Fix typo in previous change.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132
RH
1/* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
55static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
42751cf3 57static void elf_link_remove_section_and_adjust_dynindices
78de0b43 58 PARAMS ((struct bfd_link_info *, asection *));
23bc299b
MM
59static void elf_link_output_relocs
60 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
61static boolean elf_link_size_reloc_section
62 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
252b5132
RH
63
64/* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
66
67boolean
68elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
71{
72 switch (bfd_get_format (abfd))
73 {
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
81 }
82}
83\f
84
85/* Add symbols from an ELF archive file to the linker hash table. We
86 don't use _bfd_generic_link_add_archive_symbols because of a
87 problem which arises on UnixWare. The UnixWare libc.so is an
88 archive which includes an entry libc.so.1 which defines a bunch of
89 symbols. The libc.so archive also includes a number of other
90 object files, which also define symbols, some of which are the same
91 as those defined in libc.so.1. Correct linking requires that we
92 consider each object file in turn, and include it if it defines any
93 symbols we need. _bfd_generic_link_add_archive_symbols does not do
94 this; it looks through the list of undefined symbols, and includes
95 any object file which defines them. When this algorithm is used on
96 UnixWare, it winds up pulling in libc.so.1 early and defining a
97 bunch of symbols. This means that some of the other objects in the
98 archive are not included in the link, which is incorrect since they
99 precede libc.so.1 in the archive.
100
101 Fortunately, ELF archive handling is simpler than that done by
102 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
103 oddities. In ELF, if we find a symbol in the archive map, and the
104 symbol is currently undefined, we know that we must pull in that
105 object file.
106
107 Unfortunately, we do have to make multiple passes over the symbol
108 table until nothing further is resolved. */
109
110static boolean
111elf_link_add_archive_symbols (abfd, info)
112 bfd *abfd;
113 struct bfd_link_info *info;
114{
115 symindex c;
116 boolean *defined = NULL;
117 boolean *included = NULL;
118 carsym *symdefs;
119 boolean loop;
120
121 if (! bfd_has_map (abfd))
122 {
123 /* An empty archive is a special case. */
124 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
125 return true;
126 bfd_set_error (bfd_error_no_armap);
127 return false;
128 }
129
130 /* Keep track of all symbols we know to be already defined, and all
131 files we know to be already included. This is to speed up the
132 second and subsequent passes. */
133 c = bfd_ardata (abfd)->symdef_count;
134 if (c == 0)
135 return true;
136 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
137 included = (boolean *) bfd_malloc (c * sizeof (boolean));
138 if (defined == (boolean *) NULL || included == (boolean *) NULL)
139 goto error_return;
140 memset (defined, 0, c * sizeof (boolean));
141 memset (included, 0, c * sizeof (boolean));
142
143 symdefs = bfd_ardata (abfd)->symdefs;
144
145 do
146 {
147 file_ptr last;
148 symindex i;
149 carsym *symdef;
150 carsym *symdefend;
151
152 loop = false;
153 last = -1;
154
155 symdef = symdefs;
156 symdefend = symdef + c;
157 for (i = 0; symdef < symdefend; symdef++, i++)
158 {
159 struct elf_link_hash_entry *h;
160 bfd *element;
161 struct bfd_link_hash_entry *undefs_tail;
162 symindex mark;
163
164 if (defined[i] || included[i])
165 continue;
166 if (symdef->file_offset == last)
167 {
168 included[i] = true;
169 continue;
170 }
171
172 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
173 false, false, false);
174
175 if (h == NULL)
176 {
177 char *p, *copy;
178
179 /* If this is a default version (the name contains @@),
180 look up the symbol again without the version. The
181 effect is that references to the symbol without the
182 version will be matched by the default symbol in the
183 archive. */
184
185 p = strchr (symdef->name, ELF_VER_CHR);
186 if (p == NULL || p[1] != ELF_VER_CHR)
187 continue;
188
189 copy = bfd_alloc (abfd, p - symdef->name + 1);
190 if (copy == NULL)
191 goto error_return;
192 memcpy (copy, symdef->name, p - symdef->name);
193 copy[p - symdef->name] = '\0';
194
195 h = elf_link_hash_lookup (elf_hash_table (info), copy,
196 false, false, false);
197
198 bfd_release (abfd, copy);
199 }
200
201 if (h == NULL)
202 continue;
203
204 if (h->root.type != bfd_link_hash_undefined)
205 {
206 if (h->root.type != bfd_link_hash_undefweak)
207 defined[i] = true;
208 continue;
209 }
210
211 /* We need to include this archive member. */
212
213 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
214 if (element == (bfd *) NULL)
215 goto error_return;
216
217 if (! bfd_check_format (element, bfd_object))
218 goto error_return;
219
220 /* Doublecheck that we have not included this object
221 already--it should be impossible, but there may be
222 something wrong with the archive. */
223 if (element->archive_pass != 0)
224 {
225 bfd_set_error (bfd_error_bad_value);
226 goto error_return;
227 }
228 element->archive_pass = 1;
229
230 undefs_tail = info->hash->undefs_tail;
231
232 if (! (*info->callbacks->add_archive_element) (info, element,
233 symdef->name))
234 goto error_return;
235 if (! elf_link_add_object_symbols (element, info))
236 goto error_return;
237
238 /* If there are any new undefined symbols, we need to make
239 another pass through the archive in order to see whether
240 they can be defined. FIXME: This isn't perfect, because
241 common symbols wind up on undefs_tail and because an
242 undefined symbol which is defined later on in this pass
243 does not require another pass. This isn't a bug, but it
244 does make the code less efficient than it could be. */
245 if (undefs_tail != info->hash->undefs_tail)
246 loop = true;
247
248 /* Look backward to mark all symbols from this object file
249 which we have already seen in this pass. */
250 mark = i;
251 do
252 {
253 included[mark] = true;
254 if (mark == 0)
255 break;
256 --mark;
257 }
258 while (symdefs[mark].file_offset == symdef->file_offset);
259
260 /* We mark subsequent symbols from this object file as we go
261 on through the loop. */
262 last = symdef->file_offset;
263 }
264 }
265 while (loop);
266
267 free (defined);
268 free (included);
269
270 return true;
271
272 error_return:
273 if (defined != (boolean *) NULL)
274 free (defined);
275 if (included != (boolean *) NULL)
276 free (included);
277 return false;
278}
279
280/* This function is called when we want to define a new symbol. It
281 handles the various cases which arise when we find a definition in
282 a dynamic object, or when there is already a definition in a
283 dynamic object. The new symbol is described by NAME, SYM, PSEC,
284 and PVALUE. We set SYM_HASH to the hash table entry. We set
285 OVERRIDE if the old symbol is overriding a new definition. We set
286 TYPE_CHANGE_OK if it is OK for the type to change. We set
287 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
288 change, we mean that we shouldn't warn if the type or size does
289 change. */
290
291static boolean
292elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
293 override, type_change_ok, size_change_ok)
294 bfd *abfd;
295 struct bfd_link_info *info;
296 const char *name;
297 Elf_Internal_Sym *sym;
298 asection **psec;
299 bfd_vma *pvalue;
300 struct elf_link_hash_entry **sym_hash;
301 boolean *override;
302 boolean *type_change_ok;
303 boolean *size_change_ok;
304{
305 asection *sec;
306 struct elf_link_hash_entry *h;
307 int bind;
308 bfd *oldbfd;
309 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
310
311 *override = false;
312
313 sec = *psec;
314 bind = ELF_ST_BIND (sym->st_info);
315
316 if (! bfd_is_und_section (sec))
317 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
318 else
319 h = ((struct elf_link_hash_entry *)
320 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
321 if (h == NULL)
322 return false;
323 *sym_hash = h;
324
325 /* This code is for coping with dynamic objects, and is only useful
326 if we are doing an ELF link. */
327 if (info->hash->creator != abfd->xvec)
328 return true;
329
330 /* For merging, we only care about real symbols. */
331
332 while (h->root.type == bfd_link_hash_indirect
333 || h->root.type == bfd_link_hash_warning)
334 h = (struct elf_link_hash_entry *) h->root.u.i.link;
335
336 /* If we just created the symbol, mark it as being an ELF symbol.
337 Other than that, there is nothing to do--there is no merge issue
338 with a newly defined symbol--so we just return. */
339
340 if (h->root.type == bfd_link_hash_new)
341 {
342 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
343 return true;
344 }
345
346 /* OLDBFD is a BFD associated with the existing symbol. */
347
348 switch (h->root.type)
349 {
350 default:
351 oldbfd = NULL;
352 break;
353
354 case bfd_link_hash_undefined:
355 case bfd_link_hash_undefweak:
356 oldbfd = h->root.u.undef.abfd;
357 break;
358
359 case bfd_link_hash_defined:
360 case bfd_link_hash_defweak:
361 oldbfd = h->root.u.def.section->owner;
362 break;
363
364 case bfd_link_hash_common:
365 oldbfd = h->root.u.c.p->section->owner;
366 break;
367 }
368
b4536acd
ILT
369 /* In cases involving weak versioned symbols, we may wind up trying
370 to merge a symbol with itself. Catch that here, to avoid the
371 confusion that results if we try to override a symbol with
372 itself. */
373 if (abfd == oldbfd)
374 return true;
375
252b5132
RH
376 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
377 respectively, is from a dynamic object. */
378
379 if ((abfd->flags & DYNAMIC) != 0)
380 newdyn = true;
381 else
382 newdyn = false;
383
384 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
385 olddyn = false;
386 else
387 olddyn = true;
388
389 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
390 respectively, appear to be a definition rather than reference. */
391
392 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
393 newdef = false;
394 else
395 newdef = true;
396
397 if (h->root.type == bfd_link_hash_undefined
398 || h->root.type == bfd_link_hash_undefweak
399 || h->root.type == bfd_link_hash_common)
400 olddef = false;
401 else
402 olddef = true;
403
404 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
405 symbol, respectively, appears to be a common symbol in a dynamic
406 object. If a symbol appears in an uninitialized section, and is
407 not weak, and is not a function, then it may be a common symbol
408 which was resolved when the dynamic object was created. We want
409 to treat such symbols specially, because they raise special
410 considerations when setting the symbol size: if the symbol
411 appears as a common symbol in a regular object, and the size in
412 the regular object is larger, we must make sure that we use the
413 larger size. This problematic case can always be avoided in C,
414 but it must be handled correctly when using Fortran shared
415 libraries.
416
417 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
418 likewise for OLDDYNCOMMON and OLDDEF.
419
420 Note that this test is just a heuristic, and that it is quite
421 possible to have an uninitialized symbol in a shared object which
422 is really a definition, rather than a common symbol. This could
423 lead to some minor confusion when the symbol really is a common
424 symbol in some regular object. However, I think it will be
425 harmless. */
426
427 if (newdyn
428 && newdef
429 && (sec->flags & SEC_ALLOC) != 0
430 && (sec->flags & SEC_LOAD) == 0
431 && sym->st_size > 0
432 && bind != STB_WEAK
433 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
434 newdyncommon = true;
435 else
436 newdyncommon = false;
437
438 if (olddyn
439 && olddef
440 && h->root.type == bfd_link_hash_defined
441 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
442 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
443 && (h->root.u.def.section->flags & SEC_LOAD) == 0
444 && h->size > 0
445 && h->type != STT_FUNC)
446 olddyncommon = true;
447 else
448 olddyncommon = false;
449
450 /* It's OK to change the type if either the existing symbol or the
451 new symbol is weak. */
452
453 if (h->root.type == bfd_link_hash_defweak
454 || h->root.type == bfd_link_hash_undefweak
455 || bind == STB_WEAK)
456 *type_change_ok = true;
457
458 /* It's OK to change the size if either the existing symbol or the
459 new symbol is weak, or if the old symbol is undefined. */
460
461 if (*type_change_ok
462 || h->root.type == bfd_link_hash_undefined)
463 *size_change_ok = true;
464
465 /* If both the old and the new symbols look like common symbols in a
466 dynamic object, set the size of the symbol to the larger of the
467 two. */
468
469 if (olddyncommon
470 && newdyncommon
471 && sym->st_size != h->size)
472 {
473 /* Since we think we have two common symbols, issue a multiple
474 common warning if desired. Note that we only warn if the
475 size is different. If the size is the same, we simply let
476 the old symbol override the new one as normally happens with
477 symbols defined in dynamic objects. */
478
479 if (! ((*info->callbacks->multiple_common)
480 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
481 h->size, abfd, bfd_link_hash_common, sym->st_size)))
482 return false;
483
484 if (sym->st_size > h->size)
485 h->size = sym->st_size;
486
487 *size_change_ok = true;
488 }
489
490 /* If we are looking at a dynamic object, and we have found a
491 definition, we need to see if the symbol was already defined by
492 some other object. If so, we want to use the existing
493 definition, and we do not want to report a multiple symbol
494 definition error; we do this by clobbering *PSEC to be
495 bfd_und_section_ptr.
496
497 We treat a common symbol as a definition if the symbol in the
498 shared library is a function, since common symbols always
499 represent variables; this can cause confusion in principle, but
500 any such confusion would seem to indicate an erroneous program or
501 shared library. We also permit a common symbol in a regular
0525d26e
ILT
502 object to override a weak symbol in a shared object.
503
504 We prefer a non-weak definition in a shared library to a weak
505 definition in the executable. */
252b5132
RH
506
507 if (newdyn
508 && newdef
509 && (olddef
510 || (h->root.type == bfd_link_hash_common
511 && (bind == STB_WEAK
0525d26e
ILT
512 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
513 && (h->root.type != bfd_link_hash_defweak
514 || bind == STB_WEAK))
252b5132
RH
515 {
516 *override = true;
517 newdef = false;
518 newdyncommon = false;
519
520 *psec = sec = bfd_und_section_ptr;
521 *size_change_ok = true;
522
523 /* If we get here when the old symbol is a common symbol, then
524 we are explicitly letting it override a weak symbol or
525 function in a dynamic object, and we don't want to warn about
526 a type change. If the old symbol is a defined symbol, a type
527 change warning may still be appropriate. */
528
529 if (h->root.type == bfd_link_hash_common)
530 *type_change_ok = true;
531 }
532
533 /* Handle the special case of an old common symbol merging with a
534 new symbol which looks like a common symbol in a shared object.
535 We change *PSEC and *PVALUE to make the new symbol look like a
536 common symbol, and let _bfd_generic_link_add_one_symbol will do
537 the right thing. */
538
539 if (newdyncommon
540 && h->root.type == bfd_link_hash_common)
541 {
542 *override = true;
543 newdef = false;
544 newdyncommon = false;
545 *pvalue = sym->st_size;
546 *psec = sec = bfd_com_section_ptr;
547 *size_change_ok = true;
548 }
549
550 /* If the old symbol is from a dynamic object, and the new symbol is
551 a definition which is not from a dynamic object, then the new
552 symbol overrides the old symbol. Symbols from regular files
553 always take precedence over symbols from dynamic objects, even if
554 they are defined after the dynamic object in the link.
555
556 As above, we again permit a common symbol in a regular object to
557 override a definition in a shared object if the shared object
0525d26e
ILT
558 symbol is a function or is weak.
559
560 As above, we permit a non-weak definition in a shared object to
561 override a weak definition in a regular object. */
252b5132
RH
562
563 if (! newdyn
564 && (newdef
565 || (bfd_is_com_section (sec)
566 && (h->root.type == bfd_link_hash_defweak
567 || h->type == STT_FUNC)))
568 && olddyn
569 && olddef
0525d26e
ILT
570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
571 && (bind != STB_WEAK
572 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
573 {
574 /* Change the hash table entry to undefined, and let
575 _bfd_generic_link_add_one_symbol do the right thing with the
576 new definition. */
577
578 h->root.type = bfd_link_hash_undefined;
579 h->root.u.undef.abfd = h->root.u.def.section->owner;
580 *size_change_ok = true;
581
582 olddef = false;
583 olddyncommon = false;
584
585 /* We again permit a type change when a common symbol may be
586 overriding a function. */
587
588 if (bfd_is_com_section (sec))
589 *type_change_ok = true;
590
591 /* This union may have been set to be non-NULL when this symbol
592 was seen in a dynamic object. We must force the union to be
593 NULL, so that it is correct for a regular symbol. */
594
595 h->verinfo.vertree = NULL;
596
597 /* In this special case, if H is the target of an indirection,
598 we want the caller to frob with H rather than with the
599 indirect symbol. That will permit the caller to redefine the
600 target of the indirection, rather than the indirect symbol
601 itself. FIXME: This will break the -y option if we store a
602 symbol with a different name. */
603 *sym_hash = h;
604 }
605
606 /* Handle the special case of a new common symbol merging with an
607 old symbol that looks like it might be a common symbol defined in
608 a shared object. Note that we have already handled the case in
609 which a new common symbol should simply override the definition
610 in the shared library. */
611
612 if (! newdyn
613 && bfd_is_com_section (sec)
614 && olddyncommon)
615 {
616 /* It would be best if we could set the hash table entry to a
617 common symbol, but we don't know what to use for the section
618 or the alignment. */
619 if (! ((*info->callbacks->multiple_common)
620 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
621 h->size, abfd, bfd_link_hash_common, sym->st_size)))
622 return false;
623
624 /* If the predumed common symbol in the dynamic object is
625 larger, pretend that the new symbol has its size. */
626
627 if (h->size > *pvalue)
628 *pvalue = h->size;
629
630 /* FIXME: We no longer know the alignment required by the symbol
631 in the dynamic object, so we just wind up using the one from
632 the regular object. */
633
634 olddef = false;
635 olddyncommon = false;
636
637 h->root.type = bfd_link_hash_undefined;
638 h->root.u.undef.abfd = h->root.u.def.section->owner;
639
640 *size_change_ok = true;
641 *type_change_ok = true;
642
643 h->verinfo.vertree = NULL;
644 }
645
0525d26e
ILT
646 /* Handle the special case of a weak definition in a regular object
647 followed by a non-weak definition in a shared object. In this
b4536acd 648 case, we prefer the definition in the shared object. */
0525d26e 649 if (olddef
0525d26e
ILT
650 && h->root.type == bfd_link_hash_defweak
651 && newdef
652 && newdyn
653 && bind != STB_WEAK)
b4536acd
ILT
654 {
655 /* To make this work we have to frob the flags so that the rest
656 of the code does not think we are using the regular
657 definition. */
658 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
659 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
660
661 /* If H is the target of an indirection, we want the caller to
662 use H rather than the indirect symbol. Otherwise if we are
663 defining a new indirect symbol we will wind up attaching it
664 to the entry we are overriding. */
665 *sym_hash = h;
666 }
0525d26e
ILT
667
668 /* Handle the special case of a non-weak definition in a shared
669 object followed by a weak definition in a regular object. In
670 this case we prefer to definition in the shared object. To make
671 this work we have to tell the caller to not treat the new symbol
672 as a definition. */
673 if (olddef
674 && olddyn
675 && h->root.type != bfd_link_hash_defweak
676 && newdef
677 && ! newdyn
678 && bind == STB_WEAK)
679 *override = true;
680
252b5132
RH
681 return true;
682}
683
684/* Add symbols from an ELF object file to the linker hash table. */
685
686static boolean
687elf_link_add_object_symbols (abfd, info)
688 bfd *abfd;
689 struct bfd_link_info *info;
690{
691 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
692 const Elf_Internal_Sym *,
693 const char **, flagword *,
694 asection **, bfd_vma *));
695 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
696 asection *, const Elf_Internal_Rela *));
697 boolean collect;
698 Elf_Internal_Shdr *hdr;
699 size_t symcount;
700 size_t extsymcount;
701 size_t extsymoff;
702 Elf_External_Sym *buf = NULL;
703 struct elf_link_hash_entry **sym_hash;
704 boolean dynamic;
705 bfd_byte *dynver = NULL;
706 Elf_External_Versym *extversym = NULL;
707 Elf_External_Versym *ever;
708 Elf_External_Dyn *dynbuf = NULL;
709 struct elf_link_hash_entry *weaks;
710 Elf_External_Sym *esym;
711 Elf_External_Sym *esymend;
712
713 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
714 collect = get_elf_backend_data (abfd)->collect;
715
716 if ((abfd->flags & DYNAMIC) == 0)
717 dynamic = false;
718 else
719 {
720 dynamic = true;
721
722 /* You can't use -r against a dynamic object. Also, there's no
723 hope of using a dynamic object which does not exactly match
724 the format of the output file. */
725 if (info->relocateable || info->hash->creator != abfd->xvec)
726 {
727 bfd_set_error (bfd_error_invalid_operation);
728 goto error_return;
729 }
730 }
731
732 /* As a GNU extension, any input sections which are named
733 .gnu.warning.SYMBOL are treated as warning symbols for the given
734 symbol. This differs from .gnu.warning sections, which generate
735 warnings when they are included in an output file. */
736 if (! info->shared)
737 {
738 asection *s;
739
740 for (s = abfd->sections; s != NULL; s = s->next)
741 {
742 const char *name;
743
744 name = bfd_get_section_name (abfd, s);
745 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
746 {
747 char *msg;
748 bfd_size_type sz;
749
750 name += sizeof ".gnu.warning." - 1;
751
752 /* If this is a shared object, then look up the symbol
753 in the hash table. If it is there, and it is already
754 been defined, then we will not be using the entry
755 from this shared object, so we don't need to warn.
756 FIXME: If we see the definition in a regular object
757 later on, we will warn, but we shouldn't. The only
758 fix is to keep track of what warnings we are supposed
759 to emit, and then handle them all at the end of the
760 link. */
761 if (dynamic && abfd->xvec == info->hash->creator)
762 {
763 struct elf_link_hash_entry *h;
764
765 h = elf_link_hash_lookup (elf_hash_table (info), name,
766 false, false, true);
767
768 /* FIXME: What about bfd_link_hash_common? */
769 if (h != NULL
770 && (h->root.type == bfd_link_hash_defined
771 || h->root.type == bfd_link_hash_defweak))
772 {
773 /* We don't want to issue this warning. Clobber
774 the section size so that the warning does not
775 get copied into the output file. */
776 s->_raw_size = 0;
777 continue;
778 }
779 }
780
781 sz = bfd_section_size (abfd, s);
782 msg = (char *) bfd_alloc (abfd, sz + 1);
783 if (msg == NULL)
784 goto error_return;
785
786 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
787 goto error_return;
788
789 msg[sz] = '\0';
790
791 if (! (_bfd_generic_link_add_one_symbol
792 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
793 false, collect, (struct bfd_link_hash_entry **) NULL)))
794 goto error_return;
795
796 if (! info->relocateable)
797 {
798 /* Clobber the section size so that the warning does
799 not get copied into the output file. */
800 s->_raw_size = 0;
801 }
802 }
803 }
804 }
805
806 /* If this is a dynamic object, we always link against the .dynsym
807 symbol table, not the .symtab symbol table. The dynamic linker
808 will only see the .dynsym symbol table, so there is no reason to
809 look at .symtab for a dynamic object. */
810
811 if (! dynamic || elf_dynsymtab (abfd) == 0)
812 hdr = &elf_tdata (abfd)->symtab_hdr;
813 else
814 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
815
816 if (dynamic)
817 {
818 /* Read in any version definitions. */
819
820 if (! _bfd_elf_slurp_version_tables (abfd))
821 goto error_return;
822
823 /* Read in the symbol versions, but don't bother to convert them
824 to internal format. */
825 if (elf_dynversym (abfd) != 0)
826 {
827 Elf_Internal_Shdr *versymhdr;
828
829 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
830 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
831 if (extversym == NULL)
832 goto error_return;
833 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
834 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
835 != versymhdr->sh_size))
836 goto error_return;
837 }
838 }
839
840 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
841
842 /* The sh_info field of the symtab header tells us where the
843 external symbols start. We don't care about the local symbols at
844 this point. */
845 if (elf_bad_symtab (abfd))
846 {
847 extsymcount = symcount;
848 extsymoff = 0;
849 }
850 else
851 {
852 extsymcount = symcount - hdr->sh_info;
853 extsymoff = hdr->sh_info;
854 }
855
856 buf = ((Elf_External_Sym *)
857 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
858 if (buf == NULL && extsymcount != 0)
859 goto error_return;
860
861 /* We store a pointer to the hash table entry for each external
862 symbol. */
863 sym_hash = ((struct elf_link_hash_entry **)
864 bfd_alloc (abfd,
865 extsymcount * sizeof (struct elf_link_hash_entry *)));
866 if (sym_hash == NULL)
867 goto error_return;
868 elf_sym_hashes (abfd) = sym_hash;
869
870 if (! dynamic)
871 {
872 /* If we are creating a shared library, create all the dynamic
873 sections immediately. We need to attach them to something,
874 so we attach them to this BFD, provided it is the right
875 format. FIXME: If there are no input BFD's of the same
876 format as the output, we can't make a shared library. */
877 if (info->shared
878 && ! elf_hash_table (info)->dynamic_sections_created
879 && abfd->xvec == info->hash->creator)
880 {
881 if (! elf_link_create_dynamic_sections (abfd, info))
882 goto error_return;
883 }
884 }
885 else
886 {
887 asection *s;
888 boolean add_needed;
889 const char *name;
890 bfd_size_type oldsize;
891 bfd_size_type strindex;
892
893 /* Find the name to use in a DT_NEEDED entry that refers to this
894 object. If the object has a DT_SONAME entry, we use it.
895 Otherwise, if the generic linker stuck something in
896 elf_dt_name, we use that. Otherwise, we just use the file
897 name. If the generic linker put a null string into
898 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
899 there is a DT_SONAME entry. */
900 add_needed = true;
901 name = bfd_get_filename (abfd);
902 if (elf_dt_name (abfd) != NULL)
903 {
904 name = elf_dt_name (abfd);
905 if (*name == '\0')
906 add_needed = false;
907 }
908 s = bfd_get_section_by_name (abfd, ".dynamic");
909 if (s != NULL)
910 {
911 Elf_External_Dyn *extdyn;
912 Elf_External_Dyn *extdynend;
913 int elfsec;
914 unsigned long link;
915
916 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
917 if (dynbuf == NULL)
918 goto error_return;
919
920 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
921 (file_ptr) 0, s->_raw_size))
922 goto error_return;
923
924 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
925 if (elfsec == -1)
926 goto error_return;
927 link = elf_elfsections (abfd)[elfsec]->sh_link;
928
929 extdyn = dynbuf;
930 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
931 for (; extdyn < extdynend; extdyn++)
932 {
933 Elf_Internal_Dyn dyn;
934
935 elf_swap_dyn_in (abfd, extdyn, &dyn);
936 if (dyn.d_tag == DT_SONAME)
937 {
938 name = bfd_elf_string_from_elf_section (abfd, link,
939 dyn.d_un.d_val);
940 if (name == NULL)
941 goto error_return;
942 }
943 if (dyn.d_tag == DT_NEEDED)
944 {
945 struct bfd_link_needed_list *n, **pn;
946 char *fnm, *anm;
947
948 n = ((struct bfd_link_needed_list *)
949 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
950 fnm = bfd_elf_string_from_elf_section (abfd, link,
951 dyn.d_un.d_val);
952 if (n == NULL || fnm == NULL)
953 goto error_return;
954 anm = bfd_alloc (abfd, strlen (fnm) + 1);
955 if (anm == NULL)
956 goto error_return;
957 strcpy (anm, fnm);
958 n->name = anm;
959 n->by = abfd;
960 n->next = NULL;
961 for (pn = &elf_hash_table (info)->needed;
962 *pn != NULL;
963 pn = &(*pn)->next)
964 ;
965 *pn = n;
966 }
967 }
968
969 free (dynbuf);
970 dynbuf = NULL;
971 }
972
973 /* We do not want to include any of the sections in a dynamic
974 object in the output file. We hack by simply clobbering the
975 list of sections in the BFD. This could be handled more
976 cleanly by, say, a new section flag; the existing
977 SEC_NEVER_LOAD flag is not the one we want, because that one
978 still implies that the section takes up space in the output
979 file. */
980 abfd->sections = NULL;
981 abfd->section_count = 0;
982
983 /* If this is the first dynamic object found in the link, create
984 the special sections required for dynamic linking. */
985 if (! elf_hash_table (info)->dynamic_sections_created)
986 {
987 if (! elf_link_create_dynamic_sections (abfd, info))
988 goto error_return;
989 }
990
991 if (add_needed)
992 {
993 /* Add a DT_NEEDED entry for this dynamic object. */
994 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
995 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
996 true, false);
997 if (strindex == (bfd_size_type) -1)
998 goto error_return;
999
1000 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1001 {
1002 asection *sdyn;
1003 Elf_External_Dyn *dyncon, *dynconend;
1004
1005 /* The hash table size did not change, which means that
1006 the dynamic object name was already entered. If we
1007 have already included this dynamic object in the
1008 link, just ignore it. There is no reason to include
1009 a particular dynamic object more than once. */
1010 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1011 ".dynamic");
1012 BFD_ASSERT (sdyn != NULL);
1013
1014 dyncon = (Elf_External_Dyn *) sdyn->contents;
1015 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1016 sdyn->_raw_size);
1017 for (; dyncon < dynconend; dyncon++)
1018 {
1019 Elf_Internal_Dyn dyn;
1020
1021 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1022 &dyn);
1023 if (dyn.d_tag == DT_NEEDED
1024 && dyn.d_un.d_val == strindex)
1025 {
1026 if (buf != NULL)
1027 free (buf);
1028 if (extversym != NULL)
1029 free (extversym);
1030 return true;
1031 }
1032 }
1033 }
1034
1035 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1036 goto error_return;
1037 }
1038
1039 /* Save the SONAME, if there is one, because sometimes the
1040 linker emulation code will need to know it. */
1041 if (*name == '\0')
1042 name = bfd_get_filename (abfd);
1043 elf_dt_name (abfd) = name;
1044 }
1045
1046 if (bfd_seek (abfd,
1047 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1048 SEEK_SET) != 0
1049 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1050 != extsymcount * sizeof (Elf_External_Sym)))
1051 goto error_return;
1052
1053 weaks = NULL;
1054
1055 ever = extversym != NULL ? extversym + extsymoff : NULL;
1056 esymend = buf + extsymcount;
1057 for (esym = buf;
1058 esym < esymend;
1059 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1060 {
1061 Elf_Internal_Sym sym;
1062 int bind;
1063 bfd_vma value;
1064 asection *sec;
1065 flagword flags;
1066 const char *name;
1067 struct elf_link_hash_entry *h;
1068 boolean definition;
1069 boolean size_change_ok, type_change_ok;
1070 boolean new_weakdef;
1071 unsigned int old_alignment;
1072
1073 elf_swap_symbol_in (abfd, esym, &sym);
1074
1075 flags = BSF_NO_FLAGS;
1076 sec = NULL;
1077 value = sym.st_value;
1078 *sym_hash = NULL;
1079
1080 bind = ELF_ST_BIND (sym.st_info);
1081 if (bind == STB_LOCAL)
1082 {
1083 /* This should be impossible, since ELF requires that all
1084 global symbols follow all local symbols, and that sh_info
1085 point to the first global symbol. Unfortunatealy, Irix 5
1086 screws this up. */
1087 continue;
1088 }
1089 else if (bind == STB_GLOBAL)
1090 {
1091 if (sym.st_shndx != SHN_UNDEF
1092 && sym.st_shndx != SHN_COMMON)
1093 flags = BSF_GLOBAL;
1094 else
1095 flags = 0;
1096 }
1097 else if (bind == STB_WEAK)
1098 flags = BSF_WEAK;
1099 else
1100 {
1101 /* Leave it up to the processor backend. */
1102 }
1103
1104 if (sym.st_shndx == SHN_UNDEF)
1105 sec = bfd_und_section_ptr;
1106 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1107 {
1108 sec = section_from_elf_index (abfd, sym.st_shndx);
1109 if (sec == NULL)
1110 sec = bfd_abs_section_ptr;
1111 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1112 value -= sec->vma;
1113 }
1114 else if (sym.st_shndx == SHN_ABS)
1115 sec = bfd_abs_section_ptr;
1116 else if (sym.st_shndx == SHN_COMMON)
1117 {
1118 sec = bfd_com_section_ptr;
1119 /* What ELF calls the size we call the value. What ELF
1120 calls the value we call the alignment. */
1121 value = sym.st_size;
1122 }
1123 else
1124 {
1125 /* Leave it up to the processor backend. */
1126 }
1127
1128 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1129 if (name == (const char *) NULL)
1130 goto error_return;
1131
1132 if (add_symbol_hook)
1133 {
1134 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1135 &value))
1136 goto error_return;
1137
1138 /* The hook function sets the name to NULL if this symbol
1139 should be skipped for some reason. */
1140 if (name == (const char *) NULL)
1141 continue;
1142 }
1143
1144 /* Sanity check that all possibilities were handled. */
1145 if (sec == (asection *) NULL)
1146 {
1147 bfd_set_error (bfd_error_bad_value);
1148 goto error_return;
1149 }
1150
1151 if (bfd_is_und_section (sec)
1152 || bfd_is_com_section (sec))
1153 definition = false;
1154 else
1155 definition = true;
1156
1157 size_change_ok = false;
1158 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1159 old_alignment = 0;
1160 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1161 {
1162 Elf_Internal_Versym iver;
1163 unsigned int vernum = 0;
1164 boolean override;
1165
1166 if (ever != NULL)
1167 {
1168 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1169 vernum = iver.vs_vers & VERSYM_VERSION;
1170
1171 /* If this is a hidden symbol, or if it is not version
1172 1, we append the version name to the symbol name.
1173 However, we do not modify a non-hidden absolute
1174 symbol, because it might be the version symbol
1175 itself. FIXME: What if it isn't? */
1176 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1177 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1178 {
1179 const char *verstr;
1180 int namelen, newlen;
1181 char *newname, *p;
1182
1183 if (sym.st_shndx != SHN_UNDEF)
1184 {
1185 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1186 {
1187 (*_bfd_error_handler)
1188 (_("%s: %s: invalid version %u (max %d)"),
1189 bfd_get_filename (abfd), name, vernum,
1190 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1191 bfd_set_error (bfd_error_bad_value);
1192 goto error_return;
1193 }
1194 else if (vernum > 1)
1195 verstr =
1196 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1197 else
1198 verstr = "";
1199 }
1200 else
1201 {
1202 /* We cannot simply test for the number of
1203 entries in the VERNEED section since the
1204 numbers for the needed versions do not start
1205 at 0. */
1206 Elf_Internal_Verneed *t;
1207
1208 verstr = NULL;
1209 for (t = elf_tdata (abfd)->verref;
1210 t != NULL;
1211 t = t->vn_nextref)
1212 {
1213 Elf_Internal_Vernaux *a;
1214
1215 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1216 {
1217 if (a->vna_other == vernum)
1218 {
1219 verstr = a->vna_nodename;
1220 break;
1221 }
1222 }
1223 if (a != NULL)
1224 break;
1225 }
1226 if (verstr == NULL)
1227 {
1228 (*_bfd_error_handler)
1229 (_("%s: %s: invalid needed version %d"),
1230 bfd_get_filename (abfd), name, vernum);
1231 bfd_set_error (bfd_error_bad_value);
1232 goto error_return;
1233 }
1234 }
1235
1236 namelen = strlen (name);
1237 newlen = namelen + strlen (verstr) + 2;
1238 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1239 ++newlen;
1240
1241 newname = (char *) bfd_alloc (abfd, newlen);
1242 if (newname == NULL)
1243 goto error_return;
1244 strcpy (newname, name);
1245 p = newname + namelen;
1246 *p++ = ELF_VER_CHR;
1247 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1248 *p++ = ELF_VER_CHR;
1249 strcpy (p, verstr);
1250
1251 name = newname;
1252 }
1253 }
1254
1255 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1256 sym_hash, &override, &type_change_ok,
1257 &size_change_ok))
1258 goto error_return;
1259
1260 if (override)
1261 definition = false;
1262
1263 h = *sym_hash;
1264 while (h->root.type == bfd_link_hash_indirect
1265 || h->root.type == bfd_link_hash_warning)
1266 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1267
1268 /* Remember the old alignment if this is a common symbol, so
1269 that we don't reduce the alignment later on. We can't
1270 check later, because _bfd_generic_link_add_one_symbol
1271 will set a default for the alignment which we want to
1272 override. */
1273 if (h->root.type == bfd_link_hash_common)
1274 old_alignment = h->root.u.c.p->alignment_power;
1275
1276 if (elf_tdata (abfd)->verdef != NULL
1277 && ! override
1278 && vernum > 1
1279 && definition)
1280 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1281 }
1282
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, name, flags, sec, value, (const char *) NULL,
1285 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1286 goto error_return;
1287
1288 h = *sym_hash;
1289 while (h->root.type == bfd_link_hash_indirect
1290 || h->root.type == bfd_link_hash_warning)
1291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1292 *sym_hash = h;
1293
1294 new_weakdef = false;
1295 if (dynamic
1296 && definition
1297 && (flags & BSF_WEAK) != 0
1298 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1299 && info->hash->creator->flavour == bfd_target_elf_flavour
1300 && h->weakdef == NULL)
1301 {
1302 /* Keep a list of all weak defined non function symbols from
1303 a dynamic object, using the weakdef field. Later in this
1304 function we will set the weakdef field to the correct
1305 value. We only put non-function symbols from dynamic
1306 objects on this list, because that happens to be the only
1307 time we need to know the normal symbol corresponding to a
1308 weak symbol, and the information is time consuming to
1309 figure out. If the weakdef field is not already NULL,
1310 then this symbol was already defined by some previous
1311 dynamic object, and we will be using that previous
1312 definition anyhow. */
1313
1314 h->weakdef = weaks;
1315 weaks = h;
1316 new_weakdef = true;
1317 }
1318
1319 /* Set the alignment of a common symbol. */
1320 if (sym.st_shndx == SHN_COMMON
1321 && h->root.type == bfd_link_hash_common)
1322 {
1323 unsigned int align;
1324
1325 align = bfd_log2 (sym.st_value);
1326 if (align > old_alignment)
1327 h->root.u.c.p->alignment_power = align;
1328 }
1329
1330 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1331 {
1332 int old_flags;
1333 boolean dynsym;
1334 int new_flag;
1335
1336 /* Remember the symbol size and type. */
1337 if (sym.st_size != 0
1338 && (definition || h->size == 0))
1339 {
1340 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1341 (*_bfd_error_handler)
1342 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1343 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1344 bfd_get_filename (abfd));
1345
1346 h->size = sym.st_size;
1347 }
1348
1349 /* If this is a common symbol, then we always want H->SIZE
1350 to be the size of the common symbol. The code just above
1351 won't fix the size if a common symbol becomes larger. We
1352 don't warn about a size change here, because that is
1353 covered by --warn-common. */
1354 if (h->root.type == bfd_link_hash_common)
1355 h->size = h->root.u.c.size;
1356
1357 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1358 && (definition || h->type == STT_NOTYPE))
1359 {
1360 if (h->type != STT_NOTYPE
1361 && h->type != ELF_ST_TYPE (sym.st_info)
1362 && ! type_change_ok)
1363 (*_bfd_error_handler)
1364 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1365 name, h->type, ELF_ST_TYPE (sym.st_info),
1366 bfd_get_filename (abfd));
1367
1368 h->type = ELF_ST_TYPE (sym.st_info);
1369 }
1370
1371 if (sym.st_other != 0
1372 && (definition || h->other == 0))
1373 h->other = sym.st_other;
1374
1375 /* Set a flag in the hash table entry indicating the type of
1376 reference or definition we just found. Keep a count of
1377 the number of dynamic symbols we find. A dynamic symbol
1378 is one which is referenced or defined by both a regular
1379 object and a shared object. */
1380 old_flags = h->elf_link_hash_flags;
1381 dynsym = false;
1382 if (! dynamic)
1383 {
1384 if (! definition)
1385 {
1386 new_flag = ELF_LINK_HASH_REF_REGULAR;
1387 if (bind != STB_WEAK)
1388 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1389 }
1390 else
1391 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1392 if (info->shared
1393 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1394 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1395 dynsym = true;
1396 }
1397 else
1398 {
1399 if (! definition)
1400 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1401 else
1402 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1403 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1404 | ELF_LINK_HASH_REF_REGULAR)) != 0
1405 || (h->weakdef != NULL
1406 && ! new_weakdef
1407 && h->weakdef->dynindx != -1))
1408 dynsym = true;
1409 }
1410
1411 h->elf_link_hash_flags |= new_flag;
1412
1413 /* If this symbol has a version, and it is the default
1414 version, we create an indirect symbol from the default
1415 name to the fully decorated name. This will cause
1416 external references which do not specify a version to be
1417 bound to this version of the symbol. */
1418 if (definition)
1419 {
1420 char *p;
1421
1422 p = strchr (name, ELF_VER_CHR);
1423 if (p != NULL && p[1] == ELF_VER_CHR)
1424 {
1425 char *shortname;
1426 struct elf_link_hash_entry *hi;
1427 boolean override;
1428
1429 shortname = bfd_hash_allocate (&info->hash->table,
1430 p - name + 1);
1431 if (shortname == NULL)
1432 goto error_return;
1433 strncpy (shortname, name, p - name);
1434 shortname[p - name] = '\0';
1435
1436 /* We are going to create a new symbol. Merge it
1437 with any existing symbol with this name. For the
1438 purposes of the merge, act as though we were
1439 defining the symbol we just defined, although we
1440 actually going to define an indirect symbol. */
1441 type_change_ok = false;
1442 size_change_ok = false;
1443 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1444 &value, &hi, &override,
1445 &type_change_ok, &size_change_ok))
1446 goto error_return;
1447
1448 if (! override)
1449 {
1450 if (! (_bfd_generic_link_add_one_symbol
1451 (info, abfd, shortname, BSF_INDIRECT,
1452 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1453 collect, (struct bfd_link_hash_entry **) &hi)))
1454 goto error_return;
1455 }
1456 else
1457 {
1458 /* In this case the symbol named SHORTNAME is
1459 overriding the indirect symbol we want to
1460 add. We were planning on making SHORTNAME an
1461 indirect symbol referring to NAME. SHORTNAME
1462 is the name without a version. NAME is the
1463 fully versioned name, and it is the default
1464 version.
1465
1466 Overriding means that we already saw a
1467 definition for the symbol SHORTNAME in a
1468 regular object, and it is overriding the
1469 symbol defined in the dynamic object.
1470
1471 When this happens, we actually want to change
1472 NAME, the symbol we just added, to refer to
1473 SHORTNAME. This will cause references to
1474 NAME in the shared object to become
1475 references to SHORTNAME in the regular
1476 object. This is what we expect when we
1477 override a function in a shared object: that
1478 the references in the shared object will be
1479 mapped to the definition in the regular
1480 object. */
1481
1482 while (hi->root.type == bfd_link_hash_indirect
1483 || hi->root.type == bfd_link_hash_warning)
1484 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1485
1486 h->root.type = bfd_link_hash_indirect;
1487 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1488 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1489 {
1490 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1491 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1492 if (hi->elf_link_hash_flags
1493 & (ELF_LINK_HASH_REF_REGULAR
1494 | ELF_LINK_HASH_DEF_REGULAR))
1495 {
1496 if (! _bfd_elf_link_record_dynamic_symbol (info,
1497 hi))
1498 goto error_return;
1499 }
1500 }
1501
1502 /* Now set HI to H, so that the following code
1503 will set the other fields correctly. */
1504 hi = h;
1505 }
1506
1507 /* If there is a duplicate definition somewhere,
1508 then HI may not point to an indirect symbol. We
1509 will have reported an error to the user in that
1510 case. */
1511
1512 if (hi->root.type == bfd_link_hash_indirect)
1513 {
1514 struct elf_link_hash_entry *ht;
1515
1516 /* If the symbol became indirect, then we assume
1517 that we have not seen a definition before. */
1518 BFD_ASSERT ((hi->elf_link_hash_flags
1519 & (ELF_LINK_HASH_DEF_DYNAMIC
1520 | ELF_LINK_HASH_DEF_REGULAR))
1521 == 0);
1522
1523 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1524
1525 /* Copy down any references that we may have
1526 already seen to the symbol which just became
1527 indirect. */
1528 ht->elf_link_hash_flags |=
1529 (hi->elf_link_hash_flags
1530 & (ELF_LINK_HASH_REF_DYNAMIC
1531 | ELF_LINK_HASH_REF_REGULAR
1532 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1533
1534 /* Copy over the global and procedure linkage table
1535 offset entries. These may have been already set
1536 up by a check_relocs routine. */
1537 if (ht->got.offset == (bfd_vma) -1)
1538 {
1539 ht->got.offset = hi->got.offset;
1540 hi->got.offset = (bfd_vma) -1;
1541 }
1542 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1543
1544 if (ht->plt.offset == (bfd_vma) -1)
1545 {
1546 ht->plt.offset = hi->plt.offset;
1547 hi->plt.offset = (bfd_vma) -1;
1548 }
1549 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1550
1551 if (ht->dynindx == -1)
1552 {
1553 ht->dynindx = hi->dynindx;
1554 ht->dynstr_index = hi->dynstr_index;
1555 hi->dynindx = -1;
1556 hi->dynstr_index = 0;
1557 }
1558 BFD_ASSERT (hi->dynindx == -1);
1559
1560 /* FIXME: There may be other information to copy
1561 over for particular targets. */
1562
1563 /* See if the new flags lead us to realize that
1564 the symbol must be dynamic. */
1565 if (! dynsym)
1566 {
1567 if (! dynamic)
1568 {
1569 if (info->shared
1570 || ((hi->elf_link_hash_flags
1571 & ELF_LINK_HASH_REF_DYNAMIC)
1572 != 0))
1573 dynsym = true;
1574 }
1575 else
1576 {
1577 if ((hi->elf_link_hash_flags
1578 & ELF_LINK_HASH_REF_REGULAR) != 0)
1579 dynsym = true;
1580 }
1581 }
1582 }
1583
1584 /* We also need to define an indirection from the
1585 nondefault version of the symbol. */
1586
1587 shortname = bfd_hash_allocate (&info->hash->table,
1588 strlen (name));
1589 if (shortname == NULL)
1590 goto error_return;
1591 strncpy (shortname, name, p - name);
1592 strcpy (shortname + (p - name), p + 1);
1593
1594 /* Once again, merge with any existing symbol. */
1595 type_change_ok = false;
1596 size_change_ok = false;
1597 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1598 &value, &hi, &override,
1599 &type_change_ok, &size_change_ok))
1600 goto error_return;
1601
1602 if (override)
1603 {
1604 /* Here SHORTNAME is a versioned name, so we
1605 don't expect to see the type of override we
1606 do in the case above. */
1607 (*_bfd_error_handler)
1608 (_("%s: warning: unexpected redefinition of `%s'"),
1609 bfd_get_filename (abfd), shortname);
1610 }
1611 else
1612 {
1613 if (! (_bfd_generic_link_add_one_symbol
1614 (info, abfd, shortname, BSF_INDIRECT,
1615 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1616 collect, (struct bfd_link_hash_entry **) &hi)))
1617 goto error_return;
1618
1619 /* If there is a duplicate definition somewhere,
1620 then HI may not point to an indirect symbol.
1621 We will have reported an error to the user in
1622 that case. */
1623
1624 if (hi->root.type == bfd_link_hash_indirect)
1625 {
1626 /* If the symbol became indirect, then we
1627 assume that we have not seen a definition
1628 before. */
1629 BFD_ASSERT ((hi->elf_link_hash_flags
1630 & (ELF_LINK_HASH_DEF_DYNAMIC
1631 | ELF_LINK_HASH_DEF_REGULAR))
1632 == 0);
1633
1634 /* Copy down any references that we may have
1635 already seen to the symbol which just
1636 became indirect. */
1637 h->elf_link_hash_flags |=
1638 (hi->elf_link_hash_flags
1639 & (ELF_LINK_HASH_REF_DYNAMIC
1640 | ELF_LINK_HASH_REF_REGULAR
1641 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1642
1643 /* Copy over the global and procedure linkage
1644 table offset entries. These may have been
1645 already set up by a check_relocs routine. */
1646 if (h->got.offset == (bfd_vma) -1)
1647 {
1648 h->got.offset = hi->got.offset;
1649 hi->got.offset = (bfd_vma) -1;
1650 }
1651 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1652
1653 if (h->plt.offset == (bfd_vma) -1)
1654 {
1655 h->plt.offset = hi->plt.offset;
1656 hi->plt.offset = (bfd_vma) -1;
1657 }
1658 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1659
1660 if (h->dynindx == -1)
1661 {
1662 h->dynindx = hi->dynindx;
1663 h->dynstr_index = hi->dynstr_index;
1664 hi->dynindx = -1;
1665 hi->dynstr_index = 0;
1666 }
1667 BFD_ASSERT (hi->dynindx == -1);
1668
1669 /* FIXME: There may be other information to
1670 copy over for particular targets. */
1671
1672 /* See if the new flags lead us to realize
1673 that the symbol must be dynamic. */
1674 if (! dynsym)
1675 {
1676 if (! dynamic)
1677 {
1678 if (info->shared
1679 || ((hi->elf_link_hash_flags
1680 & ELF_LINK_HASH_REF_DYNAMIC)
1681 != 0))
1682 dynsym = true;
1683 }
1684 else
1685 {
1686 if ((hi->elf_link_hash_flags
1687 & ELF_LINK_HASH_REF_REGULAR) != 0)
1688 dynsym = true;
1689 }
1690 }
1691 }
1692 }
1693 }
1694 }
1695
1696 if (dynsym && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 if (h->weakdef != NULL
1701 && ! new_weakdef
1702 && h->weakdef->dynindx == -1)
1703 {
1704 if (! _bfd_elf_link_record_dynamic_symbol (info,
1705 h->weakdef))
1706 goto error_return;
1707 }
1708 }
1709 }
1710 }
1711
1712 /* Now set the weakdefs field correctly for all the weak defined
1713 symbols we found. The only way to do this is to search all the
1714 symbols. Since we only need the information for non functions in
1715 dynamic objects, that's the only time we actually put anything on
1716 the list WEAKS. We need this information so that if a regular
1717 object refers to a symbol defined weakly in a dynamic object, the
1718 real symbol in the dynamic object is also put in the dynamic
1719 symbols; we also must arrange for both symbols to point to the
1720 same memory location. We could handle the general case of symbol
1721 aliasing, but a general symbol alias can only be generated in
1722 assembler code, handling it correctly would be very time
1723 consuming, and other ELF linkers don't handle general aliasing
1724 either. */
1725 while (weaks != NULL)
1726 {
1727 struct elf_link_hash_entry *hlook;
1728 asection *slook;
1729 bfd_vma vlook;
1730 struct elf_link_hash_entry **hpp;
1731 struct elf_link_hash_entry **hppend;
1732
1733 hlook = weaks;
1734 weaks = hlook->weakdef;
1735 hlook->weakdef = NULL;
1736
1737 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1738 || hlook->root.type == bfd_link_hash_defweak
1739 || hlook->root.type == bfd_link_hash_common
1740 || hlook->root.type == bfd_link_hash_indirect);
1741 slook = hlook->root.u.def.section;
1742 vlook = hlook->root.u.def.value;
1743
1744 hpp = elf_sym_hashes (abfd);
1745 hppend = hpp + extsymcount;
1746 for (; hpp < hppend; hpp++)
1747 {
1748 struct elf_link_hash_entry *h;
1749
1750 h = *hpp;
1751 if (h != NULL && h != hlook
1752 && h->root.type == bfd_link_hash_defined
1753 && h->root.u.def.section == slook
1754 && h->root.u.def.value == vlook)
1755 {
1756 hlook->weakdef = h;
1757
1758 /* If the weak definition is in the list of dynamic
1759 symbols, make sure the real definition is put there
1760 as well. */
1761 if (hlook->dynindx != -1
1762 && h->dynindx == -1)
1763 {
1764 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1765 goto error_return;
1766 }
1767
1768 /* If the real definition is in the list of dynamic
1769 symbols, make sure the weak definition is put there
1770 as well. If we don't do this, then the dynamic
1771 loader might not merge the entries for the real
1772 definition and the weak definition. */
1773 if (h->dynindx != -1
1774 && hlook->dynindx == -1)
1775 {
1776 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1777 goto error_return;
1778 }
1779
1780 break;
1781 }
1782 }
1783 }
1784
1785 if (buf != NULL)
1786 {
1787 free (buf);
1788 buf = NULL;
1789 }
1790
1791 if (extversym != NULL)
1792 {
1793 free (extversym);
1794 extversym = NULL;
1795 }
1796
1797 /* If this object is the same format as the output object, and it is
1798 not a shared library, then let the backend look through the
1799 relocs.
1800
1801 This is required to build global offset table entries and to
1802 arrange for dynamic relocs. It is not required for the
1803 particular common case of linking non PIC code, even when linking
1804 against shared libraries, but unfortunately there is no way of
1805 knowing whether an object file has been compiled PIC or not.
1806 Looking through the relocs is not particularly time consuming.
1807 The problem is that we must either (1) keep the relocs in memory,
1808 which causes the linker to require additional runtime memory or
1809 (2) read the relocs twice from the input file, which wastes time.
1810 This would be a good case for using mmap.
1811
1812 I have no idea how to handle linking PIC code into a file of a
1813 different format. It probably can't be done. */
1814 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1815 if (! dynamic
1816 && abfd->xvec == info->hash->creator
1817 && check_relocs != NULL)
1818 {
1819 asection *o;
1820
1821 for (o = abfd->sections; o != NULL; o = o->next)
1822 {
1823 Elf_Internal_Rela *internal_relocs;
1824 boolean ok;
1825
1826 if ((o->flags & SEC_RELOC) == 0
1827 || o->reloc_count == 0
1828 || ((info->strip == strip_all || info->strip == strip_debugger)
1829 && (o->flags & SEC_DEBUGGING) != 0)
1830 || bfd_is_abs_section (o->output_section))
1831 continue;
1832
1833 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1834 (abfd, o, (PTR) NULL,
1835 (Elf_Internal_Rela *) NULL,
1836 info->keep_memory));
1837 if (internal_relocs == NULL)
1838 goto error_return;
1839
1840 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1841
1842 if (! info->keep_memory)
1843 free (internal_relocs);
1844
1845 if (! ok)
1846 goto error_return;
1847 }
1848 }
1849
1850 /* If this is a non-traditional, non-relocateable link, try to
1851 optimize the handling of the .stab/.stabstr sections. */
1852 if (! dynamic
1853 && ! info->relocateable
1854 && ! info->traditional_format
1855 && info->hash->creator->flavour == bfd_target_elf_flavour
1856 && (info->strip != strip_all && info->strip != strip_debugger))
1857 {
1858 asection *stab, *stabstr;
1859
1860 stab = bfd_get_section_by_name (abfd, ".stab");
1861 if (stab != NULL)
1862 {
1863 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1864
1865 if (stabstr != NULL)
1866 {
1867 struct bfd_elf_section_data *secdata;
1868
1869 secdata = elf_section_data (stab);
1870 if (! _bfd_link_section_stabs (abfd,
1871 &elf_hash_table (info)->stab_info,
1872 stab, stabstr,
1873 &secdata->stab_info))
1874 goto error_return;
1875 }
1876 }
1877 }
1878
1879 return true;
1880
1881 error_return:
1882 if (buf != NULL)
1883 free (buf);
1884 if (dynbuf != NULL)
1885 free (dynbuf);
1886 if (dynver != NULL)
1887 free (dynver);
1888 if (extversym != NULL)
1889 free (extversym);
1890 return false;
1891}
1892
1893/* Create some sections which will be filled in with dynamic linking
1894 information. ABFD is an input file which requires dynamic sections
1895 to be created. The dynamic sections take up virtual memory space
1896 when the final executable is run, so we need to create them before
1897 addresses are assigned to the output sections. We work out the
1898 actual contents and size of these sections later. */
1899
1900boolean
1901elf_link_create_dynamic_sections (abfd, info)
1902 bfd *abfd;
1903 struct bfd_link_info *info;
1904{
1905 flagword flags;
1906 register asection *s;
1907 struct elf_link_hash_entry *h;
1908 struct elf_backend_data *bed;
1909
1910 if (elf_hash_table (info)->dynamic_sections_created)
1911 return true;
1912
1913 /* Make sure that all dynamic sections use the same input BFD. */
1914 if (elf_hash_table (info)->dynobj == NULL)
1915 elf_hash_table (info)->dynobj = abfd;
1916 else
1917 abfd = elf_hash_table (info)->dynobj;
1918
1919 /* Note that we set the SEC_IN_MEMORY flag for all of these
1920 sections. */
1921 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1922 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1923
1924 /* A dynamically linked executable has a .interp section, but a
1925 shared library does not. */
1926 if (! info->shared)
1927 {
1928 s = bfd_make_section (abfd, ".interp");
1929 if (s == NULL
1930 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1931 return false;
1932 }
1933
1934 /* Create sections to hold version informations. These are removed
1935 if they are not needed. */
1936 s = bfd_make_section (abfd, ".gnu.version_d");
1937 if (s == NULL
1938 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1939 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1940 return false;
1941
1942 s = bfd_make_section (abfd, ".gnu.version");
1943 if (s == NULL
1944 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1945 || ! bfd_set_section_alignment (abfd, s, 1))
1946 return false;
1947
1948 s = bfd_make_section (abfd, ".gnu.version_r");
1949 if (s == NULL
1950 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1951 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1952 return false;
1953
1954 s = bfd_make_section (abfd, ".dynsym");
1955 if (s == NULL
1956 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1957 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1958 return false;
1959
1960 s = bfd_make_section (abfd, ".dynstr");
1961 if (s == NULL
1962 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1963 return false;
1964
1965 /* Create a strtab to hold the dynamic symbol names. */
1966 if (elf_hash_table (info)->dynstr == NULL)
1967 {
1968 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1969 if (elf_hash_table (info)->dynstr == NULL)
1970 return false;
1971 }
1972
1973 s = bfd_make_section (abfd, ".dynamic");
1974 if (s == NULL
1975 || ! bfd_set_section_flags (abfd, s, flags)
1976 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1977 return false;
1978
1979 /* The special symbol _DYNAMIC is always set to the start of the
1980 .dynamic section. This call occurs before we have processed the
1981 symbols for any dynamic object, so we don't have to worry about
1982 overriding a dynamic definition. We could set _DYNAMIC in a
1983 linker script, but we only want to define it if we are, in fact,
1984 creating a .dynamic section. We don't want to define it if there
1985 is no .dynamic section, since on some ELF platforms the start up
1986 code examines it to decide how to initialize the process. */
1987 h = NULL;
1988 if (! (_bfd_generic_link_add_one_symbol
1989 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1990 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1991 (struct bfd_link_hash_entry **) &h)))
1992 return false;
1993 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1994 h->type = STT_OBJECT;
1995
1996 if (info->shared
1997 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1998 return false;
1999
c7ac6ff8
MM
2000 bed = get_elf_backend_data (abfd);
2001
252b5132
RH
2002 s = bfd_make_section (abfd, ".hash");
2003 if (s == NULL
2004 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2005 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2006 return false;
c7ac6ff8 2007 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2008
2009 /* Let the backend create the rest of the sections. This lets the
2010 backend set the right flags. The backend will normally create
2011 the .got and .plt sections. */
252b5132
RH
2012 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2013 return false;
2014
2015 elf_hash_table (info)->dynamic_sections_created = true;
2016
2017 return true;
2018}
2019
2020/* Add an entry to the .dynamic table. */
2021
2022boolean
2023elf_add_dynamic_entry (info, tag, val)
2024 struct bfd_link_info *info;
2025 bfd_vma tag;
2026 bfd_vma val;
2027{
2028 Elf_Internal_Dyn dyn;
2029 bfd *dynobj;
2030 asection *s;
2031 size_t newsize;
2032 bfd_byte *newcontents;
2033
2034 dynobj = elf_hash_table (info)->dynobj;
2035
2036 s = bfd_get_section_by_name (dynobj, ".dynamic");
2037 BFD_ASSERT (s != NULL);
2038
2039 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2040 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2041 if (newcontents == NULL)
2042 return false;
2043
2044 dyn.d_tag = tag;
2045 dyn.d_un.d_val = val;
2046 elf_swap_dyn_out (dynobj, &dyn,
2047 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2048
2049 s->_raw_size = newsize;
2050 s->contents = newcontents;
2051
2052 return true;
2053}
2054\f
2055
6b5bd373
MM
2056/* Read and swap the relocs from the section indicated by SHDR. This
2057 may be either a REL or a RELA section. The relocations are
2058 translated into RELA relocations and stored in INTERNAL_RELOCS,
2059 which should have already been allocated to contain enough space.
2060 The EXTERNAL_RELOCS are a buffer where the external form of the
2061 relocations should be stored.
2062
2063 Returns false if something goes wrong. */
2064
2065static boolean
2066elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2067 internal_relocs)
2068 bfd *abfd;
2069 Elf_Internal_Shdr *shdr;
2070 PTR external_relocs;
2071 Elf_Internal_Rela *internal_relocs;
2072{
c7ac6ff8
MM
2073 struct elf_backend_data *bed;
2074
6b5bd373
MM
2075 /* If there aren't any relocations, that's OK. */
2076 if (!shdr)
2077 return true;
2078
2079 /* Position ourselves at the start of the section. */
2080 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2081 return false;
2082
2083 /* Read the relocations. */
2084 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2085 != shdr->sh_size)
2086 return false;
2087
c7ac6ff8
MM
2088 bed = get_elf_backend_data (abfd);
2089
6b5bd373
MM
2090 /* Convert the external relocations to the internal format. */
2091 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2092 {
2093 Elf_External_Rel *erel;
2094 Elf_External_Rel *erelend;
2095 Elf_Internal_Rela *irela;
c7ac6ff8 2096 Elf_Internal_Rel *irel;
6b5bd373
MM
2097
2098 erel = (Elf_External_Rel *) external_relocs;
2099 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2100 irela = internal_relocs;
c7ac6ff8
MM
2101 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2102 * sizeof (Elf_Internal_Rel)));
2103 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2104 {
65388f2d 2105 unsigned char i;
c7ac6ff8
MM
2106
2107 if (bed->s->swap_reloc_in)
2108 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2109 else
2110 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2111
c7ac6ff8
MM
2112 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2113 {
2114 irela[i].r_offset = irel[i].r_offset;
2115 irela[i].r_info = irel[i].r_info;
2116 irela[i].r_addend = 0;
2117 }
6b5bd373
MM
2118 }
2119 }
2120 else
2121 {
2122 Elf_External_Rela *erela;
2123 Elf_External_Rela *erelaend;
2124 Elf_Internal_Rela *irela;
2125
2126 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2127
2128 erela = (Elf_External_Rela *) external_relocs;
2129 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2130 irela = internal_relocs;
c7ac6ff8
MM
2131 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2132 {
2133 if (bed->s->swap_reloca_in)
2134 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2135 else
2136 elf_swap_reloca_in (abfd, erela, irela);
2137 }
6b5bd373
MM
2138 }
2139
2140 return true;
2141}
2142
23bc299b
MM
2143/* Read and swap the relocs for a section O. They may have been
2144 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2145 not NULL, they are used as buffers to read into. They are known to
2146 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2147 the return value is allocated using either malloc or bfd_alloc,
2148 according to the KEEP_MEMORY argument. If O has two relocation
2149 sections (both REL and RELA relocations), then the REL_HDR
2150 relocations will appear first in INTERNAL_RELOCS, followed by the
2151 REL_HDR2 relocations. */
252b5132
RH
2152
2153Elf_Internal_Rela *
2154NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2155 keep_memory)
2156 bfd *abfd;
2157 asection *o;
2158 PTR external_relocs;
2159 Elf_Internal_Rela *internal_relocs;
2160 boolean keep_memory;
2161{
2162 Elf_Internal_Shdr *rel_hdr;
2163 PTR alloc1 = NULL;
2164 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2165 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2166
2167 if (elf_section_data (o)->relocs != NULL)
2168 return elf_section_data (o)->relocs;
2169
2170 if (o->reloc_count == 0)
2171 return NULL;
2172
2173 rel_hdr = &elf_section_data (o)->rel_hdr;
2174
2175 if (internal_relocs == NULL)
2176 {
2177 size_t size;
2178
c7ac6ff8
MM
2179 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2180 * sizeof (Elf_Internal_Rela));
252b5132
RH
2181 if (keep_memory)
2182 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2183 else
2184 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2185 if (internal_relocs == NULL)
2186 goto error_return;
2187 }
2188
2189 if (external_relocs == NULL)
2190 {
6b5bd373
MM
2191 size_t size = (size_t) rel_hdr->sh_size;
2192
2193 if (elf_section_data (o)->rel_hdr2)
2194 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2195 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2196 if (alloc1 == NULL)
2197 goto error_return;
2198 external_relocs = alloc1;
2199 }
2200
6b5bd373
MM
2201 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2202 external_relocs,
2203 internal_relocs))
2204 goto error_return;
2205 if (!elf_link_read_relocs_from_section
2206 (abfd,
2207 elf_section_data (o)->rel_hdr2,
2f5116e2 2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2209 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2210 * bed->s->int_rels_per_ext_rel)))
252b5132 2211 goto error_return;
252b5132
RH
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231}
2232\f
2233
2234/* Record an assignment to a symbol made by a linker script. We need
2235 this in case some dynamic object refers to this symbol. */
2236
2237/*ARGSUSED*/
2238boolean
2239NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2240 bfd *output_bfd;
2241 struct bfd_link_info *info;
2242 const char *name;
2243 boolean provide;
2244{
2245 struct elf_link_hash_entry *h;
2246
2247 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2248 return true;
2249
2250 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2251 if (h == NULL)
2252 return false;
2253
2254 if (h->root.type == bfd_link_hash_new)
2255 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2256
2257 /* If this symbol is being provided by the linker script, and it is
2258 currently defined by a dynamic object, but not by a regular
2259 object, then mark it as undefined so that the generic linker will
2260 force the correct value. */
2261 if (provide
2262 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2263 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2264 h->root.type = bfd_link_hash_undefined;
2265
2266 /* If this symbol is not being provided by the linker script, and it is
2267 currently defined by a dynamic object, but not by a regular object,
2268 then clear out any version information because the symbol will not be
2269 associated with the dynamic object any more. */
2270 if (!provide
2271 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2272 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2273 h->verinfo.verdef = NULL;
2274
2275 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2276 h->type = STT_OBJECT;
2277
2278 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2279 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2280 || info->shared)
2281 && h->dynindx == -1)
2282 {
2283 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2284 return false;
2285
2286 /* If this is a weak defined symbol, and we know a corresponding
2287 real symbol from the same dynamic object, make sure the real
2288 symbol is also made into a dynamic symbol. */
2289 if (h->weakdef != NULL
2290 && h->weakdef->dynindx == -1)
2291 {
2292 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2293 return false;
2294 }
2295 }
2296
2297 return true;
2298}
2299\f
2300/* This structure is used to pass information to
2301 elf_link_assign_sym_version. */
2302
2303struct elf_assign_sym_version_info
2304{
2305 /* Output BFD. */
2306 bfd *output_bfd;
2307 /* General link information. */
2308 struct bfd_link_info *info;
2309 /* Version tree. */
2310 struct bfd_elf_version_tree *verdefs;
2311 /* Whether we are exporting all dynamic symbols. */
2312 boolean export_dynamic;
2313 /* Whether we removed any symbols from the dynamic symbol table. */
2314 boolean removed_dynamic;
2315 /* Whether we had a failure. */
2316 boolean failed;
2317};
2318
2319/* This structure is used to pass information to
2320 elf_link_find_version_dependencies. */
2321
2322struct elf_find_verdep_info
2323{
2324 /* Output BFD. */
2325 bfd *output_bfd;
2326 /* General link information. */
2327 struct bfd_link_info *info;
2328 /* The number of dependencies. */
2329 unsigned int vers;
2330 /* Whether we had a failure. */
2331 boolean failed;
2332};
2333
2334/* Array used to determine the number of hash table buckets to use
2335 based on the number of symbols there are. If there are fewer than
2336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2337 fewer than 37 we use 17 buckets, and so forth. We never use more
2338 than 32771 buckets. */
2339
2340static const size_t elf_buckets[] =
2341{
2342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2343 16411, 32771, 0
2344};
2345
2346/* Compute bucket count for hashing table. We do not use a static set
2347 of possible tables sizes anymore. Instead we determine for all
2348 possible reasonable sizes of the table the outcome (i.e., the
2349 number of collisions etc) and choose the best solution. The
2350 weighting functions are not too simple to allow the table to grow
2351 without bounds. Instead one of the weighting factors is the size.
2352 Therefore the result is always a good payoff between few collisions
2353 (= short chain lengths) and table size. */
2354static size_t
2355compute_bucket_count (info)
2356 struct bfd_link_info *info;
2357{
2358 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2359 size_t best_size;
2360 unsigned long int *hashcodes;
2361 unsigned long int *hashcodesp;
2362 unsigned long int i;
2363
2364 /* Compute the hash values for all exported symbols. At the same
2365 time store the values in an array so that we could use them for
2366 optimizations. */
2367 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2368 * sizeof (unsigned long int));
2369 if (hashcodes == NULL)
2370 return 0;
2371 hashcodesp = hashcodes;
2372
2373 /* Put all hash values in HASHCODES. */
2374 elf_link_hash_traverse (elf_hash_table (info),
2375 elf_collect_hash_codes, &hashcodesp);
2376
2377/* We have a problem here. The following code to optimize the table
2378 size requires an integer type with more the 32 bits. If
2379 BFD_HOST_U_64_BIT is set we know about such a type. */
2380#ifdef BFD_HOST_U_64_BIT
2381 if (info->optimize == true)
2382 {
2383 unsigned long int nsyms = hashcodesp - hashcodes;
2384 size_t minsize;
2385 size_t maxsize;
2386 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2387 unsigned long int *counts ;
2388
2389 /* Possible optimization parameters: if we have NSYMS symbols we say
2390 that the hashing table must at least have NSYMS/4 and at most
2391 2*NSYMS buckets. */
2392 minsize = nsyms / 4;
2393 if (minsize == 0)
2394 minsize = 1;
2395 best_size = maxsize = nsyms * 2;
2396
2397 /* Create array where we count the collisions in. We must use bfd_malloc
2398 since the size could be large. */
2399 counts = (unsigned long int *) bfd_malloc (maxsize
2400 * sizeof (unsigned long int));
2401 if (counts == NULL)
2402 {
2403 free (hashcodes);
2404 return 0;
2405 }
2406
2407 /* Compute the "optimal" size for the hash table. The criteria is a
2408 minimal chain length. The minor criteria is (of course) the size
2409 of the table. */
2410 for (i = minsize; i < maxsize; ++i)
2411 {
2412 /* Walk through the array of hashcodes and count the collisions. */
2413 BFD_HOST_U_64_BIT max;
2414 unsigned long int j;
2415 unsigned long int fact;
2416
2417 memset (counts, '\0', i * sizeof (unsigned long int));
2418
2419 /* Determine how often each hash bucket is used. */
2420 for (j = 0; j < nsyms; ++j)
2421 ++counts[hashcodes[j] % i];
2422
2423 /* For the weight function we need some information about the
2424 pagesize on the target. This is information need not be 100%
2425 accurate. Since this information is not available (so far) we
2426 define it here to a reasonable default value. If it is crucial
2427 to have a better value some day simply define this value. */
2428# ifndef BFD_TARGET_PAGESIZE
2429# define BFD_TARGET_PAGESIZE (4096)
2430# endif
2431
2432 /* We in any case need 2 + NSYMS entries for the size values and
2433 the chains. */
2434 max = (2 + nsyms) * (ARCH_SIZE / 8);
2435
2436# if 1
2437 /* Variant 1: optimize for short chains. We add the squares
2438 of all the chain lengths (which favous many small chain
2439 over a few long chains). */
2440 for (j = 0; j < i; ++j)
2441 max += counts[j] * counts[j];
2442
2443 /* This adds penalties for the overall size of the table. */
2444 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2445 max *= fact * fact;
2446# else
2447 /* Variant 2: Optimize a lot more for small table. Here we
2448 also add squares of the size but we also add penalties for
2449 empty slots (the +1 term). */
2450 for (j = 0; j < i; ++j)
2451 max += (1 + counts[j]) * (1 + counts[j]);
2452
2453 /* The overall size of the table is considered, but not as
2454 strong as in variant 1, where it is squared. */
2455 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2456 max *= fact;
2457# endif
2458
2459 /* Compare with current best results. */
2460 if (max < best_chlen)
2461 {
2462 best_chlen = max;
2463 best_size = i;
2464 }
2465 }
2466
2467 free (counts);
2468 }
2469 else
2470#endif /* defined (BFD_HOST_U_64_BIT) */
2471 {
2472 /* This is the fallback solution if no 64bit type is available or if we
2473 are not supposed to spend much time on optimizations. We select the
2474 bucket count using a fixed set of numbers. */
2475 for (i = 0; elf_buckets[i] != 0; i++)
2476 {
2477 best_size = elf_buckets[i];
2478 if (dynsymcount < elf_buckets[i + 1])
2479 break;
2480 }
2481 }
2482
2483 /* Free the arrays we needed. */
2484 free (hashcodes);
2485
2486 return best_size;
2487}
2488
42751cf3
MM
2489/* Remove SECTION from the BFD. If a symbol for SECTION was going to
2490 be put into the dynamic symbol table, remove it, and renumber
2491 subsequent entries. */
2492
2493static void
78de0b43 2494elf_link_remove_section_and_adjust_dynindices (info, section)
42751cf3
MM
2495 struct bfd_link_info *info;
2496 asection *section;
2497{
42751cf3 2498 /* Remove the section from the output list. */
78de0b43 2499 _bfd_strip_section_from_output (section);
42751cf3
MM
2500
2501 if (elf_section_data (section->output_section)->dynindx)
2502 {
2503 asection *s;
2504 int increment = -1;
2505
2506 /* We were going to output an entry in the dynamic symbol table
2507 for the symbol corresponding to this section. Now, the
2508 section is gone. So, we must renumber the dynamic indices of
2509 all subsequent sections and all other entries in the dynamic
2510 symbol table. */
2511 elf_section_data (section->output_section)->dynindx = 0;
2512 for (s = section->output_section->next; s; s = s->next)
2513 if (elf_section_data (s)->dynindx)
2514 --elf_section_data (s)->dynindx;
2515
2516 elf_link_hash_traverse (elf_hash_table (info),
2517 _bfd_elf_link_adjust_dynindx,
2518 &increment);
2519
2520 /* There is one less dynamic symbol than there was before. */
2521 --elf_hash_table (info)->dynsymcount;
2522 }
2523}
2524
252b5132
RH
2525/* Set up the sizes and contents of the ELF dynamic sections. This is
2526 called by the ELF linker emulation before_allocation routine. We
2527 must set the sizes of the sections before the linker sets the
2528 addresses of the various sections. */
2529
2530boolean
2531NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2532 export_dynamic, filter_shlib,
2533 auxiliary_filters, info, sinterpptr,
2534 verdefs)
2535 bfd *output_bfd;
2536 const char *soname;
2537 const char *rpath;
2538 boolean export_dynamic;
2539 const char *filter_shlib;
2540 const char * const *auxiliary_filters;
2541 struct bfd_link_info *info;
2542 asection **sinterpptr;
2543 struct bfd_elf_version_tree *verdefs;
2544{
2545 bfd_size_type soname_indx;
2546 bfd *dynobj;
2547 struct elf_backend_data *bed;
2548 bfd_size_type old_dynsymcount;
2549 struct elf_assign_sym_version_info asvinfo;
2550
2551 *sinterpptr = NULL;
2552
2553 soname_indx = (bfd_size_type) -1;
2554
2555 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2556 return true;
2557
2558 /* The backend may have to create some sections regardless of whether
2559 we're dynamic or not. */
2560 bed = get_elf_backend_data (output_bfd);
2561 if (bed->elf_backend_always_size_sections
2562 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2563 return false;
2564
2565 dynobj = elf_hash_table (info)->dynobj;
2566
2567 /* If there were no dynamic objects in the link, there is nothing to
2568 do here. */
2569 if (dynobj == NULL)
2570 return true;
2571
2572 /* If we are supposed to export all symbols into the dynamic symbol
2573 table (this is not the normal case), then do so. */
2574 if (export_dynamic)
2575 {
2576 struct elf_info_failed eif;
2577
2578 eif.failed = false;
2579 eif.info = info;
2580 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2581 (PTR) &eif);
2582 if (eif.failed)
2583 return false;
2584 }
2585
2586 if (elf_hash_table (info)->dynamic_sections_created)
2587 {
2588 struct elf_info_failed eif;
2589 struct elf_link_hash_entry *h;
2590 bfd_size_type strsize;
2591
2592 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2593 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2594
2595 if (soname != NULL)
2596 {
2597 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2598 soname, true, true);
2599 if (soname_indx == (bfd_size_type) -1
2600 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2601 return false;
2602 }
2603
2604 if (info->symbolic)
2605 {
2606 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2607 return false;
2608 }
2609
2610 if (rpath != NULL)
2611 {
2612 bfd_size_type indx;
2613
2614 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2615 true, true);
2616 if (indx == (bfd_size_type) -1
2617 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2618 return false;
2619 }
2620
2621 if (filter_shlib != NULL)
2622 {
2623 bfd_size_type indx;
2624
2625 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2626 filter_shlib, true, true);
2627 if (indx == (bfd_size_type) -1
2628 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2629 return false;
2630 }
2631
2632 if (auxiliary_filters != NULL)
2633 {
2634 const char * const *p;
2635
2636 for (p = auxiliary_filters; *p != NULL; p++)
2637 {
2638 bfd_size_type indx;
2639
2640 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2641 *p, true, true);
2642 if (indx == (bfd_size_type) -1
2643 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2644 return false;
2645 }
2646 }
2647
2648 /* Attach all the symbols to their version information. */
2649 asvinfo.output_bfd = output_bfd;
2650 asvinfo.info = info;
2651 asvinfo.verdefs = verdefs;
2652 asvinfo.export_dynamic = export_dynamic;
2653 asvinfo.removed_dynamic = false;
2654 asvinfo.failed = false;
2655
2656 elf_link_hash_traverse (elf_hash_table (info),
2657 elf_link_assign_sym_version,
2658 (PTR) &asvinfo);
2659 if (asvinfo.failed)
2660 return false;
2661
2662 /* Find all symbols which were defined in a dynamic object and make
2663 the backend pick a reasonable value for them. */
2664 eif.failed = false;
2665 eif.info = info;
2666 elf_link_hash_traverse (elf_hash_table (info),
2667 elf_adjust_dynamic_symbol,
2668 (PTR) &eif);
2669 if (eif.failed)
2670 return false;
2671
2672 /* Add some entries to the .dynamic section. We fill in some of the
2673 values later, in elf_bfd_final_link, but we must add the entries
2674 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2675
2676 /* If there are initialization and/or finalization functions to
2677 call then add the corresponding DT_INIT/DT_FINI entries. */
2678 h = (info->init_function
2679 ? elf_link_hash_lookup (elf_hash_table (info),
2680 info->init_function, false,
2681 false, false)
2682 : NULL);
252b5132
RH
2683 if (h != NULL
2684 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2685 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2686 {
2687 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2688 return false;
2689 }
f0c2e336
MM
2690 h = (info->fini_function
2691 ? elf_link_hash_lookup (elf_hash_table (info),
2692 info->fini_function, false,
2693 false, false)
2694 : NULL);
252b5132
RH
2695 if (h != NULL
2696 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2697 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2698 {
2699 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2700 return false;
2701 }
f0c2e336 2702
252b5132
RH
2703 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2704 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2705 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2706 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2707 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2708 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2709 sizeof (Elf_External_Sym)))
2710 return false;
2711 }
2712
2713 /* The backend must work out the sizes of all the other dynamic
2714 sections. */
2715 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2716 if (bed->elf_backend_size_dynamic_sections
2717 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2718 return false;
2719
2720 if (elf_hash_table (info)->dynamic_sections_created)
2721 {
2722 size_t dynsymcount;
2723 asection *s;
2724 size_t bucketcount = 0;
2725 Elf_Internal_Sym isym;
c7ac6ff8 2726 size_t hash_entry_size;
252b5132
RH
2727
2728 /* Set up the version definition section. */
2729 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2730 BFD_ASSERT (s != NULL);
2731
2732 /* We may have created additional version definitions if we are
2733 just linking a regular application. */
2734 verdefs = asvinfo.verdefs;
2735
2736 if (verdefs == NULL)
78de0b43 2737 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2738 else
2739 {
2740 unsigned int cdefs;
2741 bfd_size_type size;
2742 struct bfd_elf_version_tree *t;
2743 bfd_byte *p;
2744 Elf_Internal_Verdef def;
2745 Elf_Internal_Verdaux defaux;
2746
2747 if (asvinfo.removed_dynamic)
2748 {
2749 /* Some dynamic symbols were changed to be local
2750 symbols. In this case, we renumber all of the
2751 dynamic symbols, so that we don't have a hole. If
2752 the backend changed dynsymcount, then assume that the
2753 new symbols are at the start. This is the case on
2754 the MIPS. FIXME: The names of the removed symbols
2755 will still be in the dynamic string table, wasting
2756 space. */
2757 elf_hash_table (info)->dynsymcount =
2758 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2759 elf_link_hash_traverse (elf_hash_table (info),
2760 elf_link_renumber_dynsyms,
2761 (PTR) info);
2762 }
2763
2764 cdefs = 0;
2765 size = 0;
2766
2767 /* Make space for the base version. */
2768 size += sizeof (Elf_External_Verdef);
2769 size += sizeof (Elf_External_Verdaux);
2770 ++cdefs;
2771
2772 for (t = verdefs; t != NULL; t = t->next)
2773 {
2774 struct bfd_elf_version_deps *n;
2775
2776 size += sizeof (Elf_External_Verdef);
2777 size += sizeof (Elf_External_Verdaux);
2778 ++cdefs;
2779
2780 for (n = t->deps; n != NULL; n = n->next)
2781 size += sizeof (Elf_External_Verdaux);
2782 }
2783
2784 s->_raw_size = size;
2785 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2786 if (s->contents == NULL && s->_raw_size != 0)
2787 return false;
2788
2789 /* Fill in the version definition section. */
2790
2791 p = s->contents;
2792
2793 def.vd_version = VER_DEF_CURRENT;
2794 def.vd_flags = VER_FLG_BASE;
2795 def.vd_ndx = 1;
2796 def.vd_cnt = 1;
2797 def.vd_aux = sizeof (Elf_External_Verdef);
2798 def.vd_next = (sizeof (Elf_External_Verdef)
2799 + sizeof (Elf_External_Verdaux));
2800
2801 if (soname_indx != (bfd_size_type) -1)
2802 {
2803 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2804 defaux.vda_name = soname_indx;
2805 }
2806 else
2807 {
2808 const char *name;
2809 bfd_size_type indx;
2810
2811 name = output_bfd->filename;
2812 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2813 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2814 name, true, false);
2815 if (indx == (bfd_size_type) -1)
2816 return false;
2817 defaux.vda_name = indx;
2818 }
2819 defaux.vda_next = 0;
2820
2821 _bfd_elf_swap_verdef_out (output_bfd, &def,
2822 (Elf_External_Verdef *)p);
2823 p += sizeof (Elf_External_Verdef);
2824 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2825 (Elf_External_Verdaux *) p);
2826 p += sizeof (Elf_External_Verdaux);
2827
2828 for (t = verdefs; t != NULL; t = t->next)
2829 {
2830 unsigned int cdeps;
2831 struct bfd_elf_version_deps *n;
2832 struct elf_link_hash_entry *h;
2833
2834 cdeps = 0;
2835 for (n = t->deps; n != NULL; n = n->next)
2836 ++cdeps;
2837
2838 /* Add a symbol representing this version. */
2839 h = NULL;
2840 if (! (_bfd_generic_link_add_one_symbol
2841 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2842 (bfd_vma) 0, (const char *) NULL, false,
2843 get_elf_backend_data (dynobj)->collect,
2844 (struct bfd_link_hash_entry **) &h)))
2845 return false;
2846 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2847 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2848 h->type = STT_OBJECT;
2849 h->verinfo.vertree = t;
2850
2851 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2852 return false;
2853
2854 def.vd_version = VER_DEF_CURRENT;
2855 def.vd_flags = 0;
2856 if (t->globals == NULL && t->locals == NULL && ! t->used)
2857 def.vd_flags |= VER_FLG_WEAK;
2858 def.vd_ndx = t->vernum + 1;
2859 def.vd_cnt = cdeps + 1;
2860 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2861 def.vd_aux = sizeof (Elf_External_Verdef);
2862 if (t->next != NULL)
2863 def.vd_next = (sizeof (Elf_External_Verdef)
2864 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2865 else
2866 def.vd_next = 0;
2867
2868 _bfd_elf_swap_verdef_out (output_bfd, &def,
2869 (Elf_External_Verdef *) p);
2870 p += sizeof (Elf_External_Verdef);
2871
2872 defaux.vda_name = h->dynstr_index;
2873 if (t->deps == NULL)
2874 defaux.vda_next = 0;
2875 else
2876 defaux.vda_next = sizeof (Elf_External_Verdaux);
2877 t->name_indx = defaux.vda_name;
2878
2879 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2880 (Elf_External_Verdaux *) p);
2881 p += sizeof (Elf_External_Verdaux);
2882
2883 for (n = t->deps; n != NULL; n = n->next)
2884 {
2885 if (n->version_needed == NULL)
2886 {
2887 /* This can happen if there was an error in the
2888 version script. */
2889 defaux.vda_name = 0;
2890 }
2891 else
2892 defaux.vda_name = n->version_needed->name_indx;
2893 if (n->next == NULL)
2894 defaux.vda_next = 0;
2895 else
2896 defaux.vda_next = sizeof (Elf_External_Verdaux);
2897
2898 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2899 (Elf_External_Verdaux *) p);
2900 p += sizeof (Elf_External_Verdaux);
2901 }
2902 }
2903
2904 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2905 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2906 return false;
2907
2908 elf_tdata (output_bfd)->cverdefs = cdefs;
2909 }
2910
2911 /* Work out the size of the version reference section. */
2912
2913 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2914 BFD_ASSERT (s != NULL);
2915 {
2916 struct elf_find_verdep_info sinfo;
2917
2918 sinfo.output_bfd = output_bfd;
2919 sinfo.info = info;
2920 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2921 if (sinfo.vers == 0)
2922 sinfo.vers = 1;
2923 sinfo.failed = false;
2924
2925 elf_link_hash_traverse (elf_hash_table (info),
2926 elf_link_find_version_dependencies,
2927 (PTR) &sinfo);
2928
2929 if (elf_tdata (output_bfd)->verref == NULL)
78de0b43 2930 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2931 else
2932 {
2933 Elf_Internal_Verneed *t;
2934 unsigned int size;
2935 unsigned int crefs;
2936 bfd_byte *p;
2937
2938 /* Build the version definition section. */
2939 size = 0;
2940 crefs = 0;
2941 for (t = elf_tdata (output_bfd)->verref;
2942 t != NULL;
2943 t = t->vn_nextref)
2944 {
2945 Elf_Internal_Vernaux *a;
2946
2947 size += sizeof (Elf_External_Verneed);
2948 ++crefs;
2949 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2950 size += sizeof (Elf_External_Vernaux);
2951 }
2952
2953 s->_raw_size = size;
2954 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2955 if (s->contents == NULL)
2956 return false;
2957
2958 p = s->contents;
2959 for (t = elf_tdata (output_bfd)->verref;
2960 t != NULL;
2961 t = t->vn_nextref)
2962 {
2963 unsigned int caux;
2964 Elf_Internal_Vernaux *a;
2965 bfd_size_type indx;
2966
2967 caux = 0;
2968 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2969 ++caux;
2970
2971 t->vn_version = VER_NEED_CURRENT;
2972 t->vn_cnt = caux;
2973 if (elf_dt_name (t->vn_bfd) != NULL)
2974 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2975 elf_dt_name (t->vn_bfd),
2976 true, false);
2977 else
2978 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2979 t->vn_bfd->filename, true, false);
2980 if (indx == (bfd_size_type) -1)
2981 return false;
2982 t->vn_file = indx;
2983 t->vn_aux = sizeof (Elf_External_Verneed);
2984 if (t->vn_nextref == NULL)
2985 t->vn_next = 0;
2986 else
2987 t->vn_next = (sizeof (Elf_External_Verneed)
2988 + caux * sizeof (Elf_External_Vernaux));
2989
2990 _bfd_elf_swap_verneed_out (output_bfd, t,
2991 (Elf_External_Verneed *) p);
2992 p += sizeof (Elf_External_Verneed);
2993
2994 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2995 {
2996 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2997 a->vna_nodename);
2998 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2999 a->vna_nodename, true, false);
3000 if (indx == (bfd_size_type) -1)
3001 return false;
3002 a->vna_name = indx;
3003 if (a->vna_nextptr == NULL)
3004 a->vna_next = 0;
3005 else
3006 a->vna_next = sizeof (Elf_External_Vernaux);
3007
3008 _bfd_elf_swap_vernaux_out (output_bfd, a,
3009 (Elf_External_Vernaux *) p);
3010 p += sizeof (Elf_External_Vernaux);
3011 }
3012 }
3013
3014 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3015 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3016 return false;
3017
3018 elf_tdata (output_bfd)->cverrefs = crefs;
3019 }
3020 }
3021
3022 dynsymcount = elf_hash_table (info)->dynsymcount;
3023
3024 /* Work out the size of the symbol version section. */
3025 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3026 BFD_ASSERT (s != NULL);
3027 if (dynsymcount == 0
3028 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3029 {
78de0b43 3030 elf_link_remove_section_and_adjust_dynindices (info, s);
42751cf3
MM
3031 /* The DYNSYMCOUNT might have changed if we were going to
3032 output a dynamic symbol table entry for S. */
3033 dynsymcount = elf_hash_table (info)->dynsymcount;
252b5132
RH
3034 }
3035 else
3036 {
3037 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3038 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3039 if (s->contents == NULL)
3040 return false;
3041
3042 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3043 return false;
3044 }
3045
3046 /* Set the size of the .dynsym and .hash sections. We counted
3047 the number of dynamic symbols in elf_link_add_object_symbols.
3048 We will build the contents of .dynsym and .hash when we build
3049 the final symbol table, because until then we do not know the
3050 correct value to give the symbols. We built the .dynstr
3051 section as we went along in elf_link_add_object_symbols. */
3052 s = bfd_get_section_by_name (dynobj, ".dynsym");
3053 BFD_ASSERT (s != NULL);
3054 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3055 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3056 if (s->contents == NULL && s->_raw_size != 0)
3057 return false;
3058
3059 /* The first entry in .dynsym is a dummy symbol. */
3060 isym.st_value = 0;
3061 isym.st_size = 0;
3062 isym.st_name = 0;
3063 isym.st_info = 0;
3064 isym.st_other = 0;
3065 isym.st_shndx = 0;
3066 elf_swap_symbol_out (output_bfd, &isym,
3067 (PTR) (Elf_External_Sym *) s->contents);
3068
3069 /* Compute the size of the hashing table. As a side effect this
3070 computes the hash values for all the names we export. */
3071 bucketcount = compute_bucket_count (info);
3072
3073 s = bfd_get_section_by_name (dynobj, ".hash");
3074 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3075 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3076 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3077 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3078 if (s->contents == NULL)
3079 return false;
3080 memset (s->contents, 0, (size_t) s->_raw_size);
3081
c7ac6ff8
MM
3082 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3083 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3084 s->contents + hash_entry_size);
252b5132
RH
3085
3086 elf_hash_table (info)->bucketcount = bucketcount;
3087
3088 s = bfd_get_section_by_name (dynobj, ".dynstr");
3089 BFD_ASSERT (s != NULL);
3090 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3091
3092 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3093 return false;
3094 }
3095
3096 return true;
3097}
3098\f
3099/* Fix up the flags for a symbol. This handles various cases which
3100 can only be fixed after all the input files are seen. This is
3101 currently called by both adjust_dynamic_symbol and
3102 assign_sym_version, which is unnecessary but perhaps more robust in
3103 the face of future changes. */
3104
3105static boolean
3106elf_fix_symbol_flags (h, eif)
3107 struct elf_link_hash_entry *h;
3108 struct elf_info_failed *eif;
3109{
3110 /* If this symbol was mentioned in a non-ELF file, try to set
3111 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3112 permit a non-ELF file to correctly refer to a symbol defined in
3113 an ELF dynamic object. */
3114 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3115 {
3116 if (h->root.type != bfd_link_hash_defined
3117 && h->root.type != bfd_link_hash_defweak)
3118 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3119 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3120 else
3121 {
3122 if (h->root.u.def.section->owner != NULL
3123 && (bfd_get_flavour (h->root.u.def.section->owner)
3124 == bfd_target_elf_flavour))
3125 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3126 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3127 else
3128 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3129 }
3130
3131 if (h->dynindx == -1
3132 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3133 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3134 {
3135 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3136 {
3137 eif->failed = true;
3138 return false;
3139 }
3140 }
3141 }
3142 else
3143 {
3144 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3145 was first seen in a non-ELF file. Fortunately, if the symbol
3146 was first seen in an ELF file, we're probably OK unless the
3147 symbol was defined in a non-ELF file. Catch that case here.
3148 FIXME: We're still in trouble if the symbol was first seen in
3149 a dynamic object, and then later in a non-ELF regular object. */
3150 if ((h->root.type == bfd_link_hash_defined
3151 || h->root.type == bfd_link_hash_defweak)
3152 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3153 && (h->root.u.def.section->owner != NULL
3154 ? (bfd_get_flavour (h->root.u.def.section->owner)
3155 != bfd_target_elf_flavour)
3156 : (bfd_is_abs_section (h->root.u.def.section)
3157 && (h->elf_link_hash_flags
3158 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3159 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3160 }
3161
3162 /* If this is a final link, and the symbol was defined as a common
3163 symbol in a regular object file, and there was no definition in
3164 any dynamic object, then the linker will have allocated space for
3165 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3166 flag will not have been set. */
3167 if (h->root.type == bfd_link_hash_defined
3168 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3169 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3170 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3171 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3172 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3173
3174 /* If -Bsymbolic was used (which means to bind references to global
3175 symbols to the definition within the shared object), and this
3176 symbol was defined in a regular object, then it actually doesn't
3177 need a PLT entry. */
3178 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3179 && eif->info->shared
3180 && eif->info->symbolic
3181 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3182 {
3183 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3184 h->plt.offset = (bfd_vma) -1;
3185 }
3186
3187 return true;
3188}
3189
3190/* Make the backend pick a good value for a dynamic symbol. This is
3191 called via elf_link_hash_traverse, and also calls itself
3192 recursively. */
3193
3194static boolean
3195elf_adjust_dynamic_symbol (h, data)
3196 struct elf_link_hash_entry *h;
3197 PTR data;
3198{
3199 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3200 bfd *dynobj;
3201 struct elf_backend_data *bed;
3202
3203 /* Ignore indirect symbols. These are added by the versioning code. */
3204 if (h->root.type == bfd_link_hash_indirect)
3205 return true;
3206
3207 /* Fix the symbol flags. */
3208 if (! elf_fix_symbol_flags (h, eif))
3209 return false;
3210
3211 /* If this symbol does not require a PLT entry, and it is not
3212 defined by a dynamic object, or is not referenced by a regular
3213 object, ignore it. We do have to handle a weak defined symbol,
3214 even if no regular object refers to it, if we decided to add it
3215 to the dynamic symbol table. FIXME: Do we normally need to worry
3216 about symbols which are defined by one dynamic object and
3217 referenced by another one? */
3218 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3219 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3220 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3221 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3222 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3223 {
3224 h->plt.offset = (bfd_vma) -1;
3225 return true;
3226 }
3227
3228 /* If we've already adjusted this symbol, don't do it again. This
3229 can happen via a recursive call. */
3230 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3231 return true;
3232
3233 /* Don't look at this symbol again. Note that we must set this
3234 after checking the above conditions, because we may look at a
3235 symbol once, decide not to do anything, and then get called
3236 recursively later after REF_REGULAR is set below. */
3237 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3238
3239 /* If this is a weak definition, and we know a real definition, and
3240 the real symbol is not itself defined by a regular object file,
3241 then get a good value for the real definition. We handle the
3242 real symbol first, for the convenience of the backend routine.
3243
3244 Note that there is a confusing case here. If the real definition
3245 is defined by a regular object file, we don't get the real symbol
3246 from the dynamic object, but we do get the weak symbol. If the
3247 processor backend uses a COPY reloc, then if some routine in the
3248 dynamic object changes the real symbol, we will not see that
3249 change in the corresponding weak symbol. This is the way other
3250 ELF linkers work as well, and seems to be a result of the shared
3251 library model.
3252
3253 I will clarify this issue. Most SVR4 shared libraries define the
3254 variable _timezone and define timezone as a weak synonym. The
3255 tzset call changes _timezone. If you write
3256 extern int timezone;
3257 int _timezone = 5;
3258 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3259 you might expect that, since timezone is a synonym for _timezone,
3260 the same number will print both times. However, if the processor
3261 backend uses a COPY reloc, then actually timezone will be copied
3262 into your process image, and, since you define _timezone
3263 yourself, _timezone will not. Thus timezone and _timezone will
3264 wind up at different memory locations. The tzset call will set
3265 _timezone, leaving timezone unchanged. */
3266
3267 if (h->weakdef != NULL)
3268 {
3269 struct elf_link_hash_entry *weakdef;
3270
3271 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3272 || h->root.type == bfd_link_hash_defweak);
3273 weakdef = h->weakdef;
3274 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3275 || weakdef->root.type == bfd_link_hash_defweak);
3276 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3277 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3278 {
3279 /* This symbol is defined by a regular object file, so we
3280 will not do anything special. Clear weakdef for the
3281 convenience of the processor backend. */
3282 h->weakdef = NULL;
3283 }
3284 else
3285 {
3286 /* There is an implicit reference by a regular object file
3287 via the weak symbol. */
3288 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3289 if (h->weakdef->elf_link_hash_flags
3290 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3291 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3292 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3293 return false;
3294 }
3295 }
3296
3297 /* If a symbol has no type and no size and does not require a PLT
3298 entry, then we are probably about to do the wrong thing here: we
3299 are probably going to create a COPY reloc for an empty object.
3300 This case can arise when a shared object is built with assembly
3301 code, and the assembly code fails to set the symbol type. */
3302 if (h->size == 0
3303 && h->type == STT_NOTYPE
3304 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3305 (*_bfd_error_handler)
3306 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3307 h->root.root.string);
3308
3309 dynobj = elf_hash_table (eif->info)->dynobj;
3310 bed = get_elf_backend_data (dynobj);
3311 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3312 {
3313 eif->failed = true;
3314 return false;
3315 }
3316
3317 return true;
3318}
3319\f
3320/* This routine is used to export all defined symbols into the dynamic
3321 symbol table. It is called via elf_link_hash_traverse. */
3322
3323static boolean
3324elf_export_symbol (h, data)
3325 struct elf_link_hash_entry *h;
3326 PTR data;
3327{
3328 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3329
3330 /* Ignore indirect symbols. These are added by the versioning code. */
3331 if (h->root.type == bfd_link_hash_indirect)
3332 return true;
3333
3334 if (h->dynindx == -1
3335 && (h->elf_link_hash_flags
3336 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3337 {
3338 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3339 {
3340 eif->failed = true;
3341 return false;
3342 }
3343 }
3344
3345 return true;
3346}
3347\f
3348/* Look through the symbols which are defined in other shared
3349 libraries and referenced here. Update the list of version
3350 dependencies. This will be put into the .gnu.version_r section.
3351 This function is called via elf_link_hash_traverse. */
3352
3353static boolean
3354elf_link_find_version_dependencies (h, data)
3355 struct elf_link_hash_entry *h;
3356 PTR data;
3357{
3358 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3359 Elf_Internal_Verneed *t;
3360 Elf_Internal_Vernaux *a;
3361
3362 /* We only care about symbols defined in shared objects with version
3363 information. */
3364 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3365 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3366 || h->dynindx == -1
3367 || h->verinfo.verdef == NULL)
3368 return true;
3369
3370 /* See if we already know about this version. */
3371 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3372 {
3373 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3374 continue;
3375
3376 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3377 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3378 return true;
3379
3380 break;
3381 }
3382
3383 /* This is a new version. Add it to tree we are building. */
3384
3385 if (t == NULL)
3386 {
3387 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3388 if (t == NULL)
3389 {
3390 rinfo->failed = true;
3391 return false;
3392 }
3393
3394 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3395 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3396 elf_tdata (rinfo->output_bfd)->verref = t;
3397 }
3398
3399 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3400
3401 /* Note that we are copying a string pointer here, and testing it
3402 above. If bfd_elf_string_from_elf_section is ever changed to
3403 discard the string data when low in memory, this will have to be
3404 fixed. */
3405 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3406
3407 a->vna_flags = h->verinfo.verdef->vd_flags;
3408 a->vna_nextptr = t->vn_auxptr;
3409
3410 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3411 ++rinfo->vers;
3412
3413 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3414
3415 t->vn_auxptr = a;
3416
3417 return true;
3418}
3419
3420/* Figure out appropriate versions for all the symbols. We may not
3421 have the version number script until we have read all of the input
3422 files, so until that point we don't know which symbols should be
3423 local. This function is called via elf_link_hash_traverse. */
3424
3425static boolean
3426elf_link_assign_sym_version (h, data)
3427 struct elf_link_hash_entry *h;
3428 PTR data;
3429{
3430 struct elf_assign_sym_version_info *sinfo =
3431 (struct elf_assign_sym_version_info *) data;
3432 struct bfd_link_info *info = sinfo->info;
3433 struct elf_info_failed eif;
3434 char *p;
3435
3436 /* Fix the symbol flags. */
3437 eif.failed = false;
3438 eif.info = info;
3439 if (! elf_fix_symbol_flags (h, &eif))
3440 {
3441 if (eif.failed)
3442 sinfo->failed = true;
3443 return false;
3444 }
3445
3446 /* We only need version numbers for symbols defined in regular
3447 objects. */
3448 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3449 return true;
3450
3451 p = strchr (h->root.root.string, ELF_VER_CHR);
3452 if (p != NULL && h->verinfo.vertree == NULL)
3453 {
3454 struct bfd_elf_version_tree *t;
3455 boolean hidden;
3456
3457 hidden = true;
3458
3459 /* There are two consecutive ELF_VER_CHR characters if this is
3460 not a hidden symbol. */
3461 ++p;
3462 if (*p == ELF_VER_CHR)
3463 {
3464 hidden = false;
3465 ++p;
3466 }
3467
3468 /* If there is no version string, we can just return out. */
3469 if (*p == '\0')
3470 {
3471 if (hidden)
3472 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3473 return true;
3474 }
3475
3476 /* Look for the version. If we find it, it is no longer weak. */
3477 for (t = sinfo->verdefs; t != NULL; t = t->next)
3478 {
3479 if (strcmp (t->name, p) == 0)
3480 {
3481 int len;
3482 char *alc;
3483 struct bfd_elf_version_expr *d;
3484
3485 len = p - h->root.root.string;
3486 alc = bfd_alloc (sinfo->output_bfd, len);
3487 if (alc == NULL)
3488 return false;
3489 strncpy (alc, h->root.root.string, len - 1);
3490 alc[len - 1] = '\0';
3491 if (alc[len - 2] == ELF_VER_CHR)
3492 alc[len - 2] = '\0';
3493
3494 h->verinfo.vertree = t;
3495 t->used = true;
3496 d = NULL;
3497
3498 if (t->globals != NULL)
3499 {
3500 for (d = t->globals; d != NULL; d = d->next)
3501 if ((*d->match) (d, alc))
3502 break;
3503 }
3504
3505 /* See if there is anything to force this symbol to
3506 local scope. */
3507 if (d == NULL && t->locals != NULL)
3508 {
3509 for (d = t->locals; d != NULL; d = d->next)
3510 {
3511 if ((*d->match) (d, alc))
3512 {
3513 if (h->dynindx != -1
3514 && info->shared
3515 && ! sinfo->export_dynamic)
3516 {
3517 sinfo->removed_dynamic = true;
3518 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3519 h->elf_link_hash_flags &=~
3520 ELF_LINK_HASH_NEEDS_PLT;
3521 h->dynindx = -1;
3522 h->plt.offset = (bfd_vma) -1;
3523 /* FIXME: The name of the symbol has
3524 already been recorded in the dynamic
3525 string table section. */
3526 }
3527
3528 break;
3529 }
3530 }
3531 }
3532
3533 bfd_release (sinfo->output_bfd, alc);
3534 break;
3535 }
3536 }
3537
3538 /* If we are building an application, we need to create a
3539 version node for this version. */
3540 if (t == NULL && ! info->shared)
3541 {
3542 struct bfd_elf_version_tree **pp;
3543 int version_index;
3544
3545 /* If we aren't going to export this symbol, we don't need
3546 to worry about it. */
3547 if (h->dynindx == -1)
3548 return true;
3549
3550 t = ((struct bfd_elf_version_tree *)
3551 bfd_alloc (sinfo->output_bfd, sizeof *t));
3552 if (t == NULL)
3553 {
3554 sinfo->failed = true;
3555 return false;
3556 }
3557
3558 t->next = NULL;
3559 t->name = p;
3560 t->globals = NULL;
3561 t->locals = NULL;
3562 t->deps = NULL;
3563 t->name_indx = (unsigned int) -1;
3564 t->used = true;
3565
3566 version_index = 1;
3567 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3568 ++version_index;
3569 t->vernum = version_index;
3570
3571 *pp = t;
3572
3573 h->verinfo.vertree = t;
3574 }
3575 else if (t == NULL)
3576 {
3577 /* We could not find the version for a symbol when
3578 generating a shared archive. Return an error. */
3579 (*_bfd_error_handler)
3580 (_("%s: undefined versioned symbol name %s"),
3581 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3582 bfd_set_error (bfd_error_bad_value);
3583 sinfo->failed = true;
3584 return false;
3585 }
3586
3587 if (hidden)
3588 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3589 }
3590
3591 /* If we don't have a version for this symbol, see if we can find
3592 something. */
3593 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3594 {
3595 struct bfd_elf_version_tree *t;
3596 struct bfd_elf_version_tree *deflt;
3597 struct bfd_elf_version_expr *d;
3598
3599 /* See if can find what version this symbol is in. If the
3600 symbol is supposed to be local, then don't actually register
3601 it. */
3602 deflt = NULL;
3603 for (t = sinfo->verdefs; t != NULL; t = t->next)
3604 {
3605 if (t->globals != NULL)
3606 {
3607 for (d = t->globals; d != NULL; d = d->next)
3608 {
3609 if ((*d->match) (d, h->root.root.string))
3610 {
3611 h->verinfo.vertree = t;
3612 break;
3613 }
3614 }
3615
3616 if (d != NULL)
3617 break;
3618 }
3619
3620 if (t->locals != NULL)
3621 {
3622 for (d = t->locals; d != NULL; d = d->next)
3623 {
3624 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3625 deflt = t;
3626 else if ((*d->match) (d, h->root.root.string))
3627 {
3628 h->verinfo.vertree = t;
3629 if (h->dynindx != -1
3630 && info->shared
3631 && ! sinfo->export_dynamic)
3632 {
3633 sinfo->removed_dynamic = true;
3634 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3635 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3636 h->dynindx = -1;
3637 h->plt.offset = (bfd_vma) -1;
3638 /* FIXME: The name of the symbol has already
3639 been recorded in the dynamic string table
3640 section. */
3641 }
3642 break;
3643 }
3644 }
3645
3646 if (d != NULL)
3647 break;
3648 }
3649 }
3650
3651 if (deflt != NULL && h->verinfo.vertree == NULL)
3652 {
3653 h->verinfo.vertree = deflt;
3654 if (h->dynindx != -1
3655 && info->shared
3656 && ! sinfo->export_dynamic)
3657 {
3658 sinfo->removed_dynamic = true;
3659 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3660 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3661 h->dynindx = -1;
3662 h->plt.offset = (bfd_vma) -1;
3663 /* FIXME: The name of the symbol has already been
3664 recorded in the dynamic string table section. */
3665 }
3666 }
3667 }
3668
3669 return true;
3670}
3671
3672/* This function is used to renumber the dynamic symbols, if some of
3673 them are removed because they are marked as local. This is called
3674 via elf_link_hash_traverse. */
3675
3676static boolean
3677elf_link_renumber_dynsyms (h, data)
3678 struct elf_link_hash_entry *h;
3679 PTR data;
3680{
3681 struct bfd_link_info *info = (struct bfd_link_info *) data;
3682
3683 if (h->dynindx != -1)
3684 {
3685 h->dynindx = elf_hash_table (info)->dynsymcount;
3686 ++elf_hash_table (info)->dynsymcount;
3687 }
3688
3689 return true;
3690}
3691\f
3692/* Final phase of ELF linker. */
3693
3694/* A structure we use to avoid passing large numbers of arguments. */
3695
3696struct elf_final_link_info
3697{
3698 /* General link information. */
3699 struct bfd_link_info *info;
3700 /* Output BFD. */
3701 bfd *output_bfd;
3702 /* Symbol string table. */
3703 struct bfd_strtab_hash *symstrtab;
3704 /* .dynsym section. */
3705 asection *dynsym_sec;
3706 /* .hash section. */
3707 asection *hash_sec;
3708 /* symbol version section (.gnu.version). */
3709 asection *symver_sec;
3710 /* Buffer large enough to hold contents of any section. */
3711 bfd_byte *contents;
3712 /* Buffer large enough to hold external relocs of any section. */
3713 PTR external_relocs;
3714 /* Buffer large enough to hold internal relocs of any section. */
3715 Elf_Internal_Rela *internal_relocs;
3716 /* Buffer large enough to hold external local symbols of any input
3717 BFD. */
3718 Elf_External_Sym *external_syms;
3719 /* Buffer large enough to hold internal local symbols of any input
3720 BFD. */
3721 Elf_Internal_Sym *internal_syms;
3722 /* Array large enough to hold a symbol index for each local symbol
3723 of any input BFD. */
3724 long *indices;
3725 /* Array large enough to hold a section pointer for each local
3726 symbol of any input BFD. */
3727 asection **sections;
3728 /* Buffer to hold swapped out symbols. */
3729 Elf_External_Sym *symbuf;
3730 /* Number of swapped out symbols in buffer. */
3731 size_t symbuf_count;
3732 /* Number of symbols which fit in symbuf. */
3733 size_t symbuf_size;
3734};
3735
3736static boolean elf_link_output_sym
3737 PARAMS ((struct elf_final_link_info *, const char *,
3738 Elf_Internal_Sym *, asection *));
3739static boolean elf_link_flush_output_syms
3740 PARAMS ((struct elf_final_link_info *));
3741static boolean elf_link_output_extsym
3742 PARAMS ((struct elf_link_hash_entry *, PTR));
3743static boolean elf_link_input_bfd
3744 PARAMS ((struct elf_final_link_info *, bfd *));
3745static boolean elf_reloc_link_order
3746 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3747 struct bfd_link_order *));
3748
3749/* This struct is used to pass information to elf_link_output_extsym. */
3750
3751struct elf_outext_info
3752{
3753 boolean failed;
3754 boolean localsyms;
3755 struct elf_final_link_info *finfo;
3756};
3757
23bc299b
MM
3758/* Compute the size of, and allocate space for, REL_HDR which is the
3759 section header for a section containing relocations for O. */
3760
3761static boolean
3762elf_link_size_reloc_section (abfd, rel_hdr, o)
3763 bfd *abfd;
3764 Elf_Internal_Shdr *rel_hdr;
3765 asection *o;
3766{
3767 register struct elf_link_hash_entry **p, **pend;
3768
3769 /* We are overestimating the size required for the relocation
3770 sections, in the case that we are using both REL and RELA
3771 relocations for a single section. In that case, RELOC_COUNT will
3772 be the total number of relocations required, and we allocate
3773 space for that many REL relocations as well as that many RELA
3774 relocations. This approximation is wasteful of disk space.
3775 However, until we keep track of how many of each kind of
3776 relocation is required, it's difficult to calculate the right
3777 value. */
3778 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3779
3780 /* The contents field must last into write_object_contents, so we
3781 allocate it with bfd_alloc rather than malloc. */
3782 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3783 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3784 return false;
3785
3786 p = ((struct elf_link_hash_entry **)
3787 bfd_malloc (o->reloc_count
3788 * sizeof (struct elf_link_hash_entry *)));
3789 if (p == NULL && o->reloc_count != 0)
3790 return false;
3791
3792 elf_section_data (o)->rel_hashes = p;
3793 pend = p + o->reloc_count;
3794 for (; p < pend; p++)
3795 *p = NULL;
3796
3797 return true;
3798}
3799
252b5132
RH
3800/* Do the final step of an ELF link. */
3801
3802boolean
3803elf_bfd_final_link (abfd, info)
3804 bfd *abfd;
3805 struct bfd_link_info *info;
3806{
3807 boolean dynamic;
3808 bfd *dynobj;
3809 struct elf_final_link_info finfo;
3810 register asection *o;
3811 register struct bfd_link_order *p;
3812 register bfd *sub;
3813 size_t max_contents_size;
3814 size_t max_external_reloc_size;
3815 size_t max_internal_reloc_count;
3816 size_t max_sym_count;
3817 file_ptr off;
3818 Elf_Internal_Sym elfsym;
3819 unsigned int i;
3820 Elf_Internal_Shdr *symtab_hdr;
3821 Elf_Internal_Shdr *symstrtab_hdr;
3822 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3823 struct elf_outext_info eoinfo;
3824
3825 if (info->shared)
3826 abfd->flags |= DYNAMIC;
3827
3828 dynamic = elf_hash_table (info)->dynamic_sections_created;
3829 dynobj = elf_hash_table (info)->dynobj;
3830
3831 finfo.info = info;
3832 finfo.output_bfd = abfd;
3833 finfo.symstrtab = elf_stringtab_init ();
3834 if (finfo.symstrtab == NULL)
3835 return false;
3836
3837 if (! dynamic)
3838 {
3839 finfo.dynsym_sec = NULL;
3840 finfo.hash_sec = NULL;
3841 finfo.symver_sec = NULL;
3842 }
3843 else
3844 {
3845 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3846 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3847 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3848 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3849 /* Note that it is OK if symver_sec is NULL. */
3850 }
3851
3852 finfo.contents = NULL;
3853 finfo.external_relocs = NULL;
3854 finfo.internal_relocs = NULL;
3855 finfo.external_syms = NULL;
3856 finfo.internal_syms = NULL;
3857 finfo.indices = NULL;
3858 finfo.sections = NULL;
3859 finfo.symbuf = NULL;
3860 finfo.symbuf_count = 0;
3861
3862 /* Count up the number of relocations we will output for each output
3863 section, so that we know the sizes of the reloc sections. We
3864 also figure out some maximum sizes. */
3865 max_contents_size = 0;
3866 max_external_reloc_size = 0;
3867 max_internal_reloc_count = 0;
3868 max_sym_count = 0;
3869 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3870 {
3871 o->reloc_count = 0;
3872
3873 for (p = o->link_order_head; p != NULL; p = p->next)
3874 {
3875 if (p->type == bfd_section_reloc_link_order
3876 || p->type == bfd_symbol_reloc_link_order)
3877 ++o->reloc_count;
3878 else if (p->type == bfd_indirect_link_order)
3879 {
3880 asection *sec;
3881
3882 sec = p->u.indirect.section;
3883
3884 /* Mark all sections which are to be included in the
3885 link. This will normally be every section. We need
3886 to do this so that we can identify any sections which
3887 the linker has decided to not include. */
3888 sec->linker_mark = true;
3889
3890 if (info->relocateable)
3891 o->reloc_count += sec->reloc_count;
3892
3893 if (sec->_raw_size > max_contents_size)
3894 max_contents_size = sec->_raw_size;
3895 if (sec->_cooked_size > max_contents_size)
3896 max_contents_size = sec->_cooked_size;
3897
3898 /* We are interested in just local symbols, not all
3899 symbols. */
3900 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3901 && (sec->owner->flags & DYNAMIC) == 0)
3902 {
3903 size_t sym_count;
3904
3905 if (elf_bad_symtab (sec->owner))
3906 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3907 / sizeof (Elf_External_Sym));
3908 else
3909 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3910
3911 if (sym_count > max_sym_count)
3912 max_sym_count = sym_count;
3913
3914 if ((sec->flags & SEC_RELOC) != 0)
3915 {
3916 size_t ext_size;
3917
3918 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3919 if (ext_size > max_external_reloc_size)
3920 max_external_reloc_size = ext_size;
3921 if (sec->reloc_count > max_internal_reloc_count)
3922 max_internal_reloc_count = sec->reloc_count;
3923 }
3924 }
3925 }
3926 }
3927
3928 if (o->reloc_count > 0)
3929 o->flags |= SEC_RELOC;
3930 else
3931 {
3932 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3933 set it (this is probably a bug) and if it is set
3934 assign_section_numbers will create a reloc section. */
3935 o->flags &=~ SEC_RELOC;
3936 }
3937
3938 /* If the SEC_ALLOC flag is not set, force the section VMA to
3939 zero. This is done in elf_fake_sections as well, but forcing
3940 the VMA to 0 here will ensure that relocs against these
3941 sections are handled correctly. */
3942 if ((o->flags & SEC_ALLOC) == 0
3943 && ! o->user_set_vma)
3944 o->vma = 0;
3945 }
3946
3947 /* Figure out the file positions for everything but the symbol table
3948 and the relocs. We set symcount to force assign_section_numbers
3949 to create a symbol table. */
3950 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3951 BFD_ASSERT (! abfd->output_has_begun);
3952 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3953 goto error_return;
3954
3955 /* That created the reloc sections. Set their sizes, and assign
3956 them file positions, and allocate some buffers. */
3957 for (o = abfd->sections; o != NULL; o = o->next)
3958 {
3959 if ((o->flags & SEC_RELOC) != 0)
3960 {
23bc299b
MM
3961 if (!elf_link_size_reloc_section (abfd,
3962 &elf_section_data (o)->rel_hdr,
3963 o))
252b5132
RH
3964 goto error_return;
3965
23bc299b
MM
3966 if (elf_section_data (o)->rel_hdr2
3967 && !elf_link_size_reloc_section (abfd,
3968 elf_section_data (o)->rel_hdr2,
3969 o))
252b5132 3970 goto error_return;
252b5132
RH
3971 }
3972 }
3973
3974 _bfd_elf_assign_file_positions_for_relocs (abfd);
3975
3976 /* We have now assigned file positions for all the sections except
3977 .symtab and .strtab. We start the .symtab section at the current
3978 file position, and write directly to it. We build the .strtab
3979 section in memory. */
3980 bfd_get_symcount (abfd) = 0;
3981 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3982 /* sh_name is set in prep_headers. */
3983 symtab_hdr->sh_type = SHT_SYMTAB;
3984 symtab_hdr->sh_flags = 0;
3985 symtab_hdr->sh_addr = 0;
3986 symtab_hdr->sh_size = 0;
3987 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3988 /* sh_link is set in assign_section_numbers. */
3989 /* sh_info is set below. */
3990 /* sh_offset is set just below. */
3991 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3992
3993 off = elf_tdata (abfd)->next_file_pos;
3994 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3995
3996 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3997 incorrect. We do not yet know the size of the .symtab section.
3998 We correct next_file_pos below, after we do know the size. */
3999
4000 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4001 continuously seeking to the right position in the file. */
4002 if (! info->keep_memory || max_sym_count < 20)
4003 finfo.symbuf_size = 20;
4004 else
4005 finfo.symbuf_size = max_sym_count;
4006 finfo.symbuf = ((Elf_External_Sym *)
4007 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4008 if (finfo.symbuf == NULL)
4009 goto error_return;
4010
4011 /* Start writing out the symbol table. The first symbol is always a
4012 dummy symbol. */
4013 if (info->strip != strip_all || info->relocateable)
4014 {
4015 elfsym.st_value = 0;
4016 elfsym.st_size = 0;
4017 elfsym.st_info = 0;
4018 elfsym.st_other = 0;
4019 elfsym.st_shndx = SHN_UNDEF;
4020 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4021 &elfsym, bfd_und_section_ptr))
4022 goto error_return;
4023 }
4024
4025#if 0
4026 /* Some standard ELF linkers do this, but we don't because it causes
4027 bootstrap comparison failures. */
4028 /* Output a file symbol for the output file as the second symbol.
4029 We output this even if we are discarding local symbols, although
4030 I'm not sure if this is correct. */
4031 elfsym.st_value = 0;
4032 elfsym.st_size = 0;
4033 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4034 elfsym.st_other = 0;
4035 elfsym.st_shndx = SHN_ABS;
4036 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4037 &elfsym, bfd_abs_section_ptr))
4038 goto error_return;
4039#endif
4040
4041 /* Output a symbol for each section. We output these even if we are
4042 discarding local symbols, since they are used for relocs. These
4043 symbols have no names. We store the index of each one in the
4044 index field of the section, so that we can find it again when
4045 outputting relocs. */
4046 if (info->strip != strip_all || info->relocateable)
4047 {
4048 elfsym.st_size = 0;
4049 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4050 elfsym.st_other = 0;
4051 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4052 {
4053 o = section_from_elf_index (abfd, i);
4054 if (o != NULL)
4055 o->target_index = bfd_get_symcount (abfd);
4056 elfsym.st_shndx = i;
4057 if (info->relocateable || o == NULL)
4058 elfsym.st_value = 0;
4059 else
4060 elfsym.st_value = o->vma;
4061 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4062 &elfsym, o))
4063 goto error_return;
4064 }
4065 }
4066
4067 /* Allocate some memory to hold information read in from the input
4068 files. */
4069 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4070 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4071 finfo.internal_relocs = ((Elf_Internal_Rela *)
4072 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4073 * sizeof (Elf_Internal_Rela)
4074 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4075 finfo.external_syms = ((Elf_External_Sym *)
4076 bfd_malloc (max_sym_count
4077 * sizeof (Elf_External_Sym)));
4078 finfo.internal_syms = ((Elf_Internal_Sym *)
4079 bfd_malloc (max_sym_count
4080 * sizeof (Elf_Internal_Sym)));
4081 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4082 finfo.sections = ((asection **)
4083 bfd_malloc (max_sym_count * sizeof (asection *)));
4084 if ((finfo.contents == NULL && max_contents_size != 0)
4085 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4086 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4087 || (finfo.external_syms == NULL && max_sym_count != 0)
4088 || (finfo.internal_syms == NULL && max_sym_count != 0)
4089 || (finfo.indices == NULL && max_sym_count != 0)
4090 || (finfo.sections == NULL && max_sym_count != 0))
4091 goto error_return;
4092
4093 /* Since ELF permits relocations to be against local symbols, we
4094 must have the local symbols available when we do the relocations.
4095 Since we would rather only read the local symbols once, and we
4096 would rather not keep them in memory, we handle all the
4097 relocations for a single input file at the same time.
4098
4099 Unfortunately, there is no way to know the total number of local
4100 symbols until we have seen all of them, and the local symbol
4101 indices precede the global symbol indices. This means that when
4102 we are generating relocateable output, and we see a reloc against
4103 a global symbol, we can not know the symbol index until we have
4104 finished examining all the local symbols to see which ones we are
4105 going to output. To deal with this, we keep the relocations in
4106 memory, and don't output them until the end of the link. This is
4107 an unfortunate waste of memory, but I don't see a good way around
4108 it. Fortunately, it only happens when performing a relocateable
4109 link, which is not the common case. FIXME: If keep_memory is set
4110 we could write the relocs out and then read them again; I don't
4111 know how bad the memory loss will be. */
4112
4113 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4114 sub->output_has_begun = false;
4115 for (o = abfd->sections; o != NULL; o = o->next)
4116 {
4117 for (p = o->link_order_head; p != NULL; p = p->next)
4118 {
4119 if (p->type == bfd_indirect_link_order
4120 && (bfd_get_flavour (p->u.indirect.section->owner)
4121 == bfd_target_elf_flavour))
4122 {
4123 sub = p->u.indirect.section->owner;
4124 if (! sub->output_has_begun)
4125 {
4126 if (! elf_link_input_bfd (&finfo, sub))
4127 goto error_return;
4128 sub->output_has_begun = true;
4129 }
4130 }
4131 else if (p->type == bfd_section_reloc_link_order
4132 || p->type == bfd_symbol_reloc_link_order)
4133 {
4134 if (! elf_reloc_link_order (abfd, info, o, p))
4135 goto error_return;
4136 }
4137 else
4138 {
4139 if (! _bfd_default_link_order (abfd, info, o, p))
4140 goto error_return;
4141 }
4142 }
4143 }
4144
4145 /* That wrote out all the local symbols. Finish up the symbol table
4146 with the global symbols. */
4147
4148 if (info->strip != strip_all && info->shared)
4149 {
4150 /* Output any global symbols that got converted to local in a
4151 version script. We do this in a separate step since ELF
4152 requires all local symbols to appear prior to any global
4153 symbols. FIXME: We should only do this if some global
4154 symbols were, in fact, converted to become local. FIXME:
4155 Will this work correctly with the Irix 5 linker? */
4156 eoinfo.failed = false;
4157 eoinfo.finfo = &finfo;
4158 eoinfo.localsyms = true;
4159 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4160 (PTR) &eoinfo);
4161 if (eoinfo.failed)
4162 return false;
4163 }
4164
4165 /* The sh_info field records the index of the first non local
4166 symbol. */
4167 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4168 if (dynamic)
4169 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
4170
4171 /* We get the global symbols from the hash table. */
4172 eoinfo.failed = false;
4173 eoinfo.localsyms = false;
4174 eoinfo.finfo = &finfo;
4175 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4176 (PTR) &eoinfo);
4177 if (eoinfo.failed)
4178 return false;
4179
4180 /* Flush all symbols to the file. */
4181 if (! elf_link_flush_output_syms (&finfo))
4182 return false;
4183
4184 /* Now we know the size of the symtab section. */
4185 off += symtab_hdr->sh_size;
4186
4187 /* Finish up and write out the symbol string table (.strtab)
4188 section. */
4189 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4190 /* sh_name was set in prep_headers. */
4191 symstrtab_hdr->sh_type = SHT_STRTAB;
4192 symstrtab_hdr->sh_flags = 0;
4193 symstrtab_hdr->sh_addr = 0;
4194 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4195 symstrtab_hdr->sh_entsize = 0;
4196 symstrtab_hdr->sh_link = 0;
4197 symstrtab_hdr->sh_info = 0;
4198 /* sh_offset is set just below. */
4199 symstrtab_hdr->sh_addralign = 1;
4200
4201 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4202 elf_tdata (abfd)->next_file_pos = off;
4203
4204 if (bfd_get_symcount (abfd) > 0)
4205 {
4206 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4207 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4208 return false;
4209 }
4210
4211 /* Adjust the relocs to have the correct symbol indices. */
4212 for (o = abfd->sections; o != NULL; o = o->next)
4213 {
4214 struct elf_link_hash_entry **rel_hash;
4215 Elf_Internal_Shdr *rel_hdr;
4216
4217 if ((o->flags & SEC_RELOC) == 0)
4218 continue;
4219
4220 rel_hash = elf_section_data (o)->rel_hashes;
4221 rel_hdr = &elf_section_data (o)->rel_hdr;
0525d26e 4222 BFD_ASSERT (elf_section_data (o)->rel_count == o->reloc_count);
252b5132
RH
4223 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4224 {
4225 if (*rel_hash == NULL)
4226 continue;
4227
4228 BFD_ASSERT ((*rel_hash)->indx >= 0);
4229
4230 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4231 {
4232 Elf_External_Rel *erel;
4233 Elf_Internal_Rel irel;
4234
4235 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4236 elf_swap_reloc_in (abfd, erel, &irel);
4237 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4238 ELF_R_TYPE (irel.r_info));
4239 elf_swap_reloc_out (abfd, &irel, erel);
4240 }
4241 else
4242 {
4243 Elf_External_Rela *erela;
4244 Elf_Internal_Rela irela;
4245
4246 BFD_ASSERT (rel_hdr->sh_entsize
4247 == sizeof (Elf_External_Rela));
4248
4249 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4250 elf_swap_reloca_in (abfd, erela, &irela);
4251 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4252 ELF_R_TYPE (irela.r_info));
4253 elf_swap_reloca_out (abfd, &irela, erela);
4254 }
4255 }
4256
4257 /* Set the reloc_count field to 0 to prevent write_relocs from
4258 trying to swap the relocs out itself. */
4259 o->reloc_count = 0;
4260 }
4261
4262 /* If we are linking against a dynamic object, or generating a
4263 shared library, finish up the dynamic linking information. */
4264 if (dynamic)
4265 {
4266 Elf_External_Dyn *dyncon, *dynconend;
4267
4268 /* Fix up .dynamic entries. */
4269 o = bfd_get_section_by_name (dynobj, ".dynamic");
4270 BFD_ASSERT (o != NULL);
4271
4272 dyncon = (Elf_External_Dyn *) o->contents;
4273 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4274 for (; dyncon < dynconend; dyncon++)
4275 {
4276 Elf_Internal_Dyn dyn;
4277 const char *name;
4278 unsigned int type;
4279
4280 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4281
4282 switch (dyn.d_tag)
4283 {
4284 default:
4285 break;
252b5132 4286 case DT_INIT:
f0c2e336 4287 name = info->init_function;
252b5132
RH
4288 goto get_sym;
4289 case DT_FINI:
f0c2e336 4290 name = info->fini_function;
252b5132
RH
4291 get_sym:
4292 {
4293 struct elf_link_hash_entry *h;
4294
4295 h = elf_link_hash_lookup (elf_hash_table (info), name,
4296 false, false, true);
4297 if (h != NULL
4298 && (h->root.type == bfd_link_hash_defined
4299 || h->root.type == bfd_link_hash_defweak))
4300 {
4301 dyn.d_un.d_val = h->root.u.def.value;
4302 o = h->root.u.def.section;
4303 if (o->output_section != NULL)
4304 dyn.d_un.d_val += (o->output_section->vma
4305 + o->output_offset);
4306 else
4307 {
4308 /* The symbol is imported from another shared
4309 library and does not apply to this one. */
4310 dyn.d_un.d_val = 0;
4311 }
4312
4313 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4314 }
4315 }
4316 break;
4317
4318 case DT_HASH:
4319 name = ".hash";
4320 goto get_vma;
4321 case DT_STRTAB:
4322 name = ".dynstr";
4323 goto get_vma;
4324 case DT_SYMTAB:
4325 name = ".dynsym";
4326 goto get_vma;
4327 case DT_VERDEF:
4328 name = ".gnu.version_d";
4329 goto get_vma;
4330 case DT_VERNEED:
4331 name = ".gnu.version_r";
4332 goto get_vma;
4333 case DT_VERSYM:
4334 name = ".gnu.version";
4335 get_vma:
4336 o = bfd_get_section_by_name (abfd, name);
4337 BFD_ASSERT (o != NULL);
4338 dyn.d_un.d_ptr = o->vma;
4339 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4340 break;
4341
4342 case DT_REL:
4343 case DT_RELA:
4344 case DT_RELSZ:
4345 case DT_RELASZ:
4346 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4347 type = SHT_REL;
4348 else
4349 type = SHT_RELA;
4350 dyn.d_un.d_val = 0;
4351 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4352 {
4353 Elf_Internal_Shdr *hdr;
4354
4355 hdr = elf_elfsections (abfd)[i];
4356 if (hdr->sh_type == type
4357 && (hdr->sh_flags & SHF_ALLOC) != 0)
4358 {
4359 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4360 dyn.d_un.d_val += hdr->sh_size;
4361 else
4362 {
4363 if (dyn.d_un.d_val == 0
4364 || hdr->sh_addr < dyn.d_un.d_val)
4365 dyn.d_un.d_val = hdr->sh_addr;
4366 }
4367 }
4368 }
4369 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4370 break;
4371 }
4372 }
4373 }
4374
4375 /* If we have created any dynamic sections, then output them. */
4376 if (dynobj != NULL)
4377 {
4378 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4379 goto error_return;
4380
4381 for (o = dynobj->sections; o != NULL; o = o->next)
4382 {
4383 if ((o->flags & SEC_HAS_CONTENTS) == 0
4384 || o->_raw_size == 0)
4385 continue;
4386 if ((o->flags & SEC_LINKER_CREATED) == 0)
4387 {
4388 /* At this point, we are only interested in sections
4389 created by elf_link_create_dynamic_sections. */
4390 continue;
4391 }
4392 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4393 != SHT_STRTAB)
4394 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4395 {
4396 if (! bfd_set_section_contents (abfd, o->output_section,
4397 o->contents, o->output_offset,
4398 o->_raw_size))
4399 goto error_return;
4400 }
4401 else
4402 {
4403 file_ptr off;
4404
4405 /* The contents of the .dynstr section are actually in a
4406 stringtab. */
4407 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4408 if (bfd_seek (abfd, off, SEEK_SET) != 0
4409 || ! _bfd_stringtab_emit (abfd,
4410 elf_hash_table (info)->dynstr))
4411 goto error_return;
4412 }
4413 }
4414 }
4415
4416 /* If we have optimized stabs strings, output them. */
4417 if (elf_hash_table (info)->stab_info != NULL)
4418 {
4419 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4420 goto error_return;
4421 }
4422
4423 if (finfo.symstrtab != NULL)
4424 _bfd_stringtab_free (finfo.symstrtab);
4425 if (finfo.contents != NULL)
4426 free (finfo.contents);
4427 if (finfo.external_relocs != NULL)
4428 free (finfo.external_relocs);
4429 if (finfo.internal_relocs != NULL)
4430 free (finfo.internal_relocs);
4431 if (finfo.external_syms != NULL)
4432 free (finfo.external_syms);
4433 if (finfo.internal_syms != NULL)
4434 free (finfo.internal_syms);
4435 if (finfo.indices != NULL)
4436 free (finfo.indices);
4437 if (finfo.sections != NULL)
4438 free (finfo.sections);
4439 if (finfo.symbuf != NULL)
4440 free (finfo.symbuf);
4441 for (o = abfd->sections; o != NULL; o = o->next)
4442 {
4443 if ((o->flags & SEC_RELOC) != 0
4444 && elf_section_data (o)->rel_hashes != NULL)
4445 free (elf_section_data (o)->rel_hashes);
4446 }
4447
4448 elf_tdata (abfd)->linker = true;
4449
4450 return true;
4451
4452 error_return:
4453 if (finfo.symstrtab != NULL)
4454 _bfd_stringtab_free (finfo.symstrtab);
4455 if (finfo.contents != NULL)
4456 free (finfo.contents);
4457 if (finfo.external_relocs != NULL)
4458 free (finfo.external_relocs);
4459 if (finfo.internal_relocs != NULL)
4460 free (finfo.internal_relocs);
4461 if (finfo.external_syms != NULL)
4462 free (finfo.external_syms);
4463 if (finfo.internal_syms != NULL)
4464 free (finfo.internal_syms);
4465 if (finfo.indices != NULL)
4466 free (finfo.indices);
4467 if (finfo.sections != NULL)
4468 free (finfo.sections);
4469 if (finfo.symbuf != NULL)
4470 free (finfo.symbuf);
4471 for (o = abfd->sections; o != NULL; o = o->next)
4472 {
4473 if ((o->flags & SEC_RELOC) != 0
4474 && elf_section_data (o)->rel_hashes != NULL)
4475 free (elf_section_data (o)->rel_hashes);
4476 }
4477
4478 return false;
4479}
4480
4481/* Add a symbol to the output symbol table. */
4482
4483static boolean
4484elf_link_output_sym (finfo, name, elfsym, input_sec)
4485 struct elf_final_link_info *finfo;
4486 const char *name;
4487 Elf_Internal_Sym *elfsym;
4488 asection *input_sec;
4489{
4490 boolean (*output_symbol_hook) PARAMS ((bfd *,
4491 struct bfd_link_info *info,
4492 const char *,
4493 Elf_Internal_Sym *,
4494 asection *));
4495
4496 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4497 elf_backend_link_output_symbol_hook;
4498 if (output_symbol_hook != NULL)
4499 {
4500 if (! ((*output_symbol_hook)
4501 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4502 return false;
4503 }
4504
4505 if (name == (const char *) NULL || *name == '\0')
4506 elfsym->st_name = 0;
4507 else if (input_sec->flags & SEC_EXCLUDE)
4508 elfsym->st_name = 0;
4509 else
4510 {
4511 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4512 name, true,
4513 false);
4514 if (elfsym->st_name == (unsigned long) -1)
4515 return false;
4516 }
4517
4518 if (finfo->symbuf_count >= finfo->symbuf_size)
4519 {
4520 if (! elf_link_flush_output_syms (finfo))
4521 return false;
4522 }
4523
4524 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4525 (PTR) (finfo->symbuf + finfo->symbuf_count));
4526 ++finfo->symbuf_count;
4527
4528 ++ bfd_get_symcount (finfo->output_bfd);
4529
4530 return true;
4531}
4532
4533/* Flush the output symbols to the file. */
4534
4535static boolean
4536elf_link_flush_output_syms (finfo)
4537 struct elf_final_link_info *finfo;
4538{
4539 if (finfo->symbuf_count > 0)
4540 {
4541 Elf_Internal_Shdr *symtab;
4542
4543 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4544
4545 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4546 SEEK_SET) != 0
4547 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4548 sizeof (Elf_External_Sym), finfo->output_bfd)
4549 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4550 return false;
4551
4552 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4553
4554 finfo->symbuf_count = 0;
4555 }
4556
4557 return true;
4558}
4559
4560/* Add an external symbol to the symbol table. This is called from
4561 the hash table traversal routine. When generating a shared object,
4562 we go through the symbol table twice. The first time we output
4563 anything that might have been forced to local scope in a version
4564 script. The second time we output the symbols that are still
4565 global symbols. */
4566
4567static boolean
4568elf_link_output_extsym (h, data)
4569 struct elf_link_hash_entry *h;
4570 PTR data;
4571{
4572 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4573 struct elf_final_link_info *finfo = eoinfo->finfo;
4574 boolean strip;
4575 Elf_Internal_Sym sym;
4576 asection *input_sec;
4577
4578 /* Decide whether to output this symbol in this pass. */
4579 if (eoinfo->localsyms)
4580 {
4581 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4582 return true;
4583 }
4584 else
4585 {
4586 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4587 return true;
4588 }
4589
4590 /* If we are not creating a shared library, and this symbol is
4591 referenced by a shared library but is not defined anywhere, then
4592 warn that it is undefined. If we do not do this, the runtime
4593 linker will complain that the symbol is undefined when the
4594 program is run. We don't have to worry about symbols that are
4595 referenced by regular files, because we will already have issued
4596 warnings for them. */
4597 if (! finfo->info->relocateable
4598 && ! (finfo->info->shared
252b5132
RH
4599 && !finfo->info->no_undefined)
4600 && h->root.type == bfd_link_hash_undefined
4601 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4602 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4603 {
4604 if (! ((*finfo->info->callbacks->undefined_symbol)
4605 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4606 (asection *) NULL, 0)))
4607 {
4608 eoinfo->failed = true;
4609 return false;
4610 }
4611 }
4612
4613 /* We don't want to output symbols that have never been mentioned by
4614 a regular file, or that we have been told to strip. However, if
4615 h->indx is set to -2, the symbol is used by a reloc and we must
4616 output it. */
4617 if (h->indx == -2)
4618 strip = false;
4619 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4620 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4622 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4623 strip = true;
4624 else if (finfo->info->strip == strip_all
4625 || (finfo->info->strip == strip_some
4626 && bfd_hash_lookup (finfo->info->keep_hash,
4627 h->root.root.string,
4628 false, false) == NULL))
4629 strip = true;
4630 else
4631 strip = false;
4632
4633 /* If we're stripping it, and it's not a dynamic symbol, there's
4634 nothing else to do. */
4635 if (strip && h->dynindx == -1)
4636 return true;
4637
4638 sym.st_value = 0;
4639 sym.st_size = h->size;
4640 sym.st_other = h->other;
4641 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4642 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4643 else if (h->root.type == bfd_link_hash_undefweak
4644 || h->root.type == bfd_link_hash_defweak)
4645 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4646 else
4647 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4648
4649 switch (h->root.type)
4650 {
4651 default:
4652 case bfd_link_hash_new:
4653 abort ();
4654 return false;
4655
4656 case bfd_link_hash_undefined:
4657 input_sec = bfd_und_section_ptr;
4658 sym.st_shndx = SHN_UNDEF;
4659 break;
4660
4661 case bfd_link_hash_undefweak:
4662 input_sec = bfd_und_section_ptr;
4663 sym.st_shndx = SHN_UNDEF;
4664 break;
4665
4666 case bfd_link_hash_defined:
4667 case bfd_link_hash_defweak:
4668 {
4669 input_sec = h->root.u.def.section;
4670 if (input_sec->output_section != NULL)
4671 {
4672 sym.st_shndx =
4673 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4674 input_sec->output_section);
4675 if (sym.st_shndx == (unsigned short) -1)
4676 {
4677 (*_bfd_error_handler)
4678 (_("%s: could not find output section %s for input section %s"),
4679 bfd_get_filename (finfo->output_bfd),
4680 input_sec->output_section->name,
4681 input_sec->name);
4682 eoinfo->failed = true;
4683 return false;
4684 }
4685
4686 /* ELF symbols in relocateable files are section relative,
4687 but in nonrelocateable files they are virtual
4688 addresses. */
4689 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4690 if (! finfo->info->relocateable)
4691 sym.st_value += input_sec->output_section->vma;
4692 }
4693 else
4694 {
4695 BFD_ASSERT (input_sec->owner == NULL
4696 || (input_sec->owner->flags & DYNAMIC) != 0);
4697 sym.st_shndx = SHN_UNDEF;
4698 input_sec = bfd_und_section_ptr;
4699 }
4700 }
4701 break;
4702
4703 case bfd_link_hash_common:
4704 input_sec = h->root.u.c.p->section;
4705 sym.st_shndx = SHN_COMMON;
4706 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4707 break;
4708
4709 case bfd_link_hash_indirect:
4710 /* These symbols are created by symbol versioning. They point
4711 to the decorated version of the name. For example, if the
4712 symbol foo@@GNU_1.2 is the default, which should be used when
4713 foo is used with no version, then we add an indirect symbol
4714 foo which points to foo@@GNU_1.2. We ignore these symbols,
4715 since the indirected symbol is already in the hash table. If
4716 the indirect symbol is non-ELF, fall through and output it. */
4717 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4718 return true;
4719
4720 /* Fall through. */
4721 case bfd_link_hash_warning:
4722 /* We can't represent these symbols in ELF, although a warning
4723 symbol may have come from a .gnu.warning.SYMBOL section. We
4724 just put the target symbol in the hash table. If the target
4725 symbol does not really exist, don't do anything. */
4726 if (h->root.u.i.link->type == bfd_link_hash_new)
4727 return true;
4728 return (elf_link_output_extsym
4729 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4730 }
4731
4732 /* Give the processor backend a chance to tweak the symbol value,
4733 and also to finish up anything that needs to be done for this
4734 symbol. */
4735 if ((h->dynindx != -1
4736 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4737 && elf_hash_table (finfo->info)->dynamic_sections_created)
4738 {
4739 struct elf_backend_data *bed;
4740
4741 bed = get_elf_backend_data (finfo->output_bfd);
4742 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4743 (finfo->output_bfd, finfo->info, h, &sym)))
4744 {
4745 eoinfo->failed = true;
4746 return false;
4747 }
4748 }
4749
4750 /* If we are marking the symbol as undefined, and there are no
4751 non-weak references to this symbol from a regular object, then
4752 mark the symbol as weak undefined. We can't do this earlier,
4753 because it might not be marked as undefined until the
4754 finish_dynamic_symbol routine gets through with it. */
4755 if (sym.st_shndx == SHN_UNDEF
4756 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4757 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4758 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4759 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4760
4761 /* If this symbol should be put in the .dynsym section, then put it
4762 there now. We have already know the symbol index. We also fill
4763 in the entry in the .hash section. */
4764 if (h->dynindx != -1
4765 && elf_hash_table (finfo->info)->dynamic_sections_created)
4766 {
4767 size_t bucketcount;
4768 size_t bucket;
c7ac6ff8 4769 size_t hash_entry_size;
252b5132
RH
4770 bfd_byte *bucketpos;
4771 bfd_vma chain;
4772
4773 sym.st_name = h->dynstr_index;
4774
4775 elf_swap_symbol_out (finfo->output_bfd, &sym,
4776 (PTR) (((Elf_External_Sym *)
4777 finfo->dynsym_sec->contents)
4778 + h->dynindx));
4779
4780 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4781 bucket = h->elf_hash_value % bucketcount;
c7ac6ff8
MM
4782 hash_entry_size
4783 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 4784 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
4785 + (bucket + 2) * hash_entry_size);
4786 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4787 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4788 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4789 ((bfd_byte *) finfo->hash_sec->contents
4790 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
4791
4792 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4793 {
4794 Elf_Internal_Versym iversym;
4795
4796 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4797 {
4798 if (h->verinfo.verdef == NULL)
4799 iversym.vs_vers = 0;
4800 else
4801 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4802 }
4803 else
4804 {
4805 if (h->verinfo.vertree == NULL)
4806 iversym.vs_vers = 1;
4807 else
4808 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4809 }
4810
4811 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4812 iversym.vs_vers |= VERSYM_HIDDEN;
4813
4814 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4815 (((Elf_External_Versym *)
4816 finfo->symver_sec->contents)
4817 + h->dynindx));
4818 }
4819 }
4820
4821 /* If we're stripping it, then it was just a dynamic symbol, and
4822 there's nothing else to do. */
4823 if (strip)
4824 return true;
4825
4826 h->indx = bfd_get_symcount (finfo->output_bfd);
4827
4828 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4829 {
4830 eoinfo->failed = true;
4831 return false;
4832 }
4833
4834 return true;
4835}
4836
23bc299b
MM
4837/* Copy the relocations indicated by the INTERNAL_RELOCS (which
4838 originated from the section given by INPUT_REL_HDR) to the
4839 OUTPUT_BFD. */
4840
4841static void
4842elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
4843 internal_relocs)
4844 bfd *output_bfd;
4845 asection *input_section;
4846 Elf_Internal_Shdr *input_rel_hdr;
4847 Elf_Internal_Rela *internal_relocs;
4848{
4849 Elf_Internal_Rela *irela;
4850 Elf_Internal_Rela *irelaend;
4851 Elf_Internal_Shdr *output_rel_hdr;
4852 asection *output_section;
4853 unsigned int *rel_countp;
4854
4855 output_section = input_section->output_section;
4856 output_rel_hdr = NULL;
4857
4858 if (elf_section_data (output_section)->rel_hdr.sh_entsize
4859 == input_rel_hdr->sh_entsize)
4860 {
4861 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
4862 rel_countp = &elf_section_data (output_section)->rel_count;
4863 }
4864 else if (elf_section_data (output_section)->rel_hdr2
4865 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
4866 == input_rel_hdr->sh_entsize))
4867 {
4868 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
4869 rel_countp = &elf_section_data (output_section)->rel_count2;
4870 }
4871
4872 BFD_ASSERT (output_rel_hdr != NULL);
4873
4874 irela = internal_relocs;
4875 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4876 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4877 {
4878 Elf_External_Rel *erel;
4879
4880 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
4881 for (; irela < irelaend; irela++, erel++)
4882 {
4883 Elf_Internal_Rel irel;
4884
4885 irel.r_offset = irela->r_offset;
4886 irel.r_info = irela->r_info;
4887 BFD_ASSERT (irela->r_addend == 0);
4888 elf_swap_reloc_out (output_bfd, &irel, erel);
4889 }
4890 }
4891 else
4892 {
4893 Elf_External_Rela *erela;
4894
4895 BFD_ASSERT (input_rel_hdr->sh_entsize
4896 == sizeof (Elf_External_Rela));
4897 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
4898 for (; irela < irelaend; irela++, erela++)
4899 elf_swap_reloca_out (output_bfd, irela, erela);
4900 }
4901
4902 /* Bump the counter, so that we know where to add the next set of
4903 relocations. */
4904 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4905}
4906
252b5132
RH
4907/* Link an input file into the linker output file. This function
4908 handles all the sections and relocations of the input file at once.
4909 This is so that we only have to read the local symbols once, and
4910 don't have to keep them in memory. */
4911
4912static boolean
4913elf_link_input_bfd (finfo, input_bfd)
4914 struct elf_final_link_info *finfo;
4915 bfd *input_bfd;
4916{
4917 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4918 bfd *, asection *, bfd_byte *,
4919 Elf_Internal_Rela *,
4920 Elf_Internal_Sym *, asection **));
4921 bfd *output_bfd;
4922 Elf_Internal_Shdr *symtab_hdr;
4923 size_t locsymcount;
4924 size_t extsymoff;
4925 Elf_External_Sym *external_syms;
4926 Elf_External_Sym *esym;
4927 Elf_External_Sym *esymend;
4928 Elf_Internal_Sym *isym;
4929 long *pindex;
4930 asection **ppsection;
4931 asection *o;
c7ac6ff8 4932 struct elf_backend_data *bed;
252b5132
RH
4933
4934 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
4935 bed = get_elf_backend_data (output_bfd);
4936 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
4937
4938 /* If this is a dynamic object, we don't want to do anything here:
4939 we don't want the local symbols, and we don't want the section
4940 contents. */
4941 if ((input_bfd->flags & DYNAMIC) != 0)
4942 return true;
4943
4944 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4945 if (elf_bad_symtab (input_bfd))
4946 {
4947 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4948 extsymoff = 0;
4949 }
4950 else
4951 {
4952 locsymcount = symtab_hdr->sh_info;
4953 extsymoff = symtab_hdr->sh_info;
4954 }
4955
4956 /* Read the local symbols. */
4957 if (symtab_hdr->contents != NULL)
4958 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4959 else if (locsymcount == 0)
4960 external_syms = NULL;
4961 else
4962 {
4963 external_syms = finfo->external_syms;
4964 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4965 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4966 locsymcount, input_bfd)
4967 != locsymcount * sizeof (Elf_External_Sym)))
4968 return false;
4969 }
4970
4971 /* Swap in the local symbols and write out the ones which we know
4972 are going into the output file. */
4973 esym = external_syms;
4974 esymend = esym + locsymcount;
4975 isym = finfo->internal_syms;
4976 pindex = finfo->indices;
4977 ppsection = finfo->sections;
4978 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4979 {
4980 asection *isec;
4981 const char *name;
4982 Elf_Internal_Sym osym;
4983
4984 elf_swap_symbol_in (input_bfd, esym, isym);
4985 *pindex = -1;
4986
4987 if (elf_bad_symtab (input_bfd))
4988 {
4989 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4990 {
4991 *ppsection = NULL;
4992 continue;
4993 }
4994 }
4995
4996 if (isym->st_shndx == SHN_UNDEF)
4997 isec = bfd_und_section_ptr;
4998 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4999 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5000 else if (isym->st_shndx == SHN_ABS)
5001 isec = bfd_abs_section_ptr;
5002 else if (isym->st_shndx == SHN_COMMON)
5003 isec = bfd_com_section_ptr;
5004 else
5005 {
5006 /* Who knows? */
5007 isec = NULL;
5008 }
5009
5010 *ppsection = isec;
5011
5012 /* Don't output the first, undefined, symbol. */
5013 if (esym == external_syms)
5014 continue;
5015
5016 /* If we are stripping all symbols, we don't want to output this
5017 one. */
5018 if (finfo->info->strip == strip_all)
5019 continue;
5020
5021 /* We never output section symbols. Instead, we use the section
5022 symbol of the corresponding section in the output file. */
5023 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5024 continue;
5025
5026 /* If we are discarding all local symbols, we don't want to
5027 output this one. If we are generating a relocateable output
5028 file, then some of the local symbols may be required by
5029 relocs; we output them below as we discover that they are
5030 needed. */
5031 if (finfo->info->discard == discard_all)
5032 continue;
5033
5034 /* If this symbol is defined in a section which we are
5035 discarding, we don't need to keep it, but note that
5036 linker_mark is only reliable for sections that have contents.
5037 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5038 as well as linker_mark. */
5039 if (isym->st_shndx > 0
5040 && isym->st_shndx < SHN_LORESERVE
5041 && isec != NULL
5042 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5043 || (! finfo->info->relocateable
5044 && (isec->flags & SEC_EXCLUDE) != 0)))
5045 continue;
5046
5047 /* Get the name of the symbol. */
5048 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5049 isym->st_name);
5050 if (name == NULL)
5051 return false;
5052
5053 /* See if we are discarding symbols with this name. */
5054 if ((finfo->info->strip == strip_some
5055 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5056 == NULL))
5057 || (finfo->info->discard == discard_l
5058 && bfd_is_local_label_name (input_bfd, name)))
5059 continue;
5060
5061 /* If we get here, we are going to output this symbol. */
5062
5063 osym = *isym;
5064
5065 /* Adjust the section index for the output file. */
5066 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5067 isec->output_section);
5068 if (osym.st_shndx == (unsigned short) -1)
5069 return false;
5070
5071 *pindex = bfd_get_symcount (output_bfd);
5072
5073 /* ELF symbols in relocateable files are section relative, but
5074 in executable files they are virtual addresses. Note that
5075 this code assumes that all ELF sections have an associated
5076 BFD section with a reasonable value for output_offset; below
5077 we assume that they also have a reasonable value for
5078 output_section. Any special sections must be set up to meet
5079 these requirements. */
5080 osym.st_value += isec->output_offset;
5081 if (! finfo->info->relocateable)
5082 osym.st_value += isec->output_section->vma;
5083
5084 if (! elf_link_output_sym (finfo, name, &osym, isec))
5085 return false;
5086 }
5087
5088 /* Relocate the contents of each section. */
5089 for (o = input_bfd->sections; o != NULL; o = o->next)
5090 {
5091 bfd_byte *contents;
5092
5093 if (! o->linker_mark)
5094 {
5095 /* This section was omitted from the link. */
5096 continue;
5097 }
5098
5099 if ((o->flags & SEC_HAS_CONTENTS) == 0
5100 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5101 continue;
5102
5103 if ((o->flags & SEC_LINKER_CREATED) != 0)
5104 {
5105 /* Section was created by elf_link_create_dynamic_sections
5106 or somesuch. */
5107 continue;
5108 }
5109
5110 /* Get the contents of the section. They have been cached by a
5111 relaxation routine. Note that o is a section in an input
5112 file, so the contents field will not have been set by any of
5113 the routines which work on output files. */
5114 if (elf_section_data (o)->this_hdr.contents != NULL)
5115 contents = elf_section_data (o)->this_hdr.contents;
5116 else
5117 {
5118 contents = finfo->contents;
5119 if (! bfd_get_section_contents (input_bfd, o, contents,
5120 (file_ptr) 0, o->_raw_size))
5121 return false;
5122 }
5123
5124 if ((o->flags & SEC_RELOC) != 0)
5125 {
5126 Elf_Internal_Rela *internal_relocs;
5127
5128 /* Get the swapped relocs. */
5129 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5130 (input_bfd, o, finfo->external_relocs,
5131 finfo->internal_relocs, false));
5132 if (internal_relocs == NULL
5133 && o->reloc_count > 0)
5134 return false;
5135
5136 /* Relocate the section by invoking a back end routine.
5137
5138 The back end routine is responsible for adjusting the
5139 section contents as necessary, and (if using Rela relocs
5140 and generating a relocateable output file) adjusting the
5141 reloc addend as necessary.
5142
5143 The back end routine does not have to worry about setting
5144 the reloc address or the reloc symbol index.
5145
5146 The back end routine is given a pointer to the swapped in
5147 internal symbols, and can access the hash table entries
5148 for the external symbols via elf_sym_hashes (input_bfd).
5149
5150 When generating relocateable output, the back end routine
5151 must handle STB_LOCAL/STT_SECTION symbols specially. The
5152 output symbol is going to be a section symbol
5153 corresponding to the output section, which will require
5154 the addend to be adjusted. */
5155
5156 if (! (*relocate_section) (output_bfd, finfo->info,
5157 input_bfd, o, contents,
5158 internal_relocs,
5159 finfo->internal_syms,
5160 finfo->sections))
5161 return false;
5162
5163 if (finfo->info->relocateable)
5164 {
5165 Elf_Internal_Rela *irela;
5166 Elf_Internal_Rela *irelaend;
5167 struct elf_link_hash_entry **rel_hash;
5168 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5169
5170 /* Adjust the reloc addresses and symbol indices. */
5171
5172 irela = internal_relocs;
c7ac6ff8
MM
5173 irelaend =
5174 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5175 rel_hash = (elf_section_data (o->output_section)->rel_hashes
0525d26e 5176 + elf_section_data (o->output_section)->rel_count);
252b5132
RH
5177 for (; irela < irelaend; irela++, rel_hash++)
5178 {
5179 unsigned long r_symndx;
5180 Elf_Internal_Sym *isym;
5181 asection *sec;
5182
5183 irela->r_offset += o->output_offset;
5184
5185 r_symndx = ELF_R_SYM (irela->r_info);
5186
5187 if (r_symndx == 0)
5188 continue;
5189
5190 if (r_symndx >= locsymcount
5191 || (elf_bad_symtab (input_bfd)
5192 && finfo->sections[r_symndx] == NULL))
5193 {
5194 struct elf_link_hash_entry *rh;
5195 long indx;
5196
5197 /* This is a reloc against a global symbol. We
5198 have not yet output all the local symbols, so
5199 we do not know the symbol index of any global
5200 symbol. We set the rel_hash entry for this
5201 reloc to point to the global hash table entry
5202 for this symbol. The symbol index is then
5203 set at the end of elf_bfd_final_link. */
5204 indx = r_symndx - extsymoff;
5205 rh = elf_sym_hashes (input_bfd)[indx];
5206 while (rh->root.type == bfd_link_hash_indirect
5207 || rh->root.type == bfd_link_hash_warning)
5208 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5209
5210 /* Setting the index to -2 tells
5211 elf_link_output_extsym that this symbol is
5212 used by a reloc. */
5213 BFD_ASSERT (rh->indx < 0);
5214 rh->indx = -2;
5215
5216 *rel_hash = rh;
5217
5218 continue;
5219 }
5220
5221 /* This is a reloc against a local symbol. */
5222
5223 *rel_hash = NULL;
5224 isym = finfo->internal_syms + r_symndx;
5225 sec = finfo->sections[r_symndx];
5226 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5227 {
5228 /* I suppose the backend ought to fill in the
5229 section of any STT_SECTION symbol against a
5230 processor specific section. If we have
5231 discarded a section, the output_section will
5232 be the absolute section. */
5233 if (sec != NULL
5234 && (bfd_is_abs_section (sec)
5235 || (sec->output_section != NULL
5236 && bfd_is_abs_section (sec->output_section))))
5237 r_symndx = 0;
5238 else if (sec == NULL || sec->owner == NULL)
5239 {
5240 bfd_set_error (bfd_error_bad_value);
5241 return false;
5242 }
5243 else
5244 {
5245 r_symndx = sec->output_section->target_index;
5246 BFD_ASSERT (r_symndx != 0);
5247 }
5248 }
5249 else
5250 {
5251 if (finfo->indices[r_symndx] == -1)
5252 {
5253 unsigned long link;
5254 const char *name;
5255 asection *osec;
5256
5257 if (finfo->info->strip == strip_all)
5258 {
5259 /* You can't do ld -r -s. */
5260 bfd_set_error (bfd_error_invalid_operation);
5261 return false;
5262 }
5263
5264 /* This symbol was skipped earlier, but
5265 since it is needed by a reloc, we
5266 must output it now. */
5267 link = symtab_hdr->sh_link;
5268 name = bfd_elf_string_from_elf_section (input_bfd,
5269 link,
5270 isym->st_name);
5271 if (name == NULL)
5272 return false;
5273
5274 osec = sec->output_section;
5275 isym->st_shndx =
5276 _bfd_elf_section_from_bfd_section (output_bfd,
5277 osec);
5278 if (isym->st_shndx == (unsigned short) -1)
5279 return false;
5280
5281 isym->st_value += sec->output_offset;
5282 if (! finfo->info->relocateable)
5283 isym->st_value += osec->vma;
5284
5285 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5286
5287 if (! elf_link_output_sym (finfo, name, isym, sec))
5288 return false;
5289 }
5290
5291 r_symndx = finfo->indices[r_symndx];
5292 }
5293
5294 irela->r_info = ELF_R_INFO (r_symndx,
5295 ELF_R_TYPE (irela->r_info));
5296 }
5297
5298 /* Swap out the relocs. */
5299 input_rel_hdr = &elf_section_data (o)->rel_hdr;
23bc299b
MM
5300 elf_link_output_relocs (output_bfd, o,
5301 input_rel_hdr,
5302 internal_relocs);
5303 internal_relocs
5304 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5305 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5306 if (input_rel_hdr)
5307 elf_link_output_relocs (output_bfd, o,
5308 input_rel_hdr,
5309 internal_relocs);
252b5132
RH
5310 }
5311 }
5312
5313 /* Write out the modified section contents. */
5314 if (elf_section_data (o)->stab_info == NULL)
5315 {
5316 if (! (o->flags & SEC_EXCLUDE) &&
5317 ! bfd_set_section_contents (output_bfd, o->output_section,
5318 contents, o->output_offset,
5319 (o->_cooked_size != 0
5320 ? o->_cooked_size
5321 : o->_raw_size)))
5322 return false;
5323 }
5324 else
5325 {
5326 if (! (_bfd_write_section_stabs
5327 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5328 o, &elf_section_data (o)->stab_info, contents)))
5329 return false;
5330 }
5331 }
5332
5333 return true;
5334}
5335
5336/* Generate a reloc when linking an ELF file. This is a reloc
5337 requested by the linker, and does come from any input file. This
5338 is used to build constructor and destructor tables when linking
5339 with -Ur. */
5340
5341static boolean
5342elf_reloc_link_order (output_bfd, info, output_section, link_order)
5343 bfd *output_bfd;
5344 struct bfd_link_info *info;
5345 asection *output_section;
5346 struct bfd_link_order *link_order;
5347{
5348 reloc_howto_type *howto;
5349 long indx;
5350 bfd_vma offset;
5351 bfd_vma addend;
5352 struct elf_link_hash_entry **rel_hash_ptr;
5353 Elf_Internal_Shdr *rel_hdr;
5354
5355 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5356 if (howto == NULL)
5357 {
5358 bfd_set_error (bfd_error_bad_value);
5359 return false;
5360 }
5361
5362 addend = link_order->u.reloc.p->addend;
5363
5364 /* Figure out the symbol index. */
5365 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
0525d26e 5366 + elf_section_data (output_section)->rel_count);
252b5132
RH
5367 if (link_order->type == bfd_section_reloc_link_order)
5368 {
5369 indx = link_order->u.reloc.p->u.section->target_index;
5370 BFD_ASSERT (indx != 0);
5371 *rel_hash_ptr = NULL;
5372 }
5373 else
5374 {
5375 struct elf_link_hash_entry *h;
5376
5377 /* Treat a reloc against a defined symbol as though it were
5378 actually against the section. */
5379 h = ((struct elf_link_hash_entry *)
5380 bfd_wrapped_link_hash_lookup (output_bfd, info,
5381 link_order->u.reloc.p->u.name,
5382 false, false, true));
5383 if (h != NULL
5384 && (h->root.type == bfd_link_hash_defined
5385 || h->root.type == bfd_link_hash_defweak))
5386 {
5387 asection *section;
5388
5389 section = h->root.u.def.section;
5390 indx = section->output_section->target_index;
5391 *rel_hash_ptr = NULL;
5392 /* It seems that we ought to add the symbol value to the
5393 addend here, but in practice it has already been added
5394 because it was passed to constructor_callback. */
5395 addend += section->output_section->vma + section->output_offset;
5396 }
5397 else if (h != NULL)
5398 {
5399 /* Setting the index to -2 tells elf_link_output_extsym that
5400 this symbol is used by a reloc. */
5401 h->indx = -2;
5402 *rel_hash_ptr = h;
5403 indx = 0;
5404 }
5405 else
5406 {
5407 if (! ((*info->callbacks->unattached_reloc)
5408 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5409 (asection *) NULL, (bfd_vma) 0)))
5410 return false;
5411 indx = 0;
5412 }
5413 }
5414
5415 /* If this is an inplace reloc, we must write the addend into the
5416 object file. */
5417 if (howto->partial_inplace && addend != 0)
5418 {
5419 bfd_size_type size;
5420 bfd_reloc_status_type rstat;
5421 bfd_byte *buf;
5422 boolean ok;
5423
5424 size = bfd_get_reloc_size (howto);
5425 buf = (bfd_byte *) bfd_zmalloc (size);
5426 if (buf == (bfd_byte *) NULL)
5427 return false;
5428 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5429 switch (rstat)
5430 {
5431 case bfd_reloc_ok:
5432 break;
5433 default:
5434 case bfd_reloc_outofrange:
5435 abort ();
5436 case bfd_reloc_overflow:
5437 if (! ((*info->callbacks->reloc_overflow)
5438 (info,
5439 (link_order->type == bfd_section_reloc_link_order
5440 ? bfd_section_name (output_bfd,
5441 link_order->u.reloc.p->u.section)
5442 : link_order->u.reloc.p->u.name),
5443 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5444 (bfd_vma) 0)))
5445 {
5446 free (buf);
5447 return false;
5448 }
5449 break;
5450 }
5451 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5452 (file_ptr) link_order->offset, size);
5453 free (buf);
5454 if (! ok)
5455 return false;
5456 }
5457
5458 /* The address of a reloc is relative to the section in a
5459 relocateable file, and is a virtual address in an executable
5460 file. */
5461 offset = link_order->offset;
5462 if (! info->relocateable)
5463 offset += output_section->vma;
5464
5465 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5466
5467 if (rel_hdr->sh_type == SHT_REL)
5468 {
5469 Elf_Internal_Rel irel;
5470 Elf_External_Rel *erel;
5471
5472 irel.r_offset = offset;
5473 irel.r_info = ELF_R_INFO (indx, howto->type);
5474 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 5475 + elf_section_data (output_section)->rel_count);
252b5132
RH
5476 elf_swap_reloc_out (output_bfd, &irel, erel);
5477 }
5478 else
5479 {
5480 Elf_Internal_Rela irela;
5481 Elf_External_Rela *erela;
5482
5483 irela.r_offset = offset;
5484 irela.r_info = ELF_R_INFO (indx, howto->type);
5485 irela.r_addend = addend;
5486 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 5487 + elf_section_data (output_section)->rel_count);
252b5132
RH
5488 elf_swap_reloca_out (output_bfd, &irela, erela);
5489 }
5490
0525d26e 5491 ++elf_section_data (output_section)->rel_count;
252b5132
RH
5492
5493 return true;
5494}
5495
5496\f
5497/* Allocate a pointer to live in a linker created section. */
5498
5499boolean
5500elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5501 bfd *abfd;
5502 struct bfd_link_info *info;
5503 elf_linker_section_t *lsect;
5504 struct elf_link_hash_entry *h;
5505 const Elf_Internal_Rela *rel;
5506{
5507 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5508 elf_linker_section_pointers_t *linker_section_ptr;
5509 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5510
5511 BFD_ASSERT (lsect != NULL);
5512
5513 /* Is this a global symbol? */
5514 if (h != NULL)
5515 {
5516 /* Has this symbol already been allocated, if so, our work is done */
5517 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5518 rel->r_addend,
5519 lsect->which))
5520 return true;
5521
5522 ptr_linker_section_ptr = &h->linker_section_pointer;
5523 /* Make sure this symbol is output as a dynamic symbol. */
5524 if (h->dynindx == -1)
5525 {
5526 if (! elf_link_record_dynamic_symbol (info, h))
5527 return false;
5528 }
5529
5530 if (lsect->rel_section)
5531 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5532 }
5533
5534 else /* Allocation of a pointer to a local symbol */
5535 {
5536 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5537
5538 /* Allocate a table to hold the local symbols if first time */
5539 if (!ptr)
5540 {
5541 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5542 register unsigned int i;
5543
5544 ptr = (elf_linker_section_pointers_t **)
5545 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5546
5547 if (!ptr)
5548 return false;
5549
5550 elf_local_ptr_offsets (abfd) = ptr;
5551 for (i = 0; i < num_symbols; i++)
5552 ptr[i] = (elf_linker_section_pointers_t *)0;
5553 }
5554
5555 /* Has this symbol already been allocated, if so, our work is done */
5556 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5557 rel->r_addend,
5558 lsect->which))
5559 return true;
5560
5561 ptr_linker_section_ptr = &ptr[r_symndx];
5562
5563 if (info->shared)
5564 {
5565 /* If we are generating a shared object, we need to
5566 output a R_<xxx>_RELATIVE reloc so that the
5567 dynamic linker can adjust this GOT entry. */
5568 BFD_ASSERT (lsect->rel_section != NULL);
5569 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5570 }
5571 }
5572
5573 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5574 from internal memory. */
5575 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5576 linker_section_ptr = (elf_linker_section_pointers_t *)
5577 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5578
5579 if (!linker_section_ptr)
5580 return false;
5581
5582 linker_section_ptr->next = *ptr_linker_section_ptr;
5583 linker_section_ptr->addend = rel->r_addend;
5584 linker_section_ptr->which = lsect->which;
5585 linker_section_ptr->written_address_p = false;
5586 *ptr_linker_section_ptr = linker_section_ptr;
5587
5588#if 0
5589 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5590 {
5591 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5592 lsect->hole_offset += ARCH_SIZE / 8;
5593 lsect->sym_offset += ARCH_SIZE / 8;
5594 if (lsect->sym_hash) /* Bump up symbol value if needed */
5595 {
5596 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5597#ifdef DEBUG
5598 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5599 lsect->sym_hash->root.root.string,
5600 (long)ARCH_SIZE / 8,
5601 (long)lsect->sym_hash->root.u.def.value);
5602#endif
5603 }
5604 }
5605 else
5606#endif
5607 linker_section_ptr->offset = lsect->section->_raw_size;
5608
5609 lsect->section->_raw_size += ARCH_SIZE / 8;
5610
5611#ifdef DEBUG
5612 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5613 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5614#endif
5615
5616 return true;
5617}
5618
5619\f
5620#if ARCH_SIZE==64
5621#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5622#endif
5623#if ARCH_SIZE==32
5624#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5625#endif
5626
5627/* Fill in the address for a pointer generated in alinker section. */
5628
5629bfd_vma
5630elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5631 bfd *output_bfd;
5632 bfd *input_bfd;
5633 struct bfd_link_info *info;
5634 elf_linker_section_t *lsect;
5635 struct elf_link_hash_entry *h;
5636 bfd_vma relocation;
5637 const Elf_Internal_Rela *rel;
5638 int relative_reloc;
5639{
5640 elf_linker_section_pointers_t *linker_section_ptr;
5641
5642 BFD_ASSERT (lsect != NULL);
5643
5644 if (h != NULL) /* global symbol */
5645 {
5646 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5647 rel->r_addend,
5648 lsect->which);
5649
5650 BFD_ASSERT (linker_section_ptr != NULL);
5651
5652 if (! elf_hash_table (info)->dynamic_sections_created
5653 || (info->shared
5654 && info->symbolic
5655 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5656 {
5657 /* This is actually a static link, or it is a
5658 -Bsymbolic link and the symbol is defined
5659 locally. We must initialize this entry in the
5660 global section.
5661
5662 When doing a dynamic link, we create a .rela.<xxx>
5663 relocation entry to initialize the value. This
5664 is done in the finish_dynamic_symbol routine. */
5665 if (!linker_section_ptr->written_address_p)
5666 {
5667 linker_section_ptr->written_address_p = true;
5668 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5669 lsect->section->contents + linker_section_ptr->offset);
5670 }
5671 }
5672 }
5673 else /* local symbol */
5674 {
5675 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5676 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5677 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5678 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5679 rel->r_addend,
5680 lsect->which);
5681
5682 BFD_ASSERT (linker_section_ptr != NULL);
5683
5684 /* Write out pointer if it hasn't been rewritten out before */
5685 if (!linker_section_ptr->written_address_p)
5686 {
5687 linker_section_ptr->written_address_p = true;
5688 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5689 lsect->section->contents + linker_section_ptr->offset);
5690
5691 if (info->shared)
5692 {
5693 asection *srel = lsect->rel_section;
5694 Elf_Internal_Rela outrel;
5695
5696 /* We need to generate a relative reloc for the dynamic linker. */
5697 if (!srel)
5698 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5699 lsect->rel_name);
5700
5701 BFD_ASSERT (srel != NULL);
5702
5703 outrel.r_offset = (lsect->section->output_section->vma
5704 + lsect->section->output_offset
5705 + linker_section_ptr->offset);
5706 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5707 outrel.r_addend = 0;
5708 elf_swap_reloca_out (output_bfd, &outrel,
5709 (((Elf_External_Rela *)
5710 lsect->section->contents)
0525d26e
ILT
5711 + elf_section_data (lsect->section)->rel_count));
5712 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
5713 }
5714 }
5715 }
5716
5717 relocation = (lsect->section->output_offset
5718 + linker_section_ptr->offset
5719 - lsect->hole_offset
5720 - lsect->sym_offset);
5721
5722#ifdef DEBUG
5723 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5724 lsect->name, (long)relocation, (long)relocation);
5725#endif
5726
5727 /* Subtract out the addend, because it will get added back in by the normal
5728 processing. */
5729 return relocation - linker_section_ptr->addend;
5730}
5731\f
5732/* Garbage collect unused sections. */
5733
5734static boolean elf_gc_mark
5735 PARAMS ((struct bfd_link_info *info, asection *sec,
5736 asection * (*gc_mark_hook)
5737 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5738 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5739
5740static boolean elf_gc_sweep
5741 PARAMS ((struct bfd_link_info *info,
5742 boolean (*gc_sweep_hook)
5743 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5744 const Elf_Internal_Rela *relocs))));
5745
5746static boolean elf_gc_sweep_symbol
5747 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5748
5749static boolean elf_gc_allocate_got_offsets
5750 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5751
5752static boolean elf_gc_propagate_vtable_entries_used
5753 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5754
5755static boolean elf_gc_smash_unused_vtentry_relocs
5756 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5757
5758/* The mark phase of garbage collection. For a given section, mark
5759 it, and all the sections which define symbols to which it refers. */
5760
5761static boolean
5762elf_gc_mark (info, sec, gc_mark_hook)
5763 struct bfd_link_info *info;
5764 asection *sec;
5765 asection * (*gc_mark_hook)
5766 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5767 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5768{
5769 boolean ret = true;
5770
5771 sec->gc_mark = 1;
5772
5773 /* Look through the section relocs. */
5774
5775 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5776 {
5777 Elf_Internal_Rela *relstart, *rel, *relend;
5778 Elf_Internal_Shdr *symtab_hdr;
5779 struct elf_link_hash_entry **sym_hashes;
5780 size_t nlocsyms;
5781 size_t extsymoff;
5782 Elf_External_Sym *locsyms, *freesyms = NULL;
5783 bfd *input_bfd = sec->owner;
c7ac6ff8 5784 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
5785
5786 /* GCFIXME: how to arrange so that relocs and symbols are not
5787 reread continually? */
5788
5789 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5790 sym_hashes = elf_sym_hashes (input_bfd);
5791
5792 /* Read the local symbols. */
5793 if (elf_bad_symtab (input_bfd))
5794 {
5795 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5796 extsymoff = 0;
5797 }
5798 else
5799 extsymoff = nlocsyms = symtab_hdr->sh_info;
5800 if (symtab_hdr->contents)
5801 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5802 else if (nlocsyms == 0)
5803 locsyms = NULL;
5804 else
5805 {
5806 locsyms = freesyms =
5807 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5808 if (freesyms == NULL
5809 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5810 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5811 nlocsyms, input_bfd)
5812 != nlocsyms * sizeof (Elf_External_Sym)))
5813 {
5814 ret = false;
5815 goto out1;
5816 }
5817 }
5818
5819 /* Read the relocations. */
5820 relstart = (NAME(_bfd_elf,link_read_relocs)
5821 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5822 info->keep_memory));
5823 if (relstart == NULL)
5824 {
5825 ret = false;
5826 goto out1;
5827 }
c7ac6ff8 5828 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
5829
5830 for (rel = relstart; rel < relend; rel++)
5831 {
5832 unsigned long r_symndx;
5833 asection *rsec;
5834 struct elf_link_hash_entry *h;
5835 Elf_Internal_Sym s;
5836
5837 r_symndx = ELF_R_SYM (rel->r_info);
5838 if (r_symndx == 0)
5839 continue;
5840
5841 if (elf_bad_symtab (sec->owner))
5842 {
5843 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5844 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5845 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5846 else
5847 {
5848 h = sym_hashes[r_symndx - extsymoff];
5849 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5850 }
5851 }
5852 else if (r_symndx >= nlocsyms)
5853 {
5854 h = sym_hashes[r_symndx - extsymoff];
5855 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5856 }
5857 else
5858 {
5859 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5860 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5861 }
5862
5863 if (rsec && !rsec->gc_mark)
5864 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5865 {
5866 ret = false;
5867 goto out2;
5868 }
5869 }
5870
5871 out2:
5872 if (!info->keep_memory)
5873 free (relstart);
5874 out1:
5875 if (freesyms)
5876 free (freesyms);
5877 }
5878
5879 return ret;
5880}
5881
5882/* The sweep phase of garbage collection. Remove all garbage sections. */
5883
5884static boolean
5885elf_gc_sweep (info, gc_sweep_hook)
5886 struct bfd_link_info *info;
5887 boolean (*gc_sweep_hook)
5888 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5889 const Elf_Internal_Rela *relocs));
5890{
5891 bfd *sub;
5892
5893 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5894 {
5895 asection *o;
5896
5897 for (o = sub->sections; o != NULL; o = o->next)
5898 {
5899 /* Keep special sections. Keep .debug sections. */
5900 if ((o->flags & SEC_LINKER_CREATED)
5901 || (o->flags & SEC_DEBUGGING))
5902 o->gc_mark = 1;
5903
5904 if (o->gc_mark)
5905 continue;
5906
5907 /* Skip sweeping sections already excluded. */
5908 if (o->flags & SEC_EXCLUDE)
5909 continue;
5910
5911 /* Since this is early in the link process, it is simple
5912 to remove a section from the output. */
5913 o->flags |= SEC_EXCLUDE;
5914
5915 /* But we also have to update some of the relocation
5916 info we collected before. */
5917 if (gc_sweep_hook
5918 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5919 {
5920 Elf_Internal_Rela *internal_relocs;
5921 boolean r;
5922
5923 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5924 (o->owner, o, NULL, NULL, info->keep_memory));
5925 if (internal_relocs == NULL)
5926 return false;
5927
5928 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5929
5930 if (!info->keep_memory)
5931 free (internal_relocs);
5932
5933 if (!r)
5934 return false;
5935 }
5936 }
5937 }
5938
5939 /* Remove the symbols that were in the swept sections from the dynamic
5940 symbol table. GCFIXME: Anyone know how to get them out of the
5941 static symbol table as well? */
5942 {
5943 int i = 0;
5944
5945 elf_link_hash_traverse (elf_hash_table (info),
5946 elf_gc_sweep_symbol,
5947 (PTR) &i);
5948
5949 elf_hash_table (info)->dynsymcount = i;
5950 }
5951
5952 return true;
5953}
5954
5955/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5956
5957static boolean
5958elf_gc_sweep_symbol (h, idxptr)
5959 struct elf_link_hash_entry *h;
5960 PTR idxptr;
5961{
5962 int *idx = (int *) idxptr;
5963
5964 if (h->dynindx != -1
5965 && ((h->root.type != bfd_link_hash_defined
5966 && h->root.type != bfd_link_hash_defweak)
5967 || h->root.u.def.section->gc_mark))
5968 h->dynindx = (*idx)++;
5969
5970 return true;
5971}
5972
5973/* Propogate collected vtable information. This is called through
5974 elf_link_hash_traverse. */
5975
5976static boolean
5977elf_gc_propagate_vtable_entries_used (h, okp)
5978 struct elf_link_hash_entry *h;
5979 PTR okp;
5980{
5981 /* Those that are not vtables. */
5982 if (h->vtable_parent == NULL)
5983 return true;
5984
5985 /* Those vtables that do not have parents, we cannot merge. */
5986 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5987 return true;
5988
5989 /* If we've already been done, exit. */
5990 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5991 return true;
5992
5993 /* Make sure the parent's table is up to date. */
5994 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5995
5996 if (h->vtable_entries_used == NULL)
5997 {
5998 /* None of this table's entries were referenced. Re-use the
5999 parent's table. */
6000 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6001 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6002 }
6003 else
6004 {
6005 size_t n;
6006 boolean *cu, *pu;
6007
6008 /* Or the parent's entries into ours. */
6009 cu = h->vtable_entries_used;
6010 cu[-1] = true;
6011 pu = h->vtable_parent->vtable_entries_used;
6012 if (pu != NULL)
6013 {
6014 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6015 while (--n != 0)
6016 {
6017 if (*pu) *cu = true;
6018 pu++, cu++;
6019 }
6020 }
6021 }
6022
6023 return true;
6024}
6025
6026static boolean
6027elf_gc_smash_unused_vtentry_relocs (h, okp)
6028 struct elf_link_hash_entry *h;
6029 PTR okp;
6030{
6031 asection *sec;
6032 bfd_vma hstart, hend;
6033 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6034 struct elf_backend_data *bed;
252b5132
RH
6035
6036 /* Take care of both those symbols that do not describe vtables as
6037 well as those that are not loaded. */
6038 if (h->vtable_parent == NULL)
6039 return true;
6040
6041 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6042 || h->root.type == bfd_link_hash_defweak);
6043
6044 sec = h->root.u.def.section;
6045 hstart = h->root.u.def.value;
6046 hend = hstart + h->size;
6047
6048 relstart = (NAME(_bfd_elf,link_read_relocs)
6049 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6050 if (!relstart)
6051 return *(boolean *)okp = false;
c7ac6ff8
MM
6052 bed = get_elf_backend_data (sec->owner);
6053 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6054
6055 for (rel = relstart; rel < relend; ++rel)
6056 if (rel->r_offset >= hstart && rel->r_offset < hend)
6057 {
6058 /* If the entry is in use, do nothing. */
6059 if (h->vtable_entries_used
6060 && (rel->r_offset - hstart) < h->vtable_entries_size)
6061 {
6062 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6063 if (h->vtable_entries_used[entry])
6064 continue;
6065 }
6066 /* Otherwise, kill it. */
6067 rel->r_offset = rel->r_info = rel->r_addend = 0;
6068 }
6069
6070 return true;
6071}
6072
6073/* Do mark and sweep of unused sections. */
6074
6075boolean
6076elf_gc_sections (abfd, info)
6077 bfd *abfd;
6078 struct bfd_link_info *info;
6079{
6080 boolean ok = true;
6081 bfd *sub;
6082 asection * (*gc_mark_hook)
6083 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6084 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6085
6086 if (!get_elf_backend_data (abfd)->can_gc_sections
6087 || info->relocateable
6088 || elf_hash_table (info)->dynamic_sections_created)
6089 return true;
6090
6091 /* Apply transitive closure to the vtable entry usage info. */
6092 elf_link_hash_traverse (elf_hash_table (info),
6093 elf_gc_propagate_vtable_entries_used,
6094 (PTR) &ok);
6095 if (!ok)
6096 return false;
6097
6098 /* Kill the vtable relocations that were not used. */
6099 elf_link_hash_traverse (elf_hash_table (info),
6100 elf_gc_smash_unused_vtentry_relocs,
6101 (PTR) &ok);
6102 if (!ok)
6103 return false;
6104
6105 /* Grovel through relocs to find out who stays ... */
6106
6107 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6108 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6109 {
6110 asection *o;
6111 for (o = sub->sections; o != NULL; o = o->next)
6112 {
6113 if (o->flags & SEC_KEEP)
6114 if (!elf_gc_mark (info, o, gc_mark_hook))
6115 return false;
6116 }
6117 }
6118
6119 /* ... and mark SEC_EXCLUDE for those that go. */
6120 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6121 return false;
6122
6123 return true;
6124}
6125\f
6126/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6127
6128boolean
6129elf_gc_record_vtinherit (abfd, sec, h, offset)
6130 bfd *abfd;
6131 asection *sec;
6132 struct elf_link_hash_entry *h;
6133 bfd_vma offset;
6134{
6135 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6136 struct elf_link_hash_entry **search, *child;
6137 bfd_size_type extsymcount;
6138
6139 /* The sh_info field of the symtab header tells us where the
6140 external symbols start. We don't care about the local symbols at
6141 this point. */
6142 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6143 if (!elf_bad_symtab (abfd))
6144 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6145
6146 sym_hashes = elf_sym_hashes (abfd);
6147 sym_hashes_end = sym_hashes + extsymcount;
6148
6149 /* Hunt down the child symbol, which is in this section at the same
6150 offset as the relocation. */
6151 for (search = sym_hashes; search != sym_hashes_end; ++search)
6152 {
6153 if ((child = *search) != NULL
6154 && (child->root.type == bfd_link_hash_defined
6155 || child->root.type == bfd_link_hash_defweak)
6156 && child->root.u.def.section == sec
6157 && child->root.u.def.value == offset)
6158 goto win;
6159 }
6160
6161 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6162 bfd_get_filename (abfd), sec->name,
6163 (unsigned long)offset);
6164 bfd_set_error (bfd_error_invalid_operation);
6165 return false;
6166
6167win:
6168 if (!h)
6169 {
6170 /* This *should* only be the absolute section. It could potentially
6171 be that someone has defined a non-global vtable though, which
6172 would be bad. It isn't worth paging in the local symbols to be
6173 sure though; that case should simply be handled by the assembler. */
6174
6175 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6176 }
6177 else
6178 child->vtable_parent = h;
6179
6180 return true;
6181}
6182
6183/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6184
6185boolean
6186elf_gc_record_vtentry (abfd, sec, h, addend)
6187 bfd *abfd;
6188 asection *sec;
6189 struct elf_link_hash_entry *h;
6190 bfd_vma addend;
6191{
6192 if (addend >= h->vtable_entries_size)
6193 {
6194 size_t size, bytes;
6195 boolean *ptr = h->vtable_entries_used;
6196
6197 /* While the symbol is undefined, we have to be prepared to handle
6198 a zero size. */
6199 if (h->root.type == bfd_link_hash_undefined)
6200 size = addend;
6201 else
6202 {
6203 size = h->size;
6204 if (size < addend)
6205 {
6206 /* Oops! We've got a reference past the defined end of
6207 the table. This is probably a bug -- shall we warn? */
6208 size = addend;
6209 }
6210 }
6211
6212 /* Allocate one extra entry for use as a "done" flag for the
6213 consolidation pass. */
6214 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6215
6216 if (ptr)
6217 {
6218 size_t oldbytes;
6219
6220 ptr = realloc (ptr-1, bytes);
6221 if (ptr == NULL)
6222 return false;
6223
6224 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6225 memset (ptr + oldbytes, 0, bytes - oldbytes);
6226 }
6227 else
6228 {
6229 ptr = calloc (1, bytes);
6230 if (ptr == NULL)
6231 return false;
6232 }
6233
6234 /* And arrange for that done flag to be at index -1. */
6235 h->vtable_entries_used = ptr+1;
6236 h->vtable_entries_size = size;
6237 }
6238 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6239
6240 return true;
6241}
6242
6243/* And an accompanying bit to work out final got entry offsets once
6244 we're done. Should be called from final_link. */
6245
6246boolean
6247elf_gc_common_finalize_got_offsets (abfd, info)
6248 bfd *abfd;
6249 struct bfd_link_info *info;
6250{
6251 bfd *i;
6252 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6253 bfd_vma gotoff;
6254
6255 /* The GOT offset is relative to the .got section, but the GOT header is
6256 put into the .got.plt section, if the backend uses it. */
6257 if (bed->want_got_plt)
6258 gotoff = 0;
6259 else
6260 gotoff = bed->got_header_size;
6261
6262 /* Do the local .got entries first. */
6263 for (i = info->input_bfds; i; i = i->link_next)
6264 {
6265 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6266 bfd_size_type j, locsymcount;
6267 Elf_Internal_Shdr *symtab_hdr;
6268
6269 if (!local_got)
6270 continue;
6271
6272 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6273 if (elf_bad_symtab (i))
6274 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6275 else
6276 locsymcount = symtab_hdr->sh_info;
6277
6278 for (j = 0; j < locsymcount; ++j)
6279 {
6280 if (local_got[j] > 0)
6281 {
6282 local_got[j] = gotoff;
6283 gotoff += ARCH_SIZE / 8;
6284 }
6285 else
6286 local_got[j] = (bfd_vma) -1;
6287 }
6288 }
6289
6290 /* Then the global .got and .plt entries. */
6291 elf_link_hash_traverse (elf_hash_table (info),
6292 elf_gc_allocate_got_offsets,
6293 (PTR) &gotoff);
6294 return true;
6295}
6296
6297/* We need a special top-level link routine to convert got reference counts
6298 to real got offsets. */
6299
6300static boolean
6301elf_gc_allocate_got_offsets (h, offarg)
6302 struct elf_link_hash_entry *h;
6303 PTR offarg;
6304{
6305 bfd_vma *off = (bfd_vma *) offarg;
6306
6307 if (h->got.refcount > 0)
6308 {
6309 h->got.offset = off[0];
6310 off[0] += ARCH_SIZE / 8;
6311 }
6312 else
6313 h->got.offset = (bfd_vma) -1;
6314
6315 return true;
6316}
6317
6318/* Many folk need no more in the way of final link than this, once
6319 got entry reference counting is enabled. */
6320
6321boolean
6322elf_gc_common_final_link (abfd, info)
6323 bfd *abfd;
6324 struct bfd_link_info *info;
6325{
6326 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6327 return false;
6328
6329 /* Invoke the regular ELF backend linker to do all the work. */
6330 return elf_bfd_final_link (abfd, info);
6331}
6332
6333/* This function will be called though elf_link_hash_traverse to store
6334 all hash value of the exported symbols in an array. */
6335
6336static boolean
6337elf_collect_hash_codes (h, data)
6338 struct elf_link_hash_entry *h;
6339 PTR data;
6340{
6341 unsigned long **valuep = (unsigned long **) data;
6342 const char *name;
6343 char *p;
6344 unsigned long ha;
6345 char *alc = NULL;
6346
6347 /* Ignore indirect symbols. These are added by the versioning code. */
6348 if (h->dynindx == -1)
6349 return true;
6350
6351 name = h->root.root.string;
6352 p = strchr (name, ELF_VER_CHR);
6353 if (p != NULL)
6354 {
6355 alc = bfd_malloc (p - name + 1);
6356 memcpy (alc, name, p - name);
6357 alc[p - name] = '\0';
6358 name = alc;
6359 }
6360
6361 /* Compute the hash value. */
6362 ha = bfd_elf_hash (name);
6363
6364 /* Store the found hash value in the array given as the argument. */
6365 *(*valuep)++ = ha;
6366
6367 /* And store it in the struct so that we can put it in the hash table
6368 later. */
6369 h->elf_hash_value = ha;
6370
6371 if (alc != NULL)
6372 free (alc);
6373
6374 return true;
6375}
This page took 0.267828 seconds and 4 git commands to generate.