Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
6f179bd0 | 3 | 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <ian@cygnus.com>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <mark@codesourcery.com> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <kk@ddeorg.soft.net> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 16 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 17 | (at your option) any later version. |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
27 | MA 02110-1301, USA. */ | |
28 | ||
b49e97c9 TS |
29 | |
30 | /* This file handles functionality common to the different MIPS ABI's. */ | |
31 | ||
b49e97c9 | 32 | #include "sysdep.h" |
3db64b00 | 33 | #include "bfd.h" |
b49e97c9 | 34 | #include "libbfd.h" |
64543e1a | 35 | #include "libiberty.h" |
b49e97c9 TS |
36 | #include "elf-bfd.h" |
37 | #include "elfxx-mips.h" | |
38 | #include "elf/mips.h" | |
0a44bf69 | 39 | #include "elf-vxworks.h" |
b49e97c9 TS |
40 | |
41 | /* Get the ECOFF swapping routines. */ | |
42 | #include "coff/sym.h" | |
43 | #include "coff/symconst.h" | |
44 | #include "coff/ecoff.h" | |
45 | #include "coff/mips.h" | |
46 | ||
b15e6682 AO |
47 | #include "hashtab.h" |
48 | ||
ead49a57 RS |
49 | /* This structure is used to hold information about one GOT entry. |
50 | There are three types of entry: | |
51 | ||
52 | (1) absolute addresses | |
53 | (abfd == NULL) | |
54 | (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd | |
55 | (abfd != NULL, symndx >= 0) | |
56 | (3) global and forced-local symbols | |
57 | (abfd != NULL, symndx == -1) | |
58 | ||
59 | Type (3) entries are treated differently for different types of GOT. | |
60 | In the "master" GOT -- i.e. the one that describes every GOT | |
61 | reference needed in the link -- the mips_got_entry is keyed on both | |
62 | the symbol and the input bfd that references it. If it turns out | |
63 | that we need multiple GOTs, we can then use this information to | |
64 | create separate GOTs for each input bfd. | |
65 | ||
66 | However, we want each of these separate GOTs to have at most one | |
67 | entry for a given symbol, so their type (3) entries are keyed only | |
68 | on the symbol. The input bfd given by the "abfd" field is somewhat | |
69 | arbitrary in this case. | |
70 | ||
71 | This means that when there are multiple GOTs, each GOT has a unique | |
72 | mips_got_entry for every symbol within it. We can therefore use the | |
73 | mips_got_entry fields (tls_type and gotidx) to track the symbol's | |
74 | GOT index. | |
75 | ||
76 | However, if it turns out that we need only a single GOT, we continue | |
77 | to use the master GOT to describe it. There may therefore be several | |
78 | mips_got_entries for the same symbol, each with a different input bfd. | |
79 | We want to make sure that each symbol gets a unique GOT entry, so when | |
80 | there's a single GOT, we use the symbol's hash entry, not the | |
81 | mips_got_entry fields, to track a symbol's GOT index. */ | |
b15e6682 AO |
82 | struct mips_got_entry |
83 | { | |
84 | /* The input bfd in which the symbol is defined. */ | |
85 | bfd *abfd; | |
f4416af6 AO |
86 | /* The index of the symbol, as stored in the relocation r_info, if |
87 | we have a local symbol; -1 otherwise. */ | |
88 | long symndx; | |
89 | union | |
90 | { | |
91 | /* If abfd == NULL, an address that must be stored in the got. */ | |
92 | bfd_vma address; | |
93 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
94 | that should be added to the symbol value. */ | |
95 | bfd_vma addend; | |
96 | /* If abfd != NULL && symndx == -1, the hash table entry | |
97 | corresponding to a global symbol in the got (or, local, if | |
98 | h->forced_local). */ | |
99 | struct mips_elf_link_hash_entry *h; | |
100 | } d; | |
0f20cc35 DJ |
101 | |
102 | /* The TLS types included in this GOT entry (specifically, GD and | |
103 | IE). The GD and IE flags can be added as we encounter new | |
104 | relocations. LDM can also be set; it will always be alone, not | |
105 | combined with any GD or IE flags. An LDM GOT entry will be | |
106 | a local symbol entry with r_symndx == 0. */ | |
107 | unsigned char tls_type; | |
108 | ||
b15e6682 | 109 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
110 | corresponding to this symbol+addend. If it's a global symbol |
111 | whose offset is yet to be decided, it's going to be -1. */ | |
112 | long gotidx; | |
b15e6682 AO |
113 | }; |
114 | ||
c224138d RS |
115 | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
116 | The structures form a non-overlapping list that is sorted by increasing | |
117 | MIN_ADDEND. */ | |
118 | struct mips_got_page_range | |
119 | { | |
120 | struct mips_got_page_range *next; | |
121 | bfd_signed_vma min_addend; | |
122 | bfd_signed_vma max_addend; | |
123 | }; | |
124 | ||
125 | /* This structure describes the range of addends that are applied to page | |
126 | relocations against a given symbol. */ | |
127 | struct mips_got_page_entry | |
128 | { | |
129 | /* The input bfd in which the symbol is defined. */ | |
130 | bfd *abfd; | |
131 | /* The index of the symbol, as stored in the relocation r_info. */ | |
132 | long symndx; | |
133 | /* The ranges for this page entry. */ | |
134 | struct mips_got_page_range *ranges; | |
135 | /* The maximum number of page entries needed for RANGES. */ | |
136 | bfd_vma num_pages; | |
137 | }; | |
138 | ||
f0abc2a1 | 139 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
140 | |
141 | struct mips_got_info | |
142 | { | |
143 | /* The global symbol in the GOT with the lowest index in the dynamic | |
144 | symbol table. */ | |
145 | struct elf_link_hash_entry *global_gotsym; | |
146 | /* The number of global .got entries. */ | |
147 | unsigned int global_gotno; | |
0f20cc35 DJ |
148 | /* The number of .got slots used for TLS. */ |
149 | unsigned int tls_gotno; | |
150 | /* The first unused TLS .got entry. Used only during | |
151 | mips_elf_initialize_tls_index. */ | |
152 | unsigned int tls_assigned_gotno; | |
c224138d | 153 | /* The number of local .got entries, eventually including page entries. */ |
b49e97c9 | 154 | unsigned int local_gotno; |
c224138d RS |
155 | /* The maximum number of page entries needed. */ |
156 | unsigned int page_gotno; | |
b49e97c9 TS |
157 | /* The number of local .got entries we have used. */ |
158 | unsigned int assigned_gotno; | |
b15e6682 AO |
159 | /* A hash table holding members of the got. */ |
160 | struct htab *got_entries; | |
c224138d RS |
161 | /* A hash table of mips_got_page_entry structures. */ |
162 | struct htab *got_page_entries; | |
f4416af6 AO |
163 | /* A hash table mapping input bfds to other mips_got_info. NULL |
164 | unless multi-got was necessary. */ | |
165 | struct htab *bfd2got; | |
166 | /* In multi-got links, a pointer to the next got (err, rather, most | |
167 | of the time, it points to the previous got). */ | |
168 | struct mips_got_info *next; | |
0f20cc35 DJ |
169 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
170 | for none, or MINUS_TWO for not yet assigned. This is needed | |
171 | because a single-GOT link may have multiple hash table entries | |
172 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
173 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
174 | }; |
175 | ||
176 | /* Map an input bfd to a got in a multi-got link. */ | |
177 | ||
178 | struct mips_elf_bfd2got_hash { | |
179 | bfd *bfd; | |
180 | struct mips_got_info *g; | |
181 | }; | |
182 | ||
183 | /* Structure passed when traversing the bfd2got hash table, used to | |
184 | create and merge bfd's gots. */ | |
185 | ||
186 | struct mips_elf_got_per_bfd_arg | |
187 | { | |
188 | /* A hashtable that maps bfds to gots. */ | |
189 | htab_t bfd2got; | |
190 | /* The output bfd. */ | |
191 | bfd *obfd; | |
192 | /* The link information. */ | |
193 | struct bfd_link_info *info; | |
194 | /* A pointer to the primary got, i.e., the one that's going to get | |
195 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
196 | DT_MIPS_GOTSYM. */ | |
197 | struct mips_got_info *primary; | |
198 | /* A non-primary got we're trying to merge with other input bfd's | |
199 | gots. */ | |
200 | struct mips_got_info *current; | |
201 | /* The maximum number of got entries that can be addressed with a | |
202 | 16-bit offset. */ | |
203 | unsigned int max_count; | |
c224138d RS |
204 | /* The maximum number of page entries needed by each got. */ |
205 | unsigned int max_pages; | |
0f20cc35 DJ |
206 | /* The total number of global entries which will live in the |
207 | primary got and be automatically relocated. This includes | |
208 | those not referenced by the primary GOT but included in | |
209 | the "master" GOT. */ | |
210 | unsigned int global_count; | |
f4416af6 AO |
211 | }; |
212 | ||
213 | /* Another structure used to pass arguments for got entries traversal. */ | |
214 | ||
215 | struct mips_elf_set_global_got_offset_arg | |
216 | { | |
217 | struct mips_got_info *g; | |
218 | int value; | |
219 | unsigned int needed_relocs; | |
220 | struct bfd_link_info *info; | |
b49e97c9 TS |
221 | }; |
222 | ||
0f20cc35 DJ |
223 | /* A structure used to count TLS relocations or GOT entries, for GOT |
224 | entry or ELF symbol table traversal. */ | |
225 | ||
226 | struct mips_elf_count_tls_arg | |
227 | { | |
228 | struct bfd_link_info *info; | |
229 | unsigned int needed; | |
230 | }; | |
231 | ||
f0abc2a1 AM |
232 | struct _mips_elf_section_data |
233 | { | |
234 | struct bfd_elf_section_data elf; | |
235 | union | |
236 | { | |
237 | struct mips_got_info *got_info; | |
238 | bfd_byte *tdata; | |
239 | } u; | |
240 | }; | |
241 | ||
242 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 243 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 244 | |
b49e97c9 TS |
245 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
246 | the dynamic symbols. */ | |
247 | ||
248 | struct mips_elf_hash_sort_data | |
249 | { | |
250 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
251 | index. */ | |
252 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
253 | /* The least dynamic symbol table index corresponding to a non-TLS |
254 | symbol with a GOT entry. */ | |
b49e97c9 | 255 | long min_got_dynindx; |
f4416af6 AO |
256 | /* The greatest dynamic symbol table index corresponding to a symbol |
257 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 258 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 259 | long max_unref_got_dynindx; |
b49e97c9 TS |
260 | /* The greatest dynamic symbol table index not corresponding to a |
261 | symbol without a GOT entry. */ | |
262 | long max_non_got_dynindx; | |
263 | }; | |
264 | ||
265 | /* The MIPS ELF linker needs additional information for each symbol in | |
266 | the global hash table. */ | |
267 | ||
268 | struct mips_elf_link_hash_entry | |
269 | { | |
270 | struct elf_link_hash_entry root; | |
271 | ||
272 | /* External symbol information. */ | |
273 | EXTR esym; | |
274 | ||
275 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
276 | this symbol. */ | |
277 | unsigned int possibly_dynamic_relocs; | |
278 | ||
279 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
280 | a readonly section. */ | |
b34976b6 | 281 | bfd_boolean readonly_reloc; |
b49e97c9 | 282 | |
b49e97c9 TS |
283 | /* We must not create a stub for a symbol that has relocations |
284 | related to taking the function's address, i.e. any but | |
285 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
286 | p. 4-20. */ | |
b34976b6 | 287 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
288 | |
289 | /* If there is a stub that 32 bit functions should use to call this | |
290 | 16 bit function, this points to the section containing the stub. */ | |
291 | asection *fn_stub; | |
292 | ||
293 | /* Whether we need the fn_stub; this is set if this symbol appears | |
294 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 295 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
296 | |
297 | /* If there is a stub that 16 bit functions should use to call this | |
298 | 32 bit function, this points to the section containing the stub. */ | |
299 | asection *call_stub; | |
300 | ||
301 | /* This is like the call_stub field, but it is used if the function | |
302 | being called returns a floating point value. */ | |
303 | asection *call_fp_stub; | |
7c5fcef7 | 304 | |
a008ac03 DJ |
305 | /* Are we forced local? This will only be set if we have converted |
306 | the initial global GOT entry to a local GOT entry. */ | |
b34976b6 | 307 | bfd_boolean forced_local; |
0f20cc35 | 308 | |
0a44bf69 RS |
309 | /* Are we referenced by some kind of relocation? */ |
310 | bfd_boolean is_relocation_target; | |
311 | ||
312 | /* Are we referenced by branch relocations? */ | |
313 | bfd_boolean is_branch_target; | |
314 | ||
0f20cc35 DJ |
315 | #define GOT_NORMAL 0 |
316 | #define GOT_TLS_GD 1 | |
317 | #define GOT_TLS_LDM 2 | |
318 | #define GOT_TLS_IE 4 | |
319 | #define GOT_TLS_OFFSET_DONE 0x40 | |
320 | #define GOT_TLS_DONE 0x80 | |
321 | unsigned char tls_type; | |
322 | /* This is only used in single-GOT mode; in multi-GOT mode there | |
323 | is one mips_got_entry per GOT entry, so the offset is stored | |
324 | there. In single-GOT mode there may be many mips_got_entry | |
325 | structures all referring to the same GOT slot. It might be | |
326 | possible to use root.got.offset instead, but that field is | |
327 | overloaded already. */ | |
328 | bfd_vma tls_got_offset; | |
b49e97c9 TS |
329 | }; |
330 | ||
331 | /* MIPS ELF linker hash table. */ | |
332 | ||
333 | struct mips_elf_link_hash_table | |
334 | { | |
335 | struct elf_link_hash_table root; | |
336 | #if 0 | |
337 | /* We no longer use this. */ | |
338 | /* String section indices for the dynamic section symbols. */ | |
339 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
340 | #endif | |
341 | /* The number of .rtproc entries. */ | |
342 | bfd_size_type procedure_count; | |
343 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
344 | bfd_size_type compact_rel_size; | |
345 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 346 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 347 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
348 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
349 | bfd_vma rld_value; | |
350 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 351 | bfd_boolean mips16_stubs_seen; |
8275b357 RS |
352 | /* True if we've computed the size of the GOT. */ |
353 | bfd_boolean computed_got_sizes; | |
0a44bf69 RS |
354 | /* True if we're generating code for VxWorks. */ |
355 | bfd_boolean is_vxworks; | |
0e53d9da AN |
356 | /* True if we already reported the small-data section overflow. */ |
357 | bfd_boolean small_data_overflow_reported; | |
0a44bf69 RS |
358 | /* Shortcuts to some dynamic sections, or NULL if they are not |
359 | being used. */ | |
360 | asection *srelbss; | |
361 | asection *sdynbss; | |
362 | asection *srelplt; | |
363 | asection *srelplt2; | |
364 | asection *sgotplt; | |
365 | asection *splt; | |
366 | /* The size of the PLT header in bytes (VxWorks only). */ | |
367 | bfd_vma plt_header_size; | |
368 | /* The size of a PLT entry in bytes (VxWorks only). */ | |
369 | bfd_vma plt_entry_size; | |
5108fc1b RS |
370 | /* The size of a function stub entry in bytes. */ |
371 | bfd_vma function_stub_size; | |
b49e97c9 TS |
372 | }; |
373 | ||
0f20cc35 DJ |
374 | #define TLS_RELOC_P(r_type) \ |
375 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
376 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
377 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
378 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
379 | || r_type == R_MIPS_TLS_GD \ | |
380 | || r_type == R_MIPS_TLS_LDM \ | |
381 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
382 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
383 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
384 | || r_type == R_MIPS_TLS_TPREL32 \ | |
385 | || r_type == R_MIPS_TLS_TPREL64 \ | |
386 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
387 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
388 | ||
b49e97c9 TS |
389 | /* Structure used to pass information to mips_elf_output_extsym. */ |
390 | ||
391 | struct extsym_info | |
392 | { | |
9e4aeb93 RS |
393 | bfd *abfd; |
394 | struct bfd_link_info *info; | |
b49e97c9 TS |
395 | struct ecoff_debug_info *debug; |
396 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 397 | bfd_boolean failed; |
b49e97c9 TS |
398 | }; |
399 | ||
8dc1a139 | 400 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
401 | |
402 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
403 | { | |
404 | "_procedure_table", | |
405 | "_procedure_string_table", | |
406 | "_procedure_table_size", | |
407 | NULL | |
408 | }; | |
409 | ||
410 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 411 | IRIX5. */ |
b49e97c9 TS |
412 | |
413 | typedef struct | |
414 | { | |
415 | unsigned long id1; /* Always one? */ | |
416 | unsigned long num; /* Number of compact relocation entries. */ | |
417 | unsigned long id2; /* Always two? */ | |
418 | unsigned long offset; /* The file offset of the first relocation. */ | |
419 | unsigned long reserved0; /* Zero? */ | |
420 | unsigned long reserved1; /* Zero? */ | |
421 | } Elf32_compact_rel; | |
422 | ||
423 | typedef struct | |
424 | { | |
425 | bfd_byte id1[4]; | |
426 | bfd_byte num[4]; | |
427 | bfd_byte id2[4]; | |
428 | bfd_byte offset[4]; | |
429 | bfd_byte reserved0[4]; | |
430 | bfd_byte reserved1[4]; | |
431 | } Elf32_External_compact_rel; | |
432 | ||
433 | typedef struct | |
434 | { | |
435 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
436 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
437 | unsigned int dist2to : 8; | |
438 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
439 | unsigned long konst; /* KONST field. See below. */ | |
440 | unsigned long vaddr; /* VADDR to be relocated. */ | |
441 | } Elf32_crinfo; | |
442 | ||
443 | typedef struct | |
444 | { | |
445 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
446 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
447 | unsigned int dist2to : 8; | |
448 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
449 | unsigned long konst; /* KONST field. See below. */ | |
450 | } Elf32_crinfo2; | |
451 | ||
452 | typedef struct | |
453 | { | |
454 | bfd_byte info[4]; | |
455 | bfd_byte konst[4]; | |
456 | bfd_byte vaddr[4]; | |
457 | } Elf32_External_crinfo; | |
458 | ||
459 | typedef struct | |
460 | { | |
461 | bfd_byte info[4]; | |
462 | bfd_byte konst[4]; | |
463 | } Elf32_External_crinfo2; | |
464 | ||
465 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
466 | ||
467 | #define CRINFO_CTYPE (0x1) | |
468 | #define CRINFO_CTYPE_SH (31) | |
469 | #define CRINFO_RTYPE (0xf) | |
470 | #define CRINFO_RTYPE_SH (27) | |
471 | #define CRINFO_DIST2TO (0xff) | |
472 | #define CRINFO_DIST2TO_SH (19) | |
473 | #define CRINFO_RELVADDR (0x7ffff) | |
474 | #define CRINFO_RELVADDR_SH (0) | |
475 | ||
476 | /* A compact relocation info has long (3 words) or short (2 words) | |
477 | formats. A short format doesn't have VADDR field and relvaddr | |
478 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
479 | #define CRF_MIPS_LONG 1 | |
480 | #define CRF_MIPS_SHORT 0 | |
481 | ||
482 | /* There are 4 types of compact relocation at least. The value KONST | |
483 | has different meaning for each type: | |
484 | ||
485 | (type) (konst) | |
486 | CT_MIPS_REL32 Address in data | |
487 | CT_MIPS_WORD Address in word (XXX) | |
488 | CT_MIPS_GPHI_LO GP - vaddr | |
489 | CT_MIPS_JMPAD Address to jump | |
490 | */ | |
491 | ||
492 | #define CRT_MIPS_REL32 0xa | |
493 | #define CRT_MIPS_WORD 0xb | |
494 | #define CRT_MIPS_GPHI_LO 0xc | |
495 | #define CRT_MIPS_JMPAD 0xd | |
496 | ||
497 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
498 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
499 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
500 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
501 | \f | |
502 | /* The structure of the runtime procedure descriptor created by the | |
503 | loader for use by the static exception system. */ | |
504 | ||
505 | typedef struct runtime_pdr { | |
ae9a127f NC |
506 | bfd_vma adr; /* Memory address of start of procedure. */ |
507 | long regmask; /* Save register mask. */ | |
508 | long regoffset; /* Save register offset. */ | |
509 | long fregmask; /* Save floating point register mask. */ | |
510 | long fregoffset; /* Save floating point register offset. */ | |
511 | long frameoffset; /* Frame size. */ | |
512 | short framereg; /* Frame pointer register. */ | |
513 | short pcreg; /* Offset or reg of return pc. */ | |
514 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 515 | long reserved; |
ae9a127f | 516 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
517 | } RPDR, *pRPDR; |
518 | #define cbRPDR sizeof (RPDR) | |
519 | #define rpdNil ((pRPDR) 0) | |
520 | \f | |
b15e6682 | 521 | static struct mips_got_entry *mips_elf_create_local_got_entry |
0a44bf69 | 522 | (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *, |
5c18022e | 523 | bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int); |
b34976b6 | 524 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 525 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
526 | static bfd_vma mips_elf_high |
527 | (bfd_vma); | |
b9d58d71 | 528 | static bfd_boolean mips16_stub_section_p |
9719ad41 | 529 | (bfd *, asection *); |
b34976b6 | 530 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
531 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
532 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
533 | bfd_vma *, asection *); | |
9719ad41 RS |
534 | static hashval_t mips_elf_got_entry_hash |
535 | (const void *); | |
f4416af6 | 536 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 537 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 538 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 539 | (struct mips_got_info *, bfd *); |
f4416af6 | 540 | |
b49e97c9 TS |
541 | /* This will be used when we sort the dynamic relocation records. */ |
542 | static bfd *reldyn_sorting_bfd; | |
543 | ||
544 | /* Nonzero if ABFD is using the N32 ABI. */ | |
b49e97c9 TS |
545 | #define ABI_N32_P(abfd) \ |
546 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
547 | ||
4a14403c | 548 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 549 | #define ABI_64_P(abfd) \ |
141ff970 | 550 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 551 | |
4a14403c TS |
552 | /* Nonzero if ABFD is using NewABI conventions. */ |
553 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
554 | ||
555 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
556 | #define IRIX_COMPAT(abfd) \ |
557 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
558 | ||
b49e97c9 TS |
559 | /* Whether we are trying to be compatible with IRIX at all. */ |
560 | #define SGI_COMPAT(abfd) \ | |
561 | (IRIX_COMPAT (abfd) != ict_none) | |
562 | ||
563 | /* The name of the options section. */ | |
564 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 565 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 566 | |
cc2e31b9 RS |
567 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
568 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
569 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
570 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
571 | ||
943284cc DJ |
572 | /* Whether the section is readonly. */ |
573 | #define MIPS_ELF_READONLY_SECTION(sec) \ | |
574 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ | |
575 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
576 | ||
b49e97c9 | 577 | /* The name of the stub section. */ |
ca07892d | 578 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
579 | |
580 | /* The size of an external REL relocation. */ | |
581 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
582 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
583 | ||
0a44bf69 RS |
584 | /* The size of an external RELA relocation. */ |
585 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
586 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
587 | ||
b49e97c9 TS |
588 | /* The size of an external dynamic table entry. */ |
589 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
590 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
591 | ||
592 | /* The size of a GOT entry. */ | |
593 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
594 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
595 | ||
596 | /* The size of a symbol-table entry. */ | |
597 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
598 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
599 | ||
600 | /* The default alignment for sections, as a power of two. */ | |
601 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 602 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
603 | |
604 | /* Get word-sized data. */ | |
605 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
606 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
607 | ||
608 | /* Put out word-sized data. */ | |
609 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
610 | (ABI_64_P (abfd) \ | |
611 | ? bfd_put_64 (abfd, val, ptr) \ | |
612 | : bfd_put_32 (abfd, val, ptr)) | |
613 | ||
614 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 615 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 616 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
617 | |
618 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
619 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
620 | ||
4ffba85c AO |
621 | /* Determine whether the internal relocation of index REL_IDX is REL |
622 | (zero) or RELA (non-zero). The assumption is that, if there are | |
623 | two relocation sections for this section, one of them is REL and | |
624 | the other is RELA. If the index of the relocation we're testing is | |
625 | in range for the first relocation section, check that the external | |
626 | relocation size is that for RELA. It is also assumed that, if | |
627 | rel_idx is not in range for the first section, and this first | |
628 | section contains REL relocs, then the relocation is in the second | |
629 | section, that is RELA. */ | |
630 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
631 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
632 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
633 | > (bfd_vma)(rel_idx)) \ | |
634 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
635 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
636 | : sizeof (Elf32_External_Rela)))) | |
637 | ||
0a44bf69 RS |
638 | /* The name of the dynamic relocation section. */ |
639 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
640 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
641 | ||
b49e97c9 TS |
642 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
643 | from smaller values. Start with zero, widen, *then* decrement. */ | |
644 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 645 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 TS |
646 | |
647 | /* The number of local .got entries we reserve. */ | |
0a44bf69 RS |
648 | #define MIPS_RESERVED_GOTNO(INFO) \ |
649 | (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2) | |
b49e97c9 | 650 | |
f4416af6 | 651 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
652 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
653 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
654 | |
655 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
656 | offsets from $gp. */ | |
0a44bf69 | 657 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 658 | |
6a691779 | 659 | /* Instructions which appear in a stub. */ |
3d6746ca DD |
660 | #define STUB_LW(abfd) \ |
661 | ((ABI_64_P (abfd) \ | |
662 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
663 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
664 | #define STUB_MOVE(abfd) \ | |
665 | ((ABI_64_P (abfd) \ | |
666 | ? 0x03e0782d /* daddu t7,ra */ \ | |
667 | : 0x03e07821)) /* addu t7,ra */ | |
668 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ | |
669 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
5108fc1b RS |
670 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
671 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
3d6746ca DD |
672 | #define STUB_LI16S(abfd, VAL) \ |
673 | ((ABI_64_P (abfd) \ | |
674 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ | |
675 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ | |
676 | ||
5108fc1b RS |
677 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
678 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | |
b49e97c9 TS |
679 | |
680 | /* The name of the dynamic interpreter. This is put in the .interp | |
681 | section. */ | |
682 | ||
683 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
684 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
685 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
686 | : "/usr/lib/libc.so.1") | |
687 | ||
688 | #ifdef BFD64 | |
ee6423ed AO |
689 | #define MNAME(bfd,pre,pos) \ |
690 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
691 | #define ELF_R_SYM(bfd, i) \ |
692 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
693 | #define ELF_R_TYPE(bfd, i) \ | |
694 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
695 | #define ELF_R_INFO(bfd, s, t) \ | |
696 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
697 | #else | |
ee6423ed | 698 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
699 | #define ELF_R_SYM(bfd, i) \ |
700 | (ELF32_R_SYM (i)) | |
701 | #define ELF_R_TYPE(bfd, i) \ | |
702 | (ELF32_R_TYPE (i)) | |
703 | #define ELF_R_INFO(bfd, s, t) \ | |
704 | (ELF32_R_INFO (s, t)) | |
705 | #endif | |
706 | \f | |
707 | /* The mips16 compiler uses a couple of special sections to handle | |
708 | floating point arguments. | |
709 | ||
710 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
711 | copy floating point arguments from the fp regs to the gp regs and | |
712 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
713 | call should be redirected to the stub instead. If no 32 bit | |
714 | function calls FNNAME, the stub should be discarded. We need to | |
715 | consider any reference to the function, not just a call, because | |
716 | if the address of the function is taken we will need the stub, | |
717 | since the address might be passed to a 32 bit function. | |
718 | ||
719 | Section names that look like .mips16.call.FNNAME contain stubs | |
720 | that copy floating point arguments from the gp regs to the fp | |
721 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
722 | then any 16 bit function that calls FNNAME should be redirected | |
723 | to the stub instead. If FNNAME is not a 32 bit function, the | |
724 | stub should be discarded. | |
725 | ||
726 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
727 | which call FNNAME and then copy the return value from the fp regs | |
728 | to the gp regs. These stubs store the return value in $18 while | |
729 | calling FNNAME; any function which might call one of these stubs | |
730 | must arrange to save $18 around the call. (This case is not | |
731 | needed for 32 bit functions that call 16 bit functions, because | |
732 | 16 bit functions always return floating point values in both | |
733 | $f0/$f1 and $2/$3.) | |
734 | ||
735 | Note that in all cases FNNAME might be defined statically. | |
736 | Therefore, FNNAME is not used literally. Instead, the relocation | |
737 | information will indicate which symbol the section is for. | |
738 | ||
739 | We record any stubs that we find in the symbol table. */ | |
740 | ||
741 | #define FN_STUB ".mips16.fn." | |
742 | #define CALL_STUB ".mips16.call." | |
743 | #define CALL_FP_STUB ".mips16.call.fp." | |
b9d58d71 TS |
744 | |
745 | #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) | |
746 | #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) | |
747 | #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) | |
b49e97c9 | 748 | \f |
0a44bf69 RS |
749 | /* The format of the first PLT entry in a VxWorks executable. */ |
750 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = { | |
751 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ | |
752 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
753 | 0x8f390008, /* lw t9, 8(t9) */ | |
754 | 0x00000000, /* nop */ | |
755 | 0x03200008, /* jr t9 */ | |
756 | 0x00000000 /* nop */ | |
757 | }; | |
758 | ||
759 | /* The format of subsequent PLT entries. */ | |
760 | static const bfd_vma mips_vxworks_exec_plt_entry[] = { | |
761 | 0x10000000, /* b .PLT_resolver */ | |
762 | 0x24180000, /* li t8, <pltindex> */ | |
763 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
764 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
765 | 0x8f390000, /* lw t9, 0(t9) */ | |
766 | 0x00000000, /* nop */ | |
767 | 0x03200008, /* jr t9 */ | |
768 | 0x00000000 /* nop */ | |
769 | }; | |
770 | ||
771 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
772 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = { | |
773 | 0x8f990008, /* lw t9, 8(gp) */ | |
774 | 0x00000000, /* nop */ | |
775 | 0x03200008, /* jr t9 */ | |
776 | 0x00000000, /* nop */ | |
777 | 0x00000000, /* nop */ | |
778 | 0x00000000 /* nop */ | |
779 | }; | |
780 | ||
781 | /* The format of subsequent PLT entries. */ | |
782 | static const bfd_vma mips_vxworks_shared_plt_entry[] = { | |
783 | 0x10000000, /* b .PLT_resolver */ | |
784 | 0x24180000 /* li t8, <pltindex> */ | |
785 | }; | |
786 | \f | |
b49e97c9 TS |
787 | /* Look up an entry in a MIPS ELF linker hash table. */ |
788 | ||
789 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
790 | ((struct mips_elf_link_hash_entry *) \ | |
791 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
792 | (copy), (follow))) | |
793 | ||
794 | /* Traverse a MIPS ELF linker hash table. */ | |
795 | ||
796 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
797 | (elf_link_hash_traverse \ | |
798 | (&(table)->root, \ | |
9719ad41 | 799 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
800 | (info))) |
801 | ||
802 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
803 | ||
804 | #define mips_elf_hash_table(p) \ | |
805 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
806 | ||
0f20cc35 DJ |
807 | /* Find the base offsets for thread-local storage in this object, |
808 | for GD/LD and IE/LE respectively. */ | |
809 | ||
810 | #define TP_OFFSET 0x7000 | |
811 | #define DTP_OFFSET 0x8000 | |
812 | ||
813 | static bfd_vma | |
814 | dtprel_base (struct bfd_link_info *info) | |
815 | { | |
816 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
817 | if (elf_hash_table (info)->tls_sec == NULL) | |
818 | return 0; | |
819 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
820 | } | |
821 | ||
822 | static bfd_vma | |
823 | tprel_base (struct bfd_link_info *info) | |
824 | { | |
825 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
826 | if (elf_hash_table (info)->tls_sec == NULL) | |
827 | return 0; | |
828 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
829 | } | |
830 | ||
b49e97c9 TS |
831 | /* Create an entry in a MIPS ELF linker hash table. */ |
832 | ||
833 | static struct bfd_hash_entry * | |
9719ad41 RS |
834 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
835 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
836 | { |
837 | struct mips_elf_link_hash_entry *ret = | |
838 | (struct mips_elf_link_hash_entry *) entry; | |
839 | ||
840 | /* Allocate the structure if it has not already been allocated by a | |
841 | subclass. */ | |
9719ad41 RS |
842 | if (ret == NULL) |
843 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
844 | if (ret == NULL) | |
b49e97c9 TS |
845 | return (struct bfd_hash_entry *) ret; |
846 | ||
847 | /* Call the allocation method of the superclass. */ | |
848 | ret = ((struct mips_elf_link_hash_entry *) | |
849 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
850 | table, string)); | |
9719ad41 | 851 | if (ret != NULL) |
b49e97c9 TS |
852 | { |
853 | /* Set local fields. */ | |
854 | memset (&ret->esym, 0, sizeof (EXTR)); | |
855 | /* We use -2 as a marker to indicate that the information has | |
856 | not been set. -1 means there is no associated ifd. */ | |
857 | ret->esym.ifd = -2; | |
858 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 859 | ret->readonly_reloc = FALSE; |
b34976b6 | 860 | ret->no_fn_stub = FALSE; |
b49e97c9 | 861 | ret->fn_stub = NULL; |
b34976b6 | 862 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
863 | ret->call_stub = NULL; |
864 | ret->call_fp_stub = NULL; | |
b34976b6 | 865 | ret->forced_local = FALSE; |
0a44bf69 RS |
866 | ret->is_branch_target = FALSE; |
867 | ret->is_relocation_target = FALSE; | |
0f20cc35 | 868 | ret->tls_type = GOT_NORMAL; |
b49e97c9 TS |
869 | } |
870 | ||
871 | return (struct bfd_hash_entry *) ret; | |
872 | } | |
f0abc2a1 AM |
873 | |
874 | bfd_boolean | |
9719ad41 | 875 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 | 876 | { |
f592407e AM |
877 | if (!sec->used_by_bfd) |
878 | { | |
879 | struct _mips_elf_section_data *sdata; | |
880 | bfd_size_type amt = sizeof (*sdata); | |
f0abc2a1 | 881 | |
f592407e AM |
882 | sdata = bfd_zalloc (abfd, amt); |
883 | if (sdata == NULL) | |
884 | return FALSE; | |
885 | sec->used_by_bfd = sdata; | |
886 | } | |
f0abc2a1 AM |
887 | |
888 | return _bfd_elf_new_section_hook (abfd, sec); | |
889 | } | |
b49e97c9 TS |
890 | \f |
891 | /* Read ECOFF debugging information from a .mdebug section into a | |
892 | ecoff_debug_info structure. */ | |
893 | ||
b34976b6 | 894 | bfd_boolean |
9719ad41 RS |
895 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
896 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
897 | { |
898 | HDRR *symhdr; | |
899 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 900 | char *ext_hdr; |
b49e97c9 TS |
901 | |
902 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
903 | memset (debug, 0, sizeof (*debug)); | |
904 | ||
9719ad41 | 905 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
906 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
907 | goto error_return; | |
908 | ||
9719ad41 | 909 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 910 | swap->external_hdr_size)) |
b49e97c9 TS |
911 | goto error_return; |
912 | ||
913 | symhdr = &debug->symbolic_header; | |
914 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
915 | ||
916 | /* The symbolic header contains absolute file offsets and sizes to | |
917 | read. */ | |
918 | #define READ(ptr, offset, count, size, type) \ | |
919 | if (symhdr->count == 0) \ | |
920 | debug->ptr = NULL; \ | |
921 | else \ | |
922 | { \ | |
923 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 924 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
925 | if (debug->ptr == NULL) \ |
926 | goto error_return; \ | |
9719ad41 | 927 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
928 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
929 | goto error_return; \ | |
930 | } | |
931 | ||
932 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
933 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
934 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
935 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
936 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
937 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
938 | union aux_ext *); | |
939 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
940 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
941 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
942 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
943 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
944 | #undef READ |
945 | ||
946 | debug->fdr = NULL; | |
b49e97c9 | 947 | |
b34976b6 | 948 | return TRUE; |
b49e97c9 TS |
949 | |
950 | error_return: | |
951 | if (ext_hdr != NULL) | |
952 | free (ext_hdr); | |
953 | if (debug->line != NULL) | |
954 | free (debug->line); | |
955 | if (debug->external_dnr != NULL) | |
956 | free (debug->external_dnr); | |
957 | if (debug->external_pdr != NULL) | |
958 | free (debug->external_pdr); | |
959 | if (debug->external_sym != NULL) | |
960 | free (debug->external_sym); | |
961 | if (debug->external_opt != NULL) | |
962 | free (debug->external_opt); | |
963 | if (debug->external_aux != NULL) | |
964 | free (debug->external_aux); | |
965 | if (debug->ss != NULL) | |
966 | free (debug->ss); | |
967 | if (debug->ssext != NULL) | |
968 | free (debug->ssext); | |
969 | if (debug->external_fdr != NULL) | |
970 | free (debug->external_fdr); | |
971 | if (debug->external_rfd != NULL) | |
972 | free (debug->external_rfd); | |
973 | if (debug->external_ext != NULL) | |
974 | free (debug->external_ext); | |
b34976b6 | 975 | return FALSE; |
b49e97c9 TS |
976 | } |
977 | \f | |
978 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
979 | ||
980 | static void | |
9719ad41 | 981 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
982 | { |
983 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
984 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
985 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
986 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
987 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
988 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
989 | ||
990 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
991 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
992 | ||
993 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
994 | } |
995 | ||
996 | /* Create a runtime procedure table from the .mdebug section. */ | |
997 | ||
b34976b6 | 998 | static bfd_boolean |
9719ad41 RS |
999 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
1000 | struct bfd_link_info *info, asection *s, | |
1001 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1002 | { |
1003 | const struct ecoff_debug_swap *swap; | |
1004 | HDRR *hdr = &debug->symbolic_header; | |
1005 | RPDR *rpdr, *rp; | |
1006 | struct rpdr_ext *erp; | |
9719ad41 | 1007 | void *rtproc; |
b49e97c9 TS |
1008 | struct pdr_ext *epdr; |
1009 | struct sym_ext *esym; | |
1010 | char *ss, **sv; | |
1011 | char *str; | |
1012 | bfd_size_type size; | |
1013 | bfd_size_type count; | |
1014 | unsigned long sindex; | |
1015 | unsigned long i; | |
1016 | PDR pdr; | |
1017 | SYMR sym; | |
1018 | const char *no_name_func = _("static procedure (no name)"); | |
1019 | ||
1020 | epdr = NULL; | |
1021 | rpdr = NULL; | |
1022 | esym = NULL; | |
1023 | ss = NULL; | |
1024 | sv = NULL; | |
1025 | ||
1026 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1027 | ||
1028 | sindex = strlen (no_name_func) + 1; | |
1029 | count = hdr->ipdMax; | |
1030 | if (count > 0) | |
1031 | { | |
1032 | size = swap->external_pdr_size; | |
1033 | ||
9719ad41 | 1034 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
1035 | if (epdr == NULL) |
1036 | goto error_return; | |
1037 | ||
9719ad41 | 1038 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
1039 | goto error_return; |
1040 | ||
1041 | size = sizeof (RPDR); | |
9719ad41 | 1042 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
1043 | if (rpdr == NULL) |
1044 | goto error_return; | |
1045 | ||
1046 | size = sizeof (char *); | |
9719ad41 | 1047 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
1048 | if (sv == NULL) |
1049 | goto error_return; | |
1050 | ||
1051 | count = hdr->isymMax; | |
1052 | size = swap->external_sym_size; | |
9719ad41 | 1053 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1054 | if (esym == NULL) |
1055 | goto error_return; | |
1056 | ||
9719ad41 | 1057 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1058 | goto error_return; |
1059 | ||
1060 | count = hdr->issMax; | |
9719ad41 | 1061 | ss = bfd_malloc (count); |
b49e97c9 TS |
1062 | if (ss == NULL) |
1063 | goto error_return; | |
f075ee0c | 1064 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1065 | goto error_return; |
1066 | ||
1067 | count = hdr->ipdMax; | |
1068 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1069 | { | |
9719ad41 RS |
1070 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1071 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1072 | rp->adr = sym.value; |
1073 | rp->regmask = pdr.regmask; | |
1074 | rp->regoffset = pdr.regoffset; | |
1075 | rp->fregmask = pdr.fregmask; | |
1076 | rp->fregoffset = pdr.fregoffset; | |
1077 | rp->frameoffset = pdr.frameoffset; | |
1078 | rp->framereg = pdr.framereg; | |
1079 | rp->pcreg = pdr.pcreg; | |
1080 | rp->irpss = sindex; | |
1081 | sv[i] = ss + sym.iss; | |
1082 | sindex += strlen (sv[i]) + 1; | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1087 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1088 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1089 | if (rtproc == NULL) |
1090 | { | |
1091 | mips_elf_hash_table (info)->procedure_count = 0; | |
1092 | goto error_return; | |
1093 | } | |
1094 | ||
1095 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1096 | ||
9719ad41 | 1097 | erp = rtproc; |
b49e97c9 TS |
1098 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1099 | erp++; | |
1100 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1101 | strcpy (str, no_name_func); | |
1102 | str += strlen (no_name_func) + 1; | |
1103 | for (i = 0; i < count; i++) | |
1104 | { | |
1105 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1106 | strcpy (str, sv[i]); | |
1107 | str += strlen (sv[i]) + 1; | |
1108 | } | |
1109 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1110 | ||
1111 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1112 | s->size = size; |
9719ad41 | 1113 | s->contents = rtproc; |
b49e97c9 TS |
1114 | |
1115 | /* Skip this section later on (I don't think this currently | |
1116 | matters, but someday it might). */ | |
8423293d | 1117 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1118 | |
1119 | if (epdr != NULL) | |
1120 | free (epdr); | |
1121 | if (rpdr != NULL) | |
1122 | free (rpdr); | |
1123 | if (esym != NULL) | |
1124 | free (esym); | |
1125 | if (ss != NULL) | |
1126 | free (ss); | |
1127 | if (sv != NULL) | |
1128 | free (sv); | |
1129 | ||
b34976b6 | 1130 | return TRUE; |
b49e97c9 TS |
1131 | |
1132 | error_return: | |
1133 | if (epdr != NULL) | |
1134 | free (epdr); | |
1135 | if (rpdr != NULL) | |
1136 | free (rpdr); | |
1137 | if (esym != NULL) | |
1138 | free (esym); | |
1139 | if (ss != NULL) | |
1140 | free (ss); | |
1141 | if (sv != NULL) | |
1142 | free (sv); | |
b34976b6 | 1143 | return FALSE; |
b49e97c9 TS |
1144 | } |
1145 | ||
1146 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1147 | discard them. */ | |
1148 | ||
b34976b6 | 1149 | static bfd_boolean |
9719ad41 RS |
1150 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
1151 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
1152 | { |
1153 | if (h->root.root.type == bfd_link_hash_warning) | |
1154 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1155 | ||
1156 | if (h->fn_stub != NULL | |
1157 | && ! h->need_fn_stub) | |
1158 | { | |
1159 | /* We don't need the fn_stub; the only references to this symbol | |
1160 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1161 | being included in the link. */ | |
eea6121a | 1162 | h->fn_stub->size = 0; |
b49e97c9 TS |
1163 | h->fn_stub->flags &= ~SEC_RELOC; |
1164 | h->fn_stub->reloc_count = 0; | |
1165 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1166 | } | |
1167 | ||
1168 | if (h->call_stub != NULL | |
1169 | && h->root.other == STO_MIPS16) | |
1170 | { | |
1171 | /* We don't need the call_stub; this is a 16 bit function, so | |
1172 | calls from other 16 bit functions are OK. Clobber the size | |
1173 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1174 | h->call_stub->size = 0; |
b49e97c9 TS |
1175 | h->call_stub->flags &= ~SEC_RELOC; |
1176 | h->call_stub->reloc_count = 0; | |
1177 | h->call_stub->flags |= SEC_EXCLUDE; | |
1178 | } | |
1179 | ||
1180 | if (h->call_fp_stub != NULL | |
1181 | && h->root.other == STO_MIPS16) | |
1182 | { | |
1183 | /* We don't need the call_stub; this is a 16 bit function, so | |
1184 | calls from other 16 bit functions are OK. Clobber the size | |
1185 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1186 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1187 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1188 | h->call_fp_stub->reloc_count = 0; | |
1189 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1190 | } | |
1191 | ||
b34976b6 | 1192 | return TRUE; |
b49e97c9 TS |
1193 | } |
1194 | \f | |
d6f16593 MR |
1195 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1196 | Most mips16 instructions are 16 bits, but these instructions | |
1197 | are 32 bits. | |
1198 | ||
1199 | The format of these instructions is: | |
1200 | ||
1201 | +--------------+--------------------------------+ | |
1202 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1203 | +--------------+--------------------------------+ | |
1204 | | Immediate 15:0 | | |
1205 | +-----------------------------------------------+ | |
1206 | ||
1207 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1208 | Note that the immediate value in the first word is swapped. | |
1209 | ||
1210 | When producing a relocatable object file, R_MIPS16_26 is | |
1211 | handled mostly like R_MIPS_26. In particular, the addend is | |
1212 | stored as a straight 26-bit value in a 32-bit instruction. | |
1213 | (gas makes life simpler for itself by never adjusting a | |
1214 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1215 | always zero). However, the 32 bit instruction is stored as 2 | |
1216 | 16-bit values, rather than a single 32-bit value. In a | |
1217 | big-endian file, the result is the same; in a little-endian | |
1218 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1219 | This is so that a disassembler can recognize the jal | |
1220 | instruction. | |
1221 | ||
1222 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1223 | instruction stored as two 16-bit values. The addend A is the | |
1224 | contents of the targ26 field. The calculation is the same as | |
1225 | R_MIPS_26. When storing the calculated value, reorder the | |
1226 | immediate value as shown above, and don't forget to store the | |
1227 | value as two 16-bit values. | |
1228 | ||
1229 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1230 | defined as | |
1231 | ||
1232 | big-endian: | |
1233 | +--------+----------------------+ | |
1234 | | | | | |
1235 | | | targ26-16 | | |
1236 | |31 26|25 0| | |
1237 | +--------+----------------------+ | |
1238 | ||
1239 | little-endian: | |
1240 | +----------+------+-------------+ | |
1241 | | | | | | |
1242 | | sub1 | | sub2 | | |
1243 | |0 9|10 15|16 31| | |
1244 | +----------+--------------------+ | |
1245 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1246 | ((sub1 << 16) | sub2)). | |
1247 | ||
1248 | When producing a relocatable object file, the calculation is | |
1249 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1250 | When producing a fully linked file, the calculation is | |
1251 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1252 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1253 | ||
1254 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
1255 | mode. A typical instruction will have a format like this: | |
1256 | ||
1257 | +--------------+--------------------------------+ | |
1258 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1259 | +--------------+--------------------------------+ | |
1260 | | Major | rx | ry | Imm 4:0 | | |
1261 | +--------------+--------------------------------+ | |
1262 | ||
1263 | EXTEND is the five bit value 11110. Major is the instruction | |
1264 | opcode. | |
1265 | ||
1266 | This is handled exactly like R_MIPS_GPREL16, except that the | |
1267 | addend is retrieved and stored as shown in this diagram; that | |
1268 | is, the Imm fields above replace the V-rel16 field. | |
1269 | ||
1270 | All we need to do here is shuffle the bits appropriately. As | |
1271 | above, the two 16-bit halves must be swapped on a | |
1272 | little-endian system. | |
1273 | ||
1274 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to | |
1275 | access data when neither GP-relative nor PC-relative addressing | |
1276 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, | |
1277 | except that the addend is retrieved and stored as shown above | |
1278 | for R_MIPS16_GPREL. | |
1279 | */ | |
1280 | void | |
1281 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1282 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1283 | { | |
1284 | bfd_vma extend, insn, val; | |
1285 | ||
1286 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1287 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1288 | return; | |
1289 | ||
1290 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1291 | extend = bfd_get_16 (abfd, data); | |
1292 | insn = bfd_get_16 (abfd, data + 2); | |
1293 | if (r_type == R_MIPS16_26) | |
1294 | { | |
1295 | if (jal_shuffle) | |
1296 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1297 | | ((extend & 0x1f) << 21) | insn; | |
1298 | else | |
1299 | val = extend << 16 | insn; | |
1300 | } | |
1301 | else | |
1302 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1303 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1304 | bfd_put_32 (abfd, val, data); | |
1305 | } | |
1306 | ||
1307 | void | |
1308 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1309 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1310 | { | |
1311 | bfd_vma extend, insn, val; | |
1312 | ||
1313 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1314 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1315 | return; | |
1316 | ||
1317 | val = bfd_get_32 (abfd, data); | |
1318 | if (r_type == R_MIPS16_26) | |
1319 | { | |
1320 | if (jal_shuffle) | |
1321 | { | |
1322 | insn = val & 0xffff; | |
1323 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1324 | | ((val >> 21) & 0x1f); | |
1325 | } | |
1326 | else | |
1327 | { | |
1328 | insn = val & 0xffff; | |
1329 | extend = val >> 16; | |
1330 | } | |
1331 | } | |
1332 | else | |
1333 | { | |
1334 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1335 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1336 | } | |
1337 | bfd_put_16 (abfd, insn, data + 2); | |
1338 | bfd_put_16 (abfd, extend, data); | |
1339 | } | |
1340 | ||
b49e97c9 | 1341 | bfd_reloc_status_type |
9719ad41 RS |
1342 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1343 | arelent *reloc_entry, asection *input_section, | |
1344 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1345 | { |
1346 | bfd_vma relocation; | |
a7ebbfdf | 1347 | bfd_signed_vma val; |
30ac9238 | 1348 | bfd_reloc_status_type status; |
b49e97c9 TS |
1349 | |
1350 | if (bfd_is_com_section (symbol->section)) | |
1351 | relocation = 0; | |
1352 | else | |
1353 | relocation = symbol->value; | |
1354 | ||
1355 | relocation += symbol->section->output_section->vma; | |
1356 | relocation += symbol->section->output_offset; | |
1357 | ||
07515404 | 1358 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1359 | return bfd_reloc_outofrange; |
1360 | ||
b49e97c9 | 1361 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1362 | val = reloc_entry->addend; |
1363 | ||
30ac9238 | 1364 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1365 | |
b49e97c9 | 1366 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1367 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1368 | an external symbol. */ |
1049f94e | 1369 | if (! relocatable |
b49e97c9 TS |
1370 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1371 | val += relocation - gp; | |
1372 | ||
a7ebbfdf TS |
1373 | if (reloc_entry->howto->partial_inplace) |
1374 | { | |
30ac9238 RS |
1375 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1376 | (bfd_byte *) data | |
1377 | + reloc_entry->address); | |
1378 | if (status != bfd_reloc_ok) | |
1379 | return status; | |
a7ebbfdf TS |
1380 | } |
1381 | else | |
1382 | reloc_entry->addend = val; | |
b49e97c9 | 1383 | |
1049f94e | 1384 | if (relocatable) |
b49e97c9 | 1385 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1386 | |
1387 | return bfd_reloc_ok; | |
1388 | } | |
1389 | ||
1390 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1391 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1392 | that contains the relocation field and DATA points to the start of | |
1393 | INPUT_SECTION. */ | |
1394 | ||
1395 | struct mips_hi16 | |
1396 | { | |
1397 | struct mips_hi16 *next; | |
1398 | bfd_byte *data; | |
1399 | asection *input_section; | |
1400 | arelent rel; | |
1401 | }; | |
1402 | ||
1403 | /* FIXME: This should not be a static variable. */ | |
1404 | ||
1405 | static struct mips_hi16 *mips_hi16_list; | |
1406 | ||
1407 | /* A howto special_function for REL *HI16 relocations. We can only | |
1408 | calculate the correct value once we've seen the partnering | |
1409 | *LO16 relocation, so just save the information for later. | |
1410 | ||
1411 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1412 | However, as a GNU extension, we permit an arbitrary number of | |
1413 | *HI16s to be associated with a single *LO16. This significantly | |
1414 | simplies the relocation handling in gcc. */ | |
1415 | ||
1416 | bfd_reloc_status_type | |
1417 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1418 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1419 | asection *input_section, bfd *output_bfd, | |
1420 | char **error_message ATTRIBUTE_UNUSED) | |
1421 | { | |
1422 | struct mips_hi16 *n; | |
1423 | ||
07515404 | 1424 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1425 | return bfd_reloc_outofrange; |
1426 | ||
1427 | n = bfd_malloc (sizeof *n); | |
1428 | if (n == NULL) | |
1429 | return bfd_reloc_outofrange; | |
1430 | ||
1431 | n->next = mips_hi16_list; | |
1432 | n->data = data; | |
1433 | n->input_section = input_section; | |
1434 | n->rel = *reloc_entry; | |
1435 | mips_hi16_list = n; | |
1436 | ||
1437 | if (output_bfd != NULL) | |
1438 | reloc_entry->address += input_section->output_offset; | |
1439 | ||
1440 | return bfd_reloc_ok; | |
1441 | } | |
1442 | ||
1443 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1444 | like any other 16-bit relocation when applied to global symbols, but is | |
1445 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1446 | ||
1447 | bfd_reloc_status_type | |
1448 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1449 | void *data, asection *input_section, | |
1450 | bfd *output_bfd, char **error_message) | |
1451 | { | |
1452 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1453 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1454 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1455 | /* The relocation is against a global symbol. */ | |
1456 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1457 | input_section, output_bfd, | |
1458 | error_message); | |
1459 | ||
1460 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1461 | input_section, output_bfd, error_message); | |
1462 | } | |
1463 | ||
1464 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1465 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1466 | any partnering high-part relocations as well. */ | |
1467 | ||
1468 | bfd_reloc_status_type | |
1469 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1470 | void *data, asection *input_section, | |
1471 | bfd *output_bfd, char **error_message) | |
1472 | { | |
1473 | bfd_vma vallo; | |
d6f16593 | 1474 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 1475 | |
07515404 | 1476 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1477 | return bfd_reloc_outofrange; |
1478 | ||
d6f16593 MR |
1479 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1480 | location); | |
1481 | vallo = bfd_get_32 (abfd, location); | |
1482 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1483 | location); | |
1484 | ||
30ac9238 RS |
1485 | while (mips_hi16_list != NULL) |
1486 | { | |
1487 | bfd_reloc_status_type ret; | |
1488 | struct mips_hi16 *hi; | |
1489 | ||
1490 | hi = mips_hi16_list; | |
1491 | ||
1492 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1493 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1494 | relocation (with a rightshift of 16). However, since GOT16 | |
1495 | relocations can also be used with global symbols, their howto | |
1496 | has a rightshift of 0. */ | |
1497 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1498 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1499 | ||
1500 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1501 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1502 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1503 | ||
30ac9238 RS |
1504 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
1505 | hi->input_section, output_bfd, | |
1506 | error_message); | |
1507 | if (ret != bfd_reloc_ok) | |
1508 | return ret; | |
1509 | ||
1510 | mips_hi16_list = hi->next; | |
1511 | free (hi); | |
1512 | } | |
1513 | ||
1514 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1515 | input_section, output_bfd, | |
1516 | error_message); | |
1517 | } | |
1518 | ||
1519 | /* A generic howto special_function. This calculates and installs the | |
1520 | relocation itself, thus avoiding the oft-discussed problems in | |
1521 | bfd_perform_relocation and bfd_install_relocation. */ | |
1522 | ||
1523 | bfd_reloc_status_type | |
1524 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1525 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1526 | asection *input_section, bfd *output_bfd, | |
1527 | char **error_message ATTRIBUTE_UNUSED) | |
1528 | { | |
1529 | bfd_signed_vma val; | |
1530 | bfd_reloc_status_type status; | |
1531 | bfd_boolean relocatable; | |
1532 | ||
1533 | relocatable = (output_bfd != NULL); | |
1534 | ||
07515404 | 1535 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1536 | return bfd_reloc_outofrange; |
1537 | ||
1538 | /* Build up the field adjustment in VAL. */ | |
1539 | val = 0; | |
1540 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1541 | { | |
1542 | /* Either we're calculating the final field value or we have a | |
1543 | relocation against a section symbol. Add in the section's | |
1544 | offset or address. */ | |
1545 | val += symbol->section->output_section->vma; | |
1546 | val += symbol->section->output_offset; | |
1547 | } | |
1548 | ||
1549 | if (!relocatable) | |
1550 | { | |
1551 | /* We're calculating the final field value. Add in the symbol's value | |
1552 | and, if pc-relative, subtract the address of the field itself. */ | |
1553 | val += symbol->value; | |
1554 | if (reloc_entry->howto->pc_relative) | |
1555 | { | |
1556 | val -= input_section->output_section->vma; | |
1557 | val -= input_section->output_offset; | |
1558 | val -= reloc_entry->address; | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1563 | in the output file, and if the relocation uses a separate addend, | |
1564 | we just need to add VAL to that addend. Otherwise we need to add | |
1565 | VAL to the relocation field itself. */ | |
1566 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1567 | reloc_entry->addend += val; | |
1568 | else | |
1569 | { | |
d6f16593 MR |
1570 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
1571 | ||
30ac9238 RS |
1572 | /* Add in the separate addend, if any. */ |
1573 | val += reloc_entry->addend; | |
1574 | ||
1575 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
1576 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1577 | location); | |
30ac9238 | 1578 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
1579 | location); |
1580 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1581 | location); | |
1582 | ||
30ac9238 RS |
1583 | if (status != bfd_reloc_ok) |
1584 | return status; | |
1585 | } | |
1586 | ||
1587 | if (relocatable) | |
1588 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1589 | |
1590 | return bfd_reloc_ok; | |
1591 | } | |
1592 | \f | |
1593 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1594 | on the equivalence of the two elements of the union. */ | |
1595 | ||
1596 | static void | |
9719ad41 RS |
1597 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1598 | Elf32_gptab *in) | |
b49e97c9 TS |
1599 | { |
1600 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1601 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1602 | } | |
1603 | ||
1604 | static void | |
9719ad41 RS |
1605 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1606 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1607 | { |
1608 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1609 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1610 | } | |
1611 | ||
1612 | static void | |
9719ad41 RS |
1613 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1614 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1615 | { |
1616 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1617 | H_PUT_32 (abfd, in->num, ex->num); | |
1618 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1619 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1620 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1621 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1622 | } | |
1623 | ||
1624 | static void | |
9719ad41 RS |
1625 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1626 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1627 | { |
1628 | unsigned long l; | |
1629 | ||
1630 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1631 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1632 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1633 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1634 | H_PUT_32 (abfd, l, ex->info); | |
1635 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1636 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1637 | } | |
b49e97c9 TS |
1638 | \f |
1639 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1640 | routines swap this structure in and out. They are used outside of | |
1641 | BFD, so they are globally visible. */ | |
1642 | ||
1643 | void | |
9719ad41 RS |
1644 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1645 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1646 | { |
1647 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1648 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1649 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1650 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1651 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1652 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1653 | } | |
1654 | ||
1655 | void | |
9719ad41 RS |
1656 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1657 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1658 | { |
1659 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1660 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1661 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1662 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1663 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1664 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1665 | } | |
1666 | ||
1667 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1668 | information in an Elf64_Reginfo structure. These routines swap | |
1669 | them in and out. They are globally visible because they are used | |
1670 | outside of BFD. These routines are here so that gas can call them | |
1671 | without worrying about whether the 64 bit ABI has been included. */ | |
1672 | ||
1673 | void | |
9719ad41 RS |
1674 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1675 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1676 | { |
1677 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1678 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1679 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1680 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1681 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1682 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1683 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1684 | } | |
1685 | ||
1686 | void | |
9719ad41 RS |
1687 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1688 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1689 | { |
1690 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1691 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1692 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1693 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1694 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1695 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1696 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1697 | } | |
1698 | ||
1699 | /* Swap in an options header. */ | |
1700 | ||
1701 | void | |
9719ad41 RS |
1702 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1703 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1704 | { |
1705 | in->kind = H_GET_8 (abfd, ex->kind); | |
1706 | in->size = H_GET_8 (abfd, ex->size); | |
1707 | in->section = H_GET_16 (abfd, ex->section); | |
1708 | in->info = H_GET_32 (abfd, ex->info); | |
1709 | } | |
1710 | ||
1711 | /* Swap out an options header. */ | |
1712 | ||
1713 | void | |
9719ad41 RS |
1714 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1715 | Elf_External_Options *ex) | |
b49e97c9 TS |
1716 | { |
1717 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1718 | H_PUT_8 (abfd, in->size, ex->size); | |
1719 | H_PUT_16 (abfd, in->section, ex->section); | |
1720 | H_PUT_32 (abfd, in->info, ex->info); | |
1721 | } | |
1722 | \f | |
1723 | /* This function is called via qsort() to sort the dynamic relocation | |
1724 | entries by increasing r_symndx value. */ | |
1725 | ||
1726 | static int | |
9719ad41 | 1727 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1728 | { |
947216bf AM |
1729 | Elf_Internal_Rela int_reloc1; |
1730 | Elf_Internal_Rela int_reloc2; | |
6870500c | 1731 | int diff; |
b49e97c9 | 1732 | |
947216bf AM |
1733 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1734 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1735 | |
6870500c RS |
1736 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
1737 | if (diff != 0) | |
1738 | return diff; | |
1739 | ||
1740 | if (int_reloc1.r_offset < int_reloc2.r_offset) | |
1741 | return -1; | |
1742 | if (int_reloc1.r_offset > int_reloc2.r_offset) | |
1743 | return 1; | |
1744 | return 0; | |
b49e97c9 TS |
1745 | } |
1746 | ||
f4416af6 AO |
1747 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1748 | ||
1749 | static int | |
7e3102a7 AM |
1750 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
1751 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 1752 | { |
7e3102a7 | 1753 | #ifdef BFD64 |
f4416af6 AO |
1754 | Elf_Internal_Rela int_reloc1[3]; |
1755 | Elf_Internal_Rela int_reloc2[3]; | |
1756 | ||
1757 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1758 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1759 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1760 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1761 | ||
6870500c RS |
1762 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
1763 | return -1; | |
1764 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) | |
1765 | return 1; | |
1766 | ||
1767 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) | |
1768 | return -1; | |
1769 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) | |
1770 | return 1; | |
1771 | return 0; | |
7e3102a7 AM |
1772 | #else |
1773 | abort (); | |
1774 | #endif | |
f4416af6 AO |
1775 | } |
1776 | ||
1777 | ||
b49e97c9 TS |
1778 | /* This routine is used to write out ECOFF debugging external symbol |
1779 | information. It is called via mips_elf_link_hash_traverse. The | |
1780 | ECOFF external symbol information must match the ELF external | |
1781 | symbol information. Unfortunately, at this point we don't know | |
1782 | whether a symbol is required by reloc information, so the two | |
1783 | tables may wind up being different. We must sort out the external | |
1784 | symbol information before we can set the final size of the .mdebug | |
1785 | section, and we must set the size of the .mdebug section before we | |
1786 | can relocate any sections, and we can't know which symbols are | |
1787 | required by relocation until we relocate the sections. | |
1788 | Fortunately, it is relatively unlikely that any symbol will be | |
1789 | stripped but required by a reloc. In particular, it can not happen | |
1790 | when generating a final executable. */ | |
1791 | ||
b34976b6 | 1792 | static bfd_boolean |
9719ad41 | 1793 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1794 | { |
9719ad41 | 1795 | struct extsym_info *einfo = data; |
b34976b6 | 1796 | bfd_boolean strip; |
b49e97c9 TS |
1797 | asection *sec, *output_section; |
1798 | ||
1799 | if (h->root.root.type == bfd_link_hash_warning) | |
1800 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1801 | ||
1802 | if (h->root.indx == -2) | |
b34976b6 | 1803 | strip = FALSE; |
f5385ebf | 1804 | else if ((h->root.def_dynamic |
77cfaee6 AM |
1805 | || h->root.ref_dynamic |
1806 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
1807 | && !h->root.def_regular |
1808 | && !h->root.ref_regular) | |
b34976b6 | 1809 | strip = TRUE; |
b49e97c9 TS |
1810 | else if (einfo->info->strip == strip_all |
1811 | || (einfo->info->strip == strip_some | |
1812 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1813 | h->root.root.root.string, | |
b34976b6 AM |
1814 | FALSE, FALSE) == NULL)) |
1815 | strip = TRUE; | |
b49e97c9 | 1816 | else |
b34976b6 | 1817 | strip = FALSE; |
b49e97c9 TS |
1818 | |
1819 | if (strip) | |
b34976b6 | 1820 | return TRUE; |
b49e97c9 TS |
1821 | |
1822 | if (h->esym.ifd == -2) | |
1823 | { | |
1824 | h->esym.jmptbl = 0; | |
1825 | h->esym.cobol_main = 0; | |
1826 | h->esym.weakext = 0; | |
1827 | h->esym.reserved = 0; | |
1828 | h->esym.ifd = ifdNil; | |
1829 | h->esym.asym.value = 0; | |
1830 | h->esym.asym.st = stGlobal; | |
1831 | ||
1832 | if (h->root.root.type == bfd_link_hash_undefined | |
1833 | || h->root.root.type == bfd_link_hash_undefweak) | |
1834 | { | |
1835 | const char *name; | |
1836 | ||
1837 | /* Use undefined class. Also, set class and type for some | |
1838 | special symbols. */ | |
1839 | name = h->root.root.root.string; | |
1840 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1841 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1842 | { | |
1843 | h->esym.asym.sc = scData; | |
1844 | h->esym.asym.st = stLabel; | |
1845 | h->esym.asym.value = 0; | |
1846 | } | |
1847 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1848 | { | |
1849 | h->esym.asym.sc = scAbs; | |
1850 | h->esym.asym.st = stLabel; | |
1851 | h->esym.asym.value = | |
1852 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1853 | } | |
4a14403c | 1854 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1855 | { |
1856 | h->esym.asym.sc = scAbs; | |
1857 | h->esym.asym.st = stLabel; | |
1858 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1859 | } | |
1860 | else | |
1861 | h->esym.asym.sc = scUndefined; | |
1862 | } | |
1863 | else if (h->root.root.type != bfd_link_hash_defined | |
1864 | && h->root.root.type != bfd_link_hash_defweak) | |
1865 | h->esym.asym.sc = scAbs; | |
1866 | else | |
1867 | { | |
1868 | const char *name; | |
1869 | ||
1870 | sec = h->root.root.u.def.section; | |
1871 | output_section = sec->output_section; | |
1872 | ||
1873 | /* When making a shared library and symbol h is the one from | |
1874 | the another shared library, OUTPUT_SECTION may be null. */ | |
1875 | if (output_section == NULL) | |
1876 | h->esym.asym.sc = scUndefined; | |
1877 | else | |
1878 | { | |
1879 | name = bfd_section_name (output_section->owner, output_section); | |
1880 | ||
1881 | if (strcmp (name, ".text") == 0) | |
1882 | h->esym.asym.sc = scText; | |
1883 | else if (strcmp (name, ".data") == 0) | |
1884 | h->esym.asym.sc = scData; | |
1885 | else if (strcmp (name, ".sdata") == 0) | |
1886 | h->esym.asym.sc = scSData; | |
1887 | else if (strcmp (name, ".rodata") == 0 | |
1888 | || strcmp (name, ".rdata") == 0) | |
1889 | h->esym.asym.sc = scRData; | |
1890 | else if (strcmp (name, ".bss") == 0) | |
1891 | h->esym.asym.sc = scBss; | |
1892 | else if (strcmp (name, ".sbss") == 0) | |
1893 | h->esym.asym.sc = scSBss; | |
1894 | else if (strcmp (name, ".init") == 0) | |
1895 | h->esym.asym.sc = scInit; | |
1896 | else if (strcmp (name, ".fini") == 0) | |
1897 | h->esym.asym.sc = scFini; | |
1898 | else | |
1899 | h->esym.asym.sc = scAbs; | |
1900 | } | |
1901 | } | |
1902 | ||
1903 | h->esym.asym.reserved = 0; | |
1904 | h->esym.asym.index = indexNil; | |
1905 | } | |
1906 | ||
1907 | if (h->root.root.type == bfd_link_hash_common) | |
1908 | h->esym.asym.value = h->root.root.u.c.size; | |
1909 | else if (h->root.root.type == bfd_link_hash_defined | |
1910 | || h->root.root.type == bfd_link_hash_defweak) | |
1911 | { | |
1912 | if (h->esym.asym.sc == scCommon) | |
1913 | h->esym.asym.sc = scBss; | |
1914 | else if (h->esym.asym.sc == scSCommon) | |
1915 | h->esym.asym.sc = scSBss; | |
1916 | ||
1917 | sec = h->root.root.u.def.section; | |
1918 | output_section = sec->output_section; | |
1919 | if (output_section != NULL) | |
1920 | h->esym.asym.value = (h->root.root.u.def.value | |
1921 | + sec->output_offset | |
1922 | + output_section->vma); | |
1923 | else | |
1924 | h->esym.asym.value = 0; | |
1925 | } | |
f5385ebf | 1926 | else if (h->root.needs_plt) |
b49e97c9 TS |
1927 | { |
1928 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1929 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1930 | |
1931 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1932 | { | |
1933 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1934 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1935 | } | |
1936 | ||
1937 | if (!no_fn_stub) | |
1938 | { | |
1939 | /* Set type and value for a symbol with a function stub. */ | |
1940 | h->esym.asym.st = stProc; | |
1941 | sec = hd->root.root.u.def.section; | |
1942 | if (sec == NULL) | |
1943 | h->esym.asym.value = 0; | |
1944 | else | |
1945 | { | |
1946 | output_section = sec->output_section; | |
1947 | if (output_section != NULL) | |
1948 | h->esym.asym.value = (hd->root.plt.offset | |
1949 | + sec->output_offset | |
1950 | + output_section->vma); | |
1951 | else | |
1952 | h->esym.asym.value = 0; | |
1953 | } | |
b49e97c9 TS |
1954 | } |
1955 | } | |
1956 | ||
1957 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1958 | h->root.root.root.string, | |
1959 | &h->esym)) | |
1960 | { | |
b34976b6 AM |
1961 | einfo->failed = TRUE; |
1962 | return FALSE; | |
b49e97c9 TS |
1963 | } |
1964 | ||
b34976b6 | 1965 | return TRUE; |
b49e97c9 TS |
1966 | } |
1967 | ||
1968 | /* A comparison routine used to sort .gptab entries. */ | |
1969 | ||
1970 | static int | |
9719ad41 | 1971 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1972 | { |
9719ad41 RS |
1973 | const Elf32_gptab *a1 = p1; |
1974 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1975 | |
1976 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1977 | } | |
1978 | \f | |
b15e6682 | 1979 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1980 | |
1981 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1982 | hash number. */ | |
1983 | ||
1984 | static INLINE hashval_t | |
9719ad41 | 1985 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1986 | { |
1987 | #ifdef BFD64 | |
1988 | return addr + (addr >> 32); | |
1989 | #else | |
1990 | return addr; | |
1991 | #endif | |
1992 | } | |
1993 | ||
1994 | /* got_entries only match if they're identical, except for gotidx, so | |
1995 | use all fields to compute the hash, and compare the appropriate | |
1996 | union members. */ | |
1997 | ||
b15e6682 | 1998 | static hashval_t |
9719ad41 | 1999 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
2000 | { |
2001 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
2002 | ||
38985a1c | 2003 | return entry->symndx |
0f20cc35 | 2004 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 2005 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
2006 | : entry->abfd->id |
2007 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
2008 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
2009 | } |
2010 | ||
2011 | static int | |
9719ad41 | 2012 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
2013 | { |
2014 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
2015 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2016 | ||
0f20cc35 DJ |
2017 | /* An LDM entry can only match another LDM entry. */ |
2018 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
2019 | return 0; | |
2020 | ||
b15e6682 | 2021 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
2022 | && (! e1->abfd ? e1->d.address == e2->d.address |
2023 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
2024 | : e1->d.h == e2->d.h); | |
2025 | } | |
2026 | ||
2027 | /* multi_got_entries are still a match in the case of global objects, | |
2028 | even if the input bfd in which they're referenced differs, so the | |
2029 | hash computation and compare functions are adjusted | |
2030 | accordingly. */ | |
2031 | ||
2032 | static hashval_t | |
9719ad41 | 2033 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
2034 | { |
2035 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
2036 | ||
2037 | return entry->symndx | |
2038 | + (! entry->abfd | |
2039 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
2040 | : entry->symndx >= 0 | |
0f20cc35 DJ |
2041 | ? ((entry->tls_type & GOT_TLS_LDM) |
2042 | ? (GOT_TLS_LDM << 17) | |
2043 | : (entry->abfd->id | |
2044 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
2045 | : entry->d.h->root.root.root.hash); |
2046 | } | |
2047 | ||
2048 | static int | |
9719ad41 | 2049 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2050 | { |
2051 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
2052 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2053 | ||
0f20cc35 DJ |
2054 | /* Any two LDM entries match. */ |
2055 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
2056 | return 1; | |
2057 | ||
2058 | /* Nothing else matches an LDM entry. */ | |
2059 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
2060 | return 0; | |
2061 | ||
f4416af6 AO |
2062 | return e1->symndx == e2->symndx |
2063 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
2064 | : e1->abfd == NULL || e2->abfd == NULL | |
2065 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
2066 | : e1->d.h == e2->d.h); | |
b15e6682 | 2067 | } |
c224138d RS |
2068 | |
2069 | static hashval_t | |
2070 | mips_got_page_entry_hash (const void *entry_) | |
2071 | { | |
2072 | const struct mips_got_page_entry *entry; | |
2073 | ||
2074 | entry = (const struct mips_got_page_entry *) entry_; | |
2075 | return entry->abfd->id + entry->symndx; | |
2076 | } | |
2077 | ||
2078 | static int | |
2079 | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) | |
2080 | { | |
2081 | const struct mips_got_page_entry *entry1, *entry2; | |
2082 | ||
2083 | entry1 = (const struct mips_got_page_entry *) entry1_; | |
2084 | entry2 = (const struct mips_got_page_entry *) entry2_; | |
2085 | return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx; | |
2086 | } | |
b15e6682 | 2087 | \f |
0a44bf69 RS |
2088 | /* Return the dynamic relocation section. If it doesn't exist, try to |
2089 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
2090 | if creation fails. */ | |
f4416af6 AO |
2091 | |
2092 | static asection * | |
0a44bf69 | 2093 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 2094 | { |
0a44bf69 | 2095 | const char *dname; |
f4416af6 | 2096 | asection *sreloc; |
0a44bf69 | 2097 | bfd *dynobj; |
f4416af6 | 2098 | |
0a44bf69 RS |
2099 | dname = MIPS_ELF_REL_DYN_NAME (info); |
2100 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 AO |
2101 | sreloc = bfd_get_section_by_name (dynobj, dname); |
2102 | if (sreloc == NULL && create_p) | |
2103 | { | |
3496cb2a L |
2104 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
2105 | (SEC_ALLOC | |
2106 | | SEC_LOAD | |
2107 | | SEC_HAS_CONTENTS | |
2108 | | SEC_IN_MEMORY | |
2109 | | SEC_LINKER_CREATED | |
2110 | | SEC_READONLY)); | |
f4416af6 | 2111 | if (sreloc == NULL |
f4416af6 | 2112 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 2113 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
2114 | return NULL; |
2115 | } | |
2116 | return sreloc; | |
2117 | } | |
2118 | ||
b49e97c9 TS |
2119 | /* Returns the GOT section for ABFD. */ |
2120 | ||
2121 | static asection * | |
9719ad41 | 2122 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 2123 | { |
f4416af6 AO |
2124 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
2125 | if (sgot == NULL | |
2126 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
2127 | return NULL; | |
2128 | return sgot; | |
b49e97c9 TS |
2129 | } |
2130 | ||
2131 | /* Returns the GOT information associated with the link indicated by | |
2132 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
2133 | section. */ | |
2134 | ||
2135 | static struct mips_got_info * | |
9719ad41 | 2136 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
2137 | { |
2138 | asection *sgot; | |
2139 | struct mips_got_info *g; | |
2140 | ||
f4416af6 | 2141 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 2142 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
2143 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
2144 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
2145 | BFD_ASSERT (g != NULL); |
2146 | ||
2147 | if (sgotp) | |
f4416af6 AO |
2148 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
2149 | ||
b49e97c9 TS |
2150 | return g; |
2151 | } | |
2152 | ||
0f20cc35 DJ |
2153 | /* Count the number of relocations needed for a TLS GOT entry, with |
2154 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
2155 | is NULL). */ | |
2156 | ||
2157 | static int | |
2158 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
2159 | struct elf_link_hash_entry *h) | |
2160 | { | |
2161 | int indx = 0; | |
2162 | int ret = 0; | |
2163 | bfd_boolean need_relocs = FALSE; | |
2164 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2165 | ||
2166 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
2167 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2168 | indx = h->dynindx; | |
2169 | ||
2170 | if ((info->shared || indx != 0) | |
2171 | && (h == NULL | |
2172 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2173 | || h->root.type != bfd_link_hash_undefweak)) | |
2174 | need_relocs = TRUE; | |
2175 | ||
2176 | if (!need_relocs) | |
2177 | return FALSE; | |
2178 | ||
2179 | if (tls_type & GOT_TLS_GD) | |
2180 | { | |
2181 | ret++; | |
2182 | if (indx != 0) | |
2183 | ret++; | |
2184 | } | |
2185 | ||
2186 | if (tls_type & GOT_TLS_IE) | |
2187 | ret++; | |
2188 | ||
2189 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
2190 | ret++; | |
2191 | ||
2192 | return ret; | |
2193 | } | |
2194 | ||
2195 | /* Count the number of TLS relocations required for the GOT entry in | |
2196 | ARG1, if it describes a local symbol. */ | |
2197 | ||
2198 | static int | |
2199 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2200 | { | |
2201 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2202 | struct mips_elf_count_tls_arg *arg = arg2; | |
2203 | ||
2204 | if (entry->abfd != NULL && entry->symndx != -1) | |
2205 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2206 | ||
2207 | return 1; | |
2208 | } | |
2209 | ||
2210 | /* Count the number of TLS GOT entries required for the global (or | |
2211 | forced-local) symbol in ARG1. */ | |
2212 | ||
2213 | static int | |
2214 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2215 | { | |
2216 | struct mips_elf_link_hash_entry *hm | |
2217 | = (struct mips_elf_link_hash_entry *) arg1; | |
2218 | struct mips_elf_count_tls_arg *arg = arg2; | |
2219 | ||
2220 | if (hm->tls_type & GOT_TLS_GD) | |
2221 | arg->needed += 2; | |
2222 | if (hm->tls_type & GOT_TLS_IE) | |
2223 | arg->needed += 1; | |
2224 | ||
2225 | return 1; | |
2226 | } | |
2227 | ||
2228 | /* Count the number of TLS relocations required for the global (or | |
2229 | forced-local) symbol in ARG1. */ | |
2230 | ||
2231 | static int | |
2232 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2233 | { | |
2234 | struct mips_elf_link_hash_entry *hm | |
2235 | = (struct mips_elf_link_hash_entry *) arg1; | |
2236 | struct mips_elf_count_tls_arg *arg = arg2; | |
2237 | ||
2238 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2239 | ||
2240 | return 1; | |
2241 | } | |
2242 | ||
2243 | /* Output a simple dynamic relocation into SRELOC. */ | |
2244 | ||
2245 | static void | |
2246 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2247 | asection *sreloc, | |
2248 | unsigned long indx, | |
2249 | int r_type, | |
2250 | bfd_vma offset) | |
2251 | { | |
2252 | Elf_Internal_Rela rel[3]; | |
2253 | ||
2254 | memset (rel, 0, sizeof (rel)); | |
2255 | ||
2256 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2257 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2258 | ||
2259 | if (ABI_64_P (output_bfd)) | |
2260 | { | |
2261 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2262 | (output_bfd, &rel[0], | |
2263 | (sreloc->contents | |
2264 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2265 | } | |
2266 | else | |
2267 | bfd_elf32_swap_reloc_out | |
2268 | (output_bfd, &rel[0], | |
2269 | (sreloc->contents | |
2270 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
2271 | ++sreloc->reloc_count; | |
2272 | } | |
2273 | ||
2274 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2275 | ||
2276 | static void | |
2277 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2278 | unsigned char *tls_type_p, | |
2279 | struct bfd_link_info *info, | |
2280 | struct mips_elf_link_hash_entry *h, | |
2281 | bfd_vma value) | |
2282 | { | |
2283 | int indx; | |
2284 | asection *sreloc, *sgot; | |
2285 | bfd_vma offset, offset2; | |
2286 | bfd *dynobj; | |
2287 | bfd_boolean need_relocs = FALSE; | |
2288 | ||
2289 | dynobj = elf_hash_table (info)->dynobj; | |
2290 | sgot = mips_elf_got_section (dynobj, FALSE); | |
2291 | ||
2292 | indx = 0; | |
2293 | if (h != NULL) | |
2294 | { | |
2295 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2296 | ||
2297 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2298 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2299 | indx = h->root.dynindx; | |
2300 | } | |
2301 | ||
2302 | if (*tls_type_p & GOT_TLS_DONE) | |
2303 | return; | |
2304 | ||
2305 | if ((info->shared || indx != 0) | |
2306 | && (h == NULL | |
2307 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2308 | || h->root.type != bfd_link_hash_undefweak)) | |
2309 | need_relocs = TRUE; | |
2310 | ||
2311 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2312 | be defined at all; assume that the value doesn't matter in that | |
2313 | case. Otherwise complain if we would use the value. */ | |
2314 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2315 | || h->root.root.type == bfd_link_hash_undefweak); | |
2316 | ||
2317 | /* Emit necessary relocations. */ | |
0a44bf69 | 2318 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
0f20cc35 DJ |
2319 | |
2320 | /* General Dynamic. */ | |
2321 | if (*tls_type_p & GOT_TLS_GD) | |
2322 | { | |
2323 | offset = got_offset; | |
2324 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2325 | ||
2326 | if (need_relocs) | |
2327 | { | |
2328 | mips_elf_output_dynamic_relocation | |
2329 | (abfd, sreloc, indx, | |
2330 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2331 | sgot->output_offset + sgot->output_section->vma + offset); | |
2332 | ||
2333 | if (indx) | |
2334 | mips_elf_output_dynamic_relocation | |
2335 | (abfd, sreloc, indx, | |
2336 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | |
2337 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2338 | else | |
2339 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2340 | sgot->contents + offset2); | |
2341 | } | |
2342 | else | |
2343 | { | |
2344 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2345 | sgot->contents + offset); | |
2346 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2347 | sgot->contents + offset2); | |
2348 | } | |
2349 | ||
2350 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2351 | } | |
2352 | ||
2353 | /* Initial Exec model. */ | |
2354 | if (*tls_type_p & GOT_TLS_IE) | |
2355 | { | |
2356 | offset = got_offset; | |
2357 | ||
2358 | if (need_relocs) | |
2359 | { | |
2360 | if (indx == 0) | |
2361 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2362 | sgot->contents + offset); | |
2363 | else | |
2364 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2365 | sgot->contents + offset); | |
2366 | ||
2367 | mips_elf_output_dynamic_relocation | |
2368 | (abfd, sreloc, indx, | |
2369 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | |
2370 | sgot->output_offset + sgot->output_section->vma + offset); | |
2371 | } | |
2372 | else | |
2373 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2374 | sgot->contents + offset); | |
2375 | } | |
2376 | ||
2377 | if (*tls_type_p & GOT_TLS_LDM) | |
2378 | { | |
2379 | /* The initial offset is zero, and the LD offsets will include the | |
2380 | bias by DTP_OFFSET. */ | |
2381 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2382 | sgot->contents + got_offset | |
2383 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2384 | ||
2385 | if (!info->shared) | |
2386 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2387 | sgot->contents + got_offset); | |
2388 | else | |
2389 | mips_elf_output_dynamic_relocation | |
2390 | (abfd, sreloc, indx, | |
2391 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2392 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2393 | } | |
2394 | ||
2395 | *tls_type_p |= GOT_TLS_DONE; | |
2396 | } | |
2397 | ||
2398 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2399 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2400 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2401 | GOT entries and corresponding relocations. */ | |
2402 | ||
2403 | static bfd_vma | |
2404 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2405 | int r_type, struct bfd_link_info *info, | |
2406 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2407 | { | |
2408 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2409 | || r_type == R_MIPS_TLS_LDM); | |
2410 | ||
2411 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2412 | ||
2413 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2414 | { | |
2415 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2416 | if (*tls_type & GOT_TLS_GD) | |
2417 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2418 | else | |
2419 | return got_index; | |
2420 | } | |
2421 | ||
2422 | if (r_type == R_MIPS_TLS_GD) | |
2423 | { | |
2424 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2425 | return got_index; | |
2426 | } | |
2427 | ||
2428 | if (r_type == R_MIPS_TLS_LDM) | |
2429 | { | |
2430 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2431 | return got_index; | |
2432 | } | |
2433 | ||
2434 | return got_index; | |
2435 | } | |
2436 | ||
0a44bf69 RS |
2437 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
2438 | for global symbol H. .got.plt comes before the GOT, so the offset | |
2439 | will be negative. */ | |
2440 | ||
2441 | static bfd_vma | |
2442 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
2443 | struct elf_link_hash_entry *h) | |
2444 | { | |
2445 | bfd_vma plt_index, got_address, got_value; | |
2446 | struct mips_elf_link_hash_table *htab; | |
2447 | ||
2448 | htab = mips_elf_hash_table (info); | |
2449 | BFD_ASSERT (h->plt.offset != (bfd_vma) -1); | |
2450 | ||
2451 | /* Calculate the index of the symbol's PLT entry. */ | |
2452 | plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; | |
2453 | ||
2454 | /* Calculate the address of the associated .got.plt entry. */ | |
2455 | got_address = (htab->sgotplt->output_section->vma | |
2456 | + htab->sgotplt->output_offset | |
2457 | + plt_index * 4); | |
2458 | ||
2459 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
2460 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
2461 | + htab->root.hgot->root.u.def.section->output_offset | |
2462 | + htab->root.hgot->root.u.def.value); | |
2463 | ||
2464 | return got_address - got_value; | |
2465 | } | |
2466 | ||
5c18022e | 2467 | /* Return the GOT offset for address VALUE. If there is not yet a GOT |
0a44bf69 RS |
2468 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
2469 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
2470 | offset can be found. */ | |
b49e97c9 TS |
2471 | |
2472 | static bfd_vma | |
9719ad41 | 2473 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 2474 | bfd_vma value, unsigned long r_symndx, |
0f20cc35 | 2475 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 TS |
2476 | { |
2477 | asection *sgot; | |
2478 | struct mips_got_info *g; | |
b15e6682 | 2479 | struct mips_got_entry *entry; |
b49e97c9 TS |
2480 | |
2481 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2482 | ||
0a44bf69 | 2483 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
5c18022e | 2484 | value, r_symndx, h, r_type); |
0f20cc35 | 2485 | if (!entry) |
b15e6682 | 2486 | return MINUS_ONE; |
0f20cc35 DJ |
2487 | |
2488 | if (TLS_RELOC_P (r_type)) | |
ead49a57 RS |
2489 | { |
2490 | if (entry->symndx == -1 && g->next == NULL) | |
2491 | /* A type (3) entry in the single-GOT case. We use the symbol's | |
2492 | hash table entry to track the index. */ | |
2493 | return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, | |
2494 | r_type, info, h, value); | |
2495 | else | |
2496 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, | |
2497 | r_type, info, h, value); | |
2498 | } | |
0f20cc35 DJ |
2499 | else |
2500 | return entry->gotidx; | |
b49e97c9 TS |
2501 | } |
2502 | ||
2503 | /* Returns the GOT index for the global symbol indicated by H. */ | |
2504 | ||
2505 | static bfd_vma | |
0f20cc35 DJ |
2506 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
2507 | int r_type, struct bfd_link_info *info) | |
b49e97c9 TS |
2508 | { |
2509 | bfd_vma index; | |
2510 | asection *sgot; | |
f4416af6 | 2511 | struct mips_got_info *g, *gg; |
d0c7ff07 | 2512 | long global_got_dynindx = 0; |
b49e97c9 | 2513 | |
f4416af6 AO |
2514 | gg = g = mips_elf_got_info (abfd, &sgot); |
2515 | if (g->bfd2got && ibfd) | |
2516 | { | |
2517 | struct mips_got_entry e, *p; | |
143d77c5 | 2518 | |
f4416af6 AO |
2519 | BFD_ASSERT (h->dynindx >= 0); |
2520 | ||
2521 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 2522 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
2523 | { |
2524 | e.abfd = ibfd; | |
2525 | e.symndx = -1; | |
2526 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 2527 | e.tls_type = 0; |
f4416af6 | 2528 | |
9719ad41 | 2529 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
2530 | |
2531 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
2532 | |
2533 | if (TLS_RELOC_P (r_type)) | |
2534 | { | |
2535 | bfd_vma value = MINUS_ONE; | |
2536 | if ((h->root.type == bfd_link_hash_defined | |
2537 | || h->root.type == bfd_link_hash_defweak) | |
2538 | && h->root.u.def.section->output_section) | |
2539 | value = (h->root.u.def.value | |
2540 | + h->root.u.def.section->output_offset | |
2541 | + h->root.u.def.section->output_section->vma); | |
2542 | ||
2543 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
2544 | info, e.d.h, value); | |
2545 | } | |
2546 | else | |
2547 | return p->gotidx; | |
f4416af6 AO |
2548 | } |
2549 | } | |
2550 | ||
2551 | if (gg->global_gotsym != NULL) | |
2552 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 2553 | |
0f20cc35 DJ |
2554 | if (TLS_RELOC_P (r_type)) |
2555 | { | |
2556 | struct mips_elf_link_hash_entry *hm | |
2557 | = (struct mips_elf_link_hash_entry *) h; | |
2558 | bfd_vma value = MINUS_ONE; | |
2559 | ||
2560 | if ((h->root.type == bfd_link_hash_defined | |
2561 | || h->root.type == bfd_link_hash_defweak) | |
2562 | && h->root.u.def.section->output_section) | |
2563 | value = (h->root.u.def.value | |
2564 | + h->root.u.def.section->output_offset | |
2565 | + h->root.u.def.section->output_section->vma); | |
2566 | ||
2567 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
2568 | r_type, info, hm, value); | |
2569 | } | |
2570 | else | |
2571 | { | |
2572 | /* Once we determine the global GOT entry with the lowest dynamic | |
2573 | symbol table index, we must put all dynamic symbols with greater | |
2574 | indices into the GOT. That makes it easy to calculate the GOT | |
2575 | offset. */ | |
2576 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
2577 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
2578 | * MIPS_ELF_GOT_SIZE (abfd)); | |
2579 | } | |
eea6121a | 2580 | BFD_ASSERT (index < sgot->size); |
b49e97c9 TS |
2581 | |
2582 | return index; | |
2583 | } | |
2584 | ||
5c18022e RS |
2585 | /* Find a GOT page entry that points to within 32KB of VALUE. These |
2586 | entries are supposed to be placed at small offsets in the GOT, i.e., | |
2587 | within 32KB of GP. Return the index of the GOT entry, or -1 if no | |
2588 | entry could be created. If OFFSETP is nonnull, use it to return the | |
0a44bf69 | 2589 | offset of the GOT entry from VALUE. */ |
b49e97c9 TS |
2590 | |
2591 | static bfd_vma | |
9719ad41 | 2592 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 2593 | bfd_vma value, bfd_vma *offsetp) |
b49e97c9 TS |
2594 | { |
2595 | asection *sgot; | |
2596 | struct mips_got_info *g; | |
0a44bf69 | 2597 | bfd_vma page, index; |
b15e6682 | 2598 | struct mips_got_entry *entry; |
b49e97c9 TS |
2599 | |
2600 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2601 | ||
0a44bf69 RS |
2602 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
2603 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, | |
5c18022e | 2604 | page, 0, NULL, R_MIPS_GOT_PAGE); |
b49e97c9 | 2605 | |
b15e6682 AO |
2606 | if (!entry) |
2607 | return MINUS_ONE; | |
143d77c5 | 2608 | |
b15e6682 | 2609 | index = entry->gotidx; |
b49e97c9 TS |
2610 | |
2611 | if (offsetp) | |
f4416af6 | 2612 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
2613 | |
2614 | return index; | |
2615 | } | |
2616 | ||
5c18022e | 2617 | /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE. |
0a44bf69 RS |
2618 | EXTERNAL is true if the relocation was against a global symbol |
2619 | that has been forced local. */ | |
b49e97c9 TS |
2620 | |
2621 | static bfd_vma | |
9719ad41 | 2622 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 2623 | bfd_vma value, bfd_boolean external) |
b49e97c9 TS |
2624 | { |
2625 | asection *sgot; | |
2626 | struct mips_got_info *g; | |
b15e6682 | 2627 | struct mips_got_entry *entry; |
b49e97c9 | 2628 | |
0a44bf69 RS |
2629 | /* GOT16 relocations against local symbols are followed by a LO16 |
2630 | relocation; those against global symbols are not. Thus if the | |
2631 | symbol was originally local, the GOT16 relocation should load the | |
2632 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 2633 | if (! external) |
0a44bf69 | 2634 | value = mips_elf_high (value) << 16; |
b49e97c9 TS |
2635 | |
2636 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2637 | ||
0a44bf69 | 2638 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
5c18022e | 2639 | value, 0, NULL, R_MIPS_GOT16); |
b15e6682 AO |
2640 | if (entry) |
2641 | return entry->gotidx; | |
2642 | else | |
2643 | return MINUS_ONE; | |
b49e97c9 TS |
2644 | } |
2645 | ||
2646 | /* Returns the offset for the entry at the INDEXth position | |
2647 | in the GOT. */ | |
2648 | ||
2649 | static bfd_vma | |
9719ad41 RS |
2650 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
2651 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
2652 | { |
2653 | asection *sgot; | |
2654 | bfd_vma gp; | |
f4416af6 | 2655 | struct mips_got_info *g; |
b49e97c9 | 2656 | |
f4416af6 AO |
2657 | g = mips_elf_got_info (dynobj, &sgot); |
2658 | gp = _bfd_get_gp_value (output_bfd) | |
2659 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 2660 | |
f4416af6 | 2661 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
2662 | } |
2663 | ||
0a44bf69 RS |
2664 | /* Create and return a local GOT entry for VALUE, which was calculated |
2665 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
2666 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
2667 | instead. */ | |
b49e97c9 | 2668 | |
b15e6682 | 2669 | static struct mips_got_entry * |
0a44bf69 RS |
2670 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
2671 | bfd *ibfd, struct mips_got_info *gg, | |
5c18022e RS |
2672 | asection *sgot, bfd_vma value, |
2673 | unsigned long r_symndx, | |
0f20cc35 DJ |
2674 | struct mips_elf_link_hash_entry *h, |
2675 | int r_type) | |
b49e97c9 | 2676 | { |
b15e6682 | 2677 | struct mips_got_entry entry, **loc; |
f4416af6 | 2678 | struct mips_got_info *g; |
0a44bf69 RS |
2679 | struct mips_elf_link_hash_table *htab; |
2680 | ||
2681 | htab = mips_elf_hash_table (info); | |
b15e6682 | 2682 | |
f4416af6 AO |
2683 | entry.abfd = NULL; |
2684 | entry.symndx = -1; | |
2685 | entry.d.address = value; | |
0f20cc35 | 2686 | entry.tls_type = 0; |
f4416af6 AO |
2687 | |
2688 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
2689 | if (g == NULL) | |
2690 | { | |
2691 | g = mips_elf_got_for_ibfd (gg, abfd); | |
2692 | BFD_ASSERT (g != NULL); | |
2693 | } | |
b15e6682 | 2694 | |
0f20cc35 DJ |
2695 | /* We might have a symbol, H, if it has been forced local. Use the |
2696 | global entry then. It doesn't matter whether an entry is local | |
2697 | or global for TLS, since the dynamic linker does not | |
2698 | automatically relocate TLS GOT entries. */ | |
a008ac03 | 2699 | BFD_ASSERT (h == NULL || h->root.forced_local); |
0f20cc35 DJ |
2700 | if (TLS_RELOC_P (r_type)) |
2701 | { | |
2702 | struct mips_got_entry *p; | |
2703 | ||
2704 | entry.abfd = ibfd; | |
2705 | if (r_type == R_MIPS_TLS_LDM) | |
2706 | { | |
2707 | entry.tls_type = GOT_TLS_LDM; | |
2708 | entry.symndx = 0; | |
2709 | entry.d.addend = 0; | |
2710 | } | |
2711 | else if (h == NULL) | |
2712 | { | |
2713 | entry.symndx = r_symndx; | |
2714 | entry.d.addend = 0; | |
2715 | } | |
2716 | else | |
2717 | entry.d.h = h; | |
2718 | ||
2719 | p = (struct mips_got_entry *) | |
2720 | htab_find (g->got_entries, &entry); | |
2721 | ||
2722 | BFD_ASSERT (p); | |
2723 | return p; | |
2724 | } | |
2725 | ||
b15e6682 AO |
2726 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
2727 | INSERT); | |
2728 | if (*loc) | |
2729 | return *loc; | |
143d77c5 | 2730 | |
b15e6682 | 2731 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 2732 | entry.tls_type = 0; |
b15e6682 AO |
2733 | |
2734 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2735 | ||
2736 | if (! *loc) | |
2737 | return NULL; | |
143d77c5 | 2738 | |
b15e6682 AO |
2739 | memcpy (*loc, &entry, sizeof entry); |
2740 | ||
8275b357 | 2741 | if (g->assigned_gotno > g->local_gotno) |
b49e97c9 | 2742 | { |
f4416af6 | 2743 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2744 | /* We didn't allocate enough space in the GOT. */ |
2745 | (*_bfd_error_handler) | |
2746 | (_("not enough GOT space for local GOT entries")); | |
2747 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2748 | return NULL; |
b49e97c9 TS |
2749 | } |
2750 | ||
2751 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2752 | (sgot->contents + entry.gotidx)); |
2753 | ||
5c18022e | 2754 | /* These GOT entries need a dynamic relocation on VxWorks. */ |
0a44bf69 RS |
2755 | if (htab->is_vxworks) |
2756 | { | |
2757 | Elf_Internal_Rela outrel; | |
5c18022e | 2758 | asection *s; |
0a44bf69 RS |
2759 | bfd_byte *loc; |
2760 | bfd_vma got_address; | |
0a44bf69 RS |
2761 | |
2762 | s = mips_elf_rel_dyn_section (info, FALSE); | |
0a44bf69 RS |
2763 | got_address = (sgot->output_section->vma |
2764 | + sgot->output_offset | |
2765 | + entry.gotidx); | |
2766 | ||
2767 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2768 | outrel.r_offset = got_address; | |
5c18022e RS |
2769 | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
2770 | outrel.r_addend = value; | |
0a44bf69 RS |
2771 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
2772 | } | |
2773 | ||
b15e6682 | 2774 | return *loc; |
b49e97c9 TS |
2775 | } |
2776 | ||
2777 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2778 | appear towards the end. This reduces the amount of GOT space | |
2779 | required. MAX_LOCAL is used to set the number of local symbols | |
2780 | known to be in the dynamic symbol table. During | |
2781 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2782 | section symbols are added and the count is higher. */ | |
2783 | ||
b34976b6 | 2784 | static bfd_boolean |
9719ad41 | 2785 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2786 | { |
2787 | struct mips_elf_hash_sort_data hsd; | |
2788 | struct mips_got_info *g; | |
2789 | bfd *dynobj; | |
2790 | ||
2791 | dynobj = elf_hash_table (info)->dynobj; | |
2792 | ||
f4416af6 AO |
2793 | g = mips_elf_got_info (dynobj, NULL); |
2794 | ||
b49e97c9 | 2795 | hsd.low = NULL; |
143d77c5 | 2796 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2797 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2798 | /* In the multi-got case, assigned_gotno of the master got_info | |
2799 | indicate the number of entries that aren't referenced in the | |
2800 | primary GOT, but that must have entries because there are | |
2801 | dynamic relocations that reference it. Since they aren't | |
2802 | referenced, we move them to the end of the GOT, so that they | |
2803 | don't prevent other entries that are referenced from getting | |
2804 | too large offsets. */ | |
2805 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2806 | hsd.max_non_got_dynindx = max_local; |
2807 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2808 | elf_hash_table (info)), | |
2809 | mips_elf_sort_hash_table_f, | |
2810 | &hsd); | |
2811 | ||
2812 | /* There should have been enough room in the symbol table to | |
44c410de | 2813 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2814 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2815 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2816 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2817 | |
2818 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2819 | table index in the GOT. */ | |
b49e97c9 TS |
2820 | g->global_gotsym = hsd.low; |
2821 | ||
b34976b6 | 2822 | return TRUE; |
b49e97c9 TS |
2823 | } |
2824 | ||
2825 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2826 | index. Otherwise, assign it the lowest available dynamic | |
2827 | index. */ | |
2828 | ||
b34976b6 | 2829 | static bfd_boolean |
9719ad41 | 2830 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2831 | { |
9719ad41 | 2832 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2833 | |
2834 | if (h->root.root.type == bfd_link_hash_warning) | |
2835 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2836 | ||
2837 | /* Symbols without dynamic symbol table entries aren't interesting | |
2838 | at all. */ | |
2839 | if (h->root.dynindx == -1) | |
b34976b6 | 2840 | return TRUE; |
b49e97c9 | 2841 | |
f4416af6 AO |
2842 | /* Global symbols that need GOT entries that are not explicitly |
2843 | referenced are marked with got offset 2. Those that are | |
2844 | referenced get a 1, and those that don't need GOT entries get | |
720199d6 DJ |
2845 | -1. Forced local symbols may also be marked with got offset 1, |
2846 | but are never given global GOT entries. */ | |
f4416af6 AO |
2847 | if (h->root.got.offset == 2) |
2848 | { | |
0f20cc35 DJ |
2849 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2850 | ||
f4416af6 AO |
2851 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
2852 | hsd->low = (struct elf_link_hash_entry *) h; | |
2853 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2854 | } | |
720199d6 | 2855 | else if (h->root.got.offset != 1 || h->forced_local) |
b49e97c9 TS |
2856 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2857 | else | |
2858 | { | |
0f20cc35 DJ |
2859 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2860 | ||
b49e97c9 TS |
2861 | h->root.dynindx = --hsd->min_got_dynindx; |
2862 | hsd->low = (struct elf_link_hash_entry *) h; | |
2863 | } | |
2864 | ||
b34976b6 | 2865 | return TRUE; |
b49e97c9 TS |
2866 | } |
2867 | ||
2868 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2869 | symbol table index lower than any we've seen to date, record it for | |
2870 | posterity. */ | |
2871 | ||
b34976b6 | 2872 | static bfd_boolean |
9719ad41 RS |
2873 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2874 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 DJ |
2875 | struct mips_got_info *g, |
2876 | unsigned char tls_flag) | |
b49e97c9 | 2877 | { |
f4416af6 AO |
2878 | struct mips_got_entry entry, **loc; |
2879 | ||
b49e97c9 TS |
2880 | /* A global symbol in the GOT must also be in the dynamic symbol |
2881 | table. */ | |
7c5fcef7 L |
2882 | if (h->dynindx == -1) |
2883 | { | |
2884 | switch (ELF_ST_VISIBILITY (h->other)) | |
2885 | { | |
2886 | case STV_INTERNAL: | |
2887 | case STV_HIDDEN: | |
b34976b6 | 2888 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2889 | break; |
2890 | } | |
c152c796 | 2891 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2892 | return FALSE; |
7c5fcef7 | 2893 | } |
b49e97c9 | 2894 | |
86324f90 EC |
2895 | /* Make sure we have a GOT to put this entry into. */ |
2896 | BFD_ASSERT (g != NULL); | |
2897 | ||
f4416af6 AO |
2898 | entry.abfd = abfd; |
2899 | entry.symndx = -1; | |
2900 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 2901 | entry.tls_type = 0; |
f4416af6 AO |
2902 | |
2903 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2904 | INSERT); | |
2905 | ||
b49e97c9 TS |
2906 | /* If we've already marked this entry as needing GOT space, we don't |
2907 | need to do it again. */ | |
f4416af6 | 2908 | if (*loc) |
0f20cc35 DJ |
2909 | { |
2910 | (*loc)->tls_type |= tls_flag; | |
2911 | return TRUE; | |
2912 | } | |
f4416af6 AO |
2913 | |
2914 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2915 | ||
2916 | if (! *loc) | |
2917 | return FALSE; | |
143d77c5 | 2918 | |
f4416af6 | 2919 | entry.gotidx = -1; |
0f20cc35 DJ |
2920 | entry.tls_type = tls_flag; |
2921 | ||
f4416af6 AO |
2922 | memcpy (*loc, &entry, sizeof entry); |
2923 | ||
b49e97c9 | 2924 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2925 | return TRUE; |
b49e97c9 | 2926 | |
0f20cc35 | 2927 | if (tls_flag == 0) |
8275b357 RS |
2928 | { |
2929 | /* By setting this to a value other than -1, we are indicating that | |
2930 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2931 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
2932 | h->got.offset = 1; | |
2933 | if (h->forced_local) | |
2934 | g->local_gotno++; | |
2935 | } | |
b49e97c9 | 2936 | |
b34976b6 | 2937 | return TRUE; |
b49e97c9 | 2938 | } |
f4416af6 AO |
2939 | |
2940 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2941 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2942 | ||
2943 | static bfd_boolean | |
9719ad41 | 2944 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
0f20cc35 DJ |
2945 | struct mips_got_info *g, |
2946 | unsigned char tls_flag) | |
f4416af6 AO |
2947 | { |
2948 | struct mips_got_entry entry, **loc; | |
2949 | ||
2950 | entry.abfd = abfd; | |
2951 | entry.symndx = symndx; | |
2952 | entry.d.addend = addend; | |
0f20cc35 | 2953 | entry.tls_type = tls_flag; |
f4416af6 AO |
2954 | loc = (struct mips_got_entry **) |
2955 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2956 | ||
2957 | if (*loc) | |
0f20cc35 DJ |
2958 | { |
2959 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
2960 | { | |
2961 | g->tls_gotno += 2; | |
2962 | (*loc)->tls_type |= tls_flag; | |
2963 | } | |
2964 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
2965 | { | |
2966 | g->tls_gotno += 1; | |
2967 | (*loc)->tls_type |= tls_flag; | |
2968 | } | |
2969 | return TRUE; | |
2970 | } | |
f4416af6 | 2971 | |
0f20cc35 DJ |
2972 | if (tls_flag != 0) |
2973 | { | |
2974 | entry.gotidx = -1; | |
2975 | entry.tls_type = tls_flag; | |
2976 | if (tls_flag == GOT_TLS_IE) | |
2977 | g->tls_gotno += 1; | |
2978 | else if (tls_flag == GOT_TLS_GD) | |
2979 | g->tls_gotno += 2; | |
2980 | else if (g->tls_ldm_offset == MINUS_ONE) | |
2981 | { | |
2982 | g->tls_ldm_offset = MINUS_TWO; | |
2983 | g->tls_gotno += 2; | |
2984 | } | |
2985 | } | |
2986 | else | |
2987 | { | |
2988 | entry.gotidx = g->local_gotno++; | |
2989 | entry.tls_type = 0; | |
2990 | } | |
f4416af6 AO |
2991 | |
2992 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2993 | ||
2994 | if (! *loc) | |
2995 | return FALSE; | |
143d77c5 | 2996 | |
f4416af6 AO |
2997 | memcpy (*loc, &entry, sizeof entry); |
2998 | ||
2999 | return TRUE; | |
3000 | } | |
c224138d RS |
3001 | |
3002 | /* Return the maximum number of GOT page entries required for RANGE. */ | |
3003 | ||
3004 | static bfd_vma | |
3005 | mips_elf_pages_for_range (const struct mips_got_page_range *range) | |
3006 | { | |
3007 | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; | |
3008 | } | |
3009 | ||
3010 | /* Record that ABFD has a page relocation against symbol SYMNDX and that | |
3011 | ADDEND is the addend for that relocation. G is the GOT information. */ | |
3012 | ||
3013 | static bfd_boolean | |
3014 | mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend, | |
3015 | struct mips_got_info *g) | |
3016 | { | |
3017 | struct mips_got_page_entry lookup, *entry; | |
3018 | struct mips_got_page_range **range_ptr, *range; | |
3019 | bfd_vma old_pages, new_pages; | |
3020 | void **loc; | |
3021 | ||
3022 | /* Find the mips_got_page_entry hash table entry for this symbol. */ | |
3023 | lookup.abfd = abfd; | |
3024 | lookup.symndx = symndx; | |
3025 | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); | |
3026 | if (loc == NULL) | |
3027 | return FALSE; | |
3028 | ||
3029 | /* Create a mips_got_page_entry if this is the first time we've | |
3030 | seen the symbol. */ | |
3031 | entry = (struct mips_got_page_entry *) *loc; | |
3032 | if (!entry) | |
3033 | { | |
3034 | entry = bfd_alloc (abfd, sizeof (*entry)); | |
3035 | if (!entry) | |
3036 | return FALSE; | |
3037 | ||
3038 | entry->abfd = abfd; | |
3039 | entry->symndx = symndx; | |
3040 | entry->ranges = NULL; | |
3041 | entry->num_pages = 0; | |
3042 | *loc = entry; | |
3043 | } | |
3044 | ||
3045 | /* Skip over ranges whose maximum extent cannot share a page entry | |
3046 | with ADDEND. */ | |
3047 | range_ptr = &entry->ranges; | |
3048 | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) | |
3049 | range_ptr = &(*range_ptr)->next; | |
3050 | ||
3051 | /* If we scanned to the end of the list, or found a range whose | |
3052 | minimum extent cannot share a page entry with ADDEND, create | |
3053 | a new singleton range. */ | |
3054 | range = *range_ptr; | |
3055 | if (!range || addend < range->min_addend - 0xffff) | |
3056 | { | |
3057 | range = bfd_alloc (abfd, sizeof (*range)); | |
3058 | if (!range) | |
3059 | return FALSE; | |
3060 | ||
3061 | range->next = *range_ptr; | |
3062 | range->min_addend = addend; | |
3063 | range->max_addend = addend; | |
3064 | ||
3065 | *range_ptr = range; | |
3066 | entry->num_pages++; | |
3067 | g->page_gotno++; | |
3068 | return TRUE; | |
3069 | } | |
3070 | ||
3071 | /* Remember how many pages the old range contributed. */ | |
3072 | old_pages = mips_elf_pages_for_range (range); | |
3073 | ||
3074 | /* Update the ranges. */ | |
3075 | if (addend < range->min_addend) | |
3076 | range->min_addend = addend; | |
3077 | else if (addend > range->max_addend) | |
3078 | { | |
3079 | if (range->next && addend >= range->next->min_addend - 0xffff) | |
3080 | { | |
3081 | old_pages += mips_elf_pages_for_range (range->next); | |
3082 | range->max_addend = range->next->max_addend; | |
3083 | range->next = range->next->next; | |
3084 | } | |
3085 | else | |
3086 | range->max_addend = addend; | |
3087 | } | |
3088 | ||
3089 | /* Record any change in the total estimate. */ | |
3090 | new_pages = mips_elf_pages_for_range (range); | |
3091 | if (old_pages != new_pages) | |
3092 | { | |
3093 | entry->num_pages += new_pages - old_pages; | |
3094 | g->page_gotno += new_pages - old_pages; | |
3095 | } | |
3096 | ||
3097 | return TRUE; | |
3098 | } | |
f4416af6 AO |
3099 | \f |
3100 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
3101 | ||
3102 | static hashval_t | |
9719ad41 | 3103 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
3104 | { |
3105 | const struct mips_elf_bfd2got_hash *entry | |
3106 | = (struct mips_elf_bfd2got_hash *)entry_; | |
3107 | ||
3108 | return entry->bfd->id; | |
3109 | } | |
3110 | ||
3111 | /* Check whether two hash entries have the same bfd. */ | |
3112 | ||
3113 | static int | |
9719ad41 | 3114 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
3115 | { |
3116 | const struct mips_elf_bfd2got_hash *e1 | |
3117 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
3118 | const struct mips_elf_bfd2got_hash *e2 | |
3119 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
3120 | ||
3121 | return e1->bfd == e2->bfd; | |
3122 | } | |
3123 | ||
bad36eac | 3124 | /* In a multi-got link, determine the GOT to be used for IBFD. G must |
f4416af6 AO |
3125 | be the master GOT data. */ |
3126 | ||
3127 | static struct mips_got_info * | |
9719ad41 | 3128 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3129 | { |
3130 | struct mips_elf_bfd2got_hash e, *p; | |
3131 | ||
3132 | if (! g->bfd2got) | |
3133 | return g; | |
3134 | ||
3135 | e.bfd = ibfd; | |
9719ad41 | 3136 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
3137 | return p ? p->g : NULL; |
3138 | } | |
3139 | ||
c224138d RS |
3140 | /* Use BFD2GOT to find ABFD's got entry, creating one if none exists. |
3141 | Return NULL if an error occured. */ | |
f4416af6 | 3142 | |
c224138d RS |
3143 | static struct mips_got_info * |
3144 | mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd, | |
3145 | bfd *input_bfd) | |
f4416af6 | 3146 | { |
f4416af6 | 3147 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; |
c224138d | 3148 | struct mips_got_info *g; |
f4416af6 | 3149 | void **bfdgotp; |
143d77c5 | 3150 | |
c224138d | 3151 | bfdgot_entry.bfd = input_bfd; |
f4416af6 | 3152 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); |
c224138d | 3153 | bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp; |
f4416af6 | 3154 | |
c224138d | 3155 | if (bfdgot == NULL) |
f4416af6 | 3156 | { |
c224138d RS |
3157 | bfdgot = ((struct mips_elf_bfd2got_hash *) |
3158 | bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash))); | |
f4416af6 | 3159 | if (bfdgot == NULL) |
c224138d | 3160 | return NULL; |
f4416af6 AO |
3161 | |
3162 | *bfdgotp = bfdgot; | |
3163 | ||
c224138d RS |
3164 | g = ((struct mips_got_info *) |
3165 | bfd_alloc (output_bfd, sizeof (struct mips_got_info))); | |
f4416af6 | 3166 | if (g == NULL) |
c224138d RS |
3167 | return NULL; |
3168 | ||
3169 | bfdgot->bfd = input_bfd; | |
3170 | bfdgot->g = g; | |
f4416af6 AO |
3171 | |
3172 | g->global_gotsym = NULL; | |
3173 | g->global_gotno = 0; | |
3174 | g->local_gotno = 0; | |
c224138d | 3175 | g->page_gotno = 0; |
f4416af6 | 3176 | g->assigned_gotno = -1; |
0f20cc35 DJ |
3177 | g->tls_gotno = 0; |
3178 | g->tls_assigned_gotno = 0; | |
3179 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 3180 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 3181 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 | 3182 | if (g->got_entries == NULL) |
c224138d RS |
3183 | return NULL; |
3184 | ||
3185 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, | |
3186 | mips_got_page_entry_eq, NULL); | |
3187 | if (g->got_page_entries == NULL) | |
3188 | return NULL; | |
f4416af6 AO |
3189 | |
3190 | g->bfd2got = NULL; | |
3191 | g->next = NULL; | |
3192 | } | |
3193 | ||
c224138d RS |
3194 | return bfdgot->g; |
3195 | } | |
3196 | ||
3197 | /* A htab_traverse callback for the entries in the master got. | |
3198 | Create one separate got for each bfd that has entries in the global | |
3199 | got, such that we can tell how many local and global entries each | |
3200 | bfd requires. */ | |
3201 | ||
3202 | static int | |
3203 | mips_elf_make_got_per_bfd (void **entryp, void *p) | |
3204 | { | |
3205 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3206 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
3207 | struct mips_got_info *g; | |
3208 | ||
3209 | g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); | |
3210 | if (g == NULL) | |
3211 | { | |
3212 | arg->obfd = NULL; | |
3213 | return 0; | |
3214 | } | |
3215 | ||
f4416af6 AO |
3216 | /* Insert the GOT entry in the bfd's got entry hash table. */ |
3217 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
3218 | if (*entryp != NULL) | |
3219 | return 1; | |
143d77c5 | 3220 | |
f4416af6 AO |
3221 | *entryp = entry; |
3222 | ||
0f20cc35 DJ |
3223 | if (entry->tls_type) |
3224 | { | |
3225 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3226 | g->tls_gotno += 2; | |
3227 | if (entry->tls_type & GOT_TLS_IE) | |
3228 | g->tls_gotno += 1; | |
3229 | } | |
3230 | else if (entry->symndx >= 0 || entry->d.h->forced_local) | |
f4416af6 AO |
3231 | ++g->local_gotno; |
3232 | else | |
3233 | ++g->global_gotno; | |
3234 | ||
3235 | return 1; | |
3236 | } | |
3237 | ||
c224138d RS |
3238 | /* A htab_traverse callback for the page entries in the master got. |
3239 | Associate each page entry with the bfd's got. */ | |
3240 | ||
3241 | static int | |
3242 | mips_elf_make_got_pages_per_bfd (void **entryp, void *p) | |
3243 | { | |
3244 | struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp; | |
3245 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p; | |
3246 | struct mips_got_info *g; | |
3247 | ||
3248 | g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); | |
3249 | if (g == NULL) | |
3250 | { | |
3251 | arg->obfd = NULL; | |
3252 | return 0; | |
3253 | } | |
3254 | ||
3255 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
3256 | entryp = htab_find_slot (g->got_page_entries, entry, INSERT); | |
3257 | if (*entryp != NULL) | |
3258 | return 1; | |
3259 | ||
3260 | *entryp = entry; | |
3261 | g->page_gotno += entry->num_pages; | |
3262 | return 1; | |
3263 | } | |
3264 | ||
3265 | /* Consider merging the got described by BFD2GOT with TO, using the | |
3266 | information given by ARG. Return -1 if this would lead to overflow, | |
3267 | 1 if they were merged successfully, and 0 if a merge failed due to | |
3268 | lack of memory. (These values are chosen so that nonnegative return | |
3269 | values can be returned by a htab_traverse callback.) */ | |
3270 | ||
3271 | static int | |
3272 | mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got, | |
3273 | struct mips_got_info *to, | |
3274 | struct mips_elf_got_per_bfd_arg *arg) | |
3275 | { | |
3276 | struct mips_got_info *from = bfd2got->g; | |
3277 | unsigned int estimate; | |
3278 | ||
3279 | /* Work out how many page entries we would need for the combined GOT. */ | |
3280 | estimate = arg->max_pages; | |
3281 | if (estimate >= from->page_gotno + to->page_gotno) | |
3282 | estimate = from->page_gotno + to->page_gotno; | |
3283 | ||
3284 | /* And conservatively estimate how many local, global and TLS entries | |
3285 | would be needed. */ | |
3286 | estimate += (from->local_gotno | |
3287 | + from->global_gotno | |
3288 | + from->tls_gotno | |
3289 | + to->local_gotno | |
3290 | + to->global_gotno | |
3291 | + to->tls_gotno); | |
3292 | ||
3293 | /* Bail out if the combined GOT might be too big. */ | |
3294 | if (estimate > arg->max_count) | |
3295 | return -1; | |
3296 | ||
3297 | /* Commit to the merge. Record that TO is now the bfd for this got. */ | |
3298 | bfd2got->g = to; | |
3299 | ||
3300 | /* Transfer the bfd's got information from FROM to TO. */ | |
3301 | htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg); | |
3302 | if (arg->obfd == NULL) | |
3303 | return 0; | |
3304 | ||
3305 | htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg); | |
3306 | if (arg->obfd == NULL) | |
3307 | return 0; | |
3308 | ||
3309 | /* We don't have to worry about releasing memory of the actual | |
3310 | got entries, since they're all in the master got_entries hash | |
3311 | table anyway. */ | |
3312 | htab_delete (from->got_entries); | |
3313 | htab_delete (from->got_page_entries); | |
3314 | return 1; | |
3315 | } | |
3316 | ||
f4416af6 AO |
3317 | /* Attempt to merge gots of different input bfds. Try to use as much |
3318 | as possible of the primary got, since it doesn't require explicit | |
3319 | dynamic relocations, but don't use bfds that would reference global | |
3320 | symbols out of the addressable range. Failing the primary got, | |
3321 | attempt to merge with the current got, or finish the current got | |
3322 | and then make make the new got current. */ | |
3323 | ||
3324 | static int | |
9719ad41 | 3325 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
3326 | { |
3327 | struct mips_elf_bfd2got_hash *bfd2got | |
3328 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
3329 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
c224138d RS |
3330 | struct mips_got_info *g; |
3331 | unsigned int estimate; | |
3332 | int result; | |
3333 | ||
3334 | g = bfd2got->g; | |
3335 | ||
3336 | /* Work out the number of page, local and TLS entries. */ | |
3337 | estimate = arg->max_pages; | |
3338 | if (estimate > g->page_gotno) | |
3339 | estimate = g->page_gotno; | |
3340 | estimate += g->local_gotno + g->tls_gotno; | |
0f20cc35 DJ |
3341 | |
3342 | /* We place TLS GOT entries after both locals and globals. The globals | |
3343 | for the primary GOT may overflow the normal GOT size limit, so be | |
3344 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
3345 | case. This doesn't affect non-primary GOTs. */ | |
c224138d | 3346 | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
143d77c5 | 3347 | |
c224138d | 3348 | if (estimate <= arg->max_count) |
f4416af6 | 3349 | { |
c224138d RS |
3350 | /* If we don't have a primary GOT, use it as |
3351 | a starting point for the primary GOT. */ | |
3352 | if (!arg->primary) | |
3353 | { | |
3354 | arg->primary = bfd2got->g; | |
3355 | return 1; | |
3356 | } | |
f4416af6 | 3357 | |
c224138d RS |
3358 | /* Try merging with the primary GOT. */ |
3359 | result = mips_elf_merge_got_with (bfd2got, arg->primary, arg); | |
3360 | if (result >= 0) | |
3361 | return result; | |
f4416af6 | 3362 | } |
c224138d | 3363 | |
f4416af6 | 3364 | /* If we can merge with the last-created got, do it. */ |
c224138d | 3365 | if (arg->current) |
f4416af6 | 3366 | { |
c224138d RS |
3367 | result = mips_elf_merge_got_with (bfd2got, arg->current, arg); |
3368 | if (result >= 0) | |
3369 | return result; | |
f4416af6 | 3370 | } |
c224138d | 3371 | |
f4416af6 AO |
3372 | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
3373 | fits; if it turns out that it doesn't, we'll get relocation | |
3374 | overflows anyway. */ | |
c224138d RS |
3375 | g->next = arg->current; |
3376 | arg->current = g; | |
0f20cc35 DJ |
3377 | |
3378 | return 1; | |
3379 | } | |
3380 | ||
ead49a57 RS |
3381 | /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field |
3382 | is null iff there is just a single GOT. */ | |
0f20cc35 DJ |
3383 | |
3384 | static int | |
3385 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
3386 | { | |
3387 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3388 | struct mips_got_info *g = p; | |
ead49a57 | 3389 | bfd_vma next_index; |
cbf2cba4 | 3390 | unsigned char tls_type; |
0f20cc35 DJ |
3391 | |
3392 | /* We're only interested in TLS symbols. */ | |
3393 | if (entry->tls_type == 0) | |
3394 | return 1; | |
3395 | ||
ead49a57 RS |
3396 | next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; |
3397 | ||
3398 | if (entry->symndx == -1 && g->next == NULL) | |
0f20cc35 | 3399 | { |
ead49a57 RS |
3400 | /* A type (3) got entry in the single-GOT case. We use the symbol's |
3401 | hash table entry to track its index. */ | |
3402 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
3403 | return 1; | |
3404 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
3405 | entry->d.h->tls_got_offset = next_index; | |
cbf2cba4 | 3406 | tls_type = entry->d.h->tls_type; |
ead49a57 RS |
3407 | } |
3408 | else | |
3409 | { | |
3410 | if (entry->tls_type & GOT_TLS_LDM) | |
0f20cc35 | 3411 | { |
ead49a57 RS |
3412 | /* There are separate mips_got_entry objects for each input bfd |
3413 | that requires an LDM entry. Make sure that all LDM entries in | |
3414 | a GOT resolve to the same index. */ | |
3415 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
4005427f | 3416 | { |
ead49a57 | 3417 | entry->gotidx = g->tls_ldm_offset; |
4005427f RS |
3418 | return 1; |
3419 | } | |
ead49a57 | 3420 | g->tls_ldm_offset = next_index; |
0f20cc35 | 3421 | } |
ead49a57 | 3422 | entry->gotidx = next_index; |
cbf2cba4 | 3423 | tls_type = entry->tls_type; |
f4416af6 AO |
3424 | } |
3425 | ||
ead49a57 | 3426 | /* Account for the entries we've just allocated. */ |
cbf2cba4 | 3427 | if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
0f20cc35 | 3428 | g->tls_assigned_gotno += 2; |
cbf2cba4 | 3429 | if (tls_type & GOT_TLS_IE) |
0f20cc35 DJ |
3430 | g->tls_assigned_gotno += 1; |
3431 | ||
f4416af6 AO |
3432 | return 1; |
3433 | } | |
3434 | ||
3435 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
3436 | to tell whether a global symbol needs a got entry (in the primary | |
3437 | got) to the given VALUE. | |
3438 | ||
3439 | If passed a pointer G to a mips_got_info in the argument (it must | |
3440 | not be the primary GOT), compute the offset from the beginning of | |
3441 | the (primary) GOT section to the entry in G corresponding to the | |
3442 | global symbol. G's assigned_gotno must contain the index of the | |
3443 | first available global GOT entry in G. VALUE must contain the size | |
3444 | of a GOT entry in bytes. For each global GOT entry that requires a | |
3445 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 3446 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
3447 | stub. */ |
3448 | static int | |
9719ad41 | 3449 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
3450 | { |
3451 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3452 | struct mips_elf_set_global_got_offset_arg *arg | |
3453 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
3454 | struct mips_got_info *g = arg->g; | |
3455 | ||
0f20cc35 DJ |
3456 | if (g && entry->tls_type != GOT_NORMAL) |
3457 | arg->needed_relocs += | |
3458 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
3459 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
3460 | ||
f4416af6 | 3461 | if (entry->abfd != NULL && entry->symndx == -1 |
0f20cc35 | 3462 | && entry->d.h->root.dynindx != -1 |
720199d6 | 3463 | && !entry->d.h->forced_local |
0f20cc35 | 3464 | && entry->d.h->tls_type == GOT_NORMAL) |
f4416af6 AO |
3465 | { |
3466 | if (g) | |
3467 | { | |
3468 | BFD_ASSERT (g->global_gotsym == NULL); | |
3469 | ||
3470 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
3471 | if (arg->info->shared |
3472 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
3473 | && entry->d.h->root.def_dynamic |
3474 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
3475 | ++arg->needed_relocs; |
3476 | } | |
3477 | else | |
3478 | entry->d.h->root.got.offset = arg->value; | |
3479 | } | |
3480 | ||
3481 | return 1; | |
3482 | } | |
3483 | ||
0626d451 RS |
3484 | /* Mark any global symbols referenced in the GOT we are iterating over |
3485 | as inelligible for lazy resolution stubs. */ | |
3486 | static int | |
9719ad41 | 3487 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
3488 | { |
3489 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3490 | ||
3491 | if (entry->abfd != NULL | |
3492 | && entry->symndx == -1 | |
3493 | && entry->d.h->root.dynindx != -1) | |
3494 | entry->d.h->no_fn_stub = TRUE; | |
3495 | ||
3496 | return 1; | |
3497 | } | |
3498 | ||
f4416af6 AO |
3499 | /* Follow indirect and warning hash entries so that each got entry |
3500 | points to the final symbol definition. P must point to a pointer | |
3501 | to the hash table we're traversing. Since this traversal may | |
3502 | modify the hash table, we set this pointer to NULL to indicate | |
3503 | we've made a potentially-destructive change to the hash table, so | |
3504 | the traversal must be restarted. */ | |
3505 | static int | |
9719ad41 | 3506 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
3507 | { |
3508 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3509 | htab_t got_entries = *(htab_t *)p; | |
3510 | ||
3511 | if (entry->abfd != NULL && entry->symndx == -1) | |
3512 | { | |
3513 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
3514 | ||
3515 | while (h->root.root.type == bfd_link_hash_indirect | |
3516 | || h->root.root.type == bfd_link_hash_warning) | |
3517 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3518 | ||
3519 | if (entry->d.h == h) | |
3520 | return 1; | |
143d77c5 | 3521 | |
f4416af6 AO |
3522 | entry->d.h = h; |
3523 | ||
3524 | /* If we can't find this entry with the new bfd hash, re-insert | |
3525 | it, and get the traversal restarted. */ | |
3526 | if (! htab_find (got_entries, entry)) | |
3527 | { | |
3528 | htab_clear_slot (got_entries, entryp); | |
3529 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
3530 | if (! *entryp) | |
3531 | *entryp = entry; | |
3532 | /* Abort the traversal, since the whole table may have | |
3533 | moved, and leave it up to the parent to restart the | |
3534 | process. */ | |
3535 | *(htab_t *)p = NULL; | |
3536 | return 0; | |
3537 | } | |
3538 | /* We might want to decrement the global_gotno count, but it's | |
3539 | either too early or too late for that at this point. */ | |
3540 | } | |
143d77c5 | 3541 | |
f4416af6 AO |
3542 | return 1; |
3543 | } | |
3544 | ||
3545 | /* Turn indirect got entries in a got_entries table into their final | |
3546 | locations. */ | |
3547 | static void | |
9719ad41 | 3548 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
3549 | { |
3550 | htab_t got_entries; | |
3551 | ||
3552 | do | |
3553 | { | |
3554 | got_entries = g->got_entries; | |
3555 | ||
3556 | htab_traverse (got_entries, | |
3557 | mips_elf_resolve_final_got_entry, | |
3558 | &got_entries); | |
3559 | } | |
3560 | while (got_entries == NULL); | |
3561 | } | |
3562 | ||
3563 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
3564 | the primary GOT. */ | |
3565 | static bfd_vma | |
9719ad41 | 3566 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3567 | { |
3568 | if (g->bfd2got == NULL) | |
3569 | return 0; | |
3570 | ||
3571 | g = mips_elf_got_for_ibfd (g, ibfd); | |
3572 | if (! g) | |
3573 | return 0; | |
3574 | ||
3575 | BFD_ASSERT (g->next); | |
3576 | ||
3577 | g = g->next; | |
143d77c5 | 3578 | |
0f20cc35 DJ |
3579 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
3580 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
3581 | } |
3582 | ||
3583 | /* Turn a single GOT that is too big for 16-bit addressing into | |
3584 | a sequence of GOTs, each one 16-bit addressable. */ | |
3585 | ||
3586 | static bfd_boolean | |
9719ad41 RS |
3587 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
3588 | struct mips_got_info *g, asection *got, | |
3589 | bfd_size_type pages) | |
f4416af6 AO |
3590 | { |
3591 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
3592 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
3593 | struct mips_got_info *gg; | |
3594 | unsigned int assign; | |
3595 | ||
3596 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 3597 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
3598 | if (g->bfd2got == NULL) |
3599 | return FALSE; | |
3600 | ||
3601 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
3602 | got_per_bfd_arg.obfd = abfd; | |
3603 | got_per_bfd_arg.info = info; | |
3604 | ||
3605 | /* Count how many GOT entries each input bfd requires, creating a | |
3606 | map from bfd to got info while at that. */ | |
f4416af6 AO |
3607 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
3608 | if (got_per_bfd_arg.obfd == NULL) | |
3609 | return FALSE; | |
3610 | ||
c224138d RS |
3611 | /* Also count how many page entries each input bfd requires. */ |
3612 | htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd, | |
3613 | &got_per_bfd_arg); | |
3614 | if (got_per_bfd_arg.obfd == NULL) | |
3615 | return FALSE; | |
3616 | ||
f4416af6 AO |
3617 | got_per_bfd_arg.current = NULL; |
3618 | got_per_bfd_arg.primary = NULL; | |
0a44bf69 | 3619 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 3620 | / MIPS_ELF_GOT_SIZE (abfd)) |
c224138d RS |
3621 | - MIPS_RESERVED_GOTNO (info)); |
3622 | got_per_bfd_arg.max_pages = pages; | |
0f20cc35 DJ |
3623 | /* The number of globals that will be included in the primary GOT. |
3624 | See the calls to mips_elf_set_global_got_offset below for more | |
3625 | information. */ | |
3626 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
3627 | |
3628 | /* Try to merge the GOTs of input bfds together, as long as they | |
3629 | don't seem to exceed the maximum GOT size, choosing one of them | |
3630 | to be the primary GOT. */ | |
3631 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
3632 | if (got_per_bfd_arg.obfd == NULL) | |
3633 | return FALSE; | |
3634 | ||
0f20cc35 | 3635 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
3636 | if (got_per_bfd_arg.primary == NULL) |
3637 | { | |
3638 | g->next = (struct mips_got_info *) | |
3639 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
3640 | if (g->next == NULL) | |
3641 | return FALSE; | |
3642 | ||
3643 | g->next->global_gotsym = NULL; | |
3644 | g->next->global_gotno = 0; | |
3645 | g->next->local_gotno = 0; | |
c224138d | 3646 | g->next->page_gotno = 0; |
0f20cc35 | 3647 | g->next->tls_gotno = 0; |
f4416af6 | 3648 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
3649 | g->next->tls_assigned_gotno = 0; |
3650 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
3651 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
3652 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 3653 | NULL); |
f4416af6 AO |
3654 | if (g->next->got_entries == NULL) |
3655 | return FALSE; | |
c224138d RS |
3656 | g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
3657 | mips_got_page_entry_eq, | |
3658 | NULL); | |
3659 | if (g->next->got_page_entries == NULL) | |
3660 | return FALSE; | |
f4416af6 AO |
3661 | g->next->bfd2got = NULL; |
3662 | } | |
3663 | else | |
3664 | g->next = got_per_bfd_arg.primary; | |
3665 | g->next->next = got_per_bfd_arg.current; | |
3666 | ||
3667 | /* GG is now the master GOT, and G is the primary GOT. */ | |
3668 | gg = g; | |
3669 | g = g->next; | |
3670 | ||
3671 | /* Map the output bfd to the primary got. That's what we're going | |
3672 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
3673 | didn't mark in check_relocs, and we want a quick way to find it. | |
3674 | We can't just use gg->next because we're going to reverse the | |
3675 | list. */ | |
3676 | { | |
3677 | struct mips_elf_bfd2got_hash *bfdgot; | |
3678 | void **bfdgotp; | |
143d77c5 | 3679 | |
f4416af6 AO |
3680 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
3681 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3682 | ||
3683 | if (bfdgot == NULL) | |
3684 | return FALSE; | |
3685 | ||
3686 | bfdgot->bfd = abfd; | |
3687 | bfdgot->g = g; | |
3688 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
3689 | ||
3690 | BFD_ASSERT (*bfdgotp == NULL); | |
3691 | *bfdgotp = bfdgot; | |
3692 | } | |
3693 | ||
3694 | /* The IRIX dynamic linker requires every symbol that is referenced | |
3695 | in a dynamic relocation to be present in the primary GOT, so | |
3696 | arrange for them to appear after those that are actually | |
3697 | referenced. | |
3698 | ||
3699 | GNU/Linux could very well do without it, but it would slow down | |
3700 | the dynamic linker, since it would have to resolve every dynamic | |
3701 | symbol referenced in other GOTs more than once, without help from | |
3702 | the cache. Also, knowing that every external symbol has a GOT | |
3703 | helps speed up the resolution of local symbols too, so GNU/Linux | |
3704 | follows IRIX's practice. | |
143d77c5 | 3705 | |
f4416af6 AO |
3706 | The number 2 is used by mips_elf_sort_hash_table_f to count |
3707 | global GOT symbols that are unreferenced in the primary GOT, with | |
3708 | an initial dynamic index computed from gg->assigned_gotno, where | |
3709 | the number of unreferenced global entries in the primary GOT is | |
3710 | preserved. */ | |
3711 | if (1) | |
3712 | { | |
3713 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
3714 | g->global_gotno = gg->global_gotno; | |
3715 | set_got_offset_arg.value = 2; | |
3716 | } | |
3717 | else | |
3718 | { | |
3719 | /* This could be used for dynamic linkers that don't optimize | |
3720 | symbol resolution while applying relocations so as to use | |
3721 | primary GOT entries or assuming the symbol is locally-defined. | |
3722 | With this code, we assign lower dynamic indices to global | |
3723 | symbols that are not referenced in the primary GOT, so that | |
3724 | their entries can be omitted. */ | |
3725 | gg->assigned_gotno = 0; | |
3726 | set_got_offset_arg.value = -1; | |
3727 | } | |
3728 | ||
3729 | /* Reorder dynamic symbols as described above (which behavior | |
3730 | depends on the setting of VALUE). */ | |
3731 | set_got_offset_arg.g = NULL; | |
3732 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
3733 | &set_got_offset_arg); | |
3734 | set_got_offset_arg.value = 1; | |
3735 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
3736 | &set_got_offset_arg); | |
3737 | if (! mips_elf_sort_hash_table (info, 1)) | |
3738 | return FALSE; | |
3739 | ||
3740 | /* Now go through the GOTs assigning them offset ranges. | |
3741 | [assigned_gotno, local_gotno[ will be set to the range of local | |
3742 | entries in each GOT. We can then compute the end of a GOT by | |
3743 | adding local_gotno to global_gotno. We reverse the list and make | |
3744 | it circular since then we'll be able to quickly compute the | |
3745 | beginning of a GOT, by computing the end of its predecessor. To | |
3746 | avoid special cases for the primary GOT, while still preserving | |
3747 | assertions that are valid for both single- and multi-got links, | |
3748 | we arrange for the main got struct to have the right number of | |
3749 | global entries, but set its local_gotno such that the initial | |
3750 | offset of the primary GOT is zero. Remember that the primary GOT | |
3751 | will become the last item in the circular linked list, so it | |
3752 | points back to the master GOT. */ | |
3753 | gg->local_gotno = -g->global_gotno; | |
3754 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 3755 | gg->tls_gotno = 0; |
f4416af6 AO |
3756 | assign = 0; |
3757 | gg->next = gg; | |
3758 | ||
3759 | do | |
3760 | { | |
3761 | struct mips_got_info *gn; | |
3762 | ||
0a44bf69 | 3763 | assign += MIPS_RESERVED_GOTNO (info); |
f4416af6 | 3764 | g->assigned_gotno = assign; |
c224138d RS |
3765 | g->local_gotno += assign; |
3766 | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); | |
0f20cc35 DJ |
3767 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
3768 | ||
ead49a57 RS |
3769 | /* Take g out of the direct list, and push it onto the reversed |
3770 | list that gg points to. g->next is guaranteed to be nonnull after | |
3771 | this operation, as required by mips_elf_initialize_tls_index. */ | |
3772 | gn = g->next; | |
3773 | g->next = gg->next; | |
3774 | gg->next = g; | |
3775 | ||
0f20cc35 DJ |
3776 | /* Set up any TLS entries. We always place the TLS entries after |
3777 | all non-TLS entries. */ | |
3778 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
3779 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 | 3780 | |
ead49a57 | 3781 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 3782 | g = gn; |
0626d451 RS |
3783 | |
3784 | /* Mark global symbols in every non-primary GOT as ineligible for | |
3785 | stubs. */ | |
3786 | if (g) | |
3787 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
3788 | } |
3789 | while (g); | |
3790 | ||
eea6121a | 3791 | got->size = (gg->next->local_gotno |
0f20cc35 DJ |
3792 | + gg->next->global_gotno |
3793 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 3794 | |
f4416af6 AO |
3795 | return TRUE; |
3796 | } | |
143d77c5 | 3797 | |
b49e97c9 TS |
3798 | \f |
3799 | /* Returns the first relocation of type r_type found, beginning with | |
3800 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
3801 | ||
3802 | static const Elf_Internal_Rela * | |
9719ad41 RS |
3803 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
3804 | const Elf_Internal_Rela *relocation, | |
3805 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 3806 | { |
c000e262 TS |
3807 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
3808 | ||
b49e97c9 TS |
3809 | while (relocation < relend) |
3810 | { | |
c000e262 TS |
3811 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
3812 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | |
b49e97c9 TS |
3813 | return relocation; |
3814 | ||
3815 | ++relocation; | |
3816 | } | |
3817 | ||
3818 | /* We didn't find it. */ | |
b49e97c9 TS |
3819 | return NULL; |
3820 | } | |
3821 | ||
3822 | /* Return whether a relocation is against a local symbol. */ | |
3823 | ||
b34976b6 | 3824 | static bfd_boolean |
9719ad41 RS |
3825 | mips_elf_local_relocation_p (bfd *input_bfd, |
3826 | const Elf_Internal_Rela *relocation, | |
3827 | asection **local_sections, | |
3828 | bfd_boolean check_forced) | |
b49e97c9 TS |
3829 | { |
3830 | unsigned long r_symndx; | |
3831 | Elf_Internal_Shdr *symtab_hdr; | |
3832 | struct mips_elf_link_hash_entry *h; | |
3833 | size_t extsymoff; | |
3834 | ||
3835 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3836 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3837 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
3838 | ||
3839 | if (r_symndx < extsymoff) | |
b34976b6 | 3840 | return TRUE; |
b49e97c9 | 3841 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 3842 | return TRUE; |
b49e97c9 TS |
3843 | |
3844 | if (check_forced) | |
3845 | { | |
3846 | /* Look up the hash table to check whether the symbol | |
3847 | was forced local. */ | |
3848 | h = (struct mips_elf_link_hash_entry *) | |
3849 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
3850 | /* Find the real hash-table entry for this symbol. */ | |
3851 | while (h->root.root.type == bfd_link_hash_indirect | |
3852 | || h->root.root.type == bfd_link_hash_warning) | |
3853 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 3854 | if (h->root.forced_local) |
b34976b6 | 3855 | return TRUE; |
b49e97c9 TS |
3856 | } |
3857 | ||
b34976b6 | 3858 | return FALSE; |
b49e97c9 TS |
3859 | } |
3860 | \f | |
3861 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
3862 | ||
a7ebbfdf | 3863 | bfd_vma |
9719ad41 | 3864 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
3865 | { |
3866 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
3867 | /* VALUE is negative. */ | |
3868 | value |= ((bfd_vma) - 1) << bits; | |
3869 | ||
3870 | return value; | |
3871 | } | |
3872 | ||
3873 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 3874 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
3875 | BITS. */ |
3876 | ||
b34976b6 | 3877 | static bfd_boolean |
9719ad41 | 3878 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
3879 | { |
3880 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
3881 | ||
3882 | if (svalue > (1 << (bits - 1)) - 1) | |
3883 | /* The value is too big. */ | |
b34976b6 | 3884 | return TRUE; |
b49e97c9 TS |
3885 | else if (svalue < -(1 << (bits - 1))) |
3886 | /* The value is too small. */ | |
b34976b6 | 3887 | return TRUE; |
b49e97c9 TS |
3888 | |
3889 | /* All is well. */ | |
b34976b6 | 3890 | return FALSE; |
b49e97c9 TS |
3891 | } |
3892 | ||
3893 | /* Calculate the %high function. */ | |
3894 | ||
3895 | static bfd_vma | |
9719ad41 | 3896 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
3897 | { |
3898 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
3899 | } | |
3900 | ||
3901 | /* Calculate the %higher function. */ | |
3902 | ||
3903 | static bfd_vma | |
9719ad41 | 3904 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3905 | { |
3906 | #ifdef BFD64 | |
3907 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
3908 | #else | |
3909 | abort (); | |
c5ae1840 | 3910 | return MINUS_ONE; |
b49e97c9 TS |
3911 | #endif |
3912 | } | |
3913 | ||
3914 | /* Calculate the %highest function. */ | |
3915 | ||
3916 | static bfd_vma | |
9719ad41 | 3917 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3918 | { |
3919 | #ifdef BFD64 | |
b15e6682 | 3920 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
3921 | #else |
3922 | abort (); | |
c5ae1840 | 3923 | return MINUS_ONE; |
b49e97c9 TS |
3924 | #endif |
3925 | } | |
3926 | \f | |
3927 | /* Create the .compact_rel section. */ | |
3928 | ||
b34976b6 | 3929 | static bfd_boolean |
9719ad41 RS |
3930 | mips_elf_create_compact_rel_section |
3931 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
3932 | { |
3933 | flagword flags; | |
3934 | register asection *s; | |
3935 | ||
3936 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
3937 | { | |
3938 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
3939 | | SEC_READONLY); | |
3940 | ||
3496cb2a | 3941 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 3942 | if (s == NULL |
b49e97c9 TS |
3943 | || ! bfd_set_section_alignment (abfd, s, |
3944 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 3945 | return FALSE; |
b49e97c9 | 3946 | |
eea6121a | 3947 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
3948 | } |
3949 | ||
b34976b6 | 3950 | return TRUE; |
b49e97c9 TS |
3951 | } |
3952 | ||
3953 | /* Create the .got section to hold the global offset table. */ | |
3954 | ||
b34976b6 | 3955 | static bfd_boolean |
9719ad41 RS |
3956 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
3957 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
3958 | { |
3959 | flagword flags; | |
3960 | register asection *s; | |
3961 | struct elf_link_hash_entry *h; | |
14a793b2 | 3962 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
3963 | struct mips_got_info *g; |
3964 | bfd_size_type amt; | |
0a44bf69 RS |
3965 | struct mips_elf_link_hash_table *htab; |
3966 | ||
3967 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
3968 | |
3969 | /* This function may be called more than once. */ | |
f4416af6 AO |
3970 | s = mips_elf_got_section (abfd, TRUE); |
3971 | if (s) | |
3972 | { | |
3973 | if (! maybe_exclude) | |
3974 | s->flags &= ~SEC_EXCLUDE; | |
3975 | return TRUE; | |
3976 | } | |
b49e97c9 TS |
3977 | |
3978 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3979 | | SEC_LINKER_CREATED); | |
3980 | ||
f4416af6 AO |
3981 | if (maybe_exclude) |
3982 | flags |= SEC_EXCLUDE; | |
3983 | ||
72b4917c TS |
3984 | /* We have to use an alignment of 2**4 here because this is hardcoded |
3985 | in the function stub generation and in the linker script. */ | |
3496cb2a | 3986 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
b49e97c9 | 3987 | if (s == NULL |
72b4917c | 3988 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 3989 | return FALSE; |
b49e97c9 TS |
3990 | |
3991 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
3992 | linker script because we don't want to define the symbol if we | |
3993 | are not creating a global offset table. */ | |
14a793b2 | 3994 | bh = NULL; |
b49e97c9 TS |
3995 | if (! (_bfd_generic_link_add_one_symbol |
3996 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 3997 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 3998 | return FALSE; |
14a793b2 AM |
3999 | |
4000 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
4001 | h->non_elf = 0; |
4002 | h->def_regular = 1; | |
b49e97c9 | 4003 | h->type = STT_OBJECT; |
d329bcd1 | 4004 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
4005 | |
4006 | if (info->shared | |
c152c796 | 4007 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 4008 | return FALSE; |
b49e97c9 | 4009 | |
b49e97c9 | 4010 | amt = sizeof (struct mips_got_info); |
9719ad41 | 4011 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 4012 | if (g == NULL) |
b34976b6 | 4013 | return FALSE; |
b49e97c9 | 4014 | g->global_gotsym = NULL; |
e3d54347 | 4015 | g->global_gotno = 0; |
0f20cc35 | 4016 | g->tls_gotno = 0; |
0a44bf69 | 4017 | g->local_gotno = MIPS_RESERVED_GOTNO (info); |
c224138d | 4018 | g->page_gotno = 0; |
0a44bf69 | 4019 | g->assigned_gotno = MIPS_RESERVED_GOTNO (info); |
f4416af6 AO |
4020 | g->bfd2got = NULL; |
4021 | g->next = NULL; | |
0f20cc35 | 4022 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 4023 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 4024 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
4025 | if (g->got_entries == NULL) |
4026 | return FALSE; | |
c224138d RS |
4027 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
4028 | mips_got_page_entry_eq, NULL); | |
4029 | if (g->got_page_entries == NULL) | |
4030 | return FALSE; | |
f0abc2a1 AM |
4031 | mips_elf_section_data (s)->u.got_info = g; |
4032 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
4033 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
4034 | ||
0a44bf69 RS |
4035 | /* VxWorks also needs a .got.plt section. */ |
4036 | if (htab->is_vxworks) | |
4037 | { | |
4038 | s = bfd_make_section_with_flags (abfd, ".got.plt", | |
4039 | SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
4040 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
4041 | if (s == NULL || !bfd_set_section_alignment (abfd, s, 4)) | |
4042 | return FALSE; | |
4043 | ||
4044 | htab->sgotplt = s; | |
4045 | } | |
b34976b6 | 4046 | return TRUE; |
b49e97c9 | 4047 | } |
b49e97c9 | 4048 | \f |
0a44bf69 RS |
4049 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
4050 | __GOTT_INDEX__ symbols. These symbols are only special for | |
4051 | shared objects; they are not used in executables. */ | |
4052 | ||
4053 | static bfd_boolean | |
4054 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
4055 | { | |
4056 | return (mips_elf_hash_table (info)->is_vxworks | |
4057 | && info->shared | |
4058 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
4059 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
4060 | } | |
4061 | \f | |
b49e97c9 TS |
4062 | /* Calculate the value produced by the RELOCATION (which comes from |
4063 | the INPUT_BFD). The ADDEND is the addend to use for this | |
4064 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
4065 | ||
4066 | The result of the relocation calculation is stored in VALUEP. | |
4067 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
4068 | relocation must be JALX. | |
4069 | ||
4070 | This function returns bfd_reloc_continue if the caller need take no | |
4071 | further action regarding this relocation, bfd_reloc_notsupported if | |
4072 | something goes dramatically wrong, bfd_reloc_overflow if an | |
4073 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
4074 | ||
4075 | static bfd_reloc_status_type | |
9719ad41 RS |
4076 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
4077 | asection *input_section, | |
4078 | struct bfd_link_info *info, | |
4079 | const Elf_Internal_Rela *relocation, | |
4080 | bfd_vma addend, reloc_howto_type *howto, | |
4081 | Elf_Internal_Sym *local_syms, | |
4082 | asection **local_sections, bfd_vma *valuep, | |
4083 | const char **namep, bfd_boolean *require_jalxp, | |
4084 | bfd_boolean save_addend) | |
b49e97c9 TS |
4085 | { |
4086 | /* The eventual value we will return. */ | |
4087 | bfd_vma value; | |
4088 | /* The address of the symbol against which the relocation is | |
4089 | occurring. */ | |
4090 | bfd_vma symbol = 0; | |
4091 | /* The final GP value to be used for the relocatable, executable, or | |
4092 | shared object file being produced. */ | |
4093 | bfd_vma gp = MINUS_ONE; | |
4094 | /* The place (section offset or address) of the storage unit being | |
4095 | relocated. */ | |
4096 | bfd_vma p; | |
4097 | /* The value of GP used to create the relocatable object. */ | |
4098 | bfd_vma gp0 = MINUS_ONE; | |
4099 | /* The offset into the global offset table at which the address of | |
4100 | the relocation entry symbol, adjusted by the addend, resides | |
4101 | during execution. */ | |
4102 | bfd_vma g = MINUS_ONE; | |
4103 | /* The section in which the symbol referenced by the relocation is | |
4104 | located. */ | |
4105 | asection *sec = NULL; | |
4106 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 4107 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 4108 | symbol. */ |
b34976b6 AM |
4109 | bfd_boolean local_p, was_local_p; |
4110 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
4111 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
4112 | /* TRUE if the symbol referred to by this relocation is |
4113 | "__gnu_local_gp". */ | |
4114 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
4115 | Elf_Internal_Shdr *symtab_hdr; |
4116 | size_t extsymoff; | |
4117 | unsigned long r_symndx; | |
4118 | int r_type; | |
b34976b6 | 4119 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 4120 | relocation value. */ |
b34976b6 AM |
4121 | bfd_boolean overflowed_p; |
4122 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
4123 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
0a44bf69 RS |
4124 | struct mips_elf_link_hash_table *htab; |
4125 | bfd *dynobj; | |
4126 | ||
4127 | dynobj = elf_hash_table (info)->dynobj; | |
4128 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
4129 | |
4130 | /* Parse the relocation. */ | |
4131 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
4132 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4133 | p = (input_section->output_section->vma | |
4134 | + input_section->output_offset | |
4135 | + relocation->r_offset); | |
4136 | ||
4137 | /* Assume that there will be no overflow. */ | |
b34976b6 | 4138 | overflowed_p = FALSE; |
b49e97c9 TS |
4139 | |
4140 | /* Figure out whether or not the symbol is local, and get the offset | |
4141 | used in the array of hash table entries. */ | |
4142 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4143 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4144 | local_sections, FALSE); |
bce03d3d | 4145 | was_local_p = local_p; |
b49e97c9 TS |
4146 | if (! elf_bad_symtab (input_bfd)) |
4147 | extsymoff = symtab_hdr->sh_info; | |
4148 | else | |
4149 | { | |
4150 | /* The symbol table does not follow the rule that local symbols | |
4151 | must come before globals. */ | |
4152 | extsymoff = 0; | |
4153 | } | |
4154 | ||
4155 | /* Figure out the value of the symbol. */ | |
4156 | if (local_p) | |
4157 | { | |
4158 | Elf_Internal_Sym *sym; | |
4159 | ||
4160 | sym = local_syms + r_symndx; | |
4161 | sec = local_sections[r_symndx]; | |
4162 | ||
4163 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
4164 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
4165 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 4166 | symbol += sym->st_value; |
d4df96e6 L |
4167 | if ((sec->flags & SEC_MERGE) |
4168 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
4169 | { | |
4170 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
4171 | addend -= symbol; | |
4172 | addend += sec->output_section->vma + sec->output_offset; | |
4173 | } | |
b49e97c9 TS |
4174 | |
4175 | /* MIPS16 text labels should be treated as odd. */ | |
4176 | if (sym->st_other == STO_MIPS16) | |
4177 | ++symbol; | |
4178 | ||
4179 | /* Record the name of this symbol, for our caller. */ | |
4180 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
4181 | symtab_hdr->sh_link, | |
4182 | sym->st_name); | |
4183 | if (*namep == '\0') | |
4184 | *namep = bfd_section_name (input_bfd, sec); | |
4185 | ||
4186 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
4187 | } | |
4188 | else | |
4189 | { | |
560e09e9 NC |
4190 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
4191 | ||
b49e97c9 TS |
4192 | /* For global symbols we look up the symbol in the hash-table. */ |
4193 | h = ((struct mips_elf_link_hash_entry *) | |
4194 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
4195 | /* Find the real hash-table entry for this symbol. */ | |
4196 | while (h->root.root.type == bfd_link_hash_indirect | |
4197 | || h->root.root.type == bfd_link_hash_warning) | |
4198 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
4199 | ||
4200 | /* Record the name of this symbol, for our caller. */ | |
4201 | *namep = h->root.root.root.string; | |
4202 | ||
4203 | /* See if this is the special _gp_disp symbol. Note that such a | |
4204 | symbol must always be a global symbol. */ | |
560e09e9 | 4205 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
4206 | && ! NEWABI_P (input_bfd)) |
4207 | { | |
4208 | /* Relocations against _gp_disp are permitted only with | |
4209 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
d6f16593 MR |
4210 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
4211 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
b49e97c9 TS |
4212 | return bfd_reloc_notsupported; |
4213 | ||
b34976b6 | 4214 | gp_disp_p = TRUE; |
b49e97c9 | 4215 | } |
bbe506e8 TS |
4216 | /* See if this is the special _gp symbol. Note that such a |
4217 | symbol must always be a global symbol. */ | |
4218 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
4219 | gnu_local_gp_p = TRUE; | |
4220 | ||
4221 | ||
b49e97c9 TS |
4222 | /* If this symbol is defined, calculate its address. Note that |
4223 | _gp_disp is a magic symbol, always implicitly defined by the | |
4224 | linker, so it's inappropriate to check to see whether or not | |
4225 | its defined. */ | |
4226 | else if ((h->root.root.type == bfd_link_hash_defined | |
4227 | || h->root.root.type == bfd_link_hash_defweak) | |
4228 | && h->root.root.u.def.section) | |
4229 | { | |
4230 | sec = h->root.root.u.def.section; | |
4231 | if (sec->output_section) | |
4232 | symbol = (h->root.root.u.def.value | |
4233 | + sec->output_section->vma | |
4234 | + sec->output_offset); | |
4235 | else | |
4236 | symbol = h->root.root.u.def.value; | |
4237 | } | |
4238 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
4239 | /* We allow relocations against undefined weak symbols, giving | |
4240 | it the value zero, so that you can undefined weak functions | |
4241 | and check to see if they exist by looking at their | |
4242 | addresses. */ | |
4243 | symbol = 0; | |
59c2e50f | 4244 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
4245 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
4246 | symbol = 0; | |
a4d0f181 TS |
4247 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
4248 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
4249 | { |
4250 | /* If this is a dynamic link, we should have created a | |
4251 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
4252 | in in _bfd_mips_elf_create_dynamic_sections. | |
4253 | Otherwise, we should define the symbol with a value of 0. | |
4254 | FIXME: It should probably get into the symbol table | |
4255 | somehow as well. */ | |
4256 | BFD_ASSERT (! info->shared); | |
4257 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
4258 | symbol = 0; | |
4259 | } | |
5e2b0d47 NC |
4260 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
4261 | { | |
4262 | /* This is an optional symbol - an Irix specific extension to the | |
4263 | ELF spec. Ignore it for now. | |
4264 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
4265 | than simply ignoring them, but we do not handle this for now. | |
4266 | For information see the "64-bit ELF Object File Specification" | |
4267 | which is available from here: | |
4268 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
4269 | symbol = 0; | |
4270 | } | |
b49e97c9 TS |
4271 | else |
4272 | { | |
4273 | if (! ((*info->callbacks->undefined_symbol) | |
4274 | (info, h->root.root.root.string, input_bfd, | |
4275 | input_section, relocation->r_offset, | |
59c2e50f L |
4276 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
4277 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
4278 | return bfd_reloc_undefined; |
4279 | symbol = 0; | |
4280 | } | |
4281 | ||
4282 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
4283 | } | |
4284 | ||
4285 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
4286 | need to redirect the call to the stub, unless we're already *in* | |
4287 | a stub. */ | |
1049f94e | 4288 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 | 4289 | && ((h != NULL && h->fn_stub != NULL) |
b9d58d71 TS |
4290 | || (local_p |
4291 | && elf_tdata (input_bfd)->local_stubs != NULL | |
b49e97c9 | 4292 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
b9d58d71 | 4293 | && !mips16_stub_section_p (input_bfd, input_section)) |
b49e97c9 TS |
4294 | { |
4295 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
4296 | have already noticed that we were going to need the | |
4297 | stub. */ | |
4298 | if (local_p) | |
4299 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
4300 | else | |
4301 | { | |
4302 | BFD_ASSERT (h->need_fn_stub); | |
4303 | sec = h->fn_stub; | |
4304 | } | |
4305 | ||
4306 | symbol = sec->output_section->vma + sec->output_offset; | |
f38c2df5 TS |
4307 | /* The target is 16-bit, but the stub isn't. */ |
4308 | target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
4309 | } |
4310 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
4311 | need to redirect the call to the stub. */ | |
1049f94e | 4312 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b314ec0e | 4313 | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
b9d58d71 TS |
4314 | || (local_p |
4315 | && elf_tdata (input_bfd)->local_call_stubs != NULL | |
4316 | && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) | |
b49e97c9 TS |
4317 | && !target_is_16_bit_code_p) |
4318 | { | |
b9d58d71 TS |
4319 | if (local_p) |
4320 | sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx]; | |
4321 | else | |
b49e97c9 | 4322 | { |
b9d58d71 TS |
4323 | /* If both call_stub and call_fp_stub are defined, we can figure |
4324 | out which one to use by checking which one appears in the input | |
4325 | file. */ | |
4326 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
b49e97c9 | 4327 | { |
b9d58d71 TS |
4328 | asection *o; |
4329 | ||
4330 | sec = NULL; | |
4331 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
b49e97c9 | 4332 | { |
b9d58d71 TS |
4333 | if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) |
4334 | { | |
4335 | sec = h->call_fp_stub; | |
4336 | break; | |
4337 | } | |
b49e97c9 | 4338 | } |
b9d58d71 TS |
4339 | if (sec == NULL) |
4340 | sec = h->call_stub; | |
b49e97c9 | 4341 | } |
b9d58d71 | 4342 | else if (h->call_stub != NULL) |
b49e97c9 | 4343 | sec = h->call_stub; |
b9d58d71 TS |
4344 | else |
4345 | sec = h->call_fp_stub; | |
4346 | } | |
b49e97c9 | 4347 | |
eea6121a | 4348 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
4349 | symbol = sec->output_section->vma + sec->output_offset; |
4350 | } | |
4351 | ||
4352 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
4353 | special jalx instruction. */ | |
1049f94e | 4354 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
4355 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
4356 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
4357 | ||
4358 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4359 | local_sections, TRUE); |
b49e97c9 TS |
4360 | |
4361 | /* If we haven't already determined the GOT offset, or the GP value, | |
4362 | and we're going to need it, get it now. */ | |
4363 | switch (r_type) | |
4364 | { | |
0fdc1bf1 | 4365 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 4366 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
4367 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
4368 | bind locally. */ | |
4369 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 4370 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
4371 | break; |
4372 | /* Fall through. */ | |
4373 | ||
b49e97c9 TS |
4374 | case R_MIPS_CALL16: |
4375 | case R_MIPS_GOT16: | |
4376 | case R_MIPS_GOT_DISP: | |
4377 | case R_MIPS_GOT_HI16: | |
4378 | case R_MIPS_CALL_HI16: | |
4379 | case R_MIPS_GOT_LO16: | |
4380 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
4381 | case R_MIPS_TLS_GD: |
4382 | case R_MIPS_TLS_GOTTPREL: | |
4383 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4384 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
4385 | if (r_type == R_MIPS_TLS_LDM) |
4386 | { | |
0a44bf69 | 4387 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
5c18022e | 4388 | 0, 0, NULL, r_type); |
0f20cc35 DJ |
4389 | if (g == MINUS_ONE) |
4390 | return bfd_reloc_outofrange; | |
4391 | } | |
4392 | else if (!local_p) | |
b49e97c9 | 4393 | { |
0a44bf69 RS |
4394 | /* On VxWorks, CALL relocations should refer to the .got.plt |
4395 | entry, which is initialized to point at the PLT stub. */ | |
4396 | if (htab->is_vxworks | |
4397 | && (r_type == R_MIPS_CALL_HI16 | |
4398 | || r_type == R_MIPS_CALL_LO16 | |
4399 | || r_type == R_MIPS_CALL16)) | |
4400 | { | |
4401 | BFD_ASSERT (addend == 0); | |
4402 | BFD_ASSERT (h->root.needs_plt); | |
4403 | g = mips_elf_gotplt_index (info, &h->root); | |
4404 | } | |
4405 | else | |
b49e97c9 | 4406 | { |
0a44bf69 RS |
4407 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
4408 | GOT_PAGE relocation that decays to GOT_DISP because the | |
4409 | symbol turns out to be global. The addend is then added | |
4410 | as GOT_OFST. */ | |
4411 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
4412 | g = mips_elf_global_got_index (dynobj, input_bfd, | |
4413 | &h->root, r_type, info); | |
4414 | if (h->tls_type == GOT_NORMAL | |
4415 | && (! elf_hash_table(info)->dynamic_sections_created | |
4416 | || (info->shared | |
4417 | && (info->symbolic || h->root.forced_local) | |
4418 | && h->root.def_regular))) | |
4419 | { | |
4420 | /* This is a static link or a -Bsymbolic link. The | |
4421 | symbol is defined locally, or was forced to be local. | |
4422 | We must initialize this entry in the GOT. */ | |
4423 | asection *sgot = mips_elf_got_section (dynobj, FALSE); | |
4424 | MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g); | |
4425 | } | |
b49e97c9 TS |
4426 | } |
4427 | } | |
0a44bf69 RS |
4428 | else if (!htab->is_vxworks |
4429 | && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16))) | |
4430 | /* The calculation below does not involve "g". */ | |
b49e97c9 TS |
4431 | break; |
4432 | else | |
4433 | { | |
5c18022e | 4434 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
0a44bf69 | 4435 | symbol + addend, r_symndx, h, r_type); |
b49e97c9 TS |
4436 | if (g == MINUS_ONE) |
4437 | return bfd_reloc_outofrange; | |
4438 | } | |
4439 | ||
4440 | /* Convert GOT indices to actual offsets. */ | |
0a44bf69 | 4441 | g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g); |
b49e97c9 TS |
4442 | break; |
4443 | ||
4444 | case R_MIPS_HI16: | |
4445 | case R_MIPS_LO16: | |
b49e97c9 TS |
4446 | case R_MIPS_GPREL16: |
4447 | case R_MIPS_GPREL32: | |
4448 | case R_MIPS_LITERAL: | |
d6f16593 MR |
4449 | case R_MIPS16_HI16: |
4450 | case R_MIPS16_LO16: | |
4451 | case R_MIPS16_GPREL: | |
b49e97c9 TS |
4452 | gp0 = _bfd_get_gp_value (input_bfd); |
4453 | gp = _bfd_get_gp_value (abfd); | |
0a44bf69 RS |
4454 | if (dynobj) |
4455 | gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL), | |
f4416af6 | 4456 | input_bfd); |
b49e97c9 TS |
4457 | break; |
4458 | ||
4459 | default: | |
4460 | break; | |
4461 | } | |
4462 | ||
bbe506e8 TS |
4463 | if (gnu_local_gp_p) |
4464 | symbol = gp; | |
86324f90 | 4465 | |
0a44bf69 RS |
4466 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
4467 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
4468 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
4469 | { | |
4470 | Elf_Internal_Rela outrel; | |
4471 | bfd_byte *loc; | |
4472 | asection *s; | |
4473 | ||
4474 | s = mips_elf_rel_dyn_section (info, FALSE); | |
4475 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
4476 | ||
4477 | outrel.r_offset = (input_section->output_section->vma | |
4478 | + input_section->output_offset | |
4479 | + relocation->r_offset); | |
4480 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
4481 | outrel.r_addend = addend; | |
4482 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
9e3313ae RS |
4483 | |
4484 | /* If we've written this relocation for a readonly section, | |
4485 | we need to set DF_TEXTREL again, so that we do not delete the | |
4486 | DT_TEXTREL tag. */ | |
4487 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
4488 | info->flags |= DF_TEXTREL; | |
4489 | ||
0a44bf69 RS |
4490 | *valuep = 0; |
4491 | return bfd_reloc_ok; | |
4492 | } | |
4493 | ||
b49e97c9 TS |
4494 | /* Figure out what kind of relocation is being performed. */ |
4495 | switch (r_type) | |
4496 | { | |
4497 | case R_MIPS_NONE: | |
4498 | return bfd_reloc_continue; | |
4499 | ||
4500 | case R_MIPS_16: | |
a7ebbfdf | 4501 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
4502 | overflowed_p = mips_elf_overflow_p (value, 16); |
4503 | break; | |
4504 | ||
4505 | case R_MIPS_32: | |
4506 | case R_MIPS_REL32: | |
4507 | case R_MIPS_64: | |
4508 | if ((info->shared | |
0a44bf69 RS |
4509 | || (!htab->is_vxworks |
4510 | && htab->root.dynamic_sections_created | |
b49e97c9 | 4511 | && h != NULL |
f5385ebf AM |
4512 | && h->root.def_dynamic |
4513 | && !h->root.def_regular)) | |
b49e97c9 TS |
4514 | && r_symndx != 0 |
4515 | && (input_section->flags & SEC_ALLOC) != 0) | |
4516 | { | |
4517 | /* If we're creating a shared library, or this relocation is | |
4518 | against a symbol in a shared library, then we can't know | |
4519 | where the symbol will end up. So, we create a relocation | |
4520 | record in the output, and leave the job up to the dynamic | |
0a44bf69 RS |
4521 | linker. |
4522 | ||
4523 | In VxWorks executables, references to external symbols | |
4524 | are handled using copy relocs or PLT stubs, so there's | |
4525 | no need to add a dynamic relocation here. */ | |
b49e97c9 TS |
4526 | value = addend; |
4527 | if (!mips_elf_create_dynamic_relocation (abfd, | |
4528 | info, | |
4529 | relocation, | |
4530 | h, | |
4531 | sec, | |
4532 | symbol, | |
4533 | &value, | |
4534 | input_section)) | |
4535 | return bfd_reloc_undefined; | |
4536 | } | |
4537 | else | |
4538 | { | |
4539 | if (r_type != R_MIPS_REL32) | |
4540 | value = symbol + addend; | |
4541 | else | |
4542 | value = addend; | |
4543 | } | |
4544 | value &= howto->dst_mask; | |
092dcd75 CD |
4545 | break; |
4546 | ||
4547 | case R_MIPS_PC32: | |
4548 | value = symbol + addend - p; | |
4549 | value &= howto->dst_mask; | |
b49e97c9 TS |
4550 | break; |
4551 | ||
b49e97c9 TS |
4552 | case R_MIPS16_26: |
4553 | /* The calculation for R_MIPS16_26 is just the same as for an | |
4554 | R_MIPS_26. It's only the storage of the relocated field into | |
4555 | the output file that's different. That's handled in | |
4556 | mips_elf_perform_relocation. So, we just fall through to the | |
4557 | R_MIPS_26 case here. */ | |
4558 | case R_MIPS_26: | |
4559 | if (local_p) | |
30ac9238 | 4560 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 4561 | else |
728b2f21 ILT |
4562 | { |
4563 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
4564 | if (h->root.root.type != bfd_link_hash_undefweak) |
4565 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 4566 | } |
b49e97c9 TS |
4567 | value &= howto->dst_mask; |
4568 | break; | |
4569 | ||
0f20cc35 DJ |
4570 | case R_MIPS_TLS_DTPREL_HI16: |
4571 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
4572 | & howto->dst_mask); | |
4573 | break; | |
4574 | ||
4575 | case R_MIPS_TLS_DTPREL_LO16: | |
741d6ea8 JM |
4576 | case R_MIPS_TLS_DTPREL32: |
4577 | case R_MIPS_TLS_DTPREL64: | |
0f20cc35 DJ |
4578 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
4579 | break; | |
4580 | ||
4581 | case R_MIPS_TLS_TPREL_HI16: | |
4582 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
4583 | & howto->dst_mask); | |
4584 | break; | |
4585 | ||
4586 | case R_MIPS_TLS_TPREL_LO16: | |
4587 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
4588 | break; | |
4589 | ||
b49e97c9 | 4590 | case R_MIPS_HI16: |
d6f16593 | 4591 | case R_MIPS16_HI16: |
b49e97c9 TS |
4592 | if (!gp_disp_p) |
4593 | { | |
4594 | value = mips_elf_high (addend + symbol); | |
4595 | value &= howto->dst_mask; | |
4596 | } | |
4597 | else | |
4598 | { | |
d6f16593 MR |
4599 | /* For MIPS16 ABI code we generate this sequence |
4600 | 0: li $v0,%hi(_gp_disp) | |
4601 | 4: addiupc $v1,%lo(_gp_disp) | |
4602 | 8: sll $v0,16 | |
4603 | 12: addu $v0,$v1 | |
4604 | 14: move $gp,$v0 | |
4605 | So the offsets of hi and lo relocs are the same, but the | |
4606 | $pc is four higher than $t9 would be, so reduce | |
4607 | both reloc addends by 4. */ | |
4608 | if (r_type == R_MIPS16_HI16) | |
4609 | value = mips_elf_high (addend + gp - p - 4); | |
4610 | else | |
4611 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
4612 | overflowed_p = mips_elf_overflow_p (value, 16); |
4613 | } | |
4614 | break; | |
4615 | ||
4616 | case R_MIPS_LO16: | |
d6f16593 | 4617 | case R_MIPS16_LO16: |
b49e97c9 TS |
4618 | if (!gp_disp_p) |
4619 | value = (symbol + addend) & howto->dst_mask; | |
4620 | else | |
4621 | { | |
d6f16593 MR |
4622 | /* See the comment for R_MIPS16_HI16 above for the reason |
4623 | for this conditional. */ | |
4624 | if (r_type == R_MIPS16_LO16) | |
4625 | value = addend + gp - p; | |
4626 | else | |
4627 | value = addend + gp - p + 4; | |
b49e97c9 | 4628 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 4629 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
4630 | _gp_disp are normally generated from the .cpload |
4631 | pseudo-op. It generates code that normally looks like | |
4632 | this: | |
4633 | ||
4634 | lui $gp,%hi(_gp_disp) | |
4635 | addiu $gp,$gp,%lo(_gp_disp) | |
4636 | addu $gp,$gp,$t9 | |
4637 | ||
4638 | Here $t9 holds the address of the function being called, | |
4639 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
4640 | relocation can easily overflow in this situation, but the | |
4641 | R_MIPS_HI16 relocation will handle the overflow. | |
4642 | Therefore, we consider this a bug in the MIPS ABI, and do | |
4643 | not check for overflow here. */ | |
4644 | } | |
4645 | break; | |
4646 | ||
4647 | case R_MIPS_LITERAL: | |
4648 | /* Because we don't merge literal sections, we can handle this | |
4649 | just like R_MIPS_GPREL16. In the long run, we should merge | |
4650 | shared literals, and then we will need to additional work | |
4651 | here. */ | |
4652 | ||
4653 | /* Fall through. */ | |
4654 | ||
4655 | case R_MIPS16_GPREL: | |
4656 | /* The R_MIPS16_GPREL performs the same calculation as | |
4657 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
4658 | order. We don't need to do anything special here; the | |
4659 | differences are handled in mips_elf_perform_relocation. */ | |
4660 | case R_MIPS_GPREL16: | |
bce03d3d AO |
4661 | /* Only sign-extend the addend if it was extracted from the |
4662 | instruction. If the addend was separate, leave it alone, | |
4663 | otherwise we may lose significant bits. */ | |
4664 | if (howto->partial_inplace) | |
a7ebbfdf | 4665 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
4666 | value = symbol + addend - gp; |
4667 | /* If the symbol was local, any earlier relocatable links will | |
4668 | have adjusted its addend with the gp offset, so compensate | |
4669 | for that now. Don't do it for symbols forced local in this | |
4670 | link, though, since they won't have had the gp offset applied | |
4671 | to them before. */ | |
4672 | if (was_local_p) | |
4673 | value += gp0; | |
b49e97c9 TS |
4674 | overflowed_p = mips_elf_overflow_p (value, 16); |
4675 | break; | |
4676 | ||
4677 | case R_MIPS_GOT16: | |
4678 | case R_MIPS_CALL16: | |
0a44bf69 RS |
4679 | /* VxWorks does not have separate local and global semantics for |
4680 | R_MIPS_GOT16; every relocation evaluates to "G". */ | |
4681 | if (!htab->is_vxworks && local_p) | |
b49e97c9 | 4682 | { |
b34976b6 | 4683 | bfd_boolean forced; |
b49e97c9 | 4684 | |
b49e97c9 | 4685 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
b34976b6 | 4686 | local_sections, FALSE); |
5c18022e | 4687 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
f4416af6 | 4688 | symbol + addend, forced); |
b49e97c9 TS |
4689 | if (value == MINUS_ONE) |
4690 | return bfd_reloc_outofrange; | |
4691 | value | |
0a44bf69 | 4692 | = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4693 | overflowed_p = mips_elf_overflow_p (value, 16); |
4694 | break; | |
4695 | } | |
4696 | ||
4697 | /* Fall through. */ | |
4698 | ||
0f20cc35 DJ |
4699 | case R_MIPS_TLS_GD: |
4700 | case R_MIPS_TLS_GOTTPREL: | |
4701 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4702 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 4703 | got_disp: |
b49e97c9 TS |
4704 | value = g; |
4705 | overflowed_p = mips_elf_overflow_p (value, 16); | |
4706 | break; | |
4707 | ||
4708 | case R_MIPS_GPREL32: | |
bce03d3d AO |
4709 | value = (addend + symbol + gp0 - gp); |
4710 | if (!save_addend) | |
4711 | value &= howto->dst_mask; | |
b49e97c9 TS |
4712 | break; |
4713 | ||
4714 | case R_MIPS_PC16: | |
bad36eac DJ |
4715 | case R_MIPS_GNU_REL16_S2: |
4716 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; | |
4717 | overflowed_p = mips_elf_overflow_p (value, 18); | |
37caec6b TS |
4718 | value >>= howto->rightshift; |
4719 | value &= howto->dst_mask; | |
b49e97c9 TS |
4720 | break; |
4721 | ||
4722 | case R_MIPS_GOT_HI16: | |
4723 | case R_MIPS_CALL_HI16: | |
4724 | /* We're allowed to handle these two relocations identically. | |
4725 | The dynamic linker is allowed to handle the CALL relocations | |
4726 | differently by creating a lazy evaluation stub. */ | |
4727 | value = g; | |
4728 | value = mips_elf_high (value); | |
4729 | value &= howto->dst_mask; | |
4730 | break; | |
4731 | ||
4732 | case R_MIPS_GOT_LO16: | |
4733 | case R_MIPS_CALL_LO16: | |
4734 | value = g & howto->dst_mask; | |
4735 | break; | |
4736 | ||
4737 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
4738 | /* GOT_PAGE relocations that reference non-local symbols decay |
4739 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
4740 | 0. */ | |
93a2b7ae | 4741 | if (! local_p) |
0fdc1bf1 | 4742 | goto got_disp; |
5c18022e | 4743 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
4744 | if (value == MINUS_ONE) |
4745 | return bfd_reloc_outofrange; | |
0a44bf69 | 4746 | value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4747 | overflowed_p = mips_elf_overflow_p (value, 16); |
4748 | break; | |
4749 | ||
4750 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 4751 | if (local_p) |
5c18022e | 4752 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
0fdc1bf1 AO |
4753 | else |
4754 | value = addend; | |
b49e97c9 TS |
4755 | overflowed_p = mips_elf_overflow_p (value, 16); |
4756 | break; | |
4757 | ||
4758 | case R_MIPS_SUB: | |
4759 | value = symbol - addend; | |
4760 | value &= howto->dst_mask; | |
4761 | break; | |
4762 | ||
4763 | case R_MIPS_HIGHER: | |
4764 | value = mips_elf_higher (addend + symbol); | |
4765 | value &= howto->dst_mask; | |
4766 | break; | |
4767 | ||
4768 | case R_MIPS_HIGHEST: | |
4769 | value = mips_elf_highest (addend + symbol); | |
4770 | value &= howto->dst_mask; | |
4771 | break; | |
4772 | ||
4773 | case R_MIPS_SCN_DISP: | |
4774 | value = symbol + addend - sec->output_offset; | |
4775 | value &= howto->dst_mask; | |
4776 | break; | |
4777 | ||
b49e97c9 | 4778 | case R_MIPS_JALR: |
1367d393 ILT |
4779 | /* This relocation is only a hint. In some cases, we optimize |
4780 | it into a bal instruction. But we don't try to optimize | |
4781 | branches to the PLT; that will wind up wasting time. */ | |
4782 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) | |
4783 | return bfd_reloc_continue; | |
4784 | value = symbol + addend; | |
4785 | break; | |
b49e97c9 | 4786 | |
1367d393 | 4787 | case R_MIPS_PJUMP: |
b49e97c9 TS |
4788 | case R_MIPS_GNU_VTINHERIT: |
4789 | case R_MIPS_GNU_VTENTRY: | |
4790 | /* We don't do anything with these at present. */ | |
4791 | return bfd_reloc_continue; | |
4792 | ||
4793 | default: | |
4794 | /* An unrecognized relocation type. */ | |
4795 | return bfd_reloc_notsupported; | |
4796 | } | |
4797 | ||
4798 | /* Store the VALUE for our caller. */ | |
4799 | *valuep = value; | |
4800 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
4801 | } | |
4802 | ||
4803 | /* Obtain the field relocated by RELOCATION. */ | |
4804 | ||
4805 | static bfd_vma | |
9719ad41 RS |
4806 | mips_elf_obtain_contents (reloc_howto_type *howto, |
4807 | const Elf_Internal_Rela *relocation, | |
4808 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
4809 | { |
4810 | bfd_vma x; | |
4811 | bfd_byte *location = contents + relocation->r_offset; | |
4812 | ||
4813 | /* Obtain the bytes. */ | |
4814 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
4815 | ||
b49e97c9 TS |
4816 | return x; |
4817 | } | |
4818 | ||
4819 | /* It has been determined that the result of the RELOCATION is the | |
4820 | VALUE. Use HOWTO to place VALUE into the output file at the | |
4821 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 4822 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
4823 | for the relocation must be either JAL or JALX, and it is |
4824 | unconditionally converted to JALX. | |
4825 | ||
b34976b6 | 4826 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 4827 | |
b34976b6 | 4828 | static bfd_boolean |
9719ad41 RS |
4829 | mips_elf_perform_relocation (struct bfd_link_info *info, |
4830 | reloc_howto_type *howto, | |
4831 | const Elf_Internal_Rela *relocation, | |
4832 | bfd_vma value, bfd *input_bfd, | |
4833 | asection *input_section, bfd_byte *contents, | |
4834 | bfd_boolean require_jalx) | |
b49e97c9 TS |
4835 | { |
4836 | bfd_vma x; | |
4837 | bfd_byte *location; | |
4838 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4839 | ||
4840 | /* Figure out where the relocation is occurring. */ | |
4841 | location = contents + relocation->r_offset; | |
4842 | ||
d6f16593 MR |
4843 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
4844 | ||
b49e97c9 TS |
4845 | /* Obtain the current value. */ |
4846 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
4847 | ||
4848 | /* Clear the field we are setting. */ | |
4849 | x &= ~howto->dst_mask; | |
4850 | ||
b49e97c9 TS |
4851 | /* Set the field. */ |
4852 | x |= (value & howto->dst_mask); | |
4853 | ||
4854 | /* If required, turn JAL into JALX. */ | |
4855 | if (require_jalx) | |
4856 | { | |
b34976b6 | 4857 | bfd_boolean ok; |
b49e97c9 TS |
4858 | bfd_vma opcode = x >> 26; |
4859 | bfd_vma jalx_opcode; | |
4860 | ||
4861 | /* Check to see if the opcode is already JAL or JALX. */ | |
4862 | if (r_type == R_MIPS16_26) | |
4863 | { | |
4864 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
4865 | jalx_opcode = 0x7; | |
4866 | } | |
4867 | else | |
4868 | { | |
4869 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
4870 | jalx_opcode = 0x1d; | |
4871 | } | |
4872 | ||
4873 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
4874 | if (!ok) | |
4875 | { | |
4876 | (*_bfd_error_handler) | |
d003868e AM |
4877 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
4878 | input_bfd, | |
4879 | input_section, | |
b49e97c9 TS |
4880 | (unsigned long) relocation->r_offset); |
4881 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 4882 | return FALSE; |
b49e97c9 TS |
4883 | } |
4884 | ||
4885 | /* Make this the JALX opcode. */ | |
4886 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
4887 | } | |
4888 | ||
1367d393 ILT |
4889 | /* On the RM9000, bal is faster than jal, because bal uses branch |
4890 | prediction hardware. If we are linking for the RM9000, and we | |
4891 | see jal, and bal fits, use it instead. Note that this | |
4892 | transformation should be safe for all architectures. */ | |
4893 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 | |
4894 | && !info->relocatable | |
4895 | && !require_jalx | |
4896 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ | |
4897 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ | |
4898 | { | |
4899 | bfd_vma addr; | |
4900 | bfd_vma dest; | |
4901 | bfd_signed_vma off; | |
4902 | ||
4903 | addr = (input_section->output_section->vma | |
4904 | + input_section->output_offset | |
4905 | + relocation->r_offset | |
4906 | + 4); | |
4907 | if (r_type == R_MIPS_26) | |
4908 | dest = (value << 2) | ((addr >> 28) << 28); | |
4909 | else | |
4910 | dest = value; | |
4911 | off = dest - addr; | |
4912 | if (off <= 0x1ffff && off >= -0x20000) | |
4913 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
4914 | } | |
4915 | ||
b49e97c9 TS |
4916 | /* Put the value into the output. */ |
4917 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
4918 | |
4919 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
4920 | location); | |
4921 | ||
b34976b6 | 4922 | return TRUE; |
b49e97c9 TS |
4923 | } |
4924 | ||
b34976b6 | 4925 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 4926 | |
b34976b6 | 4927 | static bfd_boolean |
b9d58d71 | 4928 | mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
4929 | { |
4930 | const char *name = bfd_get_section_name (abfd, section); | |
4931 | ||
b9d58d71 | 4932 | return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name); |
b49e97c9 TS |
4933 | } |
4934 | \f | |
0a44bf69 | 4935 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
b49e97c9 TS |
4936 | |
4937 | static void | |
0a44bf69 RS |
4938 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
4939 | unsigned int n) | |
b49e97c9 TS |
4940 | { |
4941 | asection *s; | |
0a44bf69 | 4942 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4943 | |
0a44bf69 RS |
4944 | htab = mips_elf_hash_table (info); |
4945 | s = mips_elf_rel_dyn_section (info, FALSE); | |
b49e97c9 TS |
4946 | BFD_ASSERT (s != NULL); |
4947 | ||
0a44bf69 RS |
4948 | if (htab->is_vxworks) |
4949 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
4950 | else | |
b49e97c9 | 4951 | { |
0a44bf69 RS |
4952 | if (s->size == 0) |
4953 | { | |
4954 | /* Make room for a null element. */ | |
4955 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
4956 | ++s->reloc_count; | |
4957 | } | |
4958 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
b49e97c9 | 4959 | } |
b49e97c9 TS |
4960 | } |
4961 | ||
4962 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
4963 | is the original relocation, which is now being transformed into a | |
4964 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
4965 | caller should store the result in place of the original addend. */ | |
4966 | ||
b34976b6 | 4967 | static bfd_boolean |
9719ad41 RS |
4968 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
4969 | struct bfd_link_info *info, | |
4970 | const Elf_Internal_Rela *rel, | |
4971 | struct mips_elf_link_hash_entry *h, | |
4972 | asection *sec, bfd_vma symbol, | |
4973 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 4974 | { |
947216bf | 4975 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
4976 | asection *sreloc; |
4977 | bfd *dynobj; | |
4978 | int r_type; | |
5d41f0b6 RS |
4979 | long indx; |
4980 | bfd_boolean defined_p; | |
0a44bf69 | 4981 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4982 | |
0a44bf69 | 4983 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
4984 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
4985 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 4986 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
4987 | BFD_ASSERT (sreloc != NULL); |
4988 | BFD_ASSERT (sreloc->contents != NULL); | |
4989 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 4990 | < sreloc->size); |
b49e97c9 | 4991 | |
b49e97c9 TS |
4992 | outrel[0].r_offset = |
4993 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
9ddf8309 TS |
4994 | if (ABI_64_P (output_bfd)) |
4995 | { | |
4996 | outrel[1].r_offset = | |
4997 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
4998 | outrel[2].r_offset = | |
4999 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
5000 | } | |
b49e97c9 | 5001 | |
c5ae1840 | 5002 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 5003 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
5004 | return TRUE; |
5005 | ||
5006 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
5007 | { |
5008 | /* The relocation field has been converted into a relative value of | |
5009 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
5010 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 5011 | *addendp += symbol; |
5d41f0b6 | 5012 | return TRUE; |
0d591ff7 | 5013 | } |
b49e97c9 | 5014 | |
5d41f0b6 RS |
5015 | /* We must now calculate the dynamic symbol table index to use |
5016 | in the relocation. */ | |
5017 | if (h != NULL | |
6ece8836 TS |
5018 | && (!h->root.def_regular |
5019 | || (info->shared && !info->symbolic && !h->root.forced_local))) | |
5d41f0b6 RS |
5020 | { |
5021 | indx = h->root.dynindx; | |
5022 | if (SGI_COMPAT (output_bfd)) | |
5023 | defined_p = h->root.def_regular; | |
5024 | else | |
5025 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
5026 | relocation field. It therefore treats relocs against | |
5027 | defined symbols in the same way as relocs against | |
5028 | undefined symbols. */ | |
5029 | defined_p = FALSE; | |
5030 | } | |
b49e97c9 TS |
5031 | else |
5032 | { | |
5d41f0b6 RS |
5033 | if (sec != NULL && bfd_is_abs_section (sec)) |
5034 | indx = 0; | |
5035 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 5036 | { |
5d41f0b6 RS |
5037 | bfd_set_error (bfd_error_bad_value); |
5038 | return FALSE; | |
b49e97c9 TS |
5039 | } |
5040 | else | |
5041 | { | |
5d41f0b6 | 5042 | indx = elf_section_data (sec->output_section)->dynindx; |
74541ad4 AM |
5043 | if (indx == 0) |
5044 | { | |
5045 | asection *osec = htab->root.text_index_section; | |
5046 | indx = elf_section_data (osec)->dynindx; | |
5047 | } | |
5d41f0b6 RS |
5048 | if (indx == 0) |
5049 | abort (); | |
b49e97c9 TS |
5050 | } |
5051 | ||
5d41f0b6 RS |
5052 | /* Instead of generating a relocation using the section |
5053 | symbol, we may as well make it a fully relative | |
5054 | relocation. We want to avoid generating relocations to | |
5055 | local symbols because we used to generate them | |
5056 | incorrectly, without adding the original symbol value, | |
5057 | which is mandated by the ABI for section symbols. In | |
5058 | order to give dynamic loaders and applications time to | |
5059 | phase out the incorrect use, we refrain from emitting | |
5060 | section-relative relocations. It's not like they're | |
5061 | useful, after all. This should be a bit more efficient | |
5062 | as well. */ | |
5063 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
5064 | the ABI says that relocations against STN_UNDEF should have | |
5065 | a symbol value of 0. Irix rld honors this, so relocations | |
5066 | against STN_UNDEF have no effect. */ | |
5067 | if (!SGI_COMPAT (output_bfd)) | |
5068 | indx = 0; | |
5069 | defined_p = TRUE; | |
b49e97c9 TS |
5070 | } |
5071 | ||
5d41f0b6 RS |
5072 | /* If the relocation was previously an absolute relocation and |
5073 | this symbol will not be referred to by the relocation, we must | |
5074 | adjust it by the value we give it in the dynamic symbol table. | |
5075 | Otherwise leave the job up to the dynamic linker. */ | |
5076 | if (defined_p && r_type != R_MIPS_REL32) | |
5077 | *addendp += symbol; | |
5078 | ||
0a44bf69 RS |
5079 | if (htab->is_vxworks) |
5080 | /* VxWorks uses non-relative relocations for this. */ | |
5081 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
5082 | else | |
5083 | /* The relocation is always an REL32 relocation because we don't | |
5084 | know where the shared library will wind up at load-time. */ | |
5085 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
5086 | R_MIPS_REL32); | |
5087 | ||
5d41f0b6 RS |
5088 | /* For strict adherence to the ABI specification, we should |
5089 | generate a R_MIPS_64 relocation record by itself before the | |
5090 | _REL32/_64 record as well, such that the addend is read in as | |
5091 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
5092 | However, since none of the existing ELF64 MIPS dynamic | |
5093 | loaders seems to care, we don't waste space with these | |
5094 | artificial relocations. If this turns out to not be true, | |
5095 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
5096 | as to make room for a pair of dynamic relocations per | |
5097 | invocation if ABI_64_P, and here we should generate an | |
5098 | additional relocation record with R_MIPS_64 by itself for a | |
5099 | NULL symbol before this relocation record. */ | |
5100 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
5101 | ABI_64_P (output_bfd) | |
5102 | ? R_MIPS_64 | |
5103 | : R_MIPS_NONE); | |
5104 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
5105 | ||
5106 | /* Adjust the output offset of the relocation to reference the | |
5107 | correct location in the output file. */ | |
5108 | outrel[0].r_offset += (input_section->output_section->vma | |
5109 | + input_section->output_offset); | |
5110 | outrel[1].r_offset += (input_section->output_section->vma | |
5111 | + input_section->output_offset); | |
5112 | outrel[2].r_offset += (input_section->output_section->vma | |
5113 | + input_section->output_offset); | |
5114 | ||
b49e97c9 TS |
5115 | /* Put the relocation back out. We have to use the special |
5116 | relocation outputter in the 64-bit case since the 64-bit | |
5117 | relocation format is non-standard. */ | |
5118 | if (ABI_64_P (output_bfd)) | |
5119 | { | |
5120 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
5121 | (output_bfd, &outrel[0], | |
5122 | (sreloc->contents | |
5123 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
5124 | } | |
0a44bf69 RS |
5125 | else if (htab->is_vxworks) |
5126 | { | |
5127 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
5128 | outrel[0].r_addend = *addendp; | |
5129 | bfd_elf32_swap_reloca_out | |
5130 | (output_bfd, &outrel[0], | |
5131 | (sreloc->contents | |
5132 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
5133 | } | |
b49e97c9 | 5134 | else |
947216bf AM |
5135 | bfd_elf32_swap_reloc_out |
5136 | (output_bfd, &outrel[0], | |
5137 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 5138 | |
b49e97c9 TS |
5139 | /* We've now added another relocation. */ |
5140 | ++sreloc->reloc_count; | |
5141 | ||
5142 | /* Make sure the output section is writable. The dynamic linker | |
5143 | will be writing to it. */ | |
5144 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
5145 | |= SHF_WRITE; | |
5146 | ||
5147 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 5148 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
5149 | { |
5150 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
5151 | bfd_byte *cr; | |
5152 | ||
5153 | if (scpt) | |
5154 | { | |
5155 | Elf32_crinfo cptrel; | |
5156 | ||
5157 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
5158 | cptrel.vaddr = (rel->r_offset | |
5159 | + input_section->output_section->vma | |
5160 | + input_section->output_offset); | |
5161 | if (r_type == R_MIPS_REL32) | |
5162 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
5163 | else | |
5164 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
5165 | mips_elf_set_cr_dist2to (cptrel, 0); | |
5166 | cptrel.konst = *addendp; | |
5167 | ||
5168 | cr = (scpt->contents | |
5169 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 5170 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
5171 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
5172 | ((Elf32_External_crinfo *) cr | |
5173 | + scpt->reloc_count)); | |
5174 | ++scpt->reloc_count; | |
5175 | } | |
5176 | } | |
5177 | ||
943284cc DJ |
5178 | /* If we've written this relocation for a readonly section, |
5179 | we need to set DF_TEXTREL again, so that we do not delete the | |
5180 | DT_TEXTREL tag. */ | |
5181 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
5182 | info->flags |= DF_TEXTREL; | |
5183 | ||
b34976b6 | 5184 | return TRUE; |
b49e97c9 TS |
5185 | } |
5186 | \f | |
b49e97c9 TS |
5187 | /* Return the MACH for a MIPS e_flags value. */ |
5188 | ||
5189 | unsigned long | |
9719ad41 | 5190 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
5191 | { |
5192 | switch (flags & EF_MIPS_MACH) | |
5193 | { | |
5194 | case E_MIPS_MACH_3900: | |
5195 | return bfd_mach_mips3900; | |
5196 | ||
5197 | case E_MIPS_MACH_4010: | |
5198 | return bfd_mach_mips4010; | |
5199 | ||
5200 | case E_MIPS_MACH_4100: | |
5201 | return bfd_mach_mips4100; | |
5202 | ||
5203 | case E_MIPS_MACH_4111: | |
5204 | return bfd_mach_mips4111; | |
5205 | ||
00707a0e RS |
5206 | case E_MIPS_MACH_4120: |
5207 | return bfd_mach_mips4120; | |
5208 | ||
b49e97c9 TS |
5209 | case E_MIPS_MACH_4650: |
5210 | return bfd_mach_mips4650; | |
5211 | ||
00707a0e RS |
5212 | case E_MIPS_MACH_5400: |
5213 | return bfd_mach_mips5400; | |
5214 | ||
5215 | case E_MIPS_MACH_5500: | |
5216 | return bfd_mach_mips5500; | |
5217 | ||
0d2e43ed ILT |
5218 | case E_MIPS_MACH_9000: |
5219 | return bfd_mach_mips9000; | |
5220 | ||
b49e97c9 TS |
5221 | case E_MIPS_MACH_SB1: |
5222 | return bfd_mach_mips_sb1; | |
5223 | ||
350cc38d MS |
5224 | case E_MIPS_MACH_LS2E: |
5225 | return bfd_mach_mips_loongson_2e; | |
5226 | ||
5227 | case E_MIPS_MACH_LS2F: | |
5228 | return bfd_mach_mips_loongson_2f; | |
5229 | ||
6f179bd0 AN |
5230 | case E_MIPS_MACH_OCTEON: |
5231 | return bfd_mach_mips_octeon; | |
5232 | ||
b49e97c9 TS |
5233 | default: |
5234 | switch (flags & EF_MIPS_ARCH) | |
5235 | { | |
5236 | default: | |
5237 | case E_MIPS_ARCH_1: | |
5238 | return bfd_mach_mips3000; | |
b49e97c9 TS |
5239 | |
5240 | case E_MIPS_ARCH_2: | |
5241 | return bfd_mach_mips6000; | |
b49e97c9 TS |
5242 | |
5243 | case E_MIPS_ARCH_3: | |
5244 | return bfd_mach_mips4000; | |
b49e97c9 TS |
5245 | |
5246 | case E_MIPS_ARCH_4: | |
5247 | return bfd_mach_mips8000; | |
b49e97c9 TS |
5248 | |
5249 | case E_MIPS_ARCH_5: | |
5250 | return bfd_mach_mips5; | |
b49e97c9 TS |
5251 | |
5252 | case E_MIPS_ARCH_32: | |
5253 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
5254 | |
5255 | case E_MIPS_ARCH_64: | |
5256 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
5257 | |
5258 | case E_MIPS_ARCH_32R2: | |
5259 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
5260 | |
5261 | case E_MIPS_ARCH_64R2: | |
5262 | return bfd_mach_mipsisa64r2; | |
b49e97c9 TS |
5263 | } |
5264 | } | |
5265 | ||
5266 | return 0; | |
5267 | } | |
5268 | ||
5269 | /* Return printable name for ABI. */ | |
5270 | ||
5271 | static INLINE char * | |
9719ad41 | 5272 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
5273 | { |
5274 | flagword flags; | |
5275 | ||
5276 | flags = elf_elfheader (abfd)->e_flags; | |
5277 | switch (flags & EF_MIPS_ABI) | |
5278 | { | |
5279 | case 0: | |
5280 | if (ABI_N32_P (abfd)) | |
5281 | return "N32"; | |
5282 | else if (ABI_64_P (abfd)) | |
5283 | return "64"; | |
5284 | else | |
5285 | return "none"; | |
5286 | case E_MIPS_ABI_O32: | |
5287 | return "O32"; | |
5288 | case E_MIPS_ABI_O64: | |
5289 | return "O64"; | |
5290 | case E_MIPS_ABI_EABI32: | |
5291 | return "EABI32"; | |
5292 | case E_MIPS_ABI_EABI64: | |
5293 | return "EABI64"; | |
5294 | default: | |
5295 | return "unknown abi"; | |
5296 | } | |
5297 | } | |
5298 | \f | |
5299 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
5300 | other is for small objects. All the small objects are kept | |
5301 | together, and then referenced via the gp pointer, which yields | |
5302 | faster assembler code. This is what we use for the small common | |
5303 | section. This approach is copied from ecoff.c. */ | |
5304 | static asection mips_elf_scom_section; | |
5305 | static asymbol mips_elf_scom_symbol; | |
5306 | static asymbol *mips_elf_scom_symbol_ptr; | |
5307 | ||
5308 | /* MIPS ELF also uses an acommon section, which represents an | |
5309 | allocated common symbol which may be overridden by a | |
5310 | definition in a shared library. */ | |
5311 | static asection mips_elf_acom_section; | |
5312 | static asymbol mips_elf_acom_symbol; | |
5313 | static asymbol *mips_elf_acom_symbol_ptr; | |
5314 | ||
5315 | /* Handle the special MIPS section numbers that a symbol may use. | |
5316 | This is used for both the 32-bit and the 64-bit ABI. */ | |
5317 | ||
5318 | void | |
9719ad41 | 5319 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
5320 | { |
5321 | elf_symbol_type *elfsym; | |
5322 | ||
5323 | elfsym = (elf_symbol_type *) asym; | |
5324 | switch (elfsym->internal_elf_sym.st_shndx) | |
5325 | { | |
5326 | case SHN_MIPS_ACOMMON: | |
5327 | /* This section is used in a dynamically linked executable file. | |
5328 | It is an allocated common section. The dynamic linker can | |
5329 | either resolve these symbols to something in a shared | |
5330 | library, or it can just leave them here. For our purposes, | |
5331 | we can consider these symbols to be in a new section. */ | |
5332 | if (mips_elf_acom_section.name == NULL) | |
5333 | { | |
5334 | /* Initialize the acommon section. */ | |
5335 | mips_elf_acom_section.name = ".acommon"; | |
5336 | mips_elf_acom_section.flags = SEC_ALLOC; | |
5337 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
5338 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
5339 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
5340 | mips_elf_acom_symbol.name = ".acommon"; | |
5341 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
5342 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
5343 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
5344 | } | |
5345 | asym->section = &mips_elf_acom_section; | |
5346 | break; | |
5347 | ||
5348 | case SHN_COMMON: | |
5349 | /* Common symbols less than the GP size are automatically | |
5350 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
5351 | if (asym->value > elf_gp_size (abfd) | |
b59eed79 | 5352 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
b49e97c9 TS |
5353 | || IRIX_COMPAT (abfd) == ict_irix6) |
5354 | break; | |
5355 | /* Fall through. */ | |
5356 | case SHN_MIPS_SCOMMON: | |
5357 | if (mips_elf_scom_section.name == NULL) | |
5358 | { | |
5359 | /* Initialize the small common section. */ | |
5360 | mips_elf_scom_section.name = ".scommon"; | |
5361 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
5362 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
5363 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
5364 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
5365 | mips_elf_scom_symbol.name = ".scommon"; | |
5366 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
5367 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
5368 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
5369 | } | |
5370 | asym->section = &mips_elf_scom_section; | |
5371 | asym->value = elfsym->internal_elf_sym.st_size; | |
5372 | break; | |
5373 | ||
5374 | case SHN_MIPS_SUNDEFINED: | |
5375 | asym->section = bfd_und_section_ptr; | |
5376 | break; | |
5377 | ||
b49e97c9 | 5378 | case SHN_MIPS_TEXT: |
00b4930b TS |
5379 | { |
5380 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
5381 | ||
5382 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5383 | if (section != NULL) | |
5384 | { | |
5385 | asym->section = section; | |
5386 | /* MIPS_TEXT is a bit special, the address is not an offset | |
5387 | to the base of the .text section. So substract the section | |
5388 | base address to make it an offset. */ | |
5389 | asym->value -= section->vma; | |
5390 | } | |
5391 | } | |
b49e97c9 TS |
5392 | break; |
5393 | ||
5394 | case SHN_MIPS_DATA: | |
00b4930b TS |
5395 | { |
5396 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
5397 | ||
5398 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5399 | if (section != NULL) | |
5400 | { | |
5401 | asym->section = section; | |
5402 | /* MIPS_DATA is a bit special, the address is not an offset | |
5403 | to the base of the .data section. So substract the section | |
5404 | base address to make it an offset. */ | |
5405 | asym->value -= section->vma; | |
5406 | } | |
5407 | } | |
b49e97c9 | 5408 | break; |
b49e97c9 TS |
5409 | } |
5410 | } | |
5411 | \f | |
8c946ed5 RS |
5412 | /* Implement elf_backend_eh_frame_address_size. This differs from |
5413 | the default in the way it handles EABI64. | |
5414 | ||
5415 | EABI64 was originally specified as an LP64 ABI, and that is what | |
5416 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
5417 | historically accepted the combination of -mabi=eabi and -mlong32, | |
5418 | and this ILP32 variation has become semi-official over time. | |
5419 | Both forms use elf32 and have pointer-sized FDE addresses. | |
5420 | ||
5421 | If an EABI object was generated by GCC 4.0 or above, it will have | |
5422 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
5423 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
5424 | have no special marking to distinguish them from LP64 objects. | |
5425 | ||
5426 | We don't want users of the official LP64 ABI to be punished for the | |
5427 | existence of the ILP32 variant, but at the same time, we don't want | |
5428 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
5429 | We therefore take the following approach: | |
5430 | ||
5431 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
5432 | determine the pointer size. | |
5433 | ||
5434 | - Otherwise check the type of the first relocation. Assume that | |
5435 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
5436 | ||
5437 | - Otherwise punt. | |
5438 | ||
5439 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
5440 | compilers because, in the kind of output generated by those compilers, | |
5441 | the first relocation will be associated with either a CIE personality | |
5442 | routine or an FDE start address. Furthermore, the compilers never | |
5443 | used a special (non-pointer) encoding for this ABI. | |
5444 | ||
5445 | Checking the relocation type should also be safe because there is no | |
5446 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
5447 | did so. */ | |
5448 | ||
5449 | unsigned int | |
5450 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
5451 | { | |
5452 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
5453 | return 8; | |
5454 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
5455 | { | |
5456 | bfd_boolean long32_p, long64_p; | |
5457 | ||
5458 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
5459 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
5460 | if (long32_p && long64_p) | |
5461 | return 0; | |
5462 | if (long32_p) | |
5463 | return 4; | |
5464 | if (long64_p) | |
5465 | return 8; | |
5466 | ||
5467 | if (sec->reloc_count > 0 | |
5468 | && elf_section_data (sec)->relocs != NULL | |
5469 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
5470 | == R_MIPS_64)) | |
5471 | return 8; | |
5472 | ||
5473 | return 0; | |
5474 | } | |
5475 | return 4; | |
5476 | } | |
5477 | \f | |
174fd7f9 RS |
5478 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
5479 | relocations against two unnamed section symbols to resolve to the | |
5480 | same address. For example, if we have code like: | |
5481 | ||
5482 | lw $4,%got_disp(.data)($gp) | |
5483 | lw $25,%got_disp(.text)($gp) | |
5484 | jalr $25 | |
5485 | ||
5486 | then the linker will resolve both relocations to .data and the program | |
5487 | will jump there rather than to .text. | |
5488 | ||
5489 | We can work around this problem by giving names to local section symbols. | |
5490 | This is also what the MIPSpro tools do. */ | |
5491 | ||
5492 | bfd_boolean | |
5493 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
5494 | { | |
5495 | return SGI_COMPAT (abfd); | |
5496 | } | |
5497 | \f | |
b49e97c9 TS |
5498 | /* Work over a section just before writing it out. This routine is |
5499 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
5500 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
5501 | a better way. */ | |
5502 | ||
b34976b6 | 5503 | bfd_boolean |
9719ad41 | 5504 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
5505 | { |
5506 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
5507 | && hdr->sh_size > 0) | |
5508 | { | |
5509 | bfd_byte buf[4]; | |
5510 | ||
5511 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
5512 | BFD_ASSERT (hdr->contents == NULL); | |
5513 | ||
5514 | if (bfd_seek (abfd, | |
5515 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
5516 | SEEK_SET) != 0) | |
b34976b6 | 5517 | return FALSE; |
b49e97c9 | 5518 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5519 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5520 | return FALSE; |
b49e97c9 TS |
5521 | } |
5522 | ||
5523 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
5524 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
5525 | && mips_elf_section_data (hdr->bfd_section) != NULL |
5526 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
5527 | { |
5528 | bfd_byte *contents, *l, *lend; | |
5529 | ||
f0abc2a1 AM |
5530 | /* We stored the section contents in the tdata field in the |
5531 | set_section_contents routine. We save the section contents | |
5532 | so that we don't have to read them again. | |
b49e97c9 TS |
5533 | At this point we know that elf_gp is set, so we can look |
5534 | through the section contents to see if there is an | |
5535 | ODK_REGINFO structure. */ | |
5536 | ||
f0abc2a1 | 5537 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
5538 | l = contents; |
5539 | lend = contents + hdr->sh_size; | |
5540 | while (l + sizeof (Elf_External_Options) <= lend) | |
5541 | { | |
5542 | Elf_Internal_Options intopt; | |
5543 | ||
5544 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5545 | &intopt); | |
1bc8074d MR |
5546 | if (intopt.size < sizeof (Elf_External_Options)) |
5547 | { | |
5548 | (*_bfd_error_handler) | |
5549 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5550 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5551 | break; | |
5552 | } | |
b49e97c9 TS |
5553 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5554 | { | |
5555 | bfd_byte buf[8]; | |
5556 | ||
5557 | if (bfd_seek (abfd, | |
5558 | (hdr->sh_offset | |
5559 | + (l - contents) | |
5560 | + sizeof (Elf_External_Options) | |
5561 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
5562 | SEEK_SET) != 0) | |
b34976b6 | 5563 | return FALSE; |
b49e97c9 | 5564 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5565 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 5566 | return FALSE; |
b49e97c9 TS |
5567 | } |
5568 | else if (intopt.kind == ODK_REGINFO) | |
5569 | { | |
5570 | bfd_byte buf[4]; | |
5571 | ||
5572 | if (bfd_seek (abfd, | |
5573 | (hdr->sh_offset | |
5574 | + (l - contents) | |
5575 | + sizeof (Elf_External_Options) | |
5576 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
5577 | SEEK_SET) != 0) | |
b34976b6 | 5578 | return FALSE; |
b49e97c9 | 5579 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5580 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5581 | return FALSE; |
b49e97c9 TS |
5582 | } |
5583 | l += intopt.size; | |
5584 | } | |
5585 | } | |
5586 | ||
5587 | if (hdr->bfd_section != NULL) | |
5588 | { | |
5589 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
5590 | ||
5591 | if (strcmp (name, ".sdata") == 0 | |
5592 | || strcmp (name, ".lit8") == 0 | |
5593 | || strcmp (name, ".lit4") == 0) | |
5594 | { | |
5595 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5596 | hdr->sh_type = SHT_PROGBITS; | |
5597 | } | |
5598 | else if (strcmp (name, ".sbss") == 0) | |
5599 | { | |
5600 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5601 | hdr->sh_type = SHT_NOBITS; | |
5602 | } | |
5603 | else if (strcmp (name, ".srdata") == 0) | |
5604 | { | |
5605 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
5606 | hdr->sh_type = SHT_PROGBITS; | |
5607 | } | |
5608 | else if (strcmp (name, ".compact_rel") == 0) | |
5609 | { | |
5610 | hdr->sh_flags = 0; | |
5611 | hdr->sh_type = SHT_PROGBITS; | |
5612 | } | |
5613 | else if (strcmp (name, ".rtproc") == 0) | |
5614 | { | |
5615 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
5616 | { | |
5617 | unsigned int adjust; | |
5618 | ||
5619 | adjust = hdr->sh_size % hdr->sh_addralign; | |
5620 | if (adjust != 0) | |
5621 | hdr->sh_size += hdr->sh_addralign - adjust; | |
5622 | } | |
5623 | } | |
5624 | } | |
5625 | ||
b34976b6 | 5626 | return TRUE; |
b49e97c9 TS |
5627 | } |
5628 | ||
5629 | /* Handle a MIPS specific section when reading an object file. This | |
5630 | is called when elfcode.h finds a section with an unknown type. | |
5631 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
5632 | ||
5633 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
5634 | how to. */ | |
5635 | ||
b34976b6 | 5636 | bfd_boolean |
6dc132d9 L |
5637 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
5638 | Elf_Internal_Shdr *hdr, | |
5639 | const char *name, | |
5640 | int shindex) | |
b49e97c9 TS |
5641 | { |
5642 | flagword flags = 0; | |
5643 | ||
5644 | /* There ought to be a place to keep ELF backend specific flags, but | |
5645 | at the moment there isn't one. We just keep track of the | |
5646 | sections by their name, instead. Fortunately, the ABI gives | |
5647 | suggested names for all the MIPS specific sections, so we will | |
5648 | probably get away with this. */ | |
5649 | switch (hdr->sh_type) | |
5650 | { | |
5651 | case SHT_MIPS_LIBLIST: | |
5652 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 5653 | return FALSE; |
b49e97c9 TS |
5654 | break; |
5655 | case SHT_MIPS_MSYM: | |
5656 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 5657 | return FALSE; |
b49e97c9 TS |
5658 | break; |
5659 | case SHT_MIPS_CONFLICT: | |
5660 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 5661 | return FALSE; |
b49e97c9 TS |
5662 | break; |
5663 | case SHT_MIPS_GPTAB: | |
0112cd26 | 5664 | if (! CONST_STRNEQ (name, ".gptab.")) |
b34976b6 | 5665 | return FALSE; |
b49e97c9 TS |
5666 | break; |
5667 | case SHT_MIPS_UCODE: | |
5668 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 5669 | return FALSE; |
b49e97c9 TS |
5670 | break; |
5671 | case SHT_MIPS_DEBUG: | |
5672 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 5673 | return FALSE; |
b49e97c9 TS |
5674 | flags = SEC_DEBUGGING; |
5675 | break; | |
5676 | case SHT_MIPS_REGINFO: | |
5677 | if (strcmp (name, ".reginfo") != 0 | |
5678 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 5679 | return FALSE; |
b49e97c9 TS |
5680 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
5681 | break; | |
5682 | case SHT_MIPS_IFACE: | |
5683 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 5684 | return FALSE; |
b49e97c9 TS |
5685 | break; |
5686 | case SHT_MIPS_CONTENT: | |
0112cd26 | 5687 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
b34976b6 | 5688 | return FALSE; |
b49e97c9 TS |
5689 | break; |
5690 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 5691 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 5692 | return FALSE; |
b49e97c9 TS |
5693 | break; |
5694 | case SHT_MIPS_DWARF: | |
0112cd26 | 5695 | if (! CONST_STRNEQ (name, ".debug_")) |
b34976b6 | 5696 | return FALSE; |
b49e97c9 TS |
5697 | break; |
5698 | case SHT_MIPS_SYMBOL_LIB: | |
5699 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 5700 | return FALSE; |
b49e97c9 TS |
5701 | break; |
5702 | case SHT_MIPS_EVENTS: | |
0112cd26 NC |
5703 | if (! CONST_STRNEQ (name, ".MIPS.events") |
5704 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b34976b6 | 5705 | return FALSE; |
b49e97c9 TS |
5706 | break; |
5707 | default: | |
cc2e31b9 | 5708 | break; |
b49e97c9 TS |
5709 | } |
5710 | ||
6dc132d9 | 5711 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 5712 | return FALSE; |
b49e97c9 TS |
5713 | |
5714 | if (flags) | |
5715 | { | |
5716 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
5717 | (bfd_get_section_flags (abfd, | |
5718 | hdr->bfd_section) | |
5719 | | flags))) | |
b34976b6 | 5720 | return FALSE; |
b49e97c9 TS |
5721 | } |
5722 | ||
5723 | /* FIXME: We should record sh_info for a .gptab section. */ | |
5724 | ||
5725 | /* For a .reginfo section, set the gp value in the tdata information | |
5726 | from the contents of this section. We need the gp value while | |
5727 | processing relocs, so we just get it now. The .reginfo section | |
5728 | is not used in the 64-bit MIPS ELF ABI. */ | |
5729 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
5730 | { | |
5731 | Elf32_External_RegInfo ext; | |
5732 | Elf32_RegInfo s; | |
5733 | ||
9719ad41 RS |
5734 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
5735 | &ext, 0, sizeof ext)) | |
b34976b6 | 5736 | return FALSE; |
b49e97c9 TS |
5737 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
5738 | elf_gp (abfd) = s.ri_gp_value; | |
5739 | } | |
5740 | ||
5741 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
5742 | set the gp value based on what we find. We may see both | |
5743 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
5744 | they should agree. */ | |
5745 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
5746 | { | |
5747 | bfd_byte *contents, *l, *lend; | |
5748 | ||
9719ad41 | 5749 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 5750 | if (contents == NULL) |
b34976b6 | 5751 | return FALSE; |
b49e97c9 | 5752 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 5753 | 0, hdr->sh_size)) |
b49e97c9 TS |
5754 | { |
5755 | free (contents); | |
b34976b6 | 5756 | return FALSE; |
b49e97c9 TS |
5757 | } |
5758 | l = contents; | |
5759 | lend = contents + hdr->sh_size; | |
5760 | while (l + sizeof (Elf_External_Options) <= lend) | |
5761 | { | |
5762 | Elf_Internal_Options intopt; | |
5763 | ||
5764 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5765 | &intopt); | |
1bc8074d MR |
5766 | if (intopt.size < sizeof (Elf_External_Options)) |
5767 | { | |
5768 | (*_bfd_error_handler) | |
5769 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5770 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5771 | break; | |
5772 | } | |
b49e97c9 TS |
5773 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5774 | { | |
5775 | Elf64_Internal_RegInfo intreg; | |
5776 | ||
5777 | bfd_mips_elf64_swap_reginfo_in | |
5778 | (abfd, | |
5779 | ((Elf64_External_RegInfo *) | |
5780 | (l + sizeof (Elf_External_Options))), | |
5781 | &intreg); | |
5782 | elf_gp (abfd) = intreg.ri_gp_value; | |
5783 | } | |
5784 | else if (intopt.kind == ODK_REGINFO) | |
5785 | { | |
5786 | Elf32_RegInfo intreg; | |
5787 | ||
5788 | bfd_mips_elf32_swap_reginfo_in | |
5789 | (abfd, | |
5790 | ((Elf32_External_RegInfo *) | |
5791 | (l + sizeof (Elf_External_Options))), | |
5792 | &intreg); | |
5793 | elf_gp (abfd) = intreg.ri_gp_value; | |
5794 | } | |
5795 | l += intopt.size; | |
5796 | } | |
5797 | free (contents); | |
5798 | } | |
5799 | ||
b34976b6 | 5800 | return TRUE; |
b49e97c9 TS |
5801 | } |
5802 | ||
5803 | /* Set the correct type for a MIPS ELF section. We do this by the | |
5804 | section name, which is a hack, but ought to work. This routine is | |
5805 | used by both the 32-bit and the 64-bit ABI. */ | |
5806 | ||
b34976b6 | 5807 | bfd_boolean |
9719ad41 | 5808 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 | 5809 | { |
0414f35b | 5810 | const char *name = bfd_get_section_name (abfd, sec); |
b49e97c9 TS |
5811 | |
5812 | if (strcmp (name, ".liblist") == 0) | |
5813 | { | |
5814 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 5815 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
5816 | /* The sh_link field is set in final_write_processing. */ |
5817 | } | |
5818 | else if (strcmp (name, ".conflict") == 0) | |
5819 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
0112cd26 | 5820 | else if (CONST_STRNEQ (name, ".gptab.")) |
b49e97c9 TS |
5821 | { |
5822 | hdr->sh_type = SHT_MIPS_GPTAB; | |
5823 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
5824 | /* The sh_info field is set in final_write_processing. */ | |
5825 | } | |
5826 | else if (strcmp (name, ".ucode") == 0) | |
5827 | hdr->sh_type = SHT_MIPS_UCODE; | |
5828 | else if (strcmp (name, ".mdebug") == 0) | |
5829 | { | |
5830 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 5831 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
5832 | entsize of 0. FIXME: Does this matter? */ |
5833 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
5834 | hdr->sh_entsize = 0; | |
5835 | else | |
5836 | hdr->sh_entsize = 1; | |
5837 | } | |
5838 | else if (strcmp (name, ".reginfo") == 0) | |
5839 | { | |
5840 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 5841 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
5842 | entsize of 0x18. FIXME: Does this matter? */ |
5843 | if (SGI_COMPAT (abfd)) | |
5844 | { | |
5845 | if ((abfd->flags & DYNAMIC) != 0) | |
5846 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5847 | else | |
5848 | hdr->sh_entsize = 1; | |
5849 | } | |
5850 | else | |
5851 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5852 | } | |
5853 | else if (SGI_COMPAT (abfd) | |
5854 | && (strcmp (name, ".hash") == 0 | |
5855 | || strcmp (name, ".dynamic") == 0 | |
5856 | || strcmp (name, ".dynstr") == 0)) | |
5857 | { | |
5858 | if (SGI_COMPAT (abfd)) | |
5859 | hdr->sh_entsize = 0; | |
5860 | #if 0 | |
8dc1a139 | 5861 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
5862 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
5863 | #endif | |
5864 | } | |
5865 | else if (strcmp (name, ".got") == 0 | |
5866 | || strcmp (name, ".srdata") == 0 | |
5867 | || strcmp (name, ".sdata") == 0 | |
5868 | || strcmp (name, ".sbss") == 0 | |
5869 | || strcmp (name, ".lit4") == 0 | |
5870 | || strcmp (name, ".lit8") == 0) | |
5871 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
5872 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
5873 | { | |
5874 | hdr->sh_type = SHT_MIPS_IFACE; | |
5875 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5876 | } | |
0112cd26 | 5877 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
b49e97c9 TS |
5878 | { |
5879 | hdr->sh_type = SHT_MIPS_CONTENT; | |
5880 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5881 | /* The sh_info field is set in final_write_processing. */ | |
5882 | } | |
cc2e31b9 | 5883 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
5884 | { |
5885 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
5886 | hdr->sh_entsize = 1; | |
5887 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5888 | } | |
0112cd26 | 5889 | else if (CONST_STRNEQ (name, ".debug_")) |
b5482f21 NC |
5890 | { |
5891 | hdr->sh_type = SHT_MIPS_DWARF; | |
5892 | ||
5893 | /* Irix facilities such as libexc expect a single .debug_frame | |
5894 | per executable, the system ones have NOSTRIP set and the linker | |
5895 | doesn't merge sections with different flags so ... */ | |
5896 | if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) | |
5897 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5898 | } | |
b49e97c9 TS |
5899 | else if (strcmp (name, ".MIPS.symlib") == 0) |
5900 | { | |
5901 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
5902 | /* The sh_link and sh_info fields are set in | |
5903 | final_write_processing. */ | |
5904 | } | |
0112cd26 NC |
5905 | else if (CONST_STRNEQ (name, ".MIPS.events") |
5906 | || CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b49e97c9 TS |
5907 | { |
5908 | hdr->sh_type = SHT_MIPS_EVENTS; | |
5909 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5910 | /* The sh_link field is set in final_write_processing. */ | |
5911 | } | |
5912 | else if (strcmp (name, ".msym") == 0) | |
5913 | { | |
5914 | hdr->sh_type = SHT_MIPS_MSYM; | |
5915 | hdr->sh_flags |= SHF_ALLOC; | |
5916 | hdr->sh_entsize = 8; | |
5917 | } | |
5918 | ||
7a79a000 TS |
5919 | /* The generic elf_fake_sections will set up REL_HDR using the default |
5920 | kind of relocations. We used to set up a second header for the | |
5921 | non-default kind of relocations here, but only NewABI would use | |
5922 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
5923 | Thus we create those header only on demand now. */ | |
b49e97c9 | 5924 | |
b34976b6 | 5925 | return TRUE; |
b49e97c9 TS |
5926 | } |
5927 | ||
5928 | /* Given a BFD section, try to locate the corresponding ELF section | |
5929 | index. This is used by both the 32-bit and the 64-bit ABI. | |
5930 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
5931 | but for non-PIC objects we will certainly want support for at least | |
5932 | the .scommon section. */ | |
5933 | ||
b34976b6 | 5934 | bfd_boolean |
9719ad41 RS |
5935 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
5936 | asection *sec, int *retval) | |
b49e97c9 TS |
5937 | { |
5938 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
5939 | { | |
5940 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 5941 | return TRUE; |
b49e97c9 TS |
5942 | } |
5943 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
5944 | { | |
5945 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 5946 | return TRUE; |
b49e97c9 | 5947 | } |
b34976b6 | 5948 | return FALSE; |
b49e97c9 TS |
5949 | } |
5950 | \f | |
5951 | /* Hook called by the linker routine which adds symbols from an object | |
5952 | file. We must handle the special MIPS section numbers here. */ | |
5953 | ||
b34976b6 | 5954 | bfd_boolean |
9719ad41 | 5955 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 5956 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
5957 | flagword *flagsp ATTRIBUTE_UNUSED, |
5958 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
5959 | { |
5960 | if (SGI_COMPAT (abfd) | |
5961 | && (abfd->flags & DYNAMIC) != 0 | |
5962 | && strcmp (*namep, "_rld_new_interface") == 0) | |
5963 | { | |
8dc1a139 | 5964 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 5965 | *namep = NULL; |
b34976b6 | 5966 | return TRUE; |
b49e97c9 TS |
5967 | } |
5968 | ||
eedecc07 DD |
5969 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
5970 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
5971 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
5972 | a magic symbol resolved by the linker, we ignore this bogus definition | |
5973 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
5974 | is not done for them. */ | |
5975 | if (!NEWABI_P(abfd) | |
5976 | && (sym->st_shndx == SHN_ABS) | |
5977 | && (strcmp (*namep, "_gp_disp") == 0)) | |
5978 | { | |
5979 | *namep = NULL; | |
5980 | return TRUE; | |
5981 | } | |
5982 | ||
b49e97c9 TS |
5983 | switch (sym->st_shndx) |
5984 | { | |
5985 | case SHN_COMMON: | |
5986 | /* Common symbols less than the GP size are automatically | |
5987 | treated as SHN_MIPS_SCOMMON symbols. */ | |
5988 | if (sym->st_size > elf_gp_size (abfd) | |
b59eed79 | 5989 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
b49e97c9 TS |
5990 | || IRIX_COMPAT (abfd) == ict_irix6) |
5991 | break; | |
5992 | /* Fall through. */ | |
5993 | case SHN_MIPS_SCOMMON: | |
5994 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
5995 | (*secp)->flags |= SEC_IS_COMMON; | |
5996 | *valp = sym->st_size; | |
5997 | break; | |
5998 | ||
5999 | case SHN_MIPS_TEXT: | |
6000 | /* This section is used in a shared object. */ | |
6001 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
6002 | { | |
6003 | asymbol *elf_text_symbol; | |
6004 | asection *elf_text_section; | |
6005 | bfd_size_type amt = sizeof (asection); | |
6006 | ||
6007 | elf_text_section = bfd_zalloc (abfd, amt); | |
6008 | if (elf_text_section == NULL) | |
b34976b6 | 6009 | return FALSE; |
b49e97c9 TS |
6010 | |
6011 | amt = sizeof (asymbol); | |
6012 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
6013 | if (elf_text_symbol == NULL) | |
b34976b6 | 6014 | return FALSE; |
b49e97c9 TS |
6015 | |
6016 | /* Initialize the section. */ | |
6017 | ||
6018 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
6019 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
6020 | ||
6021 | elf_text_section->symbol = elf_text_symbol; | |
6022 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
6023 | ||
6024 | elf_text_section->name = ".text"; | |
6025 | elf_text_section->flags = SEC_NO_FLAGS; | |
6026 | elf_text_section->output_section = NULL; | |
6027 | elf_text_section->owner = abfd; | |
6028 | elf_text_symbol->name = ".text"; | |
6029 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
6030 | elf_text_symbol->section = elf_text_section; | |
6031 | } | |
6032 | /* This code used to do *secp = bfd_und_section_ptr if | |
6033 | info->shared. I don't know why, and that doesn't make sense, | |
6034 | so I took it out. */ | |
6035 | *secp = elf_tdata (abfd)->elf_text_section; | |
6036 | break; | |
6037 | ||
6038 | case SHN_MIPS_ACOMMON: | |
6039 | /* Fall through. XXX Can we treat this as allocated data? */ | |
6040 | case SHN_MIPS_DATA: | |
6041 | /* This section is used in a shared object. */ | |
6042 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
6043 | { | |
6044 | asymbol *elf_data_symbol; | |
6045 | asection *elf_data_section; | |
6046 | bfd_size_type amt = sizeof (asection); | |
6047 | ||
6048 | elf_data_section = bfd_zalloc (abfd, amt); | |
6049 | if (elf_data_section == NULL) | |
b34976b6 | 6050 | return FALSE; |
b49e97c9 TS |
6051 | |
6052 | amt = sizeof (asymbol); | |
6053 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
6054 | if (elf_data_symbol == NULL) | |
b34976b6 | 6055 | return FALSE; |
b49e97c9 TS |
6056 | |
6057 | /* Initialize the section. */ | |
6058 | ||
6059 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
6060 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
6061 | ||
6062 | elf_data_section->symbol = elf_data_symbol; | |
6063 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
6064 | ||
6065 | elf_data_section->name = ".data"; | |
6066 | elf_data_section->flags = SEC_NO_FLAGS; | |
6067 | elf_data_section->output_section = NULL; | |
6068 | elf_data_section->owner = abfd; | |
6069 | elf_data_symbol->name = ".data"; | |
6070 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
6071 | elf_data_symbol->section = elf_data_section; | |
6072 | } | |
6073 | /* This code used to do *secp = bfd_und_section_ptr if | |
6074 | info->shared. I don't know why, and that doesn't make sense, | |
6075 | so I took it out. */ | |
6076 | *secp = elf_tdata (abfd)->elf_data_section; | |
6077 | break; | |
6078 | ||
6079 | case SHN_MIPS_SUNDEFINED: | |
6080 | *secp = bfd_und_section_ptr; | |
6081 | break; | |
6082 | } | |
6083 | ||
6084 | if (SGI_COMPAT (abfd) | |
6085 | && ! info->shared | |
6086 | && info->hash->creator == abfd->xvec | |
6087 | && strcmp (*namep, "__rld_obj_head") == 0) | |
6088 | { | |
6089 | struct elf_link_hash_entry *h; | |
14a793b2 | 6090 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
6091 | |
6092 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 6093 | bh = NULL; |
b49e97c9 | 6094 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 6095 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 6096 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6097 | return FALSE; |
14a793b2 AM |
6098 | |
6099 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6100 | h->non_elf = 0; |
6101 | h->def_regular = 1; | |
b49e97c9 TS |
6102 | h->type = STT_OBJECT; |
6103 | ||
c152c796 | 6104 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6105 | return FALSE; |
b49e97c9 | 6106 | |
b34976b6 | 6107 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
6108 | } |
6109 | ||
6110 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
6111 | odd. This will cause something like .word SYM to come up with | |
6112 | the right value when it is loaded into the PC. */ | |
6113 | if (sym->st_other == STO_MIPS16) | |
6114 | ++*valp; | |
6115 | ||
b34976b6 | 6116 | return TRUE; |
b49e97c9 TS |
6117 | } |
6118 | ||
6119 | /* This hook function is called before the linker writes out a global | |
6120 | symbol. We mark symbols as small common if appropriate. This is | |
6121 | also where we undo the increment of the value for a mips16 symbol. */ | |
6122 | ||
b34976b6 | 6123 | bfd_boolean |
9719ad41 RS |
6124 | _bfd_mips_elf_link_output_symbol_hook |
6125 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
6126 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
6127 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
6128 | { |
6129 | /* If we see a common symbol, which implies a relocatable link, then | |
6130 | if a symbol was small common in an input file, mark it as small | |
6131 | common in the output file. */ | |
6132 | if (sym->st_shndx == SHN_COMMON | |
6133 | && strcmp (input_sec->name, ".scommon") == 0) | |
6134 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
6135 | ||
79cda7cf FF |
6136 | if (sym->st_other == STO_MIPS16) |
6137 | sym->st_value &= ~1; | |
b49e97c9 | 6138 | |
b34976b6 | 6139 | return TRUE; |
b49e97c9 TS |
6140 | } |
6141 | \f | |
6142 | /* Functions for the dynamic linker. */ | |
6143 | ||
6144 | /* Create dynamic sections when linking against a dynamic object. */ | |
6145 | ||
b34976b6 | 6146 | bfd_boolean |
9719ad41 | 6147 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
6148 | { |
6149 | struct elf_link_hash_entry *h; | |
14a793b2 | 6150 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
6151 | flagword flags; |
6152 | register asection *s; | |
6153 | const char * const *namep; | |
0a44bf69 | 6154 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6155 | |
0a44bf69 | 6156 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6157 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
6158 | | SEC_LINKER_CREATED | SEC_READONLY); | |
6159 | ||
0a44bf69 RS |
6160 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
6161 | EABI doesn't. */ | |
6162 | if (!htab->is_vxworks) | |
b49e97c9 | 6163 | { |
0a44bf69 RS |
6164 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
6165 | if (s != NULL) | |
6166 | { | |
6167 | if (! bfd_set_section_flags (abfd, s, flags)) | |
6168 | return FALSE; | |
6169 | } | |
b49e97c9 TS |
6170 | } |
6171 | ||
6172 | /* We need to create .got section. */ | |
f4416af6 AO |
6173 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
6174 | return FALSE; | |
6175 | ||
0a44bf69 | 6176 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 6177 | return FALSE; |
b49e97c9 | 6178 | |
b49e97c9 TS |
6179 | /* Create .stub section. */ |
6180 | if (bfd_get_section_by_name (abfd, | |
6181 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
6182 | { | |
3496cb2a L |
6183 | s = bfd_make_section_with_flags (abfd, |
6184 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
6185 | flags | SEC_CODE); | |
b49e97c9 | 6186 | if (s == NULL |
b49e97c9 TS |
6187 | || ! bfd_set_section_alignment (abfd, s, |
6188 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 6189 | return FALSE; |
b49e97c9 TS |
6190 | } |
6191 | ||
6192 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
6193 | && !info->shared | |
6194 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
6195 | { | |
3496cb2a L |
6196 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
6197 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 6198 | if (s == NULL |
b49e97c9 TS |
6199 | || ! bfd_set_section_alignment (abfd, s, |
6200 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 6201 | return FALSE; |
b49e97c9 TS |
6202 | } |
6203 | ||
6204 | /* On IRIX5, we adjust add some additional symbols and change the | |
6205 | alignments of several sections. There is no ABI documentation | |
6206 | indicating that this is necessary on IRIX6, nor any evidence that | |
6207 | the linker takes such action. */ | |
6208 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
6209 | { | |
6210 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
6211 | { | |
14a793b2 | 6212 | bh = NULL; |
b49e97c9 | 6213 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
6214 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
6215 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 6216 | return FALSE; |
14a793b2 AM |
6217 | |
6218 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6219 | h->non_elf = 0; |
6220 | h->def_regular = 1; | |
b49e97c9 TS |
6221 | h->type = STT_SECTION; |
6222 | ||
c152c796 | 6223 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6224 | return FALSE; |
b49e97c9 TS |
6225 | } |
6226 | ||
6227 | /* We need to create a .compact_rel section. */ | |
6228 | if (SGI_COMPAT (abfd)) | |
6229 | { | |
6230 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 6231 | return FALSE; |
b49e97c9 TS |
6232 | } |
6233 | ||
44c410de | 6234 | /* Change alignments of some sections. */ |
b49e97c9 TS |
6235 | s = bfd_get_section_by_name (abfd, ".hash"); |
6236 | if (s != NULL) | |
d80dcc6a | 6237 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6238 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
6239 | if (s != NULL) | |
d80dcc6a | 6240 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6241 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
6242 | if (s != NULL) | |
d80dcc6a | 6243 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6244 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
6245 | if (s != NULL) | |
d80dcc6a | 6246 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6247 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
6248 | if (s != NULL) | |
d80dcc6a | 6249 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6250 | } |
6251 | ||
6252 | if (!info->shared) | |
6253 | { | |
14a793b2 AM |
6254 | const char *name; |
6255 | ||
6256 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
6257 | bh = NULL; | |
6258 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
6259 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
6260 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 6261 | return FALSE; |
14a793b2 AM |
6262 | |
6263 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6264 | h->non_elf = 0; |
6265 | h->def_regular = 1; | |
b49e97c9 TS |
6266 | h->type = STT_SECTION; |
6267 | ||
c152c796 | 6268 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6269 | return FALSE; |
b49e97c9 TS |
6270 | |
6271 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
6272 | { | |
6273 | /* __rld_map is a four byte word located in the .data section | |
6274 | and is filled in by the rtld to contain a pointer to | |
6275 | the _r_debug structure. Its symbol value will be set in | |
6276 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
6277 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
6278 | BFD_ASSERT (s != NULL); | |
6279 | ||
14a793b2 AM |
6280 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
6281 | bh = NULL; | |
6282 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 6283 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 6284 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6285 | return FALSE; |
14a793b2 AM |
6286 | |
6287 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6288 | h->non_elf = 0; |
6289 | h->def_regular = 1; | |
b49e97c9 TS |
6290 | h->type = STT_OBJECT; |
6291 | ||
c152c796 | 6292 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6293 | return FALSE; |
b49e97c9 TS |
6294 | } |
6295 | } | |
6296 | ||
0a44bf69 RS |
6297 | if (htab->is_vxworks) |
6298 | { | |
6299 | /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections. | |
6300 | Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ | |
6301 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) | |
6302 | return FALSE; | |
6303 | ||
6304 | /* Cache the sections created above. */ | |
6305 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); | |
6306 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); | |
6307 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); | |
6308 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); | |
6309 | if (!htab->sdynbss | |
6310 | || (!htab->srelbss && !info->shared) | |
6311 | || !htab->srelplt | |
6312 | || !htab->splt) | |
6313 | abort (); | |
6314 | ||
6315 | /* Do the usual VxWorks handling. */ | |
6316 | if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
6317 | return FALSE; | |
6318 | ||
6319 | /* Work out the PLT sizes. */ | |
6320 | if (info->shared) | |
6321 | { | |
6322 | htab->plt_header_size | |
6323 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
6324 | htab->plt_entry_size | |
6325 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
6326 | } | |
6327 | else | |
6328 | { | |
6329 | htab->plt_header_size | |
6330 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
6331 | htab->plt_entry_size | |
6332 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
6333 | } | |
6334 | } | |
6335 | ||
b34976b6 | 6336 | return TRUE; |
b49e97c9 TS |
6337 | } |
6338 | \f | |
c224138d RS |
6339 | /* Return true if relocation REL against section SEC is a REL rather than |
6340 | RELA relocation. RELOCS is the first relocation in the section and | |
6341 | ABFD is the bfd that contains SEC. */ | |
6342 | ||
6343 | static bfd_boolean | |
6344 | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, | |
6345 | const Elf_Internal_Rela *relocs, | |
6346 | const Elf_Internal_Rela *rel) | |
6347 | { | |
6348 | Elf_Internal_Shdr *rel_hdr; | |
6349 | const struct elf_backend_data *bed; | |
6350 | ||
6351 | /* To determine which flavor or relocation this is, we depend on the | |
6352 | fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */ | |
6353 | rel_hdr = &elf_section_data (sec)->rel_hdr; | |
6354 | bed = get_elf_backend_data (abfd); | |
6355 | if ((size_t) (rel - relocs) | |
6356 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
6357 | rel_hdr = elf_section_data (sec)->rel_hdr2; | |
6358 | return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd); | |
6359 | } | |
6360 | ||
6361 | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. | |
6362 | HOWTO is the relocation's howto and CONTENTS points to the contents | |
6363 | of the section that REL is against. */ | |
6364 | ||
6365 | static bfd_vma | |
6366 | mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, | |
6367 | reloc_howto_type *howto, bfd_byte *contents) | |
6368 | { | |
6369 | bfd_byte *location; | |
6370 | unsigned int r_type; | |
6371 | bfd_vma addend; | |
6372 | ||
6373 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
6374 | location = contents + rel->r_offset; | |
6375 | ||
6376 | /* Get the addend, which is stored in the input file. */ | |
6377 | _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location); | |
6378 | addend = mips_elf_obtain_contents (howto, rel, abfd, contents); | |
6379 | _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location); | |
6380 | ||
6381 | return addend & howto->src_mask; | |
6382 | } | |
6383 | ||
6384 | /* REL is a relocation in ABFD that needs a partnering LO16 relocation | |
6385 | and *ADDEND is the addend for REL itself. Look for the LO16 relocation | |
6386 | and update *ADDEND with the final addend. Return true on success | |
6387 | or false if the LO16 could not be found. RELEND is the exclusive | |
6388 | upper bound on the relocations for REL's section. */ | |
6389 | ||
6390 | static bfd_boolean | |
6391 | mips_elf_add_lo16_rel_addend (bfd *abfd, | |
6392 | const Elf_Internal_Rela *rel, | |
6393 | const Elf_Internal_Rela *relend, | |
6394 | bfd_byte *contents, bfd_vma *addend) | |
6395 | { | |
6396 | unsigned int r_type, lo16_type; | |
6397 | const Elf_Internal_Rela *lo16_relocation; | |
6398 | reloc_howto_type *lo16_howto; | |
6399 | bfd_vma l; | |
6400 | ||
6401 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
6402 | if (r_type == R_MIPS16_HI16) | |
6403 | lo16_type = R_MIPS16_LO16; | |
6404 | else | |
6405 | lo16_type = R_MIPS_LO16; | |
6406 | ||
6407 | /* The combined value is the sum of the HI16 addend, left-shifted by | |
6408 | sixteen bits, and the LO16 addend, sign extended. (Usually, the | |
6409 | code does a `lui' of the HI16 value, and then an `addiu' of the | |
6410 | LO16 value.) | |
6411 | ||
6412 | Scan ahead to find a matching LO16 relocation. | |
6413 | ||
6414 | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must | |
6415 | be immediately following. However, for the IRIX6 ABI, the next | |
6416 | relocation may be a composed relocation consisting of several | |
6417 | relocations for the same address. In that case, the R_MIPS_LO16 | |
6418 | relocation may occur as one of these. We permit a similar | |
6419 | extension in general, as that is useful for GCC. | |
6420 | ||
6421 | In some cases GCC dead code elimination removes the LO16 but keeps | |
6422 | the corresponding HI16. This is strictly speaking a violation of | |
6423 | the ABI but not immediately harmful. */ | |
6424 | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); | |
6425 | if (lo16_relocation == NULL) | |
6426 | return FALSE; | |
6427 | ||
6428 | /* Obtain the addend kept there. */ | |
6429 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); | |
6430 | l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); | |
6431 | ||
6432 | l <<= lo16_howto->rightshift; | |
6433 | l = _bfd_mips_elf_sign_extend (l, 16); | |
6434 | ||
6435 | *addend <<= 16; | |
6436 | *addend += l; | |
6437 | return TRUE; | |
6438 | } | |
6439 | ||
6440 | /* Try to read the contents of section SEC in bfd ABFD. Return true and | |
6441 | store the contents in *CONTENTS on success. Assume that *CONTENTS | |
6442 | already holds the contents if it is nonull on entry. */ | |
6443 | ||
6444 | static bfd_boolean | |
6445 | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) | |
6446 | { | |
6447 | if (*contents) | |
6448 | return TRUE; | |
6449 | ||
6450 | /* Get cached copy if it exists. */ | |
6451 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
6452 | { | |
6453 | *contents = elf_section_data (sec)->this_hdr.contents; | |
6454 | return TRUE; | |
6455 | } | |
6456 | ||
6457 | return bfd_malloc_and_get_section (abfd, sec, contents); | |
6458 | } | |
6459 | ||
b49e97c9 TS |
6460 | /* Look through the relocs for a section during the first phase, and |
6461 | allocate space in the global offset table. */ | |
6462 | ||
b34976b6 | 6463 | bfd_boolean |
9719ad41 RS |
6464 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
6465 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
6466 | { |
6467 | const char *name; | |
6468 | bfd *dynobj; | |
6469 | Elf_Internal_Shdr *symtab_hdr; | |
6470 | struct elf_link_hash_entry **sym_hashes; | |
6471 | struct mips_got_info *g; | |
6472 | size_t extsymoff; | |
6473 | const Elf_Internal_Rela *rel; | |
6474 | const Elf_Internal_Rela *rel_end; | |
6475 | asection *sgot; | |
6476 | asection *sreloc; | |
9c5bfbb7 | 6477 | const struct elf_backend_data *bed; |
0a44bf69 | 6478 | struct mips_elf_link_hash_table *htab; |
c224138d RS |
6479 | bfd_byte *contents; |
6480 | bfd_vma addend; | |
6481 | reloc_howto_type *howto; | |
b49e97c9 | 6482 | |
1049f94e | 6483 | if (info->relocatable) |
b34976b6 | 6484 | return TRUE; |
b49e97c9 | 6485 | |
0a44bf69 | 6486 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6487 | dynobj = elf_hash_table (info)->dynobj; |
6488 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6489 | sym_hashes = elf_sym_hashes (abfd); | |
6490 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6491 | ||
6492 | /* Check for the mips16 stub sections. */ | |
6493 | ||
6494 | name = bfd_get_section_name (abfd, sec); | |
b9d58d71 | 6495 | if (FN_STUB_P (name)) |
b49e97c9 TS |
6496 | { |
6497 | unsigned long r_symndx; | |
6498 | ||
6499 | /* Look at the relocation information to figure out which symbol | |
6500 | this is for. */ | |
6501 | ||
6502 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6503 | ||
6504 | if (r_symndx < extsymoff | |
6505 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6506 | { | |
6507 | asection *o; | |
6508 | ||
6509 | /* This stub is for a local symbol. This stub will only be | |
6510 | needed if there is some relocation in this BFD, other | |
6511 | than a 16 bit function call, which refers to this symbol. */ | |
6512 | for (o = abfd->sections; o != NULL; o = o->next) | |
6513 | { | |
6514 | Elf_Internal_Rela *sec_relocs; | |
6515 | const Elf_Internal_Rela *r, *rend; | |
6516 | ||
6517 | /* We can ignore stub sections when looking for relocs. */ | |
6518 | if ((o->flags & SEC_RELOC) == 0 | |
6519 | || o->reloc_count == 0 | |
b9d58d71 | 6520 | || mips16_stub_section_p (abfd, o)) |
b49e97c9 TS |
6521 | continue; |
6522 | ||
45d6a902 | 6523 | sec_relocs |
9719ad41 | 6524 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 6525 | info->keep_memory); |
b49e97c9 | 6526 | if (sec_relocs == NULL) |
b34976b6 | 6527 | return FALSE; |
b49e97c9 TS |
6528 | |
6529 | rend = sec_relocs + o->reloc_count; | |
6530 | for (r = sec_relocs; r < rend; r++) | |
6531 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
6532 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
6533 | break; | |
6534 | ||
6cdc0ccc | 6535 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
6536 | free (sec_relocs); |
6537 | ||
6538 | if (r < rend) | |
6539 | break; | |
6540 | } | |
6541 | ||
6542 | if (o == NULL) | |
6543 | { | |
6544 | /* There is no non-call reloc for this stub, so we do | |
6545 | not need it. Since this function is called before | |
6546 | the linker maps input sections to output sections, we | |
6547 | can easily discard it by setting the SEC_EXCLUDE | |
6548 | flag. */ | |
6549 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6550 | return TRUE; |
b49e97c9 TS |
6551 | } |
6552 | ||
6553 | /* Record this stub in an array of local symbol stubs for | |
6554 | this BFD. */ | |
6555 | if (elf_tdata (abfd)->local_stubs == NULL) | |
6556 | { | |
6557 | unsigned long symcount; | |
6558 | asection **n; | |
6559 | bfd_size_type amt; | |
6560 | ||
6561 | if (elf_bad_symtab (abfd)) | |
6562 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
6563 | else | |
6564 | symcount = symtab_hdr->sh_info; | |
6565 | amt = symcount * sizeof (asection *); | |
9719ad41 | 6566 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 6567 | if (n == NULL) |
b34976b6 | 6568 | return FALSE; |
b49e97c9 TS |
6569 | elf_tdata (abfd)->local_stubs = n; |
6570 | } | |
6571 | ||
b9d58d71 | 6572 | sec->flags |= SEC_KEEP; |
b49e97c9 TS |
6573 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
6574 | ||
6575 | /* We don't need to set mips16_stubs_seen in this case. | |
6576 | That flag is used to see whether we need to look through | |
6577 | the global symbol table for stubs. We don't need to set | |
6578 | it here, because we just have a local stub. */ | |
6579 | } | |
6580 | else | |
6581 | { | |
6582 | struct mips_elf_link_hash_entry *h; | |
6583 | ||
6584 | h = ((struct mips_elf_link_hash_entry *) | |
6585 | sym_hashes[r_symndx - extsymoff]); | |
6586 | ||
973a3492 L |
6587 | while (h->root.root.type == bfd_link_hash_indirect |
6588 | || h->root.root.type == bfd_link_hash_warning) | |
6589 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
6590 | ||
b49e97c9 TS |
6591 | /* H is the symbol this stub is for. */ |
6592 | ||
b9d58d71 TS |
6593 | /* If we already have an appropriate stub for this function, we |
6594 | don't need another one, so we can discard this one. Since | |
6595 | this function is called before the linker maps input sections | |
6596 | to output sections, we can easily discard it by setting the | |
6597 | SEC_EXCLUDE flag. */ | |
6598 | if (h->fn_stub != NULL) | |
6599 | { | |
6600 | sec->flags |= SEC_EXCLUDE; | |
6601 | return TRUE; | |
6602 | } | |
6603 | ||
6604 | sec->flags |= SEC_KEEP; | |
b49e97c9 | 6605 | h->fn_stub = sec; |
b34976b6 | 6606 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
6607 | } |
6608 | } | |
b9d58d71 | 6609 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
b49e97c9 TS |
6610 | { |
6611 | unsigned long r_symndx; | |
6612 | struct mips_elf_link_hash_entry *h; | |
6613 | asection **loc; | |
6614 | ||
6615 | /* Look at the relocation information to figure out which symbol | |
6616 | this is for. */ | |
6617 | ||
6618 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6619 | ||
6620 | if (r_symndx < extsymoff | |
6621 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6622 | { | |
b9d58d71 | 6623 | asection *o; |
b49e97c9 | 6624 | |
b9d58d71 TS |
6625 | /* This stub is for a local symbol. This stub will only be |
6626 | needed if there is some relocation (R_MIPS16_26) in this BFD | |
6627 | that refers to this symbol. */ | |
6628 | for (o = abfd->sections; o != NULL; o = o->next) | |
6629 | { | |
6630 | Elf_Internal_Rela *sec_relocs; | |
6631 | const Elf_Internal_Rela *r, *rend; | |
6632 | ||
6633 | /* We can ignore stub sections when looking for relocs. */ | |
6634 | if ((o->flags & SEC_RELOC) == 0 | |
6635 | || o->reloc_count == 0 | |
6636 | || mips16_stub_section_p (abfd, o)) | |
6637 | continue; | |
6638 | ||
6639 | sec_relocs | |
6640 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
6641 | info->keep_memory); | |
6642 | if (sec_relocs == NULL) | |
6643 | return FALSE; | |
6644 | ||
6645 | rend = sec_relocs + o->reloc_count; | |
6646 | for (r = sec_relocs; r < rend; r++) | |
6647 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
6648 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) | |
6649 | break; | |
6650 | ||
6651 | if (elf_section_data (o)->relocs != sec_relocs) | |
6652 | free (sec_relocs); | |
6653 | ||
6654 | if (r < rend) | |
6655 | break; | |
6656 | } | |
6657 | ||
6658 | if (o == NULL) | |
6659 | { | |
6660 | /* There is no non-call reloc for this stub, so we do | |
6661 | not need it. Since this function is called before | |
6662 | the linker maps input sections to output sections, we | |
6663 | can easily discard it by setting the SEC_EXCLUDE | |
6664 | flag. */ | |
6665 | sec->flags |= SEC_EXCLUDE; | |
6666 | return TRUE; | |
6667 | } | |
6668 | ||
6669 | /* Record this stub in an array of local symbol call_stubs for | |
6670 | this BFD. */ | |
6671 | if (elf_tdata (abfd)->local_call_stubs == NULL) | |
6672 | { | |
6673 | unsigned long symcount; | |
6674 | asection **n; | |
6675 | bfd_size_type amt; | |
6676 | ||
6677 | if (elf_bad_symtab (abfd)) | |
6678 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
6679 | else | |
6680 | symcount = symtab_hdr->sh_info; | |
6681 | amt = symcount * sizeof (asection *); | |
6682 | n = bfd_zalloc (abfd, amt); | |
6683 | if (n == NULL) | |
6684 | return FALSE; | |
6685 | elf_tdata (abfd)->local_call_stubs = n; | |
6686 | } | |
b49e97c9 | 6687 | |
b9d58d71 TS |
6688 | sec->flags |= SEC_KEEP; |
6689 | elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; | |
b49e97c9 | 6690 | |
b9d58d71 TS |
6691 | /* We don't need to set mips16_stubs_seen in this case. |
6692 | That flag is used to see whether we need to look through | |
6693 | the global symbol table for stubs. We don't need to set | |
6694 | it here, because we just have a local stub. */ | |
6695 | } | |
b49e97c9 | 6696 | else |
b49e97c9 | 6697 | { |
b9d58d71 TS |
6698 | h = ((struct mips_elf_link_hash_entry *) |
6699 | sym_hashes[r_symndx - extsymoff]); | |
6700 | ||
6701 | /* H is the symbol this stub is for. */ | |
6702 | ||
6703 | if (CALL_FP_STUB_P (name)) | |
6704 | loc = &h->call_fp_stub; | |
6705 | else | |
6706 | loc = &h->call_stub; | |
6707 | ||
6708 | /* If we already have an appropriate stub for this function, we | |
6709 | don't need another one, so we can discard this one. Since | |
6710 | this function is called before the linker maps input sections | |
6711 | to output sections, we can easily discard it by setting the | |
6712 | SEC_EXCLUDE flag. */ | |
6713 | if (*loc != NULL) | |
6714 | { | |
6715 | sec->flags |= SEC_EXCLUDE; | |
6716 | return TRUE; | |
6717 | } | |
b49e97c9 | 6718 | |
b9d58d71 TS |
6719 | sec->flags |= SEC_KEEP; |
6720 | *loc = sec; | |
6721 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; | |
6722 | } | |
b49e97c9 TS |
6723 | } |
6724 | ||
6725 | if (dynobj == NULL) | |
6726 | { | |
6727 | sgot = NULL; | |
6728 | g = NULL; | |
6729 | } | |
6730 | else | |
6731 | { | |
f4416af6 | 6732 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
6733 | if (sgot == NULL) |
6734 | g = NULL; | |
6735 | else | |
6736 | { | |
f0abc2a1 AM |
6737 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
6738 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
6739 | BFD_ASSERT (g != NULL); |
6740 | } | |
6741 | } | |
6742 | ||
6743 | sreloc = NULL; | |
6744 | bed = get_elf_backend_data (abfd); | |
6745 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
c224138d | 6746 | contents = NULL; |
b49e97c9 TS |
6747 | for (rel = relocs; rel < rel_end; ++rel) |
6748 | { | |
6749 | unsigned long r_symndx; | |
6750 | unsigned int r_type; | |
6751 | struct elf_link_hash_entry *h; | |
6752 | ||
6753 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
6754 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
6755 | ||
6756 | if (r_symndx < extsymoff) | |
6757 | h = NULL; | |
6758 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
6759 | { | |
6760 | (*_bfd_error_handler) | |
d003868e AM |
6761 | (_("%B: Malformed reloc detected for section %s"), |
6762 | abfd, name); | |
b49e97c9 | 6763 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6764 | return FALSE; |
b49e97c9 TS |
6765 | } |
6766 | else | |
6767 | { | |
6768 | h = sym_hashes[r_symndx - extsymoff]; | |
6769 | ||
6770 | /* This may be an indirect symbol created because of a version. */ | |
6771 | if (h != NULL) | |
6772 | { | |
6773 | while (h->root.type == bfd_link_hash_indirect) | |
6774 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
6775 | } | |
6776 | } | |
6777 | ||
6778 | /* Some relocs require a global offset table. */ | |
6779 | if (dynobj == NULL || sgot == NULL) | |
6780 | { | |
6781 | switch (r_type) | |
6782 | { | |
6783 | case R_MIPS_GOT16: | |
6784 | case R_MIPS_CALL16: | |
6785 | case R_MIPS_CALL_HI16: | |
6786 | case R_MIPS_CALL_LO16: | |
6787 | case R_MIPS_GOT_HI16: | |
6788 | case R_MIPS_GOT_LO16: | |
6789 | case R_MIPS_GOT_PAGE: | |
6790 | case R_MIPS_GOT_OFST: | |
6791 | case R_MIPS_GOT_DISP: | |
86324f90 | 6792 | case R_MIPS_TLS_GOTTPREL: |
0f20cc35 DJ |
6793 | case R_MIPS_TLS_GD: |
6794 | case R_MIPS_TLS_LDM: | |
b49e97c9 TS |
6795 | if (dynobj == NULL) |
6796 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 6797 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 6798 | return FALSE; |
b49e97c9 | 6799 | g = mips_elf_got_info (dynobj, &sgot); |
0a44bf69 RS |
6800 | if (htab->is_vxworks && !info->shared) |
6801 | { | |
6802 | (*_bfd_error_handler) | |
6803 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
6804 | abfd, (unsigned long) rel->r_offset); | |
6805 | bfd_set_error (bfd_error_bad_value); | |
6806 | return FALSE; | |
6807 | } | |
b49e97c9 TS |
6808 | break; |
6809 | ||
6810 | case R_MIPS_32: | |
6811 | case R_MIPS_REL32: | |
6812 | case R_MIPS_64: | |
0a44bf69 RS |
6813 | /* In VxWorks executables, references to external symbols |
6814 | are handled using copy relocs or PLT stubs, so there's | |
6815 | no need to add a dynamic relocation here. */ | |
b49e97c9 | 6816 | if (dynobj == NULL |
0a44bf69 | 6817 | && (info->shared || (h != NULL && !htab->is_vxworks)) |
b49e97c9 TS |
6818 | && (sec->flags & SEC_ALLOC) != 0) |
6819 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6820 | break; | |
6821 | ||
6822 | default: | |
6823 | break; | |
6824 | } | |
6825 | } | |
6826 | ||
0a44bf69 RS |
6827 | if (h) |
6828 | { | |
6829 | ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE; | |
6830 | ||
6831 | /* Relocations against the special VxWorks __GOTT_BASE__ and | |
6832 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
6833 | room for them in .rela.dyn. */ | |
6834 | if (is_gott_symbol (info, h)) | |
6835 | { | |
6836 | if (sreloc == NULL) | |
6837 | { | |
6838 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
6839 | if (sreloc == NULL) | |
6840 | return FALSE; | |
6841 | } | |
6842 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
9e3313ae RS |
6843 | if (MIPS_ELF_READONLY_SECTION (sec)) |
6844 | /* We tell the dynamic linker that there are | |
6845 | relocations against the text segment. */ | |
6846 | info->flags |= DF_TEXTREL; | |
0a44bf69 RS |
6847 | } |
6848 | } | |
6849 | else if (r_type == R_MIPS_CALL_LO16 | |
6850 | || r_type == R_MIPS_GOT_LO16 | |
6851 | || r_type == R_MIPS_GOT_DISP | |
6852 | || (r_type == R_MIPS_GOT16 && htab->is_vxworks)) | |
b49e97c9 TS |
6853 | { |
6854 | /* We may need a local GOT entry for this relocation. We | |
6855 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
6856 | maximum number of pages needed by looking at the size of | |
6857 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
0a44bf69 RS |
6858 | R_MIPS_CALL16, except on VxWorks, where GOT relocations |
6859 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or | |
b49e97c9 | 6860 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 6861 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 | 6862 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
0f20cc35 | 6863 | rel->r_addend, g, 0)) |
f4416af6 | 6864 | return FALSE; |
b49e97c9 TS |
6865 | } |
6866 | ||
6867 | switch (r_type) | |
6868 | { | |
6869 | case R_MIPS_CALL16: | |
6870 | if (h == NULL) | |
6871 | { | |
6872 | (*_bfd_error_handler) | |
d003868e AM |
6873 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
6874 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 6875 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6876 | return FALSE; |
b49e97c9 TS |
6877 | } |
6878 | /* Fall through. */ | |
6879 | ||
6880 | case R_MIPS_CALL_HI16: | |
6881 | case R_MIPS_CALL_LO16: | |
6882 | if (h != NULL) | |
6883 | { | |
0a44bf69 RS |
6884 | /* VxWorks call relocations point the function's .got.plt |
6885 | entry, which will be allocated by adjust_dynamic_symbol. | |
6886 | Otherwise, this symbol requires a global GOT entry. */ | |
8275b357 | 6887 | if ((!htab->is_vxworks || h->forced_local) |
0a44bf69 | 6888 | && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6889 | return FALSE; |
b49e97c9 TS |
6890 | |
6891 | /* We need a stub, not a plt entry for the undefined | |
6892 | function. But we record it as if it needs plt. See | |
c152c796 | 6893 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 6894 | h->needs_plt = 1; |
b49e97c9 TS |
6895 | h->type = STT_FUNC; |
6896 | } | |
6897 | break; | |
6898 | ||
0fdc1bf1 AO |
6899 | case R_MIPS_GOT_PAGE: |
6900 | /* If this is a global, overridable symbol, GOT_PAGE will | |
6901 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
c224138d | 6902 | if (h) |
0fdc1bf1 AO |
6903 | { |
6904 | struct mips_elf_link_hash_entry *hmips = | |
6905 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 6906 | |
0fdc1bf1 AO |
6907 | while (hmips->root.root.type == bfd_link_hash_indirect |
6908 | || hmips->root.root.type == bfd_link_hash_warning) | |
6909 | hmips = (struct mips_elf_link_hash_entry *) | |
6910 | hmips->root.root.u.i.link; | |
143d77c5 | 6911 | |
f5385ebf | 6912 | if (hmips->root.def_regular |
0fdc1bf1 | 6913 | && ! (info->shared && ! info->symbolic |
f5385ebf | 6914 | && ! hmips->root.forced_local)) |
c224138d | 6915 | h = NULL; |
0fdc1bf1 AO |
6916 | } |
6917 | /* Fall through. */ | |
6918 | ||
b49e97c9 TS |
6919 | case R_MIPS_GOT16: |
6920 | case R_MIPS_GOT_HI16: | |
6921 | case R_MIPS_GOT_LO16: | |
c224138d RS |
6922 | if (!h) |
6923 | { | |
6924 | /* This relocation needs a page entry in the GOT. */ | |
6925 | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) | |
6926 | { | |
6927 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | |
6928 | return FALSE; | |
6929 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); | |
6930 | addend = mips_elf_read_rel_addend (abfd, rel, | |
6931 | howto, contents); | |
6932 | if (r_type == R_MIPS_GOT16) | |
6933 | mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, | |
6934 | contents, &addend); | |
6935 | else | |
6936 | addend <<= howto->rightshift; | |
6937 | } | |
6938 | else | |
6939 | addend = rel->r_addend; | |
6940 | if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g)) | |
6941 | return FALSE; | |
6942 | break; | |
6943 | } | |
6944 | /* Fall through. */ | |
6945 | ||
b49e97c9 | 6946 | case R_MIPS_GOT_DISP: |
0f20cc35 | 6947 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6948 | return FALSE; |
b49e97c9 TS |
6949 | break; |
6950 | ||
0f20cc35 DJ |
6951 | case R_MIPS_TLS_GOTTPREL: |
6952 | if (info->shared) | |
6953 | info->flags |= DF_STATIC_TLS; | |
6954 | /* Fall through */ | |
6955 | ||
6956 | case R_MIPS_TLS_LDM: | |
6957 | if (r_type == R_MIPS_TLS_LDM) | |
6958 | { | |
6959 | r_symndx = 0; | |
6960 | h = NULL; | |
6961 | } | |
6962 | /* Fall through */ | |
6963 | ||
6964 | case R_MIPS_TLS_GD: | |
6965 | /* This symbol requires a global offset table entry, or two | |
6966 | for TLS GD relocations. */ | |
6967 | { | |
6968 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
6969 | ? GOT_TLS_GD | |
6970 | : r_type == R_MIPS_TLS_LDM | |
6971 | ? GOT_TLS_LDM | |
6972 | : GOT_TLS_IE); | |
6973 | if (h != NULL) | |
6974 | { | |
6975 | struct mips_elf_link_hash_entry *hmips = | |
6976 | (struct mips_elf_link_hash_entry *) h; | |
6977 | hmips->tls_type |= flag; | |
6978 | ||
6979 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) | |
6980 | return FALSE; | |
6981 | } | |
6982 | else | |
6983 | { | |
6984 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
6985 | ||
6986 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, | |
6987 | rel->r_addend, g, flag)) | |
6988 | return FALSE; | |
6989 | } | |
6990 | } | |
6991 | break; | |
6992 | ||
b49e97c9 TS |
6993 | case R_MIPS_32: |
6994 | case R_MIPS_REL32: | |
6995 | case R_MIPS_64: | |
0a44bf69 RS |
6996 | /* In VxWorks executables, references to external symbols |
6997 | are handled using copy relocs or PLT stubs, so there's | |
6998 | no need to add a .rela.dyn entry for this relocation. */ | |
6999 | if ((info->shared || (h != NULL && !htab->is_vxworks)) | |
b49e97c9 TS |
7000 | && (sec->flags & SEC_ALLOC) != 0) |
7001 | { | |
7002 | if (sreloc == NULL) | |
7003 | { | |
0a44bf69 | 7004 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 7005 | if (sreloc == NULL) |
f4416af6 | 7006 | return FALSE; |
b49e97c9 | 7007 | } |
b49e97c9 | 7008 | if (info->shared) |
82f0cfbd EC |
7009 | { |
7010 | /* When creating a shared object, we must copy these | |
7011 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
7012 | relocs. Make room for this reloc in .rel(a).dyn. */ |
7013 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
943284cc | 7014 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
7015 | /* We tell the dynamic linker that there are |
7016 | relocations against the text segment. */ | |
7017 | info->flags |= DF_TEXTREL; | |
7018 | } | |
b49e97c9 TS |
7019 | else |
7020 | { | |
7021 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 7022 | |
b49e97c9 TS |
7023 | /* We only need to copy this reloc if the symbol is |
7024 | defined in a dynamic object. */ | |
7025 | hmips = (struct mips_elf_link_hash_entry *) h; | |
7026 | ++hmips->possibly_dynamic_relocs; | |
943284cc | 7027 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
7028 | /* We need it to tell the dynamic linker if there |
7029 | are relocations against the text segment. */ | |
7030 | hmips->readonly_reloc = TRUE; | |
b49e97c9 TS |
7031 | } |
7032 | ||
7033 | /* Even though we don't directly need a GOT entry for | |
7034 | this symbol, a symbol must have a dynamic symbol | |
7035 | table index greater that DT_MIPS_GOTSYM if there are | |
0a44bf69 RS |
7036 | dynamic relocations against it. This does not apply |
7037 | to VxWorks, which does not have the usual coupling | |
7038 | between global GOT entries and .dynsym entries. */ | |
7039 | if (h != NULL && !htab->is_vxworks) | |
f4416af6 AO |
7040 | { |
7041 | if (dynobj == NULL) | |
7042 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
7043 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
7044 | return FALSE; | |
7045 | g = mips_elf_got_info (dynobj, &sgot); | |
0f20cc35 | 7046 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
f4416af6 AO |
7047 | return FALSE; |
7048 | } | |
b49e97c9 TS |
7049 | } |
7050 | ||
7051 | if (SGI_COMPAT (abfd)) | |
7052 | mips_elf_hash_table (info)->compact_rel_size += | |
7053 | sizeof (Elf32_External_crinfo); | |
7054 | break; | |
7055 | ||
0a44bf69 RS |
7056 | case R_MIPS_PC16: |
7057 | if (h) | |
7058 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
7059 | break; | |
7060 | ||
b49e97c9 | 7061 | case R_MIPS_26: |
0a44bf69 RS |
7062 | if (h) |
7063 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
7064 | /* Fall through. */ | |
7065 | ||
b49e97c9 TS |
7066 | case R_MIPS_GPREL16: |
7067 | case R_MIPS_LITERAL: | |
7068 | case R_MIPS_GPREL32: | |
7069 | if (SGI_COMPAT (abfd)) | |
7070 | mips_elf_hash_table (info)->compact_rel_size += | |
7071 | sizeof (Elf32_External_crinfo); | |
7072 | break; | |
7073 | ||
7074 | /* This relocation describes the C++ object vtable hierarchy. | |
7075 | Reconstruct it for later use during GC. */ | |
7076 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 7077 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 7078 | return FALSE; |
b49e97c9 TS |
7079 | break; |
7080 | ||
7081 | /* This relocation describes which C++ vtable entries are actually | |
7082 | used. Record for later use during GC. */ | |
7083 | case R_MIPS_GNU_VTENTRY: | |
d17e0c6e JB |
7084 | BFD_ASSERT (h != NULL); |
7085 | if (h != NULL | |
7086 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 7087 | return FALSE; |
b49e97c9 TS |
7088 | break; |
7089 | ||
7090 | default: | |
7091 | break; | |
7092 | } | |
7093 | ||
7094 | /* We must not create a stub for a symbol that has relocations | |
0a44bf69 RS |
7095 | related to taking the function's address. This doesn't apply to |
7096 | VxWorks, where CALL relocs refer to a .got.plt entry instead of | |
7097 | a normal .got entry. */ | |
7098 | if (!htab->is_vxworks && h != NULL) | |
7099 | switch (r_type) | |
7100 | { | |
7101 | default: | |
7102 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
7103 | break; | |
7104 | case R_MIPS_CALL16: | |
7105 | case R_MIPS_CALL_HI16: | |
7106 | case R_MIPS_CALL_LO16: | |
7107 | case R_MIPS_JALR: | |
7108 | break; | |
7109 | } | |
b49e97c9 TS |
7110 | |
7111 | /* If this reloc is not a 16 bit call, and it has a global | |
7112 | symbol, then we will need the fn_stub if there is one. | |
7113 | References from a stub section do not count. */ | |
7114 | if (h != NULL | |
7115 | && r_type != R_MIPS16_26 | |
b9d58d71 | 7116 | && !mips16_stub_section_p (abfd, sec)) |
b49e97c9 TS |
7117 | { |
7118 | struct mips_elf_link_hash_entry *mh; | |
7119 | ||
7120 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 7121 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
7122 | } |
7123 | } | |
7124 | ||
b34976b6 | 7125 | return TRUE; |
b49e97c9 TS |
7126 | } |
7127 | \f | |
d0647110 | 7128 | bfd_boolean |
9719ad41 RS |
7129 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
7130 | struct bfd_link_info *link_info, | |
7131 | bfd_boolean *again) | |
d0647110 AO |
7132 | { |
7133 | Elf_Internal_Rela *internal_relocs; | |
7134 | Elf_Internal_Rela *irel, *irelend; | |
7135 | Elf_Internal_Shdr *symtab_hdr; | |
7136 | bfd_byte *contents = NULL; | |
d0647110 AO |
7137 | size_t extsymoff; |
7138 | bfd_boolean changed_contents = FALSE; | |
7139 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
7140 | Elf_Internal_Sym *isymbuf = NULL; | |
7141 | ||
7142 | /* We are not currently changing any sizes, so only one pass. */ | |
7143 | *again = FALSE; | |
7144 | ||
1049f94e | 7145 | if (link_info->relocatable) |
d0647110 AO |
7146 | return TRUE; |
7147 | ||
9719ad41 | 7148 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 7149 | link_info->keep_memory); |
d0647110 AO |
7150 | if (internal_relocs == NULL) |
7151 | return TRUE; | |
7152 | ||
7153 | irelend = internal_relocs + sec->reloc_count | |
7154 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
7155 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7156 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
7157 | ||
7158 | for (irel = internal_relocs; irel < irelend; irel++) | |
7159 | { | |
7160 | bfd_vma symval; | |
7161 | bfd_signed_vma sym_offset; | |
7162 | unsigned int r_type; | |
7163 | unsigned long r_symndx; | |
7164 | asection *sym_sec; | |
7165 | unsigned long instruction; | |
7166 | ||
7167 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
7168 | with a JALR relocation, that indicate where they jump to. | |
7169 | This saves some pipeline bubbles. */ | |
7170 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
7171 | if (r_type != R_MIPS_JALR) | |
7172 | continue; | |
7173 | ||
7174 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
7175 | /* Compute the address of the jump target. */ | |
7176 | if (r_symndx >= extsymoff) | |
7177 | { | |
7178 | struct mips_elf_link_hash_entry *h | |
7179 | = ((struct mips_elf_link_hash_entry *) | |
7180 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
7181 | ||
7182 | while (h->root.root.type == bfd_link_hash_indirect | |
7183 | || h->root.root.type == bfd_link_hash_warning) | |
7184 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 7185 | |
d0647110 AO |
7186 | /* If a symbol is undefined, or if it may be overridden, |
7187 | skip it. */ | |
7188 | if (! ((h->root.root.type == bfd_link_hash_defined | |
7189 | || h->root.root.type == bfd_link_hash_defweak) | |
7190 | && h->root.root.u.def.section) | |
7191 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 7192 | && !h->root.forced_local)) |
d0647110 AO |
7193 | continue; |
7194 | ||
7195 | sym_sec = h->root.root.u.def.section; | |
7196 | if (sym_sec->output_section) | |
7197 | symval = (h->root.root.u.def.value | |
7198 | + sym_sec->output_section->vma | |
7199 | + sym_sec->output_offset); | |
7200 | else | |
7201 | symval = h->root.root.u.def.value; | |
7202 | } | |
7203 | else | |
7204 | { | |
7205 | Elf_Internal_Sym *isym; | |
7206 | ||
7207 | /* Read this BFD's symbols if we haven't done so already. */ | |
7208 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
7209 | { | |
7210 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
7211 | if (isymbuf == NULL) | |
7212 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
7213 | symtab_hdr->sh_info, 0, | |
7214 | NULL, NULL, NULL); | |
7215 | if (isymbuf == NULL) | |
7216 | goto relax_return; | |
7217 | } | |
7218 | ||
7219 | isym = isymbuf + r_symndx; | |
7220 | if (isym->st_shndx == SHN_UNDEF) | |
7221 | continue; | |
7222 | else if (isym->st_shndx == SHN_ABS) | |
7223 | sym_sec = bfd_abs_section_ptr; | |
7224 | else if (isym->st_shndx == SHN_COMMON) | |
7225 | sym_sec = bfd_com_section_ptr; | |
7226 | else | |
7227 | sym_sec | |
7228 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
7229 | symval = isym->st_value | |
7230 | + sym_sec->output_section->vma | |
7231 | + sym_sec->output_offset; | |
7232 | } | |
7233 | ||
7234 | /* Compute branch offset, from delay slot of the jump to the | |
7235 | branch target. */ | |
7236 | sym_offset = (symval + irel->r_addend) | |
7237 | - (sec_start + irel->r_offset + 4); | |
7238 | ||
7239 | /* Branch offset must be properly aligned. */ | |
7240 | if ((sym_offset & 3) != 0) | |
7241 | continue; | |
7242 | ||
7243 | sym_offset >>= 2; | |
7244 | ||
7245 | /* Check that it's in range. */ | |
7246 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
7247 | continue; | |
143d77c5 | 7248 | |
d0647110 | 7249 | /* Get the section contents if we haven't done so already. */ |
c224138d RS |
7250 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
7251 | goto relax_return; | |
d0647110 AO |
7252 | |
7253 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
7254 | ||
7255 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
7256 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
7257 | instruction = 0x04110000; | |
7258 | /* If it was jr <reg>, turn it into b <target>. */ | |
7259 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
7260 | instruction = 0x10000000; | |
7261 | else | |
7262 | continue; | |
7263 | ||
7264 | instruction |= (sym_offset & 0xffff); | |
7265 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
7266 | changed_contents = TRUE; | |
7267 | } | |
7268 | ||
7269 | if (contents != NULL | |
7270 | && elf_section_data (sec)->this_hdr.contents != contents) | |
7271 | { | |
7272 | if (!changed_contents && !link_info->keep_memory) | |
7273 | free (contents); | |
7274 | else | |
7275 | { | |
7276 | /* Cache the section contents for elf_link_input_bfd. */ | |
7277 | elf_section_data (sec)->this_hdr.contents = contents; | |
7278 | } | |
7279 | } | |
7280 | return TRUE; | |
7281 | ||
143d77c5 | 7282 | relax_return: |
eea6121a AM |
7283 | if (contents != NULL |
7284 | && elf_section_data (sec)->this_hdr.contents != contents) | |
7285 | free (contents); | |
d0647110 AO |
7286 | return FALSE; |
7287 | } | |
7288 | \f | |
b49e97c9 TS |
7289 | /* Adjust a symbol defined by a dynamic object and referenced by a |
7290 | regular object. The current definition is in some section of the | |
7291 | dynamic object, but we're not including those sections. We have to | |
7292 | change the definition to something the rest of the link can | |
7293 | understand. */ | |
7294 | ||
b34976b6 | 7295 | bfd_boolean |
9719ad41 RS |
7296 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
7297 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
7298 | { |
7299 | bfd *dynobj; | |
7300 | struct mips_elf_link_hash_entry *hmips; | |
7301 | asection *s; | |
5108fc1b | 7302 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7303 | |
5108fc1b | 7304 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
7305 | dynobj = elf_hash_table (info)->dynobj; |
7306 | ||
7307 | /* Make sure we know what is going on here. */ | |
7308 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 7309 | && (h->needs_plt |
f6e332e6 | 7310 | || h->u.weakdef != NULL |
f5385ebf AM |
7311 | || (h->def_dynamic |
7312 | && h->ref_regular | |
7313 | && !h->def_regular))); | |
b49e97c9 TS |
7314 | |
7315 | /* If this symbol is defined in a dynamic object, we need to copy | |
7316 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
7317 | file. */ | |
7318 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 7319 | if (! info->relocatable |
b49e97c9 TS |
7320 | && hmips->possibly_dynamic_relocs != 0 |
7321 | && (h->root.type == bfd_link_hash_defweak | |
f5385ebf | 7322 | || !h->def_regular)) |
b49e97c9 | 7323 | { |
0a44bf69 RS |
7324 | mips_elf_allocate_dynamic_relocations |
7325 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
82f0cfbd | 7326 | if (hmips->readonly_reloc) |
b49e97c9 TS |
7327 | /* We tell the dynamic linker that there are relocations |
7328 | against the text segment. */ | |
7329 | info->flags |= DF_TEXTREL; | |
7330 | } | |
7331 | ||
7332 | /* For a function, create a stub, if allowed. */ | |
7333 | if (! hmips->no_fn_stub | |
f5385ebf | 7334 | && h->needs_plt) |
b49e97c9 TS |
7335 | { |
7336 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 7337 | return TRUE; |
b49e97c9 TS |
7338 | |
7339 | /* If this symbol is not defined in a regular file, then set | |
7340 | the symbol to the stub location. This is required to make | |
7341 | function pointers compare as equal between the normal | |
7342 | executable and the shared library. */ | |
f5385ebf | 7343 | if (!h->def_regular) |
b49e97c9 TS |
7344 | { |
7345 | /* We need .stub section. */ | |
7346 | s = bfd_get_section_by_name (dynobj, | |
7347 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7348 | BFD_ASSERT (s != NULL); | |
7349 | ||
7350 | h->root.u.def.section = s; | |
eea6121a | 7351 | h->root.u.def.value = s->size; |
b49e97c9 TS |
7352 | |
7353 | /* XXX Write this stub address somewhere. */ | |
eea6121a | 7354 | h->plt.offset = s->size; |
b49e97c9 TS |
7355 | |
7356 | /* Make room for this stub code. */ | |
5108fc1b | 7357 | s->size += htab->function_stub_size; |
b49e97c9 TS |
7358 | |
7359 | /* The last half word of the stub will be filled with the index | |
7360 | of this symbol in .dynsym section. */ | |
b34976b6 | 7361 | return TRUE; |
b49e97c9 TS |
7362 | } |
7363 | } | |
7364 | else if ((h->type == STT_FUNC) | |
f5385ebf | 7365 | && !h->needs_plt) |
b49e97c9 TS |
7366 | { |
7367 | /* This will set the entry for this symbol in the GOT to 0, and | |
7368 | the dynamic linker will take care of this. */ | |
7369 | h->root.u.def.value = 0; | |
b34976b6 | 7370 | return TRUE; |
b49e97c9 TS |
7371 | } |
7372 | ||
7373 | /* If this is a weak symbol, and there is a real definition, the | |
7374 | processor independent code will have arranged for us to see the | |
7375 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 7376 | if (h->u.weakdef != NULL) |
b49e97c9 | 7377 | { |
f6e332e6 AM |
7378 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
7379 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
7380 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
7381 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 7382 | return TRUE; |
b49e97c9 TS |
7383 | } |
7384 | ||
7385 | /* This is a reference to a symbol defined by a dynamic object which | |
7386 | is not a function. */ | |
7387 | ||
b34976b6 | 7388 | return TRUE; |
b49e97c9 | 7389 | } |
0a44bf69 RS |
7390 | |
7391 | /* Likewise, for VxWorks. */ | |
7392 | ||
7393 | bfd_boolean | |
7394 | _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info, | |
7395 | struct elf_link_hash_entry *h) | |
7396 | { | |
7397 | bfd *dynobj; | |
7398 | struct mips_elf_link_hash_entry *hmips; | |
7399 | struct mips_elf_link_hash_table *htab; | |
0a44bf69 RS |
7400 | |
7401 | htab = mips_elf_hash_table (info); | |
7402 | dynobj = elf_hash_table (info)->dynobj; | |
7403 | hmips = (struct mips_elf_link_hash_entry *) h; | |
7404 | ||
7405 | /* Make sure we know what is going on here. */ | |
7406 | BFD_ASSERT (dynobj != NULL | |
7407 | && (h->needs_plt | |
7408 | || h->needs_copy | |
7409 | || h->u.weakdef != NULL | |
7410 | || (h->def_dynamic | |
7411 | && h->ref_regular | |
7412 | && !h->def_regular))); | |
7413 | ||
7414 | /* If the symbol is defined by a dynamic object, we need a PLT stub if | |
7415 | either (a) we want to branch to the symbol or (b) we're linking an | |
7416 | executable that needs a canonical function address. In the latter | |
7417 | case, the canonical address will be the address of the executable's | |
7418 | load stub. */ | |
7419 | if ((hmips->is_branch_target | |
7420 | || (!info->shared | |
7421 | && h->type == STT_FUNC | |
7422 | && hmips->is_relocation_target)) | |
7423 | && h->def_dynamic | |
7424 | && h->ref_regular | |
7425 | && !h->def_regular | |
7426 | && !h->forced_local) | |
7427 | h->needs_plt = 1; | |
7428 | ||
7429 | /* Locally-binding symbols do not need a PLT stub; we can refer to | |
7430 | the functions directly. */ | |
7431 | else if (h->needs_plt | |
7432 | && (SYMBOL_CALLS_LOCAL (info, h) | |
7433 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
7434 | && h->root.type == bfd_link_hash_undefweak))) | |
7435 | { | |
7436 | h->needs_plt = 0; | |
7437 | return TRUE; | |
7438 | } | |
7439 | ||
7440 | if (h->needs_plt) | |
7441 | { | |
7442 | /* If this is the first symbol to need a PLT entry, allocate room | |
7443 | for the header, and for the header's .rela.plt.unloaded entries. */ | |
7444 | if (htab->splt->size == 0) | |
7445 | { | |
7446 | htab->splt->size += htab->plt_header_size; | |
7447 | if (!info->shared) | |
7448 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); | |
7449 | } | |
7450 | ||
7451 | /* Assign the next .plt entry to this symbol. */ | |
7452 | h->plt.offset = htab->splt->size; | |
7453 | htab->splt->size += htab->plt_entry_size; | |
7454 | ||
7455 | /* If the output file has no definition of the symbol, set the | |
7456 | symbol's value to the address of the stub. For executables, | |
7457 | point at the PLT load stub rather than the lazy resolution stub; | |
7458 | this stub will become the canonical function address. */ | |
7459 | if (!h->def_regular) | |
7460 | { | |
7461 | h->root.u.def.section = htab->splt; | |
7462 | h->root.u.def.value = h->plt.offset; | |
7463 | if (!info->shared) | |
7464 | h->root.u.def.value += 8; | |
7465 | } | |
7466 | ||
7467 | /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */ | |
7468 | htab->sgotplt->size += 4; | |
7469 | htab->srelplt->size += sizeof (Elf32_External_Rela); | |
7470 | ||
7471 | /* Make room for the .rela.plt.unloaded relocations. */ | |
7472 | if (!info->shared) | |
7473 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); | |
7474 | ||
7475 | return TRUE; | |
7476 | } | |
7477 | ||
7478 | /* If a function symbol is defined by a dynamic object, and we do not | |
7479 | need a PLT stub for it, the symbol's value should be zero. */ | |
7480 | if (h->type == STT_FUNC | |
7481 | && h->def_dynamic | |
7482 | && h->ref_regular | |
7483 | && !h->def_regular) | |
7484 | { | |
7485 | h->root.u.def.value = 0; | |
7486 | return TRUE; | |
7487 | } | |
7488 | ||
7489 | /* If this is a weak symbol, and there is a real definition, the | |
7490 | processor independent code will have arranged for us to see the | |
7491 | real definition first, and we can just use the same value. */ | |
7492 | if (h->u.weakdef != NULL) | |
7493 | { | |
7494 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
7495 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
7496 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
7497 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
7498 | return TRUE; | |
7499 | } | |
7500 | ||
7501 | /* This is a reference to a symbol defined by a dynamic object which | |
7502 | is not a function. */ | |
7503 | if (info->shared) | |
7504 | return TRUE; | |
7505 | ||
7506 | /* We must allocate the symbol in our .dynbss section, which will | |
7507 | become part of the .bss section of the executable. There will be | |
7508 | an entry for this symbol in the .dynsym section. The dynamic | |
7509 | object will contain position independent code, so all references | |
7510 | from the dynamic object to this symbol will go through the global | |
7511 | offset table. The dynamic linker will use the .dynsym entry to | |
7512 | determine the address it must put in the global offset table, so | |
7513 | both the dynamic object and the regular object will refer to the | |
7514 | same memory location for the variable. */ | |
7515 | ||
7516 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
7517 | { | |
7518 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
7519 | h->needs_copy = 1; | |
7520 | } | |
7521 | ||
027297b7 | 7522 | return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); |
0a44bf69 | 7523 | } |
b49e97c9 | 7524 | \f |
5108fc1b RS |
7525 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
7526 | The number might be exact or a worst-case estimate, depending on how | |
7527 | much information is available to elf_backend_omit_section_dynsym at | |
7528 | the current linking stage. */ | |
7529 | ||
7530 | static bfd_size_type | |
7531 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | |
7532 | { | |
7533 | bfd_size_type count; | |
7534 | ||
7535 | count = 0; | |
7536 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) | |
7537 | { | |
7538 | asection *p; | |
7539 | const struct elf_backend_data *bed; | |
7540 | ||
7541 | bed = get_elf_backend_data (output_bfd); | |
7542 | for (p = output_bfd->sections; p ; p = p->next) | |
7543 | if ((p->flags & SEC_EXCLUDE) == 0 | |
7544 | && (p->flags & SEC_ALLOC) != 0 | |
7545 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
7546 | ++count; | |
7547 | } | |
7548 | return count; | |
7549 | } | |
7550 | ||
b49e97c9 TS |
7551 | /* This function is called after all the input files have been read, |
7552 | and the input sections have been assigned to output sections. We | |
7553 | check for any mips16 stub sections that we can discard. */ | |
7554 | ||
b34976b6 | 7555 | bfd_boolean |
9719ad41 RS |
7556 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
7557 | struct bfd_link_info *info) | |
b49e97c9 TS |
7558 | { |
7559 | asection *ri; | |
7560 | ||
f4416af6 AO |
7561 | bfd *dynobj; |
7562 | asection *s; | |
7563 | struct mips_got_info *g; | |
7564 | int i; | |
7565 | bfd_size_type loadable_size = 0; | |
c224138d | 7566 | bfd_size_type page_gotno; |
5108fc1b | 7567 | bfd_size_type dynsymcount; |
f4416af6 | 7568 | bfd *sub; |
0f20cc35 | 7569 | struct mips_elf_count_tls_arg count_tls_arg; |
0a44bf69 RS |
7570 | struct mips_elf_link_hash_table *htab; |
7571 | ||
7572 | htab = mips_elf_hash_table (info); | |
f4416af6 | 7573 | |
b49e97c9 TS |
7574 | /* The .reginfo section has a fixed size. */ |
7575 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
7576 | if (ri != NULL) | |
9719ad41 | 7577 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 7578 | |
1049f94e | 7579 | if (! (info->relocatable |
f4416af6 AO |
7580 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
7581 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 7582 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
7583 | |
7584 | dynobj = elf_hash_table (info)->dynobj; | |
7585 | if (dynobj == NULL) | |
7586 | /* Relocatable links don't have it. */ | |
7587 | return TRUE; | |
143d77c5 | 7588 | |
f4416af6 AO |
7589 | g = mips_elf_got_info (dynobj, &s); |
7590 | if (s == NULL) | |
b34976b6 | 7591 | return TRUE; |
b49e97c9 | 7592 | |
f4416af6 AO |
7593 | /* Calculate the total loadable size of the output. That |
7594 | will give us the maximum number of GOT_PAGE entries | |
7595 | required. */ | |
7596 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
7597 | { | |
7598 | asection *subsection; | |
7599 | ||
7600 | for (subsection = sub->sections; | |
7601 | subsection; | |
7602 | subsection = subsection->next) | |
7603 | { | |
7604 | if ((subsection->flags & SEC_ALLOC) == 0) | |
7605 | continue; | |
eea6121a | 7606 | loadable_size += ((subsection->size + 0xf) |
f4416af6 AO |
7607 | &~ (bfd_size_type) 0xf); |
7608 | } | |
7609 | } | |
7610 | ||
7611 | /* There has to be a global GOT entry for every symbol with | |
7612 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
7613 | higher. Therefore, it make sense to put those symbols | |
7614 | that need GOT entries at the end of the symbol table. We | |
7615 | do that here. */ | |
7616 | if (! mips_elf_sort_hash_table (info, 1)) | |
7617 | return FALSE; | |
7618 | ||
7619 | if (g->global_gotsym != NULL) | |
7620 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
7621 | else | |
7622 | /* If there are no global symbols, or none requiring | |
7623 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
7624 | i = 0; | |
7625 | ||
5108fc1b RS |
7626 | /* Get a worst-case estimate of the number of dynamic symbols needed. |
7627 | At this point, dynsymcount does not account for section symbols | |
7628 | and count_section_dynsyms may overestimate the number that will | |
7629 | be needed. */ | |
7630 | dynsymcount = (elf_hash_table (info)->dynsymcount | |
7631 | + count_section_dynsyms (output_bfd, info)); | |
7632 | ||
7633 | /* Determine the size of one stub entry. */ | |
7634 | htab->function_stub_size = (dynsymcount > 0x10000 | |
7635 | ? MIPS_FUNCTION_STUB_BIG_SIZE | |
7636 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | |
7637 | ||
f4416af6 AO |
7638 | /* In the worst case, we'll get one stub per dynamic symbol, plus |
7639 | one to account for the dummy entry at the end required by IRIX | |
7640 | rld. */ | |
5108fc1b | 7641 | loadable_size += htab->function_stub_size * (i + 1); |
f4416af6 | 7642 | |
0a44bf69 RS |
7643 | if (htab->is_vxworks) |
7644 | /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16 | |
7645 | relocations against local symbols evaluate to "G", and the EABI does | |
7646 | not include R_MIPS_GOT_PAGE. */ | |
c224138d | 7647 | page_gotno = 0; |
0a44bf69 RS |
7648 | else |
7649 | /* Assume there are two loadable segments consisting of contiguous | |
7650 | sections. Is 5 enough? */ | |
c224138d RS |
7651 | page_gotno = (loadable_size >> 16) + 5; |
7652 | ||
7653 | /* Choose the smaller of the two estimates; both are intended to be | |
7654 | conservative. */ | |
7655 | if (page_gotno > g->page_gotno) | |
7656 | page_gotno = g->page_gotno; | |
f4416af6 | 7657 | |
c224138d | 7658 | g->local_gotno += page_gotno; |
eea6121a | 7659 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
7660 | |
7661 | g->global_gotno = i; | |
eea6121a | 7662 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 7663 | |
0f20cc35 DJ |
7664 | /* We need to calculate tls_gotno for global symbols at this point |
7665 | instead of building it up earlier, to avoid doublecounting | |
7666 | entries for one global symbol from multiple input files. */ | |
7667 | count_tls_arg.info = info; | |
7668 | count_tls_arg.needed = 0; | |
7669 | elf_link_hash_traverse (elf_hash_table (info), | |
7670 | mips_elf_count_global_tls_entries, | |
7671 | &count_tls_arg); | |
7672 | g->tls_gotno += count_tls_arg.needed; | |
7673 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
7674 | ||
7675 | mips_elf_resolve_final_got_entries (g); | |
7676 | ||
0a44bf69 RS |
7677 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
7678 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
7679 | dynamic loader. */ | |
7680 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) | |
0f20cc35 | 7681 | { |
c224138d | 7682 | if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno)) |
0f20cc35 DJ |
7683 | return FALSE; |
7684 | } | |
7685 | else | |
7686 | { | |
7687 | /* Set up TLS entries for the first GOT. */ | |
7688 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | |
7689 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
7690 | } | |
8275b357 | 7691 | htab->computed_got_sizes = TRUE; |
b49e97c9 | 7692 | |
b34976b6 | 7693 | return TRUE; |
b49e97c9 TS |
7694 | } |
7695 | ||
7696 | /* Set the sizes of the dynamic sections. */ | |
7697 | ||
b34976b6 | 7698 | bfd_boolean |
9719ad41 RS |
7699 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
7700 | struct bfd_link_info *info) | |
b49e97c9 TS |
7701 | { |
7702 | bfd *dynobj; | |
0a44bf69 | 7703 | asection *s, *sreldyn; |
b34976b6 | 7704 | bfd_boolean reltext; |
0a44bf69 | 7705 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7706 | |
0a44bf69 | 7707 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
7708 | dynobj = elf_hash_table (info)->dynobj; |
7709 | BFD_ASSERT (dynobj != NULL); | |
7710 | ||
7711 | if (elf_hash_table (info)->dynamic_sections_created) | |
7712 | { | |
7713 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 7714 | if (info->executable) |
b49e97c9 TS |
7715 | { |
7716 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
7717 | BFD_ASSERT (s != NULL); | |
eea6121a | 7718 | s->size |
b49e97c9 TS |
7719 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
7720 | s->contents | |
7721 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
7722 | } | |
7723 | } | |
7724 | ||
7725 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
7726 | determined the sizes of the various dynamic sections. Allocate | |
7727 | memory for them. */ | |
b34976b6 | 7728 | reltext = FALSE; |
0a44bf69 | 7729 | sreldyn = NULL; |
b49e97c9 TS |
7730 | for (s = dynobj->sections; s != NULL; s = s->next) |
7731 | { | |
7732 | const char *name; | |
b49e97c9 TS |
7733 | |
7734 | /* It's OK to base decisions on the section name, because none | |
7735 | of the dynobj section names depend upon the input files. */ | |
7736 | name = bfd_get_section_name (dynobj, s); | |
7737 | ||
7738 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
7739 | continue; | |
7740 | ||
0112cd26 | 7741 | if (CONST_STRNEQ (name, ".rel")) |
b49e97c9 | 7742 | { |
c456f082 | 7743 | if (s->size != 0) |
b49e97c9 TS |
7744 | { |
7745 | const char *outname; | |
7746 | asection *target; | |
7747 | ||
7748 | /* If this relocation section applies to a read only | |
7749 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 7750 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
7751 | assert a DT_TEXTREL entry rather than testing whether |
7752 | there exists a relocation to a read only section or | |
7753 | not. */ | |
7754 | outname = bfd_get_section_name (output_bfd, | |
7755 | s->output_section); | |
7756 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
7757 | if ((target != NULL | |
7758 | && (target->flags & SEC_READONLY) != 0 | |
7759 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 7760 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 7761 | reltext = TRUE; |
b49e97c9 TS |
7762 | |
7763 | /* We use the reloc_count field as a counter if we need | |
7764 | to copy relocs into the output file. */ | |
0a44bf69 | 7765 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 7766 | s->reloc_count = 0; |
f4416af6 AO |
7767 | |
7768 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
7769 | sort relocations, but in a different way than we do, | |
7770 | and before we're done creating relocations. Also, it | |
7771 | will move them around between input sections' | |
7772 | relocation's contents, so our sorting would be | |
7773 | broken, so don't let it run. */ | |
7774 | info->combreloc = 0; | |
b49e97c9 TS |
7775 | } |
7776 | } | |
0a44bf69 RS |
7777 | else if (htab->is_vxworks && strcmp (name, ".got") == 0) |
7778 | { | |
7779 | /* Executables do not need a GOT. */ | |
7780 | if (info->shared) | |
7781 | { | |
7782 | /* Allocate relocations for all but the reserved entries. */ | |
7783 | struct mips_got_info *g; | |
7784 | unsigned int count; | |
7785 | ||
7786 | g = mips_elf_got_info (dynobj, NULL); | |
7787 | count = (g->global_gotno | |
7788 | + g->local_gotno | |
7789 | - MIPS_RESERVED_GOTNO (info)); | |
7790 | mips_elf_allocate_dynamic_relocations (dynobj, info, count); | |
7791 | } | |
7792 | } | |
0112cd26 | 7793 | else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got")) |
b49e97c9 | 7794 | { |
f4416af6 AO |
7795 | /* _bfd_mips_elf_always_size_sections() has already done |
7796 | most of the work, but some symbols may have been mapped | |
7797 | to versions that we must now resolve in the got_entries | |
7798 | hash tables. */ | |
7799 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
7800 | struct mips_got_info *g = gg; | |
7801 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
7802 | unsigned int needed_relocs = 0; | |
143d77c5 | 7803 | |
f4416af6 | 7804 | if (gg->next) |
b49e97c9 | 7805 | { |
f4416af6 AO |
7806 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
7807 | set_got_offset_arg.info = info; | |
b49e97c9 | 7808 | |
0f20cc35 DJ |
7809 | /* NOTE 2005-02-03: How can this call, or the next, ever |
7810 | find any indirect entries to resolve? They were all | |
7811 | resolved in mips_elf_multi_got. */ | |
f4416af6 AO |
7812 | mips_elf_resolve_final_got_entries (gg); |
7813 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 7814 | { |
f4416af6 AO |
7815 | unsigned int save_assign; |
7816 | ||
7817 | mips_elf_resolve_final_got_entries (g); | |
7818 | ||
7819 | /* Assign offsets to global GOT entries. */ | |
7820 | save_assign = g->assigned_gotno; | |
7821 | g->assigned_gotno = g->local_gotno; | |
7822 | set_got_offset_arg.g = g; | |
7823 | set_got_offset_arg.needed_relocs = 0; | |
7824 | htab_traverse (g->got_entries, | |
7825 | mips_elf_set_global_got_offset, | |
7826 | &set_got_offset_arg); | |
7827 | needed_relocs += set_got_offset_arg.needed_relocs; | |
7828 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
7829 | <= g->global_gotno); | |
7830 | ||
7831 | g->assigned_gotno = save_assign; | |
7832 | if (info->shared) | |
7833 | { | |
7834 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
7835 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
7836 | + g->next->global_gotno | |
0f20cc35 | 7837 | + g->next->tls_gotno |
0a44bf69 | 7838 | + MIPS_RESERVED_GOTNO (info)); |
f4416af6 | 7839 | } |
b49e97c9 | 7840 | } |
0f20cc35 DJ |
7841 | } |
7842 | else | |
7843 | { | |
7844 | struct mips_elf_count_tls_arg arg; | |
7845 | arg.info = info; | |
7846 | arg.needed = 0; | |
b49e97c9 | 7847 | |
0f20cc35 DJ |
7848 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
7849 | &arg); | |
7850 | elf_link_hash_traverse (elf_hash_table (info), | |
7851 | mips_elf_count_global_tls_relocs, | |
7852 | &arg); | |
7853 | ||
7854 | needed_relocs += arg.needed; | |
f4416af6 | 7855 | } |
0f20cc35 DJ |
7856 | |
7857 | if (needed_relocs) | |
0a44bf69 RS |
7858 | mips_elf_allocate_dynamic_relocations (dynobj, info, |
7859 | needed_relocs); | |
b49e97c9 TS |
7860 | } |
7861 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
7862 | { | |
8dc1a139 | 7863 | /* IRIX rld assumes that the function stub isn't at the end |
5108fc1b RS |
7864 | of .text section. So put a dummy. XXX */ |
7865 | s->size += htab->function_stub_size; | |
b49e97c9 TS |
7866 | } |
7867 | else if (! info->shared | |
7868 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
0112cd26 | 7869 | && CONST_STRNEQ (name, ".rld_map")) |
b49e97c9 | 7870 | { |
5108fc1b | 7871 | /* We add a room for __rld_map. It will be filled in by the |
b49e97c9 | 7872 | rtld to contain a pointer to the _r_debug structure. */ |
eea6121a | 7873 | s->size += 4; |
b49e97c9 TS |
7874 | } |
7875 | else if (SGI_COMPAT (output_bfd) | |
0112cd26 | 7876 | && CONST_STRNEQ (name, ".compact_rel")) |
eea6121a | 7877 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
0112cd26 | 7878 | else if (! CONST_STRNEQ (name, ".init") |
0a44bf69 RS |
7879 | && s != htab->sgotplt |
7880 | && s != htab->splt) | |
b49e97c9 TS |
7881 | { |
7882 | /* It's not one of our sections, so don't allocate space. */ | |
7883 | continue; | |
7884 | } | |
7885 | ||
c456f082 | 7886 | if (s->size == 0) |
b49e97c9 | 7887 | { |
8423293d | 7888 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
7889 | continue; |
7890 | } | |
7891 | ||
c456f082 AM |
7892 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
7893 | continue; | |
7894 | ||
0a44bf69 RS |
7895 | /* Allocate memory for this section last, since we may increase its |
7896 | size above. */ | |
7897 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0) | |
7898 | { | |
7899 | sreldyn = s; | |
7900 | continue; | |
7901 | } | |
7902 | ||
b49e97c9 | 7903 | /* Allocate memory for the section contents. */ |
eea6121a | 7904 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 7905 | if (s->contents == NULL) |
b49e97c9 TS |
7906 | { |
7907 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 7908 | return FALSE; |
b49e97c9 TS |
7909 | } |
7910 | } | |
7911 | ||
0a44bf69 RS |
7912 | /* Allocate memory for the .rel(a).dyn section. */ |
7913 | if (sreldyn != NULL) | |
7914 | { | |
7915 | sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size); | |
7916 | if (sreldyn->contents == NULL) | |
7917 | { | |
7918 | bfd_set_error (bfd_error_no_memory); | |
7919 | return FALSE; | |
7920 | } | |
7921 | } | |
7922 | ||
b49e97c9 TS |
7923 | if (elf_hash_table (info)->dynamic_sections_created) |
7924 | { | |
7925 | /* Add some entries to the .dynamic section. We fill in the | |
7926 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
7927 | must add the entries now so that we get the correct size for | |
5750dcec | 7928 | the .dynamic section. */ |
af5978fb RS |
7929 | |
7930 | /* SGI object has the equivalence of DT_DEBUG in the | |
5750dcec DJ |
7931 | DT_MIPS_RLD_MAP entry. This must come first because glibc |
7932 | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only | |
7933 | looks at the first one it sees. */ | |
af5978fb RS |
7934 | if (!info->shared |
7935 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
7936 | return FALSE; | |
b49e97c9 | 7937 | |
5750dcec DJ |
7938 | /* The DT_DEBUG entry may be filled in by the dynamic linker and |
7939 | used by the debugger. */ | |
7940 | if (info->executable | |
7941 | && !SGI_COMPAT (output_bfd) | |
7942 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
7943 | return FALSE; | |
7944 | ||
0a44bf69 | 7945 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
7946 | info->flags |= DF_TEXTREL; |
7947 | ||
7948 | if ((info->flags & DF_TEXTREL) != 0) | |
7949 | { | |
7950 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 7951 | return FALSE; |
943284cc DJ |
7952 | |
7953 | /* Clear the DF_TEXTREL flag. It will be set again if we | |
7954 | write out an actual text relocation; we may not, because | |
7955 | at this point we do not know whether e.g. any .eh_frame | |
7956 | absolute relocations have been converted to PC-relative. */ | |
7957 | info->flags &= ~DF_TEXTREL; | |
b49e97c9 TS |
7958 | } |
7959 | ||
7960 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 7961 | return FALSE; |
b49e97c9 | 7962 | |
0a44bf69 | 7963 | if (htab->is_vxworks) |
b49e97c9 | 7964 | { |
0a44bf69 RS |
7965 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
7966 | use any of the DT_MIPS_* tags. */ | |
7967 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7968 | { | |
7969 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
7970 | return FALSE; | |
b49e97c9 | 7971 | |
0a44bf69 RS |
7972 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
7973 | return FALSE; | |
b49e97c9 | 7974 | |
0a44bf69 RS |
7975 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
7976 | return FALSE; | |
7977 | } | |
7978 | if (htab->splt->size > 0) | |
7979 | { | |
7980 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
7981 | return FALSE; | |
7982 | ||
7983 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
7984 | return FALSE; | |
7985 | ||
7986 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
7987 | return FALSE; | |
7988 | } | |
b49e97c9 | 7989 | } |
0a44bf69 RS |
7990 | else |
7991 | { | |
7992 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7993 | { | |
7994 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
7995 | return FALSE; | |
b49e97c9 | 7996 | |
0a44bf69 RS |
7997 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
7998 | return FALSE; | |
b49e97c9 | 7999 | |
0a44bf69 RS |
8000 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
8001 | return FALSE; | |
8002 | } | |
b49e97c9 | 8003 | |
0a44bf69 RS |
8004 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
8005 | return FALSE; | |
b49e97c9 | 8006 | |
0a44bf69 RS |
8007 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
8008 | return FALSE; | |
b49e97c9 | 8009 | |
0a44bf69 RS |
8010 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
8011 | return FALSE; | |
b49e97c9 | 8012 | |
0a44bf69 RS |
8013 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
8014 | return FALSE; | |
b49e97c9 | 8015 | |
0a44bf69 RS |
8016 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
8017 | return FALSE; | |
b49e97c9 | 8018 | |
0a44bf69 RS |
8019 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
8020 | return FALSE; | |
b49e97c9 | 8021 | |
0a44bf69 RS |
8022 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
8023 | return FALSE; | |
8024 | ||
8025 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
8026 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
8027 | return FALSE; | |
8028 | ||
8029 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
8030 | && (bfd_get_section_by_name | |
8031 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
8032 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
8033 | return FALSE; | |
8034 | } | |
7a2b07ff NS |
8035 | if (htab->is_vxworks |
8036 | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) | |
8037 | return FALSE; | |
b49e97c9 TS |
8038 | } |
8039 | ||
b34976b6 | 8040 | return TRUE; |
b49e97c9 TS |
8041 | } |
8042 | \f | |
81d43bff RS |
8043 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
8044 | Adjust its R_ADDEND field so that it is correct for the output file. | |
8045 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
8046 | and sections respectively; both use symbol indexes. */ | |
8047 | ||
8048 | static void | |
8049 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
8050 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
8051 | asection **local_sections, Elf_Internal_Rela *rel) | |
8052 | { | |
8053 | unsigned int r_type, r_symndx; | |
8054 | Elf_Internal_Sym *sym; | |
8055 | asection *sec; | |
8056 | ||
8057 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) | |
8058 | { | |
8059 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
8060 | if (r_type == R_MIPS16_GPREL | |
8061 | || r_type == R_MIPS_GPREL16 | |
8062 | || r_type == R_MIPS_GPREL32 | |
8063 | || r_type == R_MIPS_LITERAL) | |
8064 | { | |
8065 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
8066 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
8067 | } | |
8068 | ||
8069 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
8070 | sym = local_syms + r_symndx; | |
8071 | ||
8072 | /* Adjust REL's addend to account for section merging. */ | |
8073 | if (!info->relocatable) | |
8074 | { | |
8075 | sec = local_sections[r_symndx]; | |
8076 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
8077 | } | |
8078 | ||
8079 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
8080 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
8081 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
8082 | } | |
8083 | } | |
8084 | ||
b49e97c9 TS |
8085 | /* Relocate a MIPS ELF section. */ |
8086 | ||
b34976b6 | 8087 | bfd_boolean |
9719ad41 RS |
8088 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
8089 | bfd *input_bfd, asection *input_section, | |
8090 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
8091 | Elf_Internal_Sym *local_syms, | |
8092 | asection **local_sections) | |
b49e97c9 TS |
8093 | { |
8094 | Elf_Internal_Rela *rel; | |
8095 | const Elf_Internal_Rela *relend; | |
8096 | bfd_vma addend = 0; | |
b34976b6 | 8097 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 8098 | const struct elf_backend_data *bed; |
b49e97c9 TS |
8099 | |
8100 | bed = get_elf_backend_data (output_bfd); | |
8101 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
8102 | for (rel = relocs; rel < relend; ++rel) | |
8103 | { | |
8104 | const char *name; | |
c9adbffe | 8105 | bfd_vma value = 0; |
b49e97c9 | 8106 | reloc_howto_type *howto; |
b34976b6 AM |
8107 | bfd_boolean require_jalx; |
8108 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 8109 | REL relocation. */ |
b34976b6 | 8110 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 8111 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 8112 | const char *msg; |
ab96bf03 AM |
8113 | unsigned long r_symndx; |
8114 | asection *sec; | |
749b8d9d L |
8115 | Elf_Internal_Shdr *symtab_hdr; |
8116 | struct elf_link_hash_entry *h; | |
b49e97c9 TS |
8117 | |
8118 | /* Find the relocation howto for this relocation. */ | |
ab96bf03 AM |
8119 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, |
8120 | NEWABI_P (input_bfd) | |
8121 | && (MIPS_RELOC_RELA_P | |
8122 | (input_bfd, input_section, | |
8123 | rel - relocs))); | |
8124 | ||
8125 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); | |
749b8d9d | 8126 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
ab96bf03 | 8127 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) |
749b8d9d L |
8128 | { |
8129 | sec = local_sections[r_symndx]; | |
8130 | h = NULL; | |
8131 | } | |
ab96bf03 AM |
8132 | else |
8133 | { | |
ab96bf03 | 8134 | unsigned long extsymoff; |
ab96bf03 | 8135 | |
ab96bf03 AM |
8136 | extsymoff = 0; |
8137 | if (!elf_bad_symtab (input_bfd)) | |
8138 | extsymoff = symtab_hdr->sh_info; | |
8139 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
8140 | while (h->root.type == bfd_link_hash_indirect | |
8141 | || h->root.type == bfd_link_hash_warning) | |
8142 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8143 | ||
8144 | sec = NULL; | |
8145 | if (h->root.type == bfd_link_hash_defined | |
8146 | || h->root.type == bfd_link_hash_defweak) | |
8147 | sec = h->root.u.def.section; | |
8148 | } | |
8149 | ||
8150 | if (sec != NULL && elf_discarded_section (sec)) | |
8151 | { | |
8152 | /* For relocs against symbols from removed linkonce sections, | |
8153 | or sections discarded by a linker script, we just want the | |
8154 | section contents zeroed. Avoid any special processing. */ | |
8155 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
8156 | rel->r_info = 0; | |
8157 | rel->r_addend = 0; | |
8158 | continue; | |
8159 | } | |
8160 | ||
4a14403c | 8161 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
8162 | { |
8163 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
8164 | 64-bit code, but make sure all their addresses are in the | |
8165 | lowermost or uppermost 32-bit section of the 64-bit address | |
8166 | space. Thus, when they use an R_MIPS_64 they mean what is | |
8167 | usually meant by R_MIPS_32, with the exception that the | |
8168 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 8169 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
8170 | |
8171 | /* On big-endian systems, we need to lie about the position | |
8172 | of the reloc. */ | |
8173 | if (bfd_big_endian (input_bfd)) | |
8174 | rel->r_offset += 4; | |
8175 | } | |
b49e97c9 TS |
8176 | |
8177 | if (!use_saved_addend_p) | |
8178 | { | |
b49e97c9 TS |
8179 | /* If these relocations were originally of the REL variety, |
8180 | we must pull the addend out of the field that will be | |
8181 | relocated. Otherwise, we simply use the contents of the | |
c224138d RS |
8182 | RELA relocation. */ |
8183 | if (mips_elf_rel_relocation_p (input_bfd, input_section, | |
8184 | relocs, rel)) | |
b49e97c9 | 8185 | { |
b34976b6 | 8186 | rela_relocation_p = FALSE; |
c224138d RS |
8187 | addend = mips_elf_read_rel_addend (input_bfd, rel, |
8188 | howto, contents); | |
8189 | if (r_type == R_MIPS_HI16 | |
8190 | || r_type == R_MIPS16_HI16 | |
b49e97c9 TS |
8191 | || (r_type == R_MIPS_GOT16 |
8192 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 8193 | local_sections, FALSE))) |
b49e97c9 | 8194 | { |
c224138d RS |
8195 | if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, |
8196 | contents, &addend)) | |
749b8d9d L |
8197 | { |
8198 | const char *name; | |
8199 | ||
8200 | if (h) | |
8201 | name = h->root.root.string; | |
8202 | else | |
8203 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
8204 | local_syms + r_symndx, | |
8205 | sec); | |
8206 | (*_bfd_error_handler) | |
8207 | (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), | |
8208 | input_bfd, input_section, name, howto->name, | |
8209 | rel->r_offset); | |
749b8d9d | 8210 | } |
b49e97c9 | 8211 | } |
30ac9238 RS |
8212 | else |
8213 | addend <<= howto->rightshift; | |
b49e97c9 TS |
8214 | } |
8215 | else | |
8216 | addend = rel->r_addend; | |
81d43bff RS |
8217 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
8218 | local_syms, local_sections, rel); | |
b49e97c9 TS |
8219 | } |
8220 | ||
1049f94e | 8221 | if (info->relocatable) |
b49e97c9 | 8222 | { |
4a14403c | 8223 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
8224 | && bfd_big_endian (input_bfd)) |
8225 | rel->r_offset -= 4; | |
8226 | ||
81d43bff | 8227 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 8228 | { |
81d43bff | 8229 | addend += rel->r_addend; |
30ac9238 | 8230 | if (r_type == R_MIPS_HI16 |
4030e8f6 | 8231 | || r_type == R_MIPS_GOT16) |
5a659663 TS |
8232 | addend = mips_elf_high (addend); |
8233 | else if (r_type == R_MIPS_HIGHER) | |
8234 | addend = mips_elf_higher (addend); | |
8235 | else if (r_type == R_MIPS_HIGHEST) | |
8236 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
8237 | else |
8238 | addend >>= howto->rightshift; | |
b49e97c9 | 8239 | |
30ac9238 RS |
8240 | /* We use the source mask, rather than the destination |
8241 | mask because the place to which we are writing will be | |
8242 | source of the addend in the final link. */ | |
b49e97c9 TS |
8243 | addend &= howto->src_mask; |
8244 | ||
5a659663 | 8245 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
8246 | /* See the comment above about using R_MIPS_64 in the 32-bit |
8247 | ABI. Here, we need to update the addend. It would be | |
8248 | possible to get away with just using the R_MIPS_32 reloc | |
8249 | but for endianness. */ | |
8250 | { | |
8251 | bfd_vma sign_bits; | |
8252 | bfd_vma low_bits; | |
8253 | bfd_vma high_bits; | |
8254 | ||
8255 | if (addend & ((bfd_vma) 1 << 31)) | |
8256 | #ifdef BFD64 | |
8257 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
8258 | #else | |
8259 | sign_bits = -1; | |
8260 | #endif | |
8261 | else | |
8262 | sign_bits = 0; | |
8263 | ||
8264 | /* If we don't know that we have a 64-bit type, | |
8265 | do two separate stores. */ | |
8266 | if (bfd_big_endian (input_bfd)) | |
8267 | { | |
8268 | /* Store the sign-bits (which are most significant) | |
8269 | first. */ | |
8270 | low_bits = sign_bits; | |
8271 | high_bits = addend; | |
8272 | } | |
8273 | else | |
8274 | { | |
8275 | low_bits = addend; | |
8276 | high_bits = sign_bits; | |
8277 | } | |
8278 | bfd_put_32 (input_bfd, low_bits, | |
8279 | contents + rel->r_offset); | |
8280 | bfd_put_32 (input_bfd, high_bits, | |
8281 | contents + rel->r_offset + 4); | |
8282 | continue; | |
8283 | } | |
8284 | ||
8285 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
8286 | input_bfd, input_section, | |
b34976b6 AM |
8287 | contents, FALSE)) |
8288 | return FALSE; | |
b49e97c9 TS |
8289 | } |
8290 | ||
8291 | /* Go on to the next relocation. */ | |
8292 | continue; | |
8293 | } | |
8294 | ||
8295 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
8296 | relocations for the same offset. In that case we are | |
8297 | supposed to treat the output of each relocation as the addend | |
8298 | for the next. */ | |
8299 | if (rel + 1 < relend | |
8300 | && rel->r_offset == rel[1].r_offset | |
8301 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 8302 | use_saved_addend_p = TRUE; |
b49e97c9 | 8303 | else |
b34976b6 | 8304 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
8305 | |
8306 | /* Figure out what value we are supposed to relocate. */ | |
8307 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
8308 | input_section, info, rel, | |
8309 | addend, howto, local_syms, | |
8310 | local_sections, &value, | |
bce03d3d AO |
8311 | &name, &require_jalx, |
8312 | use_saved_addend_p)) | |
b49e97c9 TS |
8313 | { |
8314 | case bfd_reloc_continue: | |
8315 | /* There's nothing to do. */ | |
8316 | continue; | |
8317 | ||
8318 | case bfd_reloc_undefined: | |
8319 | /* mips_elf_calculate_relocation already called the | |
8320 | undefined_symbol callback. There's no real point in | |
8321 | trying to perform the relocation at this point, so we | |
8322 | just skip ahead to the next relocation. */ | |
8323 | continue; | |
8324 | ||
8325 | case bfd_reloc_notsupported: | |
8326 | msg = _("internal error: unsupported relocation error"); | |
8327 | info->callbacks->warning | |
8328 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 8329 | return FALSE; |
b49e97c9 TS |
8330 | |
8331 | case bfd_reloc_overflow: | |
8332 | if (use_saved_addend_p) | |
8333 | /* Ignore overflow until we reach the last relocation for | |
8334 | a given location. */ | |
8335 | ; | |
8336 | else | |
8337 | { | |
0e53d9da AN |
8338 | struct mips_elf_link_hash_table *htab; |
8339 | ||
8340 | htab = mips_elf_hash_table (info); | |
b49e97c9 | 8341 | BFD_ASSERT (name != NULL); |
0e53d9da AN |
8342 | if (!htab->small_data_overflow_reported |
8343 | && (howto->type == R_MIPS_GPREL16 | |
8344 | || howto->type == R_MIPS_LITERAL)) | |
8345 | { | |
8346 | const char *msg = | |
8347 | _("small-data section exceeds 64KB;" | |
8348 | " lower small-data size limit (see option -G)"); | |
8349 | ||
8350 | htab->small_data_overflow_reported = TRUE; | |
8351 | (*info->callbacks->einfo) ("%P: %s\n", msg); | |
8352 | } | |
b49e97c9 | 8353 | if (! ((*info->callbacks->reloc_overflow) |
dfeffb9f | 8354 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 8355 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 8356 | return FALSE; |
b49e97c9 TS |
8357 | } |
8358 | break; | |
8359 | ||
8360 | case bfd_reloc_ok: | |
8361 | break; | |
8362 | ||
8363 | default: | |
8364 | abort (); | |
8365 | break; | |
8366 | } | |
8367 | ||
8368 | /* If we've got another relocation for the address, keep going | |
8369 | until we reach the last one. */ | |
8370 | if (use_saved_addend_p) | |
8371 | { | |
8372 | addend = value; | |
8373 | continue; | |
8374 | } | |
8375 | ||
4a14403c | 8376 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
8377 | /* See the comment above about using R_MIPS_64 in the 32-bit |
8378 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
8379 | that calculated the right value. Now, however, we | |
8380 | sign-extend the 32-bit result to 64-bits, and store it as a | |
8381 | 64-bit value. We are especially generous here in that we | |
8382 | go to extreme lengths to support this usage on systems with | |
8383 | only a 32-bit VMA. */ | |
8384 | { | |
8385 | bfd_vma sign_bits; | |
8386 | bfd_vma low_bits; | |
8387 | bfd_vma high_bits; | |
8388 | ||
8389 | if (value & ((bfd_vma) 1 << 31)) | |
8390 | #ifdef BFD64 | |
8391 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
8392 | #else | |
8393 | sign_bits = -1; | |
8394 | #endif | |
8395 | else | |
8396 | sign_bits = 0; | |
8397 | ||
8398 | /* If we don't know that we have a 64-bit type, | |
8399 | do two separate stores. */ | |
8400 | if (bfd_big_endian (input_bfd)) | |
8401 | { | |
8402 | /* Undo what we did above. */ | |
8403 | rel->r_offset -= 4; | |
8404 | /* Store the sign-bits (which are most significant) | |
8405 | first. */ | |
8406 | low_bits = sign_bits; | |
8407 | high_bits = value; | |
8408 | } | |
8409 | else | |
8410 | { | |
8411 | low_bits = value; | |
8412 | high_bits = sign_bits; | |
8413 | } | |
8414 | bfd_put_32 (input_bfd, low_bits, | |
8415 | contents + rel->r_offset); | |
8416 | bfd_put_32 (input_bfd, high_bits, | |
8417 | contents + rel->r_offset + 4); | |
8418 | continue; | |
8419 | } | |
8420 | ||
8421 | /* Actually perform the relocation. */ | |
8422 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
8423 | input_bfd, input_section, | |
8424 | contents, require_jalx)) | |
b34976b6 | 8425 | return FALSE; |
b49e97c9 TS |
8426 | } |
8427 | ||
b34976b6 | 8428 | return TRUE; |
b49e97c9 TS |
8429 | } |
8430 | \f | |
8431 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
8432 | adjust it appropriately now. */ | |
8433 | ||
8434 | static void | |
9719ad41 RS |
8435 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
8436 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
8437 | { |
8438 | /* The linker script takes care of providing names and values for | |
8439 | these, but we must place them into the right sections. */ | |
8440 | static const char* const text_section_symbols[] = { | |
8441 | "_ftext", | |
8442 | "_etext", | |
8443 | "__dso_displacement", | |
8444 | "__elf_header", | |
8445 | "__program_header_table", | |
8446 | NULL | |
8447 | }; | |
8448 | ||
8449 | static const char* const data_section_symbols[] = { | |
8450 | "_fdata", | |
8451 | "_edata", | |
8452 | "_end", | |
8453 | "_fbss", | |
8454 | NULL | |
8455 | }; | |
8456 | ||
8457 | const char* const *p; | |
8458 | int i; | |
8459 | ||
8460 | for (i = 0; i < 2; ++i) | |
8461 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
8462 | *p; | |
8463 | ++p) | |
8464 | if (strcmp (*p, name) == 0) | |
8465 | { | |
8466 | /* All of these symbols are given type STT_SECTION by the | |
8467 | IRIX6 linker. */ | |
8468 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 8469 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
8470 | |
8471 | /* The IRIX linker puts these symbols in special sections. */ | |
8472 | if (i == 0) | |
8473 | sym->st_shndx = SHN_MIPS_TEXT; | |
8474 | else | |
8475 | sym->st_shndx = SHN_MIPS_DATA; | |
8476 | ||
8477 | break; | |
8478 | } | |
8479 | } | |
8480 | ||
8481 | /* Finish up dynamic symbol handling. We set the contents of various | |
8482 | dynamic sections here. */ | |
8483 | ||
b34976b6 | 8484 | bfd_boolean |
9719ad41 RS |
8485 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
8486 | struct bfd_link_info *info, | |
8487 | struct elf_link_hash_entry *h, | |
8488 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
8489 | { |
8490 | bfd *dynobj; | |
b49e97c9 | 8491 | asection *sgot; |
f4416af6 | 8492 | struct mips_got_info *g, *gg; |
b49e97c9 | 8493 | const char *name; |
3d6746ca | 8494 | int idx; |
5108fc1b | 8495 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8496 | |
5108fc1b | 8497 | htab = mips_elf_hash_table (info); |
b49e97c9 | 8498 | dynobj = elf_hash_table (info)->dynobj; |
b49e97c9 | 8499 | |
c5ae1840 | 8500 | if (h->plt.offset != MINUS_ONE) |
b49e97c9 TS |
8501 | { |
8502 | asection *s; | |
5108fc1b | 8503 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
b49e97c9 TS |
8504 | |
8505 | /* This symbol has a stub. Set it up. */ | |
8506 | ||
8507 | BFD_ASSERT (h->dynindx != -1); | |
8508 | ||
8509 | s = bfd_get_section_by_name (dynobj, | |
8510 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
8511 | BFD_ASSERT (s != NULL); | |
8512 | ||
5108fc1b RS |
8513 | BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
8514 | || (h->dynindx <= 0xffff)); | |
3d6746ca DD |
8515 | |
8516 | /* Values up to 2^31 - 1 are allowed. Larger values would cause | |
5108fc1b RS |
8517 | sign extension at runtime in the stub, resulting in a negative |
8518 | index value. */ | |
8519 | if (h->dynindx & ~0x7fffffff) | |
b34976b6 | 8520 | return FALSE; |
b49e97c9 TS |
8521 | |
8522 | /* Fill the stub. */ | |
3d6746ca DD |
8523 | idx = 0; |
8524 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | |
8525 | idx += 4; | |
8526 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); | |
8527 | idx += 4; | |
5108fc1b | 8528 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
3d6746ca | 8529 | { |
5108fc1b | 8530 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
3d6746ca DD |
8531 | stub + idx); |
8532 | idx += 4; | |
8533 | } | |
8534 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | |
8535 | idx += 4; | |
b49e97c9 | 8536 | |
3d6746ca DD |
8537 | /* If a large stub is not required and sign extension is not a |
8538 | problem, then use legacy code in the stub. */ | |
5108fc1b RS |
8539 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
8540 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); | |
8541 | else if (h->dynindx & ~0x7fff) | |
3d6746ca DD |
8542 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); |
8543 | else | |
5108fc1b RS |
8544 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
8545 | stub + idx); | |
8546 | ||
eea6121a | 8547 | BFD_ASSERT (h->plt.offset <= s->size); |
5108fc1b | 8548 | memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size); |
b49e97c9 TS |
8549 | |
8550 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
8551 | only for the referenced symbol. */ | |
8552 | sym->st_shndx = SHN_UNDEF; | |
8553 | ||
8554 | /* The run-time linker uses the st_value field of the symbol | |
8555 | to reset the global offset table entry for this external | |
8556 | to its stub address when unlinking a shared object. */ | |
c5ae1840 TS |
8557 | sym->st_value = (s->output_section->vma + s->output_offset |
8558 | + h->plt.offset); | |
b49e97c9 TS |
8559 | } |
8560 | ||
8561 | BFD_ASSERT (h->dynindx != -1 | |
f5385ebf | 8562 | || h->forced_local); |
b49e97c9 | 8563 | |
f4416af6 | 8564 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8565 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 8566 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 8567 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
8568 | BFD_ASSERT (g != NULL); |
8569 | ||
8570 | /* Run through the global symbol table, creating GOT entries for all | |
8571 | the symbols that need them. */ | |
8572 | if (g->global_gotsym != NULL | |
8573 | && h->dynindx >= g->global_gotsym->dynindx) | |
8574 | { | |
8575 | bfd_vma offset; | |
8576 | bfd_vma value; | |
8577 | ||
6eaa6adc | 8578 | value = sym->st_value; |
0f20cc35 | 8579 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
b49e97c9 TS |
8580 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
8581 | } | |
8582 | ||
0f20cc35 | 8583 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
8584 | { |
8585 | struct mips_got_entry e, *p; | |
0626d451 | 8586 | bfd_vma entry; |
f4416af6 | 8587 | bfd_vma offset; |
f4416af6 AO |
8588 | |
8589 | gg = g; | |
8590 | ||
8591 | e.abfd = output_bfd; | |
8592 | e.symndx = -1; | |
8593 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 8594 | e.tls_type = 0; |
143d77c5 | 8595 | |
f4416af6 AO |
8596 | for (g = g->next; g->next != gg; g = g->next) |
8597 | { | |
8598 | if (g->got_entries | |
8599 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
8600 | &e))) | |
8601 | { | |
8602 | offset = p->gotidx; | |
0626d451 RS |
8603 | if (info->shared |
8604 | || (elf_hash_table (info)->dynamic_sections_created | |
8605 | && p->d.h != NULL | |
f5385ebf AM |
8606 | && p->d.h->root.def_dynamic |
8607 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
8608 | { |
8609 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
8610 | the various compatibility problems, it's easier to mock | |
8611 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
8612 | mips_elf_create_dynamic_relocation to calculate the | |
8613 | appropriate addend. */ | |
8614 | Elf_Internal_Rela rel[3]; | |
8615 | ||
8616 | memset (rel, 0, sizeof (rel)); | |
8617 | if (ABI_64_P (output_bfd)) | |
8618 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
8619 | else | |
8620 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
8621 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
8622 | ||
8623 | entry = 0; | |
8624 | if (! (mips_elf_create_dynamic_relocation | |
8625 | (output_bfd, info, rel, | |
8626 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
8627 | return FALSE; | |
8628 | } | |
8629 | else | |
8630 | entry = sym->st_value; | |
8631 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
8632 | } |
8633 | } | |
8634 | } | |
8635 | ||
b49e97c9 TS |
8636 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
8637 | name = h->root.root.string; | |
8638 | if (strcmp (name, "_DYNAMIC") == 0 | |
22edb2f1 | 8639 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
8640 | sym->st_shndx = SHN_ABS; |
8641 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
8642 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
8643 | { | |
8644 | sym->st_shndx = SHN_ABS; | |
8645 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8646 | sym->st_value = 1; | |
8647 | } | |
4a14403c | 8648 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
8649 | { |
8650 | sym->st_shndx = SHN_ABS; | |
8651 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8652 | sym->st_value = elf_gp (output_bfd); | |
8653 | } | |
8654 | else if (SGI_COMPAT (output_bfd)) | |
8655 | { | |
8656 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
8657 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
8658 | { | |
8659 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8660 | sym->st_other = STO_PROTECTED; | |
8661 | sym->st_value = 0; | |
8662 | sym->st_shndx = SHN_MIPS_DATA; | |
8663 | } | |
8664 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
8665 | { | |
8666 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8667 | sym->st_other = STO_PROTECTED; | |
8668 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
8669 | sym->st_shndx = SHN_ABS; | |
8670 | } | |
8671 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
8672 | { | |
8673 | if (h->type == STT_FUNC) | |
8674 | sym->st_shndx = SHN_MIPS_TEXT; | |
8675 | else if (h->type == STT_OBJECT) | |
8676 | sym->st_shndx = SHN_MIPS_DATA; | |
8677 | } | |
8678 | } | |
8679 | ||
8680 | /* Handle the IRIX6-specific symbols. */ | |
8681 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
8682 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
8683 | ||
8684 | if (! info->shared) | |
8685 | { | |
8686 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
8687 | && (strcmp (name, "__rld_map") == 0 | |
8688 | || strcmp (name, "__RLD_MAP") == 0)) | |
8689 | { | |
8690 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
8691 | BFD_ASSERT (s != NULL); | |
8692 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 8693 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
8694 | if (mips_elf_hash_table (info)->rld_value == 0) |
8695 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8696 | } | |
8697 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
8698 | && strcmp (name, "__rld_obj_head") == 0) | |
8699 | { | |
8700 | /* IRIX6 does not use a .rld_map section. */ | |
8701 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
8702 | || IRIX_COMPAT (output_bfd) == ict_none) | |
8703 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
8704 | != NULL); | |
8705 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8706 | } | |
8707 | } | |
8708 | ||
8709 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
8710 | if (sym->st_other == STO_MIPS16) |
8711 | sym->st_value &= ~1; | |
b49e97c9 | 8712 | |
b34976b6 | 8713 | return TRUE; |
b49e97c9 TS |
8714 | } |
8715 | ||
0a44bf69 RS |
8716 | /* Likewise, for VxWorks. */ |
8717 | ||
8718 | bfd_boolean | |
8719 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
8720 | struct bfd_link_info *info, | |
8721 | struct elf_link_hash_entry *h, | |
8722 | Elf_Internal_Sym *sym) | |
8723 | { | |
8724 | bfd *dynobj; | |
8725 | asection *sgot; | |
8726 | struct mips_got_info *g; | |
8727 | struct mips_elf_link_hash_table *htab; | |
8728 | ||
8729 | htab = mips_elf_hash_table (info); | |
8730 | dynobj = elf_hash_table (info)->dynobj; | |
8731 | ||
8732 | if (h->plt.offset != (bfd_vma) -1) | |
8733 | { | |
6d79d2ed | 8734 | bfd_byte *loc; |
0a44bf69 RS |
8735 | bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; |
8736 | Elf_Internal_Rela rel; | |
8737 | static const bfd_vma *plt_entry; | |
8738 | ||
8739 | BFD_ASSERT (h->dynindx != -1); | |
8740 | BFD_ASSERT (htab->splt != NULL); | |
8741 | BFD_ASSERT (h->plt.offset <= htab->splt->size); | |
8742 | ||
8743 | /* Calculate the address of the .plt entry. */ | |
8744 | plt_address = (htab->splt->output_section->vma | |
8745 | + htab->splt->output_offset | |
8746 | + h->plt.offset); | |
8747 | ||
8748 | /* Calculate the index of the entry. */ | |
8749 | plt_index = ((h->plt.offset - htab->plt_header_size) | |
8750 | / htab->plt_entry_size); | |
8751 | ||
8752 | /* Calculate the address of the .got.plt entry. */ | |
8753 | got_address = (htab->sgotplt->output_section->vma | |
8754 | + htab->sgotplt->output_offset | |
8755 | + plt_index * 4); | |
8756 | ||
8757 | /* Calculate the offset of the .got.plt entry from | |
8758 | _GLOBAL_OFFSET_TABLE_. */ | |
8759 | got_offset = mips_elf_gotplt_index (info, h); | |
8760 | ||
8761 | /* Calculate the offset for the branch at the start of the PLT | |
8762 | entry. The branch jumps to the beginning of .plt. */ | |
8763 | branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; | |
8764 | ||
8765 | /* Fill in the initial value of the .got.plt entry. */ | |
8766 | bfd_put_32 (output_bfd, plt_address, | |
8767 | htab->sgotplt->contents + plt_index * 4); | |
8768 | ||
8769 | /* Find out where the .plt entry should go. */ | |
8770 | loc = htab->splt->contents + h->plt.offset; | |
8771 | ||
8772 | if (info->shared) | |
8773 | { | |
8774 | plt_entry = mips_vxworks_shared_plt_entry; | |
8775 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8776 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8777 | } | |
8778 | else | |
8779 | { | |
8780 | bfd_vma got_address_high, got_address_low; | |
8781 | ||
8782 | plt_entry = mips_vxworks_exec_plt_entry; | |
8783 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
8784 | got_address_low = got_address & 0xffff; | |
8785 | ||
8786 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8787 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8788 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); | |
8789 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
8790 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8791 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8792 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
8793 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
8794 | ||
8795 | loc = (htab->srelplt2->contents | |
8796 | + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); | |
8797 | ||
8798 | /* Emit a relocation for the .got.plt entry. */ | |
8799 | rel.r_offset = got_address; | |
8800 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8801 | rel.r_addend = h->plt.offset; | |
8802 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8803 | ||
8804 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
8805 | loc += sizeof (Elf32_External_Rela); | |
8806 | rel.r_offset = plt_address + 8; | |
8807 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8808 | rel.r_addend = got_offset; | |
8809 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8810 | ||
8811 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
8812 | loc += sizeof (Elf32_External_Rela); | |
8813 | rel.r_offset += 4; | |
8814 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8815 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8816 | } | |
8817 | ||
8818 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
8819 | loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); | |
8820 | rel.r_offset = got_address; | |
8821 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
8822 | rel.r_addend = 0; | |
8823 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8824 | ||
8825 | if (!h->def_regular) | |
8826 | sym->st_shndx = SHN_UNDEF; | |
8827 | } | |
8828 | ||
8829 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
8830 | ||
8831 | sgot = mips_elf_got_section (dynobj, FALSE); | |
8832 | BFD_ASSERT (sgot != NULL); | |
8833 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); | |
8834 | g = mips_elf_section_data (sgot)->u.got_info; | |
8835 | BFD_ASSERT (g != NULL); | |
8836 | ||
8837 | /* See if this symbol has an entry in the GOT. */ | |
8838 | if (g->global_gotsym != NULL | |
8839 | && h->dynindx >= g->global_gotsym->dynindx) | |
8840 | { | |
8841 | bfd_vma offset; | |
8842 | Elf_Internal_Rela outrel; | |
8843 | bfd_byte *loc; | |
8844 | asection *s; | |
8845 | ||
8846 | /* Install the symbol value in the GOT. */ | |
8847 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, | |
8848 | R_MIPS_GOT16, info); | |
8849 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); | |
8850 | ||
8851 | /* Add a dynamic relocation for it. */ | |
8852 | s = mips_elf_rel_dyn_section (info, FALSE); | |
8853 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
8854 | outrel.r_offset = (sgot->output_section->vma | |
8855 | + sgot->output_offset | |
8856 | + offset); | |
8857 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
8858 | outrel.r_addend = 0; | |
8859 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
8860 | } | |
8861 | ||
8862 | /* Emit a copy reloc, if needed. */ | |
8863 | if (h->needs_copy) | |
8864 | { | |
8865 | Elf_Internal_Rela rel; | |
8866 | ||
8867 | BFD_ASSERT (h->dynindx != -1); | |
8868 | ||
8869 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
8870 | + h->root.u.def.section->output_offset | |
8871 | + h->root.u.def.value); | |
8872 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
8873 | rel.r_addend = 0; | |
8874 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
8875 | htab->srelbss->contents | |
8876 | + (htab->srelbss->reloc_count | |
8877 | * sizeof (Elf32_External_Rela))); | |
8878 | ++htab->srelbss->reloc_count; | |
8879 | } | |
8880 | ||
8881 | /* If this is a mips16 symbol, force the value to be even. */ | |
8882 | if (sym->st_other == STO_MIPS16) | |
8883 | sym->st_value &= ~1; | |
8884 | ||
8885 | return TRUE; | |
8886 | } | |
8887 | ||
8888 | /* Install the PLT header for a VxWorks executable and finalize the | |
8889 | contents of .rela.plt.unloaded. */ | |
8890 | ||
8891 | static void | |
8892 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8893 | { | |
8894 | Elf_Internal_Rela rela; | |
8895 | bfd_byte *loc; | |
8896 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
8897 | static const bfd_vma *plt_entry; | |
8898 | struct mips_elf_link_hash_table *htab; | |
8899 | ||
8900 | htab = mips_elf_hash_table (info); | |
8901 | plt_entry = mips_vxworks_exec_plt0_entry; | |
8902 | ||
8903 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
8904 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
8905 | + htab->root.hgot->root.u.def.section->output_offset | |
8906 | + htab->root.hgot->root.u.def.value); | |
8907 | ||
8908 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
8909 | got_value_low = got_value & 0xffff; | |
8910 | ||
8911 | /* Calculate the address of the PLT header. */ | |
8912 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
8913 | ||
8914 | /* Install the PLT header. */ | |
8915 | loc = htab->splt->contents; | |
8916 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
8917 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
8918 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
8919 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
8920 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8921 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8922 | ||
8923 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
8924 | loc = htab->srelplt2->contents; | |
8925 | rela.r_offset = plt_address; | |
8926 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8927 | rela.r_addend = 0; | |
8928 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8929 | loc += sizeof (Elf32_External_Rela); | |
8930 | ||
8931 | /* Output the relocation for the following addiu of | |
8932 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
8933 | rela.r_offset += 4; | |
8934 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8935 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8936 | loc += sizeof (Elf32_External_Rela); | |
8937 | ||
8938 | /* Fix up the remaining relocations. They may have the wrong | |
8939 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
8940 | in which symbols were output. */ | |
8941 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
8942 | { | |
8943 | Elf_Internal_Rela rel; | |
8944 | ||
8945 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8946 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8947 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8948 | loc += sizeof (Elf32_External_Rela); | |
8949 | ||
8950 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8951 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8952 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8953 | loc += sizeof (Elf32_External_Rela); | |
8954 | ||
8955 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8956 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8957 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8958 | loc += sizeof (Elf32_External_Rela); | |
8959 | } | |
8960 | } | |
8961 | ||
8962 | /* Install the PLT header for a VxWorks shared library. */ | |
8963 | ||
8964 | static void | |
8965 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8966 | { | |
8967 | unsigned int i; | |
8968 | struct mips_elf_link_hash_table *htab; | |
8969 | ||
8970 | htab = mips_elf_hash_table (info); | |
8971 | ||
8972 | /* We just need to copy the entry byte-by-byte. */ | |
8973 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
8974 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
8975 | htab->splt->contents + i * 4); | |
8976 | } | |
8977 | ||
b49e97c9 TS |
8978 | /* Finish up the dynamic sections. */ |
8979 | ||
b34976b6 | 8980 | bfd_boolean |
9719ad41 RS |
8981 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
8982 | struct bfd_link_info *info) | |
b49e97c9 TS |
8983 | { |
8984 | bfd *dynobj; | |
8985 | asection *sdyn; | |
8986 | asection *sgot; | |
f4416af6 | 8987 | struct mips_got_info *gg, *g; |
0a44bf69 | 8988 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8989 | |
0a44bf69 | 8990 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
8991 | dynobj = elf_hash_table (info)->dynobj; |
8992 | ||
8993 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
8994 | ||
f4416af6 | 8995 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8996 | if (sgot == NULL) |
f4416af6 | 8997 | gg = g = NULL; |
b49e97c9 TS |
8998 | else |
8999 | { | |
f4416af6 AO |
9000 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
9001 | gg = mips_elf_section_data (sgot)->u.got_info; | |
9002 | BFD_ASSERT (gg != NULL); | |
9003 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
9004 | BFD_ASSERT (g != NULL); |
9005 | } | |
9006 | ||
9007 | if (elf_hash_table (info)->dynamic_sections_created) | |
9008 | { | |
9009 | bfd_byte *b; | |
943284cc | 9010 | int dyn_to_skip = 0, dyn_skipped = 0; |
b49e97c9 TS |
9011 | |
9012 | BFD_ASSERT (sdyn != NULL); | |
9013 | BFD_ASSERT (g != NULL); | |
9014 | ||
9015 | for (b = sdyn->contents; | |
eea6121a | 9016 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
9017 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
9018 | { | |
9019 | Elf_Internal_Dyn dyn; | |
9020 | const char *name; | |
9021 | size_t elemsize; | |
9022 | asection *s; | |
b34976b6 | 9023 | bfd_boolean swap_out_p; |
b49e97c9 TS |
9024 | |
9025 | /* Read in the current dynamic entry. */ | |
9026 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
9027 | ||
9028 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 9029 | swap_out_p = TRUE; |
b49e97c9 TS |
9030 | |
9031 | switch (dyn.d_tag) | |
9032 | { | |
9033 | case DT_RELENT: | |
b49e97c9 TS |
9034 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
9035 | break; | |
9036 | ||
0a44bf69 RS |
9037 | case DT_RELAENT: |
9038 | BFD_ASSERT (htab->is_vxworks); | |
9039 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
9040 | break; | |
9041 | ||
b49e97c9 TS |
9042 | case DT_STRSZ: |
9043 | /* Rewrite DT_STRSZ. */ | |
9044 | dyn.d_un.d_val = | |
9045 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
9046 | break; | |
9047 | ||
9048 | case DT_PLTGOT: | |
9049 | name = ".got"; | |
0a44bf69 RS |
9050 | if (htab->is_vxworks) |
9051 | { | |
9052 | /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning | |
9053 | of the ".got" section in DYNOBJ. */ | |
9054 | s = bfd_get_section_by_name (dynobj, name); | |
9055 | BFD_ASSERT (s != NULL); | |
9056 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
9057 | } | |
9058 | else | |
9059 | { | |
9060 | s = bfd_get_section_by_name (output_bfd, name); | |
9061 | BFD_ASSERT (s != NULL); | |
9062 | dyn.d_un.d_ptr = s->vma; | |
9063 | } | |
b49e97c9 TS |
9064 | break; |
9065 | ||
9066 | case DT_MIPS_RLD_VERSION: | |
9067 | dyn.d_un.d_val = 1; /* XXX */ | |
9068 | break; | |
9069 | ||
9070 | case DT_MIPS_FLAGS: | |
9071 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
9072 | break; | |
9073 | ||
b49e97c9 | 9074 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
9075 | { |
9076 | time_t t; | |
9077 | time (&t); | |
9078 | dyn.d_un.d_val = t; | |
9079 | } | |
b49e97c9 TS |
9080 | break; |
9081 | ||
9082 | case DT_MIPS_ICHECKSUM: | |
9083 | /* XXX FIXME: */ | |
b34976b6 | 9084 | swap_out_p = FALSE; |
b49e97c9 TS |
9085 | break; |
9086 | ||
9087 | case DT_MIPS_IVERSION: | |
9088 | /* XXX FIXME: */ | |
b34976b6 | 9089 | swap_out_p = FALSE; |
b49e97c9 TS |
9090 | break; |
9091 | ||
9092 | case DT_MIPS_BASE_ADDRESS: | |
9093 | s = output_bfd->sections; | |
9094 | BFD_ASSERT (s != NULL); | |
9095 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
9096 | break; | |
9097 | ||
9098 | case DT_MIPS_LOCAL_GOTNO: | |
9099 | dyn.d_un.d_val = g->local_gotno; | |
9100 | break; | |
9101 | ||
9102 | case DT_MIPS_UNREFEXTNO: | |
9103 | /* The index into the dynamic symbol table which is the | |
9104 | entry of the first external symbol that is not | |
9105 | referenced within the same object. */ | |
9106 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
9107 | break; | |
9108 | ||
9109 | case DT_MIPS_GOTSYM: | |
f4416af6 | 9110 | if (gg->global_gotsym) |
b49e97c9 | 9111 | { |
f4416af6 | 9112 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
9113 | break; |
9114 | } | |
9115 | /* In case if we don't have global got symbols we default | |
9116 | to setting DT_MIPS_GOTSYM to the same value as | |
9117 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
9118 | ||
9119 | case DT_MIPS_SYMTABNO: | |
9120 | name = ".dynsym"; | |
9121 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
9122 | s = bfd_get_section_by_name (output_bfd, name); | |
9123 | BFD_ASSERT (s != NULL); | |
9124 | ||
eea6121a | 9125 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
9126 | break; |
9127 | ||
9128 | case DT_MIPS_HIPAGENO: | |
0a44bf69 | 9129 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info); |
b49e97c9 TS |
9130 | break; |
9131 | ||
9132 | case DT_MIPS_RLD_MAP: | |
9133 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
9134 | break; | |
9135 | ||
9136 | case DT_MIPS_OPTIONS: | |
9137 | s = (bfd_get_section_by_name | |
9138 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
9139 | dyn.d_un.d_ptr = s->vma; | |
9140 | break; | |
9141 | ||
0a44bf69 RS |
9142 | case DT_RELASZ: |
9143 | BFD_ASSERT (htab->is_vxworks); | |
9144 | /* The count does not include the JUMP_SLOT relocations. */ | |
9145 | if (htab->srelplt) | |
9146 | dyn.d_un.d_val -= htab->srelplt->size; | |
9147 | break; | |
9148 | ||
9149 | case DT_PLTREL: | |
9150 | BFD_ASSERT (htab->is_vxworks); | |
9151 | dyn.d_un.d_val = DT_RELA; | |
9152 | break; | |
9153 | ||
9154 | case DT_PLTRELSZ: | |
9155 | BFD_ASSERT (htab->is_vxworks); | |
9156 | dyn.d_un.d_val = htab->srelplt->size; | |
9157 | break; | |
9158 | ||
9159 | case DT_JMPREL: | |
9160 | BFD_ASSERT (htab->is_vxworks); | |
9161 | dyn.d_un.d_val = (htab->srelplt->output_section->vma | |
9162 | + htab->srelplt->output_offset); | |
9163 | break; | |
9164 | ||
943284cc DJ |
9165 | case DT_TEXTREL: |
9166 | /* If we didn't need any text relocations after all, delete | |
9167 | the dynamic tag. */ | |
9168 | if (!(info->flags & DF_TEXTREL)) | |
9169 | { | |
9170 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
9171 | swap_out_p = FALSE; | |
9172 | } | |
9173 | break; | |
9174 | ||
9175 | case DT_FLAGS: | |
9176 | /* If we didn't need any text relocations after all, clear | |
9177 | DF_TEXTREL from DT_FLAGS. */ | |
9178 | if (!(info->flags & DF_TEXTREL)) | |
9179 | dyn.d_un.d_val &= ~DF_TEXTREL; | |
9180 | else | |
9181 | swap_out_p = FALSE; | |
9182 | break; | |
9183 | ||
b49e97c9 | 9184 | default: |
b34976b6 | 9185 | swap_out_p = FALSE; |
7a2b07ff NS |
9186 | if (htab->is_vxworks |
9187 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | |
9188 | swap_out_p = TRUE; | |
b49e97c9 TS |
9189 | break; |
9190 | } | |
9191 | ||
943284cc | 9192 | if (swap_out_p || dyn_skipped) |
b49e97c9 | 9193 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
943284cc DJ |
9194 | (dynobj, &dyn, b - dyn_skipped); |
9195 | ||
9196 | if (dyn_to_skip) | |
9197 | { | |
9198 | dyn_skipped += dyn_to_skip; | |
9199 | dyn_to_skip = 0; | |
9200 | } | |
b49e97c9 | 9201 | } |
943284cc DJ |
9202 | |
9203 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ | |
9204 | if (dyn_skipped > 0) | |
9205 | memset (b - dyn_skipped, 0, dyn_skipped); | |
b49e97c9 TS |
9206 | } |
9207 | ||
b55fd4d4 DJ |
9208 | if (sgot != NULL && sgot->size > 0 |
9209 | && !bfd_is_abs_section (sgot->output_section)) | |
b49e97c9 | 9210 | { |
0a44bf69 RS |
9211 | if (htab->is_vxworks) |
9212 | { | |
9213 | /* The first entry of the global offset table points to the | |
9214 | ".dynamic" section. The second is initialized by the | |
9215 | loader and contains the shared library identifier. | |
9216 | The third is also initialized by the loader and points | |
9217 | to the lazy resolution stub. */ | |
9218 | MIPS_ELF_PUT_WORD (output_bfd, | |
9219 | sdyn->output_offset + sdyn->output_section->vma, | |
9220 | sgot->contents); | |
9221 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
9222 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
9223 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
9224 | sgot->contents | |
9225 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
9226 | } | |
9227 | else | |
9228 | { | |
9229 | /* The first entry of the global offset table will be filled at | |
9230 | runtime. The second entry will be used by some runtime loaders. | |
9231 | This isn't the case of IRIX rld. */ | |
9232 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
9233 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, | |
9234 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
9235 | } | |
b49e97c9 | 9236 | |
54938e2a TS |
9237 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
9238 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
9239 | } | |
b49e97c9 | 9240 | |
f4416af6 AO |
9241 | /* Generate dynamic relocations for the non-primary gots. */ |
9242 | if (gg != NULL && gg->next) | |
9243 | { | |
9244 | Elf_Internal_Rela rel[3]; | |
9245 | bfd_vma addend = 0; | |
9246 | ||
9247 | memset (rel, 0, sizeof (rel)); | |
9248 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
9249 | ||
9250 | for (g = gg->next; g->next != gg; g = g->next) | |
9251 | { | |
0f20cc35 DJ |
9252 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
9253 | + g->next->tls_gotno; | |
f4416af6 | 9254 | |
9719ad41 | 9255 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 9256 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 9257 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
9258 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9259 | ||
9260 | if (! info->shared) | |
9261 | continue; | |
9262 | ||
9263 | while (index < g->assigned_gotno) | |
9264 | { | |
9265 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
9266 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
9267 | if (!(mips_elf_create_dynamic_relocation | |
9268 | (output_bfd, info, rel, NULL, | |
9269 | bfd_abs_section_ptr, | |
9270 | 0, &addend, sgot))) | |
9271 | return FALSE; | |
9272 | BFD_ASSERT (addend == 0); | |
9273 | } | |
9274 | } | |
9275 | } | |
9276 | ||
3133ddbf DJ |
9277 | /* The generation of dynamic relocations for the non-primary gots |
9278 | adds more dynamic relocations. We cannot count them until | |
9279 | here. */ | |
9280 | ||
9281 | if (elf_hash_table (info)->dynamic_sections_created) | |
9282 | { | |
9283 | bfd_byte *b; | |
9284 | bfd_boolean swap_out_p; | |
9285 | ||
9286 | BFD_ASSERT (sdyn != NULL); | |
9287 | ||
9288 | for (b = sdyn->contents; | |
9289 | b < sdyn->contents + sdyn->size; | |
9290 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
9291 | { | |
9292 | Elf_Internal_Dyn dyn; | |
9293 | asection *s; | |
9294 | ||
9295 | /* Read in the current dynamic entry. */ | |
9296 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
9297 | ||
9298 | /* Assume that we're going to modify it and write it out. */ | |
9299 | swap_out_p = TRUE; | |
9300 | ||
9301 | switch (dyn.d_tag) | |
9302 | { | |
9303 | case DT_RELSZ: | |
9304 | /* Reduce DT_RELSZ to account for any relocations we | |
9305 | decided not to make. This is for the n64 irix rld, | |
9306 | which doesn't seem to apply any relocations if there | |
9307 | are trailing null entries. */ | |
0a44bf69 | 9308 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
9309 | dyn.d_un.d_val = (s->reloc_count |
9310 | * (ABI_64_P (output_bfd) | |
9311 | ? sizeof (Elf64_Mips_External_Rel) | |
9312 | : sizeof (Elf32_External_Rel))); | |
bcfdf036 RS |
9313 | /* Adjust the section size too. Tools like the prelinker |
9314 | can reasonably expect the values to the same. */ | |
9315 | elf_section_data (s->output_section)->this_hdr.sh_size | |
9316 | = dyn.d_un.d_val; | |
3133ddbf DJ |
9317 | break; |
9318 | ||
9319 | default: | |
9320 | swap_out_p = FALSE; | |
9321 | break; | |
9322 | } | |
9323 | ||
9324 | if (swap_out_p) | |
9325 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
9326 | (dynobj, &dyn, b); | |
9327 | } | |
9328 | } | |
9329 | ||
b49e97c9 | 9330 | { |
b49e97c9 TS |
9331 | asection *s; |
9332 | Elf32_compact_rel cpt; | |
9333 | ||
b49e97c9 TS |
9334 | if (SGI_COMPAT (output_bfd)) |
9335 | { | |
9336 | /* Write .compact_rel section out. */ | |
9337 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
9338 | if (s != NULL) | |
9339 | { | |
9340 | cpt.id1 = 1; | |
9341 | cpt.num = s->reloc_count; | |
9342 | cpt.id2 = 2; | |
9343 | cpt.offset = (s->output_section->filepos | |
9344 | + sizeof (Elf32_External_compact_rel)); | |
9345 | cpt.reserved0 = 0; | |
9346 | cpt.reserved1 = 0; | |
9347 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
9348 | ((Elf32_External_compact_rel *) | |
9349 | s->contents)); | |
9350 | ||
9351 | /* Clean up a dummy stub function entry in .text. */ | |
9352 | s = bfd_get_section_by_name (dynobj, | |
9353 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
9354 | if (s != NULL) | |
9355 | { | |
9356 | file_ptr dummy_offset; | |
9357 | ||
5108fc1b RS |
9358 | BFD_ASSERT (s->size >= htab->function_stub_size); |
9359 | dummy_offset = s->size - htab->function_stub_size; | |
b49e97c9 | 9360 | memset (s->contents + dummy_offset, 0, |
5108fc1b | 9361 | htab->function_stub_size); |
b49e97c9 TS |
9362 | } |
9363 | } | |
9364 | } | |
9365 | ||
0a44bf69 RS |
9366 | /* The psABI says that the dynamic relocations must be sorted in |
9367 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
9368 | this, and because the code below handles REL rather than RELA | |
9369 | relocations, using it for VxWorks would be outright harmful. */ | |
9370 | if (!htab->is_vxworks) | |
b49e97c9 | 9371 | { |
0a44bf69 RS |
9372 | s = mips_elf_rel_dyn_section (info, FALSE); |
9373 | if (s != NULL | |
9374 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
9375 | { | |
9376 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 9377 | |
0a44bf69 RS |
9378 | if (ABI_64_P (output_bfd)) |
9379 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
9380 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
9381 | sort_dynamic_relocs_64); | |
9382 | else | |
9383 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
9384 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
9385 | sort_dynamic_relocs); | |
9386 | } | |
b49e97c9 | 9387 | } |
b49e97c9 TS |
9388 | } |
9389 | ||
0a44bf69 RS |
9390 | if (htab->is_vxworks && htab->splt->size > 0) |
9391 | { | |
9392 | if (info->shared) | |
9393 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
9394 | else | |
9395 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
9396 | } | |
b34976b6 | 9397 | return TRUE; |
b49e97c9 TS |
9398 | } |
9399 | ||
b49e97c9 | 9400 | |
64543e1a RS |
9401 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
9402 | ||
9403 | static void | |
9719ad41 | 9404 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 9405 | { |
64543e1a | 9406 | flagword val; |
b49e97c9 TS |
9407 | |
9408 | switch (bfd_get_mach (abfd)) | |
9409 | { | |
9410 | default: | |
9411 | case bfd_mach_mips3000: | |
9412 | val = E_MIPS_ARCH_1; | |
9413 | break; | |
9414 | ||
9415 | case bfd_mach_mips3900: | |
9416 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
9417 | break; | |
9418 | ||
9419 | case bfd_mach_mips6000: | |
9420 | val = E_MIPS_ARCH_2; | |
9421 | break; | |
9422 | ||
9423 | case bfd_mach_mips4000: | |
9424 | case bfd_mach_mips4300: | |
9425 | case bfd_mach_mips4400: | |
9426 | case bfd_mach_mips4600: | |
9427 | val = E_MIPS_ARCH_3; | |
9428 | break; | |
9429 | ||
9430 | case bfd_mach_mips4010: | |
9431 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
9432 | break; | |
9433 | ||
9434 | case bfd_mach_mips4100: | |
9435 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
9436 | break; | |
9437 | ||
9438 | case bfd_mach_mips4111: | |
9439 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
9440 | break; | |
9441 | ||
00707a0e RS |
9442 | case bfd_mach_mips4120: |
9443 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
9444 | break; | |
9445 | ||
b49e97c9 TS |
9446 | case bfd_mach_mips4650: |
9447 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
9448 | break; | |
9449 | ||
00707a0e RS |
9450 | case bfd_mach_mips5400: |
9451 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
9452 | break; | |
9453 | ||
9454 | case bfd_mach_mips5500: | |
9455 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
9456 | break; | |
9457 | ||
0d2e43ed ILT |
9458 | case bfd_mach_mips9000: |
9459 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
9460 | break; | |
9461 | ||
b49e97c9 | 9462 | case bfd_mach_mips5000: |
5a7ea749 | 9463 | case bfd_mach_mips7000: |
b49e97c9 TS |
9464 | case bfd_mach_mips8000: |
9465 | case bfd_mach_mips10000: | |
9466 | case bfd_mach_mips12000: | |
9467 | val = E_MIPS_ARCH_4; | |
9468 | break; | |
9469 | ||
9470 | case bfd_mach_mips5: | |
9471 | val = E_MIPS_ARCH_5; | |
9472 | break; | |
9473 | ||
350cc38d MS |
9474 | case bfd_mach_mips_loongson_2e: |
9475 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; | |
9476 | break; | |
9477 | ||
9478 | case bfd_mach_mips_loongson_2f: | |
9479 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; | |
9480 | break; | |
9481 | ||
b49e97c9 TS |
9482 | case bfd_mach_mips_sb1: |
9483 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
9484 | break; | |
9485 | ||
6f179bd0 AN |
9486 | case bfd_mach_mips_octeon: |
9487 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; | |
9488 | break; | |
9489 | ||
b49e97c9 TS |
9490 | case bfd_mach_mipsisa32: |
9491 | val = E_MIPS_ARCH_32; | |
9492 | break; | |
9493 | ||
9494 | case bfd_mach_mipsisa64: | |
9495 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
9496 | break; |
9497 | ||
9498 | case bfd_mach_mipsisa32r2: | |
9499 | val = E_MIPS_ARCH_32R2; | |
9500 | break; | |
5f74bc13 CD |
9501 | |
9502 | case bfd_mach_mipsisa64r2: | |
9503 | val = E_MIPS_ARCH_64R2; | |
9504 | break; | |
b49e97c9 | 9505 | } |
b49e97c9 TS |
9506 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
9507 | elf_elfheader (abfd)->e_flags |= val; | |
9508 | ||
64543e1a RS |
9509 | } |
9510 | ||
9511 | ||
9512 | /* The final processing done just before writing out a MIPS ELF object | |
9513 | file. This gets the MIPS architecture right based on the machine | |
9514 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
9515 | ||
9516 | void | |
9719ad41 RS |
9517 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
9518 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
9519 | { |
9520 | unsigned int i; | |
9521 | Elf_Internal_Shdr **hdrpp; | |
9522 | const char *name; | |
9523 | asection *sec; | |
9524 | ||
9525 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
9526 | is nonzero. This is for compatibility with old objects, which used | |
9527 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
9528 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
9529 | mips_set_isa_flags (abfd); | |
9530 | ||
b49e97c9 TS |
9531 | /* Set the sh_info field for .gptab sections and other appropriate |
9532 | info for each special section. */ | |
9533 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
9534 | i < elf_numsections (abfd); | |
9535 | i++, hdrpp++) | |
9536 | { | |
9537 | switch ((*hdrpp)->sh_type) | |
9538 | { | |
9539 | case SHT_MIPS_MSYM: | |
9540 | case SHT_MIPS_LIBLIST: | |
9541 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
9542 | if (sec != NULL) | |
9543 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9544 | break; | |
9545 | ||
9546 | case SHT_MIPS_GPTAB: | |
9547 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9548 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9549 | BFD_ASSERT (name != NULL | |
0112cd26 | 9550 | && CONST_STRNEQ (name, ".gptab.")); |
b49e97c9 TS |
9551 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
9552 | BFD_ASSERT (sec != NULL); | |
9553 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
9554 | break; | |
9555 | ||
9556 | case SHT_MIPS_CONTENT: | |
9557 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9558 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9559 | BFD_ASSERT (name != NULL | |
0112cd26 | 9560 | && CONST_STRNEQ (name, ".MIPS.content")); |
b49e97c9 TS |
9561 | sec = bfd_get_section_by_name (abfd, |
9562 | name + sizeof ".MIPS.content" - 1); | |
9563 | BFD_ASSERT (sec != NULL); | |
9564 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9565 | break; | |
9566 | ||
9567 | case SHT_MIPS_SYMBOL_LIB: | |
9568 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
9569 | if (sec != NULL) | |
9570 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9571 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
9572 | if (sec != NULL) | |
9573 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
9574 | break; | |
9575 | ||
9576 | case SHT_MIPS_EVENTS: | |
9577 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9578 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9579 | BFD_ASSERT (name != NULL); | |
0112cd26 | 9580 | if (CONST_STRNEQ (name, ".MIPS.events")) |
b49e97c9 TS |
9581 | sec = bfd_get_section_by_name (abfd, |
9582 | name + sizeof ".MIPS.events" - 1); | |
9583 | else | |
9584 | { | |
0112cd26 | 9585 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
b49e97c9 TS |
9586 | sec = bfd_get_section_by_name (abfd, |
9587 | (name | |
9588 | + sizeof ".MIPS.post_rel" - 1)); | |
9589 | } | |
9590 | BFD_ASSERT (sec != NULL); | |
9591 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9592 | break; | |
9593 | ||
9594 | } | |
9595 | } | |
9596 | } | |
9597 | \f | |
8dc1a139 | 9598 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
9599 | segments. */ |
9600 | ||
9601 | int | |
a6b96beb AM |
9602 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
9603 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9604 | { |
9605 | asection *s; | |
9606 | int ret = 0; | |
9607 | ||
9608 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
9609 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9610 | if (s && (s->flags & SEC_LOAD)) | |
9611 | ++ret; | |
9612 | ||
9613 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
9614 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
9615 | && bfd_get_section_by_name (abfd, | |
9616 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
9617 | ++ret; | |
9618 | ||
9619 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
9620 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
9621 | && bfd_get_section_by_name (abfd, ".dynamic") | |
9622 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
9623 | ++ret; | |
9624 | ||
98c904a8 RS |
9625 | /* Allocate a PT_NULL header in dynamic objects. See |
9626 | _bfd_mips_elf_modify_segment_map for details. */ | |
9627 | if (!SGI_COMPAT (abfd) | |
9628 | && bfd_get_section_by_name (abfd, ".dynamic")) | |
9629 | ++ret; | |
9630 | ||
b49e97c9 TS |
9631 | return ret; |
9632 | } | |
9633 | ||
8dc1a139 | 9634 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 9635 | |
b34976b6 | 9636 | bfd_boolean |
9719ad41 | 9637 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
7c8b76cc | 9638 | struct bfd_link_info *info) |
b49e97c9 TS |
9639 | { |
9640 | asection *s; | |
9641 | struct elf_segment_map *m, **pm; | |
9642 | bfd_size_type amt; | |
9643 | ||
9644 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
9645 | segment. */ | |
9646 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9647 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9648 | { | |
9649 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9650 | if (m->p_type == PT_MIPS_REGINFO) | |
9651 | break; | |
9652 | if (m == NULL) | |
9653 | { | |
9654 | amt = sizeof *m; | |
9719ad41 | 9655 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9656 | if (m == NULL) |
b34976b6 | 9657 | return FALSE; |
b49e97c9 TS |
9658 | |
9659 | m->p_type = PT_MIPS_REGINFO; | |
9660 | m->count = 1; | |
9661 | m->sections[0] = s; | |
9662 | ||
9663 | /* We want to put it after the PHDR and INTERP segments. */ | |
9664 | pm = &elf_tdata (abfd)->segment_map; | |
9665 | while (*pm != NULL | |
9666 | && ((*pm)->p_type == PT_PHDR | |
9667 | || (*pm)->p_type == PT_INTERP)) | |
9668 | pm = &(*pm)->next; | |
9669 | ||
9670 | m->next = *pm; | |
9671 | *pm = m; | |
9672 | } | |
9673 | } | |
9674 | ||
9675 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
9676 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 9677 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 9678 | table. */ |
c1fd6598 AO |
9679 | if (NEWABI_P (abfd) |
9680 | /* On non-IRIX6 new abi, we'll have already created a segment | |
9681 | for this section, so don't create another. I'm not sure this | |
9682 | is not also the case for IRIX 6, but I can't test it right | |
9683 | now. */ | |
9684 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
9685 | { |
9686 | for (s = abfd->sections; s; s = s->next) | |
9687 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
9688 | break; | |
9689 | ||
9690 | if (s) | |
9691 | { | |
9692 | struct elf_segment_map *options_segment; | |
9693 | ||
98a8deaf RS |
9694 | pm = &elf_tdata (abfd)->segment_map; |
9695 | while (*pm != NULL | |
9696 | && ((*pm)->p_type == PT_PHDR | |
9697 | || (*pm)->p_type == PT_INTERP)) | |
9698 | pm = &(*pm)->next; | |
b49e97c9 | 9699 | |
8ded5a0f AM |
9700 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
9701 | { | |
9702 | amt = sizeof (struct elf_segment_map); | |
9703 | options_segment = bfd_zalloc (abfd, amt); | |
9704 | options_segment->next = *pm; | |
9705 | options_segment->p_type = PT_MIPS_OPTIONS; | |
9706 | options_segment->p_flags = PF_R; | |
9707 | options_segment->p_flags_valid = TRUE; | |
9708 | options_segment->count = 1; | |
9709 | options_segment->sections[0] = s; | |
9710 | *pm = options_segment; | |
9711 | } | |
b49e97c9 TS |
9712 | } |
9713 | } | |
9714 | else | |
9715 | { | |
9716 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
9717 | { | |
9718 | /* If there are .dynamic and .mdebug sections, we make a room | |
9719 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
9720 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
9721 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
9722 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
9723 | { | |
9724 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9725 | if (m->p_type == PT_MIPS_RTPROC) | |
9726 | break; | |
9727 | if (m == NULL) | |
9728 | { | |
9729 | amt = sizeof *m; | |
9719ad41 | 9730 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9731 | if (m == NULL) |
b34976b6 | 9732 | return FALSE; |
b49e97c9 TS |
9733 | |
9734 | m->p_type = PT_MIPS_RTPROC; | |
9735 | ||
9736 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
9737 | if (s == NULL) | |
9738 | { | |
9739 | m->count = 0; | |
9740 | m->p_flags = 0; | |
9741 | m->p_flags_valid = 1; | |
9742 | } | |
9743 | else | |
9744 | { | |
9745 | m->count = 1; | |
9746 | m->sections[0] = s; | |
9747 | } | |
9748 | ||
9749 | /* We want to put it after the DYNAMIC segment. */ | |
9750 | pm = &elf_tdata (abfd)->segment_map; | |
9751 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
9752 | pm = &(*pm)->next; | |
9753 | if (*pm != NULL) | |
9754 | pm = &(*pm)->next; | |
9755 | ||
9756 | m->next = *pm; | |
9757 | *pm = m; | |
9758 | } | |
9759 | } | |
9760 | } | |
8dc1a139 | 9761 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
9762 | .dynstr, .dynsym, and .hash sections, and everything in |
9763 | between. */ | |
9764 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
9765 | pm = &(*pm)->next) | |
9766 | if ((*pm)->p_type == PT_DYNAMIC) | |
9767 | break; | |
9768 | m = *pm; | |
9769 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
9770 | { | |
9771 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
9772 | segment are read, write and execute. We do that here since | |
9773 | the code in elf.c sets only the read permission. This matters | |
9774 | sometimes for the dynamic linker. */ | |
9775 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
9776 | { | |
9777 | m->p_flags = PF_R | PF_W | PF_X; | |
9778 | m->p_flags_valid = 1; | |
9779 | } | |
9780 | } | |
f6f62d6f RS |
9781 | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
9782 | glibc's dynamic linker has traditionally derived the number of | |
9783 | tags from the p_filesz field, and sometimes allocates stack | |
9784 | arrays of that size. An overly-big PT_DYNAMIC segment can | |
9785 | be actively harmful in such cases. Making PT_DYNAMIC contain | |
9786 | other sections can also make life hard for the prelinker, | |
9787 | which might move one of the other sections to a different | |
9788 | PT_LOAD segment. */ | |
9789 | if (SGI_COMPAT (abfd) | |
9790 | && m != NULL | |
9791 | && m->count == 1 | |
9792 | && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
b49e97c9 TS |
9793 | { |
9794 | static const char *sec_names[] = | |
9795 | { | |
9796 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
9797 | }; | |
9798 | bfd_vma low, high; | |
9799 | unsigned int i, c; | |
9800 | struct elf_segment_map *n; | |
9801 | ||
792b4a53 | 9802 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
9803 | high = 0; |
9804 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
9805 | { | |
9806 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
9807 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9808 | { | |
9809 | bfd_size_type sz; | |
9810 | ||
9811 | if (low > s->vma) | |
9812 | low = s->vma; | |
eea6121a | 9813 | sz = s->size; |
b49e97c9 TS |
9814 | if (high < s->vma + sz) |
9815 | high = s->vma + sz; | |
9816 | } | |
9817 | } | |
9818 | ||
9819 | c = 0; | |
9820 | for (s = abfd->sections; s != NULL; s = s->next) | |
9821 | if ((s->flags & SEC_LOAD) != 0 | |
9822 | && s->vma >= low | |
eea6121a | 9823 | && s->vma + s->size <= high) |
b49e97c9 TS |
9824 | ++c; |
9825 | ||
9826 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 9827 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 9828 | if (n == NULL) |
b34976b6 | 9829 | return FALSE; |
b49e97c9 TS |
9830 | *n = *m; |
9831 | n->count = c; | |
9832 | ||
9833 | i = 0; | |
9834 | for (s = abfd->sections; s != NULL; s = s->next) | |
9835 | { | |
9836 | if ((s->flags & SEC_LOAD) != 0 | |
9837 | && s->vma >= low | |
eea6121a | 9838 | && s->vma + s->size <= high) |
b49e97c9 TS |
9839 | { |
9840 | n->sections[i] = s; | |
9841 | ++i; | |
9842 | } | |
9843 | } | |
9844 | ||
9845 | *pm = n; | |
9846 | } | |
9847 | } | |
9848 | ||
98c904a8 RS |
9849 | /* Allocate a spare program header in dynamic objects so that tools |
9850 | like the prelinker can add an extra PT_LOAD entry. | |
9851 | ||
9852 | If the prelinker needs to make room for a new PT_LOAD entry, its | |
9853 | standard procedure is to move the first (read-only) sections into | |
9854 | the new (writable) segment. However, the MIPS ABI requires | |
9855 | .dynamic to be in a read-only segment, and the section will often | |
9856 | start within sizeof (ElfNN_Phdr) bytes of the last program header. | |
9857 | ||
9858 | Although the prelinker could in principle move .dynamic to a | |
9859 | writable segment, it seems better to allocate a spare program | |
9860 | header instead, and avoid the need to move any sections. | |
9861 | There is a long tradition of allocating spare dynamic tags, | |
9862 | so allocating a spare program header seems like a natural | |
7c8b76cc JM |
9863 | extension. |
9864 | ||
9865 | If INFO is NULL, we may be copying an already prelinked binary | |
9866 | with objcopy or strip, so do not add this header. */ | |
9867 | if (info != NULL | |
9868 | && !SGI_COMPAT (abfd) | |
98c904a8 RS |
9869 | && bfd_get_section_by_name (abfd, ".dynamic")) |
9870 | { | |
9871 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) | |
9872 | if ((*pm)->p_type == PT_NULL) | |
9873 | break; | |
9874 | if (*pm == NULL) | |
9875 | { | |
9876 | m = bfd_zalloc (abfd, sizeof (*m)); | |
9877 | if (m == NULL) | |
9878 | return FALSE; | |
9879 | ||
9880 | m->p_type = PT_NULL; | |
9881 | *pm = m; | |
9882 | } | |
9883 | } | |
9884 | ||
b34976b6 | 9885 | return TRUE; |
b49e97c9 TS |
9886 | } |
9887 | \f | |
9888 | /* Return the section that should be marked against GC for a given | |
9889 | relocation. */ | |
9890 | ||
9891 | asection * | |
9719ad41 | 9892 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
07adf181 | 9893 | struct bfd_link_info *info, |
9719ad41 RS |
9894 | Elf_Internal_Rela *rel, |
9895 | struct elf_link_hash_entry *h, | |
9896 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
9897 | { |
9898 | /* ??? Do mips16 stub sections need to be handled special? */ | |
9899 | ||
9900 | if (h != NULL) | |
07adf181 AM |
9901 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
9902 | { | |
9903 | case R_MIPS_GNU_VTINHERIT: | |
9904 | case R_MIPS_GNU_VTENTRY: | |
9905 | return NULL; | |
9906 | } | |
b49e97c9 | 9907 | |
07adf181 | 9908 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
b49e97c9 TS |
9909 | } |
9910 | ||
9911 | /* Update the got entry reference counts for the section being removed. */ | |
9912 | ||
b34976b6 | 9913 | bfd_boolean |
9719ad41 RS |
9914 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
9915 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
9916 | asection *sec ATTRIBUTE_UNUSED, | |
9917 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9918 | { |
9919 | #if 0 | |
9920 | Elf_Internal_Shdr *symtab_hdr; | |
9921 | struct elf_link_hash_entry **sym_hashes; | |
9922 | bfd_signed_vma *local_got_refcounts; | |
9923 | const Elf_Internal_Rela *rel, *relend; | |
9924 | unsigned long r_symndx; | |
9925 | struct elf_link_hash_entry *h; | |
9926 | ||
7dda2462 TG |
9927 | if (info->relocatable) |
9928 | return TRUE; | |
9929 | ||
b49e97c9 TS |
9930 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
9931 | sym_hashes = elf_sym_hashes (abfd); | |
9932 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
9933 | ||
9934 | relend = relocs + sec->reloc_count; | |
9935 | for (rel = relocs; rel < relend; rel++) | |
9936 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
9937 | { | |
9938 | case R_MIPS_GOT16: | |
9939 | case R_MIPS_CALL16: | |
9940 | case R_MIPS_CALL_HI16: | |
9941 | case R_MIPS_CALL_LO16: | |
9942 | case R_MIPS_GOT_HI16: | |
9943 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
9944 | case R_MIPS_GOT_DISP: |
9945 | case R_MIPS_GOT_PAGE: | |
9946 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
9947 | /* ??? It would seem that the existing MIPS code does no sort |
9948 | of reference counting or whatnot on its GOT and PLT entries, | |
9949 | so it is not possible to garbage collect them at this time. */ | |
9950 | break; | |
9951 | ||
9952 | default: | |
9953 | break; | |
9954 | } | |
9955 | #endif | |
9956 | ||
b34976b6 | 9957 | return TRUE; |
b49e97c9 TS |
9958 | } |
9959 | \f | |
9960 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
9961 | hiding the old indirect symbol. Process additional relocation | |
9962 | information. Also called for weakdefs, in which case we just let | |
9963 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
9964 | ||
9965 | void | |
fcfa13d2 | 9966 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
9967 | struct elf_link_hash_entry *dir, |
9968 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
9969 | { |
9970 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
9971 | ||
fcfa13d2 | 9972 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 TS |
9973 | |
9974 | if (ind->root.type != bfd_link_hash_indirect) | |
9975 | return; | |
9976 | ||
9977 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
9978 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
9979 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
9980 | if (indmips->readonly_reloc) | |
b34976b6 | 9981 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 9982 | if (indmips->no_fn_stub) |
b34976b6 | 9983 | dirmips->no_fn_stub = TRUE; |
0f20cc35 DJ |
9984 | |
9985 | if (dirmips->tls_type == 0) | |
9986 | dirmips->tls_type = indmips->tls_type; | |
b49e97c9 TS |
9987 | } |
9988 | ||
9989 | void | |
9719ad41 RS |
9990 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
9991 | struct elf_link_hash_entry *entry, | |
9992 | bfd_boolean force_local) | |
b49e97c9 TS |
9993 | { |
9994 | bfd *dynobj; | |
9995 | asection *got; | |
9996 | struct mips_got_info *g; | |
9997 | struct mips_elf_link_hash_entry *h; | |
8275b357 | 9998 | struct mips_elf_link_hash_table *htab; |
7c5fcef7 | 9999 | |
b49e97c9 | 10000 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
10001 | if (h->forced_local) |
10002 | return; | |
4b555070 | 10003 | h->forced_local = force_local; |
7c5fcef7 | 10004 | |
b49e97c9 | 10005 | dynobj = elf_hash_table (info)->dynobj; |
8275b357 | 10006 | htab = mips_elf_hash_table (info); |
8d1d654f | 10007 | if (dynobj != NULL && force_local && h->root.type != STT_TLS |
003b8e1d | 10008 | && (got = mips_elf_got_section (dynobj, TRUE)) != NULL |
8d1d654f | 10009 | && (g = mips_elf_section_data (got)->u.got_info) != NULL) |
f4416af6 | 10010 | { |
c45a316a AM |
10011 | if (g->next) |
10012 | { | |
10013 | struct mips_got_entry e; | |
10014 | struct mips_got_info *gg = g; | |
10015 | ||
10016 | /* Since we're turning what used to be a global symbol into a | |
10017 | local one, bump up the number of local entries of each GOT | |
10018 | that had an entry for it. This will automatically decrease | |
10019 | the number of global entries, since global_gotno is actually | |
10020 | the upper limit of global entries. */ | |
10021 | e.abfd = dynobj; | |
10022 | e.symndx = -1; | |
10023 | e.d.h = h; | |
0f20cc35 | 10024 | e.tls_type = 0; |
c45a316a AM |
10025 | |
10026 | for (g = g->next; g != gg; g = g->next) | |
10027 | if (htab_find (g->got_entries, &e)) | |
10028 | { | |
10029 | BFD_ASSERT (g->global_gotno > 0); | |
10030 | g->local_gotno++; | |
10031 | g->global_gotno--; | |
10032 | } | |
b49e97c9 | 10033 | |
c45a316a AM |
10034 | /* If this was a global symbol forced into the primary GOT, we |
10035 | no longer need an entry for it. We can't release the entry | |
10036 | at this point, but we must at least stop counting it as one | |
10037 | of the symbols that required a forced got entry. */ | |
10038 | if (h->root.got.offset == 2) | |
10039 | { | |
10040 | BFD_ASSERT (gg->assigned_gotno > 0); | |
10041 | gg->assigned_gotno--; | |
10042 | } | |
10043 | } | |
c45a316a | 10044 | else if (h->root.got.offset == 1) |
f4416af6 | 10045 | { |
8275b357 RS |
10046 | /* check_relocs didn't know that this symbol would be |
10047 | forced-local, so add an extra local got entry. */ | |
c45a316a | 10048 | g->local_gotno++; |
8275b357 RS |
10049 | if (htab->computed_got_sizes) |
10050 | { | |
10051 | /* We'll have treated this symbol as global rather | |
10052 | than local. */ | |
10053 | BFD_ASSERT (g->global_gotno > 0); | |
10054 | g->global_gotno--; | |
10055 | } | |
f4416af6 | 10056 | } |
8275b357 RS |
10057 | else if (htab->is_vxworks && h->root.needs_plt) |
10058 | { | |
10059 | /* check_relocs didn't know that this symbol would be | |
10060 | forced-local, so add an extra local got entry. */ | |
10061 | g->local_gotno++; | |
10062 | if (htab->computed_got_sizes) | |
10063 | /* The symbol is only used in call relocations, so we'll | |
10064 | have assumed it only needs a .got.plt entry. Increase | |
10065 | the size of .got accordingly. */ | |
10066 | got->size += MIPS_ELF_GOT_SIZE (dynobj); | |
10067 | } | |
f4416af6 | 10068 | } |
f4416af6 AO |
10069 | |
10070 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
10071 | } |
10072 | \f | |
d01414a5 TS |
10073 | #define PDR_SIZE 32 |
10074 | ||
b34976b6 | 10075 | bfd_boolean |
9719ad41 RS |
10076 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
10077 | struct bfd_link_info *info) | |
d01414a5 TS |
10078 | { |
10079 | asection *o; | |
b34976b6 | 10080 | bfd_boolean ret = FALSE; |
d01414a5 TS |
10081 | unsigned char *tdata; |
10082 | size_t i, skip; | |
10083 | ||
10084 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
10085 | if (! o) | |
b34976b6 | 10086 | return FALSE; |
eea6121a | 10087 | if (o->size == 0) |
b34976b6 | 10088 | return FALSE; |
eea6121a | 10089 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 10090 | return FALSE; |
d01414a5 TS |
10091 | if (o->output_section != NULL |
10092 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 10093 | return FALSE; |
d01414a5 | 10094 | |
eea6121a | 10095 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 10096 | if (! tdata) |
b34976b6 | 10097 | return FALSE; |
d01414a5 | 10098 | |
9719ad41 | 10099 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 10100 | info->keep_memory); |
d01414a5 TS |
10101 | if (!cookie->rels) |
10102 | { | |
10103 | free (tdata); | |
b34976b6 | 10104 | return FALSE; |
d01414a5 TS |
10105 | } |
10106 | ||
10107 | cookie->rel = cookie->rels; | |
10108 | cookie->relend = cookie->rels + o->reloc_count; | |
10109 | ||
eea6121a | 10110 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 10111 | { |
c152c796 | 10112 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
10113 | { |
10114 | tdata[i] = 1; | |
10115 | skip ++; | |
10116 | } | |
10117 | } | |
10118 | ||
10119 | if (skip != 0) | |
10120 | { | |
f0abc2a1 | 10121 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 10122 | o->size -= skip * PDR_SIZE; |
b34976b6 | 10123 | ret = TRUE; |
d01414a5 TS |
10124 | } |
10125 | else | |
10126 | free (tdata); | |
10127 | ||
10128 | if (! info->keep_memory) | |
10129 | free (cookie->rels); | |
10130 | ||
10131 | return ret; | |
10132 | } | |
10133 | ||
b34976b6 | 10134 | bfd_boolean |
9719ad41 | 10135 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
10136 | { |
10137 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
10138 | return TRUE; |
10139 | return FALSE; | |
53bfd6b4 | 10140 | } |
d01414a5 | 10141 | |
b34976b6 | 10142 | bfd_boolean |
c7b8f16e JB |
10143 | _bfd_mips_elf_write_section (bfd *output_bfd, |
10144 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | |
10145 | asection *sec, bfd_byte *contents) | |
d01414a5 TS |
10146 | { |
10147 | bfd_byte *to, *from, *end; | |
10148 | int i; | |
10149 | ||
10150 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 10151 | return FALSE; |
d01414a5 | 10152 | |
f0abc2a1 | 10153 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 10154 | return FALSE; |
d01414a5 TS |
10155 | |
10156 | to = contents; | |
eea6121a | 10157 | end = contents + sec->size; |
d01414a5 TS |
10158 | for (from = contents, i = 0; |
10159 | from < end; | |
10160 | from += PDR_SIZE, i++) | |
10161 | { | |
f0abc2a1 | 10162 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
10163 | continue; |
10164 | if (to != from) | |
10165 | memcpy (to, from, PDR_SIZE); | |
10166 | to += PDR_SIZE; | |
10167 | } | |
10168 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 10169 | sec->output_offset, sec->size); |
b34976b6 | 10170 | return TRUE; |
d01414a5 | 10171 | } |
53bfd6b4 | 10172 | \f |
b49e97c9 TS |
10173 | /* MIPS ELF uses a special find_nearest_line routine in order the |
10174 | handle the ECOFF debugging information. */ | |
10175 | ||
10176 | struct mips_elf_find_line | |
10177 | { | |
10178 | struct ecoff_debug_info d; | |
10179 | struct ecoff_find_line i; | |
10180 | }; | |
10181 | ||
b34976b6 | 10182 | bfd_boolean |
9719ad41 RS |
10183 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
10184 | asymbol **symbols, bfd_vma offset, | |
10185 | const char **filename_ptr, | |
10186 | const char **functionname_ptr, | |
10187 | unsigned int *line_ptr) | |
b49e97c9 TS |
10188 | { |
10189 | asection *msec; | |
10190 | ||
10191 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
10192 | filename_ptr, functionname_ptr, | |
10193 | line_ptr)) | |
b34976b6 | 10194 | return TRUE; |
b49e97c9 TS |
10195 | |
10196 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
10197 | filename_ptr, functionname_ptr, | |
9719ad41 | 10198 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 10199 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 10200 | return TRUE; |
b49e97c9 TS |
10201 | |
10202 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
10203 | if (msec != NULL) | |
10204 | { | |
10205 | flagword origflags; | |
10206 | struct mips_elf_find_line *fi; | |
10207 | const struct ecoff_debug_swap * const swap = | |
10208 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
10209 | ||
10210 | /* If we are called during a link, mips_elf_final_link may have | |
10211 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
10212 | if appropriate (which it normally will be). */ | |
10213 | origflags = msec->flags; | |
10214 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
10215 | msec->flags |= SEC_HAS_CONTENTS; | |
10216 | ||
10217 | fi = elf_tdata (abfd)->find_line_info; | |
10218 | if (fi == NULL) | |
10219 | { | |
10220 | bfd_size_type external_fdr_size; | |
10221 | char *fraw_src; | |
10222 | char *fraw_end; | |
10223 | struct fdr *fdr_ptr; | |
10224 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
10225 | ||
9719ad41 | 10226 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
10227 | if (fi == NULL) |
10228 | { | |
10229 | msec->flags = origflags; | |
b34976b6 | 10230 | return FALSE; |
b49e97c9 TS |
10231 | } |
10232 | ||
10233 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
10234 | { | |
10235 | msec->flags = origflags; | |
b34976b6 | 10236 | return FALSE; |
b49e97c9 TS |
10237 | } |
10238 | ||
10239 | /* Swap in the FDR information. */ | |
10240 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 10241 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
10242 | if (fi->d.fdr == NULL) |
10243 | { | |
10244 | msec->flags = origflags; | |
b34976b6 | 10245 | return FALSE; |
b49e97c9 TS |
10246 | } |
10247 | external_fdr_size = swap->external_fdr_size; | |
10248 | fdr_ptr = fi->d.fdr; | |
10249 | fraw_src = (char *) fi->d.external_fdr; | |
10250 | fraw_end = (fraw_src | |
10251 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
10252 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 10253 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
10254 | |
10255 | elf_tdata (abfd)->find_line_info = fi; | |
10256 | ||
10257 | /* Note that we don't bother to ever free this information. | |
10258 | find_nearest_line is either called all the time, as in | |
10259 | objdump -l, so the information should be saved, or it is | |
10260 | rarely called, as in ld error messages, so the memory | |
10261 | wasted is unimportant. Still, it would probably be a | |
10262 | good idea for free_cached_info to throw it away. */ | |
10263 | } | |
10264 | ||
10265 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
10266 | &fi->i, filename_ptr, functionname_ptr, | |
10267 | line_ptr)) | |
10268 | { | |
10269 | msec->flags = origflags; | |
b34976b6 | 10270 | return TRUE; |
b49e97c9 TS |
10271 | } |
10272 | ||
10273 | msec->flags = origflags; | |
10274 | } | |
10275 | ||
10276 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
10277 | ||
10278 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
10279 | filename_ptr, functionname_ptr, | |
10280 | line_ptr); | |
10281 | } | |
4ab527b0 FF |
10282 | |
10283 | bfd_boolean | |
10284 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
10285 | const char **filename_ptr, | |
10286 | const char **functionname_ptr, | |
10287 | unsigned int *line_ptr) | |
10288 | { | |
10289 | bfd_boolean found; | |
10290 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
10291 | functionname_ptr, line_ptr, | |
10292 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
10293 | return found; | |
10294 | } | |
10295 | ||
b49e97c9 TS |
10296 | \f |
10297 | /* When are writing out the .options or .MIPS.options section, | |
10298 | remember the bytes we are writing out, so that we can install the | |
10299 | GP value in the section_processing routine. */ | |
10300 | ||
b34976b6 | 10301 | bfd_boolean |
9719ad41 RS |
10302 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
10303 | const void *location, | |
10304 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 10305 | { |
cc2e31b9 | 10306 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
10307 | { |
10308 | bfd_byte *c; | |
10309 | ||
10310 | if (elf_section_data (section) == NULL) | |
10311 | { | |
10312 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 10313 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 10314 | if (elf_section_data (section) == NULL) |
b34976b6 | 10315 | return FALSE; |
b49e97c9 | 10316 | } |
f0abc2a1 | 10317 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
10318 | if (c == NULL) |
10319 | { | |
eea6121a | 10320 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 10321 | if (c == NULL) |
b34976b6 | 10322 | return FALSE; |
f0abc2a1 | 10323 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
10324 | } |
10325 | ||
9719ad41 | 10326 | memcpy (c + offset, location, count); |
b49e97c9 TS |
10327 | } |
10328 | ||
10329 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
10330 | count); | |
10331 | } | |
10332 | ||
10333 | /* This is almost identical to bfd_generic_get_... except that some | |
10334 | MIPS relocations need to be handled specially. Sigh. */ | |
10335 | ||
10336 | bfd_byte * | |
9719ad41 RS |
10337 | _bfd_elf_mips_get_relocated_section_contents |
10338 | (bfd *abfd, | |
10339 | struct bfd_link_info *link_info, | |
10340 | struct bfd_link_order *link_order, | |
10341 | bfd_byte *data, | |
10342 | bfd_boolean relocatable, | |
10343 | asymbol **symbols) | |
b49e97c9 TS |
10344 | { |
10345 | /* Get enough memory to hold the stuff */ | |
10346 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
10347 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 10348 | bfd_size_type sz; |
b49e97c9 TS |
10349 | |
10350 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
10351 | arelent **reloc_vector = NULL; | |
10352 | long reloc_count; | |
10353 | ||
10354 | if (reloc_size < 0) | |
10355 | goto error_return; | |
10356 | ||
9719ad41 | 10357 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
10358 | if (reloc_vector == NULL && reloc_size != 0) |
10359 | goto error_return; | |
10360 | ||
10361 | /* read in the section */ | |
eea6121a AM |
10362 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
10363 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
10364 | goto error_return; |
10365 | ||
b49e97c9 TS |
10366 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
10367 | input_section, | |
10368 | reloc_vector, | |
10369 | symbols); | |
10370 | if (reloc_count < 0) | |
10371 | goto error_return; | |
10372 | ||
10373 | if (reloc_count > 0) | |
10374 | { | |
10375 | arelent **parent; | |
10376 | /* for mips */ | |
10377 | int gp_found; | |
10378 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
10379 | ||
10380 | { | |
10381 | struct bfd_hash_entry *h; | |
10382 | struct bfd_link_hash_entry *lh; | |
10383 | /* Skip all this stuff if we aren't mixing formats. */ | |
10384 | if (abfd && input_bfd | |
10385 | && abfd->xvec == input_bfd->xvec) | |
10386 | lh = 0; | |
10387 | else | |
10388 | { | |
b34976b6 | 10389 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
10390 | lh = (struct bfd_link_hash_entry *) h; |
10391 | } | |
10392 | lookup: | |
10393 | if (lh) | |
10394 | { | |
10395 | switch (lh->type) | |
10396 | { | |
10397 | case bfd_link_hash_undefined: | |
10398 | case bfd_link_hash_undefweak: | |
10399 | case bfd_link_hash_common: | |
10400 | gp_found = 0; | |
10401 | break; | |
10402 | case bfd_link_hash_defined: | |
10403 | case bfd_link_hash_defweak: | |
10404 | gp_found = 1; | |
10405 | gp = lh->u.def.value; | |
10406 | break; | |
10407 | case bfd_link_hash_indirect: | |
10408 | case bfd_link_hash_warning: | |
10409 | lh = lh->u.i.link; | |
10410 | /* @@FIXME ignoring warning for now */ | |
10411 | goto lookup; | |
10412 | case bfd_link_hash_new: | |
10413 | default: | |
10414 | abort (); | |
10415 | } | |
10416 | } | |
10417 | else | |
10418 | gp_found = 0; | |
10419 | } | |
10420 | /* end mips */ | |
9719ad41 | 10421 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 10422 | { |
9719ad41 | 10423 | char *error_message = NULL; |
b49e97c9 TS |
10424 | bfd_reloc_status_type r; |
10425 | ||
10426 | /* Specific to MIPS: Deal with relocation types that require | |
10427 | knowing the gp of the output bfd. */ | |
10428 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 10429 | |
8236346f EC |
10430 | /* If we've managed to find the gp and have a special |
10431 | function for the relocation then go ahead, else default | |
10432 | to the generic handling. */ | |
10433 | if (gp_found | |
10434 | && (*parent)->howto->special_function | |
10435 | == _bfd_mips_elf32_gprel16_reloc) | |
10436 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
10437 | input_section, relocatable, | |
10438 | data, gp); | |
10439 | else | |
86324f90 | 10440 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
10441 | input_section, |
10442 | relocatable ? abfd : NULL, | |
10443 | &error_message); | |
b49e97c9 | 10444 | |
1049f94e | 10445 | if (relocatable) |
b49e97c9 TS |
10446 | { |
10447 | asection *os = input_section->output_section; | |
10448 | ||
10449 | /* A partial link, so keep the relocs */ | |
10450 | os->orelocation[os->reloc_count] = *parent; | |
10451 | os->reloc_count++; | |
10452 | } | |
10453 | ||
10454 | if (r != bfd_reloc_ok) | |
10455 | { | |
10456 | switch (r) | |
10457 | { | |
10458 | case bfd_reloc_undefined: | |
10459 | if (!((*link_info->callbacks->undefined_symbol) | |
10460 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 10461 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
10462 | goto error_return; |
10463 | break; | |
10464 | case bfd_reloc_dangerous: | |
9719ad41 | 10465 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
10466 | if (!((*link_info->callbacks->reloc_dangerous) |
10467 | (link_info, error_message, input_bfd, input_section, | |
10468 | (*parent)->address))) | |
10469 | goto error_return; | |
10470 | break; | |
10471 | case bfd_reloc_overflow: | |
10472 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
10473 | (link_info, NULL, |
10474 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
10475 | (*parent)->howto->name, (*parent)->addend, |
10476 | input_bfd, input_section, (*parent)->address))) | |
10477 | goto error_return; | |
10478 | break; | |
10479 | case bfd_reloc_outofrange: | |
10480 | default: | |
10481 | abort (); | |
10482 | break; | |
10483 | } | |
10484 | ||
10485 | } | |
10486 | } | |
10487 | } | |
10488 | if (reloc_vector != NULL) | |
10489 | free (reloc_vector); | |
10490 | return data; | |
10491 | ||
10492 | error_return: | |
10493 | if (reloc_vector != NULL) | |
10494 | free (reloc_vector); | |
10495 | return NULL; | |
10496 | } | |
10497 | \f | |
10498 | /* Create a MIPS ELF linker hash table. */ | |
10499 | ||
10500 | struct bfd_link_hash_table * | |
9719ad41 | 10501 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
10502 | { |
10503 | struct mips_elf_link_hash_table *ret; | |
10504 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
10505 | ||
9719ad41 RS |
10506 | ret = bfd_malloc (amt); |
10507 | if (ret == NULL) | |
b49e97c9 TS |
10508 | return NULL; |
10509 | ||
66eb6687 AM |
10510 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
10511 | mips_elf_link_hash_newfunc, | |
10512 | sizeof (struct mips_elf_link_hash_entry))) | |
b49e97c9 | 10513 | { |
e2d34d7d | 10514 | free (ret); |
b49e97c9 TS |
10515 | return NULL; |
10516 | } | |
10517 | ||
10518 | #if 0 | |
10519 | /* We no longer use this. */ | |
10520 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
10521 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
10522 | #endif | |
10523 | ret->procedure_count = 0; | |
10524 | ret->compact_rel_size = 0; | |
b34976b6 | 10525 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 10526 | ret->rld_value = 0; |
b34976b6 | 10527 | ret->mips16_stubs_seen = FALSE; |
8275b357 | 10528 | ret->computed_got_sizes = FALSE; |
0a44bf69 | 10529 | ret->is_vxworks = FALSE; |
0e53d9da | 10530 | ret->small_data_overflow_reported = FALSE; |
0a44bf69 RS |
10531 | ret->srelbss = NULL; |
10532 | ret->sdynbss = NULL; | |
10533 | ret->srelplt = NULL; | |
10534 | ret->srelplt2 = NULL; | |
10535 | ret->sgotplt = NULL; | |
10536 | ret->splt = NULL; | |
10537 | ret->plt_header_size = 0; | |
10538 | ret->plt_entry_size = 0; | |
5108fc1b | 10539 | ret->function_stub_size = 0; |
b49e97c9 TS |
10540 | |
10541 | return &ret->root.root; | |
10542 | } | |
0a44bf69 RS |
10543 | |
10544 | /* Likewise, but indicate that the target is VxWorks. */ | |
10545 | ||
10546 | struct bfd_link_hash_table * | |
10547 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
10548 | { | |
10549 | struct bfd_link_hash_table *ret; | |
10550 | ||
10551 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
10552 | if (ret) | |
10553 | { | |
10554 | struct mips_elf_link_hash_table *htab; | |
10555 | ||
10556 | htab = (struct mips_elf_link_hash_table *) ret; | |
10557 | htab->is_vxworks = 1; | |
10558 | } | |
10559 | return ret; | |
10560 | } | |
b49e97c9 TS |
10561 | \f |
10562 | /* We need to use a special link routine to handle the .reginfo and | |
10563 | the .mdebug sections. We need to merge all instances of these | |
10564 | sections together, not write them all out sequentially. */ | |
10565 | ||
b34976b6 | 10566 | bfd_boolean |
9719ad41 | 10567 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 10568 | { |
b49e97c9 TS |
10569 | asection *o; |
10570 | struct bfd_link_order *p; | |
10571 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
10572 | asection *rtproc_sec; | |
10573 | Elf32_RegInfo reginfo; | |
10574 | struct ecoff_debug_info debug; | |
7a2a6943 NC |
10575 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
10576 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 10577 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 10578 | void *mdebug_handle = NULL; |
b49e97c9 TS |
10579 | asection *s; |
10580 | EXTR esym; | |
10581 | unsigned int i; | |
10582 | bfd_size_type amt; | |
0a44bf69 | 10583 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
10584 | |
10585 | static const char * const secname[] = | |
10586 | { | |
10587 | ".text", ".init", ".fini", ".data", | |
10588 | ".rodata", ".sdata", ".sbss", ".bss" | |
10589 | }; | |
10590 | static const int sc[] = | |
10591 | { | |
10592 | scText, scInit, scFini, scData, | |
10593 | scRData, scSData, scSBss, scBss | |
10594 | }; | |
10595 | ||
b49e97c9 TS |
10596 | /* We'd carefully arranged the dynamic symbol indices, and then the |
10597 | generic size_dynamic_sections renumbered them out from under us. | |
10598 | Rather than trying somehow to prevent the renumbering, just do | |
10599 | the sort again. */ | |
0a44bf69 | 10600 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
10601 | if (elf_hash_table (info)->dynamic_sections_created) |
10602 | { | |
10603 | bfd *dynobj; | |
10604 | asection *got; | |
10605 | struct mips_got_info *g; | |
7a2a6943 | 10606 | bfd_size_type dynsecsymcount; |
b49e97c9 TS |
10607 | |
10608 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
10609 | the lowest index it may use is. That's the number of section | |
10610 | symbols we're going to add. The generic ELF linker only | |
10611 | adds these symbols when building a shared object. Note that | |
10612 | we count the sections after (possibly) removing the .options | |
10613 | section above. */ | |
7a2a6943 | 10614 | |
5108fc1b | 10615 | dynsecsymcount = count_section_dynsyms (abfd, info); |
7a2a6943 | 10616 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) |
b34976b6 | 10617 | return FALSE; |
b49e97c9 TS |
10618 | |
10619 | /* Make sure we didn't grow the global .got region. */ | |
10620 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 10621 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 10622 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
10623 | |
10624 | if (g->global_gotsym != NULL) | |
10625 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
10626 | - g->global_gotsym->dynindx) | |
10627 | <= g->global_gotno); | |
10628 | } | |
10629 | ||
b49e97c9 TS |
10630 | /* Get a value for the GP register. */ |
10631 | if (elf_gp (abfd) == 0) | |
10632 | { | |
10633 | struct bfd_link_hash_entry *h; | |
10634 | ||
b34976b6 | 10635 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 10636 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
10637 | elf_gp (abfd) = (h->u.def.value |
10638 | + h->u.def.section->output_section->vma | |
10639 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
10640 | else if (htab->is_vxworks |
10641 | && (h = bfd_link_hash_lookup (info->hash, | |
10642 | "_GLOBAL_OFFSET_TABLE_", | |
10643 | FALSE, FALSE, TRUE)) | |
10644 | && h->type == bfd_link_hash_defined) | |
10645 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
10646 | + h->u.def.section->output_offset | |
10647 | + h->u.def.value); | |
1049f94e | 10648 | else if (info->relocatable) |
b49e97c9 TS |
10649 | { |
10650 | bfd_vma lo = MINUS_ONE; | |
10651 | ||
10652 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 10653 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10654 | if (o->vma < lo |
10655 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
10656 | lo = o->vma; | |
10657 | ||
10658 | /* And calculate GP relative to that. */ | |
0a44bf69 | 10659 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
10660 | } |
10661 | else | |
10662 | { | |
10663 | /* If the relocate_section function needs to do a reloc | |
10664 | involving the GP value, it should make a reloc_dangerous | |
10665 | callback to warn that GP is not defined. */ | |
10666 | } | |
10667 | } | |
10668 | ||
10669 | /* Go through the sections and collect the .reginfo and .mdebug | |
10670 | information. */ | |
10671 | reginfo_sec = NULL; | |
10672 | mdebug_sec = NULL; | |
10673 | gptab_data_sec = NULL; | |
10674 | gptab_bss_sec = NULL; | |
9719ad41 | 10675 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10676 | { |
10677 | if (strcmp (o->name, ".reginfo") == 0) | |
10678 | { | |
10679 | memset (®info, 0, sizeof reginfo); | |
10680 | ||
10681 | /* We have found the .reginfo section in the output file. | |
10682 | Look through all the link_orders comprising it and merge | |
10683 | the information together. */ | |
8423293d | 10684 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10685 | { |
10686 | asection *input_section; | |
10687 | bfd *input_bfd; | |
10688 | Elf32_External_RegInfo ext; | |
10689 | Elf32_RegInfo sub; | |
10690 | ||
10691 | if (p->type != bfd_indirect_link_order) | |
10692 | { | |
10693 | if (p->type == bfd_data_link_order) | |
10694 | continue; | |
10695 | abort (); | |
10696 | } | |
10697 | ||
10698 | input_section = p->u.indirect.section; | |
10699 | input_bfd = input_section->owner; | |
10700 | ||
b49e97c9 | 10701 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 10702 | &ext, 0, sizeof ext)) |
b34976b6 | 10703 | return FALSE; |
b49e97c9 TS |
10704 | |
10705 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
10706 | ||
10707 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
10708 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
10709 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
10710 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
10711 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
10712 | ||
10713 | /* ri_gp_value is set by the function | |
10714 | mips_elf32_section_processing when the section is | |
10715 | finally written out. */ | |
10716 | ||
10717 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10718 | elf_link_input_bfd ignores this section. */ | |
10719 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10720 | } | |
10721 | ||
10722 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 10723 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
10724 | |
10725 | /* Skip this section later on (I don't think this currently | |
10726 | matters, but someday it might). */ | |
8423293d | 10727 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10728 | |
10729 | reginfo_sec = o; | |
10730 | } | |
10731 | ||
10732 | if (strcmp (o->name, ".mdebug") == 0) | |
10733 | { | |
10734 | struct extsym_info einfo; | |
10735 | bfd_vma last; | |
10736 | ||
10737 | /* We have found the .mdebug section in the output file. | |
10738 | Look through all the link_orders comprising it and merge | |
10739 | the information together. */ | |
10740 | symhdr->magic = swap->sym_magic; | |
10741 | /* FIXME: What should the version stamp be? */ | |
10742 | symhdr->vstamp = 0; | |
10743 | symhdr->ilineMax = 0; | |
10744 | symhdr->cbLine = 0; | |
10745 | symhdr->idnMax = 0; | |
10746 | symhdr->ipdMax = 0; | |
10747 | symhdr->isymMax = 0; | |
10748 | symhdr->ioptMax = 0; | |
10749 | symhdr->iauxMax = 0; | |
10750 | symhdr->issMax = 0; | |
10751 | symhdr->issExtMax = 0; | |
10752 | symhdr->ifdMax = 0; | |
10753 | symhdr->crfd = 0; | |
10754 | symhdr->iextMax = 0; | |
10755 | ||
10756 | /* We accumulate the debugging information itself in the | |
10757 | debug_info structure. */ | |
10758 | debug.line = NULL; | |
10759 | debug.external_dnr = NULL; | |
10760 | debug.external_pdr = NULL; | |
10761 | debug.external_sym = NULL; | |
10762 | debug.external_opt = NULL; | |
10763 | debug.external_aux = NULL; | |
10764 | debug.ss = NULL; | |
10765 | debug.ssext = debug.ssext_end = NULL; | |
10766 | debug.external_fdr = NULL; | |
10767 | debug.external_rfd = NULL; | |
10768 | debug.external_ext = debug.external_ext_end = NULL; | |
10769 | ||
10770 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 10771 | if (mdebug_handle == NULL) |
b34976b6 | 10772 | return FALSE; |
b49e97c9 TS |
10773 | |
10774 | esym.jmptbl = 0; | |
10775 | esym.cobol_main = 0; | |
10776 | esym.weakext = 0; | |
10777 | esym.reserved = 0; | |
10778 | esym.ifd = ifdNil; | |
10779 | esym.asym.iss = issNil; | |
10780 | esym.asym.st = stLocal; | |
10781 | esym.asym.reserved = 0; | |
10782 | esym.asym.index = indexNil; | |
10783 | last = 0; | |
10784 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
10785 | { | |
10786 | esym.asym.sc = sc[i]; | |
10787 | s = bfd_get_section_by_name (abfd, secname[i]); | |
10788 | if (s != NULL) | |
10789 | { | |
10790 | esym.asym.value = s->vma; | |
eea6121a | 10791 | last = s->vma + s->size; |
b49e97c9 TS |
10792 | } |
10793 | else | |
10794 | esym.asym.value = last; | |
10795 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
10796 | secname[i], &esym)) | |
b34976b6 | 10797 | return FALSE; |
b49e97c9 TS |
10798 | } |
10799 | ||
8423293d | 10800 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10801 | { |
10802 | asection *input_section; | |
10803 | bfd *input_bfd; | |
10804 | const struct ecoff_debug_swap *input_swap; | |
10805 | struct ecoff_debug_info input_debug; | |
10806 | char *eraw_src; | |
10807 | char *eraw_end; | |
10808 | ||
10809 | if (p->type != bfd_indirect_link_order) | |
10810 | { | |
10811 | if (p->type == bfd_data_link_order) | |
10812 | continue; | |
10813 | abort (); | |
10814 | } | |
10815 | ||
10816 | input_section = p->u.indirect.section; | |
10817 | input_bfd = input_section->owner; | |
10818 | ||
10819 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
10820 | || (get_elf_backend_data (input_bfd) | |
10821 | ->elf_backend_ecoff_debug_swap) == NULL) | |
10822 | { | |
10823 | /* I don't know what a non MIPS ELF bfd would be | |
10824 | doing with a .mdebug section, but I don't really | |
10825 | want to deal with it. */ | |
10826 | continue; | |
10827 | } | |
10828 | ||
10829 | input_swap = (get_elf_backend_data (input_bfd) | |
10830 | ->elf_backend_ecoff_debug_swap); | |
10831 | ||
eea6121a | 10832 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
10833 | |
10834 | /* The ECOFF linking code expects that we have already | |
10835 | read in the debugging information and set up an | |
10836 | ecoff_debug_info structure, so we do that now. */ | |
10837 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
10838 | &input_debug)) | |
b34976b6 | 10839 | return FALSE; |
b49e97c9 TS |
10840 | |
10841 | if (! (bfd_ecoff_debug_accumulate | |
10842 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
10843 | &input_debug, input_swap, info))) | |
b34976b6 | 10844 | return FALSE; |
b49e97c9 TS |
10845 | |
10846 | /* Loop through the external symbols. For each one with | |
10847 | interesting information, try to find the symbol in | |
10848 | the linker global hash table and save the information | |
10849 | for the output external symbols. */ | |
10850 | eraw_src = input_debug.external_ext; | |
10851 | eraw_end = (eraw_src | |
10852 | + (input_debug.symbolic_header.iextMax | |
10853 | * input_swap->external_ext_size)); | |
10854 | for (; | |
10855 | eraw_src < eraw_end; | |
10856 | eraw_src += input_swap->external_ext_size) | |
10857 | { | |
10858 | EXTR ext; | |
10859 | const char *name; | |
10860 | struct mips_elf_link_hash_entry *h; | |
10861 | ||
9719ad41 | 10862 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
10863 | if (ext.asym.sc == scNil |
10864 | || ext.asym.sc == scUndefined | |
10865 | || ext.asym.sc == scSUndefined) | |
10866 | continue; | |
10867 | ||
10868 | name = input_debug.ssext + ext.asym.iss; | |
10869 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 10870 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
10871 | if (h == NULL || h->esym.ifd != -2) |
10872 | continue; | |
10873 | ||
10874 | if (ext.ifd != -1) | |
10875 | { | |
10876 | BFD_ASSERT (ext.ifd | |
10877 | < input_debug.symbolic_header.ifdMax); | |
10878 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
10879 | } | |
10880 | ||
10881 | h->esym = ext; | |
10882 | } | |
10883 | ||
10884 | /* Free up the information we just read. */ | |
10885 | free (input_debug.line); | |
10886 | free (input_debug.external_dnr); | |
10887 | free (input_debug.external_pdr); | |
10888 | free (input_debug.external_sym); | |
10889 | free (input_debug.external_opt); | |
10890 | free (input_debug.external_aux); | |
10891 | free (input_debug.ss); | |
10892 | free (input_debug.ssext); | |
10893 | free (input_debug.external_fdr); | |
10894 | free (input_debug.external_rfd); | |
10895 | free (input_debug.external_ext); | |
10896 | ||
10897 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10898 | elf_link_input_bfd ignores this section. */ | |
10899 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10900 | } | |
10901 | ||
10902 | if (SGI_COMPAT (abfd) && info->shared) | |
10903 | { | |
10904 | /* Create .rtproc section. */ | |
10905 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
10906 | if (rtproc_sec == NULL) | |
10907 | { | |
10908 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
10909 | | SEC_LINKER_CREATED | SEC_READONLY); | |
10910 | ||
3496cb2a L |
10911 | rtproc_sec = bfd_make_section_with_flags (abfd, |
10912 | ".rtproc", | |
10913 | flags); | |
b49e97c9 | 10914 | if (rtproc_sec == NULL |
b49e97c9 | 10915 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 10916 | return FALSE; |
b49e97c9 TS |
10917 | } |
10918 | ||
10919 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
10920 | info, rtproc_sec, | |
10921 | &debug)) | |
b34976b6 | 10922 | return FALSE; |
b49e97c9 TS |
10923 | } |
10924 | ||
10925 | /* Build the external symbol information. */ | |
10926 | einfo.abfd = abfd; | |
10927 | einfo.info = info; | |
10928 | einfo.debug = &debug; | |
10929 | einfo.swap = swap; | |
b34976b6 | 10930 | einfo.failed = FALSE; |
b49e97c9 | 10931 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 10932 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 10933 | if (einfo.failed) |
b34976b6 | 10934 | return FALSE; |
b49e97c9 TS |
10935 | |
10936 | /* Set the size of the .mdebug section. */ | |
eea6121a | 10937 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
10938 | |
10939 | /* Skip this section later on (I don't think this currently | |
10940 | matters, but someday it might). */ | |
8423293d | 10941 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10942 | |
10943 | mdebug_sec = o; | |
10944 | } | |
10945 | ||
0112cd26 | 10946 | if (CONST_STRNEQ (o->name, ".gptab.")) |
b49e97c9 TS |
10947 | { |
10948 | const char *subname; | |
10949 | unsigned int c; | |
10950 | Elf32_gptab *tab; | |
10951 | Elf32_External_gptab *ext_tab; | |
10952 | unsigned int j; | |
10953 | ||
10954 | /* The .gptab.sdata and .gptab.sbss sections hold | |
10955 | information describing how the small data area would | |
10956 | change depending upon the -G switch. These sections | |
10957 | not used in executables files. */ | |
1049f94e | 10958 | if (! info->relocatable) |
b49e97c9 | 10959 | { |
8423293d | 10960 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10961 | { |
10962 | asection *input_section; | |
10963 | ||
10964 | if (p->type != bfd_indirect_link_order) | |
10965 | { | |
10966 | if (p->type == bfd_data_link_order) | |
10967 | continue; | |
10968 | abort (); | |
10969 | } | |
10970 | ||
10971 | input_section = p->u.indirect.section; | |
10972 | ||
10973 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10974 | elf_link_input_bfd ignores this section. */ | |
10975 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10976 | } | |
10977 | ||
10978 | /* Skip this section later on (I don't think this | |
10979 | currently matters, but someday it might). */ | |
8423293d | 10980 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10981 | |
10982 | /* Really remove the section. */ | |
5daa8fe7 | 10983 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
10984 | --abfd->section_count; |
10985 | ||
10986 | continue; | |
10987 | } | |
10988 | ||
10989 | /* There is one gptab for initialized data, and one for | |
10990 | uninitialized data. */ | |
10991 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
10992 | gptab_data_sec = o; | |
10993 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
10994 | gptab_bss_sec = o; | |
10995 | else | |
10996 | { | |
10997 | (*_bfd_error_handler) | |
10998 | (_("%s: illegal section name `%s'"), | |
10999 | bfd_get_filename (abfd), o->name); | |
11000 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 11001 | return FALSE; |
b49e97c9 TS |
11002 | } |
11003 | ||
11004 | /* The linker script always combines .gptab.data and | |
11005 | .gptab.sdata into .gptab.sdata, and likewise for | |
11006 | .gptab.bss and .gptab.sbss. It is possible that there is | |
11007 | no .sdata or .sbss section in the output file, in which | |
11008 | case we must change the name of the output section. */ | |
11009 | subname = o->name + sizeof ".gptab" - 1; | |
11010 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
11011 | { | |
11012 | if (o == gptab_data_sec) | |
11013 | o->name = ".gptab.data"; | |
11014 | else | |
11015 | o->name = ".gptab.bss"; | |
11016 | subname = o->name + sizeof ".gptab" - 1; | |
11017 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
11018 | } | |
11019 | ||
11020 | /* Set up the first entry. */ | |
11021 | c = 1; | |
11022 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 11023 | tab = bfd_malloc (amt); |
b49e97c9 | 11024 | if (tab == NULL) |
b34976b6 | 11025 | return FALSE; |
b49e97c9 TS |
11026 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
11027 | tab[0].gt_header.gt_unused = 0; | |
11028 | ||
11029 | /* Combine the input sections. */ | |
8423293d | 11030 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
11031 | { |
11032 | asection *input_section; | |
11033 | bfd *input_bfd; | |
11034 | bfd_size_type size; | |
11035 | unsigned long last; | |
11036 | bfd_size_type gpentry; | |
11037 | ||
11038 | if (p->type != bfd_indirect_link_order) | |
11039 | { | |
11040 | if (p->type == bfd_data_link_order) | |
11041 | continue; | |
11042 | abort (); | |
11043 | } | |
11044 | ||
11045 | input_section = p->u.indirect.section; | |
11046 | input_bfd = input_section->owner; | |
11047 | ||
11048 | /* Combine the gptab entries for this input section one | |
11049 | by one. We know that the input gptab entries are | |
11050 | sorted by ascending -G value. */ | |
eea6121a | 11051 | size = input_section->size; |
b49e97c9 TS |
11052 | last = 0; |
11053 | for (gpentry = sizeof (Elf32_External_gptab); | |
11054 | gpentry < size; | |
11055 | gpentry += sizeof (Elf32_External_gptab)) | |
11056 | { | |
11057 | Elf32_External_gptab ext_gptab; | |
11058 | Elf32_gptab int_gptab; | |
11059 | unsigned long val; | |
11060 | unsigned long add; | |
b34976b6 | 11061 | bfd_boolean exact; |
b49e97c9 TS |
11062 | unsigned int look; |
11063 | ||
11064 | if (! (bfd_get_section_contents | |
9719ad41 RS |
11065 | (input_bfd, input_section, &ext_gptab, gpentry, |
11066 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
11067 | { |
11068 | free (tab); | |
b34976b6 | 11069 | return FALSE; |
b49e97c9 TS |
11070 | } |
11071 | ||
11072 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
11073 | &int_gptab); | |
11074 | val = int_gptab.gt_entry.gt_g_value; | |
11075 | add = int_gptab.gt_entry.gt_bytes - last; | |
11076 | ||
b34976b6 | 11077 | exact = FALSE; |
b49e97c9 TS |
11078 | for (look = 1; look < c; look++) |
11079 | { | |
11080 | if (tab[look].gt_entry.gt_g_value >= val) | |
11081 | tab[look].gt_entry.gt_bytes += add; | |
11082 | ||
11083 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 11084 | exact = TRUE; |
b49e97c9 TS |
11085 | } |
11086 | ||
11087 | if (! exact) | |
11088 | { | |
11089 | Elf32_gptab *new_tab; | |
11090 | unsigned int max; | |
11091 | ||
11092 | /* We need a new table entry. */ | |
11093 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 11094 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
11095 | if (new_tab == NULL) |
11096 | { | |
11097 | free (tab); | |
b34976b6 | 11098 | return FALSE; |
b49e97c9 TS |
11099 | } |
11100 | tab = new_tab; | |
11101 | tab[c].gt_entry.gt_g_value = val; | |
11102 | tab[c].gt_entry.gt_bytes = add; | |
11103 | ||
11104 | /* Merge in the size for the next smallest -G | |
11105 | value, since that will be implied by this new | |
11106 | value. */ | |
11107 | max = 0; | |
11108 | for (look = 1; look < c; look++) | |
11109 | { | |
11110 | if (tab[look].gt_entry.gt_g_value < val | |
11111 | && (max == 0 | |
11112 | || (tab[look].gt_entry.gt_g_value | |
11113 | > tab[max].gt_entry.gt_g_value))) | |
11114 | max = look; | |
11115 | } | |
11116 | if (max != 0) | |
11117 | tab[c].gt_entry.gt_bytes += | |
11118 | tab[max].gt_entry.gt_bytes; | |
11119 | ||
11120 | ++c; | |
11121 | } | |
11122 | ||
11123 | last = int_gptab.gt_entry.gt_bytes; | |
11124 | } | |
11125 | ||
11126 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
11127 | elf_link_input_bfd ignores this section. */ | |
11128 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
11129 | } | |
11130 | ||
11131 | /* The table must be sorted by -G value. */ | |
11132 | if (c > 2) | |
11133 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
11134 | ||
11135 | /* Swap out the table. */ | |
11136 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 11137 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
11138 | if (ext_tab == NULL) |
11139 | { | |
11140 | free (tab); | |
b34976b6 | 11141 | return FALSE; |
b49e97c9 TS |
11142 | } |
11143 | ||
11144 | for (j = 0; j < c; j++) | |
11145 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
11146 | free (tab); | |
11147 | ||
eea6121a | 11148 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
11149 | o->contents = (bfd_byte *) ext_tab; |
11150 | ||
11151 | /* Skip this section later on (I don't think this currently | |
11152 | matters, but someday it might). */ | |
8423293d | 11153 | o->map_head.link_order = NULL; |
b49e97c9 TS |
11154 | } |
11155 | } | |
11156 | ||
11157 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 11158 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 11159 | return FALSE; |
b49e97c9 TS |
11160 | |
11161 | /* Now write out the computed sections. */ | |
11162 | ||
9719ad41 | 11163 | if (reginfo_sec != NULL) |
b49e97c9 TS |
11164 | { |
11165 | Elf32_External_RegInfo ext; | |
11166 | ||
11167 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 11168 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 11169 | return FALSE; |
b49e97c9 TS |
11170 | } |
11171 | ||
9719ad41 | 11172 | if (mdebug_sec != NULL) |
b49e97c9 TS |
11173 | { |
11174 | BFD_ASSERT (abfd->output_has_begun); | |
11175 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
11176 | swap, info, | |
11177 | mdebug_sec->filepos)) | |
b34976b6 | 11178 | return FALSE; |
b49e97c9 TS |
11179 | |
11180 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
11181 | } | |
11182 | ||
9719ad41 | 11183 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
11184 | { |
11185 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
11186 | gptab_data_sec->contents, | |
eea6121a | 11187 | 0, gptab_data_sec->size)) |
b34976b6 | 11188 | return FALSE; |
b49e97c9 TS |
11189 | } |
11190 | ||
9719ad41 | 11191 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
11192 | { |
11193 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
11194 | gptab_bss_sec->contents, | |
eea6121a | 11195 | 0, gptab_bss_sec->size)) |
b34976b6 | 11196 | return FALSE; |
b49e97c9 TS |
11197 | } |
11198 | ||
11199 | if (SGI_COMPAT (abfd)) | |
11200 | { | |
11201 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
11202 | if (rtproc_sec != NULL) | |
11203 | { | |
11204 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
11205 | rtproc_sec->contents, | |
eea6121a | 11206 | 0, rtproc_sec->size)) |
b34976b6 | 11207 | return FALSE; |
b49e97c9 TS |
11208 | } |
11209 | } | |
11210 | ||
b34976b6 | 11211 | return TRUE; |
b49e97c9 TS |
11212 | } |
11213 | \f | |
64543e1a RS |
11214 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
11215 | ||
11216 | struct mips_mach_extension { | |
11217 | unsigned long extension, base; | |
11218 | }; | |
11219 | ||
11220 | ||
11221 | /* An array describing how BFD machines relate to one another. The entries | |
11222 | are ordered topologically with MIPS I extensions listed last. */ | |
11223 | ||
11224 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
6f179bd0 AN |
11225 | /* MIPS64r2 extensions. */ |
11226 | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, | |
11227 | ||
64543e1a | 11228 | /* MIPS64 extensions. */ |
5f74bc13 | 11229 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
11230 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
11231 | ||
11232 | /* MIPS V extensions. */ | |
11233 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
11234 | ||
11235 | /* R10000 extensions. */ | |
11236 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
11237 | ||
11238 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
11239 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
11240 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
11241 | many libraries will just use the core ISA. Perhaps we could add | |
11242 | some sort of ASE flag if this ever proves a problem. */ | |
11243 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
11244 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
11245 | ||
11246 | /* MIPS IV extensions. */ | |
11247 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
11248 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
11249 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 11250 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 11251 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
11252 | |
11253 | /* VR4100 extensions. */ | |
11254 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
11255 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
11256 | ||
11257 | /* MIPS III extensions. */ | |
350cc38d MS |
11258 | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
11259 | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, | |
64543e1a RS |
11260 | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
11261 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
11262 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
11263 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
11264 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
11265 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
11266 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
11267 | ||
11268 | /* MIPS32 extensions. */ | |
11269 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
11270 | ||
11271 | /* MIPS II extensions. */ | |
11272 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
11273 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
11274 | ||
11275 | /* MIPS I extensions. */ | |
11276 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
11277 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
11278 | }; | |
11279 | ||
11280 | ||
11281 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
11282 | ||
11283 | static bfd_boolean | |
9719ad41 | 11284 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
11285 | { |
11286 | size_t i; | |
11287 | ||
c5211a54 RS |
11288 | if (extension == base) |
11289 | return TRUE; | |
11290 | ||
11291 | if (base == bfd_mach_mipsisa32 | |
11292 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
11293 | return TRUE; | |
11294 | ||
11295 | if (base == bfd_mach_mipsisa32r2 | |
11296 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
11297 | return TRUE; | |
11298 | ||
11299 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 11300 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
11301 | { |
11302 | extension = mips_mach_extensions[i].base; | |
11303 | if (extension == base) | |
11304 | return TRUE; | |
11305 | } | |
64543e1a | 11306 | |
c5211a54 | 11307 | return FALSE; |
64543e1a RS |
11308 | } |
11309 | ||
11310 | ||
11311 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 11312 | |
b34976b6 | 11313 | static bfd_boolean |
9719ad41 | 11314 | mips_32bit_flags_p (flagword flags) |
00707a0e | 11315 | { |
64543e1a RS |
11316 | return ((flags & EF_MIPS_32BITMODE) != 0 |
11317 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
11318 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
11319 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
11320 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
11321 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
11322 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
11323 | } |
11324 | ||
64543e1a | 11325 | |
2cf19d5c JM |
11326 | /* Merge object attributes from IBFD into OBFD. Raise an error if |
11327 | there are conflicting attributes. */ | |
11328 | static bfd_boolean | |
11329 | mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) | |
11330 | { | |
11331 | obj_attribute *in_attr; | |
11332 | obj_attribute *out_attr; | |
11333 | ||
11334 | if (!elf_known_obj_attributes_proc (obfd)[0].i) | |
11335 | { | |
11336 | /* This is the first object. Copy the attributes. */ | |
11337 | _bfd_elf_copy_obj_attributes (ibfd, obfd); | |
11338 | ||
11339 | /* Use the Tag_null value to indicate the attributes have been | |
11340 | initialized. */ | |
11341 | elf_known_obj_attributes_proc (obfd)[0].i = 1; | |
11342 | ||
11343 | return TRUE; | |
11344 | } | |
11345 | ||
11346 | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge | |
11347 | non-conflicting ones. */ | |
11348 | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | |
11349 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; | |
11350 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11351 | { | |
11352 | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; | |
11353 | if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0) | |
11354 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
11355 | else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0) | |
11356 | ; | |
42554f6a | 11357 | else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4) |
2cf19d5c JM |
11358 | _bfd_error_handler |
11359 | (_("Warning: %B uses unknown floating point ABI %d"), ibfd, | |
11360 | in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
42554f6a | 11361 | else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4) |
2cf19d5c JM |
11362 | _bfd_error_handler |
11363 | (_("Warning: %B uses unknown floating point ABI %d"), obfd, | |
11364 | out_attr[Tag_GNU_MIPS_ABI_FP].i); | |
11365 | else | |
11366 | switch (out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11367 | { | |
11368 | case 1: | |
11369 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11370 | { | |
11371 | case 2: | |
11372 | _bfd_error_handler | |
11373 | (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), | |
11374 | obfd, ibfd); | |
51a0dd31 | 11375 | break; |
2cf19d5c JM |
11376 | |
11377 | case 3: | |
11378 | _bfd_error_handler | |
11379 | (_("Warning: %B uses hard float, %B uses soft float"), | |
11380 | obfd, ibfd); | |
11381 | break; | |
11382 | ||
42554f6a TS |
11383 | case 4: |
11384 | _bfd_error_handler | |
11385 | (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), | |
11386 | obfd, ibfd); | |
11387 | break; | |
11388 | ||
2cf19d5c JM |
11389 | default: |
11390 | abort (); | |
11391 | } | |
11392 | break; | |
11393 | ||
11394 | case 2: | |
11395 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11396 | { | |
11397 | case 1: | |
11398 | _bfd_error_handler | |
11399 | (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), | |
11400 | ibfd, obfd); | |
51a0dd31 | 11401 | break; |
2cf19d5c JM |
11402 | |
11403 | case 3: | |
11404 | _bfd_error_handler | |
11405 | (_("Warning: %B uses hard float, %B uses soft float"), | |
11406 | obfd, ibfd); | |
11407 | break; | |
11408 | ||
42554f6a TS |
11409 | case 4: |
11410 | _bfd_error_handler | |
11411 | (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), | |
11412 | obfd, ibfd); | |
11413 | break; | |
11414 | ||
2cf19d5c JM |
11415 | default: |
11416 | abort (); | |
11417 | } | |
11418 | break; | |
11419 | ||
11420 | case 3: | |
11421 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11422 | { | |
11423 | case 1: | |
11424 | case 2: | |
42554f6a | 11425 | case 4: |
2cf19d5c JM |
11426 | _bfd_error_handler |
11427 | (_("Warning: %B uses hard float, %B uses soft float"), | |
11428 | ibfd, obfd); | |
11429 | break; | |
11430 | ||
11431 | default: | |
11432 | abort (); | |
11433 | } | |
11434 | break; | |
11435 | ||
42554f6a TS |
11436 | case 4: |
11437 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
11438 | { | |
11439 | case 1: | |
11440 | _bfd_error_handler | |
11441 | (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), | |
11442 | ibfd, obfd); | |
11443 | break; | |
11444 | ||
11445 | case 2: | |
11446 | _bfd_error_handler | |
11447 | (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), | |
11448 | ibfd, obfd); | |
11449 | break; | |
11450 | ||
11451 | case 3: | |
11452 | _bfd_error_handler | |
11453 | (_("Warning: %B uses hard float, %B uses soft float"), | |
11454 | obfd, ibfd); | |
11455 | break; | |
11456 | ||
11457 | default: | |
11458 | abort (); | |
11459 | } | |
11460 | break; | |
11461 | ||
2cf19d5c JM |
11462 | default: |
11463 | abort (); | |
11464 | } | |
11465 | } | |
11466 | ||
11467 | /* Merge Tag_compatibility attributes and any common GNU ones. */ | |
11468 | _bfd_elf_merge_object_attributes (ibfd, obfd); | |
11469 | ||
11470 | return TRUE; | |
11471 | } | |
11472 | ||
b49e97c9 TS |
11473 | /* Merge backend specific data from an object file to the output |
11474 | object file when linking. */ | |
11475 | ||
b34976b6 | 11476 | bfd_boolean |
9719ad41 | 11477 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
11478 | { |
11479 | flagword old_flags; | |
11480 | flagword new_flags; | |
b34976b6 AM |
11481 | bfd_boolean ok; |
11482 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
11483 | asection *sec; |
11484 | ||
11485 | /* Check if we have the same endianess */ | |
82e51918 | 11486 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
11487 | { |
11488 | (*_bfd_error_handler) | |
d003868e AM |
11489 | (_("%B: endianness incompatible with that of the selected emulation"), |
11490 | ibfd); | |
aa701218 AO |
11491 | return FALSE; |
11492 | } | |
b49e97c9 TS |
11493 | |
11494 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
11495 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 11496 | return TRUE; |
b49e97c9 | 11497 | |
aa701218 AO |
11498 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
11499 | { | |
11500 | (*_bfd_error_handler) | |
d003868e AM |
11501 | (_("%B: ABI is incompatible with that of the selected emulation"), |
11502 | ibfd); | |
aa701218 AO |
11503 | return FALSE; |
11504 | } | |
11505 | ||
2cf19d5c JM |
11506 | if (!mips_elf_merge_obj_attributes (ibfd, obfd)) |
11507 | return FALSE; | |
11508 | ||
b49e97c9 TS |
11509 | new_flags = elf_elfheader (ibfd)->e_flags; |
11510 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
11511 | old_flags = elf_elfheader (obfd)->e_flags; | |
11512 | ||
11513 | if (! elf_flags_init (obfd)) | |
11514 | { | |
b34976b6 | 11515 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
11516 | elf_elfheader (obfd)->e_flags = new_flags; |
11517 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
11518 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
11519 | ||
11520 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2907b861 TS |
11521 | && (bfd_get_arch_info (obfd)->the_default |
11522 | || mips_mach_extends_p (bfd_get_mach (obfd), | |
11523 | bfd_get_mach (ibfd)))) | |
b49e97c9 TS |
11524 | { |
11525 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
11526 | bfd_get_mach (ibfd))) | |
b34976b6 | 11527 | return FALSE; |
b49e97c9 TS |
11528 | } |
11529 | ||
b34976b6 | 11530 | return TRUE; |
b49e97c9 TS |
11531 | } |
11532 | ||
11533 | /* Check flag compatibility. */ | |
11534 | ||
11535 | new_flags &= ~EF_MIPS_NOREORDER; | |
11536 | old_flags &= ~EF_MIPS_NOREORDER; | |
11537 | ||
f4416af6 AO |
11538 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
11539 | doesn't seem to matter. */ | |
11540 | new_flags &= ~EF_MIPS_XGOT; | |
11541 | old_flags &= ~EF_MIPS_XGOT; | |
11542 | ||
98a8deaf RS |
11543 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
11544 | just be able to ignore this. */ | |
11545 | new_flags &= ~EF_MIPS_UCODE; | |
11546 | old_flags &= ~EF_MIPS_UCODE; | |
11547 | ||
0a44bf69 RS |
11548 | /* Don't care about the PIC flags from dynamic objects; they are |
11549 | PIC by design. */ | |
11550 | if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0 | |
11551 | && (ibfd->flags & DYNAMIC) != 0) | |
11552 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
11553 | ||
b49e97c9 | 11554 | if (new_flags == old_flags) |
b34976b6 | 11555 | return TRUE; |
b49e97c9 TS |
11556 | |
11557 | /* Check to see if the input BFD actually contains any sections. | |
11558 | If not, its flags may not have been initialised either, but it cannot | |
11559 | actually cause any incompatibility. */ | |
11560 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
11561 | { | |
11562 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
11563 | which are automatically generated by gas. */ | |
11564 | if (strcmp (sec->name, ".reginfo") | |
11565 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 11566 | && (sec->size != 0 |
d13d89fa NS |
11567 | || (strcmp (sec->name, ".text") |
11568 | && strcmp (sec->name, ".data") | |
11569 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 11570 | { |
b34976b6 | 11571 | null_input_bfd = FALSE; |
b49e97c9 TS |
11572 | break; |
11573 | } | |
11574 | } | |
11575 | if (null_input_bfd) | |
b34976b6 | 11576 | return TRUE; |
b49e97c9 | 11577 | |
b34976b6 | 11578 | ok = TRUE; |
b49e97c9 | 11579 | |
143d77c5 EC |
11580 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
11581 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 11582 | { |
b49e97c9 | 11583 | (*_bfd_error_handler) |
d003868e AM |
11584 | (_("%B: warning: linking PIC files with non-PIC files"), |
11585 | ibfd); | |
143d77c5 | 11586 | ok = TRUE; |
b49e97c9 TS |
11587 | } |
11588 | ||
143d77c5 EC |
11589 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
11590 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
11591 | if (! (new_flags & EF_MIPS_PIC)) | |
11592 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
11593 | ||
11594 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
11595 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 11596 | |
64543e1a RS |
11597 | /* Compare the ISAs. */ |
11598 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 11599 | { |
64543e1a | 11600 | (*_bfd_error_handler) |
d003868e AM |
11601 | (_("%B: linking 32-bit code with 64-bit code"), |
11602 | ibfd); | |
64543e1a RS |
11603 | ok = FALSE; |
11604 | } | |
11605 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
11606 | { | |
11607 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
11608 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 11609 | { |
64543e1a RS |
11610 | /* Copy the architecture info from IBFD to OBFD. Also copy |
11611 | the 32-bit flag (if set) so that we continue to recognise | |
11612 | OBFD as a 32-bit binary. */ | |
11613 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
11614 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
11615 | elf_elfheader (obfd)->e_flags | |
11616 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
11617 | ||
11618 | /* Copy across the ABI flags if OBFD doesn't use them | |
11619 | and if that was what caused us to treat IBFD as 32-bit. */ | |
11620 | if ((old_flags & EF_MIPS_ABI) == 0 | |
11621 | && mips_32bit_flags_p (new_flags) | |
11622 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
11623 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
11624 | } |
11625 | else | |
11626 | { | |
64543e1a | 11627 | /* The ISAs aren't compatible. */ |
b49e97c9 | 11628 | (*_bfd_error_handler) |
d003868e AM |
11629 | (_("%B: linking %s module with previous %s modules"), |
11630 | ibfd, | |
64543e1a RS |
11631 | bfd_printable_name (ibfd), |
11632 | bfd_printable_name (obfd)); | |
b34976b6 | 11633 | ok = FALSE; |
b49e97c9 | 11634 | } |
b49e97c9 TS |
11635 | } |
11636 | ||
64543e1a RS |
11637 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
11638 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
11639 | ||
11640 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
11641 | does set EI_CLASS differently from any 32-bit ABI. */ |
11642 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
11643 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
11644 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
11645 | { | |
11646 | /* Only error if both are set (to different values). */ | |
11647 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
11648 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
11649 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
11650 | { | |
11651 | (*_bfd_error_handler) | |
d003868e AM |
11652 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
11653 | ibfd, | |
b49e97c9 TS |
11654 | elf_mips_abi_name (ibfd), |
11655 | elf_mips_abi_name (obfd)); | |
b34976b6 | 11656 | ok = FALSE; |
b49e97c9 TS |
11657 | } |
11658 | new_flags &= ~EF_MIPS_ABI; | |
11659 | old_flags &= ~EF_MIPS_ABI; | |
11660 | } | |
11661 | ||
fb39dac1 RS |
11662 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
11663 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
11664 | { | |
11665 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
11666 | ||
11667 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
11668 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
11669 | } | |
11670 | ||
b49e97c9 TS |
11671 | /* Warn about any other mismatches */ |
11672 | if (new_flags != old_flags) | |
11673 | { | |
11674 | (*_bfd_error_handler) | |
d003868e AM |
11675 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
11676 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 11677 | (unsigned long) old_flags); |
b34976b6 | 11678 | ok = FALSE; |
b49e97c9 TS |
11679 | } |
11680 | ||
11681 | if (! ok) | |
11682 | { | |
11683 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 11684 | return FALSE; |
b49e97c9 TS |
11685 | } |
11686 | ||
b34976b6 | 11687 | return TRUE; |
b49e97c9 TS |
11688 | } |
11689 | ||
11690 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
11691 | ||
b34976b6 | 11692 | bfd_boolean |
9719ad41 | 11693 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
11694 | { |
11695 | BFD_ASSERT (!elf_flags_init (abfd) | |
11696 | || elf_elfheader (abfd)->e_flags == flags); | |
11697 | ||
11698 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
11699 | elf_flags_init (abfd) = TRUE; |
11700 | return TRUE; | |
b49e97c9 TS |
11701 | } |
11702 | ||
b34976b6 | 11703 | bfd_boolean |
9719ad41 | 11704 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 11705 | { |
9719ad41 | 11706 | FILE *file = ptr; |
b49e97c9 TS |
11707 | |
11708 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
11709 | ||
11710 | /* Print normal ELF private data. */ | |
11711 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
11712 | ||
11713 | /* xgettext:c-format */ | |
11714 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
11715 | ||
11716 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
11717 | fprintf (file, _(" [abi=O32]")); | |
11718 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
11719 | fprintf (file, _(" [abi=O64]")); | |
11720 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
11721 | fprintf (file, _(" [abi=EABI32]")); | |
11722 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
11723 | fprintf (file, _(" [abi=EABI64]")); | |
11724 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
11725 | fprintf (file, _(" [abi unknown]")); | |
11726 | else if (ABI_N32_P (abfd)) | |
11727 | fprintf (file, _(" [abi=N32]")); | |
11728 | else if (ABI_64_P (abfd)) | |
11729 | fprintf (file, _(" [abi=64]")); | |
11730 | else | |
11731 | fprintf (file, _(" [no abi set]")); | |
11732 | ||
11733 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
ae0d2616 | 11734 | fprintf (file, " [mips1]"); |
b49e97c9 | 11735 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
ae0d2616 | 11736 | fprintf (file, " [mips2]"); |
b49e97c9 | 11737 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
ae0d2616 | 11738 | fprintf (file, " [mips3]"); |
b49e97c9 | 11739 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
ae0d2616 | 11740 | fprintf (file, " [mips4]"); |
b49e97c9 | 11741 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
ae0d2616 | 11742 | fprintf (file, " [mips5]"); |
b49e97c9 | 11743 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
ae0d2616 | 11744 | fprintf (file, " [mips32]"); |
b49e97c9 | 11745 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
ae0d2616 | 11746 | fprintf (file, " [mips64]"); |
af7ee8bf | 11747 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
ae0d2616 | 11748 | fprintf (file, " [mips32r2]"); |
5f74bc13 | 11749 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
ae0d2616 | 11750 | fprintf (file, " [mips64r2]"); |
b49e97c9 TS |
11751 | else |
11752 | fprintf (file, _(" [unknown ISA]")); | |
11753 | ||
40d32fc6 | 11754 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
ae0d2616 | 11755 | fprintf (file, " [mdmx]"); |
40d32fc6 CD |
11756 | |
11757 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
ae0d2616 | 11758 | fprintf (file, " [mips16]"); |
40d32fc6 | 11759 | |
b49e97c9 | 11760 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
ae0d2616 | 11761 | fprintf (file, " [32bitmode]"); |
b49e97c9 TS |
11762 | else |
11763 | fprintf (file, _(" [not 32bitmode]")); | |
11764 | ||
c0e3f241 | 11765 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
ae0d2616 | 11766 | fprintf (file, " [noreorder]"); |
c0e3f241 CD |
11767 | |
11768 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | |
ae0d2616 | 11769 | fprintf (file, " [PIC]"); |
c0e3f241 CD |
11770 | |
11771 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) | |
ae0d2616 | 11772 | fprintf (file, " [CPIC]"); |
c0e3f241 CD |
11773 | |
11774 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) | |
ae0d2616 | 11775 | fprintf (file, " [XGOT]"); |
c0e3f241 CD |
11776 | |
11777 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) | |
ae0d2616 | 11778 | fprintf (file, " [UCODE]"); |
c0e3f241 | 11779 | |
b49e97c9 TS |
11780 | fputc ('\n', file); |
11781 | ||
b34976b6 | 11782 | return TRUE; |
b49e97c9 | 11783 | } |
2f89ff8d | 11784 | |
b35d266b | 11785 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 11786 | { |
0112cd26 NC |
11787 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
11788 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11789 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | |
11790 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11791 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11792 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, | |
11793 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 11794 | }; |
5e2b0d47 | 11795 | |
8992f0d7 TS |
11796 | /* Merge non visibility st_other attributes. Ensure that the |
11797 | STO_OPTIONAL flag is copied into h->other, even if this is not a | |
11798 | definiton of the symbol. */ | |
5e2b0d47 NC |
11799 | void |
11800 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
11801 | const Elf_Internal_Sym *isym, | |
11802 | bfd_boolean definition, | |
11803 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
11804 | { | |
8992f0d7 TS |
11805 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
11806 | { | |
11807 | unsigned char other; | |
11808 | ||
11809 | other = (definition ? isym->st_other : h->other); | |
11810 | other &= ~ELF_ST_VISIBILITY (-1); | |
11811 | h->other = other | ELF_ST_VISIBILITY (h->other); | |
11812 | } | |
11813 | ||
11814 | if (!definition | |
5e2b0d47 NC |
11815 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
11816 | h->other |= STO_OPTIONAL; | |
11817 | } | |
12ac1cf5 NC |
11818 | |
11819 | /* Decide whether an undefined symbol is special and can be ignored. | |
11820 | This is the case for OPTIONAL symbols on IRIX. */ | |
11821 | bfd_boolean | |
11822 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
11823 | { | |
11824 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
11825 | } | |
e0764319 NC |
11826 | |
11827 | bfd_boolean | |
11828 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | |
11829 | { | |
11830 | return (sym->st_shndx == SHN_COMMON | |
11831 | || sym->st_shndx == SHN_MIPS_ACOMMON | |
11832 | || sym->st_shndx == SHN_MIPS_SCOMMON); | |
11833 | } |