* bfd-in.h (struct bfd_link_needed_list): Rename from
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
8afe83be
KR
1/* ELF linker support.
2 Copyright 1995 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
943fbd5b 18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
452a5efb 19
ede4eed4
KR
20/* ELF linker code. */
21
22static boolean elf_link_add_object_symbols
23 PARAMS ((bfd *, struct bfd_link_info *));
24static boolean elf_link_add_archive_symbols
25 PARAMS ((bfd *, struct bfd_link_info *));
26static Elf_Internal_Rela *elf_link_read_relocs
27 PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean));
28static boolean elf_export_symbol
29 PARAMS ((struct elf_link_hash_entry *, PTR));
30static boolean elf_adjust_dynamic_symbol
31 PARAMS ((struct elf_link_hash_entry *, PTR));
32
33/* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36struct elf_info_failed
37{
38 boolean failed;
39 struct bfd_link_info *info;
40};
41
42/* Given an ELF BFD, add symbols to the global hash table as
43 appropriate. */
44
45boolean
46elf_bfd_link_add_symbols (abfd, info)
47 bfd *abfd;
48 struct bfd_link_info *info;
49{
ede4eed4
KR
50 switch (bfd_get_format (abfd))
51 {
52 case bfd_object:
53 return elf_link_add_object_symbols (abfd, info);
54 case bfd_archive:
ede4eed4
KR
55 return elf_link_add_archive_symbols (abfd, info);
56 default:
57 bfd_set_error (bfd_error_wrong_format);
58 return false;
59 }
60}
61
62/* Add symbols from an ELF archive file to the linker hash table. We
63 don't use _bfd_generic_link_add_archive_symbols because of a
64 problem which arises on UnixWare. The UnixWare libc.so is an
65 archive which includes an entry libc.so.1 which defines a bunch of
66 symbols. The libc.so archive also includes a number of other
67 object files, which also define symbols, some of which are the same
68 as those defined in libc.so.1. Correct linking requires that we
69 consider each object file in turn, and include it if it defines any
70 symbols we need. _bfd_generic_link_add_archive_symbols does not do
71 this; it looks through the list of undefined symbols, and includes
72 any object file which defines them. When this algorithm is used on
73 UnixWare, it winds up pulling in libc.so.1 early and defining a
74 bunch of symbols. This means that some of the other objects in the
75 archive are not included in the link, which is incorrect since they
76 precede libc.so.1 in the archive.
77
78 Fortunately, ELF archive handling is simpler than that done by
79 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
80 oddities. In ELF, if we find a symbol in the archive map, and the
81 symbol is currently undefined, we know that we must pull in that
82 object file.
83
84 Unfortunately, we do have to make multiple passes over the symbol
85 table until nothing further is resolved. */
86
87static boolean
88elf_link_add_archive_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91{
92 symindex c;
93 boolean *defined = NULL;
94 boolean *included = NULL;
95 carsym *symdefs;
96 boolean loop;
97
98 if (! bfd_has_map (abfd))
99 {
100 /* An empty archive is a special case. */
101 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
102 return true;
103 bfd_set_error (bfd_error_no_armap);
104 return false;
105 }
106
107 /* Keep track of all symbols we know to be already defined, and all
108 files we know to be already included. This is to speed up the
109 second and subsequent passes. */
110 c = bfd_ardata (abfd)->symdef_count;
111 if (c == 0)
112 return true;
113 defined = (boolean *) malloc (c * sizeof (boolean));
114 included = (boolean *) malloc (c * sizeof (boolean));
115 if (defined == (boolean *) NULL || included == (boolean *) NULL)
116 {
117 bfd_set_error (bfd_error_no_memory);
118 goto error_return;
119 }
120 memset (defined, 0, c * sizeof (boolean));
121 memset (included, 0, c * sizeof (boolean));
122
123 symdefs = bfd_ardata (abfd)->symdefs;
124
125 do
126 {
127 file_ptr last;
128 symindex i;
129 carsym *symdef;
130 carsym *symdefend;
131
132 loop = false;
133 last = -1;
134
135 symdef = symdefs;
136 symdefend = symdef + c;
137 for (i = 0; symdef < symdefend; symdef++, i++)
138 {
139 struct elf_link_hash_entry *h;
140 bfd *element;
141 struct bfd_link_hash_entry *undefs_tail;
142 symindex mark;
143
144 if (defined[i] || included[i])
145 continue;
146 if (symdef->file_offset == last)
147 {
148 included[i] = true;
149 continue;
150 }
151
152 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
153 false, false, false);
154 if (h == (struct elf_link_hash_entry *) NULL)
155 continue;
156 if (h->root.type != bfd_link_hash_undefined)
157 {
68807a39
ILT
158 if (h->root.type != bfd_link_hash_undefweak)
159 defined[i] = true;
ede4eed4
KR
160 continue;
161 }
162
163 /* We need to include this archive member. */
164
165 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
166 if (element == (bfd *) NULL)
167 goto error_return;
168
169 if (! bfd_check_format (element, bfd_object))
170 goto error_return;
171
172 /* Doublecheck that we have not included this object
173 already--it should be impossible, but there may be
174 something wrong with the archive. */
175 if (element->archive_pass != 0)
176 {
177 bfd_set_error (bfd_error_bad_value);
178 goto error_return;
179 }
180 element->archive_pass = 1;
181
182 undefs_tail = info->hash->undefs_tail;
183
184 if (! (*info->callbacks->add_archive_element) (info, element,
185 symdef->name))
186 goto error_return;
187 if (! elf_link_add_object_symbols (element, info))
188 goto error_return;
189
190 /* If there are any new undefined symbols, we need to make
191 another pass through the archive in order to see whether
192 they can be defined. FIXME: This isn't perfect, because
193 common symbols wind up on undefs_tail and because an
194 undefined symbol which is defined later on in this pass
195 does not require another pass. This isn't a bug, but it
196 does make the code less efficient than it could be. */
197 if (undefs_tail != info->hash->undefs_tail)
198 loop = true;
199
200 /* Look backward to mark all symbols from this object file
201 which we have already seen in this pass. */
202 mark = i;
203 do
204 {
205 included[mark] = true;
206 if (mark == 0)
207 break;
208 --mark;
209 }
210 while (symdefs[mark].file_offset == symdef->file_offset);
211
212 /* We mark subsequent symbols from this object file as we go
213 on through the loop. */
214 last = symdef->file_offset;
215 }
216 }
217 while (loop);
218
219 free (defined);
220 free (included);
221
222 return true;
223
224 error_return:
225 if (defined != (boolean *) NULL)
226 free (defined);
227 if (included != (boolean *) NULL)
228 free (included);
229 return false;
230}
231
232/* Add symbols from an ELF object file to the linker hash table. */
233
234static boolean
235elf_link_add_object_symbols (abfd, info)
236 bfd *abfd;
237 struct bfd_link_info *info;
238{
239 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
240 const Elf_Internal_Sym *,
241 const char **, flagword *,
242 asection **, bfd_vma *));
243 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
244 asection *, const Elf_Internal_Rela *));
245 boolean collect;
246 Elf_Internal_Shdr *hdr;
247 size_t symcount;
248 size_t extsymcount;
249 size_t extsymoff;
250 Elf_External_Sym *buf = NULL;
251 struct elf_link_hash_entry **sym_hash;
252 boolean dynamic;
253 Elf_External_Dyn *dynbuf = NULL;
254 struct elf_link_hash_entry *weaks;
255 Elf_External_Sym *esym;
256 Elf_External_Sym *esymend;
257
258 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
259 collect = get_elf_backend_data (abfd)->collect;
260
0cb70568
ILT
261 /* As a GNU extension, any input sections which are named
262 .gnu.warning.SYMBOL are treated as warning symbols for the given
263 symbol. This differs from .gnu.warning sections, which generate
264 warnings when they are included in an output file. */
265 if (! info->shared)
266 {
267 asection *s;
268
269 for (s = abfd->sections; s != NULL; s = s->next)
270 {
271 const char *name;
272
273 name = bfd_get_section_name (abfd, s);
274 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
275 {
276 char *msg;
277 bfd_size_type sz;
278
279 sz = bfd_section_size (abfd, s);
280 msg = (char *) bfd_alloc (abfd, sz);
281 if (msg == NULL)
282 {
283 bfd_set_error (bfd_error_no_memory);
284 goto error_return;
285 }
286
287 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
288 goto error_return;
289
290 if (! (_bfd_generic_link_add_one_symbol
291 (info, abfd,
292 name + sizeof ".gnu.warning." - 1,
293 BSF_WARNING, s, (bfd_vma) 0, msg, false, collect,
294 (struct bfd_link_hash_entry **) NULL)))
295 goto error_return;
296
297 if (! info->relocateable)
298 {
299 /* Clobber the section size so that the warning does
300 not get copied into the output file. */
301 s->_raw_size = 0;
302 }
303 }
304 }
305 }
306
ede4eed4
KR
307 /* A stripped shared library might only have a dynamic symbol table,
308 not a regular symbol table. In that case we can still go ahead
309 and link using the dynamic symbol table. */
310 if (elf_onesymtab (abfd) == 0
311 && elf_dynsymtab (abfd) != 0)
312 {
313 elf_onesymtab (abfd) = elf_dynsymtab (abfd);
314 elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
315 }
316
317 hdr = &elf_tdata (abfd)->symtab_hdr;
318 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
319
320 /* The sh_info field of the symtab header tells us where the
321 external symbols start. We don't care about the local symbols at
322 this point. */
323 if (elf_bad_symtab (abfd))
324 {
325 extsymcount = symcount;
326 extsymoff = 0;
327 }
328 else
329 {
330 extsymcount = symcount - hdr->sh_info;
331 extsymoff = hdr->sh_info;
332 }
333
334 buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym));
335 if (buf == NULL && extsymcount != 0)
336 {
337 bfd_set_error (bfd_error_no_memory);
338 goto error_return;
339 }
340
341 /* We store a pointer to the hash table entry for each external
342 symbol. */
343 sym_hash = ((struct elf_link_hash_entry **)
344 bfd_alloc (abfd,
345 extsymcount * sizeof (struct elf_link_hash_entry *)));
346 if (sym_hash == NULL)
347 {
348 bfd_set_error (bfd_error_no_memory);
349 goto error_return;
350 }
351 elf_sym_hashes (abfd) = sym_hash;
352
353 if (elf_elfheader (abfd)->e_type != ET_DYN)
354 {
355 dynamic = false;
356
357 /* If we are creating a shared library, create all the dynamic
358 sections immediately. We need to attach them to something,
359 so we attach them to this BFD, provided it is the right
360 format. FIXME: If there are no input BFD's of the same
361 format as the output, we can't make a shared library. */
362 if (info->shared
363 && ! elf_hash_table (info)->dynamic_sections_created
364 && abfd->xvec == info->hash->creator)
365 {
366 if (! elf_link_create_dynamic_sections (abfd, info))
367 goto error_return;
368 }
369 }
370 else
371 {
372 asection *s;
373 boolean add_needed;
374 const char *name;
375 bfd_size_type oldsize;
376 bfd_size_type strindex;
377
378 dynamic = true;
379
380 /* You can't use -r against a dynamic object. Also, there's no
381 hope of using a dynamic object which does not exactly match
382 the format of the output file. */
383 if (info->relocateable
384 || info->hash->creator != abfd->xvec)
385 {
386 bfd_set_error (bfd_error_invalid_operation);
387 goto error_return;
388 }
389
390 /* Find the name to use in a DT_NEEDED entry that refers to this
391 object. If the object has a DT_SONAME entry, we use it.
392 Otherwise, if the generic linker stuck something in
393 elf_dt_needed_name, we use that. Otherwise, we just use the
394 file name. If the generic linker put a null string into
395 elf_dt_needed_name, we don't make a DT_NEEDED entry at all,
396 even if there is a DT_SONAME entry. */
397 add_needed = true;
398 name = bfd_get_filename (abfd);
399 if (elf_dt_needed_name (abfd) != NULL)
400 {
401 name = elf_dt_needed_name (abfd);
402 if (*name == '\0')
403 add_needed = false;
404 }
405 s = bfd_get_section_by_name (abfd, ".dynamic");
406 if (s != NULL)
407 {
408 Elf_External_Dyn *extdyn;
409 Elf_External_Dyn *extdynend;
410 int elfsec;
411 unsigned long link;
412
3fe22b98 413 dynbuf = (Elf_External_Dyn *) malloc ((size_t) s->_raw_size);
ede4eed4
KR
414 if (dynbuf == NULL)
415 {
416 bfd_set_error (bfd_error_no_memory);
417 goto error_return;
418 }
419
420 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
421 (file_ptr) 0, s->_raw_size))
422 goto error_return;
423
424 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
425 if (elfsec == -1)
426 goto error_return;
427 link = elf_elfsections (abfd)[elfsec]->sh_link;
428
429 extdyn = dynbuf;
430 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
431 for (; extdyn < extdynend; extdyn++)
432 {
433 Elf_Internal_Dyn dyn;
434
435 elf_swap_dyn_in (abfd, extdyn, &dyn);
436 if (add_needed && dyn.d_tag == DT_SONAME)
437 {
438 name = bfd_elf_string_from_elf_section (abfd, link,
439 dyn.d_un.d_val);
440 if (name == NULL)
441 goto error_return;
442 }
443 if (dyn.d_tag == DT_NEEDED)
444 {
54406786 445 struct bfd_link_needed_list *n, **pn;
ede4eed4
KR
446 char *fnm, *anm;
447
54406786
ILT
448 n = ((struct bfd_link_needed_list *)
449 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
ede4eed4
KR
450 fnm = bfd_elf_string_from_elf_section (abfd, link,
451 dyn.d_un.d_val);
452 if (n == NULL || fnm == NULL)
453 goto error_return;
454 anm = bfd_alloc (abfd, strlen (fnm) + 1);
455 if (anm == NULL)
456 goto error_return;
457 strcpy (anm, fnm);
458 n->name = anm;
459 n->by = abfd;
460 n->next = NULL;
461 for (pn = &elf_hash_table (info)->needed;
462 *pn != NULL;
463 pn = &(*pn)->next)
464 ;
465 *pn = n;
466 }
467 }
468
469 free (dynbuf);
470 dynbuf = NULL;
471 }
472
473 /* We do not want to include any of the sections in a dynamic
474 object in the output file. We hack by simply clobbering the
475 list of sections in the BFD. This could be handled more
476 cleanly by, say, a new section flag; the existing
477 SEC_NEVER_LOAD flag is not the one we want, because that one
478 still implies that the section takes up space in the output
479 file. */
480 abfd->sections = NULL;
481
482 /* If this is the first dynamic object found in the link, create
483 the special sections required for dynamic linking. */
484 if (! elf_hash_table (info)->dynamic_sections_created)
485 {
486 if (! elf_link_create_dynamic_sections (abfd, info))
487 goto error_return;
488 }
489
490 if (add_needed)
491 {
492 /* Add a DT_NEEDED entry for this dynamic object. */
493 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
494 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
495 true, false);
496 if (strindex == (bfd_size_type) -1)
497 goto error_return;
498
499 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
500 {
501 asection *sdyn;
502 Elf_External_Dyn *dyncon, *dynconend;
503
504 /* The hash table size did not change, which means that
505 the dynamic object name was already entered. If we
506 have already included this dynamic object in the
507 link, just ignore it. There is no reason to include
508 a particular dynamic object more than once. */
509 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
510 ".dynamic");
511 BFD_ASSERT (sdyn != NULL);
512
513 dyncon = (Elf_External_Dyn *) sdyn->contents;
514 dynconend = (Elf_External_Dyn *) (sdyn->contents +
515 sdyn->_raw_size);
516 for (; dyncon < dynconend; dyncon++)
517 {
518 Elf_Internal_Dyn dyn;
519
520 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
521 &dyn);
522 if (dyn.d_tag == DT_NEEDED
523 && dyn.d_un.d_val == strindex)
524 {
525 if (buf != NULL)
526 free (buf);
527 return true;
528 }
529 }
530 }
531
532 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
533 goto error_return;
534 }
535 }
536
537 if (bfd_seek (abfd,
538 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
539 SEEK_SET) != 0
540 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
541 != extsymcount * sizeof (Elf_External_Sym)))
542 goto error_return;
543
544 weaks = NULL;
545
546 esymend = buf + extsymcount;
547 for (esym = buf; esym < esymend; esym++, sym_hash++)
548 {
549 Elf_Internal_Sym sym;
550 int bind;
551 bfd_vma value;
552 asection *sec;
553 flagword flags;
554 const char *name;
0cb70568 555 struct elf_link_hash_entry *h;
ede4eed4 556 boolean definition;
ee9f09cd 557 boolean size_change_ok, type_change_ok;
452a5efb 558 boolean new_weakdef;
ede4eed4
KR
559
560 elf_swap_symbol_in (abfd, esym, &sym);
561
562 flags = BSF_NO_FLAGS;
563 sec = NULL;
564 value = sym.st_value;
565 *sym_hash = NULL;
566
567 bind = ELF_ST_BIND (sym.st_info);
568 if (bind == STB_LOCAL)
569 {
570 /* This should be impossible, since ELF requires that all
571 global symbols follow all local symbols, and that sh_info
572 point to the first global symbol. Unfortunatealy, Irix 5
573 screws this up. */
574 continue;
575 }
576 else if (bind == STB_GLOBAL)
577 {
578 if (sym.st_shndx != SHN_UNDEF
579 && sym.st_shndx != SHN_COMMON)
580 flags = BSF_GLOBAL;
581 else
582 flags = 0;
583 }
584 else if (bind == STB_WEAK)
585 flags = BSF_WEAK;
586 else
587 {
588 /* Leave it up to the processor backend. */
589 }
590
591 if (sym.st_shndx == SHN_UNDEF)
592 sec = bfd_und_section_ptr;
593 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
594 {
595 sec = section_from_elf_index (abfd, sym.st_shndx);
596 if (sec != NULL)
597 value -= sec->vma;
598 else
599 sec = bfd_abs_section_ptr;
600 }
601 else if (sym.st_shndx == SHN_ABS)
602 sec = bfd_abs_section_ptr;
603 else if (sym.st_shndx == SHN_COMMON)
604 {
605 sec = bfd_com_section_ptr;
606 /* What ELF calls the size we call the value. What ELF
607 calls the value we call the alignment. */
608 value = sym.st_size;
609 }
610 else
611 {
612 /* Leave it up to the processor backend. */
613 }
614
615 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
616 if (name == (const char *) NULL)
617 goto error_return;
618
619 if (add_symbol_hook)
620 {
621 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
622 &value))
623 goto error_return;
624
625 /* The hook function sets the name to NULL if this symbol
626 should be skipped for some reason. */
627 if (name == (const char *) NULL)
628 continue;
629 }
630
631 /* Sanity check that all possibilities were handled. */
632 if (sec == (asection *) NULL)
633 {
634 bfd_set_error (bfd_error_bad_value);
635 goto error_return;
636 }
637
638 if (bfd_is_und_section (sec)
639 || bfd_is_com_section (sec))
640 definition = false;
641 else
642 definition = true;
643
ee9f09cd
ILT
644 size_change_ok = false;
645 type_change_ok = false;
ede4eed4
KR
646 if (info->hash->creator->flavour == bfd_target_elf_flavour)
647 {
648 /* We need to look up the symbol now in order to get some of
649 the dynamic object handling right. We pass the hash
650 table entry in to _bfd_generic_link_add_one_symbol so
651 that it does not have to look it up again. */
652 h = elf_link_hash_lookup (elf_hash_table (info), name,
653 true, false, false);
654 if (h == NULL)
655 goto error_return;
656 *sym_hash = h;
657
0cb70568
ILT
658 while (h->root.type == bfd_link_hash_indirect
659 || h->root.type == bfd_link_hash_warning)
660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
661
ee9f09cd
ILT
662 /* It's OK to change the type if it used to be a weak
663 definition. */
664 type_change_ok = (h->root.type == bfd_link_hash_defweak
665 || h->root.type == bfd_link_hash_undefweak);
666
667 /* It's OK to change the size if it used to be a weak
668 definition, or if it used to be undefined, or if we will
669 be overriding an old definition.
670 */
671 size_change_ok = (type_change_ok
672 || h->root.type == bfd_link_hash_undefined);
8235c112 673
ede4eed4
KR
674 /* If we are looking at a dynamic object, and this is a
675 definition, we need to see if it has already been defined
676 by some other object. If it has, we want to use the
677 existing definition, and we do not want to report a
678 multiple symbol definition error; we do this by
679 clobbering sec to be bfd_und_section_ptr. */
680 if (dynamic && definition)
681 {
682 if (h->root.type == bfd_link_hash_defined
3d7c42c9
ILT
683 || h->root.type == bfd_link_hash_defweak
684 || (h->root.type == bfd_link_hash_common
685 && bind == STB_WEAK))
686 {
687 sec = bfd_und_section_ptr;
688 definition = false;
ee9f09cd 689 size_change_ok = true;
3d7c42c9 690 }
ede4eed4
KR
691 }
692
693 /* Similarly, if we are not looking at a dynamic object, and
694 we have a definition, we want to override any definition
695 we may have from a dynamic object. Symbols from regular
696 files always take precedence over symbols from dynamic
697 objects, even if they are defined after the dynamic
698 object in the link. */
699 if (! dynamic
700 && definition
701 && (h->root.type == bfd_link_hash_defined
702 || h->root.type == bfd_link_hash_defweak)
703 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
704 && (bfd_get_flavour (h->root.u.def.section->owner)
705 == bfd_target_elf_flavour)
706 && (elf_elfheader (h->root.u.def.section->owner)->e_type
707 == ET_DYN))
708 {
709 /* Change the hash table entry to undefined, and let
710 _bfd_generic_link_add_one_symbol do the right thing
711 with the new definition. */
712 h->root.type = bfd_link_hash_undefined;
713 h->root.u.undef.abfd = h->root.u.def.section->owner;
ee9f09cd 714 size_change_ok = true;
ede4eed4
KR
715 }
716 }
717
718 if (! (_bfd_generic_link_add_one_symbol
719 (info, abfd, name, flags, sec, value, (const char *) NULL,
720 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
721 goto error_return;
722
0cb70568
ILT
723 h = *sym_hash;
724 while (h->root.type == bfd_link_hash_indirect
725 || h->root.type == bfd_link_hash_warning)
726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
727 *sym_hash = h;
728
452a5efb 729 new_weakdef = false;
ede4eed4
KR
730 if (dynamic
731 && definition
732 && (flags & BSF_WEAK) != 0
733 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
734 && info->hash->creator->flavour == bfd_target_elf_flavour
0cb70568 735 && h->weakdef == NULL)
ede4eed4
KR
736 {
737 /* Keep a list of all weak defined non function symbols from
738 a dynamic object, using the weakdef field. Later in this
739 function we will set the weakdef field to the correct
740 value. We only put non-function symbols from dynamic
741 objects on this list, because that happens to be the only
742 time we need to know the normal symbol corresponding to a
743 weak symbol, and the information is time consuming to
744 figure out. If the weakdef field is not already NULL,
745 then this symbol was already defined by some previous
746 dynamic object, and we will be using that previous
747 definition anyhow. */
748
0cb70568
ILT
749 h->weakdef = weaks;
750 weaks = h;
452a5efb 751 new_weakdef = true;
ede4eed4
KR
752 }
753
754 /* Get the alignment of a common symbol. */
755 if (sym.st_shndx == SHN_COMMON
0cb70568
ILT
756 && h->root.type == bfd_link_hash_common)
757 h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
ede4eed4
KR
758
759 if (info->hash->creator->flavour == bfd_target_elf_flavour)
760 {
761 int old_flags;
762 boolean dynsym;
763 int new_flag;
764
765 /* Remember the symbol size and type. */
3d7c42c9
ILT
766 if (sym.st_size != 0
767 && (definition || h->size == 0))
ede4eed4 768 {
ee9f09cd 769 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
3d7c42c9
ILT
770 (*_bfd_error_handler)
771 ("Warning: size of symbol `%s' changed from %lu to %lu in %s",
772 name, (unsigned long) h->size, (unsigned long) sym.st_size,
773 bfd_get_filename (abfd));
774
ede4eed4
KR
775 h->size = sym.st_size;
776 }
3d7c42c9
ILT
777 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
778 && (definition || h->type == STT_NOTYPE))
ede4eed4 779 {
3d7c42c9 780 if (h->type != STT_NOTYPE
8235c112 781 && h->type != ELF_ST_TYPE (sym.st_info)
ee9f09cd 782 && ! type_change_ok)
3d7c42c9
ILT
783 (*_bfd_error_handler)
784 ("Warning: type of symbol `%s' changed from %d to %d in %s",
785 name, h->type, ELF_ST_TYPE (sym.st_info),
786 bfd_get_filename (abfd));
787
ede4eed4
KR
788 h->type = ELF_ST_TYPE (sym.st_info);
789 }
790
791 /* Set a flag in the hash table entry indicating the type of
792 reference or definition we just found. Keep a count of
793 the number of dynamic symbols we find. A dynamic symbol
794 is one which is referenced or defined by both a regular
795 object and a shared object, or one which is referenced or
796 defined by more than one shared object. */
797 old_flags = h->elf_link_hash_flags;
798 dynsym = false;
799 if (! dynamic)
800 {
801 if (! definition)
802 new_flag = ELF_LINK_HASH_REF_REGULAR;
803 else
804 new_flag = ELF_LINK_HASH_DEF_REGULAR;
805 if (info->shared
806 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
807 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
808 dynsym = true;
809 }
810 else
811 {
812 if (! definition)
813 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
814 else
815 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
816 if ((old_flags & new_flag) != 0
817 || (old_flags & (ELF_LINK_HASH_DEF_REGULAR
452a5efb
ILT
818 | ELF_LINK_HASH_REF_REGULAR)) != 0
819 || (h->weakdef != NULL
820 && (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
821 | ELF_LINK_HASH_REF_DYNAMIC)) != 0))
ede4eed4
KR
822 dynsym = true;
823 }
824
825 h->elf_link_hash_flags |= new_flag;
826 if (dynsym && h->dynindx == -1)
827 {
828 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
829 goto error_return;
452a5efb
ILT
830 if (h->weakdef != NULL
831 && ! new_weakdef
832 && h->weakdef->dynindx == -1)
833 {
834 if (! _bfd_elf_link_record_dynamic_symbol (info,
835 h->weakdef))
836 goto error_return;
837 }
ede4eed4
KR
838 }
839 }
840 }
841
842 /* Now set the weakdefs field correctly for all the weak defined
843 symbols we found. The only way to do this is to search all the
844 symbols. Since we only need the information for non functions in
845 dynamic objects, that's the only time we actually put anything on
846 the list WEAKS. We need this information so that if a regular
847 object refers to a symbol defined weakly in a dynamic object, the
848 real symbol in the dynamic object is also put in the dynamic
849 symbols; we also must arrange for both symbols to point to the
850 same memory location. We could handle the general case of symbol
851 aliasing, but a general symbol alias can only be generated in
852 assembler code, handling it correctly would be very time
853 consuming, and other ELF linkers don't handle general aliasing
854 either. */
855 while (weaks != NULL)
856 {
857 struct elf_link_hash_entry *hlook;
858 asection *slook;
859 bfd_vma vlook;
860 struct elf_link_hash_entry **hpp;
861 struct elf_link_hash_entry **hppend;
862
863 hlook = weaks;
864 weaks = hlook->weakdef;
865 hlook->weakdef = NULL;
866
867 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
868 || hlook->root.type == bfd_link_hash_defweak
869 || hlook->root.type == bfd_link_hash_common
870 || hlook->root.type == bfd_link_hash_indirect);
871 slook = hlook->root.u.def.section;
872 vlook = hlook->root.u.def.value;
873
874 hpp = elf_sym_hashes (abfd);
875 hppend = hpp + extsymcount;
876 for (; hpp < hppend; hpp++)
877 {
878 struct elf_link_hash_entry *h;
879
880 h = *hpp;
881 if (h != NULL && h != hlook
882 && (h->root.type == bfd_link_hash_defined
883 || h->root.type == bfd_link_hash_defweak)
884 && h->root.u.def.section == slook
885 && h->root.u.def.value == vlook)
886 {
887 hlook->weakdef = h;
888
889 /* If the weak definition is in the list of dynamic
890 symbols, make sure the real definition is put there
891 as well. */
892 if (hlook->dynindx != -1
893 && h->dynindx == -1)
894 {
895 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
896 goto error_return;
897 }
898
899 break;
900 }
901 }
902 }
903
904 if (buf != NULL)
905 {
906 free (buf);
907 buf = NULL;
908 }
909
910 /* If this object is the same format as the output object, and it is
911 not a shared library, then let the backend look through the
912 relocs.
913
914 This is required to build global offset table entries and to
915 arrange for dynamic relocs. It is not required for the
916 particular common case of linking non PIC code, even when linking
917 against shared libraries, but unfortunately there is no way of
918 knowing whether an object file has been compiled PIC or not.
919 Looking through the relocs is not particularly time consuming.
920 The problem is that we must either (1) keep the relocs in memory,
921 which causes the linker to require additional runtime memory or
922 (2) read the relocs twice from the input file, which wastes time.
923 This would be a good case for using mmap.
924
925 I have no idea how to handle linking PIC code into a file of a
926 different format. It probably can't be done. */
927 check_relocs = get_elf_backend_data (abfd)->check_relocs;
928 if (! dynamic
929 && abfd->xvec == info->hash->creator
930 && check_relocs != NULL)
931 {
932 asection *o;
933
934 for (o = abfd->sections; o != NULL; o = o->next)
935 {
936 Elf_Internal_Rela *internal_relocs;
937 boolean ok;
938
939 if ((o->flags & SEC_RELOC) == 0
940 || o->reloc_count == 0)
941 continue;
942
943 /* I believe we can ignore the relocs for any section which
944 does not form part of the final process image, such as a
945 debugging section. */
946 if ((o->flags & SEC_ALLOC) == 0)
947 continue;
948
949 internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL,
950 (Elf_Internal_Rela *) NULL,
951 info->keep_memory);
952 if (internal_relocs == NULL)
953 goto error_return;
954
955 ok = (*check_relocs) (abfd, info, o, internal_relocs);
956
957 if (! info->keep_memory)
958 free (internal_relocs);
959
960 if (! ok)
961 goto error_return;
962 }
963 }
964
965 return true;
966
967 error_return:
968 if (buf != NULL)
969 free (buf);
970 if (dynbuf != NULL)
971 free (dynbuf);
972 return false;
973}
974
975/* Create some sections which will be filled in with dynamic linking
976 information. ABFD is an input file which requires dynamic sections
977 to be created. The dynamic sections take up virtual memory space
978 when the final executable is run, so we need to create them before
979 addresses are assigned to the output sections. We work out the
980 actual contents and size of these sections later. */
981
982boolean
983elf_link_create_dynamic_sections (abfd, info)
984 bfd *abfd;
985 struct bfd_link_info *info;
986{
987 flagword flags;
988 register asection *s;
989 struct elf_link_hash_entry *h;
990 struct elf_backend_data *bed;
991
992 if (elf_hash_table (info)->dynamic_sections_created)
993 return true;
994
995 /* Make sure that all dynamic sections use the same input BFD. */
996 if (elf_hash_table (info)->dynobj == NULL)
997 elf_hash_table (info)->dynobj = abfd;
998 else
999 abfd = elf_hash_table (info)->dynobj;
1000
1001 /* Note that we set the SEC_IN_MEMORY flag for all of these
1002 sections. */
1003 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
1004
1005 /* A dynamically linked executable has a .interp section, but a
1006 shared library does not. */
1007 if (! info->shared)
1008 {
1009 s = bfd_make_section (abfd, ".interp");
1010 if (s == NULL
1011 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1012 return false;
1013 }
1014
1015 s = bfd_make_section (abfd, ".dynsym");
1016 if (s == NULL
1017 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1018 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1019 return false;
1020
1021 s = bfd_make_section (abfd, ".dynstr");
1022 if (s == NULL
1023 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1024 return false;
1025
1026 /* Create a strtab to hold the dynamic symbol names. */
1027 if (elf_hash_table (info)->dynstr == NULL)
1028 {
1029 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1030 if (elf_hash_table (info)->dynstr == NULL)
1031 return false;
1032 }
1033
1034 s = bfd_make_section (abfd, ".dynamic");
1035 if (s == NULL
1036 || ! bfd_set_section_flags (abfd, s, flags)
1037 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1038 return false;
1039
1040 /* The special symbol _DYNAMIC is always set to the start of the
1041 .dynamic section. This call occurs before we have processed the
1042 symbols for any dynamic object, so we don't have to worry about
1043 overriding a dynamic definition. We could set _DYNAMIC in a
1044 linker script, but we only want to define it if we are, in fact,
1045 creating a .dynamic section. We don't want to define it if there
1046 is no .dynamic section, since on some ELF platforms the start up
1047 code examines it to decide how to initialize the process. */
1048 h = NULL;
1049 if (! (_bfd_generic_link_add_one_symbol
1050 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1051 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1052 (struct bfd_link_hash_entry **) &h)))
1053 return false;
1054 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1055 h->type = STT_OBJECT;
1056
1057 if (info->shared
1058 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1059 return false;
1060
1061 s = bfd_make_section (abfd, ".hash");
1062 if (s == NULL
1063 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1064 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1065 return false;
1066
1067 /* Let the backend create the rest of the sections. This lets the
1068 backend set the right flags. The backend will normally create
1069 the .got and .plt sections. */
1070 bed = get_elf_backend_data (abfd);
1071 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1072 return false;
1073
1074 elf_hash_table (info)->dynamic_sections_created = true;
1075
1076 return true;
1077}
1078
1079/* Add an entry to the .dynamic table. */
1080
1081boolean
1082elf_add_dynamic_entry (info, tag, val)
1083 struct bfd_link_info *info;
1084 bfd_vma tag;
1085 bfd_vma val;
1086{
1087 Elf_Internal_Dyn dyn;
1088 bfd *dynobj;
1089 asection *s;
1090 size_t newsize;
1091 bfd_byte *newcontents;
1092
1093 dynobj = elf_hash_table (info)->dynobj;
1094
1095 s = bfd_get_section_by_name (dynobj, ".dynamic");
1096 BFD_ASSERT (s != NULL);
1097
1098 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1099 if (s->contents == NULL)
1100 newcontents = (bfd_byte *) malloc (newsize);
1101 else
1102 newcontents = (bfd_byte *) realloc (s->contents, newsize);
1103 if (newcontents == NULL)
1104 {
1105 bfd_set_error (bfd_error_no_memory);
1106 return false;
1107 }
1108
1109 dyn.d_tag = tag;
1110 dyn.d_un.d_val = val;
1111 elf_swap_dyn_out (dynobj, &dyn,
1112 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1113
1114 s->_raw_size = newsize;
1115 s->contents = newcontents;
1116
1117 return true;
1118}
1119
1120/* Read and swap the relocs for a section. They may have been cached.
1121 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1122 they are used as buffers to read into. They are known to be large
1123 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1124 value is allocated using either malloc or bfd_alloc, according to
1125 the KEEP_MEMORY argument. */
1126
1127static Elf_Internal_Rela *
1128elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory)
1129 bfd *abfd;
1130 asection *o;
1131 PTR external_relocs;
1132 Elf_Internal_Rela *internal_relocs;
1133 boolean keep_memory;
1134{
1135 Elf_Internal_Shdr *rel_hdr;
1136 PTR alloc1 = NULL;
1137 Elf_Internal_Rela *alloc2 = NULL;
1138
1139 if (elf_section_data (o)->relocs != NULL)
1140 return elf_section_data (o)->relocs;
1141
1142 if (o->reloc_count == 0)
1143 return NULL;
1144
1145 rel_hdr = &elf_section_data (o)->rel_hdr;
1146
1147 if (internal_relocs == NULL)
1148 {
1149 size_t size;
1150
1151 size = o->reloc_count * sizeof (Elf_Internal_Rela);
1152 if (keep_memory)
1153 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
1154 else
1155 internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size);
1156 if (internal_relocs == NULL)
1157 {
1158 bfd_set_error (bfd_error_no_memory);
1159 goto error_return;
1160 }
1161 }
1162
1163 if (external_relocs == NULL)
1164 {
3fe22b98 1165 alloc1 = (PTR) malloc ((size_t) rel_hdr->sh_size);
ede4eed4
KR
1166 if (alloc1 == NULL)
1167 {
1168 bfd_set_error (bfd_error_no_memory);
1169 goto error_return;
1170 }
1171 external_relocs = alloc1;
1172 }
1173
1174 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
1175 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
1176 != rel_hdr->sh_size))
1177 goto error_return;
1178
1179 /* Swap in the relocs. For convenience, we always produce an
1180 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
1181 to 0. */
1182 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
1183 {
1184 Elf_External_Rel *erel;
1185 Elf_External_Rel *erelend;
1186 Elf_Internal_Rela *irela;
1187
1188 erel = (Elf_External_Rel *) external_relocs;
1189 erelend = erel + o->reloc_count;
1190 irela = internal_relocs;
1191 for (; erel < erelend; erel++, irela++)
1192 {
1193 Elf_Internal_Rel irel;
1194
1195 elf_swap_reloc_in (abfd, erel, &irel);
1196 irela->r_offset = irel.r_offset;
1197 irela->r_info = irel.r_info;
1198 irela->r_addend = 0;
1199 }
1200 }
1201 else
1202 {
1203 Elf_External_Rela *erela;
1204 Elf_External_Rela *erelaend;
1205 Elf_Internal_Rela *irela;
1206
1207 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
1208
1209 erela = (Elf_External_Rela *) external_relocs;
1210 erelaend = erela + o->reloc_count;
1211 irela = internal_relocs;
1212 for (; erela < erelaend; erela++, irela++)
1213 elf_swap_reloca_in (abfd, erela, irela);
1214 }
1215
1216 /* Cache the results for next time, if we can. */
1217 if (keep_memory)
1218 elf_section_data (o)->relocs = internal_relocs;
1219
1220 if (alloc1 != NULL)
1221 free (alloc1);
1222
1223 /* Don't free alloc2, since if it was allocated we are passing it
1224 back (under the name of internal_relocs). */
1225
1226 return internal_relocs;
1227
1228 error_return:
1229 if (alloc1 != NULL)
1230 free (alloc1);
1231 if (alloc2 != NULL)
1232 free (alloc2);
1233 return NULL;
1234}
1235
1236/* Record an assignment to a symbol made by a linker script. We need
1237 this in case some dynamic object refers to this symbol. */
1238
1239/*ARGSUSED*/
1240boolean
1241NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
1242 bfd *output_bfd;
1243 struct bfd_link_info *info;
1244 const char *name;
1245 boolean provide;
1246{
1247 struct elf_link_hash_entry *h;
1248
1249 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1250 return true;
1251
1252 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
1253 if (h == NULL)
1254 return false;
1255
1256 /* If this symbol is being provided by the linker script, and it is
1257 currently defined by a dynamic object, but not by a regular
1258 object, then mark it as undefined so that the generic linker will
1259 force the correct value. */
1260 if (provide
1261 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1262 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1263 h->root.type = bfd_link_hash_undefined;
1264
1265 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1266 h->type = STT_OBJECT;
1267
1268 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1269 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
1270 || info->shared)
1271 && h->dynindx == -1)
1272 {
1273 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1274 return false;
1275
1276 /* If this is a weak defined symbol, and we know a corresponding
1277 real symbol from the same dynamic object, make sure the real
1278 symbol is also made into a dynamic symbol. */
1279 if (h->weakdef != NULL
1280 && h->weakdef->dynindx == -1)
1281 {
1282 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1283 return false;
1284 }
1285 }
1286
1287 return true;
1288}
1289
1290/* Array used to determine the number of hash table buckets to use
1291 based on the number of symbols there are. If there are fewer than
1292 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
1293 fewer than 37 we use 17 buckets, and so forth. We never use more
1294 than 521 buckets. */
1295
1296static const size_t elf_buckets[] =
1297{
1298 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
1299};
1300
1301/* Set up the sizes and contents of the ELF dynamic sections. This is
1302 called by the ELF linker emulation before_allocation routine. We
1303 must set the sizes of the sections before the linker sets the
1304 addresses of the various sections. */
1305
1306boolean
1307NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
1308 export_dynamic, info, sinterpptr)
1309 bfd *output_bfd;
1310 const char *soname;
1311 const char *rpath;
1312 boolean export_dynamic;
1313 struct bfd_link_info *info;
1314 asection **sinterpptr;
1315{
1316 bfd *dynobj;
1317 struct elf_backend_data *bed;
1318
1319 *sinterpptr = NULL;
1320
1321 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1322 return true;
1323
1324 dynobj = elf_hash_table (info)->dynobj;
1325
1326 /* If there were no dynamic objects in the link, there is nothing to
1327 do here. */
1328 if (dynobj == NULL)
1329 return true;
1330
1331 /* If we are supposed to export all symbols into the dynamic symbol
1332 table (this is not the normal case), then do so. */
1333 if (export_dynamic)
1334 {
1335 struct elf_info_failed eif;
1336
1337 eif.failed = false;
1338 eif.info = info;
1339 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
1340 (PTR) &eif);
1341 if (eif.failed)
1342 return false;
1343 }
1344
1345 if (elf_hash_table (info)->dynamic_sections_created)
1346 {
1347 struct elf_info_failed eif;
1348 bfd_size_type strsize;
1349
1350 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
1351 BFD_ASSERT (*sinterpptr != NULL || info->shared);
1352
1353 if (soname != NULL)
1354 {
1355 bfd_size_type indx;
1356
1357 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
1358 true, true);
1359 if (indx == (bfd_size_type) -1
1360 || ! elf_add_dynamic_entry (info, DT_SONAME, indx))
1361 return false;
1362 }
1363
951fe66d
ILT
1364 if (info->symbolic)
1365 {
1366 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
1367 return false;
1368 }
1369
ede4eed4
KR
1370 if (rpath != NULL)
1371 {
1372 bfd_size_type indx;
1373
1374 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
1375 true, true);
1376 if (indx == (bfd_size_type) -1
1377 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
1378 return false;
1379 }
1380
1381 /* Find all symbols which were defined in a dynamic object and make
1382 the backend pick a reasonable value for them. */
1383 eif.failed = false;
1384 eif.info = info;
1385 elf_link_hash_traverse (elf_hash_table (info),
1386 elf_adjust_dynamic_symbol,
1387 (PTR) &eif);
1388 if (eif.failed)
1389 return false;
1390
1391 /* Add some entries to the .dynamic section. We fill in some of the
1392 values later, in elf_bfd_final_link, but we must add the entries
1393 now so that we know the final size of the .dynamic section. */
1394 if (elf_link_hash_lookup (elf_hash_table (info), "_init", false,
1395 false, false) != NULL)
1396 {
1397 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
1398 return false;
1399 }
1400 if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
1401 false, false) != NULL)
1402 {
1403 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
1404 return false;
1405 }
1406 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1407 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
1408 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
1409 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
1410 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
1411 || ! elf_add_dynamic_entry (info, DT_SYMENT,
1412 sizeof (Elf_External_Sym)))
1413 return false;
1414 }
1415
1416 /* The backend must work out the sizes of all the other dynamic
1417 sections. */
1418 bed = get_elf_backend_data (output_bfd);
1419 if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
1420 return false;
1421
1422 if (elf_hash_table (info)->dynamic_sections_created)
1423 {
1424 size_t dynsymcount;
1425 asection *s;
1426 size_t i;
1427 size_t bucketcount = 0;
1428 Elf_Internal_Sym isym;
1429
1430 /* Set the size of the .dynsym and .hash sections. We counted
1431 the number of dynamic symbols in elf_link_add_object_symbols.
1432 We will build the contents of .dynsym and .hash when we build
1433 the final symbol table, because until then we do not know the
1434 correct value to give the symbols. We built the .dynstr
1435 section as we went along in elf_link_add_object_symbols. */
1436 dynsymcount = elf_hash_table (info)->dynsymcount;
1437 s = bfd_get_section_by_name (dynobj, ".dynsym");
1438 BFD_ASSERT (s != NULL);
1439 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
1440 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1441 if (s->contents == NULL && s->_raw_size != 0)
1442 {
1443 bfd_set_error (bfd_error_no_memory);
1444 return false;
1445 }
1446
1447 /* The first entry in .dynsym is a dummy symbol. */
1448 isym.st_value = 0;
1449 isym.st_size = 0;
1450 isym.st_name = 0;
1451 isym.st_info = 0;
1452 isym.st_other = 0;
1453 isym.st_shndx = 0;
1454 elf_swap_symbol_out (output_bfd, &isym,
cf9fb9f2 1455 (PTR) (Elf_External_Sym *) s->contents);
ede4eed4
KR
1456
1457 for (i = 0; elf_buckets[i] != 0; i++)
1458 {
1459 bucketcount = elf_buckets[i];
1460 if (dynsymcount < elf_buckets[i + 1])
1461 break;
1462 }
1463
1464 s = bfd_get_section_by_name (dynobj, ".hash");
1465 BFD_ASSERT (s != NULL);
1466 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
1467 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1468 if (s->contents == NULL)
1469 {
1470 bfd_set_error (bfd_error_no_memory);
1471 return false;
1472 }
3fe22b98 1473 memset (s->contents, 0, (size_t) s->_raw_size);
ede4eed4
KR
1474
1475 put_word (output_bfd, bucketcount, s->contents);
1476 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
1477
1478 elf_hash_table (info)->bucketcount = bucketcount;
1479
1480 s = bfd_get_section_by_name (dynobj, ".dynstr");
1481 BFD_ASSERT (s != NULL);
1482 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1483
1484 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
1485 return false;
1486 }
1487
1488 return true;
1489}
1490
1491/* This routine is used to export all defined symbols into the dynamic
1492 symbol table. It is called via elf_link_hash_traverse. */
1493
1494static boolean
1495elf_export_symbol (h, data)
1496 struct elf_link_hash_entry *h;
1497 PTR data;
1498{
1499 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1500
1501 if (h->dynindx == -1
1502 && (h->elf_link_hash_flags
1503 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1504 {
1505 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1506 {
1507 eif->failed = true;
1508 return false;
1509 }
1510 }
1511
1512 return true;
1513}
1514
1515/* Make the backend pick a good value for a dynamic symbol. This is
1516 called via elf_link_hash_traverse, and also calls itself
1517 recursively. */
1518
1519static boolean
1520elf_adjust_dynamic_symbol (h, data)
1521 struct elf_link_hash_entry *h;
1522 PTR data;
1523{
1524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1525 bfd *dynobj;
1526 struct elf_backend_data *bed;
1527
951fe66d
ILT
1528 /* If -Bsymbolic was used (which means to bind references to global
1529 symbols to the definition within the shared object), and this
1530 symbol was defined in a regular object, then it actually doesn't
1531 need a PLT entry. */
1532 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1533 && eif->info->shared
1534 && eif->info->symbolic
1535 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1536 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
1537
ede4eed4
KR
1538 /* If this symbol does not require a PLT entry, and it is not
1539 defined by a dynamic object, or is not referenced by a regular
452a5efb
ILT
1540 object, ignore it. We do have to handle a weak defined symbol,
1541 even if no regular object refers to it, if we decided to add it
1542 to the dynamic symbol table. FIXME: Do we normally need to worry
1543 about symbols which are defined by one dynamic object and
1544 referenced by another one? */
ede4eed4
KR
1545 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
1546 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1547 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
452a5efb
ILT
1548 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
1549 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
ede4eed4
KR
1550 return true;
1551
1552 /* If we've already adjusted this symbol, don't do it again. This
1553 can happen via a recursive call. */
1554 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1555 return true;
1556
1557 /* Don't look at this symbol again. Note that we must set this
1558 after checking the above conditions, because we may look at a
1559 symbol once, decide not to do anything, and then get called
1560 recursively later after REF_REGULAR is set below. */
1561 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
1562
1563 /* If this is a weak definition, and we know a real definition, and
1564 the real symbol is not itself defined by a regular object file,
1565 then get a good value for the real definition. We handle the
1566 real symbol first, for the convenience of the backend routine.
1567
1568 Note that there is a confusing case here. If the real definition
1569 is defined by a regular object file, we don't get the real symbol
1570 from the dynamic object, but we do get the weak symbol. If the
1571 processor backend uses a COPY reloc, then if some routine in the
1572 dynamic object changes the real symbol, we will not see that
1573 change in the corresponding weak symbol. This is the way other
1574 ELF linkers work as well, and seems to be a result of the shared
1575 library model.
1576
1577 I will clarify this issue. Most SVR4 shared libraries define the
1578 variable _timezone and define timezone as a weak synonym. The
1579 tzset call changes _timezone. If you write
1580 extern int timezone;
1581 int _timezone = 5;
1582 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
1583 you might expect that, since timezone is a synonym for _timezone,
1584 the same number will print both times. However, if the processor
1585 backend uses a COPY reloc, then actually timezone will be copied
1586 into your process image, and, since you define _timezone
1587 yourself, _timezone will not. Thus timezone and _timezone will
1588 wind up at different memory locations. The tzset call will set
1589 _timezone, leaving timezone unchanged. */
1590
1591 if (h->weakdef != NULL)
1592 {
1593 struct elf_link_hash_entry *weakdef;
1594
1595 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1596 || h->root.type == bfd_link_hash_defweak);
1597 weakdef = h->weakdef;
1598 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
1599 || weakdef->root.type == bfd_link_hash_defweak);
1600 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
1601 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1602 {
1603 /* This symbol is defined by a regular object file, so we
1604 will not do anything special. Clear weakdef for the
1605 convenience of the processor backend. */
1606 h->weakdef = NULL;
1607 }
1608 else
1609 {
1610 /* There is an implicit reference by a regular object file
1611 via the weak symbol. */
1612 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1613 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
1614 return false;
1615 }
1616 }
1617
1618 dynobj = elf_hash_table (eif->info)->dynobj;
1619 bed = get_elf_backend_data (dynobj);
1620 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
1621 {
1622 eif->failed = true;
1623 return false;
1624 }
1625
1626 return true;
1627}
1628\f
1629/* Final phase of ELF linker. */
1630
1631/* A structure we use to avoid passing large numbers of arguments. */
1632
1633struct elf_final_link_info
1634{
1635 /* General link information. */
1636 struct bfd_link_info *info;
1637 /* Output BFD. */
1638 bfd *output_bfd;
1639 /* Symbol string table. */
1640 struct bfd_strtab_hash *symstrtab;
1641 /* .dynsym section. */
1642 asection *dynsym_sec;
1643 /* .hash section. */
1644 asection *hash_sec;
1645 /* Buffer large enough to hold contents of any section. */
1646 bfd_byte *contents;
1647 /* Buffer large enough to hold external relocs of any section. */
1648 PTR external_relocs;
1649 /* Buffer large enough to hold internal relocs of any section. */
1650 Elf_Internal_Rela *internal_relocs;
1651 /* Buffer large enough to hold external local symbols of any input
1652 BFD. */
1653 Elf_External_Sym *external_syms;
1654 /* Buffer large enough to hold internal local symbols of any input
1655 BFD. */
1656 Elf_Internal_Sym *internal_syms;
1657 /* Array large enough to hold a symbol index for each local symbol
1658 of any input BFD. */
1659 long *indices;
1660 /* Array large enough to hold a section pointer for each local
1661 symbol of any input BFD. */
1662 asection **sections;
1663 /* Buffer to hold swapped out symbols. */
1664 Elf_External_Sym *symbuf;
1665 /* Number of swapped out symbols in buffer. */
1666 size_t symbuf_count;
1667 /* Number of symbols which fit in symbuf. */
1668 size_t symbuf_size;
1669};
1670
1671static boolean elf_link_output_sym
1672 PARAMS ((struct elf_final_link_info *, const char *,
1673 Elf_Internal_Sym *, asection *));
1674static boolean elf_link_flush_output_syms
1675 PARAMS ((struct elf_final_link_info *));
1676static boolean elf_link_output_extsym
1677 PARAMS ((struct elf_link_hash_entry *, PTR));
1678static boolean elf_link_input_bfd
1679 PARAMS ((struct elf_final_link_info *, bfd *));
1680static boolean elf_reloc_link_order
1681 PARAMS ((bfd *, struct bfd_link_info *, asection *,
1682 struct bfd_link_order *));
1683
1684/* This struct is used to pass information to routines called via
1685 elf_link_hash_traverse which must return failure. */
1686
1687struct elf_finfo_failed
1688{
1689 boolean failed;
1690 struct elf_final_link_info *finfo;
1691};
1692
1693/* Do the final step of an ELF link. */
1694
1695boolean
1696elf_bfd_final_link (abfd, info)
1697 bfd *abfd;
1698 struct bfd_link_info *info;
1699{
1700 boolean dynamic;
1701 bfd *dynobj;
1702 struct elf_final_link_info finfo;
1703 register asection *o;
1704 register struct bfd_link_order *p;
1705 register bfd *sub;
1706 size_t max_contents_size;
1707 size_t max_external_reloc_size;
1708 size_t max_internal_reloc_count;
1709 size_t max_sym_count;
1710 file_ptr off;
1711 Elf_Internal_Sym elfsym;
1712 unsigned int i;
1713 Elf_Internal_Shdr *symtab_hdr;
1714 Elf_Internal_Shdr *symstrtab_hdr;
1715 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1716 struct elf_finfo_failed eif;
1717
1718 if (info->shared)
1719 abfd->flags |= DYNAMIC;
1720
1721 dynamic = elf_hash_table (info)->dynamic_sections_created;
1722 dynobj = elf_hash_table (info)->dynobj;
1723
1724 finfo.info = info;
1725 finfo.output_bfd = abfd;
1726 finfo.symstrtab = elf_stringtab_init ();
1727 if (finfo.symstrtab == NULL)
1728 return false;
1729 if (! dynamic)
1730 {
1731 finfo.dynsym_sec = NULL;
1732 finfo.hash_sec = NULL;
1733 }
1734 else
1735 {
1736 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
1737 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
1738 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
1739 }
1740 finfo.contents = NULL;
1741 finfo.external_relocs = NULL;
1742 finfo.internal_relocs = NULL;
1743 finfo.external_syms = NULL;
1744 finfo.internal_syms = NULL;
1745 finfo.indices = NULL;
1746 finfo.sections = NULL;
1747 finfo.symbuf = NULL;
1748 finfo.symbuf_count = 0;
1749
1750 /* Count up the number of relocations we will output for each output
1751 section, so that we know the sizes of the reloc sections. We
1752 also figure out some maximum sizes. */
1753 max_contents_size = 0;
1754 max_external_reloc_size = 0;
1755 max_internal_reloc_count = 0;
1756 max_sym_count = 0;
1757 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
1758 {
1759 o->reloc_count = 0;
1760
1761 for (p = o->link_order_head; p != NULL; p = p->next)
1762 {
1763 if (p->type == bfd_section_reloc_link_order
1764 || p->type == bfd_symbol_reloc_link_order)
1765 ++o->reloc_count;
1766 else if (p->type == bfd_indirect_link_order)
1767 {
1768 asection *sec;
1769
1770 sec = p->u.indirect.section;
1771
1772 if (info->relocateable)
1773 o->reloc_count += sec->reloc_count;
1774
1775 if (sec->_raw_size > max_contents_size)
1776 max_contents_size = sec->_raw_size;
1777 if (sec->_cooked_size > max_contents_size)
1778 max_contents_size = sec->_cooked_size;
1779
1780 /* We are interested in just local symbols, not all
1781 symbols. */
1782 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
1783 {
1784 size_t sym_count;
1785
1786 if (elf_bad_symtab (sec->owner))
1787 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
1788 / sizeof (Elf_External_Sym));
1789 else
1790 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
1791
1792 if (sym_count > max_sym_count)
1793 max_sym_count = sym_count;
1794
1795 if ((sec->flags & SEC_RELOC) != 0)
1796 {
1797 size_t ext_size;
1798
1799 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
1800 if (ext_size > max_external_reloc_size)
1801 max_external_reloc_size = ext_size;
1802 if (sec->reloc_count > max_internal_reloc_count)
1803 max_internal_reloc_count = sec->reloc_count;
1804 }
1805 }
1806 }
1807 }
1808
1809 if (o->reloc_count > 0)
1810 o->flags |= SEC_RELOC;
1811 else
1812 {
1813 /* Explicitly clear the SEC_RELOC flag. The linker tends to
1814 set it (this is probably a bug) and if it is set
1815 assign_section_numbers will create a reloc section. */
1816 o->flags &=~ SEC_RELOC;
1817 }
1818
1819 /* If the SEC_ALLOC flag is not set, force the section VMA to
1820 zero. This is done in elf_fake_sections as well, but forcing
1821 the VMA to 0 here will ensure that relocs against these
1822 sections are handled correctly. */
1823 if ((o->flags & SEC_ALLOC) == 0)
1824 o->vma = 0;
1825 }
1826
1827 /* Figure out the file positions for everything but the symbol table
1828 and the relocs. We set symcount to force assign_section_numbers
1829 to create a symbol table. */
1830 abfd->symcount = info->strip == strip_all ? 0 : 1;
1831 BFD_ASSERT (! abfd->output_has_begun);
1832 if (! _bfd_elf_compute_section_file_positions (abfd, info))
1833 goto error_return;
1834
1835 /* That created the reloc sections. Set their sizes, and assign
1836 them file positions, and allocate some buffers. */
1837 for (o = abfd->sections; o != NULL; o = o->next)
1838 {
1839 if ((o->flags & SEC_RELOC) != 0)
1840 {
1841 Elf_Internal_Shdr *rel_hdr;
1842 register struct elf_link_hash_entry **p, **pend;
1843
1844 rel_hdr = &elf_section_data (o)->rel_hdr;
1845
1846 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
1847
1848 /* The contents field must last into write_object_contents,
1849 so we allocate it with bfd_alloc rather than malloc. */
1850 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
1851 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1852 {
1853 bfd_set_error (bfd_error_no_memory);
1854 goto error_return;
1855 }
1856
1857 p = ((struct elf_link_hash_entry **)
1858 malloc (o->reloc_count
1859 * sizeof (struct elf_link_hash_entry *)));
1860 if (p == NULL && o->reloc_count != 0)
1861 {
1862 bfd_set_error (bfd_error_no_memory);
1863 goto error_return;
1864 }
1865 elf_section_data (o)->rel_hashes = p;
1866 pend = p + o->reloc_count;
1867 for (; p < pend; p++)
1868 *p = NULL;
1869
1870 /* Use the reloc_count field as an index when outputting the
1871 relocs. */
1872 o->reloc_count = 0;
1873 }
1874 }
1875
1876 _bfd_elf_assign_file_positions_for_relocs (abfd);
1877
1878 /* We have now assigned file positions for all the sections except
1879 .symtab and .strtab. We start the .symtab section at the current
1880 file position, and write directly to it. We build the .strtab
1881 section in memory. When we add .dynsym support, we will build
1882 that in memory as well (.dynsym is smaller than .symtab). */
1883 abfd->symcount = 0;
1884 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1885 /* sh_name is set in prep_headers. */
1886 symtab_hdr->sh_type = SHT_SYMTAB;
1887 symtab_hdr->sh_flags = 0;
1888 symtab_hdr->sh_addr = 0;
1889 symtab_hdr->sh_size = 0;
1890 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
1891 /* sh_link is set in assign_section_numbers. */
1892 /* sh_info is set below. */
1893 /* sh_offset is set just below. */
1894 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
1895
1896 off = elf_tdata (abfd)->next_file_pos;
1897 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
1898
1899 /* Note that at this point elf_tdata (abfd)->next_file_pos is
1900 incorrect. We do not yet know the size of the .symtab section.
1901 We correct next_file_pos below, after we do know the size. */
1902
1903 /* Allocate a buffer to hold swapped out symbols. This is to avoid
1904 continuously seeking to the right position in the file. */
1905 if (! info->keep_memory || max_sym_count < 20)
1906 finfo.symbuf_size = 20;
1907 else
1908 finfo.symbuf_size = max_sym_count;
1909 finfo.symbuf = ((Elf_External_Sym *)
1910 malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
1911 if (finfo.symbuf == NULL)
1912 {
1913 bfd_set_error (bfd_error_no_memory);
1914 goto error_return;
1915 }
1916
1917 /* Start writing out the symbol table. The first symbol is always a
1918 dummy symbol. */
1919 elfsym.st_value = 0;
1920 elfsym.st_size = 0;
1921 elfsym.st_info = 0;
1922 elfsym.st_other = 0;
1923 elfsym.st_shndx = SHN_UNDEF;
1924 if (! elf_link_output_sym (&finfo, (const char *) NULL,
1925 &elfsym, bfd_und_section_ptr))
1926 goto error_return;
1927
1928#if 0
1929 /* Some standard ELF linkers do this, but we don't because it causes
1930 bootstrap comparison failures. */
1931 /* Output a file symbol for the output file as the second symbol.
1932 We output this even if we are discarding local symbols, although
1933 I'm not sure if this is correct. */
1934 elfsym.st_value = 0;
1935 elfsym.st_size = 0;
1936 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
1937 elfsym.st_other = 0;
1938 elfsym.st_shndx = SHN_ABS;
1939 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
1940 &elfsym, bfd_abs_section_ptr))
1941 goto error_return;
1942#endif
1943
1944 /* Output a symbol for each section. We output these even if we are
1945 discarding local symbols, since they are used for relocs. These
1946 symbols have no names. We store the index of each one in the
1947 index field of the section, so that we can find it again when
1948 outputting relocs. */
1949 elfsym.st_value = 0;
1950 elfsym.st_size = 0;
1951 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
1952 elfsym.st_other = 0;
1953 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
1954 {
1955 o = section_from_elf_index (abfd, i);
1956 if (o != NULL)
1957 o->target_index = abfd->symcount;
1958 elfsym.st_shndx = i;
1959 if (! elf_link_output_sym (&finfo, (const char *) NULL,
1960 &elfsym, o))
1961 goto error_return;
1962 }
1963
1964 /* Allocate some memory to hold information read in from the input
1965 files. */
1966 finfo.contents = (bfd_byte *) malloc (max_contents_size);
1967 finfo.external_relocs = (PTR) malloc (max_external_reloc_size);
1968 finfo.internal_relocs = ((Elf_Internal_Rela *)
1969 malloc (max_internal_reloc_count
1970 * sizeof (Elf_Internal_Rela)));
1971 finfo.external_syms = ((Elf_External_Sym *)
1972 malloc (max_sym_count * sizeof (Elf_External_Sym)));
1973 finfo.internal_syms = ((Elf_Internal_Sym *)
1974 malloc (max_sym_count * sizeof (Elf_Internal_Sym)));
1975 finfo.indices = (long *) malloc (max_sym_count * sizeof (long));
1976 finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *));
1977 if ((finfo.contents == NULL && max_contents_size != 0)
1978 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
1979 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
1980 || (finfo.external_syms == NULL && max_sym_count != 0)
1981 || (finfo.internal_syms == NULL && max_sym_count != 0)
1982 || (finfo.indices == NULL && max_sym_count != 0)
1983 || (finfo.sections == NULL && max_sym_count != 0))
1984 {
1985 bfd_set_error (bfd_error_no_memory);
1986 goto error_return;
1987 }
1988
1989 /* Since ELF permits relocations to be against local symbols, we
1990 must have the local symbols available when we do the relocations.
1991 Since we would rather only read the local symbols once, and we
1992 would rather not keep them in memory, we handle all the
1993 relocations for a single input file at the same time.
1994
1995 Unfortunately, there is no way to know the total number of local
1996 symbols until we have seen all of them, and the local symbol
1997 indices precede the global symbol indices. This means that when
1998 we are generating relocateable output, and we see a reloc against
1999 a global symbol, we can not know the symbol index until we have
2000 finished examining all the local symbols to see which ones we are
2001 going to output. To deal with this, we keep the relocations in
2002 memory, and don't output them until the end of the link. This is
2003 an unfortunate waste of memory, but I don't see a good way around
2004 it. Fortunately, it only happens when performing a relocateable
2005 link, which is not the common case. FIXME: If keep_memory is set
2006 we could write the relocs out and then read them again; I don't
2007 know how bad the memory loss will be. */
2008
2009 for (sub = info->input_bfds; sub != NULL; sub = sub->next)
2010 sub->output_has_begun = false;
2011 for (o = abfd->sections; o != NULL; o = o->next)
2012 {
2013 for (p = o->link_order_head; p != NULL; p = p->next)
2014 {
2015 if (p->type == bfd_indirect_link_order
2016 && (bfd_get_flavour (p->u.indirect.section->owner)
2017 == bfd_target_elf_flavour))
2018 {
2019 sub = p->u.indirect.section->owner;
2020 if (! sub->output_has_begun)
2021 {
2022 if (! elf_link_input_bfd (&finfo, sub))
2023 goto error_return;
2024 sub->output_has_begun = true;
2025 }
2026 }
2027 else if (p->type == bfd_section_reloc_link_order
2028 || p->type == bfd_symbol_reloc_link_order)
2029 {
2030 if (! elf_reloc_link_order (abfd, info, o, p))
2031 goto error_return;
2032 }
2033 else
2034 {
2035 if (! _bfd_default_link_order (abfd, info, o, p))
2036 goto error_return;
2037 }
2038 }
2039 }
2040
2041 /* That wrote out all the local symbols. Finish up the symbol table
2042 with the global symbols. */
2043
2044 /* The sh_info field records the index of the first non local
2045 symbol. */
2046 symtab_hdr->sh_info = abfd->symcount;
2047 if (dynamic)
2048 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
2049
2050 /* We get the global symbols from the hash table. */
2051 eif.failed = false;
2052 eif.finfo = &finfo;
2053 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
2054 (PTR) &eif);
2055 if (eif.failed)
2056 return false;
2057
2058 /* Flush all symbols to the file. */
2059 if (! elf_link_flush_output_syms (&finfo))
2060 return false;
2061
2062 /* Now we know the size of the symtab section. */
2063 off += symtab_hdr->sh_size;
2064
2065 /* Finish up and write out the symbol string table (.strtab)
2066 section. */
2067 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
2068 /* sh_name was set in prep_headers. */
2069 symstrtab_hdr->sh_type = SHT_STRTAB;
2070 symstrtab_hdr->sh_flags = 0;
2071 symstrtab_hdr->sh_addr = 0;
2072 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
2073 symstrtab_hdr->sh_entsize = 0;
2074 symstrtab_hdr->sh_link = 0;
2075 symstrtab_hdr->sh_info = 0;
2076 /* sh_offset is set just below. */
2077 symstrtab_hdr->sh_addralign = 1;
2078
2079 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
2080 elf_tdata (abfd)->next_file_pos = off;
2081
2082 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
2083 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
2084 return false;
2085
2086 /* Adjust the relocs to have the correct symbol indices. */
2087 for (o = abfd->sections; o != NULL; o = o->next)
2088 {
2089 struct elf_link_hash_entry **rel_hash;
2090 Elf_Internal_Shdr *rel_hdr;
2091
2092 if ((o->flags & SEC_RELOC) == 0)
2093 continue;
2094
2095 rel_hash = elf_section_data (o)->rel_hashes;
2096 rel_hdr = &elf_section_data (o)->rel_hdr;
2097 for (i = 0; i < o->reloc_count; i++, rel_hash++)
2098 {
2099 if (*rel_hash == NULL)
2100 continue;
2101
2102 BFD_ASSERT ((*rel_hash)->indx >= 0);
2103
2104 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2105 {
2106 Elf_External_Rel *erel;
2107 Elf_Internal_Rel irel;
2108
2109 erel = (Elf_External_Rel *) rel_hdr->contents + i;
2110 elf_swap_reloc_in (abfd, erel, &irel);
2111 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
2112 ELF_R_TYPE (irel.r_info));
2113 elf_swap_reloc_out (abfd, &irel, erel);
2114 }
2115 else
2116 {
2117 Elf_External_Rela *erela;
2118 Elf_Internal_Rela irela;
2119
2120 BFD_ASSERT (rel_hdr->sh_entsize
2121 == sizeof (Elf_External_Rela));
2122
2123 erela = (Elf_External_Rela *) rel_hdr->contents + i;
2124 elf_swap_reloca_in (abfd, erela, &irela);
2125 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
2126 ELF_R_TYPE (irela.r_info));
2127 elf_swap_reloca_out (abfd, &irela, erela);
2128 }
2129 }
2130
2131 /* Set the reloc_count field to 0 to prevent write_relocs from
2132 trying to swap the relocs out itself. */
2133 o->reloc_count = 0;
2134 }
2135
2136 /* If we are linking against a dynamic object, or generating a
2137 shared library, finish up the dynamic linking information. */
2138 if (dynamic)
2139 {
2140 Elf_External_Dyn *dyncon, *dynconend;
2141
2142 /* Fix up .dynamic entries. */
2143 o = bfd_get_section_by_name (dynobj, ".dynamic");
2144 BFD_ASSERT (o != NULL);
2145
2146 dyncon = (Elf_External_Dyn *) o->contents;
2147 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
2148 for (; dyncon < dynconend; dyncon++)
2149 {
2150 Elf_Internal_Dyn dyn;
2151 const char *name;
2152 unsigned int type;
2153
2154 elf_swap_dyn_in (dynobj, dyncon, &dyn);
2155
2156 switch (dyn.d_tag)
2157 {
2158 default:
2159 break;
2160
2161 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
2162 magic _init and _fini symbols. This is pretty ugly,
2163 but we are compatible. */
2164 case DT_INIT:
2165 name = "_init";
2166 goto get_sym;
2167 case DT_FINI:
2168 name = "_fini";
2169 get_sym:
2170 {
2171 struct elf_link_hash_entry *h;
2172
2173 h = elf_link_hash_lookup (elf_hash_table (info), name,
2174 false, false, true);
d6f672b8
ILT
2175 if (h != NULL
2176 && (h->root.type == bfd_link_hash_defined
2177 || h->root.type == bfd_link_hash_defweak))
ede4eed4
KR
2178 {
2179 dyn.d_un.d_val = h->root.u.def.value;
2180 o = h->root.u.def.section;
2181 if (o->output_section != NULL)
2182 dyn.d_un.d_val += (o->output_section->vma
2183 + o->output_offset);
2184 else
d6f672b8
ILT
2185 {
2186 /* The symbol is imported from another shared
2187 library and does not apply to this one. */
2188 dyn.d_un.d_val = 0;
2189 }
2190
2191 elf_swap_dyn_out (dynobj, &dyn, dyncon);
ede4eed4 2192 }
ede4eed4
KR
2193 }
2194 break;
2195
2196 case DT_HASH:
2197 name = ".hash";
2198 goto get_vma;
2199 case DT_STRTAB:
2200 name = ".dynstr";
2201 goto get_vma;
2202 case DT_SYMTAB:
2203 name = ".dynsym";
2204 get_vma:
2205 o = bfd_get_section_by_name (abfd, name);
2206 BFD_ASSERT (o != NULL);
2207 dyn.d_un.d_ptr = o->vma;
2208 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2209 break;
2210
2211 case DT_REL:
2212 case DT_RELA:
2213 case DT_RELSZ:
2214 case DT_RELASZ:
2215 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
2216 type = SHT_REL;
2217 else
2218 type = SHT_RELA;
2219 dyn.d_un.d_val = 0;
2220 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
2221 {
2222 Elf_Internal_Shdr *hdr;
2223
2224 hdr = elf_elfsections (abfd)[i];
2225 if (hdr->sh_type == type
2226 && (hdr->sh_flags & SHF_ALLOC) != 0)
2227 {
2228 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
2229 dyn.d_un.d_val += hdr->sh_size;
2230 else
2231 {
2232 if (dyn.d_un.d_val == 0
2233 || hdr->sh_addr < dyn.d_un.d_val)
2234 dyn.d_un.d_val = hdr->sh_addr;
2235 }
2236 }
2237 }
2238 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2239 break;
2240 }
2241 }
2242 }
2243
2244 /* If we have created any dynamic sections, then output them. */
2245 if (dynobj != NULL)
2246 {
2247 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
2248 goto error_return;
2249
2250 for (o = dynobj->sections; o != NULL; o = o->next)
2251 {
2252 if ((o->flags & SEC_HAS_CONTENTS) == 0
2253 || o->_raw_size == 0)
2254 continue;
2255 if ((o->flags & SEC_IN_MEMORY) == 0)
2256 {
2257 /* At this point, we are only interested in sections
2258 created by elf_link_create_dynamic_sections. FIXME:
2259 This test is fragile. */
2260 continue;
2261 }
2262 if ((elf_section_data (o->output_section)->this_hdr.sh_type
2263 != SHT_STRTAB)
2264 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
2265 {
2266 if (! bfd_set_section_contents (abfd, o->output_section,
2267 o->contents, o->output_offset,
2268 o->_raw_size))
2269 goto error_return;
2270 }
2271 else
2272 {
2273 file_ptr off;
2274
2275 /* The contents of the .dynstr section are actually in a
2276 stringtab. */
2277 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
2278 if (bfd_seek (abfd, off, SEEK_SET) != 0
2279 || ! _bfd_stringtab_emit (abfd,
2280 elf_hash_table (info)->dynstr))
2281 goto error_return;
2282 }
2283 }
2284 }
2285
2286 if (finfo.symstrtab != NULL)
2287 _bfd_stringtab_free (finfo.symstrtab);
2288 if (finfo.contents != NULL)
2289 free (finfo.contents);
2290 if (finfo.external_relocs != NULL)
2291 free (finfo.external_relocs);
2292 if (finfo.internal_relocs != NULL)
2293 free (finfo.internal_relocs);
2294 if (finfo.external_syms != NULL)
2295 free (finfo.external_syms);
2296 if (finfo.internal_syms != NULL)
2297 free (finfo.internal_syms);
2298 if (finfo.indices != NULL)
2299 free (finfo.indices);
2300 if (finfo.sections != NULL)
2301 free (finfo.sections);
2302 if (finfo.symbuf != NULL)
2303 free (finfo.symbuf);
2304 for (o = abfd->sections; o != NULL; o = o->next)
2305 {
2306 if ((o->flags & SEC_RELOC) != 0
2307 && elf_section_data (o)->rel_hashes != NULL)
2308 free (elf_section_data (o)->rel_hashes);
2309 }
2310
2311 elf_tdata (abfd)->linker = true;
2312
2313 return true;
2314
2315 error_return:
2316 if (finfo.symstrtab != NULL)
2317 _bfd_stringtab_free (finfo.symstrtab);
2318 if (finfo.contents != NULL)
2319 free (finfo.contents);
2320 if (finfo.external_relocs != NULL)
2321 free (finfo.external_relocs);
2322 if (finfo.internal_relocs != NULL)
2323 free (finfo.internal_relocs);
2324 if (finfo.external_syms != NULL)
2325 free (finfo.external_syms);
2326 if (finfo.internal_syms != NULL)
2327 free (finfo.internal_syms);
2328 if (finfo.indices != NULL)
2329 free (finfo.indices);
2330 if (finfo.sections != NULL)
2331 free (finfo.sections);
2332 if (finfo.symbuf != NULL)
2333 free (finfo.symbuf);
2334 for (o = abfd->sections; o != NULL; o = o->next)
2335 {
2336 if ((o->flags & SEC_RELOC) != 0
2337 && elf_section_data (o)->rel_hashes != NULL)
2338 free (elf_section_data (o)->rel_hashes);
2339 }
2340
2341 return false;
2342}
2343
2344/* Add a symbol to the output symbol table. */
2345
2346static boolean
2347elf_link_output_sym (finfo, name, elfsym, input_sec)
2348 struct elf_final_link_info *finfo;
2349 const char *name;
2350 Elf_Internal_Sym *elfsym;
2351 asection *input_sec;
2352{
2353 boolean (*output_symbol_hook) PARAMS ((bfd *,
2354 struct bfd_link_info *info,
2355 const char *,
2356 Elf_Internal_Sym *,
2357 asection *));
2358
2359 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
2360 elf_backend_link_output_symbol_hook;
2361 if (output_symbol_hook != NULL)
2362 {
2363 if (! ((*output_symbol_hook)
2364 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
2365 return false;
2366 }
2367
2368 if (name == (const char *) NULL || *name == '\0')
2369 elfsym->st_name = 0;
2370 else
2371 {
2372 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
2373 name, true,
2374 false);
2375 if (elfsym->st_name == (unsigned long) -1)
2376 return false;
2377 }
2378
2379 if (finfo->symbuf_count >= finfo->symbuf_size)
2380 {
2381 if (! elf_link_flush_output_syms (finfo))
2382 return false;
2383 }
2384
2385 elf_swap_symbol_out (finfo->output_bfd, elfsym,
cf9fb9f2 2386 (PTR) (finfo->symbuf + finfo->symbuf_count));
ede4eed4
KR
2387 ++finfo->symbuf_count;
2388
2389 ++finfo->output_bfd->symcount;
2390
2391 return true;
2392}
2393
2394/* Flush the output symbols to the file. */
2395
2396static boolean
2397elf_link_flush_output_syms (finfo)
2398 struct elf_final_link_info *finfo;
2399{
2400 Elf_Internal_Shdr *symtab;
2401
2402 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
2403
2404 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
2405 SEEK_SET) != 0
2406 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
2407 sizeof (Elf_External_Sym), finfo->output_bfd)
2408 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
2409 return false;
2410
2411 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
2412
2413 finfo->symbuf_count = 0;
2414
2415 return true;
2416}
2417
2418/* Add an external symbol to the symbol table. This is called from
2419 the hash table traversal routine. */
2420
2421static boolean
2422elf_link_output_extsym (h, data)
2423 struct elf_link_hash_entry *h;
2424 PTR data;
2425{
2426 struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
2427 struct elf_final_link_info *finfo = eif->finfo;
2428 boolean strip;
2429 Elf_Internal_Sym sym;
2430 asection *input_sec;
2431
2432 /* If we are not creating a shared library, and this symbol is
2433 referenced by a shared library but is not defined anywhere, then
2434 warn that it is undefined. If we do not do this, the runtime
2435 linker will complain that the symbol is undefined when the
2436 program is run. We don't have to worry about symbols that are
2437 referenced by regular files, because we will already have issued
2438 warnings for them. */
2439 if (! finfo->info->relocateable
2440 && ! finfo->info->shared
2441 && h->root.type == bfd_link_hash_undefined
2442 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
2443 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2444 {
2445 if (! ((*finfo->info->callbacks->undefined_symbol)
2446 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
2447 (asection *) NULL, 0)))
2448 {
2449 eif->failed = true;
2450 return false;
2451 }
2452 }
2453
2454 /* We don't want to output symbols that have never been mentioned by
2455 a regular file, or that we have been told to strip. However, if
2456 h->indx is set to -2, the symbol is used by a reloc and we must
2457 output it. */
2458 if (h->indx == -2)
2459 strip = false;
2460 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2461 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
2462 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2463 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2464 strip = true;
2465 else if (finfo->info->strip == strip_all
2466 || (finfo->info->strip == strip_some
2467 && bfd_hash_lookup (finfo->info->keep_hash,
2468 h->root.root.string,
2469 false, false) == NULL))
2470 strip = true;
2471 else
2472 strip = false;
2473
2474 /* If we're stripping it, and it's not a dynamic symbol, there's
2475 nothing else to do. */
2476 if (strip && h->dynindx == -1)
2477 return true;
2478
2479 sym.st_value = 0;
2480 sym.st_size = h->size;
2481 sym.st_other = 0;
2482 if (h->root.type == bfd_link_hash_undefweak
2483 || h->root.type == bfd_link_hash_defweak)
2484 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
2485 else
2486 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
2487
2488 switch (h->root.type)
2489 {
2490 default:
2491 case bfd_link_hash_new:
2492 abort ();
2493 return false;
2494
2495 case bfd_link_hash_undefined:
2496 input_sec = bfd_und_section_ptr;
2497 sym.st_shndx = SHN_UNDEF;
2498 break;
2499
2500 case bfd_link_hash_undefweak:
2501 input_sec = bfd_und_section_ptr;
2502 sym.st_shndx = SHN_UNDEF;
2503 break;
2504
2505 case bfd_link_hash_defined:
2506 case bfd_link_hash_defweak:
2507 {
2508 input_sec = h->root.u.def.section;
2509 if (input_sec->output_section != NULL)
2510 {
2511 sym.st_shndx =
2512 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
2513 input_sec->output_section);
2514 if (sym.st_shndx == (unsigned short) -1)
2515 {
2516 eif->failed = true;
2517 return false;
2518 }
2519
2520 /* ELF symbols in relocateable files are section relative,
2521 but in nonrelocateable files they are virtual
2522 addresses. */
2523 sym.st_value = h->root.u.def.value + input_sec->output_offset;
2524 if (! finfo->info->relocateable)
2525 sym.st_value += input_sec->output_section->vma;
2526 }
2527 else
2528 {
2529 BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
2530 == bfd_target_elf_flavour)
2531 && elf_elfheader (input_sec->owner)->e_type == ET_DYN);
2532 sym.st_shndx = SHN_UNDEF;
2533 input_sec = bfd_und_section_ptr;
2534 }
2535 }
2536 break;
2537
2538 case bfd_link_hash_common:
2539 input_sec = bfd_com_section_ptr;
2540 sym.st_shndx = SHN_COMMON;
2541 sym.st_value = 1 << h->root.u.c.p->alignment_power;
2542 break;
2543
2544 case bfd_link_hash_indirect:
2545 case bfd_link_hash_warning:
0cb70568
ILT
2546 return (elf_link_output_extsym
2547 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
ede4eed4
KR
2548 }
2549
2550 /* If this symbol should be put in the .dynsym section, then put it
2551 there now. We have already know the symbol index. We also fill
2552 in the entry in the .hash section. */
2553 if (h->dynindx != -1
2554 && elf_hash_table (finfo->info)->dynamic_sections_created)
2555 {
2556 struct elf_backend_data *bed;
2557 size_t bucketcount;
2558 size_t bucket;
2559 bfd_byte *bucketpos;
2560 bfd_vma chain;
2561
2562 sym.st_name = h->dynstr_index;
2563
2564 /* Give the processor backend a chance to tweak the symbol
2565 value, and also to finish up anything that needs to be done
2566 for this symbol. */
2567 bed = get_elf_backend_data (finfo->output_bfd);
2568 if (! ((*bed->elf_backend_finish_dynamic_symbol)
2569 (finfo->output_bfd, finfo->info, h, &sym)))
2570 {
2571 eif->failed = true;
2572 return false;
2573 }
2574
2575 elf_swap_symbol_out (finfo->output_bfd, &sym,
cf9fb9f2
ILT
2576 (PTR) (((Elf_External_Sym *)
2577 finfo->dynsym_sec->contents)
2578 + h->dynindx));
ede4eed4
KR
2579
2580 bucketcount = elf_hash_table (finfo->info)->bucketcount;
2581 bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
2582 % bucketcount);
2583 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
2584 + (bucket + 2) * (ARCH_SIZE / 8));
2585 chain = get_word (finfo->output_bfd, bucketpos);
2586 put_word (finfo->output_bfd, h->dynindx, bucketpos);
2587 put_word (finfo->output_bfd, chain,
2588 ((bfd_byte *) finfo->hash_sec->contents
2589 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
2590 }
2591
2592 /* If we're stripping it, then it was just a dynamic symbol, and
2593 there's nothing else to do. */
2594 if (strip)
2595 return true;
2596
2597 h->indx = finfo->output_bfd->symcount;
2598
2599 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
2600 {
2601 eif->failed = true;
2602 return false;
2603 }
2604
2605 return true;
2606}
2607
2608/* Link an input file into the linker output file. This function
2609 handles all the sections and relocations of the input file at once.
2610 This is so that we only have to read the local symbols once, and
2611 don't have to keep them in memory. */
2612
2613static boolean
2614elf_link_input_bfd (finfo, input_bfd)
2615 struct elf_final_link_info *finfo;
2616 bfd *input_bfd;
2617{
2618 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
2619 bfd *, asection *, bfd_byte *,
2620 Elf_Internal_Rela *,
2621 Elf_Internal_Sym *, asection **));
2622 bfd *output_bfd;
2623 Elf_Internal_Shdr *symtab_hdr;
2624 size_t locsymcount;
2625 size_t extsymoff;
2626 Elf_External_Sym *esym;
2627 Elf_External_Sym *esymend;
2628 Elf_Internal_Sym *isym;
2629 long *pindex;
2630 asection **ppsection;
2631 asection *o;
2632
2633 output_bfd = finfo->output_bfd;
2634 relocate_section =
2635 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
2636
2637 /* If this is a dynamic object, we don't want to do anything here:
2638 we don't want the local symbols, and we don't want the section
2639 contents. */
2640 if (elf_elfheader (input_bfd)->e_type == ET_DYN)
2641 return true;
2642
2643 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2644 if (elf_bad_symtab (input_bfd))
2645 {
2646 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
2647 extsymoff = 0;
2648 }
2649 else
2650 {
2651 locsymcount = symtab_hdr->sh_info;
2652 extsymoff = symtab_hdr->sh_info;
2653 }
2654
2655 /* Read the local symbols. */
2656 if (locsymcount > 0
2657 && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2658 || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym),
2659 locsymcount, input_bfd)
2660 != locsymcount * sizeof (Elf_External_Sym))))
2661 return false;
2662
2663 /* Swap in the local symbols and write out the ones which we know
2664 are going into the output file. */
2665 esym = finfo->external_syms;
2666 esymend = esym + locsymcount;
2667 isym = finfo->internal_syms;
2668 pindex = finfo->indices;
2669 ppsection = finfo->sections;
2670 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
2671 {
2672 asection *isec;
2673 const char *name;
2674 Elf_Internal_Sym osym;
2675
2676 elf_swap_symbol_in (input_bfd, esym, isym);
2677 *pindex = -1;
2678
2679 if (elf_bad_symtab (input_bfd))
2680 {
2681 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
2682 {
2683 *ppsection = NULL;
2684 continue;
2685 }
2686 }
2687
2688 if (isym->st_shndx == SHN_UNDEF)
2689 isec = bfd_und_section_ptr;
2690 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
2691 isec = section_from_elf_index (input_bfd, isym->st_shndx);
2692 else if (isym->st_shndx == SHN_ABS)
2693 isec = bfd_abs_section_ptr;
2694 else if (isym->st_shndx == SHN_COMMON)
2695 isec = bfd_com_section_ptr;
2696 else
2697 {
2698 /* Who knows? */
2699 isec = NULL;
2700 }
2701
2702 *ppsection = isec;
2703
2704 /* Don't output the first, undefined, symbol. */
2705 if (esym == finfo->external_syms)
2706 continue;
2707
2708 /* If we are stripping all symbols, we don't want to output this
2709 one. */
2710 if (finfo->info->strip == strip_all)
2711 continue;
2712
2713 /* We never output section symbols. Instead, we use the section
2714 symbol of the corresponding section in the output file. */
2715 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
2716 continue;
2717
2718 /* If we are discarding all local symbols, we don't want to
2719 output this one. If we are generating a relocateable output
2720 file, then some of the local symbols may be required by
2721 relocs; we output them below as we discover that they are
2722 needed. */
2723 if (finfo->info->discard == discard_all)
2724 continue;
2725
2726 /* Get the name of the symbol. */
2727 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
2728 isym->st_name);
2729 if (name == NULL)
2730 return false;
2731
2732 /* See if we are discarding symbols with this name. */
2733 if ((finfo->info->strip == strip_some
2734 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
2735 == NULL))
2736 || (finfo->info->discard == discard_l
2737 && strncmp (name, finfo->info->lprefix,
2738 finfo->info->lprefix_len) == 0))
2739 continue;
2740
2741 /* If we get here, we are going to output this symbol. */
2742
2743 osym = *isym;
2744
2745 /* Adjust the section index for the output file. */
2746 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
2747 isec->output_section);
2748 if (osym.st_shndx == (unsigned short) -1)
2749 return false;
2750
2751 *pindex = output_bfd->symcount;
2752
2753 /* ELF symbols in relocateable files are section relative, but
2754 in executable files they are virtual addresses. Note that
2755 this code assumes that all ELF sections have an associated
2756 BFD section with a reasonable value for output_offset; below
2757 we assume that they also have a reasonable value for
2758 output_section. Any special sections must be set up to meet
2759 these requirements. */
2760 osym.st_value += isec->output_offset;
2761 if (! finfo->info->relocateable)
2762 osym.st_value += isec->output_section->vma;
2763
2764 if (! elf_link_output_sym (finfo, name, &osym, isec))
2765 return false;
2766 }
2767
2768 /* Relocate the contents of each section. */
2769 for (o = input_bfd->sections; o != NULL; o = o->next)
2770 {
2771 if ((o->flags & SEC_HAS_CONTENTS) == 0)
2772 continue;
2773
2774 if ((o->flags & SEC_IN_MEMORY) != 0
2775 && input_bfd == elf_hash_table (finfo->info)->dynobj)
2776 {
2777 /* Section was created by elf_link_create_dynamic_sections.
2778 FIXME: This test is fragile. */
2779 continue;
2780 }
2781
2782 /* Read the contents of the section. */
2783 if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
2784 (file_ptr) 0, o->_raw_size))
2785 return false;
2786
2787 if ((o->flags & SEC_RELOC) != 0)
2788 {
2789 Elf_Internal_Rela *internal_relocs;
2790
2791 /* Get the swapped relocs. */
2792 internal_relocs = elf_link_read_relocs (input_bfd, o,
2793 finfo->external_relocs,
2794 finfo->internal_relocs,
2795 false);
2796 if (internal_relocs == NULL
2797 && o->reloc_count > 0)
2798 return false;
2799
2800 /* Relocate the section by invoking a back end routine.
2801
2802 The back end routine is responsible for adjusting the
2803 section contents as necessary, and (if using Rela relocs
2804 and generating a relocateable output file) adjusting the
2805 reloc addend as necessary.
2806
2807 The back end routine does not have to worry about setting
2808 the reloc address or the reloc symbol index.
2809
2810 The back end routine is given a pointer to the swapped in
2811 internal symbols, and can access the hash table entries
2812 for the external symbols via elf_sym_hashes (input_bfd).
2813
2814 When generating relocateable output, the back end routine
2815 must handle STB_LOCAL/STT_SECTION symbols specially. The
2816 output symbol is going to be a section symbol
2817 corresponding to the output section, which will require
2818 the addend to be adjusted. */
2819
2820 if (! (*relocate_section) (output_bfd, finfo->info,
2821 input_bfd, o,
2822 finfo->contents,
2823 internal_relocs,
2824 finfo->internal_syms,
2825 finfo->sections))
2826 return false;
2827
2828 if (finfo->info->relocateable)
2829 {
2830 Elf_Internal_Rela *irela;
2831 Elf_Internal_Rela *irelaend;
2832 struct elf_link_hash_entry **rel_hash;
2833 Elf_Internal_Shdr *input_rel_hdr;
2834 Elf_Internal_Shdr *output_rel_hdr;
2835
2836 /* Adjust the reloc addresses and symbol indices. */
2837
2838 irela = internal_relocs;
2839 irelaend = irela + o->reloc_count;
2840 rel_hash = (elf_section_data (o->output_section)->rel_hashes
2841 + o->output_section->reloc_count);
2842 for (; irela < irelaend; irela++, rel_hash++)
2843 {
ae115e51 2844 unsigned long r_symndx;
ede4eed4
KR
2845 Elf_Internal_Sym *isym;
2846 asection *sec;
2847
2848 irela->r_offset += o->output_offset;
2849
2850 r_symndx = ELF_R_SYM (irela->r_info);
2851
2852 if (r_symndx == 0)
2853 continue;
2854
2855 if (r_symndx >= locsymcount
2856 || (elf_bad_symtab (input_bfd)
2857 && finfo->sections[r_symndx] == NULL))
2858 {
2859 long indx;
2860
2861 /* This is a reloc against a global symbol. We
2862 have not yet output all the local symbols, so
2863 we do not know the symbol index of any global
2864 symbol. We set the rel_hash entry for this
2865 reloc to point to the global hash table entry
2866 for this symbol. The symbol index is then
2867 set at the end of elf_bfd_final_link. */
2868 indx = r_symndx - extsymoff;
2869 *rel_hash = elf_sym_hashes (input_bfd)[indx];
2870
2871 /* Setting the index to -2 tells
2872 elf_link_output_extsym that this symbol is
2873 used by a reloc. */
2874 BFD_ASSERT ((*rel_hash)->indx < 0);
2875 (*rel_hash)->indx = -2;
2876
2877 continue;
2878 }
2879
2880 /* This is a reloc against a local symbol. */
2881
2882 *rel_hash = NULL;
2883 isym = finfo->internal_syms + r_symndx;
2884 sec = finfo->sections[r_symndx];
2885 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
2886 {
2887 /* I suppose the backend ought to fill in the
2888 section of any STT_SECTION symbol against a
2889 processor specific section. */
2890 if (sec != NULL && bfd_is_abs_section (sec))
2891 r_symndx = 0;
2892 else if (sec == NULL || sec->owner == NULL)
2893 {
2894 bfd_set_error (bfd_error_bad_value);
2895 return false;
2896 }
2897 else
2898 {
2899 r_symndx = sec->output_section->target_index;
2900 BFD_ASSERT (r_symndx != 0);
2901 }
2902 }
2903 else
2904 {
2905 if (finfo->indices[r_symndx] == -1)
2906 {
2907 unsigned long link;
2908 const char *name;
2909 asection *osec;
2910
2911 if (finfo->info->strip == strip_all)
2912 {
2913 /* You can't do ld -r -s. */
2914 bfd_set_error (bfd_error_invalid_operation);
2915 return false;
2916 }
2917
2918 /* This symbol was skipped earlier, but
2919 since it is needed by a reloc, we
2920 must output it now. */
2921 link = symtab_hdr->sh_link;
2922 name = bfd_elf_string_from_elf_section (input_bfd,
2923 link,
2924 isym->st_name);
2925 if (name == NULL)
2926 return false;
2927
2928 osec = sec->output_section;
2929 isym->st_shndx =
2930 _bfd_elf_section_from_bfd_section (output_bfd,
2931 osec);
2932 if (isym->st_shndx == (unsigned short) -1)
2933 return false;
2934
2935 isym->st_value += sec->output_offset;
2936 if (! finfo->info->relocateable)
2937 isym->st_value += osec->vma;
2938
2939 finfo->indices[r_symndx] = output_bfd->symcount;
2940
2941 if (! elf_link_output_sym (finfo, name, isym, sec))
2942 return false;
2943 }
2944
2945 r_symndx = finfo->indices[r_symndx];
2946 }
2947
2948 irela->r_info = ELF_R_INFO (r_symndx,
2949 ELF_R_TYPE (irela->r_info));
2950 }
2951
2952 /* Swap out the relocs. */
2953 input_rel_hdr = &elf_section_data (o)->rel_hdr;
2954 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
2955 BFD_ASSERT (output_rel_hdr->sh_entsize
2956 == input_rel_hdr->sh_entsize);
2957 irela = internal_relocs;
2958 irelaend = irela + o->reloc_count;
2959 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2960 {
2961 Elf_External_Rel *erel;
2962
2963 erel = ((Elf_External_Rel *) output_rel_hdr->contents
2964 + o->output_section->reloc_count);
2965 for (; irela < irelaend; irela++, erel++)
2966 {
2967 Elf_Internal_Rel irel;
2968
2969 irel.r_offset = irela->r_offset;
2970 irel.r_info = irela->r_info;
2971 BFD_ASSERT (irela->r_addend == 0);
2972 elf_swap_reloc_out (output_bfd, &irel, erel);
2973 }
2974 }
2975 else
2976 {
2977 Elf_External_Rela *erela;
2978
2979 BFD_ASSERT (input_rel_hdr->sh_entsize
2980 == sizeof (Elf_External_Rela));
2981 erela = ((Elf_External_Rela *) output_rel_hdr->contents
2982 + o->output_section->reloc_count);
2983 for (; irela < irelaend; irela++, erela++)
2984 elf_swap_reloca_out (output_bfd, irela, erela);
2985 }
2986
2987 o->output_section->reloc_count += o->reloc_count;
2988 }
2989 }
2990
2991 /* Write out the modified section contents. */
2992 if (! bfd_set_section_contents (output_bfd, o->output_section,
2993 finfo->contents, o->output_offset,
2994 (o->_cooked_size != 0
2995 ? o->_cooked_size
2996 : o->_raw_size)))
2997 return false;
2998 }
2999
3000 return true;
3001}
3002
3003/* Generate a reloc when linking an ELF file. This is a reloc
3004 requested by the linker, and does come from any input file. This
3005 is used to build constructor and destructor tables when linking
3006 with -Ur. */
3007
3008static boolean
3009elf_reloc_link_order (output_bfd, info, output_section, link_order)
3010 bfd *output_bfd;
3011 struct bfd_link_info *info;
3012 asection *output_section;
3013 struct bfd_link_order *link_order;
3014{
3015 reloc_howto_type *howto;
3016 long indx;
3017 bfd_vma offset;
3018 struct elf_link_hash_entry **rel_hash_ptr;
3019 Elf_Internal_Shdr *rel_hdr;
3020
3021 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
3022 if (howto == NULL)
3023 {
3024 bfd_set_error (bfd_error_bad_value);
3025 return false;
3026 }
3027
3028 /* If this is an inplace reloc, we must write the addend into the
3029 object file. */
3030 if (howto->partial_inplace
3031 && link_order->u.reloc.p->addend != 0)
3032 {
3033 bfd_size_type size;
3034 bfd_reloc_status_type rstat;
3035 bfd_byte *buf;
3036 boolean ok;
3037
3038 size = bfd_get_reloc_size (howto);
3039 buf = (bfd_byte *) bfd_zmalloc (size);
3040 if (buf == (bfd_byte *) NULL)
3041 {
3042 bfd_set_error (bfd_error_no_memory);
3043 return false;
3044 }
3045 rstat = _bfd_relocate_contents (howto, output_bfd,
3046 link_order->u.reloc.p->addend, buf);
3047 switch (rstat)
3048 {
3049 case bfd_reloc_ok:
3050 break;
3051 default:
3052 case bfd_reloc_outofrange:
3053 abort ();
3054 case bfd_reloc_overflow:
3055 if (! ((*info->callbacks->reloc_overflow)
3056 (info,
3057 (link_order->type == bfd_section_reloc_link_order
3058 ? bfd_section_name (output_bfd,
3059 link_order->u.reloc.p->u.section)
3060 : link_order->u.reloc.p->u.name),
3061 howto->name, link_order->u.reloc.p->addend,
3062 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
3063 {
3064 free (buf);
3065 return false;
3066 }
3067 break;
3068 }
3069 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
3070 (file_ptr) link_order->offset, size);
3071 free (buf);
3072 if (! ok)
3073 return false;
3074 }
3075
3076 /* Figure out the symbol index. */
3077 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
3078 + output_section->reloc_count);
3079 if (link_order->type == bfd_section_reloc_link_order)
3080 {
3081 indx = link_order->u.reloc.p->u.section->target_index;
3082 BFD_ASSERT (indx != 0);
3083 *rel_hash_ptr = NULL;
3084 }
3085 else
3086 {
3087 struct elf_link_hash_entry *h;
3088
3089 h = elf_link_hash_lookup (elf_hash_table (info),
3090 link_order->u.reloc.p->u.name,
3091 false, false, true);
3092 if (h != NULL)
3093 {
3094 /* Setting the index to -2 tells elf_link_output_extsym that
3095 this symbol is used by a reloc. */
3096 h->indx = -2;
3097 *rel_hash_ptr = h;
3098 indx = 0;
3099 }
3100 else
3101 {
3102 if (! ((*info->callbacks->unattached_reloc)
3103 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
3104 (asection *) NULL, (bfd_vma) 0)))
3105 return false;
3106 indx = 0;
3107 }
3108 }
3109
3110 /* The address of a reloc is relative to the section in a
3111 relocateable file, and is a virtual address in an executable
3112 file. */
3113 offset = link_order->offset;
3114 if (! info->relocateable)
3115 offset += output_section->vma;
3116
3117 rel_hdr = &elf_section_data (output_section)->rel_hdr;
3118
3119 if (rel_hdr->sh_type == SHT_REL)
3120 {
3121 Elf_Internal_Rel irel;
3122 Elf_External_Rel *erel;
3123
3124 irel.r_offset = offset;
3125 irel.r_info = ELF_R_INFO (indx, howto->type);
3126 erel = ((Elf_External_Rel *) rel_hdr->contents
3127 + output_section->reloc_count);
3128 elf_swap_reloc_out (output_bfd, &irel, erel);
3129 }
3130 else
3131 {
3132 Elf_Internal_Rela irela;
3133 Elf_External_Rela *erela;
3134
3135 irela.r_offset = offset;
3136 irela.r_info = ELF_R_INFO (indx, howto->type);
3137 irela.r_addend = link_order->u.reloc.p->addend;
3138 erela = ((Elf_External_Rela *) rel_hdr->contents
3139 + output_section->reloc_count);
3140 elf_swap_reloca_out (output_bfd, &irela, erela);
3141 }
3142
3143 ++output_section->reloc_count;
3144
3145 return true;
3146}
3147
This page took 0.169918 seconds and 4 git commands to generate.