Fix AArch32 build attributes for Armv8.4-A.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
07d6d2b8
AM
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
07d6d2b8 2025 | Immediate 15:0 |
d6f16593
MR
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
07d6d2b8
AM
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
d6f16593
MR
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
07d6d2b8
AM
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
d6f16593
MR
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
07d6d2b8 2890 special symbols. */
b49e97c9
TS
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
4a14403c 2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
33bb52fb 2978 else
b49e97c9
TS
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2984
33bb52fb 2985 if (hd->needs_lazy_stub)
b49e97c9 2986 {
1bbce132
MR
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
1bbce132 2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
b49e97c9
TS
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
b34976b6
AM
3011 einfo->failed = TRUE;
3012 return FALSE;
b49e97c9
TS
3013 }
3014
b34976b6 3015 return TRUE;
b49e97c9
TS
3016}
3017
3018/* A comparison routine used to sort .gptab entries. */
3019
3020static int
9719ad41 3021gptab_compare (const void *p1, const void *p2)
b49e97c9 3022{
9719ad41
RS
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027}
3028\f
b15e6682 3029/* Functions to manage the got entry hash table. */
f4416af6
AO
3030
3031/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034static INLINE hashval_t
9719ad41 3035mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3036{
3037#ifdef BFD64
3038 return addr + (addr >> 32);
3039#else
3040 return addr;
3041#endif
3042}
3043
f4416af6 3044static hashval_t
d9bf376d 3045mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3046{
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
e641e783 3049 return (entry->symndx
9ab066b4
RS
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
f4416af6
AO
3056}
3057
3058static int
3dff0dd1 3059mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3060{
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
e641e783 3064 return (e1->symndx == e2->symndx
9ab066b4
RS
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3071}
c224138d 3072
13db6b44
RS
3073static hashval_t
3074mips_got_page_ref_hash (const void *ref_)
3075{
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083}
3084
3085static int
3086mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087{
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097}
3098
c224138d
RS
3099static hashval_t
3100mips_got_page_entry_hash (const void *entry_)
3101{
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3105 return entry->sec->id;
c224138d
RS
3106}
3107
3108static int
3109mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110{
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3115 return entry1->sec == entry2->sec;
c224138d 3116}
b15e6682 3117\f
3dff0dd1 3118/* Create and return a new mips_got_info structure. */
5334aa52
RS
3119
3120static struct mips_got_info *
3dff0dd1 3121mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3122{
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3dff0dd1
RS
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
13db6b44
RS
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
5334aa52
RS
3137 return NULL;
3138
3139 return g;
3140}
3141
ee227692
RS
3142/* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145static struct mips_got_info *
3146mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147{
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3dff0dd1 3155 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3156 return tdata->got;
3157}
3158
d7206569
RS
3159/* Record that ABFD should use output GOT G. */
3160
3161static void
3162mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163{
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
13db6b44
RS
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3176 }
3177 tdata->got = g;
3178}
3179
0a44bf69
RS
3180/* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
f4416af6
AO
3183
3184static asection *
0a44bf69 3185mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3186{
0a44bf69 3187 const char *dname;
f4416af6 3188 asection *sreloc;
0a44bf69 3189 bfd *dynobj;
f4416af6 3190
0a44bf69
RS
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3193 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3194 if (sreloc == NULL && create_p)
3195 {
3d4d4302
AM
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
f4416af6 3203 if (sreloc == NULL
f4416af6 3204 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3206 return NULL;
3207 }
3208 return sreloc;
3209}
3210
e641e783
RS
3211/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213static int
3214mips_elf_reloc_tls_type (unsigned int r_type)
3215{
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
9ab066b4 3225 return GOT_TLS_NONE;
e641e783
RS
3226}
3227
3228/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230static int
3231mips_tls_got_entries (unsigned int type)
3232{
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
9ab066b4 3242 case GOT_TLS_NONE:
e641e783
RS
3243 return 0;
3244 }
3245 abort ();
3246}
3247
0f20cc35
DJ
3248/* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252static int
3253mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255{
3256 int indx = 0;
0f20cc35
DJ
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
0e1862bb
L
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3262 indx = h->dynindx;
3263
0e1862bb 3264 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
e641e783 3271 return 0;
0f20cc35 3272
9ab066b4 3273 switch (tls_type)
0f20cc35 3274 {
e641e783
RS
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
0f20cc35 3277
e641e783
RS
3278 case GOT_TLS_IE:
3279 return 1;
0f20cc35 3280
e641e783 3281 case GOT_TLS_LDM:
0e1862bb 3282 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3283
e641e783
RS
3284 default:
3285 return 0;
3286 }
0f20cc35
DJ
3287}
3288
ab361d49
RS
3289/* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
0f20cc35 3291
ab361d49
RS
3292static void
3293mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
0f20cc35 3296{
9ab066b4 3297 if (entry->tls_type)
ab361d49 3298 {
9ab066b4
RS
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
0f20cc35
DJ
3308}
3309
0f20cc35
DJ
3310/* Output a simple dynamic relocation into SRELOC. */
3311
3312static void
3313mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
861fb55a 3315 unsigned long reloc_index,
0f20cc35
DJ
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319{
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
861fb55a 3338 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3339}
3340
3341/* Initialize a set of TLS GOT entries for one symbol. */
3342
3343static void
9ab066b4
RS
3344mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
0f20cc35
DJ
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348{
23cc69b6 3349 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3350 int indx;
3351 asection *sreloc, *sgot;
9ab066b4 3352 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3353 bfd_boolean need_relocs = FALSE;
3354
23cc69b6 3355 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3356 if (htab == NULL)
3357 return;
3358
ce558b89 3359 sgot = htab->root.sgot;
0f20cc35
DJ
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
0e1862bb
L
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3370 indx = h->root.dynindx;
3371 }
3372
9ab066b4 3373 if (entry->tls_initialized)
0f20cc35
DJ
3374 return;
3375
0e1862bb 3376 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
0a44bf69 3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3390 got_offset = entry->gotidx;
0f20cc35 3391
9ab066b4 3392 switch (entry->tls_type)
0f20cc35 3393 {
e641e783
RS
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
861fb55a 3407 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3412 sgot->contents + got_offset2);
0f20cc35
DJ
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3417 sgot->contents + got_offset);
0f20cc35 3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3419 sgot->contents + got_offset2);
0f20cc35 3420 }
e641e783 3421 break;
0f20cc35 3422
e641e783
RS
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
0f20cc35
DJ
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3429 sgot->contents + got_offset);
0f20cc35
DJ
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3432 sgot->contents + got_offset);
0f20cc35
DJ
3433
3434 mips_elf_output_dynamic_relocation
861fb55a 3435 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3437 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3441 sgot->contents + got_offset);
3442 break;
0f20cc35 3443
e641e783 3444 case GOT_TLS_LDM:
0f20cc35
DJ
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
0e1862bb 3451 if (!bfd_link_pic (info))
0f20cc35
DJ
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
861fb55a 3456 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3459 break;
3460
3461 default:
3462 abort ();
0f20cc35
DJ
3463 }
3464
9ab066b4 3465 entry->tls_initialized = TRUE;
e641e783 3466}
0f20cc35 3467
0a44bf69
RS
3468/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472static bfd_vma
3473mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475{
1bbce132 3476 bfd_vma got_address, got_value;
0a44bf69
RS
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3480 BFD_ASSERT (htab != NULL);
3481
1bbce132
MR
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3484
3485 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
1bbce132
MR
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497}
3498
5c18022e 3499/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
b49e97c9
TS
3503
3504static bfd_vma
9719ad41 3505mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3506 bfd_vma value, unsigned long r_symndx,
0f20cc35 3507 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3508{
a8028dd0 3509 struct mips_elf_link_hash_table *htab;
b15e6682 3510 struct mips_got_entry *entry;
b49e97c9 3511
a8028dd0 3512 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3513 BFD_ASSERT (htab != NULL);
3514
a8028dd0
RS
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
0f20cc35 3517 if (!entry)
b15e6682 3518 return MINUS_ONE;
0f20cc35 3519
e641e783 3520 if (entry->tls_type)
9ab066b4
RS
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
b49e97c9
TS
3523}
3524
13fbec83 3525/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3526
3527static bfd_vma
13fbec83
RS
3528mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530{
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3551 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3552
3553 return got_index;
3554}
3555
3556/* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559static bfd_vma
3560mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3562{
a8028dd0 3563 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
b49e97c9 3567
a8028dd0 3568 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3569 BFD_ASSERT (htab != NULL);
3570
6c42ddb9
RS
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
f4416af6 3573
6c42ddb9
RS
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3577
6c42ddb9
RS
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
0f20cc35 3583
6c42ddb9 3584 gotidx = entry->gotidx;
ce558b89 3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3586
6c42ddb9 3587 if (lookup.tls_type)
0f20cc35 3588 {
0f20cc35
DJ
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
9ab066b4 3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3599 }
6c42ddb9 3600 return gotidx;
b49e97c9
TS
3601}
3602
5c18022e
RS
3603/* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3607 offset of the GOT entry from VALUE. */
b49e97c9
TS
3608
3609static bfd_vma
9719ad41 3610mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3611 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3612{
91d6fa6a 3613 bfd_vma page, got_index;
b15e6682 3614 struct mips_got_entry *entry;
b49e97c9 3615
0a44bf69 3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3619
b15e6682
AO
3620 if (!entry)
3621 return MINUS_ONE;
143d77c5 3622
91d6fa6a 3623 got_index = entry->gotidx;
b49e97c9
TS
3624
3625 if (offsetp)
f4416af6 3626 *offsetp = value - entry->d.address;
b49e97c9 3627
91d6fa6a 3628 return got_index;
b49e97c9
TS
3629}
3630
738e5348 3631/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
b49e97c9
TS
3634
3635static bfd_vma
9719ad41 3636mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3637 bfd_vma value, bfd_boolean external)
b49e97c9 3638{
b15e6682 3639 struct mips_got_entry *entry;
b49e97c9 3640
0a44bf69
RS
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3645 if (! external)
0a44bf69 3646 value = mips_elf_high (value) << 16;
b49e97c9 3647
738e5348
RS
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
a8028dd0
RS
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
b15e6682
AO
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
b49e97c9
TS
3657}
3658
3659/* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662static bfd_vma
a8028dd0 3663mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3664 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3665{
a8028dd0 3666 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3667 asection *sgot;
3668 bfd_vma gp;
3669
a8028dd0 3670 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3671 BFD_ASSERT (htab != NULL);
3672
ce558b89 3673 sgot = htab->root.sgot;
f4416af6 3674 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3676
91d6fa6a 3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3678}
3679
0a44bf69
RS
3680/* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
b49e97c9 3684
b15e6682 3685static struct mips_got_entry *
0a44bf69 3686mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3687 bfd *ibfd, bfd_vma value,
5c18022e 3688 unsigned long r_symndx,
0f20cc35
DJ
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
b49e97c9 3691{
ebc53538
RS
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
f4416af6 3694 struct mips_got_info *g;
0a44bf69 3695 struct mips_elf_link_hash_table *htab;
6c42ddb9 3696 bfd_vma gotidx;
0a44bf69
RS
3697
3698 htab = mips_elf_hash_table (info);
4dfe6ac6 3699 BFD_ASSERT (htab != NULL);
b15e6682 3700
d7206569 3701 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3702 if (g == NULL)
3703 {
d7206569 3704 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3705 BFD_ASSERT (g != NULL);
3706 }
b15e6682 3707
020d7251
RS
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3711
ebc53538
RS
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
df58fc94 3716 if (tls_ldm_reloc_p (r_type))
0f20cc35 3717 {
ebc53538
RS
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
0f20cc35
DJ
3720 }
3721 else if (h == NULL)
3722 {
ebc53538
RS
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
0f20cc35
DJ
3725 }
3726 else
ebc53538
RS
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
0f20cc35 3731
ebc53538
RS
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
0f20cc35 3734
6c42ddb9 3735 gotidx = entry->gotidx;
ce558b89 3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3737
ebc53538 3738 return entry;
0f20cc35
DJ
3739 }
3740
ebc53538
RS
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
b15e6682 3746 return NULL;
143d77c5 3747
ebc53538
RS
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
b15e6682 3751
cb22ccf4 3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3753 {
3754 /* We didn't allocate enough space in the GOT. */
4eca0228 3755 _bfd_error_handler
b49e97c9
TS
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
b15e6682 3758 return NULL;
b49e97c9
TS
3759 }
3760
ebc53538
RS
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
cb22ccf4
KCY
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
ebc53538
RS
3773 *entry = lookup;
3774 *loc = entry;
3775
ce558b89 3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3777
5c18022e 3778 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
5c18022e 3782 asection *s;
91d6fa6a 3783 bfd_byte *rloc;
0a44bf69 3784 bfd_vma got_address;
0a44bf69
RS
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
ebc53538 3789 + entry->gotidx);
0a44bf69 3790
91d6fa6a 3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3792 outrel.r_offset = got_address;
5c18022e
RS
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
91d6fa6a 3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3796 }
3797
ebc53538 3798 return entry;
b49e97c9
TS
3799}
3800
d4596a51
RS
3801/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806static bfd_size_type
3807count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808{
3809 bfd_size_type count;
3810
3811 count = 0;
0e1862bb
L
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826}
3827
b49e97c9 3828/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3829 appear towards the end. */
b49e97c9 3830
b34976b6 3831static bfd_boolean
d4596a51 3832mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3833{
a8028dd0 3834 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
b49e97c9 3837
a8028dd0 3838 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3839 BFD_ASSERT (htab != NULL);
3840
0f8c4b60 3841 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3842 return TRUE;
3843
a8028dd0 3844 g = htab->got_info;
d4596a51
RS
3845 if (g == NULL)
3846 return TRUE;
f4416af6 3847
b49e97c9 3848 hsd.low = NULL;
23cc69b6
RS
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
0f8c4b60 3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3857
3858 /* There should have been enough room in the symbol table to
44c410de 3859 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
d222d210 3867 htab->global_gotsym = hsd.low;
b49e97c9 3868
b34976b6 3869 return TRUE;
b49e97c9
TS
3870}
3871
3872/* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
b34976b6 3876static bfd_boolean
9719ad41 3877mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3878{
9719ad41 3879 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3880
b49e97c9
TS
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
b34976b6 3884 return TRUE;
b49e97c9 3885
634835ae 3886 switch (h->global_got_area)
f4416af6 3887 {
634835ae 3888 case GGA_NONE:
e17b0c35
MR
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3893 break;
0f20cc35 3894
634835ae 3895 case GGA_NORMAL:
b49e97c9
TS
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3898 break;
3899
3900 case GGA_RELOC_ONLY:
634835ae
RS
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
b49e97c9
TS
3905 }
3906
b34976b6 3907 return TRUE;
b49e97c9
TS
3908}
3909
ee227692
RS
3910/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914static bfd_boolean
3915mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917{
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
9ab066b4 3938 lookup->tls_initialized = FALSE;
ee227692
RS
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956}
3957
e641e783
RS
3958/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3960 using the GOT entry for calls. */
b49e97c9 3961
b34976b6 3962static bfd_boolean
9719ad41
RS
3963mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
e641e783 3965 bfd_boolean for_call, int r_type)
b49e97c9 3966{
a8028dd0 3967 struct mips_elf_link_hash_table *htab;
634835ae 3968 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
a8028dd0
RS
3971
3972 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3973 BFD_ASSERT (htab != NULL);
3974
634835ae 3975 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
f4416af6 3978
b49e97c9
TS
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
7c5fcef7
L
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
33bb52fb 3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3988 break;
3989 }
c152c796 3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3991 return FALSE;
7c5fcef7 3992 }
b49e97c9 3993
ee227692 3994 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3996 hmips->global_got_area = GGA_NORMAL;
86324f90 3997
f4416af6
AO
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4003}
f4416af6 4004
e641e783
RS
4005/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4007
4008static bfd_boolean
9719ad41 4009mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4010 struct bfd_link_info *info, int r_type)
f4416af6 4011{
a8028dd0
RS
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
ee227692 4014 struct mips_got_entry entry;
f4416af6 4015
a8028dd0 4016 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4017 BFD_ASSERT (htab != NULL);
4018
a8028dd0
RS
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
f4416af6
AO
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
e641e783 4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4026 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4027}
c224138d 4028
13db6b44
RS
4029/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
c224138d
RS
4032
4033static bfd_boolean
13db6b44
RS
4034mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
c224138d 4037{
a8028dd0 4038 struct mips_elf_link_hash_table *htab;
ee227692 4039 struct mips_got_info *g1, *g2;
13db6b44 4040 struct mips_got_page_ref lookup, *entry;
ee227692 4041 void **loc, **bfd_loc;
c224138d 4042
a8028dd0 4043 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4044 BFD_ASSERT (htab != NULL);
4045
ee227692
RS
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
a8028dd0 4048
13db6b44
RS
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4061 if (loc == NULL)
4062 return FALSE;
4063
13db6b44 4064 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
13db6b44 4071 *entry = lookup;
c224138d
RS
4072 *loc = entry;
4073 }
4074
ee227692
RS
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
13db6b44 4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
c224138d
RS
4087 return TRUE;
4088}
33bb52fb
RS
4089
4090/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092static void
4093mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095{
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4100 BFD_ASSERT (htab != NULL);
4101
33bb52fb
RS
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117}
4118\f
476366af
RS
4119/* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4123
4124static int
4125mips_elf_check_recreate_got (void **entryp, void *data)
4126{
4127 struct mips_got_entry *entry;
476366af 4128 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4129
4130 entry = (struct mips_got_entry *) *entryp;
476366af 4131 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
476366af 4140 arg->value = TRUE;
33bb52fb
RS
4141 return 0;
4142 }
4143 }
476366af 4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4145 return 1;
4146}
4147
476366af
RS
4148/* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4152
4153static int
4154mips_elf_recreate_got (void **entryp, void *data)
4155{
72e7511a 4156 struct mips_got_entry new_entry, *entry;
476366af 4157 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4158 void **slot;
4159
33bb52fb 4160 entry = (struct mips_got_entry *) *entryp;
476366af 4161 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
72e7511a
RS
4169 new_entry = *entry;
4170 entry = &new_entry;
33bb52fb 4171 h = entry->d.h;
72e7511a 4172 do
634835ae
RS
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
72e7511a
RS
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4179 entry->d.h = h;
4180 }
476366af 4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4182 if (slot == NULL)
4183 {
476366af 4184 arg->g = NULL;
33bb52fb
RS
4185 return 0;
4186 }
4187 if (*slot == NULL)
72e7511a
RS
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
476366af 4194 arg->g = NULL;
72e7511a
RS
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
476366af 4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4201 }
33bb52fb
RS
4202 return 1;
4203}
4204
13db6b44
RS
4205/* Return the maximum number of GOT page entries required for RANGE. */
4206
4207static bfd_vma
4208mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209{
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211}
4212
4213/* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215static bfd_boolean
b75d42bc 4216mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4217 asection *sec, bfd_signed_vma addend)
4218{
b75d42bc 4219 struct mips_got_info *g = arg->g;
13db6b44
RS
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
b75d42bc 4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
b75d42bc 4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297}
4298
4299/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304static bfd_boolean
4305mips_elf_resolve_got_page_ref (void **refp, void *data)
4306{
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
b75d42bc 4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382}
4383
33bb52fb 4384/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
33bb52fb
RS
4388
4389static bfd_boolean
476366af
RS
4390mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
33bb52fb 4392{
476366af
RS
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
33bb52fb 4397
476366af
RS
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
33bb52fb 4403 {
476366af
RS
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
33bb52fb
RS
4409 return FALSE;
4410
476366af
RS
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
33bb52fb 4416 }
13db6b44
RS
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
33bb52fb
RS
4427 return TRUE;
4428}
4429
c5d6fa44
RS
4430/* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433static bfd_boolean
4434mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436{
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
0e1862bb 4454 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4455 return TRUE;
4456
4457 return FALSE;
4458}
4459
6c42ddb9
RS
4460/* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4465
4466static int
d4596a51 4467mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4468{
020d7251 4469 struct bfd_link_info *info;
6ccf4795 4470 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4471 struct mips_got_info *g;
4472
020d7251 4473 info = (struct bfd_link_info *) data;
6ccf4795
RS
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
d4596a51 4476 if (h->global_got_area != GGA_NONE)
33bb52fb 4477 {
020d7251 4478 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
6ccf4795
RS
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
1bbce132 4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
6c42ddb9 4492 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4493 {
6c42ddb9 4494 g->reloc_only_gotno++;
23cc69b6 4495 g->global_gotno++;
23cc69b6 4496 }
33bb52fb
RS
4497 }
4498 return 1;
4499}
f4416af6 4500\f
d7206569
RS
4501/* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4503
4504static int
d7206569 4505mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4506{
d7206569
RS
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
f4416af6 4510
d7206569
RS
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
f4416af6 4515 {
d7206569
RS
4516 arg->g = NULL;
4517 return 0;
f4416af6 4518 }
d7206569 4519 if (!*slot)
c224138d 4520 {
d7206569
RS
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4523 }
f4416af6
AO
4524 return 1;
4525}
4526
d7206569
RS
4527/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4529
4530static int
d7206569 4531mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4532{
d7206569
RS
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
c224138d 4536
d7206569
RS
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
c224138d 4541 {
d7206569 4542 arg->g = NULL;
c224138d
RS
4543 return 0;
4544 }
d7206569
RS
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
c224138d
RS
4550 return 1;
4551}
4552
d7206569
RS
4553/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
c224138d
RS
4558
4559static int
d7206569 4560mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563{
d7206569 4564 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
e2ece73c 4572 /* And conservatively estimate how many local and TLS entries
c224138d 4573 would be needed. */
e2ece73c
RS
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
17214937
RS
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
e2ece73c 4579 conservatively as well. */
17214937 4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
c224138d 4589 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
c224138d
RS
4594 return 0;
4595
d7206569
RS
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
c224138d
RS
4598 return 0;
4599
d7206569 4600 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4601 return 1;
4602}
4603
d7206569 4604/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
d7206569
RS
4611static bfd_boolean
4612mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4614{
c224138d
RS
4615 unsigned int estimate;
4616 int result;
4617
476366af 4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4619 return FALSE;
4620
c224138d
RS
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
c224138d 4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4632
c224138d 4633 if (estimate <= arg->max_count)
f4416af6 4634 {
c224138d
RS
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
d7206569
RS
4639 arg->primary = g;
4640 return TRUE;
c224138d 4641 }
f4416af6 4642
c224138d 4643 /* Try merging with the primary GOT. */
d7206569 4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4645 if (result >= 0)
4646 return result;
f4416af6 4647 }
c224138d 4648
f4416af6 4649 /* If we can merge with the last-created got, do it. */
c224138d 4650 if (arg->current)
f4416af6 4651 {
d7206569 4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4653 if (result >= 0)
4654 return result;
f4416af6 4655 }
c224138d 4656
f4416af6
AO
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
c224138d
RS
4660 g->next = arg->current;
4661 arg->current = g;
0f20cc35 4662
d7206569 4663 return TRUE;
0f20cc35
DJ
4664}
4665
72e7511a
RS
4666/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670static bfd_boolean
4671mips_elf_set_gotidx (void **entryp, long gotidx)
4672{
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690}
4691
4692/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4695
4696static int
72e7511a 4697mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4698{
72e7511a
RS
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4701
4702 /* We're only interested in TLS symbols. */
72e7511a 4703 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4704 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4705 return 1;
4706
72e7511a 4707 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4709 {
6c42ddb9
RS
4710 arg->g = NULL;
4711 return 0;
f4416af6
AO
4712 }
4713
ead49a57 4714 /* Account for the entries we've just allocated. */
9ab066b4 4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4716 return 1;
4717}
4718
ab361d49
RS
4719/* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
f4416af6 4722
f4416af6 4723static int
ab361d49 4724mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4725{
ab361d49
RS
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
f4416af6 4728
ab361d49
RS
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736}
4737
4738/* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
72e7511a 4741 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4742
4743static int
4744mips_elf_set_global_gotidx (void **entryp, void *data)
4745{
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4748
ab361d49
RS
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4754 {
cb22ccf4 4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
cb22ccf4 4760 arg->g->assigned_low_gotno += 1;
72e7511a 4761
0e1862bb 4762 if (bfd_link_pic (arg->info)
ab361d49
RS
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
f4416af6
AO
4767 }
4768
4769 return 1;
4770}
4771
33bb52fb
RS
4772/* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
0626d451 4776static int
33bb52fb 4777mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4778{
33bb52fb
RS
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
0626d451 4782
33bb52fb
RS
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4786 BFD_ASSERT (htab != NULL);
4787
0626d451
RS
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
33bb52fb 4790 && entry->d.h->needs_lazy_stub)
f4416af6 4791 {
33bb52fb
RS
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
f4416af6 4794 }
143d77c5 4795
f4416af6
AO
4796 return 1;
4797}
4798
f4416af6
AO
4799/* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801static bfd_vma
9719ad41 4802mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4803{
d7206569 4804 if (!g->next)
f4416af6
AO
4805 return 0;
4806
d7206569 4807 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
143d77c5 4814
0f20cc35
DJ
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4817}
4818
4819/* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822static bfd_boolean
9719ad41 4823mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4824 asection *got, bfd_size_type pages)
f4416af6 4825{
a8028dd0 4826 struct mips_elf_link_hash_table *htab;
f4416af6 4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4828 struct mips_elf_traverse_got_arg tga;
a8028dd0 4829 struct mips_got_info *g, *gg;
33bb52fb 4830 unsigned int assign, needed_relocs;
d7206569 4831 bfd *dynobj, *ibfd;
f4416af6 4832
33bb52fb 4833 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4834 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4835 BFD_ASSERT (htab != NULL);
4836
a8028dd0 4837 g = htab->got_info;
f4416af6 4838
f4416af6
AO
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
f4416af6
AO
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
0a44bf69 4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4844 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4845 - htab->reserved_gotno);
c224138d 4846 got_per_bfd_arg.max_pages = pages;
0f20cc35 4847 /* The number of globals that will be included in the primary GOT.
ab361d49 4848 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
c72f2fb2 4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
f4416af6 4861
0f20cc35 4862 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4863 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4864 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
d7206569 4878 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4879
634835ae
RS
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
23cc69b6 4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4884 g->global_gotno = gg->global_gotno;
f4416af6 4885
ab361d49
RS
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4891
4892 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
0f20cc35 4907 gg->tls_gotno = 0;
f4416af6
AO
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
861fb55a 4915 assign += htab->reserved_gotno;
cb22ccf4 4916 g->assigned_low_gotno = assign;
c224138d
RS
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4919 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
ead49a57
RS
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
0f20cc35
DJ
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
1fd20d70 4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4938
ead49a57 4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4940 g = gn;
0626d451 4941
33bb52fb
RS
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
0626d451 4944 if (g)
33bb52fb 4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4946 }
4947 while (g);
4948
59b08994 4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4950
4951 needed_relocs = 0;
33bb52fb
RS
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
ab361d49
RS
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
cb22ccf4
KCY
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4964 if (!tga.g)
4965 return FALSE;
cb22ccf4
KCY
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
72e7511a 4968
0e1862bb 4969 if (bfd_link_pic (info))
33bb52fb 4970 {
cb22ccf4
KCY
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
861fb55a 4975 + htab->reserved_gotno);
33bb52fb 4976 }
ab361d49 4977 needed_relocs += g->relocs;
33bb52fb 4978 }
ab361d49 4979 needed_relocs += g->relocs;
33bb52fb
RS
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
143d77c5 4984
f4416af6
AO
4985 return TRUE;
4986}
143d77c5 4987
b49e97c9
TS
4988\f
4989/* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992static const Elf_Internal_Rela *
9719ad41
RS
4993mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
b49e97c9 4996{
c000e262
TS
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
b49e97c9
TS
4999 while (relocation < relend)
5000 {
c000e262
TS
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
b49e97c9
TS
5009 return NULL;
5010}
5011
020d7251 5012/* Return whether an input relocation is against a local symbol. */
b49e97c9 5013
b34976b6 5014static bfd_boolean
9719ad41
RS
5015mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
020d7251 5017 asection **local_sections)
b49e97c9
TS
5018{
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
b34976b6 5028 return TRUE;
b49e97c9 5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5030 return TRUE;
b49e97c9 5031
b34976b6 5032 return FALSE;
b49e97c9
TS
5033}
5034\f
5035/* Sign-extend VALUE, which has the indicated number of BITS. */
5036
a7ebbfdf 5037bfd_vma
9719ad41 5038_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5039{
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045}
5046
5047/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5048 range expressible by a signed number with the indicated number of
b49e97c9
TS
5049 BITS. */
5050
b34976b6 5051static bfd_boolean
9719ad41 5052mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5053{
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
b34976b6 5058 return TRUE;
b49e97c9
TS
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
b34976b6 5061 return TRUE;
b49e97c9
TS
5062
5063 /* All is well. */
b34976b6 5064 return FALSE;
b49e97c9
TS
5065}
5066
5067/* Calculate the %high function. */
5068
5069static bfd_vma
9719ad41 5070mips_elf_high (bfd_vma value)
b49e97c9
TS
5071{
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073}
5074
5075/* Calculate the %higher function. */
5076
5077static bfd_vma
9719ad41 5078mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5079{
5080#ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082#else
5083 abort ();
c5ae1840 5084 return MINUS_ONE;
b49e97c9
TS
5085#endif
5086}
5087
5088/* Calculate the %highest function. */
5089
5090static bfd_vma
9719ad41 5091mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5092{
5093#ifdef BFD64
b15e6682 5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5095#else
5096 abort ();
c5ae1840 5097 return MINUS_ONE;
b49e97c9
TS
5098#endif
5099}
5100\f
5101/* Create the .compact_rel section. */
5102
b34976b6 5103static bfd_boolean
9719ad41
RS
5104mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5106{
5107 flagword flags;
5108 register asection *s;
5109
3d4d4302 5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
3d4d4302 5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5116 if (s == NULL
b49e97c9
TS
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5119 return FALSE;
b49e97c9 5120
eea6121a 5121 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5122 }
5123
b34976b6 5124 return TRUE;
b49e97c9
TS
5125}
5126
5127/* Create the .got section to hold the global offset table. */
5128
b34976b6 5129static bfd_boolean
23cc69b6 5130mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5131{
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
14a793b2 5135 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
4dfe6ac6 5139 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5140
5141 /* This function may be called more than once. */
ce558b89 5142 if (htab->root.sgot)
23cc69b6 5143 return TRUE;
b49e97c9
TS
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
72b4917c
TS
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
87e0a731 5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5151 if (s == NULL
72b4917c 5152 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5153 return FALSE;
ce558b89 5154 htab->root.sgot = s;
b49e97c9
TS
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
14a793b2 5159 bh = NULL;
b49e97c9
TS
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5163 return FALSE;
14a793b2
AM
5164
5165 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5166 h->non_elf = 0;
5167 h->def_regular = 1;
b49e97c9 5168 h->type = STT_OBJECT;
2f9efdfc 5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5170 elf_hash_table (info)->hgot = h;
b49e97c9 5171
0e1862bb 5172 if (bfd_link_pic (info)
c152c796 5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5174 return FALSE;
b49e97c9 5175
3dff0dd1 5176 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
861fb55a 5180 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
861fb55a
DJ
5186 if (s == NULL)
5187 return FALSE;
ce558b89 5188 htab->root.sgotplt = s;
0a44bf69 5189
b34976b6 5190 return TRUE;
b49e97c9 5191}
b49e97c9 5192\f
0a44bf69
RS
5193/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197static bfd_boolean
5198is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199{
5200 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5201 && bfd_link_pic (info)
0a44bf69
RS
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204}
861fb55a
DJ
5205
5206/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211static bfd_boolean
8f0c309a
CLT
5212mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5214{
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
7361da2c
AB
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
df58fc94
RS
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5234 return TRUE;
5235
8f0c309a
CLT
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
861fb55a
DJ
5239 default:
5240 return FALSE;
5241 }
5242}
0a44bf69 5243\f
b49e97c9
TS
5244/* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
38a7df63 5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257static bfd_reloc_status_type
9719ad41
RS
5258mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
9719ad41 5267 bfd_boolean save_addend)
b49e97c9
TS
5268{
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
0a61c8c2 5276 bfd_vma gp;
b49e97c9
TS
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
0a61c8c2 5281 bfd_vma gp0;
b49e97c9
TS
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5290 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5291 symbol. */
b34976b6 5292 bfd_boolean local_p, was_local_p;
77434823
MR
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
b34976b6
AM
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
b34976b6 5305 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5306 relocation value. */
b34976b6
AM
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5310 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
ad951203 5313 bfd_boolean resolved_to_zero;
0a44bf69
RS
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
4dfe6ac6 5317 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
b34976b6 5327 overflowed_p = FALSE;
b49e97c9
TS
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5333 local_sections);
bce03d3d 5334 was_local_p = local_p;
b49e97c9
TS
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
9d862524 5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
77434823
MR
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
b49e97c9 5355 symbol = sec->output_section->vma + sec->output_offset;
77434823 5356 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5357 symbol += sym->st_value;
77434823 5358 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
b49e97c9 5364
df58fc94
RS
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
ceab86af 5373 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5374 *namep = bfd_section_name (input_bfd, sec);
5375
9d862524 5376 /* For relocations against a section symbol and ones against no
07d6d2b8 5377 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5384 from the value of the symbol plus addend. */
9d862524
MR
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
b49e97c9
TS
5396 }
5397 else
5398 {
560e09e9
NC
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
b49e97c9
TS
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
560e09e9 5414 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5420 return bfd_reloc_notsupported;
5421
b34976b6 5422 gp_disp_p = TRUE;
b49e97c9 5423 }
bbe506e8
TS
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
b49e97c9
TS
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
59c2e50f 5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
a4d0f181
TS
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5460 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
0e1862bb 5464 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5e2b0d47
NC
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
b49e97c9
TS
5479 else
5480 {
1a72702b
AM
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
b49e97c9
TS
5487 }
5488
30c09090 5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5491 }
5492
738e5348
RS
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
0e1862bb 5503 && !bfd_link_relocatable (info)
738e5348
RS
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5507 || (local_p
698600e4
AM
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5510 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
8f0c309a 5516 {
698600e4 5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5518 value = 0;
5519 }
b49e97c9
TS
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
b49e97c9
TS
5535 }
5536
8f0c309a 5537 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
b49e97c9 5540 }
1bbce132
MR
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
0e1862bb 5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5547 || (local_p
698600e4
AM
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5551 {
b9d58d71 5552 if (local_p)
698600e4 5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5554 else
b49e97c9 5555 {
b9d58d71
TS
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5560 {
b9d58d71 5561 asection *o;
68ffbac6 5562
b9d58d71
TS
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5565 {
b9d58d71
TS
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
b49e97c9 5571 }
b9d58d71
TS
5572 if (sec == NULL)
5573 sec = h->call_stub;
b49e97c9 5574 }
b9d58d71 5575 else if (h->call_stub != NULL)
b49e97c9 5576 sec = h->call_stub;
b9d58d71
TS
5577 else
5578 sec = h->call_fp_stub;
07d6d2b8 5579 }
b49e97c9 5580
eea6121a 5581 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
861fb55a
DJ
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
c7318def
MR
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
1bbce132
MR
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
54806ffa
MR
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
0e1862bb 5603 && !bfd_link_relocatable (info)
1bbce132
MR
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
ce558b89 5611 sec = htab->root.splt;
1bbce132
MR
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
b49e97c9 5622
df58fc94 5623 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
4eca0228 5627 _bfd_error_handler
df58fc94
RS
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
b49e97c9 5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
0e1862bb 5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
df58fc94 5643 && !target_is_micromips_code_p)
9d862524
MR
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
df58fc94
RS
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
b49e97c9 5648
c5d6fa44 5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5650
0a61c8c2
RS
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
23cc69b6 5653 if (htab->got_info)
a8028dd0 5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
df58fc94
RS
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5663 {
df58fc94
RS
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5666 addend = 0;
5667 }
5668
ad951203
L
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
e77760d2 5673 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5674 to need it, get it now. */
b49e97c9
TS
5675 switch (r_type)
5676 {
738e5348
RS
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
b49e97c9
TS
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
df58fc94
RS
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
d0f13682
CLT
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
df58fc94
RS
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
b49e97c9 5702 /* Find the index into the GOT where this value is located. */
df58fc94 5703 if (tls_ldm_reloc_p (r_type))
0f20cc35 5704 {
0a44bf69 5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5706 0, 0, NULL, r_type);
0f20cc35
DJ
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
b49e97c9 5711 {
0a44bf69
RS
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
df58fc94
RS
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
738e5348 5717 || call16_reloc_p (r_type)))
0a44bf69
RS
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
b49e97c9 5724 {
020d7251 5725 BFD_ASSERT (addend == 0);
13fbec83
RS
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
e641e783 5728 if (!TLS_RELOC_P (r_type)
020d7251
RS
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5732 }
5733 }
0a44bf69 5734 else if (!htab->is_vxworks
738e5348 5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5736 /* The calculation below does not involve "g". */
b49e97c9
TS
5737 break;
5738 else
5739 {
5c18022e 5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5741 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
a8028dd0 5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5748 break;
b49e97c9
TS
5749 }
5750
0a44bf69
RS
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
0a44bf69
RS
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
b49e97c9
TS
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
c3eb94b4
MF
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
b49e97c9
TS
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
0e1862bb 5795 if ((bfd_link_pic (info)
861fb55a 5796 || (htab->root.dynamic_sections_created
b49e97c9 5797 && h != NULL
f5385ebf 5798 && h->root.def_dynamic
861fb55a
DJ
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
cf35638d 5801 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
b49e97c9
TS
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
861fb55a 5808 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
b49e97c9
TS
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
092dcd75
CD
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
b49e97c9
TS
5838 break;
5839
b49e97c9
TS
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
df58fc94
RS
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
df58fc94
RS
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
77434823 5854 if (howto->partial_inplace && !section_p)
df58fc94 5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5856 else
5857 value = addend;
bc27bb05
MR
5858 value += symbol;
5859
9d862524
MR
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
77434823 5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
b49e97c9
TS
5874 break;
5875
0f20cc35 5876 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5877 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5878 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
d0f13682 5886 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5887 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5892 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5893 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5902 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
b49e97c9 5906 case R_MIPS_HI16:
d6f16593 5907 case R_MIPS16_HI16:
df58fc94 5908 case R_MICROMIPS_HI16:
b49e97c9
TS
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
d6f16593 5916 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
d6f16593
MR
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
d6f16593 5926 if (r_type == R_MIPS16_HI16)
888b9c01 5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5933 else
5934 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
d6f16593 5939 case R_MIPS16_LO16:
df58fc94
RS
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
d6f16593
MR
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
888b9c01 5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
d6f16593
MR
5953 else
5954 value = addend + gp - p + 4;
b49e97c9 5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5956 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
df58fc94 5975 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
df58fc94
RS
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
a7ebbfdf 5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
538baf8b
AB
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6006 break;
6007
738e5348
RS
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
b49e97c9
TS
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
df58fc94
RS
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
0a44bf69 6014 /* VxWorks does not have separate local and global semantics for
738e5348 6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6016 if (!htab->is_vxworks && local_p)
b49e97c9 6017 {
5c18022e 6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6019 symbol + addend, !was_local_p);
b49e97c9
TS
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
a8028dd0 6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
0f20cc35
DJ
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
b49e97c9 6033 case R_MIPS_GOT_DISP:
d0f13682
CLT
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
df58fc94
RS
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
bce03d3d
AO
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
b49e97c9
TS
6049 break;
6050
6051 case R_MIPS_PC16:
bad36eac 6052 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
9d862524 6056 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
9d862524
MR
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
538baf8b
AB
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
b49e97c9
TS
6069 break;
6070
c9775dde
MR
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
7361da2c
AB
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
538baf8b
AB
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
538baf8b
AB
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
538baf8b
AB
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
df58fc94 6158 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
c3eb94b4 6168 value = symbol + addend - p;
538baf8b
AB
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
c3eb94b4 6185 value = symbol + addend - p;
538baf8b
AB
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
c3eb94b4 6202 value = symbol + addend - p;
538baf8b
AB
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
b49e97c9
TS
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
df58fc94
RS
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
df58fc94
RS
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
df58fc94 6239 case R_MICROMIPS_GOT_PAGE:
5c18022e 6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
a8028dd0 6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
df58fc94 6248 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6249 if (local_p)
5c18022e 6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6251 else
6252 value = addend;
b49e97c9
TS
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
df58fc94 6257 case R_MICROMIPS_SUB:
b49e97c9
TS
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
df58fc94 6263 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
df58fc94 6269 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
df58fc94 6275 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
b49e97c9 6280 case R_MIPS_JALR:
df58fc94 6281 case R_MICROMIPS_JALR:
1367d393
ILT
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6286 return bfd_reloc_continue;
c1556ecd
MR
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
1367d393 6290 value = symbol + addend;
c1556ecd
MR
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
1367d393 6294 break;
b49e97c9 6295
1367d393 6296 case R_MIPS_PJUMP:
b49e97c9
TS
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310}
6311
6312/* Obtain the field relocated by RELOCATION. */
6313
6314static bfd_vma
9719ad41
RS
6315mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6318{
6346d5ca 6319 bfd_vma x = 0;
b49e97c9 6320 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6321 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6322
6323 /* Obtain the bytes. */
6346d5ca
AM
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6326
b49e97c9
TS
6327 return x;
6328}
6329
6330/* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
68ffbac6 6333 relocation applies.
38a7df63 6334 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6336
b34976b6 6337 Returns FALSE if anything goes wrong. */
b49e97c9 6338
b34976b6 6339static bfd_boolean
9719ad41
RS
6340mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
38a7df63 6345 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6346{
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6350 unsigned int size;
b49e97c9
TS
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
df58fc94 6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6356
b49e97c9
TS
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
b49e97c9
TS
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
a6ebf616 6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
38a7df63 6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6382 {
b34976b6 6383 bfd_boolean ok;
b49e97c9
TS
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
df58fc94
RS
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
b49e97c9
TS
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
3bdf9505 6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6405 convert J or JALS to JALX. */
b49e97c9
TS
6406 if (!ok)
6407 {
5f68df25
MR
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
b49e97c9
TS
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
9d862524
MR
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
a6ebf616
MR
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
70e65ca8 6423 bfd_vma sign_bit = 0;
a6ebf616
MR
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
70e65ca8 6431 sign_bit = 0x10000;
a6ebf616
MR
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
70e65ca8 6438 sign_bit = 0x20000;
a6ebf616
MR
6439 value <<= 2;
6440 }
6441
8b10b0b3 6442 if (ok && !bfd_link_pic (info))
a6ebf616 6443 {
8b10b0b3
MR
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
70e65ca8
MR
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6450
8b10b0b3
MR
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
a6ebf616 6459
8b10b0b3
MR
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6464 {
6465 info->callbacks->einfo
8b10b0b3 6466 (_("%X%H: Unsupported branch between ISA modes\n"),
a6ebf616
MR
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
9d862524 6470 }
b49e97c9 6471
38a7df63
CF
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
0e1862bb 6474 if (!bfd_link_relocatable (info)
38a7df63 6475 && !cross_mode_jump_p
cd8d5a82
CF
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
0e392101 6478 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
0e392101 6481 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
0e392101 6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6500 {
0e392101 6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
1367d393
ILT
6506 }
6507
b49e97c9 6508 /* Put the value into the output. */
6346d5ca
AM
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6512
0e1862bb 6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6514 location);
d6f16593 6515
b34976b6 6516 return TRUE;
b49e97c9 6517}
b49e97c9 6518\f
b49e97c9
TS
6519/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
b34976b6 6524static bfd_boolean
9719ad41
RS
6525mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
b49e97c9 6531{
947216bf 6532 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
5d41f0b6
RS
6536 long indx;
6537 bfd_boolean defined_p;
0a44bf69 6538 struct mips_elf_link_hash_table *htab;
b49e97c9 6539
0a44bf69 6540 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6541 BFD_ASSERT (htab != NULL);
6542
b49e97c9
TS
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6549 < sreloc->size);
b49e97c9 6550
b49e97c9
TS
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
b49e97c9 6560
c5ae1840 6561 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6562 /* The relocation field has been deleted. */
5d41f0b6
RS
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6570 *addendp += symbol;
5d41f0b6 6571 return TRUE;
0d591ff7 6572 }
b49e97c9 6573
5d41f0b6
RS
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
d4a77f3f 6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6577 {
020d7251 6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
b49e97c9
TS
6589 else
6590 {
5d41f0b6
RS
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
fdd07405 6594 {
5d41f0b6
RS
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
b49e97c9
TS
6597 }
6598 else
6599 {
5d41f0b6 6600 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
5d41f0b6
RS
6606 if (indx == 0)
6607 abort ();
b49e97c9
TS
6608 }
6609
5d41f0b6
RS
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
b49e97c9
TS
6628 }
6629
5d41f0b6
RS
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
0a44bf69
RS
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
5d41f0b6
RS
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
b49e97c9
TS
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
0a44bf69
RS
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
b49e97c9 6692 else
947216bf
AM
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6696
b49e97c9
TS
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6707 {
3d4d4302 6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6728 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
943284cc
DJ
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
b34976b6 6742 return TRUE;
b49e97c9
TS
6743}
6744\f
b49e97c9
TS
6745/* Return the MACH for a MIPS e_flags value. */
6746
6747unsigned long
9719ad41 6748_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6749{
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
00707a0e
RS
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
b49e97c9
TS
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
00707a0e
RS
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
e407c74b
NC
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
0d2e43ed
ILT
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
b49e97c9
TS
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
350cc38d
MS
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
fd503541
NC
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
2c629856
N
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
432233b3
AP
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6f179bd0
AN
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
52b6b6b9
JM
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
38bf472a
MR
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
b49e97c9
TS
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
b49e97c9
TS
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
b49e97c9
TS
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
b49e97c9
TS
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
b49e97c9
TS
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
b49e97c9
TS
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
b49e97c9
TS
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
af7ee8bf
CD
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
7361da2c
AB
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6845 }
6846 }
6847
6848 return 0;
6849}
6850
6851/* Return printable name for ABI. */
6852
6853static INLINE char *
9719ad41 6854elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6855{
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879}
6880\f
6881/* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886static asection mips_elf_scom_section;
6887static asymbol mips_elf_scom_symbol;
6888static asymbol *mips_elf_scom_symbol_ptr;
6889
6890/* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893static asection mips_elf_acom_section;
6894static asymbol mips_elf_acom_symbol;
6895static asymbol *mips_elf_acom_symbol_ptr;
6896
738e5348 6897/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6898
6899void
9719ad41 6900_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6901{
6902 elf_symbol_type *elfsym;
6903
738e5348 6904 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
b59eed79 6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
b49e97c9 6960 case SHN_MIPS_TEXT:
00b4930b
TS
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
00b4930b
TS
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6968 to the base of the .text section. So subtract the section
00b4930b
TS
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
b49e97c9
TS
6973 break;
6974
6975 case SHN_MIPS_DATA:
00b4930b
TS
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
00b4930b
TS
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6983 to the base of the .data section. So subtract the section
00b4930b
TS
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
b49e97c9 6988 break;
b49e97c9 6989 }
738e5348 6990
df58fc94
RS
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
738e5348
RS
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
e8faf7d1 6997 if (MICROMIPS_P (abfd))
df58fc94
RS
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7003 }
b49e97c9
TS
7004}
7005\f
8c946ed5
RS
7006/* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7026 determine the pointer size.
8c946ed5
RS
7027
7028 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043unsigned int
76c20d54 7044_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7045{
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070}
7071\f
174fd7f9
RS
7072/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086bfd_boolean
7087_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088{
7089 return SGI_COMPAT (abfd);
7090}
7091\f
b49e97c9
TS
7092/* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
b34976b6 7097bfd_boolean
9719ad41 7098_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7099{
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
b49e97c9
TS
7105 BFD_ASSERT (hdr->contents == NULL);
7106
2d6dda71
MR
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
7110 (_("%B: Incorrect `.reginfo' section size; expected %Lu, got %Lu"),
7111 abfd, (bfd_size_type) sizeof (Elf32_External_RegInfo),
7112 hdr->sh_size);
7113 bfd_set_error (bfd_error_bad_value);
7114 return FALSE;
7115 }
7116
b49e97c9
TS
7117 if (bfd_seek (abfd,
7118 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7119 SEEK_SET) != 0)
b34976b6 7120 return FALSE;
b49e97c9 7121 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7122 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7123 return FALSE;
b49e97c9
TS
7124 }
7125
7126 if (hdr->sh_type == SHT_MIPS_OPTIONS
7127 && hdr->bfd_section != NULL
f0abc2a1
AM
7128 && mips_elf_section_data (hdr->bfd_section) != NULL
7129 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7130 {
7131 bfd_byte *contents, *l, *lend;
7132
f0abc2a1
AM
7133 /* We stored the section contents in the tdata field in the
7134 set_section_contents routine. We save the section contents
7135 so that we don't have to read them again.
b49e97c9
TS
7136 At this point we know that elf_gp is set, so we can look
7137 through the section contents to see if there is an
7138 ODK_REGINFO structure. */
7139
f0abc2a1 7140 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7141 l = contents;
7142 lend = contents + hdr->sh_size;
7143 while (l + sizeof (Elf_External_Options) <= lend)
7144 {
7145 Elf_Internal_Options intopt;
7146
7147 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7148 &intopt);
1bc8074d
MR
7149 if (intopt.size < sizeof (Elf_External_Options))
7150 {
4eca0228 7151 _bfd_error_handler
695344c0 7152 /* xgettext:c-format */
63a5468a
AM
7153 (_("%B: Warning: bad `%s' option size %u smaller than"
7154 " its header"),
1bc8074d
MR
7155 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7156 break;
7157 }
b49e97c9
TS
7158 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7159 {
7160 bfd_byte buf[8];
7161
7162 if (bfd_seek (abfd,
7163 (hdr->sh_offset
7164 + (l - contents)
7165 + sizeof (Elf_External_Options)
7166 + (sizeof (Elf64_External_RegInfo) - 8)),
7167 SEEK_SET) != 0)
b34976b6 7168 return FALSE;
b49e97c9 7169 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7170 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7171 return FALSE;
b49e97c9
TS
7172 }
7173 else if (intopt.kind == ODK_REGINFO)
7174 {
7175 bfd_byte buf[4];
7176
7177 if (bfd_seek (abfd,
7178 (hdr->sh_offset
7179 + (l - contents)
7180 + sizeof (Elf_External_Options)
7181 + (sizeof (Elf32_External_RegInfo) - 4)),
7182 SEEK_SET) != 0)
b34976b6 7183 return FALSE;
b49e97c9 7184 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7185 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7186 return FALSE;
b49e97c9
TS
7187 }
7188 l += intopt.size;
7189 }
7190 }
7191
7192 if (hdr->bfd_section != NULL)
7193 {
7194 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7195
2d0f9ad9
JM
7196 /* .sbss is not handled specially here because the GNU/Linux
7197 prelinker can convert .sbss from NOBITS to PROGBITS and
7198 changing it back to NOBITS breaks the binary. The entry in
7199 _bfd_mips_elf_special_sections will ensure the correct flags
7200 are set on .sbss if BFD creates it without reading it from an
7201 input file, and without special handling here the flags set
7202 on it in an input file will be followed. */
b49e97c9
TS
7203 if (strcmp (name, ".sdata") == 0
7204 || strcmp (name, ".lit8") == 0
7205 || strcmp (name, ".lit4") == 0)
fd6f9d17 7206 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7207 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7208 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7209 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7210 hdr->sh_flags = 0;
b49e97c9
TS
7211 else if (strcmp (name, ".rtproc") == 0)
7212 {
7213 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7214 {
7215 unsigned int adjust;
7216
7217 adjust = hdr->sh_size % hdr->sh_addralign;
7218 if (adjust != 0)
7219 hdr->sh_size += hdr->sh_addralign - adjust;
7220 }
7221 }
7222 }
7223
b34976b6 7224 return TRUE;
b49e97c9
TS
7225}
7226
7227/* Handle a MIPS specific section when reading an object file. This
7228 is called when elfcode.h finds a section with an unknown type.
7229 This routine supports both the 32-bit and 64-bit ELF ABI.
7230
7231 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7232 how to. */
7233
b34976b6 7234bfd_boolean
6dc132d9
L
7235_bfd_mips_elf_section_from_shdr (bfd *abfd,
7236 Elf_Internal_Shdr *hdr,
7237 const char *name,
7238 int shindex)
b49e97c9
TS
7239{
7240 flagword flags = 0;
7241
7242 /* There ought to be a place to keep ELF backend specific flags, but
7243 at the moment there isn't one. We just keep track of the
7244 sections by their name, instead. Fortunately, the ABI gives
7245 suggested names for all the MIPS specific sections, so we will
7246 probably get away with this. */
7247 switch (hdr->sh_type)
7248 {
7249 case SHT_MIPS_LIBLIST:
7250 if (strcmp (name, ".liblist") != 0)
b34976b6 7251 return FALSE;
b49e97c9
TS
7252 break;
7253 case SHT_MIPS_MSYM:
7254 if (strcmp (name, ".msym") != 0)
b34976b6 7255 return FALSE;
b49e97c9
TS
7256 break;
7257 case SHT_MIPS_CONFLICT:
7258 if (strcmp (name, ".conflict") != 0)
b34976b6 7259 return FALSE;
b49e97c9
TS
7260 break;
7261 case SHT_MIPS_GPTAB:
0112cd26 7262 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7263 return FALSE;
b49e97c9
TS
7264 break;
7265 case SHT_MIPS_UCODE:
7266 if (strcmp (name, ".ucode") != 0)
b34976b6 7267 return FALSE;
b49e97c9
TS
7268 break;
7269 case SHT_MIPS_DEBUG:
7270 if (strcmp (name, ".mdebug") != 0)
b34976b6 7271 return FALSE;
b49e97c9
TS
7272 flags = SEC_DEBUGGING;
7273 break;
7274 case SHT_MIPS_REGINFO:
7275 if (strcmp (name, ".reginfo") != 0
7276 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7277 return FALSE;
b49e97c9
TS
7278 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7279 break;
7280 case SHT_MIPS_IFACE:
7281 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7282 return FALSE;
b49e97c9
TS
7283 break;
7284 case SHT_MIPS_CONTENT:
0112cd26 7285 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7286 return FALSE;
b49e97c9
TS
7287 break;
7288 case SHT_MIPS_OPTIONS:
cc2e31b9 7289 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7290 return FALSE;
b49e97c9 7291 break;
351cdf24
MF
7292 case SHT_MIPS_ABIFLAGS:
7293 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7294 return FALSE;
7295 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7296 break;
b49e97c9 7297 case SHT_MIPS_DWARF:
1b315056 7298 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7299 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7300 return FALSE;
b49e97c9
TS
7301 break;
7302 case SHT_MIPS_SYMBOL_LIB:
7303 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7304 return FALSE;
b49e97c9
TS
7305 break;
7306 case SHT_MIPS_EVENTS:
0112cd26
NC
7307 if (! CONST_STRNEQ (name, ".MIPS.events")
7308 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7309 return FALSE;
b49e97c9
TS
7310 break;
7311 default:
cc2e31b9 7312 break;
b49e97c9
TS
7313 }
7314
6dc132d9 7315 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7316 return FALSE;
b49e97c9
TS
7317
7318 if (flags)
7319 {
7320 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7321 (bfd_get_section_flags (abfd,
7322 hdr->bfd_section)
7323 | flags)))
b34976b6 7324 return FALSE;
b49e97c9
TS
7325 }
7326
351cdf24
MF
7327 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7328 {
7329 Elf_External_ABIFlags_v0 ext;
7330
7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7332 &ext, 0, sizeof ext))
7333 return FALSE;
7334 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7335 &mips_elf_tdata (abfd)->abiflags);
7336 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7337 return FALSE;
7338 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7339 }
7340
b49e97c9
TS
7341 /* FIXME: We should record sh_info for a .gptab section. */
7342
7343 /* For a .reginfo section, set the gp value in the tdata information
7344 from the contents of this section. We need the gp value while
7345 processing relocs, so we just get it now. The .reginfo section
7346 is not used in the 64-bit MIPS ELF ABI. */
7347 if (hdr->sh_type == SHT_MIPS_REGINFO)
7348 {
7349 Elf32_External_RegInfo ext;
7350 Elf32_RegInfo s;
7351
9719ad41
RS
7352 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7353 &ext, 0, sizeof ext))
b34976b6 7354 return FALSE;
b49e97c9
TS
7355 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7356 elf_gp (abfd) = s.ri_gp_value;
7357 }
7358
7359 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7360 set the gp value based on what we find. We may see both
7361 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7362 they should agree. */
7363 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7364 {
7365 bfd_byte *contents, *l, *lend;
7366
9719ad41 7367 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7368 if (contents == NULL)
b34976b6 7369 return FALSE;
b49e97c9 7370 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7371 0, hdr->sh_size))
b49e97c9
TS
7372 {
7373 free (contents);
b34976b6 7374 return FALSE;
b49e97c9
TS
7375 }
7376 l = contents;
7377 lend = contents + hdr->sh_size;
7378 while (l + sizeof (Elf_External_Options) <= lend)
7379 {
7380 Elf_Internal_Options intopt;
7381
7382 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7383 &intopt);
1bc8074d
MR
7384 if (intopt.size < sizeof (Elf_External_Options))
7385 {
4eca0228 7386 _bfd_error_handler
695344c0 7387 /* xgettext:c-format */
63a5468a
AM
7388 (_("%B: Warning: bad `%s' option size %u smaller than"
7389 " its header"),
1bc8074d
MR
7390 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7391 break;
7392 }
b49e97c9
TS
7393 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7394 {
7395 Elf64_Internal_RegInfo intreg;
7396
7397 bfd_mips_elf64_swap_reginfo_in
7398 (abfd,
7399 ((Elf64_External_RegInfo *)
7400 (l + sizeof (Elf_External_Options))),
7401 &intreg);
7402 elf_gp (abfd) = intreg.ri_gp_value;
7403 }
7404 else if (intopt.kind == ODK_REGINFO)
7405 {
7406 Elf32_RegInfo intreg;
7407
7408 bfd_mips_elf32_swap_reginfo_in
7409 (abfd,
7410 ((Elf32_External_RegInfo *)
7411 (l + sizeof (Elf_External_Options))),
7412 &intreg);
7413 elf_gp (abfd) = intreg.ri_gp_value;
7414 }
7415 l += intopt.size;
7416 }
7417 free (contents);
7418 }
7419
b34976b6 7420 return TRUE;
b49e97c9
TS
7421}
7422
7423/* Set the correct type for a MIPS ELF section. We do this by the
7424 section name, which is a hack, but ought to work. This routine is
7425 used by both the 32-bit and the 64-bit ABI. */
7426
b34976b6 7427bfd_boolean
9719ad41 7428_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7429{
0414f35b 7430 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7431
7432 if (strcmp (name, ".liblist") == 0)
7433 {
7434 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7435 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7436 /* The sh_link field is set in final_write_processing. */
7437 }
7438 else if (strcmp (name, ".conflict") == 0)
7439 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7440 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7441 {
7442 hdr->sh_type = SHT_MIPS_GPTAB;
7443 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7444 /* The sh_info field is set in final_write_processing. */
7445 }
7446 else if (strcmp (name, ".ucode") == 0)
7447 hdr->sh_type = SHT_MIPS_UCODE;
7448 else if (strcmp (name, ".mdebug") == 0)
7449 {
7450 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7451 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7452 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7453 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7454 hdr->sh_entsize = 0;
7455 else
7456 hdr->sh_entsize = 1;
7457 }
7458 else if (strcmp (name, ".reginfo") == 0)
7459 {
7460 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7461 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7462 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7463 if (SGI_COMPAT (abfd))
7464 {
7465 if ((abfd->flags & DYNAMIC) != 0)
7466 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7467 else
7468 hdr->sh_entsize = 1;
7469 }
7470 else
7471 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7472 }
7473 else if (SGI_COMPAT (abfd)
7474 && (strcmp (name, ".hash") == 0
7475 || strcmp (name, ".dynamic") == 0
7476 || strcmp (name, ".dynstr") == 0))
7477 {
7478 if (SGI_COMPAT (abfd))
7479 hdr->sh_entsize = 0;
7480#if 0
8dc1a139 7481 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7482 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7483#endif
7484 }
7485 else if (strcmp (name, ".got") == 0
7486 || strcmp (name, ".srdata") == 0
7487 || strcmp (name, ".sdata") == 0
7488 || strcmp (name, ".sbss") == 0
7489 || strcmp (name, ".lit4") == 0
7490 || strcmp (name, ".lit8") == 0)
7491 hdr->sh_flags |= SHF_MIPS_GPREL;
7492 else if (strcmp (name, ".MIPS.interfaces") == 0)
7493 {
7494 hdr->sh_type = SHT_MIPS_IFACE;
7495 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7496 }
0112cd26 7497 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7498 {
7499 hdr->sh_type = SHT_MIPS_CONTENT;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_info field is set in final_write_processing. */
7502 }
cc2e31b9 7503 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7504 {
7505 hdr->sh_type = SHT_MIPS_OPTIONS;
7506 hdr->sh_entsize = 1;
7507 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7508 }
351cdf24
MF
7509 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7510 {
7511 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7512 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7513 }
1b315056 7514 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7515 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7516 {
7517 hdr->sh_type = SHT_MIPS_DWARF;
7518
7519 /* Irix facilities such as libexc expect a single .debug_frame
7520 per executable, the system ones have NOSTRIP set and the linker
7521 doesn't merge sections with different flags so ... */
7522 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7523 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7524 }
b49e97c9
TS
7525 else if (strcmp (name, ".MIPS.symlib") == 0)
7526 {
7527 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7528 /* The sh_link and sh_info fields are set in
07d6d2b8 7529 final_write_processing. */
b49e97c9 7530 }
0112cd26
NC
7531 else if (CONST_STRNEQ (name, ".MIPS.events")
7532 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7533 {
7534 hdr->sh_type = SHT_MIPS_EVENTS;
7535 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7536 /* The sh_link field is set in final_write_processing. */
7537 }
7538 else if (strcmp (name, ".msym") == 0)
7539 {
7540 hdr->sh_type = SHT_MIPS_MSYM;
7541 hdr->sh_flags |= SHF_ALLOC;
7542 hdr->sh_entsize = 8;
7543 }
7544
7a79a000
TS
7545 /* The generic elf_fake_sections will set up REL_HDR using the default
7546 kind of relocations. We used to set up a second header for the
7547 non-default kind of relocations here, but only NewABI would use
7548 these, and the IRIX ld doesn't like resulting empty RELA sections.
7549 Thus we create those header only on demand now. */
b49e97c9 7550
b34976b6 7551 return TRUE;
b49e97c9
TS
7552}
7553
7554/* Given a BFD section, try to locate the corresponding ELF section
7555 index. This is used by both the 32-bit and the 64-bit ABI.
7556 Actually, it's not clear to me that the 64-bit ABI supports these,
7557 but for non-PIC objects we will certainly want support for at least
7558 the .scommon section. */
7559
b34976b6 7560bfd_boolean
9719ad41
RS
7561_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7562 asection *sec, int *retval)
b49e97c9
TS
7563{
7564 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7565 {
7566 *retval = SHN_MIPS_SCOMMON;
b34976b6 7567 return TRUE;
b49e97c9
TS
7568 }
7569 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7570 {
7571 *retval = SHN_MIPS_ACOMMON;
b34976b6 7572 return TRUE;
b49e97c9 7573 }
b34976b6 7574 return FALSE;
b49e97c9
TS
7575}
7576\f
7577/* Hook called by the linker routine which adds symbols from an object
7578 file. We must handle the special MIPS section numbers here. */
7579
b34976b6 7580bfd_boolean
9719ad41 7581_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7582 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7583 flagword *flagsp ATTRIBUTE_UNUSED,
7584 asection **secp, bfd_vma *valp)
b49e97c9
TS
7585{
7586 if (SGI_COMPAT (abfd)
7587 && (abfd->flags & DYNAMIC) != 0
7588 && strcmp (*namep, "_rld_new_interface") == 0)
7589 {
8dc1a139 7590 /* Skip IRIX5 rld entry name. */
b49e97c9 7591 *namep = NULL;
b34976b6 7592 return TRUE;
b49e97c9
TS
7593 }
7594
eedecc07
DD
7595 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7596 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7597 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7598 a magic symbol resolved by the linker, we ignore this bogus definition
7599 of _gp_disp. New ABI objects do not suffer from this problem so this
7600 is not done for them. */
7601 if (!NEWABI_P(abfd)
7602 && (sym->st_shndx == SHN_ABS)
7603 && (strcmp (*namep, "_gp_disp") == 0))
7604 {
7605 *namep = NULL;
7606 return TRUE;
7607 }
7608
b49e97c9
TS
7609 switch (sym->st_shndx)
7610 {
7611 case SHN_COMMON:
7612 /* Common symbols less than the GP size are automatically
7613 treated as SHN_MIPS_SCOMMON symbols. */
7614 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7615 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7616 || IRIX_COMPAT (abfd) == ict_irix6)
7617 break;
7618 /* Fall through. */
7619 case SHN_MIPS_SCOMMON:
7620 *secp = bfd_make_section_old_way (abfd, ".scommon");
7621 (*secp)->flags |= SEC_IS_COMMON;
7622 *valp = sym->st_size;
7623 break;
7624
7625 case SHN_MIPS_TEXT:
7626 /* This section is used in a shared object. */
698600e4 7627 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7628 {
7629 asymbol *elf_text_symbol;
7630 asection *elf_text_section;
7631 bfd_size_type amt = sizeof (asection);
7632
7633 elf_text_section = bfd_zalloc (abfd, amt);
7634 if (elf_text_section == NULL)
b34976b6 7635 return FALSE;
b49e97c9
TS
7636
7637 amt = sizeof (asymbol);
7638 elf_text_symbol = bfd_zalloc (abfd, amt);
7639 if (elf_text_symbol == NULL)
b34976b6 7640 return FALSE;
b49e97c9
TS
7641
7642 /* Initialize the section. */
7643
698600e4
AM
7644 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7645 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7646
7647 elf_text_section->symbol = elf_text_symbol;
698600e4 7648 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7649
7650 elf_text_section->name = ".text";
7651 elf_text_section->flags = SEC_NO_FLAGS;
7652 elf_text_section->output_section = NULL;
7653 elf_text_section->owner = abfd;
7654 elf_text_symbol->name = ".text";
7655 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7656 elf_text_symbol->section = elf_text_section;
7657 }
7658 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7659 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7660 so I took it out. */
698600e4 7661 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7662 break;
7663
7664 case SHN_MIPS_ACOMMON:
7665 /* Fall through. XXX Can we treat this as allocated data? */
7666 case SHN_MIPS_DATA:
7667 /* This section is used in a shared object. */
698600e4 7668 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7669 {
7670 asymbol *elf_data_symbol;
7671 asection *elf_data_section;
7672 bfd_size_type amt = sizeof (asection);
7673
7674 elf_data_section = bfd_zalloc (abfd, amt);
7675 if (elf_data_section == NULL)
b34976b6 7676 return FALSE;
b49e97c9
TS
7677
7678 amt = sizeof (asymbol);
7679 elf_data_symbol = bfd_zalloc (abfd, amt);
7680 if (elf_data_symbol == NULL)
b34976b6 7681 return FALSE;
b49e97c9
TS
7682
7683 /* Initialize the section. */
7684
698600e4
AM
7685 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7686 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7687
7688 elf_data_section->symbol = elf_data_symbol;
698600e4 7689 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7690
7691 elf_data_section->name = ".data";
7692 elf_data_section->flags = SEC_NO_FLAGS;
7693 elf_data_section->output_section = NULL;
7694 elf_data_section->owner = abfd;
7695 elf_data_symbol->name = ".data";
7696 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7697 elf_data_symbol->section = elf_data_section;
7698 }
7699 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7700 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7701 so I took it out. */
698600e4 7702 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7703 break;
7704
7705 case SHN_MIPS_SUNDEFINED:
7706 *secp = bfd_und_section_ptr;
7707 break;
7708 }
7709
7710 if (SGI_COMPAT (abfd)
0e1862bb 7711 && ! bfd_link_pic (info)
f13a99db 7712 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7713 && strcmp (*namep, "__rld_obj_head") == 0)
7714 {
7715 struct elf_link_hash_entry *h;
14a793b2 7716 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7717
7718 /* Mark __rld_obj_head as dynamic. */
14a793b2 7719 bh = NULL;
b49e97c9 7720 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7721 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7722 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7723 return FALSE;
14a793b2
AM
7724
7725 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7726 h->non_elf = 0;
7727 h->def_regular = 1;
b49e97c9
TS
7728 h->type = STT_OBJECT;
7729
c152c796 7730 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7731 return FALSE;
b49e97c9 7732
b34976b6 7733 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7734 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7735 }
7736
7737 /* If this is a mips16 text symbol, add 1 to the value to make it
7738 odd. This will cause something like .word SYM to come up with
7739 the right value when it is loaded into the PC. */
df58fc94 7740 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7741 ++*valp;
7742
b34976b6 7743 return TRUE;
b49e97c9
TS
7744}
7745
7746/* This hook function is called before the linker writes out a global
7747 symbol. We mark symbols as small common if appropriate. This is
7748 also where we undo the increment of the value for a mips16 symbol. */
7749
6e0b88f1 7750int
9719ad41
RS
7751_bfd_mips_elf_link_output_symbol_hook
7752 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7753 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7754 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7755{
7756 /* If we see a common symbol, which implies a relocatable link, then
7757 if a symbol was small common in an input file, mark it as small
7758 common in the output file. */
7759 if (sym->st_shndx == SHN_COMMON
7760 && strcmp (input_sec->name, ".scommon") == 0)
7761 sym->st_shndx = SHN_MIPS_SCOMMON;
7762
df58fc94 7763 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7764 sym->st_value &= ~1;
b49e97c9 7765
6e0b88f1 7766 return 1;
b49e97c9
TS
7767}
7768\f
7769/* Functions for the dynamic linker. */
7770
7771/* Create dynamic sections when linking against a dynamic object. */
7772
b34976b6 7773bfd_boolean
9719ad41 7774_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7775{
7776 struct elf_link_hash_entry *h;
14a793b2 7777 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7778 flagword flags;
7779 register asection *s;
7780 const char * const *namep;
0a44bf69 7781 struct mips_elf_link_hash_table *htab;
b49e97c9 7782
0a44bf69 7783 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7784 BFD_ASSERT (htab != NULL);
7785
b49e97c9
TS
7786 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7787 | SEC_LINKER_CREATED | SEC_READONLY);
7788
0a44bf69
RS
7789 /* The psABI requires a read-only .dynamic section, but the VxWorks
7790 EABI doesn't. */
7791 if (!htab->is_vxworks)
b49e97c9 7792 {
3d4d4302 7793 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7794 if (s != NULL)
7795 {
7796 if (! bfd_set_section_flags (abfd, s, flags))
7797 return FALSE;
7798 }
b49e97c9
TS
7799 }
7800
7801 /* We need to create .got section. */
23cc69b6 7802 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7803 return FALSE;
7804
0a44bf69 7805 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7806 return FALSE;
b49e97c9 7807
b49e97c9 7808 /* Create .stub section. */
3d4d4302
AM
7809 s = bfd_make_section_anyway_with_flags (abfd,
7810 MIPS_ELF_STUB_SECTION_NAME (abfd),
7811 flags | SEC_CODE);
4e41d0d7
RS
7812 if (s == NULL
7813 || ! bfd_set_section_alignment (abfd, s,
7814 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7815 return FALSE;
7816 htab->sstubs = s;
b49e97c9 7817
e6aea42d 7818 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7819 && bfd_link_executable (info)
3d4d4302 7820 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7821 {
3d4d4302
AM
7822 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7823 flags &~ (flagword) SEC_READONLY);
b49e97c9 7824 if (s == NULL
b49e97c9
TS
7825 || ! bfd_set_section_alignment (abfd, s,
7826 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7827 return FALSE;
b49e97c9
TS
7828 }
7829
7830 /* On IRIX5, we adjust add some additional symbols and change the
7831 alignments of several sections. There is no ABI documentation
7832 indicating that this is necessary on IRIX6, nor any evidence that
7833 the linker takes such action. */
7834 if (IRIX_COMPAT (abfd) == ict_irix5)
7835 {
7836 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7837 {
14a793b2 7838 bh = NULL;
b49e97c9 7839 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7840 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7841 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7842 return FALSE;
14a793b2
AM
7843
7844 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7845 h->non_elf = 0;
7846 h->def_regular = 1;
b49e97c9
TS
7847 h->type = STT_SECTION;
7848
c152c796 7849 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7850 return FALSE;
b49e97c9
TS
7851 }
7852
7853 /* We need to create a .compact_rel section. */
7854 if (SGI_COMPAT (abfd))
7855 {
7856 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7857 return FALSE;
b49e97c9
TS
7858 }
7859
44c410de 7860 /* Change alignments of some sections. */
3d4d4302 7861 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7862 if (s != NULL)
a253d456
NC
7863 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7864
3d4d4302 7865 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7866 if (s != NULL)
a253d456
NC
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7868
3d4d4302 7869 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7870 if (s != NULL)
a253d456
NC
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7872
3d4d4302 7873 /* ??? */
b49e97c9
TS
7874 s = bfd_get_section_by_name (abfd, ".reginfo");
7875 if (s != NULL)
a253d456
NC
7876 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7877
3d4d4302 7878 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7879 if (s != NULL)
a253d456 7880 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7881 }
7882
0e1862bb 7883 if (bfd_link_executable (info))
b49e97c9 7884 {
14a793b2
AM
7885 const char *name;
7886
7887 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7888 bh = NULL;
7889 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7890 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7891 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7892 return FALSE;
14a793b2
AM
7893
7894 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7895 h->non_elf = 0;
7896 h->def_regular = 1;
b49e97c9
TS
7897 h->type = STT_SECTION;
7898
c152c796 7899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7900 return FALSE;
b49e97c9
TS
7901
7902 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7903 {
7904 /* __rld_map is a four byte word located in the .data section
7905 and is filled in by the rtld to contain a pointer to
7906 the _r_debug structure. Its symbol value will be set in
7907 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7908 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7909 BFD_ASSERT (s != NULL);
14a793b2 7910
0abfb97a
L
7911 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7912 bh = NULL;
7913 if (!(_bfd_generic_link_add_one_symbol
7914 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7915 get_elf_backend_data (abfd)->collect, &bh)))
7916 return FALSE;
b49e97c9 7917
0abfb97a
L
7918 h = (struct elf_link_hash_entry *) bh;
7919 h->non_elf = 0;
7920 h->def_regular = 1;
7921 h->type = STT_OBJECT;
7922
7923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7924 return FALSE;
b4082c70 7925 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7926 }
7927 }
7928
861fb55a 7929 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7930 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7931 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7932 return FALSE;
7933
1bbce132
MR
7934 /* Do the usual VxWorks handling. */
7935 if (htab->is_vxworks
7936 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7937 return FALSE;
0a44bf69 7938
b34976b6 7939 return TRUE;
b49e97c9
TS
7940}
7941\f
c224138d
RS
7942/* Return true if relocation REL against section SEC is a REL rather than
7943 RELA relocation. RELOCS is the first relocation in the section and
7944 ABFD is the bfd that contains SEC. */
7945
7946static bfd_boolean
7947mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7948 const Elf_Internal_Rela *relocs,
7949 const Elf_Internal_Rela *rel)
7950{
7951 Elf_Internal_Shdr *rel_hdr;
7952 const struct elf_backend_data *bed;
7953
d4730f92
BS
7954 /* To determine which flavor of relocation this is, we depend on the
7955 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7956 rel_hdr = elf_section_data (sec)->rel.hdr;
7957 if (rel_hdr == NULL)
7958 return FALSE;
c224138d 7959 bed = get_elf_backend_data (abfd);
d4730f92
BS
7960 return ((size_t) (rel - relocs)
7961 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7962}
7963
7964/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7965 HOWTO is the relocation's howto and CONTENTS points to the contents
7966 of the section that REL is against. */
7967
7968static bfd_vma
7969mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7970 reloc_howto_type *howto, bfd_byte *contents)
7971{
7972 bfd_byte *location;
7973 unsigned int r_type;
7974 bfd_vma addend;
17c6c9d9 7975 bfd_vma bytes;
c224138d
RS
7976
7977 r_type = ELF_R_TYPE (abfd, rel->r_info);
7978 location = contents + rel->r_offset;
7979
7980 /* Get the addend, which is stored in the input file. */
df58fc94 7981 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7982 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7983 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7984
17c6c9d9
MR
7985 addend = bytes & howto->src_mask;
7986
7987 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7988 accordingly. */
7989 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7990 addend <<= 1;
7991
7992 return addend;
c224138d
RS
7993}
7994
7995/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7996 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7997 and update *ADDEND with the final addend. Return true on success
7998 or false if the LO16 could not be found. RELEND is the exclusive
7999 upper bound on the relocations for REL's section. */
8000
8001static bfd_boolean
8002mips_elf_add_lo16_rel_addend (bfd *abfd,
8003 const Elf_Internal_Rela *rel,
8004 const Elf_Internal_Rela *relend,
8005 bfd_byte *contents, bfd_vma *addend)
8006{
8007 unsigned int r_type, lo16_type;
8008 const Elf_Internal_Rela *lo16_relocation;
8009 reloc_howto_type *lo16_howto;
8010 bfd_vma l;
8011
8012 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8013 if (mips16_reloc_p (r_type))
c224138d 8014 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8015 else if (micromips_reloc_p (r_type))
8016 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8017 else if (r_type == R_MIPS_PCHI16)
8018 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8019 else
8020 lo16_type = R_MIPS_LO16;
8021
8022 /* The combined value is the sum of the HI16 addend, left-shifted by
8023 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8024 code does a `lui' of the HI16 value, and then an `addiu' of the
8025 LO16 value.)
8026
8027 Scan ahead to find a matching LO16 relocation.
8028
8029 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8030 be immediately following. However, for the IRIX6 ABI, the next
8031 relocation may be a composed relocation consisting of several
8032 relocations for the same address. In that case, the R_MIPS_LO16
8033 relocation may occur as one of these. We permit a similar
8034 extension in general, as that is useful for GCC.
8035
8036 In some cases GCC dead code elimination removes the LO16 but keeps
8037 the corresponding HI16. This is strictly speaking a violation of
8038 the ABI but not immediately harmful. */
8039 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8040 if (lo16_relocation == NULL)
8041 return FALSE;
8042
8043 /* Obtain the addend kept there. */
8044 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8045 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8046
8047 l <<= lo16_howto->rightshift;
8048 l = _bfd_mips_elf_sign_extend (l, 16);
8049
8050 *addend <<= 16;
8051 *addend += l;
8052 return TRUE;
8053}
8054
8055/* Try to read the contents of section SEC in bfd ABFD. Return true and
8056 store the contents in *CONTENTS on success. Assume that *CONTENTS
8057 already holds the contents if it is nonull on entry. */
8058
8059static bfd_boolean
8060mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8061{
8062 if (*contents)
8063 return TRUE;
8064
8065 /* Get cached copy if it exists. */
8066 if (elf_section_data (sec)->this_hdr.contents != NULL)
8067 {
8068 *contents = elf_section_data (sec)->this_hdr.contents;
8069 return TRUE;
8070 }
8071
8072 return bfd_malloc_and_get_section (abfd, sec, contents);
8073}
8074
1bbce132
MR
8075/* Make a new PLT record to keep internal data. */
8076
8077static struct plt_entry *
8078mips_elf_make_plt_record (bfd *abfd)
8079{
8080 struct plt_entry *entry;
8081
8082 entry = bfd_zalloc (abfd, sizeof (*entry));
8083 if (entry == NULL)
8084 return NULL;
8085
8086 entry->stub_offset = MINUS_ONE;
8087 entry->mips_offset = MINUS_ONE;
8088 entry->comp_offset = MINUS_ONE;
8089 entry->gotplt_index = MINUS_ONE;
8090 return entry;
8091}
8092
b49e97c9 8093/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8094 allocate space in the global offset table and record the need for
8095 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8096
b34976b6 8097bfd_boolean
9719ad41
RS
8098_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8099 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8100{
8101 const char *name;
8102 bfd *dynobj;
8103 Elf_Internal_Shdr *symtab_hdr;
8104 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8105 size_t extsymoff;
8106 const Elf_Internal_Rela *rel;
8107 const Elf_Internal_Rela *rel_end;
b49e97c9 8108 asection *sreloc;
9c5bfbb7 8109 const struct elf_backend_data *bed;
0a44bf69 8110 struct mips_elf_link_hash_table *htab;
c224138d
RS
8111 bfd_byte *contents;
8112 bfd_vma addend;
8113 reloc_howto_type *howto;
b49e97c9 8114
0e1862bb 8115 if (bfd_link_relocatable (info))
b34976b6 8116 return TRUE;
b49e97c9 8117
0a44bf69 8118 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8119 BFD_ASSERT (htab != NULL);
8120
b49e97c9
TS
8121 dynobj = elf_hash_table (info)->dynobj;
8122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8123 sym_hashes = elf_sym_hashes (abfd);
8124 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8125
738e5348 8126 bed = get_elf_backend_data (abfd);
056bafd4 8127 rel_end = relocs + sec->reloc_count;
738e5348 8128
b49e97c9
TS
8129 /* Check for the mips16 stub sections. */
8130
8131 name = bfd_get_section_name (abfd, sec);
b9d58d71 8132 if (FN_STUB_P (name))
b49e97c9
TS
8133 {
8134 unsigned long r_symndx;
8135
8136 /* Look at the relocation information to figure out which symbol
07d6d2b8 8137 this is for. */
b49e97c9 8138
cb4437b8 8139 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8140 if (r_symndx == 0)
8141 {
4eca0228 8142 _bfd_error_handler
695344c0 8143 /* xgettext:c-format */
738e5348
RS
8144 (_("%B: Warning: cannot determine the target function for"
8145 " stub section `%s'"),
8146 abfd, name);
8147 bfd_set_error (bfd_error_bad_value);
8148 return FALSE;
8149 }
b49e97c9
TS
8150
8151 if (r_symndx < extsymoff
8152 || sym_hashes[r_symndx - extsymoff] == NULL)
8153 {
8154 asection *o;
8155
8156 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8157 needed if there is some relocation in this BFD, other
8158 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8159 for (o = abfd->sections; o != NULL; o = o->next)
8160 {
8161 Elf_Internal_Rela *sec_relocs;
8162 const Elf_Internal_Rela *r, *rend;
8163
8164 /* We can ignore stub sections when looking for relocs. */
8165 if ((o->flags & SEC_RELOC) == 0
8166 || o->reloc_count == 0
738e5348 8167 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8168 continue;
8169
45d6a902 8170 sec_relocs
9719ad41 8171 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8172 info->keep_memory);
b49e97c9 8173 if (sec_relocs == NULL)
b34976b6 8174 return FALSE;
b49e97c9
TS
8175
8176 rend = sec_relocs + o->reloc_count;
8177 for (r = sec_relocs; r < rend; r++)
8178 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8179 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8180 break;
8181
6cdc0ccc 8182 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8183 free (sec_relocs);
8184
8185 if (r < rend)
8186 break;
8187 }
8188
8189 if (o == NULL)
8190 {
8191 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8192 not need it. Since this function is called before
8193 the linker maps input sections to output sections, we
8194 can easily discard it by setting the SEC_EXCLUDE
8195 flag. */
b49e97c9 8196 sec->flags |= SEC_EXCLUDE;
b34976b6 8197 return TRUE;
b49e97c9
TS
8198 }
8199
8200 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8201 this BFD. */
698600e4 8202 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8203 {
8204 unsigned long symcount;
8205 asection **n;
8206 bfd_size_type amt;
8207
8208 if (elf_bad_symtab (abfd))
8209 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8210 else
8211 symcount = symtab_hdr->sh_info;
8212 amt = symcount * sizeof (asection *);
9719ad41 8213 n = bfd_zalloc (abfd, amt);
b49e97c9 8214 if (n == NULL)
b34976b6 8215 return FALSE;
698600e4 8216 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8217 }
8218
b9d58d71 8219 sec->flags |= SEC_KEEP;
698600e4 8220 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8221
8222 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8223 That flag is used to see whether we need to look through
8224 the global symbol table for stubs. We don't need to set
8225 it here, because we just have a local stub. */
b49e97c9
TS
8226 }
8227 else
8228 {
8229 struct mips_elf_link_hash_entry *h;
8230
8231 h = ((struct mips_elf_link_hash_entry *)
8232 sym_hashes[r_symndx - extsymoff]);
8233
973a3492
L
8234 while (h->root.root.type == bfd_link_hash_indirect
8235 || h->root.root.type == bfd_link_hash_warning)
8236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8237
b49e97c9
TS
8238 /* H is the symbol this stub is for. */
8239
b9d58d71
TS
8240 /* If we already have an appropriate stub for this function, we
8241 don't need another one, so we can discard this one. Since
8242 this function is called before the linker maps input sections
8243 to output sections, we can easily discard it by setting the
8244 SEC_EXCLUDE flag. */
8245 if (h->fn_stub != NULL)
8246 {
8247 sec->flags |= SEC_EXCLUDE;
8248 return TRUE;
8249 }
8250
8251 sec->flags |= SEC_KEEP;
b49e97c9 8252 h->fn_stub = sec;
b34976b6 8253 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8254 }
8255 }
b9d58d71 8256 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8257 {
8258 unsigned long r_symndx;
8259 struct mips_elf_link_hash_entry *h;
8260 asection **loc;
8261
8262 /* Look at the relocation information to figure out which symbol
07d6d2b8 8263 this is for. */
b49e97c9 8264
cb4437b8 8265 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8266 if (r_symndx == 0)
8267 {
4eca0228 8268 _bfd_error_handler
695344c0 8269 /* xgettext:c-format */
738e5348
RS
8270 (_("%B: Warning: cannot determine the target function for"
8271 " stub section `%s'"),
8272 abfd, name);
8273 bfd_set_error (bfd_error_bad_value);
8274 return FALSE;
8275 }
b49e97c9
TS
8276
8277 if (r_symndx < extsymoff
8278 || sym_hashes[r_symndx - extsymoff] == NULL)
8279 {
b9d58d71 8280 asection *o;
b49e97c9 8281
b9d58d71 8282 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8283 needed if there is some relocation (R_MIPS16_26) in this BFD
8284 that refers to this symbol. */
b9d58d71
TS
8285 for (o = abfd->sections; o != NULL; o = o->next)
8286 {
8287 Elf_Internal_Rela *sec_relocs;
8288 const Elf_Internal_Rela *r, *rend;
8289
8290 /* We can ignore stub sections when looking for relocs. */
8291 if ((o->flags & SEC_RELOC) == 0
8292 || o->reloc_count == 0
738e5348 8293 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8294 continue;
8295
8296 sec_relocs
8297 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8298 info->keep_memory);
8299 if (sec_relocs == NULL)
8300 return FALSE;
8301
8302 rend = sec_relocs + o->reloc_count;
8303 for (r = sec_relocs; r < rend; r++)
8304 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8305 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8306 break;
8307
8308 if (elf_section_data (o)->relocs != sec_relocs)
8309 free (sec_relocs);
8310
8311 if (r < rend)
8312 break;
8313 }
8314
8315 if (o == NULL)
8316 {
8317 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8318 not need it. Since this function is called before
8319 the linker maps input sections to output sections, we
8320 can easily discard it by setting the SEC_EXCLUDE
8321 flag. */
b9d58d71
TS
8322 sec->flags |= SEC_EXCLUDE;
8323 return TRUE;
8324 }
8325
8326 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8327 this BFD. */
698600e4 8328 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8329 {
8330 unsigned long symcount;
8331 asection **n;
8332 bfd_size_type amt;
8333
8334 if (elf_bad_symtab (abfd))
8335 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8336 else
8337 symcount = symtab_hdr->sh_info;
8338 amt = symcount * sizeof (asection *);
8339 n = bfd_zalloc (abfd, amt);
8340 if (n == NULL)
8341 return FALSE;
698600e4 8342 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8343 }
b49e97c9 8344
b9d58d71 8345 sec->flags |= SEC_KEEP;
698600e4 8346 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8347
b9d58d71 8348 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8349 That flag is used to see whether we need to look through
8350 the global symbol table for stubs. We don't need to set
8351 it here, because we just have a local stub. */
b9d58d71 8352 }
b49e97c9 8353 else
b49e97c9 8354 {
b9d58d71
TS
8355 h = ((struct mips_elf_link_hash_entry *)
8356 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8357
b9d58d71 8358 /* H is the symbol this stub is for. */
68ffbac6 8359
b9d58d71
TS
8360 if (CALL_FP_STUB_P (name))
8361 loc = &h->call_fp_stub;
8362 else
8363 loc = &h->call_stub;
68ffbac6 8364
b9d58d71
TS
8365 /* If we already have an appropriate stub for this function, we
8366 don't need another one, so we can discard this one. Since
8367 this function is called before the linker maps input sections
8368 to output sections, we can easily discard it by setting the
8369 SEC_EXCLUDE flag. */
8370 if (*loc != NULL)
8371 {
8372 sec->flags |= SEC_EXCLUDE;
8373 return TRUE;
8374 }
b49e97c9 8375
b9d58d71
TS
8376 sec->flags |= SEC_KEEP;
8377 *loc = sec;
8378 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8379 }
b49e97c9
TS
8380 }
8381
b49e97c9 8382 sreloc = NULL;
c224138d 8383 contents = NULL;
b49e97c9
TS
8384 for (rel = relocs; rel < rel_end; ++rel)
8385 {
8386 unsigned long r_symndx;
8387 unsigned int r_type;
8388 struct elf_link_hash_entry *h;
861fb55a 8389 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8390 bfd_boolean call_reloc_p;
8391 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8392
8393 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8394 r_type = ELF_R_TYPE (abfd, rel->r_info);
8395
8396 if (r_symndx < extsymoff)
8397 h = NULL;
8398 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8399 {
4eca0228 8400 _bfd_error_handler
695344c0 8401 /* xgettext:c-format */
d003868e
AM
8402 (_("%B: Malformed reloc detected for section %s"),
8403 abfd, name);
b49e97c9 8404 bfd_set_error (bfd_error_bad_value);
b34976b6 8405 return FALSE;
b49e97c9
TS
8406 }
8407 else
8408 {
8409 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8410 if (h != NULL)
8411 {
8412 while (h->root.type == bfd_link_hash_indirect
8413 || h->root.type == bfd_link_hash_warning)
8414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8415 }
861fb55a 8416 }
b49e97c9 8417
861fb55a
DJ
8418 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8419 relocation into a dynamic one. */
8420 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8421
8422 /* Set CALL_RELOC_P to true if the relocation is for a call,
8423 and if pointer equality therefore doesn't matter. */
8424 call_reloc_p = FALSE;
8425
8426 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8427 into account when deciding how to define the symbol.
8428 Relocations in nonallocatable sections such as .pdr and
8429 .debug* should have no effect. */
8430 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8431
861fb55a
DJ
8432 switch (r_type)
8433 {
861fb55a
DJ
8434 case R_MIPS_CALL16:
8435 case R_MIPS_CALL_HI16:
8436 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8437 case R_MIPS16_CALL16:
8438 case R_MICROMIPS_CALL16:
8439 case R_MICROMIPS_CALL_HI16:
8440 case R_MICROMIPS_CALL_LO16:
8441 call_reloc_p = TRUE;
8442 /* Fall through. */
8443
8444 case R_MIPS_GOT16:
861fb55a
DJ
8445 case R_MIPS_GOT_HI16:
8446 case R_MIPS_GOT_LO16:
8447 case R_MIPS_GOT_PAGE:
8448 case R_MIPS_GOT_OFST:
8449 case R_MIPS_GOT_DISP:
8450 case R_MIPS_TLS_GOTTPREL:
8451 case R_MIPS_TLS_GD:
8452 case R_MIPS_TLS_LDM:
d0f13682 8453 case R_MIPS16_GOT16:
d0f13682
CLT
8454 case R_MIPS16_TLS_GOTTPREL:
8455 case R_MIPS16_TLS_GD:
8456 case R_MIPS16_TLS_LDM:
df58fc94 8457 case R_MICROMIPS_GOT16:
df58fc94
RS
8458 case R_MICROMIPS_GOT_HI16:
8459 case R_MICROMIPS_GOT_LO16:
8460 case R_MICROMIPS_GOT_PAGE:
8461 case R_MICROMIPS_GOT_OFST:
8462 case R_MICROMIPS_GOT_DISP:
8463 case R_MICROMIPS_TLS_GOTTPREL:
8464 case R_MICROMIPS_TLS_GD:
8465 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8466 if (dynobj == NULL)
8467 elf_hash_table (info)->dynobj = dynobj = abfd;
8468 if (!mips_elf_create_got_section (dynobj, info))
8469 return FALSE;
0e1862bb 8470 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8471 {
4eca0228 8472 _bfd_error_handler
695344c0 8473 /* xgettext:c-format */
d42c267e
AM
8474 (_("%B: GOT reloc at %#Lx not expected in executables"),
8475 abfd, rel->r_offset);
861fb55a
DJ
8476 bfd_set_error (bfd_error_bad_value);
8477 return FALSE;
b49e97c9 8478 }
c5d6fa44 8479 can_make_dynamic_p = TRUE;
861fb55a 8480 break;
b49e97c9 8481
c5d6fa44 8482 case R_MIPS_NONE:
99da6b5f 8483 case R_MIPS_JALR:
df58fc94 8484 case R_MICROMIPS_JALR:
c5d6fa44
RS
8485 /* These relocations have empty fields and are purely there to
8486 provide link information. The symbol value doesn't matter. */
8487 constrain_symbol_p = FALSE;
8488 break;
8489
8490 case R_MIPS_GPREL16:
8491 case R_MIPS_GPREL32:
8492 case R_MIPS16_GPREL:
8493 case R_MICROMIPS_GPREL16:
8494 /* GP-relative relocations always resolve to a definition in a
8495 regular input file, ignoring the one-definition rule. This is
8496 important for the GP setup sequence in NewABI code, which
8497 always resolves to a local function even if other relocations
8498 against the symbol wouldn't. */
8499 constrain_symbol_p = FALSE;
99da6b5f
AN
8500 break;
8501
861fb55a
DJ
8502 case R_MIPS_32:
8503 case R_MIPS_REL32:
8504 case R_MIPS_64:
8505 /* In VxWorks executables, references to external symbols
8506 must be handled using copy relocs or PLT entries; it is not
8507 possible to convert this relocation into a dynamic one.
8508
8509 For executables that use PLTs and copy-relocs, we have a
8510 choice between converting the relocation into a dynamic
8511 one or using copy relocations or PLT entries. It is
8512 usually better to do the former, unless the relocation is
8513 against a read-only section. */
0e1862bb 8514 if ((bfd_link_pic (info)
861fb55a
DJ
8515 || (h != NULL
8516 && !htab->is_vxworks
8517 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8518 && !(!info->nocopyreloc
8519 && !PIC_OBJECT_P (abfd)
8520 && MIPS_ELF_READONLY_SECTION (sec))))
8521 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8522 {
861fb55a 8523 can_make_dynamic_p = TRUE;
b49e97c9
TS
8524 if (dynobj == NULL)
8525 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8526 }
c5d6fa44 8527 break;
b49e97c9 8528
861fb55a
DJ
8529 case R_MIPS_26:
8530 case R_MIPS_PC16:
7361da2c
AB
8531 case R_MIPS_PC21_S2:
8532 case R_MIPS_PC26_S2:
861fb55a 8533 case R_MIPS16_26:
c9775dde 8534 case R_MIPS16_PC16_S1:
df58fc94
RS
8535 case R_MICROMIPS_26_S1:
8536 case R_MICROMIPS_PC7_S1:
8537 case R_MICROMIPS_PC10_S1:
8538 case R_MICROMIPS_PC16_S1:
8539 case R_MICROMIPS_PC23_S2:
c5d6fa44 8540 call_reloc_p = TRUE;
861fb55a 8541 break;
b49e97c9
TS
8542 }
8543
0a44bf69
RS
8544 if (h)
8545 {
c5d6fa44
RS
8546 if (constrain_symbol_p)
8547 {
8548 if (!can_make_dynamic_p)
8549 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8550
8551 if (!call_reloc_p)
8552 h->pointer_equality_needed = 1;
8553
8554 /* We must not create a stub for a symbol that has
8555 relocations related to taking the function's address.
8556 This doesn't apply to VxWorks, where CALL relocs refer
8557 to a .got.plt entry instead of a normal .got entry. */
8558 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8559 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8560 }
8561
0a44bf69
RS
8562 /* Relocations against the special VxWorks __GOTT_BASE__ and
8563 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8564 room for them in .rela.dyn. */
8565 if (is_gott_symbol (info, h))
8566 {
8567 if (sreloc == NULL)
8568 {
8569 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8570 if (sreloc == NULL)
8571 return FALSE;
8572 }
8573 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8574 if (MIPS_ELF_READONLY_SECTION (sec))
8575 /* We tell the dynamic linker that there are
8576 relocations against the text segment. */
8577 info->flags |= DF_TEXTREL;
0a44bf69
RS
8578 }
8579 }
df58fc94
RS
8580 else if (call_lo16_reloc_p (r_type)
8581 || got_lo16_reloc_p (r_type)
8582 || got_disp_reloc_p (r_type)
738e5348 8583 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8584 {
8585 /* We may need a local GOT entry for this relocation. We
8586 don't count R_MIPS_GOT_PAGE because we can estimate the
8587 maximum number of pages needed by looking at the size of
738e5348
RS
8588 the segment. Similar comments apply to R_MIPS*_GOT16 and
8589 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8590 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8591 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8592 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8593 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8594 rel->r_addend, info, r_type))
f4416af6 8595 return FALSE;
b49e97c9
TS
8596 }
8597
8f0c309a
CLT
8598 if (h != NULL
8599 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8600 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8601 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8602
b49e97c9
TS
8603 switch (r_type)
8604 {
8605 case R_MIPS_CALL16:
738e5348 8606 case R_MIPS16_CALL16:
df58fc94 8607 case R_MICROMIPS_CALL16:
b49e97c9
TS
8608 if (h == NULL)
8609 {
4eca0228 8610 _bfd_error_handler
695344c0 8611 /* xgettext:c-format */
d42c267e
AM
8612 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8613 abfd, rel->r_offset);
b49e97c9 8614 bfd_set_error (bfd_error_bad_value);
b34976b6 8615 return FALSE;
b49e97c9
TS
8616 }
8617 /* Fall through. */
8618
8619 case R_MIPS_CALL_HI16:
8620 case R_MIPS_CALL_LO16:
df58fc94
RS
8621 case R_MICROMIPS_CALL_HI16:
8622 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8623 if (h != NULL)
8624 {
6ccf4795
RS
8625 /* Make sure there is room in the regular GOT to hold the
8626 function's address. We may eliminate it in favour of
8627 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8628 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8629 r_type))
b34976b6 8630 return FALSE;
b49e97c9
TS
8631
8632 /* We need a stub, not a plt entry for the undefined
8633 function. But we record it as if it needs plt. See
c152c796 8634 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8635 h->needs_plt = 1;
b49e97c9
TS
8636 h->type = STT_FUNC;
8637 }
8638 break;
8639
0fdc1bf1 8640 case R_MIPS_GOT_PAGE:
df58fc94 8641 case R_MICROMIPS_GOT_PAGE:
738e5348 8642 case R_MIPS16_GOT16:
b49e97c9
TS
8643 case R_MIPS_GOT16:
8644 case R_MIPS_GOT_HI16:
8645 case R_MIPS_GOT_LO16:
df58fc94
RS
8646 case R_MICROMIPS_GOT16:
8647 case R_MICROMIPS_GOT_HI16:
8648 case R_MICROMIPS_GOT_LO16:
8649 if (!h || got_page_reloc_p (r_type))
c224138d 8650 {
3a3b6725
DJ
8651 /* This relocation needs (or may need, if h != NULL) a
8652 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8653 know for sure until we know whether the symbol is
8654 preemptible. */
c224138d
RS
8655 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8656 {
8657 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8658 return FALSE;
8659 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8660 addend = mips_elf_read_rel_addend (abfd, rel,
8661 howto, contents);
9684f078 8662 if (got16_reloc_p (r_type))
c224138d
RS
8663 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8664 contents, &addend);
8665 else
8666 addend <<= howto->rightshift;
8667 }
8668 else
8669 addend = rel->r_addend;
13db6b44
RS
8670 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8671 h, addend))
c224138d 8672 return FALSE;
13db6b44
RS
8673
8674 if (h)
8675 {
8676 struct mips_elf_link_hash_entry *hmips =
8677 (struct mips_elf_link_hash_entry *) h;
8678
8679 /* This symbol is definitely not overridable. */
8680 if (hmips->root.def_regular
0e1862bb 8681 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8682 && ! hmips->root.forced_local))
8683 h = NULL;
8684 }
c224138d 8685 }
13db6b44
RS
8686 /* If this is a global, overridable symbol, GOT_PAGE will
8687 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8688 /* Fall through. */
8689
b49e97c9 8690 case R_MIPS_GOT_DISP:
df58fc94 8691 case R_MICROMIPS_GOT_DISP:
6ccf4795 8692 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8693 FALSE, r_type))
b34976b6 8694 return FALSE;
b49e97c9
TS
8695 break;
8696
0f20cc35 8697 case R_MIPS_TLS_GOTTPREL:
d0f13682 8698 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8699 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8700 if (bfd_link_pic (info))
0f20cc35
DJ
8701 info->flags |= DF_STATIC_TLS;
8702 /* Fall through */
8703
8704 case R_MIPS_TLS_LDM:
d0f13682 8705 case R_MIPS16_TLS_LDM:
df58fc94
RS
8706 case R_MICROMIPS_TLS_LDM:
8707 if (tls_ldm_reloc_p (r_type))
0f20cc35 8708 {
cf35638d 8709 r_symndx = STN_UNDEF;
0f20cc35
DJ
8710 h = NULL;
8711 }
8712 /* Fall through */
8713
8714 case R_MIPS_TLS_GD:
d0f13682 8715 case R_MIPS16_TLS_GD:
df58fc94 8716 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8717 /* This symbol requires a global offset table entry, or two
8718 for TLS GD relocations. */
e641e783
RS
8719 if (h != NULL)
8720 {
8721 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8722 FALSE, r_type))
8723 return FALSE;
8724 }
8725 else
8726 {
8727 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8728 rel->r_addend,
8729 info, r_type))
8730 return FALSE;
8731 }
0f20cc35
DJ
8732 break;
8733
b49e97c9
TS
8734 case R_MIPS_32:
8735 case R_MIPS_REL32:
8736 case R_MIPS_64:
0a44bf69
RS
8737 /* In VxWorks executables, references to external symbols
8738 are handled using copy relocs or PLT stubs, so there's
8739 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8740 if (can_make_dynamic_p)
b49e97c9
TS
8741 {
8742 if (sreloc == NULL)
8743 {
0a44bf69 8744 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8745 if (sreloc == NULL)
f4416af6 8746 return FALSE;
b49e97c9 8747 }
0e1862bb 8748 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8749 {
8750 /* When creating a shared object, we must copy these
8751 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8752 relocs. Make room for this reloc in .rel(a).dyn. */
8753 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8754 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8755 /* We tell the dynamic linker that there are
8756 relocations against the text segment. */
8757 info->flags |= DF_TEXTREL;
8758 }
b49e97c9
TS
8759 else
8760 {
8761 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8762
9a59ad6b
DJ
8763 /* For a shared object, we must copy this relocation
8764 unless the symbol turns out to be undefined and
8765 weak with non-default visibility, in which case
8766 it will be left as zero.
8767
8768 We could elide R_MIPS_REL32 for locally binding symbols
8769 in shared libraries, but do not yet do so.
8770
8771 For an executable, we only need to copy this
8772 reloc if the symbol is defined in a dynamic
8773 object. */
b49e97c9
TS
8774 hmips = (struct mips_elf_link_hash_entry *) h;
8775 ++hmips->possibly_dynamic_relocs;
943284cc 8776 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8777 /* We need it to tell the dynamic linker if there
8778 are relocations against the text segment. */
8779 hmips->readonly_reloc = TRUE;
b49e97c9 8780 }
b49e97c9
TS
8781 }
8782
8783 if (SGI_COMPAT (abfd))
8784 mips_elf_hash_table (info)->compact_rel_size +=
8785 sizeof (Elf32_External_crinfo);
8786 break;
8787
8788 case R_MIPS_26:
8789 case R_MIPS_GPREL16:
8790 case R_MIPS_LITERAL:
8791 case R_MIPS_GPREL32:
df58fc94
RS
8792 case R_MICROMIPS_26_S1:
8793 case R_MICROMIPS_GPREL16:
8794 case R_MICROMIPS_LITERAL:
8795 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8796 if (SGI_COMPAT (abfd))
8797 mips_elf_hash_table (info)->compact_rel_size +=
8798 sizeof (Elf32_External_crinfo);
8799 break;
8800
8801 /* This relocation describes the C++ object vtable hierarchy.
8802 Reconstruct it for later use during GC. */
8803 case R_MIPS_GNU_VTINHERIT:
c152c796 8804 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8805 return FALSE;
b49e97c9
TS
8806 break;
8807
8808 /* This relocation describes which C++ vtable entries are actually
8809 used. Record for later use during GC. */
8810 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8811 BFD_ASSERT (h != NULL);
8812 if (h != NULL
8813 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8814 return FALSE;
b49e97c9
TS
8815 break;
8816
8817 default:
8818 break;
8819 }
8820
1bbce132 8821 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
8822 yet if we are going to create a PLT in the first place, but
8823 we only record whether the relocation requires a standard MIPS
8824 or a compressed code entry anyway. If we don't make a PLT after
8825 all, then we'll just ignore these arrangements. Likewise if
8826 a PLT entry is not created because the symbol is satisfied
8827 locally. */
1bbce132 8828 if (h != NULL
54806ffa
MR
8829 && (branch_reloc_p (r_type)
8830 || mips16_branch_reloc_p (r_type)
8831 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8832 && !SYMBOL_CALLS_LOCAL (info, h))
8833 {
8834 if (h->plt.plist == NULL)
8835 h->plt.plist = mips_elf_make_plt_record (abfd);
8836 if (h->plt.plist == NULL)
8837 return FALSE;
8838
54806ffa 8839 if (branch_reloc_p (r_type))
1bbce132
MR
8840 h->plt.plist->need_mips = TRUE;
8841 else
8842 h->plt.plist->need_comp = TRUE;
8843 }
8844
738e5348
RS
8845 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8846 if there is one. We only need to handle global symbols here;
8847 we decide whether to keep or delete stubs for local symbols
8848 when processing the stub's relocations. */
b49e97c9 8849 if (h != NULL
738e5348
RS
8850 && !mips16_call_reloc_p (r_type)
8851 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8852 {
8853 struct mips_elf_link_hash_entry *mh;
8854
8855 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8856 mh->need_fn_stub = TRUE;
b49e97c9 8857 }
861fb55a
DJ
8858
8859 /* Refuse some position-dependent relocations when creating a
8860 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8861 not PIC, but we can create dynamic relocations and the result
8862 will be fine. Also do not refuse R_MIPS_LO16, which can be
8863 combined with R_MIPS_GOT16. */
0e1862bb 8864 if (bfd_link_pic (info))
861fb55a
DJ
8865 {
8866 switch (r_type)
8867 {
8868 case R_MIPS16_HI16:
8869 case R_MIPS_HI16:
8870 case R_MIPS_HIGHER:
8871 case R_MIPS_HIGHEST:
df58fc94
RS
8872 case R_MICROMIPS_HI16:
8873 case R_MICROMIPS_HIGHER:
8874 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8875 /* Don't refuse a high part relocation if it's against
8876 no symbol (e.g. part of a compound relocation). */
cf35638d 8877 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8878 break;
8879
8880 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8881 and has a special meaning. */
8882 if (!NEWABI_P (abfd) && h != NULL
8883 && strcmp (h->root.root.string, "_gp_disp") == 0)
8884 break;
8885
0fc1eb3c
RS
8886 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8887 if (is_gott_symbol (info, h))
8888 break;
8889
861fb55a
DJ
8890 /* FALLTHROUGH */
8891
8892 case R_MIPS16_26:
8893 case R_MIPS_26:
df58fc94 8894 case R_MICROMIPS_26_S1:
861fb55a 8895 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8896 _bfd_error_handler
695344c0 8897 /* xgettext:c-format */
63a5468a
AM
8898 (_("%B: relocation %s against `%s' can not be used"
8899 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8900 abfd, howto->name,
8901 (h) ? h->root.root.string : "a local symbol");
8902 bfd_set_error (bfd_error_bad_value);
8903 return FALSE;
8904 default:
8905 break;
8906 }
8907 }
b49e97c9
TS
8908 }
8909
b34976b6 8910 return TRUE;
b49e97c9
TS
8911}
8912\f
9a59ad6b
DJ
8913/* Allocate space for global sym dynamic relocs. */
8914
8915static bfd_boolean
8916allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8917{
8918 struct bfd_link_info *info = inf;
8919 bfd *dynobj;
8920 struct mips_elf_link_hash_entry *hmips;
8921 struct mips_elf_link_hash_table *htab;
8922
8923 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8924 BFD_ASSERT (htab != NULL);
8925
9a59ad6b
DJ
8926 dynobj = elf_hash_table (info)->dynobj;
8927 hmips = (struct mips_elf_link_hash_entry *) h;
8928
8929 /* VxWorks executables are handled elsewhere; we only need to
8930 allocate relocations in shared objects. */
0e1862bb 8931 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8932 return TRUE;
8933
7686d77d
AM
8934 /* Ignore indirect symbols. All relocations against such symbols
8935 will be redirected to the target symbol. */
8936 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8937 return TRUE;
8938
9a59ad6b
DJ
8939 /* If this symbol is defined in a dynamic object, or we are creating
8940 a shared library, we will need to copy any R_MIPS_32 or
8941 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8942 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8943 && hmips->possibly_dynamic_relocs != 0
8944 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8945 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8946 || bfd_link_pic (info)))
9a59ad6b
DJ
8947 {
8948 bfd_boolean do_copy = TRUE;
8949
8950 if (h->root.type == bfd_link_hash_undefweak)
8951 {
8952 /* Do not copy relocations for undefined weak symbols with
8953 non-default visibility. */
ad951203
L
8954 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8955 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
8956 do_copy = FALSE;
8957
8958 /* Make sure undefined weak symbols are output as a dynamic
8959 symbol in PIEs. */
8960 else if (h->dynindx == -1 && !h->forced_local)
8961 {
8962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8963 return FALSE;
8964 }
8965 }
8966
8967 if (do_copy)
8968 {
aff469fa 8969 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8970 the SVR4 psABI requires it to have a dynamic symbol table
8971 index greater that DT_MIPS_GOTSYM if there are dynamic
8972 relocations against it.
8973
8974 VxWorks does not enforce the same mapping between the GOT
8975 and the symbol table, so the same requirement does not
8976 apply there. */
6ccf4795
RS
8977 if (!htab->is_vxworks)
8978 {
8979 if (hmips->global_got_area > GGA_RELOC_ONLY)
8980 hmips->global_got_area = GGA_RELOC_ONLY;
8981 hmips->got_only_for_calls = FALSE;
8982 }
aff469fa 8983
9a59ad6b
DJ
8984 mips_elf_allocate_dynamic_relocations
8985 (dynobj, info, hmips->possibly_dynamic_relocs);
8986 if (hmips->readonly_reloc)
8987 /* We tell the dynamic linker that there are relocations
8988 against the text segment. */
8989 info->flags |= DF_TEXTREL;
8990 }
8991 }
8992
8993 return TRUE;
8994}
8995
b49e97c9
TS
8996/* Adjust a symbol defined by a dynamic object and referenced by a
8997 regular object. The current definition is in some section of the
8998 dynamic object, but we're not including those sections. We have to
8999 change the definition to something the rest of the link can
9000 understand. */
9001
b34976b6 9002bfd_boolean
9719ad41
RS
9003_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9004 struct elf_link_hash_entry *h)
b49e97c9
TS
9005{
9006 bfd *dynobj;
9007 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9008 struct mips_elf_link_hash_table *htab;
5474d94f 9009 asection *s, *srel;
b49e97c9 9010
5108fc1b 9011 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9012 BFD_ASSERT (htab != NULL);
9013
b49e97c9 9014 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9015 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9016
9017 /* Make sure we know what is going on here. */
9018 BFD_ASSERT (dynobj != NULL
f5385ebf 9019 && (h->needs_plt
60d67dc8 9020 || h->is_weakalias
f5385ebf
AM
9021 || (h->def_dynamic
9022 && h->ref_regular
9023 && !h->def_regular)));
b49e97c9 9024
b49e97c9 9025 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9026
861fb55a
DJ
9027 /* If there are call relocations against an externally-defined symbol,
9028 see whether we can create a MIPS lazy-binding stub for it. We can
9029 only do this if all references to the function are through call
9030 relocations, and in that case, the traditional lazy-binding stubs
9031 are much more efficient than PLT entries.
9032
9033 Traditional stubs are only available on SVR4 psABI-based systems;
9034 VxWorks always uses PLTs instead. */
9035 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9036 {
9037 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9038 return TRUE;
b49e97c9
TS
9039
9040 /* If this symbol is not defined in a regular file, then set
9041 the symbol to the stub location. This is required to make
9042 function pointers compare as equal between the normal
9043 executable and the shared library. */
f5385ebf 9044 if (!h->def_regular)
b49e97c9 9045 {
33bb52fb
RS
9046 hmips->needs_lazy_stub = TRUE;
9047 htab->lazy_stub_count++;
b34976b6 9048 return TRUE;
b49e97c9
TS
9049 }
9050 }
861fb55a
DJ
9051 /* As above, VxWorks requires PLT entries for externally-defined
9052 functions that are only accessed through call relocations.
b49e97c9 9053
861fb55a
DJ
9054 Both VxWorks and non-VxWorks targets also need PLT entries if there
9055 are static-only relocations against an externally-defined function.
9056 This can technically occur for shared libraries if there are
9057 branches to the symbol, although it is unlikely that this will be
9058 used in practice due to the short ranges involved. It can occur
9059 for any relative or absolute relocation in executables; in that
9060 case, the PLT entry becomes the function's canonical address. */
9061 else if (((h->needs_plt && !hmips->no_fn_stub)
9062 || (h->type == STT_FUNC && hmips->has_static_relocs))
9063 && htab->use_plts_and_copy_relocs
9064 && !SYMBOL_CALLS_LOCAL (info, h)
9065 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9066 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9067 {
1bbce132
MR
9068 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9069 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9070
9071 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9072 basic setup. Also work out PLT entry sizes. We'll need them
9073 for PLT offset calculations. */
1bbce132 9074 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9075 {
ce558b89 9076 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9077 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9078
861fb55a
DJ
9079 /* If we're using the PLT additions to the psABI, each PLT
9080 entry is 16 bytes and the PLT0 entry is 32 bytes.
9081 Encourage better cache usage by aligning. We do this
9082 lazily to avoid pessimizing traditional objects. */
9083 if (!htab->is_vxworks
ce558b89 9084 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9085 return FALSE;
0a44bf69 9086
861fb55a
DJ
9087 /* Make sure that .got.plt is word-aligned. We do this lazily
9088 for the same reason as above. */
ce558b89 9089 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9090 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9091 return FALSE;
0a44bf69 9092
861fb55a
DJ
9093 /* On non-VxWorks targets, the first two entries in .got.plt
9094 are reserved. */
9095 if (!htab->is_vxworks)
1bbce132
MR
9096 htab->plt_got_index
9097 += (get_elf_backend_data (dynobj)->got_header_size
9098 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9099
861fb55a
DJ
9100 /* On VxWorks, also allocate room for the header's
9101 .rela.plt.unloaded entries. */
0e1862bb 9102 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9103 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9104
9105 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9106 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9107 htab->plt_mips_entry_size
9108 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9109 else if (htab->is_vxworks)
9110 htab->plt_mips_entry_size
9111 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9112 else if (newabi_p)
9113 htab->plt_mips_entry_size
9114 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9115 else if (!micromips_p)
1bbce132
MR
9116 {
9117 htab->plt_mips_entry_size
9118 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9119 htab->plt_comp_entry_size
833794fc
MR
9120 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9121 }
9122 else if (htab->insn32)
9123 {
9124 htab->plt_mips_entry_size
9125 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9126 htab->plt_comp_entry_size
9127 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9128 }
9129 else
9130 {
9131 htab->plt_mips_entry_size
9132 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9133 htab->plt_comp_entry_size
833794fc 9134 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9135 }
0a44bf69
RS
9136 }
9137
1bbce132
MR
9138 if (h->plt.plist == NULL)
9139 h->plt.plist = mips_elf_make_plt_record (dynobj);
9140 if (h->plt.plist == NULL)
9141 return FALSE;
9142
9143 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9144 n32 or n64, so always use a standard entry there.
1bbce132 9145
07d6d2b8
AM
9146 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9147 all MIPS16 calls will go via that stub, and there is no benefit
9148 to having a MIPS16 entry. And in the case of call_stub a
9149 standard entry actually has to be used as the stub ends with a J
9150 instruction. */
1bbce132
MR
9151 if (newabi_p
9152 || htab->is_vxworks
9153 || hmips->call_stub
9154 || hmips->call_fp_stub)
9155 {
9156 h->plt.plist->need_mips = TRUE;
9157 h->plt.plist->need_comp = FALSE;
9158 }
9159
9160 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9161 have a free choice of whether to use standard or compressed
9162 entries. Prefer microMIPS entries if the object is known to
9163 contain microMIPS code, so that it becomes possible to create
9164 pure microMIPS binaries. Prefer standard entries otherwise,
9165 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9166 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9167 {
9168 if (micromips_p)
9169 h->plt.plist->need_comp = TRUE;
9170 else
9171 h->plt.plist->need_mips = TRUE;
9172 }
9173
9174 if (h->plt.plist->need_mips)
9175 {
9176 h->plt.plist->mips_offset = htab->plt_mips_offset;
9177 htab->plt_mips_offset += htab->plt_mips_entry_size;
9178 }
9179 if (h->plt.plist->need_comp)
9180 {
9181 h->plt.plist->comp_offset = htab->plt_comp_offset;
9182 htab->plt_comp_offset += htab->plt_comp_entry_size;
9183 }
9184
9185 /* Reserve the corresponding .got.plt entry now too. */
9186 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9187
9188 /* If the output file has no definition of the symbol, set the
861fb55a 9189 symbol's value to the address of the stub. */
0e1862bb 9190 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9191 hmips->use_plt_entry = TRUE;
0a44bf69 9192
1bbce132 9193 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9194 htab->root.srelplt->size += (htab->is_vxworks
9195 ? MIPS_ELF_RELA_SIZE (dynobj)
9196 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9197
9198 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9199 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9200 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9201
861fb55a
DJ
9202 /* All relocations against this symbol that could have been made
9203 dynamic will now refer to the PLT entry instead. */
9204 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9205
0a44bf69
RS
9206 return TRUE;
9207 }
9208
9209 /* If this is a weak symbol, and there is a real definition, the
9210 processor independent code will have arranged for us to see the
9211 real definition first, and we can just use the same value. */
60d67dc8 9212 if (h->is_weakalias)
0a44bf69 9213 {
60d67dc8
AM
9214 struct elf_link_hash_entry *def = weakdef (h);
9215 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9216 h->root.u.def.section = def->root.u.def.section;
9217 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9218 return TRUE;
9219 }
9220
861fb55a
DJ
9221 /* Otherwise, there is nothing further to do for symbols defined
9222 in regular objects. */
9223 if (h->def_regular)
0a44bf69
RS
9224 return TRUE;
9225
861fb55a
DJ
9226 /* There's also nothing more to do if we'll convert all relocations
9227 against this symbol into dynamic relocations. */
9228 if (!hmips->has_static_relocs)
9229 return TRUE;
9230
9231 /* We're now relying on copy relocations. Complain if we have
9232 some that we can't convert. */
0e1862bb 9233 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9234 {
4eca0228
AM
9235 _bfd_error_handler (_("non-dynamic relocations refer to "
9236 "dynamic symbol %s"),
9237 h->root.root.string);
861fb55a
DJ
9238 bfd_set_error (bfd_error_bad_value);
9239 return FALSE;
9240 }
9241
0a44bf69
RS
9242 /* We must allocate the symbol in our .dynbss section, which will
9243 become part of the .bss section of the executable. There will be
9244 an entry for this symbol in the .dynsym section. The dynamic
9245 object will contain position independent code, so all references
9246 from the dynamic object to this symbol will go through the global
9247 offset table. The dynamic linker will use the .dynsym entry to
9248 determine the address it must put in the global offset table, so
9249 both the dynamic object and the regular object will refer to the
9250 same memory location for the variable. */
9251
5474d94f
AM
9252 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9253 {
9254 s = htab->root.sdynrelro;
9255 srel = htab->root.sreldynrelro;
9256 }
9257 else
9258 {
9259 s = htab->root.sdynbss;
9260 srel = htab->root.srelbss;
9261 }
0a44bf69
RS
9262 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9263 {
861fb55a 9264 if (htab->is_vxworks)
5474d94f 9265 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9266 else
9267 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9268 h->needs_copy = 1;
9269 }
9270
861fb55a
DJ
9271 /* All relocations against this symbol that could have been made
9272 dynamic will now refer to the local copy instead. */
9273 hmips->possibly_dynamic_relocs = 0;
9274
5474d94f 9275 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9276}
b49e97c9
TS
9277\f
9278/* This function is called after all the input files have been read,
9279 and the input sections have been assigned to output sections. We
9280 check for any mips16 stub sections that we can discard. */
9281
b34976b6 9282bfd_boolean
9719ad41
RS
9283_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9284 struct bfd_link_info *info)
b49e97c9 9285{
351cdf24 9286 asection *sect;
0a44bf69 9287 struct mips_elf_link_hash_table *htab;
861fb55a 9288 struct mips_htab_traverse_info hti;
0a44bf69
RS
9289
9290 htab = mips_elf_hash_table (info);
4dfe6ac6 9291 BFD_ASSERT (htab != NULL);
f4416af6 9292
b49e97c9 9293 /* The .reginfo section has a fixed size. */
351cdf24
MF
9294 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9295 if (sect != NULL)
9296 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9297
9298 /* The .MIPS.abiflags section has a fixed size. */
9299 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9300 if (sect != NULL)
9301 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9302
861fb55a
DJ
9303 hti.info = info;
9304 hti.output_bfd = output_bfd;
9305 hti.error = FALSE;
9306 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9307 mips_elf_check_symbols, &hti);
9308 if (hti.error)
9309 return FALSE;
f4416af6 9310
33bb52fb
RS
9311 return TRUE;
9312}
9313
9314/* If the link uses a GOT, lay it out and work out its size. */
9315
9316static bfd_boolean
9317mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9318{
9319 bfd *dynobj;
9320 asection *s;
9321 struct mips_got_info *g;
33bb52fb
RS
9322 bfd_size_type loadable_size = 0;
9323 bfd_size_type page_gotno;
d7206569 9324 bfd *ibfd;
ab361d49 9325 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9326 struct mips_elf_link_hash_table *htab;
9327
9328 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9329 BFD_ASSERT (htab != NULL);
9330
ce558b89 9331 s = htab->root.sgot;
f4416af6 9332 if (s == NULL)
b34976b6 9333 return TRUE;
b49e97c9 9334
33bb52fb 9335 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9336 g = htab->got_info;
9337
861fb55a
DJ
9338 /* Allocate room for the reserved entries. VxWorks always reserves
9339 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9340 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9341 if (htab->is_vxworks)
9342 htab->reserved_gotno = 3;
9343 else
9344 htab->reserved_gotno = 2;
9345 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9346 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9347
6c42ddb9
RS
9348 /* Decide which symbols need to go in the global part of the GOT and
9349 count the number of reloc-only GOT symbols. */
020d7251 9350 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9351
13db6b44
RS
9352 if (!mips_elf_resolve_final_got_entries (info, g))
9353 return FALSE;
9354
33bb52fb
RS
9355 /* Calculate the total loadable size of the output. That
9356 will give us the maximum number of GOT_PAGE entries
9357 required. */
c72f2fb2 9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9359 {
9360 asection *subsection;
5108fc1b 9361
d7206569 9362 for (subsection = ibfd->sections;
33bb52fb
RS
9363 subsection;
9364 subsection = subsection->next)
9365 {
9366 if ((subsection->flags & SEC_ALLOC) == 0)
9367 continue;
9368 loadable_size += ((subsection->size + 0xf)
9369 &~ (bfd_size_type) 0xf);
9370 }
9371 }
f4416af6 9372
0a44bf69 9373 if (htab->is_vxworks)
738e5348 9374 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9375 relocations against local symbols evaluate to "G", and the EABI does
9376 not include R_MIPS_GOT_PAGE. */
c224138d 9377 page_gotno = 0;
0a44bf69
RS
9378 else
9379 /* Assume there are two loadable segments consisting of contiguous
9380 sections. Is 5 enough? */
c224138d
RS
9381 page_gotno = (loadable_size >> 16) + 5;
9382
13db6b44 9383 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9384 conservative. */
9385 if (page_gotno > g->page_gotno)
9386 page_gotno = g->page_gotno;
f4416af6 9387
c224138d 9388 g->local_gotno += page_gotno;
cb22ccf4 9389 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9390
ab361d49
RS
9391 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9392 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9393 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9394
0a44bf69
RS
9395 /* VxWorks does not support multiple GOTs. It initializes $gp to
9396 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9397 dynamic loader. */
57093f5e 9398 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9399 {
a8028dd0 9400 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9401 return FALSE;
9402 }
9403 else
9404 {
d7206569
RS
9405 /* Record that all bfds use G. This also has the effect of freeing
9406 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9407 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9408 if (mips_elf_bfd_got (ibfd, FALSE))
9409 mips_elf_replace_bfd_got (ibfd, g);
9410 mips_elf_replace_bfd_got (output_bfd, g);
9411
33bb52fb 9412 /* Set up TLS entries. */
0f20cc35 9413 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9414 tga.info = info;
9415 tga.g = g;
9416 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9417 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9418 if (!tga.g)
9419 return FALSE;
1fd20d70
RS
9420 BFD_ASSERT (g->tls_assigned_gotno
9421 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9422
57093f5e 9423 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9424 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9425 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9426
33bb52fb 9427 /* Allocate room for the TLS relocations. */
ab361d49
RS
9428 if (g->relocs)
9429 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9430 }
b49e97c9 9431
b34976b6 9432 return TRUE;
b49e97c9
TS
9433}
9434
33bb52fb
RS
9435/* Estimate the size of the .MIPS.stubs section. */
9436
9437static void
9438mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9439{
9440 struct mips_elf_link_hash_table *htab;
9441 bfd_size_type dynsymcount;
9442
9443 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9444 BFD_ASSERT (htab != NULL);
9445
33bb52fb
RS
9446 if (htab->lazy_stub_count == 0)
9447 return;
9448
9449 /* IRIX rld assumes that a function stub isn't at the end of the .text
9450 section, so add a dummy entry to the end. */
9451 htab->lazy_stub_count++;
9452
9453 /* Get a worst-case estimate of the number of dynamic symbols needed.
9454 At this point, dynsymcount does not account for section symbols
9455 and count_section_dynsyms may overestimate the number that will
9456 be needed. */
9457 dynsymcount = (elf_hash_table (info)->dynsymcount
9458 + count_section_dynsyms (output_bfd, info));
9459
1bbce132
MR
9460 /* Determine the size of one stub entry. There's no disadvantage
9461 from using microMIPS code here, so for the sake of pure-microMIPS
9462 binaries we prefer it whenever there's any microMIPS code in
9463 output produced at all. This has a benefit of stubs being
833794fc
MR
9464 shorter by 4 bytes each too, unless in the insn32 mode. */
9465 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9466 htab->function_stub_size = (dynsymcount > 0x10000
9467 ? MIPS_FUNCTION_STUB_BIG_SIZE
9468 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9469 else if (htab->insn32)
9470 htab->function_stub_size = (dynsymcount > 0x10000
9471 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9472 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9473 else
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9476 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9477
9478 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9479}
9480
1bbce132
MR
9481/* A mips_elf_link_hash_traverse callback for which DATA points to a
9482 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9483 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9484
9485static bfd_boolean
af924177 9486mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9487{
1bbce132 9488 struct mips_htab_traverse_info *hti = data;
33bb52fb 9489 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9490 struct bfd_link_info *info;
9491 bfd *output_bfd;
9492
9493 info = hti->info;
9494 output_bfd = hti->output_bfd;
9495 htab = mips_elf_hash_table (info);
9496 BFD_ASSERT (htab != NULL);
33bb52fb 9497
33bb52fb
RS
9498 if (h->needs_lazy_stub)
9499 {
1bbce132
MR
9500 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9501 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9502 bfd_vma isa_bit = micromips_p;
9503
9504 BFD_ASSERT (htab->root.dynobj != NULL);
9505 if (h->root.plt.plist == NULL)
9506 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9507 if (h->root.plt.plist == NULL)
9508 {
9509 hti->error = TRUE;
9510 return FALSE;
9511 }
33bb52fb 9512 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9513 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9514 h->root.plt.plist->stub_offset = htab->sstubs->size;
9515 h->root.other = other;
33bb52fb
RS
9516 htab->sstubs->size += htab->function_stub_size;
9517 }
9518 return TRUE;
9519}
9520
9521/* Allocate offsets in the stubs section to each symbol that needs one.
9522 Set the final size of the .MIPS.stub section. */
9523
1bbce132 9524static bfd_boolean
33bb52fb
RS
9525mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9526{
1bbce132
MR
9527 bfd *output_bfd = info->output_bfd;
9528 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9529 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9530 bfd_vma isa_bit = micromips_p;
33bb52fb 9531 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9532 struct mips_htab_traverse_info hti;
9533 struct elf_link_hash_entry *h;
9534 bfd *dynobj;
33bb52fb
RS
9535
9536 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9537 BFD_ASSERT (htab != NULL);
9538
33bb52fb 9539 if (htab->lazy_stub_count == 0)
1bbce132 9540 return TRUE;
33bb52fb
RS
9541
9542 htab->sstubs->size = 0;
1bbce132
MR
9543 hti.info = info;
9544 hti.output_bfd = output_bfd;
9545 hti.error = FALSE;
9546 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9547 if (hti.error)
9548 return FALSE;
33bb52fb
RS
9549 htab->sstubs->size += htab->function_stub_size;
9550 BFD_ASSERT (htab->sstubs->size
9551 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9552
9553 dynobj = elf_hash_table (info)->dynobj;
9554 BFD_ASSERT (dynobj != NULL);
9555 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9556 if (h == NULL)
9557 return FALSE;
9558 h->root.u.def.value = isa_bit;
9559 h->other = other;
9560 h->type = STT_FUNC;
9561
9562 return TRUE;
9563}
9564
9565/* A mips_elf_link_hash_traverse callback for which DATA points to a
9566 bfd_link_info. If H uses the address of a PLT entry as the value
9567 of the symbol, then set the entry in the symbol table now. Prefer
9568 a standard MIPS PLT entry. */
9569
9570static bfd_boolean
9571mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9572{
9573 struct bfd_link_info *info = data;
9574 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9575 struct mips_elf_link_hash_table *htab;
9576 unsigned int other;
9577 bfd_vma isa_bit;
9578 bfd_vma val;
9579
9580 htab = mips_elf_hash_table (info);
9581 BFD_ASSERT (htab != NULL);
9582
9583 if (h->use_plt_entry)
9584 {
9585 BFD_ASSERT (h->root.plt.plist != NULL);
9586 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9587 || h->root.plt.plist->comp_offset != MINUS_ONE);
9588
9589 val = htab->plt_header_size;
9590 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9591 {
9592 isa_bit = 0;
9593 val += h->root.plt.plist->mips_offset;
9594 other = 0;
9595 }
9596 else
9597 {
9598 isa_bit = 1;
9599 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9600 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9601 }
9602 val += isa_bit;
9603 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9604 resolution stub; this stub will become the canonical function
9605 address. */
1bbce132
MR
9606 if (htab->is_vxworks)
9607 val += 8;
9608
ce558b89 9609 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9610 h->root.root.u.def.value = val;
9611 h->root.other = other;
9612 }
9613
9614 return TRUE;
33bb52fb
RS
9615}
9616
b49e97c9
TS
9617/* Set the sizes of the dynamic sections. */
9618
b34976b6 9619bfd_boolean
9719ad41
RS
9620_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9621 struct bfd_link_info *info)
b49e97c9
TS
9622{
9623 bfd *dynobj;
861fb55a 9624 asection *s, *sreldyn;
b34976b6 9625 bfd_boolean reltext;
0a44bf69 9626 struct mips_elf_link_hash_table *htab;
b49e97c9 9627
0a44bf69 9628 htab = mips_elf_hash_table (info);
4dfe6ac6 9629 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9630 dynobj = elf_hash_table (info)->dynobj;
9631 BFD_ASSERT (dynobj != NULL);
9632
9633 if (elf_hash_table (info)->dynamic_sections_created)
9634 {
9635 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9636 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9637 {
3d4d4302 9638 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9639 BFD_ASSERT (s != NULL);
eea6121a 9640 s->size
b49e97c9
TS
9641 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9642 s->contents
9643 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9644 }
861fb55a 9645
1bbce132 9646 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9647 are using it. For the sake of cache alignment always use
9648 a standard header whenever any standard entries are present
9649 even if microMIPS entries are present as well. This also
9650 lets the microMIPS header rely on the value of $v0 only set
9651 by microMIPS entries, for a small size reduction.
1bbce132 9652
07d6d2b8
AM
9653 Set symbol table entry values for symbols that use the
9654 address of their PLT entry now that we can calculate it.
1bbce132 9655
07d6d2b8
AM
9656 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9657 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9658 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9659 {
1bbce132
MR
9660 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9661 && !htab->plt_mips_offset);
9662 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9663 bfd_vma isa_bit = micromips_p;
861fb55a 9664 struct elf_link_hash_entry *h;
1bbce132 9665 bfd_vma size;
861fb55a
DJ
9666
9667 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9668 BFD_ASSERT (htab->root.sgotplt->size == 0);
9669 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9670
0e1862bb 9671 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9672 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9673 else if (htab->is_vxworks)
9674 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9675 else if (ABI_64_P (output_bfd))
9676 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9677 else if (ABI_N32_P (output_bfd))
9678 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9679 else if (!micromips_p)
9680 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9681 else if (htab->insn32)
9682 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9683 else
9684 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9685
1bbce132
MR
9686 htab->plt_header_is_comp = micromips_p;
9687 htab->plt_header_size = size;
ce558b89
AM
9688 htab->root.splt->size = (size
9689 + htab->plt_mips_offset
9690 + htab->plt_comp_offset);
9691 htab->root.sgotplt->size = (htab->plt_got_index
9692 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9693
9694 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9695
9696 if (htab->root.hplt == NULL)
9697 {
ce558b89 9698 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9699 "_PROCEDURE_LINKAGE_TABLE_");
9700 htab->root.hplt = h;
9701 if (h == NULL)
9702 return FALSE;
9703 }
9704
9705 h = htab->root.hplt;
9706 h->root.u.def.value = isa_bit;
9707 h->other = other;
861fb55a
DJ
9708 h->type = STT_FUNC;
9709 }
9710 }
4e41d0d7 9711
9a59ad6b 9712 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9713 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9714
33bb52fb
RS
9715 mips_elf_estimate_stub_size (output_bfd, info);
9716
9717 if (!mips_elf_lay_out_got (output_bfd, info))
9718 return FALSE;
9719
9720 mips_elf_lay_out_lazy_stubs (info);
9721
b49e97c9
TS
9722 /* The check_relocs and adjust_dynamic_symbol entry points have
9723 determined the sizes of the various dynamic sections. Allocate
9724 memory for them. */
b34976b6 9725 reltext = FALSE;
b49e97c9
TS
9726 for (s = dynobj->sections; s != NULL; s = s->next)
9727 {
9728 const char *name;
b49e97c9
TS
9729
9730 /* It's OK to base decisions on the section name, because none
9731 of the dynobj section names depend upon the input files. */
9732 name = bfd_get_section_name (dynobj, s);
9733
9734 if ((s->flags & SEC_LINKER_CREATED) == 0)
9735 continue;
9736
0112cd26 9737 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9738 {
c456f082 9739 if (s->size != 0)
b49e97c9
TS
9740 {
9741 const char *outname;
9742 asection *target;
9743
9744 /* If this relocation section applies to a read only
07d6d2b8
AM
9745 section, then we probably need a DT_TEXTREL entry.
9746 If the relocation section is .rel(a).dyn, we always
9747 assert a DT_TEXTREL entry rather than testing whether
9748 there exists a relocation to a read only section or
9749 not. */
b49e97c9
TS
9750 outname = bfd_get_section_name (output_bfd,
9751 s->output_section);
9752 target = bfd_get_section_by_name (output_bfd, outname + 4);
9753 if ((target != NULL
9754 && (target->flags & SEC_READONLY) != 0
9755 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9756 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9757 reltext = TRUE;
b49e97c9
TS
9758
9759 /* We use the reloc_count field as a counter if we need
9760 to copy relocs into the output file. */
0a44bf69 9761 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9762 s->reloc_count = 0;
f4416af6
AO
9763
9764 /* If combreloc is enabled, elf_link_sort_relocs() will
9765 sort relocations, but in a different way than we do,
9766 and before we're done creating relocations. Also, it
9767 will move them around between input sections'
9768 relocation's contents, so our sorting would be
9769 broken, so don't let it run. */
9770 info->combreloc = 0;
b49e97c9
TS
9771 }
9772 }
0e1862bb 9773 else if (bfd_link_executable (info)
b49e97c9 9774 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9775 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9776 {
5108fc1b 9777 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9778 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9779 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9780 }
9781 else if (SGI_COMPAT (output_bfd)
0112cd26 9782 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9783 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9784 else if (s == htab->root.splt)
861fb55a
DJ
9785 {
9786 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9787 room for an extra nop to fill the delay slot. This is
9788 for CPUs without load interlocking. */
9789 if (! LOAD_INTERLOCKS_P (output_bfd)
9790 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9791 s->size += 4;
9792 }
0112cd26 9793 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9794 && s != htab->root.sgot
9795 && s != htab->root.sgotplt
861fb55a 9796 && s != htab->sstubs
5474d94f
AM
9797 && s != htab->root.sdynbss
9798 && s != htab->root.sdynrelro)
b49e97c9
TS
9799 {
9800 /* It's not one of our sections, so don't allocate space. */
9801 continue;
9802 }
9803
c456f082 9804 if (s->size == 0)
b49e97c9 9805 {
8423293d 9806 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9807 continue;
9808 }
9809
c456f082
AM
9810 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9811 continue;
9812
b49e97c9 9813 /* Allocate memory for the section contents. */
eea6121a 9814 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9815 if (s->contents == NULL)
b49e97c9
TS
9816 {
9817 bfd_set_error (bfd_error_no_memory);
b34976b6 9818 return FALSE;
b49e97c9
TS
9819 }
9820 }
9821
9822 if (elf_hash_table (info)->dynamic_sections_created)
9823 {
9824 /* Add some entries to the .dynamic section. We fill in the
9825 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9826 must add the entries now so that we get the correct size for
5750dcec 9827 the .dynamic section. */
af5978fb
RS
9828
9829 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9830 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9831 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9832 may only look at the first one they see. */
0e1862bb 9833 if (!bfd_link_pic (info)
af5978fb
RS
9834 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9835 return FALSE;
b49e97c9 9836
0e1862bb 9837 if (bfd_link_executable (info)
a5499fa4
MF
9838 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9839 return FALSE;
9840
5750dcec
DJ
9841 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9842 used by the debugger. */
0e1862bb 9843 if (bfd_link_executable (info)
5750dcec
DJ
9844 && !SGI_COMPAT (output_bfd)
9845 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9846 return FALSE;
9847
0a44bf69 9848 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9849 info->flags |= DF_TEXTREL;
9850
9851 if ((info->flags & DF_TEXTREL) != 0)
9852 {
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9854 return FALSE;
943284cc
DJ
9855
9856 /* Clear the DF_TEXTREL flag. It will be set again if we
9857 write out an actual text relocation; we may not, because
9858 at this point we do not know whether e.g. any .eh_frame
9859 absolute relocations have been converted to PC-relative. */
9860 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9861 }
9862
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9864 return FALSE;
b49e97c9 9865
861fb55a 9866 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9867 if (htab->is_vxworks)
b49e97c9 9868 {
0a44bf69
RS
9869 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9870 use any of the DT_MIPS_* tags. */
861fb55a 9871 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9872 {
9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9874 return FALSE;
b49e97c9 9875
0a44bf69
RS
9876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9877 return FALSE;
b49e97c9 9878
0a44bf69
RS
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9880 return FALSE;
9881 }
b49e97c9 9882 }
0a44bf69
RS
9883 else
9884 {
861fb55a 9885 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9886 {
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9888 return FALSE;
b49e97c9 9889
0a44bf69
RS
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9891 return FALSE;
b49e97c9 9892
0a44bf69
RS
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9894 return FALSE;
9895 }
b49e97c9 9896
0a44bf69
RS
9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9898 return FALSE;
b49e97c9 9899
0a44bf69
RS
9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9901 return FALSE;
b49e97c9 9902
0a44bf69
RS
9903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9904 return FALSE;
b49e97c9 9905
0a44bf69
RS
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9907 return FALSE;
b49e97c9 9908
0a44bf69
RS
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9910 return FALSE;
b49e97c9 9911
0a44bf69
RS
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9913 return FALSE;
b49e97c9 9914
0a44bf69
RS
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9916 return FALSE;
9917
9918 if (IRIX_COMPAT (dynobj) == ict_irix5
9919 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9920 return FALSE;
9921
9922 if (IRIX_COMPAT (dynobj) == ict_irix6
9923 && (bfd_get_section_by_name
af0edeb8 9924 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9925 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9926 return FALSE;
9927 }
ce558b89 9928 if (htab->root.splt->size > 0)
861fb55a
DJ
9929 {
9930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9931 return FALSE;
9932
9933 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9934 return FALSE;
9935
9936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9937 return FALSE;
9938
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9940 return FALSE;
9941 }
7a2b07ff
NS
9942 if (htab->is_vxworks
9943 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9944 return FALSE;
b49e97c9
TS
9945 }
9946
b34976b6 9947 return TRUE;
b49e97c9
TS
9948}
9949\f
81d43bff
RS
9950/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9951 Adjust its R_ADDEND field so that it is correct for the output file.
9952 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9953 and sections respectively; both use symbol indexes. */
9954
9955static void
9956mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9957 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9958 asection **local_sections, Elf_Internal_Rela *rel)
9959{
9960 unsigned int r_type, r_symndx;
9961 Elf_Internal_Sym *sym;
9962 asection *sec;
9963
020d7251 9964 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9965 {
9966 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9967 if (gprel16_reloc_p (r_type)
81d43bff 9968 || r_type == R_MIPS_GPREL32
df58fc94 9969 || literal_reloc_p (r_type))
81d43bff
RS
9970 {
9971 rel->r_addend += _bfd_get_gp_value (input_bfd);
9972 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9973 }
9974
9975 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9976 sym = local_syms + r_symndx;
9977
9978 /* Adjust REL's addend to account for section merging. */
0e1862bb 9979 if (!bfd_link_relocatable (info))
81d43bff
RS
9980 {
9981 sec = local_sections[r_symndx];
9982 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9983 }
9984
9985 /* This would normally be done by the rela_normal code in elflink.c. */
9986 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9987 rel->r_addend += local_sections[r_symndx]->output_offset;
9988 }
9989}
9990
545fd46b
MR
9991/* Handle relocations against symbols from removed linkonce sections,
9992 or sections discarded by a linker script. We use this wrapper around
9993 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9994 on 64-bit ELF targets. In this case for any relocation handled, which
9995 always be the first in a triplet, the remaining two have to be processed
9996 together with the first, even if they are R_MIPS_NONE. It is the symbol
9997 index referred by the first reloc that applies to all the three and the
9998 remaining two never refer to an object symbol. And it is the final
9999 relocation (the last non-null one) that determines the output field of
10000 the whole relocation so retrieve the corresponding howto structure for
10001 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10002
10003 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10004 and therefore requires to be pasted in a loop. It also defines a block
10005 and does not protect any of its arguments, hence the extra brackets. */
10006
10007static void
10008mips_reloc_against_discarded_section (bfd *output_bfd,
10009 struct bfd_link_info *info,
10010 bfd *input_bfd, asection *input_section,
10011 Elf_Internal_Rela **rel,
10012 const Elf_Internal_Rela **relend,
10013 bfd_boolean rel_reloc,
10014 reloc_howto_type *howto,
10015 bfd_byte *contents)
10016{
10017 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10018 int count = bed->s->int_rels_per_ext_rel;
10019 unsigned int r_type;
10020 int i;
10021
10022 for (i = count - 1; i > 0; i--)
10023 {
10024 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10025 if (r_type != R_MIPS_NONE)
10026 {
10027 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10028 break;
10029 }
10030 }
10031 do
10032 {
10033 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10034 (*rel), count, (*relend),
10035 howto, i, contents);
10036 }
10037 while (0);
10038}
10039
b49e97c9
TS
10040/* Relocate a MIPS ELF section. */
10041
b34976b6 10042bfd_boolean
9719ad41
RS
10043_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10044 bfd *input_bfd, asection *input_section,
10045 bfd_byte *contents, Elf_Internal_Rela *relocs,
10046 Elf_Internal_Sym *local_syms,
10047 asection **local_sections)
b49e97c9
TS
10048{
10049 Elf_Internal_Rela *rel;
10050 const Elf_Internal_Rela *relend;
10051 bfd_vma addend = 0;
b34976b6 10052 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10053
056bafd4 10054 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10055 for (rel = relocs; rel < relend; ++rel)
10056 {
10057 const char *name;
c9adbffe 10058 bfd_vma value = 0;
b49e97c9 10059 reloc_howto_type *howto;
ad3d9127 10060 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10061 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10062 REL relocation. */
b34976b6 10063 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10064 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10065 const char *msg;
ab96bf03
AM
10066 unsigned long r_symndx;
10067 asection *sec;
749b8d9d
L
10068 Elf_Internal_Shdr *symtab_hdr;
10069 struct elf_link_hash_entry *h;
d4730f92 10070 bfd_boolean rel_reloc;
b49e97c9 10071
d4730f92
BS
10072 rel_reloc = (NEWABI_P (input_bfd)
10073 && mips_elf_rel_relocation_p (input_bfd, input_section,
10074 relocs, rel));
b49e97c9 10075 /* Find the relocation howto for this relocation. */
d4730f92 10076 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10077
10078 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10079 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10080 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10081 {
10082 sec = local_sections[r_symndx];
10083 h = NULL;
10084 }
ab96bf03
AM
10085 else
10086 {
ab96bf03 10087 unsigned long extsymoff;
ab96bf03 10088
ab96bf03
AM
10089 extsymoff = 0;
10090 if (!elf_bad_symtab (input_bfd))
10091 extsymoff = symtab_hdr->sh_info;
10092 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10093 while (h->root.type == bfd_link_hash_indirect
10094 || h->root.type == bfd_link_hash_warning)
10095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10096
10097 sec = NULL;
10098 if (h->root.type == bfd_link_hash_defined
10099 || h->root.type == bfd_link_hash_defweak)
10100 sec = h->root.u.def.section;
10101 }
10102
dbaa2011 10103 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10104 {
10105 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10106 input_section, &rel, &relend,
10107 rel_reloc, howto, contents);
10108 continue;
10109 }
ab96bf03 10110
4a14403c 10111 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10112 {
10113 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10114 64-bit code, but make sure all their addresses are in the
10115 lowermost or uppermost 32-bit section of the 64-bit address
10116 space. Thus, when they use an R_MIPS_64 they mean what is
10117 usually meant by R_MIPS_32, with the exception that the
10118 stored value is sign-extended to 64 bits. */
b34976b6 10119 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10120
10121 /* On big-endian systems, we need to lie about the position
10122 of the reloc. */
10123 if (bfd_big_endian (input_bfd))
10124 rel->r_offset += 4;
10125 }
b49e97c9
TS
10126
10127 if (!use_saved_addend_p)
10128 {
b49e97c9
TS
10129 /* If these relocations were originally of the REL variety,
10130 we must pull the addend out of the field that will be
10131 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10132 RELA relocation. */
10133 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10134 relocs, rel))
b49e97c9 10135 {
b34976b6 10136 rela_relocation_p = FALSE;
c224138d
RS
10137 addend = mips_elf_read_rel_addend (input_bfd, rel,
10138 howto, contents);
738e5348
RS
10139 if (hi16_reloc_p (r_type)
10140 || (got16_reloc_p (r_type)
b49e97c9 10141 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10142 local_sections)))
b49e97c9 10143 {
c224138d
RS
10144 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10145 contents, &addend))
749b8d9d 10146 {
749b8d9d
L
10147 if (h)
10148 name = h->root.root.string;
10149 else
10150 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10151 local_syms + r_symndx,
10152 sec);
4eca0228 10153 _bfd_error_handler
695344c0 10154 /* xgettext:c-format */
c08bb8dd 10155 (_("%B: Can't find matching LO16 reloc against `%s'"
d42c267e 10156 " for %s at %#Lx in section `%A'"),
c08bb8dd
AM
10157 input_bfd, name,
10158 howto->name, rel->r_offset, input_section);
749b8d9d 10159 }
b49e97c9 10160 }
30ac9238
RS
10161 else
10162 addend <<= howto->rightshift;
b49e97c9
TS
10163 }
10164 else
10165 addend = rel->r_addend;
81d43bff
RS
10166 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10167 local_syms, local_sections, rel);
b49e97c9
TS
10168 }
10169
0e1862bb 10170 if (bfd_link_relocatable (info))
b49e97c9 10171 {
4a14403c 10172 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10173 && bfd_big_endian (input_bfd))
10174 rel->r_offset -= 4;
10175
81d43bff 10176 if (!rela_relocation_p && rel->r_addend)
5a659663 10177 {
81d43bff 10178 addend += rel->r_addend;
738e5348 10179 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10180 addend = mips_elf_high (addend);
10181 else if (r_type == R_MIPS_HIGHER)
10182 addend = mips_elf_higher (addend);
10183 else if (r_type == R_MIPS_HIGHEST)
10184 addend = mips_elf_highest (addend);
30ac9238
RS
10185 else
10186 addend >>= howto->rightshift;
b49e97c9 10187
30ac9238
RS
10188 /* We use the source mask, rather than the destination
10189 mask because the place to which we are writing will be
10190 source of the addend in the final link. */
b49e97c9
TS
10191 addend &= howto->src_mask;
10192
5a659663 10193 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10194 /* See the comment above about using R_MIPS_64 in the 32-bit
10195 ABI. Here, we need to update the addend. It would be
10196 possible to get away with just using the R_MIPS_32 reloc
10197 but for endianness. */
10198 {
10199 bfd_vma sign_bits;
10200 bfd_vma low_bits;
10201 bfd_vma high_bits;
10202
10203 if (addend & ((bfd_vma) 1 << 31))
10204#ifdef BFD64
10205 sign_bits = ((bfd_vma) 1 << 32) - 1;
10206#else
10207 sign_bits = -1;
10208#endif
10209 else
10210 sign_bits = 0;
10211
10212 /* If we don't know that we have a 64-bit type,
10213 do two separate stores. */
10214 if (bfd_big_endian (input_bfd))
10215 {
10216 /* Store the sign-bits (which are most significant)
10217 first. */
10218 low_bits = sign_bits;
10219 high_bits = addend;
10220 }
10221 else
10222 {
10223 low_bits = addend;
10224 high_bits = sign_bits;
10225 }
10226 bfd_put_32 (input_bfd, low_bits,
10227 contents + rel->r_offset);
10228 bfd_put_32 (input_bfd, high_bits,
10229 contents + rel->r_offset + 4);
10230 continue;
10231 }
10232
10233 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10234 input_bfd, input_section,
b34976b6
AM
10235 contents, FALSE))
10236 return FALSE;
b49e97c9
TS
10237 }
10238
10239 /* Go on to the next relocation. */
10240 continue;
10241 }
10242
10243 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10244 relocations for the same offset. In that case we are
10245 supposed to treat the output of each relocation as the addend
10246 for the next. */
10247 if (rel + 1 < relend
10248 && rel->r_offset == rel[1].r_offset
10249 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10250 use_saved_addend_p = TRUE;
b49e97c9 10251 else
b34976b6 10252 use_saved_addend_p = FALSE;
b49e97c9
TS
10253
10254 /* Figure out what value we are supposed to relocate. */
10255 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10256 input_section, info, rel,
10257 addend, howto, local_syms,
10258 local_sections, &value,
38a7df63 10259 &name, &cross_mode_jump_p,
bce03d3d 10260 use_saved_addend_p))
b49e97c9
TS
10261 {
10262 case bfd_reloc_continue:
10263 /* There's nothing to do. */
10264 continue;
10265
10266 case bfd_reloc_undefined:
10267 /* mips_elf_calculate_relocation already called the
10268 undefined_symbol callback. There's no real point in
10269 trying to perform the relocation at this point, so we
10270 just skip ahead to the next relocation. */
10271 continue;
10272
10273 case bfd_reloc_notsupported:
10274 msg = _("internal error: unsupported relocation error");
10275 info->callbacks->warning
10276 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10277 return FALSE;
b49e97c9
TS
10278
10279 case bfd_reloc_overflow:
10280 if (use_saved_addend_p)
10281 /* Ignore overflow until we reach the last relocation for
10282 a given location. */
10283 ;
10284 else
10285 {
0e53d9da
AN
10286 struct mips_elf_link_hash_table *htab;
10287
10288 htab = mips_elf_hash_table (info);
4dfe6ac6 10289 BFD_ASSERT (htab != NULL);
b49e97c9 10290 BFD_ASSERT (name != NULL);
0e53d9da 10291 if (!htab->small_data_overflow_reported
9684f078 10292 && (gprel16_reloc_p (howto->type)
df58fc94 10293 || literal_reloc_p (howto->type)))
0e53d9da 10294 {
91d6fa6a
NC
10295 msg = _("small-data section exceeds 64KB;"
10296 " lower small-data size limit (see option -G)");
0e53d9da
AN
10297
10298 htab->small_data_overflow_reported = TRUE;
10299 (*info->callbacks->einfo) ("%P: %s\n", msg);
10300 }
1a72702b
AM
10301 (*info->callbacks->reloc_overflow)
10302 (info, NULL, name, howto->name, (bfd_vma) 0,
10303 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10304 }
10305 break;
10306
10307 case bfd_reloc_ok:
10308 break;
10309
df58fc94 10310 case bfd_reloc_outofrange:
7db9a74e 10311 msg = NULL;
df58fc94 10312 if (jal_reloc_p (howto->type))
9d862524
MR
10313 msg = (cross_mode_jump_p
10314 ? _("Cannot convert a jump to JALX "
10315 "for a non-word-aligned address")
10316 : (howto->type == R_MIPS16_26
10317 ? _("Jump to a non-word-aligned address")
10318 : _("Jump to a non-instruction-aligned address")));
99aefae6 10319 else if (b_reloc_p (howto->type))
a6ebf616
MR
10320 msg = (cross_mode_jump_p
10321 ? _("Cannot convert a branch to JALX "
10322 "for a non-word-aligned address")
10323 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10324 else if (aligned_pcrel_reloc_p (howto->type))
10325 msg = _("PC-relative load from unaligned address");
10326 if (msg)
df58fc94 10327 {
de341542 10328 info->callbacks->einfo
ed53407e
MR
10329 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10330 break;
7361da2c 10331 }
df58fc94
RS
10332 /* Fall through. */
10333
b49e97c9
TS
10334 default:
10335 abort ();
10336 break;
10337 }
10338
10339 /* If we've got another relocation for the address, keep going
10340 until we reach the last one. */
10341 if (use_saved_addend_p)
10342 {
10343 addend = value;
10344 continue;
10345 }
10346
4a14403c 10347 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10348 /* See the comment above about using R_MIPS_64 in the 32-bit
10349 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10350 that calculated the right value. Now, however, we
10351 sign-extend the 32-bit result to 64-bits, and store it as a
10352 64-bit value. We are especially generous here in that we
10353 go to extreme lengths to support this usage on systems with
10354 only a 32-bit VMA. */
10355 {
10356 bfd_vma sign_bits;
10357 bfd_vma low_bits;
10358 bfd_vma high_bits;
10359
10360 if (value & ((bfd_vma) 1 << 31))
10361#ifdef BFD64
10362 sign_bits = ((bfd_vma) 1 << 32) - 1;
10363#else
10364 sign_bits = -1;
10365#endif
10366 else
10367 sign_bits = 0;
10368
10369 /* If we don't know that we have a 64-bit type,
10370 do two separate stores. */
10371 if (bfd_big_endian (input_bfd))
10372 {
10373 /* Undo what we did above. */
10374 rel->r_offset -= 4;
10375 /* Store the sign-bits (which are most significant)
10376 first. */
10377 low_bits = sign_bits;
10378 high_bits = value;
10379 }
10380 else
10381 {
10382 low_bits = value;
10383 high_bits = sign_bits;
10384 }
10385 bfd_put_32 (input_bfd, low_bits,
10386 contents + rel->r_offset);
10387 bfd_put_32 (input_bfd, high_bits,
10388 contents + rel->r_offset + 4);
10389 continue;
10390 }
10391
10392 /* Actually perform the relocation. */
10393 if (! mips_elf_perform_relocation (info, howto, rel, value,
10394 input_bfd, input_section,
38a7df63 10395 contents, cross_mode_jump_p))
b34976b6 10396 return FALSE;
b49e97c9
TS
10397 }
10398
b34976b6 10399 return TRUE;
b49e97c9
TS
10400}
10401\f
861fb55a
DJ
10402/* A function that iterates over each entry in la25_stubs and fills
10403 in the code for each one. DATA points to a mips_htab_traverse_info. */
10404
10405static int
10406mips_elf_create_la25_stub (void **slot, void *data)
10407{
10408 struct mips_htab_traverse_info *hti;
10409 struct mips_elf_link_hash_table *htab;
10410 struct mips_elf_la25_stub *stub;
10411 asection *s;
10412 bfd_byte *loc;
10413 bfd_vma offset, target, target_high, target_low;
10414
10415 stub = (struct mips_elf_la25_stub *) *slot;
10416 hti = (struct mips_htab_traverse_info *) data;
10417 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10418 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10419
10420 /* Create the section contents, if we haven't already. */
10421 s = stub->stub_section;
10422 loc = s->contents;
10423 if (loc == NULL)
10424 {
10425 loc = bfd_malloc (s->size);
10426 if (loc == NULL)
10427 {
10428 hti->error = TRUE;
10429 return FALSE;
10430 }
10431 s->contents = loc;
10432 }
10433
10434 /* Work out where in the section this stub should go. */
10435 offset = stub->offset;
10436
10437 /* Work out the target address. */
8f0c309a
CLT
10438 target = mips_elf_get_la25_target (stub, &s);
10439 target += s->output_section->vma + s->output_offset;
10440
861fb55a
DJ
10441 target_high = ((target + 0x8000) >> 16) & 0xffff;
10442 target_low = (target & 0xffff);
10443
10444 if (stub->stub_section != htab->strampoline)
10445 {
df58fc94 10446 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10447 of the section and write the two instructions at the end. */
10448 memset (loc, 0, offset);
10449 loc += offset;
df58fc94
RS
10450 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10451 {
d21911ea
MR
10452 bfd_put_micromips_32 (hti->output_bfd,
10453 LA25_LUI_MICROMIPS (target_high),
10454 loc);
10455 bfd_put_micromips_32 (hti->output_bfd,
10456 LA25_ADDIU_MICROMIPS (target_low),
10457 loc + 4);
df58fc94
RS
10458 }
10459 else
10460 {
10461 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10462 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10463 }
861fb55a
DJ
10464 }
10465 else
10466 {
10467 /* This is trampoline. */
10468 loc += offset;
df58fc94
RS
10469 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10470 {
d21911ea
MR
10471 bfd_put_micromips_32 (hti->output_bfd,
10472 LA25_LUI_MICROMIPS (target_high), loc);
10473 bfd_put_micromips_32 (hti->output_bfd,
10474 LA25_J_MICROMIPS (target), loc + 4);
10475 bfd_put_micromips_32 (hti->output_bfd,
10476 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10477 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10478 }
10479 else
10480 {
10481 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10482 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10483 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10484 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10485 }
861fb55a
DJ
10486 }
10487 return TRUE;
10488}
10489
b49e97c9
TS
10490/* If NAME is one of the special IRIX6 symbols defined by the linker,
10491 adjust it appropriately now. */
10492
10493static void
9719ad41
RS
10494mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10495 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10496{
10497 /* The linker script takes care of providing names and values for
10498 these, but we must place them into the right sections. */
10499 static const char* const text_section_symbols[] = {
10500 "_ftext",
10501 "_etext",
10502 "__dso_displacement",
10503 "__elf_header",
10504 "__program_header_table",
10505 NULL
10506 };
10507
10508 static const char* const data_section_symbols[] = {
10509 "_fdata",
10510 "_edata",
10511 "_end",
10512 "_fbss",
10513 NULL
10514 };
10515
10516 const char* const *p;
10517 int i;
10518
10519 for (i = 0; i < 2; ++i)
10520 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10521 *p;
10522 ++p)
10523 if (strcmp (*p, name) == 0)
10524 {
10525 /* All of these symbols are given type STT_SECTION by the
10526 IRIX6 linker. */
10527 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10528 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10529
10530 /* The IRIX linker puts these symbols in special sections. */
10531 if (i == 0)
10532 sym->st_shndx = SHN_MIPS_TEXT;
10533 else
10534 sym->st_shndx = SHN_MIPS_DATA;
10535
10536 break;
10537 }
10538}
10539
10540/* Finish up dynamic symbol handling. We set the contents of various
10541 dynamic sections here. */
10542
b34976b6 10543bfd_boolean
9719ad41
RS
10544_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10545 struct bfd_link_info *info,
10546 struct elf_link_hash_entry *h,
10547 Elf_Internal_Sym *sym)
b49e97c9
TS
10548{
10549 bfd *dynobj;
b49e97c9 10550 asection *sgot;
f4416af6 10551 struct mips_got_info *g, *gg;
b49e97c9 10552 const char *name;
3d6746ca 10553 int idx;
5108fc1b 10554 struct mips_elf_link_hash_table *htab;
738e5348 10555 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10556
5108fc1b 10557 htab = mips_elf_hash_table (info);
4dfe6ac6 10558 BFD_ASSERT (htab != NULL);
b49e97c9 10559 dynobj = elf_hash_table (info)->dynobj;
738e5348 10560 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10561
861fb55a
DJ
10562 BFD_ASSERT (!htab->is_vxworks);
10563
1bbce132
MR
10564 if (h->plt.plist != NULL
10565 && (h->plt.plist->mips_offset != MINUS_ONE
10566 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10567 {
10568 /* We've decided to create a PLT entry for this symbol. */
10569 bfd_byte *loc;
1bbce132 10570 bfd_vma header_address, got_address;
861fb55a 10571 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10572 bfd_vma got_index;
10573 bfd_vma isa_bit;
10574
10575 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10576
10577 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10578 BFD_ASSERT (h->dynindx != -1);
ce558b89 10579 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10580 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10581 BFD_ASSERT (!h->def_regular);
10582
10583 /* Calculate the address of the PLT header. */
1bbce132 10584 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10585 header_address = (htab->root.splt->output_section->vma
10586 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10587
10588 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10589 got_address = (htab->root.sgotplt->output_section->vma
10590 + htab->root.sgotplt->output_offset
1bbce132
MR
10591 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10592
861fb55a
DJ
10593 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10594 got_address_low = got_address & 0xffff;
10595
10596 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10597 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10598 if (ABI_64_P (output_bfd))
10599 bfd_put_64 (output_bfd, header_address, loc);
10600 else
10601 bfd_put_32 (output_bfd, header_address, loc);
10602
1bbce132 10603 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10604 does not matter, we just have to pick one). */
1bbce132
MR
10605 if (h->plt.plist->mips_offset != MINUS_ONE)
10606 {
10607 const bfd_vma *plt_entry;
10608 bfd_vma plt_offset;
861fb55a 10609
1bbce132 10610 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10611
ce558b89 10612 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10613
1bbce132 10614 /* Find out where the .plt entry should go. */
ce558b89 10615 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10616
10617 /* Pick the load opcode. */
10618 load = MIPS_ELF_LOAD_WORD (output_bfd);
10619
10620 /* Fill in the PLT entry itself. */
7361da2c
AB
10621
10622 if (MIPSR6_P (output_bfd))
10623 plt_entry = mipsr6_exec_plt_entry;
10624 else
10625 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10626 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10627 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10628 loc + 4);
10629
10630 if (! LOAD_INTERLOCKS_P (output_bfd))
10631 {
10632 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10633 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10634 }
10635 else
10636 {
10637 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10638 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10639 loc + 12);
10640 }
6d30f5b2 10641 }
1bbce132
MR
10642
10643 /* Now the compressed entry. They come after any standard ones. */
10644 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10645 {
1bbce132
MR
10646 bfd_vma plt_offset;
10647
10648 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10649 + h->plt.plist->comp_offset);
10650
ce558b89 10651 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10652
10653 /* Find out where the .plt entry should go. */
ce558b89 10654 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10655
10656 /* Fill in the PLT entry itself. */
833794fc
MR
10657 if (!MICROMIPS_P (output_bfd))
10658 {
10659 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10660
10661 bfd_put_16 (output_bfd, plt_entry[0], loc);
10662 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10663 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10664 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10665 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10666 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10667 bfd_put_32 (output_bfd, got_address, loc + 12);
10668 }
10669 else if (htab->insn32)
10670 {
10671 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10672
10673 bfd_put_16 (output_bfd, plt_entry[0], loc);
10674 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10675 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10676 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10677 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10678 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10679 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10680 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10681 }
10682 else
1bbce132
MR
10683 {
10684 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10685 bfd_signed_vma gotpc_offset;
10686 bfd_vma loc_address;
10687
10688 BFD_ASSERT (got_address % 4 == 0);
10689
ce558b89
AM
10690 loc_address = (htab->root.splt->output_section->vma
10691 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10692 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10693
10694 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10695 if (gotpc_offset + 0x1000000 >= 0x2000000)
10696 {
4eca0228 10697 _bfd_error_handler
695344c0 10698 /* xgettext:c-format */
d42c267e 10699 (_("%B: `%A' offset of %Ld from `%A' "
1bbce132
MR
10700 "beyond the range of ADDIUPC"),
10701 output_bfd,
ce558b89 10702 htab->root.sgotplt->output_section,
d42c267e 10703 gotpc_offset,
c08bb8dd 10704 htab->root.splt->output_section);
1bbce132
MR
10705 bfd_set_error (bfd_error_no_error);
10706 return FALSE;
10707 }
10708 bfd_put_16 (output_bfd,
10709 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10710 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10711 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10712 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10713 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10714 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10715 }
6d30f5b2 10716 }
861fb55a
DJ
10717
10718 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10719 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10720 got_index - 2, h->dynindx,
861fb55a
DJ
10721 R_MIPS_JUMP_SLOT, got_address);
10722
10723 /* We distinguish between PLT entries and lazy-binding stubs by
10724 giving the former an st_other value of STO_MIPS_PLT. Set the
10725 flag and leave the value if there are any relocations in the
10726 binary where pointer equality matters. */
10727 sym->st_shndx = SHN_UNDEF;
10728 if (h->pointer_equality_needed)
1bbce132 10729 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10730 else
1bbce132
MR
10731 {
10732 sym->st_value = 0;
10733 sym->st_other = 0;
10734 }
861fb55a 10735 }
1bbce132
MR
10736
10737 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10738 {
861fb55a 10739 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10740 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10741 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10742 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10743 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10744 bfd_vma isa_bit = micromips_p;
10745 bfd_vma stub_big_size;
10746
833794fc 10747 if (!micromips_p)
1bbce132 10748 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10749 else if (htab->insn32)
10750 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10751 else
10752 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10753
10754 /* This symbol has a stub. Set it up. */
10755
10756 BFD_ASSERT (h->dynindx != -1);
10757
1bbce132 10758 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10759
10760 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10761 sign extension at runtime in the stub, resulting in a negative
10762 index value. */
10763 if (h->dynindx & ~0x7fffffff)
b34976b6 10764 return FALSE;
b49e97c9
TS
10765
10766 /* Fill the stub. */
1bbce132
MR
10767 if (micromips_p)
10768 {
10769 idx = 0;
10770 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10771 stub + idx);
10772 idx += 4;
833794fc
MR
10773 if (htab->insn32)
10774 {
10775 bfd_put_micromips_32 (output_bfd,
40fc1451 10776 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10777 idx += 4;
10778 }
10779 else
10780 {
10781 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10782 idx += 2;
10783 }
1bbce132
MR
10784 if (stub_size == stub_big_size)
10785 {
10786 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10787
10788 bfd_put_micromips_32 (output_bfd,
10789 STUB_LUI_MICROMIPS (dynindx_hi),
10790 stub + idx);
10791 idx += 4;
10792 }
833794fc
MR
10793 if (htab->insn32)
10794 {
10795 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10796 stub + idx);
10797 idx += 4;
10798 }
10799 else
10800 {
10801 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10802 idx += 2;
10803 }
1bbce132
MR
10804
10805 /* If a large stub is not required and sign extension is not a
10806 problem, then use legacy code in the stub. */
10807 if (stub_size == stub_big_size)
10808 bfd_put_micromips_32 (output_bfd,
10809 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10810 stub + idx);
10811 else if (h->dynindx & ~0x7fff)
10812 bfd_put_micromips_32 (output_bfd,
10813 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10814 stub + idx);
10815 else
10816 bfd_put_micromips_32 (output_bfd,
10817 STUB_LI16S_MICROMIPS (output_bfd,
10818 h->dynindx),
10819 stub + idx);
10820 }
3d6746ca 10821 else
1bbce132
MR
10822 {
10823 idx = 0;
10824 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10825 idx += 4;
40fc1451 10826 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10827 idx += 4;
10828 if (stub_size == stub_big_size)
10829 {
10830 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10831 stub + idx);
10832 idx += 4;
10833 }
10834 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10835 idx += 4;
10836
10837 /* If a large stub is not required and sign extension is not a
10838 problem, then use legacy code in the stub. */
10839 if (stub_size == stub_big_size)
10840 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10841 stub + idx);
10842 else if (h->dynindx & ~0x7fff)
10843 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10844 stub + idx);
10845 else
10846 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10847 stub + idx);
10848 }
5108fc1b 10849
1bbce132
MR
10850 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10851 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10852 stub, stub_size);
b49e97c9 10853
1bbce132 10854 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10855 only for the referenced symbol. */
10856 sym->st_shndx = SHN_UNDEF;
10857
10858 /* The run-time linker uses the st_value field of the symbol
10859 to reset the global offset table entry for this external
10860 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10861 sym->st_value = (htab->sstubs->output_section->vma
10862 + htab->sstubs->output_offset
1bbce132
MR
10863 + h->plt.plist->stub_offset
10864 + isa_bit);
10865 sym->st_other = other;
b49e97c9
TS
10866 }
10867
738e5348
RS
10868 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10869 refer to the stub, since only the stub uses the standard calling
10870 conventions. */
10871 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10872 {
10873 BFD_ASSERT (hmips->need_fn_stub);
10874 sym->st_value = (hmips->fn_stub->output_section->vma
10875 + hmips->fn_stub->output_offset);
10876 sym->st_size = hmips->fn_stub->size;
10877 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10878 }
10879
b49e97c9 10880 BFD_ASSERT (h->dynindx != -1
f5385ebf 10881 || h->forced_local);
b49e97c9 10882
ce558b89 10883 sgot = htab->root.sgot;
a8028dd0 10884 g = htab->got_info;
b49e97c9
TS
10885 BFD_ASSERT (g != NULL);
10886
10887 /* Run through the global symbol table, creating GOT entries for all
10888 the symbols that need them. */
020d7251 10889 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10890 {
10891 bfd_vma offset;
10892 bfd_vma value;
10893
6eaa6adc 10894 value = sym->st_value;
13fbec83 10895 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10896 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10897 }
10898
e641e783 10899 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10900 {
10901 struct mips_got_entry e, *p;
0626d451 10902 bfd_vma entry;
f4416af6 10903 bfd_vma offset;
f4416af6
AO
10904
10905 gg = g;
10906
10907 e.abfd = output_bfd;
10908 e.symndx = -1;
738e5348 10909 e.d.h = hmips;
9ab066b4 10910 e.tls_type = GOT_TLS_NONE;
143d77c5 10911
f4416af6
AO
10912 for (g = g->next; g->next != gg; g = g->next)
10913 {
10914 if (g->got_entries
10915 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10916 &e)))
10917 {
10918 offset = p->gotidx;
ce558b89 10919 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10920 if (bfd_link_pic (info)
0626d451
RS
10921 || (elf_hash_table (info)->dynamic_sections_created
10922 && p->d.h != NULL
f5385ebf
AM
10923 && p->d.h->root.def_dynamic
10924 && !p->d.h->root.def_regular))
0626d451
RS
10925 {
10926 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10927 the various compatibility problems, it's easier to mock
10928 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10929 mips_elf_create_dynamic_relocation to calculate the
10930 appropriate addend. */
10931 Elf_Internal_Rela rel[3];
10932
10933 memset (rel, 0, sizeof (rel));
10934 if (ABI_64_P (output_bfd))
10935 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10936 else
10937 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10939
10940 entry = 0;
10941 if (! (mips_elf_create_dynamic_relocation
10942 (output_bfd, info, rel,
10943 e.d.h, NULL, sym->st_value, &entry, sgot)))
10944 return FALSE;
10945 }
10946 else
10947 entry = sym->st_value;
10948 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10949 }
10950 }
10951 }
10952
b49e97c9
TS
10953 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10954 name = h->root.root.string;
9637f6ef 10955 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10956 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10957 sym->st_shndx = SHN_ABS;
10958 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10959 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10960 {
10961 sym->st_shndx = SHN_ABS;
10962 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10963 sym->st_value = 1;
10964 }
4a14403c 10965 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10966 {
10967 sym->st_shndx = SHN_ABS;
10968 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10969 sym->st_value = elf_gp (output_bfd);
10970 }
10971 else if (SGI_COMPAT (output_bfd))
10972 {
10973 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10974 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10975 {
10976 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10977 sym->st_other = STO_PROTECTED;
10978 sym->st_value = 0;
10979 sym->st_shndx = SHN_MIPS_DATA;
10980 }
10981 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10982 {
10983 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10984 sym->st_other = STO_PROTECTED;
10985 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10986 sym->st_shndx = SHN_ABS;
10987 }
10988 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10989 {
10990 if (h->type == STT_FUNC)
10991 sym->st_shndx = SHN_MIPS_TEXT;
10992 else if (h->type == STT_OBJECT)
10993 sym->st_shndx = SHN_MIPS_DATA;
10994 }
10995 }
10996
861fb55a
DJ
10997 /* Emit a copy reloc, if needed. */
10998 if (h->needs_copy)
10999 {
11000 asection *s;
11001 bfd_vma symval;
11002
11003 BFD_ASSERT (h->dynindx != -1);
11004 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11005
11006 s = mips_elf_rel_dyn_section (info, FALSE);
11007 symval = (h->root.u.def.section->output_section->vma
11008 + h->root.u.def.section->output_offset
11009 + h->root.u.def.value);
11010 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11011 h->dynindx, R_MIPS_COPY, symval);
11012 }
11013
b49e97c9
TS
11014 /* Handle the IRIX6-specific symbols. */
11015 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11016 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11017
cbf8d970
MR
11018 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11019 to treat compressed symbols like any other. */
30c09090 11020 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11021 {
11022 BFD_ASSERT (sym->st_value & 1);
11023 sym->st_other -= STO_MIPS16;
11024 }
cbf8d970
MR
11025 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11026 {
11027 BFD_ASSERT (sym->st_value & 1);
11028 sym->st_other -= STO_MICROMIPS;
11029 }
b49e97c9 11030
b34976b6 11031 return TRUE;
b49e97c9
TS
11032}
11033
0a44bf69
RS
11034/* Likewise, for VxWorks. */
11035
11036bfd_boolean
11037_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11038 struct bfd_link_info *info,
11039 struct elf_link_hash_entry *h,
11040 Elf_Internal_Sym *sym)
11041{
11042 bfd *dynobj;
11043 asection *sgot;
11044 struct mips_got_info *g;
11045 struct mips_elf_link_hash_table *htab;
020d7251 11046 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11047
11048 htab = mips_elf_hash_table (info);
4dfe6ac6 11049 BFD_ASSERT (htab != NULL);
0a44bf69 11050 dynobj = elf_hash_table (info)->dynobj;
020d7251 11051 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11052
1bbce132 11053 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11054 {
6d79d2ed 11055 bfd_byte *loc;
1bbce132 11056 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11057 Elf_Internal_Rela rel;
11058 static const bfd_vma *plt_entry;
1bbce132
MR
11059 bfd_vma gotplt_index;
11060 bfd_vma plt_offset;
11061
11062 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11063 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11064
11065 BFD_ASSERT (h->dynindx != -1);
ce558b89 11066 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11067 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11068 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11069
11070 /* Calculate the address of the .plt entry. */
ce558b89
AM
11071 plt_address = (htab->root.splt->output_section->vma
11072 + htab->root.splt->output_offset
1bbce132 11073 + plt_offset);
0a44bf69
RS
11074
11075 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11076 got_address = (htab->root.sgotplt->output_section->vma
11077 + htab->root.sgotplt->output_offset
1bbce132 11078 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11079
11080 /* Calculate the offset of the .got.plt entry from
11081 _GLOBAL_OFFSET_TABLE_. */
11082 got_offset = mips_elf_gotplt_index (info, h);
11083
11084 /* Calculate the offset for the branch at the start of the PLT
11085 entry. The branch jumps to the beginning of .plt. */
1bbce132 11086 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11087
11088 /* Fill in the initial value of the .got.plt entry. */
11089 bfd_put_32 (output_bfd, plt_address,
ce558b89 11090 (htab->root.sgotplt->contents
1bbce132 11091 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11092
11093 /* Find out where the .plt entry should go. */
ce558b89 11094 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11095
0e1862bb 11096 if (bfd_link_pic (info))
0a44bf69
RS
11097 {
11098 plt_entry = mips_vxworks_shared_plt_entry;
11099 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11100 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11101 }
11102 else
11103 {
11104 bfd_vma got_address_high, got_address_low;
11105
11106 plt_entry = mips_vxworks_exec_plt_entry;
11107 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11108 got_address_low = got_address & 0xffff;
11109
11110 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11111 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11112 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11113 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11114 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11115 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11116 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11117 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11118
11119 loc = (htab->srelplt2->contents
1bbce132 11120 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11121
11122 /* Emit a relocation for the .got.plt entry. */
11123 rel.r_offset = got_address;
11124 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11125 rel.r_addend = plt_offset;
0a44bf69
RS
11126 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11127
11128 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11129 loc += sizeof (Elf32_External_Rela);
11130 rel.r_offset = plt_address + 8;
11131 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11132 rel.r_addend = got_offset;
11133 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11134
11135 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11136 loc += sizeof (Elf32_External_Rela);
11137 rel.r_offset += 4;
11138 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11139 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11140 }
11141
11142 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11143 loc = (htab->root.srelplt->contents
1bbce132 11144 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11145 rel.r_offset = got_address;
11146 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11147 rel.r_addend = 0;
11148 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11149
11150 if (!h->def_regular)
11151 sym->st_shndx = SHN_UNDEF;
11152 }
11153
11154 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11155
ce558b89 11156 sgot = htab->root.sgot;
a8028dd0 11157 g = htab->got_info;
0a44bf69
RS
11158 BFD_ASSERT (g != NULL);
11159
11160 /* See if this symbol has an entry in the GOT. */
020d7251 11161 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11162 {
11163 bfd_vma offset;
11164 Elf_Internal_Rela outrel;
11165 bfd_byte *loc;
11166 asection *s;
11167
11168 /* Install the symbol value in the GOT. */
13fbec83 11169 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11170 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11171
11172 /* Add a dynamic relocation for it. */
11173 s = mips_elf_rel_dyn_section (info, FALSE);
11174 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11175 outrel.r_offset = (sgot->output_section->vma
11176 + sgot->output_offset
11177 + offset);
11178 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11179 outrel.r_addend = 0;
11180 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11181 }
11182
11183 /* Emit a copy reloc, if needed. */
11184 if (h->needs_copy)
11185 {
11186 Elf_Internal_Rela rel;
5474d94f
AM
11187 asection *srel;
11188 bfd_byte *loc;
0a44bf69
RS
11189
11190 BFD_ASSERT (h->dynindx != -1);
11191
11192 rel.r_offset = (h->root.u.def.section->output_section->vma
11193 + h->root.u.def.section->output_offset
11194 + h->root.u.def.value);
11195 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11196 rel.r_addend = 0;
afbf7e8e 11197 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11198 srel = htab->root.sreldynrelro;
11199 else
11200 srel = htab->root.srelbss;
11201 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11202 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11203 ++srel->reloc_count;
0a44bf69
RS
11204 }
11205
df58fc94
RS
11206 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11207 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11208 sym->st_value &= ~1;
11209
11210 return TRUE;
11211}
11212
861fb55a
DJ
11213/* Write out a plt0 entry to the beginning of .plt. */
11214
1bbce132 11215static bfd_boolean
861fb55a
DJ
11216mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11217{
11218 bfd_byte *loc;
11219 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11220 static const bfd_vma *plt_entry;
11221 struct mips_elf_link_hash_table *htab;
11222
11223 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11224 BFD_ASSERT (htab != NULL);
11225
861fb55a
DJ
11226 if (ABI_64_P (output_bfd))
11227 plt_entry = mips_n64_exec_plt0_entry;
11228 else if (ABI_N32_P (output_bfd))
11229 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11230 else if (!htab->plt_header_is_comp)
861fb55a 11231 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11232 else if (htab->insn32)
11233 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11234 else
11235 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11236
11237 /* Calculate the value of .got.plt. */
ce558b89
AM
11238 gotplt_value = (htab->root.sgotplt->output_section->vma
11239 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11240 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11241 gotplt_value_low = gotplt_value & 0xffff;
11242
11243 /* The PLT sequence is not safe for N64 if .got.plt's address can
11244 not be loaded in two instructions. */
11245 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11246 || ~(gotplt_value | 0x7fffffff) == 0);
11247
11248 /* Install the PLT header. */
ce558b89 11249 loc = htab->root.splt->contents;
1bbce132
MR
11250 if (plt_entry == micromips_o32_exec_plt0_entry)
11251 {
11252 bfd_vma gotpc_offset;
11253 bfd_vma loc_address;
11254 size_t i;
11255
11256 BFD_ASSERT (gotplt_value % 4 == 0);
11257
ce558b89
AM
11258 loc_address = (htab->root.splt->output_section->vma
11259 + htab->root.splt->output_offset);
1bbce132
MR
11260 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11261
11262 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11263 if (gotpc_offset + 0x1000000 >= 0x2000000)
11264 {
4eca0228 11265 _bfd_error_handler
695344c0 11266 /* xgettext:c-format */
d42c267e 11267 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
1bbce132 11268 output_bfd,
ce558b89 11269 htab->root.sgotplt->output_section,
d42c267e 11270 gotpc_offset,
c08bb8dd 11271 htab->root.splt->output_section);
1bbce132
MR
11272 bfd_set_error (bfd_error_no_error);
11273 return FALSE;
11274 }
11275 bfd_put_16 (output_bfd,
11276 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11277 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11278 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11279 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11280 }
833794fc
MR
11281 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11282 {
11283 size_t i;
11284
11285 bfd_put_16 (output_bfd, plt_entry[0], loc);
11286 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11287 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11288 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11289 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11290 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11291 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11292 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11293 }
1bbce132
MR
11294 else
11295 {
11296 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11297 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11298 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11299 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11300 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11301 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11302 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11303 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11304 }
11305
11306 return TRUE;
861fb55a
DJ
11307}
11308
0a44bf69
RS
11309/* Install the PLT header for a VxWorks executable and finalize the
11310 contents of .rela.plt.unloaded. */
11311
11312static void
11313mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11314{
11315 Elf_Internal_Rela rela;
11316 bfd_byte *loc;
11317 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11318 static const bfd_vma *plt_entry;
11319 struct mips_elf_link_hash_table *htab;
11320
11321 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11322 BFD_ASSERT (htab != NULL);
11323
0a44bf69
RS
11324 plt_entry = mips_vxworks_exec_plt0_entry;
11325
11326 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11327 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11328 + htab->root.hgot->root.u.def.section->output_offset
11329 + htab->root.hgot->root.u.def.value);
11330
11331 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11332 got_value_low = got_value & 0xffff;
11333
11334 /* Calculate the address of the PLT header. */
ce558b89
AM
11335 plt_address = (htab->root.splt->output_section->vma
11336 + htab->root.splt->output_offset);
0a44bf69
RS
11337
11338 /* Install the PLT header. */
ce558b89 11339 loc = htab->root.splt->contents;
0a44bf69
RS
11340 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11341 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11342 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11343 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11344 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11345 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11346
11347 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11348 loc = htab->srelplt2->contents;
11349 rela.r_offset = plt_address;
11350 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11351 rela.r_addend = 0;
11352 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11353 loc += sizeof (Elf32_External_Rela);
11354
11355 /* Output the relocation for the following addiu of
11356 %lo(_GLOBAL_OFFSET_TABLE_). */
11357 rela.r_offset += 4;
11358 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11359 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11360 loc += sizeof (Elf32_External_Rela);
11361
11362 /* Fix up the remaining relocations. They may have the wrong
11363 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11364 in which symbols were output. */
11365 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11366 {
11367 Elf_Internal_Rela rel;
11368
11369 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11370 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11372 loc += sizeof (Elf32_External_Rela);
11373
11374 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11375 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11376 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11377 loc += sizeof (Elf32_External_Rela);
11378
11379 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11380 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11381 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11382 loc += sizeof (Elf32_External_Rela);
11383 }
11384}
11385
11386/* Install the PLT header for a VxWorks shared library. */
11387
11388static void
11389mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11390{
11391 unsigned int i;
11392 struct mips_elf_link_hash_table *htab;
11393
11394 htab = mips_elf_hash_table (info);
4dfe6ac6 11395 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11396
11397 /* We just need to copy the entry byte-by-byte. */
11398 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11399 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11400 htab->root.splt->contents + i * 4);
0a44bf69
RS
11401}
11402
b49e97c9
TS
11403/* Finish up the dynamic sections. */
11404
b34976b6 11405bfd_boolean
9719ad41
RS
11406_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11407 struct bfd_link_info *info)
b49e97c9
TS
11408{
11409 bfd *dynobj;
11410 asection *sdyn;
11411 asection *sgot;
f4416af6 11412 struct mips_got_info *gg, *g;
0a44bf69 11413 struct mips_elf_link_hash_table *htab;
b49e97c9 11414
0a44bf69 11415 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11416 BFD_ASSERT (htab != NULL);
11417
b49e97c9
TS
11418 dynobj = elf_hash_table (info)->dynobj;
11419
3d4d4302 11420 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11421
ce558b89 11422 sgot = htab->root.sgot;
23cc69b6 11423 gg = htab->got_info;
b49e97c9
TS
11424
11425 if (elf_hash_table (info)->dynamic_sections_created)
11426 {
11427 bfd_byte *b;
943284cc 11428 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11429
11430 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11431 BFD_ASSERT (gg != NULL);
11432
d7206569 11433 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11434 BFD_ASSERT (g != NULL);
11435
11436 for (b = sdyn->contents;
eea6121a 11437 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11438 b += MIPS_ELF_DYN_SIZE (dynobj))
11439 {
11440 Elf_Internal_Dyn dyn;
11441 const char *name;
11442 size_t elemsize;
11443 asection *s;
b34976b6 11444 bfd_boolean swap_out_p;
b49e97c9
TS
11445
11446 /* Read in the current dynamic entry. */
11447 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11448
11449 /* Assume that we're going to modify it and write it out. */
b34976b6 11450 swap_out_p = TRUE;
b49e97c9
TS
11451
11452 switch (dyn.d_tag)
11453 {
11454 case DT_RELENT:
b49e97c9
TS
11455 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11456 break;
11457
0a44bf69
RS
11458 case DT_RELAENT:
11459 BFD_ASSERT (htab->is_vxworks);
11460 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11461 break;
11462
b49e97c9
TS
11463 case DT_STRSZ:
11464 /* Rewrite DT_STRSZ. */
11465 dyn.d_un.d_val =
11466 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11467 break;
11468
11469 case DT_PLTGOT:
ce558b89 11470 s = htab->root.sgot;
861fb55a
DJ
11471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11472 break;
11473
11474 case DT_MIPS_PLTGOT:
ce558b89 11475 s = htab->root.sgotplt;
861fb55a 11476 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11477 break;
11478
11479 case DT_MIPS_RLD_VERSION:
11480 dyn.d_un.d_val = 1; /* XXX */
11481 break;
11482
11483 case DT_MIPS_FLAGS:
11484 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11485 break;
11486
b49e97c9 11487 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11488 {
11489 time_t t;
11490 time (&t);
11491 dyn.d_un.d_val = t;
11492 }
b49e97c9
TS
11493 break;
11494
11495 case DT_MIPS_ICHECKSUM:
11496 /* XXX FIXME: */
b34976b6 11497 swap_out_p = FALSE;
b49e97c9
TS
11498 break;
11499
11500 case DT_MIPS_IVERSION:
11501 /* XXX FIXME: */
b34976b6 11502 swap_out_p = FALSE;
b49e97c9
TS
11503 break;
11504
11505 case DT_MIPS_BASE_ADDRESS:
11506 s = output_bfd->sections;
11507 BFD_ASSERT (s != NULL);
11508 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11509 break;
11510
11511 case DT_MIPS_LOCAL_GOTNO:
11512 dyn.d_un.d_val = g->local_gotno;
11513 break;
11514
11515 case DT_MIPS_UNREFEXTNO:
11516 /* The index into the dynamic symbol table which is the
11517 entry of the first external symbol that is not
11518 referenced within the same object. */
11519 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11520 break;
11521
11522 case DT_MIPS_GOTSYM:
d222d210 11523 if (htab->global_gotsym)
b49e97c9 11524 {
d222d210 11525 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11526 break;
11527 }
11528 /* In case if we don't have global got symbols we default
11529 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11530 DT_MIPS_SYMTABNO. */
11531 /* Fall through. */
b49e97c9
TS
11532
11533 case DT_MIPS_SYMTABNO:
11534 name = ".dynsym";
11535 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11536 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11537
131e2f8e
MF
11538 if (s != NULL)
11539 dyn.d_un.d_val = s->size / elemsize;
11540 else
11541 dyn.d_un.d_val = 0;
b49e97c9
TS
11542 break;
11543
11544 case DT_MIPS_HIPAGENO:
861fb55a 11545 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11546 break;
11547
11548 case DT_MIPS_RLD_MAP:
b4082c70
DD
11549 {
11550 struct elf_link_hash_entry *h;
11551 h = mips_elf_hash_table (info)->rld_symbol;
11552 if (!h)
11553 {
11554 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11555 swap_out_p = FALSE;
11556 break;
11557 }
11558 s = h->root.u.def.section;
a5499fa4
MF
11559
11560 /* The MIPS_RLD_MAP tag stores the absolute address of the
11561 debug pointer. */
b4082c70
DD
11562 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11563 + h->root.u.def.value);
11564 }
b49e97c9
TS
11565 break;
11566
a5499fa4
MF
11567 case DT_MIPS_RLD_MAP_REL:
11568 {
11569 struct elf_link_hash_entry *h;
11570 bfd_vma dt_addr, rld_addr;
11571 h = mips_elf_hash_table (info)->rld_symbol;
11572 if (!h)
11573 {
11574 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11575 swap_out_p = FALSE;
11576 break;
11577 }
11578 s = h->root.u.def.section;
11579
11580 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11581 pointer, relative to the address of the tag. */
11582 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11583 + (b - sdyn->contents));
a5499fa4
MF
11584 rld_addr = (s->output_section->vma + s->output_offset
11585 + h->root.u.def.value);
11586 dyn.d_un.d_ptr = rld_addr - dt_addr;
11587 }
11588 break;
11589
b49e97c9
TS
11590 case DT_MIPS_OPTIONS:
11591 s = (bfd_get_section_by_name
11592 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11593 dyn.d_un.d_ptr = s->vma;
11594 break;
11595
0a44bf69 11596 case DT_PLTREL:
861fb55a
DJ
11597 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11598 if (htab->is_vxworks)
11599 dyn.d_un.d_val = DT_RELA;
11600 else
11601 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11602 break;
11603
11604 case DT_PLTRELSZ:
861fb55a 11605 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11606 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11607 break;
11608
11609 case DT_JMPREL:
861fb55a 11610 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11611 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11612 + htab->root.srelplt->output_offset);
0a44bf69
RS
11613 break;
11614
943284cc
DJ
11615 case DT_TEXTREL:
11616 /* If we didn't need any text relocations after all, delete
11617 the dynamic tag. */
11618 if (!(info->flags & DF_TEXTREL))
11619 {
11620 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11621 swap_out_p = FALSE;
11622 }
11623 break;
11624
11625 case DT_FLAGS:
11626 /* If we didn't need any text relocations after all, clear
11627 DF_TEXTREL from DT_FLAGS. */
11628 if (!(info->flags & DF_TEXTREL))
11629 dyn.d_un.d_val &= ~DF_TEXTREL;
11630 else
11631 swap_out_p = FALSE;
11632 break;
11633
b49e97c9 11634 default:
b34976b6 11635 swap_out_p = FALSE;
7a2b07ff
NS
11636 if (htab->is_vxworks
11637 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11638 swap_out_p = TRUE;
b49e97c9
TS
11639 break;
11640 }
11641
943284cc 11642 if (swap_out_p || dyn_skipped)
b49e97c9 11643 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11644 (dynobj, &dyn, b - dyn_skipped);
11645
11646 if (dyn_to_skip)
11647 {
11648 dyn_skipped += dyn_to_skip;
11649 dyn_to_skip = 0;
11650 }
b49e97c9 11651 }
943284cc
DJ
11652
11653 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11654 if (dyn_skipped > 0)
11655 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11656 }
11657
b55fd4d4
DJ
11658 if (sgot != NULL && sgot->size > 0
11659 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11660 {
0a44bf69
RS
11661 if (htab->is_vxworks)
11662 {
11663 /* The first entry of the global offset table points to the
11664 ".dynamic" section. The second is initialized by the
11665 loader and contains the shared library identifier.
11666 The third is also initialized by the loader and points
11667 to the lazy resolution stub. */
11668 MIPS_ELF_PUT_WORD (output_bfd,
11669 sdyn->output_offset + sdyn->output_section->vma,
11670 sgot->contents);
11671 MIPS_ELF_PUT_WORD (output_bfd, 0,
11672 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11673 MIPS_ELF_PUT_WORD (output_bfd, 0,
11674 sgot->contents
11675 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11676 }
11677 else
11678 {
11679 /* The first entry of the global offset table will be filled at
11680 runtime. The second entry will be used by some runtime loaders.
11681 This isn't the case of IRIX rld. */
11682 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11683 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11684 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11685 }
b49e97c9 11686
54938e2a
TS
11687 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11688 = MIPS_ELF_GOT_SIZE (output_bfd);
11689 }
b49e97c9 11690
f4416af6
AO
11691 /* Generate dynamic relocations for the non-primary gots. */
11692 if (gg != NULL && gg->next)
11693 {
11694 Elf_Internal_Rela rel[3];
11695 bfd_vma addend = 0;
11696
11697 memset (rel, 0, sizeof (rel));
11698 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11699
11700 for (g = gg->next; g->next != gg; g = g->next)
11701 {
91d6fa6a 11702 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11703 + g->next->tls_gotno;
f4416af6 11704
9719ad41 11705 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11706 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11707 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11708 sgot->contents
91d6fa6a 11709 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11710
0e1862bb 11711 if (! bfd_link_pic (info))
f4416af6
AO
11712 continue;
11713
cb22ccf4 11714 for (; got_index < g->local_gotno; got_index++)
f4416af6 11715 {
cb22ccf4
KCY
11716 if (got_index >= g->assigned_low_gotno
11717 && got_index <= g->assigned_high_gotno)
11718 continue;
11719
f4416af6 11720 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11721 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11722 if (!(mips_elf_create_dynamic_relocation
11723 (output_bfd, info, rel, NULL,
11724 bfd_abs_section_ptr,
11725 0, &addend, sgot)))
11726 return FALSE;
11727 BFD_ASSERT (addend == 0);
11728 }
11729 }
11730 }
11731
3133ddbf
DJ
11732 /* The generation of dynamic relocations for the non-primary gots
11733 adds more dynamic relocations. We cannot count them until
11734 here. */
11735
11736 if (elf_hash_table (info)->dynamic_sections_created)
11737 {
11738 bfd_byte *b;
11739 bfd_boolean swap_out_p;
11740
11741 BFD_ASSERT (sdyn != NULL);
11742
11743 for (b = sdyn->contents;
11744 b < sdyn->contents + sdyn->size;
11745 b += MIPS_ELF_DYN_SIZE (dynobj))
11746 {
11747 Elf_Internal_Dyn dyn;
11748 asection *s;
11749
11750 /* Read in the current dynamic entry. */
11751 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11752
11753 /* Assume that we're going to modify it and write it out. */
11754 swap_out_p = TRUE;
11755
11756 switch (dyn.d_tag)
11757 {
11758 case DT_RELSZ:
11759 /* Reduce DT_RELSZ to account for any relocations we
11760 decided not to make. This is for the n64 irix rld,
11761 which doesn't seem to apply any relocations if there
11762 are trailing null entries. */
0a44bf69 11763 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11764 dyn.d_un.d_val = (s->reloc_count
11765 * (ABI_64_P (output_bfd)
11766 ? sizeof (Elf64_Mips_External_Rel)
11767 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11768 /* Adjust the section size too. Tools like the prelinker
11769 can reasonably expect the values to the same. */
11770 elf_section_data (s->output_section)->this_hdr.sh_size
11771 = dyn.d_un.d_val;
3133ddbf
DJ
11772 break;
11773
11774 default:
11775 swap_out_p = FALSE;
11776 break;
11777 }
11778
11779 if (swap_out_p)
11780 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11781 (dynobj, &dyn, b);
11782 }
11783 }
11784
b49e97c9 11785 {
b49e97c9
TS
11786 asection *s;
11787 Elf32_compact_rel cpt;
11788
b49e97c9
TS
11789 if (SGI_COMPAT (output_bfd))
11790 {
11791 /* Write .compact_rel section out. */
3d4d4302 11792 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11793 if (s != NULL)
11794 {
11795 cpt.id1 = 1;
11796 cpt.num = s->reloc_count;
11797 cpt.id2 = 2;
11798 cpt.offset = (s->output_section->filepos
11799 + sizeof (Elf32_External_compact_rel));
11800 cpt.reserved0 = 0;
11801 cpt.reserved1 = 0;
11802 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11803 ((Elf32_External_compact_rel *)
11804 s->contents));
11805
11806 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11807 if (htab->sstubs != NULL)
b49e97c9
TS
11808 {
11809 file_ptr dummy_offset;
11810
4e41d0d7
RS
11811 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11812 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11813 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11814 htab->function_stub_size);
b49e97c9
TS
11815 }
11816 }
11817 }
11818
0a44bf69
RS
11819 /* The psABI says that the dynamic relocations must be sorted in
11820 increasing order of r_symndx. The VxWorks EABI doesn't require
11821 this, and because the code below handles REL rather than RELA
11822 relocations, using it for VxWorks would be outright harmful. */
11823 if (!htab->is_vxworks)
b49e97c9 11824 {
0a44bf69
RS
11825 s = mips_elf_rel_dyn_section (info, FALSE);
11826 if (s != NULL
11827 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11828 {
11829 reldyn_sorting_bfd = output_bfd;
b49e97c9 11830
0a44bf69
RS
11831 if (ABI_64_P (output_bfd))
11832 qsort ((Elf64_External_Rel *) s->contents + 1,
11833 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11834 sort_dynamic_relocs_64);
11835 else
11836 qsort ((Elf32_External_Rel *) s->contents + 1,
11837 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11838 sort_dynamic_relocs);
11839 }
b49e97c9 11840 }
b49e97c9
TS
11841 }
11842
ce558b89 11843 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11844 {
861fb55a
DJ
11845 if (htab->is_vxworks)
11846 {
0e1862bb 11847 if (bfd_link_pic (info))
861fb55a
DJ
11848 mips_vxworks_finish_shared_plt (output_bfd, info);
11849 else
11850 mips_vxworks_finish_exec_plt (output_bfd, info);
11851 }
0a44bf69 11852 else
861fb55a 11853 {
0e1862bb 11854 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11855 if (!mips_finish_exec_plt (output_bfd, info))
11856 return FALSE;
861fb55a 11857 }
0a44bf69 11858 }
b34976b6 11859 return TRUE;
b49e97c9
TS
11860}
11861
b49e97c9 11862
64543e1a
RS
11863/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11864
11865static void
9719ad41 11866mips_set_isa_flags (bfd *abfd)
b49e97c9 11867{
64543e1a 11868 flagword val;
b49e97c9
TS
11869
11870 switch (bfd_get_mach (abfd))
11871 {
11872 default:
11873 case bfd_mach_mips3000:
11874 val = E_MIPS_ARCH_1;
11875 break;
11876
11877 case bfd_mach_mips3900:
11878 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11879 break;
11880
11881 case bfd_mach_mips6000:
11882 val = E_MIPS_ARCH_2;
11883 break;
11884
b417536f
MR
11885 case bfd_mach_mips4010:
11886 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11887 break;
11888
b49e97c9
TS
11889 case bfd_mach_mips4000:
11890 case bfd_mach_mips4300:
11891 case bfd_mach_mips4400:
11892 case bfd_mach_mips4600:
11893 val = E_MIPS_ARCH_3;
11894 break;
11895
b49e97c9
TS
11896 case bfd_mach_mips4100:
11897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11898 break;
11899
11900 case bfd_mach_mips4111:
11901 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11902 break;
11903
00707a0e
RS
11904 case bfd_mach_mips4120:
11905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11906 break;
11907
b49e97c9
TS
11908 case bfd_mach_mips4650:
11909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11910 break;
11911
00707a0e
RS
11912 case bfd_mach_mips5400:
11913 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11914 break;
11915
11916 case bfd_mach_mips5500:
11917 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11918 break;
11919
e407c74b
NC
11920 case bfd_mach_mips5900:
11921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11922 break;
11923
0d2e43ed
ILT
11924 case bfd_mach_mips9000:
11925 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11926 break;
11927
b49e97c9 11928 case bfd_mach_mips5000:
5a7ea749 11929 case bfd_mach_mips7000:
b49e97c9
TS
11930 case bfd_mach_mips8000:
11931 case bfd_mach_mips10000:
11932 case bfd_mach_mips12000:
3aa3176b
TS
11933 case bfd_mach_mips14000:
11934 case bfd_mach_mips16000:
b49e97c9
TS
11935 val = E_MIPS_ARCH_4;
11936 break;
11937
11938 case bfd_mach_mips5:
11939 val = E_MIPS_ARCH_5;
11940 break;
11941
350cc38d
MS
11942 case bfd_mach_mips_loongson_2e:
11943 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11944 break;
11945
11946 case bfd_mach_mips_loongson_2f:
11947 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11948 break;
11949
b49e97c9
TS
11950 case bfd_mach_mips_sb1:
11951 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11952 break;
11953
d051516a 11954 case bfd_mach_mips_loongson_3a:
4ba154f5 11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11956 break;
11957
6f179bd0 11958 case bfd_mach_mips_octeon:
dd6a37e7 11959 case bfd_mach_mips_octeonp:
6f179bd0
AN
11960 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11961 break;
11962
2c629856
N
11963 case bfd_mach_mips_octeon3:
11964 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11965 break;
11966
52b6b6b9
JM
11967 case bfd_mach_mips_xlr:
11968 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11969 break;
11970
432233b3
AP
11971 case bfd_mach_mips_octeon2:
11972 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11973 break;
11974
b49e97c9
TS
11975 case bfd_mach_mipsisa32:
11976 val = E_MIPS_ARCH_32;
11977 break;
11978
11979 case bfd_mach_mipsisa64:
11980 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11981 break;
11982
11983 case bfd_mach_mipsisa32r2:
ae52f483
AB
11984 case bfd_mach_mipsisa32r3:
11985 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11986 val = E_MIPS_ARCH_32R2;
11987 break;
5f74bc13 11988
38bf472a
MR
11989 case bfd_mach_mips_interaptiv_mr2:
11990 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11991 break;
11992
5f74bc13 11993 case bfd_mach_mipsisa64r2:
ae52f483
AB
11994 case bfd_mach_mipsisa64r3:
11995 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11996 val = E_MIPS_ARCH_64R2;
11997 break;
7361da2c
AB
11998
11999 case bfd_mach_mipsisa32r6:
12000 val = E_MIPS_ARCH_32R6;
12001 break;
12002
12003 case bfd_mach_mipsisa64r6:
12004 val = E_MIPS_ARCH_64R6;
12005 break;
b49e97c9 12006 }
b49e97c9
TS
12007 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12008 elf_elfheader (abfd)->e_flags |= val;
12009
64543e1a
RS
12010}
12011
12012
28dbcedc
AM
12013/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12014 Don't do so for code sections. We want to keep ordering of HI16/LO16
12015 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12016 relocs to be sorted. */
12017
12018bfd_boolean
12019_bfd_mips_elf_sort_relocs_p (asection *sec)
12020{
12021 return (sec->flags & SEC_CODE) == 0;
12022}
12023
12024
64543e1a
RS
12025/* The final processing done just before writing out a MIPS ELF object
12026 file. This gets the MIPS architecture right based on the machine
12027 number. This is used by both the 32-bit and the 64-bit ABI. */
12028
12029void
9719ad41
RS
12030_bfd_mips_elf_final_write_processing (bfd *abfd,
12031 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12032{
12033 unsigned int i;
12034 Elf_Internal_Shdr **hdrpp;
12035 const char *name;
12036 asection *sec;
12037
12038 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12039 is nonzero. This is for compatibility with old objects, which used
12040 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12041 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12042 mips_set_isa_flags (abfd);
12043
b49e97c9
TS
12044 /* Set the sh_info field for .gptab sections and other appropriate
12045 info for each special section. */
12046 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12047 i < elf_numsections (abfd);
12048 i++, hdrpp++)
12049 {
12050 switch ((*hdrpp)->sh_type)
12051 {
12052 case SHT_MIPS_MSYM:
12053 case SHT_MIPS_LIBLIST:
12054 sec = bfd_get_section_by_name (abfd, ".dynstr");
12055 if (sec != NULL)
12056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12057 break;
12058
12059 case SHT_MIPS_GPTAB:
12060 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12061 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12062 BFD_ASSERT (name != NULL
0112cd26 12063 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12064 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12065 BFD_ASSERT (sec != NULL);
12066 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12067 break;
12068
12069 case SHT_MIPS_CONTENT:
12070 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12071 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12072 BFD_ASSERT (name != NULL
0112cd26 12073 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12074 sec = bfd_get_section_by_name (abfd,
12075 name + sizeof ".MIPS.content" - 1);
12076 BFD_ASSERT (sec != NULL);
12077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12078 break;
12079
12080 case SHT_MIPS_SYMBOL_LIB:
12081 sec = bfd_get_section_by_name (abfd, ".dynsym");
12082 if (sec != NULL)
12083 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12084 sec = bfd_get_section_by_name (abfd, ".liblist");
12085 if (sec != NULL)
12086 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12087 break;
12088
12089 case SHT_MIPS_EVENTS:
12090 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12091 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12092 BFD_ASSERT (name != NULL);
0112cd26 12093 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12094 sec = bfd_get_section_by_name (abfd,
12095 name + sizeof ".MIPS.events" - 1);
12096 else
12097 {
0112cd26 12098 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12099 sec = bfd_get_section_by_name (abfd,
12100 (name
12101 + sizeof ".MIPS.post_rel" - 1));
12102 }
12103 BFD_ASSERT (sec != NULL);
12104 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12105 break;
12106
12107 }
12108 }
12109}
12110\f
8dc1a139 12111/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12112 segments. */
12113
12114int
a6b96beb
AM
12115_bfd_mips_elf_additional_program_headers (bfd *abfd,
12116 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12117{
12118 asection *s;
12119 int ret = 0;
12120
12121 /* See if we need a PT_MIPS_REGINFO segment. */
12122 s = bfd_get_section_by_name (abfd, ".reginfo");
12123 if (s && (s->flags & SEC_LOAD))
12124 ++ret;
12125
351cdf24
MF
12126 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12127 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12128 ++ret;
12129
b49e97c9
TS
12130 /* See if we need a PT_MIPS_OPTIONS segment. */
12131 if (IRIX_COMPAT (abfd) == ict_irix6
12132 && bfd_get_section_by_name (abfd,
12133 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12134 ++ret;
12135
12136 /* See if we need a PT_MIPS_RTPROC segment. */
12137 if (IRIX_COMPAT (abfd) == ict_irix5
12138 && bfd_get_section_by_name (abfd, ".dynamic")
12139 && bfd_get_section_by_name (abfd, ".mdebug"))
12140 ++ret;
12141
98c904a8
RS
12142 /* Allocate a PT_NULL header in dynamic objects. See
12143 _bfd_mips_elf_modify_segment_map for details. */
12144 if (!SGI_COMPAT (abfd)
12145 && bfd_get_section_by_name (abfd, ".dynamic"))
12146 ++ret;
12147
b49e97c9
TS
12148 return ret;
12149}
12150
8dc1a139 12151/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12152
b34976b6 12153bfd_boolean
9719ad41 12154_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12155 struct bfd_link_info *info)
b49e97c9
TS
12156{
12157 asection *s;
12158 struct elf_segment_map *m, **pm;
12159 bfd_size_type amt;
12160
12161 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12162 segment. */
12163 s = bfd_get_section_by_name (abfd, ".reginfo");
12164 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12165 {
12bd6957 12166 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12167 if (m->p_type == PT_MIPS_REGINFO)
12168 break;
12169 if (m == NULL)
12170 {
12171 amt = sizeof *m;
9719ad41 12172 m = bfd_zalloc (abfd, amt);
b49e97c9 12173 if (m == NULL)
b34976b6 12174 return FALSE;
b49e97c9
TS
12175
12176 m->p_type = PT_MIPS_REGINFO;
12177 m->count = 1;
12178 m->sections[0] = s;
12179
12180 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12181 pm = &elf_seg_map (abfd);
b49e97c9
TS
12182 while (*pm != NULL
12183 && ((*pm)->p_type == PT_PHDR
12184 || (*pm)->p_type == PT_INTERP))
12185 pm = &(*pm)->next;
12186
12187 m->next = *pm;
12188 *pm = m;
12189 }
12190 }
12191
351cdf24
MF
12192 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12193 segment. */
12194 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12195 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12196 {
12197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12198 if (m->p_type == PT_MIPS_ABIFLAGS)
12199 break;
12200 if (m == NULL)
12201 {
12202 amt = sizeof *m;
12203 m = bfd_zalloc (abfd, amt);
12204 if (m == NULL)
12205 return FALSE;
12206
12207 m->p_type = PT_MIPS_ABIFLAGS;
12208 m->count = 1;
12209 m->sections[0] = s;
12210
12211 /* We want to put it after the PHDR and INTERP segments. */
12212 pm = &elf_seg_map (abfd);
12213 while (*pm != NULL
12214 && ((*pm)->p_type == PT_PHDR
12215 || (*pm)->p_type == PT_INTERP))
12216 pm = &(*pm)->next;
12217
12218 m->next = *pm;
12219 *pm = m;
12220 }
12221 }
12222
b49e97c9
TS
12223 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12224 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12225 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12226 table. */
c1fd6598
AO
12227 if (NEWABI_P (abfd)
12228 /* On non-IRIX6 new abi, we'll have already created a segment
12229 for this section, so don't create another. I'm not sure this
12230 is not also the case for IRIX 6, but I can't test it right
12231 now. */
12232 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12233 {
12234 for (s = abfd->sections; s; s = s->next)
12235 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12236 break;
12237
12238 if (s)
12239 {
12240 struct elf_segment_map *options_segment;
12241
12bd6957 12242 pm = &elf_seg_map (abfd);
98a8deaf
RS
12243 while (*pm != NULL
12244 && ((*pm)->p_type == PT_PHDR
12245 || (*pm)->p_type == PT_INTERP))
12246 pm = &(*pm)->next;
b49e97c9 12247
8ded5a0f
AM
12248 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12249 {
12250 amt = sizeof (struct elf_segment_map);
12251 options_segment = bfd_zalloc (abfd, amt);
12252 options_segment->next = *pm;
12253 options_segment->p_type = PT_MIPS_OPTIONS;
12254 options_segment->p_flags = PF_R;
12255 options_segment->p_flags_valid = TRUE;
12256 options_segment->count = 1;
12257 options_segment->sections[0] = s;
12258 *pm = options_segment;
12259 }
b49e97c9
TS
12260 }
12261 }
12262 else
12263 {
12264 if (IRIX_COMPAT (abfd) == ict_irix5)
12265 {
12266 /* If there are .dynamic and .mdebug sections, we make a room
12267 for the RTPROC header. FIXME: Rewrite without section names. */
12268 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12269 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12270 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12271 {
12bd6957 12272 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12273 if (m->p_type == PT_MIPS_RTPROC)
12274 break;
12275 if (m == NULL)
12276 {
12277 amt = sizeof *m;
9719ad41 12278 m = bfd_zalloc (abfd, amt);
b49e97c9 12279 if (m == NULL)
b34976b6 12280 return FALSE;
b49e97c9
TS
12281
12282 m->p_type = PT_MIPS_RTPROC;
12283
12284 s = bfd_get_section_by_name (abfd, ".rtproc");
12285 if (s == NULL)
12286 {
12287 m->count = 0;
12288 m->p_flags = 0;
12289 m->p_flags_valid = 1;
12290 }
12291 else
12292 {
12293 m->count = 1;
12294 m->sections[0] = s;
12295 }
12296
12297 /* We want to put it after the DYNAMIC segment. */
12bd6957 12298 pm = &elf_seg_map (abfd);
b49e97c9
TS
12299 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12300 pm = &(*pm)->next;
12301 if (*pm != NULL)
12302 pm = &(*pm)->next;
12303
12304 m->next = *pm;
12305 *pm = m;
12306 }
12307 }
12308 }
8dc1a139 12309 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12310 .dynstr, .dynsym, and .hash sections, and everything in
12311 between. */
12bd6957 12312 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12313 pm = &(*pm)->next)
12314 if ((*pm)->p_type == PT_DYNAMIC)
12315 break;
12316 m = *pm;
f6f62d6f
RS
12317 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12318 glibc's dynamic linker has traditionally derived the number of
12319 tags from the p_filesz field, and sometimes allocates stack
12320 arrays of that size. An overly-big PT_DYNAMIC segment can
12321 be actively harmful in such cases. Making PT_DYNAMIC contain
12322 other sections can also make life hard for the prelinker,
12323 which might move one of the other sections to a different
12324 PT_LOAD segment. */
12325 if (SGI_COMPAT (abfd)
12326 && m != NULL
12327 && m->count == 1
12328 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12329 {
12330 static const char *sec_names[] =
12331 {
12332 ".dynamic", ".dynstr", ".dynsym", ".hash"
12333 };
12334 bfd_vma low, high;
12335 unsigned int i, c;
12336 struct elf_segment_map *n;
12337
792b4a53 12338 low = ~(bfd_vma) 0;
b49e97c9
TS
12339 high = 0;
12340 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12341 {
12342 s = bfd_get_section_by_name (abfd, sec_names[i]);
12343 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12344 {
12345 bfd_size_type sz;
12346
12347 if (low > s->vma)
12348 low = s->vma;
eea6121a 12349 sz = s->size;
b49e97c9
TS
12350 if (high < s->vma + sz)
12351 high = s->vma + sz;
12352 }
12353 }
12354
12355 c = 0;
12356 for (s = abfd->sections; s != NULL; s = s->next)
12357 if ((s->flags & SEC_LOAD) != 0
12358 && s->vma >= low
eea6121a 12359 && s->vma + s->size <= high)
b49e97c9
TS
12360 ++c;
12361
12362 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12363 n = bfd_zalloc (abfd, amt);
b49e97c9 12364 if (n == NULL)
b34976b6 12365 return FALSE;
b49e97c9
TS
12366 *n = *m;
12367 n->count = c;
12368
12369 i = 0;
12370 for (s = abfd->sections; s != NULL; s = s->next)
12371 {
12372 if ((s->flags & SEC_LOAD) != 0
12373 && s->vma >= low
eea6121a 12374 && s->vma + s->size <= high)
b49e97c9
TS
12375 {
12376 n->sections[i] = s;
12377 ++i;
12378 }
12379 }
12380
12381 *pm = n;
12382 }
12383 }
12384
98c904a8
RS
12385 /* Allocate a spare program header in dynamic objects so that tools
12386 like the prelinker can add an extra PT_LOAD entry.
12387
12388 If the prelinker needs to make room for a new PT_LOAD entry, its
12389 standard procedure is to move the first (read-only) sections into
12390 the new (writable) segment. However, the MIPS ABI requires
12391 .dynamic to be in a read-only segment, and the section will often
12392 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12393
12394 Although the prelinker could in principle move .dynamic to a
12395 writable segment, it seems better to allocate a spare program
12396 header instead, and avoid the need to move any sections.
12397 There is a long tradition of allocating spare dynamic tags,
12398 so allocating a spare program header seems like a natural
7c8b76cc
JM
12399 extension.
12400
12401 If INFO is NULL, we may be copying an already prelinked binary
12402 with objcopy or strip, so do not add this header. */
12403 if (info != NULL
12404 && !SGI_COMPAT (abfd)
98c904a8
RS
12405 && bfd_get_section_by_name (abfd, ".dynamic"))
12406 {
12bd6957 12407 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12408 if ((*pm)->p_type == PT_NULL)
12409 break;
12410 if (*pm == NULL)
12411 {
12412 m = bfd_zalloc (abfd, sizeof (*m));
12413 if (m == NULL)
12414 return FALSE;
12415
12416 m->p_type = PT_NULL;
12417 *pm = m;
12418 }
12419 }
12420
b34976b6 12421 return TRUE;
b49e97c9
TS
12422}
12423\f
12424/* Return the section that should be marked against GC for a given
12425 relocation. */
12426
12427asection *
9719ad41 12428_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12429 struct bfd_link_info *info,
9719ad41
RS
12430 Elf_Internal_Rela *rel,
12431 struct elf_link_hash_entry *h,
12432 Elf_Internal_Sym *sym)
b49e97c9
TS
12433{
12434 /* ??? Do mips16 stub sections need to be handled special? */
12435
12436 if (h != NULL)
07adf181
AM
12437 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12438 {
12439 case R_MIPS_GNU_VTINHERIT:
12440 case R_MIPS_GNU_VTENTRY:
12441 return NULL;
12442 }
b49e97c9 12443
07adf181 12444 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12445}
12446
351cdf24
MF
12447/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12448
12449bfd_boolean
12450_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12451 elf_gc_mark_hook_fn gc_mark_hook)
12452{
12453 bfd *sub;
12454
12455 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12456
12457 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12458 {
12459 asection *o;
12460
12461 if (! is_mips_elf (sub))
12462 continue;
12463
12464 for (o = sub->sections; o != NULL; o = o->next)
12465 if (!o->gc_mark
12466 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12467 (bfd_get_section_name (sub, o)))
12468 {
12469 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12470 return FALSE;
12471 }
12472 }
12473
12474 return TRUE;
12475}
b49e97c9
TS
12476\f
12477/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12478 hiding the old indirect symbol. Process additional relocation
12479 information. Also called for weakdefs, in which case we just let
12480 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12481
12482void
fcfa13d2 12483_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12484 struct elf_link_hash_entry *dir,
12485 struct elf_link_hash_entry *ind)
b49e97c9
TS
12486{
12487 struct mips_elf_link_hash_entry *dirmips, *indmips;
12488
fcfa13d2 12489 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12490
861fb55a
DJ
12491 dirmips = (struct mips_elf_link_hash_entry *) dir;
12492 indmips = (struct mips_elf_link_hash_entry *) ind;
12493 /* Any absolute non-dynamic relocations against an indirect or weak
12494 definition will be against the target symbol. */
12495 if (indmips->has_static_relocs)
12496 dirmips->has_static_relocs = TRUE;
12497
b49e97c9
TS
12498 if (ind->root.type != bfd_link_hash_indirect)
12499 return;
12500
b49e97c9
TS
12501 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12502 if (indmips->readonly_reloc)
b34976b6 12503 dirmips->readonly_reloc = TRUE;
b49e97c9 12504 if (indmips->no_fn_stub)
b34976b6 12505 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12506 if (indmips->fn_stub)
12507 {
12508 dirmips->fn_stub = indmips->fn_stub;
12509 indmips->fn_stub = NULL;
12510 }
12511 if (indmips->need_fn_stub)
12512 {
12513 dirmips->need_fn_stub = TRUE;
12514 indmips->need_fn_stub = FALSE;
12515 }
12516 if (indmips->call_stub)
12517 {
12518 dirmips->call_stub = indmips->call_stub;
12519 indmips->call_stub = NULL;
12520 }
12521 if (indmips->call_fp_stub)
12522 {
12523 dirmips->call_fp_stub = indmips->call_fp_stub;
12524 indmips->call_fp_stub = NULL;
12525 }
634835ae
RS
12526 if (indmips->global_got_area < dirmips->global_got_area)
12527 dirmips->global_got_area = indmips->global_got_area;
12528 if (indmips->global_got_area < GGA_NONE)
12529 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12530 if (indmips->has_nonpic_branches)
12531 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12532}
b49e97c9 12533\f
d01414a5
TS
12534#define PDR_SIZE 32
12535
b34976b6 12536bfd_boolean
9719ad41
RS
12537_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12538 struct bfd_link_info *info)
d01414a5
TS
12539{
12540 asection *o;
b34976b6 12541 bfd_boolean ret = FALSE;
d01414a5
TS
12542 unsigned char *tdata;
12543 size_t i, skip;
12544
12545 o = bfd_get_section_by_name (abfd, ".pdr");
12546 if (! o)
b34976b6 12547 return FALSE;
eea6121a 12548 if (o->size == 0)
b34976b6 12549 return FALSE;
eea6121a 12550 if (o->size % PDR_SIZE != 0)
b34976b6 12551 return FALSE;
d01414a5
TS
12552 if (o->output_section != NULL
12553 && bfd_is_abs_section (o->output_section))
b34976b6 12554 return FALSE;
d01414a5 12555
eea6121a 12556 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12557 if (! tdata)
b34976b6 12558 return FALSE;
d01414a5 12559
9719ad41 12560 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12561 info->keep_memory);
d01414a5
TS
12562 if (!cookie->rels)
12563 {
12564 free (tdata);
b34976b6 12565 return FALSE;
d01414a5
TS
12566 }
12567
12568 cookie->rel = cookie->rels;
12569 cookie->relend = cookie->rels + o->reloc_count;
12570
eea6121a 12571 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12572 {
c152c796 12573 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12574 {
12575 tdata[i] = 1;
12576 skip ++;
12577 }
12578 }
12579
12580 if (skip != 0)
12581 {
f0abc2a1 12582 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12583 if (o->rawsize == 0)
12584 o->rawsize = o->size;
eea6121a 12585 o->size -= skip * PDR_SIZE;
b34976b6 12586 ret = TRUE;
d01414a5
TS
12587 }
12588 else
12589 free (tdata);
12590
12591 if (! info->keep_memory)
12592 free (cookie->rels);
12593
12594 return ret;
12595}
12596
b34976b6 12597bfd_boolean
9719ad41 12598_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12599{
12600 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12601 return TRUE;
12602 return FALSE;
53bfd6b4 12603}
d01414a5 12604
b34976b6 12605bfd_boolean
c7b8f16e
JB
12606_bfd_mips_elf_write_section (bfd *output_bfd,
12607 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12608 asection *sec, bfd_byte *contents)
d01414a5
TS
12609{
12610 bfd_byte *to, *from, *end;
12611 int i;
12612
12613 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12614 return FALSE;
d01414a5 12615
f0abc2a1 12616 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12617 return FALSE;
d01414a5
TS
12618
12619 to = contents;
eea6121a 12620 end = contents + sec->size;
d01414a5
TS
12621 for (from = contents, i = 0;
12622 from < end;
12623 from += PDR_SIZE, i++)
12624 {
f0abc2a1 12625 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12626 continue;
12627 if (to != from)
12628 memcpy (to, from, PDR_SIZE);
12629 to += PDR_SIZE;
12630 }
12631 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12632 sec->output_offset, sec->size);
b34976b6 12633 return TRUE;
d01414a5 12634}
53bfd6b4 12635\f
df58fc94
RS
12636/* microMIPS code retains local labels for linker relaxation. Omit them
12637 from output by default for clarity. */
12638
12639bfd_boolean
12640_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12641{
12642 return _bfd_elf_is_local_label_name (abfd, sym->name);
12643}
12644
b49e97c9
TS
12645/* MIPS ELF uses a special find_nearest_line routine in order the
12646 handle the ECOFF debugging information. */
12647
12648struct mips_elf_find_line
12649{
12650 struct ecoff_debug_info d;
12651 struct ecoff_find_line i;
12652};
12653
b34976b6 12654bfd_boolean
fb167eb2
AM
12655_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12656 asection *section, bfd_vma offset,
9719ad41
RS
12657 const char **filename_ptr,
12658 const char **functionname_ptr,
fb167eb2
AM
12659 unsigned int *line_ptr,
12660 unsigned int *discriminator_ptr)
b49e97c9
TS
12661{
12662 asection *msec;
12663
fb167eb2 12664 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12665 filename_ptr, functionname_ptr,
fb167eb2
AM
12666 line_ptr, discriminator_ptr,
12667 dwarf_debug_sections,
12668 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
12669 &elf_tdata (abfd)->dwarf2_find_line_info)
12670 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12671 filename_ptr, functionname_ptr,
12672 line_ptr))
12673 {
12674 /* PR 22789: If the function name or filename was not found through
12675 the debug information, then try an ordinary lookup instead. */
12676 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12677 || (filename_ptr != NULL && *filename_ptr == NULL))
12678 {
12679 /* Do not override already discovered names. */
12680 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12681 functionname_ptr = NULL;
b49e97c9 12682
46d09186
NC
12683 if (filename_ptr != NULL && *filename_ptr != NULL)
12684 filename_ptr = NULL;
12685
12686 _bfd_elf_find_function (abfd, symbols, section, offset,
12687 filename_ptr, functionname_ptr);
12688 }
12689
12690 return TRUE;
12691 }
b49e97c9
TS
12692
12693 msec = bfd_get_section_by_name (abfd, ".mdebug");
12694 if (msec != NULL)
12695 {
12696 flagword origflags;
12697 struct mips_elf_find_line *fi;
12698 const struct ecoff_debug_swap * const swap =
12699 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12700
12701 /* If we are called during a link, mips_elf_final_link may have
12702 cleared the SEC_HAS_CONTENTS field. We force it back on here
12703 if appropriate (which it normally will be). */
12704 origflags = msec->flags;
12705 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12706 msec->flags |= SEC_HAS_CONTENTS;
12707
698600e4 12708 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12709 if (fi == NULL)
12710 {
12711 bfd_size_type external_fdr_size;
12712 char *fraw_src;
12713 char *fraw_end;
12714 struct fdr *fdr_ptr;
12715 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12716
9719ad41 12717 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12718 if (fi == NULL)
12719 {
12720 msec->flags = origflags;
b34976b6 12721 return FALSE;
b49e97c9
TS
12722 }
12723
12724 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12725 {
12726 msec->flags = origflags;
b34976b6 12727 return FALSE;
b49e97c9
TS
12728 }
12729
12730 /* Swap in the FDR information. */
12731 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12732 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12733 if (fi->d.fdr == NULL)
12734 {
12735 msec->flags = origflags;
b34976b6 12736 return FALSE;
b49e97c9
TS
12737 }
12738 external_fdr_size = swap->external_fdr_size;
12739 fdr_ptr = fi->d.fdr;
12740 fraw_src = (char *) fi->d.external_fdr;
12741 fraw_end = (fraw_src
12742 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12743 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12744 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12745
698600e4 12746 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12747
12748 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
12749 find_nearest_line is either called all the time, as in
12750 objdump -l, so the information should be saved, or it is
12751 rarely called, as in ld error messages, so the memory
12752 wasted is unimportant. Still, it would probably be a
12753 good idea for free_cached_info to throw it away. */
b49e97c9
TS
12754 }
12755
12756 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12757 &fi->i, filename_ptr, functionname_ptr,
12758 line_ptr))
12759 {
12760 msec->flags = origflags;
b34976b6 12761 return TRUE;
b49e97c9
TS
12762 }
12763
12764 msec->flags = origflags;
12765 }
12766
12767 /* Fall back on the generic ELF find_nearest_line routine. */
12768
fb167eb2 12769 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12770 filename_ptr, functionname_ptr,
fb167eb2 12771 line_ptr, discriminator_ptr);
b49e97c9 12772}
4ab527b0
FF
12773
12774bfd_boolean
12775_bfd_mips_elf_find_inliner_info (bfd *abfd,
12776 const char **filename_ptr,
12777 const char **functionname_ptr,
12778 unsigned int *line_ptr)
12779{
12780 bfd_boolean found;
12781 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12782 functionname_ptr, line_ptr,
12783 & elf_tdata (abfd)->dwarf2_find_line_info);
12784 return found;
12785}
12786
b49e97c9
TS
12787\f
12788/* When are writing out the .options or .MIPS.options section,
12789 remember the bytes we are writing out, so that we can install the
12790 GP value in the section_processing routine. */
12791
b34976b6 12792bfd_boolean
9719ad41
RS
12793_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12794 const void *location,
12795 file_ptr offset, bfd_size_type count)
b49e97c9 12796{
cc2e31b9 12797 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12798 {
12799 bfd_byte *c;
12800
12801 if (elf_section_data (section) == NULL)
12802 {
12803 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12804 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12805 if (elf_section_data (section) == NULL)
b34976b6 12806 return FALSE;
b49e97c9 12807 }
f0abc2a1 12808 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12809 if (c == NULL)
12810 {
eea6121a 12811 c = bfd_zalloc (abfd, section->size);
b49e97c9 12812 if (c == NULL)
b34976b6 12813 return FALSE;
f0abc2a1 12814 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12815 }
12816
9719ad41 12817 memcpy (c + offset, location, count);
b49e97c9
TS
12818 }
12819
12820 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12821 count);
12822}
12823
12824/* This is almost identical to bfd_generic_get_... except that some
12825 MIPS relocations need to be handled specially. Sigh. */
12826
12827bfd_byte *
9719ad41
RS
12828_bfd_elf_mips_get_relocated_section_contents
12829 (bfd *abfd,
12830 struct bfd_link_info *link_info,
12831 struct bfd_link_order *link_order,
12832 bfd_byte *data,
12833 bfd_boolean relocatable,
12834 asymbol **symbols)
b49e97c9
TS
12835{
12836 /* Get enough memory to hold the stuff */
12837 bfd *input_bfd = link_order->u.indirect.section->owner;
12838 asection *input_section = link_order->u.indirect.section;
eea6121a 12839 bfd_size_type sz;
b49e97c9
TS
12840
12841 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12842 arelent **reloc_vector = NULL;
12843 long reloc_count;
12844
12845 if (reloc_size < 0)
12846 goto error_return;
12847
9719ad41 12848 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12849 if (reloc_vector == NULL && reloc_size != 0)
12850 goto error_return;
12851
12852 /* read in the section */
eea6121a
AM
12853 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12854 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12855 goto error_return;
12856
b49e97c9
TS
12857 reloc_count = bfd_canonicalize_reloc (input_bfd,
12858 input_section,
12859 reloc_vector,
12860 symbols);
12861 if (reloc_count < 0)
12862 goto error_return;
12863
12864 if (reloc_count > 0)
12865 {
12866 arelent **parent;
12867 /* for mips */
12868 int gp_found;
12869 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12870
12871 {
12872 struct bfd_hash_entry *h;
12873 struct bfd_link_hash_entry *lh;
12874 /* Skip all this stuff if we aren't mixing formats. */
12875 if (abfd && input_bfd
12876 && abfd->xvec == input_bfd->xvec)
12877 lh = 0;
12878 else
12879 {
b34976b6 12880 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12881 lh = (struct bfd_link_hash_entry *) h;
12882 }
12883 lookup:
12884 if (lh)
12885 {
12886 switch (lh->type)
12887 {
12888 case bfd_link_hash_undefined:
12889 case bfd_link_hash_undefweak:
12890 case bfd_link_hash_common:
12891 gp_found = 0;
12892 break;
12893 case bfd_link_hash_defined:
12894 case bfd_link_hash_defweak:
12895 gp_found = 1;
12896 gp = lh->u.def.value;
12897 break;
12898 case bfd_link_hash_indirect:
12899 case bfd_link_hash_warning:
12900 lh = lh->u.i.link;
12901 /* @@FIXME ignoring warning for now */
12902 goto lookup;
12903 case bfd_link_hash_new:
12904 default:
12905 abort ();
12906 }
12907 }
12908 else
12909 gp_found = 0;
12910 }
12911 /* end mips */
9719ad41 12912 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12913 {
9719ad41 12914 char *error_message = NULL;
b49e97c9
TS
12915 bfd_reloc_status_type r;
12916
12917 /* Specific to MIPS: Deal with relocation types that require
12918 knowing the gp of the output bfd. */
12919 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12920
8236346f
EC
12921 /* If we've managed to find the gp and have a special
12922 function for the relocation then go ahead, else default
12923 to the generic handling. */
12924 if (gp_found
12925 && (*parent)->howto->special_function
12926 == _bfd_mips_elf32_gprel16_reloc)
12927 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12928 input_section, relocatable,
12929 data, gp);
12930 else
86324f90 12931 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12932 input_section,
12933 relocatable ? abfd : NULL,
12934 &error_message);
b49e97c9 12935
1049f94e 12936 if (relocatable)
b49e97c9
TS
12937 {
12938 asection *os = input_section->output_section;
12939
12940 /* A partial link, so keep the relocs */
12941 os->orelocation[os->reloc_count] = *parent;
12942 os->reloc_count++;
12943 }
12944
12945 if (r != bfd_reloc_ok)
12946 {
12947 switch (r)
12948 {
12949 case bfd_reloc_undefined:
1a72702b
AM
12950 (*link_info->callbacks->undefined_symbol)
12951 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12952 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12953 break;
12954 case bfd_reloc_dangerous:
9719ad41 12955 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12956 (*link_info->callbacks->reloc_dangerous)
12957 (link_info, error_message,
12958 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12959 break;
12960 case bfd_reloc_overflow:
1a72702b
AM
12961 (*link_info->callbacks->reloc_overflow)
12962 (link_info, NULL,
12963 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12964 (*parent)->howto->name, (*parent)->addend,
12965 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12966 break;
12967 case bfd_reloc_outofrange:
12968 default:
12969 abort ();
12970 break;
12971 }
12972
12973 }
12974 }
12975 }
12976 if (reloc_vector != NULL)
12977 free (reloc_vector);
12978 return data;
12979
12980error_return:
12981 if (reloc_vector != NULL)
12982 free (reloc_vector);
12983 return NULL;
12984}
12985\f
df58fc94
RS
12986static bfd_boolean
12987mips_elf_relax_delete_bytes (bfd *abfd,
12988 asection *sec, bfd_vma addr, int count)
12989{
12990 Elf_Internal_Shdr *symtab_hdr;
12991 unsigned int sec_shndx;
12992 bfd_byte *contents;
12993 Elf_Internal_Rela *irel, *irelend;
12994 Elf_Internal_Sym *isym;
12995 Elf_Internal_Sym *isymend;
12996 struct elf_link_hash_entry **sym_hashes;
12997 struct elf_link_hash_entry **end_hashes;
12998 struct elf_link_hash_entry **start_hashes;
12999 unsigned int symcount;
13000
13001 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13002 contents = elf_section_data (sec)->this_hdr.contents;
13003
13004 irel = elf_section_data (sec)->relocs;
13005 irelend = irel + sec->reloc_count;
13006
13007 /* Actually delete the bytes. */
13008 memmove (contents + addr, contents + addr + count,
13009 (size_t) (sec->size - addr - count));
13010 sec->size -= count;
13011
13012 /* Adjust all the relocs. */
13013 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13014 {
13015 /* Get the new reloc address. */
13016 if (irel->r_offset > addr)
13017 irel->r_offset -= count;
13018 }
13019
13020 BFD_ASSERT (addr % 2 == 0);
13021 BFD_ASSERT (count % 2 == 0);
13022
13023 /* Adjust the local symbols defined in this section. */
13024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13025 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13026 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13027 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13028 isym->st_value -= count;
13029
13030 /* Now adjust the global symbols defined in this section. */
13031 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13032 - symtab_hdr->sh_info);
13033 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13034 end_hashes = sym_hashes + symcount;
13035
13036 for (; sym_hashes < end_hashes; sym_hashes++)
13037 {
13038 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13039
13040 if ((sym_hash->root.type == bfd_link_hash_defined
13041 || sym_hash->root.type == bfd_link_hash_defweak)
13042 && sym_hash->root.u.def.section == sec)
13043 {
2309ddf2 13044 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13045
df58fc94
RS
13046 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13047 value &= MINUS_TWO;
13048 if (value > addr)
13049 sym_hash->root.u.def.value -= count;
13050 }
13051 }
13052
13053 return TRUE;
13054}
13055
13056
13057/* Opcodes needed for microMIPS relaxation as found in
13058 opcodes/micromips-opc.c. */
13059
13060struct opcode_descriptor {
13061 unsigned long match;
13062 unsigned long mask;
13063};
13064
13065/* The $ra register aka $31. */
13066
13067#define RA 31
13068
13069/* 32-bit instruction format register fields. */
13070
13071#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13072#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13073
13074/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13075
13076#define OP16_VALID_REG(r) \
13077 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13078
13079
13080/* 32-bit and 16-bit branches. */
13081
13082static const struct opcode_descriptor b_insns_32[] = {
13083 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13084 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13085 { 0, 0 } /* End marker for find_match(). */
13086};
13087
13088static const struct opcode_descriptor bc_insn_32 =
13089 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13090
13091static const struct opcode_descriptor bz_insn_32 =
13092 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13093
13094static const struct opcode_descriptor bzal_insn_32 =
13095 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13096
13097static const struct opcode_descriptor beq_insn_32 =
13098 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13099
13100static const struct opcode_descriptor b_insn_16 =
13101 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13102
13103static const struct opcode_descriptor bz_insn_16 =
c088dedf 13104 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13105
13106
13107/* 32-bit and 16-bit branch EQ and NE zero. */
13108
13109/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13110 eq and second the ne. This convention is used when replacing a
13111 32-bit BEQ/BNE with the 16-bit version. */
13112
13113#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13114
13115static const struct opcode_descriptor bz_rs_insns_32[] = {
13116 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13117 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13118 { 0, 0 } /* End marker for find_match(). */
13119};
13120
13121static const struct opcode_descriptor bz_rt_insns_32[] = {
13122 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13123 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13124 { 0, 0 } /* End marker for find_match(). */
13125};
13126
13127static const struct opcode_descriptor bzc_insns_32[] = {
13128 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13129 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13130 { 0, 0 } /* End marker for find_match(). */
13131};
13132
13133static const struct opcode_descriptor bz_insns_16[] = {
13134 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13135 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13136 { 0, 0 } /* End marker for find_match(). */
13137};
13138
13139/* Switch between a 5-bit register index and its 3-bit shorthand. */
13140
e67f83e5 13141#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13142#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13143
13144
13145/* 32-bit instructions with a delay slot. */
13146
13147static const struct opcode_descriptor jal_insn_32_bd16 =
13148 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13149
13150static const struct opcode_descriptor jal_insn_32_bd32 =
13151 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13152
13153static const struct opcode_descriptor jal_x_insn_32_bd32 =
13154 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13155
13156static const struct opcode_descriptor j_insn_32 =
13157 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13158
13159static const struct opcode_descriptor jalr_insn_32 =
13160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13161
13162/* This table can be compacted, because no opcode replacement is made. */
13163
13164static const struct opcode_descriptor ds_insns_32_bd16[] = {
13165 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13166
13167 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13168 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13169
13170 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13171 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13172 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13173 { 0, 0 } /* End marker for find_match(). */
13174};
13175
13176/* This table can be compacted, because no opcode replacement is made. */
13177
13178static const struct opcode_descriptor ds_insns_32_bd32[] = {
13179 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13180
13181 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13182 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13183 { 0, 0 } /* End marker for find_match(). */
13184};
13185
13186
13187/* 16-bit instructions with a delay slot. */
13188
13189static const struct opcode_descriptor jalr_insn_16_bd16 =
13190 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13191
13192static const struct opcode_descriptor jalr_insn_16_bd32 =
13193 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13194
13195static const struct opcode_descriptor jr_insn_16 =
13196 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13197
13198#define JR16_REG(opcode) ((opcode) & 0x1f)
13199
13200/* This table can be compacted, because no opcode replacement is made. */
13201
13202static const struct opcode_descriptor ds_insns_16_bd16[] = {
13203 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13204
13205 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13206 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13207 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13208 { 0, 0 } /* End marker for find_match(). */
13209};
13210
13211
13212/* LUI instruction. */
13213
13214static const struct opcode_descriptor lui_insn =
13215 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13216
13217
13218/* ADDIU instruction. */
13219
13220static const struct opcode_descriptor addiu_insn =
13221 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13222
13223static const struct opcode_descriptor addiupc_insn =
13224 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13225
13226#define ADDIUPC_REG_FIELD(r) \
13227 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13228
13229
13230/* Relaxable instructions in a JAL delay slot: MOVE. */
13231
13232/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13233 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13234#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13235#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13236
13237#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13238#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13239
13240static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13241 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13242 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13243 { 0, 0 } /* End marker for find_match(). */
13244};
13245
13246static const struct opcode_descriptor move_insn_16 =
13247 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13248
13249
13250/* NOP instructions. */
13251
13252static const struct opcode_descriptor nop_insn_32 =
13253 { /* "nop", "", */ 0x00000000, 0xffffffff };
13254
13255static const struct opcode_descriptor nop_insn_16 =
13256 { /* "nop", "", */ 0x0c00, 0xffff };
13257
13258
13259/* Instruction match support. */
13260
13261#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13262
13263static int
13264find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13265{
13266 unsigned long indx;
13267
13268 for (indx = 0; insn[indx].mask != 0; indx++)
13269 if (MATCH (opcode, insn[indx]))
13270 return indx;
13271
13272 return -1;
13273}
13274
13275
13276/* Branch and delay slot decoding support. */
13277
13278/* If PTR points to what *might* be a 16-bit branch or jump, then
13279 return the minimum length of its delay slot, otherwise return 0.
13280 Non-zero results are not definitive as we might be checking against
13281 the second half of another instruction. */
13282
13283static int
13284check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13285{
13286 unsigned long opcode;
13287 int bdsize;
13288
13289 opcode = bfd_get_16 (abfd, ptr);
13290 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13291 /* 16-bit branch/jump with a 32-bit delay slot. */
13292 bdsize = 4;
13293 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13294 || find_match (opcode, ds_insns_16_bd16) >= 0)
13295 /* 16-bit branch/jump with a 16-bit delay slot. */
13296 bdsize = 2;
13297 else
13298 /* No delay slot. */
13299 bdsize = 0;
13300
13301 return bdsize;
13302}
13303
13304/* If PTR points to what *might* be a 32-bit branch or jump, then
13305 return the minimum length of its delay slot, otherwise return 0.
13306 Non-zero results are not definitive as we might be checking against
13307 the second half of another instruction. */
13308
13309static int
13310check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13311{
13312 unsigned long opcode;
13313 int bdsize;
13314
d21911ea 13315 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13316 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13317 /* 32-bit branch/jump with a 32-bit delay slot. */
13318 bdsize = 4;
13319 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13320 /* 32-bit branch/jump with a 16-bit delay slot. */
13321 bdsize = 2;
13322 else
13323 /* No delay slot. */
13324 bdsize = 0;
13325
13326 return bdsize;
13327}
13328
13329/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13330 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13331
13332static bfd_boolean
13333check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13334{
13335 unsigned long opcode;
13336
13337 opcode = bfd_get_16 (abfd, ptr);
13338 if (MATCH (opcode, b_insn_16)
13339 /* B16 */
13340 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13341 /* JR16 */
13342 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13343 /* BEQZ16, BNEZ16 */
13344 || (MATCH (opcode, jalr_insn_16_bd32)
13345 /* JALR16 */
13346 && reg != JR16_REG (opcode) && reg != RA))
13347 return TRUE;
13348
13349 return FALSE;
13350}
13351
13352/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13353 then return TRUE, otherwise FALSE. */
13354
f41e5fcc 13355static bfd_boolean
df58fc94
RS
13356check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13357{
13358 unsigned long opcode;
13359
d21911ea 13360 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13361 if (MATCH (opcode, j_insn_32)
13362 /* J */
13363 || MATCH (opcode, bc_insn_32)
13364 /* BC1F, BC1T, BC2F, BC2T */
13365 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13366 /* JAL, JALX */
13367 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13368 /* BGEZ, BGTZ, BLEZ, BLTZ */
13369 || (MATCH (opcode, bzal_insn_32)
13370 /* BGEZAL, BLTZAL */
13371 && reg != OP32_SREG (opcode) && reg != RA)
13372 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13373 /* JALR, JALR.HB, BEQ, BNE */
13374 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13375 return TRUE;
13376
13377 return FALSE;
13378}
13379
80cab405
MR
13380/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13381 IRELEND) at OFFSET indicate that there must be a compact branch there,
13382 then return TRUE, otherwise FALSE. */
df58fc94
RS
13383
13384static bfd_boolean
80cab405
MR
13385check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13386 const Elf_Internal_Rela *internal_relocs,
13387 const Elf_Internal_Rela *irelend)
df58fc94 13388{
80cab405
MR
13389 const Elf_Internal_Rela *irel;
13390 unsigned long opcode;
13391
d21911ea 13392 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13393 if (find_match (opcode, bzc_insns_32) < 0)
13394 return FALSE;
df58fc94
RS
13395
13396 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13397 if (irel->r_offset == offset
13398 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13399 return TRUE;
13400
df58fc94
RS
13401 return FALSE;
13402}
80cab405
MR
13403
13404/* Bitsize checking. */
13405#define IS_BITSIZE(val, N) \
13406 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13407 - (1ULL << ((N) - 1))) == (val))
13408
df58fc94
RS
13409\f
13410bfd_boolean
13411_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13412 struct bfd_link_info *link_info,
13413 bfd_boolean *again)
13414{
833794fc 13415 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13416 Elf_Internal_Shdr *symtab_hdr;
13417 Elf_Internal_Rela *internal_relocs;
13418 Elf_Internal_Rela *irel, *irelend;
13419 bfd_byte *contents = NULL;
13420 Elf_Internal_Sym *isymbuf = NULL;
13421
13422 /* Assume nothing changes. */
13423 *again = FALSE;
13424
13425 /* We don't have to do anything for a relocatable link, if
13426 this section does not have relocs, or if this is not a
13427 code section. */
13428
0e1862bb 13429 if (bfd_link_relocatable (link_info)
df58fc94
RS
13430 || (sec->flags & SEC_RELOC) == 0
13431 || sec->reloc_count == 0
13432 || (sec->flags & SEC_CODE) == 0)
13433 return TRUE;
13434
13435 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13436
13437 /* Get a copy of the native relocations. */
13438 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13439 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13440 link_info->keep_memory));
13441 if (internal_relocs == NULL)
13442 goto error_return;
13443
13444 /* Walk through them looking for relaxing opportunities. */
13445 irelend = internal_relocs + sec->reloc_count;
13446 for (irel = internal_relocs; irel < irelend; irel++)
13447 {
13448 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13449 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13450 bfd_boolean target_is_micromips_code_p;
13451 unsigned long opcode;
13452 bfd_vma symval;
13453 bfd_vma pcrval;
2309ddf2 13454 bfd_byte *ptr;
df58fc94
RS
13455 int fndopc;
13456
13457 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13458 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13459 int delcnt = 0;
13460 int deloff = 0;
13461
13462 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13463 this reloc. */
df58fc94
RS
13464 if (r_type != R_MICROMIPS_HI16
13465 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13466 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13467 continue;
13468
13469 /* Get the section contents if we haven't done so already. */
13470 if (contents == NULL)
13471 {
13472 /* Get cached copy if it exists. */
13473 if (elf_section_data (sec)->this_hdr.contents != NULL)
13474 contents = elf_section_data (sec)->this_hdr.contents;
13475 /* Go get them off disk. */
13476 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13477 goto error_return;
13478 }
2309ddf2 13479 ptr = contents + irel->r_offset;
df58fc94
RS
13480
13481 /* Read this BFD's local symbols if we haven't done so already. */
13482 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13483 {
13484 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13485 if (isymbuf == NULL)
13486 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13487 symtab_hdr->sh_info, 0,
13488 NULL, NULL, NULL);
13489 if (isymbuf == NULL)
13490 goto error_return;
13491 }
13492
13493 /* Get the value of the symbol referred to by the reloc. */
13494 if (r_symndx < symtab_hdr->sh_info)
13495 {
13496 /* A local symbol. */
13497 Elf_Internal_Sym *isym;
13498 asection *sym_sec;
13499
13500 isym = isymbuf + r_symndx;
13501 if (isym->st_shndx == SHN_UNDEF)
13502 sym_sec = bfd_und_section_ptr;
13503 else if (isym->st_shndx == SHN_ABS)
13504 sym_sec = bfd_abs_section_ptr;
13505 else if (isym->st_shndx == SHN_COMMON)
13506 sym_sec = bfd_com_section_ptr;
13507 else
13508 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13509 symval = (isym->st_value
13510 + sym_sec->output_section->vma
13511 + sym_sec->output_offset);
13512 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13513 }
13514 else
13515 {
13516 unsigned long indx;
13517 struct elf_link_hash_entry *h;
13518
13519 /* An external symbol. */
13520 indx = r_symndx - symtab_hdr->sh_info;
13521 h = elf_sym_hashes (abfd)[indx];
13522 BFD_ASSERT (h != NULL);
13523
13524 if (h->root.type != bfd_link_hash_defined
13525 && h->root.type != bfd_link_hash_defweak)
13526 /* This appears to be a reference to an undefined
13527 symbol. Just ignore it -- it will be caught by the
13528 regular reloc processing. */
13529 continue;
13530
13531 symval = (h->root.u.def.value
13532 + h->root.u.def.section->output_section->vma
13533 + h->root.u.def.section->output_offset);
13534 target_is_micromips_code_p = (!h->needs_plt
13535 && ELF_ST_IS_MICROMIPS (h->other));
13536 }
13537
13538
13539 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13540 section contents, the section relocs, and the BFD symbol
13541 table. We must tell the rest of the code not to free up this
13542 information. It would be possible to instead create a table
13543 of changes which have to be made, as is done in coff-mips.c;
13544 that would be more work, but would require less memory when
13545 the linker is run. */
df58fc94
RS
13546
13547 /* Only 32-bit instructions relaxed. */
13548 if (irel->r_offset + 4 > sec->size)
13549 continue;
13550
d21911ea 13551 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13552
13553 /* This is the pc-relative distance from the instruction the
07d6d2b8 13554 relocation is applied to, to the symbol referred. */
df58fc94
RS
13555 pcrval = (symval
13556 - (sec->output_section->vma + sec->output_offset)
13557 - irel->r_offset);
13558
13559 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13560 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13561 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13562
07d6d2b8 13563 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13564
07d6d2b8
AM
13565 where pcrval has first to be adjusted to apply against the LO16
13566 location (we make the adjustment later on, when we have figured
13567 out the offset). */
df58fc94
RS
13568 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13569 {
80cab405 13570 bfd_boolean bzc = FALSE;
df58fc94
RS
13571 unsigned long nextopc;
13572 unsigned long reg;
13573 bfd_vma offset;
13574
13575 /* Give up if the previous reloc was a HI16 against this symbol
13576 too. */
13577 if (irel > internal_relocs
13578 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13579 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13580 continue;
13581
13582 /* Or if the next reloc is not a LO16 against this symbol. */
13583 if (irel + 1 >= irelend
13584 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13585 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13586 continue;
13587
13588 /* Or if the second next reloc is a LO16 against this symbol too. */
13589 if (irel + 2 >= irelend
13590 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13591 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13592 continue;
13593
80cab405
MR
13594 /* See if the LUI instruction *might* be in a branch delay slot.
13595 We check whether what looks like a 16-bit branch or jump is
13596 actually an immediate argument to a compact branch, and let
13597 it through if so. */
df58fc94 13598 if (irel->r_offset >= 2
2309ddf2 13599 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13600 && !(irel->r_offset >= 4
80cab405
MR
13601 && (bzc = check_relocated_bzc (abfd,
13602 ptr - 4, irel->r_offset - 4,
13603 internal_relocs, irelend))))
df58fc94
RS
13604 continue;
13605 if (irel->r_offset >= 4
80cab405 13606 && !bzc
2309ddf2 13607 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13608 continue;
13609
13610 reg = OP32_SREG (opcode);
13611
13612 /* We only relax adjacent instructions or ones separated with
13613 a branch or jump that has a delay slot. The branch or jump
13614 must not fiddle with the register used to hold the address.
13615 Subtract 4 for the LUI itself. */
13616 offset = irel[1].r_offset - irel[0].r_offset;
13617 switch (offset - 4)
13618 {
13619 case 0:
13620 break;
13621 case 2:
2309ddf2 13622 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13623 break;
13624 continue;
13625 case 4:
2309ddf2 13626 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13627 break;
13628 continue;
13629 default:
13630 continue;
13631 }
13632
d21911ea 13633 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13634
13635 /* Give up unless the same register is used with both
13636 relocations. */
13637 if (OP32_SREG (nextopc) != reg)
13638 continue;
13639
13640 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13641 and rounding up to take masking of the two LSBs into account. */
13642 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13643
13644 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13645 if (IS_BITSIZE (symval, 16))
13646 {
13647 /* Fix the relocation's type. */
13648 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13649
13650 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13651 source register in bits 20:16. This register becomes $0
13652 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13653 nextopc &= ~0x001f0000;
13654 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13655 contents + irel[1].r_offset);
13656 }
13657
13658 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13659 We add 4 to take LUI deletion into account while checking
13660 the PC-relative distance. */
13661 else if (symval % 4 == 0
13662 && IS_BITSIZE (pcrval + 4, 25)
13663 && MATCH (nextopc, addiu_insn)
13664 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13665 && OP16_VALID_REG (OP32_TREG (nextopc)))
13666 {
13667 /* Fix the relocation's type. */
13668 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13669
13670 /* Replace ADDIU with the ADDIUPC version. */
13671 nextopc = (addiupc_insn.match
13672 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13673
d21911ea
MR
13674 bfd_put_micromips_32 (abfd, nextopc,
13675 contents + irel[1].r_offset);
df58fc94
RS
13676 }
13677
13678 /* Can't do anything, give up, sigh... */
13679 else
13680 continue;
13681
13682 /* Fix the relocation's type. */
13683 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13684
13685 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13686 delcnt = 4;
13687 deloff = 0;
13688 }
13689
13690 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
13691 employed by the compiler/assembler, compact branches are not
13692 always generated. Obviously, this can/will be fixed elsewhere,
13693 but there is no drawback in double checking it here. */
df58fc94
RS
13694 else if (r_type == R_MICROMIPS_PC16_S1
13695 && irel->r_offset + 5 < sec->size
13696 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13697 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13698 && ((!insn32
13699 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13700 nop_insn_16) ? 2 : 0))
13701 || (irel->r_offset + 7 < sec->size
13702 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13703 ptr + 4),
13704 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13705 {
13706 unsigned long reg;
13707
13708 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13709
13710 /* Replace BEQZ/BNEZ with the compact version. */
13711 opcode = (bzc_insns_32[fndopc].match
13712 | BZC32_REG_FIELD (reg)
13713 | (opcode & 0xffff)); /* Addend value. */
13714
d21911ea 13715 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13716
833794fc
MR
13717 /* Delete the delay slot NOP: two or four bytes from
13718 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13719 deloff = 4;
13720 }
13721
13722 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 13723 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13724 else if (!insn32
13725 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13726 && IS_BITSIZE (pcrval - 2, 11)
13727 && find_match (opcode, b_insns_32) >= 0)
13728 {
13729 /* Fix the relocation's type. */
13730 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13731
a8685210 13732 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13733 bfd_put_16 (abfd,
13734 (b_insn_16.match
13735 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13736 ptr);
df58fc94
RS
13737
13738 /* Delete 2 bytes from irel->r_offset + 2. */
13739 delcnt = 2;
13740 deloff = 2;
13741 }
13742
13743 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 13744 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13745 else if (!insn32
13746 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13747 && IS_BITSIZE (pcrval - 2, 8)
13748 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13749 && OP16_VALID_REG (OP32_SREG (opcode)))
13750 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13751 && OP16_VALID_REG (OP32_TREG (opcode)))))
13752 {
13753 unsigned long reg;
13754
13755 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13756
13757 /* Fix the relocation's type. */
13758 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13759
a8685210 13760 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13761 bfd_put_16 (abfd,
13762 (bz_insns_16[fndopc].match
13763 | BZ16_REG_FIELD (reg)
13764 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13765 ptr);
df58fc94
RS
13766
13767 /* Delete 2 bytes from irel->r_offset + 2. */
13768 delcnt = 2;
13769 deloff = 2;
13770 }
13771
13772 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13773 else if (!insn32
13774 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13775 && target_is_micromips_code_p
13776 && irel->r_offset + 7 < sec->size
13777 && MATCH (opcode, jal_insn_32_bd32))
13778 {
13779 unsigned long n32opc;
13780 bfd_boolean relaxed = FALSE;
13781
d21911ea 13782 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13783
13784 if (MATCH (n32opc, nop_insn_32))
13785 {
13786 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13787 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13788
13789 relaxed = TRUE;
13790 }
13791 else if (find_match (n32opc, move_insns_32) >= 0)
13792 {
13793 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13794 bfd_put_16 (abfd,
13795 (move_insn_16.match
13796 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13797 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13798 ptr + 4);
df58fc94
RS
13799
13800 relaxed = TRUE;
13801 }
13802 /* Other 32-bit instructions relaxable to 16-bit
13803 instructions will be handled here later. */
13804
13805 if (relaxed)
13806 {
13807 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 13808 with 16-bit delay slot. */
d21911ea 13809 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13810
13811 /* Delete 2 bytes from irel->r_offset + 6. */
13812 delcnt = 2;
13813 deloff = 6;
13814 }
13815 }
13816
13817 if (delcnt != 0)
13818 {
13819 /* Note that we've changed the relocs, section contents, etc. */
13820 elf_section_data (sec)->relocs = internal_relocs;
13821 elf_section_data (sec)->this_hdr.contents = contents;
13822 symtab_hdr->contents = (unsigned char *) isymbuf;
13823
13824 /* Delete bytes depending on the delcnt and deloff. */
13825 if (!mips_elf_relax_delete_bytes (abfd, sec,
13826 irel->r_offset + deloff, delcnt))
13827 goto error_return;
13828
13829 /* That will change things, so we should relax again.
13830 Note that this is not required, and it may be slow. */
13831 *again = TRUE;
13832 }
13833 }
13834
13835 if (isymbuf != NULL
13836 && symtab_hdr->contents != (unsigned char *) isymbuf)
13837 {
13838 if (! link_info->keep_memory)
13839 free (isymbuf);
13840 else
13841 {
13842 /* Cache the symbols for elf_link_input_bfd. */
13843 symtab_hdr->contents = (unsigned char *) isymbuf;
13844 }
13845 }
13846
13847 if (contents != NULL
13848 && elf_section_data (sec)->this_hdr.contents != contents)
13849 {
13850 if (! link_info->keep_memory)
13851 free (contents);
13852 else
13853 {
13854 /* Cache the section contents for elf_link_input_bfd. */
13855 elf_section_data (sec)->this_hdr.contents = contents;
13856 }
13857 }
13858
13859 if (internal_relocs != NULL
13860 && elf_section_data (sec)->relocs != internal_relocs)
13861 free (internal_relocs);
13862
13863 return TRUE;
13864
13865 error_return:
13866 if (isymbuf != NULL
13867 && symtab_hdr->contents != (unsigned char *) isymbuf)
13868 free (isymbuf);
13869 if (contents != NULL
13870 && elf_section_data (sec)->this_hdr.contents != contents)
13871 free (contents);
13872 if (internal_relocs != NULL
13873 && elf_section_data (sec)->relocs != internal_relocs)
13874 free (internal_relocs);
13875
13876 return FALSE;
13877}
13878\f
b49e97c9
TS
13879/* Create a MIPS ELF linker hash table. */
13880
13881struct bfd_link_hash_table *
9719ad41 13882_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13883{
13884 struct mips_elf_link_hash_table *ret;
13885 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13886
7bf52ea2 13887 ret = bfd_zmalloc (amt);
9719ad41 13888 if (ret == NULL)
b49e97c9
TS
13889 return NULL;
13890
66eb6687
AM
13891 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13892 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13893 sizeof (struct mips_elf_link_hash_entry),
13894 MIPS_ELF_DATA))
b49e97c9 13895 {
e2d34d7d 13896 free (ret);
b49e97c9
TS
13897 return NULL;
13898 }
1bbce132
MR
13899 ret->root.init_plt_refcount.plist = NULL;
13900 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13901
b49e97c9
TS
13902 return &ret->root.root;
13903}
0a44bf69
RS
13904
13905/* Likewise, but indicate that the target is VxWorks. */
13906
13907struct bfd_link_hash_table *
13908_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13909{
13910 struct bfd_link_hash_table *ret;
13911
13912 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13913 if (ret)
13914 {
13915 struct mips_elf_link_hash_table *htab;
13916
13917 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13918 htab->use_plts_and_copy_relocs = TRUE;
13919 htab->is_vxworks = TRUE;
0a44bf69
RS
13920 }
13921 return ret;
13922}
861fb55a
DJ
13923
13924/* A function that the linker calls if we are allowed to use PLTs
13925 and copy relocs. */
13926
13927void
13928_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13929{
13930 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13931}
833794fc
MR
13932
13933/* A function that the linker calls to select between all or only
8b10b0b3
MR
13934 32-bit microMIPS instructions, and between making or ignoring
13935 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13936
13937void
8b10b0b3
MR
13938_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13939 bfd_boolean ignore_branch_isa)
833794fc 13940{
8b10b0b3
MR
13941 mips_elf_hash_table (info)->insn32 = insn32;
13942 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13943}
b49e97c9 13944\f
c97c330b
MF
13945/* Structure for saying that BFD machine EXTENSION extends BASE. */
13946
13947struct mips_mach_extension
13948{
13949 unsigned long extension, base;
13950};
13951
13952
13953/* An array describing how BFD machines relate to one another. The entries
13954 are ordered topologically with MIPS I extensions listed last. */
13955
13956static const struct mips_mach_extension mips_mach_extensions[] =
13957{
13958 /* MIPS64r2 extensions. */
13959 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13960 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13961 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13962 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13963 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13964
13965 /* MIPS64 extensions. */
13966 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13967 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13968 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13969
13970 /* MIPS V extensions. */
13971 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13972
13973 /* R10000 extensions. */
13974 { bfd_mach_mips12000, bfd_mach_mips10000 },
13975 { bfd_mach_mips14000, bfd_mach_mips10000 },
13976 { bfd_mach_mips16000, bfd_mach_mips10000 },
13977
13978 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13979 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13980 better to allow vr5400 and vr5500 code to be merged anyway, since
13981 many libraries will just use the core ISA. Perhaps we could add
13982 some sort of ASE flag if this ever proves a problem. */
13983 { bfd_mach_mips5500, bfd_mach_mips5400 },
13984 { bfd_mach_mips5400, bfd_mach_mips5000 },
13985
13986 /* MIPS IV extensions. */
13987 { bfd_mach_mips5, bfd_mach_mips8000 },
13988 { bfd_mach_mips10000, bfd_mach_mips8000 },
13989 { bfd_mach_mips5000, bfd_mach_mips8000 },
13990 { bfd_mach_mips7000, bfd_mach_mips8000 },
13991 { bfd_mach_mips9000, bfd_mach_mips8000 },
13992
13993 /* VR4100 extensions. */
13994 { bfd_mach_mips4120, bfd_mach_mips4100 },
13995 { bfd_mach_mips4111, bfd_mach_mips4100 },
13996
13997 /* MIPS III extensions. */
13998 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13999 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14000 { bfd_mach_mips8000, bfd_mach_mips4000 },
14001 { bfd_mach_mips4650, bfd_mach_mips4000 },
14002 { bfd_mach_mips4600, bfd_mach_mips4000 },
14003 { bfd_mach_mips4400, bfd_mach_mips4000 },
14004 { bfd_mach_mips4300, bfd_mach_mips4000 },
14005 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14006 { bfd_mach_mips5900, bfd_mach_mips4000 },
14007
38bf472a
MR
14008 /* MIPS32r3 extensions. */
14009 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14010
14011 /* MIPS32r2 extensions. */
14012 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14013
c97c330b
MF
14014 /* MIPS32 extensions. */
14015 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14016
14017 /* MIPS II extensions. */
14018 { bfd_mach_mips4000, bfd_mach_mips6000 },
14019 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14020 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14021
14022 /* MIPS I extensions. */
14023 { bfd_mach_mips6000, bfd_mach_mips3000 },
14024 { bfd_mach_mips3900, bfd_mach_mips3000 }
14025};
14026
14027/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14028
14029static bfd_boolean
14030mips_mach_extends_p (unsigned long base, unsigned long extension)
14031{
14032 size_t i;
14033
14034 if (extension == base)
14035 return TRUE;
14036
14037 if (base == bfd_mach_mipsisa32
14038 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14039 return TRUE;
14040
14041 if (base == bfd_mach_mipsisa32r2
14042 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14043 return TRUE;
14044
14045 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14046 if (extension == mips_mach_extensions[i].extension)
14047 {
14048 extension = mips_mach_extensions[i].base;
14049 if (extension == base)
14050 return TRUE;
14051 }
14052
14053 return FALSE;
14054}
14055
14056/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14057
14058static unsigned long
14059bfd_mips_isa_ext_mach (unsigned int isa_ext)
14060{
14061 switch (isa_ext)
14062 {
07d6d2b8
AM
14063 case AFL_EXT_3900: return bfd_mach_mips3900;
14064 case AFL_EXT_4010: return bfd_mach_mips4010;
14065 case AFL_EXT_4100: return bfd_mach_mips4100;
14066 case AFL_EXT_4111: return bfd_mach_mips4111;
14067 case AFL_EXT_4120: return bfd_mach_mips4120;
14068 case AFL_EXT_4650: return bfd_mach_mips4650;
14069 case AFL_EXT_5400: return bfd_mach_mips5400;
14070 case AFL_EXT_5500: return bfd_mach_mips5500;
14071 case AFL_EXT_5900: return bfd_mach_mips5900;
14072 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14073 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14074 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14075 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
07d6d2b8 14076 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14077 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14078 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14079 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14080 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14081 default: return bfd_mach_mips3000;
c97c330b
MF
14082 }
14083}
14084
351cdf24
MF
14085/* Return the .MIPS.abiflags value representing each ISA Extension. */
14086
14087unsigned int
14088bfd_mips_isa_ext (bfd *abfd)
14089{
14090 switch (bfd_get_mach (abfd))
14091 {
07d6d2b8
AM
14092 case bfd_mach_mips3900: return AFL_EXT_3900;
14093 case bfd_mach_mips4010: return AFL_EXT_4010;
14094 case bfd_mach_mips4100: return AFL_EXT_4100;
14095 case bfd_mach_mips4111: return AFL_EXT_4111;
14096 case bfd_mach_mips4120: return AFL_EXT_4120;
14097 case bfd_mach_mips4650: return AFL_EXT_4650;
14098 case bfd_mach_mips5400: return AFL_EXT_5400;
14099 case bfd_mach_mips5500: return AFL_EXT_5500;
14100 case bfd_mach_mips5900: return AFL_EXT_5900;
14101 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14102 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14103 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14104 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
07d6d2b8
AM
14105 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14106 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14107 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14108 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14109 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14110 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14111 case bfd_mach_mips_interaptiv_mr2:
14112 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14113 default: return 0;
c97c330b
MF
14114 }
14115}
14116
14117/* Encode ISA level and revision as a single value. */
14118#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14119
14120/* Decode a single value into level and revision. */
14121#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14122#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14123
14124/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14125
14126static void
14127update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14128{
c97c330b 14129 int new_isa = 0;
351cdf24
MF
14130 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14131 {
c97c330b
MF
14132 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14133 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14134 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14135 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14136 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14137 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14138 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14139 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14140 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14141 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14142 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14143 default:
4eca0228 14144 _bfd_error_handler
695344c0 14145 /* xgettext:c-format */
351cdf24
MF
14146 (_("%B: Unknown architecture %s"),
14147 abfd, bfd_printable_name (abfd));
14148 }
14149
c97c330b
MF
14150 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14151 {
14152 abiflags->isa_level = ISA_LEVEL (new_isa);
14153 abiflags->isa_rev = ISA_REV (new_isa);
14154 }
14155
14156 /* Update the isa_ext if ABFD describes a further extension. */
14157 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14158 bfd_get_mach (abfd)))
14159 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14160}
14161
14162/* Return true if the given ELF header flags describe a 32-bit binary. */
14163
14164static bfd_boolean
14165mips_32bit_flags_p (flagword flags)
14166{
14167 return ((flags & EF_MIPS_32BITMODE) != 0
14168 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14169 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14170 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14171 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14172 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14175}
14176
14177/* Infer the content of the ABI flags based on the elf header. */
14178
14179static void
14180infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14181{
14182 obj_attribute *in_attr;
14183
14184 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14185 update_mips_abiflags_isa (abfd, abiflags);
14186
14187 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14188 abiflags->gpr_size = AFL_REG_32;
14189 else
14190 abiflags->gpr_size = AFL_REG_64;
14191
14192 abiflags->cpr1_size = AFL_REG_NONE;
14193
14194 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14195 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14196
14197 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14198 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14199 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14200 && abiflags->gpr_size == AFL_REG_32))
14201 abiflags->cpr1_size = AFL_REG_32;
14202 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14203 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14204 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14205 abiflags->cpr1_size = AFL_REG_64;
14206
14207 abiflags->cpr2_size = AFL_REG_NONE;
14208
14209 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14210 abiflags->ases |= AFL_ASE_MDMX;
14211 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14212 abiflags->ases |= AFL_ASE_MIPS16;
14213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14214 abiflags->ases |= AFL_ASE_MICROMIPS;
14215
14216 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14217 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14218 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14219 && abiflags->isa_level >= 32
14220 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14221 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14222}
14223
b49e97c9
TS
14224/* We need to use a special link routine to handle the .reginfo and
14225 the .mdebug sections. We need to merge all instances of these
14226 sections together, not write them all out sequentially. */
14227
b34976b6 14228bfd_boolean
9719ad41 14229_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14230{
b49e97c9
TS
14231 asection *o;
14232 struct bfd_link_order *p;
14233 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14234 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14235 Elf32_RegInfo reginfo;
14236 struct ecoff_debug_info debug;
861fb55a 14237 struct mips_htab_traverse_info hti;
7a2a6943
NC
14238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14239 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14240 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14241 void *mdebug_handle = NULL;
b49e97c9
TS
14242 asection *s;
14243 EXTR esym;
14244 unsigned int i;
14245 bfd_size_type amt;
0a44bf69 14246 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14247
14248 static const char * const secname[] =
14249 {
14250 ".text", ".init", ".fini", ".data",
14251 ".rodata", ".sdata", ".sbss", ".bss"
14252 };
14253 static const int sc[] =
14254 {
14255 scText, scInit, scFini, scData,
14256 scRData, scSData, scSBss, scBss
14257 };
14258
0a44bf69 14259 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14260 BFD_ASSERT (htab != NULL);
14261
64575f78
MR
14262 /* Sort the dynamic symbols so that those with GOT entries come after
14263 those without. */
d4596a51
RS
14264 if (!mips_elf_sort_hash_table (abfd, info))
14265 return FALSE;
b49e97c9 14266
861fb55a
DJ
14267 /* Create any scheduled LA25 stubs. */
14268 hti.info = info;
14269 hti.output_bfd = abfd;
14270 hti.error = FALSE;
14271 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14272 if (hti.error)
14273 return FALSE;
14274
b49e97c9
TS
14275 /* Get a value for the GP register. */
14276 if (elf_gp (abfd) == 0)
14277 {
14278 struct bfd_link_hash_entry *h;
14279
b34976b6 14280 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14281 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14282 elf_gp (abfd) = (h->u.def.value
14283 + h->u.def.section->output_section->vma
14284 + h->u.def.section->output_offset);
0a44bf69
RS
14285 else if (htab->is_vxworks
14286 && (h = bfd_link_hash_lookup (info->hash,
14287 "_GLOBAL_OFFSET_TABLE_",
14288 FALSE, FALSE, TRUE))
14289 && h->type == bfd_link_hash_defined)
14290 elf_gp (abfd) = (h->u.def.section->output_section->vma
14291 + h->u.def.section->output_offset
14292 + h->u.def.value);
0e1862bb 14293 else if (bfd_link_relocatable (info))
b49e97c9
TS
14294 {
14295 bfd_vma lo = MINUS_ONE;
14296
14297 /* Find the GP-relative section with the lowest offset. */
9719ad41 14298 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14299 if (o->vma < lo
14300 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14301 lo = o->vma;
14302
14303 /* And calculate GP relative to that. */
0a44bf69 14304 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14305 }
14306 else
14307 {
14308 /* If the relocate_section function needs to do a reloc
14309 involving the GP value, it should make a reloc_dangerous
14310 callback to warn that GP is not defined. */
14311 }
14312 }
14313
14314 /* Go through the sections and collect the .reginfo and .mdebug
14315 information. */
351cdf24 14316 abiflags_sec = NULL;
b49e97c9
TS
14317 reginfo_sec = NULL;
14318 mdebug_sec = NULL;
14319 gptab_data_sec = NULL;
14320 gptab_bss_sec = NULL;
9719ad41 14321 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14322 {
351cdf24
MF
14323 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14324 {
14325 /* We have found the .MIPS.abiflags section in the output file.
14326 Look through all the link_orders comprising it and remove them.
14327 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14328 for (p = o->map_head.link_order; p != NULL; p = p->next)
14329 {
14330 asection *input_section;
14331
14332 if (p->type != bfd_indirect_link_order)
14333 {
14334 if (p->type == bfd_data_link_order)
14335 continue;
14336 abort ();
14337 }
14338
14339 input_section = p->u.indirect.section;
14340
14341 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14342 elf_link_input_bfd ignores this section. */
14343 input_section->flags &= ~SEC_HAS_CONTENTS;
14344 }
14345
14346 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14347 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14348
14349 /* Skip this section later on (I don't think this currently
14350 matters, but someday it might). */
14351 o->map_head.link_order = NULL;
14352
14353 abiflags_sec = o;
14354 }
14355
b49e97c9
TS
14356 if (strcmp (o->name, ".reginfo") == 0)
14357 {
14358 memset (&reginfo, 0, sizeof reginfo);
14359
14360 /* We have found the .reginfo section in the output file.
14361 Look through all the link_orders comprising it and merge
14362 the information together. */
8423293d 14363 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14364 {
14365 asection *input_section;
14366 bfd *input_bfd;
14367 Elf32_External_RegInfo ext;
14368 Elf32_RegInfo sub;
14369
14370 if (p->type != bfd_indirect_link_order)
14371 {
14372 if (p->type == bfd_data_link_order)
14373 continue;
14374 abort ();
14375 }
14376
14377 input_section = p->u.indirect.section;
14378 input_bfd = input_section->owner;
14379
b49e97c9 14380 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14381 &ext, 0, sizeof ext))
b34976b6 14382 return FALSE;
b49e97c9
TS
14383
14384 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14385
14386 reginfo.ri_gprmask |= sub.ri_gprmask;
14387 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14388 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14389 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14390 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14391
14392 /* ri_gp_value is set by the function
1c5e4ee9 14393 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14394 finally written out. */
14395
14396 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14397 elf_link_input_bfd ignores this section. */
14398 input_section->flags &= ~SEC_HAS_CONTENTS;
14399 }
14400
14401 /* Size has been set in _bfd_mips_elf_always_size_sections. */
58807c48
VI
14402 if (o->size != sizeof (Elf32_External_RegInfo))
14403 {
14404 _bfd_error_handler
14405 (_("%B: .reginfo section size should be %d bytes, "
14406 "actual size is %d"),
14407 abfd, sizeof (Elf32_External_RegInfo), o->size);
14408
14409 return FALSE;
14410 }
b49e97c9
TS
14411
14412 /* Skip this section later on (I don't think this currently
14413 matters, but someday it might). */
8423293d 14414 o->map_head.link_order = NULL;
b49e97c9
TS
14415
14416 reginfo_sec = o;
14417 }
14418
14419 if (strcmp (o->name, ".mdebug") == 0)
14420 {
14421 struct extsym_info einfo;
14422 bfd_vma last;
14423
14424 /* We have found the .mdebug section in the output file.
14425 Look through all the link_orders comprising it and merge
14426 the information together. */
14427 symhdr->magic = swap->sym_magic;
14428 /* FIXME: What should the version stamp be? */
14429 symhdr->vstamp = 0;
14430 symhdr->ilineMax = 0;
14431 symhdr->cbLine = 0;
14432 symhdr->idnMax = 0;
14433 symhdr->ipdMax = 0;
14434 symhdr->isymMax = 0;
14435 symhdr->ioptMax = 0;
14436 symhdr->iauxMax = 0;
14437 symhdr->issMax = 0;
14438 symhdr->issExtMax = 0;
14439 symhdr->ifdMax = 0;
14440 symhdr->crfd = 0;
14441 symhdr->iextMax = 0;
14442
14443 /* We accumulate the debugging information itself in the
14444 debug_info structure. */
14445 debug.line = NULL;
14446 debug.external_dnr = NULL;
14447 debug.external_pdr = NULL;
14448 debug.external_sym = NULL;
14449 debug.external_opt = NULL;
14450 debug.external_aux = NULL;
14451 debug.ss = NULL;
14452 debug.ssext = debug.ssext_end = NULL;
14453 debug.external_fdr = NULL;
14454 debug.external_rfd = NULL;
14455 debug.external_ext = debug.external_ext_end = NULL;
14456
14457 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14458 if (mdebug_handle == NULL)
b34976b6 14459 return FALSE;
b49e97c9
TS
14460
14461 esym.jmptbl = 0;
14462 esym.cobol_main = 0;
14463 esym.weakext = 0;
14464 esym.reserved = 0;
14465 esym.ifd = ifdNil;
14466 esym.asym.iss = issNil;
14467 esym.asym.st = stLocal;
14468 esym.asym.reserved = 0;
14469 esym.asym.index = indexNil;
14470 last = 0;
14471 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14472 {
14473 esym.asym.sc = sc[i];
14474 s = bfd_get_section_by_name (abfd, secname[i]);
14475 if (s != NULL)
14476 {
14477 esym.asym.value = s->vma;
eea6121a 14478 last = s->vma + s->size;
b49e97c9
TS
14479 }
14480 else
14481 esym.asym.value = last;
14482 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14483 secname[i], &esym))
b34976b6 14484 return FALSE;
b49e97c9
TS
14485 }
14486
8423293d 14487 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14488 {
14489 asection *input_section;
14490 bfd *input_bfd;
14491 const struct ecoff_debug_swap *input_swap;
14492 struct ecoff_debug_info input_debug;
14493 char *eraw_src;
14494 char *eraw_end;
14495
14496 if (p->type != bfd_indirect_link_order)
14497 {
14498 if (p->type == bfd_data_link_order)
14499 continue;
14500 abort ();
14501 }
14502
14503 input_section = p->u.indirect.section;
14504 input_bfd = input_section->owner;
14505
d5eaccd7 14506 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14507 {
14508 /* I don't know what a non MIPS ELF bfd would be
14509 doing with a .mdebug section, but I don't really
14510 want to deal with it. */
14511 continue;
14512 }
14513
14514 input_swap = (get_elf_backend_data (input_bfd)
14515 ->elf_backend_ecoff_debug_swap);
14516
eea6121a 14517 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14518
14519 /* The ECOFF linking code expects that we have already
14520 read in the debugging information and set up an
14521 ecoff_debug_info structure, so we do that now. */
14522 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14523 &input_debug))
b34976b6 14524 return FALSE;
b49e97c9
TS
14525
14526 if (! (bfd_ecoff_debug_accumulate
14527 (mdebug_handle, abfd, &debug, swap, input_bfd,
14528 &input_debug, input_swap, info)))
b34976b6 14529 return FALSE;
b49e97c9
TS
14530
14531 /* Loop through the external symbols. For each one with
14532 interesting information, try to find the symbol in
14533 the linker global hash table and save the information
14534 for the output external symbols. */
14535 eraw_src = input_debug.external_ext;
14536 eraw_end = (eraw_src
14537 + (input_debug.symbolic_header.iextMax
14538 * input_swap->external_ext_size));
14539 for (;
14540 eraw_src < eraw_end;
14541 eraw_src += input_swap->external_ext_size)
14542 {
14543 EXTR ext;
14544 const char *name;
14545 struct mips_elf_link_hash_entry *h;
14546
9719ad41 14547 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14548 if (ext.asym.sc == scNil
14549 || ext.asym.sc == scUndefined
14550 || ext.asym.sc == scSUndefined)
14551 continue;
14552
14553 name = input_debug.ssext + ext.asym.iss;
14554 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14555 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14556 if (h == NULL || h->esym.ifd != -2)
14557 continue;
14558
14559 if (ext.ifd != -1)
14560 {
14561 BFD_ASSERT (ext.ifd
14562 < input_debug.symbolic_header.ifdMax);
14563 ext.ifd = input_debug.ifdmap[ext.ifd];
14564 }
14565
14566 h->esym = ext;
14567 }
14568
14569 /* Free up the information we just read. */
14570 free (input_debug.line);
14571 free (input_debug.external_dnr);
14572 free (input_debug.external_pdr);
14573 free (input_debug.external_sym);
14574 free (input_debug.external_opt);
14575 free (input_debug.external_aux);
14576 free (input_debug.ss);
14577 free (input_debug.ssext);
14578 free (input_debug.external_fdr);
14579 free (input_debug.external_rfd);
14580 free (input_debug.external_ext);
14581
14582 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14583 elf_link_input_bfd ignores this section. */
14584 input_section->flags &= ~SEC_HAS_CONTENTS;
14585 }
14586
0e1862bb 14587 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14588 {
14589 /* Create .rtproc section. */
87e0a731 14590 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14591 if (rtproc_sec == NULL)
14592 {
14593 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14594 | SEC_LINKER_CREATED | SEC_READONLY);
14595
87e0a731
AM
14596 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14597 ".rtproc",
14598 flags);
b49e97c9 14599 if (rtproc_sec == NULL
b49e97c9 14600 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14601 return FALSE;
b49e97c9
TS
14602 }
14603
14604 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14605 info, rtproc_sec,
14606 &debug))
b34976b6 14607 return FALSE;
b49e97c9
TS
14608 }
14609
14610 /* Build the external symbol information. */
14611 einfo.abfd = abfd;
14612 einfo.info = info;
14613 einfo.debug = &debug;
14614 einfo.swap = swap;
b34976b6 14615 einfo.failed = FALSE;
b49e97c9 14616 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14617 mips_elf_output_extsym, &einfo);
b49e97c9 14618 if (einfo.failed)
b34976b6 14619 return FALSE;
b49e97c9
TS
14620
14621 /* Set the size of the .mdebug section. */
eea6121a 14622 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14623
14624 /* Skip this section later on (I don't think this currently
14625 matters, but someday it might). */
8423293d 14626 o->map_head.link_order = NULL;
b49e97c9
TS
14627
14628 mdebug_sec = o;
14629 }
14630
0112cd26 14631 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14632 {
14633 const char *subname;
14634 unsigned int c;
14635 Elf32_gptab *tab;
14636 Elf32_External_gptab *ext_tab;
14637 unsigned int j;
14638
14639 /* The .gptab.sdata and .gptab.sbss sections hold
14640 information describing how the small data area would
14641 change depending upon the -G switch. These sections
14642 not used in executables files. */
0e1862bb 14643 if (! bfd_link_relocatable (info))
b49e97c9 14644 {
8423293d 14645 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14646 {
14647 asection *input_section;
14648
14649 if (p->type != bfd_indirect_link_order)
14650 {
14651 if (p->type == bfd_data_link_order)
14652 continue;
14653 abort ();
14654 }
14655
14656 input_section = p->u.indirect.section;
14657
14658 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14659 elf_link_input_bfd ignores this section. */
14660 input_section->flags &= ~SEC_HAS_CONTENTS;
14661 }
14662
14663 /* Skip this section later on (I don't think this
14664 currently matters, but someday it might). */
8423293d 14665 o->map_head.link_order = NULL;
b49e97c9
TS
14666
14667 /* Really remove the section. */
5daa8fe7 14668 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14669 --abfd->section_count;
14670
14671 continue;
14672 }
14673
14674 /* There is one gptab for initialized data, and one for
14675 uninitialized data. */
14676 if (strcmp (o->name, ".gptab.sdata") == 0)
14677 gptab_data_sec = o;
14678 else if (strcmp (o->name, ".gptab.sbss") == 0)
14679 gptab_bss_sec = o;
14680 else
14681 {
4eca0228 14682 _bfd_error_handler
695344c0 14683 /* xgettext:c-format */
dae82561 14684 (_("%B: illegal section name `%A'"), abfd, o);
b49e97c9 14685 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14686 return FALSE;
b49e97c9
TS
14687 }
14688
14689 /* The linker script always combines .gptab.data and
14690 .gptab.sdata into .gptab.sdata, and likewise for
14691 .gptab.bss and .gptab.sbss. It is possible that there is
14692 no .sdata or .sbss section in the output file, in which
14693 case we must change the name of the output section. */
14694 subname = o->name + sizeof ".gptab" - 1;
14695 if (bfd_get_section_by_name (abfd, subname) == NULL)
14696 {
14697 if (o == gptab_data_sec)
14698 o->name = ".gptab.data";
14699 else
14700 o->name = ".gptab.bss";
14701 subname = o->name + sizeof ".gptab" - 1;
14702 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14703 }
14704
14705 /* Set up the first entry. */
14706 c = 1;
14707 amt = c * sizeof (Elf32_gptab);
9719ad41 14708 tab = bfd_malloc (amt);
b49e97c9 14709 if (tab == NULL)
b34976b6 14710 return FALSE;
b49e97c9
TS
14711 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14712 tab[0].gt_header.gt_unused = 0;
14713
14714 /* Combine the input sections. */
8423293d 14715 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14716 {
14717 asection *input_section;
14718 bfd *input_bfd;
14719 bfd_size_type size;
14720 unsigned long last;
14721 bfd_size_type gpentry;
14722
14723 if (p->type != bfd_indirect_link_order)
14724 {
14725 if (p->type == bfd_data_link_order)
14726 continue;
14727 abort ();
14728 }
14729
14730 input_section = p->u.indirect.section;
14731 input_bfd = input_section->owner;
14732
14733 /* Combine the gptab entries for this input section one
14734 by one. We know that the input gptab entries are
14735 sorted by ascending -G value. */
eea6121a 14736 size = input_section->size;
b49e97c9
TS
14737 last = 0;
14738 for (gpentry = sizeof (Elf32_External_gptab);
14739 gpentry < size;
14740 gpentry += sizeof (Elf32_External_gptab))
14741 {
14742 Elf32_External_gptab ext_gptab;
14743 Elf32_gptab int_gptab;
14744 unsigned long val;
14745 unsigned long add;
b34976b6 14746 bfd_boolean exact;
b49e97c9
TS
14747 unsigned int look;
14748
14749 if (! (bfd_get_section_contents
9719ad41
RS
14750 (input_bfd, input_section, &ext_gptab, gpentry,
14751 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14752 {
14753 free (tab);
b34976b6 14754 return FALSE;
b49e97c9
TS
14755 }
14756
14757 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14758 &int_gptab);
14759 val = int_gptab.gt_entry.gt_g_value;
14760 add = int_gptab.gt_entry.gt_bytes - last;
14761
b34976b6 14762 exact = FALSE;
b49e97c9
TS
14763 for (look = 1; look < c; look++)
14764 {
14765 if (tab[look].gt_entry.gt_g_value >= val)
14766 tab[look].gt_entry.gt_bytes += add;
14767
14768 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14769 exact = TRUE;
b49e97c9
TS
14770 }
14771
14772 if (! exact)
14773 {
14774 Elf32_gptab *new_tab;
14775 unsigned int max;
14776
14777 /* We need a new table entry. */
14778 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14779 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14780 if (new_tab == NULL)
14781 {
14782 free (tab);
b34976b6 14783 return FALSE;
b49e97c9
TS
14784 }
14785 tab = new_tab;
14786 tab[c].gt_entry.gt_g_value = val;
14787 tab[c].gt_entry.gt_bytes = add;
14788
14789 /* Merge in the size for the next smallest -G
14790 value, since that will be implied by this new
14791 value. */
14792 max = 0;
14793 for (look = 1; look < c; look++)
14794 {
14795 if (tab[look].gt_entry.gt_g_value < val
14796 && (max == 0
14797 || (tab[look].gt_entry.gt_g_value
14798 > tab[max].gt_entry.gt_g_value)))
14799 max = look;
14800 }
14801 if (max != 0)
14802 tab[c].gt_entry.gt_bytes +=
14803 tab[max].gt_entry.gt_bytes;
14804
14805 ++c;
14806 }
14807
14808 last = int_gptab.gt_entry.gt_bytes;
14809 }
14810
14811 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14812 elf_link_input_bfd ignores this section. */
14813 input_section->flags &= ~SEC_HAS_CONTENTS;
14814 }
14815
14816 /* The table must be sorted by -G value. */
14817 if (c > 2)
14818 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14819
14820 /* Swap out the table. */
14821 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14822 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14823 if (ext_tab == NULL)
14824 {
14825 free (tab);
b34976b6 14826 return FALSE;
b49e97c9
TS
14827 }
14828
14829 for (j = 0; j < c; j++)
14830 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14831 free (tab);
14832
eea6121a 14833 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14834 o->contents = (bfd_byte *) ext_tab;
14835
14836 /* Skip this section later on (I don't think this currently
14837 matters, but someday it might). */
8423293d 14838 o->map_head.link_order = NULL;
b49e97c9
TS
14839 }
14840 }
14841
14842 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14843 if (!bfd_elf_final_link (abfd, info))
b34976b6 14844 return FALSE;
b49e97c9
TS
14845
14846 /* Now write out the computed sections. */
14847
351cdf24
MF
14848 if (abiflags_sec != NULL)
14849 {
14850 Elf_External_ABIFlags_v0 ext;
14851 Elf_Internal_ABIFlags_v0 *abiflags;
14852
14853 abiflags = &mips_elf_tdata (abfd)->abiflags;
14854
14855 /* Set up the abiflags if no valid input sections were found. */
14856 if (!mips_elf_tdata (abfd)->abiflags_valid)
14857 {
14858 infer_mips_abiflags (abfd, abiflags);
14859 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14860 }
14861 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14862 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14863 return FALSE;
14864 }
14865
9719ad41 14866 if (reginfo_sec != NULL)
b49e97c9
TS
14867 {
14868 Elf32_External_RegInfo ext;
14869
14870 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14871 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14872 return FALSE;
b49e97c9
TS
14873 }
14874
9719ad41 14875 if (mdebug_sec != NULL)
b49e97c9
TS
14876 {
14877 BFD_ASSERT (abfd->output_has_begun);
14878 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14879 swap, info,
14880 mdebug_sec->filepos))
b34976b6 14881 return FALSE;
b49e97c9
TS
14882
14883 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14884 }
14885
9719ad41 14886 if (gptab_data_sec != NULL)
b49e97c9
TS
14887 {
14888 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14889 gptab_data_sec->contents,
eea6121a 14890 0, gptab_data_sec->size))
b34976b6 14891 return FALSE;
b49e97c9
TS
14892 }
14893
9719ad41 14894 if (gptab_bss_sec != NULL)
b49e97c9
TS
14895 {
14896 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14897 gptab_bss_sec->contents,
eea6121a 14898 0, gptab_bss_sec->size))
b34976b6 14899 return FALSE;
b49e97c9
TS
14900 }
14901
14902 if (SGI_COMPAT (abfd))
14903 {
14904 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14905 if (rtproc_sec != NULL)
14906 {
14907 if (! bfd_set_section_contents (abfd, rtproc_sec,
14908 rtproc_sec->contents,
eea6121a 14909 0, rtproc_sec->size))
b34976b6 14910 return FALSE;
b49e97c9
TS
14911 }
14912 }
14913
b34976b6 14914 return TRUE;
b49e97c9
TS
14915}
14916\f
b2e9744f
MR
14917/* Merge object file header flags from IBFD into OBFD. Raise an error
14918 if there are conflicting settings. */
14919
14920static bfd_boolean
50e03d47 14921mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14922{
50e03d47 14923 bfd *obfd = info->output_bfd;
b2e9744f
MR
14924 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14925 flagword old_flags;
14926 flagword new_flags;
14927 bfd_boolean ok;
14928
14929 new_flags = elf_elfheader (ibfd)->e_flags;
14930 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14931 old_flags = elf_elfheader (obfd)->e_flags;
14932
14933 /* Check flag compatibility. */
14934
14935 new_flags &= ~EF_MIPS_NOREORDER;
14936 old_flags &= ~EF_MIPS_NOREORDER;
14937
14938 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14939 doesn't seem to matter. */
14940 new_flags &= ~EF_MIPS_XGOT;
14941 old_flags &= ~EF_MIPS_XGOT;
14942
14943 /* MIPSpro generates ucode info in n64 objects. Again, we should
14944 just be able to ignore this. */
14945 new_flags &= ~EF_MIPS_UCODE;
14946 old_flags &= ~EF_MIPS_UCODE;
14947
14948 /* DSOs should only be linked with CPIC code. */
14949 if ((ibfd->flags & DYNAMIC) != 0)
14950 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14951
14952 if (new_flags == old_flags)
14953 return TRUE;
14954
14955 ok = TRUE;
14956
14957 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14958 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14959 {
4eca0228 14960 _bfd_error_handler
b2e9744f
MR
14961 (_("%B: warning: linking abicalls files with non-abicalls files"),
14962 ibfd);
14963 ok = TRUE;
14964 }
14965
14966 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14967 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14968 if (! (new_flags & EF_MIPS_PIC))
14969 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14970
14971 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14972 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14973
14974 /* Compare the ISAs. */
14975 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14976 {
4eca0228 14977 _bfd_error_handler
b2e9744f
MR
14978 (_("%B: linking 32-bit code with 64-bit code"),
14979 ibfd);
14980 ok = FALSE;
14981 }
14982 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14983 {
14984 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14985 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14986 {
14987 /* Copy the architecture info from IBFD to OBFD. Also copy
14988 the 32-bit flag (if set) so that we continue to recognise
14989 OBFD as a 32-bit binary. */
14990 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14991 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14992 elf_elfheader (obfd)->e_flags
14993 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14994
14995 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14996 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14997
14998 /* Copy across the ABI flags if OBFD doesn't use them
14999 and if that was what caused us to treat IBFD as 32-bit. */
15000 if ((old_flags & EF_MIPS_ABI) == 0
15001 && mips_32bit_flags_p (new_flags)
15002 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15003 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15004 }
15005 else
15006 {
15007 /* The ISAs aren't compatible. */
4eca0228 15008 _bfd_error_handler
695344c0 15009 /* xgettext:c-format */
b2e9744f
MR
15010 (_("%B: linking %s module with previous %s modules"),
15011 ibfd,
15012 bfd_printable_name (ibfd),
15013 bfd_printable_name (obfd));
15014 ok = FALSE;
15015 }
15016 }
15017
15018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15020
15021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15022 does set EI_CLASS differently from any 32-bit ABI. */
15023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15026 {
15027 /* Only error if both are set (to different values). */
15028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15031 {
4eca0228 15032 _bfd_error_handler
695344c0 15033 /* xgettext:c-format */
b2e9744f
MR
15034 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15035 ibfd,
15036 elf_mips_abi_name (ibfd),
15037 elf_mips_abi_name (obfd));
15038 ok = FALSE;
15039 }
15040 new_flags &= ~EF_MIPS_ABI;
15041 old_flags &= ~EF_MIPS_ABI;
15042 }
15043
15044 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15045 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15046 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15047 {
15048 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15049 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15050 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15051 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15052 int micro_mis = old_m16 && new_micro;
15053 int m16_mis = old_micro && new_m16;
15054
15055 if (m16_mis || micro_mis)
15056 {
4eca0228 15057 _bfd_error_handler
695344c0 15058 /* xgettext:c-format */
b2e9744f
MR
15059 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15060 ibfd,
15061 m16_mis ? "MIPS16" : "microMIPS",
15062 m16_mis ? "microMIPS" : "MIPS16");
15063 ok = FALSE;
15064 }
15065
15066 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15067
15068 new_flags &= ~ EF_MIPS_ARCH_ASE;
15069 old_flags &= ~ EF_MIPS_ARCH_ASE;
15070 }
15071
15072 /* Compare NaN encodings. */
15073 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15074 {
695344c0 15075 /* xgettext:c-format */
b2e9744f
MR
15076 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15077 ibfd,
15078 (new_flags & EF_MIPS_NAN2008
15079 ? "-mnan=2008" : "-mnan=legacy"),
15080 (old_flags & EF_MIPS_NAN2008
15081 ? "-mnan=2008" : "-mnan=legacy"));
15082 ok = FALSE;
15083 new_flags &= ~EF_MIPS_NAN2008;
15084 old_flags &= ~EF_MIPS_NAN2008;
15085 }
15086
15087 /* Compare FP64 state. */
15088 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15089 {
695344c0 15090 /* xgettext:c-format */
b2e9744f
MR
15091 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15092 ibfd,
15093 (new_flags & EF_MIPS_FP64
15094 ? "-mfp64" : "-mfp32"),
15095 (old_flags & EF_MIPS_FP64
15096 ? "-mfp64" : "-mfp32"));
15097 ok = FALSE;
15098 new_flags &= ~EF_MIPS_FP64;
15099 old_flags &= ~EF_MIPS_FP64;
15100 }
15101
15102 /* Warn about any other mismatches */
15103 if (new_flags != old_flags)
15104 {
695344c0 15105 /* xgettext:c-format */
4eca0228 15106 _bfd_error_handler
d42c267e
AM
15107 (_("%B: uses different e_flags (%#x) fields than previous modules "
15108 "(%#x)"),
15109 ibfd, new_flags, old_flags);
b2e9744f
MR
15110 ok = FALSE;
15111 }
15112
15113 return ok;
15114}
15115
2cf19d5c
JM
15116/* Merge object attributes from IBFD into OBFD. Raise an error if
15117 there are conflicting attributes. */
15118static bfd_boolean
50e03d47 15119mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15120{
50e03d47 15121 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15122 obj_attribute *in_attr;
15123 obj_attribute *out_attr;
6ae68ba3 15124 bfd *abi_fp_bfd;
b60bf9be 15125 bfd *abi_msa_bfd;
6ae68ba3
MR
15126
15127 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15128 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15129 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15130 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15131
b60bf9be
CF
15132 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15133 if (!abi_msa_bfd
15134 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15135 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15136
2cf19d5c
JM
15137 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15138 {
15139 /* This is the first object. Copy the attributes. */
15140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15141
15142 /* Use the Tag_null value to indicate the attributes have been
15143 initialized. */
15144 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15145
15146 return TRUE;
15147 }
15148
15149 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15150 non-conflicting ones. */
2cf19d5c
JM
15151 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15152 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15153 {
757a636f 15154 int out_fp, in_fp;
6ae68ba3 15155
757a636f
RS
15156 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15157 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15158 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15159 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15160 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15161 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15162 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15163 || in_fp == Val_GNU_MIPS_ABI_FP_64
15164 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15165 {
15166 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15167 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15168 }
15169 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15170 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15171 || out_fp == Val_GNU_MIPS_ABI_FP_64
15172 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15173 /* Keep the current setting. */;
15174 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15175 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15176 {
15177 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15178 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15179 }
15180 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15181 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15182 /* Keep the current setting. */;
757a636f
RS
15183 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15184 {
15185 const char *out_string, *in_string;
6ae68ba3 15186
757a636f
RS
15187 out_string = _bfd_mips_fp_abi_string (out_fp);
15188 in_string = _bfd_mips_fp_abi_string (in_fp);
15189 /* First warn about cases involving unrecognised ABIs. */
15190 if (!out_string && !in_string)
695344c0 15191 /* xgettext:c-format */
757a636f
RS
15192 _bfd_error_handler
15193 (_("Warning: %B uses unknown floating point ABI %d "
15194 "(set by %B), %B uses unknown floating point ABI %d"),
c08bb8dd 15195 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15196 else if (!out_string)
15197 _bfd_error_handler
695344c0 15198 /* xgettext:c-format */
757a636f
RS
15199 (_("Warning: %B uses unknown floating point ABI %d "
15200 "(set by %B), %B uses %s"),
c08bb8dd 15201 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15202 else if (!in_string)
15203 _bfd_error_handler
695344c0 15204 /* xgettext:c-format */
757a636f
RS
15205 (_("Warning: %B uses %s (set by %B), "
15206 "%B uses unknown floating point ABI %d"),
c08bb8dd 15207 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15208 else
15209 {
15210 /* If one of the bfds is soft-float, the other must be
15211 hard-float. The exact choice of hard-float ABI isn't
15212 really relevant to the error message. */
15213 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15214 out_string = "-mhard-float";
15215 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15216 in_string = "-mhard-float";
15217 _bfd_error_handler
695344c0 15218 /* xgettext:c-format */
757a636f 15219 (_("Warning: %B uses %s (set by %B), %B uses %s"),
c08bb8dd 15220 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15221 }
15222 }
2cf19d5c
JM
15223 }
15224
b60bf9be
CF
15225 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15226 non-conflicting ones. */
15227 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15228 {
15229 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15230 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15231 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15232 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15233 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15234 {
15235 case Val_GNU_MIPS_ABI_MSA_128:
15236 _bfd_error_handler
695344c0 15237 /* xgettext:c-format */
b60bf9be
CF
15238 (_("Warning: %B uses %s (set by %B), "
15239 "%B uses unknown MSA ABI %d"),
c08bb8dd
AM
15240 obfd, "-mmsa", abi_msa_bfd,
15241 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15242 break;
15243
15244 default:
15245 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15246 {
15247 case Val_GNU_MIPS_ABI_MSA_128:
15248 _bfd_error_handler
695344c0 15249 /* xgettext:c-format */
b60bf9be
CF
15250 (_("Warning: %B uses unknown MSA ABI %d "
15251 "(set by %B), %B uses %s"),
c08bb8dd
AM
15252 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15253 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15254 break;
15255
15256 default:
15257 _bfd_error_handler
695344c0 15258 /* xgettext:c-format */
b60bf9be
CF
15259 (_("Warning: %B uses unknown MSA ABI %d "
15260 "(set by %B), %B uses unknown MSA ABI %d"),
c08bb8dd
AM
15261 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15262 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15263 break;
15264 }
15265 }
15266 }
15267
2cf19d5c 15268 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15269 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15270}
15271
a3dc0a7f
MR
15272/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15273 there are conflicting settings. */
15274
15275static bfd_boolean
15276mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15277{
15278 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15279 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15280 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15281
15282 /* Update the output abiflags fp_abi using the computed fp_abi. */
15283 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15284
15285#define max(a, b) ((a) > (b) ? (a) : (b))
15286 /* Merge abiflags. */
15287 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15288 in_tdata->abiflags.isa_level);
15289 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15290 in_tdata->abiflags.isa_rev);
15291 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15292 in_tdata->abiflags.gpr_size);
15293 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15294 in_tdata->abiflags.cpr1_size);
15295 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15296 in_tdata->abiflags.cpr2_size);
15297#undef max
15298 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15299 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15300
15301 return TRUE;
15302}
15303
b49e97c9
TS
15304/* Merge backend specific data from an object file to the output
15305 object file when linking. */
15306
b34976b6 15307bfd_boolean
50e03d47 15308_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15309{
50e03d47 15310 bfd *obfd = info->output_bfd;
cf8502c1
MR
15311 struct mips_elf_obj_tdata *out_tdata;
15312 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15313 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15314 asection *sec;
d537eeb5 15315 bfd_boolean ok;
b49e97c9 15316
58238693 15317 /* Check if we have the same endianness. */
50e03d47 15318 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15319 {
4eca0228 15320 _bfd_error_handler
d003868e
AM
15321 (_("%B: endianness incompatible with that of the selected emulation"),
15322 ibfd);
aa701218
AO
15323 return FALSE;
15324 }
b49e97c9 15325
d5eaccd7 15326 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15327 return TRUE;
b49e97c9 15328
cf8502c1
MR
15329 in_tdata = mips_elf_tdata (ibfd);
15330 out_tdata = mips_elf_tdata (obfd);
15331
aa701218
AO
15332 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15333 {
4eca0228 15334 _bfd_error_handler
d003868e
AM
15335 (_("%B: ABI is incompatible with that of the selected emulation"),
15336 ibfd);
aa701218
AO
15337 return FALSE;
15338 }
15339
23ba6f18
MR
15340 /* Check to see if the input BFD actually contains any sections. If not,
15341 then it has no attributes, and its flags may not have been initialized
15342 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15343 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15344 {
15345 /* Ignore synthetic sections and empty .text, .data and .bss sections
15346 which are automatically generated by gas. Also ignore fake
15347 (s)common sections, since merely defining a common symbol does
15348 not affect compatibility. */
15349 if ((sec->flags & SEC_IS_COMMON) == 0
15350 && strcmp (sec->name, ".reginfo")
15351 && strcmp (sec->name, ".mdebug")
15352 && (sec->size != 0
15353 || (strcmp (sec->name, ".text")
15354 && strcmp (sec->name, ".data")
15355 && strcmp (sec->name, ".bss"))))
15356 {
15357 null_input_bfd = FALSE;
15358 break;
15359 }
15360 }
15361 if (null_input_bfd)
15362 return TRUE;
15363
28d45e28 15364 /* Populate abiflags using existing information. */
23ba6f18
MR
15365 if (in_tdata->abiflags_valid)
15366 {
15367 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15368 Elf_Internal_ABIFlags_v0 in_abiflags;
15369 Elf_Internal_ABIFlags_v0 abiflags;
15370
15371 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15372 set. */
23ba6f18 15373 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15374 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15375
351cdf24 15376 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15377 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15378
15379 /* It is not possible to infer the correct ISA revision
07d6d2b8 15380 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15381 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15382 in_abiflags.isa_rev = 2;
15383
c97c330b
MF
15384 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15385 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15386 _bfd_error_handler
351cdf24
MF
15387 (_("%B: warning: Inconsistent ISA between e_flags and "
15388 ".MIPS.abiflags"), ibfd);
15389 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15390 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15391 _bfd_error_handler
dcb1c796 15392 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15393 ".MIPS.abiflags"), ibfd);
15394 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15395 _bfd_error_handler
351cdf24
MF
15396 (_("%B: warning: Inconsistent ASEs between e_flags and "
15397 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15398 /* The isa_ext is allowed to be an extension of what can be inferred
15399 from e_flags. */
15400 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15401 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15402 _bfd_error_handler
351cdf24
MF
15403 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15404 ".MIPS.abiflags"), ibfd);
15405 if (in_abiflags.flags2 != 0)
4eca0228 15406 _bfd_error_handler
351cdf24
MF
15407 (_("%B: warning: Unexpected flag in the flags2 field of "
15408 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15409 in_abiflags.flags2);
351cdf24 15410 }
28d45e28
MR
15411 else
15412 {
15413 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15414 in_tdata->abiflags_valid = TRUE;
15415 }
15416
cf8502c1 15417 if (!out_tdata->abiflags_valid)
351cdf24
MF
15418 {
15419 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15420 out_tdata->abiflags = in_tdata->abiflags;
15421 out_tdata->abiflags_valid = TRUE;
351cdf24 15422 }
b49e97c9
TS
15423
15424 if (! elf_flags_init (obfd))
15425 {
b34976b6 15426 elf_flags_init (obfd) = TRUE;
351cdf24 15427 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15428 elf_elfheader (obfd)->e_ident[EI_CLASS]
15429 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15430
15431 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15432 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15433 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15434 bfd_get_mach (ibfd))))
b49e97c9
TS
15435 {
15436 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15437 bfd_get_mach (ibfd)))
b34976b6 15438 return FALSE;
351cdf24
MF
15439
15440 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15441 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15442 }
15443
d537eeb5 15444 ok = TRUE;
b49e97c9 15445 }
d537eeb5 15446 else
50e03d47 15447 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15448
50e03d47 15449 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15450
a3dc0a7f 15451 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15452
d537eeb5 15453 if (!ok)
b49e97c9
TS
15454 {
15455 bfd_set_error (bfd_error_bad_value);
b34976b6 15456 return FALSE;
b49e97c9
TS
15457 }
15458
b34976b6 15459 return TRUE;
b49e97c9
TS
15460}
15461
15462/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15463
b34976b6 15464bfd_boolean
9719ad41 15465_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15466{
15467 BFD_ASSERT (!elf_flags_init (abfd)
15468 || elf_elfheader (abfd)->e_flags == flags);
15469
15470 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15471 elf_flags_init (abfd) = TRUE;
15472 return TRUE;
b49e97c9
TS
15473}
15474
ad9563d6
CM
15475char *
15476_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15477{
15478 switch (dtag)
15479 {
15480 default: return "";
15481 case DT_MIPS_RLD_VERSION:
15482 return "MIPS_RLD_VERSION";
15483 case DT_MIPS_TIME_STAMP:
15484 return "MIPS_TIME_STAMP";
15485 case DT_MIPS_ICHECKSUM:
15486 return "MIPS_ICHECKSUM";
15487 case DT_MIPS_IVERSION:
15488 return "MIPS_IVERSION";
15489 case DT_MIPS_FLAGS:
15490 return "MIPS_FLAGS";
15491 case DT_MIPS_BASE_ADDRESS:
15492 return "MIPS_BASE_ADDRESS";
15493 case DT_MIPS_MSYM:
15494 return "MIPS_MSYM";
15495 case DT_MIPS_CONFLICT:
15496 return "MIPS_CONFLICT";
15497 case DT_MIPS_LIBLIST:
15498 return "MIPS_LIBLIST";
15499 case DT_MIPS_LOCAL_GOTNO:
15500 return "MIPS_LOCAL_GOTNO";
15501 case DT_MIPS_CONFLICTNO:
15502 return "MIPS_CONFLICTNO";
15503 case DT_MIPS_LIBLISTNO:
15504 return "MIPS_LIBLISTNO";
15505 case DT_MIPS_SYMTABNO:
15506 return "MIPS_SYMTABNO";
15507 case DT_MIPS_UNREFEXTNO:
15508 return "MIPS_UNREFEXTNO";
15509 case DT_MIPS_GOTSYM:
15510 return "MIPS_GOTSYM";
15511 case DT_MIPS_HIPAGENO:
15512 return "MIPS_HIPAGENO";
15513 case DT_MIPS_RLD_MAP:
15514 return "MIPS_RLD_MAP";
a5499fa4
MF
15515 case DT_MIPS_RLD_MAP_REL:
15516 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15517 case DT_MIPS_DELTA_CLASS:
15518 return "MIPS_DELTA_CLASS";
15519 case DT_MIPS_DELTA_CLASS_NO:
15520 return "MIPS_DELTA_CLASS_NO";
15521 case DT_MIPS_DELTA_INSTANCE:
15522 return "MIPS_DELTA_INSTANCE";
15523 case DT_MIPS_DELTA_INSTANCE_NO:
15524 return "MIPS_DELTA_INSTANCE_NO";
15525 case DT_MIPS_DELTA_RELOC:
15526 return "MIPS_DELTA_RELOC";
15527 case DT_MIPS_DELTA_RELOC_NO:
15528 return "MIPS_DELTA_RELOC_NO";
15529 case DT_MIPS_DELTA_SYM:
15530 return "MIPS_DELTA_SYM";
15531 case DT_MIPS_DELTA_SYM_NO:
15532 return "MIPS_DELTA_SYM_NO";
15533 case DT_MIPS_DELTA_CLASSSYM:
15534 return "MIPS_DELTA_CLASSSYM";
15535 case DT_MIPS_DELTA_CLASSSYM_NO:
15536 return "MIPS_DELTA_CLASSSYM_NO";
15537 case DT_MIPS_CXX_FLAGS:
15538 return "MIPS_CXX_FLAGS";
15539 case DT_MIPS_PIXIE_INIT:
15540 return "MIPS_PIXIE_INIT";
15541 case DT_MIPS_SYMBOL_LIB:
15542 return "MIPS_SYMBOL_LIB";
15543 case DT_MIPS_LOCALPAGE_GOTIDX:
15544 return "MIPS_LOCALPAGE_GOTIDX";
15545 case DT_MIPS_LOCAL_GOTIDX:
15546 return "MIPS_LOCAL_GOTIDX";
15547 case DT_MIPS_HIDDEN_GOTIDX:
15548 return "MIPS_HIDDEN_GOTIDX";
15549 case DT_MIPS_PROTECTED_GOTIDX:
15550 return "MIPS_PROTECTED_GOT_IDX";
15551 case DT_MIPS_OPTIONS:
15552 return "MIPS_OPTIONS";
15553 case DT_MIPS_INTERFACE:
15554 return "MIPS_INTERFACE";
15555 case DT_MIPS_DYNSTR_ALIGN:
15556 return "DT_MIPS_DYNSTR_ALIGN";
15557 case DT_MIPS_INTERFACE_SIZE:
15558 return "DT_MIPS_INTERFACE_SIZE";
15559 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15560 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15561 case DT_MIPS_PERF_SUFFIX:
15562 return "DT_MIPS_PERF_SUFFIX";
15563 case DT_MIPS_COMPACT_SIZE:
15564 return "DT_MIPS_COMPACT_SIZE";
15565 case DT_MIPS_GP_VALUE:
15566 return "DT_MIPS_GP_VALUE";
15567 case DT_MIPS_AUX_DYNAMIC:
15568 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15569 case DT_MIPS_PLTGOT:
15570 return "DT_MIPS_PLTGOT";
15571 case DT_MIPS_RWPLT:
15572 return "DT_MIPS_RWPLT";
ad9563d6
CM
15573 }
15574}
15575
757a636f
RS
15576/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15577 not known. */
15578
15579const char *
15580_bfd_mips_fp_abi_string (int fp)
15581{
15582 switch (fp)
15583 {
15584 /* These strings aren't translated because they're simply
15585 option lists. */
15586 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15587 return "-mdouble-float";
15588
15589 case Val_GNU_MIPS_ABI_FP_SINGLE:
15590 return "-msingle-float";
15591
15592 case Val_GNU_MIPS_ABI_FP_SOFT:
15593 return "-msoft-float";
15594
351cdf24
MF
15595 case Val_GNU_MIPS_ABI_FP_OLD_64:
15596 return _("-mips32r2 -mfp64 (12 callee-saved)");
15597
15598 case Val_GNU_MIPS_ABI_FP_XX:
15599 return "-mfpxx";
15600
757a636f 15601 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15602 return "-mgp32 -mfp64";
15603
15604 case Val_GNU_MIPS_ABI_FP_64A:
15605 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15606
15607 default:
15608 return 0;
15609 }
15610}
15611
351cdf24
MF
15612static void
15613print_mips_ases (FILE *file, unsigned int mask)
15614{
15615 if (mask & AFL_ASE_DSP)
15616 fputs ("\n\tDSP ASE", file);
15617 if (mask & AFL_ASE_DSPR2)
15618 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15619 if (mask & AFL_ASE_DSPR3)
15620 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15621 if (mask & AFL_ASE_EVA)
15622 fputs ("\n\tEnhanced VA Scheme", file);
15623 if (mask & AFL_ASE_MCU)
15624 fputs ("\n\tMCU (MicroController) ASE", file);
15625 if (mask & AFL_ASE_MDMX)
15626 fputs ("\n\tMDMX ASE", file);
15627 if (mask & AFL_ASE_MIPS3D)
15628 fputs ("\n\tMIPS-3D ASE", file);
15629 if (mask & AFL_ASE_MT)
15630 fputs ("\n\tMT ASE", file);
15631 if (mask & AFL_ASE_SMARTMIPS)
15632 fputs ("\n\tSmartMIPS ASE", file);
15633 if (mask & AFL_ASE_VIRT)
15634 fputs ("\n\tVZ ASE", file);
15635 if (mask & AFL_ASE_MSA)
15636 fputs ("\n\tMSA ASE", file);
15637 if (mask & AFL_ASE_MIPS16)
15638 fputs ("\n\tMIPS16 ASE", file);
15639 if (mask & AFL_ASE_MICROMIPS)
15640 fputs ("\n\tMICROMIPS ASE", file);
15641 if (mask & AFL_ASE_XPA)
15642 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15643 if (mask & AFL_ASE_MIPS16E2)
15644 fputs ("\n\tMIPS16e2 ASE", file);
351cdf24
MF
15645 if (mask == 0)
15646 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15647 else if ((mask & ~AFL_ASE_MASK) != 0)
15648 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15649}
15650
15651static void
15652print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15653{
15654 switch (isa_ext)
15655 {
15656 case 0:
15657 fputs (_("None"), file);
15658 break;
15659 case AFL_EXT_XLR:
15660 fputs ("RMI XLR", file);
15661 break;
2c629856
N
15662 case AFL_EXT_OCTEON3:
15663 fputs ("Cavium Networks Octeon3", file);
15664 break;
351cdf24
MF
15665 case AFL_EXT_OCTEON2:
15666 fputs ("Cavium Networks Octeon2", file);
15667 break;
15668 case AFL_EXT_OCTEONP:
15669 fputs ("Cavium Networks OcteonP", file);
15670 break;
15671 case AFL_EXT_LOONGSON_3A:
15672 fputs ("Loongson 3A", file);
15673 break;
15674 case AFL_EXT_OCTEON:
15675 fputs ("Cavium Networks Octeon", file);
15676 break;
15677 case AFL_EXT_5900:
15678 fputs ("Toshiba R5900", file);
15679 break;
15680 case AFL_EXT_4650:
15681 fputs ("MIPS R4650", file);
15682 break;
15683 case AFL_EXT_4010:
15684 fputs ("LSI R4010", file);
15685 break;
15686 case AFL_EXT_4100:
15687 fputs ("NEC VR4100", file);
15688 break;
15689 case AFL_EXT_3900:
15690 fputs ("Toshiba R3900", file);
15691 break;
15692 case AFL_EXT_10000:
15693 fputs ("MIPS R10000", file);
15694 break;
15695 case AFL_EXT_SB1:
15696 fputs ("Broadcom SB-1", file);
15697 break;
15698 case AFL_EXT_4111:
15699 fputs ("NEC VR4111/VR4181", file);
15700 break;
15701 case AFL_EXT_4120:
15702 fputs ("NEC VR4120", file);
15703 break;
15704 case AFL_EXT_5400:
15705 fputs ("NEC VR5400", file);
15706 break;
15707 case AFL_EXT_5500:
15708 fputs ("NEC VR5500", file);
15709 break;
15710 case AFL_EXT_LOONGSON_2E:
15711 fputs ("ST Microelectronics Loongson 2E", file);
15712 break;
15713 case AFL_EXT_LOONGSON_2F:
15714 fputs ("ST Microelectronics Loongson 2F", file);
15715 break;
38bf472a
MR
15716 case AFL_EXT_INTERAPTIV_MR2:
15717 fputs ("Imagination interAptiv MR2", file);
15718 break;
351cdf24 15719 default:
00ac7aa0 15720 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15721 break;
15722 }
15723}
15724
15725static void
15726print_mips_fp_abi_value (FILE *file, int val)
15727{
15728 switch (val)
15729 {
15730 case Val_GNU_MIPS_ABI_FP_ANY:
15731 fprintf (file, _("Hard or soft float\n"));
15732 break;
15733 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15734 fprintf (file, _("Hard float (double precision)\n"));
15735 break;
15736 case Val_GNU_MIPS_ABI_FP_SINGLE:
15737 fprintf (file, _("Hard float (single precision)\n"));
15738 break;
15739 case Val_GNU_MIPS_ABI_FP_SOFT:
15740 fprintf (file, _("Soft float\n"));
15741 break;
15742 case Val_GNU_MIPS_ABI_FP_OLD_64:
15743 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15744 break;
15745 case Val_GNU_MIPS_ABI_FP_XX:
15746 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15747 break;
15748 case Val_GNU_MIPS_ABI_FP_64:
15749 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15750 break;
15751 case Val_GNU_MIPS_ABI_FP_64A:
15752 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15753 break;
15754 default:
15755 fprintf (file, "??? (%d)\n", val);
15756 break;
15757 }
15758}
15759
15760static int
15761get_mips_reg_size (int reg_size)
15762{
15763 return (reg_size == AFL_REG_NONE) ? 0
15764 : (reg_size == AFL_REG_32) ? 32
15765 : (reg_size == AFL_REG_64) ? 64
15766 : (reg_size == AFL_REG_128) ? 128
15767 : -1;
15768}
15769
b34976b6 15770bfd_boolean
9719ad41 15771_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15772{
9719ad41 15773 FILE *file = ptr;
b49e97c9
TS
15774
15775 BFD_ASSERT (abfd != NULL && ptr != NULL);
15776
15777 /* Print normal ELF private data. */
15778 _bfd_elf_print_private_bfd_data (abfd, ptr);
15779
15780 /* xgettext:c-format */
15781 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15782
15783 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15784 fprintf (file, _(" [abi=O32]"));
15785 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15786 fprintf (file, _(" [abi=O64]"));
15787 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15788 fprintf (file, _(" [abi=EABI32]"));
15789 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15790 fprintf (file, _(" [abi=EABI64]"));
15791 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15792 fprintf (file, _(" [abi unknown]"));
15793 else if (ABI_N32_P (abfd))
15794 fprintf (file, _(" [abi=N32]"));
15795 else if (ABI_64_P (abfd))
15796 fprintf (file, _(" [abi=64]"));
15797 else
15798 fprintf (file, _(" [no abi set]"));
15799
15800 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15801 fprintf (file, " [mips1]");
b49e97c9 15802 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15803 fprintf (file, " [mips2]");
b49e97c9 15804 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15805 fprintf (file, " [mips3]");
b49e97c9 15806 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15807 fprintf (file, " [mips4]");
b49e97c9 15808 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15809 fprintf (file, " [mips5]");
b49e97c9 15810 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15811 fprintf (file, " [mips32]");
b49e97c9 15812 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15813 fprintf (file, " [mips64]");
af7ee8bf 15814 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15815 fprintf (file, " [mips32r2]");
5f74bc13 15816 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15817 fprintf (file, " [mips64r2]");
7361da2c
AB
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15819 fprintf (file, " [mips32r6]");
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15821 fprintf (file, " [mips64r6]");
b49e97c9
TS
15822 else
15823 fprintf (file, _(" [unknown ISA]"));
15824
40d32fc6 15825 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15826 fprintf (file, " [mdmx]");
40d32fc6
CD
15827
15828 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15829 fprintf (file, " [mips16]");
40d32fc6 15830
df58fc94
RS
15831 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15832 fprintf (file, " [micromips]");
15833
ba92f887
MR
15834 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15835 fprintf (file, " [nan2008]");
15836
5baf5e34 15837 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15838 fprintf (file, " [old fp64]");
5baf5e34 15839
b49e97c9 15840 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15841 fprintf (file, " [32bitmode]");
b49e97c9
TS
15842 else
15843 fprintf (file, _(" [not 32bitmode]"));
15844
c0e3f241 15845 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15846 fprintf (file, " [noreorder]");
c0e3f241
CD
15847
15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15849 fprintf (file, " [PIC]");
c0e3f241
CD
15850
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15852 fprintf (file, " [CPIC]");
c0e3f241
CD
15853
15854 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15855 fprintf (file, " [XGOT]");
c0e3f241
CD
15856
15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15858 fprintf (file, " [UCODE]");
c0e3f241 15859
b49e97c9
TS
15860 fputc ('\n', file);
15861
351cdf24
MF
15862 if (mips_elf_tdata (abfd)->abiflags_valid)
15863 {
15864 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15865 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15866 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15867 if (abiflags->isa_rev > 1)
15868 fprintf (file, "r%d", abiflags->isa_rev);
15869 fprintf (file, "\nGPR size: %d",
15870 get_mips_reg_size (abiflags->gpr_size));
15871 fprintf (file, "\nCPR1 size: %d",
15872 get_mips_reg_size (abiflags->cpr1_size));
15873 fprintf (file, "\nCPR2 size: %d",
15874 get_mips_reg_size (abiflags->cpr2_size));
15875 fputs ("\nFP ABI: ", file);
15876 print_mips_fp_abi_value (file, abiflags->fp_abi);
15877 fputs ("ISA Extension: ", file);
15878 print_mips_isa_ext (file, abiflags->isa_ext);
15879 fputs ("\nASEs:", file);
15880 print_mips_ases (file, abiflags->ases);
15881 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15882 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15883 fputc ('\n', file);
15884 }
15885
b34976b6 15886 return TRUE;
b49e97c9 15887}
2f89ff8d 15888
b35d266b 15889const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15890{
07d6d2b8
AM
15891 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15892 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 15893 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 15894 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
15895 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15896 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 15897 { NULL, 0, 0, 0, 0 }
2f89ff8d 15898};
5e2b0d47 15899
8992f0d7
TS
15900/* Merge non visibility st_other attributes. Ensure that the
15901 STO_OPTIONAL flag is copied into h->other, even if this is not a
15902 definiton of the symbol. */
5e2b0d47
NC
15903void
15904_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15905 const Elf_Internal_Sym *isym,
15906 bfd_boolean definition,
15907 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15908{
8992f0d7
TS
15909 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15910 {
15911 unsigned char other;
15912
15913 other = (definition ? isym->st_other : h->other);
15914 other &= ~ELF_ST_VISIBILITY (-1);
15915 h->other = other | ELF_ST_VISIBILITY (h->other);
15916 }
15917
15918 if (!definition
5e2b0d47
NC
15919 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15920 h->other |= STO_OPTIONAL;
15921}
12ac1cf5
NC
15922
15923/* Decide whether an undefined symbol is special and can be ignored.
15924 This is the case for OPTIONAL symbols on IRIX. */
15925bfd_boolean
15926_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15927{
15928 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15929}
e0764319
NC
15930
15931bfd_boolean
15932_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15933{
15934 return (sym->st_shndx == SHN_COMMON
15935 || sym->st_shndx == SHN_MIPS_ACOMMON
15936 || sym->st_shndx == SHN_MIPS_SCOMMON);
15937}
861fb55a
DJ
15938
15939/* Return address for Ith PLT stub in section PLT, for relocation REL
15940 or (bfd_vma) -1 if it should not be included. */
15941
15942bfd_vma
15943_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15944 const arelent *rel ATTRIBUTE_UNUSED)
15945{
15946 return (plt->vma
15947 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15948 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15949}
15950
1bbce132
MR
15951/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15952 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15953 and .got.plt and also the slots may be of a different size each we walk
15954 the PLT manually fetching instructions and matching them against known
15955 patterns. To make things easier standard MIPS slots, if any, always come
15956 first. As we don't create proper ELF symbols we use the UDATA.I member
15957 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15958 with the ST_OTHER member of the ELF symbol. */
15959
15960long
15961_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15962 long symcount ATTRIBUTE_UNUSED,
15963 asymbol **syms ATTRIBUTE_UNUSED,
15964 long dynsymcount, asymbol **dynsyms,
15965 asymbol **ret)
15966{
15967 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15968 static const char microsuffix[] = "@micromipsplt";
15969 static const char m16suffix[] = "@mips16plt";
15970 static const char mipssuffix[] = "@plt";
15971
15972 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15973 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15974 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15975 Elf_Internal_Shdr *hdr;
15976 bfd_byte *plt_data;
15977 bfd_vma plt_offset;
15978 unsigned int other;
15979 bfd_vma entry_size;
15980 bfd_vma plt0_size;
15981 asection *relplt;
15982 bfd_vma opcode;
15983 asection *plt;
15984 asymbol *send;
15985 size_t size;
15986 char *names;
15987 long counti;
15988 arelent *p;
15989 asymbol *s;
15990 char *nend;
15991 long count;
15992 long pi;
15993 long i;
15994 long n;
15995
15996 *ret = NULL;
15997
15998 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15999 return 0;
16000
16001 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16002 if (relplt == NULL)
16003 return 0;
16004
16005 hdr = &elf_section_data (relplt)->this_hdr;
16006 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16007 return 0;
16008
16009 plt = bfd_get_section_by_name (abfd, ".plt");
16010 if (plt == NULL)
16011 return 0;
16012
16013 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16014 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16015 return -1;
16016 p = relplt->relocation;
16017
16018 /* Calculating the exact amount of space required for symbols would
16019 require two passes over the PLT, so just pessimise assuming two
16020 PLT slots per relocation. */
16021 count = relplt->size / hdr->sh_entsize;
16022 counti = count * bed->s->int_rels_per_ext_rel;
16023 size = 2 * count * sizeof (asymbol);
16024 size += count * (sizeof (mipssuffix) +
16025 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16026 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16027 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16028
16029 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16030 size += sizeof (asymbol) + sizeof (pltname);
16031
16032 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16033 return -1;
16034
16035 if (plt->size < 16)
16036 return -1;
16037
16038 s = *ret = bfd_malloc (size);
16039 if (s == NULL)
16040 return -1;
16041 send = s + 2 * count + 1;
16042
16043 names = (char *) send;
16044 nend = (char *) s + size;
16045 n = 0;
16046
16047 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16048 if (opcode == 0x3302fffe)
16049 {
16050 if (!micromips_p)
16051 return -1;
16052 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16053 other = STO_MICROMIPS;
16054 }
833794fc
MR
16055 else if (opcode == 0x0398c1d0)
16056 {
16057 if (!micromips_p)
16058 return -1;
16059 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16060 other = STO_MICROMIPS;
16061 }
1bbce132
MR
16062 else
16063 {
16064 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16065 other = 0;
16066 }
16067
16068 s->the_bfd = abfd;
16069 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16070 s->section = plt;
16071 s->value = 0;
16072 s->name = names;
16073 s->udata.i = other;
16074 memcpy (names, pltname, sizeof (pltname));
16075 names += sizeof (pltname);
16076 ++s, ++n;
16077
16078 pi = 0;
16079 for (plt_offset = plt0_size;
16080 plt_offset + 8 <= plt->size && s < send;
16081 plt_offset += entry_size)
16082 {
16083 bfd_vma gotplt_addr;
16084 const char *suffix;
16085 bfd_vma gotplt_hi;
16086 bfd_vma gotplt_lo;
16087 size_t suffixlen;
16088
16089 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16090
16091 /* Check if the second word matches the expected MIPS16 instruction. */
16092 if (opcode == 0x651aeb00)
16093 {
16094 if (micromips_p)
16095 return -1;
16096 /* Truncated table??? */
16097 if (plt_offset + 16 > plt->size)
16098 break;
16099 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16100 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16101 suffixlen = sizeof (m16suffix);
16102 suffix = m16suffix;
16103 other = STO_MIPS16;
16104 }
833794fc 16105 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16106 else if (opcode == 0xff220000)
16107 {
16108 if (!micromips_p)
16109 return -1;
16110 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16111 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16112 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16113 gotplt_lo <<= 2;
16114 gotplt_addr = gotplt_hi + gotplt_lo;
16115 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16116 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16117 suffixlen = sizeof (microsuffix);
16118 suffix = microsuffix;
16119 other = STO_MICROMIPS;
16120 }
833794fc
MR
16121 /* Likewise the expected microMIPS instruction (insn32 mode). */
16122 else if ((opcode & 0xffff0000) == 0xff2f0000)
16123 {
16124 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16125 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16126 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16127 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16128 gotplt_addr = gotplt_hi + gotplt_lo;
16129 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16130 suffixlen = sizeof (microsuffix);
16131 suffix = microsuffix;
16132 other = STO_MICROMIPS;
16133 }
1bbce132
MR
16134 /* Otherwise assume standard MIPS code. */
16135 else
16136 {
16137 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16138 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16139 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16140 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16141 gotplt_addr = gotplt_hi + gotplt_lo;
16142 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16143 suffixlen = sizeof (mipssuffix);
16144 suffix = mipssuffix;
16145 other = 0;
16146 }
16147 /* Truncated table??? */
16148 if (plt_offset + entry_size > plt->size)
16149 break;
16150
16151 for (i = 0;
16152 i < count && p[pi].address != gotplt_addr;
16153 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16154
16155 if (i < count)
16156 {
16157 size_t namelen;
16158 size_t len;
16159
16160 *s = **p[pi].sym_ptr_ptr;
16161 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16162 we are defining a symbol, ensure one of them is set. */
16163 if ((s->flags & BSF_LOCAL) == 0)
16164 s->flags |= BSF_GLOBAL;
16165 s->flags |= BSF_SYNTHETIC;
16166 s->section = plt;
16167 s->value = plt_offset;
16168 s->name = names;
16169 s->udata.i = other;
16170
16171 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16172 namelen = len + suffixlen;
16173 if (names + namelen > nend)
16174 break;
16175
16176 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16177 names += len;
16178 memcpy (names, suffix, suffixlen);
16179 names += suffixlen;
16180
16181 ++s, ++n;
16182 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16183 }
16184 }
16185
16186 free (plt_data);
16187
16188 return n;
16189}
16190
5e7fc731
MR
16191/* Return the ABI flags associated with ABFD if available. */
16192
16193Elf_Internal_ABIFlags_v0 *
16194bfd_mips_elf_get_abiflags (bfd *abfd)
16195{
16196 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16197
16198 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16199}
16200
861fb55a
DJ
16201void
16202_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16203{
16204 struct mips_elf_link_hash_table *htab;
16205 Elf_Internal_Ehdr *i_ehdrp;
16206
16207 i_ehdrp = elf_elfheader (abfd);
16208 if (link_info)
16209 {
16210 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16211 BFD_ASSERT (htab != NULL);
16212
861fb55a
DJ
16213 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16215 }
0af03126
L
16216
16217 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16218
16219 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16220 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16221 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16222}
2f0c68f2
CM
16223
16224int
16225_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16226{
16227 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16228}
16229
16230/* Return the opcode for can't unwind. */
16231
16232int
16233_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16234{
16235 return COMPACT_EH_CANT_UNWIND_OPCODE;
16236}
This page took 2.364311 seconds and 4 git commands to generate.