verinfo.vertree = NULL; | |
599 | ||
600 | /* In this special case, if H is the target of an indirection, | |
601 | we want the caller to frob with H rather than with the | |
602 | indirect symbol. That will permit the caller to redefine the | |
603 | target of the indirection, rather than the indirect symbol | |
604 | itself. FIXME: This will break the -y option if we store a | |
605 | symbol with a different name. */ | |
606 | *sym_hash = h; | |
607 | } | |
608 | ||
609 | /* Handle the special case of a new common symbol merging with an | |
610 | old symbol that looks like it might be a common symbol defined in | |
611 | a shared object. Note that we have already handled the case in | |
612 | which a new common symbol should simply override the definition | |
613 | in the shared library. */ | |
614 | ||
615 | if (! newdyn | |
616 | && bfd_is_com_section (sec) | |
617 | && olddyncommon) | |
618 | { | |
619 | /* It would be best if we could set the hash table entry to a | |
620 | common symbol, but we don't know what to use for the section | |
621 | or the alignment. */ | |
622 | if (! ((*info->callbacks->multiple_common) | |
623 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |
624 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |
625 | return false; | |
626 | ||
627 | /* If the predumed common symbol in the dynamic object is | |
628 | larger, pretend that the new symbol has its size. */ | |
629 | ||
630 | if (h->size > *pvalue) | |
631 | *pvalue = h->size; | |
632 | ||
633 | /* FIXME: We no longer know the alignment required by the symbol | |
634 | in the dynamic object, so we just wind up using the one from | |
635 | the regular object. */ | |
636 | ||
637 | olddef = false; | |
638 | olddyncommon = false; | |
639 | ||
640 | h->root.type = bfd_link_hash_undefined; | |
641 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
642 | ||
643 | *size_change_ok = true; | |
644 | *type_change_ok = true; | |
645 | ||
646 | h->verinfo.vertree = NULL; | |
647 | } | |
648 | ||
0525d26e ILT |
649 | /* Handle the special case of a weak definition in a regular object |
650 | followed by a non-weak definition in a shared object. In this | |
b4536acd | 651 | case, we prefer the definition in the shared object. */ |
0525d26e | 652 | if (olddef |
0525d26e ILT |
653 | && h->root.type == bfd_link_hash_defweak |
654 | && newdef | |
655 | && newdyn | |
656 | && bind != STB_WEAK) | |
b4536acd ILT |
657 | { |
658 | /* To make this work we have to frob the flags so that the rest | |
659 | of the code does not think we are using the regular | |
660 | definition. */ | |
661 | h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR; | |
662 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
663 | ||
664 | /* If H is the target of an indirection, we want the caller to | |
665 | use H rather than the indirect symbol. Otherwise if we are | |
666 | defining a new indirect symbol we will wind up attaching it | |
667 | to the entry we are overriding. */ | |
668 | *sym_hash = h; | |
669 | } | |
0525d26e ILT |
670 | |
671 | /* Handle the special case of a non-weak definition in a shared | |
672 | object followed by a weak definition in a regular object. In | |
673 | this case we prefer to definition in the shared object. To make | |
674 | this work we have to tell the caller to not treat the new symbol | |
675 | as a definition. */ | |
676 | if (olddef | |
677 | && olddyn | |
678 | && h->root.type != bfd_link_hash_defweak | |
679 | && newdef | |
680 | && ! newdyn | |
681 | && bind == STB_WEAK) | |
682 | *override = true; | |
683 | ||
252b5132 RH |
684 | return true; |
685 | } | |
686 | ||
687 | /* Add symbols from an ELF object file to the linker hash table. */ | |
688 | ||
689 | static boolean | |
690 | elf_link_add_object_symbols (abfd, info) | |
691 | bfd *abfd; | |
692 | struct bfd_link_info *info; | |
693 | { | |
694 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
695 | const Elf_Internal_Sym *, | |
696 | const char **, flagword *, | |
697 | asection **, bfd_vma *)); | |
698 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
699 | asection *, const Elf_Internal_Rela *)); | |
700 | boolean collect; | |
701 | Elf_Internal_Shdr *hdr; | |
702 | size_t symcount; | |
703 | size_t extsymcount; | |
704 | size_t extsymoff; | |
705 | Elf_External_Sym *buf = NULL; | |
706 | struct elf_link_hash_entry **sym_hash; | |
707 | boolean dynamic; | |
708 | bfd_byte *dynver = NULL; | |
709 | Elf_External_Versym *extversym = NULL; | |
710 | Elf_External_Versym *ever; | |
711 | Elf_External_Dyn *dynbuf = NULL; | |
712 | struct elf_link_hash_entry *weaks; | |
713 | Elf_External_Sym *esym; | |
714 | Elf_External_Sym *esymend; | |
715 | ||
716 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
717 | collect = get_elf_backend_data (abfd)->collect; | |
718 | ||
719 | if ((abfd->flags & DYNAMIC) == 0) | |
720 | dynamic = false; | |
721 | else | |
722 | { | |
723 | dynamic = true; | |
724 | ||
725 | /* You can't use -r against a dynamic object. Also, there's no | |
726 | hope of using a dynamic object which does not exactly match | |
727 | the format of the output file. */ | |
728 | if (info->relocateable || info->hash->creator != abfd->xvec) | |
729 | { | |
730 | bfd_set_error (bfd_error_invalid_operation); | |
731 | goto error_return; | |
732 | } | |
733 | } | |
734 | ||
735 | /* As a GNU extension, any input sections which are named | |
736 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
737 | symbol. This differs from .gnu.warning sections, which generate | |
738 | warnings when they are included in an output file. */ | |
739 | if (! info->shared) | |
740 | { | |
741 | asection *s; | |
742 | ||
743 | for (s = abfd->sections; s != NULL; s = s->next) | |
744 | { | |
745 | const char *name; | |
746 | ||
747 | name = bfd_get_section_name (abfd, s); | |
748 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
749 | { | |
750 | char *msg; | |
751 | bfd_size_type sz; | |
752 | ||
753 | name += sizeof ".gnu.warning." - 1; | |
754 | ||
755 | /* If this is a shared object, then look up the symbol | |
756 | in the hash table. If it is there, and it is already | |
757 | been defined, then we will not be using the entry | |
758 | from this shared object, so we don't need to warn. | |
759 | FIXME: If we see the definition in a regular object | |
760 | later on, we will warn, but we shouldn't. The only | |
761 | fix is to keep track of what warnings we are supposed | |
762 | to emit, and then handle them all at the end of the | |
763 | link. */ | |
764 | if (dynamic && abfd->xvec == info->hash->creator) | |
765 | { | |
766 | struct elf_link_hash_entry *h; | |
767 | ||
768 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
769 | false, false, true); | |
770 | ||
771 | /* FIXME: What about bfd_link_hash_common? */ | |
772 | if (h != NULL | |
773 | && (h->root.type == bfd_link_hash_defined | |
774 | || h->root.type == bfd_link_hash_defweak)) | |
775 | { | |
776 | /* We don't want to issue this warning. Clobber | |
777 | the section size so that the warning does not | |
778 | get copied into the output file. */ | |
779 | s->_raw_size = 0; | |
780 | continue; | |
781 | } | |
782 | } | |
783 | ||
784 | sz = bfd_section_size (abfd, s); | |
785 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
786 | if (msg == NULL) | |
787 | goto error_return; | |
788 | ||
789 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
790 | goto error_return; | |
791 | ||
792 | msg[sz] = '\0'; | |
793 | ||
794 | if (! (_bfd_generic_link_add_one_symbol | |
795 | (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, | |
796 | false, collect, (struct bfd_link_hash_entry **) NULL))) | |
797 | goto error_return; | |
798 | ||
799 | if (! info->relocateable) | |
800 | { | |
801 | /* Clobber the section size so that the warning does | |
802 | not get copied into the output file. */ | |
803 | s->_raw_size = 0; | |
804 | } | |
805 | } | |
806 | } | |
807 | } | |
808 | ||
809 | /* If this is a dynamic object, we always link against the .dynsym | |
810 | symbol table, not the .symtab symbol table. The dynamic linker | |
811 | will only see the .dynsym symbol table, so there is no reason to | |
812 | look at .symtab for a dynamic object. */ | |
813 | ||
814 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
815 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
816 | else | |
817 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
818 | ||
819 | if (dynamic) | |
820 | { | |
821 | /* Read in any version definitions. */ | |
822 | ||
823 | if (! _bfd_elf_slurp_version_tables (abfd)) | |
824 | goto error_return; | |
825 | ||
826 | /* Read in the symbol versions, but don't bother to convert them | |
827 | to internal format. */ | |
828 | if (elf_dynversym (abfd) != 0) | |
829 | { | |
830 | Elf_Internal_Shdr *versymhdr; | |
831 | ||
832 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
833 | extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size); | |
834 | if (extversym == NULL) | |
835 | goto error_return; | |
836 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
837 | || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd) | |
838 | != versymhdr->sh_size)) | |
839 | goto error_return; | |
840 | } | |
841 | } | |
842 | ||
843 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
844 | ||
845 | /* The sh_info field of the symtab header tells us where the | |
846 | external symbols start. We don't care about the local symbols at | |
847 | this point. */ | |
848 | if (elf_bad_symtab (abfd)) | |
849 | { | |
850 | extsymcount = symcount; | |
851 | extsymoff = 0; | |
852 | } | |
853 | else | |
854 | { | |
855 | extsymcount = symcount - hdr->sh_info; | |
856 | extsymoff = hdr->sh_info; | |
857 | } | |
858 | ||
859 | buf = ((Elf_External_Sym *) | |
860 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
861 | if (buf == NULL && extsymcount != 0) | |
862 | goto error_return; | |
863 | ||
864 | /* We store a pointer to the hash table entry for each external | |
865 | symbol. */ | |
866 | sym_hash = ((struct elf_link_hash_entry **) | |
867 | bfd_alloc (abfd, | |
868 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
869 | if (sym_hash == NULL) | |
870 | goto error_return; | |
871 | elf_sym_hashes (abfd) = sym_hash; | |
872 | ||
873 | if (! dynamic) | |
874 | { | |
875 | /* If we are creating a shared library, create all the dynamic | |
876 | sections immediately. We need to attach them to something, | |
877 | so we attach them to this BFD, provided it is the right | |
878 | format. FIXME: If there are no input BFD's of the same | |
879 | format as the output, we can't make a shared library. */ | |
880 | if (info->shared | |
881 | && ! elf_hash_table (info)->dynamic_sections_created | |
882 | && abfd->xvec == info->hash->creator) | |
883 | { | |
884 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
885 | goto error_return; | |
886 | } | |
887 | } | |
888 | else | |
889 | { | |
890 | asection *s; | |
891 | boolean add_needed; | |
892 | const char *name; | |
893 | bfd_size_type oldsize; | |
894 | bfd_size_type strindex; | |
895 | ||
896 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
897 | object. If the object has a DT_SONAME entry, we use it. | |
898 | Otherwise, if the generic linker stuck something in | |
899 | elf_dt_name, we use that. Otherwise, we just use the file | |
900 | name. If the generic linker put a null string into | |
901 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
902 | there is a DT_SONAME entry. */ | |
903 | add_needed = true; | |
904 | name = bfd_get_filename (abfd); | |
905 | if (elf_dt_name (abfd) != NULL) | |
906 | { | |
907 | name = elf_dt_name (abfd); | |
908 | if (*name == '\0') | |
909 | add_needed = false; | |
910 | } | |
911 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
912 | if (s != NULL) | |
913 | { | |
914 | Elf_External_Dyn *extdyn; | |
915 | Elf_External_Dyn *extdynend; | |
916 | int elfsec; | |
917 | unsigned long link; | |
918 | ||
919 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); | |
920 | if (dynbuf == NULL) | |
921 | goto error_return; | |
922 | ||
923 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
924 | (file_ptr) 0, s->_raw_size)) | |
925 | goto error_return; | |
926 | ||
927 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
928 | if (elfsec == -1) | |
929 | goto error_return; | |
930 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
931 | ||
932 | extdyn = dynbuf; | |
933 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
934 | for (; extdyn < extdynend; extdyn++) | |
935 | { | |
936 | Elf_Internal_Dyn dyn; | |
937 | ||
938 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
939 | if (dyn.d_tag == DT_SONAME) | |
940 | { | |
941 | name = bfd_elf_string_from_elf_section (abfd, link, | |
942 | dyn.d_un.d_val); | |
943 | if (name == NULL) | |
944 | goto error_return; | |
945 | } | |
946 | if (dyn.d_tag == DT_NEEDED) | |
947 | { | |
948 | struct bfd_link_needed_list *n, **pn; | |
949 | char *fnm, *anm; | |
950 | ||
951 | n = ((struct bfd_link_needed_list *) | |
952 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
953 | fnm = bfd_elf_string_from_elf_section (abfd, link, | |
954 | dyn.d_un.d_val); | |
955 | if (n == NULL || fnm == NULL) | |
956 | goto error_return; | |
957 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
958 | if (anm == NULL) | |
959 | goto error_return; | |
960 | strcpy (anm, fnm); | |
961 | n->name = anm; | |
962 | n->by = abfd; | |
963 | n->next = NULL; | |
964 | for (pn = &elf_hash_table (info)->needed; | |
965 | *pn != NULL; | |
966 | pn = &(*pn)->next) | |
967 | ; | |
968 | *pn = n; | |
969 | } | |
970 | } | |
971 | ||
972 | free (dynbuf); | |
973 | dynbuf = NULL; | |
974 | } | |
975 | ||
976 | /* We do not want to include any of the sections in a dynamic | |
977 | object in the output file. We hack by simply clobbering the | |
978 | list of sections in the BFD. This could be handled more | |
979 | cleanly by, say, a new section flag; the existing | |
980 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
981 | still implies that the section takes up space in the output | |
982 | file. */ | |
983 | abfd->sections = NULL; | |
984 | abfd->section_count = 0; | |
985 | ||
986 | /* If this is the first dynamic object found in the link, create | |
987 | the special sections required for dynamic linking. */ | |
988 | if (! elf_hash_table (info)->dynamic_sections_created) | |
989 | { | |
990 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
991 | goto error_return; | |
992 | } | |
993 | ||
994 | if (add_needed) | |
995 | { | |
996 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
997 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
998 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
999 | true, false); | |
1000 | if (strindex == (bfd_size_type) -1) | |
1001 | goto error_return; | |
1002 | ||
1003 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
1004 | { | |
1005 | asection *sdyn; | |
1006 | Elf_External_Dyn *dyncon, *dynconend; | |
1007 | ||
1008 | /* The hash table size did not change, which means that | |
1009 | the dynamic object name was already entered. If we | |
1010 | have already included this dynamic object in the | |
1011 | link, just ignore it. There is no reason to include | |
1012 | a particular dynamic object more than once. */ | |
1013 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
1014 | ".dynamic"); | |
1015 | BFD_ASSERT (sdyn != NULL); | |
1016 | ||
1017 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
1018 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
1019 | sdyn->_raw_size); | |
1020 | for (; dyncon < dynconend; dyncon++) | |
1021 | { | |
1022 | Elf_Internal_Dyn dyn; | |
1023 | ||
1024 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
1025 | &dyn); | |
1026 | if (dyn.d_tag == DT_NEEDED | |
1027 | && dyn.d_un.d_val == strindex) | |
1028 | { | |
1029 | if (buf != NULL) | |
1030 | free (buf); | |
1031 | if (extversym != NULL) | |
1032 | free (extversym); | |
1033 | return true; | |
1034 | } | |
1035 | } | |
1036 | } | |
1037 | ||
1038 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
1039 | goto error_return; | |
1040 | } | |
1041 | ||
1042 | /* Save the SONAME, if there is one, because sometimes the | |
1043 | linker emulation code will need to know it. */ | |
1044 | if (*name == '\0') | |
1045 | name = bfd_get_filename (abfd); | |
1046 | elf_dt_name (abfd) = name; | |
1047 | } | |
1048 | ||
1049 | if (bfd_seek (abfd, | |
1050 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
1051 | SEEK_SET) != 0 | |
1052 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
1053 | != extsymcount * sizeof (Elf_External_Sym))) | |
1054 | goto error_return; | |
1055 | ||
1056 | weaks = NULL; | |
1057 | ||
1058 | ever = extversym != NULL ? extversym + extsymoff : NULL; | |
1059 | esymend = buf + extsymcount; | |
1060 | for (esym = buf; | |
1061 | esym < esymend; | |
1062 | esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
1063 | { | |
1064 | Elf_Internal_Sym sym; | |
1065 | int bind; | |
1066 | bfd_vma value; | |
1067 | asection *sec; | |
1068 | flagword flags; | |
1069 | const char *name; | |
1070 | struct elf_link_hash_entry *h; | |
1071 | boolean definition; | |
1072 | boolean size_change_ok, type_change_ok; | |
1073 | boolean new_weakdef; | |
1074 | unsigned int old_alignment; | |
1075 | ||
1076 | elf_swap_symbol_in (abfd, esym, &sym); | |
1077 | ||
1078 | flags = BSF_NO_FLAGS; | |
1079 | sec = NULL; | |
1080 | value = sym.st_value; | |
1081 | *sym_hash = NULL; | |
1082 | ||
1083 | bind = ELF_ST_BIND (sym.st_info); | |
1084 | if (bind == STB_LOCAL) | |
1085 | { | |
1086 | /* This should be impossible, since ELF requires that all | |
1087 | global symbols follow all local symbols, and that sh_info | |
1088 | point to the first global symbol. Unfortunatealy, Irix 5 | |
1089 | screws this up. */ | |
1090 | continue; | |
1091 | } | |
1092 | else if (bind == STB_GLOBAL) | |
1093 | { | |
1094 | if (sym.st_shndx != SHN_UNDEF | |
1095 | && sym.st_shndx != SHN_COMMON) | |
1096 | flags = BSF_GLOBAL; | |
1097 | else | |
1098 | flags = 0; | |
1099 | } | |
1100 | else if (bind == STB_WEAK) | |
1101 | flags = BSF_WEAK; | |
1102 | else | |
1103 | { | |
1104 | /* Leave it up to the processor backend. */ | |
1105 | } | |
1106 | ||
1107 | if (sym.st_shndx == SHN_UNDEF) | |
1108 | sec = bfd_und_section_ptr; | |
1109 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
1110 | { | |
1111 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
1112 | if (sec == NULL) | |
1113 | sec = bfd_abs_section_ptr; | |
1114 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
1115 | value -= sec->vma; | |
1116 | } | |
1117 | else if (sym.st_shndx == SHN_ABS) | |
1118 | sec = bfd_abs_section_ptr; | |
1119 | else if (sym.st_shndx == SHN_COMMON) | |
1120 | { | |
1121 | sec = bfd_com_section_ptr; | |
1122 | /* What ELF calls the size we call the value. What ELF | |
1123 | calls the value we call the alignment. */ | |
1124 | value = sym.st_size; | |
1125 | } | |
1126 | else | |
1127 | { | |
1128 | /* Leave it up to the processor backend. */ | |
1129 | } | |
1130 | ||
1131 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
1132 | if (name == (const char *) NULL) | |
1133 | goto error_return; | |
1134 | ||
1135 | if (add_symbol_hook) | |
1136 | { | |
1137 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
1138 | &value)) | |
1139 | goto error_return; | |
1140 | ||
1141 | /* The hook function sets the name to NULL if this symbol | |
1142 | should be skipped for some reason. */ | |
1143 | if (name == (const char *) NULL) | |
1144 | continue; | |
1145 | } | |
1146 | ||
1147 | /* Sanity check that all possibilities were handled. */ | |
1148 | if (sec == (asection *) NULL) | |
1149 | { | |
1150 | bfd_set_error (bfd_error_bad_value); | |
1151 | goto error_return; | |
1152 | } | |
1153 | ||
1154 | if (bfd_is_und_section (sec) | |
1155 | || bfd_is_com_section (sec)) | |
1156 | definition = false; | |
1157 | else | |
1158 | definition = true; | |
1159 | ||
1160 | size_change_ok = false; | |
1161 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; | |
1162 | old_alignment = 0; | |
1163 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1164 | { | |
1165 | Elf_Internal_Versym iver; | |
1166 | unsigned int vernum = 0; | |
1167 | boolean override; | |
1168 | ||
1169 | if (ever != NULL) | |
1170 | { | |
1171 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
1172 | vernum = iver.vs_vers & VERSYM_VERSION; | |
1173 | ||
1174 | /* If this is a hidden symbol, or if it is not version | |
1175 | 1, we append the version name to the symbol name. | |
1176 | However, we do not modify a non-hidden absolute | |
1177 | symbol, because it might be the version symbol | |
1178 | itself. FIXME: What if it isn't? */ | |
1179 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
1180 | || (vernum > 1 && ! bfd_is_abs_section (sec))) | |
1181 | { | |
1182 | const char *verstr; | |
1183 | int namelen, newlen; | |
1184 | char *newname, *p; | |
1185 | ||
1186 | if (sym.st_shndx != SHN_UNDEF) | |
1187 | { | |
1188 | if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) | |
1189 | { | |
1190 | (*_bfd_error_handler) | |
1191 | (_("%s: %s: invalid version %u (max %d)"), | |
1192 | bfd_get_filename (abfd), name, vernum, | |
1193 | elf_tdata (abfd)->dynverdef_hdr.sh_info); | |
1194 | bfd_set_error (bfd_error_bad_value); | |
1195 | goto error_return; | |
1196 | } | |
1197 | else if (vernum > 1) | |
1198 | verstr = | |
1199 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
1200 | else | |
1201 | verstr = ""; | |
1202 | } | |
1203 | else | |
1204 | { | |
1205 | /* We cannot simply test for the number of | |
1206 | entries in the VERNEED section since the | |
1207 | numbers for the needed versions do not start | |
1208 | at 0. */ | |
1209 | Elf_Internal_Verneed *t; | |
1210 | ||
1211 | verstr = NULL; | |
1212 | for (t = elf_tdata (abfd)->verref; | |
1213 | t != NULL; | |
1214 | t = t->vn_nextref) | |
1215 | { | |
1216 | Elf_Internal_Vernaux *a; | |
1217 | ||
1218 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1219 | { | |
1220 | if (a->vna_other == vernum) | |
1221 | { | |
1222 | verstr = a->vna_nodename; | |
1223 | break; | |
1224 | } | |
1225 | } | |
1226 | if (a != NULL) | |
1227 | break; | |
1228 | } | |
1229 | if (verstr == NULL) | |
1230 | { | |
1231 | (*_bfd_error_handler) | |
1232 | (_("%s: %s: invalid needed version %d"), | |
1233 | bfd_get_filename (abfd), name, vernum); | |
1234 | bfd_set_error (bfd_error_bad_value); | |
1235 | goto error_return; | |
1236 | } | |
1237 | } | |
1238 | ||
1239 | namelen = strlen (name); | |
1240 | newlen = namelen + strlen (verstr) + 2; | |
1241 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1242 | ++newlen; | |
1243 | ||
1244 | newname = (char *) bfd_alloc (abfd, newlen); | |
1245 | if (newname == NULL) | |
1246 | goto error_return; | |
1247 | strcpy (newname, name); | |
1248 | p = newname + namelen; | |
1249 | *p++ = ELF_VER_CHR; | |
1250 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0) | |
1251 | *p++ = ELF_VER_CHR; | |
1252 | strcpy (p, verstr); | |
1253 | ||
1254 | name = newname; | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, | |
1259 | sym_hash, &override, &type_change_ok, | |
1260 | &size_change_ok)) | |
1261 | goto error_return; | |
1262 | ||
1263 | if (override) | |
1264 | definition = false; | |
1265 | ||
1266 | h = *sym_hash; | |
1267 | while (h->root.type == bfd_link_hash_indirect | |
1268 | || h->root.type == bfd_link_hash_warning) | |
1269 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1270 | ||
1271 | /* Remember the old alignment if this is a common symbol, so | |
1272 | that we don't reduce the alignment later on. We can't | |
1273 | check later, because _bfd_generic_link_add_one_symbol | |
1274 | will set a default for the alignment which we want to | |
1275 | override. */ | |
1276 | if (h->root.type == bfd_link_hash_common) | |
1277 | old_alignment = h->root.u.c.p->alignment_power; | |
1278 | ||
1279 | if (elf_tdata (abfd)->verdef != NULL | |
1280 | && ! override | |
1281 | && vernum > 1 | |
1282 | && definition) | |
1283 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
1284 | } | |
1285 | ||
1286 | if (! (_bfd_generic_link_add_one_symbol | |
1287 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
1288 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
1289 | goto error_return; | |
1290 | ||
1291 | h = *sym_hash; | |
1292 | while (h->root.type == bfd_link_hash_indirect | |
1293 | || h->root.type == bfd_link_hash_warning) | |
1294 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1295 | *sym_hash = h; | |
1296 | ||
1297 | new_weakdef = false; | |
1298 | if (dynamic | |
1299 | && definition | |
1300 | && (flags & BSF_WEAK) != 0 | |
1301 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
1302 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1303 | && h->weakdef == NULL) | |
1304 | { | |
1305 | /* Keep a list of all weak defined non function symbols from | |
1306 | a dynamic object, using the weakdef field. Later in this | |
1307 | function we will set the weakdef field to the correct | |
1308 | value. We only put non-function symbols from dynamic | |
1309 | objects on this list, because that happens to be the only | |
1310 | time we need to know the normal symbol corresponding to a | |
1311 | weak symbol, and the information is time consuming to | |
1312 | figure out. If the weakdef field is not already NULL, | |
1313 | then this symbol was already defined by some previous | |
1314 | dynamic object, and we will be using that previous | |
1315 | definition anyhow. */ | |
1316 | ||
1317 | h->weakdef = weaks; | |
1318 | weaks = h; | |
1319 | new_weakdef = true; | |
1320 | } | |
1321 | ||
1322 | /* Set the alignment of a common symbol. */ | |
1323 | if (sym.st_shndx == SHN_COMMON | |
1324 | && h->root.type == bfd_link_hash_common) | |
1325 | { | |
1326 | unsigned int align; | |
1327 | ||
1328 | align = bfd_log2 (sym.st_value); | |
1329 | if (align > old_alignment) | |
1330 | h->root.u.c.p->alignment_power = align; | |
1331 | } | |
1332 | ||
1333 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
1334 | { | |
1335 | int old_flags; | |
1336 | boolean dynsym; | |
1337 | int new_flag; | |
1338 | ||
1339 | /* Remember the symbol size and type. */ | |
1340 | if (sym.st_size != 0 | |
1341 | && (definition || h->size == 0)) | |
1342 | { | |
1343 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) | |
1344 | (*_bfd_error_handler) | |
1345 | (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), | |
1346 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
1347 | bfd_get_filename (abfd)); | |
1348 | ||
1349 | h->size = sym.st_size; | |
1350 | } | |
1351 | ||
1352 | /* If this is a common symbol, then we always want H->SIZE | |
1353 | to be the size of the common symbol. The code just above | |
1354 | won't fix the size if a common symbol becomes larger. We | |
1355 | don't warn about a size change here, because that is | |
1356 | covered by --warn-common. */ | |
1357 | if (h->root.type == bfd_link_hash_common) | |
1358 | h->size = h->root.u.c.size; | |
1359 | ||
1360 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE | |
1361 | && (definition || h->type == STT_NOTYPE)) | |
1362 | { | |
1363 | if (h->type != STT_NOTYPE | |
1364 | && h->type != ELF_ST_TYPE (sym.st_info) | |
1365 | && ! type_change_ok) | |
1366 | (*_bfd_error_handler) | |
1367 | (_("Warning: type of symbol `%s' changed from %d to %d in %s"), | |
1368 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
1369 | bfd_get_filename (abfd)); | |
1370 | ||
1371 | h->type = ELF_ST_TYPE (sym.st_info); | |
1372 | } | |
1373 | ||
1374 | if (sym.st_other != 0 | |
1375 | && (definition || h->other == 0)) | |
1376 | h->other = sym.st_other; | |
1377 | ||
1378 | /* Set a flag in the hash table entry indicating the type of | |
1379 | reference or definition we just found. Keep a count of | |
1380 | the number of dynamic symbols we find. A dynamic symbol | |
1381 | is one which is referenced or defined by both a regular | |
1382 | object and a shared object. */ | |
1383 | old_flags = h->elf_link_hash_flags; | |
1384 | dynsym = false; | |
1385 | if (! dynamic) | |
1386 | { | |
1387 | if (! definition) | |
1388 | { | |
1389 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
1390 | if (bind != STB_WEAK) | |
1391 | new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
1392 | } | |
1393 | else | |
1394 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
1395 | if (info->shared | |
1396 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1397 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
1398 | dynsym = true; | |
1399 | } | |
1400 | else | |
1401 | { | |
1402 | if (! definition) | |
1403 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
1404 | else | |
1405 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
1406 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
1407 | | ELF_LINK_HASH_REF_REGULAR)) != 0 | |
1408 | || (h->weakdef != NULL | |
1409 | && ! new_weakdef | |
1410 | && h->weakdef->dynindx != -1)) | |
1411 | dynsym = true; | |
1412 | } | |
1413 | ||
1414 | h->elf_link_hash_flags |= new_flag; | |
1415 | ||
1416 | /* If this symbol has a version, and it is the default | |
1417 | version, we create an indirect symbol from the default | |
1418 | name to the fully decorated name. This will cause | |
1419 | external references which do not specify a version to be | |
1420 | bound to this version of the symbol. */ | |
1421 | if (definition) | |
1422 | { | |
1423 | char *p; | |
1424 | ||
1425 | p = strchr (name, ELF_VER_CHR); | |
1426 | if (p != NULL && p[1] == ELF_VER_CHR) | |
1427 | { | |
1428 | char *shortname; | |
1429 | struct elf_link_hash_entry *hi; | |
1430 | boolean override; | |
1431 | ||
1432 | shortname = bfd_hash_allocate (&info->hash->table, | |
1433 | p - name + 1); | |
1434 | if (shortname == NULL) | |
1435 | goto error_return; | |
1436 | strncpy (shortname, name, p - name); | |
1437 | shortname[p - name] = '\0'; | |
1438 | ||
1439 | /* We are going to create a new symbol. Merge it | |
1440 | with any existing symbol with this name. For the | |
1441 | purposes of the merge, act as though we were | |
1442 | defining the symbol we just defined, although we | |
1443 | actually going to define an indirect symbol. */ | |
1444 | type_change_ok = false; | |
1445 | size_change_ok = false; | |
1446 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1447 | &value, &hi, &override, | |
1448 | &type_change_ok, &size_change_ok)) | |
1449 | goto error_return; | |
1450 | ||
1451 | if (! override) | |
1452 | { | |
1453 | if (! (_bfd_generic_link_add_one_symbol | |
1454 | (info, abfd, shortname, BSF_INDIRECT, | |
1455 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1456 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1457 | goto error_return; | |
1458 | } | |
1459 | else | |
1460 | { | |
1461 | /* In this case the symbol named SHORTNAME is | |
1462 | overriding the indirect symbol we want to | |
1463 | add. We were planning on making SHORTNAME an | |
1464 | indirect symbol referring to NAME. SHORTNAME | |
1465 | is the name without a version. NAME is the | |
1466 | fully versioned name, and it is the default | |
1467 | version. | |
1468 | ||
1469 | Overriding means that we already saw a | |
1470 | definition for the symbol SHORTNAME in a | |
1471 | regular object, and it is overriding the | |
1472 | symbol defined in the dynamic object. | |
1473 | ||
1474 | When this happens, we actually want to change | |
1475 | NAME, the symbol we just added, to refer to | |
1476 | SHORTNAME. This will cause references to | |
1477 | NAME in the shared object to become | |
1478 | references to SHORTNAME in the regular | |
1479 | object. This is what we expect when we | |
1480 | override a function in a shared object: that | |
1481 | the references in the shared object will be | |
1482 | mapped to the definition in the regular | |
1483 | object. */ | |
1484 | ||
1485 | while (hi->root.type == bfd_link_hash_indirect | |
1486 | || hi->root.type == bfd_link_hash_warning) | |
1487 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1488 | ||
1489 | h->root.type = bfd_link_hash_indirect; | |
1490 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1491 | if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) | |
1492 | { | |
1493 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; | |
1494 | hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; | |
1495 | if (hi->elf_link_hash_flags | |
1496 | & (ELF_LINK_HASH_REF_REGULAR | |
1497 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1498 | { | |
1499 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1500 | hi)) | |
1501 | goto error_return; | |
1502 | } | |
1503 | } | |
1504 | ||
1505 | /* Now set HI to H, so that the following code | |
1506 | will set the other fields correctly. */ | |
1507 | hi = h; | |
1508 | } | |
1509 | ||
1510 | /* If there is a duplicate definition somewhere, | |
1511 | then HI may not point to an indirect symbol. We | |
1512 | will have reported an error to the user in that | |
1513 | case. */ | |
1514 | ||
1515 | if (hi->root.type == bfd_link_hash_indirect) | |
1516 | { | |
1517 | struct elf_link_hash_entry *ht; | |
1518 | ||
1519 | /* If the symbol became indirect, then we assume | |
1520 | that we have not seen a definition before. */ | |
1521 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1522 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1523 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1524 | == 0); | |
1525 | ||
1526 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1527 | ||
1528 | /* Copy down any references that we may have | |
1529 | already seen to the symbol which just became | |
1530 | indirect. */ | |
1531 | ht->elf_link_hash_flags |= | |
1532 | (hi->elf_link_hash_flags | |
1533 | & (ELF_LINK_HASH_REF_DYNAMIC | |
1534 | | ELF_LINK_HASH_REF_REGULAR | |
1535 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); | |
1536 | ||
1537 | /* Copy over the global and procedure linkage table | |
1538 | offset entries. These may have been already set | |
1539 | up by a check_relocs routine. */ | |
1540 | if (ht->got.offset == (bfd_vma) -1) | |
1541 | { | |
1542 | ht->got.offset = hi->got.offset; | |
1543 | hi->got.offset = (bfd_vma) -1; | |
1544 | } | |
1545 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1546 | ||
1547 | if (ht->plt.offset == (bfd_vma) -1) | |
1548 | { | |
1549 | ht->plt.offset = hi->plt.offset; | |
1550 | hi->plt.offset = (bfd_vma) -1; | |
1551 | } | |
1552 | BFD_ASSERT (hi->plt.offset == (bfd_vma) -1); | |
1553 | ||
1554 | if (ht->dynindx == -1) | |
1555 | { | |
1556 | ht->dynindx = hi->dynindx; | |
1557 | ht->dynstr_index = hi->dynstr_index; | |
1558 | hi->dynindx = -1; | |
1559 | hi->dynstr_index = 0; | |
1560 | } | |
1561 | BFD_ASSERT (hi->dynindx == -1); | |
1562 | ||
1563 | /* FIXME: There may be other information to copy | |
1564 | over for particular targets. */ | |
1565 | ||
1566 | /* See if the new flags lead us to realize that | |
1567 | the symbol must be dynamic. */ | |
1568 | if (! dynsym) | |
1569 | { | |
1570 | if (! dynamic) | |
1571 | { | |
1572 | if (info->shared | |
1573 | || ((hi->elf_link_hash_flags | |
1574 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1575 | != 0)) | |
1576 | dynsym = true; | |
1577 | } | |
1578 | else | |
1579 | { | |
1580 | if ((hi->elf_link_hash_flags | |
1581 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1582 | dynsym = true; | |
1583 | } | |
1584 | } | |
1585 | } | |
1586 | ||
1587 | /* We also need to define an indirection from the | |
1588 | nondefault version of the symbol. */ | |
1589 | ||
1590 | shortname = bfd_hash_allocate (&info->hash->table, | |
1591 | strlen (name)); | |
1592 | if (shortname == NULL) | |
1593 | goto error_return; | |
1594 | strncpy (shortname, name, p - name); | |
1595 | strcpy (shortname + (p - name), p + 1); | |
1596 | ||
1597 | /* Once again, merge with any existing symbol. */ | |
1598 | type_change_ok = false; | |
1599 | size_change_ok = false; | |
1600 | if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, | |
1601 | &value, &hi, &override, | |
1602 | &type_change_ok, &size_change_ok)) | |
1603 | goto error_return; | |
1604 | ||
1605 | if (override) | |
1606 | { | |
1607 | /* Here SHORTNAME is a versioned name, so we | |
1608 | don't expect to see the type of override we | |
1609 | do in the case above. */ | |
1610 | (*_bfd_error_handler) | |
1611 | (_("%s: warning: unexpected redefinition of `%s'"), | |
1612 | bfd_get_filename (abfd), shortname); | |
1613 | } | |
1614 | else | |
1615 | { | |
1616 | if (! (_bfd_generic_link_add_one_symbol | |
1617 | (info, abfd, shortname, BSF_INDIRECT, | |
1618 | bfd_ind_section_ptr, (bfd_vma) 0, name, false, | |
1619 | collect, (struct bfd_link_hash_entry **) &hi))) | |
1620 | goto error_return; | |
1621 | ||
1622 | /* If there is a duplicate definition somewhere, | |
1623 | then HI may not point to an indirect symbol. | |
1624 | We will have reported an error to the user in | |
1625 | that case. */ | |
1626 | ||
1627 | if (hi->root.type == bfd_link_hash_indirect) | |
1628 | { | |
1629 | /* If the symbol became indirect, then we | |
1630 | assume that we have not seen a definition | |
1631 | before. */ | |
1632 | BFD_ASSERT ((hi->elf_link_hash_flags | |
1633 | & (ELF_LINK_HASH_DEF_DYNAMIC | |
1634 | | ELF_LINK_HASH_DEF_REGULAR)) | |
1635 | == 0); | |
1636 | ||
1637 | /* Copy down any references that we may have | |
1638 | already seen to the symbol which just | |
1639 | became indirect. */ | |
1640 | h->elf_link_hash_flags |= | |
1641 | (hi->elf_link_hash_flags | |
1642 | & (ELF_LINK_HASH_REF_DYNAMIC | |
1643 | | ELF_LINK_HASH_REF_REGULAR | |
1644 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); | |
1645 | ||
1646 | /* Copy over the global and procedure linkage | |
1647 | table offset entries. These may have been | |
1648 | already set up by a check_relocs routine. */ | |
1649 | if (h->got.offset == (bfd_vma) -1) | |
1650 | { | |
1651 | h->got.offset = hi->got.offset; | |
1652 | hi->got.offset = (bfd_vma) -1; | |
1653 | } | |
1654 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1655 | ||
1656 | if (h->plt.offset == (bfd_vma) -1) | |
1657 | { | |
1658 | h->plt.offset = hi->plt.offset; | |
1659 | hi->plt.offset = (bfd_vma) -1; | |
1660 | } | |
1661 | BFD_ASSERT (hi->got.offset == (bfd_vma) -1); | |
1662 | ||
1663 | if (h->dynindx == -1) | |
1664 | { | |
1665 | h->dynindx = hi->dynindx; | |
1666 | h->dynstr_index = hi->dynstr_index; | |
1667 | hi->dynindx = -1; | |
1668 | hi->dynstr_index = 0; | |
1669 | } | |
1670 | BFD_ASSERT (hi->dynindx == -1); | |
1671 | ||
1672 | /* FIXME: There may be other information to | |
1673 | copy over for particular targets. */ | |
1674 | ||
1675 | /* See if the new flags lead us to realize | |
1676 | that the symbol must be dynamic. */ | |
1677 | if (! dynsym) | |
1678 | { | |
1679 | if (! dynamic) | |
1680 | { | |
1681 | if (info->shared | |
1682 | || ((hi->elf_link_hash_flags | |
1683 | & ELF_LINK_HASH_REF_DYNAMIC) | |
1684 | != 0)) | |
1685 | dynsym = true; | |
1686 | } | |
1687 | else | |
1688 | { | |
1689 | if ((hi->elf_link_hash_flags | |
1690 | & ELF_LINK_HASH_REF_REGULAR) != 0) | |
1691 | dynsym = true; | |
1692 | } | |
1693 | } | |
1694 | } | |
1695 | } | |
1696 | } | |
1697 | } | |
1698 | ||
1699 | if (dynsym && h->dynindx == -1) | |
1700 | { | |
1701 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1702 | goto error_return; | |
1703 | if (h->weakdef != NULL | |
1704 | && ! new_weakdef | |
1705 | && h->weakdef->dynindx == -1) | |
1706 | { | |
1707 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
1708 | h->weakdef)) | |
1709 | goto error_return; | |
1710 | } | |
1711 | } | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | /* Now set the weakdefs field correctly for all the weak defined | |
1716 | symbols we found. The only way to do this is to search all the | |
1717 | symbols. Since we only need the information for non functions in | |
1718 | dynamic objects, that's the only time we actually put anything on | |
1719 | the list WEAKS. We need this information so that if a regular | |
1720 | object refers to a symbol defined weakly in a dynamic object, the | |
1721 | real symbol in the dynamic object is also put in the dynamic | |
1722 | symbols; we also must arrange for both symbols to point to the | |
1723 | same memory location. We could handle the general case of symbol | |
1724 | aliasing, but a general symbol alias can only be generated in | |
1725 | assembler code, handling it correctly would be very time | |
1726 | consuming, and other ELF linkers don't handle general aliasing | |
1727 | either. */ | |
1728 | while (weaks != NULL) | |
1729 | { | |
1730 | struct elf_link_hash_entry *hlook; | |
1731 | asection *slook; | |
1732 | bfd_vma vlook; | |
1733 | struct elf_link_hash_entry **hpp; | |
1734 | struct elf_link_hash_entry **hppend; | |
1735 | ||
1736 | hlook = weaks; | |
1737 | weaks = hlook->weakdef; | |
1738 | hlook->weakdef = NULL; | |
1739 | ||
1740 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
1741 | || hlook->root.type == bfd_link_hash_defweak | |
1742 | || hlook->root.type == bfd_link_hash_common | |
1743 | || hlook->root.type == bfd_link_hash_indirect); | |
1744 | slook = hlook->root.u.def.section; | |
1745 | vlook = hlook->root.u.def.value; | |
1746 | ||
1747 | hpp = elf_sym_hashes (abfd); | |
1748 | hppend = hpp + extsymcount; | |
1749 | for (; hpp < hppend; hpp++) | |
1750 | { | |
1751 | struct elf_link_hash_entry *h; | |
1752 | ||
1753 | h = *hpp; | |
1754 | if (h != NULL && h != hlook | |
1755 | && h->root.type == bfd_link_hash_defined | |
1756 | && h->root.u.def.section == slook | |
1757 | && h->root.u.def.value == vlook) | |
1758 | { | |
1759 | hlook->weakdef = h; | |
1760 | ||
1761 | /* If the weak definition is in the list of dynamic | |
1762 | symbols, make sure the real definition is put there | |
1763 | as well. */ | |
1764 | if (hlook->dynindx != -1 | |
1765 | && h->dynindx == -1) | |
1766 | { | |
1767 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1768 | goto error_return; | |
1769 | } | |
1770 | ||
1771 | /* If the real definition is in the list of dynamic | |
1772 | symbols, make sure the weak definition is put there | |
1773 | as well. If we don't do this, then the dynamic | |
1774 | loader might not merge the entries for the real | |
1775 | definition and the weak definition. */ | |
1776 | if (h->dynindx != -1 | |
1777 | && hlook->dynindx == -1) | |
1778 | { | |
1779 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
1780 | goto error_return; | |
1781 | } | |
1782 | ||
1783 | break; | |
1784 | } | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | if (buf != NULL) | |
1789 | { | |
1790 | free (buf); | |
1791 | buf = NULL; | |
1792 | } | |
1793 | ||
1794 | if (extversym != NULL) | |
1795 | { | |
1796 | free (extversym); | |
1797 | extversym = NULL; | |
1798 | } | |
1799 | ||
1800 | /* If this object is the same format as the output object, and it is | |
1801 | not a shared library, then let the backend look through the | |
1802 | relocs. | |
1803 | ||
1804 | This is required to build global offset table entries and to | |
1805 | arrange for dynamic relocs. It is not required for the | |
1806 | particular common case of linking non PIC code, even when linking | |
1807 | against shared libraries, but unfortunately there is no way of | |
1808 | knowing whether an object file has been compiled PIC or not. | |
1809 | Looking through the relocs is not particularly time consuming. | |
1810 | The problem is that we must either (1) keep the relocs in memory, | |
1811 | which causes the linker to require additional runtime memory or | |
1812 | (2) read the relocs twice from the input file, which wastes time. | |
1813 | This would be a good case for using mmap. | |
1814 | ||
1815 | I have no idea how to handle linking PIC code into a file of a | |
1816 | different format. It probably can't be done. */ | |
1817 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
1818 | if (! dynamic | |
1819 | && abfd->xvec == info->hash->creator | |
1820 | && check_relocs != NULL) | |
1821 | { | |
1822 | asection *o; | |
1823 | ||
1824 | for (o = abfd->sections; o != NULL; o = o->next) | |
1825 | { | |
1826 | Elf_Internal_Rela *internal_relocs; | |
1827 | boolean ok; | |
1828 | ||
1829 | if ((o->flags & SEC_RELOC) == 0 | |
1830 | || o->reloc_count == 0 | |
1831 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
1832 | && (o->flags & SEC_DEBUGGING) != 0) | |
1833 | || bfd_is_abs_section (o->output_section)) | |
1834 | continue; | |
1835 | ||
1836 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
1837 | (abfd, o, (PTR) NULL, | |
1838 | (Elf_Internal_Rela *) NULL, | |
1839 | info->keep_memory)); | |
1840 | if (internal_relocs == NULL) | |
1841 | goto error_return; | |
1842 | ||
1843 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
1844 | ||
1845 | if (! info->keep_memory) | |
1846 | free (internal_relocs); | |
1847 | ||
1848 | if (! ok) | |
1849 | goto error_return; | |
1850 | } | |
1851 | } | |
1852 | ||
1853 | /* If this is a non-traditional, non-relocateable link, try to | |
1854 | optimize the handling of the .stab/.stabstr sections. */ | |
1855 | if (! dynamic | |
1856 | && ! info->relocateable | |
1857 | && ! info->traditional_format | |
1858 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
1859 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
1860 | { | |
1861 | asection *stab, *stabstr; | |
1862 | ||
1863 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
1864 | if (stab != NULL) | |
1865 | { | |
1866 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
1867 | ||
1868 | if (stabstr != NULL) | |
1869 | { | |
1870 | struct bfd_elf_section_data *secdata; | |
1871 | ||
1872 | secdata = elf_section_data (stab); | |
1873 | if (! _bfd_link_section_stabs (abfd, | |
1874 | &elf_hash_table (info)->stab_info, | |
1875 | stab, stabstr, | |
1876 | &secdata->stab_info)) | |
1877 | goto error_return; | |
1878 | } | |
1879 | } | |
1880 | } | |
1881 | ||
1882 | return true; | |
1883 | ||
1884 | error_return: | |
1885 | if (buf != NULL) | |
1886 | free (buf); | |
1887 | if (dynbuf != NULL) | |
1888 | free (dynbuf); | |
1889 | if (dynver != NULL) | |
1890 | free (dynver); | |
1891 | if (extversym != NULL) | |
1892 | free (extversym); | |
1893 | return false; | |
1894 | } | |
1895 | ||
1896 | /* Create some sections which will be filled in with dynamic linking | |
1897 | information. ABFD is an input file which requires dynamic sections | |
1898 | to be created. The dynamic sections take up virtual memory space | |
1899 | when the final executable is run, so we need to create them before | |
1900 | addresses are assigned to the output sections. We work out the | |
1901 | actual contents and size of these sections later. */ | |
1902 | ||
1903 | boolean | |
1904 | elf_link_create_dynamic_sections (abfd, info) | |
1905 | bfd *abfd; | |
1906 | struct bfd_link_info *info; | |
1907 | { | |
1908 | flagword flags; | |
1909 | register asection *s; | |
1910 | struct elf_link_hash_entry *h; | |
1911 | struct elf_backend_data *bed; | |
1912 | ||
1913 | if (elf_hash_table (info)->dynamic_sections_created) | |
1914 | return true; | |
1915 | ||
1916 | /* Make sure that all dynamic sections use the same input BFD. */ | |
1917 | if (elf_hash_table (info)->dynobj == NULL) | |
1918 | elf_hash_table (info)->dynobj = abfd; | |
1919 | else | |
1920 | abfd = elf_hash_table (info)->dynobj; | |
1921 | ||
1922 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
1923 | sections. */ | |
1924 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
1925 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
1926 | ||
1927 | /* A dynamically linked executable has a .interp section, but a | |
1928 | shared library does not. */ | |
1929 | if (! info->shared) | |
1930 | { | |
1931 | s = bfd_make_section (abfd, ".interp"); | |
1932 | if (s == NULL | |
1933 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1934 | return false; | |
1935 | } | |
1936 | ||
1937 | /* Create sections to hold version informations. These are removed | |
1938 | if they are not needed. */ | |
1939 | s = bfd_make_section (abfd, ".gnu.version_d"); | |
1940 | if (s == NULL | |
1941 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1942 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1943 | return false; | |
1944 | ||
1945 | s = bfd_make_section (abfd, ".gnu.version"); | |
1946 | if (s == NULL | |
1947 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1948 | || ! bfd_set_section_alignment (abfd, s, 1)) | |
1949 | return false; | |
1950 | ||
1951 | s = bfd_make_section (abfd, ".gnu.version_r"); | |
1952 | if (s == NULL | |
1953 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1954 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1955 | return false; | |
1956 | ||
1957 | s = bfd_make_section (abfd, ".dynsym"); | |
1958 | if (s == NULL | |
1959 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1960 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1961 | return false; | |
1962 | ||
1963 | s = bfd_make_section (abfd, ".dynstr"); | |
1964 | if (s == NULL | |
1965 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1966 | return false; | |
1967 | ||
1968 | /* Create a strtab to hold the dynamic symbol names. */ | |
1969 | if (elf_hash_table (info)->dynstr == NULL) | |
1970 | { | |
1971 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
1972 | if (elf_hash_table (info)->dynstr == NULL) | |
1973 | return false; | |
1974 | } | |
1975 | ||
1976 | s = bfd_make_section (abfd, ".dynamic"); | |
1977 | if (s == NULL | |
1978 | || ! bfd_set_section_flags (abfd, s, flags) | |
1979 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1980 | return false; | |
1981 | ||
1982 | /* The special symbol _DYNAMIC is always set to the start of the | |
1983 | .dynamic section. This call occurs before we have processed the | |
1984 | symbols for any dynamic object, so we don't have to worry about | |
1985 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1986 | linker script, but we only want to define it if we are, in fact, | |
1987 | creating a .dynamic section. We don't want to define it if there | |
1988 | is no .dynamic section, since on some ELF platforms the start up | |
1989 | code examines it to decide how to initialize the process. */ | |
1990 | h = NULL; | |
1991 | if (! (_bfd_generic_link_add_one_symbol | |
1992 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1993 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1994 | (struct bfd_link_hash_entry **) &h))) | |
1995 | return false; | |
1996 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1997 | h->type = STT_OBJECT; | |
1998 | ||
1999 | if (info->shared | |
2000 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2001 | return false; | |
2002 | ||
c7ac6ff8 MM |
2003 | bed = get_elf_backend_data (abfd); |
2004 | ||
252b5132 RH |
2005 | s = bfd_make_section (abfd, ".hash"); |
2006 | if (s == NULL | |
2007 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
2008 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
2009 | return false; | |
c7ac6ff8 | 2010 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
252b5132 RH |
2011 | |
2012 | /* Let the backend create the rest of the sections. This lets the | |
2013 | backend set the right flags. The backend will normally create | |
2014 | the .got and .plt sections. */ | |
252b5132 RH |
2015 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
2016 | return false; | |
2017 | ||
2018 | elf_hash_table (info)->dynamic_sections_created = true; | |
2019 | ||
2020 | return true; | |
2021 | } | |
2022 | ||
2023 | /* Add an entry to the .dynamic table. */ | |
2024 | ||
2025 | boolean | |
2026 | elf_add_dynamic_entry (info, tag, val) | |
2027 | struct bfd_link_info *info; | |
2028 | bfd_vma tag; | |
2029 | bfd_vma val; | |
2030 | { | |
2031 | Elf_Internal_Dyn dyn; | |
2032 | bfd *dynobj; | |
2033 | asection *s; | |
2034 | size_t newsize; | |
2035 | bfd_byte *newcontents; | |
2036 | ||
2037 | dynobj = elf_hash_table (info)->dynobj; | |
2038 | ||
2039 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2040 | BFD_ASSERT (s != NULL); | |
2041 | ||
2042 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
2043 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | |
2044 | if (newcontents == NULL) | |
2045 | return false; | |
2046 | ||
2047 | dyn.d_tag = tag; | |
2048 | dyn.d_un.d_val = val; | |
2049 | elf_swap_dyn_out (dynobj, &dyn, | |
2050 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
2051 | ||
2052 | s->_raw_size = newsize; | |
2053 | s->contents = newcontents; | |
2054 | ||
2055 | return true; | |
2056 | } | |
30b30c21 RH |
2057 | |
2058 | /* Record a new local dynamic symbol. */ | |
2059 | ||
2060 | boolean | |
2061 | elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx) | |
2062 | struct bfd_link_info *info; | |
2063 | bfd *input_bfd; | |
2064 | long input_indx; | |
2065 | { | |
2066 | struct elf_link_local_dynamic_entry *entry; | |
2067 | struct elf_link_hash_table *eht; | |
2068 | struct bfd_strtab_hash *dynstr; | |
2069 | Elf_External_Sym esym; | |
2070 | unsigned long dynstr_index; | |
2071 | char *name; | |
30b30c21 RH |
2072 | |
2073 | /* See if the entry exists already. */ | |
2074 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
2075 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
2076 | return true; | |
2077 | ||
2078 | entry = (struct elf_link_local_dynamic_entry *) | |
2079 | bfd_alloc (input_bfd, sizeof (*entry)); | |
2080 | if (entry == NULL) | |
2081 | return false; | |
2082 | ||
2083 | /* Go find the symbol, so that we can find it's name. */ | |
2084 | if (bfd_seek (input_bfd, | |
2085 | (elf_tdata (input_bfd)->symtab_hdr.sh_offset | |
2086 | + input_indx * sizeof (Elf_External_Sym)), | |
2087 | SEEK_SET) != 0 | |
2088 | || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd) | |
2089 | != sizeof (Elf_External_Sym))) | |
2090 | return false; | |
2091 | elf_swap_symbol_in (input_bfd, &esym, &entry->isym); | |
2092 | ||
2093 | name = (bfd_elf_string_from_elf_section | |
2094 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
2095 | entry->isym.st_name)); | |
2096 | ||
2097 | dynstr = elf_hash_table (info)->dynstr; | |
2098 | if (dynstr == NULL) | |
2099 | { | |
2100 | /* Create a strtab to hold the dynamic symbol names. */ | |
2101 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init (); | |
2102 | if (dynstr == NULL) | |
2103 | return false; | |
2104 | } | |
2105 | ||
2106 | dynstr_index = _bfd_stringtab_add (dynstr, name, true, false); | |
2107 | if (dynstr_index == (unsigned long) -1) | |
2108 | return false; | |
2109 | entry->isym.st_name = dynstr_index; | |
2110 | ||
2111 | eht = elf_hash_table (info); | |
2112 | ||
2113 | entry->next = eht->dynlocal; | |
2114 | eht->dynlocal = entry; | |
2115 | entry->input_bfd = input_bfd; | |
2116 | entry->input_indx = input_indx; | |
2117 | eht->dynsymcount++; | |
2118 | ||
587ff49e RH |
2119 | /* Whatever binding the symbol had before, it's now local. */ |
2120 | entry->isym.st_info | |
2121 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
2122 | ||
30b30c21 RH |
2123 | /* The dynindx will be set at the end of size_dynamic_sections. */ |
2124 | ||
2125 | return true; | |
2126 | } | |
252b5132 RH |
2127 | \f |
2128 | ||
6b5bd373 MM |
2129 | /* Read and swap the relocs from the section indicated by SHDR. This |
2130 | may be either a REL or a RELA section. The relocations are | |
2131 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2132 | which should have already been allocated to contain enough space. | |
2133 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2134 | relocations should be stored. | |
2135 | ||
2136 | Returns false if something goes wrong. */ | |
2137 | ||
2138 | static boolean | |
2139 | elf_link_read_relocs_from_section (abfd, shdr, external_relocs, | |
2140 | internal_relocs) | |
2141 | bfd *abfd; | |
2142 | Elf_Internal_Shdr *shdr; | |
2143 | PTR external_relocs; | |
2144 | Elf_Internal_Rela *internal_relocs; | |
2145 | { | |
c7ac6ff8 MM |
2146 | struct elf_backend_data *bed; |
2147 | ||
6b5bd373 MM |
2148 | /* If there aren't any relocations, that's OK. */ |
2149 | if (!shdr) | |
2150 | return true; | |
2151 | ||
2152 | /* Position ourselves at the start of the section. */ | |
2153 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2154 | return false; | |
2155 | ||
2156 | /* Read the relocations. */ | |
2157 | if (bfd_read (external_relocs, 1, shdr->sh_size, abfd) | |
2158 | != shdr->sh_size) | |
2159 | return false; | |
2160 | ||
c7ac6ff8 MM |
2161 | bed = get_elf_backend_data (abfd); |
2162 | ||
6b5bd373 MM |
2163 | /* Convert the external relocations to the internal format. */ |
2164 | if (shdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2165 | { | |
2166 | Elf_External_Rel *erel; | |
2167 | Elf_External_Rel *erelend; | |
2168 | Elf_Internal_Rela *irela; | |
c7ac6ff8 | 2169 | Elf_Internal_Rel *irel; |
6b5bd373 MM |
2170 | |
2171 | erel = (Elf_External_Rel *) external_relocs; | |
2172 | erelend = erel + shdr->sh_size / shdr->sh_entsize; | |
2173 | irela = internal_relocs; | |
c7ac6ff8 MM |
2174 | irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel |
2175 | * sizeof (Elf_Internal_Rel))); | |
2176 | for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel) | |
6b5bd373 | 2177 | { |
65388f2d | 2178 | unsigned char i; |
c7ac6ff8 MM |
2179 | |
2180 | if (bed->s->swap_reloc_in) | |
2181 | (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel); | |
2182 | else | |
2183 | elf_swap_reloc_in (abfd, erel, irel); | |
6b5bd373 | 2184 | |
c7ac6ff8 MM |
2185 | for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i) |
2186 | { | |
2187 | irela[i].r_offset = irel[i].r_offset; | |
2188 | irela[i].r_info = irel[i].r_info; | |
2189 | irela[i].r_addend = 0; | |
2190 | } | |
6b5bd373 MM |
2191 | } |
2192 | } | |
2193 | else | |
2194 | { | |
2195 | Elf_External_Rela *erela; | |
2196 | Elf_External_Rela *erelaend; | |
2197 | Elf_Internal_Rela *irela; | |
2198 | ||
2199 | BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela)); | |
2200 | ||
2201 | erela = (Elf_External_Rela *) external_relocs; | |
2202 | erelaend = erela + shdr->sh_size / shdr->sh_entsize; | |
2203 | irela = internal_relocs; | |
c7ac6ff8 MM |
2204 | for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel) |
2205 | { | |
2206 | if (bed->s->swap_reloca_in) | |
2207 | (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela); | |
2208 | else | |
2209 | elf_swap_reloca_in (abfd, erela, irela); | |
2210 | } | |
6b5bd373 MM |
2211 | } |
2212 | ||
2213 | return true; | |
2214 | } | |
2215 | ||
23bc299b MM |
2216 | /* Read and swap the relocs for a section O. They may have been |
2217 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2218 | not NULL, they are used as buffers to read into. They are known to | |
2219 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2220 | the return value is allocated using either malloc or bfd_alloc, | |
2221 | according to the KEEP_MEMORY argument. If O has two relocation | |
2222 | sections (both REL and RELA relocations), then the REL_HDR | |
2223 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
2224 | REL_HDR2 relocations. */ | |
252b5132 RH |
2225 | |
2226 | Elf_Internal_Rela * | |
2227 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, | |
2228 | keep_memory) | |
2229 | bfd *abfd; | |
2230 | asection *o; | |
2231 | PTR external_relocs; | |
2232 | Elf_Internal_Rela *internal_relocs; | |
2233 | boolean keep_memory; | |
2234 | { | |
2235 | Elf_Internal_Shdr *rel_hdr; | |
2236 | PTR alloc1 = NULL; | |
2237 | Elf_Internal_Rela *alloc2 = NULL; | |
c7ac6ff8 | 2238 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
252b5132 RH |
2239 | |
2240 | if (elf_section_data (o)->relocs != NULL) | |
2241 | return elf_section_data (o)->relocs; | |
2242 | ||
2243 | if (o->reloc_count == 0) | |
2244 | return NULL; | |
2245 | ||
2246 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2247 | ||
2248 | if (internal_relocs == NULL) | |
2249 | { | |
2250 | size_t size; | |
2251 | ||
c7ac6ff8 MM |
2252 | size = (o->reloc_count * bed->s->int_rels_per_ext_rel |
2253 | * sizeof (Elf_Internal_Rela)); | |
252b5132 RH |
2254 | if (keep_memory) |
2255 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
2256 | else | |
2257 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | |
2258 | if (internal_relocs == NULL) | |
2259 | goto error_return; | |
2260 | } | |
2261 | ||
2262 | if (external_relocs == NULL) | |
2263 | { | |
6b5bd373 MM |
2264 | size_t size = (size_t) rel_hdr->sh_size; |
2265 | ||
2266 | if (elf_section_data (o)->rel_hdr2) | |
2267 | size += (size_t) elf_section_data (o)->rel_hdr2->sh_size; | |
2268 | alloc1 = (PTR) bfd_malloc (size); | |
252b5132 RH |
2269 | if (alloc1 == NULL) |
2270 | goto error_return; | |
2271 | external_relocs = alloc1; | |
2272 | } | |
2273 | ||
6b5bd373 MM |
2274 | if (!elf_link_read_relocs_from_section (abfd, rel_hdr, |
2275 | external_relocs, | |
2276 | internal_relocs)) | |
2277 | goto error_return; | |
2278 | if (!elf_link_read_relocs_from_section | |
2279 | (abfd, | |
2280 | elf_section_data (o)->rel_hdr2, | |
2f5116e2 | 2281 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, |
c7ac6ff8 MM |
2282 | internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize |
2283 | * bed->s->int_rels_per_ext_rel))) | |
252b5132 | 2284 | goto error_return; |
252b5132 RH |
2285 | |
2286 | /* Cache the results for next time, if we can. */ | |
2287 | if (keep_memory) | |
2288 | elf_section_data (o)->relocs = internal_relocs; | |
2289 | ||
2290 | if (alloc1 != NULL) | |
2291 | free (alloc1); | |
2292 | ||
2293 | /* Don't free alloc2, since if it was allocated we are passing it | |
2294 | back (under the name of internal_relocs). */ | |
2295 | ||
2296 | return internal_relocs; | |
2297 | ||
2298 | error_return: | |
2299 | if (alloc1 != NULL) | |
2300 | free (alloc1); | |
2301 | if (alloc2 != NULL) | |
2302 | free (alloc2); | |
2303 | return NULL; | |
2304 | } | |
2305 | \f | |
2306 | ||
2307 | /* Record an assignment to a symbol made by a linker script. We need | |
2308 | this in case some dynamic object refers to this symbol. */ | |
2309 | ||
2310 | /*ARGSUSED*/ | |
2311 | boolean | |
2312 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
7442e600 | 2313 | bfd *output_bfd ATTRIBUTE_UNUSED; |
252b5132 RH |
2314 | struct bfd_link_info *info; |
2315 | const char *name; | |
2316 | boolean provide; | |
2317 | { | |
2318 | struct elf_link_hash_entry *h; | |
2319 | ||
2320 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2321 | return true; | |
2322 | ||
2323 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
2324 | if (h == NULL) | |
2325 | return false; | |
2326 | ||
2327 | if (h->root.type == bfd_link_hash_new) | |
2328 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
2329 | ||
2330 | /* If this symbol is being provided by the linker script, and it is | |
2331 | currently defined by a dynamic object, but not by a regular | |
2332 | object, then mark it as undefined so that the generic linker will | |
2333 | force the correct value. */ | |
2334 | if (provide | |
2335 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2336 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2337 | h->root.type = bfd_link_hash_undefined; | |
2338 | ||
2339 | /* If this symbol is not being provided by the linker script, and it is | |
2340 | currently defined by a dynamic object, but not by a regular object, | |
2341 | then clear out any version information because the symbol will not be | |
2342 | associated with the dynamic object any more. */ | |
2343 | if (!provide | |
2344 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2345 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2346 | h->verinfo.verdef = NULL; | |
2347 | ||
2348 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2349 | h->type = STT_OBJECT; | |
2350 | ||
2351 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
2352 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
2353 | || info->shared) | |
2354 | && h->dynindx == -1) | |
2355 | { | |
2356 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2357 | return false; | |
2358 | ||
2359 | /* If this is a weak defined symbol, and we know a corresponding | |
2360 | real symbol from the same dynamic object, make sure the real | |
2361 | symbol is also made into a dynamic symbol. */ | |
2362 | if (h->weakdef != NULL | |
2363 | && h->weakdef->dynindx == -1) | |
2364 | { | |
2365 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
2366 | return false; | |
2367 | } | |
2368 | } | |
2369 | ||
2370 | return true; | |
2371 | } | |
2372 | \f | |
2373 | /* This structure is used to pass information to | |
2374 | elf_link_assign_sym_version. */ | |
2375 | ||
2376 | struct elf_assign_sym_version_info | |
2377 | { | |
2378 | /* Output BFD. */ | |
2379 | bfd *output_bfd; | |
2380 | /* General link information. */ | |
2381 | struct bfd_link_info *info; | |
2382 | /* Version tree. */ | |
2383 | struct bfd_elf_version_tree *verdefs; | |
2384 | /* Whether we are exporting all dynamic symbols. */ | |
2385 | boolean export_dynamic; | |
252b5132 RH |
2386 | /* Whether we had a failure. */ |
2387 | boolean failed; | |
2388 | }; | |
2389 | ||
2390 | /* This structure is used to pass information to | |
2391 | elf_link_find_version_dependencies. */ | |
2392 | ||
2393 | struct elf_find_verdep_info | |
2394 | { | |
2395 | /* Output BFD. */ | |
2396 | bfd *output_bfd; | |
2397 | /* General link information. */ | |
2398 | struct bfd_link_info *info; | |
2399 | /* The number of dependencies. */ | |
2400 | unsigned int vers; | |
2401 | /* Whether we had a failure. */ | |
2402 | boolean failed; | |
2403 | }; | |
2404 | ||
2405 | /* Array used to determine the number of hash table buckets to use | |
2406 | based on the number of symbols there are. If there are fewer than | |
2407 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
2408 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
2409 | than 32771 buckets. */ | |
2410 | ||
2411 | static const size_t elf_buckets[] = | |
2412 | { | |
2413 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
2414 | 16411, 32771, 0 | |
2415 | }; | |
2416 | ||
2417 | /* Compute bucket count for hashing table. We do not use a static set | |
2418 | of possible tables sizes anymore. Instead we determine for all | |
2419 | possible reasonable sizes of the table the outcome (i.e., the | |
2420 | number of collisions etc) and choose the best solution. The | |
2421 | weighting functions are not too simple to allow the table to grow | |
2422 | without bounds. Instead one of the weighting factors is the size. | |
2423 | Therefore the result is always a good payoff between few collisions | |
2424 | (= short chain lengths) and table size. */ | |
2425 | static size_t | |
2426 | compute_bucket_count (info) | |
2427 | struct bfd_link_info *info; | |
2428 | { | |
2429 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
7442e600 | 2430 | size_t best_size = 0; |
252b5132 RH |
2431 | unsigned long int *hashcodes; |
2432 | unsigned long int *hashcodesp; | |
2433 | unsigned long int i; | |
2434 | ||
2435 | /* Compute the hash values for all exported symbols. At the same | |
2436 | time store the values in an array so that we could use them for | |
2437 | optimizations. */ | |
2438 | hashcodes = (unsigned long int *) bfd_malloc (dynsymcount | |
2439 | * sizeof (unsigned long int)); | |
2440 | if (hashcodes == NULL) | |
2441 | return 0; | |
2442 | hashcodesp = hashcodes; | |
2443 | ||
2444 | /* Put all hash values in HASHCODES. */ | |
2445 | elf_link_hash_traverse (elf_hash_table (info), | |
2446 | elf_collect_hash_codes, &hashcodesp); | |
2447 | ||
2448 | /* We have a problem here. The following code to optimize the table | |
2449 | size requires an integer type with more the 32 bits. If | |
2450 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
2451 | #ifdef BFD_HOST_U_64_BIT | |
2452 | if (info->optimize == true) | |
2453 | { | |
2454 | unsigned long int nsyms = hashcodesp - hashcodes; | |
2455 | size_t minsize; | |
2456 | size_t maxsize; | |
2457 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
2458 | unsigned long int *counts ; | |
2459 | ||
2460 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
2461 | that the hashing table must at least have NSYMS/4 and at most | |
2462 | 2*NSYMS buckets. */ | |
2463 | minsize = nsyms / 4; | |
2464 | if (minsize == 0) | |
2465 | minsize = 1; | |
2466 | best_size = maxsize = nsyms * 2; | |
2467 | ||
2468 | /* Create array where we count the collisions in. We must use bfd_malloc | |
2469 | since the size could be large. */ | |
2470 | counts = (unsigned long int *) bfd_malloc (maxsize | |
2471 | * sizeof (unsigned long int)); | |
2472 | if (counts == NULL) | |
2473 | { | |
2474 | free (hashcodes); | |
2475 | return 0; | |
2476 | } | |
2477 | ||
2478 | /* Compute the "optimal" size for the hash table. The criteria is a | |
2479 | minimal chain length. The minor criteria is (of course) the size | |
2480 | of the table. */ | |
2481 | for (i = minsize; i < maxsize; ++i) | |
2482 | { | |
2483 | /* Walk through the array of hashcodes and count the collisions. */ | |
2484 | BFD_HOST_U_64_BIT max; | |
2485 | unsigned long int j; | |
2486 | unsigned long int fact; | |
2487 | ||
2488 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
2489 | ||
2490 | /* Determine how often each hash bucket is used. */ | |
2491 | for (j = 0; j < nsyms; ++j) | |
2492 | ++counts[hashcodes[j] % i]; | |
2493 | ||
2494 | /* For the weight function we need some information about the | |
2495 | pagesize on the target. This is information need not be 100% | |
2496 | accurate. Since this information is not available (so far) we | |
2497 | define it here to a reasonable default value. If it is crucial | |
2498 | to have a better value some day simply define this value. */ | |
2499 | # ifndef BFD_TARGET_PAGESIZE | |
2500 | # define BFD_TARGET_PAGESIZE (4096) | |
2501 | # endif | |
2502 | ||
2503 | /* We in any case need 2 + NSYMS entries for the size values and | |
2504 | the chains. */ | |
2505 | max = (2 + nsyms) * (ARCH_SIZE / 8); | |
2506 | ||
2507 | # if 1 | |
2508 | /* Variant 1: optimize for short chains. We add the squares | |
2509 | of all the chain lengths (which favous many small chain | |
2510 | over a few long chains). */ | |
2511 | for (j = 0; j < i; ++j) | |
2512 | max += counts[j] * counts[j]; | |
2513 | ||
2514 | /* This adds penalties for the overall size of the table. */ | |
2515 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2516 | max *= fact * fact; | |
2517 | # else | |
2518 | /* Variant 2: Optimize a lot more for small table. Here we | |
2519 | also add squares of the size but we also add penalties for | |
2520 | empty slots (the +1 term). */ | |
2521 | for (j = 0; j < i; ++j) | |
2522 | max += (1 + counts[j]) * (1 + counts[j]); | |
2523 | ||
2524 | /* The overall size of the table is considered, but not as | |
2525 | strong as in variant 1, where it is squared. */ | |
2526 | fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; | |
2527 | max *= fact; | |
2528 | # endif | |
2529 | ||
2530 | /* Compare with current best results. */ | |
2531 | if (max < best_chlen) | |
2532 | { | |
2533 | best_chlen = max; | |
2534 | best_size = i; | |
2535 | } | |
2536 | } | |
2537 | ||
2538 | free (counts); | |
2539 | } | |
2540 | else | |
2541 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
2542 | { | |
2543 | /* This is the fallback solution if no 64bit type is available or if we | |
2544 | are not supposed to spend much time on optimizations. We select the | |
2545 | bucket count using a fixed set of numbers. */ | |
2546 | for (i = 0; elf_buckets[i] != 0; i++) | |
2547 | { | |
2548 | best_size = elf_buckets[i]; | |
2549 | if (dynsymcount < elf_buckets[i + 1]) | |
2550 | break; | |
2551 | } | |
2552 | } | |
2553 | ||
2554 | /* Free the arrays we needed. */ | |
2555 | free (hashcodes); | |
2556 | ||
2557 | return best_size; | |
2558 | } | |
2559 | ||
2560 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
2561 | called by the ELF linker emulation before_allocation routine. We | |
2562 | must set the sizes of the sections before the linker sets the | |
2563 | addresses of the various sections. */ | |
2564 | ||
2565 | boolean | |
2566 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
2567 | export_dynamic, filter_shlib, | |
2568 | auxiliary_filters, info, sinterpptr, | |
2569 | verdefs) | |
2570 | bfd *output_bfd; | |
2571 | const char *soname; | |
2572 | const char *rpath; | |
2573 | boolean export_dynamic; | |
2574 | const char *filter_shlib; | |
2575 | const char * const *auxiliary_filters; | |
2576 | struct bfd_link_info *info; | |
2577 | asection **sinterpptr; | |
2578 | struct bfd_elf_version_tree *verdefs; | |
2579 | { | |
2580 | bfd_size_type soname_indx; | |
2581 | bfd *dynobj; | |
2582 | struct elf_backend_data *bed; | |
252b5132 RH |
2583 | struct elf_assign_sym_version_info asvinfo; |
2584 | ||
2585 | *sinterpptr = NULL; | |
2586 | ||
2587 | soname_indx = (bfd_size_type) -1; | |
2588 | ||
2589 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
2590 | return true; | |
2591 | ||
2592 | /* The backend may have to create some sections regardless of whether | |
2593 | we're dynamic or not. */ | |
2594 | bed = get_elf_backend_data (output_bfd); | |
2595 | if (bed->elf_backend_always_size_sections | |
2596 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
2597 | return false; | |
2598 | ||
2599 | dynobj = elf_hash_table (info)->dynobj; | |
2600 | ||
2601 | /* If there were no dynamic objects in the link, there is nothing to | |
2602 | do here. */ | |
2603 | if (dynobj == NULL) | |
2604 | return true; | |
2605 | ||
2606 | /* If we are supposed to export all symbols into the dynamic symbol | |
2607 | table (this is not the normal case), then do so. */ | |
2608 | if (export_dynamic) | |
2609 | { | |
2610 | struct elf_info_failed eif; | |
2611 | ||
2612 | eif.failed = false; | |
2613 | eif.info = info; | |
2614 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
2615 | (PTR) &eif); | |
2616 | if (eif.failed) | |
2617 | return false; | |
2618 | } | |
2619 | ||
2620 | if (elf_hash_table (info)->dynamic_sections_created) | |
2621 | { | |
2622 | struct elf_info_failed eif; | |
2623 | struct elf_link_hash_entry *h; | |
2624 | bfd_size_type strsize; | |
2625 | ||
2626 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
2627 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
2628 | ||
2629 | if (soname != NULL) | |
2630 | { | |
2631 | soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2632 | soname, true, true); | |
2633 | if (soname_indx == (bfd_size_type) -1 | |
2634 | || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
2635 | return false; | |
2636 | } | |
2637 | ||
2638 | if (info->symbolic) | |
2639 | { | |
2640 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
2641 | return false; | |
2642 | } | |
2643 | ||
2644 | if (rpath != NULL) | |
2645 | { | |
2646 | bfd_size_type indx; | |
2647 | ||
2648 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
2649 | true, true); | |
2650 | if (indx == (bfd_size_type) -1 | |
2651 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
2652 | return false; | |
2653 | } | |
2654 | ||
2655 | if (filter_shlib != NULL) | |
2656 | { | |
2657 | bfd_size_type indx; | |
2658 | ||
2659 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2660 | filter_shlib, true, true); | |
2661 | if (indx == (bfd_size_type) -1 | |
2662 | || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
2663 | return false; | |
2664 | } | |
2665 | ||
2666 | if (auxiliary_filters != NULL) | |
2667 | { | |
2668 | const char * const *p; | |
2669 | ||
2670 | for (p = auxiliary_filters; *p != NULL; p++) | |
2671 | { | |
2672 | bfd_size_type indx; | |
2673 | ||
2674 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2675 | *p, true, true); | |
2676 | if (indx == (bfd_size_type) -1 | |
2677 | || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
2678 | return false; | |
2679 | } | |
2680 | } | |
2681 | ||
2682 | /* Attach all the symbols to their version information. */ | |
2683 | asvinfo.output_bfd = output_bfd; | |
2684 | asvinfo.info = info; | |
2685 | asvinfo.verdefs = verdefs; | |
2686 | asvinfo.export_dynamic = export_dynamic; | |
252b5132 RH |
2687 | asvinfo.failed = false; |
2688 | ||
2689 | elf_link_hash_traverse (elf_hash_table (info), | |
2690 | elf_link_assign_sym_version, | |
2691 | (PTR) &asvinfo); | |
2692 | if (asvinfo.failed) | |
2693 | return false; | |
2694 | ||
2695 | /* Find all symbols which were defined in a dynamic object and make | |
2696 | the backend pick a reasonable value for them. */ | |
2697 | eif.failed = false; | |
2698 | eif.info = info; | |
2699 | elf_link_hash_traverse (elf_hash_table (info), | |
2700 | elf_adjust_dynamic_symbol, | |
2701 | (PTR) &eif); | |
2702 | if (eif.failed) | |
2703 | return false; | |
2704 | ||
2705 | /* Add some entries to the .dynamic section. We fill in some of the | |
2706 | values later, in elf_bfd_final_link, but we must add the entries | |
2707 | now so that we know the final size of the .dynamic section. */ | |
f0c2e336 MM |
2708 | |
2709 | /* If there are initialization and/or finalization functions to | |
2710 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
2711 | h = (info->init_function | |
2712 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2713 | info->init_function, false, | |
2714 | false, false) | |
2715 | : NULL); | |
252b5132 RH |
2716 | if (h != NULL |
2717 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2718 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2719 | { | |
2720 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
2721 | return false; | |
2722 | } | |
f0c2e336 MM |
2723 | h = (info->fini_function |
2724 | ? elf_link_hash_lookup (elf_hash_table (info), | |
2725 | info->fini_function, false, | |
2726 | false, false) | |
2727 | : NULL); | |
252b5132 RH |
2728 | if (h != NULL |
2729 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
2730 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
2731 | { | |
2732 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
2733 | return false; | |
2734 | } | |
f0c2e336 | 2735 | |
252b5132 RH |
2736 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); |
2737 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
2738 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
2739 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
2740 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
2741 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
2742 | sizeof (Elf_External_Sym))) | |
2743 | return false; | |
2744 | } | |
2745 | ||
2746 | /* The backend must work out the sizes of all the other dynamic | |
2747 | sections. */ | |
252b5132 RH |
2748 | if (bed->elf_backend_size_dynamic_sections |
2749 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
2750 | return false; | |
2751 | ||
2752 | if (elf_hash_table (info)->dynamic_sections_created) | |
2753 | { | |
2754 | size_t dynsymcount; | |
2755 | asection *s; | |
2756 | size_t bucketcount = 0; | |
2757 | Elf_Internal_Sym isym; | |
c7ac6ff8 | 2758 | size_t hash_entry_size; |
252b5132 RH |
2759 | |
2760 | /* Set up the version definition section. */ | |
2761 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |
2762 | BFD_ASSERT (s != NULL); | |
2763 | ||
2764 | /* We may have created additional version definitions if we are | |
2765 | just linking a regular application. */ | |
2766 | verdefs = asvinfo.verdefs; | |
2767 | ||
2768 | if (verdefs == NULL) | |
30b30c21 | 2769 | _bfd_strip_section_from_output (s); |
252b5132 RH |
2770 | else |
2771 | { | |
2772 | unsigned int cdefs; | |
2773 | bfd_size_type size; | |
2774 | struct bfd_elf_version_tree *t; | |
2775 | bfd_byte *p; | |
2776 | Elf_Internal_Verdef def; | |
2777 | Elf_Internal_Verdaux defaux; | |
2778 | ||
252b5132 RH |
2779 | cdefs = 0; |
2780 | size = 0; | |
2781 | ||
2782 | /* Make space for the base version. */ | |
2783 | size += sizeof (Elf_External_Verdef); | |
2784 | size += sizeof (Elf_External_Verdaux); | |
2785 | ++cdefs; | |
2786 | ||
2787 | for (t = verdefs; t != NULL; t = t->next) | |
2788 | { | |
2789 | struct bfd_elf_version_deps *n; | |
2790 | ||
2791 | size += sizeof (Elf_External_Verdef); | |
2792 | size += sizeof (Elf_External_Verdaux); | |
2793 | ++cdefs; | |
2794 | ||
2795 | for (n = t->deps; n != NULL; n = n->next) | |
2796 | size += sizeof (Elf_External_Verdaux); | |
2797 | } | |
2798 | ||
2799 | s->_raw_size = size; | |
2800 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
2801 | if (s->contents == NULL && s->_raw_size != 0) | |
2802 | return false; | |
2803 | ||
2804 | /* Fill in the version definition section. */ | |
2805 | ||
2806 | p = s->contents; | |
2807 | ||
2808 | def.vd_version = VER_DEF_CURRENT; | |
2809 | def.vd_flags = VER_FLG_BASE; | |
2810 | def.vd_ndx = 1; | |
2811 | def.vd_cnt = 1; | |
2812 | def.vd_aux = sizeof (Elf_External_Verdef); | |
2813 | def.vd_next = (sizeof (Elf_External_Verdef) | |
2814 | + sizeof (Elf_External_Verdaux)); | |
2815 | ||
2816 | if (soname_indx != (bfd_size_type) -1) | |
2817 | { | |
3a99b017 | 2818 | def.vd_hash = bfd_elf_hash (soname); |
252b5132 RH |
2819 | defaux.vda_name = soname_indx; |
2820 | } | |
2821 | else | |
2822 | { | |
2823 | const char *name; | |
2824 | bfd_size_type indx; | |
2825 | ||
2826 | name = output_bfd->filename; | |
3a99b017 | 2827 | def.vd_hash = bfd_elf_hash (name); |
252b5132 RH |
2828 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
2829 | name, true, false); | |
2830 | if (indx == (bfd_size_type) -1) | |
2831 | return false; | |
2832 | defaux.vda_name = indx; | |
2833 | } | |
2834 | defaux.vda_next = 0; | |
2835 | ||
2836 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
2837 | (Elf_External_Verdef *)p); | |
2838 | p += sizeof (Elf_External_Verdef); | |
2839 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2840 | (Elf_External_Verdaux *) p); | |
2841 | p += sizeof (Elf_External_Verdaux); | |
2842 | ||
2843 | for (t = verdefs; t != NULL; t = t->next) | |
2844 | { | |
2845 | unsigned int cdeps; | |
2846 | struct bfd_elf_version_deps *n; | |
2847 | struct elf_link_hash_entry *h; | |
2848 | ||
2849 | cdeps = 0; | |
2850 | for (n = t->deps; n != NULL; n = n->next) | |
2851 | ++cdeps; | |
2852 | ||
2853 | /* Add a symbol representing this version. */ | |
2854 | h = NULL; | |
2855 | if (! (_bfd_generic_link_add_one_symbol | |
2856 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
2857 | (bfd_vma) 0, (const char *) NULL, false, | |
2858 | get_elf_backend_data (dynobj)->collect, | |
2859 | (struct bfd_link_hash_entry **) &h))) | |
2860 | return false; | |
2861 | h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; | |
2862 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2863 | h->type = STT_OBJECT; | |
2864 | h->verinfo.vertree = t; | |
2865 | ||
2866 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
2867 | return false; | |
2868 | ||
2869 | def.vd_version = VER_DEF_CURRENT; | |
2870 | def.vd_flags = 0; | |
2871 | if (t->globals == NULL && t->locals == NULL && ! t->used) | |
2872 | def.vd_flags |= VER_FLG_WEAK; | |
2873 | def.vd_ndx = t->vernum + 1; | |
2874 | def.vd_cnt = cdeps + 1; | |
3a99b017 | 2875 | def.vd_hash = bfd_elf_hash (t->name); |
252b5132 RH |
2876 | def.vd_aux = sizeof (Elf_External_Verdef); |
2877 | if (t->next != NULL) | |
2878 | def.vd_next = (sizeof (Elf_External_Verdef) | |
2879 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
2880 | else | |
2881 | def.vd_next = 0; | |
2882 | ||
2883 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
2884 | (Elf_External_Verdef *) p); | |
2885 | p += sizeof (Elf_External_Verdef); | |
2886 | ||
2887 | defaux.vda_name = h->dynstr_index; | |
2888 | if (t->deps == NULL) | |
2889 | defaux.vda_next = 0; | |
2890 | else | |
2891 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
2892 | t->name_indx = defaux.vda_name; | |
2893 | ||
2894 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2895 | (Elf_External_Verdaux *) p); | |
2896 | p += sizeof (Elf_External_Verdaux); | |
2897 | ||
2898 | for (n = t->deps; n != NULL; n = n->next) | |
2899 | { | |
2900 | if (n->version_needed == NULL) | |
2901 | { | |
2902 | /* This can happen if there was an error in the | |
2903 | version script. */ | |
2904 | defaux.vda_name = 0; | |
2905 | } | |
2906 | else | |
2907 | defaux.vda_name = n->version_needed->name_indx; | |
2908 | if (n->next == NULL) | |
2909 | defaux.vda_next = 0; | |
2910 | else | |
2911 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
2912 | ||
2913 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
2914 | (Elf_External_Verdaux *) p); | |
2915 | p += sizeof (Elf_External_Verdaux); | |
2916 | } | |
2917 | } | |
2918 | ||
2919 | if (! elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
2920 | || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
2921 | return false; | |
2922 | ||
2923 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
2924 | } | |
2925 | ||
2926 | /* Work out the size of the version reference section. */ | |
2927 | ||
2928 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |
2929 | BFD_ASSERT (s != NULL); | |
2930 | { | |
2931 | struct elf_find_verdep_info sinfo; | |
2932 | ||
2933 | sinfo.output_bfd = output_bfd; | |
2934 | sinfo.info = info; | |
2935 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
2936 | if (sinfo.vers == 0) | |
2937 | sinfo.vers = 1; | |
2938 | sinfo.failed = false; | |
2939 | ||
2940 | elf_link_hash_traverse (elf_hash_table (info), | |
2941 | elf_link_find_version_dependencies, | |
2942 | (PTR) &sinfo); | |
2943 | ||
2944 | if (elf_tdata (output_bfd)->verref == NULL) | |
30b30c21 | 2945 | _bfd_strip_section_from_output (s); |
252b5132 RH |
2946 | else |
2947 | { | |
2948 | Elf_Internal_Verneed *t; | |
2949 | unsigned int size; | |
2950 | unsigned int crefs; | |
2951 | bfd_byte *p; | |
2952 | ||
2953 | /* Build the version definition section. */ | |
2954 | size = 0; | |
2955 | crefs = 0; | |
2956 | for (t = elf_tdata (output_bfd)->verref; | |
2957 | t != NULL; | |
2958 | t = t->vn_nextref) | |
2959 | { | |
2960 | Elf_Internal_Vernaux *a; | |
2961 | ||
2962 | size += sizeof (Elf_External_Verneed); | |
2963 | ++crefs; | |
2964 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2965 | size += sizeof (Elf_External_Vernaux); | |
2966 | } | |
2967 | ||
2968 | s->_raw_size = size; | |
2969 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, size); | |
2970 | if (s->contents == NULL) | |
2971 | return false; | |
2972 | ||
2973 | p = s->contents; | |
2974 | for (t = elf_tdata (output_bfd)->verref; | |
2975 | t != NULL; | |
2976 | t = t->vn_nextref) | |
2977 | { | |
2978 | unsigned int caux; | |
2979 | Elf_Internal_Vernaux *a; | |
2980 | bfd_size_type indx; | |
2981 | ||
2982 | caux = 0; | |
2983 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2984 | ++caux; | |
2985 | ||
2986 | t->vn_version = VER_NEED_CURRENT; | |
2987 | t->vn_cnt = caux; | |
2988 | if (elf_dt_name (t->vn_bfd) != NULL) | |
2989 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2990 | elf_dt_name (t->vn_bfd), | |
2991 | true, false); | |
2992 | else | |
2993 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
2994 | t->vn_bfd->filename, true, false); | |
2995 | if (indx == (bfd_size_type) -1) | |
2996 | return false; | |
2997 | t->vn_file = indx; | |
2998 | t->vn_aux = sizeof (Elf_External_Verneed); | |
2999 | if (t->vn_nextref == NULL) | |
3000 | t->vn_next = 0; | |
3001 | else | |
3002 | t->vn_next = (sizeof (Elf_External_Verneed) | |
3003 | + caux * sizeof (Elf_External_Vernaux)); | |
3004 | ||
3005 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
3006 | (Elf_External_Verneed *) p); | |
3007 | p += sizeof (Elf_External_Verneed); | |
3008 | ||
3009 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3010 | { | |
3a99b017 | 3011 | a->vna_hash = bfd_elf_hash (a->vna_nodename); |
252b5132 RH |
3012 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, |
3013 | a->vna_nodename, true, false); | |
3014 | if (indx == (bfd_size_type) -1) | |
3015 | return false; | |
3016 | a->vna_name = indx; | |
3017 | if (a->vna_nextptr == NULL) | |
3018 | a->vna_next = 0; | |
3019 | else | |
3020 | a->vna_next = sizeof (Elf_External_Vernaux); | |
3021 | ||
3022 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
3023 | (Elf_External_Vernaux *) p); | |
3024 | p += sizeof (Elf_External_Vernaux); | |
3025 | } | |
3026 | } | |
3027 | ||
3028 | if (! elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
3029 | || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
3030 | return false; | |
3031 | ||
3032 | elf_tdata (output_bfd)->cverrefs = crefs; | |
3033 | } | |
3034 | } | |
3035 | ||
30b30c21 RH |
3036 | /* Assign dynsym indicies. In a shared library we generate a |
3037 | section symbol for each output section, which come first. | |
3038 | Next come all of the back-end allocated local dynamic syms, | |
3039 | followed by the rest of the global symbols. */ | |
3040 | ||
3041 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); | |
252b5132 RH |
3042 | |
3043 | /* Work out the size of the symbol version section. */ | |
3044 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3045 | BFD_ASSERT (s != NULL); | |
3046 | if (dynsymcount == 0 | |
3047 | || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) | |
3048 | { | |
30b30c21 | 3049 | _bfd_strip_section_from_output (s); |
42751cf3 MM |
3050 | /* The DYNSYMCOUNT might have changed if we were going to |
3051 | output a dynamic symbol table entry for S. */ | |
30b30c21 | 3052 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info); |
252b5132 RH |
3053 | } |
3054 | else | |
3055 | { | |
3056 | s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); | |
3057 | s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); | |
3058 | if (s->contents == NULL) | |
3059 | return false; | |
3060 | ||
3061 | if (! elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
3062 | return false; | |
3063 | } | |
3064 | ||
3065 | /* Set the size of the .dynsym and .hash sections. We counted | |
3066 | the number of dynamic symbols in elf_link_add_object_symbols. | |
3067 | We will build the contents of .dynsym and .hash when we build | |
3068 | the final symbol table, because until then we do not know the | |
3069 | correct value to give the symbols. We built the .dynstr | |
3070 | section as we went along in elf_link_add_object_symbols. */ | |
3071 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3072 | BFD_ASSERT (s != NULL); | |
3073 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
3074 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
3075 | if (s->contents == NULL && s->_raw_size != 0) | |
3076 | return false; | |
3077 | ||
3078 | /* The first entry in .dynsym is a dummy symbol. */ | |
3079 | isym.st_value = 0; | |
3080 | isym.st_size = 0; | |
3081 | isym.st_name = 0; | |
3082 | isym.st_info = 0; | |
3083 | isym.st_other = 0; | |
3084 | isym.st_shndx = 0; | |
3085 | elf_swap_symbol_out (output_bfd, &isym, | |
3086 | (PTR) (Elf_External_Sym *) s->contents); | |
3087 | ||
3088 | /* Compute the size of the hashing table. As a side effect this | |
3089 | computes the hash values for all the names we export. */ | |
3090 | bucketcount = compute_bucket_count (info); | |
3091 | ||
3092 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
3093 | BFD_ASSERT (s != NULL); | |
c7ac6ff8 MM |
3094 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
3095 | s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
252b5132 RH |
3096 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); |
3097 | if (s->contents == NULL) | |
3098 | return false; | |
3099 | memset (s->contents, 0, (size_t) s->_raw_size); | |
3100 | ||
c7ac6ff8 MM |
3101 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
3102 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
3103 | s->contents + hash_entry_size); | |
252b5132 RH |
3104 | |
3105 | elf_hash_table (info)->bucketcount = bucketcount; | |
3106 | ||
3107 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
3108 | BFD_ASSERT (s != NULL); | |
3109 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
3110 | ||
3111 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
3112 | return false; | |
3113 | } | |
3114 | ||
3115 | return true; | |
3116 | } | |
3117 | \f | |
3118 | /* Fix up the flags for a symbol. This handles various cases which | |
3119 | can only be fixed after all the input files are seen. This is | |
3120 | currently called by both adjust_dynamic_symbol and | |
3121 | assign_sym_version, which is unnecessary but perhaps more robust in | |
3122 | the face of future changes. */ | |
3123 | ||
3124 | static boolean | |
3125 | elf_fix_symbol_flags (h, eif) | |
3126 | struct elf_link_hash_entry *h; | |
3127 | struct elf_info_failed *eif; | |
3128 | { | |
3129 | /* If this symbol was mentioned in a non-ELF file, try to set | |
3130 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
3131 | permit a non-ELF file to correctly refer to a symbol defined in | |
3132 | an ELF dynamic object. */ | |
3133 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
3134 | { | |
3135 | if (h->root.type != bfd_link_hash_defined | |
3136 | && h->root.type != bfd_link_hash_defweak) | |
3137 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3138 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3139 | else | |
3140 | { | |
3141 | if (h->root.u.def.section->owner != NULL | |
3142 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
3143 | == bfd_target_elf_flavour)) | |
3144 | h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR | |
3145 | | ELF_LINK_HASH_REF_REGULAR_NONWEAK); | |
3146 | else | |
3147 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3148 | } | |
3149 | ||
3150 | if (h->dynindx == -1 | |
3151 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
3152 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) | |
3153 | { | |
3154 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3155 | { | |
3156 | eif->failed = true; | |
3157 | return false; | |
3158 | } | |
3159 | } | |
3160 | } | |
3161 | else | |
3162 | { | |
3163 | /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol | |
3164 | was first seen in a non-ELF file. Fortunately, if the symbol | |
3165 | was first seen in an ELF file, we're probably OK unless the | |
3166 | symbol was defined in a non-ELF file. Catch that case here. | |
3167 | FIXME: We're still in trouble if the symbol was first seen in | |
3168 | a dynamic object, and then later in a non-ELF regular object. */ | |
3169 | if ((h->root.type == bfd_link_hash_defined | |
3170 | || h->root.type == bfd_link_hash_defweak) | |
3171 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3172 | && (h->root.u.def.section->owner != NULL | |
3173 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
3174 | != bfd_target_elf_flavour) | |
3175 | : (bfd_is_abs_section (h->root.u.def.section) | |
3176 | && (h->elf_link_hash_flags | |
3177 | & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) | |
3178 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3179 | } | |
3180 | ||
3181 | /* If this is a final link, and the symbol was defined as a common | |
3182 | symbol in a regular object file, and there was no definition in | |
3183 | any dynamic object, then the linker will have allocated space for | |
3184 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
3185 | flag will not have been set. */ | |
3186 | if (h->root.type == bfd_link_hash_defined | |
3187 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
3188 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
3189 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3190 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
3191 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3192 | ||
3193 | /* If -Bsymbolic was used (which means to bind references to global | |
3194 | symbols to the definition within the shared object), and this | |
3195 | symbol was defined in a regular object, then it actually doesn't | |
3196 | need a PLT entry. */ | |
3197 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
3198 | && eif->info->shared | |
3199 | && eif->info->symbolic | |
3200 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3201 | { | |
3202 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3203 | h->plt.offset = (bfd_vma) -1; | |
3204 | } | |
3205 | ||
3206 | return true; | |
3207 | } | |
3208 | ||
3209 | /* Make the backend pick a good value for a dynamic symbol. This is | |
3210 | called via elf_link_hash_traverse, and also calls itself | |
3211 | recursively. */ | |
3212 | ||
3213 | static boolean | |
3214 | elf_adjust_dynamic_symbol (h, data) | |
3215 | struct elf_link_hash_entry *h; | |
3216 | PTR data; | |
3217 | { | |
3218 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3219 | bfd *dynobj; | |
3220 | struct elf_backend_data *bed; | |
3221 | ||
3222 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3223 | if (h->root.type == bfd_link_hash_indirect) | |
3224 | return true; | |
3225 | ||
3226 | /* Fix the symbol flags. */ | |
3227 | if (! elf_fix_symbol_flags (h, eif)) | |
3228 | return false; | |
3229 | ||
3230 | /* If this symbol does not require a PLT entry, and it is not | |
3231 | defined by a dynamic object, or is not referenced by a regular | |
3232 | object, ignore it. We do have to handle a weak defined symbol, | |
3233 | even if no regular object refers to it, if we decided to add it | |
3234 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
3235 | about symbols which are defined by one dynamic object and | |
3236 | referenced by another one? */ | |
3237 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
3238 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3239 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3240 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 | |
3241 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
3242 | { | |
3243 | h->plt.offset = (bfd_vma) -1; | |
3244 | return true; | |
3245 | } | |
3246 | ||
3247 | /* If we've already adjusted this symbol, don't do it again. This | |
3248 | can happen via a recursive call. */ | |
3249 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
3250 | return true; | |
3251 | ||
3252 | /* Don't look at this symbol again. Note that we must set this | |
3253 | after checking the above conditions, because we may look at a | |
3254 | symbol once, decide not to do anything, and then get called | |
3255 | recursively later after REF_REGULAR is set below. */ | |
3256 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
3257 | ||
3258 | /* If this is a weak definition, and we know a real definition, and | |
3259 | the real symbol is not itself defined by a regular object file, | |
3260 | then get a good value for the real definition. We handle the | |
3261 | real symbol first, for the convenience of the backend routine. | |
3262 | ||
3263 | Note that there is a confusing case here. If the real definition | |
3264 | is defined by a regular object file, we don't get the real symbol | |
3265 | from the dynamic object, but we do get the weak symbol. If the | |
3266 | processor backend uses a COPY reloc, then if some routine in the | |
3267 | dynamic object changes the real symbol, we will not see that | |
3268 | change in the corresponding weak symbol. This is the way other | |
3269 | ELF linkers work as well, and seems to be a result of the shared | |
3270 | library model. | |
3271 | ||
3272 | I will clarify this issue. Most SVR4 shared libraries define the | |
3273 | variable _timezone and define timezone as a weak synonym. The | |
3274 | tzset call changes _timezone. If you write | |
3275 | extern int timezone; | |
3276 | int _timezone = 5; | |
3277 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
3278 | you might expect that, since timezone is a synonym for _timezone, | |
3279 | the same number will print both times. However, if the processor | |
3280 | backend uses a COPY reloc, then actually timezone will be copied | |
3281 | into your process image, and, since you define _timezone | |
3282 | yourself, _timezone will not. Thus timezone and _timezone will | |
3283 | wind up at different memory locations. The tzset call will set | |
3284 | _timezone, leaving timezone unchanged. */ | |
3285 | ||
3286 | if (h->weakdef != NULL) | |
3287 | { | |
3288 | struct elf_link_hash_entry *weakdef; | |
3289 | ||
3290 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
3291 | || h->root.type == bfd_link_hash_defweak); | |
3292 | weakdef = h->weakdef; | |
3293 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
3294 | || weakdef->root.type == bfd_link_hash_defweak); | |
3295 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
3296 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
3297 | { | |
3298 | /* This symbol is defined by a regular object file, so we | |
3299 | will not do anything special. Clear weakdef for the | |
3300 | convenience of the processor backend. */ | |
3301 | h->weakdef = NULL; | |
3302 | } | |
3303 | else | |
3304 | { | |
3305 | /* There is an implicit reference by a regular object file | |
3306 | via the weak symbol. */ | |
3307 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
3308 | if (h->weakdef->elf_link_hash_flags | |
3309 | & ELF_LINK_HASH_REF_REGULAR_NONWEAK) | |
3310 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; | |
3311 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
3312 | return false; | |
3313 | } | |
3314 | } | |
3315 | ||
3316 | /* If a symbol has no type and no size and does not require a PLT | |
3317 | entry, then we are probably about to do the wrong thing here: we | |
3318 | are probably going to create a COPY reloc for an empty object. | |
3319 | This case can arise when a shared object is built with assembly | |
3320 | code, and the assembly code fails to set the symbol type. */ | |
3321 | if (h->size == 0 | |
3322 | && h->type == STT_NOTYPE | |
3323 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
3324 | (*_bfd_error_handler) | |
3325 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
3326 | h->root.root.string); | |
3327 | ||
3328 | dynobj = elf_hash_table (eif->info)->dynobj; | |
3329 | bed = get_elf_backend_data (dynobj); | |
3330 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
3331 | { | |
3332 | eif->failed = true; | |
3333 | return false; | |
3334 | } | |
3335 | ||
3336 | return true; | |
3337 | } | |
3338 | \f | |
3339 | /* This routine is used to export all defined symbols into the dynamic | |
3340 | symbol table. It is called via elf_link_hash_traverse. */ | |
3341 | ||
3342 | static boolean | |
3343 | elf_export_symbol (h, data) | |
3344 | struct elf_link_hash_entry *h; | |
3345 | PTR data; | |
3346 | { | |
3347 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3348 | ||
3349 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3350 | if (h->root.type == bfd_link_hash_indirect) | |
3351 | return true; | |
3352 | ||
3353 | if (h->dynindx == -1 | |
3354 | && (h->elf_link_hash_flags | |
3355 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
3356 | { | |
3357 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3358 | { | |
3359 | eif->failed = true; | |
3360 | return false; | |
3361 | } | |
3362 | } | |
3363 | ||
3364 | return true; | |
3365 | } | |
3366 | \f | |
3367 | /* Look through the symbols which are defined in other shared | |
3368 | libraries and referenced here. Update the list of version | |
3369 | dependencies. This will be put into the .gnu.version_r section. | |
3370 | This function is called via elf_link_hash_traverse. */ | |
3371 | ||
3372 | static boolean | |
3373 | elf_link_find_version_dependencies (h, data) | |
3374 | struct elf_link_hash_entry *h; | |
3375 | PTR data; | |
3376 | { | |
3377 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | |
3378 | Elf_Internal_Verneed *t; | |
3379 | Elf_Internal_Vernaux *a; | |
3380 | ||
3381 | /* We only care about symbols defined in shared objects with version | |
3382 | information. */ | |
3383 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
3384 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
3385 | || h->dynindx == -1 | |
3386 | || h->verinfo.verdef == NULL) | |
3387 | return true; | |
3388 | ||
3389 | /* See if we already know about this version. */ | |
3390 | for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) | |
3391 | { | |
3392 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
3393 | continue; | |
3394 | ||
3395 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
3396 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
3397 | return true; | |
3398 | ||
3399 | break; | |
3400 | } | |
3401 | ||
3402 | /* This is a new version. Add it to tree we are building. */ | |
3403 | ||
3404 | if (t == NULL) | |
3405 | { | |
3406 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t); | |
3407 | if (t == NULL) | |
3408 | { | |
3409 | rinfo->failed = true; | |
3410 | return false; | |
3411 | } | |
3412 | ||
3413 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
3414 | t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; | |
3415 | elf_tdata (rinfo->output_bfd)->verref = t; | |
3416 | } | |
3417 | ||
3418 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a); | |
3419 | ||
3420 | /* Note that we are copying a string pointer here, and testing it | |
3421 | above. If bfd_elf_string_from_elf_section is ever changed to | |
3422 | discard the string data when low in memory, this will have to be | |
3423 | fixed. */ | |
3424 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
3425 | ||
3426 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
3427 | a->vna_nextptr = t->vn_auxptr; | |
3428 | ||
3429 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
3430 | ++rinfo->vers; | |
3431 | ||
3432 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
3433 | ||
3434 | t->vn_auxptr = a; | |
3435 | ||
3436 | return true; | |
3437 | } | |
3438 | ||
3439 | /* Figure out appropriate versions for all the symbols. We may not | |
3440 | have the version number script until we have read all of the input | |
3441 | files, so until that point we don't know which symbols should be | |
3442 | local. This function is called via elf_link_hash_traverse. */ | |
3443 | ||
3444 | static boolean | |
3445 | elf_link_assign_sym_version (h, data) | |
3446 | struct elf_link_hash_entry *h; | |
3447 | PTR data; | |
3448 | { | |
3449 | struct elf_assign_sym_version_info *sinfo = | |
3450 | (struct elf_assign_sym_version_info *) data; | |
3451 | struct bfd_link_info *info = sinfo->info; | |
3452 | struct elf_info_failed eif; | |
3453 | char *p; | |
3454 | ||
3455 | /* Fix the symbol flags. */ | |
3456 | eif.failed = false; | |
3457 | eif.info = info; | |
3458 | if (! elf_fix_symbol_flags (h, &eif)) | |
3459 | { | |
3460 | if (eif.failed) | |
3461 | sinfo->failed = true; | |
3462 | return false; | |
3463 | } | |
3464 | ||
3465 | /* We only need version numbers for symbols defined in regular | |
3466 | objects. */ | |
3467 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
3468 | return true; | |
3469 | ||
3470 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
3471 | if (p != NULL && h->verinfo.vertree == NULL) | |
3472 | { | |
3473 | struct bfd_elf_version_tree *t; | |
3474 | boolean hidden; | |
3475 | ||
3476 | hidden = true; | |
3477 | ||
3478 | /* There are two consecutive ELF_VER_CHR characters if this is | |
3479 | not a hidden symbol. */ | |
3480 | ++p; | |
3481 | if (*p == ELF_VER_CHR) | |
3482 | { | |
3483 | hidden = false; | |
3484 | ++p; | |
3485 | } | |
3486 | ||
3487 | /* If there is no version string, we can just return out. */ | |
3488 | if (*p == '\0') | |
3489 | { | |
3490 | if (hidden) | |
3491 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3492 | return true; | |
3493 | } | |
3494 | ||
3495 | /* Look for the version. If we find it, it is no longer weak. */ | |
3496 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3497 | { | |
3498 | if (strcmp (t->name, p) == 0) | |
3499 | { | |
3500 | int len; | |
3501 | char *alc; | |
3502 | struct bfd_elf_version_expr *d; | |
3503 | ||
3504 | len = p - h->root.root.string; | |
3505 | alc = bfd_alloc (sinfo->output_bfd, len); | |
3506 | if (alc == NULL) | |
3507 | return false; | |
3508 | strncpy (alc, h->root.root.string, len - 1); | |
3509 | alc[len - 1] = '\0'; | |
3510 | if (alc[len - 2] == ELF_VER_CHR) | |
3511 | alc[len - 2] = '\0'; | |
3512 | ||
3513 | h->verinfo.vertree = t; | |
3514 | t->used = true; | |
3515 | d = NULL; | |
3516 | ||
3517 | if (t->globals != NULL) | |
3518 | { | |
3519 | for (d = t->globals; d != NULL; d = d->next) | |
3520 | if ((*d->match) (d, alc)) | |
3521 | break; | |
3522 | } | |
3523 | ||
3524 | /* See if there is anything to force this symbol to | |
3525 | local scope. */ | |
3526 | if (d == NULL && t->locals != NULL) | |
3527 | { | |
3528 | for (d = t->locals; d != NULL; d = d->next) | |
3529 | { | |
3530 | if ((*d->match) (d, alc)) | |
3531 | { | |
3532 | if (h->dynindx != -1 | |
3533 | && info->shared | |
3534 | && ! sinfo->export_dynamic) | |
3535 | { | |
252b5132 RH |
3536 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3537 | h->elf_link_hash_flags &=~ | |
3538 | ELF_LINK_HASH_NEEDS_PLT; | |
3539 | h->dynindx = -1; | |
3540 | h->plt.offset = (bfd_vma) -1; | |
3541 | /* FIXME: The name of the symbol has | |
3542 | already been recorded in the dynamic | |
3543 | string table section. */ | |
3544 | } | |
3545 | ||
3546 | break; | |
3547 | } | |
3548 | } | |
3549 | } | |
3550 | ||
3551 | bfd_release (sinfo->output_bfd, alc); | |
3552 | break; | |
3553 | } | |
3554 | } | |
3555 | ||
3556 | /* If we are building an application, we need to create a | |
3557 | version node for this version. */ | |
3558 | if (t == NULL && ! info->shared) | |
3559 | { | |
3560 | struct bfd_elf_version_tree **pp; | |
3561 | int version_index; | |
3562 | ||
3563 | /* If we aren't going to export this symbol, we don't need | |
3564 | to worry about it. */ | |
3565 | if (h->dynindx == -1) | |
3566 | return true; | |
3567 | ||
3568 | t = ((struct bfd_elf_version_tree *) | |
3569 | bfd_alloc (sinfo->output_bfd, sizeof *t)); | |
3570 | if (t == NULL) | |
3571 | { | |
3572 | sinfo->failed = true; | |
3573 | return false; | |
3574 | } | |
3575 | ||
3576 | t->next = NULL; | |
3577 | t->name = p; | |
3578 | t->globals = NULL; | |
3579 | t->locals = NULL; | |
3580 | t->deps = NULL; | |
3581 | t->name_indx = (unsigned int) -1; | |
3582 | t->used = true; | |
3583 | ||
3584 | version_index = 1; | |
3585 | for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) | |
3586 | ++version_index; | |
3587 | t->vernum = version_index; | |
3588 | ||
3589 | *pp = t; | |
3590 | ||
3591 | h->verinfo.vertree = t; | |
3592 | } | |
3593 | else if (t == NULL) | |
3594 | { | |
3595 | /* We could not find the version for a symbol when | |
3596 | generating a shared archive. Return an error. */ | |
3597 | (*_bfd_error_handler) | |
3598 | (_("%s: undefined versioned symbol name %s"), | |
3599 | bfd_get_filename (sinfo->output_bfd), h->root.root.string); | |
3600 | bfd_set_error (bfd_error_bad_value); | |
3601 | sinfo->failed = true; | |
3602 | return false; | |
3603 | } | |
3604 | ||
3605 | if (hidden) | |
3606 | h->elf_link_hash_flags |= ELF_LINK_HIDDEN; | |
3607 | } | |
3608 | ||
3609 | /* If we don't have a version for this symbol, see if we can find | |
3610 | something. */ | |
3611 | if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) | |
3612 | { | |
3613 | struct bfd_elf_version_tree *t; | |
3614 | struct bfd_elf_version_tree *deflt; | |
3615 | struct bfd_elf_version_expr *d; | |
3616 | ||
3617 | /* See if can find what version this symbol is in. If the | |
3618 | symbol is supposed to be local, then don't actually register | |
3619 | it. */ | |
3620 | deflt = NULL; | |
3621 | for (t = sinfo->verdefs; t != NULL; t = t->next) | |
3622 | { | |
3623 | if (t->globals != NULL) | |
3624 | { | |
3625 | for (d = t->globals; d != NULL; d = d->next) | |
3626 | { | |
3627 | if ((*d->match) (d, h->root.root.string)) | |
3628 | { | |
3629 | h->verinfo.vertree = t; | |
3630 | break; | |
3631 | } | |
3632 | } | |
3633 | ||
3634 | if (d != NULL) | |
3635 | break; | |
3636 | } | |
3637 | ||
3638 | if (t->locals != NULL) | |
3639 | { | |
3640 | for (d = t->locals; d != NULL; d = d->next) | |
3641 | { | |
3642 | if (d->pattern[0] == '*' && d->pattern[1] == '\0') | |
3643 | deflt = t; | |
3644 | else if ((*d->match) (d, h->root.root.string)) | |
3645 | { | |
3646 | h->verinfo.vertree = t; | |
3647 | if (h->dynindx != -1 | |
3648 | && info->shared | |
3649 | && ! sinfo->export_dynamic) | |
3650 | { | |
252b5132 RH |
3651 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3652 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3653 | h->dynindx = -1; | |
3654 | h->plt.offset = (bfd_vma) -1; | |
3655 | /* FIXME: The name of the symbol has already | |
3656 | been recorded in the dynamic string table | |
3657 | section. */ | |
3658 | } | |
3659 | break; | |
3660 | } | |
3661 | } | |
3662 | ||
3663 | if (d != NULL) | |
3664 | break; | |
3665 | } | |
3666 | } | |
3667 | ||
3668 | if (deflt != NULL && h->verinfo.vertree == NULL) | |
3669 | { | |
3670 | h->verinfo.vertree = deflt; | |
3671 | if (h->dynindx != -1 | |
3672 | && info->shared | |
3673 | && ! sinfo->export_dynamic) | |
3674 | { | |
252b5132 RH |
3675 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; |
3676 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
3677 | h->dynindx = -1; | |
3678 | h->plt.offset = (bfd_vma) -1; | |
3679 | /* FIXME: The name of the symbol has already been | |
3680 | recorded in the dynamic string table section. */ | |
3681 | } | |
3682 | } | |
3683 | } | |
3684 | ||
3685 | return true; | |
3686 | } | |
252b5132 RH |
3687 | \f |
3688 | /* Final phase of ELF linker. */ | |
3689 | ||
3690 | /* A structure we use to avoid passing large numbers of arguments. */ | |
3691 | ||
3692 | struct elf_final_link_info | |
3693 | { | |
3694 | /* General link information. */ | |
3695 | struct bfd_link_info *info; | |
3696 | /* Output BFD. */ | |
3697 | bfd *output_bfd; | |
3698 | /* Symbol string table. */ | |
3699 | struct bfd_strtab_hash *symstrtab; | |
3700 | /* .dynsym section. */ | |
3701 | asection *dynsym_sec; | |
3702 | /* .hash section. */ | |
3703 | asection *hash_sec; | |
3704 | /* symbol version section (.gnu.version). */ | |
3705 | asection *symver_sec; | |
3706 | /* Buffer large enough to hold contents of any section. */ | |
3707 | bfd_byte *contents; | |
3708 | /* Buffer large enough to hold external relocs of any section. */ | |
3709 | PTR external_relocs; | |
3710 | /* Buffer large enough to hold internal relocs of any section. */ | |
3711 | Elf_Internal_Rela *internal_relocs; | |
3712 | /* Buffer large enough to hold external local symbols of any input | |
3713 | BFD. */ | |
3714 | Elf_External_Sym *external_syms; | |
3715 | /* Buffer large enough to hold internal local symbols of any input | |
3716 | BFD. */ | |
3717 | Elf_Internal_Sym *internal_syms; | |
3718 | /* Array large enough to hold a symbol index for each local symbol | |
3719 | of any input BFD. */ | |
3720 | long *indices; | |
3721 | /* Array large enough to hold a section pointer for each local | |
3722 | symbol of any input BFD. */ | |
3723 | asection **sections; | |
3724 | /* Buffer to hold swapped out symbols. */ | |
3725 | Elf_External_Sym *symbuf; | |
3726 | /* Number of swapped out symbols in buffer. */ | |
3727 | size_t symbuf_count; | |
3728 | /* Number of symbols which fit in symbuf. */ | |
3729 | size_t symbuf_size; | |
3730 | }; | |
3731 | ||
3732 | static boolean elf_link_output_sym | |
3733 | PARAMS ((struct elf_final_link_info *, const char *, | |
3734 | Elf_Internal_Sym *, asection *)); | |
3735 | static boolean elf_link_flush_output_syms | |
3736 | PARAMS ((struct elf_final_link_info *)); | |
3737 | static boolean elf_link_output_extsym | |
3738 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
3739 | static boolean elf_link_input_bfd | |
3740 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
3741 | static boolean elf_reloc_link_order | |
3742 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
3743 | struct bfd_link_order *)); | |
3744 | ||
3745 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
3746 | ||
3747 | struct elf_outext_info | |
3748 | { | |
3749 | boolean failed; | |
3750 | boolean localsyms; | |
3751 | struct elf_final_link_info *finfo; | |
3752 | }; | |
3753 | ||
23bc299b MM |
3754 | /* Compute the size of, and allocate space for, REL_HDR which is the |
3755 | section header for a section containing relocations for O. */ | |
3756 | ||
3757 | static boolean | |
3758 | elf_link_size_reloc_section (abfd, rel_hdr, o) | |
3759 | bfd *abfd; | |
3760 | Elf_Internal_Shdr *rel_hdr; | |
3761 | asection *o; | |
3762 | { | |
3763 | register struct elf_link_hash_entry **p, **pend; | |
3764 | ||
3765 | /* We are overestimating the size required for the relocation | |
3766 | sections, in the case that we are using both REL and RELA | |
3767 | relocations for a single section. In that case, RELOC_COUNT will | |
3768 | be the total number of relocations required, and we allocate | |
3769 | space for that many REL relocations as well as that many RELA | |
3770 | relocations. This approximation is wasteful of disk space. | |
3771 | However, until we keep track of how many of each kind of | |
3772 | relocation is required, it's difficult to calculate the right | |
3773 | value. */ | |
3774 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
3775 | ||
3776 | /* The contents field must last into write_object_contents, so we | |
3777 | allocate it with bfd_alloc rather than malloc. */ | |
3778 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
3779 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
3780 | return false; | |
3781 | ||
3782 | p = ((struct elf_link_hash_entry **) | |
3783 | bfd_malloc (o->reloc_count | |
3784 | * sizeof (struct elf_link_hash_entry *))); | |
3785 | if (p == NULL && o->reloc_count != 0) | |
3786 | return false; | |
3787 | ||
3788 | elf_section_data (o)->rel_hashes = p; | |
3789 | pend = p + o->reloc_count; | |
3790 | for (; p < pend; p++) | |
3791 | *p = NULL; | |
3792 | ||
3793 | return true; | |
3794 | } | |
3795 | ||
31367b81 MM |
3796 | /* When performing a relocateable link, the input relocations are |
3797 | preserved. But, if they reference global symbols, the indices | |
3798 | referenced must be updated. Update all the relocations in | |
3799 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ | |
3800 | ||
3801 | static void | |
3802 | elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash) | |
3803 | bfd *abfd; | |
3804 | Elf_Internal_Shdr *rel_hdr; | |
3805 | unsigned int count; | |
3806 | struct elf_link_hash_entry **rel_hash; | |
3807 | { | |
3808 | unsigned int i; | |
3809 | ||
3810 | for (i = 0; i < count; i++, rel_hash++) | |
3811 | { | |
3812 | if (*rel_hash == NULL) | |
3813 | continue; | |
3814 | ||
3815 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
3816 | ||
3817 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
3818 | { | |
3819 | Elf_External_Rel *erel; | |
3820 | Elf_Internal_Rel irel; | |
3821 | ||
3822 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
3823 | elf_swap_reloc_in (abfd, erel, &irel); | |
3824 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
3825 | ELF_R_TYPE (irel.r_info)); | |
3826 | elf_swap_reloc_out (abfd, &irel, erel); | |
3827 | } | |
3828 | else | |
3829 | { | |
3830 | Elf_External_Rela *erela; | |
3831 | Elf_Internal_Rela irela; | |
3832 | ||
3833 | BFD_ASSERT (rel_hdr->sh_entsize | |
3834 | == sizeof (Elf_External_Rela)); | |
3835 | ||
3836 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
3837 | elf_swap_reloca_in (abfd, erela, &irela); | |
3838 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
3839 | ELF_R_TYPE (irela.r_info)); | |
3840 | elf_swap_reloca_out (abfd, &irela, erela); | |
3841 | } | |
3842 | } | |
3843 | } | |
3844 | ||
252b5132 RH |
3845 | /* Do the final step of an ELF link. */ |
3846 | ||
3847 | boolean | |
3848 | elf_bfd_final_link (abfd, info) | |
3849 | bfd *abfd; | |
3850 | struct bfd_link_info *info; | |
3851 | { | |
3852 | boolean dynamic; | |
3853 | bfd *dynobj; | |
3854 | struct elf_final_link_info finfo; | |
3855 | register asection *o; | |
3856 | register struct bfd_link_order *p; | |
3857 | register bfd *sub; | |
3858 | size_t max_contents_size; | |
3859 | size_t max_external_reloc_size; | |
3860 | size_t max_internal_reloc_count; | |
3861 | size_t max_sym_count; | |
3862 | file_ptr off; | |
3863 | Elf_Internal_Sym elfsym; | |
3864 | unsigned int i; | |
3865 | Elf_Internal_Shdr *symtab_hdr; | |
3866 | Elf_Internal_Shdr *symstrtab_hdr; | |
3867 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
3868 | struct elf_outext_info eoinfo; | |
3869 | ||
3870 | if (info->shared) | |
3871 | abfd->flags |= DYNAMIC; | |
3872 | ||
3873 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
3874 | dynobj = elf_hash_table (info)->dynobj; | |
3875 | ||
3876 | finfo.info = info; | |
3877 | finfo.output_bfd = abfd; | |
3878 | finfo.symstrtab = elf_stringtab_init (); | |
3879 | if (finfo.symstrtab == NULL) | |
3880 | return false; | |
3881 | ||
3882 | if (! dynamic) | |
3883 | { | |
3884 | finfo.dynsym_sec = NULL; | |
3885 | finfo.hash_sec = NULL; | |
3886 | finfo.symver_sec = NULL; | |
3887 | } | |
3888 | else | |
3889 | { | |
3890 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
3891 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
3892 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
3893 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); | |
3894 | /* Note that it is OK if symver_sec is NULL. */ | |
3895 | } | |
3896 | ||
3897 | finfo.contents = NULL; | |
3898 | finfo.external_relocs = NULL; | |
3899 | finfo.internal_relocs = NULL; | |
3900 | finfo.external_syms = NULL; | |
3901 | finfo.internal_syms = NULL; | |
3902 | finfo.indices = NULL; | |
3903 | finfo.sections = NULL; | |
3904 | finfo.symbuf = NULL; | |
3905 | finfo.symbuf_count = 0; | |
3906 | ||
3907 | /* Count up the number of relocations we will output for each output | |
3908 | section, so that we know the sizes of the reloc sections. We | |
3909 | also figure out some maximum sizes. */ | |
3910 | max_contents_size = 0; | |
3911 | max_external_reloc_size = 0; | |
3912 | max_internal_reloc_count = 0; | |
3913 | max_sym_count = 0; | |
3914 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
3915 | { | |
3916 | o->reloc_count = 0; | |
3917 | ||
3918 | for (p = o->link_order_head; p != NULL; p = p->next) | |
3919 | { | |
3920 | if (p->type == bfd_section_reloc_link_order | |
3921 | || p->type == bfd_symbol_reloc_link_order) | |
3922 | ++o->reloc_count; | |
3923 | else if (p->type == bfd_indirect_link_order) | |
3924 | { | |
3925 | asection *sec; | |
3926 | ||
3927 | sec = p->u.indirect.section; | |
3928 | ||
3929 | /* Mark all sections which are to be included in the | |
3930 | link. This will normally be every section. We need | |
3931 | to do this so that we can identify any sections which | |
3932 | the linker has decided to not include. */ | |
3933 | sec->linker_mark = true; | |
3934 | ||
3935 | if (info->relocateable) | |
3936 | o->reloc_count += sec->reloc_count; | |
3937 | ||
3938 | if (sec->_raw_size > max_contents_size) | |
3939 | max_contents_size = sec->_raw_size; | |
3940 | if (sec->_cooked_size > max_contents_size) | |
3941 | max_contents_size = sec->_cooked_size; | |
3942 | ||
3943 | /* We are interested in just local symbols, not all | |
3944 | symbols. */ | |
3945 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
3946 | && (sec->owner->flags & DYNAMIC) == 0) | |
3947 | { | |
3948 | size_t sym_count; | |
3949 | ||
3950 | if (elf_bad_symtab (sec->owner)) | |
3951 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
3952 | / sizeof (Elf_External_Sym)); | |
3953 | else | |
3954 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
3955 | ||
3956 | if (sym_count > max_sym_count) | |
3957 | max_sym_count = sym_count; | |
3958 | ||
3959 | if ((sec->flags & SEC_RELOC) != 0) | |
3960 | { | |
3961 | size_t ext_size; | |
3962 | ||
3963 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
3964 | if (ext_size > max_external_reloc_size) | |
3965 | max_external_reloc_size = ext_size; | |
3966 | if (sec->reloc_count > max_internal_reloc_count) | |
3967 | max_internal_reloc_count = sec->reloc_count; | |
3968 | } | |
3969 | } | |
3970 | } | |
3971 | } | |
3972 | ||
3973 | if (o->reloc_count > 0) | |
3974 | o->flags |= SEC_RELOC; | |
3975 | else | |
3976 | { | |
3977 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
3978 | set it (this is probably a bug) and if it is set | |
3979 | assign_section_numbers will create a reloc section. */ | |
3980 | o->flags &=~ SEC_RELOC; | |
3981 | } | |
3982 | ||
3983 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
3984 | zero. This is done in elf_fake_sections as well, but forcing | |
3985 | the VMA to 0 here will ensure that relocs against these | |
3986 | sections are handled correctly. */ | |
3987 | if ((o->flags & SEC_ALLOC) == 0 | |
3988 | && ! o->user_set_vma) | |
3989 | o->vma = 0; | |
3990 | } | |
3991 | ||
3992 | /* Figure out the file positions for everything but the symbol table | |
3993 | and the relocs. We set symcount to force assign_section_numbers | |
3994 | to create a symbol table. */ | |
3995 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
3996 | BFD_ASSERT (! abfd->output_has_begun); | |
3997 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
3998 | goto error_return; | |
3999 | ||
4000 | /* That created the reloc sections. Set their sizes, and assign | |
4001 | them file positions, and allocate some buffers. */ | |
4002 | for (o = abfd->sections; o != NULL; o = o->next) | |
4003 | { | |
4004 | if ((o->flags & SEC_RELOC) != 0) | |
4005 | { | |
23bc299b MM |
4006 | if (!elf_link_size_reloc_section (abfd, |
4007 | &elf_section_data (o)->rel_hdr, | |
4008 | o)) | |
252b5132 RH |
4009 | goto error_return; |
4010 | ||
23bc299b MM |
4011 | if (elf_section_data (o)->rel_hdr2 |
4012 | && !elf_link_size_reloc_section (abfd, | |
4013 | elf_section_data (o)->rel_hdr2, | |
4014 | o)) | |
252b5132 | 4015 | goto error_return; |
252b5132 RH |
4016 | } |
4017 | } | |
4018 | ||
4019 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
4020 | ||
4021 | /* We have now assigned file positions for all the sections except | |
4022 | .symtab and .strtab. We start the .symtab section at the current | |
4023 | file position, and write directly to it. We build the .strtab | |
4024 | section in memory. */ | |
4025 | bfd_get_symcount (abfd) = 0; | |
4026 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4027 | /* sh_name is set in prep_headers. */ | |
4028 | symtab_hdr->sh_type = SHT_SYMTAB; | |
4029 | symtab_hdr->sh_flags = 0; | |
4030 | symtab_hdr->sh_addr = 0; | |
4031 | symtab_hdr->sh_size = 0; | |
4032 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
4033 | /* sh_link is set in assign_section_numbers. */ | |
4034 | /* sh_info is set below. */ | |
4035 | /* sh_offset is set just below. */ | |
4036 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
4037 | ||
4038 | off = elf_tdata (abfd)->next_file_pos; | |
4039 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
4040 | ||
4041 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
4042 | incorrect. We do not yet know the size of the .symtab section. | |
4043 | We correct next_file_pos below, after we do know the size. */ | |
4044 | ||
4045 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
4046 | continuously seeking to the right position in the file. */ | |
4047 | if (! info->keep_memory || max_sym_count < 20) | |
4048 | finfo.symbuf_size = 20; | |
4049 | else | |
4050 | finfo.symbuf_size = max_sym_count; | |
4051 | finfo.symbuf = ((Elf_External_Sym *) | |
4052 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
4053 | if (finfo.symbuf == NULL) | |
4054 | goto error_return; | |
4055 | ||
4056 | /* Start writing out the symbol table. The first symbol is always a | |
4057 | dummy symbol. */ | |
4058 | if (info->strip != strip_all || info->relocateable) | |
4059 | { | |
4060 | elfsym.st_value = 0; | |
4061 | elfsym.st_size = 0; | |
4062 | elfsym.st_info = 0; | |
4063 | elfsym.st_other = 0; | |
4064 | elfsym.st_shndx = SHN_UNDEF; | |
4065 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4066 | &elfsym, bfd_und_section_ptr)) | |
4067 | goto error_return; | |
4068 | } | |
4069 | ||
4070 | #if 0 | |
4071 | /* Some standard ELF linkers do this, but we don't because it causes | |
4072 | bootstrap comparison failures. */ | |
4073 | /* Output a file symbol for the output file as the second symbol. | |
4074 | We output this even if we are discarding local symbols, although | |
4075 | I'm not sure if this is correct. */ | |
4076 | elfsym.st_value = 0; | |
4077 | elfsym.st_size = 0; | |
4078 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
4079 | elfsym.st_other = 0; | |
4080 | elfsym.st_shndx = SHN_ABS; | |
4081 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
4082 | &elfsym, bfd_abs_section_ptr)) | |
4083 | goto error_return; | |
4084 | #endif | |
4085 | ||
4086 | /* Output a symbol for each section. We output these even if we are | |
4087 | discarding local symbols, since they are used for relocs. These | |
4088 | symbols have no names. We store the index of each one in the | |
4089 | index field of the section, so that we can find it again when | |
4090 | outputting relocs. */ | |
4091 | if (info->strip != strip_all || info->relocateable) | |
4092 | { | |
4093 | elfsym.st_size = 0; | |
4094 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4095 | elfsym.st_other = 0; | |
4096 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4097 | { | |
4098 | o = section_from_elf_index (abfd, i); | |
4099 | if (o != NULL) | |
4100 | o->target_index = bfd_get_symcount (abfd); | |
4101 | elfsym.st_shndx = i; | |
4102 | if (info->relocateable || o == NULL) | |
4103 | elfsym.st_value = 0; | |
4104 | else | |
4105 | elfsym.st_value = o->vma; | |
4106 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
4107 | &elfsym, o)) | |
4108 | goto error_return; | |
4109 | } | |
4110 | } | |
4111 | ||
4112 | /* Allocate some memory to hold information read in from the input | |
4113 | files. */ | |
4114 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | |
4115 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
4116 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
4117 | bfd_malloc (max_internal_reloc_count | |
c7ac6ff8 MM |
4118 | * sizeof (Elf_Internal_Rela) |
4119 | * bed->s->int_rels_per_ext_rel)); | |
252b5132 RH |
4120 | finfo.external_syms = ((Elf_External_Sym *) |
4121 | bfd_malloc (max_sym_count | |
4122 | * sizeof (Elf_External_Sym))); | |
4123 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
4124 | bfd_malloc (max_sym_count | |
4125 | * sizeof (Elf_Internal_Sym))); | |
4126 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
4127 | finfo.sections = ((asection **) | |
4128 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
4129 | if ((finfo.contents == NULL && max_contents_size != 0) | |
4130 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
4131 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
4132 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
4133 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
4134 | || (finfo.indices == NULL && max_sym_count != 0) | |
4135 | || (finfo.sections == NULL && max_sym_count != 0)) | |
4136 | goto error_return; | |
4137 | ||
4138 | /* Since ELF permits relocations to be against local symbols, we | |
4139 | must have the local symbols available when we do the relocations. | |
4140 | Since we would rather only read the local symbols once, and we | |
4141 | would rather not keep them in memory, we handle all the | |
4142 | relocations for a single input file at the same time. | |
4143 | ||
4144 | Unfortunately, there is no way to know the total number of local | |
4145 | symbols until we have seen all of them, and the local symbol | |
4146 | indices precede the global symbol indices. This means that when | |
4147 | we are generating relocateable output, and we see a reloc against | |
4148 | a global symbol, we can not know the symbol index until we have | |
4149 | finished examining all the local symbols to see which ones we are | |
4150 | going to output. To deal with this, we keep the relocations in | |
4151 | memory, and don't output them until the end of the link. This is | |
4152 | an unfortunate waste of memory, but I don't see a good way around | |
4153 | it. Fortunately, it only happens when performing a relocateable | |
4154 | link, which is not the common case. FIXME: If keep_memory is set | |
4155 | we could write the relocs out and then read them again; I don't | |
4156 | know how bad the memory loss will be. */ | |
4157 | ||
4158 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
4159 | sub->output_has_begun = false; | |
4160 | for (o = abfd->sections; o != NULL; o = o->next) | |
4161 | { | |
4162 | for (p = o->link_order_head; p != NULL; p = p->next) | |
4163 | { | |
4164 | if (p->type == bfd_indirect_link_order | |
4165 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
4166 | == bfd_target_elf_flavour)) | |
4167 | { | |
4168 | sub = p->u.indirect.section->owner; | |
4169 | if (! sub->output_has_begun) | |
4170 | { | |
4171 | if (! elf_link_input_bfd (&finfo, sub)) | |
4172 | goto error_return; | |
4173 | sub->output_has_begun = true; | |
4174 | } | |
4175 | } | |
4176 | else if (p->type == bfd_section_reloc_link_order | |
4177 | || p->type == bfd_symbol_reloc_link_order) | |
4178 | { | |
4179 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
4180 | goto error_return; | |
4181 | } | |
4182 | else | |
4183 | { | |
4184 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
4185 | goto error_return; | |
4186 | } | |
4187 | } | |
4188 | } | |
4189 | ||
4190 | /* That wrote out all the local symbols. Finish up the symbol table | |
4191 | with the global symbols. */ | |
4192 | ||
4193 | if (info->strip != strip_all && info->shared) | |
4194 | { | |
4195 | /* Output any global symbols that got converted to local in a | |
4196 | version script. We do this in a separate step since ELF | |
4197 | requires all local symbols to appear prior to any global | |
4198 | symbols. FIXME: We should only do this if some global | |
4199 | symbols were, in fact, converted to become local. FIXME: | |
4200 | Will this work correctly with the Irix 5 linker? */ | |
4201 | eoinfo.failed = false; | |
4202 | eoinfo.finfo = &finfo; | |
4203 | eoinfo.localsyms = true; | |
4204 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4205 | (PTR) &eoinfo); | |
4206 | if (eoinfo.failed) | |
4207 | return false; | |
4208 | } | |
4209 | ||
30b30c21 | 4210 | /* The sh_info field records the index of the first non local symbol. */ |
252b5132 | 4211 | symtab_hdr->sh_info = bfd_get_symcount (abfd); |
30b30c21 | 4212 | |
252b5132 | 4213 | if (dynamic) |
30b30c21 RH |
4214 | { |
4215 | Elf_Internal_Sym sym; | |
4216 | Elf_External_Sym *dynsym = | |
4217 | (Elf_External_Sym *)finfo.dynsym_sec->contents; | |
4218 | unsigned long last_local = 0; | |
4219 | ||
4220 | /* Write out the section symbols for the output sections. */ | |
4221 | if (info->shared) | |
4222 | { | |
4223 | asection *s; | |
4224 | ||
4225 | sym.st_size = 0; | |
4226 | sym.st_name = 0; | |
4227 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
4228 | sym.st_other = 0; | |
4229 | ||
4230 | for (s = abfd->sections; s != NULL; s = s->next) | |
4231 | { | |
4232 | int indx; | |
4233 | indx = elf_section_data (s)->this_idx; | |
4234 | BFD_ASSERT (indx > 0); | |
4235 | sym.st_shndx = indx; | |
4236 | sym.st_value = s->vma; | |
4237 | ||
4238 | elf_swap_symbol_out (abfd, &sym, | |
4239 | dynsym + elf_section_data (s)->dynindx); | |
4240 | } | |
4241 | ||
4242 | last_local = bfd_count_sections (abfd); | |
4243 | } | |
4244 | ||
4245 | /* Write out the local dynsyms. */ | |
4246 | if (elf_hash_table (info)->dynlocal) | |
4247 | { | |
4248 | struct elf_link_local_dynamic_entry *e; | |
4249 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
4250 | { | |
318da145 | 4251 | asection *s; |
30b30c21 | 4252 | |
1fa0ddb3 RH |
4253 | /* Copy the internal symbol as is. |
4254 | Note that we saved a word of storage and overwrote | |
30b30c21 | 4255 | the original st_name with the dynstr_index. */ |
1fa0ddb3 | 4256 | sym = e->isym; |
30b30c21 | 4257 | |
1fa0ddb3 | 4258 | if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE) |
587ff49e RH |
4259 | { |
4260 | s = bfd_section_from_elf_index (e->input_bfd, | |
4261 | e->isym.st_shndx); | |
4262 | ||
4263 | sym.st_shndx = | |
4264 | elf_section_data (s->output_section)->this_idx; | |
4265 | sym.st_value = (s->output_section->vma | |
4266 | + s->output_offset | |
4267 | + e->isym.st_value); | |
4268 | } | |
30b30c21 RH |
4269 | |
4270 | if (last_local < e->dynindx) | |
4271 | last_local = e->dynindx; | |
4272 | ||
4273 | elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx); | |
4274 | } | |
4275 | } | |
4276 | ||
4277 | elf_section_data (finfo.dynsym_sec->output_section) | |
587ff49e | 4278 | ->this_hdr.sh_info = last_local + 1; |
30b30c21 | 4279 | } |
252b5132 RH |
4280 | |
4281 | /* We get the global symbols from the hash table. */ | |
4282 | eoinfo.failed = false; | |
4283 | eoinfo.localsyms = false; | |
4284 | eoinfo.finfo = &finfo; | |
4285 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
4286 | (PTR) &eoinfo); | |
4287 | if (eoinfo.failed) | |
4288 | return false; | |
4289 | ||
587ff49e RH |
4290 | /* If backend needs to output some symbols not present in the hash |
4291 | table, do it now. */ | |
4292 | if (bed->elf_backend_output_arch_syms) | |
4293 | { | |
4294 | if (! (*bed->elf_backend_output_arch_syms) | |
4295 | (abfd, info, (PTR) &finfo, | |
4296 | (boolean (*) PARAMS ((PTR, const char *, | |
4297 | Elf_Internal_Sym *, asection *))) | |
4298 | elf_link_output_sym)) | |
4299 | return false; | |
4300 | } | |
4301 | ||
252b5132 RH |
4302 | /* Flush all symbols to the file. */ |
4303 | if (! elf_link_flush_output_syms (&finfo)) | |
4304 | return false; | |
4305 | ||
4306 | /* Now we know the size of the symtab section. */ | |
4307 | off += symtab_hdr->sh_size; | |
4308 | ||
4309 | /* Finish up and write out the symbol string table (.strtab) | |
4310 | section. */ | |
4311 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
4312 | /* sh_name was set in prep_headers. */ | |
4313 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
4314 | symstrtab_hdr->sh_flags = 0; | |
4315 | symstrtab_hdr->sh_addr = 0; | |
4316 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
4317 | symstrtab_hdr->sh_entsize = 0; | |
4318 | symstrtab_hdr->sh_link = 0; | |
4319 | symstrtab_hdr->sh_info = 0; | |
4320 | /* sh_offset is set just below. */ | |
4321 | symstrtab_hdr->sh_addralign = 1; | |
4322 | ||
4323 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
4324 | elf_tdata (abfd)->next_file_pos = off; | |
4325 | ||
4326 | if (bfd_get_symcount (abfd) > 0) | |
4327 | { | |
4328 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
4329 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
4330 | return false; | |
4331 | } | |
4332 | ||
4333 | /* Adjust the relocs to have the correct symbol indices. */ | |
4334 | for (o = abfd->sections; o != NULL; o = o->next) | |
4335 | { | |
252b5132 RH |
4336 | if ((o->flags & SEC_RELOC) == 0) |
4337 | continue; | |
4338 | ||
31367b81 MM |
4339 | elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr, |
4340 | elf_section_data (o)->rel_count, | |
4341 | elf_section_data (o)->rel_hashes); | |
4342 | if (elf_section_data (o)->rel_hdr2 != NULL) | |
4343 | elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2, | |
4344 | elf_section_data (o)->rel_count2, | |
4345 | (elf_section_data (o)->rel_hashes | |
4346 | + elf_section_data (o)->rel_count)); | |
252b5132 RH |
4347 | |
4348 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
4349 | trying to swap the relocs out itself. */ | |
4350 | o->reloc_count = 0; | |
4351 | } | |
4352 | ||
4353 | /* If we are linking against a dynamic object, or generating a | |
4354 | shared library, finish up the dynamic linking information. */ | |
4355 | if (dynamic) | |
4356 | { | |
4357 | Elf_External_Dyn *dyncon, *dynconend; | |
4358 | ||
4359 | /* Fix up .dynamic entries. */ | |
4360 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4361 | BFD_ASSERT (o != NULL); | |
4362 | ||
4363 | dyncon = (Elf_External_Dyn *) o->contents; | |
4364 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
4365 | for (; dyncon < dynconend; dyncon++) | |
4366 | { | |
4367 | Elf_Internal_Dyn dyn; | |
4368 | const char *name; | |
4369 | unsigned int type; | |
4370 | ||
4371 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
4372 | ||
4373 | switch (dyn.d_tag) | |
4374 | { | |
4375 | default: | |
4376 | break; | |
252b5132 | 4377 | case DT_INIT: |
f0c2e336 | 4378 | name = info->init_function; |
252b5132 RH |
4379 | goto get_sym; |
4380 | case DT_FINI: | |
f0c2e336 | 4381 | name = info->fini_function; |
252b5132 RH |
4382 | get_sym: |
4383 | { | |
4384 | struct elf_link_hash_entry *h; | |
4385 | ||
4386 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4387 | false, false, true); | |
4388 | if (h != NULL | |
4389 | && (h->root.type == bfd_link_hash_defined | |
4390 | || h->root.type == bfd_link_hash_defweak)) | |
4391 | { | |
4392 | dyn.d_un.d_val = h->root.u.def.value; | |
4393 | o = h->root.u.def.section; | |
4394 | if (o->output_section != NULL) | |
4395 | dyn.d_un.d_val += (o->output_section->vma | |
4396 | + o->output_offset); | |
4397 | else | |
4398 | { | |
4399 | /* The symbol is imported from another shared | |
4400 | library and does not apply to this one. */ | |
4401 | dyn.d_un.d_val = 0; | |
4402 | } | |
4403 | ||
4404 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4405 | } | |
4406 | } | |
4407 | break; | |
4408 | ||
4409 | case DT_HASH: | |
4410 | name = ".hash"; | |
4411 | goto get_vma; | |
4412 | case DT_STRTAB: | |
4413 | name = ".dynstr"; | |
4414 | goto get_vma; | |
4415 | case DT_SYMTAB: | |
4416 | name = ".dynsym"; | |
4417 | goto get_vma; | |
4418 | case DT_VERDEF: | |
4419 | name = ".gnu.version_d"; | |
4420 | goto get_vma; | |
4421 | case DT_VERNEED: | |
4422 | name = ".gnu.version_r"; | |
4423 | goto get_vma; | |
4424 | case DT_VERSYM: | |
4425 | name = ".gnu.version"; | |
4426 | get_vma: | |
4427 | o = bfd_get_section_by_name (abfd, name); | |
4428 | BFD_ASSERT (o != NULL); | |
4429 | dyn.d_un.d_ptr = o->vma; | |
4430 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4431 | break; | |
4432 | ||
4433 | case DT_REL: | |
4434 | case DT_RELA: | |
4435 | case DT_RELSZ: | |
4436 | case DT_RELASZ: | |
4437 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
4438 | type = SHT_REL; | |
4439 | else | |
4440 | type = SHT_RELA; | |
4441 | dyn.d_un.d_val = 0; | |
4442 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
4443 | { | |
4444 | Elf_Internal_Shdr *hdr; | |
4445 | ||
4446 | hdr = elf_elfsections (abfd)[i]; | |
4447 | if (hdr->sh_type == type | |
4448 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
4449 | { | |
4450 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
4451 | dyn.d_un.d_val += hdr->sh_size; | |
4452 | else | |
4453 | { | |
4454 | if (dyn.d_un.d_val == 0 | |
4455 | || hdr->sh_addr < dyn.d_un.d_val) | |
4456 | dyn.d_un.d_val = hdr->sh_addr; | |
4457 | } | |
4458 | } | |
4459 | } | |
4460 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
4461 | break; | |
4462 | } | |
4463 | } | |
4464 | } | |
4465 | ||
4466 | /* If we have created any dynamic sections, then output them. */ | |
4467 | if (dynobj != NULL) | |
4468 | { | |
4469 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
4470 | goto error_return; | |
4471 | ||
4472 | for (o = dynobj->sections; o != NULL; o = o->next) | |
4473 | { | |
4474 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
4475 | || o->_raw_size == 0) | |
4476 | continue; | |
4477 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
4478 | { | |
4479 | /* At this point, we are only interested in sections | |
4480 | created by elf_link_create_dynamic_sections. */ | |
4481 | continue; | |
4482 | } | |
4483 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
4484 | != SHT_STRTAB) | |
4485 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
4486 | { | |
4487 | if (! bfd_set_section_contents (abfd, o->output_section, | |
4488 | o->contents, o->output_offset, | |
4489 | o->_raw_size)) | |
4490 | goto error_return; | |
4491 | } | |
4492 | else | |
4493 | { | |
4494 | file_ptr off; | |
4495 | ||
4496 | /* The contents of the .dynstr section are actually in a | |
4497 | stringtab. */ | |
4498 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
4499 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
4500 | || ! _bfd_stringtab_emit (abfd, | |
4501 | elf_hash_table (info)->dynstr)) | |
4502 | goto error_return; | |
4503 | } | |
4504 | } | |
4505 | } | |
4506 | ||
4507 | /* If we have optimized stabs strings, output them. */ | |
4508 | if (elf_hash_table (info)->stab_info != NULL) | |
4509 | { | |
4510 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
4511 | goto error_return; | |
4512 | } | |
4513 | ||
4514 | if (finfo.symstrtab != NULL) | |
4515 | _bfd_stringtab_free (finfo.symstrtab); | |
4516 | if (finfo.contents != NULL) | |
4517 | free (finfo.contents); | |
4518 | if (finfo.external_relocs != NULL) | |
4519 | free (finfo.external_relocs); | |
4520 | if (finfo.internal_relocs != NULL) | |
4521 | free (finfo.internal_relocs); | |
4522 | if (finfo.external_syms != NULL) | |
4523 | free (finfo.external_syms); | |
4524 | if (finfo.internal_syms != NULL) | |
4525 | free (finfo.internal_syms); | |
4526 | if (finfo.indices != NULL) | |
4527 | free (finfo.indices); | |
4528 | if (finfo.sections != NULL) | |
4529 | free (finfo.sections); | |
4530 | if (finfo.symbuf != NULL) | |
4531 | free (finfo.symbuf); | |
4532 | for (o = abfd->sections; o != NULL; o = o->next) | |
4533 | { | |
4534 | if ((o->flags & SEC_RELOC) != 0 | |
4535 | && elf_section_data (o)->rel_hashes != NULL) | |
4536 | free (elf_section_data (o)->rel_hashes); | |
4537 | } | |
4538 | ||
4539 | elf_tdata (abfd)->linker = true; | |
4540 | ||
4541 | return true; | |
4542 | ||
4543 | error_return: | |
4544 | if (finfo.symstrtab != NULL) | |
4545 | _bfd_stringtab_free (finfo.symstrtab); | |
4546 | if (finfo.contents != NULL) | |
4547 | free (finfo.contents); | |
4548 | if (finfo.external_relocs != NULL) | |
4549 | free (finfo.external_relocs); | |
4550 | if (finfo.internal_relocs != NULL) | |
4551 | free (finfo.internal_relocs); | |
4552 | if (finfo.external_syms != NULL) | |
4553 | free (finfo.external_syms); | |
4554 | if (finfo.internal_syms != NULL) | |
4555 | free (finfo.internal_syms); | |
4556 | if (finfo.indices != NULL) | |
4557 | free (finfo.indices); | |
4558 | if (finfo.sections != NULL) | |
4559 | free (finfo.sections); | |
4560 | if (finfo.symbuf != NULL) | |
4561 | free (finfo.symbuf); | |
4562 | for (o = abfd->sections; o != NULL; o = o->next) | |
4563 | { | |
4564 | if ((o->flags & SEC_RELOC) != 0 | |
4565 | && elf_section_data (o)->rel_hashes != NULL) | |
4566 | free (elf_section_data (o)->rel_hashes); | |
4567 | } | |
4568 | ||
4569 | return false; | |
4570 | } | |
4571 | ||
4572 | /* Add a symbol to the output symbol table. */ | |
4573 | ||
4574 | static boolean | |
4575 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
4576 | struct elf_final_link_info *finfo; | |
4577 | const char *name; | |
4578 | Elf_Internal_Sym *elfsym; | |
4579 | asection *input_sec; | |
4580 | { | |
4581 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
4582 | struct bfd_link_info *info, | |
4583 | const char *, | |
4584 | Elf_Internal_Sym *, | |
4585 | asection *)); | |
4586 | ||
4587 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
4588 | elf_backend_link_output_symbol_hook; | |
4589 | if (output_symbol_hook != NULL) | |
4590 | { | |
4591 | if (! ((*output_symbol_hook) | |
4592 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
4593 | return false; | |
4594 | } | |
4595 | ||
4596 | if (name == (const char *) NULL || *name == '\0') | |
4597 | elfsym->st_name = 0; | |
4598 | else if (input_sec->flags & SEC_EXCLUDE) | |
4599 | elfsym->st_name = 0; | |
4600 | else | |
4601 | { | |
4602 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
4603 | name, true, | |
4604 | false); | |
4605 | if (elfsym->st_name == (unsigned long) -1) | |
4606 | return false; | |
4607 | } | |
4608 | ||
4609 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
4610 | { | |
4611 | if (! elf_link_flush_output_syms (finfo)) | |
4612 | return false; | |
4613 | } | |
4614 | ||
4615 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
4616 | (PTR) (finfo->symbuf + finfo->symbuf_count)); | |
4617 | ++finfo->symbuf_count; | |
4618 | ||
4619 | ++ bfd_get_symcount (finfo->output_bfd); | |
4620 | ||
4621 | return true; | |
4622 | } | |
4623 | ||
4624 | /* Flush the output symbols to the file. */ | |
4625 | ||
4626 | static boolean | |
4627 | elf_link_flush_output_syms (finfo) | |
4628 | struct elf_final_link_info *finfo; | |
4629 | { | |
4630 | if (finfo->symbuf_count > 0) | |
4631 | { | |
4632 | Elf_Internal_Shdr *symtab; | |
4633 | ||
4634 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
4635 | ||
4636 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
4637 | SEEK_SET) != 0 | |
4638 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
4639 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
4640 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
4641 | return false; | |
4642 | ||
4643 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
4644 | ||
4645 | finfo->symbuf_count = 0; | |
4646 | } | |
4647 | ||
4648 | return true; | |
4649 | } | |
4650 | ||
4651 | /* Add an external symbol to the symbol table. This is called from | |
4652 | the hash table traversal routine. When generating a shared object, | |
4653 | we go through the symbol table twice. The first time we output | |
4654 | anything that might have been forced to local scope in a version | |
4655 | script. The second time we output the symbols that are still | |
4656 | global symbols. */ | |
4657 | ||
4658 | static boolean | |
4659 | elf_link_output_extsym (h, data) | |
4660 | struct elf_link_hash_entry *h; | |
4661 | PTR data; | |
4662 | { | |
4663 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | |
4664 | struct elf_final_link_info *finfo = eoinfo->finfo; | |
4665 | boolean strip; | |
4666 | Elf_Internal_Sym sym; | |
4667 | asection *input_sec; | |
4668 | ||
4669 | /* Decide whether to output this symbol in this pass. */ | |
4670 | if (eoinfo->localsyms) | |
4671 | { | |
4672 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
4673 | return true; | |
4674 | } | |
4675 | else | |
4676 | { | |
4677 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4678 | return true; | |
4679 | } | |
4680 | ||
4681 | /* If we are not creating a shared library, and this symbol is | |
4682 | referenced by a shared library but is not defined anywhere, then | |
4683 | warn that it is undefined. If we do not do this, the runtime | |
4684 | linker will complain that the symbol is undefined when the | |
4685 | program is run. We don't have to worry about symbols that are | |
4686 | referenced by regular files, because we will already have issued | |
4687 | warnings for them. */ | |
4688 | if (! finfo->info->relocateable | |
4689 | && ! (finfo->info->shared | |
252b5132 RH |
4690 | && !finfo->info->no_undefined) |
4691 | && h->root.type == bfd_link_hash_undefined | |
4692 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
4693 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
4694 | { | |
4695 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
4696 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
4697 | (asection *) NULL, 0))) | |
4698 | { | |
4699 | eoinfo->failed = true; | |
4700 | return false; | |
4701 | } | |
4702 | } | |
4703 | ||
4704 | /* We don't want to output symbols that have never been mentioned by | |
4705 | a regular file, or that we have been told to strip. However, if | |
4706 | h->indx is set to -2, the symbol is used by a reloc and we must | |
4707 | output it. */ | |
4708 | if (h->indx == -2) | |
4709 | strip = false; | |
4710 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
4711 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
4712 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
4713 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
4714 | strip = true; | |
4715 | else if (finfo->info->strip == strip_all | |
4716 | || (finfo->info->strip == strip_some | |
4717 | && bfd_hash_lookup (finfo->info->keep_hash, | |
4718 | h->root.root.string, | |
4719 | false, false) == NULL)) | |
4720 | strip = true; | |
4721 | else | |
4722 | strip = false; | |
4723 | ||
4724 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
4725 | nothing else to do. */ | |
4726 | if (strip && h->dynindx == -1) | |
4727 | return true; | |
4728 | ||
4729 | sym.st_value = 0; | |
4730 | sym.st_size = h->size; | |
4731 | sym.st_other = h->other; | |
4732 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4733 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
4734 | else if (h->root.type == bfd_link_hash_undefweak | |
4735 | || h->root.type == bfd_link_hash_defweak) | |
4736 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
4737 | else | |
4738 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
4739 | ||
4740 | switch (h->root.type) | |
4741 | { | |
4742 | default: | |
4743 | case bfd_link_hash_new: | |
4744 | abort (); | |
4745 | return false; | |
4746 | ||
4747 | case bfd_link_hash_undefined: | |
4748 | input_sec = bfd_und_section_ptr; | |
4749 | sym.st_shndx = SHN_UNDEF; | |
4750 | break; | |
4751 | ||
4752 | case bfd_link_hash_undefweak: | |
4753 | input_sec = bfd_und_section_ptr; | |
4754 | sym.st_shndx = SHN_UNDEF; | |
4755 | break; | |
4756 | ||
4757 | case bfd_link_hash_defined: | |
4758 | case bfd_link_hash_defweak: | |
4759 | { | |
4760 | input_sec = h->root.u.def.section; | |
4761 | if (input_sec->output_section != NULL) | |
4762 | { | |
4763 | sym.st_shndx = | |
4764 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
4765 | input_sec->output_section); | |
4766 | if (sym.st_shndx == (unsigned short) -1) | |
4767 | { | |
4768 | (*_bfd_error_handler) | |
4769 | (_("%s: could not find output section %s for input section %s"), | |
4770 | bfd_get_filename (finfo->output_bfd), | |
4771 | input_sec->output_section->name, | |
4772 | input_sec->name); | |
4773 | eoinfo->failed = true; | |
4774 | return false; | |
4775 | } | |
4776 | ||
4777 | /* ELF symbols in relocateable files are section relative, | |
4778 | but in nonrelocateable files they are virtual | |
4779 | addresses. */ | |
4780 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
4781 | if (! finfo->info->relocateable) | |
4782 | sym.st_value += input_sec->output_section->vma; | |
4783 | } | |
4784 | else | |
4785 | { | |
4786 | BFD_ASSERT (input_sec->owner == NULL | |
4787 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
4788 | sym.st_shndx = SHN_UNDEF; | |
4789 | input_sec = bfd_und_section_ptr; | |
4790 | } | |
4791 | } | |
4792 | break; | |
4793 | ||
4794 | case bfd_link_hash_common: | |
4795 | input_sec = h->root.u.c.p->section; | |
4796 | sym.st_shndx = SHN_COMMON; | |
4797 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
4798 | break; | |
4799 | ||
4800 | case bfd_link_hash_indirect: | |
4801 | /* These symbols are created by symbol versioning. They point | |
4802 | to the decorated version of the name. For example, if the | |
4803 | symbol foo@@GNU_1.2 is the default, which should be used when | |
4804 | foo is used with no version, then we add an indirect symbol | |
4805 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
4806 | since the indirected symbol is already in the hash table. If | |
4807 | the indirect symbol is non-ELF, fall through and output it. */ | |
4808 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0) | |
4809 | return true; | |
4810 | ||
4811 | /* Fall through. */ | |
4812 | case bfd_link_hash_warning: | |
4813 | /* We can't represent these symbols in ELF, although a warning | |
4814 | symbol may have come from a .gnu.warning.SYMBOL section. We | |
4815 | just put the target symbol in the hash table. If the target | |
4816 | symbol does not really exist, don't do anything. */ | |
4817 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
4818 | return true; | |
4819 | return (elf_link_output_extsym | |
4820 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
4821 | } | |
4822 | ||
4823 | /* Give the processor backend a chance to tweak the symbol value, | |
4824 | and also to finish up anything that needs to be done for this | |
4825 | symbol. */ | |
4826 | if ((h->dynindx != -1 | |
4827 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
4828 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
4829 | { | |
4830 | struct elf_backend_data *bed; | |
4831 | ||
4832 | bed = get_elf_backend_data (finfo->output_bfd); | |
4833 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
4834 | (finfo->output_bfd, finfo->info, h, &sym))) | |
4835 | { | |
4836 | eoinfo->failed = true; | |
4837 | return false; | |
4838 | } | |
4839 | } | |
4840 | ||
4841 | /* If we are marking the symbol as undefined, and there are no | |
4842 | non-weak references to this symbol from a regular object, then | |
4843 | mark the symbol as weak undefined. We can't do this earlier, | |
4844 | because it might not be marked as undefined until the | |
4845 | finish_dynamic_symbol routine gets through with it. */ | |
4846 | if (sym.st_shndx == SHN_UNDEF | |
4847 | && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type) | |
4848 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
4849 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0) | |
4850 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
4851 | ||
4852 | /* If this symbol should be put in the .dynsym section, then put it | |
4853 | there now. We have already know the symbol index. We also fill | |
4854 | in the entry in the .hash section. */ | |
4855 | if (h->dynindx != -1 | |
4856 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
4857 | { | |
4858 | size_t bucketcount; | |
4859 | size_t bucket; | |
c7ac6ff8 | 4860 | size_t hash_entry_size; |
252b5132 RH |
4861 | bfd_byte *bucketpos; |
4862 | bfd_vma chain; | |
4863 | ||
4864 | sym.st_name = h->dynstr_index; | |
4865 | ||
4866 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
4867 | (PTR) (((Elf_External_Sym *) | |
4868 | finfo->dynsym_sec->contents) | |
4869 | + h->dynindx)); | |
4870 | ||
4871 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
4872 | bucket = h->elf_hash_value % bucketcount; | |
c7ac6ff8 MM |
4873 | hash_entry_size |
4874 | = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize; | |
252b5132 | 4875 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
c7ac6ff8 MM |
4876 | + (bucket + 2) * hash_entry_size); |
4877 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos); | |
4878 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos); | |
4879 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain, | |
4880 | ((bfd_byte *) finfo->hash_sec->contents | |
4881 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
252b5132 RH |
4882 | |
4883 | if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) | |
4884 | { | |
4885 | Elf_Internal_Versym iversym; | |
4886 | ||
4887 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
4888 | { | |
4889 | if (h->verinfo.verdef == NULL) | |
4890 | iversym.vs_vers = 0; | |
4891 | else | |
4892 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
4893 | } | |
4894 | else | |
4895 | { | |
4896 | if (h->verinfo.vertree == NULL) | |
4897 | iversym.vs_vers = 1; | |
4898 | else | |
4899 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
4900 | } | |
4901 | ||
4902 | if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) | |
4903 | iversym.vs_vers |= VERSYM_HIDDEN; | |
4904 | ||
4905 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, | |
4906 | (((Elf_External_Versym *) | |
4907 | finfo->symver_sec->contents) | |
4908 | + h->dynindx)); | |
4909 | } | |
4910 | } | |
4911 | ||
4912 | /* If we're stripping it, then it was just a dynamic symbol, and | |
4913 | there's nothing else to do. */ | |
4914 | if (strip) | |
4915 | return true; | |
4916 | ||
4917 | h->indx = bfd_get_symcount (finfo->output_bfd); | |
4918 | ||
4919 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
4920 | { | |
4921 | eoinfo->failed = true; | |
4922 | return false; | |
4923 | } | |
4924 | ||
4925 | return true; | |
4926 | } | |
4927 | ||
23bc299b MM |
4928 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
4929 | originated from the section given by INPUT_REL_HDR) to the | |
4930 | OUTPUT_BFD. */ | |
4931 | ||
4932 | static void | |
4933 | elf_link_output_relocs (output_bfd, input_section, input_rel_hdr, | |
4934 | internal_relocs) | |
4935 | bfd *output_bfd; | |
4936 | asection *input_section; | |
4937 | Elf_Internal_Shdr *input_rel_hdr; | |
4938 | Elf_Internal_Rela *internal_relocs; | |
4939 | { | |
4940 | Elf_Internal_Rela *irela; | |
4941 | Elf_Internal_Rela *irelaend; | |
4942 | Elf_Internal_Shdr *output_rel_hdr; | |
4943 | asection *output_section; | |
7442e600 | 4944 | unsigned int *rel_countp = NULL; |
23bc299b MM |
4945 | |
4946 | output_section = input_section->output_section; | |
4947 | output_rel_hdr = NULL; | |
4948 | ||
4949 | if (elf_section_data (output_section)->rel_hdr.sh_entsize | |
4950 | == input_rel_hdr->sh_entsize) | |
4951 | { | |
4952 | output_rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
4953 | rel_countp = &elf_section_data (output_section)->rel_count; | |
4954 | } | |
4955 | else if (elf_section_data (output_section)->rel_hdr2 | |
4956 | && (elf_section_data (output_section)->rel_hdr2->sh_entsize | |
4957 | == input_rel_hdr->sh_entsize)) | |
4958 | { | |
4959 | output_rel_hdr = elf_section_data (output_section)->rel_hdr2; | |
4960 | rel_countp = &elf_section_data (output_section)->rel_count2; | |
4961 | } | |
4962 | ||
4963 | BFD_ASSERT (output_rel_hdr != NULL); | |
4964 | ||
4965 | irela = internal_relocs; | |
4966 | irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
4967 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4968 | { | |
4969 | Elf_External_Rel *erel; | |
4970 | ||
4971 | erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp); | |
4972 | for (; irela < irelaend; irela++, erel++) | |
4973 | { | |
4974 | Elf_Internal_Rel irel; | |
4975 | ||
4976 | irel.r_offset = irela->r_offset; | |
4977 | irel.r_info = irela->r_info; | |
4978 | BFD_ASSERT (irela->r_addend == 0); | |
4979 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
4980 | } | |
4981 | } | |
4982 | else | |
4983 | { | |
4984 | Elf_External_Rela *erela; | |
4985 | ||
4986 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
4987 | == sizeof (Elf_External_Rela)); | |
4988 | erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp); | |
4989 | for (; irela < irelaend; irela++, erela++) | |
4990 | elf_swap_reloca_out (output_bfd, irela, erela); | |
4991 | } | |
4992 | ||
4993 | /* Bump the counter, so that we know where to add the next set of | |
4994 | relocations. */ | |
4995 | *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
4996 | } | |
4997 | ||
252b5132 RH |
4998 | /* Link an input file into the linker output file. This function |
4999 | handles all the sections and relocations of the input file at once. | |
5000 | This is so that we only have to read the local symbols once, and | |
5001 | don't have to keep them in memory. */ | |
5002 | ||
5003 | static boolean | |
5004 | elf_link_input_bfd (finfo, input_bfd) | |
5005 | struct elf_final_link_info *finfo; | |
5006 | bfd *input_bfd; | |
5007 | { | |
5008 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
5009 | bfd *, asection *, bfd_byte *, | |
5010 | Elf_Internal_Rela *, | |
5011 | Elf_Internal_Sym *, asection **)); | |
5012 | bfd *output_bfd; | |
5013 | Elf_Internal_Shdr *symtab_hdr; | |
5014 | size_t locsymcount; | |
5015 | size_t extsymoff; | |
5016 | Elf_External_Sym *external_syms; | |
5017 | Elf_External_Sym *esym; | |
5018 | Elf_External_Sym *esymend; | |
5019 | Elf_Internal_Sym *isym; | |
5020 | long *pindex; | |
5021 | asection **ppsection; | |
5022 | asection *o; | |
c7ac6ff8 | 5023 | struct elf_backend_data *bed; |
252b5132 RH |
5024 | |
5025 | output_bfd = finfo->output_bfd; | |
c7ac6ff8 MM |
5026 | bed = get_elf_backend_data (output_bfd); |
5027 | relocate_section = bed->elf_backend_relocate_section; | |
252b5132 RH |
5028 | |
5029 | /* If this is a dynamic object, we don't want to do anything here: | |
5030 | we don't want the local symbols, and we don't want the section | |
5031 | contents. */ | |
5032 | if ((input_bfd->flags & DYNAMIC) != 0) | |
5033 | return true; | |
5034 | ||
5035 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5036 | if (elf_bad_symtab (input_bfd)) | |
5037 | { | |
5038 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5039 | extsymoff = 0; | |
5040 | } | |
5041 | else | |
5042 | { | |
5043 | locsymcount = symtab_hdr->sh_info; | |
5044 | extsymoff = symtab_hdr->sh_info; | |
5045 | } | |
5046 | ||
5047 | /* Read the local symbols. */ | |
5048 | if (symtab_hdr->contents != NULL) | |
5049 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; | |
5050 | else if (locsymcount == 0) | |
5051 | external_syms = NULL; | |
5052 | else | |
5053 | { | |
5054 | external_syms = finfo->external_syms; | |
5055 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5056 | || (bfd_read (external_syms, sizeof (Elf_External_Sym), | |
5057 | locsymcount, input_bfd) | |
5058 | != locsymcount * sizeof (Elf_External_Sym))) | |
5059 | return false; | |
5060 | } | |
5061 | ||
5062 | /* Swap in the local symbols and write out the ones which we know | |
5063 | are going into the output file. */ | |
5064 | esym = external_syms; | |
5065 | esymend = esym + locsymcount; | |
5066 | isym = finfo->internal_syms; | |
5067 | pindex = finfo->indices; | |
5068 | ppsection = finfo->sections; | |
5069 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
5070 | { | |
5071 | asection *isec; | |
5072 | const char *name; | |
5073 | Elf_Internal_Sym osym; | |
5074 | ||
5075 | elf_swap_symbol_in (input_bfd, esym, isym); | |
5076 | *pindex = -1; | |
5077 | ||
5078 | if (elf_bad_symtab (input_bfd)) | |
5079 | { | |
5080 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
5081 | { | |
5082 | *ppsection = NULL; | |
5083 | continue; | |
5084 | } | |
5085 | } | |
5086 | ||
5087 | if (isym->st_shndx == SHN_UNDEF) | |
5088 | isec = bfd_und_section_ptr; | |
5089 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
5090 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
5091 | else if (isym->st_shndx == SHN_ABS) | |
5092 | isec = bfd_abs_section_ptr; | |
5093 | else if (isym->st_shndx == SHN_COMMON) | |
5094 | isec = bfd_com_section_ptr; | |
5095 | else | |
5096 | { | |
5097 | /* Who knows? */ | |
5098 | isec = NULL; | |
5099 | } | |
5100 | ||
5101 | *ppsection = isec; | |
5102 | ||
5103 | /* Don't output the first, undefined, symbol. */ | |
5104 | if (esym == external_syms) | |
5105 | continue; | |
5106 | ||
5107 | /* If we are stripping all symbols, we don't want to output this | |
5108 | one. */ | |
5109 | if (finfo->info->strip == strip_all) | |
5110 | continue; | |
5111 | ||
5112 | /* We never output section symbols. Instead, we use the section | |
5113 | symbol of the corresponding section in the output file. */ | |
5114 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5115 | continue; | |
5116 | ||
5117 | /* If we are discarding all local symbols, we don't want to | |
5118 | output this one. If we are generating a relocateable output | |
5119 | file, then some of the local symbols may be required by | |
5120 | relocs; we output them below as we discover that they are | |
5121 | needed. */ | |
5122 | if (finfo->info->discard == discard_all) | |
5123 | continue; | |
5124 | ||
5125 | /* If this symbol is defined in a section which we are | |
5126 | discarding, we don't need to keep it, but note that | |
5127 | linker_mark is only reliable for sections that have contents. | |
5128 | For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE | |
5129 | as well as linker_mark. */ | |
5130 | if (isym->st_shndx > 0 | |
5131 | && isym->st_shndx < SHN_LORESERVE | |
5132 | && isec != NULL | |
5133 | && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) | |
5134 | || (! finfo->info->relocateable | |
5135 | && (isec->flags & SEC_EXCLUDE) != 0))) | |
5136 | continue; | |
5137 | ||
5138 | /* Get the name of the symbol. */ | |
5139 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
5140 | isym->st_name); | |
5141 | if (name == NULL) | |
5142 | return false; | |
5143 | ||
5144 | /* See if we are discarding symbols with this name. */ | |
5145 | if ((finfo->info->strip == strip_some | |
5146 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
5147 | == NULL)) | |
5148 | || (finfo->info->discard == discard_l | |
5149 | && bfd_is_local_label_name (input_bfd, name))) | |
5150 | continue; | |
5151 | ||
5152 | /* If we get here, we are going to output this symbol. */ | |
5153 | ||
5154 | osym = *isym; | |
5155 | ||
5156 | /* Adjust the section index for the output file. */ | |
5157 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
5158 | isec->output_section); | |
5159 | if (osym.st_shndx == (unsigned short) -1) | |
5160 | return false; | |
5161 | ||
5162 | *pindex = bfd_get_symcount (output_bfd); | |
5163 | ||
5164 | /* ELF symbols in relocateable files are section relative, but | |
5165 | in executable files they are virtual addresses. Note that | |
5166 | this code assumes that all ELF sections have an associated | |
5167 | BFD section with a reasonable value for output_offset; below | |
5168 | we assume that they also have a reasonable value for | |
5169 | output_section. Any special sections must be set up to meet | |
5170 | these requirements. */ | |
5171 | osym.st_value += isec->output_offset; | |
5172 | if (! finfo->info->relocateable) | |
5173 | osym.st_value += isec->output_section->vma; | |
5174 | ||
5175 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
5176 | return false; | |
5177 | } | |
5178 | ||
5179 | /* Relocate the contents of each section. */ | |
5180 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
5181 | { | |
5182 | bfd_byte *contents; | |
5183 | ||
5184 | if (! o->linker_mark) | |
5185 | { | |
5186 | /* This section was omitted from the link. */ | |
5187 | continue; | |
5188 | } | |
5189 | ||
5190 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
5191 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
5192 | continue; | |
5193 | ||
5194 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
5195 | { | |
5196 | /* Section was created by elf_link_create_dynamic_sections | |
5197 | or somesuch. */ | |
5198 | continue; | |
5199 | } | |
5200 | ||
5201 | /* Get the contents of the section. They have been cached by a | |
5202 | relaxation routine. Note that o is a section in an input | |
5203 | file, so the contents field will not have been set by any of | |
5204 | the routines which work on output files. */ | |
5205 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
5206 | contents = elf_section_data (o)->this_hdr.contents; | |
5207 | else | |
5208 | { | |
5209 | contents = finfo->contents; | |
5210 | if (! bfd_get_section_contents (input_bfd, o, contents, | |
5211 | (file_ptr) 0, o->_raw_size)) | |
5212 | return false; | |
5213 | } | |
5214 | ||
5215 | if ((o->flags & SEC_RELOC) != 0) | |
5216 | { | |
5217 | Elf_Internal_Rela *internal_relocs; | |
5218 | ||
5219 | /* Get the swapped relocs. */ | |
5220 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
5221 | (input_bfd, o, finfo->external_relocs, | |
5222 | finfo->internal_relocs, false)); | |
5223 | if (internal_relocs == NULL | |
5224 | && o->reloc_count > 0) | |
5225 | return false; | |
5226 | ||
5227 | /* Relocate the section by invoking a back end routine. | |
5228 | ||
5229 | The back end routine is responsible for adjusting the | |
5230 | section contents as necessary, and (if using Rela relocs | |
5231 | and generating a relocateable output file) adjusting the | |
5232 | reloc addend as necessary. | |
5233 | ||
5234 | The back end routine does not have to worry about setting | |
5235 | the reloc address or the reloc symbol index. | |
5236 | ||
5237 | The back end routine is given a pointer to the swapped in | |
5238 | internal symbols, and can access the hash table entries | |
5239 | for the external symbols via elf_sym_hashes (input_bfd). | |
5240 | ||
5241 | When generating relocateable output, the back end routine | |
5242 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
5243 | output symbol is going to be a section symbol | |
5244 | corresponding to the output section, which will require | |
5245 | the addend to be adjusted. */ | |
5246 | ||
5247 | if (! (*relocate_section) (output_bfd, finfo->info, | |
5248 | input_bfd, o, contents, | |
5249 | internal_relocs, | |
5250 | finfo->internal_syms, | |
5251 | finfo->sections)) | |
5252 | return false; | |
5253 | ||
5254 | if (finfo->info->relocateable) | |
5255 | { | |
5256 | Elf_Internal_Rela *irela; | |
5257 | Elf_Internal_Rela *irelaend; | |
5258 | struct elf_link_hash_entry **rel_hash; | |
5259 | Elf_Internal_Shdr *input_rel_hdr; | |
252b5132 RH |
5260 | |
5261 | /* Adjust the reloc addresses and symbol indices. */ | |
5262 | ||
5263 | irela = internal_relocs; | |
c7ac6ff8 MM |
5264 | irelaend = |
5265 | irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 | 5266 | rel_hash = (elf_section_data (o->output_section)->rel_hashes |
31367b81 MM |
5267 | + elf_section_data (o->output_section)->rel_count |
5268 | + elf_section_data (o->output_section)->rel_count2); | |
252b5132 RH |
5269 | for (; irela < irelaend; irela++, rel_hash++) |
5270 | { | |
5271 | unsigned long r_symndx; | |
5272 | Elf_Internal_Sym *isym; | |
5273 | asection *sec; | |
5274 | ||
5275 | irela->r_offset += o->output_offset; | |
5276 | ||
5277 | r_symndx = ELF_R_SYM (irela->r_info); | |
5278 | ||
5279 | if (r_symndx == 0) | |
5280 | continue; | |
5281 | ||
5282 | if (r_symndx >= locsymcount | |
5283 | || (elf_bad_symtab (input_bfd) | |
5284 | && finfo->sections[r_symndx] == NULL)) | |
5285 | { | |
5286 | struct elf_link_hash_entry *rh; | |
5287 | long indx; | |
5288 | ||
5289 | /* This is a reloc against a global symbol. We | |
5290 | have not yet output all the local symbols, so | |
5291 | we do not know the symbol index of any global | |
5292 | symbol. We set the rel_hash entry for this | |
5293 | reloc to point to the global hash table entry | |
5294 | for this symbol. The symbol index is then | |
5295 | set at the end of elf_bfd_final_link. */ | |
5296 | indx = r_symndx - extsymoff; | |
5297 | rh = elf_sym_hashes (input_bfd)[indx]; | |
5298 | while (rh->root.type == bfd_link_hash_indirect | |
5299 | || rh->root.type == bfd_link_hash_warning) | |
5300 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
5301 | ||
5302 | /* Setting the index to -2 tells | |
5303 | elf_link_output_extsym that this symbol is | |
5304 | used by a reloc. */ | |
5305 | BFD_ASSERT (rh->indx < 0); | |
5306 | rh->indx = -2; | |
5307 | ||
5308 | *rel_hash = rh; | |
5309 | ||
5310 | continue; | |
5311 | } | |
5312 | ||
5313 | /* This is a reloc against a local symbol. */ | |
5314 | ||
5315 | *rel_hash = NULL; | |
5316 | isym = finfo->internal_syms + r_symndx; | |
5317 | sec = finfo->sections[r_symndx]; | |
5318 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
5319 | { | |
5320 | /* I suppose the backend ought to fill in the | |
5321 | section of any STT_SECTION symbol against a | |
5322 | processor specific section. If we have | |
5323 | discarded a section, the output_section will | |
5324 | be the absolute section. */ | |
5325 | if (sec != NULL | |
5326 | && (bfd_is_abs_section (sec) | |
5327 | || (sec->output_section != NULL | |
5328 | && bfd_is_abs_section (sec->output_section)))) | |
5329 | r_symndx = 0; | |
5330 | else if (sec == NULL || sec->owner == NULL) | |
5331 | { | |
5332 | bfd_set_error (bfd_error_bad_value); | |
5333 | return false; | |
5334 | } | |
5335 | else | |
5336 | { | |
5337 | r_symndx = sec->output_section->target_index; | |
5338 | BFD_ASSERT (r_symndx != 0); | |
5339 | } | |
5340 | } | |
5341 | else | |
5342 | { | |
5343 | if (finfo->indices[r_symndx] == -1) | |
5344 | { | |
5345 | unsigned long link; | |
5346 | const char *name; | |
5347 | asection *osec; | |
5348 | ||
5349 | if (finfo->info->strip == strip_all) | |
5350 | { | |
5351 | /* You can't do ld -r -s. */ | |
5352 | bfd_set_error (bfd_error_invalid_operation); | |
5353 | return false; | |
5354 | } | |
5355 | ||
5356 | /* This symbol was skipped earlier, but | |
5357 | since it is needed by a reloc, we | |
5358 | must output it now. */ | |
5359 | link = symtab_hdr->sh_link; | |
5360 | name = bfd_elf_string_from_elf_section (input_bfd, | |
5361 | link, | |
5362 | isym->st_name); | |
5363 | if (name == NULL) | |
5364 | return false; | |
5365 | ||
5366 | osec = sec->output_section; | |
5367 | isym->st_shndx = | |
5368 | _bfd_elf_section_from_bfd_section (output_bfd, | |
5369 | osec); | |
5370 | if (isym->st_shndx == (unsigned short) -1) | |
5371 | return false; | |
5372 | ||
5373 | isym->st_value += sec->output_offset; | |
5374 | if (! finfo->info->relocateable) | |
5375 | isym->st_value += osec->vma; | |
5376 | ||
5377 | finfo->indices[r_symndx] = bfd_get_symcount (output_bfd); | |
5378 | ||
5379 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
5380 | return false; | |
5381 | } | |
5382 | ||
5383 | r_symndx = finfo->indices[r_symndx]; | |
5384 | } | |
5385 | ||
5386 | irela->r_info = ELF_R_INFO (r_symndx, | |
5387 | ELF_R_TYPE (irela->r_info)); | |
5388 | } | |
5389 | ||
5390 | /* Swap out the relocs. */ | |
5391 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
23bc299b MM |
5392 | elf_link_output_relocs (output_bfd, o, |
5393 | input_rel_hdr, | |
5394 | internal_relocs); | |
5395 | internal_relocs | |
5396 | += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize; | |
5397 | input_rel_hdr = elf_section_data (o)->rel_hdr2; | |
5398 | if (input_rel_hdr) | |
5399 | elf_link_output_relocs (output_bfd, o, | |
5400 | input_rel_hdr, | |
5401 | internal_relocs); | |
252b5132 RH |
5402 | } |
5403 | } | |
5404 | ||
5405 | /* Write out the modified section contents. */ | |
5406 | if (elf_section_data (o)->stab_info == NULL) | |
5407 | { | |
5408 | if (! (o->flags & SEC_EXCLUDE) && | |
5409 | ! bfd_set_section_contents (output_bfd, o->output_section, | |
5410 | contents, o->output_offset, | |
5411 | (o->_cooked_size != 0 | |
5412 | ? o->_cooked_size | |
5413 | : o->_raw_size))) | |
5414 | return false; | |
5415 | } | |
5416 | else | |
5417 | { | |
5418 | if (! (_bfd_write_section_stabs | |
5419 | (output_bfd, &elf_hash_table (finfo->info)->stab_info, | |
5420 | o, &elf_section_data (o)->stab_info, contents))) | |
5421 | return false; | |
5422 | } | |
5423 | } | |
5424 | ||
5425 | return true; | |
5426 | } | |
5427 | ||
5428 | /* Generate a reloc when linking an ELF file. This is a reloc | |
5429 | requested by the linker, and does come from any input file. This | |
5430 | is used to build constructor and destructor tables when linking | |
5431 | with -Ur. */ | |
5432 | ||
5433 | static boolean | |
5434 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
5435 | bfd *output_bfd; | |
5436 | struct bfd_link_info *info; | |
5437 | asection *output_section; | |
5438 | struct bfd_link_order *link_order; | |
5439 | { | |
5440 | reloc_howto_type *howto; | |
5441 | long indx; | |
5442 | bfd_vma offset; | |
5443 | bfd_vma addend; | |
5444 | struct elf_link_hash_entry **rel_hash_ptr; | |
5445 | Elf_Internal_Shdr *rel_hdr; | |
5446 | ||
5447 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
5448 | if (howto == NULL) | |
5449 | { | |
5450 | bfd_set_error (bfd_error_bad_value); | |
5451 | return false; | |
5452 | } | |
5453 | ||
5454 | addend = link_order->u.reloc.p->addend; | |
5455 | ||
5456 | /* Figure out the symbol index. */ | |
5457 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
31367b81 MM |
5458 | + elf_section_data (output_section)->rel_count |
5459 | + elf_section_data (output_section)->rel_count2); | |
252b5132 RH |
5460 | if (link_order->type == bfd_section_reloc_link_order) |
5461 | { | |
5462 | indx = link_order->u.reloc.p->u.section->target_index; | |
5463 | BFD_ASSERT (indx != 0); | |
5464 | *rel_hash_ptr = NULL; | |
5465 | } | |
5466 | else | |
5467 | { | |
5468 | struct elf_link_hash_entry *h; | |
5469 | ||
5470 | /* Treat a reloc against a defined symbol as though it were | |
5471 | actually against the section. */ | |
5472 | h = ((struct elf_link_hash_entry *) | |
5473 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
5474 | link_order->u.reloc.p->u.name, | |
5475 | false, false, true)); | |
5476 | if (h != NULL | |
5477 | && (h->root.type == bfd_link_hash_defined | |
5478 | || h->root.type == bfd_link_hash_defweak)) | |
5479 | { | |
5480 | asection *section; | |
5481 | ||
5482 | section = h->root.u.def.section; | |
5483 | indx = section->output_section->target_index; | |
5484 | *rel_hash_ptr = NULL; | |
5485 | /* It seems that we ought to add the symbol value to the | |
5486 | addend here, but in practice it has already been added | |
5487 | because it was passed to constructor_callback. */ | |
5488 | addend += section->output_section->vma + section->output_offset; | |
5489 | } | |
5490 | else if (h != NULL) | |
5491 | { | |
5492 | /* Setting the index to -2 tells elf_link_output_extsym that | |
5493 | this symbol is used by a reloc. */ | |
5494 | h->indx = -2; | |
5495 | *rel_hash_ptr = h; | |
5496 | indx = 0; | |
5497 | } | |
5498 | else | |
5499 | { | |
5500 | if (! ((*info->callbacks->unattached_reloc) | |
5501 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
5502 | (asection *) NULL, (bfd_vma) 0))) | |
5503 | return false; | |
5504 | indx = 0; | |
5505 | } | |
5506 | } | |
5507 | ||
5508 | /* If this is an inplace reloc, we must write the addend into the | |
5509 | object file. */ | |
5510 | if (howto->partial_inplace && addend != 0) | |
5511 | { | |
5512 | bfd_size_type size; | |
5513 | bfd_reloc_status_type rstat; | |
5514 | bfd_byte *buf; | |
5515 | boolean ok; | |
5516 | ||
5517 | size = bfd_get_reloc_size (howto); | |
5518 | buf = (bfd_byte *) bfd_zmalloc (size); | |
5519 | if (buf == (bfd_byte *) NULL) | |
5520 | return false; | |
5521 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
5522 | switch (rstat) | |
5523 | { | |
5524 | case bfd_reloc_ok: | |
5525 | break; | |
5526 | default: | |
5527 | case bfd_reloc_outofrange: | |
5528 | abort (); | |
5529 | case bfd_reloc_overflow: | |
5530 | if (! ((*info->callbacks->reloc_overflow) | |
5531 | (info, | |
5532 | (link_order->type == bfd_section_reloc_link_order | |
5533 | ? bfd_section_name (output_bfd, | |
5534 | link_order->u.reloc.p->u.section) | |
5535 | : link_order->u.reloc.p->u.name), | |
5536 | howto->name, addend, (bfd *) NULL, (asection *) NULL, | |
5537 | (bfd_vma) 0))) | |
5538 | { | |
5539 | free (buf); | |
5540 | return false; | |
5541 | } | |
5542 | break; | |
5543 | } | |
5544 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
5545 | (file_ptr) link_order->offset, size); | |
5546 | free (buf); | |
5547 | if (! ok) | |
5548 | return false; | |
5549 | } | |
5550 | ||
5551 | /* The address of a reloc is relative to the section in a | |
5552 | relocateable file, and is a virtual address in an executable | |
5553 | file. */ | |
5554 | offset = link_order->offset; | |
5555 | if (! info->relocateable) | |
5556 | offset += output_section->vma; | |
5557 | ||
5558 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
5559 | ||
5560 | if (rel_hdr->sh_type == SHT_REL) | |
5561 | { | |
5562 | Elf_Internal_Rel irel; | |
5563 | Elf_External_Rel *erel; | |
5564 | ||
5565 | irel.r_offset = offset; | |
5566 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
5567 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
0525d26e | 5568 | + elf_section_data (output_section)->rel_count); |
252b5132 RH |
5569 | elf_swap_reloc_out (output_bfd, &irel, erel); |
5570 | } | |
5571 | else | |
5572 | { | |
5573 | Elf_Internal_Rela irela; | |
5574 | Elf_External_Rela *erela; | |
5575 | ||
5576 | irela.r_offset = offset; | |
5577 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
5578 | irela.r_addend = addend; | |
5579 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
0525d26e | 5580 | + elf_section_data (output_section)->rel_count); |
252b5132 RH |
5581 | elf_swap_reloca_out (output_bfd, &irela, erela); |
5582 | } | |
5583 | ||
0525d26e | 5584 | ++elf_section_data (output_section)->rel_count; |
252b5132 RH |
5585 | |
5586 | return true; | |
5587 | } | |
5588 | ||
5589 | \f | |
5590 | /* Allocate a pointer to live in a linker created section. */ | |
5591 | ||
5592 | boolean | |
5593 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
5594 | bfd *abfd; | |
5595 | struct bfd_link_info *info; | |
5596 | elf_linker_section_t *lsect; | |
5597 | struct elf_link_hash_entry *h; | |
5598 | const Elf_Internal_Rela *rel; | |
5599 | { | |
5600 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
5601 | elf_linker_section_pointers_t *linker_section_ptr; | |
5602 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; | |
5603 | ||
5604 | BFD_ASSERT (lsect != NULL); | |
5605 | ||
5606 | /* Is this a global symbol? */ | |
5607 | if (h != NULL) | |
5608 | { | |
5609 | /* Has this symbol already been allocated, if so, our work is done */ | |
5610 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
5611 | rel->r_addend, | |
5612 | lsect->which)) | |
5613 | return true; | |
5614 | ||
5615 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
5616 | /* Make sure this symbol is output as a dynamic symbol. */ | |
5617 | if (h->dynindx == -1) | |
5618 | { | |
5619 | if (! elf_link_record_dynamic_symbol (info, h)) | |
5620 | return false; | |
5621 | } | |
5622 | ||
5623 | if (lsect->rel_section) | |
5624 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
5625 | } | |
5626 | ||
5627 | else /* Allocation of a pointer to a local symbol */ | |
5628 | { | |
5629 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); | |
5630 | ||
5631 | /* Allocate a table to hold the local symbols if first time */ | |
5632 | if (!ptr) | |
5633 | { | |
5634 | unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
5635 | register unsigned int i; | |
5636 | ||
5637 | ptr = (elf_linker_section_pointers_t **) | |
5638 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); | |
5639 | ||
5640 | if (!ptr) | |
5641 | return false; | |
5642 | ||
5643 | elf_local_ptr_offsets (abfd) = ptr; | |
5644 | for (i = 0; i < num_symbols; i++) | |
5645 | ptr[i] = (elf_linker_section_pointers_t *)0; | |
5646 | } | |
5647 | ||
5648 | /* Has this symbol already been allocated, if so, our work is done */ | |
5649 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], | |
5650 | rel->r_addend, | |
5651 | lsect->which)) | |
5652 | return true; | |
5653 | ||
5654 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
5655 | ||
5656 | if (info->shared) | |
5657 | { | |
5658 | /* If we are generating a shared object, we need to | |
5659 | output a R_<xxx>_RELATIVE reloc so that the | |
5660 | dynamic linker can adjust this GOT entry. */ | |
5661 | BFD_ASSERT (lsect->rel_section != NULL); | |
5662 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
5663 | } | |
5664 | } | |
5665 | ||
5666 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record | |
5667 | from internal memory. */ | |
5668 | BFD_ASSERT (ptr_linker_section_ptr != NULL); | |
5669 | linker_section_ptr = (elf_linker_section_pointers_t *) | |
5670 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); | |
5671 | ||
5672 | if (!linker_section_ptr) | |
5673 | return false; | |
5674 | ||
5675 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
5676 | linker_section_ptr->addend = rel->r_addend; | |
5677 | linker_section_ptr->which = lsect->which; | |
5678 | linker_section_ptr->written_address_p = false; | |
5679 | *ptr_linker_section_ptr = linker_section_ptr; | |
5680 | ||
5681 | #if 0 | |
5682 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) | |
5683 | { | |
5684 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); | |
5685 | lsect->hole_offset += ARCH_SIZE / 8; | |
5686 | lsect->sym_offset += ARCH_SIZE / 8; | |
5687 | if (lsect->sym_hash) /* Bump up symbol value if needed */ | |
5688 | { | |
5689 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; | |
5690 | #ifdef DEBUG | |
5691 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
5692 | lsect->sym_hash->root.root.string, | |
5693 | (long)ARCH_SIZE / 8, | |
5694 | (long)lsect->sym_hash->root.u.def.value); | |
5695 | #endif | |
5696 | } | |
5697 | } | |
5698 | else | |
5699 | #endif | |
5700 | linker_section_ptr->offset = lsect->section->_raw_size; | |
5701 | ||
5702 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
5703 | ||
5704 | #ifdef DEBUG | |
5705 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
5706 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); | |
5707 | #endif | |
5708 | ||
5709 | return true; | |
5710 | } | |
5711 | ||
5712 | \f | |
5713 | #if ARCH_SIZE==64 | |
5714 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
5715 | #endif | |
5716 | #if ARCH_SIZE==32 | |
5717 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
5718 | #endif | |
5719 | ||
5720 | /* Fill in the address for a pointer generated in alinker section. */ | |
5721 | ||
5722 | bfd_vma | |
5723 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) | |
5724 | bfd *output_bfd; | |
5725 | bfd *input_bfd; | |
5726 | struct bfd_link_info *info; | |
5727 | elf_linker_section_t *lsect; | |
5728 | struct elf_link_hash_entry *h; | |
5729 | bfd_vma relocation; | |
5730 | const Elf_Internal_Rela *rel; | |
5731 | int relative_reloc; | |
5732 | { | |
5733 | elf_linker_section_pointers_t *linker_section_ptr; | |
5734 | ||
5735 | BFD_ASSERT (lsect != NULL); | |
5736 | ||
5737 | if (h != NULL) /* global symbol */ | |
5738 | { | |
5739 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
5740 | rel->r_addend, | |
5741 | lsect->which); | |
5742 | ||
5743 | BFD_ASSERT (linker_section_ptr != NULL); | |
5744 | ||
5745 | if (! elf_hash_table (info)->dynamic_sections_created | |
5746 | || (info->shared | |
5747 | && info->symbolic | |
5748 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
5749 | { | |
5750 | /* This is actually a static link, or it is a | |
5751 | -Bsymbolic link and the symbol is defined | |
5752 | locally. We must initialize this entry in the | |
5753 | global section. | |
5754 | ||
5755 | When doing a dynamic link, we create a .rela.<xxx> | |
5756 | relocation entry to initialize the value. This | |
5757 | is done in the finish_dynamic_symbol routine. */ | |
5758 | if (!linker_section_ptr->written_address_p) | |
5759 | { | |
5760 | linker_section_ptr->written_address_p = true; | |
5761 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
5762 | lsect->section->contents + linker_section_ptr->offset); | |
5763 | } | |
5764 | } | |
5765 | } | |
5766 | else /* local symbol */ | |
5767 | { | |
5768 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
5769 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
5770 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
5771 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
5772 | rel->r_addend, | |
5773 | lsect->which); | |
5774 | ||
5775 | BFD_ASSERT (linker_section_ptr != NULL); | |
5776 | ||
5777 | /* Write out pointer if it hasn't been rewritten out before */ | |
5778 | if (!linker_section_ptr->written_address_p) | |
5779 | { | |
5780 | linker_section_ptr->written_address_p = true; | |
5781 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
5782 | lsect->section->contents + linker_section_ptr->offset); | |
5783 | ||
5784 | if (info->shared) | |
5785 | { | |
5786 | asection *srel = lsect->rel_section; | |
5787 | Elf_Internal_Rela outrel; | |
5788 | ||
5789 | /* We need to generate a relative reloc for the dynamic linker. */ | |
5790 | if (!srel) | |
5791 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
5792 | lsect->rel_name); | |
5793 | ||
5794 | BFD_ASSERT (srel != NULL); | |
5795 | ||
5796 | outrel.r_offset = (lsect->section->output_section->vma | |
5797 | + lsect->section->output_offset | |
5798 | + linker_section_ptr->offset); | |
5799 | outrel.r_info = ELF_R_INFO (0, relative_reloc); | |
5800 | outrel.r_addend = 0; | |
5801 | elf_swap_reloca_out (output_bfd, &outrel, | |
5802 | (((Elf_External_Rela *) | |
5803 | lsect->section->contents) | |
0525d26e ILT |
5804 | + elf_section_data (lsect->section)->rel_count)); |
5805 | ++elf_section_data (lsect->section)->rel_count; | |
252b5132 RH |
5806 | } |
5807 | } | |
5808 | } | |
5809 | ||
5810 | relocation = (lsect->section->output_offset | |
5811 | + linker_section_ptr->offset | |
5812 | - lsect->hole_offset | |
5813 | - lsect->sym_offset); | |
5814 | ||
5815 | #ifdef DEBUG | |
5816 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
5817 | lsect->name, (long)relocation, (long)relocation); | |
5818 | #endif | |
5819 | ||
5820 | /* Subtract out the addend, because it will get added back in by the normal | |
5821 | processing. */ | |
5822 | return relocation - linker_section_ptr->addend; | |
5823 | } | |
5824 | \f | |
5825 | /* Garbage collect unused sections. */ | |
5826 | ||
5827 | static boolean elf_gc_mark | |
5828 | PARAMS ((struct bfd_link_info *info, asection *sec, | |
5829 | asection * (*gc_mark_hook) | |
5830 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
5831 | struct elf_link_hash_entry *, Elf_Internal_Sym *)))); | |
5832 | ||
5833 | static boolean elf_gc_sweep | |
5834 | PARAMS ((struct bfd_link_info *info, | |
5835 | boolean (*gc_sweep_hook) | |
5836 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
5837 | const Elf_Internal_Rela *relocs)))); | |
5838 | ||
5839 | static boolean elf_gc_sweep_symbol | |
5840 | PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); | |
5841 | ||
5842 | static boolean elf_gc_allocate_got_offsets | |
5843 | PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); | |
5844 | ||
5845 | static boolean elf_gc_propagate_vtable_entries_used | |
5846 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
5847 | ||
5848 | static boolean elf_gc_smash_unused_vtentry_relocs | |
5849 | PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); | |
5850 | ||
5851 | /* The mark phase of garbage collection. For a given section, mark | |
5852 | it, and all the sections which define symbols to which it refers. */ | |
5853 | ||
5854 | static boolean | |
5855 | elf_gc_mark (info, sec, gc_mark_hook) | |
5856 | struct bfd_link_info *info; | |
5857 | asection *sec; | |
5858 | asection * (*gc_mark_hook) | |
5859 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
5860 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
5861 | { | |
5862 | boolean ret = true; | |
5863 | ||
5864 | sec->gc_mark = 1; | |
5865 | ||
5866 | /* Look through the section relocs. */ | |
5867 | ||
5868 | if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) | |
5869 | { | |
5870 | Elf_Internal_Rela *relstart, *rel, *relend; | |
5871 | Elf_Internal_Shdr *symtab_hdr; | |
5872 | struct elf_link_hash_entry **sym_hashes; | |
5873 | size_t nlocsyms; | |
5874 | size_t extsymoff; | |
5875 | Elf_External_Sym *locsyms, *freesyms = NULL; | |
5876 | bfd *input_bfd = sec->owner; | |
c7ac6ff8 | 5877 | struct elf_backend_data *bed = get_elf_backend_data (input_bfd); |
252b5132 RH |
5878 | |
5879 | /* GCFIXME: how to arrange so that relocs and symbols are not | |
5880 | reread continually? */ | |
5881 | ||
5882 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5883 | sym_hashes = elf_sym_hashes (input_bfd); | |
5884 | ||
5885 | /* Read the local symbols. */ | |
5886 | if (elf_bad_symtab (input_bfd)) | |
5887 | { | |
5888 | nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
5889 | extsymoff = 0; | |
5890 | } | |
5891 | else | |
5892 | extsymoff = nlocsyms = symtab_hdr->sh_info; | |
5893 | if (symtab_hdr->contents) | |
5894 | locsyms = (Elf_External_Sym *) symtab_hdr->contents; | |
5895 | else if (nlocsyms == 0) | |
5896 | locsyms = NULL; | |
5897 | else | |
5898 | { | |
5899 | locsyms = freesyms = | |
5900 | bfd_malloc (nlocsyms * sizeof (Elf_External_Sym)); | |
5901 | if (freesyms == NULL | |
5902 | || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
5903 | || (bfd_read (locsyms, sizeof (Elf_External_Sym), | |
5904 | nlocsyms, input_bfd) | |
5905 | != nlocsyms * sizeof (Elf_External_Sym))) | |
5906 | { | |
5907 | ret = false; | |
5908 | goto out1; | |
5909 | } | |
5910 | } | |
5911 | ||
5912 | /* Read the relocations. */ | |
5913 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
5914 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, | |
5915 | info->keep_memory)); | |
5916 | if (relstart == NULL) | |
5917 | { | |
5918 | ret = false; | |
5919 | goto out1; | |
5920 | } | |
c7ac6ff8 | 5921 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
252b5132 RH |
5922 | |
5923 | for (rel = relstart; rel < relend; rel++) | |
5924 | { | |
5925 | unsigned long r_symndx; | |
5926 | asection *rsec; | |
5927 | struct elf_link_hash_entry *h; | |
5928 | Elf_Internal_Sym s; | |
5929 | ||
5930 | r_symndx = ELF_R_SYM (rel->r_info); | |
5931 | if (r_symndx == 0) | |
5932 | continue; | |
5933 | ||
5934 | if (elf_bad_symtab (sec->owner)) | |
5935 | { | |
5936 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
5937 | if (ELF_ST_BIND (s.st_info) == STB_LOCAL) | |
5938 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
5939 | else | |
5940 | { | |
5941 | h = sym_hashes[r_symndx - extsymoff]; | |
5942 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
5943 | } | |
5944 | } | |
5945 | else if (r_symndx >= nlocsyms) | |
5946 | { | |
5947 | h = sym_hashes[r_symndx - extsymoff]; | |
5948 | rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); | |
5949 | } | |
5950 | else | |
5951 | { | |
5952 | elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); | |
5953 | rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); | |
5954 | } | |
5955 | ||
5956 | if (rsec && !rsec->gc_mark) | |
5957 | if (!elf_gc_mark (info, rsec, gc_mark_hook)) | |
5958 | { | |
5959 | ret = false; | |
5960 | goto out2; | |
5961 | } | |
5962 | } | |
5963 | ||
5964 | out2: | |
5965 | if (!info->keep_memory) | |
5966 | free (relstart); | |
5967 | out1: | |
5968 | if (freesyms) | |
5969 | free (freesyms); | |
5970 | } | |
5971 | ||
5972 | return ret; | |
5973 | } | |
5974 | ||
5975 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
5976 | ||
5977 | static boolean | |
5978 | elf_gc_sweep (info, gc_sweep_hook) | |
5979 | struct bfd_link_info *info; | |
5980 | boolean (*gc_sweep_hook) | |
5981 | PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, | |
5982 | const Elf_Internal_Rela *relocs)); | |
5983 | { | |
5984 | bfd *sub; | |
5985 | ||
5986 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
5987 | { | |
5988 | asection *o; | |
5989 | ||
5990 | for (o = sub->sections; o != NULL; o = o->next) | |
5991 | { | |
5992 | /* Keep special sections. Keep .debug sections. */ | |
5993 | if ((o->flags & SEC_LINKER_CREATED) | |
5994 | || (o->flags & SEC_DEBUGGING)) | |
5995 | o->gc_mark = 1; | |
5996 | ||
5997 | if (o->gc_mark) | |
5998 | continue; | |
5999 | ||
6000 | /* Skip sweeping sections already excluded. */ | |
6001 | if (o->flags & SEC_EXCLUDE) | |
6002 | continue; | |
6003 | ||
6004 | /* Since this is early in the link process, it is simple | |
6005 | to remove a section from the output. */ | |
6006 | o->flags |= SEC_EXCLUDE; | |
6007 | ||
6008 | /* But we also have to update some of the relocation | |
6009 | info we collected before. */ | |
6010 | if (gc_sweep_hook | |
6011 | && (o->flags & SEC_RELOC) && o->reloc_count > 0) | |
6012 | { | |
6013 | Elf_Internal_Rela *internal_relocs; | |
6014 | boolean r; | |
6015 | ||
6016 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) | |
6017 | (o->owner, o, NULL, NULL, info->keep_memory)); | |
6018 | if (internal_relocs == NULL) | |
6019 | return false; | |
6020 | ||
6021 | r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs); | |
6022 | ||
6023 | if (!info->keep_memory) | |
6024 | free (internal_relocs); | |
6025 | ||
6026 | if (!r) | |
6027 | return false; | |
6028 | } | |
6029 | } | |
6030 | } | |
6031 | ||
6032 | /* Remove the symbols that were in the swept sections from the dynamic | |
6033 | symbol table. GCFIXME: Anyone know how to get them out of the | |
6034 | static symbol table as well? */ | |
6035 | { | |
6036 | int i = 0; | |
6037 | ||
6038 | elf_link_hash_traverse (elf_hash_table (info), | |
6039 | elf_gc_sweep_symbol, | |
6040 | (PTR) &i); | |
6041 | ||
6042 | elf_hash_table (info)->dynsymcount = i; | |
6043 | } | |
6044 | ||
6045 | return true; | |
6046 | } | |
6047 | ||
6048 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
6049 | ||
6050 | static boolean | |
6051 | elf_gc_sweep_symbol (h, idxptr) | |
6052 | struct elf_link_hash_entry *h; | |
6053 | PTR idxptr; | |
6054 | { | |
6055 | int *idx = (int *) idxptr; | |
6056 | ||
6057 | if (h->dynindx != -1 | |
6058 | && ((h->root.type != bfd_link_hash_defined | |
6059 | && h->root.type != bfd_link_hash_defweak) | |
6060 | || h->root.u.def.section->gc_mark)) | |
6061 | h->dynindx = (*idx)++; | |
6062 | ||
6063 | return true; | |
6064 | } | |
6065 | ||
6066 | /* Propogate collected vtable information. This is called through | |
6067 | elf_link_hash_traverse. */ | |
6068 | ||
6069 | static boolean | |
6070 | elf_gc_propagate_vtable_entries_used (h, okp) | |
6071 | struct elf_link_hash_entry *h; | |
6072 | PTR okp; | |
6073 | { | |
6074 | /* Those that are not vtables. */ | |
6075 | if (h->vtable_parent == NULL) | |
6076 | return true; | |
6077 | ||
6078 | /* Those vtables that do not have parents, we cannot merge. */ | |
6079 | if (h->vtable_parent == (struct elf_link_hash_entry *) -1) | |
6080 | return true; | |
6081 | ||
6082 | /* If we've already been done, exit. */ | |
6083 | if (h->vtable_entries_used && h->vtable_entries_used[-1]) | |
6084 | return true; | |
6085 | ||
6086 | /* Make sure the parent's table is up to date. */ | |
6087 | elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); | |
6088 | ||
6089 | if (h->vtable_entries_used == NULL) | |
6090 | { | |
6091 | /* None of this table's entries were referenced. Re-use the | |
6092 | parent's table. */ | |
6093 | h->vtable_entries_used = h->vtable_parent->vtable_entries_used; | |
6094 | h->vtable_entries_size = h->vtable_parent->vtable_entries_size; | |
6095 | } | |
6096 | else | |
6097 | { | |
6098 | size_t n; | |
6099 | boolean *cu, *pu; | |
6100 | ||
6101 | /* Or the parent's entries into ours. */ | |
6102 | cu = h->vtable_entries_used; | |
6103 | cu[-1] = true; | |
6104 | pu = h->vtable_parent->vtable_entries_used; | |
6105 | if (pu != NULL) | |
6106 | { | |
6107 | n = h->vtable_parent->vtable_entries_size / FILE_ALIGN; | |
6108 | while (--n != 0) | |
6109 | { | |
6110 | if (*pu) *cu = true; | |
6111 | pu++, cu++; | |
6112 | } | |
6113 | } | |
6114 | } | |
6115 | ||
6116 | return true; | |
6117 | } | |
6118 | ||
6119 | static boolean | |
6120 | elf_gc_smash_unused_vtentry_relocs (h, okp) | |
6121 | struct elf_link_hash_entry *h; | |
6122 | PTR okp; | |
6123 | { | |
6124 | asection *sec; | |
6125 | bfd_vma hstart, hend; | |
6126 | Elf_Internal_Rela *relstart, *relend, *rel; | |
c7ac6ff8 | 6127 | struct elf_backend_data *bed; |
252b5132 RH |
6128 | |
6129 | /* Take care of both those symbols that do not describe vtables as | |
6130 | well as those that are not loaded. */ | |
6131 | if (h->vtable_parent == NULL) | |
6132 | return true; | |
6133 | ||
6134 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
6135 | || h->root.type == bfd_link_hash_defweak); | |
6136 | ||
6137 | sec = h->root.u.def.section; | |
6138 | hstart = h->root.u.def.value; | |
6139 | hend = hstart + h->size; | |
6140 | ||
6141 | relstart = (NAME(_bfd_elf,link_read_relocs) | |
6142 | (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); | |
6143 | if (!relstart) | |
6144 | return *(boolean *)okp = false; | |
c7ac6ff8 MM |
6145 | bed = get_elf_backend_data (sec->owner); |
6146 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
252b5132 RH |
6147 | |
6148 | for (rel = relstart; rel < relend; ++rel) | |
6149 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
6150 | { | |
6151 | /* If the entry is in use, do nothing. */ | |
6152 | if (h->vtable_entries_used | |
6153 | && (rel->r_offset - hstart) < h->vtable_entries_size) | |
6154 | { | |
6155 | bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN; | |
6156 | if (h->vtable_entries_used[entry]) | |
6157 | continue; | |
6158 | } | |
6159 | /* Otherwise, kill it. */ | |
6160 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
6161 | } | |
6162 | ||
6163 | return true; | |
6164 | } | |
6165 | ||
6166 | /* Do mark and sweep of unused sections. */ | |
6167 | ||
6168 | boolean | |
6169 | elf_gc_sections (abfd, info) | |
6170 | bfd *abfd; | |
6171 | struct bfd_link_info *info; | |
6172 | { | |
6173 | boolean ok = true; | |
6174 | bfd *sub; | |
6175 | asection * (*gc_mark_hook) | |
6176 | PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *, | |
6177 | struct elf_link_hash_entry *h, Elf_Internal_Sym *)); | |
6178 | ||
6179 | if (!get_elf_backend_data (abfd)->can_gc_sections | |
6180 | || info->relocateable | |
6181 | || elf_hash_table (info)->dynamic_sections_created) | |
6182 | return true; | |
6183 | ||
6184 | /* Apply transitive closure to the vtable entry usage info. */ | |
6185 | elf_link_hash_traverse (elf_hash_table (info), | |
6186 | elf_gc_propagate_vtable_entries_used, | |
6187 | (PTR) &ok); | |
6188 | if (!ok) | |
6189 | return false; | |
6190 | ||
6191 | /* Kill the vtable relocations that were not used. */ | |
6192 | elf_link_hash_traverse (elf_hash_table (info), | |
6193 | elf_gc_smash_unused_vtentry_relocs, | |
6194 | (PTR) &ok); | |
6195 | if (!ok) | |
6196 | return false; | |
6197 | ||
6198 | /* Grovel through relocs to find out who stays ... */ | |
6199 | ||
6200 | gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; | |
6201 | for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) | |
6202 | { | |
6203 | asection *o; | |
6204 | for (o = sub->sections; o != NULL; o = o->next) | |
6205 | { | |
6206 | if (o->flags & SEC_KEEP) | |
6207 | if (!elf_gc_mark (info, o, gc_mark_hook)) | |
6208 | return false; | |
6209 | } | |
6210 | } | |
6211 | ||
6212 | /* ... and mark SEC_EXCLUDE for those that go. */ | |
6213 | if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook)) | |
6214 | return false; | |
6215 | ||
6216 | return true; | |
6217 | } | |
6218 | \f | |
6219 | /* Called from check_relocs to record the existance of a VTINHERIT reloc. */ | |
6220 | ||
6221 | boolean | |
6222 | elf_gc_record_vtinherit (abfd, sec, h, offset) | |
6223 | bfd *abfd; | |
6224 | asection *sec; | |
6225 | struct elf_link_hash_entry *h; | |
6226 | bfd_vma offset; | |
6227 | { | |
6228 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
6229 | struct elf_link_hash_entry **search, *child; | |
6230 | bfd_size_type extsymcount; | |
6231 | ||
6232 | /* The sh_info field of the symtab header tells us where the | |
6233 | external symbols start. We don't care about the local symbols at | |
6234 | this point. */ | |
6235 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); | |
6236 | if (!elf_bad_symtab (abfd)) | |
6237 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
6238 | ||
6239 | sym_hashes = elf_sym_hashes (abfd); | |
6240 | sym_hashes_end = sym_hashes + extsymcount; | |
6241 | ||
6242 | /* Hunt down the child symbol, which is in this section at the same | |
6243 | offset as the relocation. */ | |
6244 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
6245 | { | |
6246 | if ((child = *search) != NULL | |
6247 | && (child->root.type == bfd_link_hash_defined | |
6248 | || child->root.type == bfd_link_hash_defweak) | |
6249 | && child->root.u.def.section == sec | |
6250 | && child->root.u.def.value == offset) | |
6251 | goto win; | |
6252 | } | |
6253 | ||
6254 | (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", | |
6255 | bfd_get_filename (abfd), sec->name, | |
6256 | (unsigned long)offset); | |
6257 | bfd_set_error (bfd_error_invalid_operation); | |
6258 | return false; | |
6259 | ||
6260 | win: | |
6261 | if (!h) | |
6262 | { | |
6263 | /* This *should* only be the absolute section. It could potentially | |
6264 | be that someone has defined a non-global vtable though, which | |
6265 | would be bad. It isn't worth paging in the local symbols to be | |
6266 | sure though; that case should simply be handled by the assembler. */ | |
6267 | ||
6268 | child->vtable_parent = (struct elf_link_hash_entry *) -1; | |
6269 | } | |
6270 | else | |
6271 | child->vtable_parent = h; | |
6272 | ||
6273 | return true; | |
6274 | } | |
6275 | ||
6276 | /* Called from check_relocs to record the existance of a VTENTRY reloc. */ | |
6277 | ||
6278 | boolean | |
6279 | elf_gc_record_vtentry (abfd, sec, h, addend) | |
7442e600 ILT |
6280 | bfd *abfd ATTRIBUTE_UNUSED; |
6281 | asection *sec ATTRIBUTE_UNUSED; | |
252b5132 RH |
6282 | struct elf_link_hash_entry *h; |
6283 | bfd_vma addend; | |
6284 | { | |
6285 | if (addend >= h->vtable_entries_size) | |
6286 | { | |
6287 | size_t size, bytes; | |
6288 | boolean *ptr = h->vtable_entries_used; | |
6289 | ||
6290 | /* While the symbol is undefined, we have to be prepared to handle | |
6291 | a zero size. */ | |
6292 | if (h->root.type == bfd_link_hash_undefined) | |
6293 | size = addend; | |
6294 | else | |
6295 | { | |
6296 | size = h->size; | |
6297 | if (size < addend) | |
6298 | { | |
6299 | /* Oops! We've got a reference past the defined end of | |
6300 | the table. This is probably a bug -- shall we warn? */ | |
6301 | size = addend; | |
6302 | } | |
6303 | } | |
6304 | ||
6305 | /* Allocate one extra entry for use as a "done" flag for the | |
6306 | consolidation pass. */ | |
6307 | bytes = (size / FILE_ALIGN + 1) * sizeof(boolean); | |
6308 | ||
6309 | if (ptr) | |
6310 | { | |
6311 | size_t oldbytes; | |
6312 | ||
6313 | ptr = realloc (ptr-1, bytes); | |
6314 | if (ptr == NULL) | |
6315 | return false; | |
6316 | ||
6317 | oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean); | |
6318 | memset (ptr + oldbytes, 0, bytes - oldbytes); | |
6319 | } | |
6320 | else | |
6321 | { | |
6322 | ptr = calloc (1, bytes); | |
6323 | if (ptr == NULL) | |
6324 | return false; | |
6325 | } | |
6326 | ||
6327 | /* And arrange for that done flag to be at index -1. */ | |
6328 | h->vtable_entries_used = ptr+1; | |
6329 | h->vtable_entries_size = size; | |
6330 | } | |
6331 | h->vtable_entries_used[addend / FILE_ALIGN] = true; | |
6332 | ||
6333 | return true; | |
6334 | } | |
6335 | ||
6336 | /* And an accompanying bit to work out final got entry offsets once | |
6337 | we're done. Should be called from final_link. */ | |
6338 | ||
6339 | boolean | |
6340 | elf_gc_common_finalize_got_offsets (abfd, info) | |
6341 | bfd *abfd; | |
6342 | struct bfd_link_info *info; | |
6343 | { | |
6344 | bfd *i; | |
6345 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
6346 | bfd_vma gotoff; | |
6347 | ||
6348 | /* The GOT offset is relative to the .got section, but the GOT header is | |
6349 | put into the .got.plt section, if the backend uses it. */ | |
6350 | if (bed->want_got_plt) | |
6351 | gotoff = 0; | |
6352 | else | |
6353 | gotoff = bed->got_header_size; | |
6354 | ||
6355 | /* Do the local .got entries first. */ | |
6356 | for (i = info->input_bfds; i; i = i->link_next) | |
6357 | { | |
6358 | bfd_signed_vma *local_got = elf_local_got_refcounts (i); | |
6359 | bfd_size_type j, locsymcount; | |
6360 | Elf_Internal_Shdr *symtab_hdr; | |
6361 | ||
6362 | if (!local_got) | |
6363 | continue; | |
6364 | ||
6365 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
6366 | if (elf_bad_symtab (i)) | |
6367 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6368 | else | |
6369 | locsymcount = symtab_hdr->sh_info; | |
6370 | ||
6371 | for (j = 0; j < locsymcount; ++j) | |
6372 | { | |
6373 | if (local_got[j] > 0) | |
6374 | { | |
6375 | local_got[j] = gotoff; | |
6376 | gotoff += ARCH_SIZE / 8; | |
6377 | } | |
6378 | else | |
6379 | local_got[j] = (bfd_vma) -1; | |
6380 | } | |
6381 | } | |
6382 | ||
6383 | /* Then the global .got and .plt entries. */ | |
6384 | elf_link_hash_traverse (elf_hash_table (info), | |
6385 | elf_gc_allocate_got_offsets, | |
6386 | (PTR) &gotoff); | |
6387 | return true; | |
6388 | } | |
6389 | ||
6390 | /* We need a special top-level link routine to convert got reference counts | |
6391 | to real got offsets. */ | |
6392 | ||
6393 | static boolean | |
6394 | elf_gc_allocate_got_offsets (h, offarg) | |
6395 | struct elf_link_hash_entry *h; | |
6396 | PTR offarg; | |
6397 | { | |
6398 | bfd_vma *off = (bfd_vma *) offarg; | |
6399 | ||
6400 | if (h->got.refcount > 0) | |
6401 | { | |
6402 | h->got.offset = off[0]; | |
6403 | off[0] += ARCH_SIZE / 8; | |
6404 | } | |
6405 | else | |
6406 | h->got.offset = (bfd_vma) -1; | |
6407 | ||
6408 | return true; | |
6409 | } | |
6410 | ||
6411 | /* Many folk need no more in the way of final link than this, once | |
6412 | got entry reference counting is enabled. */ | |
6413 | ||
6414 | boolean | |
6415 | elf_gc_common_final_link (abfd, info) | |
6416 | bfd *abfd; | |
6417 | struct bfd_link_info *info; | |
6418 | { | |
6419 | if (!elf_gc_common_finalize_got_offsets (abfd, info)) | |
6420 | return false; | |
6421 | ||
6422 | /* Invoke the regular ELF backend linker to do all the work. */ | |
6423 | return elf_bfd_final_link (abfd, info); | |
6424 | } | |
6425 | ||
6426 | /* This function will be called though elf_link_hash_traverse to store | |
6427 | all hash value of the exported symbols in an array. */ | |
6428 | ||
6429 | static boolean | |
6430 | elf_collect_hash_codes (h, data) | |
6431 | struct elf_link_hash_entry *h; | |
6432 | PTR data; | |
6433 | { | |
6434 | unsigned long **valuep = (unsigned long **) data; | |
6435 | const char *name; | |
6436 | char *p; | |
6437 | unsigned long ha; | |
6438 | char *alc = NULL; | |
6439 | ||
6440 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
6441 | if (h->dynindx == -1) | |
6442 | return true; | |
6443 | ||
6444 | name = h->root.root.string; | |
6445 | p = strchr (name, ELF_VER_CHR); | |
6446 | if (p != NULL) | |
6447 | { | |
6448 | alc = bfd_malloc (p - name + 1); | |
6449 | memcpy (alc, name, p - name); | |
6450 | alc[p - name] = '\0'; | |
6451 | name = alc; | |
6452 | } | |
6453 | ||
6454 | /* Compute the hash value. */ | |
6455 | ha = bfd_elf_hash (name); | |
6456 | ||
6457 | /* Store the found hash value in the array given as the argument. */ | |
6458 | *(*valuep)++ = ha; | |
6459 | ||
6460 | /* And store it in the struct so that we can put it in the hash table | |
6461 | later. */ | |
6462 | h->elf_hash_value = ha; | |
6463 | ||
6464 | if (alc != NULL) | |
6465 | free (alc); | |
6466 | ||
6467 | return true; | |
6468 | } |