Add missing ld makefile dependency for nios.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b 1/* AArch64-specific support for NN-bit ELF.
4b95cf5c 2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2
YZ
167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
a6bb11b2
YZ
189#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
a06ea964
NC
202
203#define ELIMINATE_COPY_RELOCS 0
204
a06ea964 205/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
206 elf_aarch64_link_hash_entry. */
207#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 208
cec5225b
YZ
209/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
211#define PLT_ENTRY_SIZE (32)
212#define PLT_SMALL_ENTRY_SIZE (16)
213#define PLT_TLSDESC_ENTRY_SIZE (32)
214
a06ea964
NC
215/* Encoding of the nop instruction */
216#define INSN_NOP 0xd503201f
217
218#define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222/* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
226 [x16,#-GOT_ENTRY_SIZE]. */
227static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
228{
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 231#if ARCH_SIZE == 64
a06ea964
NC
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
234#else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237#endif
a06ea964
NC
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242};
243
244/* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
cec5225b 247static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
248{
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 250#if ARCH_SIZE == 64
a06ea964
NC
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
253#else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256#endif
a06ea964
NC
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258};
259
260static const bfd_byte
cec5225b 261elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
262{
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
266#if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
269#else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272#endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276};
277
cec5225b
YZ
278#define elf_info_to_howto elfNN_aarch64_info_to_howto
279#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
280
281#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
282
283/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284#define ALL_ONES (~ (bfd_vma) 0)
285
a6bb11b2
YZ
286/* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
a06ea964 289
a6bb11b2 290static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 291{
a6bb11b2 292 EMPTY_HOWTO (0),
a06ea964 293
a6bb11b2 294 /* Basic data relocations. */
a06ea964 295
a6bb11b2
YZ
296#if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 298 0, /* rightshift */
a6bb11b2
YZ
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
a06ea964
NC
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 305 "R_AARCH64_NULL", /* name */
a06ea964
NC
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
a6bb11b2 308 0, /* dst_mask */
a06ea964 309 FALSE), /* pcrel_offset */
a6bb11b2
YZ
310#else
311 HOWTO (R_AARCH64_NONE, /* type */
a06ea964
NC
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 319 "R_AARCH64_NONE", /* name */
a06ea964
NC
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
a6bb11b2 324#endif
a06ea964
NC
325
326 /* .xword: (S+A) */
a6bb11b2 327 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 335 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
a6bb11b2 342 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 350 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
a6bb11b2 357 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
a6bb11b2 372 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 380 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
a6bb11b2 387 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 395 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
a6bb11b2 402 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 410 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 585 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 669 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 684 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
a06ea964 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 699 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 714 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 722 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
a06ea964 773 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
f41aef5f
RE
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
a6bb11b2 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
a06ea964
NC
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
a6bb11b2 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
a6bb11b2
YZ
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
a6bb11b2 833 FALSE), /* pcrel_offset */
a06ea964 834
a6bb11b2
YZ
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
a06ea964
NC
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
a6bb11b2 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
a6bb11b2 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
a6bb11b2 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
a6bb11b2 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
a6bb11b2
YZ
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 952 2, /* rightshift */
a06ea964
NC
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
a6bb11b2 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 966 32, /* rightshift */
a06ea964
NC
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 980 16, /* rightshift */
a06ea964
NC
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 994 16, /* rightshift */
a06ea964
NC
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1036 12, /* rightshift */
a06ea964
NC
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
a06ea964 1076
a6bb11b2 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1078 2, /* rightshift */
a06ea964
NC
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964
NC
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
a6bb11b2 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
a6bb11b2
YZ
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1131 FALSE, /* partial_inplace */
a6bb11b2
YZ
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
a06ea964
NC
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
a6bb11b2 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1167 16, /* rightshift */
a06ea964
NC
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
a6bb11b2 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
a6bb11b2 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
a6bb11b2 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
a6bb11b2 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1300#if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302#else
a6bb11b2 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1304#endif
a6bb11b2
YZ
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1318#if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320#else
a6bb11b2 1321 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1322#endif
a6bb11b2
YZ
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1336#if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338#else
a6bb11b2 1339 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1340#endif
a6bb11b2
YZ
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
a06ea964
NC
1375};
1376
a6bb11b2
YZ
1377static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392/* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394static bfd_reloc_code_real_type
1395elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396{
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409}
1410
1411/* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413static bfd_reloc_code_real_type
1414elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415{
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435}
1436
1437struct elf_aarch64_reloc_map
1438{
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441};
1442
1443/* Map bfd generic reloc to AArch64-specific reloc. */
1444static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445{
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456};
1457
1458/* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461static reloc_howto_type *
1462elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463{
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
54757ed1
AP
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
a6bb11b2
YZ
1484 return NULL;
1485}
1486
a06ea964 1487static reloc_howto_type *
cec5225b 1488elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1489{
a6bb11b2
YZ
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
cec5225b
YZ
1493#if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499#endif
1500
a6bb11b2
YZ
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
a06ea964 1503
a6bb11b2
YZ
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1506
a6bb11b2
YZ
1507 if (howto != NULL)
1508 return howto;
a06ea964 1509
a06ea964
NC
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512}
1513
1514static void
cec5225b 1515elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1516 Elf_Internal_Rela *elf_reloc)
1517{
1518 unsigned int r_type;
1519
cec5225b
YZ
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1522}
1523
a06ea964 1524static reloc_howto_type *
cec5225b 1525elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1526 bfd_reloc_code_real_type code)
1527{
a6bb11b2 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1529
a6bb11b2
YZ
1530 if (howto != NULL)
1531 return howto;
a06ea964
NC
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535}
1536
1537static reloc_howto_type *
cec5225b 1538elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1539 const char *r_name)
1540{
1541 unsigned int i;
1542
a6bb11b2
YZ
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1547
1548 return NULL;
1549}
1550
6d00b590 1551#define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
cec5225b 1552#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
6d00b590 1553#define TARGET_BIG_SYM aarch64_elfNN_be_vec
cec5225b 1554#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1555
a06ea964
NC
1556/* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560#define STUB_ENTRY_NAME "__%s_veneer"
1561
1562/* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574static int
1575aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576{
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579}
1580
1581static int
1582aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583{
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587}
1588
1589static const uint32_t aarch64_adrp_branch_stub [] =
1590{
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596};
1597
1598static const uint32_t aarch64_long_branch_stub[] =
1599{
cec5225b 1600#if ARCH_SIZE == 64
a06ea964 1601 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1602#else
1603 0x18000090, /* ldr wip0, 1f */
1604#endif
a06ea964
NC
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
cec5225b
YZ
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
1610 */
1611 0x00000000,
1612};
1613
1614/* Section name for stubs is the associated section name plus this
1615 string. */
1616#define STUB_SUFFIX ".stub"
1617
cec5225b 1618enum elf_aarch64_stub_type
a06ea964
NC
1619{
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623};
1624
cec5225b 1625struct elf_aarch64_stub_hash_entry
a06ea964
NC
1626{
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
cec5225b 1641 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
1642
1643 /* The symbol table entry, if any, that this was derived from. */
cec5225b 1644 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657};
1658
1659/* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
cec5225b 1662typedef struct elf_elf_section_map
a06ea964
NC
1663{
1664 bfd_vma vma;
1665 char type;
1666}
cec5225b 1667elf_aarch64_section_map;
a06ea964
NC
1668
1669
1670typedef struct _aarch64_elf_section_data
1671{
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
cec5225b 1675 elf_aarch64_section_map *map;
a06ea964
NC
1676}
1677_aarch64_elf_section_data;
1678
cec5225b 1679#define elf_aarch64_section_data(sec) \
a06ea964
NC
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
4e8516b2
AP
1682/* The size of the thread control block which is defined to be two pointers. */
1683#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
1684
1685struct elf_aarch64_local_symbol
1686{
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698};
1699
1700struct elf_aarch64_obj_tdata
1701{
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712};
1713
1714#define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
cec5225b 1717#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
1718
1719#define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724static bfd_boolean
cec5225b 1725elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
1726{
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729}
1730
cec5225b
YZ
1731#define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
1733
1734#define GOT_UNKNOWN 0
1735#define GOT_NORMAL 1
1736#define GOT_TLS_GD 2
1737#define GOT_TLS_IE 4
1738#define GOT_TLSDESC_GD 8
1739
1740#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742/* AArch64 ELF linker hash entry. */
cec5225b 1743struct elf_aarch64_link_hash_entry
a06ea964
NC
1744{
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
a06ea964
NC
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
cec5225b 1761 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769};
1770
1771static unsigned int
cec5225b 1772elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775{
1776 if (h)
cec5225b 1777 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 1778
cec5225b 1779 if (! elf_aarch64_locals (abfd))
a06ea964
NC
1780 return GOT_UNKNOWN;
1781
cec5225b 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
1783}
1784
a06ea964 1785/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
1786#define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
1788
1789#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 1790 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793/* AArch64 ELF linker hash table. */
cec5225b 1794struct elf_aarch64_link_hash_table
a06ea964
NC
1795{
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
cec5225b 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964
NC
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
a06ea964
NC
1862};
1863
a06ea964
NC
1864/* Create an entry in an AArch64 ELF linker hash table. */
1865
1866static struct bfd_hash_entry *
cec5225b 1867elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
1868 struct bfd_hash_table *table,
1869 const char *string)
1870{
cec5225b
YZ
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
cec5225b 1878 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
cec5225b 1883 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
a06ea964
NC
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896}
1897
1898/* Initialize an entry in the stub hash table. */
1899
1900static struct bfd_hash_entry *
1901stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903{
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
cec5225b 1910 elf_aarch64_stub_hash_entry));
a06ea964
NC
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
cec5225b 1919 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
1920
1921 /* Initialize the local fields. */
cec5225b 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
a06ea964
NC
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933}
1934
1419bbe5
WN
1935/* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940static hashval_t
1941elfNN_aarch64_local_htab_hash (const void *ptr)
1942{
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946}
1947
1948/* Compare local hash entries. */
1949
1950static int
1951elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952{
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959}
1960
1961/* Find and/or create a hash entry for local symbol. */
1962
1963static struct elf_link_hash_entry *
1964elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967{
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000}
a06ea964
NC
2001
2002/* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004static void
cec5225b 2005elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008{
cec5225b 2009 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2010
cec5225b
YZ
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
a06ea964
NC
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056}
2057
2058/* Create an AArch64 elf linker hash table. */
2059
2060static struct bfd_link_hash_table *
cec5225b 2061elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2062{
cec5225b
YZ
2063 struct elf_aarch64_link_hash_table *ret;
2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2065
7bf52ea2 2066 ret = bfd_zmalloc (amt);
a06ea964
NC
2067 if (ret == NULL)
2068 return NULL;
2069
2070 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2073 {
2074 free (ret);
2075 return NULL;
2076 }
2077
a06ea964
NC
2078 ret->plt_header_size = PLT_ENTRY_SIZE;
2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2080 ret->obfd = abfd;
a06ea964
NC
2081 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2082
2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2084 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964
NC
2085 {
2086 free (ret);
2087 return NULL;
2088 }
2089
1419bbe5
WN
2090 ret->loc_hash_table = htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash,
2092 elfNN_aarch64_local_htab_eq,
2093 NULL);
2094 ret->loc_hash_memory = objalloc_create ();
2095 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2096 {
2097 free (ret);
2098 return NULL;
2099 }
2100
a06ea964
NC
2101 return &ret->root.root;
2102}
2103
2104/* Free the derived linker hash table. */
2105
2106static void
cec5225b 2107elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
a06ea964 2108{
cec5225b
YZ
2109 struct elf_aarch64_link_hash_table *ret
2110 = (struct elf_aarch64_link_hash_table *) hash;
a06ea964 2111
1419bbe5
WN
2112 if (ret->loc_hash_table)
2113 htab_delete (ret->loc_hash_table);
2114 if (ret->loc_hash_memory)
2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2116
a06ea964 2117 bfd_hash_table_free (&ret->stub_hash_table);
9f7c3e5e 2118 _bfd_elf_link_hash_table_free (hash);
a06ea964
NC
2119}
2120
a06ea964
NC
2121static bfd_boolean
2122aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2123 bfd_vma offset, bfd_vma value)
2124{
2125 reloc_howto_type *howto;
2126 bfd_vma place;
2127
cec5225b 2128 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2129 place = (input_section->output_section->vma + input_section->output_offset
2130 + offset);
caed7120
YZ
2131
2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2134 return _bfd_aarch64_elf_put_addend (input_bfd,
2135 input_section->contents + offset, r_type,
2136 howto, value);
a06ea964
NC
2137}
2138
cec5225b 2139static enum elf_aarch64_stub_type
a06ea964
NC
2140aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2141{
2142 if (aarch64_valid_for_adrp_p (value, place))
2143 return aarch64_stub_adrp_branch;
2144 return aarch64_stub_long_branch;
2145}
2146
2147/* Determine the type of stub needed, if any, for a call. */
2148
cec5225b 2149static enum elf_aarch64_stub_type
a06ea964
NC
2150aarch64_type_of_stub (struct bfd_link_info *info,
2151 asection *input_sec,
2152 const Elf_Internal_Rela *rel,
2153 unsigned char st_type,
cec5225b 2154 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2155 bfd_vma destination)
2156{
2157 bfd_vma location;
2158 bfd_signed_vma branch_offset;
2159 unsigned int r_type;
cec5225b
YZ
2160 struct elf_aarch64_link_hash_table *globals;
2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2162 bfd_boolean via_plt_p;
2163
2164 if (st_type != STT_FUNC)
2165 return stub_type;
2166
cec5225b 2167 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2168 via_plt_p = (globals->root.splt != NULL && hash != NULL
2169 && hash->root.plt.offset != (bfd_vma) - 1);
2170
2171 if (via_plt_p)
2172 return stub_type;
2173
2174 /* Determine where the call point is. */
2175 location = (input_sec->output_offset
2176 + input_sec->output_section->vma + rel->r_offset);
2177
2178 branch_offset = (bfd_signed_vma) (destination - location);
2179
cec5225b 2180 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2181
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2188 {
2189 stub_type = aarch64_stub_long_branch;
2190 }
2191
2192 return stub_type;
2193}
2194
2195/* Build a name for an entry in the stub hash table. */
2196
2197static char *
cec5225b 2198elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2199 const asection *sym_sec,
cec5225b 2200 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2201 const Elf_Internal_Rela *rel)
2202{
2203 char *stub_name;
2204 bfd_size_type len;
2205
2206 if (hash)
2207 {
2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2209 stub_name = bfd_malloc (len);
2210 if (stub_name != NULL)
2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2212 (unsigned int) input_section->id,
2213 hash->root.root.root.string,
2214 rel->r_addend);
2215 }
2216 else
2217 {
2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name = bfd_malloc (len);
2220 if (stub_name != NULL)
2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2222 (unsigned int) input_section->id,
2223 (unsigned int) sym_sec->id,
cec5225b 2224 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2225 rel->r_addend);
2226 }
2227
2228 return stub_name;
2229}
2230
2231/* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2233
cec5225b
YZ
2234static struct elf_aarch64_stub_hash_entry *
2235elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2236 const asection *sym_sec,
2237 struct elf_link_hash_entry *hash,
2238 const Elf_Internal_Rela *rel,
cec5225b 2239 struct elf_aarch64_link_hash_table *htab)
a06ea964 2240{
cec5225b
YZ
2241 struct elf_aarch64_stub_hash_entry *stub_entry;
2242 struct elf_aarch64_link_hash_entry *h =
2243 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2244 const asection *id_sec;
2245
2246 if ((input_section->flags & SEC_CODE) == 0)
2247 return NULL;
2248
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec = htab->stub_group[input_section->id].link_sec;
2255
2256 if (h != NULL && h->stub_cache != NULL
2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2258 {
2259 stub_entry = h->stub_cache;
2260 }
2261 else
2262 {
2263 char *stub_name;
2264
cec5225b 2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2266 if (stub_name == NULL)
2267 return NULL;
2268
2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2270 stub_name, FALSE, FALSE);
2271 if (h != NULL)
2272 h->stub_cache = stub_entry;
2273
2274 free (stub_name);
2275 }
2276
2277 return stub_entry;
2278}
2279
2280/* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2282
cec5225b
YZ
2283static struct elf_aarch64_stub_hash_entry *
2284elfNN_aarch64_add_stub (const char *stub_name,
a06ea964 2285 asection *section,
cec5225b 2286 struct elf_aarch64_link_hash_table *htab)
a06ea964
NC
2287{
2288 asection *link_sec;
2289 asection *stub_sec;
cec5225b 2290 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2291
2292 link_sec = htab->stub_group[section->id].link_sec;
2293 stub_sec = htab->stub_group[section->id].stub_sec;
2294 if (stub_sec == NULL)
2295 {
2296 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2297 if (stub_sec == NULL)
2298 {
2299 size_t namelen;
2300 bfd_size_type len;
2301 char *s_name;
2302
2303 namelen = strlen (link_sec->name);
2304 len = namelen + sizeof (STUB_SUFFIX);
2305 s_name = bfd_alloc (htab->stub_bfd, len);
2306 if (s_name == NULL)
2307 return NULL;
2308
2309 memcpy (s_name, link_sec->name, namelen);
2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2312 if (stub_sec == NULL)
2313 return NULL;
2314 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2315 }
2316 htab->stub_group[section->id].stub_sec = stub_sec;
2317 }
2318
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2321 TRUE, FALSE);
2322 if (stub_entry == NULL)
2323 {
2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2325 section->owner, stub_name);
2326 return NULL;
2327 }
2328
2329 stub_entry->stub_sec = stub_sec;
2330 stub_entry->stub_offset = 0;
2331 stub_entry->id_sec = link_sec;
2332
2333 return stub_entry;
2334}
2335
2336static bfd_boolean
2337aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2338 void *in_arg ATTRIBUTE_UNUSED)
2339{
cec5225b 2340 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2341 asection *stub_sec;
2342 bfd *stub_bfd;
2343 bfd_byte *loc;
2344 bfd_vma sym_value;
2345 unsigned int template_size;
2346 const uint32_t *template;
2347 unsigned int i;
2348
2349 /* Massage our args to the form they really have. */
cec5225b 2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2351
2352 stub_sec = stub_entry->stub_sec;
2353
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry->stub_offset = stub_sec->size;
2356 loc = stub_sec->contents + stub_entry->stub_offset;
2357
2358 stub_bfd = stub_sec->owner;
2359
2360 /* This is the address of the stub destination. */
2361 sym_value = (stub_entry->target_value
2362 + stub_entry->target_section->output_offset
2363 + stub_entry->target_section->output_section->vma);
2364
2365 if (stub_entry->stub_type == aarch64_stub_long_branch)
2366 {
2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2368 + stub_sec->output_offset);
2369
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value, place))
2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2373 }
2374
2375 switch (stub_entry->stub_type)
2376 {
2377 case aarch64_stub_adrp_branch:
2378 template = aarch64_adrp_branch_stub;
2379 template_size = sizeof (aarch64_adrp_branch_stub);
2380 break;
2381 case aarch64_stub_long_branch:
2382 template = aarch64_long_branch_stub;
2383 template_size = sizeof (aarch64_long_branch_stub);
2384 break;
2385 default:
2386 BFD_FAIL ();
2387 return FALSE;
2388 }
2389
2390 for (i = 0; i < (template_size / sizeof template[0]); i++)
2391 {
2392 bfd_putl32 (template[i], loc);
2393 loc += 4;
2394 }
2395
2396 template_size = (template_size + 7) & ~7;
2397 stub_sec->size += template_size;
2398
2399 switch (stub_entry->stub_type)
2400 {
2401 case aarch64_stub_adrp_branch:
a6bb11b2 2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2403 stub_entry->stub_offset, sym_value))
2404 /* The stub would not have been relaxed if the offset was out
2405 of range. */
2406 BFD_FAIL ();
2407
2408 _bfd_final_link_relocate
a6bb11b2 2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
a06ea964
NC
2410 stub_bfd,
2411 stub_sec,
2412 stub_sec->contents,
2413 stub_entry->stub_offset + 4,
2414 sym_value,
2415 0);
2416 break;
2417
2418 case aarch64_stub_long_branch:
2419 /* We want the value relative to the address 12 bytes back from the
2420 value itself. */
cec5225b 2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
a6bb11b2 2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
a06ea964
NC
2423 stub_sec->contents,
2424 stub_entry->stub_offset + 16,
2425 sym_value + 12, 0);
2426 break;
2427 default:
2428 break;
2429 }
2430
2431 return TRUE;
2432}
2433
2434/* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2436
2437static bfd_boolean
2438aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2439 void *in_arg ATTRIBUTE_UNUSED)
2440{
cec5225b 2441 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2442 int size;
2443
2444 /* Massage our args to the form they really have. */
cec5225b 2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2446
2447 switch (stub_entry->stub_type)
2448 {
2449 case aarch64_stub_adrp_branch:
2450 size = sizeof (aarch64_adrp_branch_stub);
2451 break;
2452 case aarch64_stub_long_branch:
2453 size = sizeof (aarch64_long_branch_stub);
2454 break;
2455 default:
2456 BFD_FAIL ();
2457 return FALSE;
2458 break;
2459 }
2460
2461 size = (size + 7) & ~7;
2462 stub_entry->stub_sec->size += size;
2463 return TRUE;
2464}
2465
2466/* External entry points for sizing and building linker stubs. */
2467
2468/* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2471
2472int
cec5225b 2473elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2474 struct bfd_link_info *info)
2475{
2476 bfd *input_bfd;
2477 unsigned int bfd_count;
2478 int top_id, top_index;
2479 asection *section;
2480 asection **input_list, **list;
2481 bfd_size_type amt;
cec5225b
YZ
2482 struct elf_aarch64_link_hash_table *htab =
2483 elf_aarch64_hash_table (info);
a06ea964
NC
2484
2485 if (!is_elf_hash_table (htab))
2486 return 0;
2487
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2490 input_bfd != NULL; input_bfd = input_bfd->link_next)
2491 {
2492 bfd_count += 1;
2493 for (section = input_bfd->sections;
2494 section != NULL; section = section->next)
2495 {
2496 if (top_id < section->id)
2497 top_id = section->id;
2498 }
2499 }
2500 htab->bfd_count = bfd_count;
2501
2502 amt = sizeof (struct map_stub) * (top_id + 1);
2503 htab->stub_group = bfd_zmalloc (amt);
2504 if (htab->stub_group == NULL)
2505 return -1;
2506
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section = output_bfd->sections, top_index = 0;
2511 section != NULL; section = section->next)
2512 {
2513 if (top_index < section->index)
2514 top_index = section->index;
2515 }
2516
2517 htab->top_index = top_index;
2518 amt = sizeof (asection *) * (top_index + 1);
2519 input_list = bfd_malloc (amt);
2520 htab->input_list = input_list;
2521 if (input_list == NULL)
2522 return -1;
2523
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list = input_list + top_index;
2527 do
2528 *list = bfd_abs_section_ptr;
2529 while (list-- != input_list);
2530
2531 for (section = output_bfd->sections;
2532 section != NULL; section = section->next)
2533 {
2534 if ((section->flags & SEC_CODE) != 0)
2535 input_list[section->index] = NULL;
2536 }
2537
2538 return 1;
2539}
2540
cec5225b 2541/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
2542#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2543
2544/* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2548
2549void
cec5225b 2550elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 2551{
cec5225b
YZ
2552 struct elf_aarch64_link_hash_table *htab =
2553 elf_aarch64_hash_table (info);
a06ea964
NC
2554
2555 if (isec->output_section->index <= htab->top_index)
2556 {
2557 asection **list = htab->input_list + isec->output_section->index;
2558
2559 if (*list != bfd_abs_section_ptr)
2560 {
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec) = *list;
2565 *list = isec;
2566 }
2567 }
2568}
2569
2570/* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576
2577static void
cec5225b 2578group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
2579 bfd_size_type stub_group_size,
2580 bfd_boolean stubs_always_before_branch)
2581{
2582 asection **list = htab->input_list + htab->top_index;
2583
2584 do
2585 {
2586 asection *tail = *list;
2587
2588 if (tail == bfd_abs_section_ptr)
2589 continue;
2590
2591 while (tail != NULL)
2592 {
2593 asection *curr;
2594 asection *prev;
2595 bfd_size_type total;
2596
2597 curr = tail;
2598 total = tail->size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. */
2611 do
2612 {
2613 prev = PREV_SEC (tail);
2614 /* Set up this stub group. */
2615 htab->stub_group[tail->id].link_sec = curr;
2616 }
2617 while (tail != curr && (tail = prev) != NULL);
2618
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch)
2622 {
2623 total = 0;
2624 while (prev != NULL
2625 && ((total += tail->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 {
2628 tail = prev;
2629 prev = PREV_SEC (tail);
2630 htab->stub_group[tail->id].link_sec = curr;
2631 }
2632 }
2633 tail = prev;
2634 }
2635 }
2636 while (list-- != htab->input_list);
2637
2638 free (htab->input_list);
2639}
2640
2641#undef PREV_SEC
2642
2643/* Determine and set the size of the stub section for a final link.
2644
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2647 instruction. */
2648
2649bfd_boolean
cec5225b 2650elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
2651 bfd *stub_bfd,
2652 struct bfd_link_info *info,
2653 bfd_signed_vma group_size,
2654 asection * (*add_stub_section) (const char *,
2655 asection *),
2656 void (*layout_sections_again) (void))
2657{
2658 bfd_size_type stub_group_size;
2659 bfd_boolean stubs_always_before_branch;
2660 bfd_boolean stub_changed = 0;
cec5225b 2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
a06ea964
NC
2662
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2666 bfd_get_mach (output_bfd));
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->add_stub_section = add_stub_section;
2671 htab->layout_sections_again = layout_sections_again;
2672 stubs_always_before_branch = group_size < 0;
2673 if (group_size < 0)
2674 stub_group_size = -group_size;
2675 else
2676 stub_group_size = group_size;
2677
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
b9eead84 2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
2682 stub_group_size = 127 * 1024 * 1024;
2683 }
2684
2685 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686
2687 while (1)
2688 {
2689 bfd *input_bfd;
2690 unsigned int bfd_indx;
2691 asection *stub_sec;
2692
2693 for (input_bfd = info->input_bfds, bfd_indx = 0;
2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
2695 {
2696 Elf_Internal_Shdr *symtab_hdr;
2697 asection *section;
2698 Elf_Internal_Sym *local_syms = NULL;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* Walk over each section attached to the input bfd. */
2706 for (section = input_bfd->sections;
2707 section != NULL; section = section->next)
2708 {
2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2710
2711 /* If there aren't any relocs, then there's nothing more
2712 to do. */
2713 if ((section->flags & SEC_RELOC) == 0
2714 || section->reloc_count == 0
2715 || (section->flags & SEC_CODE) == 0)
2716 continue;
2717
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section->output_section == NULL
2721 || section->output_section->owner != output_bfd)
2722 continue;
2723
2724 /* Get the relocs. */
2725 internal_relocs
2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2727 NULL, info->keep_memory);
2728 if (internal_relocs == NULL)
2729 goto error_ret_free_local;
2730
2731 /* Now examine each relocation. */
2732 irela = internal_relocs;
2733 irelaend = irela + section->reloc_count;
2734 for (; irela < irelaend; irela++)
2735 {
2736 unsigned int r_type, r_indx;
cec5225b
YZ
2737 enum elf_aarch64_stub_type stub_type;
2738 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2739 asection *sym_sec;
2740 bfd_vma sym_value;
2741 bfd_vma destination;
cec5225b 2742 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
2743 const char *sym_name;
2744 char *stub_name;
2745 const asection *id_sec;
2746 unsigned char st_type;
2747 bfd_size_type len;
2748
cec5225b
YZ
2749 r_type = ELFNN_R_TYPE (irela->r_info);
2750 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
2751
2752 if (r_type >= (unsigned int) R_AARCH64_end)
2753 {
2754 bfd_set_error (bfd_error_bad_value);
2755 error_ret_free_internal:
2756 if (elf_section_data (section)->relocs == NULL)
2757 free (internal_relocs);
2758 goto error_ret_free_local;
2759 }
2760
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
a6bb11b2
YZ
2763 if (r_type != (unsigned int) AARCH64_R (CALL26)
2764 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
2765 continue;
2766
2767 /* Now determine the call target, its name, value,
2768 section. */
2769 sym_sec = NULL;
2770 sym_value = 0;
2771 destination = 0;
2772 hash = NULL;
2773 sym_name = NULL;
2774 if (r_indx < symtab_hdr->sh_info)
2775 {
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym *sym;
2778 Elf_Internal_Shdr *hdr;
2779
2780 if (local_syms == NULL)
2781 {
2782 local_syms
2783 = (Elf_Internal_Sym *) symtab_hdr->contents;
2784 if (local_syms == NULL)
2785 local_syms
2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2787 symtab_hdr->sh_info, 0,
2788 NULL, NULL, NULL);
2789 if (local_syms == NULL)
2790 goto error_ret_free_internal;
2791 }
2792
2793 sym = local_syms + r_indx;
2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2795 sym_sec = hdr->bfd_section;
2796 if (!sym_sec)
2797 /* This is an undefined symbol. It can never
2798 be resolved. */
2799 continue;
2800
2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2802 sym_value = sym->st_value;
2803 destination = (sym_value + irela->r_addend
2804 + sym_sec->output_offset
2805 + sym_sec->output_section->vma);
2806 st_type = ELF_ST_TYPE (sym->st_info);
2807 sym_name
2808 = bfd_elf_string_from_elf_section (input_bfd,
2809 symtab_hdr->sh_link,
2810 sym->st_name);
2811 }
2812 else
2813 {
2814 int e_indx;
2815
2816 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 2817 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2818 elf_sym_hashes (input_bfd)[e_indx]);
2819
2820 while (hash->root.root.type == bfd_link_hash_indirect
2821 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 2822 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2823 hash->root.root.u.i.link);
2824
2825 if (hash->root.root.type == bfd_link_hash_defined
2826 || hash->root.root.type == bfd_link_hash_defweak)
2827 {
cec5225b
YZ
2828 struct elf_aarch64_link_hash_table *globals =
2829 elf_aarch64_hash_table (info);
a06ea964
NC
2830 sym_sec = hash->root.root.u.def.section;
2831 sym_value = hash->root.root.u.def.value;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2835 needed. */
2836 if (globals->root.splt != NULL && hash != NULL
2837 && hash->root.plt.offset != (bfd_vma) - 1)
2838 {
2839 sym_sec = globals->root.splt;
2840 sym_value = hash->root.plt.offset;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value
2843 + sym_sec->output_offset
2844 +
2845 sym_sec->output_section->vma);
2846 }
2847 else if (sym_sec->output_section != NULL)
2848 destination = (sym_value + irela->r_addend
2849 + sym_sec->output_offset
2850 + sym_sec->output_section->vma);
2851 }
2852 else if (hash->root.root.type == bfd_link_hash_undefined
2853 || (hash->root.root.type
2854 == bfd_link_hash_undefweak))
2855 {
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
cec5225b
YZ
2860 struct elf_aarch64_link_hash_table *globals =
2861 elf_aarch64_hash_table (info);
a06ea964
NC
2862
2863 if (globals->root.splt != NULL && hash != NULL
2864 && hash->root.plt.offset != (bfd_vma) - 1)
2865 {
2866 sym_sec = globals->root.splt;
2867 sym_value = hash->root.plt.offset;
2868 if (sym_sec->output_section != NULL)
2869 destination = (sym_value
2870 + sym_sec->output_offset
2871 +
2872 sym_sec->output_section->vma);
2873 }
2874 else
2875 continue;
2876 }
2877 else
2878 {
2879 bfd_set_error (bfd_error_bad_value);
2880 goto error_ret_free_internal;
2881 }
2882 st_type = ELF_ST_TYPE (hash->root.type);
2883 sym_name = hash->root.root.root.string;
2884 }
2885
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type = aarch64_type_of_stub
2888 (info, section, irela, st_type, hash, destination);
2889 if (stub_type == aarch64_stub_none)
2890 continue;
2891
2892 /* Support for grouping stub sections. */
2893 id_sec = htab->stub_group[section->id].link_sec;
2894
2895 /* Get the name of this stub. */
cec5225b 2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
2897 irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 stub_entry =
2902 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2903 stub_name, FALSE, FALSE);
2904 if (stub_entry != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
cec5225b 2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
a06ea964
NC
2912 htab);
2913 if (stub_entry == NULL)
2914 {
2915 free (stub_name);
2916 goto error_ret_free_internal;
2917 }
2918
2919 stub_entry->target_value = sym_value;
2920 stub_entry->target_section = sym_sec;
2921 stub_entry->stub_type = stub_type;
2922 stub_entry->h = hash;
2923 stub_entry->st_type = st_type;
2924
2925 if (sym_name == NULL)
2926 sym_name = "unnamed";
2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2929 if (stub_entry->output_name == NULL)
2930 {
2931 free (stub_name);
2932 goto error_ret_free_internal;
2933 }
2934
2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2936 sym_name);
2937
2938 stub_changed = TRUE;
2939 }
2940
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 }
2945 }
2946
2947 if (!stub_changed)
2948 break;
2949
2950 /* OK, we've added some stubs. Find out the new size of the
2951 stub sections. */
2952 for (stub_sec = htab->stub_bfd->sections;
2953 stub_sec != NULL; stub_sec = stub_sec->next)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 return TRUE;
2964
2965error_ret_free_local:
2966 return FALSE;
2967}
2968
2969/* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2973 linker. */
2974
2975bfd_boolean
cec5225b 2976elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
2977{
2978 asection *stub_sec;
2979 struct bfd_hash_table *table;
cec5225b 2980 struct elf_aarch64_link_hash_table *htab;
a06ea964 2981
cec5225b 2982 htab = elf_aarch64_hash_table (info);
a06ea964
NC
2983
2984 for (stub_sec = htab->stub_bfd->sections;
2985 stub_sec != NULL; stub_sec = stub_sec->next)
2986 {
2987 bfd_size_type size;
2988
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec->name, STUB_SUFFIX))
2991 continue;
2992
2993 /* Allocate memory to hold the linker stubs. */
2994 size = stub_sec->size;
2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2996 if (stub_sec->contents == NULL && size != 0)
2997 return FALSE;
2998 stub_sec->size = 0;
2999 }
3000
3001 /* Build the stubs as directed by the stub hash table. */
3002 table = &htab->stub_hash_table;
3003 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3004
3005 return TRUE;
3006}
3007
3008
3009/* Add an entry to the code/data map for section SEC. */
3010
3011static void
cec5225b 3012elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
3013{
3014 struct _aarch64_elf_section_data *sec_data =
cec5225b 3015 elf_aarch64_section_data (sec);
a06ea964
NC
3016 unsigned int newidx;
3017
3018 if (sec_data->map == NULL)
3019 {
cec5225b 3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
3021 sec_data->mapcount = 0;
3022 sec_data->mapsize = 1;
3023 }
3024
3025 newidx = sec_data->mapcount++;
3026
3027 if (sec_data->mapcount > sec_data->mapsize)
3028 {
3029 sec_data->mapsize *= 2;
3030 sec_data->map = bfd_realloc_or_free
cec5225b 3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
3032 }
3033
3034 if (sec_data->map)
3035 {
3036 sec_data->map[newidx].vma = vma;
3037 sec_data->map[newidx].type = type;
3038 }
3039}
3040
3041
3042/* Initialise maps of insn/data for input BFDs. */
3043void
cec5225b 3044bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
3045{
3046 Elf_Internal_Sym *isymbuf;
3047 Elf_Internal_Shdr *hdr;
3048 unsigned int i, localsyms;
3049
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd))
3052 return;
3053
3054 if ((abfd->flags & DYNAMIC) != 0)
3055 return;
3056
3057 hdr = &elf_symtab_hdr (abfd);
3058 localsyms = hdr->sh_info;
3059
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3064
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf == NULL)
3067 return;
3068
3069 for (i = 0; i < localsyms; i++)
3070 {
3071 Elf_Internal_Sym *isym = &isymbuf[i];
3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3073 const char *name;
3074
3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3076 {
3077 name = bfd_elf_string_from_elf_section (abfd,
3078 hdr->sh_link,
3079 isym->st_name);
3080
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
3084 }
3085 }
3086}
3087
3088/* Set option values needed during linking. */
3089void
cec5225b 3090bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
3091 struct bfd_link_info *link_info,
3092 int no_enum_warn,
3093 int no_wchar_warn, int pic_veneer)
3094{
cec5225b 3095 struct elf_aarch64_link_hash_table *globals;
a06ea964 3096
cec5225b 3097 globals = elf_aarch64_hash_table (link_info);
a06ea964
NC
3098 globals->pic_veneer = pic_veneer;
3099
3100 BFD_ASSERT (is_aarch64_elf (output_bfd));
3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3103}
3104
a06ea964
NC
3105static bfd_vma
3106aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 3107 struct elf_aarch64_link_hash_table
a06ea964
NC
3108 *globals, struct bfd_link_info *info,
3109 bfd_vma value, bfd *output_bfd,
3110 bfd_boolean *unresolved_reloc_p)
3111{
3112 bfd_vma off = (bfd_vma) - 1;
3113 asection *basegot = globals->root.sgot;
3114 bfd_boolean dyn = globals->root.dynamic_sections_created;
3115
3116 if (h != NULL)
3117 {
a6bb11b2 3118 BFD_ASSERT (basegot != NULL);
a06ea964
NC
3119 off = h->got.offset;
3120 BFD_ASSERT (off != (bfd_vma) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3122 || (info->shared
3123 && SYMBOL_REFERENCES_LOCAL (info, h))
3124 || (ELF_ST_VISIBILITY (h->other)
3125 && h->root.type == bfd_link_hash_undefweak))
3126 {
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
a6bb11b2
YZ
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
a06ea964
NC
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3136 if ((off & 1) != 0)
3137 off &= ~1;
3138 else
3139 {
cec5225b 3140 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
3141 h->got.offset |= 1;
3142 }
3143 }
3144 else
3145 *unresolved_reloc_p = FALSE;
3146
3147 off = off + basegot->output_section->vma + basegot->output_offset;
3148 }
3149
3150 return off;
3151}
3152
3153/* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3155
a6bb11b2
YZ
3156static bfd_reloc_code_real_type
3157aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
3158 struct elf_link_hash_entry *h)
3159{
3160 bfd_boolean is_local = h == NULL;
a6bb11b2 3161
a06ea964
NC
3162 switch (r_type)
3163 {
a6bb11b2
YZ
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3166 return (is_local
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3169
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3172 return (is_local
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3175
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3178
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3181
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 3184 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
3185 return BFD_RELOC_AARCH64_NONE;
3186
3187 default:
3188 break;
a06ea964
NC
3189 }
3190
3191 return r_type;
3192}
3193
3194static unsigned int
a6bb11b2 3195aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
3196{
3197 switch (r_type)
3198 {
a6bb11b2
YZ
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3203 return GOT_NORMAL;
3204
a6bb11b2
YZ
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3207 return GOT_TLS_GD;
3208
a6bb11b2
YZ
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
a06ea964
NC
3214 return GOT_TLSDESC_GD;
3215
a6bb11b2
YZ
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3219 return GOT_TLS_IE;
3220
a6bb11b2
YZ
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964 3229 return GOT_UNKNOWN;
a6bb11b2
YZ
3230
3231 default:
3232 break;
a06ea964
NC
3233 }
3234 return GOT_UNKNOWN;
3235}
3236
3237static bfd_boolean
3238aarch64_can_relax_tls (bfd *input_bfd,
3239 struct bfd_link_info *info,
a6bb11b2 3240 bfd_reloc_code_real_type r_type,
a06ea964
NC
3241 struct elf_link_hash_entry *h,
3242 unsigned long r_symndx)
3243{
3244 unsigned int symbol_got_type;
3245 unsigned int reloc_got_type;
3246
3247 if (! IS_AARCH64_TLS_RELOC (r_type))
3248 return FALSE;
3249
cec5225b 3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
3251 reloc_got_type = aarch64_reloc_got_type (r_type);
3252
3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3254 return TRUE;
3255
3256 if (info->shared)
3257 return FALSE;
3258
3259 if (h && h->root.type == bfd_link_hash_undefweak)
3260 return FALSE;
3261
3262 return TRUE;
3263}
3264
a6bb11b2
YZ
3265/* Given the relocation code R_TYPE, return the relaxed bfd reloc
3266 enumerator. */
3267
3268static bfd_reloc_code_real_type
a06ea964
NC
3269aarch64_tls_transition (bfd *input_bfd,
3270 struct bfd_link_info *info,
3271 unsigned int r_type,
3272 struct elf_link_hash_entry *h,
3273 unsigned long r_symndx)
3274{
a6bb11b2
YZ
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 3277
a6bb11b2
YZ
3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3279 return bfd_r_type;
3280
3281 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
3282}
3283
3284/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
3286
3287static bfd_vma
3288dtpoff_base (struct bfd_link_info *info)
3289{
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3292 return elf_hash_table (info)->tls_sec->vma;
3293}
3294
a06ea964
NC
3295/* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3297
3298static bfd_vma
3299tpoff_base (struct bfd_link_info *info)
3300{
3301 struct elf_link_hash_table *htab = elf_hash_table (info);
3302
3303 /* If tls_sec is NULL, we should have signalled an error already. */
ac21917f 3304 BFD_ASSERT (htab->tls_sec != NULL);
a06ea964
NC
3305
3306 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3307 htab->tls_sec->alignment_power);
3308 return htab->tls_sec->vma - base;
3309}
3310
3311static bfd_vma *
3312symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3313 unsigned long r_symndx)
3314{
3315 /* Calculate the address of the GOT entry for symbol
3316 referred to in h. */
3317 if (h != NULL)
3318 return &h->got.offset;
3319 else
3320 {
3321 /* local symbol */
3322 struct elf_aarch64_local_symbol *l;
3323
cec5225b 3324 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3325 return &l[r_symndx].got_offset;
3326 }
3327}
3328
3329static void
3330symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3331 unsigned long r_symndx)
3332{
3333 bfd_vma *p;
3334 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3335 *p |= 1;
3336}
3337
3338static int
3339symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3340 unsigned long r_symndx)
3341{
3342 bfd_vma value;
3343 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3344 return value & 1;
3345}
3346
3347static bfd_vma
3348symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3349 unsigned long r_symndx)
3350{
3351 bfd_vma value;
3352 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3353 value &= ~1;
3354 return value;
3355}
3356
3357static bfd_vma *
3358symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3359 unsigned long r_symndx)
3360{
3361 /* Calculate the address of the GOT entry for symbol
3362 referred to in h. */
3363 if (h != NULL)
3364 {
cec5225b
YZ
3365 struct elf_aarch64_link_hash_entry *eh;
3366 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
3367 return &eh->tlsdesc_got_jump_table_offset;
3368 }
3369 else
3370 {
3371 /* local symbol */
3372 struct elf_aarch64_local_symbol *l;
3373
cec5225b 3374 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3375 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3376 }
3377}
3378
3379static void
3380symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3381 unsigned long r_symndx)
3382{
3383 bfd_vma *p;
3384 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3385 *p |= 1;
3386}
3387
3388static int
3389symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3390 struct elf_link_hash_entry *h,
3391 unsigned long r_symndx)
3392{
3393 bfd_vma value;
3394 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3395 return value & 1;
3396}
3397
3398static bfd_vma
3399symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3400 unsigned long r_symndx)
3401{
3402 bfd_vma value;
3403 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3404 value &= ~1;
3405 return value;
3406}
3407
3408/* Perform a relocation as part of a final link. */
3409static bfd_reloc_status_type
cec5225b 3410elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
3411 bfd *input_bfd,
3412 bfd *output_bfd,
3413 asection *input_section,
3414 bfd_byte *contents,
3415 Elf_Internal_Rela *rel,
3416 bfd_vma value,
3417 struct bfd_link_info *info,
3418 asection *sym_sec,
3419 struct elf_link_hash_entry *h,
3420 bfd_boolean *unresolved_reloc_p,
3421 bfd_boolean save_addend,
1419bbe5
WN
3422 bfd_vma *saved_addend,
3423 Elf_Internal_Sym *sym)
a06ea964 3424{
1419bbe5 3425 Elf_Internal_Shdr *symtab_hdr;
a06ea964 3426 unsigned int r_type = howto->type;
a6bb11b2
YZ
3427 bfd_reloc_code_real_type bfd_r_type
3428 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3429 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
3430 unsigned long r_symndx;
3431 bfd_byte *hit_data = contents + rel->r_offset;
3432 bfd_vma place;
3433 bfd_signed_vma signed_addend;
cec5225b 3434 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
3435 bfd_boolean weak_undef_p;
3436
cec5225b 3437 globals = elf_aarch64_hash_table (info);
a06ea964 3438
1419bbe5
WN
3439 symtab_hdr = &elf_symtab_hdr (input_bfd);
3440
a06ea964
NC
3441 BFD_ASSERT (is_aarch64_elf (input_bfd));
3442
cec5225b 3443 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
3444
3445 /* It is possible to have linker relaxations on some TLS access
3446 models. Update our information here. */
a6bb11b2
YZ
3447 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3448 if (new_bfd_r_type != bfd_r_type)
3449 {
3450 bfd_r_type = new_bfd_r_type;
3451 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3452 BFD_ASSERT (howto != NULL);
3453 r_type = howto->type;
3454 }
a06ea964
NC
3455
3456 place = input_section->output_section->vma
3457 + input_section->output_offset + rel->r_offset;
3458
3459 /* Get addend, accumulating the addend for consecutive relocs
3460 which refer to the same offset. */
3461 signed_addend = saved_addend ? *saved_addend : 0;
3462 signed_addend += rel->r_addend;
3463
3464 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3465 : bfd_is_und_section (sym_sec));
a6bb11b2 3466
1419bbe5
WN
3467 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3468 it here if it is defined in a non-shared object. */
3469 if (h != NULL
3470 && h->type == STT_GNU_IFUNC
3471 && h->def_regular)
3472 {
3473 asection *plt;
3474 const char *name;
3475 asection *base_got;
3476 bfd_vma off;
3477
3478 if ((input_section->flags & SEC_ALLOC) == 0
3479 || h->plt.offset == (bfd_vma) -1)
3480 abort ();
3481
3482 /* STT_GNU_IFUNC symbol must go through PLT. */
3483 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3484 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3485
3486 switch (bfd_r_type)
3487 {
3488 default:
3489 if (h->root.root.string)
3490 name = h->root.root.string;
3491 else
3492 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3493 NULL);
3494 (*_bfd_error_handler)
3495 (_("%B: relocation %s against STT_GNU_IFUNC "
3496 "symbol `%s' isn't handled by %s"), input_bfd,
3497 howto->name, name, __FUNCTION__);
3498 bfd_set_error (bfd_error_bad_value);
3499 return FALSE;
3500
3501 case BFD_RELOC_AARCH64_NN:
3502 if (rel->r_addend != 0)
3503 {
3504 if (h->root.root.string)
3505 name = h->root.root.string;
3506 else
3507 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3508 sym, NULL);
3509 (*_bfd_error_handler)
3510 (_("%B: relocation %s against STT_GNU_IFUNC "
3511 "symbol `%s' has non-zero addend: %d"),
3512 input_bfd, howto->name, name, rel->r_addend);
3513 bfd_set_error (bfd_error_bad_value);
3514 return FALSE;
3515 }
3516
3517 /* Generate dynamic relocation only when there is a
3518 non-GOT reference in a shared object. */
3519 if (info->shared && h->non_got_ref)
3520 {
3521 Elf_Internal_Rela outrel;
3522 asection *sreloc;
3523
3524 /* Need a dynamic relocation to get the real function
3525 address. */
3526 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3527 info,
3528 input_section,
3529 rel->r_offset);
3530 if (outrel.r_offset == (bfd_vma) -1
3531 || outrel.r_offset == (bfd_vma) -2)
3532 abort ();
3533
3534 outrel.r_offset += (input_section->output_section->vma
3535 + input_section->output_offset);
3536
3537 if (h->dynindx == -1
3538 || h->forced_local
3539 || info->executable)
3540 {
3541 /* This symbol is resolved locally. */
3542 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3543 outrel.r_addend = (h->root.u.def.value
3544 + h->root.u.def.section->output_section->vma
3545 + h->root.u.def.section->output_offset);
3546 }
3547 else
3548 {
3549 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3550 outrel.r_addend = 0;
3551 }
3552
3553 sreloc = globals->root.irelifunc;
3554 elf_append_rela (output_bfd, sreloc, &outrel);
3555
3556 /* If this reloc is against an external symbol, we
3557 do not want to fiddle with the addend. Otherwise,
3558 we need to include the symbol value so that it
3559 becomes an addend for the dynamic reloc. For an
3560 internal symbol, we have updated addend. */
3561 return bfd_reloc_ok;
3562 }
3563 /* FALLTHROUGH */
3564 case BFD_RELOC_AARCH64_JUMP26:
3565 case BFD_RELOC_AARCH64_CALL26:
3566 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3567 signed_addend,
3568 weak_undef_p);
3569 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3570 howto, value);
3571 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3572 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3574 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3575 base_got = globals->root.sgot;
3576 off = h->got.offset;
3577
3578 if (base_got == NULL)
3579 abort ();
3580
3581 if (off == (bfd_vma) -1)
3582 {
3583 bfd_vma plt_index;
3584
3585 /* We can't use h->got.offset here to save state, or
3586 even just remember the offset, as finish_dynamic_symbol
3587 would use that as offset into .got. */
3588
3589 if (globals->root.splt != NULL)
3590 {
b1ee0cc4
WN
3591 plt_index = ((h->plt.offset - globals->plt_header_size) /
3592 globals->plt_entry_size);
1419bbe5
WN
3593 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3594 base_got = globals->root.sgotplt;
3595 }
3596 else
3597 {
3598 plt_index = h->plt.offset / globals->plt_entry_size;
3599 off = plt_index * GOT_ENTRY_SIZE;
3600 base_got = globals->root.igotplt;
3601 }
3602
3603 if (h->dynindx == -1
3604 || h->forced_local
3605 || info->symbolic)
3606 {
3607 /* This references the local definition. We must
3608 initialize this entry in the global offset table.
3609 Since the offset must always be a multiple of 8,
3610 we use the least significant bit to record
3611 whether we have initialized it already.
3612
3613 When doing a dynamic link, we create a .rela.got
3614 relocation entry to initialize the value. This
3615 is done in the finish_dynamic_symbol routine. */
3616 if ((off & 1) != 0)
3617 off &= ~1;
3618 else
3619 {
3620 bfd_put_NN (output_bfd, value,
3621 base_got->contents + off);
3622 /* Note that this is harmless as -1 | 1 still is -1. */
3623 h->got.offset |= 1;
3624 }
3625 }
3626 value = (base_got->output_section->vma
3627 + base_got->output_offset + off);
3628 }
3629 else
3630 value = aarch64_calculate_got_entry_vma (h, globals, info,
3631 value, output_bfd,
3632 unresolved_reloc_p);
3633 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3634 0, weak_undef_p);
3635 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3636 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3637 case BFD_RELOC_AARCH64_ADD_LO12:
3638 break;
3639 }
3640 }
3641
a6bb11b2 3642 switch (bfd_r_type)
a06ea964 3643 {
a6bb11b2
YZ
3644 case BFD_RELOC_AARCH64_NONE:
3645 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
3646 *unresolved_reloc_p = FALSE;
3647 return bfd_reloc_ok;
3648
a6bb11b2 3649 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
3650
3651 /* When generating a shared object or relocatable executable, these
3652 relocations are copied into the output file to be resolved at
3653 run time. */
3654 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3655 && (input_section->flags & SEC_ALLOC)
3656 && (h == NULL
3657 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3658 || h->root.type != bfd_link_hash_undefweak))
3659 {
3660 Elf_Internal_Rela outrel;
3661 bfd_byte *loc;
3662 bfd_boolean skip, relocate;
3663 asection *sreloc;
3664
3665 *unresolved_reloc_p = FALSE;
3666
a06ea964
NC
3667 skip = FALSE;
3668 relocate = FALSE;
3669
3670 outrel.r_addend = signed_addend;
3671 outrel.r_offset =
3672 _bfd_elf_section_offset (output_bfd, info, input_section,
3673 rel->r_offset);
3674 if (outrel.r_offset == (bfd_vma) - 1)
3675 skip = TRUE;
3676 else if (outrel.r_offset == (bfd_vma) - 2)
3677 {
3678 skip = TRUE;
3679 relocate = TRUE;
3680 }
3681
3682 outrel.r_offset += (input_section->output_section->vma
3683 + input_section->output_offset);
3684
3685 if (skip)
3686 memset (&outrel, 0, sizeof outrel);
3687 else if (h != NULL
3688 && h->dynindx != -1
3689 && (!info->shared || !info->symbolic || !h->def_regular))
cec5225b 3690 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
3691 else
3692 {
3693 int symbol;
3694
3695 /* On SVR4-ish systems, the dynamic loader cannot
3696 relocate the text and data segments independently,
3697 so the symbol does not matter. */
3698 symbol = 0;
a6bb11b2 3699 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
3700 outrel.r_addend += value;
3701 }
3702
1419bbe5
WN
3703 sreloc = elf_section_data (input_section)->sreloc;
3704 if (sreloc == NULL || sreloc->contents == NULL)
3705 return bfd_reloc_notsupported;
3706
3707 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 3708 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 3709
1419bbe5 3710 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
3711 {
3712 /* Sanity to check that we have previously allocated
3713 sufficient space in the relocation section for the
3714 number of relocations we actually want to emit. */
3715 abort ();
3716 }
3717
3718 /* If this reloc is against an external symbol, we do not want to
3719 fiddle with the addend. Otherwise, we need to include the symbol
3720 value so that it becomes an addend for the dynamic reloc. */
3721 if (!relocate)
3722 return bfd_reloc_ok;
3723
3724 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3725 contents, rel->r_offset, value,
3726 signed_addend);
3727 }
3728 else
3729 value += signed_addend;
3730 break;
3731
a6bb11b2
YZ
3732 case BFD_RELOC_AARCH64_JUMP26:
3733 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
3734 {
3735 asection *splt = globals->root.splt;
3736 bfd_boolean via_plt_p =
3737 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3738
3739 /* A call to an undefined weak symbol is converted to a jump to
3740 the next instruction unless a PLT entry will be created.
3741 The jump to the next instruction is optimized as a NOP.
3742 Do the same for local undefined symbols. */
3743 if (weak_undef_p && ! via_plt_p)
3744 {
3745 bfd_putl32 (INSN_NOP, hit_data);
3746 return bfd_reloc_ok;
3747 }
3748
3749 /* If the call goes through a PLT entry, make sure to
3750 check distance to the right destination address. */
3751 if (via_plt_p)
3752 {
3753 value = (splt->output_section->vma
3754 + splt->output_offset + h->plt.offset);
3755 *unresolved_reloc_p = FALSE;
3756 }
3757
3758 /* If the target symbol is global and marked as a function the
3759 relocation applies a function call or a tail call. In this
3760 situation we can veneer out of range branches. The veneers
3761 use IP0 and IP1 hence cannot be used arbitrary out of range
3762 branches that occur within the body of a function. */
3763 if (h && h->type == STT_FUNC)
3764 {
3765 /* Check if a stub has to be inserted because the destination
3766 is too far away. */
3767 if (! aarch64_valid_branch_p (value, place))
3768 {
3769 /* The target is out of reach, so redirect the branch to
3770 the local stub for this function. */
cec5225b
YZ
3771 struct elf_aarch64_stub_hash_entry *stub_entry;
3772 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
a06ea964
NC
3773 sym_sec, h,
3774 rel, globals);
3775 if (stub_entry != NULL)
3776 value = (stub_entry->stub_offset
3777 + stub_entry->stub_sec->output_offset
3778 + stub_entry->stub_sec->output_section->vma);
3779 }
3780 }
3781 }
caed7120
YZ
3782 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3783 signed_addend, weak_undef_p);
a06ea964
NC
3784 break;
3785
a6bb11b2
YZ
3786 case BFD_RELOC_AARCH64_16:
3787#if ARCH_SIZE == 64
3788 case BFD_RELOC_AARCH64_32:
3789#endif
3790 case BFD_RELOC_AARCH64_ADD_LO12:
3791 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3792 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3794 case BFD_RELOC_AARCH64_BRANCH19:
3795 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3796 case BFD_RELOC_AARCH64_LDST8_LO12:
3797 case BFD_RELOC_AARCH64_LDST16_LO12:
3798 case BFD_RELOC_AARCH64_LDST32_LO12:
3799 case BFD_RELOC_AARCH64_LDST64_LO12:
3800 case BFD_RELOC_AARCH64_LDST128_LO12:
3801 case BFD_RELOC_AARCH64_MOVW_G0_S:
3802 case BFD_RELOC_AARCH64_MOVW_G1_S:
3803 case BFD_RELOC_AARCH64_MOVW_G2_S:
3804 case BFD_RELOC_AARCH64_MOVW_G0:
3805 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3806 case BFD_RELOC_AARCH64_MOVW_G1:
3807 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3808 case BFD_RELOC_AARCH64_MOVW_G2:
3809 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3810 case BFD_RELOC_AARCH64_MOVW_G3:
3811 case BFD_RELOC_AARCH64_16_PCREL:
3812 case BFD_RELOC_AARCH64_32_PCREL:
3813 case BFD_RELOC_AARCH64_64_PCREL:
3814 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
3815 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3816 signed_addend, weak_undef_p);
a06ea964
NC
3817 break;
3818
a6bb11b2
YZ
3819 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3820 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3822 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3823 if (globals->root.sgot == NULL)
3824 BFD_ASSERT (h != NULL);
3825
3826 if (h != NULL)
3827 {
3828 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3829 output_bfd,
3830 unresolved_reloc_p);
caed7120
YZ
3831 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3832 0, weak_undef_p);
a06ea964
NC
3833 }
3834 break;
3835
a6bb11b2
YZ
3836 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3837 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3838 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3839 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3840 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3841 if (globals->root.sgot == NULL)
3842 return bfd_reloc_notsupported;
3843
3844 value = (symbol_got_offset (input_bfd, h, r_symndx)
3845 + globals->root.sgot->output_section->vma
f44a1f8e 3846 + globals->root.sgot->output_offset);
a06ea964 3847
caed7120
YZ
3848 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3849 0, weak_undef_p);
a06ea964
NC
3850 *unresolved_reloc_p = FALSE;
3851 break;
3852
a6bb11b2
YZ
3853 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3856 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
3861 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3862 signed_addend - tpoff_base (info),
3863 weak_undef_p);
a06ea964
NC
3864 *unresolved_reloc_p = FALSE;
3865 break;
3866
7bcccb57
MS
3867 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 3869 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a6bb11b2 3870 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 3871 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 3872 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
3873 if (globals->root.sgot == NULL)
3874 return bfd_reloc_notsupported;
a06ea964
NC
3875 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3876 + globals->root.sgotplt->output_section->vma
f44a1f8e 3877 + globals->root.sgotplt->output_offset
a06ea964
NC
3878 + globals->sgotplt_jump_table_size);
3879
caed7120
YZ
3880 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3881 0, weak_undef_p);
a06ea964
NC
3882 *unresolved_reloc_p = FALSE;
3883 break;
3884
3885 default:
3886 return bfd_reloc_notsupported;
3887 }
3888
3889 if (saved_addend)
3890 *saved_addend = value;
3891
3892 /* Only apply the final relocation in a sequence. */
3893 if (save_addend)
3894 return bfd_reloc_continue;
3895
caed7120
YZ
3896 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3897 howto, value);
a06ea964
NC
3898}
3899
3900/* Handle TLS relaxations. Relaxing is possible for symbols that use
3901 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3902 link.
3903
3904 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3905 is to then call final_link_relocate. Return other values in the
3906 case of error. */
3907
3908static bfd_reloc_status_type
cec5225b 3909elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
3910 bfd *input_bfd, bfd_byte *contents,
3911 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3912{
3913 bfd_boolean is_local = h == NULL;
cec5225b 3914 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
3915 unsigned long insn;
3916
3917 BFD_ASSERT (globals && input_bfd && contents && rel);
3918
a6bb11b2 3919 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 3920 {
a6bb11b2
YZ
3921 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3922 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a06ea964
NC
3923 if (is_local)
3924 {
3925 /* GD->LE relaxation:
3926 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3927 or
3928 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3929 */
3930 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3931 return bfd_reloc_continue;
3932 }
3933 else
3934 {
3935 /* GD->IE relaxation:
3936 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3937 or
3938 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3939 */
a06ea964
NC
3940 return bfd_reloc_continue;
3941 }
3942
a6bb11b2 3943 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
3944 if (is_local)
3945 {
3946 /* GD->LE relaxation:
3947 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3948 */
3949 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3950 return bfd_reloc_continue;
3951 }
3952 else
3953 {
3954 /* GD->IE relaxation:
3955 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3956 */
3957 insn = bfd_getl32 (contents + rel->r_offset);
fa85fb9a 3958 insn &= 0xffffffe0;
a06ea964
NC
3959 bfd_putl32 (insn, contents + rel->r_offset);
3960 return bfd_reloc_continue;
3961 }
3962
a6bb11b2 3963 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3964 if (is_local)
3965 {
3966 /* GD->LE relaxation
3967 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3968 bl __tls_get_addr => mrs x1, tpidr_el0
3969 nop => add x0, x1, x0
3970 */
3971
3972 /* First kill the tls_get_addr reloc on the bl instruction. */
3973 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 3974 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3975
3976 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3977 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3978 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3979 return bfd_reloc_continue;
3980 }
3981 else
3982 {
3983 /* GD->IE relaxation
3984 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3985 BL __tls_get_addr => mrs x1, tpidr_el0
3986 R_AARCH64_CALL26
3987 NOP => add x0, x1, x0
3988 */
3989
a6bb11b2 3990 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
3991
3992 /* Remove the relocation on the BL instruction. */
cec5225b 3993 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3994
3995 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3996
3997 /* We choose to fixup the BL and NOP instructions using the
3998 offset from the second relocation to allow flexibility in
3999 scheduling instructions between the ADD and BL. */
4000 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4001 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4002 return bfd_reloc_continue;
4003 }
4004
a6bb11b2
YZ
4005 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4006 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
4007 /* GD->IE/LE relaxation:
4008 add x0, x0, #:tlsdesc_lo12:var => nop
4009 blr xd => nop
4010 */
4011 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4012 return bfd_reloc_ok;
4013
a6bb11b2 4014 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
4015 /* IE->LE relaxation:
4016 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4017 */
4018 if (is_local)
4019 {
4020 insn = bfd_getl32 (contents + rel->r_offset);
4021 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4022 }
4023 return bfd_reloc_continue;
4024
a6bb11b2 4025 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4026 /* IE->LE relaxation:
4027 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4028 */
4029 if (is_local)
4030 {
4031 insn = bfd_getl32 (contents + rel->r_offset);
4032 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4033 }
4034 return bfd_reloc_continue;
4035
4036 default:
4037 return bfd_reloc_continue;
4038 }
4039
4040 return bfd_reloc_ok;
4041}
4042
4043/* Relocate an AArch64 ELF section. */
4044
4045static bfd_boolean
cec5225b 4046elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
4047 struct bfd_link_info *info,
4048 bfd *input_bfd,
4049 asection *input_section,
4050 bfd_byte *contents,
4051 Elf_Internal_Rela *relocs,
4052 Elf_Internal_Sym *local_syms,
4053 asection **local_sections)
4054{
4055 Elf_Internal_Shdr *symtab_hdr;
4056 struct elf_link_hash_entry **sym_hashes;
4057 Elf_Internal_Rela *rel;
4058 Elf_Internal_Rela *relend;
4059 const char *name;
cec5225b 4060 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
4061 bfd_boolean save_addend = FALSE;
4062 bfd_vma addend = 0;
4063
cec5225b 4064 globals = elf_aarch64_hash_table (info);
a06ea964
NC
4065
4066 symtab_hdr = &elf_symtab_hdr (input_bfd);
4067 sym_hashes = elf_sym_hashes (input_bfd);
4068
4069 rel = relocs;
4070 relend = relocs + input_section->reloc_count;
4071 for (; rel < relend; rel++)
4072 {
4073 unsigned int r_type;
a6bb11b2
YZ
4074 bfd_reloc_code_real_type bfd_r_type;
4075 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
4076 reloc_howto_type *howto;
4077 unsigned long r_symndx;
4078 Elf_Internal_Sym *sym;
4079 asection *sec;
4080 struct elf_link_hash_entry *h;
4081 bfd_vma relocation;
4082 bfd_reloc_status_type r;
4083 arelent bfd_reloc;
4084 char sym_type;
4085 bfd_boolean unresolved_reloc = FALSE;
4086 char *error_message = NULL;
4087
cec5225b
YZ
4088 r_symndx = ELFNN_R_SYM (rel->r_info);
4089 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 4090
cec5225b 4091 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
4092 howto = bfd_reloc.howto;
4093
7fcfd62d
NC
4094 if (howto == NULL)
4095 {
4096 (*_bfd_error_handler)
4097 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4098 input_bfd, input_section, r_type);
4099 return FALSE;
4100 }
a6bb11b2 4101 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 4102
a06ea964
NC
4103 h = NULL;
4104 sym = NULL;
4105 sec = NULL;
4106
4107 if (r_symndx < symtab_hdr->sh_info)
4108 {
4109 sym = local_syms + r_symndx;
cec5225b 4110 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
4111 sec = local_sections[r_symndx];
4112
4113 /* An object file might have a reference to a local
4114 undefined symbol. This is a daft object file, but we
4115 should at least do something about it. */
4116 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4117 && bfd_is_und_section (sec)
4118 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4119 {
4120 if (!info->callbacks->undefined_symbol
4121 (info, bfd_elf_string_from_elf_section
4122 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4123 input_bfd, input_section, rel->r_offset, TRUE))
4124 return FALSE;
4125 }
4126
a06ea964 4127 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
4128
4129 /* Relocate against local STT_GNU_IFUNC symbol. */
4130 if (!info->relocatable
4131 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4132 {
4133 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4134 rel, FALSE);
4135 if (h == NULL)
4136 abort ();
4137
4138 /* Set STT_GNU_IFUNC symbol value. */
4139 h->root.u.def.value = sym->st_value;
4140 h->root.u.def.section = sec;
4141 }
a06ea964
NC
4142 }
4143 else
4144 {
62d887d4 4145 bfd_boolean warned, ignored;
a06ea964
NC
4146
4147 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4148 r_symndx, symtab_hdr, sym_hashes,
4149 h, sec, relocation,
62d887d4 4150 unresolved_reloc, warned, ignored);
a06ea964
NC
4151
4152 sym_type = h->type;
4153 }
4154
4155 if (sec != NULL && discarded_section (sec))
4156 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4157 rel, 1, relend, howto, 0, contents);
4158
4159 if (info->relocatable)
4160 {
4161 /* This is a relocatable link. We don't have to change
4162 anything, unless the reloc is against a section symbol,
4163 in which case we have to adjust according to where the
4164 section symbol winds up in the output section. */
4165 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4166 rel->r_addend += sec->output_offset;
4167 continue;
4168 }
4169
4170 if (h != NULL)
4171 name = h->root.root.string;
4172 else
4173 {
4174 name = (bfd_elf_string_from_elf_section
4175 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4176 if (name == NULL || *name == '\0')
4177 name = bfd_section_name (input_bfd, sec);
4178 }
4179
4180 if (r_symndx != 0
4181 && r_type != R_AARCH64_NONE
4182 && r_type != R_AARCH64_NULL
4183 && (h == NULL
4184 || h->root.type == bfd_link_hash_defined
4185 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 4186 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
4187 {
4188 (*_bfd_error_handler)
4189 ((sym_type == STT_TLS
4190 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4191 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4192 input_bfd,
4193 input_section, (long) rel->r_offset, howto->name, name);
4194 }
4195
a06ea964
NC
4196 /* We relax only if we can see that there can be a valid transition
4197 from a reloc type to another.
cec5225b 4198 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
4199 done, i.e., the relaxation produced the final output we want. */
4200
a6bb11b2
YZ
4201 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4202 h, r_symndx);
4203 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 4204 {
a6bb11b2
YZ
4205 bfd_r_type = relaxed_bfd_r_type;
4206 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4207 BFD_ASSERT (howto != NULL);
4208 r_type = howto->type;
cec5225b 4209 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
4210 unresolved_reloc = 0;
4211 }
4212 else
4213 r = bfd_reloc_continue;
4214
4215 /* There may be multiple consecutive relocations for the
4216 same offset. In that case we are supposed to treat the
4217 output of each relocation as the addend for the next. */
4218 if (rel + 1 < relend
4219 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
4220 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4221 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
4222 save_addend = TRUE;
4223 else
4224 save_addend = FALSE;
4225
4226 if (r == bfd_reloc_continue)
cec5225b 4227 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
4228 input_section, contents, rel,
4229 relocation, info, sec,
4230 h, &unresolved_reloc,
1419bbe5 4231 save_addend, &addend, sym);
a06ea964 4232
a6bb11b2 4233 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 4234 {
a6bb11b2
YZ
4235 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4236 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
4237 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4238 {
4239 bfd_boolean need_relocs = FALSE;
4240 bfd_byte *loc;
4241 int indx;
4242 bfd_vma off;
4243
4244 off = symbol_got_offset (input_bfd, h, r_symndx);
4245 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4246
4247 need_relocs =
4248 (info->shared || indx != 0) &&
4249 (h == NULL
4250 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4251 || h->root.type != bfd_link_hash_undefweak);
4252
4253 BFD_ASSERT (globals->root.srelgot != NULL);
4254
4255 if (need_relocs)
4256 {
4257 Elf_Internal_Rela rela;
a6bb11b2 4258 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
4259 rela.r_addend = 0;
4260 rela.r_offset = globals->root.sgot->output_section->vma +
4261 globals->root.sgot->output_offset + off;
4262
4263
4264 loc = globals->root.srelgot->contents;
4265 loc += globals->root.srelgot->reloc_count++
4266 * RELOC_SIZE (htab);
cec5225b 4267 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
4268
4269 if (indx == 0)
4270 {
cec5225b 4271 bfd_put_NN (output_bfd,
a06ea964
NC
4272 relocation - dtpoff_base (info),
4273 globals->root.sgot->contents + off
4274 + GOT_ENTRY_SIZE);
4275 }
4276 else
4277 {
4278 /* This TLS symbol is global. We emit a
4279 relocation to fixup the tls offset at load
4280 time. */
4281 rela.r_info =
a6bb11b2 4282 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
4283 rela.r_addend = 0;
4284 rela.r_offset =
4285 (globals->root.sgot->output_section->vma
4286 + globals->root.sgot->output_offset + off
4287 + GOT_ENTRY_SIZE);
4288
4289 loc = globals->root.srelgot->contents;
4290 loc += globals->root.srelgot->reloc_count++
4291 * RELOC_SIZE (globals);
cec5225b
YZ
4292 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4293 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4294 globals->root.sgot->contents + off
4295 + GOT_ENTRY_SIZE);
4296 }
4297 }
4298 else
4299 {
cec5225b 4300 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 4301 globals->root.sgot->contents + off);
cec5225b 4302 bfd_put_NN (output_bfd,
a06ea964
NC
4303 relocation - dtpoff_base (info),
4304 globals->root.sgot->contents + off
4305 + GOT_ENTRY_SIZE);
4306 }
4307
4308 symbol_got_offset_mark (input_bfd, h, r_symndx);
4309 }
4310 break;
4311
a6bb11b2
YZ
4312 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4313 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4314 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4315 {
4316 bfd_boolean need_relocs = FALSE;
4317 bfd_byte *loc;
4318 int indx;
4319 bfd_vma off;
4320
4321 off = symbol_got_offset (input_bfd, h, r_symndx);
4322
4323 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4324
4325 need_relocs =
4326 (info->shared || indx != 0) &&
4327 (h == NULL
4328 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4329 || h->root.type != bfd_link_hash_undefweak);
4330
4331 BFD_ASSERT (globals->root.srelgot != NULL);
4332
4333 if (need_relocs)
4334 {
4335 Elf_Internal_Rela rela;
4336
4337 if (indx == 0)
4338 rela.r_addend = relocation - dtpoff_base (info);
4339 else
4340 rela.r_addend = 0;
4341
a6bb11b2 4342 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
4343 rela.r_offset = globals->root.sgot->output_section->vma +
4344 globals->root.sgot->output_offset + off;
4345
4346 loc = globals->root.srelgot->contents;
4347 loc += globals->root.srelgot->reloc_count++
4348 * RELOC_SIZE (htab);
4349
cec5225b 4350 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4351
cec5225b 4352 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
4353 globals->root.sgot->contents + off);
4354 }
4355 else
cec5225b 4356 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
4357 globals->root.sgot->contents + off);
4358
4359 symbol_got_offset_mark (input_bfd, h, r_symndx);
4360 }
4361 break;
4362
a6bb11b2
YZ
4363 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4364 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4366 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4367 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
a06ea964
NC
4371 break;
4372
7bcccb57 4373 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2
YZ
4374 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4375 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
4376 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4377 {
4378 bfd_boolean need_relocs = FALSE;
4379 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4380 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4381
4382 need_relocs = (h == NULL
4383 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4384 || h->root.type != bfd_link_hash_undefweak);
4385
4386 BFD_ASSERT (globals->root.srelgot != NULL);
4387 BFD_ASSERT (globals->root.sgot != NULL);
4388
4389 if (need_relocs)
4390 {
4391 bfd_byte *loc;
4392 Elf_Internal_Rela rela;
a6bb11b2
YZ
4393 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4394
a06ea964
NC
4395 rela.r_addend = 0;
4396 rela.r_offset = (globals->root.sgotplt->output_section->vma
4397 + globals->root.sgotplt->output_offset
4398 + off + globals->sgotplt_jump_table_size);
4399
4400 if (indx == 0)
4401 rela.r_addend = relocation - dtpoff_base (info);
4402
4403 /* Allocate the next available slot in the PLT reloc
4404 section to hold our R_AARCH64_TLSDESC, the next
4405 available slot is determined from reloc_count,
4406 which we step. But note, reloc_count was
4407 artifically moved down while allocating slots for
4408 real PLT relocs such that all of the PLT relocs
4409 will fit above the initial reloc_count and the
4410 extra stuff will fit below. */
4411 loc = globals->root.srelplt->contents;
4412 loc += globals->root.srelplt->reloc_count++
4413 * RELOC_SIZE (globals);
4414
cec5225b 4415 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4416
cec5225b 4417 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4418 globals->root.sgotplt->contents + off +
4419 globals->sgotplt_jump_table_size);
cec5225b 4420 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4421 globals->root.sgotplt->contents + off +
4422 globals->sgotplt_jump_table_size +
4423 GOT_ENTRY_SIZE);
4424 }
4425
4426 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4427 }
4428 break;
a6bb11b2
YZ
4429 default:
4430 break;
a06ea964
NC
4431 }
4432
4433 if (!save_addend)
4434 addend = 0;
4435
4436
4437 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4438 because such sections are not SEC_ALLOC and thus ld.so will
4439 not process them. */
4440 if (unresolved_reloc
4441 && !((input_section->flags & SEC_DEBUGGING) != 0
4442 && h->def_dynamic)
4443 && _bfd_elf_section_offset (output_bfd, info, input_section,
4444 +rel->r_offset) != (bfd_vma) - 1)
4445 {
4446 (*_bfd_error_handler)
4447 (_
4448 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4449 input_bfd, input_section, (long) rel->r_offset, howto->name,
4450 h->root.root.string);
4451 return FALSE;
4452 }
4453
4454 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4455 {
4456 switch (r)
4457 {
4458 case bfd_reloc_overflow:
4459 /* If the overflowing reloc was to an undefined symbol,
4460 we have already printed one error message and there
4461 is no point complaining again. */
4462 if ((!h ||
4463 h->root.type != bfd_link_hash_undefined)
4464 && (!((*info->callbacks->reloc_overflow)
4465 (info, (h ? &h->root : NULL), name, howto->name,
4466 (bfd_vma) 0, input_bfd, input_section,
4467 rel->r_offset))))
4468 return FALSE;
4469 break;
4470
4471 case bfd_reloc_undefined:
4472 if (!((*info->callbacks->undefined_symbol)
4473 (info, name, input_bfd, input_section,
4474 rel->r_offset, TRUE)))
4475 return FALSE;
4476 break;
4477
4478 case bfd_reloc_outofrange:
4479 error_message = _("out of range");
4480 goto common_error;
4481
4482 case bfd_reloc_notsupported:
4483 error_message = _("unsupported relocation");
4484 goto common_error;
4485
4486 case bfd_reloc_dangerous:
4487 /* error_message should already be set. */
4488 goto common_error;
4489
4490 default:
4491 error_message = _("unknown error");
4492 /* Fall through. */
4493
4494 common_error:
4495 BFD_ASSERT (error_message != NULL);
4496 if (!((*info->callbacks->reloc_dangerous)
4497 (info, error_message, input_bfd, input_section,
4498 rel->r_offset)))
4499 return FALSE;
4500 break;
4501 }
4502 }
4503 }
4504
4505 return TRUE;
4506}
4507
4508/* Set the right machine number. */
4509
4510static bfd_boolean
cec5225b 4511elfNN_aarch64_object_p (bfd *abfd)
a06ea964 4512{
cec5225b
YZ
4513#if ARCH_SIZE == 32
4514 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4515#else
a06ea964 4516 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 4517#endif
a06ea964
NC
4518 return TRUE;
4519}
4520
4521/* Function to keep AArch64 specific flags in the ELF header. */
4522
4523static bfd_boolean
cec5225b 4524elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
4525{
4526 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4527 {
4528 }
4529 else
4530 {
4531 elf_elfheader (abfd)->e_flags = flags;
4532 elf_flags_init (abfd) = TRUE;
4533 }
4534
4535 return TRUE;
4536}
4537
a06ea964
NC
4538/* Merge backend specific data from an object file to the output
4539 object file when linking. */
4540
4541static bfd_boolean
cec5225b 4542elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4543{
4544 flagword out_flags;
4545 flagword in_flags;
4546 bfd_boolean flags_compatible = TRUE;
4547 asection *sec;
4548
4549 /* Check if we have the same endianess. */
4550 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4551 return FALSE;
4552
4553 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4554 return TRUE;
4555
4556 /* The input BFD must have had its flags initialised. */
4557 /* The following seems bogus to me -- The flags are initialized in
4558 the assembler but I don't think an elf_flags_init field is
4559 written into the object. */
4560 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4561
4562 in_flags = elf_elfheader (ibfd)->e_flags;
4563 out_flags = elf_elfheader (obfd)->e_flags;
4564
4565 if (!elf_flags_init (obfd))
4566 {
4567 /* If the input is the default architecture and had the default
4568 flags then do not bother setting the flags for the output
4569 architecture, instead allow future merges to do this. If no
4570 future merges ever set these flags then they will retain their
4571 uninitialised values, which surprise surprise, correspond
4572 to the default values. */
4573 if (bfd_get_arch_info (ibfd)->the_default
4574 && elf_elfheader (ibfd)->e_flags == 0)
4575 return TRUE;
4576
4577 elf_flags_init (obfd) = TRUE;
4578 elf_elfheader (obfd)->e_flags = in_flags;
4579
4580 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4581 && bfd_get_arch_info (obfd)->the_default)
4582 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4583 bfd_get_mach (ibfd));
4584
4585 return TRUE;
4586 }
4587
4588 /* Identical flags must be compatible. */
4589 if (in_flags == out_flags)
4590 return TRUE;
4591
4592 /* Check to see if the input BFD actually contains any sections. If
4593 not, its flags may not have been initialised either, but it
4594 cannot actually cause any incompatiblity. Do not short-circuit
4595 dynamic objects; their section list may be emptied by
4596 elf_link_add_object_symbols.
4597
4598 Also check to see if there are no code sections in the input.
4599 In this case there is no need to check for code specific flags.
4600 XXX - do we need to worry about floating-point format compatability
4601 in data sections ? */
4602 if (!(ibfd->flags & DYNAMIC))
4603 {
4604 bfd_boolean null_input_bfd = TRUE;
4605 bfd_boolean only_data_sections = TRUE;
4606
4607 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4608 {
4609 if ((bfd_get_section_flags (ibfd, sec)
4610 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4611 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4612 only_data_sections = FALSE;
4613
4614 null_input_bfd = FALSE;
4615 break;
4616 }
4617
4618 if (null_input_bfd || only_data_sections)
4619 return TRUE;
4620 }
4621
4622 return flags_compatible;
4623}
4624
4625/* Display the flags field. */
4626
4627static bfd_boolean
cec5225b 4628elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
4629{
4630 FILE *file = (FILE *) ptr;
4631 unsigned long flags;
4632
4633 BFD_ASSERT (abfd != NULL && ptr != NULL);
4634
4635 /* Print normal ELF private data. */
4636 _bfd_elf_print_private_bfd_data (abfd, ptr);
4637
4638 flags = elf_elfheader (abfd)->e_flags;
4639 /* Ignore init flag - it may not be set, despite the flags field
4640 containing valid data. */
4641
4642 /* xgettext:c-format */
4643 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4644
4645 if (flags)
4646 fprintf (file, _("<Unrecognised flag bits set>"));
4647
4648 fputc ('\n', file);
4649
4650 return TRUE;
4651}
4652
4653/* Update the got entry reference counts for the section being removed. */
4654
4655static bfd_boolean
cec5225b 4656elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
4657 struct bfd_link_info *info,
4658 asection *sec,
4659 const Elf_Internal_Rela * relocs)
a06ea964 4660{
cec5225b 4661 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
4662 Elf_Internal_Shdr *symtab_hdr;
4663 struct elf_link_hash_entry **sym_hashes;
cb8af559 4664 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
4665 const Elf_Internal_Rela *rel, *relend;
4666
4667 if (info->relocatable)
4668 return TRUE;
4669
cec5225b 4670 htab = elf_aarch64_hash_table (info);
59c108f7
NC
4671
4672 if (htab == NULL)
4673 return FALSE;
4674
4675 elf_section_data (sec)->local_dynrel = NULL;
4676
4677 symtab_hdr = &elf_symtab_hdr (abfd);
4678 sym_hashes = elf_sym_hashes (abfd);
4679
cec5225b 4680 locals = elf_aarch64_locals (abfd);
59c108f7
NC
4681
4682 relend = relocs + sec->reloc_count;
4683 for (rel = relocs; rel < relend; rel++)
4684 {
4685 unsigned long r_symndx;
4686 unsigned int r_type;
4687 struct elf_link_hash_entry *h = NULL;
4688
cec5225b 4689 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 4690
59c108f7
NC
4691 if (r_symndx >= symtab_hdr->sh_info)
4692 {
8847944f 4693
59c108f7
NC
4694 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4695 while (h->root.type == bfd_link_hash_indirect
4696 || h->root.type == bfd_link_hash_warning)
4697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
4698 }
4699 else
4700 {
4701 Elf_Internal_Sym *isym;
4702
8847944f 4703 /* A local symbol. */
59c108f7
NC
4704 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4705 abfd, r_symndx);
1419bbe5
WN
4706
4707 /* Check relocation against local STT_GNU_IFUNC symbol. */
4708 if (isym != NULL
4709 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4710 {
4711 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4712 if (h == NULL)
4713 abort ();
4714 }
4715 }
4716
4717 if (h)
4718 {
4719 struct elf_aarch64_link_hash_entry *eh;
4720 struct elf_dyn_relocs **pp;
4721 struct elf_dyn_relocs *p;
4722
4723 eh = (struct elf_aarch64_link_hash_entry *) h;
4724
4725 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4726 if (p->sec == sec)
4727 {
4728 /* Everything must go for SEC. */
4729 *pp = p->next;
4730 break;
4731 }
59c108f7
NC
4732 }
4733
cec5225b 4734 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 4735 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 4736 {
a6bb11b2 4737 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
4738 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4739 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4740 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4741 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4742 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4743 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4744 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 4745 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 4746 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 4747 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4748 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 4749 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 4750 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 4751 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 4752 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
4753 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4754 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
4755 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a6bb11b2 4758 if (h != NULL)
59c108f7
NC
4759 {
4760 if (h->got.refcount > 0)
4761 h->got.refcount -= 1;
1419bbe5
WN
4762
4763 if (h->type == STT_GNU_IFUNC)
4764 {
4765 if (h->plt.refcount > 0)
4766 h->plt.refcount -= 1;
4767 }
59c108f7 4768 }
cb8af559 4769 else if (locals != NULL)
59c108f7 4770 {
cb8af559
NC
4771 if (locals[r_symndx].got_refcount > 0)
4772 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
4773 }
4774 break;
4775
a6bb11b2
YZ
4776 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4777 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4778 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
59c108f7
NC
4779 if (h != NULL && info->executable)
4780 {
4781 if (h->plt.refcount > 0)
4782 h->plt.refcount -= 1;
4783 }
4784 break;
4785
a6bb11b2
YZ
4786 case BFD_RELOC_AARCH64_CALL26:
4787 case BFD_RELOC_AARCH64_JUMP26:
4788 /* If this is a local symbol then we resolve it
4789 directly without creating a PLT entry. */
59c108f7
NC
4790 if (h == NULL)
4791 continue;
4792
4793 if (h->plt.refcount > 0)
4794 h->plt.refcount -= 1;
4795 break;
4796
a6bb11b2 4797 case BFD_RELOC_AARCH64_NN:
8847944f 4798 if (h != NULL && info->executable)
59c108f7
NC
4799 {
4800 if (h->plt.refcount > 0)
4801 h->plt.refcount -= 1;
4802 }
4803 break;
cec5225b 4804
59c108f7
NC
4805 default:
4806 break;
4807 }
4808 }
4809
a06ea964
NC
4810 return TRUE;
4811}
4812
4813/* Adjust a symbol defined by a dynamic object and referenced by a
4814 regular object. The current definition is in some section of the
4815 dynamic object, but we're not including those sections. We have to
4816 change the definition to something the rest of the link can
4817 understand. */
4818
4819static bfd_boolean
cec5225b 4820elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
4821 struct elf_link_hash_entry *h)
4822{
cec5225b 4823 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
4824 asection *s;
4825
4826 /* If this is a function, put it in the procedure linkage table. We
4827 will fill in the contents of the procedure linkage table later,
4828 when we know the address of the .got section. */
1419bbe5 4829 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
4830 {
4831 if (h->plt.refcount <= 0
1419bbe5
WN
4832 || (h->type != STT_GNU_IFUNC
4833 && (SYMBOL_CALLS_LOCAL (info, h)
4834 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4835 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
4836 {
4837 /* This case can occur if we saw a CALL26 reloc in
4838 an input file, but the symbol wasn't referred to
4839 by a dynamic object or all references were
4840 garbage collected. In which case we can end up
4841 resolving. */
4842 h->plt.offset = (bfd_vma) - 1;
4843 h->needs_plt = 0;
4844 }
4845
4846 return TRUE;
4847 }
4848 else
4849 /* It's possible that we incorrectly decided a .plt reloc was
4850 needed for an R_X86_64_PC32 reloc to a non-function sym in
4851 check_relocs. We can't decide accurately between function and
4852 non-function syms in check-relocs; Objects loaded later in
4853 the link may change h->type. So fix it now. */
4854 h->plt.offset = (bfd_vma) - 1;
4855
4856
4857 /* If this is a weak symbol, and there is a real definition, the
4858 processor independent code will have arranged for us to see the
4859 real definition first, and we can just use the same value. */
4860 if (h->u.weakdef != NULL)
4861 {
4862 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4863 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4864 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4865 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4866 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4867 h->non_got_ref = h->u.weakdef->non_got_ref;
4868 return TRUE;
4869 }
4870
4871 /* If we are creating a shared library, we must presume that the
4872 only references to the symbol are via the global offset table.
4873 For such cases we need not do anything here; the relocations will
4874 be handled correctly by relocate_section. */
4875 if (info->shared)
4876 return TRUE;
4877
4878 /* If there are no references to this symbol that do not use the
4879 GOT, we don't need to generate a copy reloc. */
4880 if (!h->non_got_ref)
4881 return TRUE;
4882
4883 /* If -z nocopyreloc was given, we won't generate them either. */
4884 if (info->nocopyreloc)
4885 {
4886 h->non_got_ref = 0;
4887 return TRUE;
4888 }
4889
4890 /* We must allocate the symbol in our .dynbss section, which will
4891 become part of the .bss section of the executable. There will be
4892 an entry for this symbol in the .dynsym section. The dynamic
4893 object will contain position independent code, so all references
4894 from the dynamic object to this symbol will go through the global
4895 offset table. The dynamic linker will use the .dynsym entry to
4896 determine the address it must put in the global offset table, so
4897 both the dynamic object and the regular object will refer to the
4898 same memory location for the variable. */
4899
cec5225b 4900 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4901
4902 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4903 to copy the initial value out of the dynamic object and into the
4904 runtime process image. */
4905 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4906 {
4907 htab->srelbss->size += RELOC_SIZE (htab);
4908 h->needs_copy = 1;
4909 }
4910
4911 s = htab->sdynbss;
4912
4913 return _bfd_elf_adjust_dynamic_copy (h, s);
4914
4915}
4916
4917static bfd_boolean
cec5225b 4918elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
4919{
4920 struct elf_aarch64_local_symbol *locals;
cec5225b 4921 locals = elf_aarch64_locals (abfd);
a06ea964
NC
4922 if (locals == NULL)
4923 {
4924 locals = (struct elf_aarch64_local_symbol *)
4925 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4926 if (locals == NULL)
4927 return FALSE;
cec5225b 4928 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
4929 }
4930 return TRUE;
4931}
4932
cc0efaa8
MS
4933/* Create the .got section to hold the global offset table. */
4934
4935static bfd_boolean
4936aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4937{
4938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4939 flagword flags;
4940 asection *s;
4941 struct elf_link_hash_entry *h;
4942 struct elf_link_hash_table *htab = elf_hash_table (info);
4943
4944 /* This function may be called more than once. */
4945 s = bfd_get_linker_section (abfd, ".got");
4946 if (s != NULL)
4947 return TRUE;
4948
4949 flags = bed->dynamic_sec_flags;
4950
4951 s = bfd_make_section_anyway_with_flags (abfd,
4952 (bed->rela_plts_and_copies_p
4953 ? ".rela.got" : ".rel.got"),
4954 (bed->dynamic_sec_flags
4955 | SEC_READONLY));
4956 if (s == NULL
4957 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4958 return FALSE;
4959 htab->srelgot = s;
4960
4961 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4962 if (s == NULL
4963 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4964 return FALSE;
4965 htab->sgot = s;
4966 htab->sgot->size += GOT_ENTRY_SIZE;
4967
4968 if (bed->want_got_sym)
4969 {
4970 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4971 (or .got.plt) section. We don't do this in the linker script
4972 because we don't want to define the symbol if we are not creating
4973 a global offset table. */
4974 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4975 "_GLOBAL_OFFSET_TABLE_");
4976 elf_hash_table (info)->hgot = h;
4977 if (h == NULL)
4978 return FALSE;
4979 }
4980
4981 if (bed->want_got_plt)
4982 {
4983 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4984 if (s == NULL
4985 || !bfd_set_section_alignment (abfd, s,
4986 bed->s->log_file_align))
4987 return FALSE;
4988 htab->sgotplt = s;
4989 }
4990
4991 /* The first bit of the global offset table is the header. */
4992 s->size += bed->got_header_size;
4993
4994 return TRUE;
4995}
4996
a06ea964
NC
4997/* Look through the relocs for a section during the first phase. */
4998
4999static bfd_boolean
cec5225b 5000elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
5001 asection *sec, const Elf_Internal_Rela *relocs)
5002{
5003 Elf_Internal_Shdr *symtab_hdr;
5004 struct elf_link_hash_entry **sym_hashes;
5005 const Elf_Internal_Rela *rel;
5006 const Elf_Internal_Rela *rel_end;
5007 asection *sreloc;
5008
cec5225b 5009 struct elf_aarch64_link_hash_table *htab;
a06ea964 5010
a06ea964
NC
5011 if (info->relocatable)
5012 return TRUE;
5013
5014 BFD_ASSERT (is_aarch64_elf (abfd));
5015
cec5225b 5016 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5017 sreloc = NULL;
5018
5019 symtab_hdr = &elf_symtab_hdr (abfd);
5020 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
5021
5022 rel_end = relocs + sec->reloc_count;
5023 for (rel = relocs; rel < rel_end; rel++)
5024 {
5025 struct elf_link_hash_entry *h;
5026 unsigned long r_symndx;
5027 unsigned int r_type;
a6bb11b2 5028 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 5029 Elf_Internal_Sym *isym;
a06ea964 5030
cec5225b
YZ
5031 r_symndx = ELFNN_R_SYM (rel->r_info);
5032 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5033
5034 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5035 {
5036 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5037 r_symndx);
5038 return FALSE;
5039 }
5040
ed5acf27 5041 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
5042 {
5043 /* A local symbol. */
5044 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5045 abfd, r_symndx);
5046 if (isym == NULL)
5047 return FALSE;
5048
5049 /* Check relocation against local STT_GNU_IFUNC symbol. */
5050 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5051 {
5052 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5053 TRUE);
5054 if (h == NULL)
5055 return FALSE;
5056
5057 /* Fake a STT_GNU_IFUNC symbol. */
5058 h->type = STT_GNU_IFUNC;
5059 h->def_regular = 1;
5060 h->ref_regular = 1;
5061 h->forced_local = 1;
5062 h->root.type = bfd_link_hash_defined;
5063 }
5064 else
5065 h = NULL;
5066 }
a06ea964
NC
5067 else
5068 {
5069 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5070 while (h->root.type == bfd_link_hash_indirect
5071 || h->root.type == bfd_link_hash_warning)
5072 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
5073
5074 /* PR15323, ref flags aren't set for references in the same
5075 object. */
5076 h->root.non_ir_ref = 1;
a06ea964
NC
5077 }
5078
5079 /* Could be done earlier, if h were already available. */
a6bb11b2 5080 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 5081
1419bbe5
WN
5082 if (h != NULL)
5083 {
5084 /* Create the ifunc sections for static executables. If we
5085 never see an indirect function symbol nor we are building
5086 a static executable, those sections will be empty and
5087 won't appear in output. */
5088 switch (bfd_r_type)
5089 {
5090 default:
5091 break;
5092
5093 case BFD_RELOC_AARCH64_NN:
5094 case BFD_RELOC_AARCH64_CALL26:
5095 case BFD_RELOC_AARCH64_JUMP26:
5096 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5097 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5098 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5099 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5100 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5101 case BFD_RELOC_AARCH64_ADD_LO12:
5102 if (htab->root.dynobj == NULL)
5103 htab->root.dynobj = abfd;
5104 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5105 return FALSE;
5106 break;
5107 }
5108
5109 /* It is referenced by a non-shared object. */
5110 h->ref_regular = 1;
5111 h->root.non_ir_ref = 1;
5112 }
5113
a6bb11b2 5114 switch (bfd_r_type)
a06ea964 5115 {
a6bb11b2 5116 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5117
5118 /* We don't need to handle relocs into sections not going into
5119 the "real" output. */
5120 if ((sec->flags & SEC_ALLOC) == 0)
5121 break;
5122
5123 if (h != NULL)
5124 {
5125 if (!info->shared)
5126 h->non_got_ref = 1;
5127
5128 h->plt.refcount += 1;
5129 h->pointer_equality_needed = 1;
5130 }
5131
5132 /* No need to do anything if we're not creating a shared
5133 object. */
5134 if (! info->shared)
5135 break;
5136
5137 {
5138 struct elf_dyn_relocs *p;
5139 struct elf_dyn_relocs **head;
5140
5141 /* We must copy these reloc types into the output file.
5142 Create a reloc section in dynobj and make room for
5143 this reloc. */
5144 if (sreloc == NULL)
5145 {
5146 if (htab->root.dynobj == NULL)
5147 htab->root.dynobj = abfd;
5148
5149 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 5150 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
5151
5152 if (sreloc == NULL)
5153 return FALSE;
5154 }
5155
5156 /* If this is a global symbol, we count the number of
5157 relocations we need for this symbol. */
5158 if (h != NULL)
5159 {
cec5225b
YZ
5160 struct elf_aarch64_link_hash_entry *eh;
5161 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5162 head = &eh->dyn_relocs;
5163 }
5164 else
5165 {
5166 /* Track dynamic relocs needed for local syms too.
5167 We really need local syms available to do this
5168 easily. Oh well. */
5169
5170 asection *s;
5171 void **vpp;
a06ea964
NC
5172
5173 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5174 abfd, r_symndx);
5175 if (isym == NULL)
5176 return FALSE;
5177
5178 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5179 if (s == NULL)
5180 s = sec;
5181
5182 /* Beware of type punned pointers vs strict aliasing
5183 rules. */
5184 vpp = &(elf_section_data (s)->local_dynrel);
5185 head = (struct elf_dyn_relocs **) vpp;
5186 }
5187
5188 p = *head;
5189 if (p == NULL || p->sec != sec)
5190 {
5191 bfd_size_type amt = sizeof *p;
5192 p = ((struct elf_dyn_relocs *)
5193 bfd_zalloc (htab->root.dynobj, amt));
5194 if (p == NULL)
5195 return FALSE;
5196 p->next = *head;
5197 *head = p;
5198 p->sec = sec;
5199 }
5200
5201 p->count += 1;
5202
5203 }
5204 break;
5205
5206 /* RR: We probably want to keep a consistency check that
5207 there are no dangling GOT_PAGE relocs. */
a6bb11b2 5208 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
5209 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5210 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5211 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5212 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5213 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5214 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5215 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5216 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 5217 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 5218 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5219 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 5220 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 5221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 5222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 5223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
5224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
5226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
5229 {
5230 unsigned got_type;
5231 unsigned old_got_type;
5232
a6bb11b2 5233 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
5234
5235 if (h)
5236 {
5237 h->got.refcount += 1;
cec5225b 5238 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5239 }
5240 else
5241 {
5242 struct elf_aarch64_local_symbol *locals;
5243
cec5225b 5244 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
5245 (abfd, symtab_hdr->sh_info))
5246 return FALSE;
5247
cec5225b 5248 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5249 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5250 locals[r_symndx].got_refcount += 1;
5251 old_got_type = locals[r_symndx].got_type;
5252 }
5253
5254 /* If a variable is accessed with both general dynamic TLS
5255 methods, two slots may be created. */
5256 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5257 got_type |= old_got_type;
5258
5259 /* We will already have issued an error message if there
5260 is a TLS/non-TLS mismatch, based on the symbol type.
5261 So just combine any TLS types needed. */
5262 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5263 && got_type != GOT_NORMAL)
5264 got_type |= old_got_type;
5265
5266 /* If the symbol is accessed by both IE and GD methods, we
5267 are able to relax. Turn off the GD flag, without
5268 messing up with any other kind of TLS types that may be
5269 involved. */
5270 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5271 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5272
5273 if (old_got_type != got_type)
5274 {
5275 if (h != NULL)
cec5225b 5276 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
5277 else
5278 {
5279 struct elf_aarch64_local_symbol *locals;
cec5225b 5280 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5281 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5282 locals[r_symndx].got_type = got_type;
5283 }
5284 }
5285
cc0efaa8
MS
5286 if (htab->root.dynobj == NULL)
5287 htab->root.dynobj = abfd;
5288 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5289 return FALSE;
a06ea964
NC
5290 break;
5291 }
5292
a6bb11b2
YZ
5293 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5294 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5295 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
5296 if (h != NULL && info->executable)
5297 {
5298 /* If this reloc is in a read-only section, we might
5299 need a copy reloc. We can't check reliably at this
5300 stage whether the section is read-only, as input
5301 sections have not yet been mapped to output sections.
5302 Tentatively set the flag for now, and correct in
5303 adjust_dynamic_symbol. */
5304 h->non_got_ref = 1;
5305 h->plt.refcount += 1;
5306 h->pointer_equality_needed = 1;
5307 }
5308 /* FIXME:: RR need to handle these in shared libraries
5309 and essentially bomb out as these being non-PIC
5310 relocations in shared libraries. */
5311 break;
5312
a6bb11b2
YZ
5313 case BFD_RELOC_AARCH64_CALL26:
5314 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5315 /* If this is a local symbol then we resolve it
5316 directly without creating a PLT entry. */
5317 if (h == NULL)
5318 continue;
5319
5320 h->needs_plt = 1;
1419bbe5
WN
5321 if (h->plt.refcount <= 0)
5322 h->plt.refcount = 1;
5323 else
5324 h->plt.refcount += 1;
a06ea964 5325 break;
a6bb11b2
YZ
5326
5327 default:
5328 break;
a06ea964
NC
5329 }
5330 }
a6bb11b2 5331
a06ea964
NC
5332 return TRUE;
5333}
5334
5335/* Treat mapping symbols as special target symbols. */
5336
5337static bfd_boolean
cec5225b 5338elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
5339 asymbol *sym)
5340{
5341 return bfd_is_aarch64_special_symbol_name (sym->name,
5342 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5343}
5344
5345/* This is a copy of elf_find_function () from elf.c except that
5346 AArch64 mapping symbols are ignored when looking for function names. */
5347
5348static bfd_boolean
5349aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5350 asection *section,
5351 asymbol **symbols,
5352 bfd_vma offset,
5353 const char **filename_ptr,
5354 const char **functionname_ptr)
5355{
5356 const char *filename = NULL;
5357 asymbol *func = NULL;
5358 bfd_vma low_func = 0;
5359 asymbol **p;
5360
5361 for (p = symbols; *p != NULL; p++)
5362 {
5363 elf_symbol_type *q;
5364
5365 q = (elf_symbol_type *) * p;
5366
5367 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5368 {
5369 default:
5370 break;
5371 case STT_FILE:
5372 filename = bfd_asymbol_name (&q->symbol);
5373 break;
5374 case STT_FUNC:
5375 case STT_NOTYPE:
5376 /* Skip mapping symbols. */
5377 if ((q->symbol.flags & BSF_LOCAL)
5378 && (bfd_is_aarch64_special_symbol_name
5379 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5380 continue;
5381 /* Fall through. */
5382 if (bfd_get_section (&q->symbol) == section
5383 && q->symbol.value >= low_func && q->symbol.value <= offset)
5384 {
5385 func = (asymbol *) q;
5386 low_func = q->symbol.value;
5387 }
5388 break;
5389 }
5390 }
5391
5392 if (func == NULL)
5393 return FALSE;
5394
5395 if (filename_ptr)
5396 *filename_ptr = filename;
5397 if (functionname_ptr)
5398 *functionname_ptr = bfd_asymbol_name (func);
5399
5400 return TRUE;
5401}
5402
5403
5404/* Find the nearest line to a particular section and offset, for error
5405 reporting. This code is a duplicate of the code in elf.c, except
5406 that it uses aarch64_elf_find_function. */
5407
5408static bfd_boolean
cec5225b 5409elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964
NC
5410 asection *section,
5411 asymbol **symbols,
5412 bfd_vma offset,
5413 const char **filename_ptr,
5414 const char **functionname_ptr,
5415 unsigned int *line_ptr)
5416{
5417 bfd_boolean found = FALSE;
5418
5419 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5420 toolchain uses it. */
5421
5422 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5423 section, symbols, offset,
5424 filename_ptr, functionname_ptr,
5425 line_ptr, NULL, 0,
5426 &elf_tdata (abfd)->dwarf2_find_line_info))
5427 {
5428 if (!*functionname_ptr)
5429 aarch64_elf_find_function (abfd, section, symbols, offset,
5430 *filename_ptr ? NULL : filename_ptr,
5431 functionname_ptr);
5432
5433 return TRUE;
5434 }
5435
5436 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5437 &found, filename_ptr,
5438 functionname_ptr, line_ptr,
5439 &elf_tdata (abfd)->line_info))
5440 return FALSE;
5441
5442 if (found && (*functionname_ptr || *line_ptr))
5443 return TRUE;
5444
5445 if (symbols == NULL)
5446 return FALSE;
5447
5448 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5449 filename_ptr, functionname_ptr))
5450 return FALSE;
5451
5452 *line_ptr = 0;
5453 return TRUE;
5454}
5455
5456static bfd_boolean
cec5225b 5457elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
5458 const char **filename_ptr,
5459 const char **functionname_ptr,
5460 unsigned int *line_ptr)
5461{
5462 bfd_boolean found;
5463 found = _bfd_dwarf2_find_inliner_info
5464 (abfd, filename_ptr,
5465 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5466 return found;
5467}
5468
5469
5470static void
cec5225b 5471elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 5472 struct bfd_link_info *link_info)
a06ea964
NC
5473{
5474 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5475
5476 i_ehdrp = elf_elfheader (abfd);
a06ea964 5477 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5 5478
78245035 5479 _bfd_elf_post_process_headers (abfd, link_info);
a06ea964
NC
5480}
5481
5482static enum elf_reloc_type_class
cec5225b 5483elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
5484 const asection *rel_sec ATTRIBUTE_UNUSED,
5485 const Elf_Internal_Rela *rela)
a06ea964 5486{
cec5225b 5487 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 5488 {
a6bb11b2 5489 case AARCH64_R (RELATIVE):
a06ea964 5490 return reloc_class_relative;
a6bb11b2 5491 case AARCH64_R (JUMP_SLOT):
a06ea964 5492 return reloc_class_plt;
a6bb11b2 5493 case AARCH64_R (COPY):
a06ea964
NC
5494 return reloc_class_copy;
5495 default:
5496 return reloc_class_normal;
5497 }
5498}
5499
a06ea964
NC
5500/* Handle an AArch64 specific section when reading an object file. This is
5501 called when bfd_section_from_shdr finds a section with an unknown
5502 type. */
5503
5504static bfd_boolean
cec5225b 5505elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
5506 Elf_Internal_Shdr *hdr,
5507 const char *name, int shindex)
5508{
5509 /* There ought to be a place to keep ELF backend specific flags, but
5510 at the moment there isn't one. We just keep track of the
5511 sections by their name, instead. Fortunately, the ABI gives
5512 names for all the AArch64 specific sections, so we will probably get
5513 away with this. */
5514 switch (hdr->sh_type)
5515 {
5516 case SHT_AARCH64_ATTRIBUTES:
5517 break;
5518
5519 default:
5520 return FALSE;
5521 }
5522
5523 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5524 return FALSE;
5525
5526 return TRUE;
5527}
5528
5529/* A structure used to record a list of sections, independently
5530 of the next and prev fields in the asection structure. */
5531typedef struct section_list
5532{
5533 asection *sec;
5534 struct section_list *next;
5535 struct section_list *prev;
5536}
5537section_list;
5538
5539/* Unfortunately we need to keep a list of sections for which
5540 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 5541 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
5542 to be called on a section which has had an elf_data_structure
5543 allocated for it (and so the used_by_bfd field is valid) but
5544 for which the AArch64 extended version of this structure - the
5545 _aarch64_elf_section_data structure - has not been allocated. */
5546static section_list *sections_with_aarch64_elf_section_data = NULL;
5547
5548static void
5549record_section_with_aarch64_elf_section_data (asection *sec)
5550{
5551 struct section_list *entry;
5552
5553 entry = bfd_malloc (sizeof (*entry));
5554 if (entry == NULL)
5555 return;
5556 entry->sec = sec;
5557 entry->next = sections_with_aarch64_elf_section_data;
5558 entry->prev = NULL;
5559 if (entry->next != NULL)
5560 entry->next->prev = entry;
5561 sections_with_aarch64_elf_section_data = entry;
5562}
5563
5564static struct section_list *
5565find_aarch64_elf_section_entry (asection *sec)
5566{
5567 struct section_list *entry;
5568 static struct section_list *last_entry = NULL;
5569
5570 /* This is a short cut for the typical case where the sections are added
5571 to the sections_with_aarch64_elf_section_data list in forward order and
5572 then looked up here in backwards order. This makes a real difference
5573 to the ld-srec/sec64k.exp linker test. */
5574 entry = sections_with_aarch64_elf_section_data;
5575 if (last_entry != NULL)
5576 {
5577 if (last_entry->sec == sec)
5578 entry = last_entry;
5579 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5580 entry = last_entry->next;
5581 }
5582
5583 for (; entry; entry = entry->next)
5584 if (entry->sec == sec)
5585 break;
5586
5587 if (entry)
5588 /* Record the entry prior to this one - it is the entry we are
5589 most likely to want to locate next time. Also this way if we
5590 have been called from
5591 unrecord_section_with_aarch64_elf_section_data () we will not
5592 be caching a pointer that is about to be freed. */
5593 last_entry = entry->prev;
5594
5595 return entry;
5596}
5597
5598static void
5599unrecord_section_with_aarch64_elf_section_data (asection *sec)
5600{
5601 struct section_list *entry;
5602
5603 entry = find_aarch64_elf_section_entry (sec);
5604
5605 if (entry)
5606 {
5607 if (entry->prev != NULL)
5608 entry->prev->next = entry->next;
5609 if (entry->next != NULL)
5610 entry->next->prev = entry->prev;
5611 if (entry == sections_with_aarch64_elf_section_data)
5612 sections_with_aarch64_elf_section_data = entry->next;
5613 free (entry);
5614 }
5615}
5616
5617
5618typedef struct
5619{
5620 void *finfo;
5621 struct bfd_link_info *info;
5622 asection *sec;
5623 int sec_shndx;
5624 int (*func) (void *, const char *, Elf_Internal_Sym *,
5625 asection *, struct elf_link_hash_entry *);
5626} output_arch_syminfo;
5627
5628enum map_symbol_type
5629{
5630 AARCH64_MAP_INSN,
5631 AARCH64_MAP_DATA
5632};
5633
5634
5635/* Output a single mapping symbol. */
5636
5637static bfd_boolean
cec5225b 5638elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
5639 enum map_symbol_type type, bfd_vma offset)
5640{
5641 static const char *names[2] = { "$x", "$d" };
5642 Elf_Internal_Sym sym;
5643
5644 sym.st_value = (osi->sec->output_section->vma
5645 + osi->sec->output_offset + offset);
5646 sym.st_size = 0;
5647 sym.st_other = 0;
5648 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5649 sym.st_shndx = osi->sec_shndx;
5650 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5651}
5652
5653
5654
5655/* Output mapping symbols for PLT entries associated with H. */
5656
5657static bfd_boolean
cec5225b 5658elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5659{
5660 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5661 bfd_vma addr;
5662
5663 if (h->root.type == bfd_link_hash_indirect)
5664 return TRUE;
5665
5666 if (h->root.type == bfd_link_hash_warning)
5667 /* When warning symbols are created, they **replace** the "real"
5668 entry in the hash table, thus we never get to see the real
5669 symbol in a hash traversal. So look at it now. */
5670 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5671
5672 if (h->plt.offset == (bfd_vma) - 1)
5673 return TRUE;
5674
5675 addr = h->plt.offset;
5676 if (addr == 32)
5677 {
cec5225b 5678 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5679 return FALSE;
5680 }
5681 return TRUE;
5682}
5683
5684
5685/* Output a single local symbol for a generated stub. */
5686
5687static bfd_boolean
cec5225b 5688elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
5689 bfd_vma offset, bfd_vma size)
5690{
5691 Elf_Internal_Sym sym;
5692
5693 sym.st_value = (osi->sec->output_section->vma
5694 + osi->sec->output_offset + offset);
5695 sym.st_size = size;
5696 sym.st_other = 0;
5697 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5698 sym.st_shndx = osi->sec_shndx;
5699 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5700}
5701
5702static bfd_boolean
5703aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5704{
cec5225b 5705 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
5706 asection *stub_sec;
5707 bfd_vma addr;
5708 char *stub_name;
5709 output_arch_syminfo *osi;
5710
5711 /* Massage our args to the form they really have. */
cec5225b 5712 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
5713 osi = (output_arch_syminfo *) in_arg;
5714
5715 stub_sec = stub_entry->stub_sec;
5716
5717 /* Ensure this stub is attached to the current section being
5718 processed. */
5719 if (stub_sec != osi->sec)
5720 return TRUE;
5721
5722 addr = (bfd_vma) stub_entry->stub_offset;
5723
5724 stub_name = stub_entry->output_name;
5725
5726 switch (stub_entry->stub_type)
5727 {
5728 case aarch64_stub_adrp_branch:
cec5225b 5729 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
5730 sizeof (aarch64_adrp_branch_stub)))
5731 return FALSE;
cec5225b 5732 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5733 return FALSE;
5734 break;
5735 case aarch64_stub_long_branch:
cec5225b 5736 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
5737 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5738 return FALSE;
cec5225b 5739 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 5740 return FALSE;
cec5225b 5741 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
5742 return FALSE;
5743 break;
5744 default:
5745 BFD_FAIL ();
5746 }
5747
5748 return TRUE;
5749}
5750
5751/* Output mapping symbols for linker generated sections. */
5752
5753static bfd_boolean
cec5225b 5754elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
5755 struct bfd_link_info *info,
5756 void *finfo,
5757 int (*func) (void *, const char *,
5758 Elf_Internal_Sym *,
5759 asection *,
5760 struct elf_link_hash_entry
5761 *))
5762{
5763 output_arch_syminfo osi;
cec5225b 5764 struct elf_aarch64_link_hash_table *htab;
a06ea964 5765
cec5225b 5766 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5767
5768 osi.finfo = finfo;
5769 osi.info = info;
5770 osi.func = func;
5771
5772 /* Long calls stubs. */
5773 if (htab->stub_bfd && htab->stub_bfd->sections)
5774 {
5775 asection *stub_sec;
5776
5777 for (stub_sec = htab->stub_bfd->sections;
5778 stub_sec != NULL; stub_sec = stub_sec->next)
5779 {
5780 /* Ignore non-stub sections. */
5781 if (!strstr (stub_sec->name, STUB_SUFFIX))
5782 continue;
5783
5784 osi.sec = stub_sec;
5785
5786 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5787 (output_bfd, osi.sec->output_section);
5788
5789 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5790 &osi);
5791 }
5792 }
5793
5794 /* Finally, output mapping symbols for the PLT. */
5795 if (!htab->root.splt || htab->root.splt->size == 0)
5796 return TRUE;
5797
5798 /* For now live without mapping symbols for the plt. */
5799 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5800 (output_bfd, htab->root.splt->output_section);
5801 osi.sec = htab->root.splt;
5802
cec5225b 5803 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
5804 (void *) &osi);
5805
5806 return TRUE;
5807
5808}
5809
5810/* Allocate target specific section data. */
5811
5812static bfd_boolean
cec5225b 5813elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
5814{
5815 if (!sec->used_by_bfd)
5816 {
5817 _aarch64_elf_section_data *sdata;
5818 bfd_size_type amt = sizeof (*sdata);
5819
5820 sdata = bfd_zalloc (abfd, amt);
5821 if (sdata == NULL)
5822 return FALSE;
5823 sec->used_by_bfd = sdata;
5824 }
5825
5826 record_section_with_aarch64_elf_section_data (sec);
5827
5828 return _bfd_elf_new_section_hook (abfd, sec);
5829}
5830
5831
5832static void
5833unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5834 asection *sec,
5835 void *ignore ATTRIBUTE_UNUSED)
5836{
5837 unrecord_section_with_aarch64_elf_section_data (sec);
5838}
5839
5840static bfd_boolean
cec5225b 5841elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
5842{
5843 if (abfd->sections)
5844 bfd_map_over_sections (abfd,
5845 unrecord_section_via_map_over_sections, NULL);
5846
5847 return _bfd_elf_close_and_cleanup (abfd);
5848}
5849
5850static bfd_boolean
cec5225b 5851elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
5852{
5853 if (abfd->sections)
5854 bfd_map_over_sections (abfd,
5855 unrecord_section_via_map_over_sections, NULL);
5856
5857 return _bfd_free_cached_info (abfd);
5858}
5859
a06ea964
NC
5860/* Create dynamic sections. This is different from the ARM backend in that
5861 the got, plt, gotplt and their relocation sections are all created in the
5862 standard part of the bfd elf backend. */
5863
5864static bfd_boolean
cec5225b 5865elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
5866 struct bfd_link_info *info)
5867{
cec5225b 5868 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
5869
5870 /* We need to create .got section. */
5871 if (!aarch64_elf_create_got_section (dynobj, info))
5872 return FALSE;
a06ea964
NC
5873
5874 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5875 return FALSE;
5876
cec5225b 5877 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5878 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5879 if (!info->shared)
5880 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5881
5882 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5883 abort ();
5884
a06ea964
NC
5885 return TRUE;
5886}
5887
5888
5889/* Allocate space in .plt, .got and associated reloc sections for
5890 dynamic relocs. */
5891
5892static bfd_boolean
cec5225b 5893elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5894{
5895 struct bfd_link_info *info;
cec5225b
YZ
5896 struct elf_aarch64_link_hash_table *htab;
5897 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
5898 struct elf_dyn_relocs *p;
5899
5900 /* An example of a bfd_link_hash_indirect symbol is versioned
5901 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5902 -> __gxx_personality_v0(bfd_link_hash_defined)
5903
5904 There is no need to process bfd_link_hash_indirect symbols here
5905 because we will also be presented with the concrete instance of
cec5225b 5906 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
5907 called to copy all relevant data from the generic to the concrete
5908 symbol instance.
5909 */
5910 if (h->root.type == bfd_link_hash_indirect)
5911 return TRUE;
5912
5913 if (h->root.type == bfd_link_hash_warning)
5914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5915
5916 info = (struct bfd_link_info *) inf;
cec5225b 5917 htab = elf_aarch64_hash_table (info);
a06ea964 5918
1419bbe5
WN
5919 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5920 here if it is defined and referenced in a non-shared object. */
5921 if (h->type == STT_GNU_IFUNC
5922 && h->def_regular)
5923 return TRUE;
5924 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
5925 {
5926 /* Make sure this symbol is output as a dynamic symbol.
5927 Undefined weak syms won't yet be marked as dynamic. */
5928 if (h->dynindx == -1 && !h->forced_local)
5929 {
5930 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5931 return FALSE;
5932 }
5933
5934 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5935 {
5936 asection *s = htab->root.splt;
5937
5938 /* If this is the first .plt entry, make room for the special
5939 first entry. */
5940 if (s->size == 0)
5941 s->size += htab->plt_header_size;
5942
5943 h->plt.offset = s->size;
5944
5945 /* If this symbol is not defined in a regular file, and we are
5946 not generating a shared library, then set the symbol to this
5947 location in the .plt. This is required to make function
5948 pointers compare as equal between the normal executable and
5949 the shared library. */
5950 if (!info->shared && !h->def_regular)
5951 {
5952 h->root.u.def.section = s;
5953 h->root.u.def.value = h->plt.offset;
5954 }
5955
5956 /* Make room for this entry. For now we only create the
5957 small model PLT entries. We later need to find a way
5958 of relaxing into these from the large model PLT entries. */
5959 s->size += PLT_SMALL_ENTRY_SIZE;
5960
5961 /* We also need to make an entry in the .got.plt section, which
5962 will be placed in the .got section by the linker script. */
5963 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5964
5965 /* We also need to make an entry in the .rela.plt section. */
5966 htab->root.srelplt->size += RELOC_SIZE (htab);
5967
5968 /* We need to ensure that all GOT entries that serve the PLT
5969 are consecutive with the special GOT slots [0] [1] and
5970 [2]. Any addtional relocations, such as
5971 R_AARCH64_TLSDESC, must be placed after the PLT related
5972 entries. We abuse the reloc_count such that during
5973 sizing we adjust reloc_count to indicate the number of
5974 PLT related reserved entries. In subsequent phases when
5975 filling in the contents of the reloc entries, PLT related
5976 entries are placed by computing their PLT index (0
5977 .. reloc_count). While other none PLT relocs are placed
5978 at the slot indicated by reloc_count and reloc_count is
5979 updated. */
5980
5981 htab->root.srelplt->reloc_count++;
5982 }
5983 else
5984 {
5985 h->plt.offset = (bfd_vma) - 1;
5986 h->needs_plt = 0;
5987 }
5988 }
5989 else
5990 {
5991 h->plt.offset = (bfd_vma) - 1;
5992 h->needs_plt = 0;
5993 }
5994
cec5225b 5995 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5996 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
5997
5998 if (h->got.refcount > 0)
5999 {
6000 bfd_boolean dyn;
cec5225b 6001 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
6002
6003 h->got.offset = (bfd_vma) - 1;
6004
6005 dyn = htab->root.dynamic_sections_created;
6006
6007 /* Make sure this symbol is output as a dynamic symbol.
6008 Undefined weak syms won't yet be marked as dynamic. */
6009 if (dyn && h->dynindx == -1 && !h->forced_local)
6010 {
6011 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6012 return FALSE;
6013 }
6014
6015 if (got_type == GOT_UNKNOWN)
6016 {
6017 }
6018 else if (got_type == GOT_NORMAL)
6019 {
6020 h->got.offset = htab->root.sgot->size;
6021 htab->root.sgot->size += GOT_ENTRY_SIZE;
6022 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6023 || h->root.type != bfd_link_hash_undefweak)
6024 && (info->shared
6025 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6026 {
6027 htab->root.srelgot->size += RELOC_SIZE (htab);
6028 }
6029 }
6030 else
6031 {
6032 int indx;
6033 if (got_type & GOT_TLSDESC_GD)
6034 {
6035 eh->tlsdesc_got_jump_table_offset =
6036 (htab->root.sgotplt->size
6037 - aarch64_compute_jump_table_size (htab));
6038 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6039 h->got.offset = (bfd_vma) - 2;
6040 }
6041
6042 if (got_type & GOT_TLS_GD)
6043 {
6044 h->got.offset = htab->root.sgot->size;
6045 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6046 }
6047
6048 if (got_type & GOT_TLS_IE)
6049 {
6050 h->got.offset = htab->root.sgot->size;
6051 htab->root.sgot->size += GOT_ENTRY_SIZE;
6052 }
6053
6054 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6055 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6056 || h->root.type != bfd_link_hash_undefweak)
6057 && (info->shared
6058 || indx != 0
6059 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6060 {
6061 if (got_type & GOT_TLSDESC_GD)
6062 {
6063 htab->root.srelplt->size += RELOC_SIZE (htab);
6064 /* Note reloc_count not incremented here! We have
6065 already adjusted reloc_count for this relocation
6066 type. */
6067
6068 /* TLSDESC PLT is now needed, but not yet determined. */
6069 htab->tlsdesc_plt = (bfd_vma) - 1;
6070 }
6071
6072 if (got_type & GOT_TLS_GD)
6073 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6074
6075 if (got_type & GOT_TLS_IE)
6076 htab->root.srelgot->size += RELOC_SIZE (htab);
6077 }
6078 }
6079 }
6080 else
6081 {
6082 h->got.offset = (bfd_vma) - 1;
6083 }
6084
6085 if (eh->dyn_relocs == NULL)
6086 return TRUE;
6087
6088 /* In the shared -Bsymbolic case, discard space allocated for
6089 dynamic pc-relative relocs against symbols which turn out to be
6090 defined in regular objects. For the normal shared case, discard
6091 space for pc-relative relocs that have become local due to symbol
6092 visibility changes. */
6093
6094 if (info->shared)
6095 {
6096 /* Relocs that use pc_count are those that appear on a call
6097 insn, or certain REL relocs that can generated via assembly.
6098 We want calls to protected symbols to resolve directly to the
6099 function rather than going via the plt. If people want
6100 function pointer comparisons to work as expected then they
6101 should avoid writing weird assembly. */
6102 if (SYMBOL_CALLS_LOCAL (info, h))
6103 {
6104 struct elf_dyn_relocs **pp;
6105
6106 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6107 {
6108 p->count -= p->pc_count;
6109 p->pc_count = 0;
6110 if (p->count == 0)
6111 *pp = p->next;
6112 else
6113 pp = &p->next;
6114 }
6115 }
6116
6117 /* Also discard relocs on undefined weak syms with non-default
6118 visibility. */
6119 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6120 {
6121 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6122 eh->dyn_relocs = NULL;
6123
6124 /* Make sure undefined weak symbols are output as a dynamic
6125 symbol in PIEs. */
6126 else if (h->dynindx == -1
6127 && !h->forced_local
6128 && !bfd_elf_link_record_dynamic_symbol (info, h))
6129 return FALSE;
6130 }
6131
6132 }
6133 else if (ELIMINATE_COPY_RELOCS)
6134 {
6135 /* For the non-shared case, discard space for relocs against
6136 symbols which turn out to need copy relocs or are not
6137 dynamic. */
6138
6139 if (!h->non_got_ref
6140 && ((h->def_dynamic
6141 && !h->def_regular)
6142 || (htab->root.dynamic_sections_created
6143 && (h->root.type == bfd_link_hash_undefweak
6144 || h->root.type == bfd_link_hash_undefined))))
6145 {
6146 /* Make sure this symbol is output as a dynamic symbol.
6147 Undefined weak syms won't yet be marked as dynamic. */
6148 if (h->dynindx == -1
6149 && !h->forced_local
6150 && !bfd_elf_link_record_dynamic_symbol (info, h))
6151 return FALSE;
6152
6153 /* If that succeeded, we know we'll be keeping all the
6154 relocs. */
6155 if (h->dynindx != -1)
6156 goto keep;
6157 }
6158
6159 eh->dyn_relocs = NULL;
6160
6161 keep:;
6162 }
6163
6164 /* Finally, allocate space. */
6165 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6166 {
6167 asection *sreloc;
6168
6169 sreloc = elf_section_data (p->sec)->sreloc;
6170
6171 BFD_ASSERT (sreloc != NULL);
6172
6173 sreloc->size += p->count * RELOC_SIZE (htab);
6174 }
6175
6176 return TRUE;
6177}
6178
1419bbe5
WN
6179/* Allocate space in .plt, .got and associated reloc sections for
6180 ifunc dynamic relocs. */
6181
6182static bfd_boolean
6183elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6184 void *inf)
6185{
6186 struct bfd_link_info *info;
6187 struct elf_aarch64_link_hash_table *htab;
6188 struct elf_aarch64_link_hash_entry *eh;
6189
6190 /* An example of a bfd_link_hash_indirect symbol is versioned
6191 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6192 -> __gxx_personality_v0(bfd_link_hash_defined)
6193
6194 There is no need to process bfd_link_hash_indirect symbols here
6195 because we will also be presented with the concrete instance of
6196 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6197 called to copy all relevant data from the generic to the concrete
6198 symbol instance.
6199 */
6200 if (h->root.type == bfd_link_hash_indirect)
6201 return TRUE;
6202
6203 if (h->root.type == bfd_link_hash_warning)
6204 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6205
6206 info = (struct bfd_link_info *) inf;
6207 htab = elf_aarch64_hash_table (info);
6208
6209 eh = (struct elf_aarch64_link_hash_entry *) h;
6210
6211 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6212 here if it is defined and referenced in a non-shared object. */
6213 if (h->type == STT_GNU_IFUNC
6214 && h->def_regular)
6215 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6216 &eh->dyn_relocs,
6217 htab->plt_entry_size,
6218 htab->plt_header_size,
6219 GOT_ENTRY_SIZE);
6220 return TRUE;
6221}
6222
6223/* Allocate space in .plt, .got and associated reloc sections for
6224 local dynamic relocs. */
6225
6226static bfd_boolean
6227elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6228{
6229 struct elf_link_hash_entry *h
6230 = (struct elf_link_hash_entry *) *slot;
6231
6232 if (h->type != STT_GNU_IFUNC
6233 || !h->def_regular
6234 || !h->ref_regular
6235 || !h->forced_local
6236 || h->root.type != bfd_link_hash_defined)
6237 abort ();
6238
6239 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6240}
6241
6242/* Allocate space in .plt, .got and associated reloc sections for
6243 local ifunc dynamic relocs. */
6244
6245static bfd_boolean
6246elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6247{
6248 struct elf_link_hash_entry *h
6249 = (struct elf_link_hash_entry *) *slot;
6250
6251 if (h->type != STT_GNU_IFUNC
6252 || !h->def_regular
6253 || !h->ref_regular
6254 || !h->forced_local
6255 || h->root.type != bfd_link_hash_defined)
6256 abort ();
6257
6258 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6259}
a06ea964 6260
a06ea964
NC
6261/* This is the most important function of all . Innocuosly named
6262 though ! */
6263static bfd_boolean
cec5225b 6264elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
6265 struct bfd_link_info *info)
6266{
cec5225b 6267 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6268 bfd *dynobj;
6269 asection *s;
6270 bfd_boolean relocs;
6271 bfd *ibfd;
6272
cec5225b 6273 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
6274 dynobj = htab->root.dynobj;
6275
6276 BFD_ASSERT (dynobj != NULL);
6277
6278 if (htab->root.dynamic_sections_created)
6279 {
6280 if (info->executable)
6281 {
6282 s = bfd_get_linker_section (dynobj, ".interp");
6283 if (s == NULL)
6284 abort ();
6285 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6286 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6287 }
6288 }
6289
6290 /* Set up .got offsets for local syms, and space for local dynamic
6291 relocs. */
6292 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6293 {
6294 struct elf_aarch64_local_symbol *locals = NULL;
6295 Elf_Internal_Shdr *symtab_hdr;
6296 asection *srel;
6297 unsigned int i;
6298
6299 if (!is_aarch64_elf (ibfd))
6300 continue;
6301
6302 for (s = ibfd->sections; s != NULL; s = s->next)
6303 {
6304 struct elf_dyn_relocs *p;
6305
6306 for (p = (struct elf_dyn_relocs *)
6307 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6308 {
6309 if (!bfd_is_abs_section (p->sec)
6310 && bfd_is_abs_section (p->sec->output_section))
6311 {
6312 /* Input section has been discarded, either because
6313 it is a copy of a linkonce section or due to
6314 linker script /DISCARD/, so we'll be discarding
6315 the relocs too. */
6316 }
6317 else if (p->count != 0)
6318 {
6319 srel = elf_section_data (p->sec)->sreloc;
6320 srel->size += p->count * RELOC_SIZE (htab);
6321 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6322 info->flags |= DF_TEXTREL;
6323 }
6324 }
6325 }
6326
cec5225b 6327 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
6328 if (!locals)
6329 continue;
6330
6331 symtab_hdr = &elf_symtab_hdr (ibfd);
6332 srel = htab->root.srelgot;
6333 for (i = 0; i < symtab_hdr->sh_info; i++)
6334 {
6335 locals[i].got_offset = (bfd_vma) - 1;
6336 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6337 if (locals[i].got_refcount > 0)
6338 {
6339 unsigned got_type = locals[i].got_type;
6340 if (got_type & GOT_TLSDESC_GD)
6341 {
6342 locals[i].tlsdesc_got_jump_table_offset =
6343 (htab->root.sgotplt->size
6344 - aarch64_compute_jump_table_size (htab));
6345 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6346 locals[i].got_offset = (bfd_vma) - 2;
6347 }
6348
6349 if (got_type & GOT_TLS_GD)
6350 {
6351 locals[i].got_offset = htab->root.sgot->size;
6352 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6353 }
6354
6355 if (got_type & GOT_TLS_IE)
6356 {
6357 locals[i].got_offset = htab->root.sgot->size;
6358 htab->root.sgot->size += GOT_ENTRY_SIZE;
6359 }
6360
6361 if (got_type == GOT_UNKNOWN)
6362 {
6363 }
6364
6365 if (got_type == GOT_NORMAL)
6366 {
6367 }
6368
6369 if (info->shared)
6370 {
6371 if (got_type & GOT_TLSDESC_GD)
6372 {
6373 htab->root.srelplt->size += RELOC_SIZE (htab);
6374 /* Note RELOC_COUNT not incremented here! */
6375 htab->tlsdesc_plt = (bfd_vma) - 1;
6376 }
6377
6378 if (got_type & GOT_TLS_GD)
6379 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6380
6381 if (got_type & GOT_TLS_IE)
6382 htab->root.srelgot->size += RELOC_SIZE (htab);
6383 }
6384 }
6385 else
6386 {
6387 locals[i].got_refcount = (bfd_vma) - 1;
6388 }
6389 }
6390 }
6391
6392
6393 /* Allocate global sym .plt and .got entries, and space for global
6394 sym dynamic relocs. */
cec5225b 6395 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
6396 info);
6397
1419bbe5
WN
6398 /* Allocate global ifunc sym .plt and .got entries, and space for global
6399 ifunc sym dynamic relocs. */
6400 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6401 info);
6402
6403 /* Allocate .plt and .got entries, and space for local symbols. */
6404 htab_traverse (htab->loc_hash_table,
6405 elfNN_aarch64_allocate_local_dynrelocs,
6406 info);
6407
6408 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6409 htab_traverse (htab->loc_hash_table,
6410 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6411 info);
a06ea964
NC
6412
6413 /* For every jump slot reserved in the sgotplt, reloc_count is
6414 incremented. However, when we reserve space for TLS descriptors,
6415 it's not incremented, so in order to compute the space reserved
6416 for them, it suffices to multiply the reloc count by the jump
6417 slot size. */
6418
6419 if (htab->root.srelplt)
8847944f 6420 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
6421
6422 if (htab->tlsdesc_plt)
6423 {
6424 if (htab->root.splt->size == 0)
6425 htab->root.splt->size += PLT_ENTRY_SIZE;
6426
6427 htab->tlsdesc_plt = htab->root.splt->size;
6428 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6429
6430 /* If we're not using lazy TLS relocations, don't generate the
6431 GOT entry required. */
6432 if (!(info->flags & DF_BIND_NOW))
6433 {
6434 htab->dt_tlsdesc_got = htab->root.sgot->size;
6435 htab->root.sgot->size += GOT_ENTRY_SIZE;
6436 }
6437 }
6438
6439 /* We now have determined the sizes of the various dynamic sections.
6440 Allocate memory for them. */
6441 relocs = FALSE;
6442 for (s = dynobj->sections; s != NULL; s = s->next)
6443 {
6444 if ((s->flags & SEC_LINKER_CREATED) == 0)
6445 continue;
6446
6447 if (s == htab->root.splt
6448 || s == htab->root.sgot
6449 || s == htab->root.sgotplt
6450 || s == htab->root.iplt
6451 || s == htab->root.igotplt || s == htab->sdynbss)
6452 {
6453 /* Strip this section if we don't need it; see the
6454 comment below. */
6455 }
6456 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6457 {
6458 if (s->size != 0 && s != htab->root.srelplt)
6459 relocs = TRUE;
6460
6461 /* We use the reloc_count field as a counter if we need
6462 to copy relocs into the output file. */
6463 if (s != htab->root.srelplt)
6464 s->reloc_count = 0;
6465 }
6466 else
6467 {
6468 /* It's not one of our sections, so don't allocate space. */
6469 continue;
6470 }
6471
6472 if (s->size == 0)
6473 {
6474 /* If we don't need this section, strip it from the
6475 output file. This is mostly to handle .rela.bss and
6476 .rela.plt. We must create both sections in
6477 create_dynamic_sections, because they must be created
6478 before the linker maps input sections to output
6479 sections. The linker does that before
6480 adjust_dynamic_symbol is called, and it is that
6481 function which decides whether anything needs to go
6482 into these sections. */
6483
6484 s->flags |= SEC_EXCLUDE;
6485 continue;
6486 }
6487
6488 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6489 continue;
6490
6491 /* Allocate memory for the section contents. We use bfd_zalloc
6492 here in case unused entries are not reclaimed before the
6493 section's contents are written out. This should not happen,
6494 but this way if it does, we get a R_AARCH64_NONE reloc instead
6495 of garbage. */
6496 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6497 if (s->contents == NULL)
6498 return FALSE;
6499 }
6500
6501 if (htab->root.dynamic_sections_created)
6502 {
6503 /* Add some entries to the .dynamic section. We fill in the
cec5225b 6504 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
6505 must add the entries now so that we get the correct size for
6506 the .dynamic section. The DT_DEBUG entry is filled in by the
6507 dynamic linker and used by the debugger. */
6508#define add_dynamic_entry(TAG, VAL) \
6509 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6510
6511 if (info->executable)
6512 {
6513 if (!add_dynamic_entry (DT_DEBUG, 0))
6514 return FALSE;
6515 }
6516
6517 if (htab->root.splt->size != 0)
6518 {
6519 if (!add_dynamic_entry (DT_PLTGOT, 0)
6520 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6521 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6522 || !add_dynamic_entry (DT_JMPREL, 0))
6523 return FALSE;
6524
6525 if (htab->tlsdesc_plt
6526 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6527 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6528 return FALSE;
6529 }
6530
6531 if (relocs)
6532 {
6533 if (!add_dynamic_entry (DT_RELA, 0)
6534 || !add_dynamic_entry (DT_RELASZ, 0)
6535 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6536 return FALSE;
6537
6538 /* If any dynamic relocs apply to a read-only section,
6539 then we need a DT_TEXTREL entry. */
6540 if ((info->flags & DF_TEXTREL) != 0)
6541 {
6542 if (!add_dynamic_entry (DT_TEXTREL, 0))
6543 return FALSE;
6544 }
6545 }
6546 }
6547#undef add_dynamic_entry
6548
6549 return TRUE;
a06ea964
NC
6550}
6551
6552static inline void
caed7120
YZ
6553elf_aarch64_update_plt_entry (bfd *output_bfd,
6554 bfd_reloc_code_real_type r_type,
6555 bfd_byte *plt_entry, bfd_vma value)
a06ea964 6556{
caed7120
YZ
6557 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6558
6559 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
6560}
6561
6562static void
cec5225b
YZ
6563elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6564 struct elf_aarch64_link_hash_table
1419bbe5
WN
6565 *htab, bfd *output_bfd,
6566 struct bfd_link_info *info)
a06ea964
NC
6567{
6568 bfd_byte *plt_entry;
6569 bfd_vma plt_index;
6570 bfd_vma got_offset;
6571 bfd_vma gotplt_entry_address;
6572 bfd_vma plt_entry_address;
6573 Elf_Internal_Rela rela;
6574 bfd_byte *loc;
1419bbe5
WN
6575 asection *plt, *gotplt, *relplt;
6576
6577 /* When building a static executable, use .iplt, .igot.plt and
6578 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6579 if (htab->root.splt != NULL)
6580 {
6581 plt = htab->root.splt;
6582 gotplt = htab->root.sgotplt;
6583 relplt = htab->root.srelplt;
6584 }
6585 else
6586 {
6587 plt = htab->root.iplt;
6588 gotplt = htab->root.igotplt;
6589 relplt = htab->root.irelplt;
6590 }
6591
6592 /* Get the index in the procedure linkage table which
6593 corresponds to this symbol. This is the index of this symbol
6594 in all the symbols for which we are making plt entries. The
6595 first entry in the procedure linkage table is reserved.
a06ea964 6596
1419bbe5
WN
6597 Get the offset into the .got table of the entry that
6598 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6599 bytes. The first three are reserved for the dynamic linker.
692e2b8b 6600
1419bbe5
WN
6601 For static executables, we don't reserve anything. */
6602
6603 if (plt == htab->root.splt)
6604 {
6605 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6606 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6607 }
6608 else
6609 {
6610 plt_index = h->plt.offset / htab->plt_entry_size;
6611 got_offset = plt_index * GOT_ENTRY_SIZE;
6612 }
6613
6614 plt_entry = plt->contents + h->plt.offset;
6615 plt_entry_address = plt->output_section->vma
f44a1f8e 6616 + plt->output_offset + h->plt.offset;
1419bbe5
WN
6617 gotplt_entry_address = gotplt->output_section->vma +
6618 gotplt->output_offset + got_offset;
a06ea964
NC
6619
6620 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 6621 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
6622
6623 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6624 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6625 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6626 plt_entry,
6627 PG (gotplt_entry_address) -
6628 PG (plt_entry_address));
a06ea964
NC
6629
6630 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
6631 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6632 plt_entry + 4,
6633 PG_OFFSET (gotplt_entry_address));
a06ea964 6634
9aff4b7a 6635 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
6636 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6637 plt_entry + 8,
6638 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
6639
6640 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 6641 bfd_put_NN (output_bfd,
1419bbe5
WN
6642 plt->output_section->vma + plt->output_offset,
6643 gotplt->contents + got_offset);
a06ea964 6644
a06ea964 6645 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
6646
6647 if (h->dynindx == -1
6648 || ((info->executable
6649 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6650 && h->def_regular
6651 && h->type == STT_GNU_IFUNC))
6652 {
6653 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6654 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6655 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6656 rela.r_addend = (h->root.u.def.value
6657 + h->root.u.def.section->output_section->vma
6658 + h->root.u.def.section->output_offset);
6659 }
6660 else
6661 {
6662 /* Fill in the entry in the .rela.plt section. */
6663 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6664 rela.r_addend = 0;
6665 }
a06ea964
NC
6666
6667 /* Compute the relocation entry to used based on PLT index and do
6668 not adjust reloc_count. The reloc_count has already been adjusted
6669 to account for this entry. */
1419bbe5 6670 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 6671 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6672}
6673
6674/* Size sections even though they're not dynamic. We use it to setup
6675 _TLS_MODULE_BASE_, if needed. */
6676
6677static bfd_boolean
cec5225b 6678elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
6679 struct bfd_link_info *info)
6680{
6681 asection *tls_sec;
6682
6683 if (info->relocatable)
6684 return TRUE;
6685
6686 tls_sec = elf_hash_table (info)->tls_sec;
6687
6688 if (tls_sec)
6689 {
6690 struct elf_link_hash_entry *tlsbase;
6691
6692 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6693 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6694
6695 if (tlsbase)
6696 {
6697 struct bfd_link_hash_entry *h = NULL;
6698 const struct elf_backend_data *bed =
6699 get_elf_backend_data (output_bfd);
6700
6701 if (!(_bfd_generic_link_add_one_symbol
6702 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6703 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6704 return FALSE;
6705
6706 tlsbase->type = STT_TLS;
6707 tlsbase = (struct elf_link_hash_entry *) h;
6708 tlsbase->def_regular = 1;
6709 tlsbase->other = STV_HIDDEN;
6710 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6711 }
6712 }
6713
6714 return TRUE;
6715}
6716
6717/* Finish up dynamic symbol handling. We set the contents of various
6718 dynamic sections here. */
6719static bfd_boolean
cec5225b 6720elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
6721 struct bfd_link_info *info,
6722 struct elf_link_hash_entry *h,
6723 Elf_Internal_Sym *sym)
6724{
cec5225b
YZ
6725 struct elf_aarch64_link_hash_table *htab;
6726 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6727
6728 if (h->plt.offset != (bfd_vma) - 1)
6729 {
1419bbe5
WN
6730 asection *plt, *gotplt, *relplt;
6731
a06ea964
NC
6732 /* This symbol has an entry in the procedure linkage table. Set
6733 it up. */
6734
1419bbe5
WN
6735 /* When building a static executable, use .iplt, .igot.plt and
6736 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6737 if (htab->root.splt != NULL)
6738 {
6739 plt = htab->root.splt;
6740 gotplt = htab->root.sgotplt;
6741 relplt = htab->root.srelplt;
6742 }
6743 else
6744 {
6745 plt = htab->root.iplt;
6746 gotplt = htab->root.igotplt;
6747 relplt = htab->root.irelplt;
6748 }
6749
6750 /* This symbol has an entry in the procedure linkage table. Set
6751 it up. */
6752 if ((h->dynindx == -1
6753 && !((h->forced_local || info->executable)
6754 && h->def_regular
6755 && h->type == STT_GNU_IFUNC))
6756 || plt == NULL
6757 || gotplt == NULL
6758 || relplt == NULL)
a06ea964
NC
6759 abort ();
6760
1419bbe5 6761 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
6762 if (!h->def_regular)
6763 {
6764 /* Mark the symbol as undefined, rather than as defined in
6765 the .plt section. Leave the value alone. This is a clue
6766 for the dynamic linker, to make function pointer
6767 comparisons work between an application and shared
6768 library. */
6769 sym->st_shndx = SHN_UNDEF;
6770 }
6771 }
6772
6773 if (h->got.offset != (bfd_vma) - 1
cec5225b 6774 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
6775 {
6776 Elf_Internal_Rela rela;
6777 bfd_byte *loc;
6778
6779 /* This symbol has an entry in the global offset table. Set it
6780 up. */
6781 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6782 abort ();
6783
6784 rela.r_offset = (htab->root.sgot->output_section->vma
6785 + htab->root.sgot->output_offset
6786 + (h->got.offset & ~(bfd_vma) 1));
6787
49206388
WN
6788 if (h->def_regular
6789 && h->type == STT_GNU_IFUNC)
6790 {
6791 if (info->shared)
6792 {
6793 /* Generate R_AARCH64_GLOB_DAT. */
6794 goto do_glob_dat;
6795 }
6796 else
6797 {
6798 asection *plt;
6799
6800 if (!h->pointer_equality_needed)
6801 abort ();
6802
6803 /* For non-shared object, we can't use .got.plt, which
6804 contains the real function address if we need pointer
6805 equality. We load the GOT entry with the PLT entry. */
6806 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6807 bfd_put_NN (output_bfd, (plt->output_section->vma
6808 + plt->output_offset
6809 + h->plt.offset),
6810 htab->root.sgot->contents
6811 + (h->got.offset & ~(bfd_vma) 1));
6812 return TRUE;
6813 }
6814 }
6815 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
6816 {
6817 if (!h->def_regular)
6818 return FALSE;
6819
6820 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 6821 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
6822 rela.r_addend = (h->root.u.def.value
6823 + h->root.u.def.section->output_section->vma
6824 + h->root.u.def.section->output_offset);
6825 }
6826 else
6827 {
49206388 6828do_glob_dat:
a06ea964 6829 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 6830 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 6831 htab->root.sgot->contents + h->got.offset);
a6bb11b2 6832 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
6833 rela.r_addend = 0;
6834 }
6835
6836 loc = htab->root.srelgot->contents;
6837 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6838 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6839 }
6840
6841 if (h->needs_copy)
6842 {
6843 Elf_Internal_Rela rela;
6844 bfd_byte *loc;
6845
6846 /* This symbol needs a copy reloc. Set it up. */
6847
6848 if (h->dynindx == -1
6849 || (h->root.type != bfd_link_hash_defined
6850 && h->root.type != bfd_link_hash_defweak)
6851 || htab->srelbss == NULL)
6852 abort ();
6853
6854 rela.r_offset = (h->root.u.def.value
6855 + h->root.u.def.section->output_section->vma
6856 + h->root.u.def.section->output_offset);
a6bb11b2 6857 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
6858 rela.r_addend = 0;
6859 loc = htab->srelbss->contents;
6860 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6861 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6862 }
6863
6864 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6865 be NULL for local symbols. */
6866 if (sym != NULL
9637f6ef 6867 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
6868 || h == elf_hash_table (info)->hgot))
6869 sym->st_shndx = SHN_ABS;
6870
6871 return TRUE;
6872}
6873
1419bbe5
WN
6874/* Finish up local dynamic symbol handling. We set the contents of
6875 various dynamic sections here. */
6876
6877static bfd_boolean
6878elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6879{
6880 struct elf_link_hash_entry *h
6881 = (struct elf_link_hash_entry *) *slot;
6882 struct bfd_link_info *info
6883 = (struct bfd_link_info *) inf;
6884
6885 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6886 info, h, NULL);
6887}
6888
a06ea964 6889static void
cec5225b
YZ
6890elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6891 struct elf_aarch64_link_hash_table
a06ea964
NC
6892 *htab)
6893{
6894 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6895 small and large plts and at the minute just generates
6896 the small PLT. */
6897
cec5225b 6898 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
6899 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6900 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6901 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6902 // symbol resolver
6903 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6904 // GOTPLT entry for this.
6905 br x17
cec5225b
YZ
6906 PLT0 will be slightly different in ELF32 due to different got entry
6907 size.
a06ea964 6908 */
caed7120 6909 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
6910 bfd_vma plt_base;
6911
6912
cec5225b 6913 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
6914 PLT_ENTRY_SIZE);
6915 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6916 PLT_ENTRY_SIZE;
6917
caed7120
YZ
6918 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6919 + htab->root.sgotplt->output_offset
6920 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
6921
6922 plt_base = htab->root.splt->output_section->vma +
f44a1f8e 6923 htab->root.splt->output_offset;
a06ea964
NC
6924
6925 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6926 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6927 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6928 htab->root.splt->contents + 4,
6929 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 6930
caed7120
YZ
6931 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6932 htab->root.splt->contents + 8,
6933 PG_OFFSET (plt_got_2nd_ent));
a06ea964 6934
caed7120
YZ
6935 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6936 htab->root.splt->contents + 12,
6937 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
6938}
6939
6940static bfd_boolean
cec5225b 6941elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
6942 struct bfd_link_info *info)
6943{
cec5225b 6944 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6945 bfd *dynobj;
6946 asection *sdyn;
6947
cec5225b 6948 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6949 dynobj = htab->root.dynobj;
6950 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6951
6952 if (htab->root.dynamic_sections_created)
6953 {
cec5225b 6954 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
6955
6956 if (sdyn == NULL || htab->root.sgot == NULL)
6957 abort ();
6958
cec5225b
YZ
6959 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6960 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
6961 for (; dyncon < dynconend; dyncon++)
6962 {
6963 Elf_Internal_Dyn dyn;
6964 asection *s;
6965
cec5225b 6966 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
6967
6968 switch (dyn.d_tag)
6969 {
6970 default:
6971 continue;
6972
6973 case DT_PLTGOT:
6974 s = htab->root.sgotplt;
6975 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6976 break;
6977
6978 case DT_JMPREL:
6979 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6980 break;
6981
6982 case DT_PLTRELSZ:
c955de36 6983 s = htab->root.srelplt;
a06ea964
NC
6984 dyn.d_un.d_val = s->size;
6985 break;
6986
6987 case DT_RELASZ:
6988 /* The procedure linkage table relocs (DT_JMPREL) should
6989 not be included in the overall relocs (DT_RELA).
6990 Therefore, we override the DT_RELASZ entry here to
6991 make it not include the JMPREL relocs. Since the
6992 linker script arranges for .rela.plt to follow all
6993 other relocation sections, we don't have to worry
6994 about changing the DT_RELA entry. */
6995 if (htab->root.srelplt != NULL)
6996 {
c955de36 6997 s = htab->root.srelplt;
a06ea964
NC
6998 dyn.d_un.d_val -= s->size;
6999 }
7000 break;
7001
7002 case DT_TLSDESC_PLT:
7003 s = htab->root.splt;
7004 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7005 + htab->tlsdesc_plt;
7006 break;
7007
7008 case DT_TLSDESC_GOT:
7009 s = htab->root.sgot;
7010 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7011 + htab->dt_tlsdesc_got;
7012 break;
7013 }
7014
cec5225b 7015 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
7016 }
7017
7018 }
7019
7020 /* Fill in the special first entry in the procedure linkage table. */
7021 if (htab->root.splt && htab->root.splt->size > 0)
7022 {
cec5225b 7023 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
7024
7025 elf_section_data (htab->root.splt->output_section)->
7026 this_hdr.sh_entsize = htab->plt_entry_size;
7027
7028
7029 if (htab->tlsdesc_plt)
7030 {
cec5225b 7031 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
7032 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7033
7034 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
7035 elfNN_aarch64_tlsdesc_small_plt_entry,
7036 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
7037
7038 {
7039 bfd_vma adrp1_addr =
7040 htab->root.splt->output_section->vma
7041 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7042
caed7120 7043 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
7044
7045 bfd_vma got_addr =
7046 htab->root.sgot->output_section->vma
7047 + htab->root.sgot->output_offset;
7048
7049 bfd_vma pltgot_addr =
7050 htab->root.sgotplt->output_section->vma
7051 + htab->root.sgotplt->output_offset;
7052
7053 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
7054
7055 bfd_byte *plt_entry =
7056 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
7057
7058 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
7059 elf_aarch64_update_plt_entry (output_bfd,
7060 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7061 plt_entry + 4,
7062 (PG (dt_tlsdesc_got)
7063 - PG (adrp1_addr)));
a06ea964
NC
7064
7065 /* adrp x3, 0 */
caed7120
YZ
7066 elf_aarch64_update_plt_entry (output_bfd,
7067 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7068 plt_entry + 8,
7069 (PG (pltgot_addr)
7070 - PG (adrp2_addr)));
a06ea964
NC
7071
7072 /* ldr x2, [x2, #0] */
caed7120
YZ
7073 elf_aarch64_update_plt_entry (output_bfd,
7074 BFD_RELOC_AARCH64_LDSTNN_LO12,
7075 plt_entry + 12,
7076 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
7077
7078 /* add x3, x3, 0 */
caed7120
YZ
7079 elf_aarch64_update_plt_entry (output_bfd,
7080 BFD_RELOC_AARCH64_ADD_LO12,
7081 plt_entry + 16,
7082 PG_OFFSET (pltgot_addr));
a06ea964
NC
7083 }
7084 }
7085 }
7086
7087 if (htab->root.sgotplt)
7088 {
7089 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7090 {
7091 (*_bfd_error_handler)
7092 (_("discarded output section: `%A'"), htab->root.sgotplt);
7093 return FALSE;
7094 }
7095
7096 /* Fill in the first three entries in the global offset table. */
7097 if (htab->root.sgotplt->size > 0)
7098 {
8db339a6
MS
7099 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7100
a06ea964 7101 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 7102 bfd_put_NN (output_bfd,
a06ea964
NC
7103 (bfd_vma) 0,
7104 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 7105 bfd_put_NN (output_bfd,
a06ea964
NC
7106 (bfd_vma) 0,
7107 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7108 }
7109
8db339a6
MS
7110 if (htab->root.sgot)
7111 {
7112 if (htab->root.sgot->size > 0)
7113 {
7114 bfd_vma addr =
7115 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7116 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7117 }
7118 }
7119
a06ea964
NC
7120 elf_section_data (htab->root.sgotplt->output_section)->
7121 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7122 }
7123
7124 if (htab->root.sgot && htab->root.sgot->size > 0)
7125 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7126 = GOT_ENTRY_SIZE;
7127
1419bbe5
WN
7128 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7129 htab_traverse (htab->loc_hash_table,
7130 elfNN_aarch64_finish_local_dynamic_symbol,
7131 info);
7132
a06ea964
NC
7133 return TRUE;
7134}
7135
7136/* Return address for Ith PLT stub in section PLT, for relocation REL
7137 or (bfd_vma) -1 if it should not be included. */
7138
7139static bfd_vma
cec5225b 7140elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
7141 const arelent *rel ATTRIBUTE_UNUSED)
7142{
7143 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7144}
7145
7146
7147/* We use this so we can override certain functions
7148 (though currently we don't). */
7149
cec5225b 7150const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 7151{
cec5225b
YZ
7152 sizeof (ElfNN_External_Ehdr),
7153 sizeof (ElfNN_External_Phdr),
7154 sizeof (ElfNN_External_Shdr),
7155 sizeof (ElfNN_External_Rel),
7156 sizeof (ElfNN_External_Rela),
7157 sizeof (ElfNN_External_Sym),
7158 sizeof (ElfNN_External_Dyn),
a06ea964
NC
7159 sizeof (Elf_External_Note),
7160 4, /* Hash table entry size. */
7161 1, /* Internal relocs per external relocs. */
cec5225b
YZ
7162 ARCH_SIZE, /* Arch size. */
7163 LOG_FILE_ALIGN, /* Log_file_align. */
7164 ELFCLASSNN, EV_CURRENT,
7165 bfd_elfNN_write_out_phdrs,
7166 bfd_elfNN_write_shdrs_and_ehdr,
7167 bfd_elfNN_checksum_contents,
7168 bfd_elfNN_write_relocs,
7169 bfd_elfNN_swap_symbol_in,
7170 bfd_elfNN_swap_symbol_out,
7171 bfd_elfNN_slurp_reloc_table,
7172 bfd_elfNN_slurp_symbol_table,
7173 bfd_elfNN_swap_dyn_in,
7174 bfd_elfNN_swap_dyn_out,
7175 bfd_elfNN_swap_reloc_in,
7176 bfd_elfNN_swap_reloc_out,
7177 bfd_elfNN_swap_reloca_in,
7178 bfd_elfNN_swap_reloca_out
a06ea964
NC
7179};
7180
7181#define ELF_ARCH bfd_arch_aarch64
7182#define ELF_MACHINE_CODE EM_AARCH64
7183#define ELF_MAXPAGESIZE 0x10000
7184#define ELF_MINPAGESIZE 0x1000
7185#define ELF_COMMONPAGESIZE 0x1000
7186
cec5225b
YZ
7187#define bfd_elfNN_close_and_cleanup \
7188 elfNN_aarch64_close_and_cleanup
a06ea964 7189
cec5225b
YZ
7190#define bfd_elfNN_bfd_free_cached_info \
7191 elfNN_aarch64_bfd_free_cached_info
a06ea964 7192
cec5225b
YZ
7193#define bfd_elfNN_bfd_is_target_special_symbol \
7194 elfNN_aarch64_is_target_special_symbol
a06ea964 7195
cec5225b
YZ
7196#define bfd_elfNN_bfd_link_hash_table_create \
7197 elfNN_aarch64_link_hash_table_create
a06ea964 7198
cec5225b
YZ
7199#define bfd_elfNN_bfd_link_hash_table_free \
7200 elfNN_aarch64_hash_table_free
a06ea964 7201
cec5225b
YZ
7202#define bfd_elfNN_bfd_merge_private_bfd_data \
7203 elfNN_aarch64_merge_private_bfd_data
a06ea964 7204
cec5225b
YZ
7205#define bfd_elfNN_bfd_print_private_bfd_data \
7206 elfNN_aarch64_print_private_bfd_data
a06ea964 7207
cec5225b
YZ
7208#define bfd_elfNN_bfd_reloc_type_lookup \
7209 elfNN_aarch64_reloc_type_lookup
a06ea964 7210
cec5225b
YZ
7211#define bfd_elfNN_bfd_reloc_name_lookup \
7212 elfNN_aarch64_reloc_name_lookup
a06ea964 7213
cec5225b
YZ
7214#define bfd_elfNN_bfd_set_private_flags \
7215 elfNN_aarch64_set_private_flags
a06ea964 7216
cec5225b
YZ
7217#define bfd_elfNN_find_inliner_info \
7218 elfNN_aarch64_find_inliner_info
a06ea964 7219
cec5225b
YZ
7220#define bfd_elfNN_find_nearest_line \
7221 elfNN_aarch64_find_nearest_line
a06ea964 7222
cec5225b
YZ
7223#define bfd_elfNN_mkobject \
7224 elfNN_aarch64_mkobject
a06ea964 7225
cec5225b
YZ
7226#define bfd_elfNN_new_section_hook \
7227 elfNN_aarch64_new_section_hook
a06ea964
NC
7228
7229#define elf_backend_adjust_dynamic_symbol \
cec5225b 7230 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
7231
7232#define elf_backend_always_size_sections \
cec5225b 7233 elfNN_aarch64_always_size_sections
a06ea964
NC
7234
7235#define elf_backend_check_relocs \
cec5225b 7236 elfNN_aarch64_check_relocs
a06ea964
NC
7237
7238#define elf_backend_copy_indirect_symbol \
cec5225b 7239 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
7240
7241/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7242 to them in our hash. */
7243#define elf_backend_create_dynamic_sections \
cec5225b 7244 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
7245
7246#define elf_backend_init_index_section \
7247 _bfd_elf_init_2_index_sections
7248
a06ea964 7249#define elf_backend_finish_dynamic_sections \
cec5225b 7250 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
7251
7252#define elf_backend_finish_dynamic_symbol \
cec5225b 7253 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
7254
7255#define elf_backend_gc_sweep_hook \
cec5225b 7256 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
7257
7258#define elf_backend_object_p \
cec5225b 7259 elfNN_aarch64_object_p
a06ea964
NC
7260
7261#define elf_backend_output_arch_local_syms \
cec5225b 7262 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
7263
7264#define elf_backend_plt_sym_val \
cec5225b 7265 elfNN_aarch64_plt_sym_val
a06ea964
NC
7266
7267#define elf_backend_post_process_headers \
cec5225b 7268 elfNN_aarch64_post_process_headers
a06ea964
NC
7269
7270#define elf_backend_relocate_section \
cec5225b 7271 elfNN_aarch64_relocate_section
a06ea964
NC
7272
7273#define elf_backend_reloc_type_class \
cec5225b 7274 elfNN_aarch64_reloc_type_class
a06ea964 7275
a06ea964 7276#define elf_backend_section_from_shdr \
cec5225b 7277 elfNN_aarch64_section_from_shdr
a06ea964
NC
7278
7279#define elf_backend_size_dynamic_sections \
cec5225b 7280 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
7281
7282#define elf_backend_size_info \
cec5225b 7283 elfNN_aarch64_size_info
a06ea964
NC
7284
7285#define elf_backend_can_refcount 1
59c108f7 7286#define elf_backend_can_gc_sections 1
a06ea964
NC
7287#define elf_backend_plt_readonly 1
7288#define elf_backend_want_got_plt 1
7289#define elf_backend_want_plt_sym 0
7290#define elf_backend_may_use_rel_p 0
7291#define elf_backend_may_use_rela_p 1
7292#define elf_backend_default_use_rela_p 1
7293#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 7294#define elf_backend_default_execstack 0
a06ea964
NC
7295
7296#undef elf_backend_obj_attrs_section
7297#define elf_backend_obj_attrs_section ".ARM.attributes"
7298
cec5225b 7299#include "elfNN-target.h"
This page took 0.437843 seconds and 4 git commands to generate.