2000-03-01 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132 1/* ELF linker support.
2bd171e0 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
252b5132
RH
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
51static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
53static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
55static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
31367b81
MM
59static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
252b5132
RH
62
63/* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66boolean
67elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70{
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81}
82\f
48dfb430
NC
83/* Return true iff this is a non-common definition of a symbol. */
84static boolean
85is_global_symbol_definition (abfd, sym)
86 bfd * abfd;
87 Elf_Internal_Sym * sym;
88{
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116}
117
118
a3a8c91d
NC
119/* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122static boolean
123elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126{
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
48dfb430
NC
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
a3a8c91d
NC
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
48dfb430 205 result = is_global_symbol_definition (abfd, & sym);
a3a8c91d
NC
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213}
214\f
252b5132
RH
215
216/* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241static boolean
242elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245{
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
a3a8c91d
NC
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
252b5132
RH
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
360
361 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
362 if (element == (bfd *) NULL)
363 goto error_return;
364
365 if (! bfd_check_format (element, bfd_object))
366 goto error_return;
367
368 /* Doublecheck that we have not included this object
369 already--it should be impossible, but there may be
370 something wrong with the archive. */
371 if (element->archive_pass != 0)
372 {
373 bfd_set_error (bfd_error_bad_value);
374 goto error_return;
375 }
376 element->archive_pass = 1;
377
378 undefs_tail = info->hash->undefs_tail;
379
380 if (! (*info->callbacks->add_archive_element) (info, element,
381 symdef->name))
382 goto error_return;
383 if (! elf_link_add_object_symbols (element, info))
384 goto error_return;
385
386 /* If there are any new undefined symbols, we need to make
387 another pass through the archive in order to see whether
388 they can be defined. FIXME: This isn't perfect, because
389 common symbols wind up on undefs_tail and because an
390 undefined symbol which is defined later on in this pass
391 does not require another pass. This isn't a bug, but it
392 does make the code less efficient than it could be. */
393 if (undefs_tail != info->hash->undefs_tail)
394 loop = true;
395
396 /* Look backward to mark all symbols from this object file
397 which we have already seen in this pass. */
398 mark = i;
399 do
400 {
401 included[mark] = true;
402 if (mark == 0)
403 break;
404 --mark;
405 }
406 while (symdefs[mark].file_offset == symdef->file_offset);
407
408 /* We mark subsequent symbols from this object file as we go
409 on through the loop. */
410 last = symdef->file_offset;
411 }
412 }
413 while (loop);
414
415 free (defined);
416 free (included);
417
418 return true;
419
420 error_return:
421 if (defined != (boolean *) NULL)
422 free (defined);
423 if (included != (boolean *) NULL)
424 free (included);
425 return false;
426}
427
428/* This function is called when we want to define a new symbol. It
429 handles the various cases which arise when we find a definition in
430 a dynamic object, or when there is already a definition in a
431 dynamic object. The new symbol is described by NAME, SYM, PSEC,
432 and PVALUE. We set SYM_HASH to the hash table entry. We set
433 OVERRIDE if the old symbol is overriding a new definition. We set
434 TYPE_CHANGE_OK if it is OK for the type to change. We set
435 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
436 change, we mean that we shouldn't warn if the type or size does
437 change. */
438
439static boolean
440elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
441 override, type_change_ok, size_change_ok)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
452{
453 asection *sec;
454 struct elf_link_hash_entry *h;
455 int bind;
456 bfd *oldbfd;
457 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
458
459 *override = false;
460
461 sec = *psec;
462 bind = ELF_ST_BIND (sym->st_info);
463
464 if (! bfd_is_und_section (sec))
465 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
466 else
467 h = ((struct elf_link_hash_entry *)
468 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
469 if (h == NULL)
470 return false;
471 *sym_hash = h;
472
473 /* This code is for coping with dynamic objects, and is only useful
474 if we are doing an ELF link. */
475 if (info->hash->creator != abfd->xvec)
476 return true;
477
478 /* For merging, we only care about real symbols. */
479
480 while (h->root.type == bfd_link_hash_indirect
481 || h->root.type == bfd_link_hash_warning)
482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
483
484 /* If we just created the symbol, mark it as being an ELF symbol.
485 Other than that, there is nothing to do--there is no merge issue
486 with a newly defined symbol--so we just return. */
487
488 if (h->root.type == bfd_link_hash_new)
489 {
490 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
491 return true;
492 }
493
494 /* OLDBFD is a BFD associated with the existing symbol. */
495
496 switch (h->root.type)
497 {
498 default:
499 oldbfd = NULL;
500 break;
501
502 case bfd_link_hash_undefined:
503 case bfd_link_hash_undefweak:
504 oldbfd = h->root.u.undef.abfd;
505 break;
506
507 case bfd_link_hash_defined:
508 case bfd_link_hash_defweak:
509 oldbfd = h->root.u.def.section->owner;
510 break;
511
512 case bfd_link_hash_common:
513 oldbfd = h->root.u.c.p->section->owner;
514 break;
515 }
516
b4536acd
ILT
517 /* In cases involving weak versioned symbols, we may wind up trying
518 to merge a symbol with itself. Catch that here, to avoid the
519 confusion that results if we try to override a symbol with
accc7f69
ILT
520 itself. The additional tests catch cases like
521 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
522 dynamic object, which we do want to handle here. */
523 if (abfd == oldbfd
524 && ((abfd->flags & DYNAMIC) == 0
525 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
526 return true;
527
252b5132
RH
528 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
529 respectively, is from a dynamic object. */
530
531 if ((abfd->flags & DYNAMIC) != 0)
532 newdyn = true;
533 else
534 newdyn = false;
535
0035bd7b
ILT
536 if (oldbfd != NULL)
537 olddyn = (oldbfd->flags & DYNAMIC) != 0;
252b5132 538 else
0035bd7b
ILT
539 {
540 asection *hsec;
541
542 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
543 indices used by MIPS ELF. */
544 switch (h->root.type)
545 {
546 default:
547 hsec = NULL;
548 break;
549
550 case bfd_link_hash_defined:
551 case bfd_link_hash_defweak:
552 hsec = h->root.u.def.section;
553 break;
554
555 case bfd_link_hash_common:
556 hsec = h->root.u.c.p->section;
557 break;
558 }
559
560 if (hsec == NULL)
561 olddyn = false;
562 else
563 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
564 }
252b5132
RH
565
566 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
567 respectively, appear to be a definition rather than reference. */
568
569 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
570 newdef = false;
571 else
572 newdef = true;
573
574 if (h->root.type == bfd_link_hash_undefined
575 || h->root.type == bfd_link_hash_undefweak
576 || h->root.type == bfd_link_hash_common)
577 olddef = false;
578 else
579 olddef = true;
580
581 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
582 symbol, respectively, appears to be a common symbol in a dynamic
583 object. If a symbol appears in an uninitialized section, and is
584 not weak, and is not a function, then it may be a common symbol
585 which was resolved when the dynamic object was created. We want
586 to treat such symbols specially, because they raise special
587 considerations when setting the symbol size: if the symbol
588 appears as a common symbol in a regular object, and the size in
589 the regular object is larger, we must make sure that we use the
590 larger size. This problematic case can always be avoided in C,
591 but it must be handled correctly when using Fortran shared
592 libraries.
593
594 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
595 likewise for OLDDYNCOMMON and OLDDEF.
596
597 Note that this test is just a heuristic, and that it is quite
598 possible to have an uninitialized symbol in a shared object which
599 is really a definition, rather than a common symbol. This could
600 lead to some minor confusion when the symbol really is a common
601 symbol in some regular object. However, I think it will be
602 harmless. */
603
604 if (newdyn
605 && newdef
606 && (sec->flags & SEC_ALLOC) != 0
607 && (sec->flags & SEC_LOAD) == 0
608 && sym->st_size > 0
609 && bind != STB_WEAK
610 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
611 newdyncommon = true;
612 else
613 newdyncommon = false;
614
615 if (olddyn
616 && olddef
617 && h->root.type == bfd_link_hash_defined
618 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
619 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
620 && (h->root.u.def.section->flags & SEC_LOAD) == 0
621 && h->size > 0
622 && h->type != STT_FUNC)
623 olddyncommon = true;
624 else
625 olddyncommon = false;
626
627 /* It's OK to change the type if either the existing symbol or the
628 new symbol is weak. */
629
630 if (h->root.type == bfd_link_hash_defweak
631 || h->root.type == bfd_link_hash_undefweak
632 || bind == STB_WEAK)
633 *type_change_ok = true;
634
635 /* It's OK to change the size if either the existing symbol or the
636 new symbol is weak, or if the old symbol is undefined. */
637
638 if (*type_change_ok
639 || h->root.type == bfd_link_hash_undefined)
640 *size_change_ok = true;
641
642 /* If both the old and the new symbols look like common symbols in a
643 dynamic object, set the size of the symbol to the larger of the
644 two. */
645
646 if (olddyncommon
647 && newdyncommon
648 && sym->st_size != h->size)
649 {
650 /* Since we think we have two common symbols, issue a multiple
651 common warning if desired. Note that we only warn if the
652 size is different. If the size is the same, we simply let
653 the old symbol override the new one as normally happens with
654 symbols defined in dynamic objects. */
655
656 if (! ((*info->callbacks->multiple_common)
657 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
658 h->size, abfd, bfd_link_hash_common, sym->st_size)))
659 return false;
660
661 if (sym->st_size > h->size)
662 h->size = sym->st_size;
663
664 *size_change_ok = true;
665 }
666
667 /* If we are looking at a dynamic object, and we have found a
668 definition, we need to see if the symbol was already defined by
669 some other object. If so, we want to use the existing
670 definition, and we do not want to report a multiple symbol
671 definition error; we do this by clobbering *PSEC to be
672 bfd_und_section_ptr.
673
674 We treat a common symbol as a definition if the symbol in the
675 shared library is a function, since common symbols always
676 represent variables; this can cause confusion in principle, but
677 any such confusion would seem to indicate an erroneous program or
678 shared library. We also permit a common symbol in a regular
0525d26e
ILT
679 object to override a weak symbol in a shared object.
680
681 We prefer a non-weak definition in a shared library to a weak
682 definition in the executable. */
252b5132
RH
683
684 if (newdyn
685 && newdef
686 && (olddef
687 || (h->root.type == bfd_link_hash_common
688 && (bind == STB_WEAK
0525d26e
ILT
689 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
690 && (h->root.type != bfd_link_hash_defweak
691 || bind == STB_WEAK))
252b5132
RH
692 {
693 *override = true;
694 newdef = false;
695 newdyncommon = false;
696
697 *psec = sec = bfd_und_section_ptr;
698 *size_change_ok = true;
699
700 /* If we get here when the old symbol is a common symbol, then
701 we are explicitly letting it override a weak symbol or
702 function in a dynamic object, and we don't want to warn about
703 a type change. If the old symbol is a defined symbol, a type
704 change warning may still be appropriate. */
705
706 if (h->root.type == bfd_link_hash_common)
707 *type_change_ok = true;
708 }
709
710 /* Handle the special case of an old common symbol merging with a
711 new symbol which looks like a common symbol in a shared object.
712 We change *PSEC and *PVALUE to make the new symbol look like a
713 common symbol, and let _bfd_generic_link_add_one_symbol will do
714 the right thing. */
715
716 if (newdyncommon
717 && h->root.type == bfd_link_hash_common)
718 {
719 *override = true;
720 newdef = false;
721 newdyncommon = false;
722 *pvalue = sym->st_size;
723 *psec = sec = bfd_com_section_ptr;
724 *size_change_ok = true;
725 }
726
727 /* If the old symbol is from a dynamic object, and the new symbol is
728 a definition which is not from a dynamic object, then the new
729 symbol overrides the old symbol. Symbols from regular files
730 always take precedence over symbols from dynamic objects, even if
731 they are defined after the dynamic object in the link.
732
733 As above, we again permit a common symbol in a regular object to
734 override a definition in a shared object if the shared object
0525d26e
ILT
735 symbol is a function or is weak.
736
737 As above, we permit a non-weak definition in a shared object to
738 override a weak definition in a regular object. */
252b5132
RH
739
740 if (! newdyn
741 && (newdef
742 || (bfd_is_com_section (sec)
743 && (h->root.type == bfd_link_hash_defweak
744 || h->type == STT_FUNC)))
745 && olddyn
746 && olddef
0525d26e
ILT
747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
748 && (bind != STB_WEAK
749 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
750 {
751 /* Change the hash table entry to undefined, and let
752 _bfd_generic_link_add_one_symbol do the right thing with the
753 new definition. */
754
755 h->root.type = bfd_link_hash_undefined;
756 h->root.u.undef.abfd = h->root.u.def.section->owner;
757 *size_change_ok = true;
758
759 olddef = false;
760 olddyncommon = false;
761
762 /* We again permit a type change when a common symbol may be
763 overriding a function. */
764
765 if (bfd_is_com_section (sec))
766 *type_change_ok = true;
767
768 /* This union may have been set to be non-NULL when this symbol
769 was seen in a dynamic object. We must force the union to be
770 NULL, so that it is correct for a regular symbol. */
771
772 h->verinfo.vertree = NULL;
773
774 /* In this special case, if H is the target of an indirection,
775 we want the caller to frob with H rather than with the
776 indirect symbol. That will permit the caller to redefine the
777 target of the indirection, rather than the indirect symbol
778 itself. FIXME: This will break the -y option if we store a
779 symbol with a different name. */
780 *sym_hash = h;
781 }
782
783 /* Handle the special case of a new common symbol merging with an
784 old symbol that looks like it might be a common symbol defined in
785 a shared object. Note that we have already handled the case in
786 which a new common symbol should simply override the definition
787 in the shared library. */
788
789 if (! newdyn
790 && bfd_is_com_section (sec)
791 && olddyncommon)
792 {
793 /* It would be best if we could set the hash table entry to a
794 common symbol, but we don't know what to use for the section
795 or the alignment. */
796 if (! ((*info->callbacks->multiple_common)
797 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
798 h->size, abfd, bfd_link_hash_common, sym->st_size)))
799 return false;
800
801 /* If the predumed common symbol in the dynamic object is
802 larger, pretend that the new symbol has its size. */
803
804 if (h->size > *pvalue)
805 *pvalue = h->size;
806
807 /* FIXME: We no longer know the alignment required by the symbol
808 in the dynamic object, so we just wind up using the one from
809 the regular object. */
810
811 olddef = false;
812 olddyncommon = false;
813
814 h->root.type = bfd_link_hash_undefined;
815 h->root.u.undef.abfd = h->root.u.def.section->owner;
816
817 *size_change_ok = true;
818 *type_change_ok = true;
819
820 h->verinfo.vertree = NULL;
821 }
822
0525d26e
ILT
823 /* Handle the special case of a weak definition in a regular object
824 followed by a non-weak definition in a shared object. In this
b4536acd 825 case, we prefer the definition in the shared object. */
0525d26e 826 if (olddef
0525d26e
ILT
827 && h->root.type == bfd_link_hash_defweak
828 && newdef
829 && newdyn
830 && bind != STB_WEAK)
b4536acd
ILT
831 {
832 /* To make this work we have to frob the flags so that the rest
833 of the code does not think we are using the regular
834 definition. */
64df8d0b
ILT
835 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
836 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
837 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
838 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
839 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
840 | ELF_LINK_HASH_DEF_DYNAMIC);
b4536acd
ILT
841
842 /* If H is the target of an indirection, we want the caller to
843 use H rather than the indirect symbol. Otherwise if we are
844 defining a new indirect symbol we will wind up attaching it
845 to the entry we are overriding. */
846 *sym_hash = h;
847 }
0525d26e
ILT
848
849 /* Handle the special case of a non-weak definition in a shared
850 object followed by a weak definition in a regular object. In
851 this case we prefer to definition in the shared object. To make
852 this work we have to tell the caller to not treat the new symbol
853 as a definition. */
854 if (olddef
855 && olddyn
856 && h->root.type != bfd_link_hash_defweak
857 && newdef
858 && ! newdyn
859 && bind == STB_WEAK)
860 *override = true;
861
252b5132
RH
862 return true;
863}
864
865/* Add symbols from an ELF object file to the linker hash table. */
866
867static boolean
868elf_link_add_object_symbols (abfd, info)
869 bfd *abfd;
870 struct bfd_link_info *info;
871{
872 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
873 const Elf_Internal_Sym *,
874 const char **, flagword *,
875 asection **, bfd_vma *));
876 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
877 asection *, const Elf_Internal_Rela *));
878 boolean collect;
879 Elf_Internal_Shdr *hdr;
880 size_t symcount;
881 size_t extsymcount;
882 size_t extsymoff;
883 Elf_External_Sym *buf = NULL;
884 struct elf_link_hash_entry **sym_hash;
885 boolean dynamic;
886 bfd_byte *dynver = NULL;
887 Elf_External_Versym *extversym = NULL;
888 Elf_External_Versym *ever;
889 Elf_External_Dyn *dynbuf = NULL;
890 struct elf_link_hash_entry *weaks;
891 Elf_External_Sym *esym;
892 Elf_External_Sym *esymend;
c61b8717 893 struct elf_backend_data *bed;
252b5132 894
c61b8717
RH
895 bed = get_elf_backend_data (abfd);
896 add_symbol_hook = bed->elf_add_symbol_hook;
897 collect = bed->collect;
252b5132
RH
898
899 if ((abfd->flags & DYNAMIC) == 0)
900 dynamic = false;
901 else
902 {
903 dynamic = true;
904
905 /* You can't use -r against a dynamic object. Also, there's no
906 hope of using a dynamic object which does not exactly match
907 the format of the output file. */
908 if (info->relocateable || info->hash->creator != abfd->xvec)
909 {
910 bfd_set_error (bfd_error_invalid_operation);
911 goto error_return;
912 }
913 }
914
915 /* As a GNU extension, any input sections which are named
916 .gnu.warning.SYMBOL are treated as warning symbols for the given
917 symbol. This differs from .gnu.warning sections, which generate
918 warnings when they are included in an output file. */
919 if (! info->shared)
920 {
921 asection *s;
922
923 for (s = abfd->sections; s != NULL; s = s->next)
924 {
925 const char *name;
926
927 name = bfd_get_section_name (abfd, s);
928 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
929 {
930 char *msg;
931 bfd_size_type sz;
932
933 name += sizeof ".gnu.warning." - 1;
934
935 /* If this is a shared object, then look up the symbol
936 in the hash table. If it is there, and it is already
937 been defined, then we will not be using the entry
938 from this shared object, so we don't need to warn.
939 FIXME: If we see the definition in a regular object
940 later on, we will warn, but we shouldn't. The only
941 fix is to keep track of what warnings we are supposed
942 to emit, and then handle them all at the end of the
943 link. */
944 if (dynamic && abfd->xvec == info->hash->creator)
945 {
946 struct elf_link_hash_entry *h;
947
948 h = elf_link_hash_lookup (elf_hash_table (info), name,
949 false, false, true);
950
951 /* FIXME: What about bfd_link_hash_common? */
952 if (h != NULL
953 && (h->root.type == bfd_link_hash_defined
954 || h->root.type == bfd_link_hash_defweak))
955 {
956 /* We don't want to issue this warning. Clobber
957 the section size so that the warning does not
958 get copied into the output file. */
959 s->_raw_size = 0;
960 continue;
961 }
962 }
963
964 sz = bfd_section_size (abfd, s);
965 msg = (char *) bfd_alloc (abfd, sz + 1);
966 if (msg == NULL)
967 goto error_return;
968
969 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
970 goto error_return;
971
972 msg[sz] = '\0';
973
974 if (! (_bfd_generic_link_add_one_symbol
975 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
976 false, collect, (struct bfd_link_hash_entry **) NULL)))
977 goto error_return;
978
979 if (! info->relocateable)
980 {
981 /* Clobber the section size so that the warning does
982 not get copied into the output file. */
983 s->_raw_size = 0;
984 }
985 }
986 }
987 }
988
989 /* If this is a dynamic object, we always link against the .dynsym
990 symbol table, not the .symtab symbol table. The dynamic linker
991 will only see the .dynsym symbol table, so there is no reason to
992 look at .symtab for a dynamic object. */
993
994 if (! dynamic || elf_dynsymtab (abfd) == 0)
995 hdr = &elf_tdata (abfd)->symtab_hdr;
996 else
997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
998
999 if (dynamic)
1000 {
1001 /* Read in any version definitions. */
1002
1003 if (! _bfd_elf_slurp_version_tables (abfd))
1004 goto error_return;
1005
1006 /* Read in the symbol versions, but don't bother to convert them
1007 to internal format. */
1008 if (elf_dynversym (abfd) != 0)
1009 {
1010 Elf_Internal_Shdr *versymhdr;
1011
1012 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1013 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1014 if (extversym == NULL)
1015 goto error_return;
1016 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1017 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1018 != versymhdr->sh_size))
1019 goto error_return;
1020 }
1021 }
1022
1023 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1024
1025 /* The sh_info field of the symtab header tells us where the
1026 external symbols start. We don't care about the local symbols at
1027 this point. */
1028 if (elf_bad_symtab (abfd))
1029 {
1030 extsymcount = symcount;
1031 extsymoff = 0;
1032 }
1033 else
1034 {
1035 extsymcount = symcount - hdr->sh_info;
1036 extsymoff = hdr->sh_info;
1037 }
1038
1039 buf = ((Elf_External_Sym *)
1040 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1041 if (buf == NULL && extsymcount != 0)
1042 goto error_return;
1043
1044 /* We store a pointer to the hash table entry for each external
1045 symbol. */
1046 sym_hash = ((struct elf_link_hash_entry **)
1047 bfd_alloc (abfd,
1048 extsymcount * sizeof (struct elf_link_hash_entry *)));
1049 if (sym_hash == NULL)
1050 goto error_return;
1051 elf_sym_hashes (abfd) = sym_hash;
1052
1053 if (! dynamic)
1054 {
1055 /* If we are creating a shared library, create all the dynamic
1056 sections immediately. We need to attach them to something,
1057 so we attach them to this BFD, provided it is the right
1058 format. FIXME: If there are no input BFD's of the same
1059 format as the output, we can't make a shared library. */
1060 if (info->shared
1061 && ! elf_hash_table (info)->dynamic_sections_created
1062 && abfd->xvec == info->hash->creator)
1063 {
1064 if (! elf_link_create_dynamic_sections (abfd, info))
1065 goto error_return;
1066 }
1067 }
1068 else
1069 {
1070 asection *s;
1071 boolean add_needed;
1072 const char *name;
1073 bfd_size_type oldsize;
1074 bfd_size_type strindex;
1075
1076 /* Find the name to use in a DT_NEEDED entry that refers to this
1077 object. If the object has a DT_SONAME entry, we use it.
1078 Otherwise, if the generic linker stuck something in
1079 elf_dt_name, we use that. Otherwise, we just use the file
1080 name. If the generic linker put a null string into
1081 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1082 there is a DT_SONAME entry. */
1083 add_needed = true;
1084 name = bfd_get_filename (abfd);
1085 if (elf_dt_name (abfd) != NULL)
1086 {
1087 name = elf_dt_name (abfd);
1088 if (*name == '\0')
1089 add_needed = false;
1090 }
1091 s = bfd_get_section_by_name (abfd, ".dynamic");
1092 if (s != NULL)
1093 {
1094 Elf_External_Dyn *extdyn;
1095 Elf_External_Dyn *extdynend;
1096 int elfsec;
1097 unsigned long link;
1098
1099 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1100 if (dynbuf == NULL)
1101 goto error_return;
1102
1103 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1104 (file_ptr) 0, s->_raw_size))
1105 goto error_return;
1106
1107 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1108 if (elfsec == -1)
1109 goto error_return;
1110 link = elf_elfsections (abfd)[elfsec]->sh_link;
1111
20e29382
JL
1112 {
1113 /* The shared libraries distributed with hpux11 have a bogus
1114 sh_link field for the ".dynamic" section. This code detects
1115 when LINK refers to a section that is not a string table and
1116 tries to find the string table for the ".dynsym" section
1117 instead. */
1118 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1119 if (hdr->sh_type != SHT_STRTAB)
1120 {
1121 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1122 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1123 if (elfsec == -1)
1124 goto error_return;
1125 link = elf_elfsections (abfd)[elfsec]->sh_link;
1126 }
1127 }
1128
252b5132
RH
1129 extdyn = dynbuf;
1130 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1131 for (; extdyn < extdynend; extdyn++)
1132 {
1133 Elf_Internal_Dyn dyn;
1134
1135 elf_swap_dyn_in (abfd, extdyn, &dyn);
1136 if (dyn.d_tag == DT_SONAME)
1137 {
1138 name = bfd_elf_string_from_elf_section (abfd, link,
1139 dyn.d_un.d_val);
1140 if (name == NULL)
1141 goto error_return;
1142 }
1143 if (dyn.d_tag == DT_NEEDED)
1144 {
1145 struct bfd_link_needed_list *n, **pn;
1146 char *fnm, *anm;
1147
1148 n = ((struct bfd_link_needed_list *)
1149 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1150 fnm = bfd_elf_string_from_elf_section (abfd, link,
1151 dyn.d_un.d_val);
1152 if (n == NULL || fnm == NULL)
1153 goto error_return;
1154 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1155 if (anm == NULL)
1156 goto error_return;
1157 strcpy (anm, fnm);
1158 n->name = anm;
1159 n->by = abfd;
1160 n->next = NULL;
1161 for (pn = &elf_hash_table (info)->needed;
1162 *pn != NULL;
1163 pn = &(*pn)->next)
1164 ;
1165 *pn = n;
1166 }
1167 }
1168
1169 free (dynbuf);
1170 dynbuf = NULL;
1171 }
1172
1173 /* We do not want to include any of the sections in a dynamic
1174 object in the output file. We hack by simply clobbering the
1175 list of sections in the BFD. This could be handled more
1176 cleanly by, say, a new section flag; the existing
1177 SEC_NEVER_LOAD flag is not the one we want, because that one
1178 still implies that the section takes up space in the output
1179 file. */
1180 abfd->sections = NULL;
1181 abfd->section_count = 0;
1182
1183 /* If this is the first dynamic object found in the link, create
1184 the special sections required for dynamic linking. */
1185 if (! elf_hash_table (info)->dynamic_sections_created)
1186 {
1187 if (! elf_link_create_dynamic_sections (abfd, info))
1188 goto error_return;
1189 }
1190
1191 if (add_needed)
1192 {
1193 /* Add a DT_NEEDED entry for this dynamic object. */
1194 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1195 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1196 true, false);
1197 if (strindex == (bfd_size_type) -1)
1198 goto error_return;
1199
1200 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1201 {
1202 asection *sdyn;
1203 Elf_External_Dyn *dyncon, *dynconend;
1204
1205 /* The hash table size did not change, which means that
1206 the dynamic object name was already entered. If we
1207 have already included this dynamic object in the
1208 link, just ignore it. There is no reason to include
1209 a particular dynamic object more than once. */
1210 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1211 ".dynamic");
1212 BFD_ASSERT (sdyn != NULL);
1213
1214 dyncon = (Elf_External_Dyn *) sdyn->contents;
1215 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1216 sdyn->_raw_size);
1217 for (; dyncon < dynconend; dyncon++)
1218 {
1219 Elf_Internal_Dyn dyn;
1220
1221 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1222 &dyn);
1223 if (dyn.d_tag == DT_NEEDED
1224 && dyn.d_un.d_val == strindex)
1225 {
1226 if (buf != NULL)
1227 free (buf);
1228 if (extversym != NULL)
1229 free (extversym);
1230 return true;
1231 }
1232 }
1233 }
1234
1235 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1236 goto error_return;
1237 }
1238
1239 /* Save the SONAME, if there is one, because sometimes the
1240 linker emulation code will need to know it. */
1241 if (*name == '\0')
1242 name = bfd_get_filename (abfd);
1243 elf_dt_name (abfd) = name;
1244 }
1245
1246 if (bfd_seek (abfd,
1247 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1248 SEEK_SET) != 0
1249 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1250 != extsymcount * sizeof (Elf_External_Sym)))
1251 goto error_return;
1252
1253 weaks = NULL;
1254
1255 ever = extversym != NULL ? extversym + extsymoff : NULL;
1256 esymend = buf + extsymcount;
1257 for (esym = buf;
1258 esym < esymend;
1259 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1260 {
1261 Elf_Internal_Sym sym;
1262 int bind;
1263 bfd_vma value;
1264 asection *sec;
1265 flagword flags;
1266 const char *name;
1267 struct elf_link_hash_entry *h;
1268 boolean definition;
1269 boolean size_change_ok, type_change_ok;
1270 boolean new_weakdef;
1271 unsigned int old_alignment;
1272
1273 elf_swap_symbol_in (abfd, esym, &sym);
1274
1275 flags = BSF_NO_FLAGS;
1276 sec = NULL;
1277 value = sym.st_value;
1278 *sym_hash = NULL;
1279
1280 bind = ELF_ST_BIND (sym.st_info);
1281 if (bind == STB_LOCAL)
1282 {
1283 /* This should be impossible, since ELF requires that all
1284 global symbols follow all local symbols, and that sh_info
1285 point to the first global symbol. Unfortunatealy, Irix 5
1286 screws this up. */
1287 continue;
1288 }
1289 else if (bind == STB_GLOBAL)
1290 {
1291 if (sym.st_shndx != SHN_UNDEF
1292 && sym.st_shndx != SHN_COMMON)
1293 flags = BSF_GLOBAL;
1294 else
1295 flags = 0;
1296 }
1297 else if (bind == STB_WEAK)
1298 flags = BSF_WEAK;
1299 else
1300 {
1301 /* Leave it up to the processor backend. */
1302 }
1303
1304 if (sym.st_shndx == SHN_UNDEF)
1305 sec = bfd_und_section_ptr;
1306 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1307 {
1308 sec = section_from_elf_index (abfd, sym.st_shndx);
1309 if (sec == NULL)
1310 sec = bfd_abs_section_ptr;
1311 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1312 value -= sec->vma;
1313 }
1314 else if (sym.st_shndx == SHN_ABS)
1315 sec = bfd_abs_section_ptr;
1316 else if (sym.st_shndx == SHN_COMMON)
1317 {
1318 sec = bfd_com_section_ptr;
1319 /* What ELF calls the size we call the value. What ELF
1320 calls the value we call the alignment. */
1321 value = sym.st_size;
1322 }
1323 else
1324 {
1325 /* Leave it up to the processor backend. */
1326 }
1327
1328 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1329 if (name == (const char *) NULL)
1330 goto error_return;
1331
1332 if (add_symbol_hook)
1333 {
1334 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1335 &value))
1336 goto error_return;
1337
1338 /* The hook function sets the name to NULL if this symbol
1339 should be skipped for some reason. */
1340 if (name == (const char *) NULL)
1341 continue;
1342 }
1343
1344 /* Sanity check that all possibilities were handled. */
1345 if (sec == (asection *) NULL)
1346 {
1347 bfd_set_error (bfd_error_bad_value);
1348 goto error_return;
1349 }
1350
1351 if (bfd_is_und_section (sec)
1352 || bfd_is_com_section (sec))
1353 definition = false;
1354 else
1355 definition = true;
1356
1357 size_change_ok = false;
1358 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1359 old_alignment = 0;
1360 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1361 {
1362 Elf_Internal_Versym iver;
1363 unsigned int vernum = 0;
1364 boolean override;
1365
1366 if (ever != NULL)
1367 {
1368 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1369 vernum = iver.vs_vers & VERSYM_VERSION;
1370
1371 /* If this is a hidden symbol, or if it is not version
1372 1, we append the version name to the symbol name.
1373 However, we do not modify a non-hidden absolute
1374 symbol, because it might be the version symbol
1375 itself. FIXME: What if it isn't? */
1376 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1377 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1378 {
1379 const char *verstr;
1380 int namelen, newlen;
1381 char *newname, *p;
1382
1383 if (sym.st_shndx != SHN_UNDEF)
1384 {
1385 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1386 {
1387 (*_bfd_error_handler)
1388 (_("%s: %s: invalid version %u (max %d)"),
1389 bfd_get_filename (abfd), name, vernum,
1390 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1391 bfd_set_error (bfd_error_bad_value);
1392 goto error_return;
1393 }
1394 else if (vernum > 1)
1395 verstr =
1396 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1397 else
1398 verstr = "";
1399 }
1400 else
1401 {
1402 /* We cannot simply test for the number of
1403 entries in the VERNEED section since the
1404 numbers for the needed versions do not start
1405 at 0. */
1406 Elf_Internal_Verneed *t;
1407
1408 verstr = NULL;
1409 for (t = elf_tdata (abfd)->verref;
1410 t != NULL;
1411 t = t->vn_nextref)
1412 {
1413 Elf_Internal_Vernaux *a;
1414
1415 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1416 {
1417 if (a->vna_other == vernum)
1418 {
1419 verstr = a->vna_nodename;
1420 break;
1421 }
1422 }
1423 if (a != NULL)
1424 break;
1425 }
1426 if (verstr == NULL)
1427 {
1428 (*_bfd_error_handler)
1429 (_("%s: %s: invalid needed version %d"),
1430 bfd_get_filename (abfd), name, vernum);
1431 bfd_set_error (bfd_error_bad_value);
1432 goto error_return;
1433 }
1434 }
1435
1436 namelen = strlen (name);
1437 newlen = namelen + strlen (verstr) + 2;
1438 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1439 ++newlen;
1440
1441 newname = (char *) bfd_alloc (abfd, newlen);
1442 if (newname == NULL)
1443 goto error_return;
1444 strcpy (newname, name);
1445 p = newname + namelen;
1446 *p++ = ELF_VER_CHR;
1287d1cc
ILT
1447 /* If this is a defined non-hidden version symbol,
1448 we add another @ to the name. This indicates the
1449 default version of the symbol. */
1450 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1451 && sym.st_shndx != SHN_UNDEF)
252b5132
RH
1452 *p++ = ELF_VER_CHR;
1453 strcpy (p, verstr);
1454
1455 name = newname;
1456 }
1457 }
1458
1459 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1460 sym_hash, &override, &type_change_ok,
1461 &size_change_ok))
1462 goto error_return;
1463
1464 if (override)
1465 definition = false;
1466
1467 h = *sym_hash;
1468 while (h->root.type == bfd_link_hash_indirect
1469 || h->root.type == bfd_link_hash_warning)
1470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1471
1472 /* Remember the old alignment if this is a common symbol, so
1473 that we don't reduce the alignment later on. We can't
1474 check later, because _bfd_generic_link_add_one_symbol
1475 will set a default for the alignment which we want to
1476 override. */
1477 if (h->root.type == bfd_link_hash_common)
1478 old_alignment = h->root.u.c.p->alignment_power;
1479
1480 if (elf_tdata (abfd)->verdef != NULL
1481 && ! override
1482 && vernum > 1
1483 && definition)
1484 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1485 }
1486
1487 if (! (_bfd_generic_link_add_one_symbol
1488 (info, abfd, name, flags, sec, value, (const char *) NULL,
1489 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1490 goto error_return;
1491
1492 h = *sym_hash;
1493 while (h->root.type == bfd_link_hash_indirect
1494 || h->root.type == bfd_link_hash_warning)
1495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1496 *sym_hash = h;
1497
1498 new_weakdef = false;
1499 if (dynamic
1500 && definition
1501 && (flags & BSF_WEAK) != 0
1502 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1503 && info->hash->creator->flavour == bfd_target_elf_flavour
1504 && h->weakdef == NULL)
1505 {
1506 /* Keep a list of all weak defined non function symbols from
1507 a dynamic object, using the weakdef field. Later in this
1508 function we will set the weakdef field to the correct
1509 value. We only put non-function symbols from dynamic
1510 objects on this list, because that happens to be the only
1511 time we need to know the normal symbol corresponding to a
1512 weak symbol, and the information is time consuming to
1513 figure out. If the weakdef field is not already NULL,
1514 then this symbol was already defined by some previous
1515 dynamic object, and we will be using that previous
1516 definition anyhow. */
1517
1518 h->weakdef = weaks;
1519 weaks = h;
1520 new_weakdef = true;
1521 }
1522
1523 /* Set the alignment of a common symbol. */
1524 if (sym.st_shndx == SHN_COMMON
1525 && h->root.type == bfd_link_hash_common)
1526 {
1527 unsigned int align;
1528
1529 align = bfd_log2 (sym.st_value);
1530 if (align > old_alignment)
1531 h->root.u.c.p->alignment_power = align;
1532 }
1533
1534 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1535 {
1536 int old_flags;
1537 boolean dynsym;
1538 int new_flag;
1539
1540 /* Remember the symbol size and type. */
1541 if (sym.st_size != 0
1542 && (definition || h->size == 0))
1543 {
1544 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1545 (*_bfd_error_handler)
1546 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1547 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1548 bfd_get_filename (abfd));
1549
1550 h->size = sym.st_size;
1551 }
1552
1553 /* If this is a common symbol, then we always want H->SIZE
1554 to be the size of the common symbol. The code just above
1555 won't fix the size if a common symbol becomes larger. We
1556 don't warn about a size change here, because that is
1557 covered by --warn-common. */
1558 if (h->root.type == bfd_link_hash_common)
1559 h->size = h->root.u.c.size;
1560
1561 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1562 && (definition || h->type == STT_NOTYPE))
1563 {
1564 if (h->type != STT_NOTYPE
1565 && h->type != ELF_ST_TYPE (sym.st_info)
1566 && ! type_change_ok)
1567 (*_bfd_error_handler)
1568 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1569 name, h->type, ELF_ST_TYPE (sym.st_info),
1570 bfd_get_filename (abfd));
1571
1572 h->type = ELF_ST_TYPE (sym.st_info);
1573 }
1574
7a13edea
NC
1575 /* If st_other has a processor-specific meaning, specific code
1576 might be needed here. */
1577 if (sym.st_other != 0)
1578 {
1579 /* Combine visibilities, using the most constraining one. */
1580 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1581 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1582
1583 if (symvis && (hvis > symvis || hvis == 0))
1584 h->other = sym.st_other;
1585
1586 /* If neither has visibility, use the st_other of the
1587 definition. This is an arbitrary choice, since the
1588 other bits have no general meaning. */
1589 if (!symvis && !hvis
1590 && (definition || h->other == 0))
1591 h->other = sym.st_other;
1592 }
252b5132
RH
1593
1594 /* Set a flag in the hash table entry indicating the type of
1595 reference or definition we just found. Keep a count of
1596 the number of dynamic symbols we find. A dynamic symbol
1597 is one which is referenced or defined by both a regular
1598 object and a shared object. */
1599 old_flags = h->elf_link_hash_flags;
1600 dynsym = false;
1601 if (! dynamic)
1602 {
1603 if (! definition)
1604 {
1605 new_flag = ELF_LINK_HASH_REF_REGULAR;
1606 if (bind != STB_WEAK)
1607 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1608 }
1609 else
1610 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1611 if (info->shared
1612 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1613 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1614 dynsym = true;
1615 }
1616 else
1617 {
1618 if (! definition)
1619 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1620 else
1621 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1622 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1623 | ELF_LINK_HASH_REF_REGULAR)) != 0
1624 || (h->weakdef != NULL
1625 && ! new_weakdef
1626 && h->weakdef->dynindx != -1))
1627 dynsym = true;
1628 }
1629
1630 h->elf_link_hash_flags |= new_flag;
1631
1632 /* If this symbol has a version, and it is the default
1633 version, we create an indirect symbol from the default
1634 name to the fully decorated name. This will cause
1635 external references which do not specify a version to be
1636 bound to this version of the symbol. */
1637 if (definition)
1638 {
1639 char *p;
1640
1641 p = strchr (name, ELF_VER_CHR);
1642 if (p != NULL && p[1] == ELF_VER_CHR)
1643 {
1644 char *shortname;
1645 struct elf_link_hash_entry *hi;
1646 boolean override;
1647
1648 shortname = bfd_hash_allocate (&info->hash->table,
1649 p - name + 1);
1650 if (shortname == NULL)
1651 goto error_return;
1652 strncpy (shortname, name, p - name);
1653 shortname[p - name] = '\0';
1654
1655 /* We are going to create a new symbol. Merge it
1656 with any existing symbol with this name. For the
1657 purposes of the merge, act as though we were
1658 defining the symbol we just defined, although we
1659 actually going to define an indirect symbol. */
1660 type_change_ok = false;
1661 size_change_ok = false;
1662 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1663 &value, &hi, &override,
1664 &type_change_ok, &size_change_ok))
1665 goto error_return;
1666
1667 if (! override)
1668 {
1669 if (! (_bfd_generic_link_add_one_symbol
1670 (info, abfd, shortname, BSF_INDIRECT,
1671 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1672 collect, (struct bfd_link_hash_entry **) &hi)))
1673 goto error_return;
1674 }
1675 else
1676 {
1677 /* In this case the symbol named SHORTNAME is
1678 overriding the indirect symbol we want to
1679 add. We were planning on making SHORTNAME an
1680 indirect symbol referring to NAME. SHORTNAME
1681 is the name without a version. NAME is the
1682 fully versioned name, and it is the default
1683 version.
1684
1685 Overriding means that we already saw a
1686 definition for the symbol SHORTNAME in a
1687 regular object, and it is overriding the
1688 symbol defined in the dynamic object.
1689
1690 When this happens, we actually want to change
1691 NAME, the symbol we just added, to refer to
1692 SHORTNAME. This will cause references to
1693 NAME in the shared object to become
1694 references to SHORTNAME in the regular
1695 object. This is what we expect when we
1696 override a function in a shared object: that
1697 the references in the shared object will be
1698 mapped to the definition in the regular
1699 object. */
1700
1701 while (hi->root.type == bfd_link_hash_indirect
1702 || hi->root.type == bfd_link_hash_warning)
1703 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704
1705 h->root.type = bfd_link_hash_indirect;
1706 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1707 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1708 {
1709 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1710 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1711 if (hi->elf_link_hash_flags
1712 & (ELF_LINK_HASH_REF_REGULAR
1713 | ELF_LINK_HASH_DEF_REGULAR))
1714 {
1715 if (! _bfd_elf_link_record_dynamic_symbol (info,
1716 hi))
1717 goto error_return;
1718 }
1719 }
1720
1721 /* Now set HI to H, so that the following code
1722 will set the other fields correctly. */
1723 hi = h;
1724 }
1725
1726 /* If there is a duplicate definition somewhere,
1727 then HI may not point to an indirect symbol. We
1728 will have reported an error to the user in that
1729 case. */
1730
1731 if (hi->root.type == bfd_link_hash_indirect)
1732 {
1733 struct elf_link_hash_entry *ht;
1734
1735 /* If the symbol became indirect, then we assume
1736 that we have not seen a definition before. */
1737 BFD_ASSERT ((hi->elf_link_hash_flags
1738 & (ELF_LINK_HASH_DEF_DYNAMIC
1739 | ELF_LINK_HASH_DEF_REGULAR))
1740 == 0);
1741
1742 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
c61b8717 1743 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
252b5132
RH
1744
1745 /* See if the new flags lead us to realize that
1746 the symbol must be dynamic. */
1747 if (! dynsym)
1748 {
1749 if (! dynamic)
1750 {
1751 if (info->shared
1752 || ((hi->elf_link_hash_flags
1753 & ELF_LINK_HASH_REF_DYNAMIC)
1754 != 0))
1755 dynsym = true;
1756 }
1757 else
1758 {
1759 if ((hi->elf_link_hash_flags
1760 & ELF_LINK_HASH_REF_REGULAR) != 0)
1761 dynsym = true;
1762 }
1763 }
1764 }
1765
1766 /* We also need to define an indirection from the
1767 nondefault version of the symbol. */
1768
1769 shortname = bfd_hash_allocate (&info->hash->table,
1770 strlen (name));
1771 if (shortname == NULL)
1772 goto error_return;
1773 strncpy (shortname, name, p - name);
1774 strcpy (shortname + (p - name), p + 1);
1775
1776 /* Once again, merge with any existing symbol. */
1777 type_change_ok = false;
1778 size_change_ok = false;
1779 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1780 &value, &hi, &override,
1781 &type_change_ok, &size_change_ok))
1782 goto error_return;
1783
1784 if (override)
1785 {
1786 /* Here SHORTNAME is a versioned name, so we
1787 don't expect to see the type of override we
1788 do in the case above. */
1789 (*_bfd_error_handler)
1790 (_("%s: warning: unexpected redefinition of `%s'"),
1791 bfd_get_filename (abfd), shortname);
1792 }
1793 else
1794 {
1795 if (! (_bfd_generic_link_add_one_symbol
1796 (info, abfd, shortname, BSF_INDIRECT,
1797 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1798 collect, (struct bfd_link_hash_entry **) &hi)))
1799 goto error_return;
1800
1801 /* If there is a duplicate definition somewhere,
1802 then HI may not point to an indirect symbol.
1803 We will have reported an error to the user in
1804 that case. */
1805
1806 if (hi->root.type == bfd_link_hash_indirect)
1807 {
1808 /* If the symbol became indirect, then we
1809 assume that we have not seen a definition
1810 before. */
1811 BFD_ASSERT ((hi->elf_link_hash_flags
1812 & (ELF_LINK_HASH_DEF_DYNAMIC
1813 | ELF_LINK_HASH_DEF_REGULAR))
1814 == 0);
1815
c61b8717 1816 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
252b5132
RH
1817
1818 /* See if the new flags lead us to realize
1819 that the symbol must be dynamic. */
1820 if (! dynsym)
1821 {
1822 if (! dynamic)
1823 {
1824 if (info->shared
1825 || ((hi->elf_link_hash_flags
1826 & ELF_LINK_HASH_REF_DYNAMIC)
1827 != 0))
1828 dynsym = true;
1829 }
1830 else
1831 {
1832 if ((hi->elf_link_hash_flags
1833 & ELF_LINK_HASH_REF_REGULAR) != 0)
1834 dynsym = true;
1835 }
1836 }
1837 }
1838 }
1839 }
1840 }
1841
1842 if (dynsym && h->dynindx == -1)
1843 {
1844 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1845 goto error_return;
1846 if (h->weakdef != NULL
1847 && ! new_weakdef
1848 && h->weakdef->dynindx == -1)
1849 {
1850 if (! _bfd_elf_link_record_dynamic_symbol (info,
1851 h->weakdef))
1852 goto error_return;
1853 }
1854 }
1855 }
1856 }
1857
1858 /* Now set the weakdefs field correctly for all the weak defined
1859 symbols we found. The only way to do this is to search all the
1860 symbols. Since we only need the information for non functions in
1861 dynamic objects, that's the only time we actually put anything on
1862 the list WEAKS. We need this information so that if a regular
1863 object refers to a symbol defined weakly in a dynamic object, the
1864 real symbol in the dynamic object is also put in the dynamic
1865 symbols; we also must arrange for both symbols to point to the
1866 same memory location. We could handle the general case of symbol
1867 aliasing, but a general symbol alias can only be generated in
1868 assembler code, handling it correctly would be very time
1869 consuming, and other ELF linkers don't handle general aliasing
1870 either. */
1871 while (weaks != NULL)
1872 {
1873 struct elf_link_hash_entry *hlook;
1874 asection *slook;
1875 bfd_vma vlook;
1876 struct elf_link_hash_entry **hpp;
1877 struct elf_link_hash_entry **hppend;
1878
1879 hlook = weaks;
1880 weaks = hlook->weakdef;
1881 hlook->weakdef = NULL;
1882
1883 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1884 || hlook->root.type == bfd_link_hash_defweak
1885 || hlook->root.type == bfd_link_hash_common
1886 || hlook->root.type == bfd_link_hash_indirect);
1887 slook = hlook->root.u.def.section;
1888 vlook = hlook->root.u.def.value;
1889
1890 hpp = elf_sym_hashes (abfd);
1891 hppend = hpp + extsymcount;
1892 for (; hpp < hppend; hpp++)
1893 {
1894 struct elf_link_hash_entry *h;
1895
1896 h = *hpp;
1897 if (h != NULL && h != hlook
1898 && h->root.type == bfd_link_hash_defined
1899 && h->root.u.def.section == slook
1900 && h->root.u.def.value == vlook)
1901 {
1902 hlook->weakdef = h;
1903
1904 /* If the weak definition is in the list of dynamic
1905 symbols, make sure the real definition is put there
1906 as well. */
1907 if (hlook->dynindx != -1
1908 && h->dynindx == -1)
1909 {
1910 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1911 goto error_return;
1912 }
1913
1914 /* If the real definition is in the list of dynamic
1915 symbols, make sure the weak definition is put there
1916 as well. If we don't do this, then the dynamic
1917 loader might not merge the entries for the real
1918 definition and the weak definition. */
1919 if (h->dynindx != -1
1920 && hlook->dynindx == -1)
1921 {
1922 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1923 goto error_return;
1924 }
1925
1926 break;
1927 }
1928 }
1929 }
1930
1931 if (buf != NULL)
1932 {
1933 free (buf);
1934 buf = NULL;
1935 }
1936
1937 if (extversym != NULL)
1938 {
1939 free (extversym);
1940 extversym = NULL;
1941 }
1942
1943 /* If this object is the same format as the output object, and it is
1944 not a shared library, then let the backend look through the
1945 relocs.
1946
1947 This is required to build global offset table entries and to
1948 arrange for dynamic relocs. It is not required for the
1949 particular common case of linking non PIC code, even when linking
1950 against shared libraries, but unfortunately there is no way of
1951 knowing whether an object file has been compiled PIC or not.
1952 Looking through the relocs is not particularly time consuming.
1953 The problem is that we must either (1) keep the relocs in memory,
1954 which causes the linker to require additional runtime memory or
1955 (2) read the relocs twice from the input file, which wastes time.
1956 This would be a good case for using mmap.
1957
1958 I have no idea how to handle linking PIC code into a file of a
1959 different format. It probably can't be done. */
1960 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1961 if (! dynamic
1962 && abfd->xvec == info->hash->creator
1963 && check_relocs != NULL)
1964 {
1965 asection *o;
1966
1967 for (o = abfd->sections; o != NULL; o = o->next)
1968 {
1969 Elf_Internal_Rela *internal_relocs;
1970 boolean ok;
1971
1972 if ((o->flags & SEC_RELOC) == 0
1973 || o->reloc_count == 0
1974 || ((info->strip == strip_all || info->strip == strip_debugger)
1975 && (o->flags & SEC_DEBUGGING) != 0)
1976 || bfd_is_abs_section (o->output_section))
1977 continue;
1978
1979 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1980 (abfd, o, (PTR) NULL,
1981 (Elf_Internal_Rela *) NULL,
1982 info->keep_memory));
1983 if (internal_relocs == NULL)
1984 goto error_return;
1985
1986 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1987
1988 if (! info->keep_memory)
1989 free (internal_relocs);
1990
1991 if (! ok)
1992 goto error_return;
1993 }
1994 }
1995
1996 /* If this is a non-traditional, non-relocateable link, try to
1997 optimize the handling of the .stab/.stabstr sections. */
1998 if (! dynamic
1999 && ! info->relocateable
2000 && ! info->traditional_format
2001 && info->hash->creator->flavour == bfd_target_elf_flavour
2002 && (info->strip != strip_all && info->strip != strip_debugger))
2003 {
2004 asection *stab, *stabstr;
2005
2006 stab = bfd_get_section_by_name (abfd, ".stab");
2007 if (stab != NULL)
2008 {
2009 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2010
2011 if (stabstr != NULL)
2012 {
2013 struct bfd_elf_section_data *secdata;
2014
2015 secdata = elf_section_data (stab);
2016 if (! _bfd_link_section_stabs (abfd,
2017 &elf_hash_table (info)->stab_info,
2018 stab, stabstr,
2019 &secdata->stab_info))
2020 goto error_return;
2021 }
2022 }
2023 }
2024
2025 return true;
2026
2027 error_return:
2028 if (buf != NULL)
2029 free (buf);
2030 if (dynbuf != NULL)
2031 free (dynbuf);
2032 if (dynver != NULL)
2033 free (dynver);
2034 if (extversym != NULL)
2035 free (extversym);
2036 return false;
2037}
2038
2039/* Create some sections which will be filled in with dynamic linking
2040 information. ABFD is an input file which requires dynamic sections
2041 to be created. The dynamic sections take up virtual memory space
2042 when the final executable is run, so we need to create them before
2043 addresses are assigned to the output sections. We work out the
2044 actual contents and size of these sections later. */
2045
2046boolean
2047elf_link_create_dynamic_sections (abfd, info)
2048 bfd *abfd;
2049 struct bfd_link_info *info;
2050{
2051 flagword flags;
2052 register asection *s;
2053 struct elf_link_hash_entry *h;
2054 struct elf_backend_data *bed;
2055
2056 if (elf_hash_table (info)->dynamic_sections_created)
2057 return true;
2058
2059 /* Make sure that all dynamic sections use the same input BFD. */
2060 if (elf_hash_table (info)->dynobj == NULL)
2061 elf_hash_table (info)->dynobj = abfd;
2062 else
2063 abfd = elf_hash_table (info)->dynobj;
2064
2065 /* Note that we set the SEC_IN_MEMORY flag for all of these
2066 sections. */
2067 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2068 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2069
2070 /* A dynamically linked executable has a .interp section, but a
2071 shared library does not. */
2072 if (! info->shared)
2073 {
2074 s = bfd_make_section (abfd, ".interp");
2075 if (s == NULL
2076 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2077 return false;
2078 }
2079
2080 /* Create sections to hold version informations. These are removed
2081 if they are not needed. */
2082 s = bfd_make_section (abfd, ".gnu.version_d");
2083 if (s == NULL
2084 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2085 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2086 return false;
2087
2088 s = bfd_make_section (abfd, ".gnu.version");
2089 if (s == NULL
2090 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2091 || ! bfd_set_section_alignment (abfd, s, 1))
2092 return false;
2093
2094 s = bfd_make_section (abfd, ".gnu.version_r");
2095 if (s == NULL
2096 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2097 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2098 return false;
2099
2100 s = bfd_make_section (abfd, ".dynsym");
2101 if (s == NULL
2102 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2103 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2104 return false;
2105
2106 s = bfd_make_section (abfd, ".dynstr");
2107 if (s == NULL
2108 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2109 return false;
2110
2111 /* Create a strtab to hold the dynamic symbol names. */
2112 if (elf_hash_table (info)->dynstr == NULL)
2113 {
2114 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2115 if (elf_hash_table (info)->dynstr == NULL)
2116 return false;
2117 }
2118
2119 s = bfd_make_section (abfd, ".dynamic");
2120 if (s == NULL
2121 || ! bfd_set_section_flags (abfd, s, flags)
2122 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2123 return false;
2124
2125 /* The special symbol _DYNAMIC is always set to the start of the
2126 .dynamic section. This call occurs before we have processed the
2127 symbols for any dynamic object, so we don't have to worry about
2128 overriding a dynamic definition. We could set _DYNAMIC in a
2129 linker script, but we only want to define it if we are, in fact,
2130 creating a .dynamic section. We don't want to define it if there
2131 is no .dynamic section, since on some ELF platforms the start up
2132 code examines it to decide how to initialize the process. */
2133 h = NULL;
2134 if (! (_bfd_generic_link_add_one_symbol
2135 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2136 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2137 (struct bfd_link_hash_entry **) &h)))
2138 return false;
2139 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2140 h->type = STT_OBJECT;
2141
2142 if (info->shared
2143 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2144 return false;
2145
c7ac6ff8
MM
2146 bed = get_elf_backend_data (abfd);
2147
252b5132
RH
2148 s = bfd_make_section (abfd, ".hash");
2149 if (s == NULL
2150 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2151 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2152 return false;
c7ac6ff8 2153 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2154
2155 /* Let the backend create the rest of the sections. This lets the
2156 backend set the right flags. The backend will normally create
2157 the .got and .plt sections. */
252b5132
RH
2158 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2159 return false;
2160
2161 elf_hash_table (info)->dynamic_sections_created = true;
2162
2163 return true;
2164}
2165
2166/* Add an entry to the .dynamic table. */
2167
2168boolean
2169elf_add_dynamic_entry (info, tag, val)
2170 struct bfd_link_info *info;
2171 bfd_vma tag;
2172 bfd_vma val;
2173{
2174 Elf_Internal_Dyn dyn;
2175 bfd *dynobj;
2176 asection *s;
2177 size_t newsize;
2178 bfd_byte *newcontents;
2179
2180 dynobj = elf_hash_table (info)->dynobj;
2181
2182 s = bfd_get_section_by_name (dynobj, ".dynamic");
2183 BFD_ASSERT (s != NULL);
2184
2185 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2186 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2187 if (newcontents == NULL)
2188 return false;
2189
2190 dyn.d_tag = tag;
2191 dyn.d_un.d_val = val;
2192 elf_swap_dyn_out (dynobj, &dyn,
2193 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2194
2195 s->_raw_size = newsize;
2196 s->contents = newcontents;
2197
2198 return true;
2199}
30b30c21
RH
2200
2201/* Record a new local dynamic symbol. */
2202
2203boolean
2204elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2205 struct bfd_link_info *info;
2206 bfd *input_bfd;
2207 long input_indx;
2208{
2209 struct elf_link_local_dynamic_entry *entry;
2210 struct elf_link_hash_table *eht;
2211 struct bfd_strtab_hash *dynstr;
2212 Elf_External_Sym esym;
2213 unsigned long dynstr_index;
2214 char *name;
30b30c21
RH
2215
2216 /* See if the entry exists already. */
2217 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2218 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2219 return true;
2220
2221 entry = (struct elf_link_local_dynamic_entry *)
2222 bfd_alloc (input_bfd, sizeof (*entry));
2223 if (entry == NULL)
2224 return false;
2225
2226 /* Go find the symbol, so that we can find it's name. */
2227 if (bfd_seek (input_bfd,
2228 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2229 + input_indx * sizeof (Elf_External_Sym)),
2230 SEEK_SET) != 0
2231 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2232 != sizeof (Elf_External_Sym)))
2233 return false;
2234 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2235
2236 name = (bfd_elf_string_from_elf_section
2237 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2238 entry->isym.st_name));
2239
2240 dynstr = elf_hash_table (info)->dynstr;
2241 if (dynstr == NULL)
2242 {
2243 /* Create a strtab to hold the dynamic symbol names. */
2244 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2245 if (dynstr == NULL)
2246 return false;
2247 }
2248
2249 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2250 if (dynstr_index == (unsigned long) -1)
2251 return false;
2252 entry->isym.st_name = dynstr_index;
2253
2254 eht = elf_hash_table (info);
2255
2256 entry->next = eht->dynlocal;
2257 eht->dynlocal = entry;
2258 entry->input_bfd = input_bfd;
2259 entry->input_indx = input_indx;
2260 eht->dynsymcount++;
2261
587ff49e
RH
2262 /* Whatever binding the symbol had before, it's now local. */
2263 entry->isym.st_info
2264 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2265
30b30c21
RH
2266 /* The dynindx will be set at the end of size_dynamic_sections. */
2267
2268 return true;
2269}
252b5132
RH
2270\f
2271
6b5bd373
MM
2272/* Read and swap the relocs from the section indicated by SHDR. This
2273 may be either a REL or a RELA section. The relocations are
2274 translated into RELA relocations and stored in INTERNAL_RELOCS,
2275 which should have already been allocated to contain enough space.
2276 The EXTERNAL_RELOCS are a buffer where the external form of the
2277 relocations should be stored.
2278
2279 Returns false if something goes wrong. */
2280
2281static boolean
2282elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2283 internal_relocs)
2284 bfd *abfd;
2285 Elf_Internal_Shdr *shdr;
2286 PTR external_relocs;
2287 Elf_Internal_Rela *internal_relocs;
2288{
c7ac6ff8
MM
2289 struct elf_backend_data *bed;
2290
6b5bd373
MM
2291 /* If there aren't any relocations, that's OK. */
2292 if (!shdr)
2293 return true;
2294
2295 /* Position ourselves at the start of the section. */
2296 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2297 return false;
2298
2299 /* Read the relocations. */
2300 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2301 != shdr->sh_size)
2302 return false;
2303
c7ac6ff8
MM
2304 bed = get_elf_backend_data (abfd);
2305
6b5bd373
MM
2306 /* Convert the external relocations to the internal format. */
2307 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2308 {
2309 Elf_External_Rel *erel;
2310 Elf_External_Rel *erelend;
2311 Elf_Internal_Rela *irela;
c7ac6ff8 2312 Elf_Internal_Rel *irel;
6b5bd373
MM
2313
2314 erel = (Elf_External_Rel *) external_relocs;
2315 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2316 irela = internal_relocs;
c7ac6ff8
MM
2317 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2318 * sizeof (Elf_Internal_Rel)));
2319 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2320 {
65388f2d 2321 unsigned char i;
c7ac6ff8
MM
2322
2323 if (bed->s->swap_reloc_in)
2324 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2325 else
2326 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2327
c7ac6ff8
MM
2328 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2329 {
2330 irela[i].r_offset = irel[i].r_offset;
2331 irela[i].r_info = irel[i].r_info;
2332 irela[i].r_addend = 0;
2333 }
6b5bd373
MM
2334 }
2335 }
2336 else
2337 {
2338 Elf_External_Rela *erela;
2339 Elf_External_Rela *erelaend;
2340 Elf_Internal_Rela *irela;
2341
2342 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2343
2344 erela = (Elf_External_Rela *) external_relocs;
2345 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2346 irela = internal_relocs;
c7ac6ff8
MM
2347 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2348 {
2349 if (bed->s->swap_reloca_in)
2350 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2351 else
2352 elf_swap_reloca_in (abfd, erela, irela);
2353 }
6b5bd373
MM
2354 }
2355
2356 return true;
2357}
2358
23bc299b
MM
2359/* Read and swap the relocs for a section O. They may have been
2360 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2361 not NULL, they are used as buffers to read into. They are known to
2362 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2363 the return value is allocated using either malloc or bfd_alloc,
2364 according to the KEEP_MEMORY argument. If O has two relocation
2365 sections (both REL and RELA relocations), then the REL_HDR
2366 relocations will appear first in INTERNAL_RELOCS, followed by the
2367 REL_HDR2 relocations. */
252b5132
RH
2368
2369Elf_Internal_Rela *
2370NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2371 keep_memory)
2372 bfd *abfd;
2373 asection *o;
2374 PTR external_relocs;
2375 Elf_Internal_Rela *internal_relocs;
2376 boolean keep_memory;
2377{
2378 Elf_Internal_Shdr *rel_hdr;
2379 PTR alloc1 = NULL;
2380 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2381 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2382
2383 if (elf_section_data (o)->relocs != NULL)
2384 return elf_section_data (o)->relocs;
2385
2386 if (o->reloc_count == 0)
2387 return NULL;
2388
2389 rel_hdr = &elf_section_data (o)->rel_hdr;
2390
2391 if (internal_relocs == NULL)
2392 {
2393 size_t size;
2394
c7ac6ff8
MM
2395 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2396 * sizeof (Elf_Internal_Rela));
252b5132
RH
2397 if (keep_memory)
2398 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2399 else
2400 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2401 if (internal_relocs == NULL)
2402 goto error_return;
2403 }
2404
2405 if (external_relocs == NULL)
2406 {
6b5bd373
MM
2407 size_t size = (size_t) rel_hdr->sh_size;
2408
2409 if (elf_section_data (o)->rel_hdr2)
2410 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2411 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2412 if (alloc1 == NULL)
2413 goto error_return;
2414 external_relocs = alloc1;
2415 }
2416
6b5bd373
MM
2417 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2418 external_relocs,
2419 internal_relocs))
2420 goto error_return;
2421 if (!elf_link_read_relocs_from_section
2422 (abfd,
2423 elf_section_data (o)->rel_hdr2,
2f5116e2 2424 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2425 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2426 * bed->s->int_rels_per_ext_rel)))
252b5132 2427 goto error_return;
252b5132
RH
2428
2429 /* Cache the results for next time, if we can. */
2430 if (keep_memory)
2431 elf_section_data (o)->relocs = internal_relocs;
2432
2433 if (alloc1 != NULL)
2434 free (alloc1);
2435
2436 /* Don't free alloc2, since if it was allocated we are passing it
2437 back (under the name of internal_relocs). */
2438
2439 return internal_relocs;
2440
2441 error_return:
2442 if (alloc1 != NULL)
2443 free (alloc1);
2444 if (alloc2 != NULL)
2445 free (alloc2);
2446 return NULL;
2447}
2448\f
2449
2450/* Record an assignment to a symbol made by a linker script. We need
2451 this in case some dynamic object refers to this symbol. */
2452
2453/*ARGSUSED*/
2454boolean
2455NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2456 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2457 struct bfd_link_info *info;
2458 const char *name;
2459 boolean provide;
2460{
2461 struct elf_link_hash_entry *h;
2462
2463 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2464 return true;
2465
2466 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2467 if (h == NULL)
2468 return false;
2469
2470 if (h->root.type == bfd_link_hash_new)
2471 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2472
2473 /* If this symbol is being provided by the linker script, and it is
2474 currently defined by a dynamic object, but not by a regular
2475 object, then mark it as undefined so that the generic linker will
2476 force the correct value. */
2477 if (provide
2478 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2479 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2480 h->root.type = bfd_link_hash_undefined;
2481
2482 /* If this symbol is not being provided by the linker script, and it is
2483 currently defined by a dynamic object, but not by a regular object,
2484 then clear out any version information because the symbol will not be
2485 associated with the dynamic object any more. */
2486 if (!provide
2487 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2488 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2489 h->verinfo.verdef = NULL;
2490
2491 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
994819d2
NC
2492
2493 /* When possible, keep the original type of the symbol */
2494 if (h->type == STT_NOTYPE)
2495 h->type = STT_OBJECT;
252b5132
RH
2496
2497 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2498 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2499 || info->shared)
2500 && h->dynindx == -1)
2501 {
2502 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2503 return false;
2504
2505 /* If this is a weak defined symbol, and we know a corresponding
2506 real symbol from the same dynamic object, make sure the real
2507 symbol is also made into a dynamic symbol. */
2508 if (h->weakdef != NULL
2509 && h->weakdef->dynindx == -1)
2510 {
2511 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2512 return false;
2513 }
2514 }
2515
2516 return true;
2517}
2518\f
2519/* This structure is used to pass information to
2520 elf_link_assign_sym_version. */
2521
2522struct elf_assign_sym_version_info
2523{
2524 /* Output BFD. */
2525 bfd *output_bfd;
2526 /* General link information. */
2527 struct bfd_link_info *info;
2528 /* Version tree. */
2529 struct bfd_elf_version_tree *verdefs;
2530 /* Whether we are exporting all dynamic symbols. */
2531 boolean export_dynamic;
252b5132
RH
2532 /* Whether we had a failure. */
2533 boolean failed;
2534};
2535
2536/* This structure is used to pass information to
2537 elf_link_find_version_dependencies. */
2538
2539struct elf_find_verdep_info
2540{
2541 /* Output BFD. */
2542 bfd *output_bfd;
2543 /* General link information. */
2544 struct bfd_link_info *info;
2545 /* The number of dependencies. */
2546 unsigned int vers;
2547 /* Whether we had a failure. */
2548 boolean failed;
2549};
2550
2551/* Array used to determine the number of hash table buckets to use
2552 based on the number of symbols there are. If there are fewer than
2553 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2554 fewer than 37 we use 17 buckets, and so forth. We never use more
2555 than 32771 buckets. */
2556
2557static const size_t elf_buckets[] =
2558{
2559 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2560 16411, 32771, 0
2561};
2562
2563/* Compute bucket count for hashing table. We do not use a static set
2564 of possible tables sizes anymore. Instead we determine for all
2565 possible reasonable sizes of the table the outcome (i.e., the
2566 number of collisions etc) and choose the best solution. The
2567 weighting functions are not too simple to allow the table to grow
2568 without bounds. Instead one of the weighting factors is the size.
2569 Therefore the result is always a good payoff between few collisions
2570 (= short chain lengths) and table size. */
2571static size_t
2572compute_bucket_count (info)
2573 struct bfd_link_info *info;
2574{
2575 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2576 size_t best_size = 0;
252b5132
RH
2577 unsigned long int *hashcodes;
2578 unsigned long int *hashcodesp;
2579 unsigned long int i;
2580
2581 /* Compute the hash values for all exported symbols. At the same
2582 time store the values in an array so that we could use them for
2583 optimizations. */
2584 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2585 * sizeof (unsigned long int));
2586 if (hashcodes == NULL)
2587 return 0;
2588 hashcodesp = hashcodes;
2589
2590 /* Put all hash values in HASHCODES. */
2591 elf_link_hash_traverse (elf_hash_table (info),
2592 elf_collect_hash_codes, &hashcodesp);
2593
2594/* We have a problem here. The following code to optimize the table
2595 size requires an integer type with more the 32 bits. If
2596 BFD_HOST_U_64_BIT is set we know about such a type. */
2597#ifdef BFD_HOST_U_64_BIT
2598 if (info->optimize == true)
2599 {
2600 unsigned long int nsyms = hashcodesp - hashcodes;
2601 size_t minsize;
2602 size_t maxsize;
2603 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2604 unsigned long int *counts ;
2605
2606 /* Possible optimization parameters: if we have NSYMS symbols we say
2607 that the hashing table must at least have NSYMS/4 and at most
2608 2*NSYMS buckets. */
2609 minsize = nsyms / 4;
2610 if (minsize == 0)
2611 minsize = 1;
2612 best_size = maxsize = nsyms * 2;
2613
2614 /* Create array where we count the collisions in. We must use bfd_malloc
2615 since the size could be large. */
2616 counts = (unsigned long int *) bfd_malloc (maxsize
2617 * sizeof (unsigned long int));
2618 if (counts == NULL)
2619 {
2620 free (hashcodes);
2621 return 0;
2622 }
2623
2624 /* Compute the "optimal" size for the hash table. The criteria is a
2625 minimal chain length. The minor criteria is (of course) the size
2626 of the table. */
2627 for (i = minsize; i < maxsize; ++i)
2628 {
2629 /* Walk through the array of hashcodes and count the collisions. */
2630 BFD_HOST_U_64_BIT max;
2631 unsigned long int j;
2632 unsigned long int fact;
2633
2634 memset (counts, '\0', i * sizeof (unsigned long int));
2635
2636 /* Determine how often each hash bucket is used. */
2637 for (j = 0; j < nsyms; ++j)
2638 ++counts[hashcodes[j] % i];
2639
2640 /* For the weight function we need some information about the
2641 pagesize on the target. This is information need not be 100%
2642 accurate. Since this information is not available (so far) we
2643 define it here to a reasonable default value. If it is crucial
2644 to have a better value some day simply define this value. */
2645# ifndef BFD_TARGET_PAGESIZE
2646# define BFD_TARGET_PAGESIZE (4096)
2647# endif
2648
2649 /* We in any case need 2 + NSYMS entries for the size values and
2650 the chains. */
2651 max = (2 + nsyms) * (ARCH_SIZE / 8);
2652
2653# if 1
2654 /* Variant 1: optimize for short chains. We add the squares
2655 of all the chain lengths (which favous many small chain
2656 over a few long chains). */
2657 for (j = 0; j < i; ++j)
2658 max += counts[j] * counts[j];
2659
2660 /* This adds penalties for the overall size of the table. */
2661 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2662 max *= fact * fact;
2663# else
2664 /* Variant 2: Optimize a lot more for small table. Here we
2665 also add squares of the size but we also add penalties for
2666 empty slots (the +1 term). */
2667 for (j = 0; j < i; ++j)
2668 max += (1 + counts[j]) * (1 + counts[j]);
2669
2670 /* The overall size of the table is considered, but not as
2671 strong as in variant 1, where it is squared. */
2672 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2673 max *= fact;
2674# endif
2675
2676 /* Compare with current best results. */
2677 if (max < best_chlen)
2678 {
2679 best_chlen = max;
2680 best_size = i;
2681 }
2682 }
2683
2684 free (counts);
2685 }
2686 else
2687#endif /* defined (BFD_HOST_U_64_BIT) */
2688 {
2689 /* This is the fallback solution if no 64bit type is available or if we
2690 are not supposed to spend much time on optimizations. We select the
2691 bucket count using a fixed set of numbers. */
2692 for (i = 0; elf_buckets[i] != 0; i++)
2693 {
2694 best_size = elf_buckets[i];
2695 if (dynsymcount < elf_buckets[i + 1])
2696 break;
2697 }
2698 }
2699
2700 /* Free the arrays we needed. */
2701 free (hashcodes);
2702
2703 return best_size;
2704}
2705
2706/* Set up the sizes and contents of the ELF dynamic sections. This is
2707 called by the ELF linker emulation before_allocation routine. We
2708 must set the sizes of the sections before the linker sets the
2709 addresses of the various sections. */
2710
2711boolean
2712NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2713 export_dynamic, filter_shlib,
2714 auxiliary_filters, info, sinterpptr,
2715 verdefs)
2716 bfd *output_bfd;
2717 const char *soname;
2718 const char *rpath;
2719 boolean export_dynamic;
2720 const char *filter_shlib;
2721 const char * const *auxiliary_filters;
2722 struct bfd_link_info *info;
2723 asection **sinterpptr;
2724 struct bfd_elf_version_tree *verdefs;
2725{
2726 bfd_size_type soname_indx;
2727 bfd *dynobj;
2728 struct elf_backend_data *bed;
252b5132
RH
2729 struct elf_assign_sym_version_info asvinfo;
2730
2731 *sinterpptr = NULL;
2732
2733 soname_indx = (bfd_size_type) -1;
2734
2735 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2736 return true;
2737
2738 /* The backend may have to create some sections regardless of whether
2739 we're dynamic or not. */
2740 bed = get_elf_backend_data (output_bfd);
2741 if (bed->elf_backend_always_size_sections
2742 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2743 return false;
2744
2745 dynobj = elf_hash_table (info)->dynobj;
2746
2747 /* If there were no dynamic objects in the link, there is nothing to
2748 do here. */
2749 if (dynobj == NULL)
2750 return true;
2751
252b5132
RH
2752 if (elf_hash_table (info)->dynamic_sections_created)
2753 {
2754 struct elf_info_failed eif;
2755 struct elf_link_hash_entry *h;
2756 bfd_size_type strsize;
2757
2758 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2759 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2760
2761 if (soname != NULL)
2762 {
2763 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2764 soname, true, true);
2765 if (soname_indx == (bfd_size_type) -1
2766 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2767 return false;
2768 }
2769
2770 if (info->symbolic)
2771 {
2772 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2773 return false;
2774 }
2775
2776 if (rpath != NULL)
2777 {
2778 bfd_size_type indx;
2779
2780 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2781 true, true);
2782 if (indx == (bfd_size_type) -1
2783 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2784 return false;
2785 }
2786
2787 if (filter_shlib != NULL)
2788 {
2789 bfd_size_type indx;
2790
2791 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2792 filter_shlib, true, true);
2793 if (indx == (bfd_size_type) -1
2794 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2795 return false;
2796 }
2797
2798 if (auxiliary_filters != NULL)
2799 {
2800 const char * const *p;
2801
2802 for (p = auxiliary_filters; *p != NULL; p++)
2803 {
2804 bfd_size_type indx;
2805
2806 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2807 *p, true, true);
2808 if (indx == (bfd_size_type) -1
2809 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2810 return false;
2811 }
2812 }
2813
ea44b734
RH
2814 /* If we are supposed to export all symbols into the dynamic symbol
2815 table (this is not the normal case), then do so. */
2816 if (export_dynamic)
2817 {
2818 struct elf_info_failed eif;
2819
2820 eif.failed = false;
2821 eif.info = info;
2822 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2823 (PTR) &eif);
2824 if (eif.failed)
2825 return false;
2826 }
2827
252b5132
RH
2828 /* Attach all the symbols to their version information. */
2829 asvinfo.output_bfd = output_bfd;
2830 asvinfo.info = info;
2831 asvinfo.verdefs = verdefs;
2832 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2833 asvinfo.failed = false;
2834
2835 elf_link_hash_traverse (elf_hash_table (info),
2836 elf_link_assign_sym_version,
2837 (PTR) &asvinfo);
2838 if (asvinfo.failed)
2839 return false;
2840
2841 /* Find all symbols which were defined in a dynamic object and make
2842 the backend pick a reasonable value for them. */
2843 eif.failed = false;
2844 eif.info = info;
2845 elf_link_hash_traverse (elf_hash_table (info),
2846 elf_adjust_dynamic_symbol,
2847 (PTR) &eif);
2848 if (eif.failed)
2849 return false;
2850
2851 /* Add some entries to the .dynamic section. We fill in some of the
2852 values later, in elf_bfd_final_link, but we must add the entries
2853 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2854
2855 /* If there are initialization and/or finalization functions to
2856 call then add the corresponding DT_INIT/DT_FINI entries. */
2857 h = (info->init_function
2858 ? elf_link_hash_lookup (elf_hash_table (info),
2859 info->init_function, false,
2860 false, false)
2861 : NULL);
252b5132
RH
2862 if (h != NULL
2863 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2864 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2865 {
2866 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2867 return false;
2868 }
f0c2e336
MM
2869 h = (info->fini_function
2870 ? elf_link_hash_lookup (elf_hash_table (info),
2871 info->fini_function, false,
2872 false, false)
2873 : NULL);
252b5132
RH
2874 if (h != NULL
2875 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2876 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2877 {
2878 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2879 return false;
2880 }
f0c2e336 2881
252b5132
RH
2882 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2883 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2884 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2885 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2886 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2887 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2888 sizeof (Elf_External_Sym)))
2889 return false;
2890 }
2891
2892 /* The backend must work out the sizes of all the other dynamic
2893 sections. */
252b5132
RH
2894 if (bed->elf_backend_size_dynamic_sections
2895 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2896 return false;
2897
2898 if (elf_hash_table (info)->dynamic_sections_created)
2899 {
2900 size_t dynsymcount;
2901 asection *s;
2902 size_t bucketcount = 0;
2903 Elf_Internal_Sym isym;
c7ac6ff8 2904 size_t hash_entry_size;
252b5132
RH
2905
2906 /* Set up the version definition section. */
2907 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2908 BFD_ASSERT (s != NULL);
2909
2910 /* We may have created additional version definitions if we are
2911 just linking a regular application. */
2912 verdefs = asvinfo.verdefs;
2913
2914 if (verdefs == NULL)
7f8d5fc9 2915 _bfd_strip_section_from_output (info, s);
252b5132
RH
2916 else
2917 {
2918 unsigned int cdefs;
2919 bfd_size_type size;
2920 struct bfd_elf_version_tree *t;
2921 bfd_byte *p;
2922 Elf_Internal_Verdef def;
2923 Elf_Internal_Verdaux defaux;
2924
252b5132
RH
2925 cdefs = 0;
2926 size = 0;
2927
2928 /* Make space for the base version. */
2929 size += sizeof (Elf_External_Verdef);
2930 size += sizeof (Elf_External_Verdaux);
2931 ++cdefs;
2932
2933 for (t = verdefs; t != NULL; t = t->next)
2934 {
2935 struct bfd_elf_version_deps *n;
2936
2937 size += sizeof (Elf_External_Verdef);
2938 size += sizeof (Elf_External_Verdaux);
2939 ++cdefs;
2940
2941 for (n = t->deps; n != NULL; n = n->next)
2942 size += sizeof (Elf_External_Verdaux);
2943 }
2944
2945 s->_raw_size = size;
2946 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2947 if (s->contents == NULL && s->_raw_size != 0)
2948 return false;
2949
2950 /* Fill in the version definition section. */
2951
2952 p = s->contents;
2953
2954 def.vd_version = VER_DEF_CURRENT;
2955 def.vd_flags = VER_FLG_BASE;
2956 def.vd_ndx = 1;
2957 def.vd_cnt = 1;
2958 def.vd_aux = sizeof (Elf_External_Verdef);
2959 def.vd_next = (sizeof (Elf_External_Verdef)
2960 + sizeof (Elf_External_Verdaux));
2961
2962 if (soname_indx != (bfd_size_type) -1)
2963 {
3a99b017 2964 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
2965 defaux.vda_name = soname_indx;
2966 }
2967 else
2968 {
2969 const char *name;
2970 bfd_size_type indx;
2971
2972 name = output_bfd->filename;
3a99b017 2973 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
2974 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2975 name, true, false);
2976 if (indx == (bfd_size_type) -1)
2977 return false;
2978 defaux.vda_name = indx;
2979 }
2980 defaux.vda_next = 0;
2981
2982 _bfd_elf_swap_verdef_out (output_bfd, &def,
2983 (Elf_External_Verdef *)p);
2984 p += sizeof (Elf_External_Verdef);
2985 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2986 (Elf_External_Verdaux *) p);
2987 p += sizeof (Elf_External_Verdaux);
2988
2989 for (t = verdefs; t != NULL; t = t->next)
2990 {
2991 unsigned int cdeps;
2992 struct bfd_elf_version_deps *n;
2993 struct elf_link_hash_entry *h;
2994
2995 cdeps = 0;
2996 for (n = t->deps; n != NULL; n = n->next)
2997 ++cdeps;
2998
2999 /* Add a symbol representing this version. */
3000 h = NULL;
3001 if (! (_bfd_generic_link_add_one_symbol
3002 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3003 (bfd_vma) 0, (const char *) NULL, false,
3004 get_elf_backend_data (dynobj)->collect,
3005 (struct bfd_link_hash_entry **) &h)))
3006 return false;
3007 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3008 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3009 h->type = STT_OBJECT;
3010 h->verinfo.vertree = t;
3011
3012 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3013 return false;
3014
3015 def.vd_version = VER_DEF_CURRENT;
3016 def.vd_flags = 0;
3017 if (t->globals == NULL && t->locals == NULL && ! t->used)
3018 def.vd_flags |= VER_FLG_WEAK;
3019 def.vd_ndx = t->vernum + 1;
3020 def.vd_cnt = cdeps + 1;
3a99b017 3021 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
3022 def.vd_aux = sizeof (Elf_External_Verdef);
3023 if (t->next != NULL)
3024 def.vd_next = (sizeof (Elf_External_Verdef)
3025 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3026 else
3027 def.vd_next = 0;
3028
3029 _bfd_elf_swap_verdef_out (output_bfd, &def,
3030 (Elf_External_Verdef *) p);
3031 p += sizeof (Elf_External_Verdef);
3032
3033 defaux.vda_name = h->dynstr_index;
3034 if (t->deps == NULL)
3035 defaux.vda_next = 0;
3036 else
3037 defaux.vda_next = sizeof (Elf_External_Verdaux);
3038 t->name_indx = defaux.vda_name;
3039
3040 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3041 (Elf_External_Verdaux *) p);
3042 p += sizeof (Elf_External_Verdaux);
3043
3044 for (n = t->deps; n != NULL; n = n->next)
3045 {
3046 if (n->version_needed == NULL)
3047 {
3048 /* This can happen if there was an error in the
3049 version script. */
3050 defaux.vda_name = 0;
3051 }
3052 else
3053 defaux.vda_name = n->version_needed->name_indx;
3054 if (n->next == NULL)
3055 defaux.vda_next = 0;
3056 else
3057 defaux.vda_next = sizeof (Elf_External_Verdaux);
3058
3059 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3060 (Elf_External_Verdaux *) p);
3061 p += sizeof (Elf_External_Verdaux);
3062 }
3063 }
3064
3065 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3066 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3067 return false;
3068
3069 elf_tdata (output_bfd)->cverdefs = cdefs;
3070 }
3071
3072 /* Work out the size of the version reference section. */
3073
3074 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3075 BFD_ASSERT (s != NULL);
3076 {
3077 struct elf_find_verdep_info sinfo;
3078
3079 sinfo.output_bfd = output_bfd;
3080 sinfo.info = info;
3081 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3082 if (sinfo.vers == 0)
3083 sinfo.vers = 1;
3084 sinfo.failed = false;
3085
3086 elf_link_hash_traverse (elf_hash_table (info),
3087 elf_link_find_version_dependencies,
3088 (PTR) &sinfo);
3089
3090 if (elf_tdata (output_bfd)->verref == NULL)
7f8d5fc9 3091 _bfd_strip_section_from_output (info, s);
252b5132
RH
3092 else
3093 {
3094 Elf_Internal_Verneed *t;
3095 unsigned int size;
3096 unsigned int crefs;
3097 bfd_byte *p;
3098
3099 /* Build the version definition section. */
3100 size = 0;
3101 crefs = 0;
3102 for (t = elf_tdata (output_bfd)->verref;
3103 t != NULL;
3104 t = t->vn_nextref)
3105 {
3106 Elf_Internal_Vernaux *a;
3107
3108 size += sizeof (Elf_External_Verneed);
3109 ++crefs;
3110 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3111 size += sizeof (Elf_External_Vernaux);
3112 }
3113
3114 s->_raw_size = size;
3115 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3116 if (s->contents == NULL)
3117 return false;
3118
3119 p = s->contents;
3120 for (t = elf_tdata (output_bfd)->verref;
3121 t != NULL;
3122 t = t->vn_nextref)
3123 {
3124 unsigned int caux;
3125 Elf_Internal_Vernaux *a;
3126 bfd_size_type indx;
3127
3128 caux = 0;
3129 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3130 ++caux;
3131
3132 t->vn_version = VER_NEED_CURRENT;
3133 t->vn_cnt = caux;
3134 if (elf_dt_name (t->vn_bfd) != NULL)
3135 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3136 elf_dt_name (t->vn_bfd),
3137 true, false);
3138 else
3139 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3140 t->vn_bfd->filename, true, false);
3141 if (indx == (bfd_size_type) -1)
3142 return false;
3143 t->vn_file = indx;
3144 t->vn_aux = sizeof (Elf_External_Verneed);
3145 if (t->vn_nextref == NULL)
3146 t->vn_next = 0;
3147 else
3148 t->vn_next = (sizeof (Elf_External_Verneed)
3149 + caux * sizeof (Elf_External_Vernaux));
3150
3151 _bfd_elf_swap_verneed_out (output_bfd, t,
3152 (Elf_External_Verneed *) p);
3153 p += sizeof (Elf_External_Verneed);
3154
3155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3156 {
3a99b017 3157 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3158 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3159 a->vna_nodename, true, false);
3160 if (indx == (bfd_size_type) -1)
3161 return false;
3162 a->vna_name = indx;
3163 if (a->vna_nextptr == NULL)
3164 a->vna_next = 0;
3165 else
3166 a->vna_next = sizeof (Elf_External_Vernaux);
3167
3168 _bfd_elf_swap_vernaux_out (output_bfd, a,
3169 (Elf_External_Vernaux *) p);
3170 p += sizeof (Elf_External_Vernaux);
3171 }
3172 }
3173
3174 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3175 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3176 return false;
3177
3178 elf_tdata (output_bfd)->cverrefs = crefs;
3179 }
3180 }
3181
30b30c21
RH
3182 /* Assign dynsym indicies. In a shared library we generate a
3183 section symbol for each output section, which come first.
3184 Next come all of the back-end allocated local dynamic syms,
3185 followed by the rest of the global symbols. */
3186
3187 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3188
3189 /* Work out the size of the symbol version section. */
3190 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3191 BFD_ASSERT (s != NULL);
3192 if (dynsymcount == 0
3193 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3194 {
7f8d5fc9 3195 _bfd_strip_section_from_output (info, s);
42751cf3
MM
3196 /* The DYNSYMCOUNT might have changed if we were going to
3197 output a dynamic symbol table entry for S. */
30b30c21 3198 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3199 }
3200 else
3201 {
3202 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3203 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3204 if (s->contents == NULL)
3205 return false;
3206
3207 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3208 return false;
3209 }
3210
3211 /* Set the size of the .dynsym and .hash sections. We counted
3212 the number of dynamic symbols in elf_link_add_object_symbols.
3213 We will build the contents of .dynsym and .hash when we build
3214 the final symbol table, because until then we do not know the
3215 correct value to give the symbols. We built the .dynstr
3216 section as we went along in elf_link_add_object_symbols. */
3217 s = bfd_get_section_by_name (dynobj, ".dynsym");
3218 BFD_ASSERT (s != NULL);
3219 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3220 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3221 if (s->contents == NULL && s->_raw_size != 0)
3222 return false;
3223
3224 /* The first entry in .dynsym is a dummy symbol. */
3225 isym.st_value = 0;
3226 isym.st_size = 0;
3227 isym.st_name = 0;
3228 isym.st_info = 0;
3229 isym.st_other = 0;
3230 isym.st_shndx = 0;
3231 elf_swap_symbol_out (output_bfd, &isym,
3232 (PTR) (Elf_External_Sym *) s->contents);
3233
3234 /* Compute the size of the hashing table. As a side effect this
3235 computes the hash values for all the names we export. */
3236 bucketcount = compute_bucket_count (info);
3237
3238 s = bfd_get_section_by_name (dynobj, ".hash");
3239 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3240 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3241 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3242 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3243 if (s->contents == NULL)
3244 return false;
3245 memset (s->contents, 0, (size_t) s->_raw_size);
3246
c7ac6ff8
MM
3247 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3248 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3249 s->contents + hash_entry_size);
252b5132
RH
3250
3251 elf_hash_table (info)->bucketcount = bucketcount;
3252
3253 s = bfd_get_section_by_name (dynobj, ".dynstr");
3254 BFD_ASSERT (s != NULL);
3255 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3256
3257 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3258 return false;
3259 }
3260
3261 return true;
3262}
3263\f
3264/* Fix up the flags for a symbol. This handles various cases which
3265 can only be fixed after all the input files are seen. This is
3266 currently called by both adjust_dynamic_symbol and
3267 assign_sym_version, which is unnecessary but perhaps more robust in
3268 the face of future changes. */
3269
3270static boolean
3271elf_fix_symbol_flags (h, eif)
3272 struct elf_link_hash_entry *h;
3273 struct elf_info_failed *eif;
3274{
3275 /* If this symbol was mentioned in a non-ELF file, try to set
3276 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3277 permit a non-ELF file to correctly refer to a symbol defined in
3278 an ELF dynamic object. */
3279 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3280 {
3281 if (h->root.type != bfd_link_hash_defined
3282 && h->root.type != bfd_link_hash_defweak)
3283 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3284 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3285 else
3286 {
3287 if (h->root.u.def.section->owner != NULL
3288 && (bfd_get_flavour (h->root.u.def.section->owner)
3289 == bfd_target_elf_flavour))
3290 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3291 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3292 else
3293 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3294 }
3295
3296 if (h->dynindx == -1
3297 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3298 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3299 {
3300 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3301 {
3302 eif->failed = true;
3303 return false;
3304 }
3305 }
3306 }
3307 else
3308 {
3309 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3310 was first seen in a non-ELF file. Fortunately, if the symbol
3311 was first seen in an ELF file, we're probably OK unless the
3312 symbol was defined in a non-ELF file. Catch that case here.
3313 FIXME: We're still in trouble if the symbol was first seen in
3314 a dynamic object, and then later in a non-ELF regular object. */
3315 if ((h->root.type == bfd_link_hash_defined
3316 || h->root.type == bfd_link_hash_defweak)
3317 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3318 && (h->root.u.def.section->owner != NULL
3319 ? (bfd_get_flavour (h->root.u.def.section->owner)
3320 != bfd_target_elf_flavour)
3321 : (bfd_is_abs_section (h->root.u.def.section)
3322 && (h->elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3324 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3325 }
3326
3327 /* If this is a final link, and the symbol was defined as a common
3328 symbol in a regular object file, and there was no definition in
3329 any dynamic object, then the linker will have allocated space for
3330 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3331 flag will not have been set. */
3332 if (h->root.type == bfd_link_hash_defined
3333 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3334 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3335 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3336 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3337 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3338
3339 /* If -Bsymbolic was used (which means to bind references to global
3340 symbols to the definition within the shared object), and this
3341 symbol was defined in a regular object, then it actually doesn't
3342 need a PLT entry. */
3343 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3344 && eif->info->shared
3345 && eif->info->symbolic
3346 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3347 {
3348 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3349 h->plt.offset = (bfd_vma) -1;
3350 }
3351
fc4cc5bb
ILT
3352 /* If this is a weak defined symbol in a dynamic object, and we know
3353 the real definition in the dynamic object, copy interesting flags
3354 over to the real definition. */
3355 if (h->weakdef != NULL)
3356 {
3357 struct elf_link_hash_entry *weakdef;
3358
3359 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3360 || h->root.type == bfd_link_hash_defweak);
3361 weakdef = h->weakdef;
3362 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3363 || weakdef->root.type == bfd_link_hash_defweak);
3364 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3365
3366 /* If the real definition is defined by a regular object file,
3367 don't do anything special. See the longer description in
3368 elf_adjust_dynamic_symbol, below. */
3369 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3370 h->weakdef = NULL;
3371 else
3372 weakdef->elf_link_hash_flags |=
3373 (h->elf_link_hash_flags
3374 & (ELF_LINK_HASH_REF_REGULAR
3375 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3376 | ELF_LINK_NON_GOT_REF));
3377 }
3378
252b5132
RH
3379 return true;
3380}
3381
3382/* Make the backend pick a good value for a dynamic symbol. This is
3383 called via elf_link_hash_traverse, and also calls itself
3384 recursively. */
3385
3386static boolean
3387elf_adjust_dynamic_symbol (h, data)
3388 struct elf_link_hash_entry *h;
3389 PTR data;
3390{
3391 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3392 bfd *dynobj;
3393 struct elf_backend_data *bed;
3394
3395 /* Ignore indirect symbols. These are added by the versioning code. */
3396 if (h->root.type == bfd_link_hash_indirect)
3397 return true;
3398
3399 /* Fix the symbol flags. */
3400 if (! elf_fix_symbol_flags (h, eif))
3401 return false;
3402
3403 /* If this symbol does not require a PLT entry, and it is not
3404 defined by a dynamic object, or is not referenced by a regular
3405 object, ignore it. We do have to handle a weak defined symbol,
3406 even if no regular object refers to it, if we decided to add it
3407 to the dynamic symbol table. FIXME: Do we normally need to worry
3408 about symbols which are defined by one dynamic object and
3409 referenced by another one? */
3410 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3411 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3412 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3413 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3414 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3415 {
3416 h->plt.offset = (bfd_vma) -1;
3417 return true;
3418 }
3419
3420 /* If we've already adjusted this symbol, don't do it again. This
3421 can happen via a recursive call. */
3422 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3423 return true;
3424
3425 /* Don't look at this symbol again. Note that we must set this
3426 after checking the above conditions, because we may look at a
3427 symbol once, decide not to do anything, and then get called
3428 recursively later after REF_REGULAR is set below. */
3429 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3430
3431 /* If this is a weak definition, and we know a real definition, and
3432 the real symbol is not itself defined by a regular object file,
3433 then get a good value for the real definition. We handle the
3434 real symbol first, for the convenience of the backend routine.
3435
3436 Note that there is a confusing case here. If the real definition
3437 is defined by a regular object file, we don't get the real symbol
3438 from the dynamic object, but we do get the weak symbol. If the
3439 processor backend uses a COPY reloc, then if some routine in the
3440 dynamic object changes the real symbol, we will not see that
3441 change in the corresponding weak symbol. This is the way other
3442 ELF linkers work as well, and seems to be a result of the shared
3443 library model.
3444
3445 I will clarify this issue. Most SVR4 shared libraries define the
3446 variable _timezone and define timezone as a weak synonym. The
3447 tzset call changes _timezone. If you write
3448 extern int timezone;
3449 int _timezone = 5;
3450 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3451 you might expect that, since timezone is a synonym for _timezone,
3452 the same number will print both times. However, if the processor
3453 backend uses a COPY reloc, then actually timezone will be copied
3454 into your process image, and, since you define _timezone
3455 yourself, _timezone will not. Thus timezone and _timezone will
3456 wind up at different memory locations. The tzset call will set
3457 _timezone, leaving timezone unchanged. */
3458
3459 if (h->weakdef != NULL)
3460 {
fc4cc5bb
ILT
3461 /* If we get to this point, we know there is an implicit
3462 reference by a regular object file via the weak symbol H.
3463 FIXME: Is this really true? What if the traversal finds
3464 H->WEAKDEF before it finds H? */
3465 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
252b5132 3466
fc4cc5bb
ILT
3467 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3468 return false;
252b5132
RH
3469 }
3470
3471 /* If a symbol has no type and no size and does not require a PLT
3472 entry, then we are probably about to do the wrong thing here: we
3473 are probably going to create a COPY reloc for an empty object.
3474 This case can arise when a shared object is built with assembly
3475 code, and the assembly code fails to set the symbol type. */
3476 if (h->size == 0
3477 && h->type == STT_NOTYPE
3478 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3479 (*_bfd_error_handler)
3480 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3481 h->root.root.string);
3482
3483 dynobj = elf_hash_table (eif->info)->dynobj;
3484 bed = get_elf_backend_data (dynobj);
3485 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3486 {
3487 eif->failed = true;
3488 return false;
3489 }
3490
3491 return true;
3492}
3493\f
3494/* This routine is used to export all defined symbols into the dynamic
3495 symbol table. It is called via elf_link_hash_traverse. */
3496
3497static boolean
3498elf_export_symbol (h, data)
3499 struct elf_link_hash_entry *h;
3500 PTR data;
3501{
3502 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3503
3504 /* Ignore indirect symbols. These are added by the versioning code. */
3505 if (h->root.type == bfd_link_hash_indirect)
3506 return true;
3507
3508 if (h->dynindx == -1
3509 && (h->elf_link_hash_flags
3510 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3511 {
3512 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3513 {
3514 eif->failed = true;
3515 return false;
3516 }
3517 }
3518
3519 return true;
3520}
3521\f
3522/* Look through the symbols which are defined in other shared
3523 libraries and referenced here. Update the list of version
3524 dependencies. This will be put into the .gnu.version_r section.
3525 This function is called via elf_link_hash_traverse. */
3526
3527static boolean
3528elf_link_find_version_dependencies (h, data)
3529 struct elf_link_hash_entry *h;
3530 PTR data;
3531{
3532 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3533 Elf_Internal_Verneed *t;
3534 Elf_Internal_Vernaux *a;
3535
3536 /* We only care about symbols defined in shared objects with version
3537 information. */
3538 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3539 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3540 || h->dynindx == -1
3541 || h->verinfo.verdef == NULL)
3542 return true;
3543
3544 /* See if we already know about this version. */
3545 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3546 {
3547 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3548 continue;
3549
3550 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3551 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3552 return true;
3553
3554 break;
3555 }
3556
3557 /* This is a new version. Add it to tree we are building. */
3558
3559 if (t == NULL)
3560 {
3561 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3562 if (t == NULL)
3563 {
3564 rinfo->failed = true;
3565 return false;
3566 }
3567
3568 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3569 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3570 elf_tdata (rinfo->output_bfd)->verref = t;
3571 }
3572
3573 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3574
3575 /* Note that we are copying a string pointer here, and testing it
3576 above. If bfd_elf_string_from_elf_section is ever changed to
3577 discard the string data when low in memory, this will have to be
3578 fixed. */
3579 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3580
3581 a->vna_flags = h->verinfo.verdef->vd_flags;
3582 a->vna_nextptr = t->vn_auxptr;
3583
3584 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3585 ++rinfo->vers;
3586
3587 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3588
3589 t->vn_auxptr = a;
3590
3591 return true;
3592}
3593
3594/* Figure out appropriate versions for all the symbols. We may not
3595 have the version number script until we have read all of the input
3596 files, so until that point we don't know which symbols should be
3597 local. This function is called via elf_link_hash_traverse. */
3598
3599static boolean
3600elf_link_assign_sym_version (h, data)
3601 struct elf_link_hash_entry *h;
3602 PTR data;
3603{
3604 struct elf_assign_sym_version_info *sinfo =
3605 (struct elf_assign_sym_version_info *) data;
3606 struct bfd_link_info *info = sinfo->info;
c61b8717 3607 struct elf_backend_data *bed;
252b5132
RH
3608 struct elf_info_failed eif;
3609 char *p;
3610
3611 /* Fix the symbol flags. */
3612 eif.failed = false;
3613 eif.info = info;
3614 if (! elf_fix_symbol_flags (h, &eif))
3615 {
3616 if (eif.failed)
3617 sinfo->failed = true;
3618 return false;
3619 }
3620
3621 /* We only need version numbers for symbols defined in regular
3622 objects. */
3623 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3624 return true;
3625
c61b8717 3626 bed = get_elf_backend_data (sinfo->output_bfd);
252b5132
RH
3627 p = strchr (h->root.root.string, ELF_VER_CHR);
3628 if (p != NULL && h->verinfo.vertree == NULL)
3629 {
3630 struct bfd_elf_version_tree *t;
3631 boolean hidden;
3632
3633 hidden = true;
3634
3635 /* There are two consecutive ELF_VER_CHR characters if this is
3636 not a hidden symbol. */
3637 ++p;
3638 if (*p == ELF_VER_CHR)
3639 {
3640 hidden = false;
3641 ++p;
3642 }
3643
3644 /* If there is no version string, we can just return out. */
3645 if (*p == '\0')
3646 {
3647 if (hidden)
3648 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3649 return true;
3650 }
3651
3652 /* Look for the version. If we find it, it is no longer weak. */
3653 for (t = sinfo->verdefs; t != NULL; t = t->next)
3654 {
3655 if (strcmp (t->name, p) == 0)
3656 {
3657 int len;
3658 char *alc;
3659 struct bfd_elf_version_expr *d;
3660
3661 len = p - h->root.root.string;
3662 alc = bfd_alloc (sinfo->output_bfd, len);
3663 if (alc == NULL)
3664 return false;
3665 strncpy (alc, h->root.root.string, len - 1);
3666 alc[len - 1] = '\0';
3667 if (alc[len - 2] == ELF_VER_CHR)
3668 alc[len - 2] = '\0';
3669
3670 h->verinfo.vertree = t;
3671 t->used = true;
3672 d = NULL;
3673
3674 if (t->globals != NULL)
3675 {
3676 for (d = t->globals; d != NULL; d = d->next)
3677 if ((*d->match) (d, alc))
3678 break;
3679 }
3680
3681 /* See if there is anything to force this symbol to
3682 local scope. */
3683 if (d == NULL && t->locals != NULL)
3684 {
3685 for (d = t->locals; d != NULL; d = d->next)
3686 {
3687 if ((*d->match) (d, alc))
3688 {
3689 if (h->dynindx != -1
3690 && info->shared
3691 && ! sinfo->export_dynamic)
3692 {
252b5132 3693 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c61b8717 3694 (*bed->elf_backend_hide_symbol) (h);
252b5132
RH
3695 /* FIXME: The name of the symbol has
3696 already been recorded in the dynamic
3697 string table section. */
3698 }
3699
3700 break;
3701 }
3702 }
3703 }
3704
3705 bfd_release (sinfo->output_bfd, alc);
3706 break;
3707 }
3708 }
3709
3710 /* If we are building an application, we need to create a
3711 version node for this version. */
3712 if (t == NULL && ! info->shared)
3713 {
3714 struct bfd_elf_version_tree **pp;
3715 int version_index;
3716
3717 /* If we aren't going to export this symbol, we don't need
3718 to worry about it. */
3719 if (h->dynindx == -1)
3720 return true;
3721
3722 t = ((struct bfd_elf_version_tree *)
3723 bfd_alloc (sinfo->output_bfd, sizeof *t));
3724 if (t == NULL)
3725 {
3726 sinfo->failed = true;
3727 return false;
3728 }
3729
3730 t->next = NULL;
3731 t->name = p;
3732 t->globals = NULL;
3733 t->locals = NULL;
3734 t->deps = NULL;
3735 t->name_indx = (unsigned int) -1;
3736 t->used = true;
3737
3738 version_index = 1;
3739 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3740 ++version_index;
3741 t->vernum = version_index;
3742
3743 *pp = t;
3744
3745 h->verinfo.vertree = t;
3746 }
3747 else if (t == NULL)
3748 {
3749 /* We could not find the version for a symbol when
3750 generating a shared archive. Return an error. */
3751 (*_bfd_error_handler)
3752 (_("%s: undefined versioned symbol name %s"),
3753 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3754 bfd_set_error (bfd_error_bad_value);
3755 sinfo->failed = true;
3756 return false;
3757 }
3758
3759 if (hidden)
3760 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3761 }
3762
3763 /* If we don't have a version for this symbol, see if we can find
3764 something. */
3765 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3766 {
3767 struct bfd_elf_version_tree *t;
3768 struct bfd_elf_version_tree *deflt;
3769 struct bfd_elf_version_expr *d;
3770
3771 /* See if can find what version this symbol is in. If the
3772 symbol is supposed to be local, then don't actually register
3773 it. */
3774 deflt = NULL;
3775 for (t = sinfo->verdefs; t != NULL; t = t->next)
3776 {
3777 if (t->globals != NULL)
3778 {
3779 for (d = t->globals; d != NULL; d = d->next)
3780 {
3781 if ((*d->match) (d, h->root.root.string))
3782 {
3783 h->verinfo.vertree = t;
3784 break;
3785 }
3786 }
3787
3788 if (d != NULL)
3789 break;
3790 }
3791
3792 if (t->locals != NULL)
3793 {
3794 for (d = t->locals; d != NULL; d = d->next)
3795 {
3796 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3797 deflt = t;
3798 else if ((*d->match) (d, h->root.root.string))
3799 {
3800 h->verinfo.vertree = t;
3801 if (h->dynindx != -1
3802 && info->shared
3803 && ! sinfo->export_dynamic)
3804 {
252b5132 3805 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c61b8717 3806 (*bed->elf_backend_hide_symbol) (h);
252b5132
RH
3807 /* FIXME: The name of the symbol has already
3808 been recorded in the dynamic string table
3809 section. */
3810 }
3811 break;
3812 }
3813 }
3814
3815 if (d != NULL)
3816 break;
3817 }
3818 }
3819
3820 if (deflt != NULL && h->verinfo.vertree == NULL)
3821 {
3822 h->verinfo.vertree = deflt;
3823 if (h->dynindx != -1
3824 && info->shared
3825 && ! sinfo->export_dynamic)
3826 {
252b5132 3827 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c61b8717 3828 (*bed->elf_backend_hide_symbol) (h);
252b5132
RH
3829 /* FIXME: The name of the symbol has already been
3830 recorded in the dynamic string table section. */
3831 }
3832 }
3833 }
3834
3835 return true;
3836}
252b5132
RH
3837\f
3838/* Final phase of ELF linker. */
3839
3840/* A structure we use to avoid passing large numbers of arguments. */
3841
3842struct elf_final_link_info
3843{
3844 /* General link information. */
3845 struct bfd_link_info *info;
3846 /* Output BFD. */
3847 bfd *output_bfd;
3848 /* Symbol string table. */
3849 struct bfd_strtab_hash *symstrtab;
3850 /* .dynsym section. */
3851 asection *dynsym_sec;
3852 /* .hash section. */
3853 asection *hash_sec;
3854 /* symbol version section (.gnu.version). */
3855 asection *symver_sec;
3856 /* Buffer large enough to hold contents of any section. */
3857 bfd_byte *contents;
3858 /* Buffer large enough to hold external relocs of any section. */
3859 PTR external_relocs;
3860 /* Buffer large enough to hold internal relocs of any section. */
3861 Elf_Internal_Rela *internal_relocs;
3862 /* Buffer large enough to hold external local symbols of any input
3863 BFD. */
3864 Elf_External_Sym *external_syms;
3865 /* Buffer large enough to hold internal local symbols of any input
3866 BFD. */
3867 Elf_Internal_Sym *internal_syms;
3868 /* Array large enough to hold a symbol index for each local symbol
3869 of any input BFD. */
3870 long *indices;
3871 /* Array large enough to hold a section pointer for each local
3872 symbol of any input BFD. */
3873 asection **sections;
3874 /* Buffer to hold swapped out symbols. */
3875 Elf_External_Sym *symbuf;
3876 /* Number of swapped out symbols in buffer. */
3877 size_t symbuf_count;
3878 /* Number of symbols which fit in symbuf. */
3879 size_t symbuf_size;
3880};
3881
3882static boolean elf_link_output_sym
3883 PARAMS ((struct elf_final_link_info *, const char *,
3884 Elf_Internal_Sym *, asection *));
3885static boolean elf_link_flush_output_syms
3886 PARAMS ((struct elf_final_link_info *));
3887static boolean elf_link_output_extsym
3888 PARAMS ((struct elf_link_hash_entry *, PTR));
3889static boolean elf_link_input_bfd
3890 PARAMS ((struct elf_final_link_info *, bfd *));
3891static boolean elf_reloc_link_order
3892 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3893 struct bfd_link_order *));
3894
3895/* This struct is used to pass information to elf_link_output_extsym. */
3896
3897struct elf_outext_info
3898{
3899 boolean failed;
3900 boolean localsyms;
3901 struct elf_final_link_info *finfo;
3902};
3903
23bc299b
MM
3904/* Compute the size of, and allocate space for, REL_HDR which is the
3905 section header for a section containing relocations for O. */
3906
3907static boolean
3908elf_link_size_reloc_section (abfd, rel_hdr, o)
3909 bfd *abfd;
3910 Elf_Internal_Shdr *rel_hdr;
3911 asection *o;
3912{
3913 register struct elf_link_hash_entry **p, **pend;
b037af20 3914 unsigned reloc_count;
23bc299b 3915
b037af20
MM
3916 /* Figure out how many relocations there will be. */
3917 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3918 reloc_count = elf_section_data (o)->rel_count;
3919 else
3920 reloc_count = elf_section_data (o)->rel_count2;
3921
3922 /* That allows us to calculate the size of the section. */
3923 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
23bc299b
MM
3924
3925 /* The contents field must last into write_object_contents, so we
3926 allocate it with bfd_alloc rather than malloc. */
3927 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3928 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3929 return false;
b037af20
MM
3930
3931 /* We only allocate one set of hash entries, so we only do it the
3932 first time we are called. */
3933 if (elf_section_data (o)->rel_hashes == NULL)
3934 {
3935 p = ((struct elf_link_hash_entry **)
3936 bfd_malloc (o->reloc_count
3937 * sizeof (struct elf_link_hash_entry *)));
3938 if (p == NULL && o->reloc_count != 0)
3939 return false;
23bc299b 3940
b037af20
MM
3941 elf_section_data (o)->rel_hashes = p;
3942 pend = p + o->reloc_count;
3943 for (; p < pend; p++)
3944 *p = NULL;
3945 }
23bc299b
MM
3946
3947 return true;
3948}
3949
31367b81
MM
3950/* When performing a relocateable link, the input relocations are
3951 preserved. But, if they reference global symbols, the indices
3952 referenced must be updated. Update all the relocations in
3953 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3954
3955static void
3956elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3957 bfd *abfd;
3958 Elf_Internal_Shdr *rel_hdr;
3959 unsigned int count;
3960 struct elf_link_hash_entry **rel_hash;
3961{
3962 unsigned int i;
3963
3964 for (i = 0; i < count; i++, rel_hash++)
3965 {
3966 if (*rel_hash == NULL)
3967 continue;
3968
3969 BFD_ASSERT ((*rel_hash)->indx >= 0);
3970
3971 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3972 {
3973 Elf_External_Rel *erel;
3974 Elf_Internal_Rel irel;
3975
3976 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3977 elf_swap_reloc_in (abfd, erel, &irel);
3978 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3979 ELF_R_TYPE (irel.r_info));
3980 elf_swap_reloc_out (abfd, &irel, erel);
3981 }
3982 else
3983 {
3984 Elf_External_Rela *erela;
3985 Elf_Internal_Rela irela;
3986
3987 BFD_ASSERT (rel_hdr->sh_entsize
3988 == sizeof (Elf_External_Rela));
3989
3990 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3991 elf_swap_reloca_in (abfd, erela, &irela);
3992 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3993 ELF_R_TYPE (irela.r_info));
3994 elf_swap_reloca_out (abfd, &irela, erela);
3995 }
3996 }
3997}
3998
252b5132
RH
3999/* Do the final step of an ELF link. */
4000
4001boolean
4002elf_bfd_final_link (abfd, info)
4003 bfd *abfd;
4004 struct bfd_link_info *info;
4005{
4006 boolean dynamic;
4007 bfd *dynobj;
4008 struct elf_final_link_info finfo;
4009 register asection *o;
4010 register struct bfd_link_order *p;
4011 register bfd *sub;
4012 size_t max_contents_size;
4013 size_t max_external_reloc_size;
4014 size_t max_internal_reloc_count;
4015 size_t max_sym_count;
4016 file_ptr off;
4017 Elf_Internal_Sym elfsym;
4018 unsigned int i;
4019 Elf_Internal_Shdr *symtab_hdr;
4020 Elf_Internal_Shdr *symstrtab_hdr;
4021 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4022 struct elf_outext_info eoinfo;
4023
4024 if (info->shared)
4025 abfd->flags |= DYNAMIC;
4026
4027 dynamic = elf_hash_table (info)->dynamic_sections_created;
4028 dynobj = elf_hash_table (info)->dynobj;
4029
4030 finfo.info = info;
4031 finfo.output_bfd = abfd;
4032 finfo.symstrtab = elf_stringtab_init ();
4033 if (finfo.symstrtab == NULL)
4034 return false;
4035
4036 if (! dynamic)
4037 {
4038 finfo.dynsym_sec = NULL;
4039 finfo.hash_sec = NULL;
4040 finfo.symver_sec = NULL;
4041 }
4042 else
4043 {
4044 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4045 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4046 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4047 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4048 /* Note that it is OK if symver_sec is NULL. */
4049 }
4050
4051 finfo.contents = NULL;
4052 finfo.external_relocs = NULL;
4053 finfo.internal_relocs = NULL;
4054 finfo.external_syms = NULL;
4055 finfo.internal_syms = NULL;
4056 finfo.indices = NULL;
4057 finfo.sections = NULL;
4058 finfo.symbuf = NULL;
4059 finfo.symbuf_count = 0;
4060
4061 /* Count up the number of relocations we will output for each output
4062 section, so that we know the sizes of the reloc sections. We
4063 also figure out some maximum sizes. */
4064 max_contents_size = 0;
4065 max_external_reloc_size = 0;
4066 max_internal_reloc_count = 0;
4067 max_sym_count = 0;
4068 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4069 {
4070 o->reloc_count = 0;
4071
4072 for (p = o->link_order_head; p != NULL; p = p->next)
4073 {
4074 if (p->type == bfd_section_reloc_link_order
4075 || p->type == bfd_symbol_reloc_link_order)
4076 ++o->reloc_count;
4077 else if (p->type == bfd_indirect_link_order)
4078 {
4079 asection *sec;
4080
4081 sec = p->u.indirect.section;
4082
4083 /* Mark all sections which are to be included in the
4084 link. This will normally be every section. We need
4085 to do this so that we can identify any sections which
4086 the linker has decided to not include. */
4087 sec->linker_mark = true;
4088
4089 if (info->relocateable)
4090 o->reloc_count += sec->reloc_count;
4091
4092 if (sec->_raw_size > max_contents_size)
4093 max_contents_size = sec->_raw_size;
4094 if (sec->_cooked_size > max_contents_size)
4095 max_contents_size = sec->_cooked_size;
4096
4097 /* We are interested in just local symbols, not all
4098 symbols. */
4099 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4100 && (sec->owner->flags & DYNAMIC) == 0)
4101 {
4102 size_t sym_count;
4103
4104 if (elf_bad_symtab (sec->owner))
4105 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4106 / sizeof (Elf_External_Sym));
4107 else
4108 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4109
4110 if (sym_count > max_sym_count)
4111 max_sym_count = sym_count;
4112
4113 if ((sec->flags & SEC_RELOC) != 0)
4114 {
4115 size_t ext_size;
4116
4117 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4118 if (ext_size > max_external_reloc_size)
4119 max_external_reloc_size = ext_size;
4120 if (sec->reloc_count > max_internal_reloc_count)
4121 max_internal_reloc_count = sec->reloc_count;
4122 }
4123 }
4124 }
4125 }
4126
4127 if (o->reloc_count > 0)
4128 o->flags |= SEC_RELOC;
4129 else
4130 {
4131 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4132 set it (this is probably a bug) and if it is set
4133 assign_section_numbers will create a reloc section. */
4134 o->flags &=~ SEC_RELOC;
4135 }
4136
4137 /* If the SEC_ALLOC flag is not set, force the section VMA to
4138 zero. This is done in elf_fake_sections as well, but forcing
4139 the VMA to 0 here will ensure that relocs against these
4140 sections are handled correctly. */
4141 if ((o->flags & SEC_ALLOC) == 0
4142 && ! o->user_set_vma)
4143 o->vma = 0;
4144 }
4145
4146 /* Figure out the file positions for everything but the symbol table
4147 and the relocs. We set symcount to force assign_section_numbers
4148 to create a symbol table. */
4149 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4150 BFD_ASSERT (! abfd->output_has_begun);
4151 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4152 goto error_return;
4153
b037af20
MM
4154 /* Figure out how many relocations we will have in each section.
4155 Just using RELOC_COUNT isn't good enough since that doesn't
4156 maintain a separate value for REL vs. RELA relocations. */
4157 if (info->relocateable)
4158 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4159 for (o = sub->sections; o != NULL; o = o->next)
4160 {
814fe68a 4161 asection *output_section;
b037af20 4162
814fe68a
ILT
4163 if (! o->linker_mark)
4164 {
4165 /* This section was omitted from the link. */
4166 continue;
4167 }
4168
4169 output_section = o->output_section;
4170
4171 if (output_section != NULL
4172 && (o->flags & SEC_RELOC) != 0)
b037af20
MM
4173 {
4174 struct bfd_elf_section_data *esdi
4175 = elf_section_data (o);
4176 struct bfd_elf_section_data *esdo
4177 = elf_section_data (output_section);
ce006217
MM
4178 unsigned int *rel_count;
4179 unsigned int *rel_count2;
b037af20 4180
ce006217
MM
4181 /* We must be careful to add the relocation froms the
4182 input section to the right output count. */
4183 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4184 {
4185 rel_count = &esdo->rel_count;
4186 rel_count2 = &esdo->rel_count2;
4187 }
4188 else
4189 {
4190 rel_count = &esdo->rel_count2;
4191 rel_count2 = &esdo->rel_count;
4192 }
4193
4194 *rel_count += (esdi->rel_hdr.sh_size
4195 / esdi->rel_hdr.sh_entsize);
b037af20 4196 if (esdi->rel_hdr2)
ce006217
MM
4197 *rel_count2 += (esdi->rel_hdr2->sh_size
4198 / esdi->rel_hdr2->sh_entsize);
b037af20
MM
4199 }
4200 }
4201
252b5132
RH
4202 /* That created the reloc sections. Set their sizes, and assign
4203 them file positions, and allocate some buffers. */
4204 for (o = abfd->sections; o != NULL; o = o->next)
4205 {
4206 if ((o->flags & SEC_RELOC) != 0)
4207 {
23bc299b
MM
4208 if (!elf_link_size_reloc_section (abfd,
4209 &elf_section_data (o)->rel_hdr,
4210 o))
252b5132
RH
4211 goto error_return;
4212
23bc299b
MM
4213 if (elf_section_data (o)->rel_hdr2
4214 && !elf_link_size_reloc_section (abfd,
4215 elf_section_data (o)->rel_hdr2,
4216 o))
252b5132 4217 goto error_return;
252b5132 4218 }
b037af20
MM
4219
4220 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4221 to count upwards while actually outputting the relocations. */
4222 elf_section_data (o)->rel_count = 0;
4223 elf_section_data (o)->rel_count2 = 0;
252b5132
RH
4224 }
4225
4226 _bfd_elf_assign_file_positions_for_relocs (abfd);
4227
4228 /* We have now assigned file positions for all the sections except
4229 .symtab and .strtab. We start the .symtab section at the current
4230 file position, and write directly to it. We build the .strtab
4231 section in memory. */
4232 bfd_get_symcount (abfd) = 0;
4233 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4234 /* sh_name is set in prep_headers. */
4235 symtab_hdr->sh_type = SHT_SYMTAB;
4236 symtab_hdr->sh_flags = 0;
4237 symtab_hdr->sh_addr = 0;
4238 symtab_hdr->sh_size = 0;
4239 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4240 /* sh_link is set in assign_section_numbers. */
4241 /* sh_info is set below. */
4242 /* sh_offset is set just below. */
4243 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4244
4245 off = elf_tdata (abfd)->next_file_pos;
4246 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4247
4248 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4249 incorrect. We do not yet know the size of the .symtab section.
4250 We correct next_file_pos below, after we do know the size. */
4251
4252 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4253 continuously seeking to the right position in the file. */
4254 if (! info->keep_memory || max_sym_count < 20)
4255 finfo.symbuf_size = 20;
4256 else
4257 finfo.symbuf_size = max_sym_count;
4258 finfo.symbuf = ((Elf_External_Sym *)
4259 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4260 if (finfo.symbuf == NULL)
4261 goto error_return;
4262
4263 /* Start writing out the symbol table. The first symbol is always a
4264 dummy symbol. */
4265 if (info->strip != strip_all || info->relocateable)
4266 {
4267 elfsym.st_value = 0;
4268 elfsym.st_size = 0;
4269 elfsym.st_info = 0;
4270 elfsym.st_other = 0;
4271 elfsym.st_shndx = SHN_UNDEF;
4272 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4273 &elfsym, bfd_und_section_ptr))
4274 goto error_return;
4275 }
4276
4277#if 0
4278 /* Some standard ELF linkers do this, but we don't because it causes
4279 bootstrap comparison failures. */
4280 /* Output a file symbol for the output file as the second symbol.
4281 We output this even if we are discarding local symbols, although
4282 I'm not sure if this is correct. */
4283 elfsym.st_value = 0;
4284 elfsym.st_size = 0;
4285 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4286 elfsym.st_other = 0;
4287 elfsym.st_shndx = SHN_ABS;
4288 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4289 &elfsym, bfd_abs_section_ptr))
4290 goto error_return;
4291#endif
4292
4293 /* Output a symbol for each section. We output these even if we are
4294 discarding local symbols, since they are used for relocs. These
4295 symbols have no names. We store the index of each one in the
4296 index field of the section, so that we can find it again when
4297 outputting relocs. */
4298 if (info->strip != strip_all || info->relocateable)
4299 {
4300 elfsym.st_size = 0;
4301 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4302 elfsym.st_other = 0;
4303 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4304 {
4305 o = section_from_elf_index (abfd, i);
4306 if (o != NULL)
4307 o->target_index = bfd_get_symcount (abfd);
4308 elfsym.st_shndx = i;
4309 if (info->relocateable || o == NULL)
4310 elfsym.st_value = 0;
4311 else
4312 elfsym.st_value = o->vma;
4313 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4314 &elfsym, o))
4315 goto error_return;
4316 }
4317 }
4318
4319 /* Allocate some memory to hold information read in from the input
4320 files. */
4321 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4322 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4323 finfo.internal_relocs = ((Elf_Internal_Rela *)
4324 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4325 * sizeof (Elf_Internal_Rela)
4326 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4327 finfo.external_syms = ((Elf_External_Sym *)
4328 bfd_malloc (max_sym_count
4329 * sizeof (Elf_External_Sym)));
4330 finfo.internal_syms = ((Elf_Internal_Sym *)
4331 bfd_malloc (max_sym_count
4332 * sizeof (Elf_Internal_Sym)));
4333 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4334 finfo.sections = ((asection **)
4335 bfd_malloc (max_sym_count * sizeof (asection *)));
4336 if ((finfo.contents == NULL && max_contents_size != 0)
4337 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4338 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4339 || (finfo.external_syms == NULL && max_sym_count != 0)
4340 || (finfo.internal_syms == NULL && max_sym_count != 0)
4341 || (finfo.indices == NULL && max_sym_count != 0)
4342 || (finfo.sections == NULL && max_sym_count != 0))
4343 goto error_return;
4344
4345 /* Since ELF permits relocations to be against local symbols, we
4346 must have the local symbols available when we do the relocations.
4347 Since we would rather only read the local symbols once, and we
4348 would rather not keep them in memory, we handle all the
4349 relocations for a single input file at the same time.
4350
4351 Unfortunately, there is no way to know the total number of local
4352 symbols until we have seen all of them, and the local symbol
4353 indices precede the global symbol indices. This means that when
4354 we are generating relocateable output, and we see a reloc against
4355 a global symbol, we can not know the symbol index until we have
4356 finished examining all the local symbols to see which ones we are
4357 going to output. To deal with this, we keep the relocations in
4358 memory, and don't output them until the end of the link. This is
4359 an unfortunate waste of memory, but I don't see a good way around
4360 it. Fortunately, it only happens when performing a relocateable
4361 link, which is not the common case. FIXME: If keep_memory is set
4362 we could write the relocs out and then read them again; I don't
4363 know how bad the memory loss will be. */
4364
4365 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4366 sub->output_has_begun = false;
4367 for (o = abfd->sections; o != NULL; o = o->next)
4368 {
4369 for (p = o->link_order_head; p != NULL; p = p->next)
4370 {
4371 if (p->type == bfd_indirect_link_order
4372 && (bfd_get_flavour (p->u.indirect.section->owner)
4373 == bfd_target_elf_flavour))
4374 {
4375 sub = p->u.indirect.section->owner;
4376 if (! sub->output_has_begun)
4377 {
4378 if (! elf_link_input_bfd (&finfo, sub))
4379 goto error_return;
4380 sub->output_has_begun = true;
4381 }
4382 }
4383 else if (p->type == bfd_section_reloc_link_order
4384 || p->type == bfd_symbol_reloc_link_order)
4385 {
4386 if (! elf_reloc_link_order (abfd, info, o, p))
4387 goto error_return;
4388 }
4389 else
4390 {
4391 if (! _bfd_default_link_order (abfd, info, o, p))
4392 goto error_return;
4393 }
4394 }
4395 }
4396
4397 /* That wrote out all the local symbols. Finish up the symbol table
4398 with the global symbols. */
4399
2bd171e0 4400 if (info->shared)
252b5132
RH
4401 {
4402 /* Output any global symbols that got converted to local in a
4403 version script. We do this in a separate step since ELF
4404 requires all local symbols to appear prior to any global
4405 symbols. FIXME: We should only do this if some global
4406 symbols were, in fact, converted to become local. FIXME:
4407 Will this work correctly with the Irix 5 linker? */
4408 eoinfo.failed = false;
4409 eoinfo.finfo = &finfo;
4410 eoinfo.localsyms = true;
4411 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4412 (PTR) &eoinfo);
4413 if (eoinfo.failed)
4414 return false;
4415 }
4416
30b30c21 4417 /* The sh_info field records the index of the first non local symbol. */
252b5132 4418 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4419
252b5132 4420 if (dynamic)
30b30c21
RH
4421 {
4422 Elf_Internal_Sym sym;
4423 Elf_External_Sym *dynsym =
4424 (Elf_External_Sym *)finfo.dynsym_sec->contents;
71a40b32 4425 long last_local = 0;
30b30c21
RH
4426
4427 /* Write out the section symbols for the output sections. */
4428 if (info->shared)
4429 {
4430 asection *s;
4431
4432 sym.st_size = 0;
4433 sym.st_name = 0;
4434 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4435 sym.st_other = 0;
4436
4437 for (s = abfd->sections; s != NULL; s = s->next)
4438 {
4439 int indx;
4440 indx = elf_section_data (s)->this_idx;
4441 BFD_ASSERT (indx > 0);
4442 sym.st_shndx = indx;
4443 sym.st_value = s->vma;
4444
4445 elf_swap_symbol_out (abfd, &sym,
4446 dynsym + elf_section_data (s)->dynindx);
4447 }
4448
4449 last_local = bfd_count_sections (abfd);
4450 }
4451
4452 /* Write out the local dynsyms. */
4453 if (elf_hash_table (info)->dynlocal)
4454 {
4455 struct elf_link_local_dynamic_entry *e;
4456 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4457 {
318da145 4458 asection *s;
30b30c21 4459
b037af20
MM
4460 sym.st_size = e->isym.st_size;
4461 sym.st_other = e->isym.st_other;
4462
1fa0ddb3
RH
4463 /* Copy the internal symbol as is.
4464 Note that we saved a word of storage and overwrote
30b30c21 4465 the original st_name with the dynstr_index. */
1fa0ddb3 4466 sym = e->isym;
30b30c21 4467
1fa0ddb3 4468 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
587ff49e
RH
4469 {
4470 s = bfd_section_from_elf_index (e->input_bfd,
4471 e->isym.st_shndx);
4472
4473 sym.st_shndx =
4474 elf_section_data (s->output_section)->this_idx;
4475 sym.st_value = (s->output_section->vma
4476 + s->output_offset
4477 + e->isym.st_value);
4478 }
30b30c21
RH
4479
4480 if (last_local < e->dynindx)
4481 last_local = e->dynindx;
4482
4483 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4484 }
4485 }
4486
71a40b32
ILT
4487 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4488 last_local + 1;
30b30c21 4489 }
252b5132
RH
4490
4491 /* We get the global symbols from the hash table. */
4492 eoinfo.failed = false;
4493 eoinfo.localsyms = false;
4494 eoinfo.finfo = &finfo;
4495 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4496 (PTR) &eoinfo);
4497 if (eoinfo.failed)
4498 return false;
4499
587ff49e
RH
4500 /* If backend needs to output some symbols not present in the hash
4501 table, do it now. */
4502 if (bed->elf_backend_output_arch_syms)
4503 {
4504 if (! (*bed->elf_backend_output_arch_syms)
4505 (abfd, info, (PTR) &finfo,
4506 (boolean (*) PARAMS ((PTR, const char *,
4507 Elf_Internal_Sym *, asection *)))
4508 elf_link_output_sym))
4509 return false;
4510 }
4511
252b5132
RH
4512 /* Flush all symbols to the file. */
4513 if (! elf_link_flush_output_syms (&finfo))
4514 return false;
4515
4516 /* Now we know the size of the symtab section. */
4517 off += symtab_hdr->sh_size;
4518
4519 /* Finish up and write out the symbol string table (.strtab)
4520 section. */
4521 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4522 /* sh_name was set in prep_headers. */
4523 symstrtab_hdr->sh_type = SHT_STRTAB;
4524 symstrtab_hdr->sh_flags = 0;
4525 symstrtab_hdr->sh_addr = 0;
4526 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4527 symstrtab_hdr->sh_entsize = 0;
4528 symstrtab_hdr->sh_link = 0;
4529 symstrtab_hdr->sh_info = 0;
4530 /* sh_offset is set just below. */
4531 symstrtab_hdr->sh_addralign = 1;
4532
4533 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4534 elf_tdata (abfd)->next_file_pos = off;
4535
4536 if (bfd_get_symcount (abfd) > 0)
4537 {
4538 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4539 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4540 return false;
4541 }
4542
4543 /* Adjust the relocs to have the correct symbol indices. */
4544 for (o = abfd->sections; o != NULL; o = o->next)
4545 {
252b5132
RH
4546 if ((o->flags & SEC_RELOC) == 0)
4547 continue;
4548
31367b81
MM
4549 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4550 elf_section_data (o)->rel_count,
4551 elf_section_data (o)->rel_hashes);
4552 if (elf_section_data (o)->rel_hdr2 != NULL)
4553 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4554 elf_section_data (o)->rel_count2,
4555 (elf_section_data (o)->rel_hashes
4556 + elf_section_data (o)->rel_count));
252b5132
RH
4557
4558 /* Set the reloc_count field to 0 to prevent write_relocs from
4559 trying to swap the relocs out itself. */
4560 o->reloc_count = 0;
4561 }
4562
4563 /* If we are linking against a dynamic object, or generating a
4564 shared library, finish up the dynamic linking information. */
4565 if (dynamic)
4566 {
4567 Elf_External_Dyn *dyncon, *dynconend;
4568
4569 /* Fix up .dynamic entries. */
4570 o = bfd_get_section_by_name (dynobj, ".dynamic");
4571 BFD_ASSERT (o != NULL);
4572
4573 dyncon = (Elf_External_Dyn *) o->contents;
4574 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4575 for (; dyncon < dynconend; dyncon++)
4576 {
4577 Elf_Internal_Dyn dyn;
4578 const char *name;
4579 unsigned int type;
4580
4581 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4582
4583 switch (dyn.d_tag)
4584 {
4585 default:
4586 break;
252b5132 4587 case DT_INIT:
f0c2e336 4588 name = info->init_function;
252b5132
RH
4589 goto get_sym;
4590 case DT_FINI:
f0c2e336 4591 name = info->fini_function;
252b5132
RH
4592 get_sym:
4593 {
4594 struct elf_link_hash_entry *h;
4595
4596 h = elf_link_hash_lookup (elf_hash_table (info), name,
4597 false, false, true);
4598 if (h != NULL
4599 && (h->root.type == bfd_link_hash_defined
4600 || h->root.type == bfd_link_hash_defweak))
4601 {
4602 dyn.d_un.d_val = h->root.u.def.value;
4603 o = h->root.u.def.section;
4604 if (o->output_section != NULL)
4605 dyn.d_un.d_val += (o->output_section->vma
4606 + o->output_offset);
4607 else
4608 {
4609 /* The symbol is imported from another shared
4610 library and does not apply to this one. */
4611 dyn.d_un.d_val = 0;
4612 }
4613
4614 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4615 }
4616 }
4617 break;
4618
4619 case DT_HASH:
4620 name = ".hash";
4621 goto get_vma;
4622 case DT_STRTAB:
4623 name = ".dynstr";
4624 goto get_vma;
4625 case DT_SYMTAB:
4626 name = ".dynsym";
4627 goto get_vma;
4628 case DT_VERDEF:
4629 name = ".gnu.version_d";
4630 goto get_vma;
4631 case DT_VERNEED:
4632 name = ".gnu.version_r";
4633 goto get_vma;
4634 case DT_VERSYM:
4635 name = ".gnu.version";
4636 get_vma:
4637 o = bfd_get_section_by_name (abfd, name);
4638 BFD_ASSERT (o != NULL);
4639 dyn.d_un.d_ptr = o->vma;
4640 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4641 break;
4642
4643 case DT_REL:
4644 case DT_RELA:
4645 case DT_RELSZ:
4646 case DT_RELASZ:
4647 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4648 type = SHT_REL;
4649 else
4650 type = SHT_RELA;
4651 dyn.d_un.d_val = 0;
4652 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4653 {
4654 Elf_Internal_Shdr *hdr;
4655
4656 hdr = elf_elfsections (abfd)[i];
4657 if (hdr->sh_type == type
4658 && (hdr->sh_flags & SHF_ALLOC) != 0)
4659 {
4660 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4661 dyn.d_un.d_val += hdr->sh_size;
4662 else
4663 {
4664 if (dyn.d_un.d_val == 0
4665 || hdr->sh_addr < dyn.d_un.d_val)
4666 dyn.d_un.d_val = hdr->sh_addr;
4667 }
4668 }
4669 }
4670 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4671 break;
4672 }
4673 }
4674 }
4675
4676 /* If we have created any dynamic sections, then output them. */
4677 if (dynobj != NULL)
4678 {
4679 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4680 goto error_return;
4681
4682 for (o = dynobj->sections; o != NULL; o = o->next)
4683 {
4684 if ((o->flags & SEC_HAS_CONTENTS) == 0
4685 || o->_raw_size == 0)
4686 continue;
4687 if ((o->flags & SEC_LINKER_CREATED) == 0)
4688 {
4689 /* At this point, we are only interested in sections
4690 created by elf_link_create_dynamic_sections. */
4691 continue;
4692 }
4693 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4694 != SHT_STRTAB)
4695 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4696 {
4697 if (! bfd_set_section_contents (abfd, o->output_section,
4698 o->contents, o->output_offset,
4699 o->_raw_size))
4700 goto error_return;
4701 }
4702 else
4703 {
4704 file_ptr off;
4705
4706 /* The contents of the .dynstr section are actually in a
4707 stringtab. */
4708 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4709 if (bfd_seek (abfd, off, SEEK_SET) != 0
4710 || ! _bfd_stringtab_emit (abfd,
4711 elf_hash_table (info)->dynstr))
4712 goto error_return;
4713 }
4714 }
4715 }
4716
4717 /* If we have optimized stabs strings, output them. */
4718 if (elf_hash_table (info)->stab_info != NULL)
4719 {
4720 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4721 goto error_return;
4722 }
4723
4724 if (finfo.symstrtab != NULL)
4725 _bfd_stringtab_free (finfo.symstrtab);
4726 if (finfo.contents != NULL)
4727 free (finfo.contents);
4728 if (finfo.external_relocs != NULL)
4729 free (finfo.external_relocs);
4730 if (finfo.internal_relocs != NULL)
4731 free (finfo.internal_relocs);
4732 if (finfo.external_syms != NULL)
4733 free (finfo.external_syms);
4734 if (finfo.internal_syms != NULL)
4735 free (finfo.internal_syms);
4736 if (finfo.indices != NULL)
4737 free (finfo.indices);
4738 if (finfo.sections != NULL)
4739 free (finfo.sections);
4740 if (finfo.symbuf != NULL)
4741 free (finfo.symbuf);
4742 for (o = abfd->sections; o != NULL; o = o->next)
4743 {
4744 if ((o->flags & SEC_RELOC) != 0
4745 && elf_section_data (o)->rel_hashes != NULL)
4746 free (elf_section_data (o)->rel_hashes);
4747 }
4748
4749 elf_tdata (abfd)->linker = true;
4750
4751 return true;
4752
4753 error_return:
4754 if (finfo.symstrtab != NULL)
4755 _bfd_stringtab_free (finfo.symstrtab);
4756 if (finfo.contents != NULL)
4757 free (finfo.contents);
4758 if (finfo.external_relocs != NULL)
4759 free (finfo.external_relocs);
4760 if (finfo.internal_relocs != NULL)
4761 free (finfo.internal_relocs);
4762 if (finfo.external_syms != NULL)
4763 free (finfo.external_syms);
4764 if (finfo.internal_syms != NULL)
4765 free (finfo.internal_syms);
4766 if (finfo.indices != NULL)
4767 free (finfo.indices);
4768 if (finfo.sections != NULL)
4769 free (finfo.sections);
4770 if (finfo.symbuf != NULL)
4771 free (finfo.symbuf);
4772 for (o = abfd->sections; o != NULL; o = o->next)
4773 {
4774 if ((o->flags & SEC_RELOC) != 0
4775 && elf_section_data (o)->rel_hashes != NULL)
4776 free (elf_section_data (o)->rel_hashes);
4777 }
4778
4779 return false;
4780}
4781
4782/* Add a symbol to the output symbol table. */
4783
4784static boolean
4785elf_link_output_sym (finfo, name, elfsym, input_sec)
4786 struct elf_final_link_info *finfo;
4787 const char *name;
4788 Elf_Internal_Sym *elfsym;
4789 asection *input_sec;
4790{
4791 boolean (*output_symbol_hook) PARAMS ((bfd *,
4792 struct bfd_link_info *info,
4793 const char *,
4794 Elf_Internal_Sym *,
4795 asection *));
4796
4797 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4798 elf_backend_link_output_symbol_hook;
4799 if (output_symbol_hook != NULL)
4800 {
4801 if (! ((*output_symbol_hook)
4802 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4803 return false;
4804 }
4805
4806 if (name == (const char *) NULL || *name == '\0')
4807 elfsym->st_name = 0;
4808 else if (input_sec->flags & SEC_EXCLUDE)
4809 elfsym->st_name = 0;
4810 else
4811 {
4812 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4813 name, true,
4814 false);
4815 if (elfsym->st_name == (unsigned long) -1)
4816 return false;
4817 }
4818
4819 if (finfo->symbuf_count >= finfo->symbuf_size)
4820 {
4821 if (! elf_link_flush_output_syms (finfo))
4822 return false;
4823 }
4824
4825 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4826 (PTR) (finfo->symbuf + finfo->symbuf_count));
4827 ++finfo->symbuf_count;
4828
4829 ++ bfd_get_symcount (finfo->output_bfd);
4830
4831 return true;
4832}
4833
4834/* Flush the output symbols to the file. */
4835
4836static boolean
4837elf_link_flush_output_syms (finfo)
4838 struct elf_final_link_info *finfo;
4839{
4840 if (finfo->symbuf_count > 0)
4841 {
4842 Elf_Internal_Shdr *symtab;
4843
4844 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4845
4846 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4847 SEEK_SET) != 0
4848 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4849 sizeof (Elf_External_Sym), finfo->output_bfd)
4850 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4851 return false;
4852
4853 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4854
4855 finfo->symbuf_count = 0;
4856 }
4857
4858 return true;
4859}
4860
4861/* Add an external symbol to the symbol table. This is called from
4862 the hash table traversal routine. When generating a shared object,
4863 we go through the symbol table twice. The first time we output
4864 anything that might have been forced to local scope in a version
4865 script. The second time we output the symbols that are still
4866 global symbols. */
4867
4868static boolean
4869elf_link_output_extsym (h, data)
4870 struct elf_link_hash_entry *h;
4871 PTR data;
4872{
4873 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4874 struct elf_final_link_info *finfo = eoinfo->finfo;
4875 boolean strip;
4876 Elf_Internal_Sym sym;
4877 asection *input_sec;
4878
4879 /* Decide whether to output this symbol in this pass. */
4880 if (eoinfo->localsyms)
4881 {
4882 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4883 return true;
4884 }
4885 else
4886 {
4887 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4888 return true;
4889 }
4890
4891 /* If we are not creating a shared library, and this symbol is
4892 referenced by a shared library but is not defined anywhere, then
4893 warn that it is undefined. If we do not do this, the runtime
4894 linker will complain that the symbol is undefined when the
4895 program is run. We don't have to worry about symbols that are
4896 referenced by regular files, because we will already have issued
4897 warnings for them. */
4898 if (! finfo->info->relocateable
4899 && ! (finfo->info->shared
252b5132
RH
4900 && !finfo->info->no_undefined)
4901 && h->root.type == bfd_link_hash_undefined
4902 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4903 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4904 {
4905 if (! ((*finfo->info->callbacks->undefined_symbol)
4906 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4907 (asection *) NULL, 0)))
4908 {
4909 eoinfo->failed = true;
4910 return false;
4911 }
4912 }
4913
4914 /* We don't want to output symbols that have never been mentioned by
4915 a regular file, or that we have been told to strip. However, if
4916 h->indx is set to -2, the symbol is used by a reloc and we must
4917 output it. */
4918 if (h->indx == -2)
4919 strip = false;
4920 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4921 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4922 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4923 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4924 strip = true;
4925 else if (finfo->info->strip == strip_all
4926 || (finfo->info->strip == strip_some
4927 && bfd_hash_lookup (finfo->info->keep_hash,
4928 h->root.root.string,
4929 false, false) == NULL))
4930 strip = true;
4931 else
4932 strip = false;
4933
4934 /* If we're stripping it, and it's not a dynamic symbol, there's
2bd171e0
ILT
4935 nothing else to do unless it is a forced local symbol. */
4936 if (strip
4937 && h->dynindx == -1
4938 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
252b5132
RH
4939 return true;
4940
4941 sym.st_value = 0;
4942 sym.st_size = h->size;
4943 sym.st_other = h->other;
4944 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4945 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4946 else if (h->root.type == bfd_link_hash_undefweak
4947 || h->root.type == bfd_link_hash_defweak)
4948 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4949 else
4950 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4951
4952 switch (h->root.type)
4953 {
4954 default:
4955 case bfd_link_hash_new:
4956 abort ();
4957 return false;
4958
4959 case bfd_link_hash_undefined:
4960 input_sec = bfd_und_section_ptr;
4961 sym.st_shndx = SHN_UNDEF;
4962 break;
4963
4964 case bfd_link_hash_undefweak:
4965 input_sec = bfd_und_section_ptr;
4966 sym.st_shndx = SHN_UNDEF;
4967 break;
4968
4969 case bfd_link_hash_defined:
4970 case bfd_link_hash_defweak:
4971 {
4972 input_sec = h->root.u.def.section;
4973 if (input_sec->output_section != NULL)
4974 {
4975 sym.st_shndx =
4976 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4977 input_sec->output_section);
4978 if (sym.st_shndx == (unsigned short) -1)
4979 {
4980 (*_bfd_error_handler)
4981 (_("%s: could not find output section %s for input section %s"),
4982 bfd_get_filename (finfo->output_bfd),
4983 input_sec->output_section->name,
4984 input_sec->name);
4985 eoinfo->failed = true;
4986 return false;
4987 }
4988
4989 /* ELF symbols in relocateable files are section relative,
4990 but in nonrelocateable files they are virtual
4991 addresses. */
4992 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4993 if (! finfo->info->relocateable)
4994 sym.st_value += input_sec->output_section->vma;
4995 }
4996 else
4997 {
4998 BFD_ASSERT (input_sec->owner == NULL
4999 || (input_sec->owner->flags & DYNAMIC) != 0);
5000 sym.st_shndx = SHN_UNDEF;
5001 input_sec = bfd_und_section_ptr;
5002 }
5003 }
5004 break;
5005
5006 case bfd_link_hash_common:
5007 input_sec = h->root.u.c.p->section;
5008 sym.st_shndx = SHN_COMMON;
5009 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5010 break;
5011
5012 case bfd_link_hash_indirect:
5013 /* These symbols are created by symbol versioning. They point
5014 to the decorated version of the name. For example, if the
5015 symbol foo@@GNU_1.2 is the default, which should be used when
5016 foo is used with no version, then we add an indirect symbol
5017 foo which points to foo@@GNU_1.2. We ignore these symbols,
5018 since the indirected symbol is already in the hash table. If
5019 the indirect symbol is non-ELF, fall through and output it. */
5020 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5021 return true;
5022
5023 /* Fall through. */
5024 case bfd_link_hash_warning:
5025 /* We can't represent these symbols in ELF, although a warning
5026 symbol may have come from a .gnu.warning.SYMBOL section. We
5027 just put the target symbol in the hash table. If the target
5028 symbol does not really exist, don't do anything. */
5029 if (h->root.u.i.link->type == bfd_link_hash_new)
5030 return true;
5031 return (elf_link_output_extsym
5032 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5033 }
5034
5035 /* Give the processor backend a chance to tweak the symbol value,
5036 and also to finish up anything that needs to be done for this
5037 symbol. */
5038 if ((h->dynindx != -1
5039 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5040 && elf_hash_table (finfo->info)->dynamic_sections_created)
5041 {
5042 struct elf_backend_data *bed;
5043
5044 bed = get_elf_backend_data (finfo->output_bfd);
5045 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5046 (finfo->output_bfd, finfo->info, h, &sym)))
5047 {
5048 eoinfo->failed = true;
5049 return false;
5050 }
5051 }
5052
5053 /* If we are marking the symbol as undefined, and there are no
5054 non-weak references to this symbol from a regular object, then
91d3970e
ILT
5055 mark the symbol as weak undefined; if there are non-weak
5056 references, mark the symbol as strong. We can't do this earlier,
252b5132
RH
5057 because it might not be marked as undefined until the
5058 finish_dynamic_symbol routine gets through with it. */
5059 if (sym.st_shndx == SHN_UNDEF
252b5132 5060 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
91d3970e
ILT
5061 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5062 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5063 {
5064 int bindtype;
5065
5066 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5067 bindtype = STB_GLOBAL;
5068 else
5069 bindtype = STB_WEAK;
5070 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5071 }
252b5132
RH
5072
5073 /* If this symbol should be put in the .dynsym section, then put it
5074 there now. We have already know the symbol index. We also fill
5075 in the entry in the .hash section. */
5076 if (h->dynindx != -1
5077 && elf_hash_table (finfo->info)->dynamic_sections_created)
5078 {
5079 size_t bucketcount;
5080 size_t bucket;
c7ac6ff8 5081 size_t hash_entry_size;
252b5132
RH
5082 bfd_byte *bucketpos;
5083 bfd_vma chain;
5084
5085 sym.st_name = h->dynstr_index;
5086
5087 elf_swap_symbol_out (finfo->output_bfd, &sym,
5088 (PTR) (((Elf_External_Sym *)
5089 finfo->dynsym_sec->contents)
5090 + h->dynindx));
5091
5092 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5093 bucket = h->elf_hash_value % bucketcount;
c7ac6ff8
MM
5094 hash_entry_size
5095 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 5096 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
5097 + (bucket + 2) * hash_entry_size);
5098 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5099 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5100 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5101 ((bfd_byte *) finfo->hash_sec->contents
5102 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
5103
5104 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5105 {
5106 Elf_Internal_Versym iversym;
5107
5108 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5109 {
5110 if (h->verinfo.verdef == NULL)
5111 iversym.vs_vers = 0;
5112 else
5113 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5114 }
5115 else
5116 {
5117 if (h->verinfo.vertree == NULL)
5118 iversym.vs_vers = 1;
5119 else
5120 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5121 }
5122
5123 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5124 iversym.vs_vers |= VERSYM_HIDDEN;
5125
5126 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5127 (((Elf_External_Versym *)
5128 finfo->symver_sec->contents)
5129 + h->dynindx));
5130 }
5131 }
5132
5133 /* If we're stripping it, then it was just a dynamic symbol, and
5134 there's nothing else to do. */
5135 if (strip)
5136 return true;
5137
5138 h->indx = bfd_get_symcount (finfo->output_bfd);
5139
5140 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5141 {
5142 eoinfo->failed = true;
5143 return false;
5144 }
5145
5146 return true;
5147}
5148
23bc299b
MM
5149/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5150 originated from the section given by INPUT_REL_HDR) to the
5151 OUTPUT_BFD. */
5152
5153static void
5154elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5155 internal_relocs)
5156 bfd *output_bfd;
5157 asection *input_section;
5158 Elf_Internal_Shdr *input_rel_hdr;
5159 Elf_Internal_Rela *internal_relocs;
5160{
5161 Elf_Internal_Rela *irela;
5162 Elf_Internal_Rela *irelaend;
5163 Elf_Internal_Shdr *output_rel_hdr;
5164 asection *output_section;
7442e600 5165 unsigned int *rel_countp = NULL;
23bc299b
MM
5166
5167 output_section = input_section->output_section;
5168 output_rel_hdr = NULL;
5169
5170 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5171 == input_rel_hdr->sh_entsize)
5172 {
5173 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5174 rel_countp = &elf_section_data (output_section)->rel_count;
5175 }
5176 else if (elf_section_data (output_section)->rel_hdr2
5177 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5178 == input_rel_hdr->sh_entsize))
5179 {
5180 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5181 rel_countp = &elf_section_data (output_section)->rel_count2;
5182 }
5183
5184 BFD_ASSERT (output_rel_hdr != NULL);
5185
5186 irela = internal_relocs;
5187 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5188 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5189 {
5190 Elf_External_Rel *erel;
5191
5192 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5193 for (; irela < irelaend; irela++, erel++)
5194 {
5195 Elf_Internal_Rel irel;
5196
5197 irel.r_offset = irela->r_offset;
5198 irel.r_info = irela->r_info;
5199 BFD_ASSERT (irela->r_addend == 0);
5200 elf_swap_reloc_out (output_bfd, &irel, erel);
5201 }
5202 }
5203 else
5204 {
5205 Elf_External_Rela *erela;
5206
5207 BFD_ASSERT (input_rel_hdr->sh_entsize
5208 == sizeof (Elf_External_Rela));
5209 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5210 for (; irela < irelaend; irela++, erela++)
5211 elf_swap_reloca_out (output_bfd, irela, erela);
5212 }
5213
5214 /* Bump the counter, so that we know where to add the next set of
5215 relocations. */
5216 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5217}
5218
252b5132
RH
5219/* Link an input file into the linker output file. This function
5220 handles all the sections and relocations of the input file at once.
5221 This is so that we only have to read the local symbols once, and
5222 don't have to keep them in memory. */
5223
5224static boolean
5225elf_link_input_bfd (finfo, input_bfd)
5226 struct elf_final_link_info *finfo;
5227 bfd *input_bfd;
5228{
5229 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5230 bfd *, asection *, bfd_byte *,
5231 Elf_Internal_Rela *,
5232 Elf_Internal_Sym *, asection **));
5233 bfd *output_bfd;
5234 Elf_Internal_Shdr *symtab_hdr;
5235 size_t locsymcount;
5236 size_t extsymoff;
5237 Elf_External_Sym *external_syms;
5238 Elf_External_Sym *esym;
5239 Elf_External_Sym *esymend;
5240 Elf_Internal_Sym *isym;
5241 long *pindex;
5242 asection **ppsection;
5243 asection *o;
c7ac6ff8 5244 struct elf_backend_data *bed;
252b5132
RH
5245
5246 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5247 bed = get_elf_backend_data (output_bfd);
5248 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5249
5250 /* If this is a dynamic object, we don't want to do anything here:
5251 we don't want the local symbols, and we don't want the section
5252 contents. */
5253 if ((input_bfd->flags & DYNAMIC) != 0)
5254 return true;
5255
5256 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5257 if (elf_bad_symtab (input_bfd))
5258 {
5259 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5260 extsymoff = 0;
5261 }
5262 else
5263 {
5264 locsymcount = symtab_hdr->sh_info;
5265 extsymoff = symtab_hdr->sh_info;
5266 }
5267
5268 /* Read the local symbols. */
5269 if (symtab_hdr->contents != NULL)
5270 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5271 else if (locsymcount == 0)
5272 external_syms = NULL;
5273 else
5274 {
5275 external_syms = finfo->external_syms;
5276 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5277 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5278 locsymcount, input_bfd)
5279 != locsymcount * sizeof (Elf_External_Sym)))
5280 return false;
5281 }
5282
5283 /* Swap in the local symbols and write out the ones which we know
5284 are going into the output file. */
5285 esym = external_syms;
5286 esymend = esym + locsymcount;
5287 isym = finfo->internal_syms;
5288 pindex = finfo->indices;
5289 ppsection = finfo->sections;
5290 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5291 {
5292 asection *isec;
5293 const char *name;
5294 Elf_Internal_Sym osym;
5295
5296 elf_swap_symbol_in (input_bfd, esym, isym);
5297 *pindex = -1;
5298
5299 if (elf_bad_symtab (input_bfd))
5300 {
5301 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5302 {
5303 *ppsection = NULL;
5304 continue;
5305 }
5306 }
5307
5308 if (isym->st_shndx == SHN_UNDEF)
5309 isec = bfd_und_section_ptr;
5310 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5311 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5312 else if (isym->st_shndx == SHN_ABS)
5313 isec = bfd_abs_section_ptr;
5314 else if (isym->st_shndx == SHN_COMMON)
5315 isec = bfd_com_section_ptr;
5316 else
5317 {
5318 /* Who knows? */
5319 isec = NULL;
5320 }
5321
5322 *ppsection = isec;
5323
5324 /* Don't output the first, undefined, symbol. */
5325 if (esym == external_syms)
5326 continue;
5327
5328 /* If we are stripping all symbols, we don't want to output this
5329 one. */
5330 if (finfo->info->strip == strip_all)
5331 continue;
5332
5333 /* We never output section symbols. Instead, we use the section
5334 symbol of the corresponding section in the output file. */
5335 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5336 continue;
5337
5338 /* If we are discarding all local symbols, we don't want to
5339 output this one. If we are generating a relocateable output
5340 file, then some of the local symbols may be required by
5341 relocs; we output them below as we discover that they are
5342 needed. */
5343 if (finfo->info->discard == discard_all)
5344 continue;
5345
5346 /* If this symbol is defined in a section which we are
5347 discarding, we don't need to keep it, but note that
5348 linker_mark is only reliable for sections that have contents.
5349 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5350 as well as linker_mark. */
5351 if (isym->st_shndx > 0
5352 && isym->st_shndx < SHN_LORESERVE
5353 && isec != NULL
5354 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5355 || (! finfo->info->relocateable
5356 && (isec->flags & SEC_EXCLUDE) != 0)))
5357 continue;
5358
5359 /* Get the name of the symbol. */
5360 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5361 isym->st_name);
5362 if (name == NULL)
5363 return false;
5364
5365 /* See if we are discarding symbols with this name. */
5366 if ((finfo->info->strip == strip_some
5367 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5368 == NULL))
5369 || (finfo->info->discard == discard_l
5370 && bfd_is_local_label_name (input_bfd, name)))
5371 continue;
5372
5373 /* If we get here, we are going to output this symbol. */
5374
5375 osym = *isym;
5376
5377 /* Adjust the section index for the output file. */
5378 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5379 isec->output_section);
5380 if (osym.st_shndx == (unsigned short) -1)
5381 return false;
5382
5383 *pindex = bfd_get_symcount (output_bfd);
5384
5385 /* ELF symbols in relocateable files are section relative, but
5386 in executable files they are virtual addresses. Note that
5387 this code assumes that all ELF sections have an associated
5388 BFD section with a reasonable value for output_offset; below
5389 we assume that they also have a reasonable value for
5390 output_section. Any special sections must be set up to meet
5391 these requirements. */
5392 osym.st_value += isec->output_offset;
5393 if (! finfo->info->relocateable)
5394 osym.st_value += isec->output_section->vma;
5395
5396 if (! elf_link_output_sym (finfo, name, &osym, isec))
5397 return false;
5398 }
5399
5400 /* Relocate the contents of each section. */
5401 for (o = input_bfd->sections; o != NULL; o = o->next)
5402 {
5403 bfd_byte *contents;
5404
5405 if (! o->linker_mark)
5406 {
5407 /* This section was omitted from the link. */
5408 continue;
5409 }
5410
5411 if ((o->flags & SEC_HAS_CONTENTS) == 0
5412 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5413 continue;
5414
5415 if ((o->flags & SEC_LINKER_CREATED) != 0)
5416 {
5417 /* Section was created by elf_link_create_dynamic_sections
5418 or somesuch. */
5419 continue;
5420 }
5421
5422 /* Get the contents of the section. They have been cached by a
5423 relaxation routine. Note that o is a section in an input
5424 file, so the contents field will not have been set by any of
5425 the routines which work on output files. */
5426 if (elf_section_data (o)->this_hdr.contents != NULL)
5427 contents = elf_section_data (o)->this_hdr.contents;
5428 else
5429 {
5430 contents = finfo->contents;
5431 if (! bfd_get_section_contents (input_bfd, o, contents,
5432 (file_ptr) 0, o->_raw_size))
5433 return false;
5434 }
5435
5436 if ((o->flags & SEC_RELOC) != 0)
5437 {
5438 Elf_Internal_Rela *internal_relocs;
5439
5440 /* Get the swapped relocs. */
5441 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5442 (input_bfd, o, finfo->external_relocs,
5443 finfo->internal_relocs, false));
5444 if (internal_relocs == NULL
5445 && o->reloc_count > 0)
5446 return false;
5447
5448 /* Relocate the section by invoking a back end routine.
5449
5450 The back end routine is responsible for adjusting the
5451 section contents as necessary, and (if using Rela relocs
5452 and generating a relocateable output file) adjusting the
5453 reloc addend as necessary.
5454
5455 The back end routine does not have to worry about setting
5456 the reloc address or the reloc symbol index.
5457
5458 The back end routine is given a pointer to the swapped in
5459 internal symbols, and can access the hash table entries
5460 for the external symbols via elf_sym_hashes (input_bfd).
5461
5462 When generating relocateable output, the back end routine
5463 must handle STB_LOCAL/STT_SECTION symbols specially. The
5464 output symbol is going to be a section symbol
5465 corresponding to the output section, which will require
5466 the addend to be adjusted. */
5467
5468 if (! (*relocate_section) (output_bfd, finfo->info,
5469 input_bfd, o, contents,
5470 internal_relocs,
5471 finfo->internal_syms,
5472 finfo->sections))
5473 return false;
5474
5475 if (finfo->info->relocateable)
5476 {
5477 Elf_Internal_Rela *irela;
5478 Elf_Internal_Rela *irelaend;
5479 struct elf_link_hash_entry **rel_hash;
5480 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5481
5482 /* Adjust the reloc addresses and symbol indices. */
5483
5484 irela = internal_relocs;
c7ac6ff8
MM
5485 irelaend =
5486 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5487 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5488 + elf_section_data (o->output_section)->rel_count
5489 + elf_section_data (o->output_section)->rel_count2);
252b5132
RH
5490 for (; irela < irelaend; irela++, rel_hash++)
5491 {
5492 unsigned long r_symndx;
5493 Elf_Internal_Sym *isym;
5494 asection *sec;
5495
5496 irela->r_offset += o->output_offset;
5497
5498 r_symndx = ELF_R_SYM (irela->r_info);
5499
5500 if (r_symndx == 0)
5501 continue;
5502
5503 if (r_symndx >= locsymcount
5504 || (elf_bad_symtab (input_bfd)
5505 && finfo->sections[r_symndx] == NULL))
5506 {
5507 struct elf_link_hash_entry *rh;
5508 long indx;
5509
5510 /* This is a reloc against a global symbol. We
5511 have not yet output all the local symbols, so
5512 we do not know the symbol index of any global
5513 symbol. We set the rel_hash entry for this
5514 reloc to point to the global hash table entry
5515 for this symbol. The symbol index is then
5516 set at the end of elf_bfd_final_link. */
5517 indx = r_symndx - extsymoff;
5518 rh = elf_sym_hashes (input_bfd)[indx];
5519 while (rh->root.type == bfd_link_hash_indirect
5520 || rh->root.type == bfd_link_hash_warning)
5521 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5522
5523 /* Setting the index to -2 tells
5524 elf_link_output_extsym that this symbol is
5525 used by a reloc. */
5526 BFD_ASSERT (rh->indx < 0);
5527 rh->indx = -2;
5528
5529 *rel_hash = rh;
5530
5531 continue;
5532 }
5533
5534 /* This is a reloc against a local symbol. */
5535
5536 *rel_hash = NULL;
5537 isym = finfo->internal_syms + r_symndx;
5538 sec = finfo->sections[r_symndx];
5539 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5540 {
5541 /* I suppose the backend ought to fill in the
5542 section of any STT_SECTION symbol against a
5543 processor specific section. If we have
5544 discarded a section, the output_section will
5545 be the absolute section. */
5546 if (sec != NULL
5547 && (bfd_is_abs_section (sec)
5548 || (sec->output_section != NULL
5549 && bfd_is_abs_section (sec->output_section))))
5550 r_symndx = 0;
5551 else if (sec == NULL || sec->owner == NULL)
5552 {
5553 bfd_set_error (bfd_error_bad_value);
5554 return false;
5555 }
5556 else
5557 {
5558 r_symndx = sec->output_section->target_index;
5559 BFD_ASSERT (r_symndx != 0);
5560 }
5561 }
5562 else
5563 {
5564 if (finfo->indices[r_symndx] == -1)
5565 {
5566 unsigned long link;
5567 const char *name;
5568 asection *osec;
5569
5570 if (finfo->info->strip == strip_all)
5571 {
5572 /* You can't do ld -r -s. */
5573 bfd_set_error (bfd_error_invalid_operation);
5574 return false;
5575 }
5576
5577 /* This symbol was skipped earlier, but
5578 since it is needed by a reloc, we
5579 must output it now. */
5580 link = symtab_hdr->sh_link;
5581 name = bfd_elf_string_from_elf_section (input_bfd,
5582 link,
5583 isym->st_name);
5584 if (name == NULL)
5585 return false;
5586
5587 osec = sec->output_section;
5588 isym->st_shndx =
5589 _bfd_elf_section_from_bfd_section (output_bfd,
5590 osec);
5591 if (isym->st_shndx == (unsigned short) -1)
5592 return false;
5593
5594 isym->st_value += sec->output_offset;
5595 if (! finfo->info->relocateable)
5596 isym->st_value += osec->vma;
5597
5598 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5599
5600 if (! elf_link_output_sym (finfo, name, isym, sec))
5601 return false;
5602 }
5603
5604 r_symndx = finfo->indices[r_symndx];
5605 }
5606
5607 irela->r_info = ELF_R_INFO (r_symndx,
5608 ELF_R_TYPE (irela->r_info));
5609 }
5610
5611 /* Swap out the relocs. */
5612 input_rel_hdr = &elf_section_data (o)->rel_hdr;
23bc299b
MM
5613 elf_link_output_relocs (output_bfd, o,
5614 input_rel_hdr,
5615 internal_relocs);
5616 internal_relocs
5617 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5618 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5619 if (input_rel_hdr)
5620 elf_link_output_relocs (output_bfd, o,
5621 input_rel_hdr,
5622 internal_relocs);
252b5132
RH
5623 }
5624 }
5625
5626 /* Write out the modified section contents. */
5627 if (elf_section_data (o)->stab_info == NULL)
5628 {
5629 if (! (o->flags & SEC_EXCLUDE) &&
5630 ! bfd_set_section_contents (output_bfd, o->output_section,
5631 contents, o->output_offset,
5632 (o->_cooked_size != 0
5633 ? o->_cooked_size
5634 : o->_raw_size)))
5635 return false;
5636 }
5637 else
5638 {
5639 if (! (_bfd_write_section_stabs
5640 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5641 o, &elf_section_data (o)->stab_info, contents)))
5642 return false;
5643 }
5644 }
5645
5646 return true;
5647}
5648
5649/* Generate a reloc when linking an ELF file. This is a reloc
5650 requested by the linker, and does come from any input file. This
5651 is used to build constructor and destructor tables when linking
5652 with -Ur. */
5653
5654static boolean
5655elf_reloc_link_order (output_bfd, info, output_section, link_order)
5656 bfd *output_bfd;
5657 struct bfd_link_info *info;
5658 asection *output_section;
5659 struct bfd_link_order *link_order;
5660{
5661 reloc_howto_type *howto;
5662 long indx;
5663 bfd_vma offset;
5664 bfd_vma addend;
5665 struct elf_link_hash_entry **rel_hash_ptr;
5666 Elf_Internal_Shdr *rel_hdr;
5667
5668 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5669 if (howto == NULL)
5670 {
5671 bfd_set_error (bfd_error_bad_value);
5672 return false;
5673 }
5674
5675 addend = link_order->u.reloc.p->addend;
5676
5677 /* Figure out the symbol index. */
5678 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
5679 + elf_section_data (output_section)->rel_count
5680 + elf_section_data (output_section)->rel_count2);
252b5132
RH
5681 if (link_order->type == bfd_section_reloc_link_order)
5682 {
5683 indx = link_order->u.reloc.p->u.section->target_index;
5684 BFD_ASSERT (indx != 0);
5685 *rel_hash_ptr = NULL;
5686 }
5687 else
5688 {
5689 struct elf_link_hash_entry *h;
5690
5691 /* Treat a reloc against a defined symbol as though it were
5692 actually against the section. */
5693 h = ((struct elf_link_hash_entry *)
5694 bfd_wrapped_link_hash_lookup (output_bfd, info,
5695 link_order->u.reloc.p->u.name,
5696 false, false, true));
5697 if (h != NULL
5698 && (h->root.type == bfd_link_hash_defined
5699 || h->root.type == bfd_link_hash_defweak))
5700 {
5701 asection *section;
5702
5703 section = h->root.u.def.section;
5704 indx = section->output_section->target_index;
5705 *rel_hash_ptr = NULL;
5706 /* It seems that we ought to add the symbol value to the
5707 addend here, but in practice it has already been added
5708 because it was passed to constructor_callback. */
5709 addend += section->output_section->vma + section->output_offset;
5710 }
5711 else if (h != NULL)
5712 {
5713 /* Setting the index to -2 tells elf_link_output_extsym that
5714 this symbol is used by a reloc. */
5715 h->indx = -2;
5716 *rel_hash_ptr = h;
5717 indx = 0;
5718 }
5719 else
5720 {
5721 if (! ((*info->callbacks->unattached_reloc)
5722 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5723 (asection *) NULL, (bfd_vma) 0)))
5724 return false;
5725 indx = 0;
5726 }
5727 }
5728
5729 /* If this is an inplace reloc, we must write the addend into the
5730 object file. */
5731 if (howto->partial_inplace && addend != 0)
5732 {
5733 bfd_size_type size;
5734 bfd_reloc_status_type rstat;
5735 bfd_byte *buf;
5736 boolean ok;
5737
5738 size = bfd_get_reloc_size (howto);
5739 buf = (bfd_byte *) bfd_zmalloc (size);
5740 if (buf == (bfd_byte *) NULL)
5741 return false;
5742 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5743 switch (rstat)
5744 {
5745 case bfd_reloc_ok:
5746 break;
5747 default:
5748 case bfd_reloc_outofrange:
5749 abort ();
5750 case bfd_reloc_overflow:
5751 if (! ((*info->callbacks->reloc_overflow)
5752 (info,
5753 (link_order->type == bfd_section_reloc_link_order
5754 ? bfd_section_name (output_bfd,
5755 link_order->u.reloc.p->u.section)
5756 : link_order->u.reloc.p->u.name),
5757 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5758 (bfd_vma) 0)))
5759 {
5760 free (buf);
5761 return false;
5762 }
5763 break;
5764 }
5765 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5766 (file_ptr) link_order->offset, size);
5767 free (buf);
5768 if (! ok)
5769 return false;
5770 }
5771
5772 /* The address of a reloc is relative to the section in a
5773 relocateable file, and is a virtual address in an executable
5774 file. */
5775 offset = link_order->offset;
5776 if (! info->relocateable)
5777 offset += output_section->vma;
5778
5779 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5780
5781 if (rel_hdr->sh_type == SHT_REL)
5782 {
5783 Elf_Internal_Rel irel;
5784 Elf_External_Rel *erel;
5785
5786 irel.r_offset = offset;
5787 irel.r_info = ELF_R_INFO (indx, howto->type);
5788 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 5789 + elf_section_data (output_section)->rel_count);
252b5132
RH
5790 elf_swap_reloc_out (output_bfd, &irel, erel);
5791 }
5792 else
5793 {
5794 Elf_Internal_Rela irela;
5795 Elf_External_Rela *erela;
5796
5797 irela.r_offset = offset;
5798 irela.r_info = ELF_R_INFO (indx, howto->type);
5799 irela.r_addend = addend;
5800 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 5801 + elf_section_data (output_section)->rel_count);
252b5132
RH
5802 elf_swap_reloca_out (output_bfd, &irela, erela);
5803 }
5804
0525d26e 5805 ++elf_section_data (output_section)->rel_count;
252b5132
RH
5806
5807 return true;
5808}
5809
5810\f
5811/* Allocate a pointer to live in a linker created section. */
5812
5813boolean
5814elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5815 bfd *abfd;
5816 struct bfd_link_info *info;
5817 elf_linker_section_t *lsect;
5818 struct elf_link_hash_entry *h;
5819 const Elf_Internal_Rela *rel;
5820{
5821 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5822 elf_linker_section_pointers_t *linker_section_ptr;
5823 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5824
5825 BFD_ASSERT (lsect != NULL);
5826
5827 /* Is this a global symbol? */
5828 if (h != NULL)
5829 {
5830 /* Has this symbol already been allocated, if so, our work is done */
5831 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5832 rel->r_addend,
5833 lsect->which))
5834 return true;
5835
5836 ptr_linker_section_ptr = &h->linker_section_pointer;
5837 /* Make sure this symbol is output as a dynamic symbol. */
5838 if (h->dynindx == -1)
5839 {
5840 if (! elf_link_record_dynamic_symbol (info, h))
5841 return false;
5842 }
5843
5844 if (lsect->rel_section)
5845 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5846 }
5847
5848 else /* Allocation of a pointer to a local symbol */
5849 {
5850 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5851
5852 /* Allocate a table to hold the local symbols if first time */
5853 if (!ptr)
5854 {
5855 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5856 register unsigned int i;
5857
5858 ptr = (elf_linker_section_pointers_t **)
5859 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5860
5861 if (!ptr)
5862 return false;
5863
5864 elf_local_ptr_offsets (abfd) = ptr;
5865 for (i = 0; i < num_symbols; i++)
5866 ptr[i] = (elf_linker_section_pointers_t *)0;
5867 }
5868
5869 /* Has this symbol already been allocated, if so, our work is done */
5870 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5871 rel->r_addend,
5872 lsect->which))
5873 return true;
5874
5875 ptr_linker_section_ptr = &ptr[r_symndx];
5876
5877 if (info->shared)
5878 {
5879 /* If we are generating a shared object, we need to
5880 output a R_<xxx>_RELATIVE reloc so that the
5881 dynamic linker can adjust this GOT entry. */
5882 BFD_ASSERT (lsect->rel_section != NULL);
5883 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5884 }
5885 }
5886
5887 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5888 from internal memory. */
5889 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5890 linker_section_ptr = (elf_linker_section_pointers_t *)
5891 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5892
5893 if (!linker_section_ptr)
5894 return false;
5895
5896 linker_section_ptr->next = *ptr_linker_section_ptr;
5897 linker_section_ptr->addend = rel->r_addend;
5898 linker_section_ptr->which = lsect->which;
5899 linker_section_ptr->written_address_p = false;
5900 *ptr_linker_section_ptr = linker_section_ptr;
5901
5902#if 0
5903 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5904 {
5905 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5906 lsect->hole_offset += ARCH_SIZE / 8;
5907 lsect->sym_offset += ARCH_SIZE / 8;
5908 if (lsect->sym_hash) /* Bump up symbol value if needed */
5909 {
5910 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5911#ifdef DEBUG
5912 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5913 lsect->sym_hash->root.root.string,
5914 (long)ARCH_SIZE / 8,
5915 (long)lsect->sym_hash->root.u.def.value);
5916#endif
5917 }
5918 }
5919 else
5920#endif
5921 linker_section_ptr->offset = lsect->section->_raw_size;
5922
5923 lsect->section->_raw_size += ARCH_SIZE / 8;
5924
5925#ifdef DEBUG
5926 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5927 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5928#endif
5929
5930 return true;
5931}
5932
5933\f
5934#if ARCH_SIZE==64
5935#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5936#endif
5937#if ARCH_SIZE==32
5938#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5939#endif
5940
5941/* Fill in the address for a pointer generated in alinker section. */
5942
5943bfd_vma
5944elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5945 bfd *output_bfd;
5946 bfd *input_bfd;
5947 struct bfd_link_info *info;
5948 elf_linker_section_t *lsect;
5949 struct elf_link_hash_entry *h;
5950 bfd_vma relocation;
5951 const Elf_Internal_Rela *rel;
5952 int relative_reloc;
5953{
5954 elf_linker_section_pointers_t *linker_section_ptr;
5955
5956 BFD_ASSERT (lsect != NULL);
5957
5958 if (h != NULL) /* global symbol */
5959 {
5960 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5961 rel->r_addend,
5962 lsect->which);
5963
5964 BFD_ASSERT (linker_section_ptr != NULL);
5965
5966 if (! elf_hash_table (info)->dynamic_sections_created
5967 || (info->shared
5968 && info->symbolic
5969 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5970 {
5971 /* This is actually a static link, or it is a
5972 -Bsymbolic link and the symbol is defined
5973 locally. We must initialize this entry in the
5974 global section.
5975
5976 When doing a dynamic link, we create a .rela.<xxx>
5977 relocation entry to initialize the value. This
5978 is done in the finish_dynamic_symbol routine. */
5979 if (!linker_section_ptr->written_address_p)
5980 {
5981 linker_section_ptr->written_address_p = true;
5982 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5983 lsect->section->contents + linker_section_ptr->offset);
5984 }
5985 }
5986 }
5987 else /* local symbol */
5988 {
5989 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5990 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5991 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5992 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5993 rel->r_addend,
5994 lsect->which);
5995
5996 BFD_ASSERT (linker_section_ptr != NULL);
5997
5998 /* Write out pointer if it hasn't been rewritten out before */
5999 if (!linker_section_ptr->written_address_p)
6000 {
6001 linker_section_ptr->written_address_p = true;
6002 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6003 lsect->section->contents + linker_section_ptr->offset);
6004
6005 if (info->shared)
6006 {
6007 asection *srel = lsect->rel_section;
6008 Elf_Internal_Rela outrel;
6009
6010 /* We need to generate a relative reloc for the dynamic linker. */
6011 if (!srel)
6012 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6013 lsect->rel_name);
6014
6015 BFD_ASSERT (srel != NULL);
6016
6017 outrel.r_offset = (lsect->section->output_section->vma
6018 + lsect->section->output_offset
6019 + linker_section_ptr->offset);
6020 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6021 outrel.r_addend = 0;
6022 elf_swap_reloca_out (output_bfd, &outrel,
6023 (((Elf_External_Rela *)
6024 lsect->section->contents)
0525d26e
ILT
6025 + elf_section_data (lsect->section)->rel_count));
6026 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
6027 }
6028 }
6029 }
6030
6031 relocation = (lsect->section->output_offset
6032 + linker_section_ptr->offset
6033 - lsect->hole_offset
6034 - lsect->sym_offset);
6035
6036#ifdef DEBUG
6037 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6038 lsect->name, (long)relocation, (long)relocation);
6039#endif
6040
6041 /* Subtract out the addend, because it will get added back in by the normal
6042 processing. */
6043 return relocation - linker_section_ptr->addend;
6044}
6045\f
6046/* Garbage collect unused sections. */
6047
6048static boolean elf_gc_mark
6049 PARAMS ((struct bfd_link_info *info, asection *sec,
6050 asection * (*gc_mark_hook)
6051 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6052 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6053
6054static boolean elf_gc_sweep
6055 PARAMS ((struct bfd_link_info *info,
6056 boolean (*gc_sweep_hook)
6057 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6058 const Elf_Internal_Rela *relocs))));
6059
6060static boolean elf_gc_sweep_symbol
6061 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6062
6063static boolean elf_gc_allocate_got_offsets
6064 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6065
6066static boolean elf_gc_propagate_vtable_entries_used
6067 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6068
6069static boolean elf_gc_smash_unused_vtentry_relocs
6070 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6071
6072/* The mark phase of garbage collection. For a given section, mark
6073 it, and all the sections which define symbols to which it refers. */
6074
6075static boolean
6076elf_gc_mark (info, sec, gc_mark_hook)
6077 struct bfd_link_info *info;
6078 asection *sec;
6079 asection * (*gc_mark_hook)
6080 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6081 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6082{
6083 boolean ret = true;
6084
6085 sec->gc_mark = 1;
6086
6087 /* Look through the section relocs. */
6088
6089 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6090 {
6091 Elf_Internal_Rela *relstart, *rel, *relend;
6092 Elf_Internal_Shdr *symtab_hdr;
6093 struct elf_link_hash_entry **sym_hashes;
6094 size_t nlocsyms;
6095 size_t extsymoff;
6096 Elf_External_Sym *locsyms, *freesyms = NULL;
6097 bfd *input_bfd = sec->owner;
c7ac6ff8 6098 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
6099
6100 /* GCFIXME: how to arrange so that relocs and symbols are not
6101 reread continually? */
6102
6103 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6104 sym_hashes = elf_sym_hashes (input_bfd);
6105
6106 /* Read the local symbols. */
6107 if (elf_bad_symtab (input_bfd))
6108 {
6109 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6110 extsymoff = 0;
6111 }
6112 else
6113 extsymoff = nlocsyms = symtab_hdr->sh_info;
6114 if (symtab_hdr->contents)
6115 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6116 else if (nlocsyms == 0)
6117 locsyms = NULL;
6118 else
6119 {
6120 locsyms = freesyms =
6121 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6122 if (freesyms == NULL
6123 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6124 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6125 nlocsyms, input_bfd)
6126 != nlocsyms * sizeof (Elf_External_Sym)))
6127 {
6128 ret = false;
6129 goto out1;
6130 }
6131 }
6132
6133 /* Read the relocations. */
6134 relstart = (NAME(_bfd_elf,link_read_relocs)
6135 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6136 info->keep_memory));
6137 if (relstart == NULL)
6138 {
6139 ret = false;
6140 goto out1;
6141 }
c7ac6ff8 6142 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6143
6144 for (rel = relstart; rel < relend; rel++)
6145 {
6146 unsigned long r_symndx;
6147 asection *rsec;
6148 struct elf_link_hash_entry *h;
6149 Elf_Internal_Sym s;
6150
6151 r_symndx = ELF_R_SYM (rel->r_info);
6152 if (r_symndx == 0)
6153 continue;
6154
6155 if (elf_bad_symtab (sec->owner))
6156 {
6157 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6158 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6159 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6160 else
6161 {
6162 h = sym_hashes[r_symndx - extsymoff];
6163 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6164 }
6165 }
6166 else if (r_symndx >= nlocsyms)
6167 {
6168 h = sym_hashes[r_symndx - extsymoff];
6169 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6170 }
6171 else
6172 {
6173 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6174 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6175 }
6176
6177 if (rsec && !rsec->gc_mark)
6178 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6179 {
6180 ret = false;
6181 goto out2;
6182 }
6183 }
6184
6185 out2:
6186 if (!info->keep_memory)
6187 free (relstart);
6188 out1:
6189 if (freesyms)
6190 free (freesyms);
6191 }
6192
6193 return ret;
6194}
6195
6196/* The sweep phase of garbage collection. Remove all garbage sections. */
6197
6198static boolean
6199elf_gc_sweep (info, gc_sweep_hook)
6200 struct bfd_link_info *info;
6201 boolean (*gc_sweep_hook)
6202 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6203 const Elf_Internal_Rela *relocs));
6204{
6205 bfd *sub;
6206
6207 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6208 {
6209 asection *o;
6210
f6af82bd
AM
6211 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6212 continue;
6213
252b5132
RH
6214 for (o = sub->sections; o != NULL; o = o->next)
6215 {
6216 /* Keep special sections. Keep .debug sections. */
6217 if ((o->flags & SEC_LINKER_CREATED)
6218 || (o->flags & SEC_DEBUGGING))
6219 o->gc_mark = 1;
6220
6221 if (o->gc_mark)
6222 continue;
6223
6224 /* Skip sweeping sections already excluded. */
6225 if (o->flags & SEC_EXCLUDE)
6226 continue;
6227
6228 /* Since this is early in the link process, it is simple
6229 to remove a section from the output. */
6230 o->flags |= SEC_EXCLUDE;
6231
6232 /* But we also have to update some of the relocation
6233 info we collected before. */
6234 if (gc_sweep_hook
6235 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6236 {
6237 Elf_Internal_Rela *internal_relocs;
6238 boolean r;
6239
6240 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6241 (o->owner, o, NULL, NULL, info->keep_memory));
6242 if (internal_relocs == NULL)
6243 return false;
6244
6245 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6246
6247 if (!info->keep_memory)
6248 free (internal_relocs);
6249
6250 if (!r)
6251 return false;
6252 }
6253 }
6254 }
6255
6256 /* Remove the symbols that were in the swept sections from the dynamic
6257 symbol table. GCFIXME: Anyone know how to get them out of the
6258 static symbol table as well? */
6259 {
6260 int i = 0;
6261
6262 elf_link_hash_traverse (elf_hash_table (info),
6263 elf_gc_sweep_symbol,
6264 (PTR) &i);
6265
6266 elf_hash_table (info)->dynsymcount = i;
6267 }
6268
6269 return true;
6270}
6271
6272/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6273
6274static boolean
6275elf_gc_sweep_symbol (h, idxptr)
6276 struct elf_link_hash_entry *h;
6277 PTR idxptr;
6278{
6279 int *idx = (int *) idxptr;
6280
6281 if (h->dynindx != -1
6282 && ((h->root.type != bfd_link_hash_defined
6283 && h->root.type != bfd_link_hash_defweak)
6284 || h->root.u.def.section->gc_mark))
6285 h->dynindx = (*idx)++;
6286
6287 return true;
6288}
6289
6290/* Propogate collected vtable information. This is called through
6291 elf_link_hash_traverse. */
6292
6293static boolean
6294elf_gc_propagate_vtable_entries_used (h, okp)
6295 struct elf_link_hash_entry *h;
6296 PTR okp;
6297{
6298 /* Those that are not vtables. */
6299 if (h->vtable_parent == NULL)
6300 return true;
6301
6302 /* Those vtables that do not have parents, we cannot merge. */
6303 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6304 return true;
6305
6306 /* If we've already been done, exit. */
6307 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6308 return true;
6309
6310 /* Make sure the parent's table is up to date. */
6311 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6312
6313 if (h->vtable_entries_used == NULL)
6314 {
6315 /* None of this table's entries were referenced. Re-use the
6316 parent's table. */
6317 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6318 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6319 }
6320 else
6321 {
6322 size_t n;
6323 boolean *cu, *pu;
6324
6325 /* Or the parent's entries into ours. */
6326 cu = h->vtable_entries_used;
6327 cu[-1] = true;
6328 pu = h->vtable_parent->vtable_entries_used;
6329 if (pu != NULL)
6330 {
6331 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6332 while (--n != 0)
6333 {
6334 if (*pu) *cu = true;
6335 pu++, cu++;
6336 }
6337 }
6338 }
6339
6340 return true;
6341}
6342
6343static boolean
6344elf_gc_smash_unused_vtentry_relocs (h, okp)
6345 struct elf_link_hash_entry *h;
6346 PTR okp;
6347{
6348 asection *sec;
6349 bfd_vma hstart, hend;
6350 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6351 struct elf_backend_data *bed;
252b5132
RH
6352
6353 /* Take care of both those symbols that do not describe vtables as
6354 well as those that are not loaded. */
6355 if (h->vtable_parent == NULL)
6356 return true;
6357
6358 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6359 || h->root.type == bfd_link_hash_defweak);
6360
6361 sec = h->root.u.def.section;
6362 hstart = h->root.u.def.value;
6363 hend = hstart + h->size;
6364
6365 relstart = (NAME(_bfd_elf,link_read_relocs)
6366 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6367 if (!relstart)
6368 return *(boolean *)okp = false;
c7ac6ff8
MM
6369 bed = get_elf_backend_data (sec->owner);
6370 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6371
6372 for (rel = relstart; rel < relend; ++rel)
6373 if (rel->r_offset >= hstart && rel->r_offset < hend)
6374 {
6375 /* If the entry is in use, do nothing. */
6376 if (h->vtable_entries_used
6377 && (rel->r_offset - hstart) < h->vtable_entries_size)
6378 {
6379 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6380 if (h->vtable_entries_used[entry])
6381 continue;
6382 }
6383 /* Otherwise, kill it. */
6384 rel->r_offset = rel->r_info = rel->r_addend = 0;
6385 }
6386
6387 return true;
6388}
6389
6390/* Do mark and sweep of unused sections. */
6391
6392boolean
6393elf_gc_sections (abfd, info)
6394 bfd *abfd;
6395 struct bfd_link_info *info;
6396{
6397 boolean ok = true;
6398 bfd *sub;
6399 asection * (*gc_mark_hook)
6400 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6401 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6402
6403 if (!get_elf_backend_data (abfd)->can_gc_sections
6404 || info->relocateable
6405 || elf_hash_table (info)->dynamic_sections_created)
6406 return true;
6407
6408 /* Apply transitive closure to the vtable entry usage info. */
6409 elf_link_hash_traverse (elf_hash_table (info),
6410 elf_gc_propagate_vtable_entries_used,
6411 (PTR) &ok);
6412 if (!ok)
6413 return false;
6414
6415 /* Kill the vtable relocations that were not used. */
6416 elf_link_hash_traverse (elf_hash_table (info),
6417 elf_gc_smash_unused_vtentry_relocs,
6418 (PTR) &ok);
6419 if (!ok)
6420 return false;
6421
6422 /* Grovel through relocs to find out who stays ... */
6423
6424 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6425 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6426 {
6427 asection *o;
f6af82bd
AM
6428
6429 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6430 continue;
6431
252b5132
RH
6432 for (o = sub->sections; o != NULL; o = o->next)
6433 {
6434 if (o->flags & SEC_KEEP)
6435 if (!elf_gc_mark (info, o, gc_mark_hook))
6436 return false;
6437 }
6438 }
6439
6440 /* ... and mark SEC_EXCLUDE for those that go. */
6441 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6442 return false;
6443
6444 return true;
6445}
6446\f
6447/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6448
6449boolean
6450elf_gc_record_vtinherit (abfd, sec, h, offset)
6451 bfd *abfd;
6452 asection *sec;
6453 struct elf_link_hash_entry *h;
6454 bfd_vma offset;
6455{
6456 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6457 struct elf_link_hash_entry **search, *child;
6458 bfd_size_type extsymcount;
6459
6460 /* The sh_info field of the symtab header tells us where the
6461 external symbols start. We don't care about the local symbols at
6462 this point. */
6463 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6464 if (!elf_bad_symtab (abfd))
6465 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6466
6467 sym_hashes = elf_sym_hashes (abfd);
6468 sym_hashes_end = sym_hashes + extsymcount;
6469
6470 /* Hunt down the child symbol, which is in this section at the same
6471 offset as the relocation. */
6472 for (search = sym_hashes; search != sym_hashes_end; ++search)
6473 {
6474 if ((child = *search) != NULL
6475 && (child->root.type == bfd_link_hash_defined
6476 || child->root.type == bfd_link_hash_defweak)
6477 && child->root.u.def.section == sec
6478 && child->root.u.def.value == offset)
6479 goto win;
6480 }
6481
6482 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6483 bfd_get_filename (abfd), sec->name,
6484 (unsigned long)offset);
6485 bfd_set_error (bfd_error_invalid_operation);
6486 return false;
6487
6488win:
6489 if (!h)
6490 {
6491 /* This *should* only be the absolute section. It could potentially
6492 be that someone has defined a non-global vtable though, which
6493 would be bad. It isn't worth paging in the local symbols to be
6494 sure though; that case should simply be handled by the assembler. */
6495
6496 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6497 }
6498 else
6499 child->vtable_parent = h;
6500
6501 return true;
6502}
6503
6504/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6505
6506boolean
6507elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6508 bfd *abfd ATTRIBUTE_UNUSED;
6509 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6510 struct elf_link_hash_entry *h;
6511 bfd_vma addend;
6512{
6513 if (addend >= h->vtable_entries_size)
6514 {
6515 size_t size, bytes;
6516 boolean *ptr = h->vtable_entries_used;
6517
6518 /* While the symbol is undefined, we have to be prepared to handle
6519 a zero size. */
6520 if (h->root.type == bfd_link_hash_undefined)
6521 size = addend;
6522 else
6523 {
6524 size = h->size;
6525 if (size < addend)
6526 {
6527 /* Oops! We've got a reference past the defined end of
6528 the table. This is probably a bug -- shall we warn? */
6529 size = addend;
6530 }
6531 }
6532
6533 /* Allocate one extra entry for use as a "done" flag for the
6534 consolidation pass. */
fed79cc6 6535 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
252b5132
RH
6536
6537 if (ptr)
6538 {
fed79cc6
NC
6539 ptr = bfd_realloc (ptr - 1, bytes);
6540
6541 if (ptr != NULL)
6542 {
6543 size_t oldbytes;
252b5132 6544
fed79cc6
NC
6545 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6546 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6547 }
252b5132
RH
6548 }
6549 else
fed79cc6 6550 ptr = bfd_zmalloc (bytes);
252b5132 6551
fed79cc6
NC
6552 if (ptr == NULL)
6553 return false;
6554
252b5132 6555 /* And arrange for that done flag to be at index -1. */
fed79cc6 6556 h->vtable_entries_used = ptr + 1;
252b5132
RH
6557 h->vtable_entries_size = size;
6558 }
fed79cc6 6559
252b5132
RH
6560 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6561
6562 return true;
6563}
6564
6565/* And an accompanying bit to work out final got entry offsets once
6566 we're done. Should be called from final_link. */
6567
6568boolean
6569elf_gc_common_finalize_got_offsets (abfd, info)
6570 bfd *abfd;
6571 struct bfd_link_info *info;
6572{
6573 bfd *i;
6574 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6575 bfd_vma gotoff;
6576
6577 /* The GOT offset is relative to the .got section, but the GOT header is
6578 put into the .got.plt section, if the backend uses it. */
6579 if (bed->want_got_plt)
6580 gotoff = 0;
6581 else
6582 gotoff = bed->got_header_size;
6583
6584 /* Do the local .got entries first. */
6585 for (i = info->input_bfds; i; i = i->link_next)
6586 {
f6af82bd 6587 bfd_signed_vma *local_got;
252b5132
RH
6588 bfd_size_type j, locsymcount;
6589 Elf_Internal_Shdr *symtab_hdr;
6590
f6af82bd
AM
6591 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6592 continue;
6593
6594 local_got = elf_local_got_refcounts (i);
252b5132
RH
6595 if (!local_got)
6596 continue;
6597
6598 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6599 if (elf_bad_symtab (i))
6600 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6601 else
6602 locsymcount = symtab_hdr->sh_info;
6603
6604 for (j = 0; j < locsymcount; ++j)
6605 {
6606 if (local_got[j] > 0)
6607 {
6608 local_got[j] = gotoff;
6609 gotoff += ARCH_SIZE / 8;
6610 }
6611 else
6612 local_got[j] = (bfd_vma) -1;
6613 }
6614 }
6615
6616 /* Then the global .got and .plt entries. */
6617 elf_link_hash_traverse (elf_hash_table (info),
6618 elf_gc_allocate_got_offsets,
6619 (PTR) &gotoff);
6620 return true;
6621}
6622
6623/* We need a special top-level link routine to convert got reference counts
6624 to real got offsets. */
6625
6626static boolean
6627elf_gc_allocate_got_offsets (h, offarg)
6628 struct elf_link_hash_entry *h;
6629 PTR offarg;
6630{
6631 bfd_vma *off = (bfd_vma *) offarg;
6632
6633 if (h->got.refcount > 0)
6634 {
6635 h->got.offset = off[0];
6636 off[0] += ARCH_SIZE / 8;
6637 }
6638 else
6639 h->got.offset = (bfd_vma) -1;
6640
6641 return true;
6642}
6643
6644/* Many folk need no more in the way of final link than this, once
6645 got entry reference counting is enabled. */
6646
6647boolean
6648elf_gc_common_final_link (abfd, info)
6649 bfd *abfd;
6650 struct bfd_link_info *info;
6651{
6652 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6653 return false;
6654
6655 /* Invoke the regular ELF backend linker to do all the work. */
6656 return elf_bfd_final_link (abfd, info);
6657}
6658
6659/* This function will be called though elf_link_hash_traverse to store
6660 all hash value of the exported symbols in an array. */
6661
6662static boolean
6663elf_collect_hash_codes (h, data)
6664 struct elf_link_hash_entry *h;
6665 PTR data;
6666{
6667 unsigned long **valuep = (unsigned long **) data;
6668 const char *name;
6669 char *p;
6670 unsigned long ha;
6671 char *alc = NULL;
6672
6673 /* Ignore indirect symbols. These are added by the versioning code. */
6674 if (h->dynindx == -1)
6675 return true;
6676
6677 name = h->root.root.string;
6678 p = strchr (name, ELF_VER_CHR);
6679 if (p != NULL)
6680 {
6681 alc = bfd_malloc (p - name + 1);
6682 memcpy (alc, name, p - name);
6683 alc[p - name] = '\0';
6684 name = alc;
6685 }
6686
6687 /* Compute the hash value. */
6688 ha = bfd_elf_hash (name);
6689
6690 /* Store the found hash value in the array given as the argument. */
6691 *(*valuep)++ = ha;
6692
6693 /* And store it in the struct so that we can put it in the hash table
6694 later. */
6695 h->elf_hash_value = ha;
6696
6697 if (alc != NULL)
6698 free (alc);
6699
6700 return true;
6701}
This page took 0.385594 seconds and 4 git commands to generate.