2000-07-19 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132 1/* ELF linker support.
2bd171e0 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
252b5132
RH
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
51static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
53static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
55static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
31367b81
MM
59static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
252b5132
RH
62
63/* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66boolean
67elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70{
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81}
82\f
48dfb430
NC
83/* Return true iff this is a non-common definition of a symbol. */
84static boolean
85is_global_symbol_definition (abfd, sym)
86033394 86 bfd * abfd ATTRIBUTE_UNUSED;
48dfb430
NC
87 Elf_Internal_Sym * sym;
88{
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116}
117
118
a3a8c91d
NC
119/* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122static boolean
123elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126{
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
48dfb430
NC
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
a3a8c91d
NC
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
48dfb430 205 result = is_global_symbol_definition (abfd, & sym);
a3a8c91d
NC
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213}
214\f
252b5132
RH
215
216/* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241static boolean
242elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245{
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
a3a8c91d
NC
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
252b5132
RH
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
252b5132
RH
360 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
361 if (element == (bfd *) NULL)
362 goto error_return;
363
364 if (! bfd_check_format (element, bfd_object))
365 goto error_return;
366
367 /* Doublecheck that we have not included this object
368 already--it should be impossible, but there may be
369 something wrong with the archive. */
370 if (element->archive_pass != 0)
371 {
372 bfd_set_error (bfd_error_bad_value);
373 goto error_return;
374 }
375 element->archive_pass = 1;
376
377 undefs_tail = info->hash->undefs_tail;
378
379 if (! (*info->callbacks->add_archive_element) (info, element,
380 symdef->name))
381 goto error_return;
382 if (! elf_link_add_object_symbols (element, info))
383 goto error_return;
384
385 /* If there are any new undefined symbols, we need to make
386 another pass through the archive in order to see whether
387 they can be defined. FIXME: This isn't perfect, because
388 common symbols wind up on undefs_tail and because an
389 undefined symbol which is defined later on in this pass
390 does not require another pass. This isn't a bug, but it
391 does make the code less efficient than it could be. */
392 if (undefs_tail != info->hash->undefs_tail)
393 loop = true;
394
395 /* Look backward to mark all symbols from this object file
396 which we have already seen in this pass. */
397 mark = i;
398 do
399 {
400 included[mark] = true;
401 if (mark == 0)
402 break;
403 --mark;
404 }
405 while (symdefs[mark].file_offset == symdef->file_offset);
406
407 /* We mark subsequent symbols from this object file as we go
408 on through the loop. */
409 last = symdef->file_offset;
410 }
411 }
412 while (loop);
413
414 free (defined);
415 free (included);
416
417 return true;
418
419 error_return:
420 if (defined != (boolean *) NULL)
421 free (defined);
422 if (included != (boolean *) NULL)
423 free (included);
424 return false;
425}
426
427/* This function is called when we want to define a new symbol. It
428 handles the various cases which arise when we find a definition in
429 a dynamic object, or when there is already a definition in a
430 dynamic object. The new symbol is described by NAME, SYM, PSEC,
431 and PVALUE. We set SYM_HASH to the hash table entry. We set
432 OVERRIDE if the old symbol is overriding a new definition. We set
433 TYPE_CHANGE_OK if it is OK for the type to change. We set
434 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
435 change, we mean that we shouldn't warn if the type or size does
436 change. */
437
438static boolean
439elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
440 override, type_change_ok, size_change_ok)
441 bfd *abfd;
442 struct bfd_link_info *info;
443 const char *name;
444 Elf_Internal_Sym *sym;
445 asection **psec;
446 bfd_vma *pvalue;
447 struct elf_link_hash_entry **sym_hash;
448 boolean *override;
449 boolean *type_change_ok;
450 boolean *size_change_ok;
451{
452 asection *sec;
453 struct elf_link_hash_entry *h;
454 int bind;
455 bfd *oldbfd;
456 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
457
458 *override = false;
459
460 sec = *psec;
461 bind = ELF_ST_BIND (sym->st_info);
462
463 if (! bfd_is_und_section (sec))
464 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
465 else
466 h = ((struct elf_link_hash_entry *)
467 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
468 if (h == NULL)
469 return false;
470 *sym_hash = h;
471
472 /* This code is for coping with dynamic objects, and is only useful
473 if we are doing an ELF link. */
474 if (info->hash->creator != abfd->xvec)
475 return true;
476
477 /* For merging, we only care about real symbols. */
478
479 while (h->root.type == bfd_link_hash_indirect
480 || h->root.type == bfd_link_hash_warning)
481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
482
483 /* If we just created the symbol, mark it as being an ELF symbol.
484 Other than that, there is nothing to do--there is no merge issue
485 with a newly defined symbol--so we just return. */
486
487 if (h->root.type == bfd_link_hash_new)
488 {
489 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
490 return true;
491 }
492
493 /* OLDBFD is a BFD associated with the existing symbol. */
494
495 switch (h->root.type)
496 {
497 default:
498 oldbfd = NULL;
499 break;
500
501 case bfd_link_hash_undefined:
502 case bfd_link_hash_undefweak:
503 oldbfd = h->root.u.undef.abfd;
504 break;
505
506 case bfd_link_hash_defined:
507 case bfd_link_hash_defweak:
508 oldbfd = h->root.u.def.section->owner;
509 break;
510
511 case bfd_link_hash_common:
512 oldbfd = h->root.u.c.p->section->owner;
513 break;
514 }
515
b4536acd
ILT
516 /* In cases involving weak versioned symbols, we may wind up trying
517 to merge a symbol with itself. Catch that here, to avoid the
518 confusion that results if we try to override a symbol with
accc7f69
ILT
519 itself. The additional tests catch cases like
520 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
521 dynamic object, which we do want to handle here. */
522 if (abfd == oldbfd
523 && ((abfd->flags & DYNAMIC) == 0
524 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
525 return true;
526
252b5132
RH
527 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
528 respectively, is from a dynamic object. */
529
530 if ((abfd->flags & DYNAMIC) != 0)
531 newdyn = true;
532 else
533 newdyn = false;
534
0035bd7b
ILT
535 if (oldbfd != NULL)
536 olddyn = (oldbfd->flags & DYNAMIC) != 0;
252b5132 537 else
0035bd7b
ILT
538 {
539 asection *hsec;
540
541 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
542 indices used by MIPS ELF. */
543 switch (h->root.type)
544 {
545 default:
546 hsec = NULL;
547 break;
548
549 case bfd_link_hash_defined:
550 case bfd_link_hash_defweak:
551 hsec = h->root.u.def.section;
552 break;
553
554 case bfd_link_hash_common:
555 hsec = h->root.u.c.p->section;
556 break;
557 }
558
559 if (hsec == NULL)
560 olddyn = false;
561 else
562 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
563 }
252b5132
RH
564
565 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
566 respectively, appear to be a definition rather than reference. */
567
568 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
569 newdef = false;
570 else
571 newdef = true;
572
573 if (h->root.type == bfd_link_hash_undefined
574 || h->root.type == bfd_link_hash_undefweak
575 || h->root.type == bfd_link_hash_common)
576 olddef = false;
577 else
578 olddef = true;
579
580 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
581 symbol, respectively, appears to be a common symbol in a dynamic
582 object. If a symbol appears in an uninitialized section, and is
583 not weak, and is not a function, then it may be a common symbol
584 which was resolved when the dynamic object was created. We want
585 to treat such symbols specially, because they raise special
586 considerations when setting the symbol size: if the symbol
587 appears as a common symbol in a regular object, and the size in
588 the regular object is larger, we must make sure that we use the
589 larger size. This problematic case can always be avoided in C,
590 but it must be handled correctly when using Fortran shared
591 libraries.
592
593 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
594 likewise for OLDDYNCOMMON and OLDDEF.
595
596 Note that this test is just a heuristic, and that it is quite
597 possible to have an uninitialized symbol in a shared object which
598 is really a definition, rather than a common symbol. This could
599 lead to some minor confusion when the symbol really is a common
600 symbol in some regular object. However, I think it will be
601 harmless. */
602
603 if (newdyn
604 && newdef
605 && (sec->flags & SEC_ALLOC) != 0
606 && (sec->flags & SEC_LOAD) == 0
607 && sym->st_size > 0
608 && bind != STB_WEAK
609 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
610 newdyncommon = true;
611 else
612 newdyncommon = false;
613
614 if (olddyn
615 && olddef
616 && h->root.type == bfd_link_hash_defined
617 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
618 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
619 && (h->root.u.def.section->flags & SEC_LOAD) == 0
620 && h->size > 0
621 && h->type != STT_FUNC)
622 olddyncommon = true;
623 else
624 olddyncommon = false;
625
626 /* It's OK to change the type if either the existing symbol or the
627 new symbol is weak. */
628
629 if (h->root.type == bfd_link_hash_defweak
630 || h->root.type == bfd_link_hash_undefweak
631 || bind == STB_WEAK)
632 *type_change_ok = true;
633
634 /* It's OK to change the size if either the existing symbol or the
635 new symbol is weak, or if the old symbol is undefined. */
636
637 if (*type_change_ok
638 || h->root.type == bfd_link_hash_undefined)
639 *size_change_ok = true;
640
641 /* If both the old and the new symbols look like common symbols in a
642 dynamic object, set the size of the symbol to the larger of the
643 two. */
644
645 if (olddyncommon
646 && newdyncommon
647 && sym->st_size != h->size)
648 {
649 /* Since we think we have two common symbols, issue a multiple
650 common warning if desired. Note that we only warn if the
651 size is different. If the size is the same, we simply let
652 the old symbol override the new one as normally happens with
653 symbols defined in dynamic objects. */
654
655 if (! ((*info->callbacks->multiple_common)
656 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
657 h->size, abfd, bfd_link_hash_common, sym->st_size)))
658 return false;
659
660 if (sym->st_size > h->size)
661 h->size = sym->st_size;
662
663 *size_change_ok = true;
664 }
665
666 /* If we are looking at a dynamic object, and we have found a
667 definition, we need to see if the symbol was already defined by
668 some other object. If so, we want to use the existing
669 definition, and we do not want to report a multiple symbol
670 definition error; we do this by clobbering *PSEC to be
671 bfd_und_section_ptr.
672
673 We treat a common symbol as a definition if the symbol in the
674 shared library is a function, since common symbols always
675 represent variables; this can cause confusion in principle, but
676 any such confusion would seem to indicate an erroneous program or
677 shared library. We also permit a common symbol in a regular
0525d26e
ILT
678 object to override a weak symbol in a shared object.
679
680 We prefer a non-weak definition in a shared library to a weak
681 definition in the executable. */
252b5132
RH
682
683 if (newdyn
684 && newdef
685 && (olddef
686 || (h->root.type == bfd_link_hash_common
687 && (bind == STB_WEAK
0525d26e
ILT
688 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
689 && (h->root.type != bfd_link_hash_defweak
690 || bind == STB_WEAK))
252b5132
RH
691 {
692 *override = true;
693 newdef = false;
694 newdyncommon = false;
695
696 *psec = sec = bfd_und_section_ptr;
697 *size_change_ok = true;
698
699 /* If we get here when the old symbol is a common symbol, then
700 we are explicitly letting it override a weak symbol or
701 function in a dynamic object, and we don't want to warn about
702 a type change. If the old symbol is a defined symbol, a type
703 change warning may still be appropriate. */
704
705 if (h->root.type == bfd_link_hash_common)
706 *type_change_ok = true;
707 }
708
709 /* Handle the special case of an old common symbol merging with a
710 new symbol which looks like a common symbol in a shared object.
711 We change *PSEC and *PVALUE to make the new symbol look like a
712 common symbol, and let _bfd_generic_link_add_one_symbol will do
713 the right thing. */
714
715 if (newdyncommon
716 && h->root.type == bfd_link_hash_common)
717 {
718 *override = true;
719 newdef = false;
720 newdyncommon = false;
721 *pvalue = sym->st_size;
722 *psec = sec = bfd_com_section_ptr;
723 *size_change_ok = true;
724 }
725
726 /* If the old symbol is from a dynamic object, and the new symbol is
727 a definition which is not from a dynamic object, then the new
728 symbol overrides the old symbol. Symbols from regular files
729 always take precedence over symbols from dynamic objects, even if
730 they are defined after the dynamic object in the link.
731
732 As above, we again permit a common symbol in a regular object to
733 override a definition in a shared object if the shared object
0525d26e
ILT
734 symbol is a function or is weak.
735
736 As above, we permit a non-weak definition in a shared object to
737 override a weak definition in a regular object. */
252b5132
RH
738
739 if (! newdyn
740 && (newdef
741 || (bfd_is_com_section (sec)
742 && (h->root.type == bfd_link_hash_defweak
743 || h->type == STT_FUNC)))
744 && olddyn
745 && olddef
0525d26e
ILT
746 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
747 && (bind != STB_WEAK
748 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
749 {
750 /* Change the hash table entry to undefined, and let
751 _bfd_generic_link_add_one_symbol do the right thing with the
752 new definition. */
753
754 h->root.type = bfd_link_hash_undefined;
755 h->root.u.undef.abfd = h->root.u.def.section->owner;
756 *size_change_ok = true;
757
758 olddef = false;
759 olddyncommon = false;
760
761 /* We again permit a type change when a common symbol may be
762 overriding a function. */
763
764 if (bfd_is_com_section (sec))
765 *type_change_ok = true;
766
767 /* This union may have been set to be non-NULL when this symbol
768 was seen in a dynamic object. We must force the union to be
769 NULL, so that it is correct for a regular symbol. */
770
771 h->verinfo.vertree = NULL;
772
773 /* In this special case, if H is the target of an indirection,
774 we want the caller to frob with H rather than with the
775 indirect symbol. That will permit the caller to redefine the
776 target of the indirection, rather than the indirect symbol
777 itself. FIXME: This will break the -y option if we store a
778 symbol with a different name. */
779 *sym_hash = h;
780 }
781
782 /* Handle the special case of a new common symbol merging with an
783 old symbol that looks like it might be a common symbol defined in
784 a shared object. Note that we have already handled the case in
785 which a new common symbol should simply override the definition
786 in the shared library. */
787
788 if (! newdyn
789 && bfd_is_com_section (sec)
790 && olddyncommon)
791 {
792 /* It would be best if we could set the hash table entry to a
793 common symbol, but we don't know what to use for the section
794 or the alignment. */
795 if (! ((*info->callbacks->multiple_common)
796 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
797 h->size, abfd, bfd_link_hash_common, sym->st_size)))
798 return false;
799
800 /* If the predumed common symbol in the dynamic object is
801 larger, pretend that the new symbol has its size. */
802
803 if (h->size > *pvalue)
804 *pvalue = h->size;
805
806 /* FIXME: We no longer know the alignment required by the symbol
807 in the dynamic object, so we just wind up using the one from
808 the regular object. */
809
810 olddef = false;
811 olddyncommon = false;
812
813 h->root.type = bfd_link_hash_undefined;
814 h->root.u.undef.abfd = h->root.u.def.section->owner;
815
816 *size_change_ok = true;
817 *type_change_ok = true;
818
819 h->verinfo.vertree = NULL;
820 }
821
0525d26e
ILT
822 /* Handle the special case of a weak definition in a regular object
823 followed by a non-weak definition in a shared object. In this
b4536acd 824 case, we prefer the definition in the shared object. */
0525d26e 825 if (olddef
0525d26e
ILT
826 && h->root.type == bfd_link_hash_defweak
827 && newdef
828 && newdyn
829 && bind != STB_WEAK)
b4536acd
ILT
830 {
831 /* To make this work we have to frob the flags so that the rest
832 of the code does not think we are using the regular
833 definition. */
64df8d0b
ILT
834 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
835 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
836 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
837 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
838 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
839 | ELF_LINK_HASH_DEF_DYNAMIC);
b4536acd
ILT
840
841 /* If H is the target of an indirection, we want the caller to
842 use H rather than the indirect symbol. Otherwise if we are
843 defining a new indirect symbol we will wind up attaching it
844 to the entry we are overriding. */
845 *sym_hash = h;
846 }
0525d26e
ILT
847
848 /* Handle the special case of a non-weak definition in a shared
849 object followed by a weak definition in a regular object. In
850 this case we prefer to definition in the shared object. To make
851 this work we have to tell the caller to not treat the new symbol
852 as a definition. */
853 if (olddef
854 && olddyn
855 && h->root.type != bfd_link_hash_defweak
856 && newdef
857 && ! newdyn
858 && bind == STB_WEAK)
859 *override = true;
860
252b5132
RH
861 return true;
862}
863
864/* Add symbols from an ELF object file to the linker hash table. */
865
866static boolean
867elf_link_add_object_symbols (abfd, info)
868 bfd *abfd;
869 struct bfd_link_info *info;
870{
871 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
872 const Elf_Internal_Sym *,
873 const char **, flagword *,
874 asection **, bfd_vma *));
875 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
876 asection *, const Elf_Internal_Rela *));
877 boolean collect;
878 Elf_Internal_Shdr *hdr;
879 size_t symcount;
880 size_t extsymcount;
881 size_t extsymoff;
882 Elf_External_Sym *buf = NULL;
883 struct elf_link_hash_entry **sym_hash;
884 boolean dynamic;
885 bfd_byte *dynver = NULL;
886 Elf_External_Versym *extversym = NULL;
887 Elf_External_Versym *ever;
888 Elf_External_Dyn *dynbuf = NULL;
889 struct elf_link_hash_entry *weaks;
890 Elf_External_Sym *esym;
891 Elf_External_Sym *esymend;
c61b8717 892 struct elf_backend_data *bed;
74816898 893 boolean dt_needed;
252b5132 894
c61b8717
RH
895 bed = get_elf_backend_data (abfd);
896 add_symbol_hook = bed->elf_add_symbol_hook;
897 collect = bed->collect;
252b5132
RH
898
899 if ((abfd->flags & DYNAMIC) == 0)
900 dynamic = false;
901 else
902 {
903 dynamic = true;
904
905 /* You can't use -r against a dynamic object. Also, there's no
906 hope of using a dynamic object which does not exactly match
907 the format of the output file. */
908 if (info->relocateable || info->hash->creator != abfd->xvec)
909 {
910 bfd_set_error (bfd_error_invalid_operation);
911 goto error_return;
912 }
913 }
914
915 /* As a GNU extension, any input sections which are named
916 .gnu.warning.SYMBOL are treated as warning symbols for the given
917 symbol. This differs from .gnu.warning sections, which generate
918 warnings when they are included in an output file. */
919 if (! info->shared)
920 {
921 asection *s;
922
923 for (s = abfd->sections; s != NULL; s = s->next)
924 {
925 const char *name;
926
927 name = bfd_get_section_name (abfd, s);
928 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
929 {
930 char *msg;
931 bfd_size_type sz;
932
933 name += sizeof ".gnu.warning." - 1;
934
935 /* If this is a shared object, then look up the symbol
936 in the hash table. If it is there, and it is already
937 been defined, then we will not be using the entry
938 from this shared object, so we don't need to warn.
939 FIXME: If we see the definition in a regular object
940 later on, we will warn, but we shouldn't. The only
941 fix is to keep track of what warnings we are supposed
942 to emit, and then handle them all at the end of the
943 link. */
944 if (dynamic && abfd->xvec == info->hash->creator)
945 {
946 struct elf_link_hash_entry *h;
947
948 h = elf_link_hash_lookup (elf_hash_table (info), name,
949 false, false, true);
950
951 /* FIXME: What about bfd_link_hash_common? */
952 if (h != NULL
953 && (h->root.type == bfd_link_hash_defined
954 || h->root.type == bfd_link_hash_defweak))
955 {
956 /* We don't want to issue this warning. Clobber
957 the section size so that the warning does not
958 get copied into the output file. */
959 s->_raw_size = 0;
960 continue;
961 }
962 }
963
964 sz = bfd_section_size (abfd, s);
965 msg = (char *) bfd_alloc (abfd, sz + 1);
966 if (msg == NULL)
967 goto error_return;
968
969 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
970 goto error_return;
971
972 msg[sz] = '\0';
973
974 if (! (_bfd_generic_link_add_one_symbol
975 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
976 false, collect, (struct bfd_link_hash_entry **) NULL)))
977 goto error_return;
978
979 if (! info->relocateable)
980 {
981 /* Clobber the section size so that the warning does
982 not get copied into the output file. */
983 s->_raw_size = 0;
984 }
985 }
986 }
987 }
988
989 /* If this is a dynamic object, we always link against the .dynsym
990 symbol table, not the .symtab symbol table. The dynamic linker
991 will only see the .dynsym symbol table, so there is no reason to
992 look at .symtab for a dynamic object. */
993
994 if (! dynamic || elf_dynsymtab (abfd) == 0)
995 hdr = &elf_tdata (abfd)->symtab_hdr;
996 else
997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
998
999 if (dynamic)
1000 {
1001 /* Read in any version definitions. */
1002
1003 if (! _bfd_elf_slurp_version_tables (abfd))
1004 goto error_return;
1005
1006 /* Read in the symbol versions, but don't bother to convert them
1007 to internal format. */
1008 if (elf_dynversym (abfd) != 0)
1009 {
1010 Elf_Internal_Shdr *versymhdr;
1011
1012 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1013 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1014 if (extversym == NULL)
1015 goto error_return;
1016 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1017 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1018 != versymhdr->sh_size))
1019 goto error_return;
1020 }
1021 }
1022
1023 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1024
1025 /* The sh_info field of the symtab header tells us where the
1026 external symbols start. We don't care about the local symbols at
1027 this point. */
1028 if (elf_bad_symtab (abfd))
1029 {
1030 extsymcount = symcount;
1031 extsymoff = 0;
1032 }
1033 else
1034 {
1035 extsymcount = symcount - hdr->sh_info;
1036 extsymoff = hdr->sh_info;
1037 }
1038
1039 buf = ((Elf_External_Sym *)
1040 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1041 if (buf == NULL && extsymcount != 0)
1042 goto error_return;
1043
1044 /* We store a pointer to the hash table entry for each external
1045 symbol. */
1046 sym_hash = ((struct elf_link_hash_entry **)
1047 bfd_alloc (abfd,
1048 extsymcount * sizeof (struct elf_link_hash_entry *)));
1049 if (sym_hash == NULL)
1050 goto error_return;
1051 elf_sym_hashes (abfd) = sym_hash;
1052
74816898
L
1053 dt_needed = false;
1054
252b5132
RH
1055 if (! dynamic)
1056 {
1057 /* If we are creating a shared library, create all the dynamic
1058 sections immediately. We need to attach them to something,
1059 so we attach them to this BFD, provided it is the right
1060 format. FIXME: If there are no input BFD's of the same
1061 format as the output, we can't make a shared library. */
1062 if (info->shared
1063 && ! elf_hash_table (info)->dynamic_sections_created
1064 && abfd->xvec == info->hash->creator)
1065 {
1066 if (! elf_link_create_dynamic_sections (abfd, info))
1067 goto error_return;
1068 }
1069 }
1070 else
1071 {
1072 asection *s;
1073 boolean add_needed;
1074 const char *name;
1075 bfd_size_type oldsize;
1076 bfd_size_type strindex;
1077
1078 /* Find the name to use in a DT_NEEDED entry that refers to this
1079 object. If the object has a DT_SONAME entry, we use it.
1080 Otherwise, if the generic linker stuck something in
1081 elf_dt_name, we use that. Otherwise, we just use the file
1082 name. If the generic linker put a null string into
1083 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1084 there is a DT_SONAME entry. */
1085 add_needed = true;
1086 name = bfd_get_filename (abfd);
1087 if (elf_dt_name (abfd) != NULL)
1088 {
1089 name = elf_dt_name (abfd);
1090 if (*name == '\0')
74816898
L
1091 {
1092 if (elf_dt_soname (abfd) != NULL)
1093 dt_needed = true;
1094
1095 add_needed = false;
1096 }
252b5132
RH
1097 }
1098 s = bfd_get_section_by_name (abfd, ".dynamic");
1099 if (s != NULL)
1100 {
1101 Elf_External_Dyn *extdyn;
1102 Elf_External_Dyn *extdynend;
1103 int elfsec;
1104 unsigned long link;
1105
1106 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1107 if (dynbuf == NULL)
1108 goto error_return;
1109
1110 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1111 (file_ptr) 0, s->_raw_size))
1112 goto error_return;
1113
1114 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1115 if (elfsec == -1)
1116 goto error_return;
1117 link = elf_elfsections (abfd)[elfsec]->sh_link;
1118
20e29382
JL
1119 {
1120 /* The shared libraries distributed with hpux11 have a bogus
1121 sh_link field for the ".dynamic" section. This code detects
1122 when LINK refers to a section that is not a string table and
1123 tries to find the string table for the ".dynsym" section
1124 instead. */
1125 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1126 if (hdr->sh_type != SHT_STRTAB)
1127 {
1128 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1129 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1133 }
1134 }
1135
252b5132
RH
1136 extdyn = dynbuf;
1137 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1138 for (; extdyn < extdynend; extdyn++)
1139 {
1140 Elf_Internal_Dyn dyn;
1141
1142 elf_swap_dyn_in (abfd, extdyn, &dyn);
1143 if (dyn.d_tag == DT_SONAME)
1144 {
1145 name = bfd_elf_string_from_elf_section (abfd, link,
1146 dyn.d_un.d_val);
1147 if (name == NULL)
1148 goto error_return;
1149 }
1150 if (dyn.d_tag == DT_NEEDED)
1151 {
1152 struct bfd_link_needed_list *n, **pn;
1153 char *fnm, *anm;
1154
1155 n = ((struct bfd_link_needed_list *)
1156 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1157 fnm = bfd_elf_string_from_elf_section (abfd, link,
1158 dyn.d_un.d_val);
1159 if (n == NULL || fnm == NULL)
1160 goto error_return;
1161 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1162 if (anm == NULL)
1163 goto error_return;
1164 strcpy (anm, fnm);
1165 n->name = anm;
1166 n->by = abfd;
1167 n->next = NULL;
1168 for (pn = &elf_hash_table (info)->needed;
1169 *pn != NULL;
1170 pn = &(*pn)->next)
1171 ;
1172 *pn = n;
1173 }
1174 }
1175
1176 free (dynbuf);
1177 dynbuf = NULL;
1178 }
1179
1180 /* We do not want to include any of the sections in a dynamic
1181 object in the output file. We hack by simply clobbering the
1182 list of sections in the BFD. This could be handled more
1183 cleanly by, say, a new section flag; the existing
1184 SEC_NEVER_LOAD flag is not the one we want, because that one
1185 still implies that the section takes up space in the output
1186 file. */
1187 abfd->sections = NULL;
1188 abfd->section_count = 0;
1189
1190 /* If this is the first dynamic object found in the link, create
1191 the special sections required for dynamic linking. */
1192 if (! elf_hash_table (info)->dynamic_sections_created)
1193 {
1194 if (! elf_link_create_dynamic_sections (abfd, info))
1195 goto error_return;
1196 }
1197
1198 if (add_needed)
1199 {
1200 /* Add a DT_NEEDED entry for this dynamic object. */
1201 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1202 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1203 true, false);
1204 if (strindex == (bfd_size_type) -1)
1205 goto error_return;
1206
1207 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1208 {
1209 asection *sdyn;
1210 Elf_External_Dyn *dyncon, *dynconend;
1211
1212 /* The hash table size did not change, which means that
1213 the dynamic object name was already entered. If we
1214 have already included this dynamic object in the
1215 link, just ignore it. There is no reason to include
1216 a particular dynamic object more than once. */
1217 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1218 ".dynamic");
1219 BFD_ASSERT (sdyn != NULL);
1220
1221 dyncon = (Elf_External_Dyn *) sdyn->contents;
1222 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1223 sdyn->_raw_size);
1224 for (; dyncon < dynconend; dyncon++)
1225 {
1226 Elf_Internal_Dyn dyn;
1227
1228 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1229 &dyn);
1230 if (dyn.d_tag == DT_NEEDED
1231 && dyn.d_un.d_val == strindex)
1232 {
1233 if (buf != NULL)
1234 free (buf);
1235 if (extversym != NULL)
1236 free (extversym);
1237 return true;
1238 }
1239 }
1240 }
1241
1242 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1243 goto error_return;
1244 }
1245
1246 /* Save the SONAME, if there is one, because sometimes the
1247 linker emulation code will need to know it. */
1248 if (*name == '\0')
1249 name = bfd_get_filename (abfd);
1250 elf_dt_name (abfd) = name;
1251 }
1252
1253 if (bfd_seek (abfd,
1254 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1255 SEEK_SET) != 0
1256 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1257 != extsymcount * sizeof (Elf_External_Sym)))
1258 goto error_return;
1259
1260 weaks = NULL;
1261
1262 ever = extversym != NULL ? extversym + extsymoff : NULL;
1263 esymend = buf + extsymcount;
1264 for (esym = buf;
1265 esym < esymend;
1266 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1267 {
1268 Elf_Internal_Sym sym;
1269 int bind;
1270 bfd_vma value;
1271 asection *sec;
1272 flagword flags;
1273 const char *name;
1274 struct elf_link_hash_entry *h;
1275 boolean definition;
1276 boolean size_change_ok, type_change_ok;
1277 boolean new_weakdef;
1278 unsigned int old_alignment;
1279
1280 elf_swap_symbol_in (abfd, esym, &sym);
1281
1282 flags = BSF_NO_FLAGS;
1283 sec = NULL;
1284 value = sym.st_value;
1285 *sym_hash = NULL;
1286
1287 bind = ELF_ST_BIND (sym.st_info);
1288 if (bind == STB_LOCAL)
1289 {
1290 /* This should be impossible, since ELF requires that all
1291 global symbols follow all local symbols, and that sh_info
1292 point to the first global symbol. Unfortunatealy, Irix 5
1293 screws this up. */
1294 continue;
1295 }
1296 else if (bind == STB_GLOBAL)
1297 {
1298 if (sym.st_shndx != SHN_UNDEF
1299 && sym.st_shndx != SHN_COMMON)
1300 flags = BSF_GLOBAL;
1301 else
1302 flags = 0;
1303 }
1304 else if (bind == STB_WEAK)
1305 flags = BSF_WEAK;
1306 else
1307 {
1308 /* Leave it up to the processor backend. */
1309 }
1310
1311 if (sym.st_shndx == SHN_UNDEF)
1312 sec = bfd_und_section_ptr;
1313 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1314 {
1315 sec = section_from_elf_index (abfd, sym.st_shndx);
1316 if (sec == NULL)
1317 sec = bfd_abs_section_ptr;
1318 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1319 value -= sec->vma;
1320 }
1321 else if (sym.st_shndx == SHN_ABS)
1322 sec = bfd_abs_section_ptr;
1323 else if (sym.st_shndx == SHN_COMMON)
1324 {
1325 sec = bfd_com_section_ptr;
1326 /* What ELF calls the size we call the value. What ELF
1327 calls the value we call the alignment. */
1328 value = sym.st_size;
1329 }
1330 else
1331 {
1332 /* Leave it up to the processor backend. */
1333 }
1334
1335 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1336 if (name == (const char *) NULL)
1337 goto error_return;
1338
1339 if (add_symbol_hook)
1340 {
1341 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1342 &value))
1343 goto error_return;
1344
1345 /* The hook function sets the name to NULL if this symbol
1346 should be skipped for some reason. */
1347 if (name == (const char *) NULL)
1348 continue;
1349 }
1350
1351 /* Sanity check that all possibilities were handled. */
1352 if (sec == (asection *) NULL)
1353 {
1354 bfd_set_error (bfd_error_bad_value);
1355 goto error_return;
1356 }
1357
1358 if (bfd_is_und_section (sec)
1359 || bfd_is_com_section (sec))
1360 definition = false;
1361 else
1362 definition = true;
1363
1364 size_change_ok = false;
1365 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1366 old_alignment = 0;
1367 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1368 {
1369 Elf_Internal_Versym iver;
1370 unsigned int vernum = 0;
1371 boolean override;
1372
1373 if (ever != NULL)
1374 {
1375 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1376 vernum = iver.vs_vers & VERSYM_VERSION;
1377
1378 /* If this is a hidden symbol, or if it is not version
1379 1, we append the version name to the symbol name.
1380 However, we do not modify a non-hidden absolute
1381 symbol, because it might be the version symbol
1382 itself. FIXME: What if it isn't? */
1383 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1384 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1385 {
1386 const char *verstr;
1387 int namelen, newlen;
1388 char *newname, *p;
1389
1390 if (sym.st_shndx != SHN_UNDEF)
1391 {
1392 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1393 {
1394 (*_bfd_error_handler)
1395 (_("%s: %s: invalid version %u (max %d)"),
1396 bfd_get_filename (abfd), name, vernum,
1397 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1398 bfd_set_error (bfd_error_bad_value);
1399 goto error_return;
1400 }
1401 else if (vernum > 1)
1402 verstr =
1403 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1404 else
1405 verstr = "";
1406 }
1407 else
1408 {
1409 /* We cannot simply test for the number of
1410 entries in the VERNEED section since the
1411 numbers for the needed versions do not start
1412 at 0. */
1413 Elf_Internal_Verneed *t;
1414
1415 verstr = NULL;
1416 for (t = elf_tdata (abfd)->verref;
1417 t != NULL;
1418 t = t->vn_nextref)
1419 {
1420 Elf_Internal_Vernaux *a;
1421
1422 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1423 {
1424 if (a->vna_other == vernum)
1425 {
1426 verstr = a->vna_nodename;
1427 break;
1428 }
1429 }
1430 if (a != NULL)
1431 break;
1432 }
1433 if (verstr == NULL)
1434 {
1435 (*_bfd_error_handler)
1436 (_("%s: %s: invalid needed version %d"),
1437 bfd_get_filename (abfd), name, vernum);
1438 bfd_set_error (bfd_error_bad_value);
1439 goto error_return;
1440 }
1441 }
1442
1443 namelen = strlen (name);
1444 newlen = namelen + strlen (verstr) + 2;
1445 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1446 ++newlen;
1447
1448 newname = (char *) bfd_alloc (abfd, newlen);
1449 if (newname == NULL)
1450 goto error_return;
1451 strcpy (newname, name);
1452 p = newname + namelen;
1453 *p++ = ELF_VER_CHR;
1287d1cc
ILT
1454 /* If this is a defined non-hidden version symbol,
1455 we add another @ to the name. This indicates the
1456 default version of the symbol. */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1458 && sym.st_shndx != SHN_UNDEF)
252b5132
RH
1459 *p++ = ELF_VER_CHR;
1460 strcpy (p, verstr);
1461
1462 name = newname;
1463 }
1464 }
1465
1466 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1467 sym_hash, &override, &type_change_ok,
1468 &size_change_ok))
1469 goto error_return;
1470
1471 if (override)
1472 definition = false;
1473
1474 h = *sym_hash;
1475 while (h->root.type == bfd_link_hash_indirect
1476 || h->root.type == bfd_link_hash_warning)
1477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1478
1479 /* Remember the old alignment if this is a common symbol, so
1480 that we don't reduce the alignment later on. We can't
1481 check later, because _bfd_generic_link_add_one_symbol
1482 will set a default for the alignment which we want to
1483 override. */
1484 if (h->root.type == bfd_link_hash_common)
1485 old_alignment = h->root.u.c.p->alignment_power;
1486
1487 if (elf_tdata (abfd)->verdef != NULL
1488 && ! override
1489 && vernum > 1
1490 && definition)
1491 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1492 }
1493
1494 if (! (_bfd_generic_link_add_one_symbol
1495 (info, abfd, name, flags, sec, value, (const char *) NULL,
1496 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1497 goto error_return;
1498
1499 h = *sym_hash;
1500 while (h->root.type == bfd_link_hash_indirect
1501 || h->root.type == bfd_link_hash_warning)
1502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1503 *sym_hash = h;
1504
1505 new_weakdef = false;
1506 if (dynamic
1507 && definition
1508 && (flags & BSF_WEAK) != 0
1509 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1510 && info->hash->creator->flavour == bfd_target_elf_flavour
1511 && h->weakdef == NULL)
1512 {
1513 /* Keep a list of all weak defined non function symbols from
1514 a dynamic object, using the weakdef field. Later in this
1515 function we will set the weakdef field to the correct
1516 value. We only put non-function symbols from dynamic
1517 objects on this list, because that happens to be the only
1518 time we need to know the normal symbol corresponding to a
1519 weak symbol, and the information is time consuming to
1520 figure out. If the weakdef field is not already NULL,
1521 then this symbol was already defined by some previous
1522 dynamic object, and we will be using that previous
1523 definition anyhow. */
1524
1525 h->weakdef = weaks;
1526 weaks = h;
1527 new_weakdef = true;
1528 }
1529
1530 /* Set the alignment of a common symbol. */
1531 if (sym.st_shndx == SHN_COMMON
1532 && h->root.type == bfd_link_hash_common)
1533 {
1534 unsigned int align;
1535
1536 align = bfd_log2 (sym.st_value);
1537 if (align > old_alignment)
1538 h->root.u.c.p->alignment_power = align;
1539 }
1540
1541 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1542 {
1543 int old_flags;
1544 boolean dynsym;
1545 int new_flag;
1546
1547 /* Remember the symbol size and type. */
1548 if (sym.st_size != 0
1549 && (definition || h->size == 0))
1550 {
1551 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1552 (*_bfd_error_handler)
1553 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1554 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1555 bfd_get_filename (abfd));
1556
1557 h->size = sym.st_size;
1558 }
1559
1560 /* If this is a common symbol, then we always want H->SIZE
1561 to be the size of the common symbol. The code just above
1562 won't fix the size if a common symbol becomes larger. We
1563 don't warn about a size change here, because that is
1564 covered by --warn-common. */
1565 if (h->root.type == bfd_link_hash_common)
1566 h->size = h->root.u.c.size;
1567
1568 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1569 && (definition || h->type == STT_NOTYPE))
1570 {
1571 if (h->type != STT_NOTYPE
1572 && h->type != ELF_ST_TYPE (sym.st_info)
1573 && ! type_change_ok)
1574 (*_bfd_error_handler)
1575 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1576 name, h->type, ELF_ST_TYPE (sym.st_info),
1577 bfd_get_filename (abfd));
1578
1579 h->type = ELF_ST_TYPE (sym.st_info);
1580 }
1581
7a13edea
NC
1582 /* If st_other has a processor-specific meaning, specific code
1583 might be needed here. */
1584 if (sym.st_other != 0)
1585 {
1586 /* Combine visibilities, using the most constraining one. */
1587 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1588 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1589
1590 if (symvis && (hvis > symvis || hvis == 0))
38048eb9 1591 h->other = sym.st_other;
7a13edea
NC
1592
1593 /* If neither has visibility, use the st_other of the
1594 definition. This is an arbitrary choice, since the
1595 other bits have no general meaning. */
1596 if (!symvis && !hvis
1597 && (definition || h->other == 0))
1598 h->other = sym.st_other;
1599 }
252b5132
RH
1600
1601 /* Set a flag in the hash table entry indicating the type of
1602 reference or definition we just found. Keep a count of
1603 the number of dynamic symbols we find. A dynamic symbol
1604 is one which is referenced or defined by both a regular
1605 object and a shared object. */
1606 old_flags = h->elf_link_hash_flags;
1607 dynsym = false;
1608 if (! dynamic)
1609 {
1610 if (! definition)
1611 {
1612 new_flag = ELF_LINK_HASH_REF_REGULAR;
1613 if (bind != STB_WEAK)
1614 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1615 }
1616 else
1617 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1618 if (info->shared
1619 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1620 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1621 dynsym = true;
1622 }
1623 else
1624 {
1625 if (! definition)
1626 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1627 else
1628 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1629 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1630 | ELF_LINK_HASH_REF_REGULAR)) != 0
1631 || (h->weakdef != NULL
1632 && ! new_weakdef
1633 && h->weakdef->dynindx != -1))
1634 dynsym = true;
1635 }
1636
1637 h->elf_link_hash_flags |= new_flag;
1638
1639 /* If this symbol has a version, and it is the default
1640 version, we create an indirect symbol from the default
1641 name to the fully decorated name. This will cause
1642 external references which do not specify a version to be
1643 bound to this version of the symbol. */
1644 if (definition)
1645 {
1646 char *p;
1647
1648 p = strchr (name, ELF_VER_CHR);
1649 if (p != NULL && p[1] == ELF_VER_CHR)
1650 {
1651 char *shortname;
1652 struct elf_link_hash_entry *hi;
1653 boolean override;
1654
1655 shortname = bfd_hash_allocate (&info->hash->table,
1656 p - name + 1);
1657 if (shortname == NULL)
1658 goto error_return;
1659 strncpy (shortname, name, p - name);
1660 shortname[p - name] = '\0';
1661
1662 /* We are going to create a new symbol. Merge it
1663 with any existing symbol with this name. For the
1664 purposes of the merge, act as though we were
1665 defining the symbol we just defined, although we
1666 actually going to define an indirect symbol. */
1667 type_change_ok = false;
1668 size_change_ok = false;
1669 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1670 &value, &hi, &override,
1671 &type_change_ok, &size_change_ok))
1672 goto error_return;
1673
1674 if (! override)
1675 {
1676 if (! (_bfd_generic_link_add_one_symbol
1677 (info, abfd, shortname, BSF_INDIRECT,
1678 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1679 collect, (struct bfd_link_hash_entry **) &hi)))
1680 goto error_return;
1681 }
1682 else
1683 {
1684 /* In this case the symbol named SHORTNAME is
1685 overriding the indirect symbol we want to
1686 add. We were planning on making SHORTNAME an
1687 indirect symbol referring to NAME. SHORTNAME
1688 is the name without a version. NAME is the
1689 fully versioned name, and it is the default
1690 version.
1691
1692 Overriding means that we already saw a
1693 definition for the symbol SHORTNAME in a
1694 regular object, and it is overriding the
1695 symbol defined in the dynamic object.
1696
1697 When this happens, we actually want to change
1698 NAME, the symbol we just added, to refer to
1699 SHORTNAME. This will cause references to
1700 NAME in the shared object to become
1701 references to SHORTNAME in the regular
1702 object. This is what we expect when we
1703 override a function in a shared object: that
1704 the references in the shared object will be
1705 mapped to the definition in the regular
1706 object. */
1707
1708 while (hi->root.type == bfd_link_hash_indirect
1709 || hi->root.type == bfd_link_hash_warning)
1710 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711
1712 h->root.type = bfd_link_hash_indirect;
1713 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1714 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1715 {
1716 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1717 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1718 if (hi->elf_link_hash_flags
1719 & (ELF_LINK_HASH_REF_REGULAR
1720 | ELF_LINK_HASH_DEF_REGULAR))
1721 {
1722 if (! _bfd_elf_link_record_dynamic_symbol (info,
1723 hi))
1724 goto error_return;
1725 }
1726 }
1727
1728 /* Now set HI to H, so that the following code
1729 will set the other fields correctly. */
1730 hi = h;
1731 }
1732
1733 /* If there is a duplicate definition somewhere,
1734 then HI may not point to an indirect symbol. We
1735 will have reported an error to the user in that
1736 case. */
1737
1738 if (hi->root.type == bfd_link_hash_indirect)
1739 {
1740 struct elf_link_hash_entry *ht;
1741
1742 /* If the symbol became indirect, then we assume
1743 that we have not seen a definition before. */
1744 BFD_ASSERT ((hi->elf_link_hash_flags
1745 & (ELF_LINK_HASH_DEF_DYNAMIC
1746 | ELF_LINK_HASH_DEF_REGULAR))
1747 == 0);
1748
1749 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
c61b8717 1750 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
252b5132
RH
1751
1752 /* See if the new flags lead us to realize that
1753 the symbol must be dynamic. */
1754 if (! dynsym)
1755 {
1756 if (! dynamic)
1757 {
1758 if (info->shared
1759 || ((hi->elf_link_hash_flags
1760 & ELF_LINK_HASH_REF_DYNAMIC)
1761 != 0))
1762 dynsym = true;
1763 }
1764 else
1765 {
1766 if ((hi->elf_link_hash_flags
1767 & ELF_LINK_HASH_REF_REGULAR) != 0)
1768 dynsym = true;
1769 }
1770 }
1771 }
1772
1773 /* We also need to define an indirection from the
1774 nondefault version of the symbol. */
1775
1776 shortname = bfd_hash_allocate (&info->hash->table,
1777 strlen (name));
1778 if (shortname == NULL)
1779 goto error_return;
1780 strncpy (shortname, name, p - name);
1781 strcpy (shortname + (p - name), p + 1);
1782
1783 /* Once again, merge with any existing symbol. */
1784 type_change_ok = false;
1785 size_change_ok = false;
1786 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1787 &value, &hi, &override,
1788 &type_change_ok, &size_change_ok))
1789 goto error_return;
1790
1791 if (override)
1792 {
1793 /* Here SHORTNAME is a versioned name, so we
1794 don't expect to see the type of override we
1795 do in the case above. */
1796 (*_bfd_error_handler)
1797 (_("%s: warning: unexpected redefinition of `%s'"),
1798 bfd_get_filename (abfd), shortname);
1799 }
1800 else
1801 {
1802 if (! (_bfd_generic_link_add_one_symbol
1803 (info, abfd, shortname, BSF_INDIRECT,
1804 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1805 collect, (struct bfd_link_hash_entry **) &hi)))
1806 goto error_return;
1807
1808 /* If there is a duplicate definition somewhere,
1809 then HI may not point to an indirect symbol.
1810 We will have reported an error to the user in
1811 that case. */
1812
1813 if (hi->root.type == bfd_link_hash_indirect)
1814 {
1815 /* If the symbol became indirect, then we
1816 assume that we have not seen a definition
1817 before. */
1818 BFD_ASSERT ((hi->elf_link_hash_flags
1819 & (ELF_LINK_HASH_DEF_DYNAMIC
1820 | ELF_LINK_HASH_DEF_REGULAR))
1821 == 0);
1822
c61b8717 1823 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
252b5132
RH
1824
1825 /* See if the new flags lead us to realize
1826 that the symbol must be dynamic. */
1827 if (! dynsym)
1828 {
1829 if (! dynamic)
1830 {
1831 if (info->shared
1832 || ((hi->elf_link_hash_flags
1833 & ELF_LINK_HASH_REF_DYNAMIC)
1834 != 0))
1835 dynsym = true;
1836 }
1837 else
1838 {
1839 if ((hi->elf_link_hash_flags
1840 & ELF_LINK_HASH_REF_REGULAR) != 0)
1841 dynsym = true;
1842 }
1843 }
1844 }
1845 }
1846 }
1847 }
1848
1849 if (dynsym && h->dynindx == -1)
1850 {
1851 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1852 goto error_return;
1853 if (h->weakdef != NULL
1854 && ! new_weakdef
1855 && h->weakdef->dynindx == -1)
1856 {
1857 if (! _bfd_elf_link_record_dynamic_symbol (info,
1858 h->weakdef))
1859 goto error_return;
1860 }
1861 }
38048eb9 1862 else if (dynsym && h->dynindx != -1)
0444bdd4
L
1863 /* If the symbol already has a dynamic index, but
1864 visibility says it should not be visible, turn it into
1865 a local symbol. */
1866 switch (ELF_ST_VISIBILITY (h->other))
1867 {
1868 case STV_INTERNAL:
1869 case STV_HIDDEN:
1870 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 1871 (*bed->elf_backend_hide_symbol) (info, h);
0444bdd4
L
1872 break;
1873 }
74816898
L
1874
1875 if (dt_needed && definition
1876 && (h->elf_link_hash_flags
1877 & ELF_LINK_HASH_REF_REGULAR) != 0)
1878 {
1879 bfd_size_type oldsize;
1880 bfd_size_type strindex;
1881
1882 /* The symbol from a DT_NEEDED object is referenced from
1883 the regular object to create a dynamic executable. We
1884 have to make sure there is a DT_NEEDED entry for it. */
1885
1886 dt_needed = false;
1887 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1888 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1889 elf_dt_soname (abfd),
1890 true, false);
1891 if (strindex == (bfd_size_type) -1)
1892 goto error_return;
1893
1894 if (oldsize
1895 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1896 {
1897 asection *sdyn;
1898 Elf_External_Dyn *dyncon, *dynconend;
1899
1900 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1901 ".dynamic");
1902 BFD_ASSERT (sdyn != NULL);
1903
1904 dyncon = (Elf_External_Dyn *) sdyn->contents;
1905 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1906 sdyn->_raw_size);
1907 for (; dyncon < dynconend; dyncon++)
1908 {
1909 Elf_Internal_Dyn dyn;
1910
1911 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1912 dyncon, &dyn);
1913 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1914 dyn.d_un.d_val != strindex);
1915 }
1916 }
1917
1918 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1919 goto error_return;
1920 }
252b5132
RH
1921 }
1922 }
1923
1924 /* Now set the weakdefs field correctly for all the weak defined
1925 symbols we found. The only way to do this is to search all the
1926 symbols. Since we only need the information for non functions in
1927 dynamic objects, that's the only time we actually put anything on
1928 the list WEAKS. We need this information so that if a regular
1929 object refers to a symbol defined weakly in a dynamic object, the
1930 real symbol in the dynamic object is also put in the dynamic
1931 symbols; we also must arrange for both symbols to point to the
1932 same memory location. We could handle the general case of symbol
1933 aliasing, but a general symbol alias can only be generated in
1934 assembler code, handling it correctly would be very time
1935 consuming, and other ELF linkers don't handle general aliasing
1936 either. */
1937 while (weaks != NULL)
1938 {
1939 struct elf_link_hash_entry *hlook;
1940 asection *slook;
1941 bfd_vma vlook;
1942 struct elf_link_hash_entry **hpp;
1943 struct elf_link_hash_entry **hppend;
1944
1945 hlook = weaks;
1946 weaks = hlook->weakdef;
1947 hlook->weakdef = NULL;
1948
1949 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1950 || hlook->root.type == bfd_link_hash_defweak
1951 || hlook->root.type == bfd_link_hash_common
1952 || hlook->root.type == bfd_link_hash_indirect);
1953 slook = hlook->root.u.def.section;
1954 vlook = hlook->root.u.def.value;
1955
1956 hpp = elf_sym_hashes (abfd);
1957 hppend = hpp + extsymcount;
1958 for (; hpp < hppend; hpp++)
1959 {
1960 struct elf_link_hash_entry *h;
1961
1962 h = *hpp;
1963 if (h != NULL && h != hlook
1964 && h->root.type == bfd_link_hash_defined
1965 && h->root.u.def.section == slook
1966 && h->root.u.def.value == vlook)
1967 {
1968 hlook->weakdef = h;
1969
1970 /* If the weak definition is in the list of dynamic
1971 symbols, make sure the real definition is put there
1972 as well. */
1973 if (hlook->dynindx != -1
1974 && h->dynindx == -1)
1975 {
1976 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1977 goto error_return;
1978 }
1979
1980 /* If the real definition is in the list of dynamic
1981 symbols, make sure the weak definition is put there
1982 as well. If we don't do this, then the dynamic
1983 loader might not merge the entries for the real
1984 definition and the weak definition. */
1985 if (h->dynindx != -1
1986 && hlook->dynindx == -1)
1987 {
1988 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1989 goto error_return;
1990 }
1991
1992 break;
1993 }
1994 }
1995 }
1996
1997 if (buf != NULL)
1998 {
1999 free (buf);
2000 buf = NULL;
2001 }
2002
2003 if (extversym != NULL)
2004 {
2005 free (extversym);
2006 extversym = NULL;
2007 }
2008
2009 /* If this object is the same format as the output object, and it is
2010 not a shared library, then let the backend look through the
2011 relocs.
2012
2013 This is required to build global offset table entries and to
2014 arrange for dynamic relocs. It is not required for the
2015 particular common case of linking non PIC code, even when linking
2016 against shared libraries, but unfortunately there is no way of
2017 knowing whether an object file has been compiled PIC or not.
2018 Looking through the relocs is not particularly time consuming.
2019 The problem is that we must either (1) keep the relocs in memory,
2020 which causes the linker to require additional runtime memory or
2021 (2) read the relocs twice from the input file, which wastes time.
2022 This would be a good case for using mmap.
2023
2024 I have no idea how to handle linking PIC code into a file of a
2025 different format. It probably can't be done. */
2026 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2027 if (! dynamic
2028 && abfd->xvec == info->hash->creator
2029 && check_relocs != NULL)
2030 {
2031 asection *o;
2032
2033 for (o = abfd->sections; o != NULL; o = o->next)
2034 {
2035 Elf_Internal_Rela *internal_relocs;
2036 boolean ok;
2037
2038 if ((o->flags & SEC_RELOC) == 0
2039 || o->reloc_count == 0
2040 || ((info->strip == strip_all || info->strip == strip_debugger)
2041 && (o->flags & SEC_DEBUGGING) != 0)
2042 || bfd_is_abs_section (o->output_section))
2043 continue;
2044
2045 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2046 (abfd, o, (PTR) NULL,
2047 (Elf_Internal_Rela *) NULL,
2048 info->keep_memory));
2049 if (internal_relocs == NULL)
2050 goto error_return;
2051
2052 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2053
2054 if (! info->keep_memory)
2055 free (internal_relocs);
2056
2057 if (! ok)
2058 goto error_return;
2059 }
2060 }
2061
2062 /* If this is a non-traditional, non-relocateable link, try to
2063 optimize the handling of the .stab/.stabstr sections. */
2064 if (! dynamic
2065 && ! info->relocateable
2066 && ! info->traditional_format
2067 && info->hash->creator->flavour == bfd_target_elf_flavour
2068 && (info->strip != strip_all && info->strip != strip_debugger))
2069 {
2070 asection *stab, *stabstr;
2071
2072 stab = bfd_get_section_by_name (abfd, ".stab");
2073 if (stab != NULL)
2074 {
2075 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2076
2077 if (stabstr != NULL)
2078 {
2079 struct bfd_elf_section_data *secdata;
2080
2081 secdata = elf_section_data (stab);
2082 if (! _bfd_link_section_stabs (abfd,
2083 &elf_hash_table (info)->stab_info,
2084 stab, stabstr,
2085 &secdata->stab_info))
2086 goto error_return;
2087 }
2088 }
2089 }
2090
2091 return true;
2092
2093 error_return:
2094 if (buf != NULL)
2095 free (buf);
2096 if (dynbuf != NULL)
2097 free (dynbuf);
2098 if (dynver != NULL)
2099 free (dynver);
2100 if (extversym != NULL)
2101 free (extversym);
2102 return false;
2103}
2104
2105/* Create some sections which will be filled in with dynamic linking
2106 information. ABFD is an input file which requires dynamic sections
2107 to be created. The dynamic sections take up virtual memory space
2108 when the final executable is run, so we need to create them before
2109 addresses are assigned to the output sections. We work out the
2110 actual contents and size of these sections later. */
2111
2112boolean
2113elf_link_create_dynamic_sections (abfd, info)
2114 bfd *abfd;
2115 struct bfd_link_info *info;
2116{
2117 flagword flags;
2118 register asection *s;
2119 struct elf_link_hash_entry *h;
2120 struct elf_backend_data *bed;
2121
2122 if (elf_hash_table (info)->dynamic_sections_created)
2123 return true;
2124
2125 /* Make sure that all dynamic sections use the same input BFD. */
2126 if (elf_hash_table (info)->dynobj == NULL)
2127 elf_hash_table (info)->dynobj = abfd;
2128 else
2129 abfd = elf_hash_table (info)->dynobj;
2130
2131 /* Note that we set the SEC_IN_MEMORY flag for all of these
2132 sections. */
2133 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2134 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2135
2136 /* A dynamically linked executable has a .interp section, but a
2137 shared library does not. */
2138 if (! info->shared)
2139 {
2140 s = bfd_make_section (abfd, ".interp");
2141 if (s == NULL
2142 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2143 return false;
2144 }
2145
2146 /* Create sections to hold version informations. These are removed
2147 if they are not needed. */
2148 s = bfd_make_section (abfd, ".gnu.version_d");
2149 if (s == NULL
2150 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2151 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2152 return false;
2153
2154 s = bfd_make_section (abfd, ".gnu.version");
2155 if (s == NULL
2156 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2157 || ! bfd_set_section_alignment (abfd, s, 1))
2158 return false;
2159
2160 s = bfd_make_section (abfd, ".gnu.version_r");
2161 if (s == NULL
2162 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2163 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2164 return false;
2165
2166 s = bfd_make_section (abfd, ".dynsym");
2167 if (s == NULL
2168 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2169 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2170 return false;
2171
2172 s = bfd_make_section (abfd, ".dynstr");
2173 if (s == NULL
2174 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2175 return false;
2176
2177 /* Create a strtab to hold the dynamic symbol names. */
2178 if (elf_hash_table (info)->dynstr == NULL)
2179 {
2180 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2181 if (elf_hash_table (info)->dynstr == NULL)
2182 return false;
2183 }
2184
2185 s = bfd_make_section (abfd, ".dynamic");
2186 if (s == NULL
2187 || ! bfd_set_section_flags (abfd, s, flags)
2188 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2189 return false;
2190
2191 /* The special symbol _DYNAMIC is always set to the start of the
2192 .dynamic section. This call occurs before we have processed the
2193 symbols for any dynamic object, so we don't have to worry about
2194 overriding a dynamic definition. We could set _DYNAMIC in a
2195 linker script, but we only want to define it if we are, in fact,
2196 creating a .dynamic section. We don't want to define it if there
2197 is no .dynamic section, since on some ELF platforms the start up
2198 code examines it to decide how to initialize the process. */
2199 h = NULL;
2200 if (! (_bfd_generic_link_add_one_symbol
2201 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2202 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2203 (struct bfd_link_hash_entry **) &h)))
2204 return false;
2205 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2206 h->type = STT_OBJECT;
2207
2208 if (info->shared
2209 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2210 return false;
2211
c7ac6ff8
MM
2212 bed = get_elf_backend_data (abfd);
2213
252b5132
RH
2214 s = bfd_make_section (abfd, ".hash");
2215 if (s == NULL
2216 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2217 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2218 return false;
c7ac6ff8 2219 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2220
2221 /* Let the backend create the rest of the sections. This lets the
2222 backend set the right flags. The backend will normally create
2223 the .got and .plt sections. */
252b5132
RH
2224 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2225 return false;
2226
2227 elf_hash_table (info)->dynamic_sections_created = true;
2228
2229 return true;
2230}
2231
2232/* Add an entry to the .dynamic table. */
2233
2234boolean
2235elf_add_dynamic_entry (info, tag, val)
2236 struct bfd_link_info *info;
2237 bfd_vma tag;
2238 bfd_vma val;
2239{
2240 Elf_Internal_Dyn dyn;
2241 bfd *dynobj;
2242 asection *s;
2243 size_t newsize;
2244 bfd_byte *newcontents;
2245
2246 dynobj = elf_hash_table (info)->dynobj;
2247
2248 s = bfd_get_section_by_name (dynobj, ".dynamic");
2249 BFD_ASSERT (s != NULL);
2250
2251 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2252 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2253 if (newcontents == NULL)
2254 return false;
2255
2256 dyn.d_tag = tag;
2257 dyn.d_un.d_val = val;
2258 elf_swap_dyn_out (dynobj, &dyn,
2259 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2260
2261 s->_raw_size = newsize;
2262 s->contents = newcontents;
2263
2264 return true;
2265}
30b30c21
RH
2266
2267/* Record a new local dynamic symbol. */
2268
2269boolean
2270elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2271 struct bfd_link_info *info;
2272 bfd *input_bfd;
2273 long input_indx;
2274{
2275 struct elf_link_local_dynamic_entry *entry;
2276 struct elf_link_hash_table *eht;
2277 struct bfd_strtab_hash *dynstr;
2278 Elf_External_Sym esym;
2279 unsigned long dynstr_index;
2280 char *name;
30b30c21
RH
2281
2282 /* See if the entry exists already. */
2283 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2284 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2285 return true;
2286
2287 entry = (struct elf_link_local_dynamic_entry *)
2288 bfd_alloc (input_bfd, sizeof (*entry));
2289 if (entry == NULL)
2290 return false;
2291
2292 /* Go find the symbol, so that we can find it's name. */
2293 if (bfd_seek (input_bfd,
2294 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2295 + input_indx * sizeof (Elf_External_Sym)),
2296 SEEK_SET) != 0
2297 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2298 != sizeof (Elf_External_Sym)))
2299 return false;
2300 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2301
2302 name = (bfd_elf_string_from_elf_section
2303 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2304 entry->isym.st_name));
2305
2306 dynstr = elf_hash_table (info)->dynstr;
2307 if (dynstr == NULL)
2308 {
2309 /* Create a strtab to hold the dynamic symbol names. */
2310 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2311 if (dynstr == NULL)
2312 return false;
2313 }
2314
2315 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2316 if (dynstr_index == (unsigned long) -1)
2317 return false;
2318 entry->isym.st_name = dynstr_index;
2319
2320 eht = elf_hash_table (info);
2321
2322 entry->next = eht->dynlocal;
2323 eht->dynlocal = entry;
2324 entry->input_bfd = input_bfd;
2325 entry->input_indx = input_indx;
2326 eht->dynsymcount++;
2327
587ff49e
RH
2328 /* Whatever binding the symbol had before, it's now local. */
2329 entry->isym.st_info
2330 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2331
30b30c21
RH
2332 /* The dynindx will be set at the end of size_dynamic_sections. */
2333
2334 return true;
2335}
252b5132
RH
2336\f
2337
6b5bd373
MM
2338/* Read and swap the relocs from the section indicated by SHDR. This
2339 may be either a REL or a RELA section. The relocations are
2340 translated into RELA relocations and stored in INTERNAL_RELOCS,
2341 which should have already been allocated to contain enough space.
2342 The EXTERNAL_RELOCS are a buffer where the external form of the
2343 relocations should be stored.
2344
2345 Returns false if something goes wrong. */
2346
2347static boolean
2348elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2349 internal_relocs)
2350 bfd *abfd;
2351 Elf_Internal_Shdr *shdr;
2352 PTR external_relocs;
2353 Elf_Internal_Rela *internal_relocs;
2354{
c7ac6ff8
MM
2355 struct elf_backend_data *bed;
2356
6b5bd373
MM
2357 /* If there aren't any relocations, that's OK. */
2358 if (!shdr)
2359 return true;
2360
2361 /* Position ourselves at the start of the section. */
2362 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2363 return false;
2364
2365 /* Read the relocations. */
2366 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2367 != shdr->sh_size)
2368 return false;
2369
c7ac6ff8
MM
2370 bed = get_elf_backend_data (abfd);
2371
6b5bd373
MM
2372 /* Convert the external relocations to the internal format. */
2373 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2374 {
2375 Elf_External_Rel *erel;
2376 Elf_External_Rel *erelend;
2377 Elf_Internal_Rela *irela;
c7ac6ff8 2378 Elf_Internal_Rel *irel;
6b5bd373
MM
2379
2380 erel = (Elf_External_Rel *) external_relocs;
2381 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2382 irela = internal_relocs;
c7ac6ff8
MM
2383 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2384 * sizeof (Elf_Internal_Rel)));
2385 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2386 {
65388f2d 2387 unsigned char i;
c7ac6ff8
MM
2388
2389 if (bed->s->swap_reloc_in)
2390 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2391 else
2392 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2393
c7ac6ff8
MM
2394 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2395 {
2396 irela[i].r_offset = irel[i].r_offset;
2397 irela[i].r_info = irel[i].r_info;
2398 irela[i].r_addend = 0;
2399 }
6b5bd373
MM
2400 }
2401 }
2402 else
2403 {
2404 Elf_External_Rela *erela;
2405 Elf_External_Rela *erelaend;
2406 Elf_Internal_Rela *irela;
2407
2408 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2409
2410 erela = (Elf_External_Rela *) external_relocs;
2411 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2412 irela = internal_relocs;
c7ac6ff8
MM
2413 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2414 {
2415 if (bed->s->swap_reloca_in)
2416 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2417 else
2418 elf_swap_reloca_in (abfd, erela, irela);
2419 }
6b5bd373
MM
2420 }
2421
2422 return true;
2423}
2424
23bc299b
MM
2425/* Read and swap the relocs for a section O. They may have been
2426 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2427 not NULL, they are used as buffers to read into. They are known to
2428 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2429 the return value is allocated using either malloc or bfd_alloc,
2430 according to the KEEP_MEMORY argument. If O has two relocation
2431 sections (both REL and RELA relocations), then the REL_HDR
2432 relocations will appear first in INTERNAL_RELOCS, followed by the
2433 REL_HDR2 relocations. */
252b5132
RH
2434
2435Elf_Internal_Rela *
2436NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2437 keep_memory)
2438 bfd *abfd;
2439 asection *o;
2440 PTR external_relocs;
2441 Elf_Internal_Rela *internal_relocs;
2442 boolean keep_memory;
2443{
2444 Elf_Internal_Shdr *rel_hdr;
2445 PTR alloc1 = NULL;
2446 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2447 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2448
2449 if (elf_section_data (o)->relocs != NULL)
2450 return elf_section_data (o)->relocs;
2451
2452 if (o->reloc_count == 0)
2453 return NULL;
2454
2455 rel_hdr = &elf_section_data (o)->rel_hdr;
2456
2457 if (internal_relocs == NULL)
2458 {
2459 size_t size;
2460
c7ac6ff8
MM
2461 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rela));
252b5132
RH
2463 if (keep_memory)
2464 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2465 else
2466 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2467 if (internal_relocs == NULL)
2468 goto error_return;
2469 }
2470
2471 if (external_relocs == NULL)
2472 {
6b5bd373
MM
2473 size_t size = (size_t) rel_hdr->sh_size;
2474
2475 if (elf_section_data (o)->rel_hdr2)
2476 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2477 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2478 if (alloc1 == NULL)
2479 goto error_return;
2480 external_relocs = alloc1;
2481 }
2482
6b5bd373
MM
2483 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2484 external_relocs,
2485 internal_relocs))
2486 goto error_return;
2487 if (!elf_link_read_relocs_from_section
2488 (abfd,
2489 elf_section_data (o)->rel_hdr2,
2f5116e2 2490 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2491 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2492 * bed->s->int_rels_per_ext_rel)))
252b5132 2493 goto error_return;
252b5132
RH
2494
2495 /* Cache the results for next time, if we can. */
2496 if (keep_memory)
2497 elf_section_data (o)->relocs = internal_relocs;
2498
2499 if (alloc1 != NULL)
2500 free (alloc1);
2501
2502 /* Don't free alloc2, since if it was allocated we are passing it
2503 back (under the name of internal_relocs). */
2504
2505 return internal_relocs;
2506
2507 error_return:
2508 if (alloc1 != NULL)
2509 free (alloc1);
2510 if (alloc2 != NULL)
2511 free (alloc2);
2512 return NULL;
2513}
2514\f
2515
2516/* Record an assignment to a symbol made by a linker script. We need
2517 this in case some dynamic object refers to this symbol. */
2518
2519/*ARGSUSED*/
2520boolean
2521NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2522 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2523 struct bfd_link_info *info;
2524 const char *name;
2525 boolean provide;
2526{
2527 struct elf_link_hash_entry *h;
2528
2529 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2530 return true;
2531
2532 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2533 if (h == NULL)
2534 return false;
2535
2536 if (h->root.type == bfd_link_hash_new)
2537 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2538
2539 /* If this symbol is being provided by the linker script, and it is
2540 currently defined by a dynamic object, but not by a regular
2541 object, then mark it as undefined so that the generic linker will
2542 force the correct value. */
2543 if (provide
2544 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2545 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2546 h->root.type = bfd_link_hash_undefined;
2547
2548 /* If this symbol is not being provided by the linker script, and it is
2549 currently defined by a dynamic object, but not by a regular object,
2550 then clear out any version information because the symbol will not be
2551 associated with the dynamic object any more. */
2552 if (!provide
2553 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2554 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2555 h->verinfo.verdef = NULL;
2556
2557 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
994819d2
NC
2558
2559 /* When possible, keep the original type of the symbol */
2560 if (h->type == STT_NOTYPE)
2561 h->type = STT_OBJECT;
252b5132
RH
2562
2563 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2564 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2565 || info->shared)
2566 && h->dynindx == -1)
2567 {
2568 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2569 return false;
2570
2571 /* If this is a weak defined symbol, and we know a corresponding
2572 real symbol from the same dynamic object, make sure the real
2573 symbol is also made into a dynamic symbol. */
2574 if (h->weakdef != NULL
2575 && h->weakdef->dynindx == -1)
2576 {
2577 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2578 return false;
2579 }
2580 }
2581
2582 return true;
2583}
2584\f
2585/* This structure is used to pass information to
2586 elf_link_assign_sym_version. */
2587
2588struct elf_assign_sym_version_info
2589{
2590 /* Output BFD. */
2591 bfd *output_bfd;
2592 /* General link information. */
2593 struct bfd_link_info *info;
2594 /* Version tree. */
2595 struct bfd_elf_version_tree *verdefs;
2596 /* Whether we are exporting all dynamic symbols. */
2597 boolean export_dynamic;
252b5132
RH
2598 /* Whether we had a failure. */
2599 boolean failed;
2600};
2601
2602/* This structure is used to pass information to
2603 elf_link_find_version_dependencies. */
2604
2605struct elf_find_verdep_info
2606{
2607 /* Output BFD. */
2608 bfd *output_bfd;
2609 /* General link information. */
2610 struct bfd_link_info *info;
2611 /* The number of dependencies. */
2612 unsigned int vers;
2613 /* Whether we had a failure. */
2614 boolean failed;
2615};
2616
2617/* Array used to determine the number of hash table buckets to use
2618 based on the number of symbols there are. If there are fewer than
2619 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2620 fewer than 37 we use 17 buckets, and so forth. We never use more
2621 than 32771 buckets. */
2622
2623static const size_t elf_buckets[] =
2624{
2625 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2626 16411, 32771, 0
2627};
2628
2629/* Compute bucket count for hashing table. We do not use a static set
2630 of possible tables sizes anymore. Instead we determine for all
2631 possible reasonable sizes of the table the outcome (i.e., the
2632 number of collisions etc) and choose the best solution. The
2633 weighting functions are not too simple to allow the table to grow
2634 without bounds. Instead one of the weighting factors is the size.
2635 Therefore the result is always a good payoff between few collisions
2636 (= short chain lengths) and table size. */
2637static size_t
2638compute_bucket_count (info)
2639 struct bfd_link_info *info;
2640{
2641 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2642 size_t best_size = 0;
252b5132
RH
2643 unsigned long int *hashcodes;
2644 unsigned long int *hashcodesp;
2645 unsigned long int i;
2646
2647 /* Compute the hash values for all exported symbols. At the same
2648 time store the values in an array so that we could use them for
2649 optimizations. */
2650 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2651 * sizeof (unsigned long int));
2652 if (hashcodes == NULL)
2653 return 0;
2654 hashcodesp = hashcodes;
2655
2656 /* Put all hash values in HASHCODES. */
2657 elf_link_hash_traverse (elf_hash_table (info),
2658 elf_collect_hash_codes, &hashcodesp);
2659
2660/* We have a problem here. The following code to optimize the table
2661 size requires an integer type with more the 32 bits. If
2662 BFD_HOST_U_64_BIT is set we know about such a type. */
2663#ifdef BFD_HOST_U_64_BIT
2664 if (info->optimize == true)
2665 {
2666 unsigned long int nsyms = hashcodesp - hashcodes;
2667 size_t minsize;
2668 size_t maxsize;
2669 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2670 unsigned long int *counts ;
2671
2672 /* Possible optimization parameters: if we have NSYMS symbols we say
2673 that the hashing table must at least have NSYMS/4 and at most
2674 2*NSYMS buckets. */
2675 minsize = nsyms / 4;
2676 if (minsize == 0)
2677 minsize = 1;
2678 best_size = maxsize = nsyms * 2;
2679
2680 /* Create array where we count the collisions in. We must use bfd_malloc
2681 since the size could be large. */
2682 counts = (unsigned long int *) bfd_malloc (maxsize
2683 * sizeof (unsigned long int));
2684 if (counts == NULL)
2685 {
2686 free (hashcodes);
2687 return 0;
2688 }
2689
2690 /* Compute the "optimal" size for the hash table. The criteria is a
2691 minimal chain length. The minor criteria is (of course) the size
2692 of the table. */
2693 for (i = minsize; i < maxsize; ++i)
2694 {
2695 /* Walk through the array of hashcodes and count the collisions. */
2696 BFD_HOST_U_64_BIT max;
2697 unsigned long int j;
2698 unsigned long int fact;
2699
2700 memset (counts, '\0', i * sizeof (unsigned long int));
2701
2702 /* Determine how often each hash bucket is used. */
2703 for (j = 0; j < nsyms; ++j)
2704 ++counts[hashcodes[j] % i];
2705
2706 /* For the weight function we need some information about the
2707 pagesize on the target. This is information need not be 100%
2708 accurate. Since this information is not available (so far) we
2709 define it here to a reasonable default value. If it is crucial
2710 to have a better value some day simply define this value. */
2711# ifndef BFD_TARGET_PAGESIZE
2712# define BFD_TARGET_PAGESIZE (4096)
2713# endif
2714
2715 /* We in any case need 2 + NSYMS entries for the size values and
2716 the chains. */
2717 max = (2 + nsyms) * (ARCH_SIZE / 8);
2718
2719# if 1
2720 /* Variant 1: optimize for short chains. We add the squares
2721 of all the chain lengths (which favous many small chain
2722 over a few long chains). */
2723 for (j = 0; j < i; ++j)
2724 max += counts[j] * counts[j];
2725
2726 /* This adds penalties for the overall size of the table. */
2727 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2728 max *= fact * fact;
2729# else
2730 /* Variant 2: Optimize a lot more for small table. Here we
2731 also add squares of the size but we also add penalties for
2732 empty slots (the +1 term). */
2733 for (j = 0; j < i; ++j)
2734 max += (1 + counts[j]) * (1 + counts[j]);
2735
2736 /* The overall size of the table is considered, but not as
2737 strong as in variant 1, where it is squared. */
2738 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2739 max *= fact;
2740# endif
2741
2742 /* Compare with current best results. */
2743 if (max < best_chlen)
2744 {
2745 best_chlen = max;
2746 best_size = i;
2747 }
2748 }
2749
2750 free (counts);
2751 }
2752 else
2753#endif /* defined (BFD_HOST_U_64_BIT) */
2754 {
2755 /* This is the fallback solution if no 64bit type is available or if we
2756 are not supposed to spend much time on optimizations. We select the
2757 bucket count using a fixed set of numbers. */
2758 for (i = 0; elf_buckets[i] != 0; i++)
2759 {
2760 best_size = elf_buckets[i];
2761 if (dynsymcount < elf_buckets[i + 1])
2762 break;
2763 }
2764 }
2765
2766 /* Free the arrays we needed. */
2767 free (hashcodes);
2768
2769 return best_size;
2770}
2771
2772/* Set up the sizes and contents of the ELF dynamic sections. This is
2773 called by the ELF linker emulation before_allocation routine. We
2774 must set the sizes of the sections before the linker sets the
2775 addresses of the various sections. */
2776
2777boolean
2778NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2779 export_dynamic, filter_shlib,
2780 auxiliary_filters, info, sinterpptr,
2781 verdefs)
2782 bfd *output_bfd;
2783 const char *soname;
2784 const char *rpath;
2785 boolean export_dynamic;
2786 const char *filter_shlib;
2787 const char * const *auxiliary_filters;
2788 struct bfd_link_info *info;
2789 asection **sinterpptr;
2790 struct bfd_elf_version_tree *verdefs;
2791{
2792 bfd_size_type soname_indx;
2793 bfd *dynobj;
2794 struct elf_backend_data *bed;
252b5132
RH
2795 struct elf_assign_sym_version_info asvinfo;
2796
2797 *sinterpptr = NULL;
2798
2799 soname_indx = (bfd_size_type) -1;
2800
2801 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2802 return true;
2803
2804 /* The backend may have to create some sections regardless of whether
2805 we're dynamic or not. */
2806 bed = get_elf_backend_data (output_bfd);
2807 if (bed->elf_backend_always_size_sections
2808 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2809 return false;
2810
2811 dynobj = elf_hash_table (info)->dynobj;
2812
2813 /* If there were no dynamic objects in the link, there is nothing to
2814 do here. */
2815 if (dynobj == NULL)
2816 return true;
2817
252b5132
RH
2818 if (elf_hash_table (info)->dynamic_sections_created)
2819 {
2820 struct elf_info_failed eif;
2821 struct elf_link_hash_entry *h;
2822 bfd_size_type strsize;
2823
2824 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2825 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2826
2827 if (soname != NULL)
2828 {
2829 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2830 soname, true, true);
2831 if (soname_indx == (bfd_size_type) -1
2832 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2833 return false;
2834 }
2835
2836 if (info->symbolic)
2837 {
2838 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2839 return false;
d6cf2879 2840 info->flags |= DF_SYMBOLIC;
252b5132
RH
2841 }
2842
2843 if (rpath != NULL)
2844 {
2845 bfd_size_type indx;
2846
2847 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2848 true, true);
2849 if (indx == (bfd_size_type) -1
d6cf2879
L
2850 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2851 || ! elf_add_dynamic_entry (info, DT_RUNPATH, indx))
252b5132
RH
2852 return false;
2853 }
2854
2855 if (filter_shlib != NULL)
2856 {
2857 bfd_size_type indx;
2858
2859 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2860 filter_shlib, true, true);
2861 if (indx == (bfd_size_type) -1
2862 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2863 return false;
2864 }
2865
2866 if (auxiliary_filters != NULL)
2867 {
2868 const char * const *p;
2869
2870 for (p = auxiliary_filters; *p != NULL; p++)
2871 {
2872 bfd_size_type indx;
2873
2874 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2875 *p, true, true);
2876 if (indx == (bfd_size_type) -1
2877 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2878 return false;
2879 }
2880 }
2881
ea44b734
RH
2882 /* If we are supposed to export all symbols into the dynamic symbol
2883 table (this is not the normal case), then do so. */
2884 if (export_dynamic)
2885 {
2886 struct elf_info_failed eif;
2887
2888 eif.failed = false;
2889 eif.info = info;
2890 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2891 (PTR) &eif);
2892 if (eif.failed)
2893 return false;
2894 }
2895
252b5132
RH
2896 /* Attach all the symbols to their version information. */
2897 asvinfo.output_bfd = output_bfd;
2898 asvinfo.info = info;
2899 asvinfo.verdefs = verdefs;
2900 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2901 asvinfo.failed = false;
2902
2903 elf_link_hash_traverse (elf_hash_table (info),
2904 elf_link_assign_sym_version,
2905 (PTR) &asvinfo);
2906 if (asvinfo.failed)
2907 return false;
2908
2909 /* Find all symbols which were defined in a dynamic object and make
2910 the backend pick a reasonable value for them. */
2911 eif.failed = false;
2912 eif.info = info;
2913 elf_link_hash_traverse (elf_hash_table (info),
2914 elf_adjust_dynamic_symbol,
2915 (PTR) &eif);
2916 if (eif.failed)
2917 return false;
2918
2919 /* Add some entries to the .dynamic section. We fill in some of the
2920 values later, in elf_bfd_final_link, but we must add the entries
2921 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2922
2923 /* If there are initialization and/or finalization functions to
2924 call then add the corresponding DT_INIT/DT_FINI entries. */
2925 h = (info->init_function
2926 ? elf_link_hash_lookup (elf_hash_table (info),
2927 info->init_function, false,
2928 false, false)
2929 : NULL);
252b5132
RH
2930 if (h != NULL
2931 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2932 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2933 {
2934 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2935 return false;
2936 }
f0c2e336
MM
2937 h = (info->fini_function
2938 ? elf_link_hash_lookup (elf_hash_table (info),
2939 info->fini_function, false,
2940 false, false)
2941 : NULL);
252b5132
RH
2942 if (h != NULL
2943 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2944 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2945 {
2946 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2947 return false;
2948 }
f0c2e336 2949
252b5132
RH
2950 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2951 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2952 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2953 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2954 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2955 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2956 sizeof (Elf_External_Sym)))
2957 return false;
2958 }
2959
2960 /* The backend must work out the sizes of all the other dynamic
2961 sections. */
252b5132
RH
2962 if (bed->elf_backend_size_dynamic_sections
2963 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2964 return false;
2965
2966 if (elf_hash_table (info)->dynamic_sections_created)
2967 {
2968 size_t dynsymcount;
2969 asection *s;
2970 size_t bucketcount = 0;
2971 Elf_Internal_Sym isym;
c7ac6ff8 2972 size_t hash_entry_size;
252b5132
RH
2973
2974 /* Set up the version definition section. */
2975 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2976 BFD_ASSERT (s != NULL);
2977
2978 /* We may have created additional version definitions if we are
2979 just linking a regular application. */
2980 verdefs = asvinfo.verdefs;
2981
2982 if (verdefs == NULL)
7f8d5fc9 2983 _bfd_strip_section_from_output (info, s);
252b5132
RH
2984 else
2985 {
2986 unsigned int cdefs;
2987 bfd_size_type size;
2988 struct bfd_elf_version_tree *t;
2989 bfd_byte *p;
2990 Elf_Internal_Verdef def;
2991 Elf_Internal_Verdaux defaux;
2992
252b5132
RH
2993 cdefs = 0;
2994 size = 0;
2995
2996 /* Make space for the base version. */
2997 size += sizeof (Elf_External_Verdef);
2998 size += sizeof (Elf_External_Verdaux);
2999 ++cdefs;
3000
3001 for (t = verdefs; t != NULL; t = t->next)
3002 {
3003 struct bfd_elf_version_deps *n;
3004
3005 size += sizeof (Elf_External_Verdef);
3006 size += sizeof (Elf_External_Verdaux);
3007 ++cdefs;
3008
3009 for (n = t->deps; n != NULL; n = n->next)
3010 size += sizeof (Elf_External_Verdaux);
3011 }
3012
3013 s->_raw_size = size;
3014 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3015 if (s->contents == NULL && s->_raw_size != 0)
3016 return false;
3017
3018 /* Fill in the version definition section. */
3019
3020 p = s->contents;
3021
3022 def.vd_version = VER_DEF_CURRENT;
3023 def.vd_flags = VER_FLG_BASE;
3024 def.vd_ndx = 1;
3025 def.vd_cnt = 1;
3026 def.vd_aux = sizeof (Elf_External_Verdef);
3027 def.vd_next = (sizeof (Elf_External_Verdef)
3028 + sizeof (Elf_External_Verdaux));
3029
3030 if (soname_indx != (bfd_size_type) -1)
3031 {
3a99b017 3032 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
3033 defaux.vda_name = soname_indx;
3034 }
3035 else
3036 {
3037 const char *name;
3038 bfd_size_type indx;
3039
3040 name = output_bfd->filename;
3a99b017 3041 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
3042 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3043 name, true, false);
3044 if (indx == (bfd_size_type) -1)
3045 return false;
3046 defaux.vda_name = indx;
3047 }
3048 defaux.vda_next = 0;
3049
3050 _bfd_elf_swap_verdef_out (output_bfd, &def,
3051 (Elf_External_Verdef *)p);
3052 p += sizeof (Elf_External_Verdef);
3053 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3054 (Elf_External_Verdaux *) p);
3055 p += sizeof (Elf_External_Verdaux);
3056
3057 for (t = verdefs; t != NULL; t = t->next)
3058 {
3059 unsigned int cdeps;
3060 struct bfd_elf_version_deps *n;
3061 struct elf_link_hash_entry *h;
3062
3063 cdeps = 0;
3064 for (n = t->deps; n != NULL; n = n->next)
3065 ++cdeps;
3066
3067 /* Add a symbol representing this version. */
3068 h = NULL;
3069 if (! (_bfd_generic_link_add_one_symbol
3070 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3071 (bfd_vma) 0, (const char *) NULL, false,
3072 get_elf_backend_data (dynobj)->collect,
3073 (struct bfd_link_hash_entry **) &h)))
3074 return false;
3075 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3076 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3077 h->type = STT_OBJECT;
3078 h->verinfo.vertree = t;
3079
3080 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3081 return false;
3082
3083 def.vd_version = VER_DEF_CURRENT;
3084 def.vd_flags = 0;
3085 if (t->globals == NULL && t->locals == NULL && ! t->used)
3086 def.vd_flags |= VER_FLG_WEAK;
3087 def.vd_ndx = t->vernum + 1;
3088 def.vd_cnt = cdeps + 1;
3a99b017 3089 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
3090 def.vd_aux = sizeof (Elf_External_Verdef);
3091 if (t->next != NULL)
3092 def.vd_next = (sizeof (Elf_External_Verdef)
3093 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3094 else
3095 def.vd_next = 0;
3096
3097 _bfd_elf_swap_verdef_out (output_bfd, &def,
3098 (Elf_External_Verdef *) p);
3099 p += sizeof (Elf_External_Verdef);
3100
3101 defaux.vda_name = h->dynstr_index;
3102 if (t->deps == NULL)
3103 defaux.vda_next = 0;
3104 else
3105 defaux.vda_next = sizeof (Elf_External_Verdaux);
3106 t->name_indx = defaux.vda_name;
3107
3108 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3109 (Elf_External_Verdaux *) p);
3110 p += sizeof (Elf_External_Verdaux);
3111
3112 for (n = t->deps; n != NULL; n = n->next)
3113 {
3114 if (n->version_needed == NULL)
3115 {
3116 /* This can happen if there was an error in the
3117 version script. */
3118 defaux.vda_name = 0;
3119 }
3120 else
3121 defaux.vda_name = n->version_needed->name_indx;
3122 if (n->next == NULL)
3123 defaux.vda_next = 0;
3124 else
3125 defaux.vda_next = sizeof (Elf_External_Verdaux);
3126
3127 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3128 (Elf_External_Verdaux *) p);
3129 p += sizeof (Elf_External_Verdaux);
3130 }
3131 }
3132
3133 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3134 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3135 return false;
3136
3137 elf_tdata (output_bfd)->cverdefs = cdefs;
3138 }
3139
d6cf2879
L
3140 if (info->flags)
3141 {
3142 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3143 return false;
3144 }
3145
3146 if (info->flags_1)
3147 {
3148 if (! info->shared)
3149 info->flags_1 &= ~ (DF_1_INITFIRST
3150 | DF_1_NODELETE
3151 | DF_1_NOOPEN);
3152 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3153 return false;
3154 }
3155
252b5132
RH
3156 /* Work out the size of the version reference section. */
3157
3158 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3159 BFD_ASSERT (s != NULL);
3160 {
3161 struct elf_find_verdep_info sinfo;
3162
3163 sinfo.output_bfd = output_bfd;
3164 sinfo.info = info;
3165 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3166 if (sinfo.vers == 0)
3167 sinfo.vers = 1;
3168 sinfo.failed = false;
3169
3170 elf_link_hash_traverse (elf_hash_table (info),
3171 elf_link_find_version_dependencies,
3172 (PTR) &sinfo);
3173
3174 if (elf_tdata (output_bfd)->verref == NULL)
7f8d5fc9 3175 _bfd_strip_section_from_output (info, s);
252b5132
RH
3176 else
3177 {
3178 Elf_Internal_Verneed *t;
3179 unsigned int size;
3180 unsigned int crefs;
3181 bfd_byte *p;
3182
3183 /* Build the version definition section. */
3184 size = 0;
3185 crefs = 0;
3186 for (t = elf_tdata (output_bfd)->verref;
3187 t != NULL;
3188 t = t->vn_nextref)
3189 {
3190 Elf_Internal_Vernaux *a;
3191
3192 size += sizeof (Elf_External_Verneed);
3193 ++crefs;
3194 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3195 size += sizeof (Elf_External_Vernaux);
3196 }
3197
3198 s->_raw_size = size;
3199 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3200 if (s->contents == NULL)
3201 return false;
3202
3203 p = s->contents;
3204 for (t = elf_tdata (output_bfd)->verref;
3205 t != NULL;
3206 t = t->vn_nextref)
3207 {
3208 unsigned int caux;
3209 Elf_Internal_Vernaux *a;
3210 bfd_size_type indx;
3211
3212 caux = 0;
3213 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3214 ++caux;
3215
3216 t->vn_version = VER_NEED_CURRENT;
3217 t->vn_cnt = caux;
3218 if (elf_dt_name (t->vn_bfd) != NULL)
3219 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3220 elf_dt_name (t->vn_bfd),
3221 true, false);
3222 else
3223 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3224 t->vn_bfd->filename, true, false);
3225 if (indx == (bfd_size_type) -1)
3226 return false;
3227 t->vn_file = indx;
3228 t->vn_aux = sizeof (Elf_External_Verneed);
3229 if (t->vn_nextref == NULL)
3230 t->vn_next = 0;
3231 else
3232 t->vn_next = (sizeof (Elf_External_Verneed)
3233 + caux * sizeof (Elf_External_Vernaux));
3234
3235 _bfd_elf_swap_verneed_out (output_bfd, t,
3236 (Elf_External_Verneed *) p);
3237 p += sizeof (Elf_External_Verneed);
3238
3239 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3240 {
3a99b017 3241 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3242 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3243 a->vna_nodename, true, false);
3244 if (indx == (bfd_size_type) -1)
3245 return false;
3246 a->vna_name = indx;
3247 if (a->vna_nextptr == NULL)
3248 a->vna_next = 0;
3249 else
3250 a->vna_next = sizeof (Elf_External_Vernaux);
3251
3252 _bfd_elf_swap_vernaux_out (output_bfd, a,
3253 (Elf_External_Vernaux *) p);
3254 p += sizeof (Elf_External_Vernaux);
3255 }
3256 }
3257
3258 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3259 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3260 return false;
3261
3262 elf_tdata (output_bfd)->cverrefs = crefs;
3263 }
3264 }
3265
30b30c21
RH
3266 /* Assign dynsym indicies. In a shared library we generate a
3267 section symbol for each output section, which come first.
3268 Next come all of the back-end allocated local dynamic syms,
3269 followed by the rest of the global symbols. */
3270
3271 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3272
3273 /* Work out the size of the symbol version section. */
3274 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3275 BFD_ASSERT (s != NULL);
3276 if (dynsymcount == 0
3277 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3278 {
7f8d5fc9 3279 _bfd_strip_section_from_output (info, s);
42751cf3
MM
3280 /* The DYNSYMCOUNT might have changed if we were going to
3281 output a dynamic symbol table entry for S. */
30b30c21 3282 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3283 }
3284 else
3285 {
3286 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3287 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3288 if (s->contents == NULL)
3289 return false;
3290
3291 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3292 return false;
3293 }
3294
3295 /* Set the size of the .dynsym and .hash sections. We counted
3296 the number of dynamic symbols in elf_link_add_object_symbols.
3297 We will build the contents of .dynsym and .hash when we build
3298 the final symbol table, because until then we do not know the
3299 correct value to give the symbols. We built the .dynstr
3300 section as we went along in elf_link_add_object_symbols. */
3301 s = bfd_get_section_by_name (dynobj, ".dynsym");
3302 BFD_ASSERT (s != NULL);
3303 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3304 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3305 if (s->contents == NULL && s->_raw_size != 0)
3306 return false;
3307
3308 /* The first entry in .dynsym is a dummy symbol. */
3309 isym.st_value = 0;
3310 isym.st_size = 0;
3311 isym.st_name = 0;
3312 isym.st_info = 0;
3313 isym.st_other = 0;
3314 isym.st_shndx = 0;
3315 elf_swap_symbol_out (output_bfd, &isym,
3316 (PTR) (Elf_External_Sym *) s->contents);
3317
3318 /* Compute the size of the hashing table. As a side effect this
3319 computes the hash values for all the names we export. */
3320 bucketcount = compute_bucket_count (info);
3321
3322 s = bfd_get_section_by_name (dynobj, ".hash");
3323 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3324 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3325 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3326 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3327 if (s->contents == NULL)
3328 return false;
3329 memset (s->contents, 0, (size_t) s->_raw_size);
3330
c7ac6ff8
MM
3331 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3332 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3333 s->contents + hash_entry_size);
252b5132
RH
3334
3335 elf_hash_table (info)->bucketcount = bucketcount;
3336
3337 s = bfd_get_section_by_name (dynobj, ".dynstr");
3338 BFD_ASSERT (s != NULL);
3339 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3340
3341 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3342 return false;
3343 }
3344
3345 return true;
3346}
3347\f
3348/* Fix up the flags for a symbol. This handles various cases which
3349 can only be fixed after all the input files are seen. This is
3350 currently called by both adjust_dynamic_symbol and
3351 assign_sym_version, which is unnecessary but perhaps more robust in
3352 the face of future changes. */
3353
3354static boolean
3355elf_fix_symbol_flags (h, eif)
3356 struct elf_link_hash_entry *h;
3357 struct elf_info_failed *eif;
3358{
3359 /* If this symbol was mentioned in a non-ELF file, try to set
3360 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3361 permit a non-ELF file to correctly refer to a symbol defined in
3362 an ELF dynamic object. */
3363 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3364 {
94b6c40a
L
3365 while (h->root.type == bfd_link_hash_indirect)
3366 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3367
252b5132
RH
3368 if (h->root.type != bfd_link_hash_defined
3369 && h->root.type != bfd_link_hash_defweak)
3370 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3371 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3372 else
3373 {
3374 if (h->root.u.def.section->owner != NULL
3375 && (bfd_get_flavour (h->root.u.def.section->owner)
3376 == bfd_target_elf_flavour))
3377 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3378 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3379 else
3380 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3381 }
3382
3383 if (h->dynindx == -1
3384 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3385 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3386 {
3387 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3388 {
3389 eif->failed = true;
3390 return false;
3391 }
3392 }
3393 }
3394 else
3395 {
3396 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3397 was first seen in a non-ELF file. Fortunately, if the symbol
3398 was first seen in an ELF file, we're probably OK unless the
3399 symbol was defined in a non-ELF file. Catch that case here.
3400 FIXME: We're still in trouble if the symbol was first seen in
3401 a dynamic object, and then later in a non-ELF regular object. */
3402 if ((h->root.type == bfd_link_hash_defined
3403 || h->root.type == bfd_link_hash_defweak)
3404 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3405 && (h->root.u.def.section->owner != NULL
3406 ? (bfd_get_flavour (h->root.u.def.section->owner)
3407 != bfd_target_elf_flavour)
3408 : (bfd_is_abs_section (h->root.u.def.section)
3409 && (h->elf_link_hash_flags
3410 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3411 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3412 }
3413
3414 /* If this is a final link, and the symbol was defined as a common
3415 symbol in a regular object file, and there was no definition in
3416 any dynamic object, then the linker will have allocated space for
3417 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3418 flag will not have been set. */
3419 if (h->root.type == bfd_link_hash_defined
3420 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3421 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3422 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3423 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3424 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3425
3426 /* If -Bsymbolic was used (which means to bind references to global
3427 symbols to the definition within the shared object), and this
3428 symbol was defined in a regular object, then it actually doesn't
0444bdd4
L
3429 need a PLT entry. Likewise, if the symbol has any kind of
3430 visibility (internal, hidden, or protected), it doesn't need a
3431 PLT. */
252b5132
RH
3432 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3433 && eif->info->shared
0444bdd4 3434 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
252b5132
RH
3435 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3436 {
3437 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3438 h->plt.offset = (bfd_vma) -1;
3439 }
3440
fc4cc5bb
ILT
3441 /* If this is a weak defined symbol in a dynamic object, and we know
3442 the real definition in the dynamic object, copy interesting flags
3443 over to the real definition. */
3444 if (h->weakdef != NULL)
3445 {
3446 struct elf_link_hash_entry *weakdef;
3447
3448 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak);
3450 weakdef = h->weakdef;
3451 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3452 || weakdef->root.type == bfd_link_hash_defweak);
3453 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3454
3455 /* If the real definition is defined by a regular object file,
3456 don't do anything special. See the longer description in
3457 elf_adjust_dynamic_symbol, below. */
3458 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3459 h->weakdef = NULL;
3460 else
3461 weakdef->elf_link_hash_flags |=
3462 (h->elf_link_hash_flags
3463 & (ELF_LINK_HASH_REF_REGULAR
3464 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3465 | ELF_LINK_NON_GOT_REF));
3466 }
3467
252b5132
RH
3468 return true;
3469}
3470
3471/* Make the backend pick a good value for a dynamic symbol. This is
3472 called via elf_link_hash_traverse, and also calls itself
3473 recursively. */
3474
3475static boolean
3476elf_adjust_dynamic_symbol (h, data)
3477 struct elf_link_hash_entry *h;
3478 PTR data;
3479{
3480 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3481 bfd *dynobj;
3482 struct elf_backend_data *bed;
3483
3484 /* Ignore indirect symbols. These are added by the versioning code. */
3485 if (h->root.type == bfd_link_hash_indirect)
3486 return true;
3487
3488 /* Fix the symbol flags. */
3489 if (! elf_fix_symbol_flags (h, eif))
3490 return false;
3491
3492 /* If this symbol does not require a PLT entry, and it is not
3493 defined by a dynamic object, or is not referenced by a regular
3494 object, ignore it. We do have to handle a weak defined symbol,
3495 even if no regular object refers to it, if we decided to add it
3496 to the dynamic symbol table. FIXME: Do we normally need to worry
3497 about symbols which are defined by one dynamic object and
3498 referenced by another one? */
3499 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3500 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3501 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3502 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3503 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3504 {
3505 h->plt.offset = (bfd_vma) -1;
3506 return true;
3507 }
3508
3509 /* If we've already adjusted this symbol, don't do it again. This
3510 can happen via a recursive call. */
3511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3512 return true;
3513
3514 /* Don't look at this symbol again. Note that we must set this
3515 after checking the above conditions, because we may look at a
3516 symbol once, decide not to do anything, and then get called
3517 recursively later after REF_REGULAR is set below. */
3518 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3519
3520 /* If this is a weak definition, and we know a real definition, and
3521 the real symbol is not itself defined by a regular object file,
3522 then get a good value for the real definition. We handle the
3523 real symbol first, for the convenience of the backend routine.
3524
3525 Note that there is a confusing case here. If the real definition
3526 is defined by a regular object file, we don't get the real symbol
3527 from the dynamic object, but we do get the weak symbol. If the
3528 processor backend uses a COPY reloc, then if some routine in the
3529 dynamic object changes the real symbol, we will not see that
3530 change in the corresponding weak symbol. This is the way other
3531 ELF linkers work as well, and seems to be a result of the shared
3532 library model.
3533
3534 I will clarify this issue. Most SVR4 shared libraries define the
3535 variable _timezone and define timezone as a weak synonym. The
3536 tzset call changes _timezone. If you write
3537 extern int timezone;
3538 int _timezone = 5;
3539 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3540 you might expect that, since timezone is a synonym for _timezone,
3541 the same number will print both times. However, if the processor
3542 backend uses a COPY reloc, then actually timezone will be copied
3543 into your process image, and, since you define _timezone
3544 yourself, _timezone will not. Thus timezone and _timezone will
3545 wind up at different memory locations. The tzset call will set
3546 _timezone, leaving timezone unchanged. */
3547
3548 if (h->weakdef != NULL)
3549 {
fc4cc5bb
ILT
3550 /* If we get to this point, we know there is an implicit
3551 reference by a regular object file via the weak symbol H.
3552 FIXME: Is this really true? What if the traversal finds
3553 H->WEAKDEF before it finds H? */
3554 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
252b5132 3555
fc4cc5bb
ILT
3556 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3557 return false;
252b5132
RH
3558 }
3559
3560 /* If a symbol has no type and no size and does not require a PLT
3561 entry, then we are probably about to do the wrong thing here: we
3562 are probably going to create a COPY reloc for an empty object.
3563 This case can arise when a shared object is built with assembly
3564 code, and the assembly code fails to set the symbol type. */
3565 if (h->size == 0
3566 && h->type == STT_NOTYPE
3567 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3568 (*_bfd_error_handler)
3569 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3570 h->root.root.string);
3571
3572 dynobj = elf_hash_table (eif->info)->dynobj;
3573 bed = get_elf_backend_data (dynobj);
3574 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3575 {
3576 eif->failed = true;
3577 return false;
3578 }
3579
3580 return true;
3581}
3582\f
3583/* This routine is used to export all defined symbols into the dynamic
3584 symbol table. It is called via elf_link_hash_traverse. */
3585
3586static boolean
3587elf_export_symbol (h, data)
3588 struct elf_link_hash_entry *h;
3589 PTR data;
3590{
3591 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3592
3593 /* Ignore indirect symbols. These are added by the versioning code. */
3594 if (h->root.type == bfd_link_hash_indirect)
3595 return true;
3596
3597 if (h->dynindx == -1
3598 && (h->elf_link_hash_flags
3599 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3600 {
3601 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3602 {
3603 eif->failed = true;
3604 return false;
3605 }
3606 }
3607
3608 return true;
3609}
3610\f
3611/* Look through the symbols which are defined in other shared
3612 libraries and referenced here. Update the list of version
3613 dependencies. This will be put into the .gnu.version_r section.
3614 This function is called via elf_link_hash_traverse. */
3615
3616static boolean
3617elf_link_find_version_dependencies (h, data)
3618 struct elf_link_hash_entry *h;
3619 PTR data;
3620{
3621 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3622 Elf_Internal_Verneed *t;
3623 Elf_Internal_Vernaux *a;
3624
3625 /* We only care about symbols defined in shared objects with version
3626 information. */
3627 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3628 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3629 || h->dynindx == -1
3630 || h->verinfo.verdef == NULL)
3631 return true;
3632
3633 /* See if we already know about this version. */
3634 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3635 {
3636 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3637 continue;
3638
3639 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3640 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3641 return true;
3642
3643 break;
3644 }
3645
3646 /* This is a new version. Add it to tree we are building. */
3647
3648 if (t == NULL)
3649 {
3650 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3651 if (t == NULL)
3652 {
3653 rinfo->failed = true;
3654 return false;
3655 }
3656
3657 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3658 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3659 elf_tdata (rinfo->output_bfd)->verref = t;
3660 }
3661
3662 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3663
3664 /* Note that we are copying a string pointer here, and testing it
3665 above. If bfd_elf_string_from_elf_section is ever changed to
3666 discard the string data when low in memory, this will have to be
3667 fixed. */
3668 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3669
3670 a->vna_flags = h->verinfo.verdef->vd_flags;
3671 a->vna_nextptr = t->vn_auxptr;
3672
3673 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3674 ++rinfo->vers;
3675
3676 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3677
3678 t->vn_auxptr = a;
3679
3680 return true;
3681}
3682
3683/* Figure out appropriate versions for all the symbols. We may not
3684 have the version number script until we have read all of the input
3685 files, so until that point we don't know which symbols should be
3686 local. This function is called via elf_link_hash_traverse. */
3687
3688static boolean
3689elf_link_assign_sym_version (h, data)
3690 struct elf_link_hash_entry *h;
3691 PTR data;
3692{
3693 struct elf_assign_sym_version_info *sinfo =
3694 (struct elf_assign_sym_version_info *) data;
3695 struct bfd_link_info *info = sinfo->info;
c61b8717 3696 struct elf_backend_data *bed;
252b5132
RH
3697 struct elf_info_failed eif;
3698 char *p;
3699
3700 /* Fix the symbol flags. */
3701 eif.failed = false;
3702 eif.info = info;
3703 if (! elf_fix_symbol_flags (h, &eif))
3704 {
3705 if (eif.failed)
3706 sinfo->failed = true;
3707 return false;
3708 }
3709
3710 /* We only need version numbers for symbols defined in regular
3711 objects. */
3712 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3713 return true;
3714
c61b8717 3715 bed = get_elf_backend_data (sinfo->output_bfd);
252b5132
RH
3716 p = strchr (h->root.root.string, ELF_VER_CHR);
3717 if (p != NULL && h->verinfo.vertree == NULL)
3718 {
3719 struct bfd_elf_version_tree *t;
3720 boolean hidden;
3721
3722 hidden = true;
3723
3724 /* There are two consecutive ELF_VER_CHR characters if this is
3725 not a hidden symbol. */
3726 ++p;
3727 if (*p == ELF_VER_CHR)
3728 {
3729 hidden = false;
3730 ++p;
3731 }
3732
3733 /* If there is no version string, we can just return out. */
3734 if (*p == '\0')
3735 {
3736 if (hidden)
3737 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3738 return true;
3739 }
3740
3741 /* Look for the version. If we find it, it is no longer weak. */
3742 for (t = sinfo->verdefs; t != NULL; t = t->next)
3743 {
3744 if (strcmp (t->name, p) == 0)
3745 {
3746 int len;
3747 char *alc;
3748 struct bfd_elf_version_expr *d;
3749
3750 len = p - h->root.root.string;
3751 alc = bfd_alloc (sinfo->output_bfd, len);
3752 if (alc == NULL)
3753 return false;
3754 strncpy (alc, h->root.root.string, len - 1);
3755 alc[len - 1] = '\0';
3756 if (alc[len - 2] == ELF_VER_CHR)
3757 alc[len - 2] = '\0';
3758
3759 h->verinfo.vertree = t;
3760 t->used = true;
3761 d = NULL;
3762
3763 if (t->globals != NULL)
3764 {
3765 for (d = t->globals; d != NULL; d = d->next)
3766 if ((*d->match) (d, alc))
3767 break;
3768 }
3769
3770 /* See if there is anything to force this symbol to
3771 local scope. */
3772 if (d == NULL && t->locals != NULL)
3773 {
3774 for (d = t->locals; d != NULL; d = d->next)
3775 {
3776 if ((*d->match) (d, alc))
3777 {
3778 if (h->dynindx != -1
3779 && info->shared
3780 && ! sinfo->export_dynamic)
3781 {
252b5132 3782 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3783 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3784 /* FIXME: The name of the symbol has
3785 already been recorded in the dynamic
3786 string table section. */
3787 }
3788
3789 break;
3790 }
3791 }
3792 }
3793
3794 bfd_release (sinfo->output_bfd, alc);
3795 break;
3796 }
3797 }
3798
3799 /* If we are building an application, we need to create a
3800 version node for this version. */
3801 if (t == NULL && ! info->shared)
3802 {
3803 struct bfd_elf_version_tree **pp;
3804 int version_index;
3805
3806 /* If we aren't going to export this symbol, we don't need
3807 to worry about it. */
3808 if (h->dynindx == -1)
3809 return true;
3810
3811 t = ((struct bfd_elf_version_tree *)
3812 bfd_alloc (sinfo->output_bfd, sizeof *t));
3813 if (t == NULL)
3814 {
3815 sinfo->failed = true;
3816 return false;
3817 }
3818
3819 t->next = NULL;
3820 t->name = p;
3821 t->globals = NULL;
3822 t->locals = NULL;
3823 t->deps = NULL;
3824 t->name_indx = (unsigned int) -1;
3825 t->used = true;
3826
3827 version_index = 1;
3828 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3829 ++version_index;
3830 t->vernum = version_index;
3831
3832 *pp = t;
3833
3834 h->verinfo.vertree = t;
3835 }
3836 else if (t == NULL)
3837 {
3838 /* We could not find the version for a symbol when
3839 generating a shared archive. Return an error. */
3840 (*_bfd_error_handler)
3841 (_("%s: undefined versioned symbol name %s"),
3842 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3843 bfd_set_error (bfd_error_bad_value);
3844 sinfo->failed = true;
3845 return false;
3846 }
3847
3848 if (hidden)
3849 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3850 }
3851
3852 /* If we don't have a version for this symbol, see if we can find
3853 something. */
3854 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3855 {
3856 struct bfd_elf_version_tree *t;
3857 struct bfd_elf_version_tree *deflt;
3858 struct bfd_elf_version_expr *d;
3859
3860 /* See if can find what version this symbol is in. If the
3861 symbol is supposed to be local, then don't actually register
3862 it. */
3863 deflt = NULL;
3864 for (t = sinfo->verdefs; t != NULL; t = t->next)
3865 {
3866 if (t->globals != NULL)
3867 {
3868 for (d = t->globals; d != NULL; d = d->next)
3869 {
3870 if ((*d->match) (d, h->root.root.string))
3871 {
3872 h->verinfo.vertree = t;
3873 break;
3874 }
3875 }
3876
3877 if (d != NULL)
3878 break;
3879 }
3880
3881 if (t->locals != NULL)
3882 {
3883 for (d = t->locals; d != NULL; d = d->next)
3884 {
3885 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3886 deflt = t;
3887 else if ((*d->match) (d, h->root.root.string))
3888 {
3889 h->verinfo.vertree = t;
3890 if (h->dynindx != -1
3891 && info->shared
3892 && ! sinfo->export_dynamic)
3893 {
252b5132 3894 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3895 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3896 /* FIXME: The name of the symbol has already
3897 been recorded in the dynamic string table
3898 section. */
3899 }
3900 break;
3901 }
3902 }
3903
3904 if (d != NULL)
3905 break;
3906 }
3907 }
3908
3909 if (deflt != NULL && h->verinfo.vertree == NULL)
3910 {
3911 h->verinfo.vertree = deflt;
3912 if (h->dynindx != -1
3913 && info->shared
3914 && ! sinfo->export_dynamic)
3915 {
252b5132 3916 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3917 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3918 /* FIXME: The name of the symbol has already been
3919 recorded in the dynamic string table section. */
3920 }
3921 }
3922 }
3923
3924 return true;
3925}
252b5132
RH
3926\f
3927/* Final phase of ELF linker. */
3928
3929/* A structure we use to avoid passing large numbers of arguments. */
3930
3931struct elf_final_link_info
3932{
3933 /* General link information. */
3934 struct bfd_link_info *info;
3935 /* Output BFD. */
3936 bfd *output_bfd;
3937 /* Symbol string table. */
3938 struct bfd_strtab_hash *symstrtab;
3939 /* .dynsym section. */
3940 asection *dynsym_sec;
3941 /* .hash section. */
3942 asection *hash_sec;
3943 /* symbol version section (.gnu.version). */
3944 asection *symver_sec;
3945 /* Buffer large enough to hold contents of any section. */
3946 bfd_byte *contents;
3947 /* Buffer large enough to hold external relocs of any section. */
3948 PTR external_relocs;
3949 /* Buffer large enough to hold internal relocs of any section. */
3950 Elf_Internal_Rela *internal_relocs;
3951 /* Buffer large enough to hold external local symbols of any input
3952 BFD. */
3953 Elf_External_Sym *external_syms;
3954 /* Buffer large enough to hold internal local symbols of any input
3955 BFD. */
3956 Elf_Internal_Sym *internal_syms;
3957 /* Array large enough to hold a symbol index for each local symbol
3958 of any input BFD. */
3959 long *indices;
3960 /* Array large enough to hold a section pointer for each local
3961 symbol of any input BFD. */
3962 asection **sections;
3963 /* Buffer to hold swapped out symbols. */
3964 Elf_External_Sym *symbuf;
3965 /* Number of swapped out symbols in buffer. */
3966 size_t symbuf_count;
3967 /* Number of symbols which fit in symbuf. */
3968 size_t symbuf_size;
3969};
3970
3971static boolean elf_link_output_sym
3972 PARAMS ((struct elf_final_link_info *, const char *,
3973 Elf_Internal_Sym *, asection *));
3974static boolean elf_link_flush_output_syms
3975 PARAMS ((struct elf_final_link_info *));
3976static boolean elf_link_output_extsym
3977 PARAMS ((struct elf_link_hash_entry *, PTR));
3978static boolean elf_link_input_bfd
3979 PARAMS ((struct elf_final_link_info *, bfd *));
3980static boolean elf_reloc_link_order
3981 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3982 struct bfd_link_order *));
3983
3984/* This struct is used to pass information to elf_link_output_extsym. */
3985
3986struct elf_outext_info
3987{
3988 boolean failed;
3989 boolean localsyms;
3990 struct elf_final_link_info *finfo;
3991};
3992
23bc299b
MM
3993/* Compute the size of, and allocate space for, REL_HDR which is the
3994 section header for a section containing relocations for O. */
3995
3996static boolean
3997elf_link_size_reloc_section (abfd, rel_hdr, o)
3998 bfd *abfd;
3999 Elf_Internal_Shdr *rel_hdr;
4000 asection *o;
4001{
4002 register struct elf_link_hash_entry **p, **pend;
b037af20 4003 unsigned reloc_count;
23bc299b 4004
b037af20
MM
4005 /* Figure out how many relocations there will be. */
4006 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4007 reloc_count = elf_section_data (o)->rel_count;
4008 else
4009 reloc_count = elf_section_data (o)->rel_count2;
4010
4011 /* That allows us to calculate the size of the section. */
4012 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
23bc299b
MM
4013
4014 /* The contents field must last into write_object_contents, so we
4015 allocate it with bfd_alloc rather than malloc. */
4016 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
4017 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4018 return false;
b037af20
MM
4019
4020 /* We only allocate one set of hash entries, so we only do it the
4021 first time we are called. */
4022 if (elf_section_data (o)->rel_hashes == NULL)
4023 {
4024 p = ((struct elf_link_hash_entry **)
4025 bfd_malloc (o->reloc_count
4026 * sizeof (struct elf_link_hash_entry *)));
4027 if (p == NULL && o->reloc_count != 0)
4028 return false;
23bc299b 4029
b037af20
MM
4030 elf_section_data (o)->rel_hashes = p;
4031 pend = p + o->reloc_count;
4032 for (; p < pend; p++)
4033 *p = NULL;
4034 }
23bc299b
MM
4035
4036 return true;
4037}
4038
31367b81
MM
4039/* When performing a relocateable link, the input relocations are
4040 preserved. But, if they reference global symbols, the indices
4041 referenced must be updated. Update all the relocations in
4042 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4043
4044static void
4045elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4046 bfd *abfd;
4047 Elf_Internal_Shdr *rel_hdr;
4048 unsigned int count;
4049 struct elf_link_hash_entry **rel_hash;
4050{
4051 unsigned int i;
32f0787a 4052 struct elf_backend_data *bed = get_elf_backend_data (abfd);
31367b81
MM
4053
4054 for (i = 0; i < count; i++, rel_hash++)
4055 {
4056 if (*rel_hash == NULL)
4057 continue;
4058
4059 BFD_ASSERT ((*rel_hash)->indx >= 0);
4060
4061 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4062 {
4063 Elf_External_Rel *erel;
4064 Elf_Internal_Rel irel;
4065
4066 erel = (Elf_External_Rel *) rel_hdr->contents + i;
32f0787a
UC
4067 if (bed->s->swap_reloc_in)
4068 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4069 else
4070 elf_swap_reloc_in (abfd, erel, &irel);
31367b81
MM
4071 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4072 ELF_R_TYPE (irel.r_info));
32f0787a
UC
4073 if (bed->s->swap_reloc_out)
4074 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4075 else
4076 elf_swap_reloc_out (abfd, &irel, erel);
31367b81
MM
4077 }
4078 else
4079 {
4080 Elf_External_Rela *erela;
4081 Elf_Internal_Rela irela;
4082
4083 BFD_ASSERT (rel_hdr->sh_entsize
4084 == sizeof (Elf_External_Rela));
4085
4086 erela = (Elf_External_Rela *) rel_hdr->contents + i;
32f0787a
UC
4087 if (bed->s->swap_reloca_in)
4088 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4089 else
4090 elf_swap_reloca_in (abfd, erela, &irela);
31367b81
MM
4091 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4092 ELF_R_TYPE (irela.r_info));
32f0787a
UC
4093 if (bed->s->swap_reloca_out)
4094 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4095 else
4096 elf_swap_reloca_out (abfd, &irela, erela);
31367b81
MM
4097 }
4098 }
4099}
4100
252b5132
RH
4101/* Do the final step of an ELF link. */
4102
4103boolean
4104elf_bfd_final_link (abfd, info)
4105 bfd *abfd;
4106 struct bfd_link_info *info;
4107{
4108 boolean dynamic;
4109 bfd *dynobj;
4110 struct elf_final_link_info finfo;
4111 register asection *o;
4112 register struct bfd_link_order *p;
4113 register bfd *sub;
4114 size_t max_contents_size;
4115 size_t max_external_reloc_size;
4116 size_t max_internal_reloc_count;
4117 size_t max_sym_count;
4118 file_ptr off;
4119 Elf_Internal_Sym elfsym;
4120 unsigned int i;
4121 Elf_Internal_Shdr *symtab_hdr;
4122 Elf_Internal_Shdr *symstrtab_hdr;
4123 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4124 struct elf_outext_info eoinfo;
4125
4126 if (info->shared)
4127 abfd->flags |= DYNAMIC;
4128
4129 dynamic = elf_hash_table (info)->dynamic_sections_created;
4130 dynobj = elf_hash_table (info)->dynobj;
4131
4132 finfo.info = info;
4133 finfo.output_bfd = abfd;
4134 finfo.symstrtab = elf_stringtab_init ();
4135 if (finfo.symstrtab == NULL)
4136 return false;
4137
4138 if (! dynamic)
4139 {
4140 finfo.dynsym_sec = NULL;
4141 finfo.hash_sec = NULL;
4142 finfo.symver_sec = NULL;
4143 }
4144 else
4145 {
4146 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4147 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4148 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4149 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4150 /* Note that it is OK if symver_sec is NULL. */
4151 }
4152
4153 finfo.contents = NULL;
4154 finfo.external_relocs = NULL;
4155 finfo.internal_relocs = NULL;
4156 finfo.external_syms = NULL;
4157 finfo.internal_syms = NULL;
4158 finfo.indices = NULL;
4159 finfo.sections = NULL;
4160 finfo.symbuf = NULL;
4161 finfo.symbuf_count = 0;
4162
4163 /* Count up the number of relocations we will output for each output
4164 section, so that we know the sizes of the reloc sections. We
4165 also figure out some maximum sizes. */
4166 max_contents_size = 0;
4167 max_external_reloc_size = 0;
4168 max_internal_reloc_count = 0;
4169 max_sym_count = 0;
4170 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4171 {
4172 o->reloc_count = 0;
4173
4174 for (p = o->link_order_head; p != NULL; p = p->next)
4175 {
4176 if (p->type == bfd_section_reloc_link_order
4177 || p->type == bfd_symbol_reloc_link_order)
4178 ++o->reloc_count;
4179 else if (p->type == bfd_indirect_link_order)
4180 {
4181 asection *sec;
4182
4183 sec = p->u.indirect.section;
4184
4185 /* Mark all sections which are to be included in the
4186 link. This will normally be every section. We need
4187 to do this so that we can identify any sections which
4188 the linker has decided to not include. */
4189 sec->linker_mark = true;
4190
a712da20 4191 if (info->relocateable || info->emitrelocations)
252b5132
RH
4192 o->reloc_count += sec->reloc_count;
4193
4194 if (sec->_raw_size > max_contents_size)
4195 max_contents_size = sec->_raw_size;
4196 if (sec->_cooked_size > max_contents_size)
4197 max_contents_size = sec->_cooked_size;
4198
4199 /* We are interested in just local symbols, not all
4200 symbols. */
4201 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4202 && (sec->owner->flags & DYNAMIC) == 0)
4203 {
4204 size_t sym_count;
4205
4206 if (elf_bad_symtab (sec->owner))
4207 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4208 / sizeof (Elf_External_Sym));
4209 else
4210 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4211
4212 if (sym_count > max_sym_count)
4213 max_sym_count = sym_count;
4214
4215 if ((sec->flags & SEC_RELOC) != 0)
4216 {
4217 size_t ext_size;
4218
4219 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4220 if (ext_size > max_external_reloc_size)
4221 max_external_reloc_size = ext_size;
4222 if (sec->reloc_count > max_internal_reloc_count)
4223 max_internal_reloc_count = sec->reloc_count;
4224 }
4225 }
4226 }
4227 }
4228
4229 if (o->reloc_count > 0)
4230 o->flags |= SEC_RELOC;
4231 else
4232 {
4233 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4234 set it (this is probably a bug) and if it is set
4235 assign_section_numbers will create a reloc section. */
4236 o->flags &=~ SEC_RELOC;
4237 }
4238
4239 /* If the SEC_ALLOC flag is not set, force the section VMA to
4240 zero. This is done in elf_fake_sections as well, but forcing
4241 the VMA to 0 here will ensure that relocs against these
4242 sections are handled correctly. */
4243 if ((o->flags & SEC_ALLOC) == 0
4244 && ! o->user_set_vma)
4245 o->vma = 0;
4246 }
4247
4248 /* Figure out the file positions for everything but the symbol table
4249 and the relocs. We set symcount to force assign_section_numbers
4250 to create a symbol table. */
4251 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4252 BFD_ASSERT (! abfd->output_has_begun);
4253 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4254 goto error_return;
4255
b037af20
MM
4256 /* Figure out how many relocations we will have in each section.
4257 Just using RELOC_COUNT isn't good enough since that doesn't
4258 maintain a separate value for REL vs. RELA relocations. */
a712da20 4259 if (info->relocateable || info->emitrelocations)
b037af20
MM
4260 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4261 for (o = sub->sections; o != NULL; o = o->next)
4262 {
814fe68a 4263 asection *output_section;
b037af20 4264
814fe68a
ILT
4265 if (! o->linker_mark)
4266 {
4267 /* This section was omitted from the link. */
4268 continue;
4269 }
4270
4271 output_section = o->output_section;
4272
4273 if (output_section != NULL
4274 && (o->flags & SEC_RELOC) != 0)
b037af20
MM
4275 {
4276 struct bfd_elf_section_data *esdi
4277 = elf_section_data (o);
4278 struct bfd_elf_section_data *esdo
4279 = elf_section_data (output_section);
ce006217
MM
4280 unsigned int *rel_count;
4281 unsigned int *rel_count2;
b037af20 4282
ce006217
MM
4283 /* We must be careful to add the relocation froms the
4284 input section to the right output count. */
4285 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4286 {
4287 rel_count = &esdo->rel_count;
4288 rel_count2 = &esdo->rel_count2;
4289 }
4290 else
4291 {
4292 rel_count = &esdo->rel_count2;
4293 rel_count2 = &esdo->rel_count;
4294 }
4295
4296 *rel_count += (esdi->rel_hdr.sh_size
4297 / esdi->rel_hdr.sh_entsize);
b037af20 4298 if (esdi->rel_hdr2)
ce006217
MM
4299 *rel_count2 += (esdi->rel_hdr2->sh_size
4300 / esdi->rel_hdr2->sh_entsize);
b037af20
MM
4301 }
4302 }
4303
252b5132
RH
4304 /* That created the reloc sections. Set their sizes, and assign
4305 them file positions, and allocate some buffers. */
4306 for (o = abfd->sections; o != NULL; o = o->next)
4307 {
4308 if ((o->flags & SEC_RELOC) != 0)
4309 {
23bc299b
MM
4310 if (!elf_link_size_reloc_section (abfd,
4311 &elf_section_data (o)->rel_hdr,
4312 o))
252b5132
RH
4313 goto error_return;
4314
23bc299b
MM
4315 if (elf_section_data (o)->rel_hdr2
4316 && !elf_link_size_reloc_section (abfd,
4317 elf_section_data (o)->rel_hdr2,
4318 o))
252b5132 4319 goto error_return;
252b5132 4320 }
b037af20
MM
4321
4322 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4323 to count upwards while actually outputting the relocations. */
4324 elf_section_data (o)->rel_count = 0;
4325 elf_section_data (o)->rel_count2 = 0;
252b5132
RH
4326 }
4327
4328 _bfd_elf_assign_file_positions_for_relocs (abfd);
4329
4330 /* We have now assigned file positions for all the sections except
4331 .symtab and .strtab. We start the .symtab section at the current
4332 file position, and write directly to it. We build the .strtab
4333 section in memory. */
4334 bfd_get_symcount (abfd) = 0;
4335 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4336 /* sh_name is set in prep_headers. */
4337 symtab_hdr->sh_type = SHT_SYMTAB;
4338 symtab_hdr->sh_flags = 0;
4339 symtab_hdr->sh_addr = 0;
4340 symtab_hdr->sh_size = 0;
4341 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4342 /* sh_link is set in assign_section_numbers. */
4343 /* sh_info is set below. */
4344 /* sh_offset is set just below. */
4345 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4346
4347 off = elf_tdata (abfd)->next_file_pos;
4348 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4349
4350 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4351 incorrect. We do not yet know the size of the .symtab section.
4352 We correct next_file_pos below, after we do know the size. */
4353
4354 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4355 continuously seeking to the right position in the file. */
4356 if (! info->keep_memory || max_sym_count < 20)
4357 finfo.symbuf_size = 20;
4358 else
4359 finfo.symbuf_size = max_sym_count;
4360 finfo.symbuf = ((Elf_External_Sym *)
4361 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4362 if (finfo.symbuf == NULL)
4363 goto error_return;
4364
4365 /* Start writing out the symbol table. The first symbol is always a
4366 dummy symbol. */
a712da20 4367 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4368 {
4369 elfsym.st_value = 0;
4370 elfsym.st_size = 0;
4371 elfsym.st_info = 0;
4372 elfsym.st_other = 0;
4373 elfsym.st_shndx = SHN_UNDEF;
4374 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4375 &elfsym, bfd_und_section_ptr))
4376 goto error_return;
4377 }
4378
4379#if 0
4380 /* Some standard ELF linkers do this, but we don't because it causes
4381 bootstrap comparison failures. */
4382 /* Output a file symbol for the output file as the second symbol.
4383 We output this even if we are discarding local symbols, although
4384 I'm not sure if this is correct. */
4385 elfsym.st_value = 0;
4386 elfsym.st_size = 0;
4387 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4388 elfsym.st_other = 0;
4389 elfsym.st_shndx = SHN_ABS;
4390 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4391 &elfsym, bfd_abs_section_ptr))
4392 goto error_return;
4393#endif
4394
4395 /* Output a symbol for each section. We output these even if we are
4396 discarding local symbols, since they are used for relocs. These
4397 symbols have no names. We store the index of each one in the
4398 index field of the section, so that we can find it again when
4399 outputting relocs. */
a712da20 4400 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4401 {
4402 elfsym.st_size = 0;
4403 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4404 elfsym.st_other = 0;
4405 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4406 {
4407 o = section_from_elf_index (abfd, i);
4408 if (o != NULL)
4409 o->target_index = bfd_get_symcount (abfd);
4410 elfsym.st_shndx = i;
7ad34365 4411 if (info->relocateable || o == NULL)
252b5132
RH
4412 elfsym.st_value = 0;
4413 else
4414 elfsym.st_value = o->vma;
4415 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4416 &elfsym, o))
4417 goto error_return;
4418 }
4419 }
4420
4421 /* Allocate some memory to hold information read in from the input
4422 files. */
4423 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4424 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4425 finfo.internal_relocs = ((Elf_Internal_Rela *)
4426 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4427 * sizeof (Elf_Internal_Rela)
4428 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4429 finfo.external_syms = ((Elf_External_Sym *)
4430 bfd_malloc (max_sym_count
4431 * sizeof (Elf_External_Sym)));
4432 finfo.internal_syms = ((Elf_Internal_Sym *)
4433 bfd_malloc (max_sym_count
4434 * sizeof (Elf_Internal_Sym)));
4435 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4436 finfo.sections = ((asection **)
4437 bfd_malloc (max_sym_count * sizeof (asection *)));
4438 if ((finfo.contents == NULL && max_contents_size != 0)
4439 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4440 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4441 || (finfo.external_syms == NULL && max_sym_count != 0)
4442 || (finfo.internal_syms == NULL && max_sym_count != 0)
4443 || (finfo.indices == NULL && max_sym_count != 0)
4444 || (finfo.sections == NULL && max_sym_count != 0))
4445 goto error_return;
4446
4447 /* Since ELF permits relocations to be against local symbols, we
4448 must have the local symbols available when we do the relocations.
4449 Since we would rather only read the local symbols once, and we
4450 would rather not keep them in memory, we handle all the
4451 relocations for a single input file at the same time.
4452
4453 Unfortunately, there is no way to know the total number of local
4454 symbols until we have seen all of them, and the local symbol
4455 indices precede the global symbol indices. This means that when
4456 we are generating relocateable output, and we see a reloc against
4457 a global symbol, we can not know the symbol index until we have
4458 finished examining all the local symbols to see which ones we are
4459 going to output. To deal with this, we keep the relocations in
4460 memory, and don't output them until the end of the link. This is
4461 an unfortunate waste of memory, but I don't see a good way around
4462 it. Fortunately, it only happens when performing a relocateable
4463 link, which is not the common case. FIXME: If keep_memory is set
4464 we could write the relocs out and then read them again; I don't
4465 know how bad the memory loss will be. */
4466
4467 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4468 sub->output_has_begun = false;
4469 for (o = abfd->sections; o != NULL; o = o->next)
4470 {
4471 for (p = o->link_order_head; p != NULL; p = p->next)
4472 {
4473 if (p->type == bfd_indirect_link_order
4474 && (bfd_get_flavour (p->u.indirect.section->owner)
4475 == bfd_target_elf_flavour))
4476 {
4477 sub = p->u.indirect.section->owner;
4478 if (! sub->output_has_begun)
4479 {
4480 if (! elf_link_input_bfd (&finfo, sub))
4481 goto error_return;
4482 sub->output_has_begun = true;
4483 }
4484 }
4485 else if (p->type == bfd_section_reloc_link_order
4486 || p->type == bfd_symbol_reloc_link_order)
4487 {
4488 if (! elf_reloc_link_order (abfd, info, o, p))
4489 goto error_return;
4490 }
4491 else
4492 {
4493 if (! _bfd_default_link_order (abfd, info, o, p))
4494 goto error_return;
4495 }
4496 }
4497 }
4498
4499 /* That wrote out all the local symbols. Finish up the symbol table
5cc7c785
L
4500 with the global symbols. Even if we want to strip everything we
4501 can, we still need to deal with those global symbols that got
4502 converted to local in a version script. */
252b5132 4503
2bd171e0 4504 if (info->shared)
252b5132
RH
4505 {
4506 /* Output any global symbols that got converted to local in a
4507 version script. We do this in a separate step since ELF
4508 requires all local symbols to appear prior to any global
4509 symbols. FIXME: We should only do this if some global
4510 symbols were, in fact, converted to become local. FIXME:
4511 Will this work correctly with the Irix 5 linker? */
4512 eoinfo.failed = false;
4513 eoinfo.finfo = &finfo;
4514 eoinfo.localsyms = true;
4515 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4516 (PTR) &eoinfo);
4517 if (eoinfo.failed)
4518 return false;
4519 }
4520
30b30c21 4521 /* The sh_info field records the index of the first non local symbol. */
252b5132 4522 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4523
252b5132 4524 if (dynamic)
30b30c21
RH
4525 {
4526 Elf_Internal_Sym sym;
4527 Elf_External_Sym *dynsym =
4528 (Elf_External_Sym *)finfo.dynsym_sec->contents;
71a40b32 4529 long last_local = 0;
30b30c21
RH
4530
4531 /* Write out the section symbols for the output sections. */
4532 if (info->shared)
4533 {
4534 asection *s;
4535
4536 sym.st_size = 0;
4537 sym.st_name = 0;
4538 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4539 sym.st_other = 0;
4540
4541 for (s = abfd->sections; s != NULL; s = s->next)
4542 {
4543 int indx;
4544 indx = elf_section_data (s)->this_idx;
4545 BFD_ASSERT (indx > 0);
4546 sym.st_shndx = indx;
4547 sym.st_value = s->vma;
4548
4549 elf_swap_symbol_out (abfd, &sym,
4550 dynsym + elf_section_data (s)->dynindx);
4551 }
4552
4553 last_local = bfd_count_sections (abfd);
4554 }
4555
4556 /* Write out the local dynsyms. */
4557 if (elf_hash_table (info)->dynlocal)
4558 {
4559 struct elf_link_local_dynamic_entry *e;
4560 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4561 {
318da145 4562 asection *s;
30b30c21 4563
b037af20
MM
4564 sym.st_size = e->isym.st_size;
4565 sym.st_other = e->isym.st_other;
4566
1fa0ddb3
RH
4567 /* Copy the internal symbol as is.
4568 Note that we saved a word of storage and overwrote
30b30c21 4569 the original st_name with the dynstr_index. */
1fa0ddb3 4570 sym = e->isym;
30b30c21 4571
1fa0ddb3 4572 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
587ff49e
RH
4573 {
4574 s = bfd_section_from_elf_index (e->input_bfd,
4575 e->isym.st_shndx);
4576
4577 sym.st_shndx =
4578 elf_section_data (s->output_section)->this_idx;
4579 sym.st_value = (s->output_section->vma
4580 + s->output_offset
4581 + e->isym.st_value);
4582 }
30b30c21
RH
4583
4584 if (last_local < e->dynindx)
4585 last_local = e->dynindx;
4586
4587 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4588 }
4589 }
4590
71a40b32
ILT
4591 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4592 last_local + 1;
30b30c21 4593 }
252b5132
RH
4594
4595 /* We get the global symbols from the hash table. */
4596 eoinfo.failed = false;
4597 eoinfo.localsyms = false;
4598 eoinfo.finfo = &finfo;
4599 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4600 (PTR) &eoinfo);
4601 if (eoinfo.failed)
4602 return false;
4603
587ff49e
RH
4604 /* If backend needs to output some symbols not present in the hash
4605 table, do it now. */
4606 if (bed->elf_backend_output_arch_syms)
4607 {
4608 if (! (*bed->elf_backend_output_arch_syms)
4609 (abfd, info, (PTR) &finfo,
4610 (boolean (*) PARAMS ((PTR, const char *,
4611 Elf_Internal_Sym *, asection *)))
4612 elf_link_output_sym))
4613 return false;
4614 }
4615
252b5132
RH
4616 /* Flush all symbols to the file. */
4617 if (! elf_link_flush_output_syms (&finfo))
4618 return false;
4619
4620 /* Now we know the size of the symtab section. */
4621 off += symtab_hdr->sh_size;
4622
4623 /* Finish up and write out the symbol string table (.strtab)
4624 section. */
4625 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4626 /* sh_name was set in prep_headers. */
4627 symstrtab_hdr->sh_type = SHT_STRTAB;
4628 symstrtab_hdr->sh_flags = 0;
4629 symstrtab_hdr->sh_addr = 0;
4630 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4631 symstrtab_hdr->sh_entsize = 0;
4632 symstrtab_hdr->sh_link = 0;
4633 symstrtab_hdr->sh_info = 0;
4634 /* sh_offset is set just below. */
4635 symstrtab_hdr->sh_addralign = 1;
4636
4637 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4638 elf_tdata (abfd)->next_file_pos = off;
4639
4640 if (bfd_get_symcount (abfd) > 0)
4641 {
4642 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4643 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4644 return false;
4645 }
4646
4647 /* Adjust the relocs to have the correct symbol indices. */
4648 for (o = abfd->sections; o != NULL; o = o->next)
4649 {
252b5132
RH
4650 if ((o->flags & SEC_RELOC) == 0)
4651 continue;
4652
31367b81
MM
4653 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4654 elf_section_data (o)->rel_count,
4655 elf_section_data (o)->rel_hashes);
4656 if (elf_section_data (o)->rel_hdr2 != NULL)
4657 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4658 elf_section_data (o)->rel_count2,
4659 (elf_section_data (o)->rel_hashes
4660 + elf_section_data (o)->rel_count));
252b5132
RH
4661
4662 /* Set the reloc_count field to 0 to prevent write_relocs from
4663 trying to swap the relocs out itself. */
4664 o->reloc_count = 0;
4665 }
4666
4667 /* If we are linking against a dynamic object, or generating a
4668 shared library, finish up the dynamic linking information. */
4669 if (dynamic)
4670 {
4671 Elf_External_Dyn *dyncon, *dynconend;
4672
4673 /* Fix up .dynamic entries. */
4674 o = bfd_get_section_by_name (dynobj, ".dynamic");
4675 BFD_ASSERT (o != NULL);
4676
4677 dyncon = (Elf_External_Dyn *) o->contents;
4678 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4679 for (; dyncon < dynconend; dyncon++)
4680 {
4681 Elf_Internal_Dyn dyn;
4682 const char *name;
4683 unsigned int type;
4684
4685 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4686
4687 switch (dyn.d_tag)
4688 {
4689 default:
4690 break;
252b5132 4691 case DT_INIT:
f0c2e336 4692 name = info->init_function;
252b5132
RH
4693 goto get_sym;
4694 case DT_FINI:
f0c2e336 4695 name = info->fini_function;
252b5132
RH
4696 get_sym:
4697 {
4698 struct elf_link_hash_entry *h;
4699
4700 h = elf_link_hash_lookup (elf_hash_table (info), name,
4701 false, false, true);
4702 if (h != NULL
4703 && (h->root.type == bfd_link_hash_defined
4704 || h->root.type == bfd_link_hash_defweak))
4705 {
4706 dyn.d_un.d_val = h->root.u.def.value;
4707 o = h->root.u.def.section;
4708 if (o->output_section != NULL)
4709 dyn.d_un.d_val += (o->output_section->vma
4710 + o->output_offset);
4711 else
4712 {
4713 /* The symbol is imported from another shared
4714 library and does not apply to this one. */
4715 dyn.d_un.d_val = 0;
4716 }
4717
4718 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4719 }
4720 }
4721 break;
4722
4723 case DT_HASH:
4724 name = ".hash";
4725 goto get_vma;
4726 case DT_STRTAB:
4727 name = ".dynstr";
4728 goto get_vma;
4729 case DT_SYMTAB:
4730 name = ".dynsym";
4731 goto get_vma;
4732 case DT_VERDEF:
4733 name = ".gnu.version_d";
4734 goto get_vma;
4735 case DT_VERNEED:
4736 name = ".gnu.version_r";
4737 goto get_vma;
4738 case DT_VERSYM:
4739 name = ".gnu.version";
4740 get_vma:
4741 o = bfd_get_section_by_name (abfd, name);
4742 BFD_ASSERT (o != NULL);
4743 dyn.d_un.d_ptr = o->vma;
4744 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4745 break;
4746
4747 case DT_REL:
4748 case DT_RELA:
4749 case DT_RELSZ:
4750 case DT_RELASZ:
4751 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4752 type = SHT_REL;
4753 else
4754 type = SHT_RELA;
4755 dyn.d_un.d_val = 0;
4756 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4757 {
4758 Elf_Internal_Shdr *hdr;
4759
4760 hdr = elf_elfsections (abfd)[i];
4761 if (hdr->sh_type == type
4762 && (hdr->sh_flags & SHF_ALLOC) != 0)
4763 {
4764 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4765 dyn.d_un.d_val += hdr->sh_size;
4766 else
4767 {
4768 if (dyn.d_un.d_val == 0
4769 || hdr->sh_addr < dyn.d_un.d_val)
4770 dyn.d_un.d_val = hdr->sh_addr;
4771 }
4772 }
4773 }
4774 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4775 break;
4776 }
4777 }
4778 }
4779
4780 /* If we have created any dynamic sections, then output them. */
4781 if (dynobj != NULL)
4782 {
4783 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4784 goto error_return;
4785
4786 for (o = dynobj->sections; o != NULL; o = o->next)
4787 {
4788 if ((o->flags & SEC_HAS_CONTENTS) == 0
4789 || o->_raw_size == 0)
4790 continue;
4791 if ((o->flags & SEC_LINKER_CREATED) == 0)
4792 {
4793 /* At this point, we are only interested in sections
4794 created by elf_link_create_dynamic_sections. */
4795 continue;
4796 }
4797 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4798 != SHT_STRTAB)
4799 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4800 {
4801 if (! bfd_set_section_contents (abfd, o->output_section,
4802 o->contents, o->output_offset,
4803 o->_raw_size))
4804 goto error_return;
4805 }
4806 else
4807 {
4808 file_ptr off;
4809
4810 /* The contents of the .dynstr section are actually in a
4811 stringtab. */
4812 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4813 if (bfd_seek (abfd, off, SEEK_SET) != 0
4814 || ! _bfd_stringtab_emit (abfd,
4815 elf_hash_table (info)->dynstr))
4816 goto error_return;
4817 }
4818 }
4819 }
4820
4821 /* If we have optimized stabs strings, output them. */
4822 if (elf_hash_table (info)->stab_info != NULL)
4823 {
4824 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4825 goto error_return;
4826 }
4827
4828 if (finfo.symstrtab != NULL)
4829 _bfd_stringtab_free (finfo.symstrtab);
4830 if (finfo.contents != NULL)
4831 free (finfo.contents);
4832 if (finfo.external_relocs != NULL)
4833 free (finfo.external_relocs);
4834 if (finfo.internal_relocs != NULL)
4835 free (finfo.internal_relocs);
4836 if (finfo.external_syms != NULL)
4837 free (finfo.external_syms);
4838 if (finfo.internal_syms != NULL)
4839 free (finfo.internal_syms);
4840 if (finfo.indices != NULL)
4841 free (finfo.indices);
4842 if (finfo.sections != NULL)
4843 free (finfo.sections);
4844 if (finfo.symbuf != NULL)
4845 free (finfo.symbuf);
4846 for (o = abfd->sections; o != NULL; o = o->next)
4847 {
4848 if ((o->flags & SEC_RELOC) != 0
4849 && elf_section_data (o)->rel_hashes != NULL)
4850 free (elf_section_data (o)->rel_hashes);
4851 }
4852
4853 elf_tdata (abfd)->linker = true;
4854
4855 return true;
4856
4857 error_return:
4858 if (finfo.symstrtab != NULL)
4859 _bfd_stringtab_free (finfo.symstrtab);
4860 if (finfo.contents != NULL)
4861 free (finfo.contents);
4862 if (finfo.external_relocs != NULL)
4863 free (finfo.external_relocs);
4864 if (finfo.internal_relocs != NULL)
4865 free (finfo.internal_relocs);
4866 if (finfo.external_syms != NULL)
4867 free (finfo.external_syms);
4868 if (finfo.internal_syms != NULL)
4869 free (finfo.internal_syms);
4870 if (finfo.indices != NULL)
4871 free (finfo.indices);
4872 if (finfo.sections != NULL)
4873 free (finfo.sections);
4874 if (finfo.symbuf != NULL)
4875 free (finfo.symbuf);
4876 for (o = abfd->sections; o != NULL; o = o->next)
4877 {
4878 if ((o->flags & SEC_RELOC) != 0
4879 && elf_section_data (o)->rel_hashes != NULL)
4880 free (elf_section_data (o)->rel_hashes);
4881 }
4882
4883 return false;
4884}
4885
4886/* Add a symbol to the output symbol table. */
4887
4888static boolean
4889elf_link_output_sym (finfo, name, elfsym, input_sec)
4890 struct elf_final_link_info *finfo;
4891 const char *name;
4892 Elf_Internal_Sym *elfsym;
4893 asection *input_sec;
4894{
4895 boolean (*output_symbol_hook) PARAMS ((bfd *,
4896 struct bfd_link_info *info,
4897 const char *,
4898 Elf_Internal_Sym *,
4899 asection *));
4900
4901 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4902 elf_backend_link_output_symbol_hook;
4903 if (output_symbol_hook != NULL)
4904 {
4905 if (! ((*output_symbol_hook)
4906 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4907 return false;
4908 }
4909
4910 if (name == (const char *) NULL || *name == '\0')
4911 elfsym->st_name = 0;
4912 else if (input_sec->flags & SEC_EXCLUDE)
4913 elfsym->st_name = 0;
4914 else
4915 {
4916 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4917 name, true,
4918 false);
4919 if (elfsym->st_name == (unsigned long) -1)
4920 return false;
4921 }
4922
4923 if (finfo->symbuf_count >= finfo->symbuf_size)
4924 {
4925 if (! elf_link_flush_output_syms (finfo))
4926 return false;
4927 }
4928
4929 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4930 (PTR) (finfo->symbuf + finfo->symbuf_count));
4931 ++finfo->symbuf_count;
4932
4933 ++ bfd_get_symcount (finfo->output_bfd);
4934
4935 return true;
4936}
4937
4938/* Flush the output symbols to the file. */
4939
4940static boolean
4941elf_link_flush_output_syms (finfo)
4942 struct elf_final_link_info *finfo;
4943{
4944 if (finfo->symbuf_count > 0)
4945 {
4946 Elf_Internal_Shdr *symtab;
4947
4948 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4949
4950 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4951 SEEK_SET) != 0
4952 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4953 sizeof (Elf_External_Sym), finfo->output_bfd)
4954 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4955 return false;
4956
4957 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4958
4959 finfo->symbuf_count = 0;
4960 }
4961
4962 return true;
4963}
4964
4965/* Add an external symbol to the symbol table. This is called from
4966 the hash table traversal routine. When generating a shared object,
4967 we go through the symbol table twice. The first time we output
4968 anything that might have been forced to local scope in a version
4969 script. The second time we output the symbols that are still
4970 global symbols. */
4971
4972static boolean
4973elf_link_output_extsym (h, data)
4974 struct elf_link_hash_entry *h;
4975 PTR data;
4976{
4977 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4978 struct elf_final_link_info *finfo = eoinfo->finfo;
4979 boolean strip;
4980 Elf_Internal_Sym sym;
4981 asection *input_sec;
4982
4983 /* Decide whether to output this symbol in this pass. */
4984 if (eoinfo->localsyms)
4985 {
4986 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4987 return true;
4988 }
4989 else
4990 {
4991 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4992 return true;
4993 }
4994
4995 /* If we are not creating a shared library, and this symbol is
4996 referenced by a shared library but is not defined anywhere, then
4997 warn that it is undefined. If we do not do this, the runtime
4998 linker will complain that the symbol is undefined when the
4999 program is run. We don't have to worry about symbols that are
5000 referenced by regular files, because we will already have issued
5001 warnings for them. */
5002 if (! finfo->info->relocateable
5003 && ! (finfo->info->shared
252b5132
RH
5004 && !finfo->info->no_undefined)
5005 && h->root.type == bfd_link_hash_undefined
5006 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5007 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5008 {
5009 if (! ((*finfo->info->callbacks->undefined_symbol)
5010 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5cc7c785 5011 (asection *) NULL, 0, true)))
252b5132
RH
5012 {
5013 eoinfo->failed = true;
5014 return false;
5015 }
5016 }
5017
5018 /* We don't want to output symbols that have never been mentioned by
5019 a regular file, or that we have been told to strip. However, if
5020 h->indx is set to -2, the symbol is used by a reloc and we must
5021 output it. */
5022 if (h->indx == -2)
5023 strip = false;
5024 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5025 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5026 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5027 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5028 strip = true;
5029 else if (finfo->info->strip == strip_all
5030 || (finfo->info->strip == strip_some
5031 && bfd_hash_lookup (finfo->info->keep_hash,
5032 h->root.root.string,
5033 false, false) == NULL))
5034 strip = true;
5035 else
5036 strip = false;
5037
5038 /* If we're stripping it, and it's not a dynamic symbol, there's
2bd171e0
ILT
5039 nothing else to do unless it is a forced local symbol. */
5040 if (strip
5041 && h->dynindx == -1
5042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
252b5132
RH
5043 return true;
5044
5045 sym.st_value = 0;
5046 sym.st_size = h->size;
5047 sym.st_other = h->other;
5048 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5049 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5050 else if (h->root.type == bfd_link_hash_undefweak
5051 || h->root.type == bfd_link_hash_defweak)
5052 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5053 else
5054 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5055
5056 switch (h->root.type)
5057 {
5058 default:
5059 case bfd_link_hash_new:
5060 abort ();
5061 return false;
5062
5063 case bfd_link_hash_undefined:
5064 input_sec = bfd_und_section_ptr;
5065 sym.st_shndx = SHN_UNDEF;
5066 break;
5067
5068 case bfd_link_hash_undefweak:
5069 input_sec = bfd_und_section_ptr;
5070 sym.st_shndx = SHN_UNDEF;
5071 break;
5072
5073 case bfd_link_hash_defined:
5074 case bfd_link_hash_defweak:
5075 {
5076 input_sec = h->root.u.def.section;
5077 if (input_sec->output_section != NULL)
5078 {
5079 sym.st_shndx =
5080 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5081 input_sec->output_section);
5082 if (sym.st_shndx == (unsigned short) -1)
5083 {
5084 (*_bfd_error_handler)
5085 (_("%s: could not find output section %s for input section %s"),
5086 bfd_get_filename (finfo->output_bfd),
5087 input_sec->output_section->name,
5088 input_sec->name);
5089 eoinfo->failed = true;
5090 return false;
5091 }
5092
5093 /* ELF symbols in relocateable files are section relative,
5094 but in nonrelocateable files they are virtual
5095 addresses. */
5096 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5097 if (! finfo->info->relocateable)
5098 sym.st_value += input_sec->output_section->vma;
5099 }
5100 else
5101 {
5102 BFD_ASSERT (input_sec->owner == NULL
5103 || (input_sec->owner->flags & DYNAMIC) != 0);
5104 sym.st_shndx = SHN_UNDEF;
5105 input_sec = bfd_und_section_ptr;
5106 }
5107 }
5108 break;
5109
5110 case bfd_link_hash_common:
5111 input_sec = h->root.u.c.p->section;
5112 sym.st_shndx = SHN_COMMON;
5113 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5114 break;
5115
5116 case bfd_link_hash_indirect:
5117 /* These symbols are created by symbol versioning. They point
5118 to the decorated version of the name. For example, if the
5119 symbol foo@@GNU_1.2 is the default, which should be used when
5120 foo is used with no version, then we add an indirect symbol
5121 foo which points to foo@@GNU_1.2. We ignore these symbols,
94b6c40a
L
5122 since the indirected symbol is already in the hash table. */
5123 return true;
252b5132 5124
252b5132
RH
5125 case bfd_link_hash_warning:
5126 /* We can't represent these symbols in ELF, although a warning
5127 symbol may have come from a .gnu.warning.SYMBOL section. We
5128 just put the target symbol in the hash table. If the target
5129 symbol does not really exist, don't do anything. */
5130 if (h->root.u.i.link->type == bfd_link_hash_new)
5131 return true;
5132 return (elf_link_output_extsym
5133 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5134 }
5135
5136 /* Give the processor backend a chance to tweak the symbol value,
5137 and also to finish up anything that needs to be done for this
5138 symbol. */
5139 if ((h->dynindx != -1
5140 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5141 && elf_hash_table (finfo->info)->dynamic_sections_created)
5142 {
5143 struct elf_backend_data *bed;
5144
5145 bed = get_elf_backend_data (finfo->output_bfd);
5146 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5147 (finfo->output_bfd, finfo->info, h, &sym)))
5148 {
5149 eoinfo->failed = true;
5150 return false;
5151 }
5152 }
5153
5154 /* If we are marking the symbol as undefined, and there are no
5155 non-weak references to this symbol from a regular object, then
91d3970e
ILT
5156 mark the symbol as weak undefined; if there are non-weak
5157 references, mark the symbol as strong. We can't do this earlier,
252b5132
RH
5158 because it might not be marked as undefined until the
5159 finish_dynamic_symbol routine gets through with it. */
5160 if (sym.st_shndx == SHN_UNDEF
252b5132 5161 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
91d3970e
ILT
5162 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5163 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5164 {
5165 int bindtype;
5166
5167 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5168 bindtype = STB_GLOBAL;
5169 else
5170 bindtype = STB_WEAK;
5171 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5172 }
252b5132 5173
32c092c3
L
5174 /* If a symbol is not defined locally, we clear the visibility
5175 field. */
5176 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5177 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5178
252b5132
RH
5179 /* If this symbol should be put in the .dynsym section, then put it
5180 there now. We have already know the symbol index. We also fill
5181 in the entry in the .hash section. */
5182 if (h->dynindx != -1
5183 && elf_hash_table (finfo->info)->dynamic_sections_created)
5184 {
5185 size_t bucketcount;
5186 size_t bucket;
c7ac6ff8 5187 size_t hash_entry_size;
252b5132
RH
5188 bfd_byte *bucketpos;
5189 bfd_vma chain;
5190
5191 sym.st_name = h->dynstr_index;
5192
5193 elf_swap_symbol_out (finfo->output_bfd, &sym,
5194 (PTR) (((Elf_External_Sym *)
5195 finfo->dynsym_sec->contents)
5196 + h->dynindx));
5197
5198 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5199 bucket = h->elf_hash_value % bucketcount;
c7ac6ff8
MM
5200 hash_entry_size
5201 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 5202 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
5203 + (bucket + 2) * hash_entry_size);
5204 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5205 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5206 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5207 ((bfd_byte *) finfo->hash_sec->contents
5208 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
5209
5210 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5211 {
5212 Elf_Internal_Versym iversym;
5213
5214 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5215 {
5216 if (h->verinfo.verdef == NULL)
5217 iversym.vs_vers = 0;
5218 else
5219 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5220 }
5221 else
5222 {
5223 if (h->verinfo.vertree == NULL)
5224 iversym.vs_vers = 1;
5225 else
5226 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5227 }
5228
5229 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5230 iversym.vs_vers |= VERSYM_HIDDEN;
5231
5232 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5233 (((Elf_External_Versym *)
5234 finfo->symver_sec->contents)
5235 + h->dynindx));
5236 }
5237 }
5238
5239 /* If we're stripping it, then it was just a dynamic symbol, and
5240 there's nothing else to do. */
5241 if (strip)
5242 return true;
5243
5244 h->indx = bfd_get_symcount (finfo->output_bfd);
5245
5246 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5247 {
5248 eoinfo->failed = true;
5249 return false;
5250 }
5251
5252 return true;
5253}
5254
23bc299b
MM
5255/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5256 originated from the section given by INPUT_REL_HDR) to the
5257 OUTPUT_BFD. */
5258
5259static void
5260elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5261 internal_relocs)
5262 bfd *output_bfd;
5263 asection *input_section;
5264 Elf_Internal_Shdr *input_rel_hdr;
5265 Elf_Internal_Rela *internal_relocs;
5266{
5267 Elf_Internal_Rela *irela;
5268 Elf_Internal_Rela *irelaend;
5269 Elf_Internal_Shdr *output_rel_hdr;
5270 asection *output_section;
7442e600 5271 unsigned int *rel_countp = NULL;
32f0787a 5272 struct elf_backend_data *bed;
23bc299b
MM
5273
5274 output_section = input_section->output_section;
5275 output_rel_hdr = NULL;
5276
5277 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5278 == input_rel_hdr->sh_entsize)
5279 {
5280 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5281 rel_countp = &elf_section_data (output_section)->rel_count;
5282 }
5283 else if (elf_section_data (output_section)->rel_hdr2
5284 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5285 == input_rel_hdr->sh_entsize))
5286 {
5287 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5288 rel_countp = &elf_section_data (output_section)->rel_count2;
5289 }
5290
5291 BFD_ASSERT (output_rel_hdr != NULL);
32f0787a
UC
5292
5293 bed = get_elf_backend_data (output_bfd);
23bc299b
MM
5294 irela = internal_relocs;
5295 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5296 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5297 {
5298 Elf_External_Rel *erel;
5299
5300 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5301 for (; irela < irelaend; irela++, erel++)
5302 {
5303 Elf_Internal_Rel irel;
5304
5305 irel.r_offset = irela->r_offset;
5306 irel.r_info = irela->r_info;
5307 BFD_ASSERT (irela->r_addend == 0);
32f0787a
UC
5308 if (bed->s->swap_reloc_out)
5309 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5310 else
5311 elf_swap_reloc_out (output_bfd, &irel, erel);
23bc299b
MM
5312 }
5313 }
5314 else
5315 {
5316 Elf_External_Rela *erela;
5317
5318 BFD_ASSERT (input_rel_hdr->sh_entsize
5319 == sizeof (Elf_External_Rela));
5320 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5321 for (; irela < irelaend; irela++, erela++)
32f0787a
UC
5322 if (bed->s->swap_reloca_out)
5323 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5324 else
5325 elf_swap_reloca_out (output_bfd, irela, erela);
23bc299b
MM
5326 }
5327
5328 /* Bump the counter, so that we know where to add the next set of
5329 relocations. */
5330 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5331}
5332
252b5132
RH
5333/* Link an input file into the linker output file. This function
5334 handles all the sections and relocations of the input file at once.
5335 This is so that we only have to read the local symbols once, and
5336 don't have to keep them in memory. */
5337
5338static boolean
5339elf_link_input_bfd (finfo, input_bfd)
5340 struct elf_final_link_info *finfo;
5341 bfd *input_bfd;
5342{
5343 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5344 bfd *, asection *, bfd_byte *,
5345 Elf_Internal_Rela *,
5346 Elf_Internal_Sym *, asection **));
5347 bfd *output_bfd;
5348 Elf_Internal_Shdr *symtab_hdr;
5349 size_t locsymcount;
5350 size_t extsymoff;
5351 Elf_External_Sym *external_syms;
5352 Elf_External_Sym *esym;
5353 Elf_External_Sym *esymend;
5354 Elf_Internal_Sym *isym;
5355 long *pindex;
5356 asection **ppsection;
5357 asection *o;
c7ac6ff8 5358 struct elf_backend_data *bed;
252b5132
RH
5359
5360 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5361 bed = get_elf_backend_data (output_bfd);
5362 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5363
5364 /* If this is a dynamic object, we don't want to do anything here:
5365 we don't want the local symbols, and we don't want the section
5366 contents. */
5367 if ((input_bfd->flags & DYNAMIC) != 0)
5368 return true;
5369
5370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5371 if (elf_bad_symtab (input_bfd))
5372 {
5373 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5374 extsymoff = 0;
5375 }
5376 else
5377 {
5378 locsymcount = symtab_hdr->sh_info;
5379 extsymoff = symtab_hdr->sh_info;
5380 }
5381
5382 /* Read the local symbols. */
5383 if (symtab_hdr->contents != NULL)
5384 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5385 else if (locsymcount == 0)
5386 external_syms = NULL;
5387 else
5388 {
5389 external_syms = finfo->external_syms;
5390 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5391 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5392 locsymcount, input_bfd)
5393 != locsymcount * sizeof (Elf_External_Sym)))
5394 return false;
5395 }
5396
5397 /* Swap in the local symbols and write out the ones which we know
5398 are going into the output file. */
5399 esym = external_syms;
5400 esymend = esym + locsymcount;
5401 isym = finfo->internal_syms;
5402 pindex = finfo->indices;
5403 ppsection = finfo->sections;
5404 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5405 {
5406 asection *isec;
5407 const char *name;
5408 Elf_Internal_Sym osym;
5409
5410 elf_swap_symbol_in (input_bfd, esym, isym);
5411 *pindex = -1;
5412
5413 if (elf_bad_symtab (input_bfd))
5414 {
5415 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5416 {
5417 *ppsection = NULL;
5418 continue;
5419 }
5420 }
5421
5422 if (isym->st_shndx == SHN_UNDEF)
5423 isec = bfd_und_section_ptr;
5424 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5425 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5426 else if (isym->st_shndx == SHN_ABS)
5427 isec = bfd_abs_section_ptr;
5428 else if (isym->st_shndx == SHN_COMMON)
5429 isec = bfd_com_section_ptr;
5430 else
5431 {
5432 /* Who knows? */
5433 isec = NULL;
5434 }
5435
5436 *ppsection = isec;
5437
5438 /* Don't output the first, undefined, symbol. */
5439 if (esym == external_syms)
5440 continue;
5441
5442 /* If we are stripping all symbols, we don't want to output this
5443 one. */
5444 if (finfo->info->strip == strip_all)
5445 continue;
5446
5447 /* We never output section symbols. Instead, we use the section
5448 symbol of the corresponding section in the output file. */
5449 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5450 continue;
5451
5452 /* If we are discarding all local symbols, we don't want to
5453 output this one. If we are generating a relocateable output
5454 file, then some of the local symbols may be required by
5455 relocs; we output them below as we discover that they are
5456 needed. */
5457 if (finfo->info->discard == discard_all)
5458 continue;
5459
5460 /* If this symbol is defined in a section which we are
5461 discarding, we don't need to keep it, but note that
5462 linker_mark is only reliable for sections that have contents.
5463 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5464 as well as linker_mark. */
5465 if (isym->st_shndx > 0
5466 && isym->st_shndx < SHN_LORESERVE
5467 && isec != NULL
5468 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5469 || (! finfo->info->relocateable
5470 && (isec->flags & SEC_EXCLUDE) != 0)))
5471 continue;
5472
5473 /* Get the name of the symbol. */
5474 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5475 isym->st_name);
5476 if (name == NULL)
5477 return false;
5478
5479 /* See if we are discarding symbols with this name. */
5480 if ((finfo->info->strip == strip_some
5481 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5482 == NULL))
5483 || (finfo->info->discard == discard_l
5484 && bfd_is_local_label_name (input_bfd, name)))
5485 continue;
5486
5487 /* If we get here, we are going to output this symbol. */
5488
5489 osym = *isym;
5490
5491 /* Adjust the section index for the output file. */
5492 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5493 isec->output_section);
5494 if (osym.st_shndx == (unsigned short) -1)
5495 return false;
5496
5497 *pindex = bfd_get_symcount (output_bfd);
5498
5499 /* ELF symbols in relocateable files are section relative, but
5500 in executable files they are virtual addresses. Note that
5501 this code assumes that all ELF sections have an associated
5502 BFD section with a reasonable value for output_offset; below
5503 we assume that they also have a reasonable value for
5504 output_section. Any special sections must be set up to meet
5505 these requirements. */
5506 osym.st_value += isec->output_offset;
5507 if (! finfo->info->relocateable)
5508 osym.st_value += isec->output_section->vma;
5509
5510 if (! elf_link_output_sym (finfo, name, &osym, isec))
5511 return false;
5512 }
5513
5514 /* Relocate the contents of each section. */
5515 for (o = input_bfd->sections; o != NULL; o = o->next)
5516 {
5517 bfd_byte *contents;
5518
5519 if (! o->linker_mark)
5520 {
5521 /* This section was omitted from the link. */
5522 continue;
5523 }
5524
5525 if ((o->flags & SEC_HAS_CONTENTS) == 0
5526 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5527 continue;
5528
5529 if ((o->flags & SEC_LINKER_CREATED) != 0)
5530 {
5531 /* Section was created by elf_link_create_dynamic_sections
5532 or somesuch. */
5533 continue;
5534 }
5535
5536 /* Get the contents of the section. They have been cached by a
5537 relaxation routine. Note that o is a section in an input
5538 file, so the contents field will not have been set by any of
5539 the routines which work on output files. */
5540 if (elf_section_data (o)->this_hdr.contents != NULL)
5541 contents = elf_section_data (o)->this_hdr.contents;
5542 else
5543 {
5544 contents = finfo->contents;
5545 if (! bfd_get_section_contents (input_bfd, o, contents,
5546 (file_ptr) 0, o->_raw_size))
5547 return false;
5548 }
5549
5550 if ((o->flags & SEC_RELOC) != 0)
5551 {
5552 Elf_Internal_Rela *internal_relocs;
5553
5554 /* Get the swapped relocs. */
5555 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5556 (input_bfd, o, finfo->external_relocs,
5557 finfo->internal_relocs, false));
5558 if (internal_relocs == NULL
5559 && o->reloc_count > 0)
5560 return false;
5561
5562 /* Relocate the section by invoking a back end routine.
5563
5564 The back end routine is responsible for adjusting the
5565 section contents as necessary, and (if using Rela relocs
5566 and generating a relocateable output file) adjusting the
5567 reloc addend as necessary.
5568
5569 The back end routine does not have to worry about setting
5570 the reloc address or the reloc symbol index.
5571
5572 The back end routine is given a pointer to the swapped in
5573 internal symbols, and can access the hash table entries
5574 for the external symbols via elf_sym_hashes (input_bfd).
5575
5576 When generating relocateable output, the back end routine
5577 must handle STB_LOCAL/STT_SECTION symbols specially. The
5578 output symbol is going to be a section symbol
5579 corresponding to the output section, which will require
5580 the addend to be adjusted. */
5581
5582 if (! (*relocate_section) (output_bfd, finfo->info,
5583 input_bfd, o, contents,
5584 internal_relocs,
5585 finfo->internal_syms,
5586 finfo->sections))
5587 return false;
5588
a712da20 5589 if (finfo->info->relocateable || finfo->info->emitrelocations)
252b5132
RH
5590 {
5591 Elf_Internal_Rela *irela;
5592 Elf_Internal_Rela *irelaend;
5593 struct elf_link_hash_entry **rel_hash;
5594 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5595
5596 /* Adjust the reloc addresses and symbol indices. */
5597
5598 irela = internal_relocs;
c7ac6ff8
MM
5599 irelaend =
5600 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5601 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5602 + elf_section_data (o->output_section)->rel_count
5603 + elf_section_data (o->output_section)->rel_count2);
252b5132
RH
5604 for (; irela < irelaend; irela++, rel_hash++)
5605 {
5606 unsigned long r_symndx;
5607 Elf_Internal_Sym *isym;
5608 asection *sec;
5609
5610 irela->r_offset += o->output_offset;
5611
7ad34365
NC
5612 /* Relocs in an executable have to be virtual addresses. */
5613 if (finfo->info->emitrelocations)
5614 irela->r_offset += o->output_section->vma;
5615
252b5132
RH
5616 r_symndx = ELF_R_SYM (irela->r_info);
5617
5618 if (r_symndx == 0)
5619 continue;
5620
5621 if (r_symndx >= locsymcount
5622 || (elf_bad_symtab (input_bfd)
5623 && finfo->sections[r_symndx] == NULL))
5624 {
5625 struct elf_link_hash_entry *rh;
5626 long indx;
5627
5628 /* This is a reloc against a global symbol. We
5629 have not yet output all the local symbols, so
5630 we do not know the symbol index of any global
5631 symbol. We set the rel_hash entry for this
5632 reloc to point to the global hash table entry
5633 for this symbol. The symbol index is then
5634 set at the end of elf_bfd_final_link. */
5635 indx = r_symndx - extsymoff;
5636 rh = elf_sym_hashes (input_bfd)[indx];
5637 while (rh->root.type == bfd_link_hash_indirect
5638 || rh->root.type == bfd_link_hash_warning)
5639 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5640
5641 /* Setting the index to -2 tells
5642 elf_link_output_extsym that this symbol is
5643 used by a reloc. */
5644 BFD_ASSERT (rh->indx < 0);
5645 rh->indx = -2;
5646
5647 *rel_hash = rh;
5648
5649 continue;
5650 }
5651
5652 /* This is a reloc against a local symbol. */
5653
5654 *rel_hash = NULL;
5655 isym = finfo->internal_syms + r_symndx;
5656 sec = finfo->sections[r_symndx];
5657 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5658 {
5659 /* I suppose the backend ought to fill in the
5660 section of any STT_SECTION symbol against a
5661 processor specific section. If we have
5662 discarded a section, the output_section will
5663 be the absolute section. */
5664 if (sec != NULL
5665 && (bfd_is_abs_section (sec)
5666 || (sec->output_section != NULL
5667 && bfd_is_abs_section (sec->output_section))))
5668 r_symndx = 0;
5669 else if (sec == NULL || sec->owner == NULL)
5670 {
5671 bfd_set_error (bfd_error_bad_value);
5672 return false;
5673 }
5674 else
5675 {
5676 r_symndx = sec->output_section->target_index;
5677 BFD_ASSERT (r_symndx != 0);
5678 }
5679 }
5680 else
5681 {
5682 if (finfo->indices[r_symndx] == -1)
5683 {
5684 unsigned long link;
5685 const char *name;
5686 asection *osec;
5687
5688 if (finfo->info->strip == strip_all)
5689 {
5690 /* You can't do ld -r -s. */
5691 bfd_set_error (bfd_error_invalid_operation);
5692 return false;
5693 }
5694
5695 /* This symbol was skipped earlier, but
5696 since it is needed by a reloc, we
5697 must output it now. */
5698 link = symtab_hdr->sh_link;
5699 name = bfd_elf_string_from_elf_section (input_bfd,
5700 link,
5701 isym->st_name);
5702 if (name == NULL)
5703 return false;
5704
5705 osec = sec->output_section;
5706 isym->st_shndx =
5707 _bfd_elf_section_from_bfd_section (output_bfd,
5708 osec);
5709 if (isym->st_shndx == (unsigned short) -1)
5710 return false;
5711
5712 isym->st_value += sec->output_offset;
5713 if (! finfo->info->relocateable)
5714 isym->st_value += osec->vma;
5715
5716 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5717
5718 if (! elf_link_output_sym (finfo, name, isym, sec))
5719 return false;
5720 }
5721
5722 r_symndx = finfo->indices[r_symndx];
5723 }
5724
5725 irela->r_info = ELF_R_INFO (r_symndx,
5726 ELF_R_TYPE (irela->r_info));
5727 }
5728
5729 /* Swap out the relocs. */
5730 input_rel_hdr = &elf_section_data (o)->rel_hdr;
23bc299b
MM
5731 elf_link_output_relocs (output_bfd, o,
5732 input_rel_hdr,
5733 internal_relocs);
5734 internal_relocs
5735 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5736 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5737 if (input_rel_hdr)
5738 elf_link_output_relocs (output_bfd, o,
5739 input_rel_hdr,
5740 internal_relocs);
252b5132
RH
5741 }
5742 }
5743
5744 /* Write out the modified section contents. */
5745 if (elf_section_data (o)->stab_info == NULL)
5746 {
5747 if (! (o->flags & SEC_EXCLUDE) &&
5748 ! bfd_set_section_contents (output_bfd, o->output_section,
5749 contents, o->output_offset,
5750 (o->_cooked_size != 0
5751 ? o->_cooked_size
5752 : o->_raw_size)))
5753 return false;
5754 }
5755 else
5756 {
5757 if (! (_bfd_write_section_stabs
5758 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5759 o, &elf_section_data (o)->stab_info, contents)))
5760 return false;
5761 }
5762 }
5763
5764 return true;
5765}
5766
5767/* Generate a reloc when linking an ELF file. This is a reloc
5768 requested by the linker, and does come from any input file. This
5769 is used to build constructor and destructor tables when linking
5770 with -Ur. */
5771
5772static boolean
5773elf_reloc_link_order (output_bfd, info, output_section, link_order)
5774 bfd *output_bfd;
5775 struct bfd_link_info *info;
5776 asection *output_section;
5777 struct bfd_link_order *link_order;
5778{
5779 reloc_howto_type *howto;
5780 long indx;
5781 bfd_vma offset;
5782 bfd_vma addend;
5783 struct elf_link_hash_entry **rel_hash_ptr;
5784 Elf_Internal_Shdr *rel_hdr;
32f0787a 5785 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
252b5132
RH
5786
5787 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5788 if (howto == NULL)
5789 {
5790 bfd_set_error (bfd_error_bad_value);
5791 return false;
5792 }
5793
5794 addend = link_order->u.reloc.p->addend;
5795
5796 /* Figure out the symbol index. */
5797 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
5798 + elf_section_data (output_section)->rel_count
5799 + elf_section_data (output_section)->rel_count2);
252b5132
RH
5800 if (link_order->type == bfd_section_reloc_link_order)
5801 {
5802 indx = link_order->u.reloc.p->u.section->target_index;
5803 BFD_ASSERT (indx != 0);
5804 *rel_hash_ptr = NULL;
5805 }
5806 else
5807 {
5808 struct elf_link_hash_entry *h;
5809
5810 /* Treat a reloc against a defined symbol as though it were
5811 actually against the section. */
5812 h = ((struct elf_link_hash_entry *)
5813 bfd_wrapped_link_hash_lookup (output_bfd, info,
5814 link_order->u.reloc.p->u.name,
5815 false, false, true));
5816 if (h != NULL
5817 && (h->root.type == bfd_link_hash_defined
5818 || h->root.type == bfd_link_hash_defweak))
5819 {
5820 asection *section;
5821
5822 section = h->root.u.def.section;
5823 indx = section->output_section->target_index;
5824 *rel_hash_ptr = NULL;
5825 /* It seems that we ought to add the symbol value to the
5826 addend here, but in practice it has already been added
5827 because it was passed to constructor_callback. */
5828 addend += section->output_section->vma + section->output_offset;
5829 }
5830 else if (h != NULL)
5831 {
5832 /* Setting the index to -2 tells elf_link_output_extsym that
5833 this symbol is used by a reloc. */
5834 h->indx = -2;
5835 *rel_hash_ptr = h;
5836 indx = 0;
5837 }
5838 else
5839 {
5840 if (! ((*info->callbacks->unattached_reloc)
5841 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5842 (asection *) NULL, (bfd_vma) 0)))
5843 return false;
5844 indx = 0;
5845 }
5846 }
5847
5848 /* If this is an inplace reloc, we must write the addend into the
5849 object file. */
5850 if (howto->partial_inplace && addend != 0)
5851 {
5852 bfd_size_type size;
5853 bfd_reloc_status_type rstat;
5854 bfd_byte *buf;
5855 boolean ok;
5856
5857 size = bfd_get_reloc_size (howto);
5858 buf = (bfd_byte *) bfd_zmalloc (size);
5859 if (buf == (bfd_byte *) NULL)
5860 return false;
5861 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5862 switch (rstat)
5863 {
5864 case bfd_reloc_ok:
5865 break;
5866 default:
5867 case bfd_reloc_outofrange:
5868 abort ();
5869 case bfd_reloc_overflow:
5870 if (! ((*info->callbacks->reloc_overflow)
5871 (info,
5872 (link_order->type == bfd_section_reloc_link_order
5873 ? bfd_section_name (output_bfd,
5874 link_order->u.reloc.p->u.section)
5875 : link_order->u.reloc.p->u.name),
5876 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5877 (bfd_vma) 0)))
5878 {
5879 free (buf);
5880 return false;
5881 }
5882 break;
5883 }
5884 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5885 (file_ptr) link_order->offset, size);
5886 free (buf);
5887 if (! ok)
5888 return false;
5889 }
5890
5891 /* The address of a reloc is relative to the section in a
5892 relocateable file, and is a virtual address in an executable
5893 file. */
5894 offset = link_order->offset;
5895 if (! info->relocateable)
5896 offset += output_section->vma;
5897
5898 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5899
5900 if (rel_hdr->sh_type == SHT_REL)
5901 {
5902 Elf_Internal_Rel irel;
5903 Elf_External_Rel *erel;
5904
5905 irel.r_offset = offset;
5906 irel.r_info = ELF_R_INFO (indx, howto->type);
5907 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 5908 + elf_section_data (output_section)->rel_count);
32f0787a
UC
5909 if (bed->s->swap_reloc_out)
5910 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
5911 else
5912 elf_swap_reloc_out (output_bfd, &irel, erel);
252b5132
RH
5913 }
5914 else
5915 {
5916 Elf_Internal_Rela irela;
5917 Elf_External_Rela *erela;
5918
5919 irela.r_offset = offset;
5920 irela.r_info = ELF_R_INFO (indx, howto->type);
5921 irela.r_addend = addend;
5922 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 5923 + elf_section_data (output_section)->rel_count);
32f0787a
UC
5924 if (bed->s->swap_reloca_out)
5925 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
5926 else
5927 elf_swap_reloca_out (output_bfd, &irela, erela);
252b5132
RH
5928 }
5929
0525d26e 5930 ++elf_section_data (output_section)->rel_count;
252b5132
RH
5931
5932 return true;
5933}
5934
5935\f
5936/* Allocate a pointer to live in a linker created section. */
5937
5938boolean
5939elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5940 bfd *abfd;
5941 struct bfd_link_info *info;
5942 elf_linker_section_t *lsect;
5943 struct elf_link_hash_entry *h;
5944 const Elf_Internal_Rela *rel;
5945{
5946 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5947 elf_linker_section_pointers_t *linker_section_ptr;
5948 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5949
5950 BFD_ASSERT (lsect != NULL);
5951
5952 /* Is this a global symbol? */
5953 if (h != NULL)
5954 {
5955 /* Has this symbol already been allocated, if so, our work is done */
5956 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5957 rel->r_addend,
5958 lsect->which))
5959 return true;
5960
5961 ptr_linker_section_ptr = &h->linker_section_pointer;
5962 /* Make sure this symbol is output as a dynamic symbol. */
5963 if (h->dynindx == -1)
5964 {
5965 if (! elf_link_record_dynamic_symbol (info, h))
5966 return false;
5967 }
5968
5969 if (lsect->rel_section)
5970 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5971 }
5972
5973 else /* Allocation of a pointer to a local symbol */
5974 {
5975 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5976
5977 /* Allocate a table to hold the local symbols if first time */
5978 if (!ptr)
5979 {
5980 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5981 register unsigned int i;
5982
5983 ptr = (elf_linker_section_pointers_t **)
5984 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5985
5986 if (!ptr)
5987 return false;
5988
5989 elf_local_ptr_offsets (abfd) = ptr;
5990 for (i = 0; i < num_symbols; i++)
5991 ptr[i] = (elf_linker_section_pointers_t *)0;
5992 }
5993
5994 /* Has this symbol already been allocated, if so, our work is done */
5995 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5996 rel->r_addend,
5997 lsect->which))
5998 return true;
5999
6000 ptr_linker_section_ptr = &ptr[r_symndx];
6001
6002 if (info->shared)
6003 {
6004 /* If we are generating a shared object, we need to
6005 output a R_<xxx>_RELATIVE reloc so that the
6006 dynamic linker can adjust this GOT entry. */
6007 BFD_ASSERT (lsect->rel_section != NULL);
6008 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6009 }
6010 }
6011
6012 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6013 from internal memory. */
6014 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6015 linker_section_ptr = (elf_linker_section_pointers_t *)
6016 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6017
6018 if (!linker_section_ptr)
6019 return false;
6020
6021 linker_section_ptr->next = *ptr_linker_section_ptr;
6022 linker_section_ptr->addend = rel->r_addend;
6023 linker_section_ptr->which = lsect->which;
6024 linker_section_ptr->written_address_p = false;
6025 *ptr_linker_section_ptr = linker_section_ptr;
6026
6027#if 0
6028 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6029 {
6030 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6031 lsect->hole_offset += ARCH_SIZE / 8;
6032 lsect->sym_offset += ARCH_SIZE / 8;
6033 if (lsect->sym_hash) /* Bump up symbol value if needed */
6034 {
6035 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6036#ifdef DEBUG
6037 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6038 lsect->sym_hash->root.root.string,
6039 (long)ARCH_SIZE / 8,
6040 (long)lsect->sym_hash->root.u.def.value);
6041#endif
6042 }
6043 }
6044 else
6045#endif
6046 linker_section_ptr->offset = lsect->section->_raw_size;
6047
6048 lsect->section->_raw_size += ARCH_SIZE / 8;
6049
6050#ifdef DEBUG
6051 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6052 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6053#endif
6054
6055 return true;
6056}
6057
6058\f
6059#if ARCH_SIZE==64
6060#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6061#endif
6062#if ARCH_SIZE==32
6063#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6064#endif
6065
6066/* Fill in the address for a pointer generated in alinker section. */
6067
6068bfd_vma
6069elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6070 bfd *output_bfd;
6071 bfd *input_bfd;
6072 struct bfd_link_info *info;
6073 elf_linker_section_t *lsect;
6074 struct elf_link_hash_entry *h;
6075 bfd_vma relocation;
6076 const Elf_Internal_Rela *rel;
6077 int relative_reloc;
6078{
6079 elf_linker_section_pointers_t *linker_section_ptr;
6080
6081 BFD_ASSERT (lsect != NULL);
6082
6083 if (h != NULL) /* global symbol */
6084 {
6085 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6086 rel->r_addend,
6087 lsect->which);
6088
6089 BFD_ASSERT (linker_section_ptr != NULL);
6090
6091 if (! elf_hash_table (info)->dynamic_sections_created
6092 || (info->shared
6093 && info->symbolic
6094 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6095 {
6096 /* This is actually a static link, or it is a
6097 -Bsymbolic link and the symbol is defined
6098 locally. We must initialize this entry in the
6099 global section.
6100
6101 When doing a dynamic link, we create a .rela.<xxx>
6102 relocation entry to initialize the value. This
6103 is done in the finish_dynamic_symbol routine. */
6104 if (!linker_section_ptr->written_address_p)
6105 {
6106 linker_section_ptr->written_address_p = true;
6107 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6108 lsect->section->contents + linker_section_ptr->offset);
6109 }
6110 }
6111 }
6112 else /* local symbol */
6113 {
6114 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6115 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6116 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6117 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6118 rel->r_addend,
6119 lsect->which);
6120
6121 BFD_ASSERT (linker_section_ptr != NULL);
6122
6123 /* Write out pointer if it hasn't been rewritten out before */
6124 if (!linker_section_ptr->written_address_p)
6125 {
6126 linker_section_ptr->written_address_p = true;
6127 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6128 lsect->section->contents + linker_section_ptr->offset);
6129
6130 if (info->shared)
6131 {
6132 asection *srel = lsect->rel_section;
6133 Elf_Internal_Rela outrel;
6134
6135 /* We need to generate a relative reloc for the dynamic linker. */
6136 if (!srel)
6137 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6138 lsect->rel_name);
6139
6140 BFD_ASSERT (srel != NULL);
6141
6142 outrel.r_offset = (lsect->section->output_section->vma
6143 + lsect->section->output_offset
6144 + linker_section_ptr->offset);
6145 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6146 outrel.r_addend = 0;
6147 elf_swap_reloca_out (output_bfd, &outrel,
6148 (((Elf_External_Rela *)
6149 lsect->section->contents)
0525d26e
ILT
6150 + elf_section_data (lsect->section)->rel_count));
6151 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
6152 }
6153 }
6154 }
6155
6156 relocation = (lsect->section->output_offset
6157 + linker_section_ptr->offset
6158 - lsect->hole_offset
6159 - lsect->sym_offset);
6160
6161#ifdef DEBUG
6162 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6163 lsect->name, (long)relocation, (long)relocation);
6164#endif
6165
6166 /* Subtract out the addend, because it will get added back in by the normal
6167 processing. */
6168 return relocation - linker_section_ptr->addend;
6169}
6170\f
6171/* Garbage collect unused sections. */
6172
6173static boolean elf_gc_mark
6174 PARAMS ((struct bfd_link_info *info, asection *sec,
6175 asection * (*gc_mark_hook)
6176 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6177 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6178
6179static boolean elf_gc_sweep
6180 PARAMS ((struct bfd_link_info *info,
6181 boolean (*gc_sweep_hook)
6182 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6183 const Elf_Internal_Rela *relocs))));
6184
6185static boolean elf_gc_sweep_symbol
6186 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6187
6188static boolean elf_gc_allocate_got_offsets
6189 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6190
6191static boolean elf_gc_propagate_vtable_entries_used
6192 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6193
6194static boolean elf_gc_smash_unused_vtentry_relocs
6195 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6196
6197/* The mark phase of garbage collection. For a given section, mark
6198 it, and all the sections which define symbols to which it refers. */
6199
6200static boolean
6201elf_gc_mark (info, sec, gc_mark_hook)
6202 struct bfd_link_info *info;
6203 asection *sec;
6204 asection * (*gc_mark_hook)
6205 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6206 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6207{
6208 boolean ret = true;
6209
6210 sec->gc_mark = 1;
6211
6212 /* Look through the section relocs. */
6213
6214 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6215 {
6216 Elf_Internal_Rela *relstart, *rel, *relend;
6217 Elf_Internal_Shdr *symtab_hdr;
6218 struct elf_link_hash_entry **sym_hashes;
6219 size_t nlocsyms;
6220 size_t extsymoff;
6221 Elf_External_Sym *locsyms, *freesyms = NULL;
6222 bfd *input_bfd = sec->owner;
c7ac6ff8 6223 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
6224
6225 /* GCFIXME: how to arrange so that relocs and symbols are not
6226 reread continually? */
6227
6228 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6229 sym_hashes = elf_sym_hashes (input_bfd);
6230
6231 /* Read the local symbols. */
6232 if (elf_bad_symtab (input_bfd))
6233 {
6234 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6235 extsymoff = 0;
6236 }
6237 else
6238 extsymoff = nlocsyms = symtab_hdr->sh_info;
6239 if (symtab_hdr->contents)
6240 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6241 else if (nlocsyms == 0)
6242 locsyms = NULL;
6243 else
6244 {
6245 locsyms = freesyms =
6246 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6247 if (freesyms == NULL
6248 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6249 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6250 nlocsyms, input_bfd)
6251 != nlocsyms * sizeof (Elf_External_Sym)))
6252 {
6253 ret = false;
6254 goto out1;
6255 }
6256 }
6257
6258 /* Read the relocations. */
6259 relstart = (NAME(_bfd_elf,link_read_relocs)
6260 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6261 info->keep_memory));
6262 if (relstart == NULL)
6263 {
6264 ret = false;
6265 goto out1;
6266 }
c7ac6ff8 6267 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6268
6269 for (rel = relstart; rel < relend; rel++)
6270 {
6271 unsigned long r_symndx;
6272 asection *rsec;
6273 struct elf_link_hash_entry *h;
6274 Elf_Internal_Sym s;
6275
6276 r_symndx = ELF_R_SYM (rel->r_info);
6277 if (r_symndx == 0)
6278 continue;
6279
6280 if (elf_bad_symtab (sec->owner))
6281 {
6282 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6283 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6284 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6285 else
6286 {
6287 h = sym_hashes[r_symndx - extsymoff];
6288 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6289 }
6290 }
6291 else if (r_symndx >= nlocsyms)
6292 {
6293 h = sym_hashes[r_symndx - extsymoff];
6294 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6295 }
6296 else
6297 {
6298 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6299 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6300 }
6301
6302 if (rsec && !rsec->gc_mark)
6303 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6304 {
6305 ret = false;
6306 goto out2;
6307 }
6308 }
6309
6310 out2:
6311 if (!info->keep_memory)
6312 free (relstart);
6313 out1:
6314 if (freesyms)
6315 free (freesyms);
6316 }
6317
6318 return ret;
6319}
6320
6321/* The sweep phase of garbage collection. Remove all garbage sections. */
6322
6323static boolean
6324elf_gc_sweep (info, gc_sweep_hook)
6325 struct bfd_link_info *info;
6326 boolean (*gc_sweep_hook)
6327 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6328 const Elf_Internal_Rela *relocs));
6329{
6330 bfd *sub;
6331
6332 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6333 {
6334 asection *o;
6335
f6af82bd
AM
6336 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6337 continue;
6338
252b5132
RH
6339 for (o = sub->sections; o != NULL; o = o->next)
6340 {
6341 /* Keep special sections. Keep .debug sections. */
6342 if ((o->flags & SEC_LINKER_CREATED)
6343 || (o->flags & SEC_DEBUGGING))
6344 o->gc_mark = 1;
6345
6346 if (o->gc_mark)
6347 continue;
6348
6349 /* Skip sweeping sections already excluded. */
6350 if (o->flags & SEC_EXCLUDE)
6351 continue;
6352
6353 /* Since this is early in the link process, it is simple
6354 to remove a section from the output. */
6355 o->flags |= SEC_EXCLUDE;
6356
6357 /* But we also have to update some of the relocation
6358 info we collected before. */
6359 if (gc_sweep_hook
6360 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6361 {
6362 Elf_Internal_Rela *internal_relocs;
6363 boolean r;
6364
6365 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6366 (o->owner, o, NULL, NULL, info->keep_memory));
6367 if (internal_relocs == NULL)
6368 return false;
6369
6370 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6371
6372 if (!info->keep_memory)
6373 free (internal_relocs);
6374
6375 if (!r)
6376 return false;
6377 }
6378 }
6379 }
6380
6381 /* Remove the symbols that were in the swept sections from the dynamic
6382 symbol table. GCFIXME: Anyone know how to get them out of the
6383 static symbol table as well? */
6384 {
6385 int i = 0;
6386
6387 elf_link_hash_traverse (elf_hash_table (info),
6388 elf_gc_sweep_symbol,
6389 (PTR) &i);
6390
6391 elf_hash_table (info)->dynsymcount = i;
6392 }
6393
6394 return true;
6395}
6396
6397/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6398
6399static boolean
6400elf_gc_sweep_symbol (h, idxptr)
6401 struct elf_link_hash_entry *h;
6402 PTR idxptr;
6403{
6404 int *idx = (int *) idxptr;
6405
6406 if (h->dynindx != -1
6407 && ((h->root.type != bfd_link_hash_defined
6408 && h->root.type != bfd_link_hash_defweak)
6409 || h->root.u.def.section->gc_mark))
6410 h->dynindx = (*idx)++;
6411
6412 return true;
6413}
6414
6415/* Propogate collected vtable information. This is called through
6416 elf_link_hash_traverse. */
6417
6418static boolean
6419elf_gc_propagate_vtable_entries_used (h, okp)
6420 struct elf_link_hash_entry *h;
6421 PTR okp;
6422{
6423 /* Those that are not vtables. */
6424 if (h->vtable_parent == NULL)
6425 return true;
6426
6427 /* Those vtables that do not have parents, we cannot merge. */
6428 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6429 return true;
6430
6431 /* If we've already been done, exit. */
6432 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6433 return true;
6434
6435 /* Make sure the parent's table is up to date. */
6436 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6437
6438 if (h->vtable_entries_used == NULL)
6439 {
6440 /* None of this table's entries were referenced. Re-use the
6441 parent's table. */
6442 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6443 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6444 }
6445 else
6446 {
6447 size_t n;
6448 boolean *cu, *pu;
6449
6450 /* Or the parent's entries into ours. */
6451 cu = h->vtable_entries_used;
6452 cu[-1] = true;
6453 pu = h->vtable_parent->vtable_entries_used;
6454 if (pu != NULL)
6455 {
6456 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6457 while (--n != 0)
6458 {
6459 if (*pu) *cu = true;
6460 pu++, cu++;
6461 }
6462 }
6463 }
6464
6465 return true;
6466}
6467
6468static boolean
6469elf_gc_smash_unused_vtentry_relocs (h, okp)
6470 struct elf_link_hash_entry *h;
6471 PTR okp;
6472{
6473 asection *sec;
6474 bfd_vma hstart, hend;
6475 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6476 struct elf_backend_data *bed;
252b5132
RH
6477
6478 /* Take care of both those symbols that do not describe vtables as
6479 well as those that are not loaded. */
6480 if (h->vtable_parent == NULL)
6481 return true;
6482
6483 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6484 || h->root.type == bfd_link_hash_defweak);
6485
6486 sec = h->root.u.def.section;
6487 hstart = h->root.u.def.value;
6488 hend = hstart + h->size;
6489
6490 relstart = (NAME(_bfd_elf,link_read_relocs)
6491 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6492 if (!relstart)
6493 return *(boolean *)okp = false;
c7ac6ff8
MM
6494 bed = get_elf_backend_data (sec->owner);
6495 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6496
6497 for (rel = relstart; rel < relend; ++rel)
6498 if (rel->r_offset >= hstart && rel->r_offset < hend)
6499 {
6500 /* If the entry is in use, do nothing. */
6501 if (h->vtable_entries_used
6502 && (rel->r_offset - hstart) < h->vtable_entries_size)
6503 {
6504 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6505 if (h->vtable_entries_used[entry])
6506 continue;
6507 }
6508 /* Otherwise, kill it. */
6509 rel->r_offset = rel->r_info = rel->r_addend = 0;
6510 }
6511
6512 return true;
6513}
6514
6515/* Do mark and sweep of unused sections. */
6516
6517boolean
6518elf_gc_sections (abfd, info)
6519 bfd *abfd;
6520 struct bfd_link_info *info;
6521{
6522 boolean ok = true;
6523 bfd *sub;
6524 asection * (*gc_mark_hook)
6525 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6526 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6527
6528 if (!get_elf_backend_data (abfd)->can_gc_sections
6d3e950b 6529 || info->relocateable || info->emitrelocations
252b5132
RH
6530 || elf_hash_table (info)->dynamic_sections_created)
6531 return true;
6532
6533 /* Apply transitive closure to the vtable entry usage info. */
6534 elf_link_hash_traverse (elf_hash_table (info),
6535 elf_gc_propagate_vtable_entries_used,
6536 (PTR) &ok);
6537 if (!ok)
6538 return false;
6539
6540 /* Kill the vtable relocations that were not used. */
6541 elf_link_hash_traverse (elf_hash_table (info),
6542 elf_gc_smash_unused_vtentry_relocs,
6543 (PTR) &ok);
6544 if (!ok)
6545 return false;
6546
6547 /* Grovel through relocs to find out who stays ... */
6548
6549 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6550 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6551 {
6552 asection *o;
f6af82bd
AM
6553
6554 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6555 continue;
6556
252b5132
RH
6557 for (o = sub->sections; o != NULL; o = o->next)
6558 {
6559 if (o->flags & SEC_KEEP)
6560 if (!elf_gc_mark (info, o, gc_mark_hook))
6561 return false;
6562 }
6563 }
6564
6565 /* ... and mark SEC_EXCLUDE for those that go. */
6566 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6567 return false;
6568
6569 return true;
6570}
6571\f
6572/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6573
6574boolean
6575elf_gc_record_vtinherit (abfd, sec, h, offset)
6576 bfd *abfd;
6577 asection *sec;
6578 struct elf_link_hash_entry *h;
6579 bfd_vma offset;
6580{
6581 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6582 struct elf_link_hash_entry **search, *child;
6583 bfd_size_type extsymcount;
6584
6585 /* The sh_info field of the symtab header tells us where the
6586 external symbols start. We don't care about the local symbols at
6587 this point. */
6588 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6589 if (!elf_bad_symtab (abfd))
6590 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6591
6592 sym_hashes = elf_sym_hashes (abfd);
6593 sym_hashes_end = sym_hashes + extsymcount;
6594
6595 /* Hunt down the child symbol, which is in this section at the same
6596 offset as the relocation. */
6597 for (search = sym_hashes; search != sym_hashes_end; ++search)
6598 {
6599 if ((child = *search) != NULL
6600 && (child->root.type == bfd_link_hash_defined
6601 || child->root.type == bfd_link_hash_defweak)
6602 && child->root.u.def.section == sec
6603 && child->root.u.def.value == offset)
6604 goto win;
6605 }
6606
6607 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6608 bfd_get_filename (abfd), sec->name,
6609 (unsigned long)offset);
6610 bfd_set_error (bfd_error_invalid_operation);
6611 return false;
6612
6613win:
6614 if (!h)
6615 {
6616 /* This *should* only be the absolute section. It could potentially
6617 be that someone has defined a non-global vtable though, which
6618 would be bad. It isn't worth paging in the local symbols to be
6619 sure though; that case should simply be handled by the assembler. */
6620
6621 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6622 }
6623 else
6624 child->vtable_parent = h;
6625
6626 return true;
6627}
6628
6629/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6630
6631boolean
6632elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6633 bfd *abfd ATTRIBUTE_UNUSED;
6634 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6635 struct elf_link_hash_entry *h;
6636 bfd_vma addend;
6637{
6638 if (addend >= h->vtable_entries_size)
6639 {
6640 size_t size, bytes;
6641 boolean *ptr = h->vtable_entries_used;
6642
6643 /* While the symbol is undefined, we have to be prepared to handle
6644 a zero size. */
6645 if (h->root.type == bfd_link_hash_undefined)
6646 size = addend;
6647 else
6648 {
6649 size = h->size;
6650 if (size < addend)
6651 {
6652 /* Oops! We've got a reference past the defined end of
6653 the table. This is probably a bug -- shall we warn? */
6654 size = addend;
6655 }
6656 }
6657
6658 /* Allocate one extra entry for use as a "done" flag for the
6659 consolidation pass. */
fed79cc6 6660 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
252b5132
RH
6661
6662 if (ptr)
6663 {
fed79cc6
NC
6664 ptr = bfd_realloc (ptr - 1, bytes);
6665
6666 if (ptr != NULL)
6667 {
6668 size_t oldbytes;
252b5132 6669
fed79cc6
NC
6670 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6671 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6672 }
252b5132
RH
6673 }
6674 else
fed79cc6 6675 ptr = bfd_zmalloc (bytes);
252b5132 6676
fed79cc6
NC
6677 if (ptr == NULL)
6678 return false;
6679
252b5132 6680 /* And arrange for that done flag to be at index -1. */
fed79cc6 6681 h->vtable_entries_used = ptr + 1;
252b5132
RH
6682 h->vtable_entries_size = size;
6683 }
fed79cc6 6684
252b5132
RH
6685 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6686
6687 return true;
6688}
6689
6690/* And an accompanying bit to work out final got entry offsets once
6691 we're done. Should be called from final_link. */
6692
6693boolean
6694elf_gc_common_finalize_got_offsets (abfd, info)
6695 bfd *abfd;
6696 struct bfd_link_info *info;
6697{
6698 bfd *i;
6699 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6700 bfd_vma gotoff;
6701
6702 /* The GOT offset is relative to the .got section, but the GOT header is
6703 put into the .got.plt section, if the backend uses it. */
6704 if (bed->want_got_plt)
6705 gotoff = 0;
6706 else
6707 gotoff = bed->got_header_size;
6708
6709 /* Do the local .got entries first. */
6710 for (i = info->input_bfds; i; i = i->link_next)
6711 {
f6af82bd 6712 bfd_signed_vma *local_got;
252b5132
RH
6713 bfd_size_type j, locsymcount;
6714 Elf_Internal_Shdr *symtab_hdr;
6715
f6af82bd
AM
6716 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6717 continue;
6718
6719 local_got = elf_local_got_refcounts (i);
252b5132
RH
6720 if (!local_got)
6721 continue;
6722
6723 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6724 if (elf_bad_symtab (i))
6725 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6726 else
6727 locsymcount = symtab_hdr->sh_info;
6728
6729 for (j = 0; j < locsymcount; ++j)
6730 {
6731 if (local_got[j] > 0)
6732 {
6733 local_got[j] = gotoff;
6734 gotoff += ARCH_SIZE / 8;
6735 }
6736 else
6737 local_got[j] = (bfd_vma) -1;
6738 }
6739 }
6740
dd5724d5
AM
6741 /* Then the global .got entries. .plt refcounts are handled by
6742 adjust_dynamic_symbol */
252b5132
RH
6743 elf_link_hash_traverse (elf_hash_table (info),
6744 elf_gc_allocate_got_offsets,
6745 (PTR) &gotoff);
6746 return true;
6747}
6748
6749/* We need a special top-level link routine to convert got reference counts
6750 to real got offsets. */
6751
6752static boolean
6753elf_gc_allocate_got_offsets (h, offarg)
6754 struct elf_link_hash_entry *h;
6755 PTR offarg;
6756{
6757 bfd_vma *off = (bfd_vma *) offarg;
6758
6759 if (h->got.refcount > 0)
6760 {
6761 h->got.offset = off[0];
6762 off[0] += ARCH_SIZE / 8;
6763 }
6764 else
6765 h->got.offset = (bfd_vma) -1;
6766
6767 return true;
6768}
6769
6770/* Many folk need no more in the way of final link than this, once
6771 got entry reference counting is enabled. */
6772
6773boolean
6774elf_gc_common_final_link (abfd, info)
6775 bfd *abfd;
6776 struct bfd_link_info *info;
6777{
6778 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6779 return false;
6780
6781 /* Invoke the regular ELF backend linker to do all the work. */
6782 return elf_bfd_final_link (abfd, info);
6783}
6784
6785/* This function will be called though elf_link_hash_traverse to store
6786 all hash value of the exported symbols in an array. */
6787
6788static boolean
6789elf_collect_hash_codes (h, data)
6790 struct elf_link_hash_entry *h;
6791 PTR data;
6792{
6793 unsigned long **valuep = (unsigned long **) data;
6794 const char *name;
6795 char *p;
6796 unsigned long ha;
6797 char *alc = NULL;
6798
6799 /* Ignore indirect symbols. These are added by the versioning code. */
6800 if (h->dynindx == -1)
6801 return true;
6802
6803 name = h->root.root.string;
6804 p = strchr (name, ELF_VER_CHR);
6805 if (p != NULL)
6806 {
6807 alc = bfd_malloc (p - name + 1);
6808 memcpy (alc, name, p - name);
6809 alc[p - name] = '\0';
6810 name = alc;
6811 }
6812
6813 /* Compute the hash value. */
6814 ha = bfd_elf_hash (name);
6815
6816 /* Store the found hash value in the array given as the argument. */
6817 *(*valuep)++ = ha;
6818
6819 /* And store it in the struct so that we can put it in the hash table
6820 later. */
6821 h->elf_hash_value = ha;
6822
6823 if (alc != NULL)
6824 free (alc);
6825
6826 return true;
6827}
This page took 0.346581 seconds and 4 git commands to generate.