* coffcode.h: Include libiberty.h.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
aa820537 3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
23cc69b6
RS
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
0f20cc35
DJ
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
c224138d 155 /* The number of local .got entries, eventually including page entries. */
b49e97c9 156 unsigned int local_gotno;
c224138d
RS
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
b49e97c9
TS
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
b15e6682
AO
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
c224138d
RS
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
f4416af6
AO
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
0f20cc35
DJ
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
f4416af6
AO
176};
177
178/* Map an input bfd to a got in a multi-got link. */
179
180struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183};
184
185/* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188struct mips_elf_got_per_bfd_arg
189{
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
215/* Another structure used to pass arguments for got entries traversal. */
216
217struct mips_elf_set_global_got_offset_arg
218{
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
b49e97c9
TS
223};
224
0f20cc35
DJ
225/* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228struct mips_elf_count_tls_arg
229{
230 struct bfd_link_info *info;
231 unsigned int needed;
232};
233
f0abc2a1
AM
234struct _mips_elf_section_data
235{
236 struct bfd_elf_section_data elf;
237 union
238 {
f0abc2a1
AM
239 bfd_byte *tdata;
240 } u;
241};
242
243#define mips_elf_section_data(sec) \
68bfbfcc 244 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 245
d5eaccd7
RS
246#define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
250
634835ae
RS
251/* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268#define GGA_NORMAL 0
269#define GGA_RELOC_ONLY 1
270#define GGA_NONE 2
271
861fb55a
DJ
272/* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299};
300
301/* Macros for populating a mips_elf_la25_stub. */
302
303#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
306
b49e97c9
TS
307/* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
309
310struct mips_elf_hash_sort_data
311{
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
0f20cc35
DJ
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
b49e97c9 317 long min_got_dynindx;
f4416af6
AO
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 320 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 321 long max_unref_got_dynindx;
b49e97c9
TS
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
325};
326
327/* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
329
330struct mips_elf_link_hash_entry
331{
332 struct elf_link_hash_entry root;
333
334 /* External symbol information. */
335 EXTR esym;
336
861fb55a
DJ
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
339
b49e97c9
TS
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
343
b49e97c9
TS
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
347
b49e97c9
TS
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
351
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
7c5fcef7 355
0f20cc35
DJ
356#define GOT_NORMAL 0
357#define GOT_TLS_GD 1
358#define GOT_TLS_LDM 2
359#define GOT_TLS_IE 4
360#define GOT_TLS_OFFSET_DONE 0x40
361#define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
71782a75 363
0f20cc35
DJ
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
71782a75 371
634835ae
RS
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
374
71782a75
RS
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
378
861fb55a
DJ
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
383
71782a75
RS
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
389
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
393
861fb55a
DJ
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
398
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
402};
403
404/* MIPS ELF linker hash table. */
405
406struct mips_elf_link_hash_table
407{
408 struct elf_link_hash_table root;
409#if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413#endif
861fb55a 414
b49e97c9
TS
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
861fb55a 417
b49e97c9
TS
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
861fb55a 420
b49e97c9 421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 422 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 423 bfd_boolean use_rld_obj_head;
861fb55a 424
b49e97c9
TS
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
861fb55a 427
b49e97c9 428 /* This is set if we see any mips16 stub sections. */
b34976b6 429 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
430
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
433
0a44bf69
RS
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
861fb55a 436
0e53d9da
AN
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
861fb55a 439
0a44bf69
RS
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
4e41d0d7 448 asection *sstubs;
a8028dd0 449 asection *sgot;
861fb55a 450
a8028dd0
RS
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
861fb55a
DJ
453
454 /* The size of the PLT header in bytes. */
0a44bf69 455 bfd_vma plt_header_size;
861fb55a
DJ
456
457 /* The size of a PLT entry in bytes. */
0a44bf69 458 bfd_vma plt_entry_size;
861fb55a 459
33bb52fb
RS
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
861fb55a 462
5108fc1b
RS
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
861fb55a
DJ
465
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
468
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
472
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
476
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
481
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
485};
486
487/* A structure used to communicate with htab_traverse callbacks. */
488struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
492
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
b49e97c9
TS
495};
496
0f20cc35
DJ
497#define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
511
b49e97c9
TS
512/* Structure used to pass information to mips_elf_output_extsym. */
513
514struct extsym_info
515{
9e4aeb93
RS
516 bfd *abfd;
517 struct bfd_link_info *info;
b49e97c9
TS
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
b34976b6 520 bfd_boolean failed;
b49e97c9
TS
521};
522
8dc1a139 523/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
524
525static const char * const mips_elf_dynsym_rtproc_names[] =
526{
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
531};
532
533/* These structures are used to generate the .compact_rel section on
8dc1a139 534 IRIX5. */
b49e97c9
TS
535
536typedef struct
537{
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544} Elf32_compact_rel;
545
546typedef struct
547{
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554} Elf32_External_compact_rel;
555
556typedef struct
557{
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564} Elf32_crinfo;
565
566typedef struct
567{
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573} Elf32_crinfo2;
574
575typedef struct
576{
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580} Elf32_External_crinfo;
581
582typedef struct
583{
584 bfd_byte info[4];
585 bfd_byte konst[4];
586} Elf32_External_crinfo2;
587
588/* These are the constants used to swap the bitfields in a crinfo. */
589
590#define CRINFO_CTYPE (0x1)
591#define CRINFO_CTYPE_SH (31)
592#define CRINFO_RTYPE (0xf)
593#define CRINFO_RTYPE_SH (27)
594#define CRINFO_DIST2TO (0xff)
595#define CRINFO_DIST2TO_SH (19)
596#define CRINFO_RELVADDR (0x7ffff)
597#define CRINFO_RELVADDR_SH (0)
598
599/* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602#define CRF_MIPS_LONG 1
603#define CRF_MIPS_SHORT 0
604
605/* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
607
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
613 */
614
615#define CRT_MIPS_REL32 0xa
616#define CRT_MIPS_WORD 0xb
617#define CRT_MIPS_GPHI_LO 0xc
618#define CRT_MIPS_JMPAD 0xd
619
620#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
624\f
625/* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
627
628typedef struct runtime_pdr {
ae9a127f
NC
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
b49e97c9 638 long reserved;
ae9a127f 639 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
640} RPDR, *pRPDR;
641#define cbRPDR sizeof (RPDR)
642#define rpdNil ((pRPDR) 0)
643\f
b15e6682 644static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
b34976b6 647static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 648 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
649static bfd_vma mips_elf_high
650 (bfd_vma);
b34976b6 651static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
9719ad41
RS
655static hashval_t mips_elf_got_entry_hash
656 (const void *);
f4416af6 657static bfd_vma mips_elf_adjust_gp
9719ad41 658 (bfd *, struct mips_got_info *, bfd *);
f4416af6 659static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 660 (struct mips_got_info *, bfd *);
f4416af6 661
b49e97c9
TS
662/* This will be used when we sort the dynamic relocation records. */
663static bfd *reldyn_sorting_bfd;
664
6d30f5b2
NC
665/* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667#define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
670
cd8d5a82
CF
671/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
672 This should be safe for all architectures. We enable this predicate
673 for RM9000 for now. */
674#define JAL_TO_BAL_P(abfd) \
675 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
676
677/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
678 This should be safe for all architectures. We enable this predicate for
679 all CPUs. */
680#define JALR_TO_BAL_P(abfd) 1
681
861fb55a
DJ
682/* True if ABFD is a PIC object. */
683#define PIC_OBJECT_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
685
b49e97c9 686/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
687#define ABI_N32_P(abfd) \
688 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
689
4a14403c 690/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 691#define ABI_64_P(abfd) \
141ff970 692 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 693
4a14403c
TS
694/* Nonzero if ABFD is using NewABI conventions. */
695#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
696
697/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
698#define IRIX_COMPAT(abfd) \
699 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
700
b49e97c9
TS
701/* Whether we are trying to be compatible with IRIX at all. */
702#define SGI_COMPAT(abfd) \
703 (IRIX_COMPAT (abfd) != ict_none)
704
705/* The name of the options section. */
706#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 707 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 708
cc2e31b9
RS
709/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
710 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
711#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
712 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
713
943284cc
DJ
714/* Whether the section is readonly. */
715#define MIPS_ELF_READONLY_SECTION(sec) \
716 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
717 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
718
b49e97c9 719/* The name of the stub section. */
ca07892d 720#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
721
722/* The size of an external REL relocation. */
723#define MIPS_ELF_REL_SIZE(abfd) \
724 (get_elf_backend_data (abfd)->s->sizeof_rel)
725
0a44bf69
RS
726/* The size of an external RELA relocation. */
727#define MIPS_ELF_RELA_SIZE(abfd) \
728 (get_elf_backend_data (abfd)->s->sizeof_rela)
729
b49e97c9
TS
730/* The size of an external dynamic table entry. */
731#define MIPS_ELF_DYN_SIZE(abfd) \
732 (get_elf_backend_data (abfd)->s->sizeof_dyn)
733
734/* The size of a GOT entry. */
735#define MIPS_ELF_GOT_SIZE(abfd) \
736 (get_elf_backend_data (abfd)->s->arch_size / 8)
737
738/* The size of a symbol-table entry. */
739#define MIPS_ELF_SYM_SIZE(abfd) \
740 (get_elf_backend_data (abfd)->s->sizeof_sym)
741
742/* The default alignment for sections, as a power of two. */
743#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 744 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
745
746/* Get word-sized data. */
747#define MIPS_ELF_GET_WORD(abfd, ptr) \
748 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
749
750/* Put out word-sized data. */
751#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
752 (ABI_64_P (abfd) \
753 ? bfd_put_64 (abfd, val, ptr) \
754 : bfd_put_32 (abfd, val, ptr))
755
861fb55a
DJ
756/* The opcode for word-sized loads (LW or LD). */
757#define MIPS_ELF_LOAD_WORD(abfd) \
758 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
759
b49e97c9 760/* Add a dynamic symbol table-entry. */
9719ad41 761#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 762 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
763
764#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
765 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
766
4ffba85c
AO
767/* Determine whether the internal relocation of index REL_IDX is REL
768 (zero) or RELA (non-zero). The assumption is that, if there are
769 two relocation sections for this section, one of them is REL and
770 the other is RELA. If the index of the relocation we're testing is
771 in range for the first relocation section, check that the external
772 relocation size is that for RELA. It is also assumed that, if
773 rel_idx is not in range for the first section, and this first
774 section contains REL relocs, then the relocation is in the second
775 section, that is RELA. */
776#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
777 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
778 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
779 > (bfd_vma)(rel_idx)) \
780 == (elf_section_data (sec)->rel_hdr.sh_entsize \
781 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
782 : sizeof (Elf32_External_Rela))))
783
0a44bf69
RS
784/* The name of the dynamic relocation section. */
785#define MIPS_ELF_REL_DYN_NAME(INFO) \
786 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
787
b49e97c9
TS
788/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
789 from smaller values. Start with zero, widen, *then* decrement. */
790#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 791#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 792
51e38d68
RS
793/* The value to write into got[1] for SVR4 targets, to identify it is
794 a GNU object. The dynamic linker can then use got[1] to store the
795 module pointer. */
796#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
797 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
798
f4416af6 799/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
800#define ELF_MIPS_GP_OFFSET(INFO) \
801 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
802
803/* The maximum size of the GOT for it to be addressable using 16-bit
804 offsets from $gp. */
0a44bf69 805#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 806
6a691779 807/* Instructions which appear in a stub. */
3d6746ca
DD
808#define STUB_LW(abfd) \
809 ((ABI_64_P (abfd) \
810 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
811 : 0x8f998010)) /* lw t9,0x8010(gp) */
812#define STUB_MOVE(abfd) \
813 ((ABI_64_P (abfd) \
814 ? 0x03e0782d /* daddu t7,ra */ \
815 : 0x03e07821)) /* addu t7,ra */
816#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
817#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
818#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
819#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
820#define STUB_LI16S(abfd, VAL) \
821 ((ABI_64_P (abfd) \
822 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
823 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
824
5108fc1b
RS
825#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
826#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
827
828/* The name of the dynamic interpreter. This is put in the .interp
829 section. */
830
831#define ELF_DYNAMIC_INTERPRETER(abfd) \
832 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
833 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
834 : "/usr/lib/libc.so.1")
835
836#ifdef BFD64
ee6423ed
AO
837#define MNAME(bfd,pre,pos) \
838 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
839#define ELF_R_SYM(bfd, i) \
840 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
841#define ELF_R_TYPE(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
843#define ELF_R_INFO(bfd, s, t) \
844 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
845#else
ee6423ed 846#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
847#define ELF_R_SYM(bfd, i) \
848 (ELF32_R_SYM (i))
849#define ELF_R_TYPE(bfd, i) \
850 (ELF32_R_TYPE (i))
851#define ELF_R_INFO(bfd, s, t) \
852 (ELF32_R_INFO (s, t))
853#endif
854\f
855 /* The mips16 compiler uses a couple of special sections to handle
856 floating point arguments.
857
858 Section names that look like .mips16.fn.FNNAME contain stubs that
859 copy floating point arguments from the fp regs to the gp regs and
860 then jump to FNNAME. If any 32 bit function calls FNNAME, the
861 call should be redirected to the stub instead. If no 32 bit
862 function calls FNNAME, the stub should be discarded. We need to
863 consider any reference to the function, not just a call, because
864 if the address of the function is taken we will need the stub,
865 since the address might be passed to a 32 bit function.
866
867 Section names that look like .mips16.call.FNNAME contain stubs
868 that copy floating point arguments from the gp regs to the fp
869 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
870 then any 16 bit function that calls FNNAME should be redirected
871 to the stub instead. If FNNAME is not a 32 bit function, the
872 stub should be discarded.
873
874 .mips16.call.fp.FNNAME sections are similar, but contain stubs
875 which call FNNAME and then copy the return value from the fp regs
876 to the gp regs. These stubs store the return value in $18 while
877 calling FNNAME; any function which might call one of these stubs
878 must arrange to save $18 around the call. (This case is not
879 needed for 32 bit functions that call 16 bit functions, because
880 16 bit functions always return floating point values in both
881 $f0/$f1 and $2/$3.)
882
883 Note that in all cases FNNAME might be defined statically.
884 Therefore, FNNAME is not used literally. Instead, the relocation
885 information will indicate which symbol the section is for.
886
887 We record any stubs that we find in the symbol table. */
888
889#define FN_STUB ".mips16.fn."
890#define CALL_STUB ".mips16.call."
891#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
892
893#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
894#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
895#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 896\f
861fb55a 897/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
898static const bfd_vma mips_o32_exec_plt0_entry[] =
899{
861fb55a
DJ
900 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
901 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
902 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
903 0x031cc023, /* subu $24, $24, $28 */
904 0x03e07821, /* move $15, $31 */
905 0x0018c082, /* srl $24, $24, 2 */
906 0x0320f809, /* jalr $25 */
907 0x2718fffe /* subu $24, $24, 2 */
908};
909
910/* The format of the first PLT entry in an N32 executable. Different
911 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
912static const bfd_vma mips_n32_exec_plt0_entry[] =
913{
861fb55a
DJ
914 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
915 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
916 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
917 0x030ec023, /* subu $24, $24, $14 */
918 0x03e07821, /* move $15, $31 */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
922};
923
924/* The format of the first PLT entry in an N64 executable. Different
925 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
926static const bfd_vma mips_n64_exec_plt0_entry[] =
927{
861fb55a
DJ
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 */
933 0x0018c0c2, /* srl $24, $24, 3 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
936};
937
938/* The format of subsequent PLT entries. */
6d30f5b2
NC
939static const bfd_vma mips_exec_plt_entry[] =
940{
861fb55a
DJ
941 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
942 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
943 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
944 0x03200008 /* jr $25 */
945};
946
0a44bf69 947/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
948static const bfd_vma mips_vxworks_exec_plt0_entry[] =
949{
0a44bf69
RS
950 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
951 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
952 0x8f390008, /* lw t9, 8(t9) */
953 0x00000000, /* nop */
954 0x03200008, /* jr t9 */
955 0x00000000 /* nop */
956};
957
958/* The format of subsequent PLT entries. */
6d30f5b2
NC
959static const bfd_vma mips_vxworks_exec_plt_entry[] =
960{
0a44bf69
RS
961 0x10000000, /* b .PLT_resolver */
962 0x24180000, /* li t8, <pltindex> */
963 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
964 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
965 0x8f390000, /* lw t9, 0(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
968 0x00000000 /* nop */
969};
970
971/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
972static const bfd_vma mips_vxworks_shared_plt0_entry[] =
973{
0a44bf69
RS
974 0x8f990008, /* lw t9, 8(gp) */
975 0x00000000, /* nop */
976 0x03200008, /* jr t9 */
977 0x00000000, /* nop */
978 0x00000000, /* nop */
979 0x00000000 /* nop */
980};
981
982/* The format of subsequent PLT entries. */
6d30f5b2
NC
983static const bfd_vma mips_vxworks_shared_plt_entry[] =
984{
0a44bf69
RS
985 0x10000000, /* b .PLT_resolver */
986 0x24180000 /* li t8, <pltindex> */
987};
988\f
b49e97c9
TS
989/* Look up an entry in a MIPS ELF linker hash table. */
990
991#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
992 ((struct mips_elf_link_hash_entry *) \
993 elf_link_hash_lookup (&(table)->root, (string), (create), \
994 (copy), (follow)))
995
996/* Traverse a MIPS ELF linker hash table. */
997
998#define mips_elf_link_hash_traverse(table, func, info) \
999 (elf_link_hash_traverse \
1000 (&(table)->root, \
9719ad41 1001 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1002 (info)))
1003
1004/* Get the MIPS ELF linker hash table from a link_info structure. */
1005
1006#define mips_elf_hash_table(p) \
1007 ((struct mips_elf_link_hash_table *) ((p)->hash))
1008
0f20cc35
DJ
1009/* Find the base offsets for thread-local storage in this object,
1010 for GD/LD and IE/LE respectively. */
1011
1012#define TP_OFFSET 0x7000
1013#define DTP_OFFSET 0x8000
1014
1015static bfd_vma
1016dtprel_base (struct bfd_link_info *info)
1017{
1018 /* If tls_sec is NULL, we should have signalled an error already. */
1019 if (elf_hash_table (info)->tls_sec == NULL)
1020 return 0;
1021 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1022}
1023
1024static bfd_vma
1025tprel_base (struct bfd_link_info *info)
1026{
1027 /* If tls_sec is NULL, we should have signalled an error already. */
1028 if (elf_hash_table (info)->tls_sec == NULL)
1029 return 0;
1030 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1031}
1032
b49e97c9
TS
1033/* Create an entry in a MIPS ELF linker hash table. */
1034
1035static struct bfd_hash_entry *
9719ad41
RS
1036mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1037 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1038{
1039 struct mips_elf_link_hash_entry *ret =
1040 (struct mips_elf_link_hash_entry *) entry;
1041
1042 /* Allocate the structure if it has not already been allocated by a
1043 subclass. */
9719ad41
RS
1044 if (ret == NULL)
1045 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1046 if (ret == NULL)
b49e97c9
TS
1047 return (struct bfd_hash_entry *) ret;
1048
1049 /* Call the allocation method of the superclass. */
1050 ret = ((struct mips_elf_link_hash_entry *)
1051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1052 table, string));
9719ad41 1053 if (ret != NULL)
b49e97c9
TS
1054 {
1055 /* Set local fields. */
1056 memset (&ret->esym, 0, sizeof (EXTR));
1057 /* We use -2 as a marker to indicate that the information has
1058 not been set. -1 means there is no associated ifd. */
1059 ret->esym.ifd = -2;
861fb55a 1060 ret->la25_stub = 0;
b49e97c9 1061 ret->possibly_dynamic_relocs = 0;
b49e97c9 1062 ret->fn_stub = NULL;
b49e97c9
TS
1063 ret->call_stub = NULL;
1064 ret->call_fp_stub = NULL;
71782a75 1065 ret->tls_type = GOT_NORMAL;
634835ae 1066 ret->global_got_area = GGA_NONE;
71782a75 1067 ret->readonly_reloc = FALSE;
861fb55a 1068 ret->has_static_relocs = FALSE;
71782a75
RS
1069 ret->no_fn_stub = FALSE;
1070 ret->need_fn_stub = FALSE;
861fb55a 1071 ret->has_nonpic_branches = FALSE;
33bb52fb 1072 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1073 }
1074
1075 return (struct bfd_hash_entry *) ret;
1076}
f0abc2a1
AM
1077
1078bfd_boolean
9719ad41 1079_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1080{
f592407e
AM
1081 if (!sec->used_by_bfd)
1082 {
1083 struct _mips_elf_section_data *sdata;
1084 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1085
f592407e
AM
1086 sdata = bfd_zalloc (abfd, amt);
1087 if (sdata == NULL)
1088 return FALSE;
1089 sec->used_by_bfd = sdata;
1090 }
f0abc2a1
AM
1091
1092 return _bfd_elf_new_section_hook (abfd, sec);
1093}
b49e97c9
TS
1094\f
1095/* Read ECOFF debugging information from a .mdebug section into a
1096 ecoff_debug_info structure. */
1097
b34976b6 1098bfd_boolean
9719ad41
RS
1099_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1100 struct ecoff_debug_info *debug)
b49e97c9
TS
1101{
1102 HDRR *symhdr;
1103 const struct ecoff_debug_swap *swap;
9719ad41 1104 char *ext_hdr;
b49e97c9
TS
1105
1106 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1107 memset (debug, 0, sizeof (*debug));
1108
9719ad41 1109 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1110 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1111 goto error_return;
1112
9719ad41 1113 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1114 swap->external_hdr_size))
b49e97c9
TS
1115 goto error_return;
1116
1117 symhdr = &debug->symbolic_header;
1118 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1119
1120 /* The symbolic header contains absolute file offsets and sizes to
1121 read. */
1122#define READ(ptr, offset, count, size, type) \
1123 if (symhdr->count == 0) \
1124 debug->ptr = NULL; \
1125 else \
1126 { \
1127 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1128 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1129 if (debug->ptr == NULL) \
1130 goto error_return; \
9719ad41 1131 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1132 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1133 goto error_return; \
1134 }
1135
1136 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1137 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1138 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1139 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1140 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1141 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1142 union aux_ext *);
1143 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1144 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1145 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1146 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1147 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1148#undef READ
1149
1150 debug->fdr = NULL;
b49e97c9 1151
b34976b6 1152 return TRUE;
b49e97c9
TS
1153
1154 error_return:
1155 if (ext_hdr != NULL)
1156 free (ext_hdr);
1157 if (debug->line != NULL)
1158 free (debug->line);
1159 if (debug->external_dnr != NULL)
1160 free (debug->external_dnr);
1161 if (debug->external_pdr != NULL)
1162 free (debug->external_pdr);
1163 if (debug->external_sym != NULL)
1164 free (debug->external_sym);
1165 if (debug->external_opt != NULL)
1166 free (debug->external_opt);
1167 if (debug->external_aux != NULL)
1168 free (debug->external_aux);
1169 if (debug->ss != NULL)
1170 free (debug->ss);
1171 if (debug->ssext != NULL)
1172 free (debug->ssext);
1173 if (debug->external_fdr != NULL)
1174 free (debug->external_fdr);
1175 if (debug->external_rfd != NULL)
1176 free (debug->external_rfd);
1177 if (debug->external_ext != NULL)
1178 free (debug->external_ext);
b34976b6 1179 return FALSE;
b49e97c9
TS
1180}
1181\f
1182/* Swap RPDR (runtime procedure table entry) for output. */
1183
1184static void
9719ad41 1185ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1186{
1187 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1188 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1189 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1190 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1191 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1192 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1193
1194 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1195 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1196
1197 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1198}
1199
1200/* Create a runtime procedure table from the .mdebug section. */
1201
b34976b6 1202static bfd_boolean
9719ad41
RS
1203mips_elf_create_procedure_table (void *handle, bfd *abfd,
1204 struct bfd_link_info *info, asection *s,
1205 struct ecoff_debug_info *debug)
b49e97c9
TS
1206{
1207 const struct ecoff_debug_swap *swap;
1208 HDRR *hdr = &debug->symbolic_header;
1209 RPDR *rpdr, *rp;
1210 struct rpdr_ext *erp;
9719ad41 1211 void *rtproc;
b49e97c9
TS
1212 struct pdr_ext *epdr;
1213 struct sym_ext *esym;
1214 char *ss, **sv;
1215 char *str;
1216 bfd_size_type size;
1217 bfd_size_type count;
1218 unsigned long sindex;
1219 unsigned long i;
1220 PDR pdr;
1221 SYMR sym;
1222 const char *no_name_func = _("static procedure (no name)");
1223
1224 epdr = NULL;
1225 rpdr = NULL;
1226 esym = NULL;
1227 ss = NULL;
1228 sv = NULL;
1229
1230 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1231
1232 sindex = strlen (no_name_func) + 1;
1233 count = hdr->ipdMax;
1234 if (count > 0)
1235 {
1236 size = swap->external_pdr_size;
1237
9719ad41 1238 epdr = bfd_malloc (size * count);
b49e97c9
TS
1239 if (epdr == NULL)
1240 goto error_return;
1241
9719ad41 1242 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1243 goto error_return;
1244
1245 size = sizeof (RPDR);
9719ad41 1246 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1247 if (rpdr == NULL)
1248 goto error_return;
1249
1250 size = sizeof (char *);
9719ad41 1251 sv = bfd_malloc (size * count);
b49e97c9
TS
1252 if (sv == NULL)
1253 goto error_return;
1254
1255 count = hdr->isymMax;
1256 size = swap->external_sym_size;
9719ad41 1257 esym = bfd_malloc (size * count);
b49e97c9
TS
1258 if (esym == NULL)
1259 goto error_return;
1260
9719ad41 1261 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1262 goto error_return;
1263
1264 count = hdr->issMax;
9719ad41 1265 ss = bfd_malloc (count);
b49e97c9
TS
1266 if (ss == NULL)
1267 goto error_return;
f075ee0c 1268 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1269 goto error_return;
1270
1271 count = hdr->ipdMax;
1272 for (i = 0; i < (unsigned long) count; i++, rp++)
1273 {
9719ad41
RS
1274 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1275 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1276 rp->adr = sym.value;
1277 rp->regmask = pdr.regmask;
1278 rp->regoffset = pdr.regoffset;
1279 rp->fregmask = pdr.fregmask;
1280 rp->fregoffset = pdr.fregoffset;
1281 rp->frameoffset = pdr.frameoffset;
1282 rp->framereg = pdr.framereg;
1283 rp->pcreg = pdr.pcreg;
1284 rp->irpss = sindex;
1285 sv[i] = ss + sym.iss;
1286 sindex += strlen (sv[i]) + 1;
1287 }
1288 }
1289
1290 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1291 size = BFD_ALIGN (size, 16);
9719ad41 1292 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1293 if (rtproc == NULL)
1294 {
1295 mips_elf_hash_table (info)->procedure_count = 0;
1296 goto error_return;
1297 }
1298
1299 mips_elf_hash_table (info)->procedure_count = count + 2;
1300
9719ad41 1301 erp = rtproc;
b49e97c9
TS
1302 memset (erp, 0, sizeof (struct rpdr_ext));
1303 erp++;
1304 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1305 strcpy (str, no_name_func);
1306 str += strlen (no_name_func) + 1;
1307 for (i = 0; i < count; i++)
1308 {
1309 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1310 strcpy (str, sv[i]);
1311 str += strlen (sv[i]) + 1;
1312 }
1313 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1314
1315 /* Set the size and contents of .rtproc section. */
eea6121a 1316 s->size = size;
9719ad41 1317 s->contents = rtproc;
b49e97c9
TS
1318
1319 /* Skip this section later on (I don't think this currently
1320 matters, but someday it might). */
8423293d 1321 s->map_head.link_order = NULL;
b49e97c9
TS
1322
1323 if (epdr != NULL)
1324 free (epdr);
1325 if (rpdr != NULL)
1326 free (rpdr);
1327 if (esym != NULL)
1328 free (esym);
1329 if (ss != NULL)
1330 free (ss);
1331 if (sv != NULL)
1332 free (sv);
1333
b34976b6 1334 return TRUE;
b49e97c9
TS
1335
1336 error_return:
1337 if (epdr != NULL)
1338 free (epdr);
1339 if (rpdr != NULL)
1340 free (rpdr);
1341 if (esym != NULL)
1342 free (esym);
1343 if (ss != NULL)
1344 free (ss);
1345 if (sv != NULL)
1346 free (sv);
b34976b6 1347 return FALSE;
b49e97c9 1348}
738e5348 1349\f
861fb55a
DJ
1350/* We're going to create a stub for H. Create a symbol for the stub's
1351 value and size, to help make the disassembly easier to read. */
1352
1353static bfd_boolean
1354mips_elf_create_stub_symbol (struct bfd_link_info *info,
1355 struct mips_elf_link_hash_entry *h,
1356 const char *prefix, asection *s, bfd_vma value,
1357 bfd_vma size)
1358{
1359 struct bfd_link_hash_entry *bh;
1360 struct elf_link_hash_entry *elfh;
1361 const char *name;
1362
1363 /* Create a new symbol. */
1364 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1365 bh = NULL;
1366 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1367 BSF_LOCAL, s, value, NULL,
1368 TRUE, FALSE, &bh))
1369 return FALSE;
1370
1371 /* Make it a local function. */
1372 elfh = (struct elf_link_hash_entry *) bh;
1373 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1374 elfh->size = size;
1375 elfh->forced_local = 1;
1376 return TRUE;
1377}
1378
738e5348
RS
1379/* We're about to redefine H. Create a symbol to represent H's
1380 current value and size, to help make the disassembly easier
1381 to read. */
1382
1383static bfd_boolean
1384mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1385 struct mips_elf_link_hash_entry *h,
1386 const char *prefix)
1387{
1388 struct bfd_link_hash_entry *bh;
1389 struct elf_link_hash_entry *elfh;
1390 const char *name;
1391 asection *s;
1392 bfd_vma value;
1393
1394 /* Read the symbol's value. */
1395 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1396 || h->root.root.type == bfd_link_hash_defweak);
1397 s = h->root.root.u.def.section;
1398 value = h->root.root.u.def.value;
1399
1400 /* Create a new symbol. */
1401 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1402 bh = NULL;
1403 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1404 BSF_LOCAL, s, value, NULL,
1405 TRUE, FALSE, &bh))
1406 return FALSE;
1407
1408 /* Make it local and copy the other attributes from H. */
1409 elfh = (struct elf_link_hash_entry *) bh;
1410 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1411 elfh->other = h->root.other;
1412 elfh->size = h->root.size;
1413 elfh->forced_local = 1;
1414 return TRUE;
1415}
1416
1417/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1418 function rather than to a hard-float stub. */
1419
1420static bfd_boolean
1421section_allows_mips16_refs_p (asection *section)
1422{
1423 const char *name;
1424
1425 name = bfd_get_section_name (section->owner, section);
1426 return (FN_STUB_P (name)
1427 || CALL_STUB_P (name)
1428 || CALL_FP_STUB_P (name)
1429 || strcmp (name, ".pdr") == 0);
1430}
1431
1432/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1433 stub section of some kind. Return the R_SYMNDX of the target
1434 function, or 0 if we can't decide which function that is. */
1435
1436static unsigned long
502e814e
TT
1437mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1438 const Elf_Internal_Rela *relocs,
738e5348
RS
1439 const Elf_Internal_Rela *relend)
1440{
1441 const Elf_Internal_Rela *rel;
1442
1443 /* Trust the first R_MIPS_NONE relocation, if any. */
1444 for (rel = relocs; rel < relend; rel++)
1445 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1446 return ELF_R_SYM (sec->owner, rel->r_info);
1447
1448 /* Otherwise trust the first relocation, whatever its kind. This is
1449 the traditional behavior. */
1450 if (relocs < relend)
1451 return ELF_R_SYM (sec->owner, relocs->r_info);
1452
1453 return 0;
1454}
b49e97c9
TS
1455
1456/* Check the mips16 stubs for a particular symbol, and see if we can
1457 discard them. */
1458
861fb55a
DJ
1459static void
1460mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1461 struct mips_elf_link_hash_entry *h)
b49e97c9 1462{
738e5348
RS
1463 /* Dynamic symbols must use the standard call interface, in case other
1464 objects try to call them. */
1465 if (h->fn_stub != NULL
1466 && h->root.dynindx != -1)
1467 {
1468 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1469 h->need_fn_stub = TRUE;
1470 }
1471
b49e97c9
TS
1472 if (h->fn_stub != NULL
1473 && ! h->need_fn_stub)
1474 {
1475 /* We don't need the fn_stub; the only references to this symbol
1476 are 16 bit calls. Clobber the size to 0 to prevent it from
1477 being included in the link. */
eea6121a 1478 h->fn_stub->size = 0;
b49e97c9
TS
1479 h->fn_stub->flags &= ~SEC_RELOC;
1480 h->fn_stub->reloc_count = 0;
1481 h->fn_stub->flags |= SEC_EXCLUDE;
1482 }
1483
1484 if (h->call_stub != NULL
30c09090 1485 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1486 {
1487 /* We don't need the call_stub; this is a 16 bit function, so
1488 calls from other 16 bit functions are OK. Clobber the size
1489 to 0 to prevent it from being included in the link. */
eea6121a 1490 h->call_stub->size = 0;
b49e97c9
TS
1491 h->call_stub->flags &= ~SEC_RELOC;
1492 h->call_stub->reloc_count = 0;
1493 h->call_stub->flags |= SEC_EXCLUDE;
1494 }
1495
1496 if (h->call_fp_stub != NULL
30c09090 1497 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1498 {
1499 /* We don't need the call_stub; this is a 16 bit function, so
1500 calls from other 16 bit functions are OK. Clobber the size
1501 to 0 to prevent it from being included in the link. */
eea6121a 1502 h->call_fp_stub->size = 0;
b49e97c9
TS
1503 h->call_fp_stub->flags &= ~SEC_RELOC;
1504 h->call_fp_stub->reloc_count = 0;
1505 h->call_fp_stub->flags |= SEC_EXCLUDE;
1506 }
861fb55a
DJ
1507}
1508
1509/* Hashtable callbacks for mips_elf_la25_stubs. */
1510
1511static hashval_t
1512mips_elf_la25_stub_hash (const void *entry_)
1513{
1514 const struct mips_elf_la25_stub *entry;
1515
1516 entry = (struct mips_elf_la25_stub *) entry_;
1517 return entry->h->root.root.u.def.section->id
1518 + entry->h->root.root.u.def.value;
1519}
1520
1521static int
1522mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1523{
1524 const struct mips_elf_la25_stub *entry1, *entry2;
1525
1526 entry1 = (struct mips_elf_la25_stub *) entry1_;
1527 entry2 = (struct mips_elf_la25_stub *) entry2_;
1528 return ((entry1->h->root.root.u.def.section
1529 == entry2->h->root.root.u.def.section)
1530 && (entry1->h->root.root.u.def.value
1531 == entry2->h->root.root.u.def.value));
1532}
1533
1534/* Called by the linker to set up the la25 stub-creation code. FN is
1535 the linker's implementation of add_stub_function. Return true on
1536 success. */
1537
1538bfd_boolean
1539_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1540 asection *(*fn) (const char *, asection *,
1541 asection *))
1542{
1543 struct mips_elf_link_hash_table *htab;
1544
1545 htab = mips_elf_hash_table (info);
1546 htab->add_stub_section = fn;
1547 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1548 mips_elf_la25_stub_eq, NULL);
1549 if (htab->la25_stubs == NULL)
1550 return FALSE;
1551
1552 return TRUE;
1553}
1554
1555/* Return true if H is a locally-defined PIC function, in the sense
1556 that it might need $25 to be valid on entry. Note that MIPS16
1557 functions never need $25 to be valid on entry; they set up $gp
1558 using PC-relative instructions instead. */
1559
1560static bfd_boolean
1561mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1562{
1563 return ((h->root.root.type == bfd_link_hash_defined
1564 || h->root.root.type == bfd_link_hash_defweak)
1565 && h->root.def_regular
1566 && !bfd_is_abs_section (h->root.root.u.def.section)
1567 && !ELF_ST_IS_MIPS16 (h->root.other)
1568 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1569 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1570}
1571
1572/* STUB describes an la25 stub that we have decided to implement
1573 by inserting an LUI/ADDIU pair before the target function.
1574 Create the section and redirect the function symbol to it. */
1575
1576static bfd_boolean
1577mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1578 struct bfd_link_info *info)
1579{
1580 struct mips_elf_link_hash_table *htab;
1581 char *name;
1582 asection *s, *input_section;
1583 unsigned int align;
1584
1585 htab = mips_elf_hash_table (info);
1586
1587 /* Create a unique name for the new section. */
1588 name = bfd_malloc (11 + sizeof (".text.stub."));
1589 if (name == NULL)
1590 return FALSE;
1591 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1592
1593 /* Create the section. */
1594 input_section = stub->h->root.root.u.def.section;
1595 s = htab->add_stub_section (name, input_section,
1596 input_section->output_section);
1597 if (s == NULL)
1598 return FALSE;
1599
1600 /* Make sure that any padding goes before the stub. */
1601 align = input_section->alignment_power;
1602 if (!bfd_set_section_alignment (s->owner, s, align))
1603 return FALSE;
1604 if (align > 3)
1605 s->size = (1 << align) - 8;
1606
1607 /* Create a symbol for the stub. */
1608 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1609 stub->stub_section = s;
1610 stub->offset = s->size;
1611
1612 /* Allocate room for it. */
1613 s->size += 8;
1614 return TRUE;
1615}
1616
1617/* STUB describes an la25 stub that we have decided to implement
1618 with a separate trampoline. Allocate room for it and redirect
1619 the function symbol to it. */
1620
1621static bfd_boolean
1622mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1623 struct bfd_link_info *info)
1624{
1625 struct mips_elf_link_hash_table *htab;
1626 asection *s;
1627
1628 htab = mips_elf_hash_table (info);
1629
1630 /* Create a trampoline section, if we haven't already. */
1631 s = htab->strampoline;
1632 if (s == NULL)
1633 {
1634 asection *input_section = stub->h->root.root.u.def.section;
1635 s = htab->add_stub_section (".text", NULL,
1636 input_section->output_section);
1637 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1638 return FALSE;
1639 htab->strampoline = s;
1640 }
1641
1642 /* Create a symbol for the stub. */
1643 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1644 stub->stub_section = s;
1645 stub->offset = s->size;
1646
1647 /* Allocate room for it. */
1648 s->size += 16;
1649 return TRUE;
1650}
1651
1652/* H describes a symbol that needs an la25 stub. Make sure that an
1653 appropriate stub exists and point H at it. */
1654
1655static bfd_boolean
1656mips_elf_add_la25_stub (struct bfd_link_info *info,
1657 struct mips_elf_link_hash_entry *h)
1658{
1659 struct mips_elf_link_hash_table *htab;
1660 struct mips_elf_la25_stub search, *stub;
1661 bfd_boolean use_trampoline_p;
1662 asection *s;
1663 bfd_vma value;
1664 void **slot;
1665
1666 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1667 of the section and if we would need no more than 2 nops. */
1668 s = h->root.root.u.def.section;
1669 value = h->root.root.u.def.value;
1670 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1671
1672 /* Describe the stub we want. */
1673 search.stub_section = NULL;
1674 search.offset = 0;
1675 search.h = h;
1676
1677 /* See if we've already created an equivalent stub. */
1678 htab = mips_elf_hash_table (info);
1679 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1680 if (slot == NULL)
1681 return FALSE;
1682
1683 stub = (struct mips_elf_la25_stub *) *slot;
1684 if (stub != NULL)
1685 {
1686 /* We can reuse the existing stub. */
1687 h->la25_stub = stub;
1688 return TRUE;
1689 }
1690
1691 /* Create a permanent copy of ENTRY and add it to the hash table. */
1692 stub = bfd_malloc (sizeof (search));
1693 if (stub == NULL)
1694 return FALSE;
1695 *stub = search;
1696 *slot = stub;
1697
1698 h->la25_stub = stub;
1699 return (use_trampoline_p
1700 ? mips_elf_add_la25_trampoline (stub, info)
1701 : mips_elf_add_la25_intro (stub, info));
1702}
1703
1704/* A mips_elf_link_hash_traverse callback that is called before sizing
1705 sections. DATA points to a mips_htab_traverse_info structure. */
1706
1707static bfd_boolean
1708mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1709{
1710 struct mips_htab_traverse_info *hti;
1711
1712 hti = (struct mips_htab_traverse_info *) data;
1713 if (h->root.root.type == bfd_link_hash_warning)
1714 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1715
1716 if (!hti->info->relocatable)
1717 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1718
861fb55a
DJ
1719 if (mips_elf_local_pic_function_p (h))
1720 {
1721 /* H is a function that might need $25 to be valid on entry.
1722 If we're creating a non-PIC relocatable object, mark H as
1723 being PIC. If we're creating a non-relocatable object with
1724 non-PIC branches and jumps to H, make sure that H has an la25
1725 stub. */
1726 if (hti->info->relocatable)
1727 {
1728 if (!PIC_OBJECT_P (hti->output_bfd))
1729 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1730 }
1731 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1732 {
1733 hti->error = TRUE;
1734 return FALSE;
1735 }
1736 }
b34976b6 1737 return TRUE;
b49e97c9
TS
1738}
1739\f
d6f16593
MR
1740/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1741 Most mips16 instructions are 16 bits, but these instructions
1742 are 32 bits.
1743
1744 The format of these instructions is:
1745
1746 +--------------+--------------------------------+
1747 | JALX | X| Imm 20:16 | Imm 25:21 |
1748 +--------------+--------------------------------+
1749 | Immediate 15:0 |
1750 +-----------------------------------------------+
1751
1752 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1753 Note that the immediate value in the first word is swapped.
1754
1755 When producing a relocatable object file, R_MIPS16_26 is
1756 handled mostly like R_MIPS_26. In particular, the addend is
1757 stored as a straight 26-bit value in a 32-bit instruction.
1758 (gas makes life simpler for itself by never adjusting a
1759 R_MIPS16_26 reloc to be against a section, so the addend is
1760 always zero). However, the 32 bit instruction is stored as 2
1761 16-bit values, rather than a single 32-bit value. In a
1762 big-endian file, the result is the same; in a little-endian
1763 file, the two 16-bit halves of the 32 bit value are swapped.
1764 This is so that a disassembler can recognize the jal
1765 instruction.
1766
1767 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1768 instruction stored as two 16-bit values. The addend A is the
1769 contents of the targ26 field. The calculation is the same as
1770 R_MIPS_26. When storing the calculated value, reorder the
1771 immediate value as shown above, and don't forget to store the
1772 value as two 16-bit values.
1773
1774 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1775 defined as
1776
1777 big-endian:
1778 +--------+----------------------+
1779 | | |
1780 | | targ26-16 |
1781 |31 26|25 0|
1782 +--------+----------------------+
1783
1784 little-endian:
1785 +----------+------+-------------+
1786 | | | |
1787 | sub1 | | sub2 |
1788 |0 9|10 15|16 31|
1789 +----------+--------------------+
1790 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1791 ((sub1 << 16) | sub2)).
1792
1793 When producing a relocatable object file, the calculation is
1794 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1795 When producing a fully linked file, the calculation is
1796 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1797 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1798
738e5348
RS
1799 The table below lists the other MIPS16 instruction relocations.
1800 Each one is calculated in the same way as the non-MIPS16 relocation
1801 given on the right, but using the extended MIPS16 layout of 16-bit
1802 immediate fields:
1803
1804 R_MIPS16_GPREL R_MIPS_GPREL16
1805 R_MIPS16_GOT16 R_MIPS_GOT16
1806 R_MIPS16_CALL16 R_MIPS_CALL16
1807 R_MIPS16_HI16 R_MIPS_HI16
1808 R_MIPS16_LO16 R_MIPS_LO16
1809
1810 A typical instruction will have a format like this:
d6f16593
MR
1811
1812 +--------------+--------------------------------+
1813 | EXTEND | Imm 10:5 | Imm 15:11 |
1814 +--------------+--------------------------------+
1815 | Major | rx | ry | Imm 4:0 |
1816 +--------------+--------------------------------+
1817
1818 EXTEND is the five bit value 11110. Major is the instruction
1819 opcode.
1820
738e5348
RS
1821 All we need to do here is shuffle the bits appropriately.
1822 As above, the two 16-bit halves must be swapped on a
1823 little-endian system. */
1824
1825static inline bfd_boolean
1826mips16_reloc_p (int r_type)
1827{
1828 switch (r_type)
1829 {
1830 case R_MIPS16_26:
1831 case R_MIPS16_GPREL:
1832 case R_MIPS16_GOT16:
1833 case R_MIPS16_CALL16:
1834 case R_MIPS16_HI16:
1835 case R_MIPS16_LO16:
1836 return TRUE;
1837
1838 default:
1839 return FALSE;
1840 }
1841}
1842
1843static inline bfd_boolean
1844got16_reloc_p (int r_type)
1845{
1846 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1847}
1848
1849static inline bfd_boolean
1850call16_reloc_p (int r_type)
1851{
1852 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1853}
1854
1855static inline bfd_boolean
1856hi16_reloc_p (int r_type)
1857{
1858 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1859}
d6f16593 1860
738e5348
RS
1861static inline bfd_boolean
1862lo16_reloc_p (int r_type)
1863{
1864 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1865}
1866
1867static inline bfd_boolean
1868mips16_call_reloc_p (int r_type)
1869{
1870 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1871}
d6f16593 1872
d6f16593
MR
1873void
1874_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1875 bfd_boolean jal_shuffle, bfd_byte *data)
1876{
1877 bfd_vma extend, insn, val;
1878
738e5348 1879 if (!mips16_reloc_p (r_type))
d6f16593
MR
1880 return;
1881
1882 /* Pick up the mips16 extend instruction and the real instruction. */
1883 extend = bfd_get_16 (abfd, data);
1884 insn = bfd_get_16 (abfd, data + 2);
1885 if (r_type == R_MIPS16_26)
1886 {
1887 if (jal_shuffle)
1888 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1889 | ((extend & 0x1f) << 21) | insn;
1890 else
1891 val = extend << 16 | insn;
1892 }
1893 else
1894 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1895 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1896 bfd_put_32 (abfd, val, data);
1897}
1898
1899void
1900_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1901 bfd_boolean jal_shuffle, bfd_byte *data)
1902{
1903 bfd_vma extend, insn, val;
1904
738e5348 1905 if (!mips16_reloc_p (r_type))
d6f16593
MR
1906 return;
1907
1908 val = bfd_get_32 (abfd, data);
1909 if (r_type == R_MIPS16_26)
1910 {
1911 if (jal_shuffle)
1912 {
1913 insn = val & 0xffff;
1914 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1915 | ((val >> 21) & 0x1f);
1916 }
1917 else
1918 {
1919 insn = val & 0xffff;
1920 extend = val >> 16;
1921 }
1922 }
1923 else
1924 {
1925 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1926 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1927 }
1928 bfd_put_16 (abfd, insn, data + 2);
1929 bfd_put_16 (abfd, extend, data);
1930}
1931
b49e97c9 1932bfd_reloc_status_type
9719ad41
RS
1933_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1934 arelent *reloc_entry, asection *input_section,
1935 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1936{
1937 bfd_vma relocation;
a7ebbfdf 1938 bfd_signed_vma val;
30ac9238 1939 bfd_reloc_status_type status;
b49e97c9
TS
1940
1941 if (bfd_is_com_section (symbol->section))
1942 relocation = 0;
1943 else
1944 relocation = symbol->value;
1945
1946 relocation += symbol->section->output_section->vma;
1947 relocation += symbol->section->output_offset;
1948
07515404 1949 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1950 return bfd_reloc_outofrange;
1951
b49e97c9 1952 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1953 val = reloc_entry->addend;
1954
30ac9238 1955 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1956
b49e97c9 1957 /* Adjust val for the final section location and GP value. If we
1049f94e 1958 are producing relocatable output, we don't want to do this for
b49e97c9 1959 an external symbol. */
1049f94e 1960 if (! relocatable
b49e97c9
TS
1961 || (symbol->flags & BSF_SECTION_SYM) != 0)
1962 val += relocation - gp;
1963
a7ebbfdf
TS
1964 if (reloc_entry->howto->partial_inplace)
1965 {
30ac9238
RS
1966 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1967 (bfd_byte *) data
1968 + reloc_entry->address);
1969 if (status != bfd_reloc_ok)
1970 return status;
a7ebbfdf
TS
1971 }
1972 else
1973 reloc_entry->addend = val;
b49e97c9 1974
1049f94e 1975 if (relocatable)
b49e97c9 1976 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1977
1978 return bfd_reloc_ok;
1979}
1980
1981/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1982 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1983 that contains the relocation field and DATA points to the start of
1984 INPUT_SECTION. */
1985
1986struct mips_hi16
1987{
1988 struct mips_hi16 *next;
1989 bfd_byte *data;
1990 asection *input_section;
1991 arelent rel;
1992};
1993
1994/* FIXME: This should not be a static variable. */
1995
1996static struct mips_hi16 *mips_hi16_list;
1997
1998/* A howto special_function for REL *HI16 relocations. We can only
1999 calculate the correct value once we've seen the partnering
2000 *LO16 relocation, so just save the information for later.
2001
2002 The ABI requires that the *LO16 immediately follow the *HI16.
2003 However, as a GNU extension, we permit an arbitrary number of
2004 *HI16s to be associated with a single *LO16. This significantly
2005 simplies the relocation handling in gcc. */
2006
2007bfd_reloc_status_type
2008_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2009 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2010 asection *input_section, bfd *output_bfd,
2011 char **error_message ATTRIBUTE_UNUSED)
2012{
2013 struct mips_hi16 *n;
2014
07515404 2015 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2016 return bfd_reloc_outofrange;
2017
2018 n = bfd_malloc (sizeof *n);
2019 if (n == NULL)
2020 return bfd_reloc_outofrange;
2021
2022 n->next = mips_hi16_list;
2023 n->data = data;
2024 n->input_section = input_section;
2025 n->rel = *reloc_entry;
2026 mips_hi16_list = n;
2027
2028 if (output_bfd != NULL)
2029 reloc_entry->address += input_section->output_offset;
2030
2031 return bfd_reloc_ok;
2032}
2033
738e5348 2034/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2035 like any other 16-bit relocation when applied to global symbols, but is
2036 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2037
2038bfd_reloc_status_type
2039_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2040 void *data, asection *input_section,
2041 bfd *output_bfd, char **error_message)
2042{
2043 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2044 || bfd_is_und_section (bfd_get_section (symbol))
2045 || bfd_is_com_section (bfd_get_section (symbol)))
2046 /* The relocation is against a global symbol. */
2047 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2048 input_section, output_bfd,
2049 error_message);
2050
2051 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2052 input_section, output_bfd, error_message);
2053}
2054
2055/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2056 is a straightforward 16 bit inplace relocation, but we must deal with
2057 any partnering high-part relocations as well. */
2058
2059bfd_reloc_status_type
2060_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2061 void *data, asection *input_section,
2062 bfd *output_bfd, char **error_message)
2063{
2064 bfd_vma vallo;
d6f16593 2065 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2066
07515404 2067 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2068 return bfd_reloc_outofrange;
2069
d6f16593
MR
2070 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2071 location);
2072 vallo = bfd_get_32 (abfd, location);
2073 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2074 location);
2075
30ac9238
RS
2076 while (mips_hi16_list != NULL)
2077 {
2078 bfd_reloc_status_type ret;
2079 struct mips_hi16 *hi;
2080
2081 hi = mips_hi16_list;
2082
738e5348
RS
2083 /* R_MIPS*_GOT16 relocations are something of a special case. We
2084 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2085 relocation (with a rightshift of 16). However, since GOT16
2086 relocations can also be used with global symbols, their howto
2087 has a rightshift of 0. */
2088 if (hi->rel.howto->type == R_MIPS_GOT16)
2089 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2090 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2091 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
30ac9238
RS
2092
2093 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2094 carry or borrow will induce a change of +1 or -1 in the high part. */
2095 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2096
30ac9238
RS
2097 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2098 hi->input_section, output_bfd,
2099 error_message);
2100 if (ret != bfd_reloc_ok)
2101 return ret;
2102
2103 mips_hi16_list = hi->next;
2104 free (hi);
2105 }
2106
2107 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2108 input_section, output_bfd,
2109 error_message);
2110}
2111
2112/* A generic howto special_function. This calculates and installs the
2113 relocation itself, thus avoiding the oft-discussed problems in
2114 bfd_perform_relocation and bfd_install_relocation. */
2115
2116bfd_reloc_status_type
2117_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2118 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2119 asection *input_section, bfd *output_bfd,
2120 char **error_message ATTRIBUTE_UNUSED)
2121{
2122 bfd_signed_vma val;
2123 bfd_reloc_status_type status;
2124 bfd_boolean relocatable;
2125
2126 relocatable = (output_bfd != NULL);
2127
07515404 2128 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2129 return bfd_reloc_outofrange;
2130
2131 /* Build up the field adjustment in VAL. */
2132 val = 0;
2133 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2134 {
2135 /* Either we're calculating the final field value or we have a
2136 relocation against a section symbol. Add in the section's
2137 offset or address. */
2138 val += symbol->section->output_section->vma;
2139 val += symbol->section->output_offset;
2140 }
2141
2142 if (!relocatable)
2143 {
2144 /* We're calculating the final field value. Add in the symbol's value
2145 and, if pc-relative, subtract the address of the field itself. */
2146 val += symbol->value;
2147 if (reloc_entry->howto->pc_relative)
2148 {
2149 val -= input_section->output_section->vma;
2150 val -= input_section->output_offset;
2151 val -= reloc_entry->address;
2152 }
2153 }
2154
2155 /* VAL is now the final adjustment. If we're keeping this relocation
2156 in the output file, and if the relocation uses a separate addend,
2157 we just need to add VAL to that addend. Otherwise we need to add
2158 VAL to the relocation field itself. */
2159 if (relocatable && !reloc_entry->howto->partial_inplace)
2160 reloc_entry->addend += val;
2161 else
2162 {
d6f16593
MR
2163 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2164
30ac9238
RS
2165 /* Add in the separate addend, if any. */
2166 val += reloc_entry->addend;
2167
2168 /* Add VAL to the relocation field. */
d6f16593
MR
2169 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2170 location);
30ac9238 2171 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
2172 location);
2173 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2174 location);
2175
30ac9238
RS
2176 if (status != bfd_reloc_ok)
2177 return status;
2178 }
2179
2180 if (relocatable)
2181 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2182
2183 return bfd_reloc_ok;
2184}
2185\f
2186/* Swap an entry in a .gptab section. Note that these routines rely
2187 on the equivalence of the two elements of the union. */
2188
2189static void
9719ad41
RS
2190bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2191 Elf32_gptab *in)
b49e97c9
TS
2192{
2193 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2194 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2195}
2196
2197static void
9719ad41
RS
2198bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2199 Elf32_External_gptab *ex)
b49e97c9
TS
2200{
2201 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2202 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2203}
2204
2205static void
9719ad41
RS
2206bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2207 Elf32_External_compact_rel *ex)
b49e97c9
TS
2208{
2209 H_PUT_32 (abfd, in->id1, ex->id1);
2210 H_PUT_32 (abfd, in->num, ex->num);
2211 H_PUT_32 (abfd, in->id2, ex->id2);
2212 H_PUT_32 (abfd, in->offset, ex->offset);
2213 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2214 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2215}
2216
2217static void
9719ad41
RS
2218bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2219 Elf32_External_crinfo *ex)
b49e97c9
TS
2220{
2221 unsigned long l;
2222
2223 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2224 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2225 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2226 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2227 H_PUT_32 (abfd, l, ex->info);
2228 H_PUT_32 (abfd, in->konst, ex->konst);
2229 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2230}
b49e97c9
TS
2231\f
2232/* A .reginfo section holds a single Elf32_RegInfo structure. These
2233 routines swap this structure in and out. They are used outside of
2234 BFD, so they are globally visible. */
2235
2236void
9719ad41
RS
2237bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2238 Elf32_RegInfo *in)
b49e97c9
TS
2239{
2240 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2241 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2242 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2243 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2244 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2245 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2246}
2247
2248void
9719ad41
RS
2249bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2250 Elf32_External_RegInfo *ex)
b49e97c9
TS
2251{
2252 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2253 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2254 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2255 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2256 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2257 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2258}
2259
2260/* In the 64 bit ABI, the .MIPS.options section holds register
2261 information in an Elf64_Reginfo structure. These routines swap
2262 them in and out. They are globally visible because they are used
2263 outside of BFD. These routines are here so that gas can call them
2264 without worrying about whether the 64 bit ABI has been included. */
2265
2266void
9719ad41
RS
2267bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2268 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2269{
2270 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2271 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2272 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2273 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2274 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2275 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2276 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2277}
2278
2279void
9719ad41
RS
2280bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2281 Elf64_External_RegInfo *ex)
b49e97c9
TS
2282{
2283 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2284 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2285 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2286 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2287 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2288 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2289 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2290}
2291
2292/* Swap in an options header. */
2293
2294void
9719ad41
RS
2295bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2296 Elf_Internal_Options *in)
b49e97c9
TS
2297{
2298 in->kind = H_GET_8 (abfd, ex->kind);
2299 in->size = H_GET_8 (abfd, ex->size);
2300 in->section = H_GET_16 (abfd, ex->section);
2301 in->info = H_GET_32 (abfd, ex->info);
2302}
2303
2304/* Swap out an options header. */
2305
2306void
9719ad41
RS
2307bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2308 Elf_External_Options *ex)
b49e97c9
TS
2309{
2310 H_PUT_8 (abfd, in->kind, ex->kind);
2311 H_PUT_8 (abfd, in->size, ex->size);
2312 H_PUT_16 (abfd, in->section, ex->section);
2313 H_PUT_32 (abfd, in->info, ex->info);
2314}
2315\f
2316/* This function is called via qsort() to sort the dynamic relocation
2317 entries by increasing r_symndx value. */
2318
2319static int
9719ad41 2320sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2321{
947216bf
AM
2322 Elf_Internal_Rela int_reloc1;
2323 Elf_Internal_Rela int_reloc2;
6870500c 2324 int diff;
b49e97c9 2325
947216bf
AM
2326 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2328
6870500c
RS
2329 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2330 if (diff != 0)
2331 return diff;
2332
2333 if (int_reloc1.r_offset < int_reloc2.r_offset)
2334 return -1;
2335 if (int_reloc1.r_offset > int_reloc2.r_offset)
2336 return 1;
2337 return 0;
b49e97c9
TS
2338}
2339
f4416af6
AO
2340/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2341
2342static int
7e3102a7
AM
2343sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2344 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2345{
7e3102a7 2346#ifdef BFD64
f4416af6
AO
2347 Elf_Internal_Rela int_reloc1[3];
2348 Elf_Internal_Rela int_reloc2[3];
2349
2350 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2351 (reldyn_sorting_bfd, arg1, int_reloc1);
2352 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2353 (reldyn_sorting_bfd, arg2, int_reloc2);
2354
6870500c
RS
2355 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2356 return -1;
2357 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2358 return 1;
2359
2360 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2361 return -1;
2362 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2363 return 1;
2364 return 0;
7e3102a7
AM
2365#else
2366 abort ();
2367#endif
f4416af6
AO
2368}
2369
2370
b49e97c9
TS
2371/* This routine is used to write out ECOFF debugging external symbol
2372 information. It is called via mips_elf_link_hash_traverse. The
2373 ECOFF external symbol information must match the ELF external
2374 symbol information. Unfortunately, at this point we don't know
2375 whether a symbol is required by reloc information, so the two
2376 tables may wind up being different. We must sort out the external
2377 symbol information before we can set the final size of the .mdebug
2378 section, and we must set the size of the .mdebug section before we
2379 can relocate any sections, and we can't know which symbols are
2380 required by relocation until we relocate the sections.
2381 Fortunately, it is relatively unlikely that any symbol will be
2382 stripped but required by a reloc. In particular, it can not happen
2383 when generating a final executable. */
2384
b34976b6 2385static bfd_boolean
9719ad41 2386mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2387{
9719ad41 2388 struct extsym_info *einfo = data;
b34976b6 2389 bfd_boolean strip;
b49e97c9
TS
2390 asection *sec, *output_section;
2391
2392 if (h->root.root.type == bfd_link_hash_warning)
2393 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2394
2395 if (h->root.indx == -2)
b34976b6 2396 strip = FALSE;
f5385ebf 2397 else if ((h->root.def_dynamic
77cfaee6
AM
2398 || h->root.ref_dynamic
2399 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2400 && !h->root.def_regular
2401 && !h->root.ref_regular)
b34976b6 2402 strip = TRUE;
b49e97c9
TS
2403 else if (einfo->info->strip == strip_all
2404 || (einfo->info->strip == strip_some
2405 && bfd_hash_lookup (einfo->info->keep_hash,
2406 h->root.root.root.string,
b34976b6
AM
2407 FALSE, FALSE) == NULL))
2408 strip = TRUE;
b49e97c9 2409 else
b34976b6 2410 strip = FALSE;
b49e97c9
TS
2411
2412 if (strip)
b34976b6 2413 return TRUE;
b49e97c9
TS
2414
2415 if (h->esym.ifd == -2)
2416 {
2417 h->esym.jmptbl = 0;
2418 h->esym.cobol_main = 0;
2419 h->esym.weakext = 0;
2420 h->esym.reserved = 0;
2421 h->esym.ifd = ifdNil;
2422 h->esym.asym.value = 0;
2423 h->esym.asym.st = stGlobal;
2424
2425 if (h->root.root.type == bfd_link_hash_undefined
2426 || h->root.root.type == bfd_link_hash_undefweak)
2427 {
2428 const char *name;
2429
2430 /* Use undefined class. Also, set class and type for some
2431 special symbols. */
2432 name = h->root.root.root.string;
2433 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2434 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2435 {
2436 h->esym.asym.sc = scData;
2437 h->esym.asym.st = stLabel;
2438 h->esym.asym.value = 0;
2439 }
2440 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2441 {
2442 h->esym.asym.sc = scAbs;
2443 h->esym.asym.st = stLabel;
2444 h->esym.asym.value =
2445 mips_elf_hash_table (einfo->info)->procedure_count;
2446 }
4a14403c 2447 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2448 {
2449 h->esym.asym.sc = scAbs;
2450 h->esym.asym.st = stLabel;
2451 h->esym.asym.value = elf_gp (einfo->abfd);
2452 }
2453 else
2454 h->esym.asym.sc = scUndefined;
2455 }
2456 else if (h->root.root.type != bfd_link_hash_defined
2457 && h->root.root.type != bfd_link_hash_defweak)
2458 h->esym.asym.sc = scAbs;
2459 else
2460 {
2461 const char *name;
2462
2463 sec = h->root.root.u.def.section;
2464 output_section = sec->output_section;
2465
2466 /* When making a shared library and symbol h is the one from
2467 the another shared library, OUTPUT_SECTION may be null. */
2468 if (output_section == NULL)
2469 h->esym.asym.sc = scUndefined;
2470 else
2471 {
2472 name = bfd_section_name (output_section->owner, output_section);
2473
2474 if (strcmp (name, ".text") == 0)
2475 h->esym.asym.sc = scText;
2476 else if (strcmp (name, ".data") == 0)
2477 h->esym.asym.sc = scData;
2478 else if (strcmp (name, ".sdata") == 0)
2479 h->esym.asym.sc = scSData;
2480 else if (strcmp (name, ".rodata") == 0
2481 || strcmp (name, ".rdata") == 0)
2482 h->esym.asym.sc = scRData;
2483 else if (strcmp (name, ".bss") == 0)
2484 h->esym.asym.sc = scBss;
2485 else if (strcmp (name, ".sbss") == 0)
2486 h->esym.asym.sc = scSBss;
2487 else if (strcmp (name, ".init") == 0)
2488 h->esym.asym.sc = scInit;
2489 else if (strcmp (name, ".fini") == 0)
2490 h->esym.asym.sc = scFini;
2491 else
2492 h->esym.asym.sc = scAbs;
2493 }
2494 }
2495
2496 h->esym.asym.reserved = 0;
2497 h->esym.asym.index = indexNil;
2498 }
2499
2500 if (h->root.root.type == bfd_link_hash_common)
2501 h->esym.asym.value = h->root.root.u.c.size;
2502 else if (h->root.root.type == bfd_link_hash_defined
2503 || h->root.root.type == bfd_link_hash_defweak)
2504 {
2505 if (h->esym.asym.sc == scCommon)
2506 h->esym.asym.sc = scBss;
2507 else if (h->esym.asym.sc == scSCommon)
2508 h->esym.asym.sc = scSBss;
2509
2510 sec = h->root.root.u.def.section;
2511 output_section = sec->output_section;
2512 if (output_section != NULL)
2513 h->esym.asym.value = (h->root.root.u.def.value
2514 + sec->output_offset
2515 + output_section->vma);
2516 else
2517 h->esym.asym.value = 0;
2518 }
33bb52fb 2519 else
b49e97c9
TS
2520 {
2521 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2522
2523 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2524 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2525
33bb52fb 2526 if (hd->needs_lazy_stub)
b49e97c9
TS
2527 {
2528 /* Set type and value for a symbol with a function stub. */
2529 h->esym.asym.st = stProc;
2530 sec = hd->root.root.u.def.section;
2531 if (sec == NULL)
2532 h->esym.asym.value = 0;
2533 else
2534 {
2535 output_section = sec->output_section;
2536 if (output_section != NULL)
2537 h->esym.asym.value = (hd->root.plt.offset
2538 + sec->output_offset
2539 + output_section->vma);
2540 else
2541 h->esym.asym.value = 0;
2542 }
b49e97c9
TS
2543 }
2544 }
2545
2546 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2547 h->root.root.root.string,
2548 &h->esym))
2549 {
b34976b6
AM
2550 einfo->failed = TRUE;
2551 return FALSE;
b49e97c9
TS
2552 }
2553
b34976b6 2554 return TRUE;
b49e97c9
TS
2555}
2556
2557/* A comparison routine used to sort .gptab entries. */
2558
2559static int
9719ad41 2560gptab_compare (const void *p1, const void *p2)
b49e97c9 2561{
9719ad41
RS
2562 const Elf32_gptab *a1 = p1;
2563 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2564
2565 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2566}
2567\f
b15e6682 2568/* Functions to manage the got entry hash table. */
f4416af6
AO
2569
2570/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2571 hash number. */
2572
2573static INLINE hashval_t
9719ad41 2574mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2575{
2576#ifdef BFD64
2577 return addr + (addr >> 32);
2578#else
2579 return addr;
2580#endif
2581}
2582
2583/* got_entries only match if they're identical, except for gotidx, so
2584 use all fields to compute the hash, and compare the appropriate
2585 union members. */
2586
b15e6682 2587static hashval_t
9719ad41 2588mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2589{
2590 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2591
38985a1c 2592 return entry->symndx
0f20cc35 2593 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2594 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2595 : entry->abfd->id
2596 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2597 : entry->d.h->root.root.root.hash));
b15e6682
AO
2598}
2599
2600static int
9719ad41 2601mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2602{
2603 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2604 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2605
0f20cc35
DJ
2606 /* An LDM entry can only match another LDM entry. */
2607 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2608 return 0;
2609
b15e6682 2610 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2611 && (! e1->abfd ? e1->d.address == e2->d.address
2612 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2613 : e1->d.h == e2->d.h);
2614}
2615
2616/* multi_got_entries are still a match in the case of global objects,
2617 even if the input bfd in which they're referenced differs, so the
2618 hash computation and compare functions are adjusted
2619 accordingly. */
2620
2621static hashval_t
9719ad41 2622mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2623{
2624 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2625
2626 return entry->symndx
2627 + (! entry->abfd
2628 ? mips_elf_hash_bfd_vma (entry->d.address)
2629 : entry->symndx >= 0
0f20cc35
DJ
2630 ? ((entry->tls_type & GOT_TLS_LDM)
2631 ? (GOT_TLS_LDM << 17)
2632 : (entry->abfd->id
2633 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2634 : entry->d.h->root.root.root.hash);
2635}
2636
2637static int
9719ad41 2638mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2639{
2640 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2641 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2642
0f20cc35
DJ
2643 /* Any two LDM entries match. */
2644 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2645 return 1;
2646
2647 /* Nothing else matches an LDM entry. */
2648 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2649 return 0;
2650
f4416af6
AO
2651 return e1->symndx == e2->symndx
2652 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2653 : e1->abfd == NULL || e2->abfd == NULL
2654 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2655 : e1->d.h == e2->d.h);
b15e6682 2656}
c224138d
RS
2657
2658static hashval_t
2659mips_got_page_entry_hash (const void *entry_)
2660{
2661 const struct mips_got_page_entry *entry;
2662
2663 entry = (const struct mips_got_page_entry *) entry_;
2664 return entry->abfd->id + entry->symndx;
2665}
2666
2667static int
2668mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2669{
2670 const struct mips_got_page_entry *entry1, *entry2;
2671
2672 entry1 = (const struct mips_got_page_entry *) entry1_;
2673 entry2 = (const struct mips_got_page_entry *) entry2_;
2674 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2675}
b15e6682 2676\f
0a44bf69
RS
2677/* Return the dynamic relocation section. If it doesn't exist, try to
2678 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2679 if creation fails. */
f4416af6
AO
2680
2681static asection *
0a44bf69 2682mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2683{
0a44bf69 2684 const char *dname;
f4416af6 2685 asection *sreloc;
0a44bf69 2686 bfd *dynobj;
f4416af6 2687
0a44bf69
RS
2688 dname = MIPS_ELF_REL_DYN_NAME (info);
2689 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2690 sreloc = bfd_get_section_by_name (dynobj, dname);
2691 if (sreloc == NULL && create_p)
2692 {
3496cb2a
L
2693 sreloc = bfd_make_section_with_flags (dynobj, dname,
2694 (SEC_ALLOC
2695 | SEC_LOAD
2696 | SEC_HAS_CONTENTS
2697 | SEC_IN_MEMORY
2698 | SEC_LINKER_CREATED
2699 | SEC_READONLY));
f4416af6 2700 if (sreloc == NULL
f4416af6 2701 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2702 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2703 return NULL;
2704 }
2705 return sreloc;
2706}
2707
0f20cc35
DJ
2708/* Count the number of relocations needed for a TLS GOT entry, with
2709 access types from TLS_TYPE, and symbol H (or a local symbol if H
2710 is NULL). */
2711
2712static int
2713mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2714 struct elf_link_hash_entry *h)
2715{
2716 int indx = 0;
2717 int ret = 0;
2718 bfd_boolean need_relocs = FALSE;
2719 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2720
2721 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2722 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2723 indx = h->dynindx;
2724
2725 if ((info->shared || indx != 0)
2726 && (h == NULL
2727 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2728 || h->root.type != bfd_link_hash_undefweak))
2729 need_relocs = TRUE;
2730
2731 if (!need_relocs)
2732 return FALSE;
2733
2734 if (tls_type & GOT_TLS_GD)
2735 {
2736 ret++;
2737 if (indx != 0)
2738 ret++;
2739 }
2740
2741 if (tls_type & GOT_TLS_IE)
2742 ret++;
2743
2744 if ((tls_type & GOT_TLS_LDM) && info->shared)
2745 ret++;
2746
2747 return ret;
2748}
2749
2750/* Count the number of TLS relocations required for the GOT entry in
2751 ARG1, if it describes a local symbol. */
2752
2753static int
2754mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2755{
2756 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2757 struct mips_elf_count_tls_arg *arg = arg2;
2758
2759 if (entry->abfd != NULL && entry->symndx != -1)
2760 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2761
2762 return 1;
2763}
2764
2765/* Count the number of TLS GOT entries required for the global (or
2766 forced-local) symbol in ARG1. */
2767
2768static int
2769mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2770{
2771 struct mips_elf_link_hash_entry *hm
2772 = (struct mips_elf_link_hash_entry *) arg1;
2773 struct mips_elf_count_tls_arg *arg = arg2;
2774
2775 if (hm->tls_type & GOT_TLS_GD)
2776 arg->needed += 2;
2777 if (hm->tls_type & GOT_TLS_IE)
2778 arg->needed += 1;
2779
2780 return 1;
2781}
2782
2783/* Count the number of TLS relocations required for the global (or
2784 forced-local) symbol in ARG1. */
2785
2786static int
2787mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2788{
2789 struct mips_elf_link_hash_entry *hm
2790 = (struct mips_elf_link_hash_entry *) arg1;
2791 struct mips_elf_count_tls_arg *arg = arg2;
2792
2793 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2794
2795 return 1;
2796}
2797
2798/* Output a simple dynamic relocation into SRELOC. */
2799
2800static void
2801mips_elf_output_dynamic_relocation (bfd *output_bfd,
2802 asection *sreloc,
861fb55a 2803 unsigned long reloc_index,
0f20cc35
DJ
2804 unsigned long indx,
2805 int r_type,
2806 bfd_vma offset)
2807{
2808 Elf_Internal_Rela rel[3];
2809
2810 memset (rel, 0, sizeof (rel));
2811
2812 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2813 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2814
2815 if (ABI_64_P (output_bfd))
2816 {
2817 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2818 (output_bfd, &rel[0],
2819 (sreloc->contents
861fb55a 2820 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
2821 }
2822 else
2823 bfd_elf32_swap_reloc_out
2824 (output_bfd, &rel[0],
2825 (sreloc->contents
861fb55a 2826 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
2827}
2828
2829/* Initialize a set of TLS GOT entries for one symbol. */
2830
2831static void
2832mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2833 unsigned char *tls_type_p,
2834 struct bfd_link_info *info,
2835 struct mips_elf_link_hash_entry *h,
2836 bfd_vma value)
2837{
23cc69b6 2838 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
2839 int indx;
2840 asection *sreloc, *sgot;
2841 bfd_vma offset, offset2;
0f20cc35
DJ
2842 bfd_boolean need_relocs = FALSE;
2843
23cc69b6
RS
2844 htab = mips_elf_hash_table (info);
2845 sgot = htab->sgot;
0f20cc35
DJ
2846
2847 indx = 0;
2848 if (h != NULL)
2849 {
2850 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2851
2852 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2853 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2854 indx = h->root.dynindx;
2855 }
2856
2857 if (*tls_type_p & GOT_TLS_DONE)
2858 return;
2859
2860 if ((info->shared || indx != 0)
2861 && (h == NULL
2862 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2863 || h->root.type != bfd_link_hash_undefweak))
2864 need_relocs = TRUE;
2865
2866 /* MINUS_ONE means the symbol is not defined in this object. It may not
2867 be defined at all; assume that the value doesn't matter in that
2868 case. Otherwise complain if we would use the value. */
2869 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2870 || h->root.root.type == bfd_link_hash_undefweak);
2871
2872 /* Emit necessary relocations. */
0a44bf69 2873 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2874
2875 /* General Dynamic. */
2876 if (*tls_type_p & GOT_TLS_GD)
2877 {
2878 offset = got_offset;
2879 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2880
2881 if (need_relocs)
2882 {
2883 mips_elf_output_dynamic_relocation
861fb55a 2884 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2885 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2886 sgot->output_offset + sgot->output_section->vma + offset);
2887
2888 if (indx)
2889 mips_elf_output_dynamic_relocation
861fb55a 2890 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2891 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2892 sgot->output_offset + sgot->output_section->vma + offset2);
2893 else
2894 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2895 sgot->contents + offset2);
2896 }
2897 else
2898 {
2899 MIPS_ELF_PUT_WORD (abfd, 1,
2900 sgot->contents + offset);
2901 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2902 sgot->contents + offset2);
2903 }
2904
2905 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2906 }
2907
2908 /* Initial Exec model. */
2909 if (*tls_type_p & GOT_TLS_IE)
2910 {
2911 offset = got_offset;
2912
2913 if (need_relocs)
2914 {
2915 if (indx == 0)
2916 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2917 sgot->contents + offset);
2918 else
2919 MIPS_ELF_PUT_WORD (abfd, 0,
2920 sgot->contents + offset);
2921
2922 mips_elf_output_dynamic_relocation
861fb55a 2923 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2924 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2925 sgot->output_offset + sgot->output_section->vma + offset);
2926 }
2927 else
2928 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2929 sgot->contents + offset);
2930 }
2931
2932 if (*tls_type_p & GOT_TLS_LDM)
2933 {
2934 /* The initial offset is zero, and the LD offsets will include the
2935 bias by DTP_OFFSET. */
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + got_offset
2938 + MIPS_ELF_GOT_SIZE (abfd));
2939
2940 if (!info->shared)
2941 MIPS_ELF_PUT_WORD (abfd, 1,
2942 sgot->contents + got_offset);
2943 else
2944 mips_elf_output_dynamic_relocation
861fb55a 2945 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
2946 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2947 sgot->output_offset + sgot->output_section->vma + got_offset);
2948 }
2949
2950 *tls_type_p |= GOT_TLS_DONE;
2951}
2952
2953/* Return the GOT index to use for a relocation of type R_TYPE against
2954 a symbol accessed using TLS_TYPE models. The GOT entries for this
2955 symbol in this GOT start at GOT_INDEX. This function initializes the
2956 GOT entries and corresponding relocations. */
2957
2958static bfd_vma
2959mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2960 int r_type, struct bfd_link_info *info,
2961 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2962{
2963 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2964 || r_type == R_MIPS_TLS_LDM);
2965
2966 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2967
2968 if (r_type == R_MIPS_TLS_GOTTPREL)
2969 {
2970 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2971 if (*tls_type & GOT_TLS_GD)
2972 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2973 else
2974 return got_index;
2975 }
2976
2977 if (r_type == R_MIPS_TLS_GD)
2978 {
2979 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2980 return got_index;
2981 }
2982
2983 if (r_type == R_MIPS_TLS_LDM)
2984 {
2985 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2986 return got_index;
2987 }
2988
2989 return got_index;
2990}
2991
0a44bf69
RS
2992/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2993 for global symbol H. .got.plt comes before the GOT, so the offset
2994 will be negative. */
2995
2996static bfd_vma
2997mips_elf_gotplt_index (struct bfd_link_info *info,
2998 struct elf_link_hash_entry *h)
2999{
3000 bfd_vma plt_index, got_address, got_value;
3001 struct mips_elf_link_hash_table *htab;
3002
3003 htab = mips_elf_hash_table (info);
3004 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3005
861fb55a
DJ
3006 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3007 section starts with reserved entries. */
3008 BFD_ASSERT (htab->is_vxworks);
3009
0a44bf69
RS
3010 /* Calculate the index of the symbol's PLT entry. */
3011 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3012
3013 /* Calculate the address of the associated .got.plt entry. */
3014 got_address = (htab->sgotplt->output_section->vma
3015 + htab->sgotplt->output_offset
3016 + plt_index * 4);
3017
3018 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3019 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3020 + htab->root.hgot->root.u.def.section->output_offset
3021 + htab->root.hgot->root.u.def.value);
3022
3023 return got_address - got_value;
3024}
3025
5c18022e 3026/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3027 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3028 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3029 offset can be found. */
b49e97c9
TS
3030
3031static bfd_vma
9719ad41 3032mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3033 bfd_vma value, unsigned long r_symndx,
0f20cc35 3034 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3035{
a8028dd0 3036 struct mips_elf_link_hash_table *htab;
b15e6682 3037 struct mips_got_entry *entry;
b49e97c9 3038
a8028dd0
RS
3039 htab = mips_elf_hash_table (info);
3040 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3041 r_symndx, h, r_type);
0f20cc35 3042 if (!entry)
b15e6682 3043 return MINUS_ONE;
0f20cc35
DJ
3044
3045 if (TLS_RELOC_P (r_type))
ead49a57 3046 {
a8028dd0 3047 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3048 /* A type (3) entry in the single-GOT case. We use the symbol's
3049 hash table entry to track the index. */
3050 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3051 r_type, info, h, value);
3052 else
3053 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3054 r_type, info, h, value);
3055 }
0f20cc35
DJ
3056 else
3057 return entry->gotidx;
b49e97c9
TS
3058}
3059
3060/* Returns the GOT index for the global symbol indicated by H. */
3061
3062static bfd_vma
0f20cc35
DJ
3063mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3064 int r_type, struct bfd_link_info *info)
b49e97c9 3065{
a8028dd0 3066 struct mips_elf_link_hash_table *htab;
b49e97c9 3067 bfd_vma index;
f4416af6 3068 struct mips_got_info *g, *gg;
d0c7ff07 3069 long global_got_dynindx = 0;
b49e97c9 3070
a8028dd0
RS
3071 htab = mips_elf_hash_table (info);
3072 gg = g = htab->got_info;
f4416af6
AO
3073 if (g->bfd2got && ibfd)
3074 {
3075 struct mips_got_entry e, *p;
143d77c5 3076
f4416af6
AO
3077 BFD_ASSERT (h->dynindx >= 0);
3078
3079 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3080 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3081 {
3082 e.abfd = ibfd;
3083 e.symndx = -1;
3084 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 3085 e.tls_type = 0;
f4416af6 3086
9719ad41 3087 p = htab_find (g->got_entries, &e);
f4416af6
AO
3088
3089 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
3090
3091 if (TLS_RELOC_P (r_type))
3092 {
3093 bfd_vma value = MINUS_ONE;
3094 if ((h->root.type == bfd_link_hash_defined
3095 || h->root.type == bfd_link_hash_defweak)
3096 && h->root.u.def.section->output_section)
3097 value = (h->root.u.def.value
3098 + h->root.u.def.section->output_offset
3099 + h->root.u.def.section->output_section->vma);
3100
3101 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3102 info, e.d.h, value);
3103 }
3104 else
3105 return p->gotidx;
f4416af6
AO
3106 }
3107 }
3108
3109 if (gg->global_gotsym != NULL)
3110 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 3111
0f20cc35
DJ
3112 if (TLS_RELOC_P (r_type))
3113 {
3114 struct mips_elf_link_hash_entry *hm
3115 = (struct mips_elf_link_hash_entry *) h;
3116 bfd_vma value = MINUS_ONE;
3117
3118 if ((h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak)
3120 && h->root.u.def.section->output_section)
3121 value = (h->root.u.def.value
3122 + h->root.u.def.section->output_offset
3123 + h->root.u.def.section->output_section->vma);
3124
3125 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3126 r_type, info, hm, value);
3127 }
3128 else
3129 {
3130 /* Once we determine the global GOT entry with the lowest dynamic
3131 symbol table index, we must put all dynamic symbols with greater
3132 indices into the GOT. That makes it easy to calculate the GOT
3133 offset. */
3134 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3135 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3136 * MIPS_ELF_GOT_SIZE (abfd));
3137 }
a8028dd0 3138 BFD_ASSERT (index < htab->sgot->size);
b49e97c9
TS
3139
3140 return index;
3141}
3142
5c18022e
RS
3143/* Find a GOT page entry that points to within 32KB of VALUE. These
3144 entries are supposed to be placed at small offsets in the GOT, i.e.,
3145 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3146 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3147 offset of the GOT entry from VALUE. */
b49e97c9
TS
3148
3149static bfd_vma
9719ad41 3150mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3151 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3152{
0a44bf69 3153 bfd_vma page, index;
b15e6682 3154 struct mips_got_entry *entry;
b49e97c9 3155
0a44bf69 3156 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3157 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3158 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3159
b15e6682
AO
3160 if (!entry)
3161 return MINUS_ONE;
143d77c5 3162
b15e6682 3163 index = entry->gotidx;
b49e97c9
TS
3164
3165 if (offsetp)
f4416af6 3166 *offsetp = value - entry->d.address;
b49e97c9
TS
3167
3168 return index;
3169}
3170
738e5348 3171/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
0a44bf69
RS
3172 EXTERNAL is true if the relocation was against a global symbol
3173 that has been forced local. */
b49e97c9
TS
3174
3175static bfd_vma
9719ad41 3176mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3177 bfd_vma value, bfd_boolean external)
b49e97c9 3178{
b15e6682 3179 struct mips_got_entry *entry;
b49e97c9 3180
0a44bf69
RS
3181 /* GOT16 relocations against local symbols are followed by a LO16
3182 relocation; those against global symbols are not. Thus if the
3183 symbol was originally local, the GOT16 relocation should load the
3184 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3185 if (! external)
0a44bf69 3186 value = mips_elf_high (value) << 16;
b49e97c9 3187
738e5348
RS
3188 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3189 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3190 same in all cases. */
a8028dd0
RS
3191 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3192 NULL, R_MIPS_GOT16);
b15e6682
AO
3193 if (entry)
3194 return entry->gotidx;
3195 else
3196 return MINUS_ONE;
b49e97c9
TS
3197}
3198
3199/* Returns the offset for the entry at the INDEXth position
3200 in the GOT. */
3201
3202static bfd_vma
a8028dd0 3203mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
9719ad41 3204 bfd *input_bfd, bfd_vma index)
b49e97c9 3205{
a8028dd0 3206 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3207 asection *sgot;
3208 bfd_vma gp;
3209
a8028dd0
RS
3210 htab = mips_elf_hash_table (info);
3211 sgot = htab->sgot;
f4416af6 3212 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3213 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3214
f4416af6 3215 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
3216}
3217
0a44bf69
RS
3218/* Create and return a local GOT entry for VALUE, which was calculated
3219 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3220 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3221 instead. */
b49e97c9 3222
b15e6682 3223static struct mips_got_entry *
0a44bf69 3224mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3225 bfd *ibfd, bfd_vma value,
5c18022e 3226 unsigned long r_symndx,
0f20cc35
DJ
3227 struct mips_elf_link_hash_entry *h,
3228 int r_type)
b49e97c9 3229{
b15e6682 3230 struct mips_got_entry entry, **loc;
f4416af6 3231 struct mips_got_info *g;
0a44bf69
RS
3232 struct mips_elf_link_hash_table *htab;
3233
3234 htab = mips_elf_hash_table (info);
b15e6682 3235
f4416af6
AO
3236 entry.abfd = NULL;
3237 entry.symndx = -1;
3238 entry.d.address = value;
0f20cc35 3239 entry.tls_type = 0;
f4416af6 3240
a8028dd0 3241 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3242 if (g == NULL)
3243 {
a8028dd0 3244 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3245 BFD_ASSERT (g != NULL);
3246 }
b15e6682 3247
0f20cc35
DJ
3248 /* We might have a symbol, H, if it has been forced local. Use the
3249 global entry then. It doesn't matter whether an entry is local
3250 or global for TLS, since the dynamic linker does not
3251 automatically relocate TLS GOT entries. */
a008ac03 3252 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
3253 if (TLS_RELOC_P (r_type))
3254 {
3255 struct mips_got_entry *p;
3256
3257 entry.abfd = ibfd;
3258 if (r_type == R_MIPS_TLS_LDM)
3259 {
3260 entry.tls_type = GOT_TLS_LDM;
3261 entry.symndx = 0;
3262 entry.d.addend = 0;
3263 }
3264 else if (h == NULL)
3265 {
3266 entry.symndx = r_symndx;
3267 entry.d.addend = 0;
3268 }
3269 else
3270 entry.d.h = h;
3271
3272 p = (struct mips_got_entry *)
3273 htab_find (g->got_entries, &entry);
3274
3275 BFD_ASSERT (p);
3276 return p;
3277 }
3278
b15e6682
AO
3279 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3280 INSERT);
3281 if (*loc)
3282 return *loc;
143d77c5 3283
b15e6682 3284 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 3285 entry.tls_type = 0;
b15e6682
AO
3286
3287 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3288
3289 if (! *loc)
3290 return NULL;
143d77c5 3291
b15e6682
AO
3292 memcpy (*loc, &entry, sizeof entry);
3293
8275b357 3294 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3295 {
f4416af6 3296 (*loc)->gotidx = -1;
b49e97c9
TS
3297 /* We didn't allocate enough space in the GOT. */
3298 (*_bfd_error_handler)
3299 (_("not enough GOT space for local GOT entries"));
3300 bfd_set_error (bfd_error_bad_value);
b15e6682 3301 return NULL;
b49e97c9
TS
3302 }
3303
3304 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3305 (htab->sgot->contents + entry.gotidx));
b15e6682 3306
5c18022e 3307 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3308 if (htab->is_vxworks)
3309 {
3310 Elf_Internal_Rela outrel;
5c18022e 3311 asection *s;
0a44bf69
RS
3312 bfd_byte *loc;
3313 bfd_vma got_address;
0a44bf69
RS
3314
3315 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3316 got_address = (htab->sgot->output_section->vma
3317 + htab->sgot->output_offset
0a44bf69
RS
3318 + entry.gotidx);
3319
3320 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3321 outrel.r_offset = got_address;
5c18022e
RS
3322 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3323 outrel.r_addend = value;
0a44bf69
RS
3324 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3325 }
3326
b15e6682 3327 return *loc;
b49e97c9
TS
3328}
3329
d4596a51
RS
3330/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3331 The number might be exact or a worst-case estimate, depending on how
3332 much information is available to elf_backend_omit_section_dynsym at
3333 the current linking stage. */
3334
3335static bfd_size_type
3336count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3337{
3338 bfd_size_type count;
3339
3340 count = 0;
3341 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3342 {
3343 asection *p;
3344 const struct elf_backend_data *bed;
3345
3346 bed = get_elf_backend_data (output_bfd);
3347 for (p = output_bfd->sections; p ; p = p->next)
3348 if ((p->flags & SEC_EXCLUDE) == 0
3349 && (p->flags & SEC_ALLOC) != 0
3350 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3351 ++count;
3352 }
3353 return count;
3354}
3355
b49e97c9 3356/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3357 appear towards the end. */
b49e97c9 3358
b34976b6 3359static bfd_boolean
d4596a51 3360mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3361{
a8028dd0 3362 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3363 struct mips_elf_hash_sort_data hsd;
3364 struct mips_got_info *g;
b49e97c9 3365
d4596a51
RS
3366 if (elf_hash_table (info)->dynsymcount == 0)
3367 return TRUE;
3368
a8028dd0
RS
3369 htab = mips_elf_hash_table (info);
3370 g = htab->got_info;
d4596a51
RS
3371 if (g == NULL)
3372 return TRUE;
f4416af6 3373
b49e97c9 3374 hsd.low = NULL;
23cc69b6
RS
3375 hsd.max_unref_got_dynindx
3376 = hsd.min_got_dynindx
3377 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3378 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3379 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3380 elf_hash_table (info)),
3381 mips_elf_sort_hash_table_f,
3382 &hsd);
3383
3384 /* There should have been enough room in the symbol table to
44c410de 3385 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3386 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3387 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3388 == elf_hash_table (info)->dynsymcount);
3389 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3390 == g->global_gotno);
b49e97c9
TS
3391
3392 /* Now we know which dynamic symbol has the lowest dynamic symbol
3393 table index in the GOT. */
b49e97c9
TS
3394 g->global_gotsym = hsd.low;
3395
b34976b6 3396 return TRUE;
b49e97c9
TS
3397}
3398
3399/* If H needs a GOT entry, assign it the highest available dynamic
3400 index. Otherwise, assign it the lowest available dynamic
3401 index. */
3402
b34976b6 3403static bfd_boolean
9719ad41 3404mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3405{
9719ad41 3406 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
3407
3408 if (h->root.root.type == bfd_link_hash_warning)
3409 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3410
3411 /* Symbols without dynamic symbol table entries aren't interesting
3412 at all. */
3413 if (h->root.dynindx == -1)
b34976b6 3414 return TRUE;
b49e97c9 3415
634835ae 3416 switch (h->global_got_area)
f4416af6 3417 {
634835ae
RS
3418 case GGA_NONE:
3419 h->root.dynindx = hsd->max_non_got_dynindx++;
3420 break;
0f20cc35 3421
634835ae 3422 case GGA_NORMAL:
0f20cc35
DJ
3423 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3424
b49e97c9
TS
3425 h->root.dynindx = --hsd->min_got_dynindx;
3426 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3427 break;
3428
3429 case GGA_RELOC_ONLY:
3430 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3431
3432 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3433 hsd->low = (struct elf_link_hash_entry *) h;
3434 h->root.dynindx = hsd->max_unref_got_dynindx++;
3435 break;
b49e97c9
TS
3436 }
3437
b34976b6 3438 return TRUE;
b49e97c9
TS
3439}
3440
3441/* If H is a symbol that needs a global GOT entry, but has a dynamic
3442 symbol table index lower than any we've seen to date, record it for
3443 posterity. */
3444
b34976b6 3445static bfd_boolean
9719ad41
RS
3446mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3447 bfd *abfd, struct bfd_link_info *info,
0f20cc35 3448 unsigned char tls_flag)
b49e97c9 3449{
a8028dd0 3450 struct mips_elf_link_hash_table *htab;
634835ae 3451 struct mips_elf_link_hash_entry *hmips;
f4416af6 3452 struct mips_got_entry entry, **loc;
a8028dd0
RS
3453 struct mips_got_info *g;
3454
3455 htab = mips_elf_hash_table (info);
634835ae 3456 hmips = (struct mips_elf_link_hash_entry *) h;
f4416af6 3457
b49e97c9
TS
3458 /* A global symbol in the GOT must also be in the dynamic symbol
3459 table. */
7c5fcef7
L
3460 if (h->dynindx == -1)
3461 {
3462 switch (ELF_ST_VISIBILITY (h->other))
3463 {
3464 case STV_INTERNAL:
3465 case STV_HIDDEN:
33bb52fb 3466 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3467 break;
3468 }
c152c796 3469 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3470 return FALSE;
7c5fcef7 3471 }
b49e97c9 3472
86324f90 3473 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3474 g = htab->got_info;
86324f90
EC
3475 BFD_ASSERT (g != NULL);
3476
f4416af6
AO
3477 entry.abfd = abfd;
3478 entry.symndx = -1;
3479 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 3480 entry.tls_type = 0;
f4416af6
AO
3481
3482 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3483 INSERT);
3484
b49e97c9
TS
3485 /* If we've already marked this entry as needing GOT space, we don't
3486 need to do it again. */
f4416af6 3487 if (*loc)
0f20cc35
DJ
3488 {
3489 (*loc)->tls_type |= tls_flag;
3490 return TRUE;
3491 }
f4416af6
AO
3492
3493 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3494
3495 if (! *loc)
3496 return FALSE;
143d77c5 3497
f4416af6 3498 entry.gotidx = -1;
0f20cc35
DJ
3499 entry.tls_type = tls_flag;
3500
f4416af6
AO
3501 memcpy (*loc, &entry, sizeof entry);
3502
0f20cc35 3503 if (tls_flag == 0)
634835ae 3504 hmips->global_got_area = GGA_NORMAL;
b49e97c9 3505
b34976b6 3506 return TRUE;
b49e97c9 3507}
f4416af6
AO
3508
3509/* Reserve space in G for a GOT entry containing the value of symbol
3510 SYMNDX in input bfd ABDF, plus ADDEND. */
3511
3512static bfd_boolean
9719ad41 3513mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
a8028dd0 3514 struct bfd_link_info *info,
0f20cc35 3515 unsigned char tls_flag)
f4416af6 3516{
a8028dd0
RS
3517 struct mips_elf_link_hash_table *htab;
3518 struct mips_got_info *g;
f4416af6
AO
3519 struct mips_got_entry entry, **loc;
3520
a8028dd0
RS
3521 htab = mips_elf_hash_table (info);
3522 g = htab->got_info;
3523 BFD_ASSERT (g != NULL);
3524
f4416af6
AO
3525 entry.abfd = abfd;
3526 entry.symndx = symndx;
3527 entry.d.addend = addend;
0f20cc35 3528 entry.tls_type = tls_flag;
f4416af6
AO
3529 loc = (struct mips_got_entry **)
3530 htab_find_slot (g->got_entries, &entry, INSERT);
3531
3532 if (*loc)
0f20cc35
DJ
3533 {
3534 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3535 {
3536 g->tls_gotno += 2;
3537 (*loc)->tls_type |= tls_flag;
3538 }
3539 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3540 {
3541 g->tls_gotno += 1;
3542 (*loc)->tls_type |= tls_flag;
3543 }
3544 return TRUE;
3545 }
f4416af6 3546
0f20cc35
DJ
3547 if (tls_flag != 0)
3548 {
3549 entry.gotidx = -1;
3550 entry.tls_type = tls_flag;
3551 if (tls_flag == GOT_TLS_IE)
3552 g->tls_gotno += 1;
3553 else if (tls_flag == GOT_TLS_GD)
3554 g->tls_gotno += 2;
3555 else if (g->tls_ldm_offset == MINUS_ONE)
3556 {
3557 g->tls_ldm_offset = MINUS_TWO;
3558 g->tls_gotno += 2;
3559 }
3560 }
3561 else
3562 {
3563 entry.gotidx = g->local_gotno++;
3564 entry.tls_type = 0;
3565 }
f4416af6
AO
3566
3567 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3568
3569 if (! *loc)
3570 return FALSE;
143d77c5 3571
f4416af6
AO
3572 memcpy (*loc, &entry, sizeof entry);
3573
3574 return TRUE;
3575}
c224138d
RS
3576
3577/* Return the maximum number of GOT page entries required for RANGE. */
3578
3579static bfd_vma
3580mips_elf_pages_for_range (const struct mips_got_page_range *range)
3581{
3582 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3583}
3584
3a3b6725 3585/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3586 that ADDEND is the addend for that relocation.
3587
3588 This function creates an upper bound on the number of GOT slots
3589 required; no attempt is made to combine references to non-overridable
3590 global symbols across multiple input files. */
c224138d
RS
3591
3592static bfd_boolean
a8028dd0
RS
3593mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3594 long symndx, bfd_signed_vma addend)
c224138d 3595{
a8028dd0
RS
3596 struct mips_elf_link_hash_table *htab;
3597 struct mips_got_info *g;
c224138d
RS
3598 struct mips_got_page_entry lookup, *entry;
3599 struct mips_got_page_range **range_ptr, *range;
3600 bfd_vma old_pages, new_pages;
3601 void **loc;
3602
a8028dd0
RS
3603 htab = mips_elf_hash_table (info);
3604 g = htab->got_info;
3605 BFD_ASSERT (g != NULL);
3606
c224138d
RS
3607 /* Find the mips_got_page_entry hash table entry for this symbol. */
3608 lookup.abfd = abfd;
3609 lookup.symndx = symndx;
3610 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3611 if (loc == NULL)
3612 return FALSE;
3613
3614 /* Create a mips_got_page_entry if this is the first time we've
3615 seen the symbol. */
3616 entry = (struct mips_got_page_entry *) *loc;
3617 if (!entry)
3618 {
3619 entry = bfd_alloc (abfd, sizeof (*entry));
3620 if (!entry)
3621 return FALSE;
3622
3623 entry->abfd = abfd;
3624 entry->symndx = symndx;
3625 entry->ranges = NULL;
3626 entry->num_pages = 0;
3627 *loc = entry;
3628 }
3629
3630 /* Skip over ranges whose maximum extent cannot share a page entry
3631 with ADDEND. */
3632 range_ptr = &entry->ranges;
3633 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3634 range_ptr = &(*range_ptr)->next;
3635
3636 /* If we scanned to the end of the list, or found a range whose
3637 minimum extent cannot share a page entry with ADDEND, create
3638 a new singleton range. */
3639 range = *range_ptr;
3640 if (!range || addend < range->min_addend - 0xffff)
3641 {
3642 range = bfd_alloc (abfd, sizeof (*range));
3643 if (!range)
3644 return FALSE;
3645
3646 range->next = *range_ptr;
3647 range->min_addend = addend;
3648 range->max_addend = addend;
3649
3650 *range_ptr = range;
3651 entry->num_pages++;
3652 g->page_gotno++;
3653 return TRUE;
3654 }
3655
3656 /* Remember how many pages the old range contributed. */
3657 old_pages = mips_elf_pages_for_range (range);
3658
3659 /* Update the ranges. */
3660 if (addend < range->min_addend)
3661 range->min_addend = addend;
3662 else if (addend > range->max_addend)
3663 {
3664 if (range->next && addend >= range->next->min_addend - 0xffff)
3665 {
3666 old_pages += mips_elf_pages_for_range (range->next);
3667 range->max_addend = range->next->max_addend;
3668 range->next = range->next->next;
3669 }
3670 else
3671 range->max_addend = addend;
3672 }
3673
3674 /* Record any change in the total estimate. */
3675 new_pages = mips_elf_pages_for_range (range);
3676 if (old_pages != new_pages)
3677 {
3678 entry->num_pages += new_pages - old_pages;
3679 g->page_gotno += new_pages - old_pages;
3680 }
3681
3682 return TRUE;
3683}
33bb52fb
RS
3684
3685/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3686
3687static void
3688mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3689 unsigned int n)
3690{
3691 asection *s;
3692 struct mips_elf_link_hash_table *htab;
3693
3694 htab = mips_elf_hash_table (info);
3695 s = mips_elf_rel_dyn_section (info, FALSE);
3696 BFD_ASSERT (s != NULL);
3697
3698 if (htab->is_vxworks)
3699 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3700 else
3701 {
3702 if (s->size == 0)
3703 {
3704 /* Make room for a null element. */
3705 s->size += MIPS_ELF_REL_SIZE (abfd);
3706 ++s->reloc_count;
3707 }
3708 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3709 }
3710}
3711\f
3712/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3713 if the GOT entry is for an indirect or warning symbol. */
3714
3715static int
3716mips_elf_check_recreate_got (void **entryp, void *data)
3717{
3718 struct mips_got_entry *entry;
3719 bfd_boolean *must_recreate;
3720
3721 entry = (struct mips_got_entry *) *entryp;
3722 must_recreate = (bfd_boolean *) data;
3723 if (entry->abfd != NULL && entry->symndx == -1)
3724 {
3725 struct mips_elf_link_hash_entry *h;
3726
3727 h = entry->d.h;
3728 if (h->root.root.type == bfd_link_hash_indirect
3729 || h->root.root.type == bfd_link_hash_warning)
3730 {
3731 *must_recreate = TRUE;
3732 return 0;
3733 }
3734 }
3735 return 1;
3736}
3737
3738/* A htab_traverse callback for GOT entries. Add all entries to
3739 hash table *DATA, converting entries for indirect and warning
3740 symbols into entries for the target symbol. Set *DATA to null
3741 on error. */
3742
3743static int
3744mips_elf_recreate_got (void **entryp, void *data)
3745{
3746 htab_t *new_got;
3747 struct mips_got_entry *entry;
3748 void **slot;
3749
3750 new_got = (htab_t *) data;
3751 entry = (struct mips_got_entry *) *entryp;
3752 if (entry->abfd != NULL && entry->symndx == -1)
3753 {
3754 struct mips_elf_link_hash_entry *h;
3755
3756 h = entry->d.h;
3757 while (h->root.root.type == bfd_link_hash_indirect
3758 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
3759 {
3760 BFD_ASSERT (h->global_got_area == GGA_NONE);
3761 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3762 }
33bb52fb
RS
3763 entry->d.h = h;
3764 }
3765 slot = htab_find_slot (*new_got, entry, INSERT);
3766 if (slot == NULL)
3767 {
3768 *new_got = NULL;
3769 return 0;
3770 }
3771 if (*slot == NULL)
3772 *slot = entry;
3773 else
3774 free (entry);
3775 return 1;
3776}
3777
3778/* If any entries in G->got_entries are for indirect or warning symbols,
3779 replace them with entries for the target symbol. */
3780
3781static bfd_boolean
3782mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3783{
3784 bfd_boolean must_recreate;
3785 htab_t new_got;
3786
3787 must_recreate = FALSE;
3788 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3789 if (must_recreate)
3790 {
3791 new_got = htab_create (htab_size (g->got_entries),
3792 mips_elf_got_entry_hash,
3793 mips_elf_got_entry_eq, NULL);
3794 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3795 if (new_got == NULL)
3796 return FALSE;
3797
3798 /* Each entry in g->got_entries has either been copied to new_got
3799 or freed. Now delete the hash table itself. */
3800 htab_delete (g->got_entries);
3801 g->got_entries = new_got;
3802 }
3803 return TRUE;
3804}
3805
634835ae 3806/* A mips_elf_link_hash_traverse callback for which DATA points
d4596a51 3807 to a mips_got_info. Count the number of type (3) entries. */
33bb52fb
RS
3808
3809static int
d4596a51 3810mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb
RS
3811{
3812 struct mips_got_info *g;
3813
3814 g = (struct mips_got_info *) data;
d4596a51 3815 if (h->global_got_area != GGA_NONE)
33bb52fb 3816 {
d4596a51
RS
3817 if (h->root.forced_local || h->root.dynindx == -1)
3818 {
3819 /* We no longer need this entry if it was only used for
3820 relocations; those relocations will be against the
3821 null or section symbol instead of H. */
3822 if (h->global_got_area != GGA_RELOC_ONLY)
3823 g->local_gotno++;
3824 h->global_got_area = GGA_NONE;
3825 }
3826 else
23cc69b6
RS
3827 {
3828 g->global_gotno++;
3829 if (h->global_got_area == GGA_RELOC_ONLY)
3830 g->reloc_only_gotno++;
3831 }
33bb52fb
RS
3832 }
3833 return 1;
3834}
f4416af6
AO
3835\f
3836/* Compute the hash value of the bfd in a bfd2got hash entry. */
3837
3838static hashval_t
9719ad41 3839mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3840{
3841 const struct mips_elf_bfd2got_hash *entry
3842 = (struct mips_elf_bfd2got_hash *)entry_;
3843
3844 return entry->bfd->id;
3845}
3846
3847/* Check whether two hash entries have the same bfd. */
3848
3849static int
9719ad41 3850mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3851{
3852 const struct mips_elf_bfd2got_hash *e1
3853 = (const struct mips_elf_bfd2got_hash *)entry1;
3854 const struct mips_elf_bfd2got_hash *e2
3855 = (const struct mips_elf_bfd2got_hash *)entry2;
3856
3857 return e1->bfd == e2->bfd;
3858}
3859
bad36eac 3860/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3861 be the master GOT data. */
3862
3863static struct mips_got_info *
9719ad41 3864mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3865{
3866 struct mips_elf_bfd2got_hash e, *p;
3867
3868 if (! g->bfd2got)
3869 return g;
3870
3871 e.bfd = ibfd;
9719ad41 3872 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3873 return p ? p->g : NULL;
3874}
3875
c224138d
RS
3876/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3877 Return NULL if an error occured. */
f4416af6 3878
c224138d
RS
3879static struct mips_got_info *
3880mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3881 bfd *input_bfd)
f4416af6 3882{
f4416af6 3883 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3884 struct mips_got_info *g;
f4416af6 3885 void **bfdgotp;
143d77c5 3886
c224138d 3887 bfdgot_entry.bfd = input_bfd;
f4416af6 3888 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3889 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3890
c224138d 3891 if (bfdgot == NULL)
f4416af6 3892 {
c224138d
RS
3893 bfdgot = ((struct mips_elf_bfd2got_hash *)
3894 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3895 if (bfdgot == NULL)
c224138d 3896 return NULL;
f4416af6
AO
3897
3898 *bfdgotp = bfdgot;
3899
c224138d
RS
3900 g = ((struct mips_got_info *)
3901 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3902 if (g == NULL)
c224138d
RS
3903 return NULL;
3904
3905 bfdgot->bfd = input_bfd;
3906 bfdgot->g = g;
f4416af6
AO
3907
3908 g->global_gotsym = NULL;
3909 g->global_gotno = 0;
23cc69b6 3910 g->reloc_only_gotno = 0;
f4416af6 3911 g->local_gotno = 0;
c224138d 3912 g->page_gotno = 0;
f4416af6 3913 g->assigned_gotno = -1;
0f20cc35
DJ
3914 g->tls_gotno = 0;
3915 g->tls_assigned_gotno = 0;
3916 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3917 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3918 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3919 if (g->got_entries == NULL)
c224138d
RS
3920 return NULL;
3921
3922 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3923 mips_got_page_entry_eq, NULL);
3924 if (g->got_page_entries == NULL)
3925 return NULL;
f4416af6
AO
3926
3927 g->bfd2got = NULL;
3928 g->next = NULL;
3929 }
3930
c224138d
RS
3931 return bfdgot->g;
3932}
3933
3934/* A htab_traverse callback for the entries in the master got.
3935 Create one separate got for each bfd that has entries in the global
3936 got, such that we can tell how many local and global entries each
3937 bfd requires. */
3938
3939static int
3940mips_elf_make_got_per_bfd (void **entryp, void *p)
3941{
3942 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3943 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3944 struct mips_got_info *g;
3945
3946 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3947 if (g == NULL)
3948 {
3949 arg->obfd = NULL;
3950 return 0;
3951 }
3952
f4416af6
AO
3953 /* Insert the GOT entry in the bfd's got entry hash table. */
3954 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3955 if (*entryp != NULL)
3956 return 1;
143d77c5 3957
f4416af6
AO
3958 *entryp = entry;
3959
0f20cc35
DJ
3960 if (entry->tls_type)
3961 {
3962 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3963 g->tls_gotno += 2;
3964 if (entry->tls_type & GOT_TLS_IE)
3965 g->tls_gotno += 1;
3966 }
33bb52fb 3967 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
f4416af6
AO
3968 ++g->local_gotno;
3969 else
3970 ++g->global_gotno;
3971
3972 return 1;
3973}
3974
c224138d
RS
3975/* A htab_traverse callback for the page entries in the master got.
3976 Associate each page entry with the bfd's got. */
3977
3978static int
3979mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3980{
3981 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3982 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3983 struct mips_got_info *g;
3984
3985 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3986 if (g == NULL)
3987 {
3988 arg->obfd = NULL;
3989 return 0;
3990 }
3991
3992 /* Insert the GOT entry in the bfd's got entry hash table. */
3993 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3994 if (*entryp != NULL)
3995 return 1;
3996
3997 *entryp = entry;
3998 g->page_gotno += entry->num_pages;
3999 return 1;
4000}
4001
4002/* Consider merging the got described by BFD2GOT with TO, using the
4003 information given by ARG. Return -1 if this would lead to overflow,
4004 1 if they were merged successfully, and 0 if a merge failed due to
4005 lack of memory. (These values are chosen so that nonnegative return
4006 values can be returned by a htab_traverse callback.) */
4007
4008static int
4009mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4010 struct mips_got_info *to,
4011 struct mips_elf_got_per_bfd_arg *arg)
4012{
4013 struct mips_got_info *from = bfd2got->g;
4014 unsigned int estimate;
4015
4016 /* Work out how many page entries we would need for the combined GOT. */
4017 estimate = arg->max_pages;
4018 if (estimate >= from->page_gotno + to->page_gotno)
4019 estimate = from->page_gotno + to->page_gotno;
4020
4021 /* And conservatively estimate how many local, global and TLS entries
4022 would be needed. */
4023 estimate += (from->local_gotno
4024 + from->global_gotno
4025 + from->tls_gotno
4026 + to->local_gotno
4027 + to->global_gotno
4028 + to->tls_gotno);
4029
4030 /* Bail out if the combined GOT might be too big. */
4031 if (estimate > arg->max_count)
4032 return -1;
4033
4034 /* Commit to the merge. Record that TO is now the bfd for this got. */
4035 bfd2got->g = to;
4036
4037 /* Transfer the bfd's got information from FROM to TO. */
4038 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4039 if (arg->obfd == NULL)
4040 return 0;
4041
4042 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4043 if (arg->obfd == NULL)
4044 return 0;
4045
4046 /* We don't have to worry about releasing memory of the actual
4047 got entries, since they're all in the master got_entries hash
4048 table anyway. */
4049 htab_delete (from->got_entries);
4050 htab_delete (from->got_page_entries);
4051 return 1;
4052}
4053
f4416af6
AO
4054/* Attempt to merge gots of different input bfds. Try to use as much
4055 as possible of the primary got, since it doesn't require explicit
4056 dynamic relocations, but don't use bfds that would reference global
4057 symbols out of the addressable range. Failing the primary got,
4058 attempt to merge with the current got, or finish the current got
4059 and then make make the new got current. */
4060
4061static int
9719ad41 4062mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4063{
4064 struct mips_elf_bfd2got_hash *bfd2got
4065 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4066 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4067 struct mips_got_info *g;
4068 unsigned int estimate;
4069 int result;
4070
4071 g = bfd2got->g;
4072
4073 /* Work out the number of page, local and TLS entries. */
4074 estimate = arg->max_pages;
4075 if (estimate > g->page_gotno)
4076 estimate = g->page_gotno;
4077 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4078
4079 /* We place TLS GOT entries after both locals and globals. The globals
4080 for the primary GOT may overflow the normal GOT size limit, so be
4081 sure not to merge a GOT which requires TLS with the primary GOT in that
4082 case. This doesn't affect non-primary GOTs. */
c224138d 4083 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4084
c224138d 4085 if (estimate <= arg->max_count)
f4416af6 4086 {
c224138d
RS
4087 /* If we don't have a primary GOT, use it as
4088 a starting point for the primary GOT. */
4089 if (!arg->primary)
4090 {
4091 arg->primary = bfd2got->g;
4092 return 1;
4093 }
f4416af6 4094
c224138d
RS
4095 /* Try merging with the primary GOT. */
4096 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4097 if (result >= 0)
4098 return result;
f4416af6 4099 }
c224138d 4100
f4416af6 4101 /* If we can merge with the last-created got, do it. */
c224138d 4102 if (arg->current)
f4416af6 4103 {
c224138d
RS
4104 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4105 if (result >= 0)
4106 return result;
f4416af6 4107 }
c224138d 4108
f4416af6
AO
4109 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4110 fits; if it turns out that it doesn't, we'll get relocation
4111 overflows anyway. */
c224138d
RS
4112 g->next = arg->current;
4113 arg->current = g;
0f20cc35
DJ
4114
4115 return 1;
4116}
4117
ead49a57
RS
4118/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4119 is null iff there is just a single GOT. */
0f20cc35
DJ
4120
4121static int
4122mips_elf_initialize_tls_index (void **entryp, void *p)
4123{
4124 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4125 struct mips_got_info *g = p;
ead49a57 4126 bfd_vma next_index;
cbf2cba4 4127 unsigned char tls_type;
0f20cc35
DJ
4128
4129 /* We're only interested in TLS symbols. */
4130 if (entry->tls_type == 0)
4131 return 1;
4132
ead49a57
RS
4133 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4134
4135 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4136 {
ead49a57
RS
4137 /* A type (3) got entry in the single-GOT case. We use the symbol's
4138 hash table entry to track its index. */
4139 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4140 return 1;
4141 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4142 entry->d.h->tls_got_offset = next_index;
cbf2cba4 4143 tls_type = entry->d.h->tls_type;
ead49a57
RS
4144 }
4145 else
4146 {
4147 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 4148 {
ead49a57
RS
4149 /* There are separate mips_got_entry objects for each input bfd
4150 that requires an LDM entry. Make sure that all LDM entries in
4151 a GOT resolve to the same index. */
4152 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4153 {
ead49a57 4154 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4155 return 1;
4156 }
ead49a57 4157 g->tls_ldm_offset = next_index;
0f20cc35 4158 }
ead49a57 4159 entry->gotidx = next_index;
cbf2cba4 4160 tls_type = entry->tls_type;
f4416af6
AO
4161 }
4162
ead49a57 4163 /* Account for the entries we've just allocated. */
cbf2cba4 4164 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 4165 g->tls_assigned_gotno += 2;
cbf2cba4 4166 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
4167 g->tls_assigned_gotno += 1;
4168
f4416af6
AO
4169 return 1;
4170}
4171
4172/* If passed a NULL mips_got_info in the argument, set the marker used
4173 to tell whether a global symbol needs a got entry (in the primary
4174 got) to the given VALUE.
4175
4176 If passed a pointer G to a mips_got_info in the argument (it must
4177 not be the primary GOT), compute the offset from the beginning of
4178 the (primary) GOT section to the entry in G corresponding to the
4179 global symbol. G's assigned_gotno must contain the index of the
4180 first available global GOT entry in G. VALUE must contain the size
4181 of a GOT entry in bytes. For each global GOT entry that requires a
4182 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 4183 marked as not eligible for lazy resolution through a function
f4416af6
AO
4184 stub. */
4185static int
9719ad41 4186mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
4187{
4188 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4189 struct mips_elf_set_global_got_offset_arg *arg
4190 = (struct mips_elf_set_global_got_offset_arg *)p;
4191 struct mips_got_info *g = arg->g;
4192
0f20cc35
DJ
4193 if (g && entry->tls_type != GOT_NORMAL)
4194 arg->needed_relocs +=
4195 mips_tls_got_relocs (arg->info, entry->tls_type,
4196 entry->symndx == -1 ? &entry->d.h->root : NULL);
4197
634835ae
RS
4198 if (entry->abfd != NULL
4199 && entry->symndx == -1
4200 && entry->d.h->global_got_area != GGA_NONE)
f4416af6
AO
4201 {
4202 if (g)
4203 {
4204 BFD_ASSERT (g->global_gotsym == NULL);
4205
4206 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
4207 if (arg->info->shared
4208 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
4209 && entry->d.h->root.def_dynamic
4210 && !entry->d.h->root.def_regular))
f4416af6
AO
4211 ++arg->needed_relocs;
4212 }
4213 else
634835ae 4214 entry->d.h->global_got_area = arg->value;
f4416af6
AO
4215 }
4216
4217 return 1;
4218}
4219
33bb52fb
RS
4220/* A htab_traverse callback for GOT entries for which DATA is the
4221 bfd_link_info. Forbid any global symbols from having traditional
4222 lazy-binding stubs. */
4223
0626d451 4224static int
33bb52fb 4225mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4226{
33bb52fb
RS
4227 struct bfd_link_info *info;
4228 struct mips_elf_link_hash_table *htab;
4229 struct mips_got_entry *entry;
0626d451 4230
33bb52fb
RS
4231 entry = (struct mips_got_entry *) *entryp;
4232 info = (struct bfd_link_info *) data;
4233 htab = mips_elf_hash_table (info);
0626d451
RS
4234 if (entry->abfd != NULL
4235 && entry->symndx == -1
33bb52fb 4236 && entry->d.h->needs_lazy_stub)
f4416af6 4237 {
33bb52fb
RS
4238 entry->d.h->needs_lazy_stub = FALSE;
4239 htab->lazy_stub_count--;
f4416af6 4240 }
143d77c5 4241
f4416af6
AO
4242 return 1;
4243}
4244
f4416af6
AO
4245/* Return the offset of an input bfd IBFD's GOT from the beginning of
4246 the primary GOT. */
4247static bfd_vma
9719ad41 4248mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4249{
4250 if (g->bfd2got == NULL)
4251 return 0;
4252
4253 g = mips_elf_got_for_ibfd (g, ibfd);
4254 if (! g)
4255 return 0;
4256
4257 BFD_ASSERT (g->next);
4258
4259 g = g->next;
143d77c5 4260
0f20cc35
DJ
4261 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4262 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4263}
4264
4265/* Turn a single GOT that is too big for 16-bit addressing into
4266 a sequence of GOTs, each one 16-bit addressable. */
4267
4268static bfd_boolean
9719ad41 4269mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4270 asection *got, bfd_size_type pages)
f4416af6 4271{
a8028dd0 4272 struct mips_elf_link_hash_table *htab;
f4416af6
AO
4273 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4274 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
a8028dd0 4275 struct mips_got_info *g, *gg;
33bb52fb
RS
4276 unsigned int assign, needed_relocs;
4277 bfd *dynobj;
f4416af6 4278
33bb52fb 4279 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
4280 htab = mips_elf_hash_table (info);
4281 g = htab->got_info;
f4416af6 4282 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4283 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4284 if (g->bfd2got == NULL)
4285 return FALSE;
4286
4287 got_per_bfd_arg.bfd2got = g->bfd2got;
4288 got_per_bfd_arg.obfd = abfd;
4289 got_per_bfd_arg.info = info;
4290
4291 /* Count how many GOT entries each input bfd requires, creating a
4292 map from bfd to got info while at that. */
f4416af6
AO
4293 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4294 if (got_per_bfd_arg.obfd == NULL)
4295 return FALSE;
4296
c224138d
RS
4297 /* Also count how many page entries each input bfd requires. */
4298 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4299 &got_per_bfd_arg);
4300 if (got_per_bfd_arg.obfd == NULL)
4301 return FALSE;
4302
f4416af6
AO
4303 got_per_bfd_arg.current = NULL;
4304 got_per_bfd_arg.primary = NULL;
0a44bf69 4305 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4306 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4307 - htab->reserved_gotno);
c224138d 4308 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
4309 /* The number of globals that will be included in the primary GOT.
4310 See the calls to mips_elf_set_global_got_offset below for more
4311 information. */
4312 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4313
4314 /* Try to merge the GOTs of input bfds together, as long as they
4315 don't seem to exceed the maximum GOT size, choosing one of them
4316 to be the primary GOT. */
4317 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4318 if (got_per_bfd_arg.obfd == NULL)
4319 return FALSE;
4320
0f20cc35 4321 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
4322 if (got_per_bfd_arg.primary == NULL)
4323 {
4324 g->next = (struct mips_got_info *)
4325 bfd_alloc (abfd, sizeof (struct mips_got_info));
4326 if (g->next == NULL)
4327 return FALSE;
4328
4329 g->next->global_gotsym = NULL;
4330 g->next->global_gotno = 0;
23cc69b6 4331 g->next->reloc_only_gotno = 0;
f4416af6 4332 g->next->local_gotno = 0;
c224138d 4333 g->next->page_gotno = 0;
0f20cc35 4334 g->next->tls_gotno = 0;
f4416af6 4335 g->next->assigned_gotno = 0;
0f20cc35
DJ
4336 g->next->tls_assigned_gotno = 0;
4337 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
4338 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4339 mips_elf_multi_got_entry_eq,
9719ad41 4340 NULL);
f4416af6
AO
4341 if (g->next->got_entries == NULL)
4342 return FALSE;
c224138d
RS
4343 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4344 mips_got_page_entry_eq,
4345 NULL);
4346 if (g->next->got_page_entries == NULL)
4347 return FALSE;
f4416af6
AO
4348 g->next->bfd2got = NULL;
4349 }
4350 else
4351 g->next = got_per_bfd_arg.primary;
4352 g->next->next = got_per_bfd_arg.current;
4353
4354 /* GG is now the master GOT, and G is the primary GOT. */
4355 gg = g;
4356 g = g->next;
4357
4358 /* Map the output bfd to the primary got. That's what we're going
4359 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4360 didn't mark in check_relocs, and we want a quick way to find it.
4361 We can't just use gg->next because we're going to reverse the
4362 list. */
4363 {
4364 struct mips_elf_bfd2got_hash *bfdgot;
4365 void **bfdgotp;
143d77c5 4366
f4416af6
AO
4367 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4368 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4369
4370 if (bfdgot == NULL)
4371 return FALSE;
4372
4373 bfdgot->bfd = abfd;
4374 bfdgot->g = g;
4375 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4376
4377 BFD_ASSERT (*bfdgotp == NULL);
4378 *bfdgotp = bfdgot;
4379 }
4380
634835ae
RS
4381 /* Every symbol that is referenced in a dynamic relocation must be
4382 present in the primary GOT, so arrange for them to appear after
4383 those that are actually referenced. */
23cc69b6 4384 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4385 g->global_gotno = gg->global_gotno;
f4416af6 4386
f4416af6 4387 set_got_offset_arg.g = NULL;
634835ae 4388 set_got_offset_arg.value = GGA_RELOC_ONLY;
f4416af6
AO
4389 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4390 &set_got_offset_arg);
634835ae 4391 set_got_offset_arg.value = GGA_NORMAL;
f4416af6
AO
4392 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4393 &set_got_offset_arg);
f4416af6
AO
4394
4395 /* Now go through the GOTs assigning them offset ranges.
4396 [assigned_gotno, local_gotno[ will be set to the range of local
4397 entries in each GOT. We can then compute the end of a GOT by
4398 adding local_gotno to global_gotno. We reverse the list and make
4399 it circular since then we'll be able to quickly compute the
4400 beginning of a GOT, by computing the end of its predecessor. To
4401 avoid special cases for the primary GOT, while still preserving
4402 assertions that are valid for both single- and multi-got links,
4403 we arrange for the main got struct to have the right number of
4404 global entries, but set its local_gotno such that the initial
4405 offset of the primary GOT is zero. Remember that the primary GOT
4406 will become the last item in the circular linked list, so it
4407 points back to the master GOT. */
4408 gg->local_gotno = -g->global_gotno;
4409 gg->global_gotno = g->global_gotno;
0f20cc35 4410 gg->tls_gotno = 0;
f4416af6
AO
4411 assign = 0;
4412 gg->next = gg;
4413
4414 do
4415 {
4416 struct mips_got_info *gn;
4417
861fb55a 4418 assign += htab->reserved_gotno;
f4416af6 4419 g->assigned_gotno = assign;
c224138d
RS
4420 g->local_gotno += assign;
4421 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4422 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4423
ead49a57
RS
4424 /* Take g out of the direct list, and push it onto the reversed
4425 list that gg points to. g->next is guaranteed to be nonnull after
4426 this operation, as required by mips_elf_initialize_tls_index. */
4427 gn = g->next;
4428 g->next = gg->next;
4429 gg->next = g;
4430
0f20cc35
DJ
4431 /* Set up any TLS entries. We always place the TLS entries after
4432 all non-TLS entries. */
4433 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4434 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 4435
ead49a57 4436 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4437 g = gn;
0626d451 4438
33bb52fb
RS
4439 /* Forbid global symbols in every non-primary GOT from having
4440 lazy-binding stubs. */
0626d451 4441 if (g)
33bb52fb 4442 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4443 }
4444 while (g);
4445
eea6121a 4446 got->size = (gg->next->local_gotno
33bb52fb
RS
4447 + gg->next->global_gotno
4448 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4449
4450 needed_relocs = 0;
4451 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4452 set_got_offset_arg.info = info;
4453 for (g = gg->next; g && g->next != gg; g = g->next)
4454 {
4455 unsigned int save_assign;
4456
4457 /* Assign offsets to global GOT entries. */
4458 save_assign = g->assigned_gotno;
4459 g->assigned_gotno = g->local_gotno;
4460 set_got_offset_arg.g = g;
4461 set_got_offset_arg.needed_relocs = 0;
4462 htab_traverse (g->got_entries,
4463 mips_elf_set_global_got_offset,
4464 &set_got_offset_arg);
4465 needed_relocs += set_got_offset_arg.needed_relocs;
4466 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4467
4468 g->assigned_gotno = save_assign;
4469 if (info->shared)
4470 {
4471 needed_relocs += g->local_gotno - g->assigned_gotno;
4472 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4473 + g->next->global_gotno
4474 + g->next->tls_gotno
861fb55a 4475 + htab->reserved_gotno);
33bb52fb
RS
4476 }
4477 }
4478
4479 if (needed_relocs)
4480 mips_elf_allocate_dynamic_relocations (dynobj, info,
4481 needed_relocs);
143d77c5 4482
f4416af6
AO
4483 return TRUE;
4484}
143d77c5 4485
b49e97c9
TS
4486\f
4487/* Returns the first relocation of type r_type found, beginning with
4488 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4489
4490static const Elf_Internal_Rela *
9719ad41
RS
4491mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4492 const Elf_Internal_Rela *relocation,
4493 const Elf_Internal_Rela *relend)
b49e97c9 4494{
c000e262
TS
4495 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4496
b49e97c9
TS
4497 while (relocation < relend)
4498 {
c000e262
TS
4499 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4500 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4501 return relocation;
4502
4503 ++relocation;
4504 }
4505
4506 /* We didn't find it. */
b49e97c9
TS
4507 return NULL;
4508}
4509
4510/* Return whether a relocation is against a local symbol. */
4511
b34976b6 4512static bfd_boolean
9719ad41
RS
4513mips_elf_local_relocation_p (bfd *input_bfd,
4514 const Elf_Internal_Rela *relocation,
4515 asection **local_sections,
4516 bfd_boolean check_forced)
b49e97c9
TS
4517{
4518 unsigned long r_symndx;
4519 Elf_Internal_Shdr *symtab_hdr;
4520 struct mips_elf_link_hash_entry *h;
4521 size_t extsymoff;
4522
4523 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4524 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4525 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4526
4527 if (r_symndx < extsymoff)
b34976b6 4528 return TRUE;
b49e97c9 4529 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4530 return TRUE;
b49e97c9
TS
4531
4532 if (check_forced)
4533 {
4534 /* Look up the hash table to check whether the symbol
4535 was forced local. */
4536 h = (struct mips_elf_link_hash_entry *)
4537 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4538 /* Find the real hash-table entry for this symbol. */
4539 while (h->root.root.type == bfd_link_hash_indirect
4540 || h->root.root.type == bfd_link_hash_warning)
4541 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 4542 if (h->root.forced_local)
b34976b6 4543 return TRUE;
b49e97c9
TS
4544 }
4545
b34976b6 4546 return FALSE;
b49e97c9
TS
4547}
4548\f
4549/* Sign-extend VALUE, which has the indicated number of BITS. */
4550
a7ebbfdf 4551bfd_vma
9719ad41 4552_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4553{
4554 if (value & ((bfd_vma) 1 << (bits - 1)))
4555 /* VALUE is negative. */
4556 value |= ((bfd_vma) - 1) << bits;
4557
4558 return value;
4559}
4560
4561/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4562 range expressible by a signed number with the indicated number of
b49e97c9
TS
4563 BITS. */
4564
b34976b6 4565static bfd_boolean
9719ad41 4566mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4567{
4568 bfd_signed_vma svalue = (bfd_signed_vma) value;
4569
4570 if (svalue > (1 << (bits - 1)) - 1)
4571 /* The value is too big. */
b34976b6 4572 return TRUE;
b49e97c9
TS
4573 else if (svalue < -(1 << (bits - 1)))
4574 /* The value is too small. */
b34976b6 4575 return TRUE;
b49e97c9
TS
4576
4577 /* All is well. */
b34976b6 4578 return FALSE;
b49e97c9
TS
4579}
4580
4581/* Calculate the %high function. */
4582
4583static bfd_vma
9719ad41 4584mips_elf_high (bfd_vma value)
b49e97c9
TS
4585{
4586 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4587}
4588
4589/* Calculate the %higher function. */
4590
4591static bfd_vma
9719ad41 4592mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4593{
4594#ifdef BFD64
4595 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4596#else
4597 abort ();
c5ae1840 4598 return MINUS_ONE;
b49e97c9
TS
4599#endif
4600}
4601
4602/* Calculate the %highest function. */
4603
4604static bfd_vma
9719ad41 4605mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4606{
4607#ifdef BFD64
b15e6682 4608 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4609#else
4610 abort ();
c5ae1840 4611 return MINUS_ONE;
b49e97c9
TS
4612#endif
4613}
4614\f
4615/* Create the .compact_rel section. */
4616
b34976b6 4617static bfd_boolean
9719ad41
RS
4618mips_elf_create_compact_rel_section
4619 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4620{
4621 flagword flags;
4622 register asection *s;
4623
4624 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4625 {
4626 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4627 | SEC_READONLY);
4628
3496cb2a 4629 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4630 if (s == NULL
b49e97c9
TS
4631 || ! bfd_set_section_alignment (abfd, s,
4632 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4633 return FALSE;
b49e97c9 4634
eea6121a 4635 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4636 }
4637
b34976b6 4638 return TRUE;
b49e97c9
TS
4639}
4640
4641/* Create the .got section to hold the global offset table. */
4642
b34976b6 4643static bfd_boolean
23cc69b6 4644mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4645{
4646 flagword flags;
4647 register asection *s;
4648 struct elf_link_hash_entry *h;
14a793b2 4649 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4650 struct mips_got_info *g;
4651 bfd_size_type amt;
0a44bf69
RS
4652 struct mips_elf_link_hash_table *htab;
4653
4654 htab = mips_elf_hash_table (info);
b49e97c9
TS
4655
4656 /* This function may be called more than once. */
23cc69b6
RS
4657 if (htab->sgot)
4658 return TRUE;
b49e97c9
TS
4659
4660 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4661 | SEC_LINKER_CREATED);
4662
72b4917c
TS
4663 /* We have to use an alignment of 2**4 here because this is hardcoded
4664 in the function stub generation and in the linker script. */
3496cb2a 4665 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 4666 if (s == NULL
72b4917c 4667 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4668 return FALSE;
a8028dd0 4669 htab->sgot = s;
b49e97c9
TS
4670
4671 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4672 linker script because we don't want to define the symbol if we
4673 are not creating a global offset table. */
14a793b2 4674 bh = NULL;
b49e97c9
TS
4675 if (! (_bfd_generic_link_add_one_symbol
4676 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4677 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4678 return FALSE;
14a793b2
AM
4679
4680 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4681 h->non_elf = 0;
4682 h->def_regular = 1;
b49e97c9 4683 h->type = STT_OBJECT;
d329bcd1 4684 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4685
4686 if (info->shared
c152c796 4687 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4688 return FALSE;
b49e97c9 4689
b49e97c9 4690 amt = sizeof (struct mips_got_info);
9719ad41 4691 g = bfd_alloc (abfd, amt);
b49e97c9 4692 if (g == NULL)
b34976b6 4693 return FALSE;
b49e97c9 4694 g->global_gotsym = NULL;
e3d54347 4695 g->global_gotno = 0;
23cc69b6 4696 g->reloc_only_gotno = 0;
0f20cc35 4697 g->tls_gotno = 0;
861fb55a 4698 g->local_gotno = 0;
c224138d 4699 g->page_gotno = 0;
861fb55a 4700 g->assigned_gotno = 0;
f4416af6
AO
4701 g->bfd2got = NULL;
4702 g->next = NULL;
0f20cc35 4703 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4704 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4705 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4706 if (g->got_entries == NULL)
4707 return FALSE;
c224138d
RS
4708 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4709 mips_got_page_entry_eq, NULL);
4710 if (g->got_page_entries == NULL)
4711 return FALSE;
a8028dd0 4712 htab->got_info = g;
f0abc2a1 4713 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4714 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4715
861fb55a
DJ
4716 /* We also need a .got.plt section when generating PLTs. */
4717 s = bfd_make_section_with_flags (abfd, ".got.plt",
4718 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4719 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4720 if (s == NULL)
4721 return FALSE;
4722 htab->sgotplt = s;
0a44bf69 4723
b34976b6 4724 return TRUE;
b49e97c9 4725}
b49e97c9 4726\f
0a44bf69
RS
4727/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4728 __GOTT_INDEX__ symbols. These symbols are only special for
4729 shared objects; they are not used in executables. */
4730
4731static bfd_boolean
4732is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4733{
4734 return (mips_elf_hash_table (info)->is_vxworks
4735 && info->shared
4736 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4737 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4738}
861fb55a
DJ
4739
4740/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4741 require an la25 stub. See also mips_elf_local_pic_function_p,
4742 which determines whether the destination function ever requires a
4743 stub. */
4744
4745static bfd_boolean
4746mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4747{
4748 /* We specifically ignore branches and jumps from EF_PIC objects,
4749 where the onus is on the compiler or programmer to perform any
4750 necessary initialization of $25. Sometimes such initialization
4751 is unnecessary; for example, -mno-shared functions do not use
4752 the incoming value of $25, and may therefore be called directly. */
4753 if (PIC_OBJECT_P (input_bfd))
4754 return FALSE;
4755
4756 switch (r_type)
4757 {
4758 case R_MIPS_26:
4759 case R_MIPS_PC16:
4760 case R_MIPS16_26:
4761 return TRUE;
4762
4763 default:
4764 return FALSE;
4765 }
4766}
0a44bf69 4767\f
b49e97c9
TS
4768/* Calculate the value produced by the RELOCATION (which comes from
4769 the INPUT_BFD). The ADDEND is the addend to use for this
4770 RELOCATION; RELOCATION->R_ADDEND is ignored.
4771
4772 The result of the relocation calculation is stored in VALUEP.
4773 REQUIRE_JALXP indicates whether or not the opcode used with this
4774 relocation must be JALX.
4775
4776 This function returns bfd_reloc_continue if the caller need take no
4777 further action regarding this relocation, bfd_reloc_notsupported if
4778 something goes dramatically wrong, bfd_reloc_overflow if an
4779 overflow occurs, and bfd_reloc_ok to indicate success. */
4780
4781static bfd_reloc_status_type
9719ad41
RS
4782mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4783 asection *input_section,
4784 struct bfd_link_info *info,
4785 const Elf_Internal_Rela *relocation,
4786 bfd_vma addend, reloc_howto_type *howto,
4787 Elf_Internal_Sym *local_syms,
4788 asection **local_sections, bfd_vma *valuep,
4789 const char **namep, bfd_boolean *require_jalxp,
4790 bfd_boolean save_addend)
b49e97c9
TS
4791{
4792 /* The eventual value we will return. */
4793 bfd_vma value;
4794 /* The address of the symbol against which the relocation is
4795 occurring. */
4796 bfd_vma symbol = 0;
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
0a61c8c2 4799 bfd_vma gp;
b49e97c9
TS
4800 /* The place (section offset or address) of the storage unit being
4801 relocated. */
4802 bfd_vma p;
4803 /* The value of GP used to create the relocatable object. */
0a61c8c2 4804 bfd_vma gp0;
b49e97c9
TS
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g = MINUS_ONE;
4809 /* The section in which the symbol referenced by the relocation is
4810 located. */
4811 asection *sec = NULL;
4812 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4813 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4814 symbol. */
b34976b6
AM
4815 bfd_boolean local_p, was_local_p;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4821 Elf_Internal_Shdr *symtab_hdr;
4822 size_t extsymoff;
4823 unsigned long r_symndx;
4824 int r_type;
b34976b6 4825 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4826 relocation value. */
b34976b6
AM
4827 bfd_boolean overflowed_p;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4830 struct mips_elf_link_hash_table *htab;
4831 bfd *dynobj;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
b49e97c9
TS
4835
4836 /* Parse the relocation. */
4837 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4838 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4839 p = (input_section->output_section->vma
4840 + input_section->output_offset
4841 + relocation->r_offset);
4842
4843 /* Assume that there will be no overflow. */
b34976b6 4844 overflowed_p = FALSE;
b49e97c9
TS
4845
4846 /* Figure out whether or not the symbol is local, and get the offset
4847 used in the array of hash table entries. */
4848 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4849 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4850 local_sections, FALSE);
bce03d3d 4851 was_local_p = local_p;
b49e97c9
TS
4852 if (! elf_bad_symtab (input_bfd))
4853 extsymoff = symtab_hdr->sh_info;
4854 else
4855 {
4856 /* The symbol table does not follow the rule that local symbols
4857 must come before globals. */
4858 extsymoff = 0;
4859 }
4860
4861 /* Figure out the value of the symbol. */
4862 if (local_p)
4863 {
4864 Elf_Internal_Sym *sym;
4865
4866 sym = local_syms + r_symndx;
4867 sec = local_sections[r_symndx];
4868
4869 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4870 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4871 || (sec->flags & SEC_MERGE))
b49e97c9 4872 symbol += sym->st_value;
d4df96e6
L
4873 if ((sec->flags & SEC_MERGE)
4874 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4875 {
4876 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4877 addend -= symbol;
4878 addend += sec->output_section->vma + sec->output_offset;
4879 }
b49e97c9
TS
4880
4881 /* MIPS16 text labels should be treated as odd. */
30c09090 4882 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
4883 ++symbol;
4884
4885 /* Record the name of this symbol, for our caller. */
4886 *namep = bfd_elf_string_from_elf_section (input_bfd,
4887 symtab_hdr->sh_link,
4888 sym->st_name);
4889 if (*namep == '\0')
4890 *namep = bfd_section_name (input_bfd, sec);
4891
30c09090 4892 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
b49e97c9
TS
4893 }
4894 else
4895 {
560e09e9
NC
4896 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4897
b49e97c9
TS
4898 /* For global symbols we look up the symbol in the hash-table. */
4899 h = ((struct mips_elf_link_hash_entry *)
4900 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4901 /* Find the real hash-table entry for this symbol. */
4902 while (h->root.root.type == bfd_link_hash_indirect
4903 || h->root.root.type == bfd_link_hash_warning)
4904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4905
4906 /* Record the name of this symbol, for our caller. */
4907 *namep = h->root.root.root.string;
4908
4909 /* See if this is the special _gp_disp symbol. Note that such a
4910 symbol must always be a global symbol. */
560e09e9 4911 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4912 && ! NEWABI_P (input_bfd))
4913 {
4914 /* Relocations against _gp_disp are permitted only with
4915 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 4916 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
4917 return bfd_reloc_notsupported;
4918
b34976b6 4919 gp_disp_p = TRUE;
b49e97c9 4920 }
bbe506e8
TS
4921 /* See if this is the special _gp symbol. Note that such a
4922 symbol must always be a global symbol. */
4923 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4924 gnu_local_gp_p = TRUE;
4925
4926
b49e97c9
TS
4927 /* If this symbol is defined, calculate its address. Note that
4928 _gp_disp is a magic symbol, always implicitly defined by the
4929 linker, so it's inappropriate to check to see whether or not
4930 its defined. */
4931 else if ((h->root.root.type == bfd_link_hash_defined
4932 || h->root.root.type == bfd_link_hash_defweak)
4933 && h->root.root.u.def.section)
4934 {
4935 sec = h->root.root.u.def.section;
4936 if (sec->output_section)
4937 symbol = (h->root.root.u.def.value
4938 + sec->output_section->vma
4939 + sec->output_offset);
4940 else
4941 symbol = h->root.root.u.def.value;
4942 }
4943 else if (h->root.root.type == bfd_link_hash_undefweak)
4944 /* We allow relocations against undefined weak symbols, giving
4945 it the value zero, so that you can undefined weak functions
4946 and check to see if they exist by looking at their
4947 addresses. */
4948 symbol = 0;
59c2e50f 4949 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4950 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4951 symbol = 0;
a4d0f181
TS
4952 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4953 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4954 {
4955 /* If this is a dynamic link, we should have created a
4956 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4957 in in _bfd_mips_elf_create_dynamic_sections.
4958 Otherwise, we should define the symbol with a value of 0.
4959 FIXME: It should probably get into the symbol table
4960 somehow as well. */
4961 BFD_ASSERT (! info->shared);
4962 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4963 symbol = 0;
4964 }
5e2b0d47
NC
4965 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4966 {
4967 /* This is an optional symbol - an Irix specific extension to the
4968 ELF spec. Ignore it for now.
4969 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4970 than simply ignoring them, but we do not handle this for now.
4971 For information see the "64-bit ELF Object File Specification"
4972 which is available from here:
4973 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4974 symbol = 0;
4975 }
b49e97c9
TS
4976 else
4977 {
4978 if (! ((*info->callbacks->undefined_symbol)
4979 (info, h->root.root.root.string, input_bfd,
4980 input_section, relocation->r_offset,
59c2e50f
L
4981 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4982 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4983 return bfd_reloc_undefined;
4984 symbol = 0;
4985 }
4986
30c09090 4987 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
b49e97c9
TS
4988 }
4989
738e5348
RS
4990 /* If this is a reference to a 16-bit function with a stub, we need
4991 to redirect the relocation to the stub unless:
4992
4993 (a) the relocation is for a MIPS16 JAL;
4994
4995 (b) the relocation is for a MIPS16 PIC call, and there are no
4996 non-MIPS16 uses of the GOT slot; or
4997
4998 (c) the section allows direct references to MIPS16 functions. */
4999 if (r_type != R_MIPS16_26
5000 && !info->relocatable
5001 && ((h != NULL
5002 && h->fn_stub != NULL
5003 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5004 || (local_p
5005 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5006 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5007 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5008 {
5009 /* This is a 32- or 64-bit call to a 16-bit function. We should
5010 have already noticed that we were going to need the
5011 stub. */
5012 if (local_p)
5013 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5014 else
5015 {
5016 BFD_ASSERT (h->need_fn_stub);
5017 sec = h->fn_stub;
5018 }
5019
5020 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
5021 /* The target is 16-bit, but the stub isn't. */
5022 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5023 }
5024 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5025 need to redirect the call to the stub. Note that we specifically
5026 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5027 use an indirect stub instead. */
1049f94e 5028 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5029 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5030 || (local_p
5031 && elf_tdata (input_bfd)->local_call_stubs != NULL
5032 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5033 && !target_is_16_bit_code_p)
5034 {
b9d58d71
TS
5035 if (local_p)
5036 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5037 else
b49e97c9 5038 {
b9d58d71
TS
5039 /* If both call_stub and call_fp_stub are defined, we can figure
5040 out which one to use by checking which one appears in the input
5041 file. */
5042 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5043 {
b9d58d71
TS
5044 asection *o;
5045
5046 sec = NULL;
5047 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5048 {
b9d58d71
TS
5049 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5050 {
5051 sec = h->call_fp_stub;
5052 break;
5053 }
b49e97c9 5054 }
b9d58d71
TS
5055 if (sec == NULL)
5056 sec = h->call_stub;
b49e97c9 5057 }
b9d58d71 5058 else if (h->call_stub != NULL)
b49e97c9 5059 sec = h->call_stub;
b9d58d71
TS
5060 else
5061 sec = h->call_fp_stub;
5062 }
b49e97c9 5063
eea6121a 5064 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5065 symbol = sec->output_section->vma + sec->output_offset;
5066 }
861fb55a
DJ
5067 /* If this is a direct call to a PIC function, redirect to the
5068 non-PIC stub. */
5069 else if (h != NULL && h->la25_stub
5070 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5071 symbol = (h->la25_stub->stub_section->output_section->vma
5072 + h->la25_stub->stub_section->output_offset
5073 + h->la25_stub->offset);
b49e97c9
TS
5074
5075 /* Calls from 16-bit code to 32-bit code and vice versa require the
5076 special jalx instruction. */
1049f94e 5077 *require_jalxp = (!info->relocatable
b49e97c9
TS
5078 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5079 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5080
5081 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5082 local_sections, TRUE);
b49e97c9 5083
0a61c8c2
RS
5084 gp0 = _bfd_get_gp_value (input_bfd);
5085 gp = _bfd_get_gp_value (abfd);
23cc69b6 5086 if (htab->got_info)
a8028dd0 5087 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5088
5089 if (gnu_local_gp_p)
5090 symbol = gp;
5091
5092 /* If we haven't already determined the GOT offset, oand we're going
5093 to need it, get it now. */
b49e97c9
TS
5094 switch (r_type)
5095 {
0fdc1bf1 5096 case R_MIPS_GOT_PAGE:
93a2b7ae 5097 case R_MIPS_GOT_OFST:
d25aed71
RS
5098 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5099 bind locally. */
5100 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 5101 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
5102 break;
5103 /* Fall through. */
5104
738e5348
RS
5105 case R_MIPS16_CALL16:
5106 case R_MIPS16_GOT16:
b49e97c9
TS
5107 case R_MIPS_CALL16:
5108 case R_MIPS_GOT16:
5109 case R_MIPS_GOT_DISP:
5110 case R_MIPS_GOT_HI16:
5111 case R_MIPS_CALL_HI16:
5112 case R_MIPS_GOT_LO16:
5113 case R_MIPS_CALL_LO16:
0f20cc35
DJ
5114 case R_MIPS_TLS_GD:
5115 case R_MIPS_TLS_GOTTPREL:
5116 case R_MIPS_TLS_LDM:
b49e97c9 5117 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
5118 if (r_type == R_MIPS_TLS_LDM)
5119 {
0a44bf69 5120 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5121 0, 0, NULL, r_type);
0f20cc35
DJ
5122 if (g == MINUS_ONE)
5123 return bfd_reloc_outofrange;
5124 }
5125 else if (!local_p)
b49e97c9 5126 {
0a44bf69
RS
5127 /* On VxWorks, CALL relocations should refer to the .got.plt
5128 entry, which is initialized to point at the PLT stub. */
5129 if (htab->is_vxworks
5130 && (r_type == R_MIPS_CALL_HI16
5131 || r_type == R_MIPS_CALL_LO16
738e5348 5132 || call16_reloc_p (r_type)))
0a44bf69
RS
5133 {
5134 BFD_ASSERT (addend == 0);
5135 BFD_ASSERT (h->root.needs_plt);
5136 g = mips_elf_gotplt_index (info, &h->root);
5137 }
5138 else
b49e97c9 5139 {
0a44bf69
RS
5140 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5141 GOT_PAGE relocation that decays to GOT_DISP because the
5142 symbol turns out to be global. The addend is then added
5143 as GOT_OFST. */
5144 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5145 g = mips_elf_global_got_index (dynobj, input_bfd,
5146 &h->root, r_type, info);
5147 if (h->tls_type == GOT_NORMAL
5148 && (! elf_hash_table(info)->dynamic_sections_created
5149 || (info->shared
5150 && (info->symbolic || h->root.forced_local)
5151 && h->root.def_regular)))
a8028dd0
RS
5152 /* This is a static link or a -Bsymbolic link. The
5153 symbol is defined locally, or was forced to be local.
5154 We must initialize this entry in the GOT. */
5155 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5156 }
5157 }
0a44bf69 5158 else if (!htab->is_vxworks
738e5348 5159 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5160 /* The calculation below does not involve "g". */
b49e97c9
TS
5161 break;
5162 else
5163 {
5c18022e 5164 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5165 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5166 if (g == MINUS_ONE)
5167 return bfd_reloc_outofrange;
5168 }
5169
5170 /* Convert GOT indices to actual offsets. */
a8028dd0 5171 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5172 break;
b49e97c9
TS
5173 }
5174
0a44bf69
RS
5175 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5176 symbols are resolved by the loader. Add them to .rela.dyn. */
5177 if (h != NULL && is_gott_symbol (info, &h->root))
5178 {
5179 Elf_Internal_Rela outrel;
5180 bfd_byte *loc;
5181 asection *s;
5182
5183 s = mips_elf_rel_dyn_section (info, FALSE);
5184 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5185
5186 outrel.r_offset = (input_section->output_section->vma
5187 + input_section->output_offset
5188 + relocation->r_offset);
5189 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5190 outrel.r_addend = addend;
5191 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5192
5193 /* If we've written this relocation for a readonly section,
5194 we need to set DF_TEXTREL again, so that we do not delete the
5195 DT_TEXTREL tag. */
5196 if (MIPS_ELF_READONLY_SECTION (input_section))
5197 info->flags |= DF_TEXTREL;
5198
0a44bf69
RS
5199 *valuep = 0;
5200 return bfd_reloc_ok;
5201 }
5202
b49e97c9
TS
5203 /* Figure out what kind of relocation is being performed. */
5204 switch (r_type)
5205 {
5206 case R_MIPS_NONE:
5207 return bfd_reloc_continue;
5208
5209 case R_MIPS_16:
a7ebbfdf 5210 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5211 overflowed_p = mips_elf_overflow_p (value, 16);
5212 break;
5213
5214 case R_MIPS_32:
5215 case R_MIPS_REL32:
5216 case R_MIPS_64:
5217 if ((info->shared
861fb55a 5218 || (htab->root.dynamic_sections_created
b49e97c9 5219 && h != NULL
f5385ebf 5220 && h->root.def_dynamic
861fb55a
DJ
5221 && !h->root.def_regular
5222 && !h->has_static_relocs))
b49e97c9 5223 && r_symndx != 0
9a59ad6b
DJ
5224 && (h == NULL
5225 || h->root.root.type != bfd_link_hash_undefweak
5226 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5227 && (input_section->flags & SEC_ALLOC) != 0)
5228 {
861fb55a 5229 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5230 where the symbol will end up. So, we create a relocation
5231 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5232 linker. We must do the same for executable references to
5233 shared library symbols, unless we've decided to use copy
5234 relocs or PLTs instead. */
b49e97c9
TS
5235 value = addend;
5236 if (!mips_elf_create_dynamic_relocation (abfd,
5237 info,
5238 relocation,
5239 h,
5240 sec,
5241 symbol,
5242 &value,
5243 input_section))
5244 return bfd_reloc_undefined;
5245 }
5246 else
5247 {
5248 if (r_type != R_MIPS_REL32)
5249 value = symbol + addend;
5250 else
5251 value = addend;
5252 }
5253 value &= howto->dst_mask;
092dcd75
CD
5254 break;
5255
5256 case R_MIPS_PC32:
5257 value = symbol + addend - p;
5258 value &= howto->dst_mask;
b49e97c9
TS
5259 break;
5260
b49e97c9
TS
5261 case R_MIPS16_26:
5262 /* The calculation for R_MIPS16_26 is just the same as for an
5263 R_MIPS_26. It's only the storage of the relocated field into
5264 the output file that's different. That's handled in
5265 mips_elf_perform_relocation. So, we just fall through to the
5266 R_MIPS_26 case here. */
5267 case R_MIPS_26:
5268 if (local_p)
30ac9238 5269 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 5270 else
728b2f21
ILT
5271 {
5272 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
5273 if (h->root.root.type != bfd_link_hash_undefweak)
5274 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 5275 }
b49e97c9
TS
5276 value &= howto->dst_mask;
5277 break;
5278
0f20cc35
DJ
5279 case R_MIPS_TLS_DTPREL_HI16:
5280 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5281 & howto->dst_mask);
5282 break;
5283
5284 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5285 case R_MIPS_TLS_DTPREL32:
5286 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
5287 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5288 break;
5289
5290 case R_MIPS_TLS_TPREL_HI16:
5291 value = (mips_elf_high (addend + symbol - tprel_base (info))
5292 & howto->dst_mask);
5293 break;
5294
5295 case R_MIPS_TLS_TPREL_LO16:
5296 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5297 break;
5298
b49e97c9 5299 case R_MIPS_HI16:
d6f16593 5300 case R_MIPS16_HI16:
b49e97c9
TS
5301 if (!gp_disp_p)
5302 {
5303 value = mips_elf_high (addend + symbol);
5304 value &= howto->dst_mask;
5305 }
5306 else
5307 {
d6f16593
MR
5308 /* For MIPS16 ABI code we generate this sequence
5309 0: li $v0,%hi(_gp_disp)
5310 4: addiupc $v1,%lo(_gp_disp)
5311 8: sll $v0,16
5312 12: addu $v0,$v1
5313 14: move $gp,$v0
5314 So the offsets of hi and lo relocs are the same, but the
5315 $pc is four higher than $t9 would be, so reduce
5316 both reloc addends by 4. */
5317 if (r_type == R_MIPS16_HI16)
5318 value = mips_elf_high (addend + gp - p - 4);
5319 else
5320 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5321 overflowed_p = mips_elf_overflow_p (value, 16);
5322 }
5323 break;
5324
5325 case R_MIPS_LO16:
d6f16593 5326 case R_MIPS16_LO16:
b49e97c9
TS
5327 if (!gp_disp_p)
5328 value = (symbol + addend) & howto->dst_mask;
5329 else
5330 {
d6f16593
MR
5331 /* See the comment for R_MIPS16_HI16 above for the reason
5332 for this conditional. */
5333 if (r_type == R_MIPS16_LO16)
5334 value = addend + gp - p;
5335 else
5336 value = addend + gp - p + 4;
b49e97c9 5337 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5338 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5339 _gp_disp are normally generated from the .cpload
5340 pseudo-op. It generates code that normally looks like
5341 this:
5342
5343 lui $gp,%hi(_gp_disp)
5344 addiu $gp,$gp,%lo(_gp_disp)
5345 addu $gp,$gp,$t9
5346
5347 Here $t9 holds the address of the function being called,
5348 as required by the MIPS ELF ABI. The R_MIPS_LO16
5349 relocation can easily overflow in this situation, but the
5350 R_MIPS_HI16 relocation will handle the overflow.
5351 Therefore, we consider this a bug in the MIPS ABI, and do
5352 not check for overflow here. */
5353 }
5354 break;
5355
5356 case R_MIPS_LITERAL:
5357 /* Because we don't merge literal sections, we can handle this
5358 just like R_MIPS_GPREL16. In the long run, we should merge
5359 shared literals, and then we will need to additional work
5360 here. */
5361
5362 /* Fall through. */
5363
5364 case R_MIPS16_GPREL:
5365 /* The R_MIPS16_GPREL performs the same calculation as
5366 R_MIPS_GPREL16, but stores the relocated bits in a different
5367 order. We don't need to do anything special here; the
5368 differences are handled in mips_elf_perform_relocation. */
5369 case R_MIPS_GPREL16:
bce03d3d
AO
5370 /* Only sign-extend the addend if it was extracted from the
5371 instruction. If the addend was separate, leave it alone,
5372 otherwise we may lose significant bits. */
5373 if (howto->partial_inplace)
a7ebbfdf 5374 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5375 value = symbol + addend - gp;
5376 /* If the symbol was local, any earlier relocatable links will
5377 have adjusted its addend with the gp offset, so compensate
5378 for that now. Don't do it for symbols forced local in this
5379 link, though, since they won't have had the gp offset applied
5380 to them before. */
5381 if (was_local_p)
5382 value += gp0;
b49e97c9
TS
5383 overflowed_p = mips_elf_overflow_p (value, 16);
5384 break;
5385
738e5348
RS
5386 case R_MIPS16_GOT16:
5387 case R_MIPS16_CALL16:
b49e97c9
TS
5388 case R_MIPS_GOT16:
5389 case R_MIPS_CALL16:
0a44bf69 5390 /* VxWorks does not have separate local and global semantics for
738e5348 5391 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5392 if (!htab->is_vxworks && local_p)
b49e97c9 5393 {
b34976b6 5394 bfd_boolean forced;
b49e97c9 5395
b49e97c9 5396 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 5397 local_sections, FALSE);
5c18022e 5398 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 5399 symbol + addend, forced);
b49e97c9
TS
5400 if (value == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 value
a8028dd0 5403 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5404 overflowed_p = mips_elf_overflow_p (value, 16);
5405 break;
5406 }
5407
5408 /* Fall through. */
5409
0f20cc35
DJ
5410 case R_MIPS_TLS_GD:
5411 case R_MIPS_TLS_GOTTPREL:
5412 case R_MIPS_TLS_LDM:
b49e97c9 5413 case R_MIPS_GOT_DISP:
0fdc1bf1 5414 got_disp:
b49e97c9
TS
5415 value = g;
5416 overflowed_p = mips_elf_overflow_p (value, 16);
5417 break;
5418
5419 case R_MIPS_GPREL32:
bce03d3d
AO
5420 value = (addend + symbol + gp0 - gp);
5421 if (!save_addend)
5422 value &= howto->dst_mask;
b49e97c9
TS
5423 break;
5424
5425 case R_MIPS_PC16:
bad36eac
DJ
5426 case R_MIPS_GNU_REL16_S2:
5427 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5428 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5429 value >>= howto->rightshift;
5430 value &= howto->dst_mask;
b49e97c9
TS
5431 break;
5432
5433 case R_MIPS_GOT_HI16:
5434 case R_MIPS_CALL_HI16:
5435 /* We're allowed to handle these two relocations identically.
5436 The dynamic linker is allowed to handle the CALL relocations
5437 differently by creating a lazy evaluation stub. */
5438 value = g;
5439 value = mips_elf_high (value);
5440 value &= howto->dst_mask;
5441 break;
5442
5443 case R_MIPS_GOT_LO16:
5444 case R_MIPS_CALL_LO16:
5445 value = g & howto->dst_mask;
5446 break;
5447
5448 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
5449 /* GOT_PAGE relocations that reference non-local symbols decay
5450 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5451 0. */
93a2b7ae 5452 if (! local_p)
0fdc1bf1 5453 goto got_disp;
5c18022e 5454 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5455 if (value == MINUS_ONE)
5456 return bfd_reloc_outofrange;
a8028dd0 5457 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5458 overflowed_p = mips_elf_overflow_p (value, 16);
5459 break;
5460
5461 case R_MIPS_GOT_OFST:
93a2b7ae 5462 if (local_p)
5c18022e 5463 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5464 else
5465 value = addend;
b49e97c9
TS
5466 overflowed_p = mips_elf_overflow_p (value, 16);
5467 break;
5468
5469 case R_MIPS_SUB:
5470 value = symbol - addend;
5471 value &= howto->dst_mask;
5472 break;
5473
5474 case R_MIPS_HIGHER:
5475 value = mips_elf_higher (addend + symbol);
5476 value &= howto->dst_mask;
5477 break;
5478
5479 case R_MIPS_HIGHEST:
5480 value = mips_elf_highest (addend + symbol);
5481 value &= howto->dst_mask;
5482 break;
5483
5484 case R_MIPS_SCN_DISP:
5485 value = symbol + addend - sec->output_offset;
5486 value &= howto->dst_mask;
5487 break;
5488
b49e97c9 5489 case R_MIPS_JALR:
1367d393
ILT
5490 /* This relocation is only a hint. In some cases, we optimize
5491 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5492 when the symbol does not resolve locally. */
5493 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5494 return bfd_reloc_continue;
5495 value = symbol + addend;
5496 break;
b49e97c9 5497
1367d393 5498 case R_MIPS_PJUMP:
b49e97c9
TS
5499 case R_MIPS_GNU_VTINHERIT:
5500 case R_MIPS_GNU_VTENTRY:
5501 /* We don't do anything with these at present. */
5502 return bfd_reloc_continue;
5503
5504 default:
5505 /* An unrecognized relocation type. */
5506 return bfd_reloc_notsupported;
5507 }
5508
5509 /* Store the VALUE for our caller. */
5510 *valuep = value;
5511 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5512}
5513
5514/* Obtain the field relocated by RELOCATION. */
5515
5516static bfd_vma
9719ad41
RS
5517mips_elf_obtain_contents (reloc_howto_type *howto,
5518 const Elf_Internal_Rela *relocation,
5519 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5520{
5521 bfd_vma x;
5522 bfd_byte *location = contents + relocation->r_offset;
5523
5524 /* Obtain the bytes. */
5525 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5526
b49e97c9
TS
5527 return x;
5528}
5529
5530/* It has been determined that the result of the RELOCATION is the
5531 VALUE. Use HOWTO to place VALUE into the output file at the
5532 appropriate position. The SECTION is the section to which the
b34976b6 5533 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
5534 for the relocation must be either JAL or JALX, and it is
5535 unconditionally converted to JALX.
5536
b34976b6 5537 Returns FALSE if anything goes wrong. */
b49e97c9 5538
b34976b6 5539static bfd_boolean
9719ad41
RS
5540mips_elf_perform_relocation (struct bfd_link_info *info,
5541 reloc_howto_type *howto,
5542 const Elf_Internal_Rela *relocation,
5543 bfd_vma value, bfd *input_bfd,
5544 asection *input_section, bfd_byte *contents,
5545 bfd_boolean require_jalx)
b49e97c9
TS
5546{
5547 bfd_vma x;
5548 bfd_byte *location;
5549 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5550
5551 /* Figure out where the relocation is occurring. */
5552 location = contents + relocation->r_offset;
5553
d6f16593
MR
5554 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5555
b49e97c9
TS
5556 /* Obtain the current value. */
5557 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5558
5559 /* Clear the field we are setting. */
5560 x &= ~howto->dst_mask;
5561
b49e97c9
TS
5562 /* Set the field. */
5563 x |= (value & howto->dst_mask);
5564
5565 /* If required, turn JAL into JALX. */
5566 if (require_jalx)
5567 {
b34976b6 5568 bfd_boolean ok;
b49e97c9
TS
5569 bfd_vma opcode = x >> 26;
5570 bfd_vma jalx_opcode;
5571
5572 /* Check to see if the opcode is already JAL or JALX. */
5573 if (r_type == R_MIPS16_26)
5574 {
5575 ok = ((opcode == 0x6) || (opcode == 0x7));
5576 jalx_opcode = 0x7;
5577 }
5578 else
5579 {
5580 ok = ((opcode == 0x3) || (opcode == 0x1d));
5581 jalx_opcode = 0x1d;
5582 }
5583
5584 /* If the opcode is not JAL or JALX, there's a problem. */
5585 if (!ok)
5586 {
5587 (*_bfd_error_handler)
d003868e
AM
5588 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5589 input_bfd,
5590 input_section,
b49e97c9
TS
5591 (unsigned long) relocation->r_offset);
5592 bfd_set_error (bfd_error_bad_value);
b34976b6 5593 return FALSE;
b49e97c9
TS
5594 }
5595
5596 /* Make this the JALX opcode. */
5597 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5598 }
5599
cd8d5a82
CF
5600 /* Try converting JAL and JALR to BAL, if the target is in range. */
5601 if (!info->relocatable
1367d393 5602 && !require_jalx
cd8d5a82
CF
5603 && ((JAL_TO_BAL_P (input_bfd)
5604 && r_type == R_MIPS_26
5605 && (x >> 26) == 0x3) /* jal addr */
5606 || (JALR_TO_BAL_P (input_bfd)
5607 && r_type == R_MIPS_JALR
5608 && x == 0x0320f809))) /* jalr t9 */
1367d393
ILT
5609 {
5610 bfd_vma addr;
5611 bfd_vma dest;
5612 bfd_signed_vma off;
5613
5614 addr = (input_section->output_section->vma
5615 + input_section->output_offset
5616 + relocation->r_offset
5617 + 4);
5618 if (r_type == R_MIPS_26)
5619 dest = (value << 2) | ((addr >> 28) << 28);
5620 else
5621 dest = value;
5622 off = dest - addr;
5623 if (off <= 0x1ffff && off >= -0x20000)
5624 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5625 }
5626
b49e97c9
TS
5627 /* Put the value into the output. */
5628 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
5629
5630 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5631 location);
5632
b34976b6 5633 return TRUE;
b49e97c9 5634}
b49e97c9 5635\f
b49e97c9
TS
5636/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5637 is the original relocation, which is now being transformed into a
5638 dynamic relocation. The ADDENDP is adjusted if necessary; the
5639 caller should store the result in place of the original addend. */
5640
b34976b6 5641static bfd_boolean
9719ad41
RS
5642mips_elf_create_dynamic_relocation (bfd *output_bfd,
5643 struct bfd_link_info *info,
5644 const Elf_Internal_Rela *rel,
5645 struct mips_elf_link_hash_entry *h,
5646 asection *sec, bfd_vma symbol,
5647 bfd_vma *addendp, asection *input_section)
b49e97c9 5648{
947216bf 5649 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5650 asection *sreloc;
5651 bfd *dynobj;
5652 int r_type;
5d41f0b6
RS
5653 long indx;
5654 bfd_boolean defined_p;
0a44bf69 5655 struct mips_elf_link_hash_table *htab;
b49e97c9 5656
0a44bf69 5657 htab = mips_elf_hash_table (info);
b49e97c9
TS
5658 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5659 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5660 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5661 BFD_ASSERT (sreloc != NULL);
5662 BFD_ASSERT (sreloc->contents != NULL);
5663 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5664 < sreloc->size);
b49e97c9 5665
b49e97c9
TS
5666 outrel[0].r_offset =
5667 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5668 if (ABI_64_P (output_bfd))
5669 {
5670 outrel[1].r_offset =
5671 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5672 outrel[2].r_offset =
5673 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5674 }
b49e97c9 5675
c5ae1840 5676 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5677 /* The relocation field has been deleted. */
5d41f0b6
RS
5678 return TRUE;
5679
5680 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5681 {
5682 /* The relocation field has been converted into a relative value of
5683 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5684 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5685 *addendp += symbol;
5d41f0b6 5686 return TRUE;
0d591ff7 5687 }
b49e97c9 5688
5d41f0b6
RS
5689 /* We must now calculate the dynamic symbol table index to use
5690 in the relocation. */
5691 if (h != NULL
6ece8836
TS
5692 && (!h->root.def_regular
5693 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
5694 {
5695 indx = h->root.dynindx;
5696 if (SGI_COMPAT (output_bfd))
5697 defined_p = h->root.def_regular;
5698 else
5699 /* ??? glibc's ld.so just adds the final GOT entry to the
5700 relocation field. It therefore treats relocs against
5701 defined symbols in the same way as relocs against
5702 undefined symbols. */
5703 defined_p = FALSE;
5704 }
b49e97c9
TS
5705 else
5706 {
5d41f0b6
RS
5707 if (sec != NULL && bfd_is_abs_section (sec))
5708 indx = 0;
5709 else if (sec == NULL || sec->owner == NULL)
fdd07405 5710 {
5d41f0b6
RS
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
b49e97c9
TS
5713 }
5714 else
5715 {
5d41f0b6 5716 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5717 if (indx == 0)
5718 {
5719 asection *osec = htab->root.text_index_section;
5720 indx = elf_section_data (osec)->dynindx;
5721 }
5d41f0b6
RS
5722 if (indx == 0)
5723 abort ();
b49e97c9
TS
5724 }
5725
5d41f0b6
RS
5726 /* Instead of generating a relocation using the section
5727 symbol, we may as well make it a fully relative
5728 relocation. We want to avoid generating relocations to
5729 local symbols because we used to generate them
5730 incorrectly, without adding the original symbol value,
5731 which is mandated by the ABI for section symbols. In
5732 order to give dynamic loaders and applications time to
5733 phase out the incorrect use, we refrain from emitting
5734 section-relative relocations. It's not like they're
5735 useful, after all. This should be a bit more efficient
5736 as well. */
5737 /* ??? Although this behavior is compatible with glibc's ld.so,
5738 the ABI says that relocations against STN_UNDEF should have
5739 a symbol value of 0. Irix rld honors this, so relocations
5740 against STN_UNDEF have no effect. */
5741 if (!SGI_COMPAT (output_bfd))
5742 indx = 0;
5743 defined_p = TRUE;
b49e97c9
TS
5744 }
5745
5d41f0b6
RS
5746 /* If the relocation was previously an absolute relocation and
5747 this symbol will not be referred to by the relocation, we must
5748 adjust it by the value we give it in the dynamic symbol table.
5749 Otherwise leave the job up to the dynamic linker. */
5750 if (defined_p && r_type != R_MIPS_REL32)
5751 *addendp += symbol;
5752
0a44bf69
RS
5753 if (htab->is_vxworks)
5754 /* VxWorks uses non-relative relocations for this. */
5755 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5756 else
5757 /* The relocation is always an REL32 relocation because we don't
5758 know where the shared library will wind up at load-time. */
5759 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5760 R_MIPS_REL32);
5761
5d41f0b6
RS
5762 /* For strict adherence to the ABI specification, we should
5763 generate a R_MIPS_64 relocation record by itself before the
5764 _REL32/_64 record as well, such that the addend is read in as
5765 a 64-bit value (REL32 is a 32-bit relocation, after all).
5766 However, since none of the existing ELF64 MIPS dynamic
5767 loaders seems to care, we don't waste space with these
5768 artificial relocations. If this turns out to not be true,
5769 mips_elf_allocate_dynamic_relocation() should be tweaked so
5770 as to make room for a pair of dynamic relocations per
5771 invocation if ABI_64_P, and here we should generate an
5772 additional relocation record with R_MIPS_64 by itself for a
5773 NULL symbol before this relocation record. */
5774 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5775 ABI_64_P (output_bfd)
5776 ? R_MIPS_64
5777 : R_MIPS_NONE);
5778 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5779
5780 /* Adjust the output offset of the relocation to reference the
5781 correct location in the output file. */
5782 outrel[0].r_offset += (input_section->output_section->vma
5783 + input_section->output_offset);
5784 outrel[1].r_offset += (input_section->output_section->vma
5785 + input_section->output_offset);
5786 outrel[2].r_offset += (input_section->output_section->vma
5787 + input_section->output_offset);
5788
b49e97c9
TS
5789 /* Put the relocation back out. We have to use the special
5790 relocation outputter in the 64-bit case since the 64-bit
5791 relocation format is non-standard. */
5792 if (ABI_64_P (output_bfd))
5793 {
5794 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5795 (output_bfd, &outrel[0],
5796 (sreloc->contents
5797 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5798 }
0a44bf69
RS
5799 else if (htab->is_vxworks)
5800 {
5801 /* VxWorks uses RELA rather than REL dynamic relocations. */
5802 outrel[0].r_addend = *addendp;
5803 bfd_elf32_swap_reloca_out
5804 (output_bfd, &outrel[0],
5805 (sreloc->contents
5806 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5807 }
b49e97c9 5808 else
947216bf
AM
5809 bfd_elf32_swap_reloc_out
5810 (output_bfd, &outrel[0],
5811 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5812
b49e97c9
TS
5813 /* We've now added another relocation. */
5814 ++sreloc->reloc_count;
5815
5816 /* Make sure the output section is writable. The dynamic linker
5817 will be writing to it. */
5818 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5819 |= SHF_WRITE;
5820
5821 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5822 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5823 {
5824 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5825 bfd_byte *cr;
5826
5827 if (scpt)
5828 {
5829 Elf32_crinfo cptrel;
5830
5831 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5832 cptrel.vaddr = (rel->r_offset
5833 + input_section->output_section->vma
5834 + input_section->output_offset);
5835 if (r_type == R_MIPS_REL32)
5836 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5837 else
5838 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5839 mips_elf_set_cr_dist2to (cptrel, 0);
5840 cptrel.konst = *addendp;
5841
5842 cr = (scpt->contents
5843 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5844 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5845 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5846 ((Elf32_External_crinfo *) cr
5847 + scpt->reloc_count));
5848 ++scpt->reloc_count;
5849 }
5850 }
5851
943284cc
DJ
5852 /* If we've written this relocation for a readonly section,
5853 we need to set DF_TEXTREL again, so that we do not delete the
5854 DT_TEXTREL tag. */
5855 if (MIPS_ELF_READONLY_SECTION (input_section))
5856 info->flags |= DF_TEXTREL;
5857
b34976b6 5858 return TRUE;
b49e97c9
TS
5859}
5860\f
b49e97c9
TS
5861/* Return the MACH for a MIPS e_flags value. */
5862
5863unsigned long
9719ad41 5864_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5865{
5866 switch (flags & EF_MIPS_MACH)
5867 {
5868 case E_MIPS_MACH_3900:
5869 return bfd_mach_mips3900;
5870
5871 case E_MIPS_MACH_4010:
5872 return bfd_mach_mips4010;
5873
5874 case E_MIPS_MACH_4100:
5875 return bfd_mach_mips4100;
5876
5877 case E_MIPS_MACH_4111:
5878 return bfd_mach_mips4111;
5879
00707a0e
RS
5880 case E_MIPS_MACH_4120:
5881 return bfd_mach_mips4120;
5882
b49e97c9
TS
5883 case E_MIPS_MACH_4650:
5884 return bfd_mach_mips4650;
5885
00707a0e
RS
5886 case E_MIPS_MACH_5400:
5887 return bfd_mach_mips5400;
5888
5889 case E_MIPS_MACH_5500:
5890 return bfd_mach_mips5500;
5891
0d2e43ed
ILT
5892 case E_MIPS_MACH_9000:
5893 return bfd_mach_mips9000;
5894
b49e97c9
TS
5895 case E_MIPS_MACH_SB1:
5896 return bfd_mach_mips_sb1;
5897
350cc38d
MS
5898 case E_MIPS_MACH_LS2E:
5899 return bfd_mach_mips_loongson_2e;
5900
5901 case E_MIPS_MACH_LS2F:
5902 return bfd_mach_mips_loongson_2f;
5903
6f179bd0
AN
5904 case E_MIPS_MACH_OCTEON:
5905 return bfd_mach_mips_octeon;
5906
52b6b6b9
JM
5907 case E_MIPS_MACH_XLR:
5908 return bfd_mach_mips_xlr;
5909
b49e97c9
TS
5910 default:
5911 switch (flags & EF_MIPS_ARCH)
5912 {
5913 default:
5914 case E_MIPS_ARCH_1:
5915 return bfd_mach_mips3000;
b49e97c9
TS
5916
5917 case E_MIPS_ARCH_2:
5918 return bfd_mach_mips6000;
b49e97c9
TS
5919
5920 case E_MIPS_ARCH_3:
5921 return bfd_mach_mips4000;
b49e97c9
TS
5922
5923 case E_MIPS_ARCH_4:
5924 return bfd_mach_mips8000;
b49e97c9
TS
5925
5926 case E_MIPS_ARCH_5:
5927 return bfd_mach_mips5;
b49e97c9
TS
5928
5929 case E_MIPS_ARCH_32:
5930 return bfd_mach_mipsisa32;
b49e97c9
TS
5931
5932 case E_MIPS_ARCH_64:
5933 return bfd_mach_mipsisa64;
af7ee8bf
CD
5934
5935 case E_MIPS_ARCH_32R2:
5936 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5937
5938 case E_MIPS_ARCH_64R2:
5939 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5940 }
5941 }
5942
5943 return 0;
5944}
5945
5946/* Return printable name for ABI. */
5947
5948static INLINE char *
9719ad41 5949elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5950{
5951 flagword flags;
5952
5953 flags = elf_elfheader (abfd)->e_flags;
5954 switch (flags & EF_MIPS_ABI)
5955 {
5956 case 0:
5957 if (ABI_N32_P (abfd))
5958 return "N32";
5959 else if (ABI_64_P (abfd))
5960 return "64";
5961 else
5962 return "none";
5963 case E_MIPS_ABI_O32:
5964 return "O32";
5965 case E_MIPS_ABI_O64:
5966 return "O64";
5967 case E_MIPS_ABI_EABI32:
5968 return "EABI32";
5969 case E_MIPS_ABI_EABI64:
5970 return "EABI64";
5971 default:
5972 return "unknown abi";
5973 }
5974}
5975\f
5976/* MIPS ELF uses two common sections. One is the usual one, and the
5977 other is for small objects. All the small objects are kept
5978 together, and then referenced via the gp pointer, which yields
5979 faster assembler code. This is what we use for the small common
5980 section. This approach is copied from ecoff.c. */
5981static asection mips_elf_scom_section;
5982static asymbol mips_elf_scom_symbol;
5983static asymbol *mips_elf_scom_symbol_ptr;
5984
5985/* MIPS ELF also uses an acommon section, which represents an
5986 allocated common symbol which may be overridden by a
5987 definition in a shared library. */
5988static asection mips_elf_acom_section;
5989static asymbol mips_elf_acom_symbol;
5990static asymbol *mips_elf_acom_symbol_ptr;
5991
738e5348 5992/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
5993
5994void
9719ad41 5995_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5996{
5997 elf_symbol_type *elfsym;
5998
738e5348 5999 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6000 elfsym = (elf_symbol_type *) asym;
6001 switch (elfsym->internal_elf_sym.st_shndx)
6002 {
6003 case SHN_MIPS_ACOMMON:
6004 /* This section is used in a dynamically linked executable file.
6005 It is an allocated common section. The dynamic linker can
6006 either resolve these symbols to something in a shared
6007 library, or it can just leave them here. For our purposes,
6008 we can consider these symbols to be in a new section. */
6009 if (mips_elf_acom_section.name == NULL)
6010 {
6011 /* Initialize the acommon section. */
6012 mips_elf_acom_section.name = ".acommon";
6013 mips_elf_acom_section.flags = SEC_ALLOC;
6014 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6015 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6016 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6017 mips_elf_acom_symbol.name = ".acommon";
6018 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6019 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6020 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6021 }
6022 asym->section = &mips_elf_acom_section;
6023 break;
6024
6025 case SHN_COMMON:
6026 /* Common symbols less than the GP size are automatically
6027 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6028 if (asym->value > elf_gp_size (abfd)
b59eed79 6029 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6030 || IRIX_COMPAT (abfd) == ict_irix6)
6031 break;
6032 /* Fall through. */
6033 case SHN_MIPS_SCOMMON:
6034 if (mips_elf_scom_section.name == NULL)
6035 {
6036 /* Initialize the small common section. */
6037 mips_elf_scom_section.name = ".scommon";
6038 mips_elf_scom_section.flags = SEC_IS_COMMON;
6039 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6040 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6041 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6042 mips_elf_scom_symbol.name = ".scommon";
6043 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6044 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6045 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6046 }
6047 asym->section = &mips_elf_scom_section;
6048 asym->value = elfsym->internal_elf_sym.st_size;
6049 break;
6050
6051 case SHN_MIPS_SUNDEFINED:
6052 asym->section = bfd_und_section_ptr;
6053 break;
6054
b49e97c9 6055 case SHN_MIPS_TEXT:
00b4930b
TS
6056 {
6057 asection *section = bfd_get_section_by_name (abfd, ".text");
6058
6059 BFD_ASSERT (SGI_COMPAT (abfd));
6060 if (section != NULL)
6061 {
6062 asym->section = section;
6063 /* MIPS_TEXT is a bit special, the address is not an offset
6064 to the base of the .text section. So substract the section
6065 base address to make it an offset. */
6066 asym->value -= section->vma;
6067 }
6068 }
b49e97c9
TS
6069 break;
6070
6071 case SHN_MIPS_DATA:
00b4930b
TS
6072 {
6073 asection *section = bfd_get_section_by_name (abfd, ".data");
6074
6075 BFD_ASSERT (SGI_COMPAT (abfd));
6076 if (section != NULL)
6077 {
6078 asym->section = section;
6079 /* MIPS_DATA is a bit special, the address is not an offset
6080 to the base of the .data section. So substract the section
6081 base address to make it an offset. */
6082 asym->value -= section->vma;
6083 }
6084 }
b49e97c9 6085 break;
b49e97c9 6086 }
738e5348
RS
6087
6088 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6089 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6090 && (asym->value & 1) != 0)
6091 {
6092 asym->value--;
6093 elfsym->internal_elf_sym.st_other
6094 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6095 }
b49e97c9
TS
6096}
6097\f
8c946ed5
RS
6098/* Implement elf_backend_eh_frame_address_size. This differs from
6099 the default in the way it handles EABI64.
6100
6101 EABI64 was originally specified as an LP64 ABI, and that is what
6102 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6103 historically accepted the combination of -mabi=eabi and -mlong32,
6104 and this ILP32 variation has become semi-official over time.
6105 Both forms use elf32 and have pointer-sized FDE addresses.
6106
6107 If an EABI object was generated by GCC 4.0 or above, it will have
6108 an empty .gcc_compiled_longXX section, where XX is the size of longs
6109 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6110 have no special marking to distinguish them from LP64 objects.
6111
6112 We don't want users of the official LP64 ABI to be punished for the
6113 existence of the ILP32 variant, but at the same time, we don't want
6114 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6115 We therefore take the following approach:
6116
6117 - If ABFD contains a .gcc_compiled_longXX section, use it to
6118 determine the pointer size.
6119
6120 - Otherwise check the type of the first relocation. Assume that
6121 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6122
6123 - Otherwise punt.
6124
6125 The second check is enough to detect LP64 objects generated by pre-4.0
6126 compilers because, in the kind of output generated by those compilers,
6127 the first relocation will be associated with either a CIE personality
6128 routine or an FDE start address. Furthermore, the compilers never
6129 used a special (non-pointer) encoding for this ABI.
6130
6131 Checking the relocation type should also be safe because there is no
6132 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6133 did so. */
6134
6135unsigned int
6136_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6137{
6138 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6139 return 8;
6140 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6141 {
6142 bfd_boolean long32_p, long64_p;
6143
6144 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6145 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6146 if (long32_p && long64_p)
6147 return 0;
6148 if (long32_p)
6149 return 4;
6150 if (long64_p)
6151 return 8;
6152
6153 if (sec->reloc_count > 0
6154 && elf_section_data (sec)->relocs != NULL
6155 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6156 == R_MIPS_64))
6157 return 8;
6158
6159 return 0;
6160 }
6161 return 4;
6162}
6163\f
174fd7f9
RS
6164/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6165 relocations against two unnamed section symbols to resolve to the
6166 same address. For example, if we have code like:
6167
6168 lw $4,%got_disp(.data)($gp)
6169 lw $25,%got_disp(.text)($gp)
6170 jalr $25
6171
6172 then the linker will resolve both relocations to .data and the program
6173 will jump there rather than to .text.
6174
6175 We can work around this problem by giving names to local section symbols.
6176 This is also what the MIPSpro tools do. */
6177
6178bfd_boolean
6179_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6180{
6181 return SGI_COMPAT (abfd);
6182}
6183\f
b49e97c9
TS
6184/* Work over a section just before writing it out. This routine is
6185 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6186 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6187 a better way. */
6188
b34976b6 6189bfd_boolean
9719ad41 6190_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6191{
6192 if (hdr->sh_type == SHT_MIPS_REGINFO
6193 && hdr->sh_size > 0)
6194 {
6195 bfd_byte buf[4];
6196
6197 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6198 BFD_ASSERT (hdr->contents == NULL);
6199
6200 if (bfd_seek (abfd,
6201 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6202 SEEK_SET) != 0)
b34976b6 6203 return FALSE;
b49e97c9 6204 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6205 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6206 return FALSE;
b49e97c9
TS
6207 }
6208
6209 if (hdr->sh_type == SHT_MIPS_OPTIONS
6210 && hdr->bfd_section != NULL
f0abc2a1
AM
6211 && mips_elf_section_data (hdr->bfd_section) != NULL
6212 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6213 {
6214 bfd_byte *contents, *l, *lend;
6215
f0abc2a1
AM
6216 /* We stored the section contents in the tdata field in the
6217 set_section_contents routine. We save the section contents
6218 so that we don't have to read them again.
b49e97c9
TS
6219 At this point we know that elf_gp is set, so we can look
6220 through the section contents to see if there is an
6221 ODK_REGINFO structure. */
6222
f0abc2a1 6223 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6224 l = contents;
6225 lend = contents + hdr->sh_size;
6226 while (l + sizeof (Elf_External_Options) <= lend)
6227 {
6228 Elf_Internal_Options intopt;
6229
6230 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6231 &intopt);
1bc8074d
MR
6232 if (intopt.size < sizeof (Elf_External_Options))
6233 {
6234 (*_bfd_error_handler)
6235 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6236 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6237 break;
6238 }
b49e97c9
TS
6239 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6240 {
6241 bfd_byte buf[8];
6242
6243 if (bfd_seek (abfd,
6244 (hdr->sh_offset
6245 + (l - contents)
6246 + sizeof (Elf_External_Options)
6247 + (sizeof (Elf64_External_RegInfo) - 8)),
6248 SEEK_SET) != 0)
b34976b6 6249 return FALSE;
b49e97c9 6250 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6251 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6252 return FALSE;
b49e97c9
TS
6253 }
6254 else if (intopt.kind == ODK_REGINFO)
6255 {
6256 bfd_byte buf[4];
6257
6258 if (bfd_seek (abfd,
6259 (hdr->sh_offset
6260 + (l - contents)
6261 + sizeof (Elf_External_Options)
6262 + (sizeof (Elf32_External_RegInfo) - 4)),
6263 SEEK_SET) != 0)
b34976b6 6264 return FALSE;
b49e97c9 6265 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6266 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6267 return FALSE;
b49e97c9
TS
6268 }
6269 l += intopt.size;
6270 }
6271 }
6272
6273 if (hdr->bfd_section != NULL)
6274 {
6275 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6276
2d0f9ad9
JM
6277 /* .sbss is not handled specially here because the GNU/Linux
6278 prelinker can convert .sbss from NOBITS to PROGBITS and
6279 changing it back to NOBITS breaks the binary. The entry in
6280 _bfd_mips_elf_special_sections will ensure the correct flags
6281 are set on .sbss if BFD creates it without reading it from an
6282 input file, and without special handling here the flags set
6283 on it in an input file will be followed. */
b49e97c9
TS
6284 if (strcmp (name, ".sdata") == 0
6285 || strcmp (name, ".lit8") == 0
6286 || strcmp (name, ".lit4") == 0)
6287 {
6288 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6289 hdr->sh_type = SHT_PROGBITS;
6290 }
b49e97c9
TS
6291 else if (strcmp (name, ".srdata") == 0)
6292 {
6293 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6294 hdr->sh_type = SHT_PROGBITS;
6295 }
6296 else if (strcmp (name, ".compact_rel") == 0)
6297 {
6298 hdr->sh_flags = 0;
6299 hdr->sh_type = SHT_PROGBITS;
6300 }
6301 else if (strcmp (name, ".rtproc") == 0)
6302 {
6303 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6304 {
6305 unsigned int adjust;
6306
6307 adjust = hdr->sh_size % hdr->sh_addralign;
6308 if (adjust != 0)
6309 hdr->sh_size += hdr->sh_addralign - adjust;
6310 }
6311 }
6312 }
6313
b34976b6 6314 return TRUE;
b49e97c9
TS
6315}
6316
6317/* Handle a MIPS specific section when reading an object file. This
6318 is called when elfcode.h finds a section with an unknown type.
6319 This routine supports both the 32-bit and 64-bit ELF ABI.
6320
6321 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6322 how to. */
6323
b34976b6 6324bfd_boolean
6dc132d9
L
6325_bfd_mips_elf_section_from_shdr (bfd *abfd,
6326 Elf_Internal_Shdr *hdr,
6327 const char *name,
6328 int shindex)
b49e97c9
TS
6329{
6330 flagword flags = 0;
6331
6332 /* There ought to be a place to keep ELF backend specific flags, but
6333 at the moment there isn't one. We just keep track of the
6334 sections by their name, instead. Fortunately, the ABI gives
6335 suggested names for all the MIPS specific sections, so we will
6336 probably get away with this. */
6337 switch (hdr->sh_type)
6338 {
6339 case SHT_MIPS_LIBLIST:
6340 if (strcmp (name, ".liblist") != 0)
b34976b6 6341 return FALSE;
b49e97c9
TS
6342 break;
6343 case SHT_MIPS_MSYM:
6344 if (strcmp (name, ".msym") != 0)
b34976b6 6345 return FALSE;
b49e97c9
TS
6346 break;
6347 case SHT_MIPS_CONFLICT:
6348 if (strcmp (name, ".conflict") != 0)
b34976b6 6349 return FALSE;
b49e97c9
TS
6350 break;
6351 case SHT_MIPS_GPTAB:
0112cd26 6352 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6353 return FALSE;
b49e97c9
TS
6354 break;
6355 case SHT_MIPS_UCODE:
6356 if (strcmp (name, ".ucode") != 0)
b34976b6 6357 return FALSE;
b49e97c9
TS
6358 break;
6359 case SHT_MIPS_DEBUG:
6360 if (strcmp (name, ".mdebug") != 0)
b34976b6 6361 return FALSE;
b49e97c9
TS
6362 flags = SEC_DEBUGGING;
6363 break;
6364 case SHT_MIPS_REGINFO:
6365 if (strcmp (name, ".reginfo") != 0
6366 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6367 return FALSE;
b49e97c9
TS
6368 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6369 break;
6370 case SHT_MIPS_IFACE:
6371 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6372 return FALSE;
b49e97c9
TS
6373 break;
6374 case SHT_MIPS_CONTENT:
0112cd26 6375 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6376 return FALSE;
b49e97c9
TS
6377 break;
6378 case SHT_MIPS_OPTIONS:
cc2e31b9 6379 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6380 return FALSE;
b49e97c9
TS
6381 break;
6382 case SHT_MIPS_DWARF:
1b315056 6383 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6384 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6385 return FALSE;
b49e97c9
TS
6386 break;
6387 case SHT_MIPS_SYMBOL_LIB:
6388 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6389 return FALSE;
b49e97c9
TS
6390 break;
6391 case SHT_MIPS_EVENTS:
0112cd26
NC
6392 if (! CONST_STRNEQ (name, ".MIPS.events")
6393 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6394 return FALSE;
b49e97c9
TS
6395 break;
6396 default:
cc2e31b9 6397 break;
b49e97c9
TS
6398 }
6399
6dc132d9 6400 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6401 return FALSE;
b49e97c9
TS
6402
6403 if (flags)
6404 {
6405 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6406 (bfd_get_section_flags (abfd,
6407 hdr->bfd_section)
6408 | flags)))
b34976b6 6409 return FALSE;
b49e97c9
TS
6410 }
6411
6412 /* FIXME: We should record sh_info for a .gptab section. */
6413
6414 /* For a .reginfo section, set the gp value in the tdata information
6415 from the contents of this section. We need the gp value while
6416 processing relocs, so we just get it now. The .reginfo section
6417 is not used in the 64-bit MIPS ELF ABI. */
6418 if (hdr->sh_type == SHT_MIPS_REGINFO)
6419 {
6420 Elf32_External_RegInfo ext;
6421 Elf32_RegInfo s;
6422
9719ad41
RS
6423 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6424 &ext, 0, sizeof ext))
b34976b6 6425 return FALSE;
b49e97c9
TS
6426 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6427 elf_gp (abfd) = s.ri_gp_value;
6428 }
6429
6430 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6431 set the gp value based on what we find. We may see both
6432 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6433 they should agree. */
6434 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6435 {
6436 bfd_byte *contents, *l, *lend;
6437
9719ad41 6438 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6439 if (contents == NULL)
b34976b6 6440 return FALSE;
b49e97c9 6441 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6442 0, hdr->sh_size))
b49e97c9
TS
6443 {
6444 free (contents);
b34976b6 6445 return FALSE;
b49e97c9
TS
6446 }
6447 l = contents;
6448 lend = contents + hdr->sh_size;
6449 while (l + sizeof (Elf_External_Options) <= lend)
6450 {
6451 Elf_Internal_Options intopt;
6452
6453 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6454 &intopt);
1bc8074d
MR
6455 if (intopt.size < sizeof (Elf_External_Options))
6456 {
6457 (*_bfd_error_handler)
6458 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6459 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6460 break;
6461 }
b49e97c9
TS
6462 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6463 {
6464 Elf64_Internal_RegInfo intreg;
6465
6466 bfd_mips_elf64_swap_reginfo_in
6467 (abfd,
6468 ((Elf64_External_RegInfo *)
6469 (l + sizeof (Elf_External_Options))),
6470 &intreg);
6471 elf_gp (abfd) = intreg.ri_gp_value;
6472 }
6473 else if (intopt.kind == ODK_REGINFO)
6474 {
6475 Elf32_RegInfo intreg;
6476
6477 bfd_mips_elf32_swap_reginfo_in
6478 (abfd,
6479 ((Elf32_External_RegInfo *)
6480 (l + sizeof (Elf_External_Options))),
6481 &intreg);
6482 elf_gp (abfd) = intreg.ri_gp_value;
6483 }
6484 l += intopt.size;
6485 }
6486 free (contents);
6487 }
6488
b34976b6 6489 return TRUE;
b49e97c9
TS
6490}
6491
6492/* Set the correct type for a MIPS ELF section. We do this by the
6493 section name, which is a hack, but ought to work. This routine is
6494 used by both the 32-bit and the 64-bit ABI. */
6495
b34976b6 6496bfd_boolean
9719ad41 6497_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6498{
0414f35b 6499 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6500
6501 if (strcmp (name, ".liblist") == 0)
6502 {
6503 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6504 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6505 /* The sh_link field is set in final_write_processing. */
6506 }
6507 else if (strcmp (name, ".conflict") == 0)
6508 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6509 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6510 {
6511 hdr->sh_type = SHT_MIPS_GPTAB;
6512 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6513 /* The sh_info field is set in final_write_processing. */
6514 }
6515 else if (strcmp (name, ".ucode") == 0)
6516 hdr->sh_type = SHT_MIPS_UCODE;
6517 else if (strcmp (name, ".mdebug") == 0)
6518 {
6519 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6520 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6521 entsize of 0. FIXME: Does this matter? */
6522 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6523 hdr->sh_entsize = 0;
6524 else
6525 hdr->sh_entsize = 1;
6526 }
6527 else if (strcmp (name, ".reginfo") == 0)
6528 {
6529 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6530 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6531 entsize of 0x18. FIXME: Does this matter? */
6532 if (SGI_COMPAT (abfd))
6533 {
6534 if ((abfd->flags & DYNAMIC) != 0)
6535 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6536 else
6537 hdr->sh_entsize = 1;
6538 }
6539 else
6540 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6541 }
6542 else if (SGI_COMPAT (abfd)
6543 && (strcmp (name, ".hash") == 0
6544 || strcmp (name, ".dynamic") == 0
6545 || strcmp (name, ".dynstr") == 0))
6546 {
6547 if (SGI_COMPAT (abfd))
6548 hdr->sh_entsize = 0;
6549#if 0
8dc1a139 6550 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6551 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6552#endif
6553 }
6554 else if (strcmp (name, ".got") == 0
6555 || strcmp (name, ".srdata") == 0
6556 || strcmp (name, ".sdata") == 0
6557 || strcmp (name, ".sbss") == 0
6558 || strcmp (name, ".lit4") == 0
6559 || strcmp (name, ".lit8") == 0)
6560 hdr->sh_flags |= SHF_MIPS_GPREL;
6561 else if (strcmp (name, ".MIPS.interfaces") == 0)
6562 {
6563 hdr->sh_type = SHT_MIPS_IFACE;
6564 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6565 }
0112cd26 6566 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6567 {
6568 hdr->sh_type = SHT_MIPS_CONTENT;
6569 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6570 /* The sh_info field is set in final_write_processing. */
6571 }
cc2e31b9 6572 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6573 {
6574 hdr->sh_type = SHT_MIPS_OPTIONS;
6575 hdr->sh_entsize = 1;
6576 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6577 }
1b315056
CS
6578 else if (CONST_STRNEQ (name, ".debug_")
6579 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6580 {
6581 hdr->sh_type = SHT_MIPS_DWARF;
6582
6583 /* Irix facilities such as libexc expect a single .debug_frame
6584 per executable, the system ones have NOSTRIP set and the linker
6585 doesn't merge sections with different flags so ... */
6586 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6587 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6588 }
b49e97c9
TS
6589 else if (strcmp (name, ".MIPS.symlib") == 0)
6590 {
6591 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6592 /* The sh_link and sh_info fields are set in
6593 final_write_processing. */
6594 }
0112cd26
NC
6595 else if (CONST_STRNEQ (name, ".MIPS.events")
6596 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6597 {
6598 hdr->sh_type = SHT_MIPS_EVENTS;
6599 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6600 /* The sh_link field is set in final_write_processing. */
6601 }
6602 else if (strcmp (name, ".msym") == 0)
6603 {
6604 hdr->sh_type = SHT_MIPS_MSYM;
6605 hdr->sh_flags |= SHF_ALLOC;
6606 hdr->sh_entsize = 8;
6607 }
6608
7a79a000
TS
6609 /* The generic elf_fake_sections will set up REL_HDR using the default
6610 kind of relocations. We used to set up a second header for the
6611 non-default kind of relocations here, but only NewABI would use
6612 these, and the IRIX ld doesn't like resulting empty RELA sections.
6613 Thus we create those header only on demand now. */
b49e97c9 6614
b34976b6 6615 return TRUE;
b49e97c9
TS
6616}
6617
6618/* Given a BFD section, try to locate the corresponding ELF section
6619 index. This is used by both the 32-bit and the 64-bit ABI.
6620 Actually, it's not clear to me that the 64-bit ABI supports these,
6621 but for non-PIC objects we will certainly want support for at least
6622 the .scommon section. */
6623
b34976b6 6624bfd_boolean
9719ad41
RS
6625_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6626 asection *sec, int *retval)
b49e97c9
TS
6627{
6628 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6629 {
6630 *retval = SHN_MIPS_SCOMMON;
b34976b6 6631 return TRUE;
b49e97c9
TS
6632 }
6633 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6634 {
6635 *retval = SHN_MIPS_ACOMMON;
b34976b6 6636 return TRUE;
b49e97c9 6637 }
b34976b6 6638 return FALSE;
b49e97c9
TS
6639}
6640\f
6641/* Hook called by the linker routine which adds symbols from an object
6642 file. We must handle the special MIPS section numbers here. */
6643
b34976b6 6644bfd_boolean
9719ad41 6645_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6646 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6647 flagword *flagsp ATTRIBUTE_UNUSED,
6648 asection **secp, bfd_vma *valp)
b49e97c9
TS
6649{
6650 if (SGI_COMPAT (abfd)
6651 && (abfd->flags & DYNAMIC) != 0
6652 && strcmp (*namep, "_rld_new_interface") == 0)
6653 {
8dc1a139 6654 /* Skip IRIX5 rld entry name. */
b49e97c9 6655 *namep = NULL;
b34976b6 6656 return TRUE;
b49e97c9
TS
6657 }
6658
eedecc07
DD
6659 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6660 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6661 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6662 a magic symbol resolved by the linker, we ignore this bogus definition
6663 of _gp_disp. New ABI objects do not suffer from this problem so this
6664 is not done for them. */
6665 if (!NEWABI_P(abfd)
6666 && (sym->st_shndx == SHN_ABS)
6667 && (strcmp (*namep, "_gp_disp") == 0))
6668 {
6669 *namep = NULL;
6670 return TRUE;
6671 }
6672
b49e97c9
TS
6673 switch (sym->st_shndx)
6674 {
6675 case SHN_COMMON:
6676 /* Common symbols less than the GP size are automatically
6677 treated as SHN_MIPS_SCOMMON symbols. */
6678 if (sym->st_size > elf_gp_size (abfd)
b59eed79 6679 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
6680 || IRIX_COMPAT (abfd) == ict_irix6)
6681 break;
6682 /* Fall through. */
6683 case SHN_MIPS_SCOMMON:
6684 *secp = bfd_make_section_old_way (abfd, ".scommon");
6685 (*secp)->flags |= SEC_IS_COMMON;
6686 *valp = sym->st_size;
6687 break;
6688
6689 case SHN_MIPS_TEXT:
6690 /* This section is used in a shared object. */
6691 if (elf_tdata (abfd)->elf_text_section == NULL)
6692 {
6693 asymbol *elf_text_symbol;
6694 asection *elf_text_section;
6695 bfd_size_type amt = sizeof (asection);
6696
6697 elf_text_section = bfd_zalloc (abfd, amt);
6698 if (elf_text_section == NULL)
b34976b6 6699 return FALSE;
b49e97c9
TS
6700
6701 amt = sizeof (asymbol);
6702 elf_text_symbol = bfd_zalloc (abfd, amt);
6703 if (elf_text_symbol == NULL)
b34976b6 6704 return FALSE;
b49e97c9
TS
6705
6706 /* Initialize the section. */
6707
6708 elf_tdata (abfd)->elf_text_section = elf_text_section;
6709 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6710
6711 elf_text_section->symbol = elf_text_symbol;
6712 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6713
6714 elf_text_section->name = ".text";
6715 elf_text_section->flags = SEC_NO_FLAGS;
6716 elf_text_section->output_section = NULL;
6717 elf_text_section->owner = abfd;
6718 elf_text_symbol->name = ".text";
6719 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6720 elf_text_symbol->section = elf_text_section;
6721 }
6722 /* This code used to do *secp = bfd_und_section_ptr if
6723 info->shared. I don't know why, and that doesn't make sense,
6724 so I took it out. */
6725 *secp = elf_tdata (abfd)->elf_text_section;
6726 break;
6727
6728 case SHN_MIPS_ACOMMON:
6729 /* Fall through. XXX Can we treat this as allocated data? */
6730 case SHN_MIPS_DATA:
6731 /* This section is used in a shared object. */
6732 if (elf_tdata (abfd)->elf_data_section == NULL)
6733 {
6734 asymbol *elf_data_symbol;
6735 asection *elf_data_section;
6736 bfd_size_type amt = sizeof (asection);
6737
6738 elf_data_section = bfd_zalloc (abfd, amt);
6739 if (elf_data_section == NULL)
b34976b6 6740 return FALSE;
b49e97c9
TS
6741
6742 amt = sizeof (asymbol);
6743 elf_data_symbol = bfd_zalloc (abfd, amt);
6744 if (elf_data_symbol == NULL)
b34976b6 6745 return FALSE;
b49e97c9
TS
6746
6747 /* Initialize the section. */
6748
6749 elf_tdata (abfd)->elf_data_section = elf_data_section;
6750 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6751
6752 elf_data_section->symbol = elf_data_symbol;
6753 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6754
6755 elf_data_section->name = ".data";
6756 elf_data_section->flags = SEC_NO_FLAGS;
6757 elf_data_section->output_section = NULL;
6758 elf_data_section->owner = abfd;
6759 elf_data_symbol->name = ".data";
6760 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6761 elf_data_symbol->section = elf_data_section;
6762 }
6763 /* This code used to do *secp = bfd_und_section_ptr if
6764 info->shared. I don't know why, and that doesn't make sense,
6765 so I took it out. */
6766 *secp = elf_tdata (abfd)->elf_data_section;
6767 break;
6768
6769 case SHN_MIPS_SUNDEFINED:
6770 *secp = bfd_und_section_ptr;
6771 break;
6772 }
6773
6774 if (SGI_COMPAT (abfd)
6775 && ! info->shared
f13a99db 6776 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
6777 && strcmp (*namep, "__rld_obj_head") == 0)
6778 {
6779 struct elf_link_hash_entry *h;
14a793b2 6780 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6781
6782 /* Mark __rld_obj_head as dynamic. */
14a793b2 6783 bh = NULL;
b49e97c9 6784 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6785 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6786 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6787 return FALSE;
14a793b2
AM
6788
6789 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6790 h->non_elf = 0;
6791 h->def_regular = 1;
b49e97c9
TS
6792 h->type = STT_OBJECT;
6793
c152c796 6794 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6795 return FALSE;
b49e97c9 6796
b34976b6 6797 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6798 }
6799
6800 /* If this is a mips16 text symbol, add 1 to the value to make it
6801 odd. This will cause something like .word SYM to come up with
6802 the right value when it is loaded into the PC. */
30c09090 6803 if (ELF_ST_IS_MIPS16 (sym->st_other))
b49e97c9
TS
6804 ++*valp;
6805
b34976b6 6806 return TRUE;
b49e97c9
TS
6807}
6808
6809/* This hook function is called before the linker writes out a global
6810 symbol. We mark symbols as small common if appropriate. This is
6811 also where we undo the increment of the value for a mips16 symbol. */
6812
6e0b88f1 6813int
9719ad41
RS
6814_bfd_mips_elf_link_output_symbol_hook
6815 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6816 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6817 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6818{
6819 /* If we see a common symbol, which implies a relocatable link, then
6820 if a symbol was small common in an input file, mark it as small
6821 common in the output file. */
6822 if (sym->st_shndx == SHN_COMMON
6823 && strcmp (input_sec->name, ".scommon") == 0)
6824 sym->st_shndx = SHN_MIPS_SCOMMON;
6825
30c09090 6826 if (ELF_ST_IS_MIPS16 (sym->st_other))
79cda7cf 6827 sym->st_value &= ~1;
b49e97c9 6828
6e0b88f1 6829 return 1;
b49e97c9
TS
6830}
6831\f
6832/* Functions for the dynamic linker. */
6833
6834/* Create dynamic sections when linking against a dynamic object. */
6835
b34976b6 6836bfd_boolean
9719ad41 6837_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6838{
6839 struct elf_link_hash_entry *h;
14a793b2 6840 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6841 flagword flags;
6842 register asection *s;
6843 const char * const *namep;
0a44bf69 6844 struct mips_elf_link_hash_table *htab;
b49e97c9 6845
0a44bf69 6846 htab = mips_elf_hash_table (info);
b49e97c9
TS
6847 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6848 | SEC_LINKER_CREATED | SEC_READONLY);
6849
0a44bf69
RS
6850 /* The psABI requires a read-only .dynamic section, but the VxWorks
6851 EABI doesn't. */
6852 if (!htab->is_vxworks)
b49e97c9 6853 {
0a44bf69
RS
6854 s = bfd_get_section_by_name (abfd, ".dynamic");
6855 if (s != NULL)
6856 {
6857 if (! bfd_set_section_flags (abfd, s, flags))
6858 return FALSE;
6859 }
b49e97c9
TS
6860 }
6861
6862 /* We need to create .got section. */
23cc69b6 6863 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
6864 return FALSE;
6865
0a44bf69 6866 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6867 return FALSE;
b49e97c9 6868
b49e97c9 6869 /* Create .stub section. */
4e41d0d7
RS
6870 s = bfd_make_section_with_flags (abfd,
6871 MIPS_ELF_STUB_SECTION_NAME (abfd),
6872 flags | SEC_CODE);
6873 if (s == NULL
6874 || ! bfd_set_section_alignment (abfd, s,
6875 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6876 return FALSE;
6877 htab->sstubs = s;
b49e97c9
TS
6878
6879 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6880 && !info->shared
6881 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6882 {
3496cb2a
L
6883 s = bfd_make_section_with_flags (abfd, ".rld_map",
6884 flags &~ (flagword) SEC_READONLY);
b49e97c9 6885 if (s == NULL
b49e97c9
TS
6886 || ! bfd_set_section_alignment (abfd, s,
6887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6888 return FALSE;
b49e97c9
TS
6889 }
6890
6891 /* On IRIX5, we adjust add some additional symbols and change the
6892 alignments of several sections. There is no ABI documentation
6893 indicating that this is necessary on IRIX6, nor any evidence that
6894 the linker takes such action. */
6895 if (IRIX_COMPAT (abfd) == ict_irix5)
6896 {
6897 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6898 {
14a793b2 6899 bh = NULL;
b49e97c9 6900 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6901 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6902 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6903 return FALSE;
14a793b2
AM
6904
6905 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6906 h->non_elf = 0;
6907 h->def_regular = 1;
b49e97c9
TS
6908 h->type = STT_SECTION;
6909
c152c796 6910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6911 return FALSE;
b49e97c9
TS
6912 }
6913
6914 /* We need to create a .compact_rel section. */
6915 if (SGI_COMPAT (abfd))
6916 {
6917 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6918 return FALSE;
b49e97c9
TS
6919 }
6920
44c410de 6921 /* Change alignments of some sections. */
b49e97c9
TS
6922 s = bfd_get_section_by_name (abfd, ".hash");
6923 if (s != NULL)
d80dcc6a 6924 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6925 s = bfd_get_section_by_name (abfd, ".dynsym");
6926 if (s != NULL)
d80dcc6a 6927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6928 s = bfd_get_section_by_name (abfd, ".dynstr");
6929 if (s != NULL)
d80dcc6a 6930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6931 s = bfd_get_section_by_name (abfd, ".reginfo");
6932 if (s != NULL)
d80dcc6a 6933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6934 s = bfd_get_section_by_name (abfd, ".dynamic");
6935 if (s != NULL)
d80dcc6a 6936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6937 }
6938
6939 if (!info->shared)
6940 {
14a793b2
AM
6941 const char *name;
6942
6943 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6944 bh = NULL;
6945 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6946 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6947 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6948 return FALSE;
14a793b2
AM
6949
6950 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6951 h->non_elf = 0;
6952 h->def_regular = 1;
b49e97c9
TS
6953 h->type = STT_SECTION;
6954
c152c796 6955 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6956 return FALSE;
b49e97c9
TS
6957
6958 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6959 {
6960 /* __rld_map is a four byte word located in the .data section
6961 and is filled in by the rtld to contain a pointer to
6962 the _r_debug structure. Its symbol value will be set in
6963 _bfd_mips_elf_finish_dynamic_symbol. */
6964 s = bfd_get_section_by_name (abfd, ".rld_map");
6965 BFD_ASSERT (s != NULL);
6966
14a793b2
AM
6967 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6968 bh = NULL;
6969 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6970 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6971 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6972 return FALSE;
14a793b2
AM
6973
6974 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6975 h->non_elf = 0;
6976 h->def_regular = 1;
b49e97c9
TS
6977 h->type = STT_OBJECT;
6978
c152c796 6979 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6980 return FALSE;
b49e97c9
TS
6981 }
6982 }
6983
861fb55a
DJ
6984 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6985 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6986 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6987 return FALSE;
6988
6989 /* Cache the sections created above. */
6990 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6991 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
0a44bf69
RS
6992 if (htab->is_vxworks)
6993 {
0a44bf69
RS
6994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6995 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
861fb55a
DJ
6996 }
6997 else
6998 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
6999 if (!htab->sdynbss
7000 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7001 || !htab->srelplt
7002 || !htab->splt)
7003 abort ();
0a44bf69 7004
861fb55a
DJ
7005 if (htab->is_vxworks)
7006 {
0a44bf69
RS
7007 /* Do the usual VxWorks handling. */
7008 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7009 return FALSE;
7010
7011 /* Work out the PLT sizes. */
7012 if (info->shared)
7013 {
7014 htab->plt_header_size
7015 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7016 htab->plt_entry_size
7017 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7018 }
7019 else
7020 {
7021 htab->plt_header_size
7022 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7023 htab->plt_entry_size
7024 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7025 }
7026 }
861fb55a
DJ
7027 else if (!info->shared)
7028 {
7029 /* All variants of the plt0 entry are the same size. */
7030 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7031 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7032 }
0a44bf69 7033
b34976b6 7034 return TRUE;
b49e97c9
TS
7035}
7036\f
c224138d
RS
7037/* Return true if relocation REL against section SEC is a REL rather than
7038 RELA relocation. RELOCS is the first relocation in the section and
7039 ABFD is the bfd that contains SEC. */
7040
7041static bfd_boolean
7042mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7043 const Elf_Internal_Rela *relocs,
7044 const Elf_Internal_Rela *rel)
7045{
7046 Elf_Internal_Shdr *rel_hdr;
7047 const struct elf_backend_data *bed;
7048
7049 /* To determine which flavor or relocation this is, we depend on the
7050 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7051 rel_hdr = &elf_section_data (sec)->rel_hdr;
7052 bed = get_elf_backend_data (abfd);
7053 if ((size_t) (rel - relocs)
7054 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7055 rel_hdr = elf_section_data (sec)->rel_hdr2;
7056 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7057}
7058
7059/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7060 HOWTO is the relocation's howto and CONTENTS points to the contents
7061 of the section that REL is against. */
7062
7063static bfd_vma
7064mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7065 reloc_howto_type *howto, bfd_byte *contents)
7066{
7067 bfd_byte *location;
7068 unsigned int r_type;
7069 bfd_vma addend;
7070
7071 r_type = ELF_R_TYPE (abfd, rel->r_info);
7072 location = contents + rel->r_offset;
7073
7074 /* Get the addend, which is stored in the input file. */
7075 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7076 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7077 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7078
7079 return addend & howto->src_mask;
7080}
7081
7082/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7083 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7084 and update *ADDEND with the final addend. Return true on success
7085 or false if the LO16 could not be found. RELEND is the exclusive
7086 upper bound on the relocations for REL's section. */
7087
7088static bfd_boolean
7089mips_elf_add_lo16_rel_addend (bfd *abfd,
7090 const Elf_Internal_Rela *rel,
7091 const Elf_Internal_Rela *relend,
7092 bfd_byte *contents, bfd_vma *addend)
7093{
7094 unsigned int r_type, lo16_type;
7095 const Elf_Internal_Rela *lo16_relocation;
7096 reloc_howto_type *lo16_howto;
7097 bfd_vma l;
7098
7099 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7100 if (mips16_reloc_p (r_type))
c224138d
RS
7101 lo16_type = R_MIPS16_LO16;
7102 else
7103 lo16_type = R_MIPS_LO16;
7104
7105 /* The combined value is the sum of the HI16 addend, left-shifted by
7106 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7107 code does a `lui' of the HI16 value, and then an `addiu' of the
7108 LO16 value.)
7109
7110 Scan ahead to find a matching LO16 relocation.
7111
7112 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7113 be immediately following. However, for the IRIX6 ABI, the next
7114 relocation may be a composed relocation consisting of several
7115 relocations for the same address. In that case, the R_MIPS_LO16
7116 relocation may occur as one of these. We permit a similar
7117 extension in general, as that is useful for GCC.
7118
7119 In some cases GCC dead code elimination removes the LO16 but keeps
7120 the corresponding HI16. This is strictly speaking a violation of
7121 the ABI but not immediately harmful. */
7122 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7123 if (lo16_relocation == NULL)
7124 return FALSE;
7125
7126 /* Obtain the addend kept there. */
7127 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7128 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7129
7130 l <<= lo16_howto->rightshift;
7131 l = _bfd_mips_elf_sign_extend (l, 16);
7132
7133 *addend <<= 16;
7134 *addend += l;
7135 return TRUE;
7136}
7137
7138/* Try to read the contents of section SEC in bfd ABFD. Return true and
7139 store the contents in *CONTENTS on success. Assume that *CONTENTS
7140 already holds the contents if it is nonull on entry. */
7141
7142static bfd_boolean
7143mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7144{
7145 if (*contents)
7146 return TRUE;
7147
7148 /* Get cached copy if it exists. */
7149 if (elf_section_data (sec)->this_hdr.contents != NULL)
7150 {
7151 *contents = elf_section_data (sec)->this_hdr.contents;
7152 return TRUE;
7153 }
7154
7155 return bfd_malloc_and_get_section (abfd, sec, contents);
7156}
7157
b49e97c9
TS
7158/* Look through the relocs for a section during the first phase, and
7159 allocate space in the global offset table. */
7160
b34976b6 7161bfd_boolean
9719ad41
RS
7162_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7163 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7164{
7165 const char *name;
7166 bfd *dynobj;
7167 Elf_Internal_Shdr *symtab_hdr;
7168 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7169 size_t extsymoff;
7170 const Elf_Internal_Rela *rel;
7171 const Elf_Internal_Rela *rel_end;
b49e97c9 7172 asection *sreloc;
9c5bfbb7 7173 const struct elf_backend_data *bed;
0a44bf69 7174 struct mips_elf_link_hash_table *htab;
c224138d
RS
7175 bfd_byte *contents;
7176 bfd_vma addend;
7177 reloc_howto_type *howto;
b49e97c9 7178
1049f94e 7179 if (info->relocatable)
b34976b6 7180 return TRUE;
b49e97c9 7181
0a44bf69 7182 htab = mips_elf_hash_table (info);
b49e97c9
TS
7183 dynobj = elf_hash_table (info)->dynobj;
7184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7185 sym_hashes = elf_sym_hashes (abfd);
7186 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7187
738e5348
RS
7188 bed = get_elf_backend_data (abfd);
7189 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7190
b49e97c9
TS
7191 /* Check for the mips16 stub sections. */
7192
7193 name = bfd_get_section_name (abfd, sec);
b9d58d71 7194 if (FN_STUB_P (name))
b49e97c9
TS
7195 {
7196 unsigned long r_symndx;
7197
7198 /* Look at the relocation information to figure out which symbol
7199 this is for. */
7200
738e5348
RS
7201 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7202 if (r_symndx == 0)
7203 {
7204 (*_bfd_error_handler)
7205 (_("%B: Warning: cannot determine the target function for"
7206 " stub section `%s'"),
7207 abfd, name);
7208 bfd_set_error (bfd_error_bad_value);
7209 return FALSE;
7210 }
b49e97c9
TS
7211
7212 if (r_symndx < extsymoff
7213 || sym_hashes[r_symndx - extsymoff] == NULL)
7214 {
7215 asection *o;
7216
7217 /* This stub is for a local symbol. This stub will only be
7218 needed if there is some relocation in this BFD, other
7219 than a 16 bit function call, which refers to this symbol. */
7220 for (o = abfd->sections; o != NULL; o = o->next)
7221 {
7222 Elf_Internal_Rela *sec_relocs;
7223 const Elf_Internal_Rela *r, *rend;
7224
7225 /* We can ignore stub sections when looking for relocs. */
7226 if ((o->flags & SEC_RELOC) == 0
7227 || o->reloc_count == 0
738e5348 7228 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7229 continue;
7230
45d6a902 7231 sec_relocs
9719ad41 7232 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7233 info->keep_memory);
b49e97c9 7234 if (sec_relocs == NULL)
b34976b6 7235 return FALSE;
b49e97c9
TS
7236
7237 rend = sec_relocs + o->reloc_count;
7238 for (r = sec_relocs; r < rend; r++)
7239 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7240 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7241 break;
7242
6cdc0ccc 7243 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7244 free (sec_relocs);
7245
7246 if (r < rend)
7247 break;
7248 }
7249
7250 if (o == NULL)
7251 {
7252 /* There is no non-call reloc for this stub, so we do
7253 not need it. Since this function is called before
7254 the linker maps input sections to output sections, we
7255 can easily discard it by setting the SEC_EXCLUDE
7256 flag. */
7257 sec->flags |= SEC_EXCLUDE;
b34976b6 7258 return TRUE;
b49e97c9
TS
7259 }
7260
7261 /* Record this stub in an array of local symbol stubs for
7262 this BFD. */
7263 if (elf_tdata (abfd)->local_stubs == NULL)
7264 {
7265 unsigned long symcount;
7266 asection **n;
7267 bfd_size_type amt;
7268
7269 if (elf_bad_symtab (abfd))
7270 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7271 else
7272 symcount = symtab_hdr->sh_info;
7273 amt = symcount * sizeof (asection *);
9719ad41 7274 n = bfd_zalloc (abfd, amt);
b49e97c9 7275 if (n == NULL)
b34976b6 7276 return FALSE;
b49e97c9
TS
7277 elf_tdata (abfd)->local_stubs = n;
7278 }
7279
b9d58d71 7280 sec->flags |= SEC_KEEP;
b49e97c9
TS
7281 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7282
7283 /* We don't need to set mips16_stubs_seen in this case.
7284 That flag is used to see whether we need to look through
7285 the global symbol table for stubs. We don't need to set
7286 it here, because we just have a local stub. */
7287 }
7288 else
7289 {
7290 struct mips_elf_link_hash_entry *h;
7291
7292 h = ((struct mips_elf_link_hash_entry *)
7293 sym_hashes[r_symndx - extsymoff]);
7294
973a3492
L
7295 while (h->root.root.type == bfd_link_hash_indirect
7296 || h->root.root.type == bfd_link_hash_warning)
7297 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7298
b49e97c9
TS
7299 /* H is the symbol this stub is for. */
7300
b9d58d71
TS
7301 /* If we already have an appropriate stub for this function, we
7302 don't need another one, so we can discard this one. Since
7303 this function is called before the linker maps input sections
7304 to output sections, we can easily discard it by setting the
7305 SEC_EXCLUDE flag. */
7306 if (h->fn_stub != NULL)
7307 {
7308 sec->flags |= SEC_EXCLUDE;
7309 return TRUE;
7310 }
7311
7312 sec->flags |= SEC_KEEP;
b49e97c9 7313 h->fn_stub = sec;
b34976b6 7314 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7315 }
7316 }
b9d58d71 7317 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7318 {
7319 unsigned long r_symndx;
7320 struct mips_elf_link_hash_entry *h;
7321 asection **loc;
7322
7323 /* Look at the relocation information to figure out which symbol
7324 this is for. */
7325
738e5348
RS
7326 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7327 if (r_symndx == 0)
7328 {
7329 (*_bfd_error_handler)
7330 (_("%B: Warning: cannot determine the target function for"
7331 " stub section `%s'"),
7332 abfd, name);
7333 bfd_set_error (bfd_error_bad_value);
7334 return FALSE;
7335 }
b49e97c9
TS
7336
7337 if (r_symndx < extsymoff
7338 || sym_hashes[r_symndx - extsymoff] == NULL)
7339 {
b9d58d71 7340 asection *o;
b49e97c9 7341
b9d58d71
TS
7342 /* This stub is for a local symbol. This stub will only be
7343 needed if there is some relocation (R_MIPS16_26) in this BFD
7344 that refers to this symbol. */
7345 for (o = abfd->sections; o != NULL; o = o->next)
7346 {
7347 Elf_Internal_Rela *sec_relocs;
7348 const Elf_Internal_Rela *r, *rend;
7349
7350 /* We can ignore stub sections when looking for relocs. */
7351 if ((o->flags & SEC_RELOC) == 0
7352 || o->reloc_count == 0
738e5348 7353 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7354 continue;
7355
7356 sec_relocs
7357 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7358 info->keep_memory);
7359 if (sec_relocs == NULL)
7360 return FALSE;
7361
7362 rend = sec_relocs + o->reloc_count;
7363 for (r = sec_relocs; r < rend; r++)
7364 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7365 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7366 break;
7367
7368 if (elf_section_data (o)->relocs != sec_relocs)
7369 free (sec_relocs);
7370
7371 if (r < rend)
7372 break;
7373 }
7374
7375 if (o == NULL)
7376 {
7377 /* There is no non-call reloc for this stub, so we do
7378 not need it. Since this function is called before
7379 the linker maps input sections to output sections, we
7380 can easily discard it by setting the SEC_EXCLUDE
7381 flag. */
7382 sec->flags |= SEC_EXCLUDE;
7383 return TRUE;
7384 }
7385
7386 /* Record this stub in an array of local symbol call_stubs for
7387 this BFD. */
7388 if (elf_tdata (abfd)->local_call_stubs == NULL)
7389 {
7390 unsigned long symcount;
7391 asection **n;
7392 bfd_size_type amt;
7393
7394 if (elf_bad_symtab (abfd))
7395 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7396 else
7397 symcount = symtab_hdr->sh_info;
7398 amt = symcount * sizeof (asection *);
7399 n = bfd_zalloc (abfd, amt);
7400 if (n == NULL)
7401 return FALSE;
7402 elf_tdata (abfd)->local_call_stubs = n;
7403 }
b49e97c9 7404
b9d58d71
TS
7405 sec->flags |= SEC_KEEP;
7406 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7407
b9d58d71
TS
7408 /* We don't need to set mips16_stubs_seen in this case.
7409 That flag is used to see whether we need to look through
7410 the global symbol table for stubs. We don't need to set
7411 it here, because we just have a local stub. */
7412 }
b49e97c9 7413 else
b49e97c9 7414 {
b9d58d71
TS
7415 h = ((struct mips_elf_link_hash_entry *)
7416 sym_hashes[r_symndx - extsymoff]);
7417
7418 /* H is the symbol this stub is for. */
7419
7420 if (CALL_FP_STUB_P (name))
7421 loc = &h->call_fp_stub;
7422 else
7423 loc = &h->call_stub;
7424
7425 /* If we already have an appropriate stub for this function, we
7426 don't need another one, so we can discard this one. Since
7427 this function is called before the linker maps input sections
7428 to output sections, we can easily discard it by setting the
7429 SEC_EXCLUDE flag. */
7430 if (*loc != NULL)
7431 {
7432 sec->flags |= SEC_EXCLUDE;
7433 return TRUE;
7434 }
b49e97c9 7435
b9d58d71
TS
7436 sec->flags |= SEC_KEEP;
7437 *loc = sec;
7438 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7439 }
b49e97c9
TS
7440 }
7441
b49e97c9 7442 sreloc = NULL;
c224138d 7443 contents = NULL;
b49e97c9
TS
7444 for (rel = relocs; rel < rel_end; ++rel)
7445 {
7446 unsigned long r_symndx;
7447 unsigned int r_type;
7448 struct elf_link_hash_entry *h;
861fb55a 7449 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7450
7451 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7452 r_type = ELF_R_TYPE (abfd, rel->r_info);
7453
7454 if (r_symndx < extsymoff)
7455 h = NULL;
7456 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7457 {
7458 (*_bfd_error_handler)
d003868e
AM
7459 (_("%B: Malformed reloc detected for section %s"),
7460 abfd, name);
b49e97c9 7461 bfd_set_error (bfd_error_bad_value);
b34976b6 7462 return FALSE;
b49e97c9
TS
7463 }
7464 else
7465 {
7466 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7467 while (h != NULL
7468 && (h->root.type == bfd_link_hash_indirect
7469 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7471 }
b49e97c9 7472
861fb55a
DJ
7473 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7474 relocation into a dynamic one. */
7475 can_make_dynamic_p = FALSE;
7476 switch (r_type)
7477 {
7478 case R_MIPS16_GOT16:
7479 case R_MIPS16_CALL16:
7480 case R_MIPS_GOT16:
7481 case R_MIPS_CALL16:
7482 case R_MIPS_CALL_HI16:
7483 case R_MIPS_CALL_LO16:
7484 case R_MIPS_GOT_HI16:
7485 case R_MIPS_GOT_LO16:
7486 case R_MIPS_GOT_PAGE:
7487 case R_MIPS_GOT_OFST:
7488 case R_MIPS_GOT_DISP:
7489 case R_MIPS_TLS_GOTTPREL:
7490 case R_MIPS_TLS_GD:
7491 case R_MIPS_TLS_LDM:
7492 if (dynobj == NULL)
7493 elf_hash_table (info)->dynobj = dynobj = abfd;
7494 if (!mips_elf_create_got_section (dynobj, info))
7495 return FALSE;
7496 if (htab->is_vxworks && !info->shared)
b49e97c9 7497 {
861fb55a
DJ
7498 (*_bfd_error_handler)
7499 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7500 abfd, (unsigned long) rel->r_offset);
7501 bfd_set_error (bfd_error_bad_value);
7502 return FALSE;
b49e97c9 7503 }
861fb55a 7504 break;
b49e97c9 7505
99da6b5f
AN
7506 /* This is just a hint; it can safely be ignored. Don't set
7507 has_static_relocs for the corresponding symbol. */
7508 case R_MIPS_JALR:
7509 break;
7510
861fb55a
DJ
7511 case R_MIPS_32:
7512 case R_MIPS_REL32:
7513 case R_MIPS_64:
7514 /* In VxWorks executables, references to external symbols
7515 must be handled using copy relocs or PLT entries; it is not
7516 possible to convert this relocation into a dynamic one.
7517
7518 For executables that use PLTs and copy-relocs, we have a
7519 choice between converting the relocation into a dynamic
7520 one or using copy relocations or PLT entries. It is
7521 usually better to do the former, unless the relocation is
7522 against a read-only section. */
7523 if ((info->shared
7524 || (h != NULL
7525 && !htab->is_vxworks
7526 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7527 && !(!info->nocopyreloc
7528 && !PIC_OBJECT_P (abfd)
7529 && MIPS_ELF_READONLY_SECTION (sec))))
7530 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7531 {
861fb55a 7532 can_make_dynamic_p = TRUE;
b49e97c9
TS
7533 if (dynobj == NULL)
7534 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7535 break;
861fb55a
DJ
7536 }
7537 /* Fall through. */
b49e97c9 7538
861fb55a
DJ
7539 default:
7540 /* Most static relocations require pointer equality, except
7541 for branches. */
7542 if (h)
7543 h->pointer_equality_needed = TRUE;
7544 /* Fall through. */
b49e97c9 7545
861fb55a
DJ
7546 case R_MIPS_26:
7547 case R_MIPS_PC16:
7548 case R_MIPS16_26:
7549 if (h)
7550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7551 break;
b49e97c9
TS
7552 }
7553
0a44bf69
RS
7554 if (h)
7555 {
0a44bf69
RS
7556 /* Relocations against the special VxWorks __GOTT_BASE__ and
7557 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7558 room for them in .rela.dyn. */
7559 if (is_gott_symbol (info, h))
7560 {
7561 if (sreloc == NULL)
7562 {
7563 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7564 if (sreloc == NULL)
7565 return FALSE;
7566 }
7567 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7568 if (MIPS_ELF_READONLY_SECTION (sec))
7569 /* We tell the dynamic linker that there are
7570 relocations against the text segment. */
7571 info->flags |= DF_TEXTREL;
0a44bf69
RS
7572 }
7573 }
7574 else if (r_type == R_MIPS_CALL_LO16
7575 || r_type == R_MIPS_GOT_LO16
7576 || r_type == R_MIPS_GOT_DISP
738e5348 7577 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7578 {
7579 /* We may need a local GOT entry for this relocation. We
7580 don't count R_MIPS_GOT_PAGE because we can estimate the
7581 maximum number of pages needed by looking at the size of
738e5348
RS
7582 the segment. Similar comments apply to R_MIPS*_GOT16 and
7583 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7584 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7585 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7586 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0
RS
7587 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7588 rel->r_addend, info, 0))
f4416af6 7589 return FALSE;
b49e97c9
TS
7590 }
7591
861fb55a
DJ
7592 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7593 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7594
b49e97c9
TS
7595 switch (r_type)
7596 {
7597 case R_MIPS_CALL16:
738e5348 7598 case R_MIPS16_CALL16:
b49e97c9
TS
7599 if (h == NULL)
7600 {
7601 (*_bfd_error_handler)
d003868e
AM
7602 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7603 abfd, (unsigned long) rel->r_offset);
b49e97c9 7604 bfd_set_error (bfd_error_bad_value);
b34976b6 7605 return FALSE;
b49e97c9
TS
7606 }
7607 /* Fall through. */
7608
7609 case R_MIPS_CALL_HI16:
7610 case R_MIPS_CALL_LO16:
7611 if (h != NULL)
7612 {
d334575b 7613 /* VxWorks call relocations point at the function's .got.plt
0a44bf69
RS
7614 entry, which will be allocated by adjust_dynamic_symbol.
7615 Otherwise, this symbol requires a global GOT entry. */
8275b357 7616 if ((!htab->is_vxworks || h->forced_local)
a8028dd0 7617 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7618 return FALSE;
b49e97c9
TS
7619
7620 /* We need a stub, not a plt entry for the undefined
7621 function. But we record it as if it needs plt. See
c152c796 7622 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 7623 h->needs_plt = 1;
b49e97c9
TS
7624 h->type = STT_FUNC;
7625 }
7626 break;
7627
0fdc1bf1
AO
7628 case R_MIPS_GOT_PAGE:
7629 /* If this is a global, overridable symbol, GOT_PAGE will
7630 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 7631 if (h)
0fdc1bf1
AO
7632 {
7633 struct mips_elf_link_hash_entry *hmips =
7634 (struct mips_elf_link_hash_entry *) h;
143d77c5 7635
3a3b6725 7636 /* This symbol is definitely not overridable. */
f5385ebf 7637 if (hmips->root.def_regular
0fdc1bf1 7638 && ! (info->shared && ! info->symbolic
f5385ebf 7639 && ! hmips->root.forced_local))
c224138d 7640 h = NULL;
0fdc1bf1
AO
7641 }
7642 /* Fall through. */
7643
738e5348 7644 case R_MIPS16_GOT16:
b49e97c9
TS
7645 case R_MIPS_GOT16:
7646 case R_MIPS_GOT_HI16:
7647 case R_MIPS_GOT_LO16:
3a3b6725 7648 if (!h || r_type == R_MIPS_GOT_PAGE)
c224138d 7649 {
3a3b6725
DJ
7650 /* This relocation needs (or may need, if h != NULL) a
7651 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7652 know for sure until we know whether the symbol is
7653 preemptible. */
c224138d
RS
7654 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7655 {
7656 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7657 return FALSE;
7658 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7659 addend = mips_elf_read_rel_addend (abfd, rel,
7660 howto, contents);
7661 if (r_type == R_MIPS_GOT16)
7662 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7663 contents, &addend);
7664 else
7665 addend <<= howto->rightshift;
7666 }
7667 else
7668 addend = rel->r_addend;
a8028dd0
RS
7669 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7670 addend))
c224138d
RS
7671 return FALSE;
7672 break;
7673 }
7674 /* Fall through. */
7675
b49e97c9 7676 case R_MIPS_GOT_DISP:
a8028dd0 7677 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
b34976b6 7678 return FALSE;
b49e97c9
TS
7679 break;
7680
0f20cc35
DJ
7681 case R_MIPS_TLS_GOTTPREL:
7682 if (info->shared)
7683 info->flags |= DF_STATIC_TLS;
7684 /* Fall through */
7685
7686 case R_MIPS_TLS_LDM:
7687 if (r_type == R_MIPS_TLS_LDM)
7688 {
7689 r_symndx = 0;
7690 h = NULL;
7691 }
7692 /* Fall through */
7693
7694 case R_MIPS_TLS_GD:
7695 /* This symbol requires a global offset table entry, or two
7696 for TLS GD relocations. */
7697 {
7698 unsigned char flag = (r_type == R_MIPS_TLS_GD
7699 ? GOT_TLS_GD
7700 : r_type == R_MIPS_TLS_LDM
7701 ? GOT_TLS_LDM
7702 : GOT_TLS_IE);
7703 if (h != NULL)
7704 {
7705 struct mips_elf_link_hash_entry *hmips =
7706 (struct mips_elf_link_hash_entry *) h;
7707 hmips->tls_type |= flag;
7708
a8028dd0
RS
7709 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7710 info, flag))
0f20cc35
DJ
7711 return FALSE;
7712 }
7713 else
7714 {
7715 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7716
a8028dd0
RS
7717 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7718 rel->r_addend,
7719 info, flag))
0f20cc35
DJ
7720 return FALSE;
7721 }
7722 }
7723 break;
7724
b49e97c9
TS
7725 case R_MIPS_32:
7726 case R_MIPS_REL32:
7727 case R_MIPS_64:
0a44bf69
RS
7728 /* In VxWorks executables, references to external symbols
7729 are handled using copy relocs or PLT stubs, so there's
7730 no need to add a .rela.dyn entry for this relocation. */
861fb55a 7731 if (can_make_dynamic_p)
b49e97c9
TS
7732 {
7733 if (sreloc == NULL)
7734 {
0a44bf69 7735 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7736 if (sreloc == NULL)
f4416af6 7737 return FALSE;
b49e97c9 7738 }
9a59ad6b 7739 if (info->shared && h == NULL)
82f0cfbd
EC
7740 {
7741 /* When creating a shared object, we must copy these
7742 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7743 relocs. Make room for this reloc in .rel(a).dyn. */
7744 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7745 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7746 /* We tell the dynamic linker that there are
7747 relocations against the text segment. */
7748 info->flags |= DF_TEXTREL;
7749 }
b49e97c9
TS
7750 else
7751 {
7752 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7753
9a59ad6b
DJ
7754 /* For a shared object, we must copy this relocation
7755 unless the symbol turns out to be undefined and
7756 weak with non-default visibility, in which case
7757 it will be left as zero.
7758
7759 We could elide R_MIPS_REL32 for locally binding symbols
7760 in shared libraries, but do not yet do so.
7761
7762 For an executable, we only need to copy this
7763 reloc if the symbol is defined in a dynamic
7764 object. */
b49e97c9
TS
7765 hmips = (struct mips_elf_link_hash_entry *) h;
7766 ++hmips->possibly_dynamic_relocs;
943284cc 7767 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7768 /* We need it to tell the dynamic linker if there
7769 are relocations against the text segment. */
7770 hmips->readonly_reloc = TRUE;
b49e97c9 7771 }
b49e97c9
TS
7772 }
7773
7774 if (SGI_COMPAT (abfd))
7775 mips_elf_hash_table (info)->compact_rel_size +=
7776 sizeof (Elf32_External_crinfo);
7777 break;
7778
7779 case R_MIPS_26:
7780 case R_MIPS_GPREL16:
7781 case R_MIPS_LITERAL:
7782 case R_MIPS_GPREL32:
7783 if (SGI_COMPAT (abfd))
7784 mips_elf_hash_table (info)->compact_rel_size +=
7785 sizeof (Elf32_External_crinfo);
7786 break;
7787
7788 /* This relocation describes the C++ object vtable hierarchy.
7789 Reconstruct it for later use during GC. */
7790 case R_MIPS_GNU_VTINHERIT:
c152c796 7791 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7792 return FALSE;
b49e97c9
TS
7793 break;
7794
7795 /* This relocation describes which C++ vtable entries are actually
7796 used. Record for later use during GC. */
7797 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7798 BFD_ASSERT (h != NULL);
7799 if (h != NULL
7800 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7801 return FALSE;
b49e97c9
TS
7802 break;
7803
7804 default:
7805 break;
7806 }
7807
7808 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7809 related to taking the function's address. This doesn't apply to
7810 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7811 a normal .got entry. */
7812 if (!htab->is_vxworks && h != NULL)
7813 switch (r_type)
7814 {
7815 default:
7816 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7817 break;
738e5348 7818 case R_MIPS16_CALL16:
0a44bf69
RS
7819 case R_MIPS_CALL16:
7820 case R_MIPS_CALL_HI16:
7821 case R_MIPS_CALL_LO16:
7822 case R_MIPS_JALR:
7823 break;
7824 }
b49e97c9 7825
738e5348
RS
7826 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7827 if there is one. We only need to handle global symbols here;
7828 we decide whether to keep or delete stubs for local symbols
7829 when processing the stub's relocations. */
b49e97c9 7830 if (h != NULL
738e5348
RS
7831 && !mips16_call_reloc_p (r_type)
7832 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
7833 {
7834 struct mips_elf_link_hash_entry *mh;
7835
7836 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7837 mh->need_fn_stub = TRUE;
b49e97c9 7838 }
861fb55a
DJ
7839
7840 /* Refuse some position-dependent relocations when creating a
7841 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7842 not PIC, but we can create dynamic relocations and the result
7843 will be fine. Also do not refuse R_MIPS_LO16, which can be
7844 combined with R_MIPS_GOT16. */
7845 if (info->shared)
7846 {
7847 switch (r_type)
7848 {
7849 case R_MIPS16_HI16:
7850 case R_MIPS_HI16:
7851 case R_MIPS_HIGHER:
7852 case R_MIPS_HIGHEST:
7853 /* Don't refuse a high part relocation if it's against
7854 no symbol (e.g. part of a compound relocation). */
7855 if (r_symndx == 0)
7856 break;
7857
7858 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7859 and has a special meaning. */
7860 if (!NEWABI_P (abfd) && h != NULL
7861 && strcmp (h->root.root.string, "_gp_disp") == 0)
7862 break;
7863
7864 /* FALLTHROUGH */
7865
7866 case R_MIPS16_26:
7867 case R_MIPS_26:
7868 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7869 (*_bfd_error_handler)
7870 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7871 abfd, howto->name,
7872 (h) ? h->root.root.string : "a local symbol");
7873 bfd_set_error (bfd_error_bad_value);
7874 return FALSE;
7875 default:
7876 break;
7877 }
7878 }
b49e97c9
TS
7879 }
7880
b34976b6 7881 return TRUE;
b49e97c9
TS
7882}
7883\f
d0647110 7884bfd_boolean
9719ad41
RS
7885_bfd_mips_relax_section (bfd *abfd, asection *sec,
7886 struct bfd_link_info *link_info,
7887 bfd_boolean *again)
d0647110
AO
7888{
7889 Elf_Internal_Rela *internal_relocs;
7890 Elf_Internal_Rela *irel, *irelend;
7891 Elf_Internal_Shdr *symtab_hdr;
7892 bfd_byte *contents = NULL;
d0647110
AO
7893 size_t extsymoff;
7894 bfd_boolean changed_contents = FALSE;
7895 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7896 Elf_Internal_Sym *isymbuf = NULL;
7897
7898 /* We are not currently changing any sizes, so only one pass. */
7899 *again = FALSE;
7900
1049f94e 7901 if (link_info->relocatable)
d0647110
AO
7902 return TRUE;
7903
9719ad41 7904 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7905 link_info->keep_memory);
d0647110
AO
7906 if (internal_relocs == NULL)
7907 return TRUE;
7908
7909 irelend = internal_relocs + sec->reloc_count
7910 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7911 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7912 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7913
7914 for (irel = internal_relocs; irel < irelend; irel++)
7915 {
7916 bfd_vma symval;
7917 bfd_signed_vma sym_offset;
7918 unsigned int r_type;
7919 unsigned long r_symndx;
7920 asection *sym_sec;
7921 unsigned long instruction;
7922
7923 /* Turn jalr into bgezal, and jr into beq, if they're marked
7924 with a JALR relocation, that indicate where they jump to.
7925 This saves some pipeline bubbles. */
7926 r_type = ELF_R_TYPE (abfd, irel->r_info);
7927 if (r_type != R_MIPS_JALR)
7928 continue;
7929
7930 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7931 /* Compute the address of the jump target. */
7932 if (r_symndx >= extsymoff)
7933 {
7934 struct mips_elf_link_hash_entry *h
7935 = ((struct mips_elf_link_hash_entry *)
7936 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7937
7938 while (h->root.root.type == bfd_link_hash_indirect
7939 || h->root.root.type == bfd_link_hash_warning)
7940 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 7941
d0647110
AO
7942 /* If a symbol is undefined, or if it may be overridden,
7943 skip it. */
7944 if (! ((h->root.root.type == bfd_link_hash_defined
7945 || h->root.root.type == bfd_link_hash_defweak)
7946 && h->root.root.u.def.section)
7947 || (link_info->shared && ! link_info->symbolic
f5385ebf 7948 && !h->root.forced_local))
d0647110
AO
7949 continue;
7950
7951 sym_sec = h->root.root.u.def.section;
7952 if (sym_sec->output_section)
7953 symval = (h->root.root.u.def.value
7954 + sym_sec->output_section->vma
7955 + sym_sec->output_offset);
7956 else
7957 symval = h->root.root.u.def.value;
7958 }
7959 else
7960 {
7961 Elf_Internal_Sym *isym;
7962
7963 /* Read this BFD's symbols if we haven't done so already. */
7964 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7965 {
7966 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7967 if (isymbuf == NULL)
7968 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7969 symtab_hdr->sh_info, 0,
7970 NULL, NULL, NULL);
7971 if (isymbuf == NULL)
7972 goto relax_return;
7973 }
7974
7975 isym = isymbuf + r_symndx;
7976 if (isym->st_shndx == SHN_UNDEF)
7977 continue;
7978 else if (isym->st_shndx == SHN_ABS)
7979 sym_sec = bfd_abs_section_ptr;
7980 else if (isym->st_shndx == SHN_COMMON)
7981 sym_sec = bfd_com_section_ptr;
7982 else
7983 sym_sec
7984 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7985 symval = isym->st_value
7986 + sym_sec->output_section->vma
7987 + sym_sec->output_offset;
7988 }
7989
7990 /* Compute branch offset, from delay slot of the jump to the
7991 branch target. */
7992 sym_offset = (symval + irel->r_addend)
7993 - (sec_start + irel->r_offset + 4);
7994
7995 /* Branch offset must be properly aligned. */
7996 if ((sym_offset & 3) != 0)
7997 continue;
7998
7999 sym_offset >>= 2;
8000
8001 /* Check that it's in range. */
8002 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8003 continue;
143d77c5 8004
d0647110 8005 /* Get the section contents if we haven't done so already. */
c224138d
RS
8006 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8007 goto relax_return;
d0647110
AO
8008
8009 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8010
8011 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8012 if ((instruction & 0xfc1fffff) == 0x0000f809)
8013 instruction = 0x04110000;
8014 /* If it was jr <reg>, turn it into b <target>. */
8015 else if ((instruction & 0xfc1fffff) == 0x00000008)
8016 instruction = 0x10000000;
8017 else
8018 continue;
8019
8020 instruction |= (sym_offset & 0xffff);
8021 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8022 changed_contents = TRUE;
8023 }
8024
8025 if (contents != NULL
8026 && elf_section_data (sec)->this_hdr.contents != contents)
8027 {
8028 if (!changed_contents && !link_info->keep_memory)
8029 free (contents);
8030 else
8031 {
8032 /* Cache the section contents for elf_link_input_bfd. */
8033 elf_section_data (sec)->this_hdr.contents = contents;
8034 }
8035 }
8036 return TRUE;
8037
143d77c5 8038 relax_return:
eea6121a
AM
8039 if (contents != NULL
8040 && elf_section_data (sec)->this_hdr.contents != contents)
8041 free (contents);
d0647110
AO
8042 return FALSE;
8043}
8044\f
9a59ad6b
DJ
8045/* Allocate space for global sym dynamic relocs. */
8046
8047static bfd_boolean
8048allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8049{
8050 struct bfd_link_info *info = inf;
8051 bfd *dynobj;
8052 struct mips_elf_link_hash_entry *hmips;
8053 struct mips_elf_link_hash_table *htab;
8054
8055 htab = mips_elf_hash_table (info);
8056 dynobj = elf_hash_table (info)->dynobj;
8057 hmips = (struct mips_elf_link_hash_entry *) h;
8058
8059 /* VxWorks executables are handled elsewhere; we only need to
8060 allocate relocations in shared objects. */
8061 if (htab->is_vxworks && !info->shared)
8062 return TRUE;
8063
63897e2c
RS
8064 /* Ignore indirect and warning symbols. All relocations against
8065 such symbols will be redirected to the target symbol. */
8066 if (h->root.type == bfd_link_hash_indirect
8067 || h->root.type == bfd_link_hash_warning)
8068 return TRUE;
8069
9a59ad6b
DJ
8070 /* If this symbol is defined in a dynamic object, or we are creating
8071 a shared library, we will need to copy any R_MIPS_32 or
8072 R_MIPS_REL32 relocs against it into the output file. */
8073 if (! info->relocatable
8074 && hmips->possibly_dynamic_relocs != 0
8075 && (h->root.type == bfd_link_hash_defweak
8076 || !h->def_regular
8077 || info->shared))
8078 {
8079 bfd_boolean do_copy = TRUE;
8080
8081 if (h->root.type == bfd_link_hash_undefweak)
8082 {
8083 /* Do not copy relocations for undefined weak symbols with
8084 non-default visibility. */
8085 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8086 do_copy = FALSE;
8087
8088 /* Make sure undefined weak symbols are output as a dynamic
8089 symbol in PIEs. */
8090 else if (h->dynindx == -1 && !h->forced_local)
8091 {
8092 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8093 return FALSE;
8094 }
8095 }
8096
8097 if (do_copy)
8098 {
aff469fa
RS
8099 /* Even though we don't directly need a GOT entry for this symbol,
8100 a symbol must have a dynamic symbol table index greater that
8101 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8102 if (hmips->global_got_area > GGA_RELOC_ONLY)
8103 hmips->global_got_area = GGA_RELOC_ONLY;
8104
9a59ad6b
DJ
8105 mips_elf_allocate_dynamic_relocations
8106 (dynobj, info, hmips->possibly_dynamic_relocs);
8107 if (hmips->readonly_reloc)
8108 /* We tell the dynamic linker that there are relocations
8109 against the text segment. */
8110 info->flags |= DF_TEXTREL;
8111 }
8112 }
8113
8114 return TRUE;
8115}
8116
b49e97c9
TS
8117/* Adjust a symbol defined by a dynamic object and referenced by a
8118 regular object. The current definition is in some section of the
8119 dynamic object, but we're not including those sections. We have to
8120 change the definition to something the rest of the link can
8121 understand. */
8122
b34976b6 8123bfd_boolean
9719ad41
RS
8124_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8125 struct elf_link_hash_entry *h)
b49e97c9
TS
8126{
8127 bfd *dynobj;
8128 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8129 struct mips_elf_link_hash_table *htab;
b49e97c9 8130
5108fc1b 8131 htab = mips_elf_hash_table (info);
b49e97c9 8132 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8133 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8134
8135 /* Make sure we know what is going on here. */
8136 BFD_ASSERT (dynobj != NULL
f5385ebf 8137 && (h->needs_plt
f6e332e6 8138 || h->u.weakdef != NULL
f5385ebf
AM
8139 || (h->def_dynamic
8140 && h->ref_regular
8141 && !h->def_regular)));
b49e97c9 8142
b49e97c9 8143 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8144
861fb55a
DJ
8145 /* If there are call relocations against an externally-defined symbol,
8146 see whether we can create a MIPS lazy-binding stub for it. We can
8147 only do this if all references to the function are through call
8148 relocations, and in that case, the traditional lazy-binding stubs
8149 are much more efficient than PLT entries.
8150
8151 Traditional stubs are only available on SVR4 psABI-based systems;
8152 VxWorks always uses PLTs instead. */
8153 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8154 {
8155 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8156 return TRUE;
b49e97c9
TS
8157
8158 /* If this symbol is not defined in a regular file, then set
8159 the symbol to the stub location. This is required to make
8160 function pointers compare as equal between the normal
8161 executable and the shared library. */
f5385ebf 8162 if (!h->def_regular)
b49e97c9 8163 {
33bb52fb
RS
8164 hmips->needs_lazy_stub = TRUE;
8165 htab->lazy_stub_count++;
b34976b6 8166 return TRUE;
b49e97c9
TS
8167 }
8168 }
861fb55a
DJ
8169 /* As above, VxWorks requires PLT entries for externally-defined
8170 functions that are only accessed through call relocations.
b49e97c9 8171
861fb55a
DJ
8172 Both VxWorks and non-VxWorks targets also need PLT entries if there
8173 are static-only relocations against an externally-defined function.
8174 This can technically occur for shared libraries if there are
8175 branches to the symbol, although it is unlikely that this will be
8176 used in practice due to the short ranges involved. It can occur
8177 for any relative or absolute relocation in executables; in that
8178 case, the PLT entry becomes the function's canonical address. */
8179 else if (((h->needs_plt && !hmips->no_fn_stub)
8180 || (h->type == STT_FUNC && hmips->has_static_relocs))
8181 && htab->use_plts_and_copy_relocs
8182 && !SYMBOL_CALLS_LOCAL (info, h)
8183 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8184 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8185 {
861fb55a
DJ
8186 /* If this is the first symbol to need a PLT entry, allocate room
8187 for the header. */
8188 if (htab->splt->size == 0)
8189 {
8190 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8191
861fb55a
DJ
8192 /* If we're using the PLT additions to the psABI, each PLT
8193 entry is 16 bytes and the PLT0 entry is 32 bytes.
8194 Encourage better cache usage by aligning. We do this
8195 lazily to avoid pessimizing traditional objects. */
8196 if (!htab->is_vxworks
8197 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8198 return FALSE;
0a44bf69 8199
861fb55a
DJ
8200 /* Make sure that .got.plt is word-aligned. We do this lazily
8201 for the same reason as above. */
8202 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8203 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8204 return FALSE;
0a44bf69 8205
861fb55a 8206 htab->splt->size += htab->plt_header_size;
0a44bf69 8207
861fb55a
DJ
8208 /* On non-VxWorks targets, the first two entries in .got.plt
8209 are reserved. */
8210 if (!htab->is_vxworks)
8211 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
0a44bf69 8212
861fb55a
DJ
8213 /* On VxWorks, also allocate room for the header's
8214 .rela.plt.unloaded entries. */
8215 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8216 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8217 }
8218
8219 /* Assign the next .plt entry to this symbol. */
8220 h->plt.offset = htab->splt->size;
8221 htab->splt->size += htab->plt_entry_size;
8222
8223 /* If the output file has no definition of the symbol, set the
861fb55a 8224 symbol's value to the address of the stub. */
131eb6b7 8225 if (!info->shared && !h->def_regular)
0a44bf69
RS
8226 {
8227 h->root.u.def.section = htab->splt;
8228 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8229 /* For VxWorks, point at the PLT load stub rather than the
8230 lazy resolution stub; this stub will become the canonical
8231 function address. */
8232 if (htab->is_vxworks)
8233 h->root.u.def.value += 8;
0a44bf69
RS
8234 }
8235
861fb55a
DJ
8236 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8237 relocation. */
8238 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8239 htab->srelplt->size += (htab->is_vxworks
8240 ? MIPS_ELF_RELA_SIZE (dynobj)
8241 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8242
8243 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8244 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8245 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8246
861fb55a
DJ
8247 /* All relocations against this symbol that could have been made
8248 dynamic will now refer to the PLT entry instead. */
8249 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8250
0a44bf69
RS
8251 return TRUE;
8252 }
8253
8254 /* If this is a weak symbol, and there is a real definition, the
8255 processor independent code will have arranged for us to see the
8256 real definition first, and we can just use the same value. */
8257 if (h->u.weakdef != NULL)
8258 {
8259 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8260 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8261 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8262 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8263 return TRUE;
8264 }
8265
861fb55a
DJ
8266 /* Otherwise, there is nothing further to do for symbols defined
8267 in regular objects. */
8268 if (h->def_regular)
0a44bf69
RS
8269 return TRUE;
8270
861fb55a
DJ
8271 /* There's also nothing more to do if we'll convert all relocations
8272 against this symbol into dynamic relocations. */
8273 if (!hmips->has_static_relocs)
8274 return TRUE;
8275
8276 /* We're now relying on copy relocations. Complain if we have
8277 some that we can't convert. */
8278 if (!htab->use_plts_and_copy_relocs || info->shared)
8279 {
8280 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8281 "dynamic symbol %s"),
8282 h->root.root.string);
8283 bfd_set_error (bfd_error_bad_value);
8284 return FALSE;
8285 }
8286
0a44bf69
RS
8287 /* We must allocate the symbol in our .dynbss section, which will
8288 become part of the .bss section of the executable. There will be
8289 an entry for this symbol in the .dynsym section. The dynamic
8290 object will contain position independent code, so all references
8291 from the dynamic object to this symbol will go through the global
8292 offset table. The dynamic linker will use the .dynsym entry to
8293 determine the address it must put in the global offset table, so
8294 both the dynamic object and the regular object will refer to the
8295 same memory location for the variable. */
8296
8297 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8298 {
861fb55a
DJ
8299 if (htab->is_vxworks)
8300 htab->srelbss->size += sizeof (Elf32_External_Rela);
8301 else
8302 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8303 h->needs_copy = 1;
8304 }
8305
861fb55a
DJ
8306 /* All relocations against this symbol that could have been made
8307 dynamic will now refer to the local copy instead. */
8308 hmips->possibly_dynamic_relocs = 0;
8309
027297b7 8310 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8311}
b49e97c9
TS
8312\f
8313/* This function is called after all the input files have been read,
8314 and the input sections have been assigned to output sections. We
8315 check for any mips16 stub sections that we can discard. */
8316
b34976b6 8317bfd_boolean
9719ad41
RS
8318_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8319 struct bfd_link_info *info)
b49e97c9
TS
8320{
8321 asection *ri;
0a44bf69 8322 struct mips_elf_link_hash_table *htab;
861fb55a 8323 struct mips_htab_traverse_info hti;
0a44bf69
RS
8324
8325 htab = mips_elf_hash_table (info);
f4416af6 8326
b49e97c9
TS
8327 /* The .reginfo section has a fixed size. */
8328 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8329 if (ri != NULL)
9719ad41 8330 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8331
861fb55a
DJ
8332 hti.info = info;
8333 hti.output_bfd = output_bfd;
8334 hti.error = FALSE;
8335 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8336 mips_elf_check_symbols, &hti);
8337 if (hti.error)
8338 return FALSE;
f4416af6 8339
33bb52fb
RS
8340 return TRUE;
8341}
8342
8343/* If the link uses a GOT, lay it out and work out its size. */
8344
8345static bfd_boolean
8346mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8347{
8348 bfd *dynobj;
8349 asection *s;
8350 struct mips_got_info *g;
33bb52fb
RS
8351 bfd_size_type loadable_size = 0;
8352 bfd_size_type page_gotno;
8353 bfd *sub;
8354 struct mips_elf_count_tls_arg count_tls_arg;
8355 struct mips_elf_link_hash_table *htab;
8356
8357 htab = mips_elf_hash_table (info);
a8028dd0 8358 s = htab->sgot;
f4416af6 8359 if (s == NULL)
b34976b6 8360 return TRUE;
b49e97c9 8361
33bb52fb 8362 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8363 g = htab->got_info;
8364
861fb55a
DJ
8365 /* Allocate room for the reserved entries. VxWorks always reserves
8366 3 entries; other objects only reserve 2 entries. */
8367 BFD_ASSERT (g->assigned_gotno == 0);
8368 if (htab->is_vxworks)
8369 htab->reserved_gotno = 3;
8370 else
8371 htab->reserved_gotno = 2;
8372 g->local_gotno += htab->reserved_gotno;
8373 g->assigned_gotno = htab->reserved_gotno;
8374
33bb52fb
RS
8375 /* Replace entries for indirect and warning symbols with entries for
8376 the target symbol. */
8377 if (!mips_elf_resolve_final_got_entries (g))
8378 return FALSE;
f4416af6 8379
d4596a51
RS
8380 /* Count the number of GOT symbols. */
8381 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
f4416af6 8382
33bb52fb
RS
8383 /* Calculate the total loadable size of the output. That
8384 will give us the maximum number of GOT_PAGE entries
8385 required. */
8386 for (sub = info->input_bfds; sub; sub = sub->link_next)
8387 {
8388 asection *subsection;
5108fc1b 8389
33bb52fb
RS
8390 for (subsection = sub->sections;
8391 subsection;
8392 subsection = subsection->next)
8393 {
8394 if ((subsection->flags & SEC_ALLOC) == 0)
8395 continue;
8396 loadable_size += ((subsection->size + 0xf)
8397 &~ (bfd_size_type) 0xf);
8398 }
8399 }
f4416af6 8400
0a44bf69 8401 if (htab->is_vxworks)
738e5348 8402 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8403 relocations against local symbols evaluate to "G", and the EABI does
8404 not include R_MIPS_GOT_PAGE. */
c224138d 8405 page_gotno = 0;
0a44bf69
RS
8406 else
8407 /* Assume there are two loadable segments consisting of contiguous
8408 sections. Is 5 enough? */
c224138d
RS
8409 page_gotno = (loadable_size >> 16) + 5;
8410
8411 /* Choose the smaller of the two estimates; both are intended to be
8412 conservative. */
8413 if (page_gotno > g->page_gotno)
8414 page_gotno = g->page_gotno;
f4416af6 8415
c224138d 8416 g->local_gotno += page_gotno;
eea6121a 8417 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
d4596a51 8418 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 8419
0f20cc35
DJ
8420 /* We need to calculate tls_gotno for global symbols at this point
8421 instead of building it up earlier, to avoid doublecounting
8422 entries for one global symbol from multiple input files. */
8423 count_tls_arg.info = info;
8424 count_tls_arg.needed = 0;
8425 elf_link_hash_traverse (elf_hash_table (info),
8426 mips_elf_count_global_tls_entries,
8427 &count_tls_arg);
8428 g->tls_gotno += count_tls_arg.needed;
8429 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8430
0a44bf69
RS
8431 /* VxWorks does not support multiple GOTs. It initializes $gp to
8432 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8433 dynamic loader. */
33bb52fb
RS
8434 if (htab->is_vxworks)
8435 {
8436 /* VxWorks executables do not need a GOT. */
8437 if (info->shared)
8438 {
8439 /* Each VxWorks GOT entry needs an explicit relocation. */
8440 unsigned int count;
8441
861fb55a 8442 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8443 if (count)
8444 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8445 }
8446 }
8447 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8448 {
a8028dd0 8449 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8450 return FALSE;
8451 }
8452 else
8453 {
33bb52fb
RS
8454 struct mips_elf_count_tls_arg arg;
8455
8456 /* Set up TLS entries. */
0f20cc35
DJ
8457 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8458 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
33bb52fb
RS
8459
8460 /* Allocate room for the TLS relocations. */
8461 arg.info = info;
8462 arg.needed = 0;
8463 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8464 elf_link_hash_traverse (elf_hash_table (info),
8465 mips_elf_count_global_tls_relocs,
8466 &arg);
8467 if (arg.needed)
8468 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
0f20cc35 8469 }
b49e97c9 8470
b34976b6 8471 return TRUE;
b49e97c9
TS
8472}
8473
33bb52fb
RS
8474/* Estimate the size of the .MIPS.stubs section. */
8475
8476static void
8477mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8478{
8479 struct mips_elf_link_hash_table *htab;
8480 bfd_size_type dynsymcount;
8481
8482 htab = mips_elf_hash_table (info);
8483 if (htab->lazy_stub_count == 0)
8484 return;
8485
8486 /* IRIX rld assumes that a function stub isn't at the end of the .text
8487 section, so add a dummy entry to the end. */
8488 htab->lazy_stub_count++;
8489
8490 /* Get a worst-case estimate of the number of dynamic symbols needed.
8491 At this point, dynsymcount does not account for section symbols
8492 and count_section_dynsyms may overestimate the number that will
8493 be needed. */
8494 dynsymcount = (elf_hash_table (info)->dynsymcount
8495 + count_section_dynsyms (output_bfd, info));
8496
8497 /* Determine the size of one stub entry. */
8498 htab->function_stub_size = (dynsymcount > 0x10000
8499 ? MIPS_FUNCTION_STUB_BIG_SIZE
8500 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8501
8502 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8503}
8504
8505/* A mips_elf_link_hash_traverse callback for which DATA points to the
8506 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8507 allocate an entry in the stubs section. */
8508
8509static bfd_boolean
8510mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8511{
8512 struct mips_elf_link_hash_table *htab;
8513
8514 htab = (struct mips_elf_link_hash_table *) data;
8515 if (h->needs_lazy_stub)
8516 {
8517 h->root.root.u.def.section = htab->sstubs;
8518 h->root.root.u.def.value = htab->sstubs->size;
8519 h->root.plt.offset = htab->sstubs->size;
8520 htab->sstubs->size += htab->function_stub_size;
8521 }
8522 return TRUE;
8523}
8524
8525/* Allocate offsets in the stubs section to each symbol that needs one.
8526 Set the final size of the .MIPS.stub section. */
8527
8528static void
8529mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8530{
8531 struct mips_elf_link_hash_table *htab;
8532
8533 htab = mips_elf_hash_table (info);
8534 if (htab->lazy_stub_count == 0)
8535 return;
8536
8537 htab->sstubs->size = 0;
8538 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8539 mips_elf_allocate_lazy_stub, htab);
8540 htab->sstubs->size += htab->function_stub_size;
8541 BFD_ASSERT (htab->sstubs->size
8542 == htab->lazy_stub_count * htab->function_stub_size);
8543}
8544
b49e97c9
TS
8545/* Set the sizes of the dynamic sections. */
8546
b34976b6 8547bfd_boolean
9719ad41
RS
8548_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8549 struct bfd_link_info *info)
b49e97c9
TS
8550{
8551 bfd *dynobj;
861fb55a 8552 asection *s, *sreldyn;
b34976b6 8553 bfd_boolean reltext;
0a44bf69 8554 struct mips_elf_link_hash_table *htab;
b49e97c9 8555
0a44bf69 8556 htab = mips_elf_hash_table (info);
b49e97c9
TS
8557 dynobj = elf_hash_table (info)->dynobj;
8558 BFD_ASSERT (dynobj != NULL);
8559
8560 if (elf_hash_table (info)->dynamic_sections_created)
8561 {
8562 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8563 if (info->executable)
b49e97c9
TS
8564 {
8565 s = bfd_get_section_by_name (dynobj, ".interp");
8566 BFD_ASSERT (s != NULL);
eea6121a 8567 s->size
b49e97c9
TS
8568 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8569 s->contents
8570 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8571 }
861fb55a
DJ
8572
8573 /* Create a symbol for the PLT, if we know that we are using it. */
8574 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8575 {
8576 struct elf_link_hash_entry *h;
8577
8578 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8579
8580 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8581 "_PROCEDURE_LINKAGE_TABLE_");
8582 htab->root.hplt = h;
8583 if (h == NULL)
8584 return FALSE;
8585 h->type = STT_FUNC;
8586 }
8587 }
4e41d0d7 8588
9a59ad6b
DJ
8589 /* Allocate space for global sym dynamic relocs. */
8590 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8591
33bb52fb
RS
8592 mips_elf_estimate_stub_size (output_bfd, info);
8593
8594 if (!mips_elf_lay_out_got (output_bfd, info))
8595 return FALSE;
8596
8597 mips_elf_lay_out_lazy_stubs (info);
8598
b49e97c9
TS
8599 /* The check_relocs and adjust_dynamic_symbol entry points have
8600 determined the sizes of the various dynamic sections. Allocate
8601 memory for them. */
b34976b6 8602 reltext = FALSE;
b49e97c9
TS
8603 for (s = dynobj->sections; s != NULL; s = s->next)
8604 {
8605 const char *name;
b49e97c9
TS
8606
8607 /* It's OK to base decisions on the section name, because none
8608 of the dynobj section names depend upon the input files. */
8609 name = bfd_get_section_name (dynobj, s);
8610
8611 if ((s->flags & SEC_LINKER_CREATED) == 0)
8612 continue;
8613
0112cd26 8614 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 8615 {
c456f082 8616 if (s->size != 0)
b49e97c9
TS
8617 {
8618 const char *outname;
8619 asection *target;
8620
8621 /* If this relocation section applies to a read only
8622 section, then we probably need a DT_TEXTREL entry.
0a44bf69 8623 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
8624 assert a DT_TEXTREL entry rather than testing whether
8625 there exists a relocation to a read only section or
8626 not. */
8627 outname = bfd_get_section_name (output_bfd,
8628 s->output_section);
8629 target = bfd_get_section_by_name (output_bfd, outname + 4);
8630 if ((target != NULL
8631 && (target->flags & SEC_READONLY) != 0
8632 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 8633 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 8634 reltext = TRUE;
b49e97c9
TS
8635
8636 /* We use the reloc_count field as a counter if we need
8637 to copy relocs into the output file. */
0a44bf69 8638 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 8639 s->reloc_count = 0;
f4416af6
AO
8640
8641 /* If combreloc is enabled, elf_link_sort_relocs() will
8642 sort relocations, but in a different way than we do,
8643 and before we're done creating relocations. Also, it
8644 will move them around between input sections'
8645 relocation's contents, so our sorting would be
8646 broken, so don't let it run. */
8647 info->combreloc = 0;
b49e97c9
TS
8648 }
8649 }
b49e97c9
TS
8650 else if (! info->shared
8651 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 8652 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 8653 {
5108fc1b 8654 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 8655 rtld to contain a pointer to the _r_debug structure. */
eea6121a 8656 s->size += 4;
b49e97c9
TS
8657 }
8658 else if (SGI_COMPAT (output_bfd)
0112cd26 8659 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 8660 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
8661 else if (s == htab->splt)
8662 {
8663 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
8664 room for an extra nop to fill the delay slot. This is
8665 for CPUs without load interlocking. */
8666 if (! LOAD_INTERLOCKS_P (output_bfd)
8667 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
8668 s->size += 4;
8669 }
0112cd26 8670 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 8671 && s != htab->sgot
0a44bf69 8672 && s != htab->sgotplt
861fb55a
DJ
8673 && s != htab->sstubs
8674 && s != htab->sdynbss)
b49e97c9
TS
8675 {
8676 /* It's not one of our sections, so don't allocate space. */
8677 continue;
8678 }
8679
c456f082 8680 if (s->size == 0)
b49e97c9 8681 {
8423293d 8682 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
8683 continue;
8684 }
8685
c456f082
AM
8686 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8687 continue;
8688
b49e97c9 8689 /* Allocate memory for the section contents. */
eea6121a 8690 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 8691 if (s->contents == NULL)
b49e97c9
TS
8692 {
8693 bfd_set_error (bfd_error_no_memory);
b34976b6 8694 return FALSE;
b49e97c9
TS
8695 }
8696 }
8697
8698 if (elf_hash_table (info)->dynamic_sections_created)
8699 {
8700 /* Add some entries to the .dynamic section. We fill in the
8701 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8702 must add the entries now so that we get the correct size for
5750dcec 8703 the .dynamic section. */
af5978fb
RS
8704
8705 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
8706 DT_MIPS_RLD_MAP entry. This must come first because glibc
8707 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8708 looks at the first one it sees. */
af5978fb
RS
8709 if (!info->shared
8710 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8711 return FALSE;
b49e97c9 8712
5750dcec
DJ
8713 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8714 used by the debugger. */
8715 if (info->executable
8716 && !SGI_COMPAT (output_bfd)
8717 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8718 return FALSE;
8719
0a44bf69 8720 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
8721 info->flags |= DF_TEXTREL;
8722
8723 if ((info->flags & DF_TEXTREL) != 0)
8724 {
8725 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 8726 return FALSE;
943284cc
DJ
8727
8728 /* Clear the DF_TEXTREL flag. It will be set again if we
8729 write out an actual text relocation; we may not, because
8730 at this point we do not know whether e.g. any .eh_frame
8731 absolute relocations have been converted to PC-relative. */
8732 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
8733 }
8734
8735 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 8736 return FALSE;
b49e97c9 8737
861fb55a 8738 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 8739 if (htab->is_vxworks)
b49e97c9 8740 {
0a44bf69
RS
8741 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8742 use any of the DT_MIPS_* tags. */
861fb55a 8743 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8744 {
8745 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8746 return FALSE;
b49e97c9 8747
0a44bf69
RS
8748 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8749 return FALSE;
b49e97c9 8750
0a44bf69
RS
8751 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8752 return FALSE;
8753 }
b49e97c9 8754 }
0a44bf69
RS
8755 else
8756 {
861fb55a 8757 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
8758 {
8759 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8760 return FALSE;
b49e97c9 8761
0a44bf69
RS
8762 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8763 return FALSE;
b49e97c9 8764
0a44bf69
RS
8765 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8766 return FALSE;
8767 }
b49e97c9 8768
0a44bf69
RS
8769 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8770 return FALSE;
b49e97c9 8771
0a44bf69
RS
8772 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8773 return FALSE;
b49e97c9 8774
0a44bf69
RS
8775 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8776 return FALSE;
b49e97c9 8777
0a44bf69
RS
8778 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8779 return FALSE;
b49e97c9 8780
0a44bf69
RS
8781 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8782 return FALSE;
b49e97c9 8783
0a44bf69
RS
8784 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8785 return FALSE;
b49e97c9 8786
0a44bf69
RS
8787 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8788 return FALSE;
8789
8790 if (IRIX_COMPAT (dynobj) == ict_irix5
8791 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8792 return FALSE;
8793
8794 if (IRIX_COMPAT (dynobj) == ict_irix6
8795 && (bfd_get_section_by_name
8796 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8797 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8798 return FALSE;
8799 }
861fb55a
DJ
8800 if (htab->splt->size > 0)
8801 {
8802 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8803 return FALSE;
8804
8805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8806 return FALSE;
8807
8808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8809 return FALSE;
8810
8811 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8812 return FALSE;
8813 }
7a2b07ff
NS
8814 if (htab->is_vxworks
8815 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8816 return FALSE;
b49e97c9
TS
8817 }
8818
b34976b6 8819 return TRUE;
b49e97c9
TS
8820}
8821\f
81d43bff
RS
8822/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8823 Adjust its R_ADDEND field so that it is correct for the output file.
8824 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8825 and sections respectively; both use symbol indexes. */
8826
8827static void
8828mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8829 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8830 asection **local_sections, Elf_Internal_Rela *rel)
8831{
8832 unsigned int r_type, r_symndx;
8833 Elf_Internal_Sym *sym;
8834 asection *sec;
8835
8836 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8837 {
8838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8839 if (r_type == R_MIPS16_GPREL
8840 || r_type == R_MIPS_GPREL16
8841 || r_type == R_MIPS_GPREL32
8842 || r_type == R_MIPS_LITERAL)
8843 {
8844 rel->r_addend += _bfd_get_gp_value (input_bfd);
8845 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8846 }
8847
8848 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8849 sym = local_syms + r_symndx;
8850
8851 /* Adjust REL's addend to account for section merging. */
8852 if (!info->relocatable)
8853 {
8854 sec = local_sections[r_symndx];
8855 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8856 }
8857
8858 /* This would normally be done by the rela_normal code in elflink.c. */
8859 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8860 rel->r_addend += local_sections[r_symndx]->output_offset;
8861 }
8862}
8863
b49e97c9
TS
8864/* Relocate a MIPS ELF section. */
8865
b34976b6 8866bfd_boolean
9719ad41
RS
8867_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8868 bfd *input_bfd, asection *input_section,
8869 bfd_byte *contents, Elf_Internal_Rela *relocs,
8870 Elf_Internal_Sym *local_syms,
8871 asection **local_sections)
b49e97c9
TS
8872{
8873 Elf_Internal_Rela *rel;
8874 const Elf_Internal_Rela *relend;
8875 bfd_vma addend = 0;
b34976b6 8876 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8877 const struct elf_backend_data *bed;
b49e97c9
TS
8878
8879 bed = get_elf_backend_data (output_bfd);
8880 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8881 for (rel = relocs; rel < relend; ++rel)
8882 {
8883 const char *name;
c9adbffe 8884 bfd_vma value = 0;
b49e97c9 8885 reloc_howto_type *howto;
b34976b6
AM
8886 bfd_boolean require_jalx;
8887 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8888 REL relocation. */
b34976b6 8889 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8890 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8891 const char *msg;
ab96bf03
AM
8892 unsigned long r_symndx;
8893 asection *sec;
749b8d9d
L
8894 Elf_Internal_Shdr *symtab_hdr;
8895 struct elf_link_hash_entry *h;
b49e97c9
TS
8896
8897 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8898 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8899 NEWABI_P (input_bfd)
8900 && (MIPS_RELOC_RELA_P
8901 (input_bfd, input_section,
8902 rel - relocs)));
8903
8904 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8905 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8906 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8907 {
8908 sec = local_sections[r_symndx];
8909 h = NULL;
8910 }
ab96bf03
AM
8911 else
8912 {
ab96bf03 8913 unsigned long extsymoff;
ab96bf03 8914
ab96bf03
AM
8915 extsymoff = 0;
8916 if (!elf_bad_symtab (input_bfd))
8917 extsymoff = symtab_hdr->sh_info;
8918 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8919 while (h->root.type == bfd_link_hash_indirect
8920 || h->root.type == bfd_link_hash_warning)
8921 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8922
8923 sec = NULL;
8924 if (h->root.type == bfd_link_hash_defined
8925 || h->root.type == bfd_link_hash_defweak)
8926 sec = h->root.u.def.section;
8927 }
8928
8929 if (sec != NULL && elf_discarded_section (sec))
8930 {
8931 /* For relocs against symbols from removed linkonce sections,
8932 or sections discarded by a linker script, we just want the
8933 section contents zeroed. Avoid any special processing. */
8934 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8935 rel->r_info = 0;
8936 rel->r_addend = 0;
8937 continue;
8938 }
8939
4a14403c 8940 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
8941 {
8942 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8943 64-bit code, but make sure all their addresses are in the
8944 lowermost or uppermost 32-bit section of the 64-bit address
8945 space. Thus, when they use an R_MIPS_64 they mean what is
8946 usually meant by R_MIPS_32, with the exception that the
8947 stored value is sign-extended to 64 bits. */
b34976b6 8948 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
8949
8950 /* On big-endian systems, we need to lie about the position
8951 of the reloc. */
8952 if (bfd_big_endian (input_bfd))
8953 rel->r_offset += 4;
8954 }
b49e97c9
TS
8955
8956 if (!use_saved_addend_p)
8957 {
b49e97c9
TS
8958 /* If these relocations were originally of the REL variety,
8959 we must pull the addend out of the field that will be
8960 relocated. Otherwise, we simply use the contents of the
c224138d
RS
8961 RELA relocation. */
8962 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8963 relocs, rel))
b49e97c9 8964 {
b34976b6 8965 rela_relocation_p = FALSE;
c224138d
RS
8966 addend = mips_elf_read_rel_addend (input_bfd, rel,
8967 howto, contents);
738e5348
RS
8968 if (hi16_reloc_p (r_type)
8969 || (got16_reloc_p (r_type)
b49e97c9 8970 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 8971 local_sections, FALSE)))
b49e97c9 8972 {
c224138d
RS
8973 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8974 contents, &addend))
749b8d9d
L
8975 {
8976 const char *name;
8977
8978 if (h)
8979 name = h->root.root.string;
8980 else
8981 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8982 local_syms + r_symndx,
8983 sec);
8984 (*_bfd_error_handler)
8985 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8986 input_bfd, input_section, name, howto->name,
8987 rel->r_offset);
749b8d9d 8988 }
b49e97c9 8989 }
30ac9238
RS
8990 else
8991 addend <<= howto->rightshift;
b49e97c9
TS
8992 }
8993 else
8994 addend = rel->r_addend;
81d43bff
RS
8995 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8996 local_syms, local_sections, rel);
b49e97c9
TS
8997 }
8998
1049f94e 8999 if (info->relocatable)
b49e97c9 9000 {
4a14403c 9001 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9002 && bfd_big_endian (input_bfd))
9003 rel->r_offset -= 4;
9004
81d43bff 9005 if (!rela_relocation_p && rel->r_addend)
5a659663 9006 {
81d43bff 9007 addend += rel->r_addend;
738e5348 9008 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9009 addend = mips_elf_high (addend);
9010 else if (r_type == R_MIPS_HIGHER)
9011 addend = mips_elf_higher (addend);
9012 else if (r_type == R_MIPS_HIGHEST)
9013 addend = mips_elf_highest (addend);
30ac9238
RS
9014 else
9015 addend >>= howto->rightshift;
b49e97c9 9016
30ac9238
RS
9017 /* We use the source mask, rather than the destination
9018 mask because the place to which we are writing will be
9019 source of the addend in the final link. */
b49e97c9
TS
9020 addend &= howto->src_mask;
9021
5a659663 9022 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9023 /* See the comment above about using R_MIPS_64 in the 32-bit
9024 ABI. Here, we need to update the addend. It would be
9025 possible to get away with just using the R_MIPS_32 reloc
9026 but for endianness. */
9027 {
9028 bfd_vma sign_bits;
9029 bfd_vma low_bits;
9030 bfd_vma high_bits;
9031
9032 if (addend & ((bfd_vma) 1 << 31))
9033#ifdef BFD64
9034 sign_bits = ((bfd_vma) 1 << 32) - 1;
9035#else
9036 sign_bits = -1;
9037#endif
9038 else
9039 sign_bits = 0;
9040
9041 /* If we don't know that we have a 64-bit type,
9042 do two separate stores. */
9043 if (bfd_big_endian (input_bfd))
9044 {
9045 /* Store the sign-bits (which are most significant)
9046 first. */
9047 low_bits = sign_bits;
9048 high_bits = addend;
9049 }
9050 else
9051 {
9052 low_bits = addend;
9053 high_bits = sign_bits;
9054 }
9055 bfd_put_32 (input_bfd, low_bits,
9056 contents + rel->r_offset);
9057 bfd_put_32 (input_bfd, high_bits,
9058 contents + rel->r_offset + 4);
9059 continue;
9060 }
9061
9062 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9063 input_bfd, input_section,
b34976b6
AM
9064 contents, FALSE))
9065 return FALSE;
b49e97c9
TS
9066 }
9067
9068 /* Go on to the next relocation. */
9069 continue;
9070 }
9071
9072 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9073 relocations for the same offset. In that case we are
9074 supposed to treat the output of each relocation as the addend
9075 for the next. */
9076 if (rel + 1 < relend
9077 && rel->r_offset == rel[1].r_offset
9078 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9079 use_saved_addend_p = TRUE;
b49e97c9 9080 else
b34976b6 9081 use_saved_addend_p = FALSE;
b49e97c9
TS
9082
9083 /* Figure out what value we are supposed to relocate. */
9084 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9085 input_section, info, rel,
9086 addend, howto, local_syms,
9087 local_sections, &value,
bce03d3d
AO
9088 &name, &require_jalx,
9089 use_saved_addend_p))
b49e97c9
TS
9090 {
9091 case bfd_reloc_continue:
9092 /* There's nothing to do. */
9093 continue;
9094
9095 case bfd_reloc_undefined:
9096 /* mips_elf_calculate_relocation already called the
9097 undefined_symbol callback. There's no real point in
9098 trying to perform the relocation at this point, so we
9099 just skip ahead to the next relocation. */
9100 continue;
9101
9102 case bfd_reloc_notsupported:
9103 msg = _("internal error: unsupported relocation error");
9104 info->callbacks->warning
9105 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9106 return FALSE;
b49e97c9
TS
9107
9108 case bfd_reloc_overflow:
9109 if (use_saved_addend_p)
9110 /* Ignore overflow until we reach the last relocation for
9111 a given location. */
9112 ;
9113 else
9114 {
0e53d9da
AN
9115 struct mips_elf_link_hash_table *htab;
9116
9117 htab = mips_elf_hash_table (info);
b49e97c9 9118 BFD_ASSERT (name != NULL);
0e53d9da
AN
9119 if (!htab->small_data_overflow_reported
9120 && (howto->type == R_MIPS_GPREL16
9121 || howto->type == R_MIPS_LITERAL))
9122 {
9123 const char *msg =
9124 _("small-data section exceeds 64KB;"
9125 " lower small-data size limit (see option -G)");
9126
9127 htab->small_data_overflow_reported = TRUE;
9128 (*info->callbacks->einfo) ("%P: %s\n", msg);
9129 }
b49e97c9 9130 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9131 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9132 input_bfd, input_section, rel->r_offset)))
b34976b6 9133 return FALSE;
b49e97c9
TS
9134 }
9135 break;
9136
9137 case bfd_reloc_ok:
9138 break;
9139
9140 default:
9141 abort ();
9142 break;
9143 }
9144
9145 /* If we've got another relocation for the address, keep going
9146 until we reach the last one. */
9147 if (use_saved_addend_p)
9148 {
9149 addend = value;
9150 continue;
9151 }
9152
4a14403c 9153 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9154 /* See the comment above about using R_MIPS_64 in the 32-bit
9155 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9156 that calculated the right value. Now, however, we
9157 sign-extend the 32-bit result to 64-bits, and store it as a
9158 64-bit value. We are especially generous here in that we
9159 go to extreme lengths to support this usage on systems with
9160 only a 32-bit VMA. */
9161 {
9162 bfd_vma sign_bits;
9163 bfd_vma low_bits;
9164 bfd_vma high_bits;
9165
9166 if (value & ((bfd_vma) 1 << 31))
9167#ifdef BFD64
9168 sign_bits = ((bfd_vma) 1 << 32) - 1;
9169#else
9170 sign_bits = -1;
9171#endif
9172 else
9173 sign_bits = 0;
9174
9175 /* If we don't know that we have a 64-bit type,
9176 do two separate stores. */
9177 if (bfd_big_endian (input_bfd))
9178 {
9179 /* Undo what we did above. */
9180 rel->r_offset -= 4;
9181 /* Store the sign-bits (which are most significant)
9182 first. */
9183 low_bits = sign_bits;
9184 high_bits = value;
9185 }
9186 else
9187 {
9188 low_bits = value;
9189 high_bits = sign_bits;
9190 }
9191 bfd_put_32 (input_bfd, low_bits,
9192 contents + rel->r_offset);
9193 bfd_put_32 (input_bfd, high_bits,
9194 contents + rel->r_offset + 4);
9195 continue;
9196 }
9197
9198 /* Actually perform the relocation. */
9199 if (! mips_elf_perform_relocation (info, howto, rel, value,
9200 input_bfd, input_section,
9201 contents, require_jalx))
b34976b6 9202 return FALSE;
b49e97c9
TS
9203 }
9204
b34976b6 9205 return TRUE;
b49e97c9
TS
9206}
9207\f
861fb55a
DJ
9208/* A function that iterates over each entry in la25_stubs and fills
9209 in the code for each one. DATA points to a mips_htab_traverse_info. */
9210
9211static int
9212mips_elf_create_la25_stub (void **slot, void *data)
9213{
9214 struct mips_htab_traverse_info *hti;
9215 struct mips_elf_link_hash_table *htab;
9216 struct mips_elf_la25_stub *stub;
9217 asection *s;
9218 bfd_byte *loc;
9219 bfd_vma offset, target, target_high, target_low;
9220
9221 stub = (struct mips_elf_la25_stub *) *slot;
9222 hti = (struct mips_htab_traverse_info *) data;
9223 htab = mips_elf_hash_table (hti->info);
9224
9225 /* Create the section contents, if we haven't already. */
9226 s = stub->stub_section;
9227 loc = s->contents;
9228 if (loc == NULL)
9229 {
9230 loc = bfd_malloc (s->size);
9231 if (loc == NULL)
9232 {
9233 hti->error = TRUE;
9234 return FALSE;
9235 }
9236 s->contents = loc;
9237 }
9238
9239 /* Work out where in the section this stub should go. */
9240 offset = stub->offset;
9241
9242 /* Work out the target address. */
9243 target = (stub->h->root.root.u.def.section->output_section->vma
9244 + stub->h->root.root.u.def.section->output_offset
9245 + stub->h->root.root.u.def.value);
9246 target_high = ((target + 0x8000) >> 16) & 0xffff;
9247 target_low = (target & 0xffff);
9248
9249 if (stub->stub_section != htab->strampoline)
9250 {
9251 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9252 of the section and write the two instructions at the end. */
9253 memset (loc, 0, offset);
9254 loc += offset;
9255 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9256 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9257 }
9258 else
9259 {
9260 /* This is trampoline. */
9261 loc += offset;
9262 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9263 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9264 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9265 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9266 }
9267 return TRUE;
9268}
9269
b49e97c9
TS
9270/* If NAME is one of the special IRIX6 symbols defined by the linker,
9271 adjust it appropriately now. */
9272
9273static void
9719ad41
RS
9274mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9275 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9276{
9277 /* The linker script takes care of providing names and values for
9278 these, but we must place them into the right sections. */
9279 static const char* const text_section_symbols[] = {
9280 "_ftext",
9281 "_etext",
9282 "__dso_displacement",
9283 "__elf_header",
9284 "__program_header_table",
9285 NULL
9286 };
9287
9288 static const char* const data_section_symbols[] = {
9289 "_fdata",
9290 "_edata",
9291 "_end",
9292 "_fbss",
9293 NULL
9294 };
9295
9296 const char* const *p;
9297 int i;
9298
9299 for (i = 0; i < 2; ++i)
9300 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9301 *p;
9302 ++p)
9303 if (strcmp (*p, name) == 0)
9304 {
9305 /* All of these symbols are given type STT_SECTION by the
9306 IRIX6 linker. */
9307 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9308 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9309
9310 /* The IRIX linker puts these symbols in special sections. */
9311 if (i == 0)
9312 sym->st_shndx = SHN_MIPS_TEXT;
9313 else
9314 sym->st_shndx = SHN_MIPS_DATA;
9315
9316 break;
9317 }
9318}
9319
9320/* Finish up dynamic symbol handling. We set the contents of various
9321 dynamic sections here. */
9322
b34976b6 9323bfd_boolean
9719ad41
RS
9324_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9325 struct bfd_link_info *info,
9326 struct elf_link_hash_entry *h,
9327 Elf_Internal_Sym *sym)
b49e97c9
TS
9328{
9329 bfd *dynobj;
b49e97c9 9330 asection *sgot;
f4416af6 9331 struct mips_got_info *g, *gg;
b49e97c9 9332 const char *name;
3d6746ca 9333 int idx;
5108fc1b 9334 struct mips_elf_link_hash_table *htab;
738e5348 9335 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9336
5108fc1b 9337 htab = mips_elf_hash_table (info);
b49e97c9 9338 dynobj = elf_hash_table (info)->dynobj;
738e5348 9339 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9340
861fb55a
DJ
9341 BFD_ASSERT (!htab->is_vxworks);
9342
9343 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9344 {
9345 /* We've decided to create a PLT entry for this symbol. */
9346 bfd_byte *loc;
9347 bfd_vma header_address, plt_index, got_address;
9348 bfd_vma got_address_high, got_address_low, load;
9349 const bfd_vma *plt_entry;
9350
9351 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9352 BFD_ASSERT (h->dynindx != -1);
9353 BFD_ASSERT (htab->splt != NULL);
9354 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9355 BFD_ASSERT (!h->def_regular);
9356
9357 /* Calculate the address of the PLT header. */
9358 header_address = (htab->splt->output_section->vma
9359 + htab->splt->output_offset);
9360
9361 /* Calculate the index of the entry. */
9362 plt_index = ((h->plt.offset - htab->plt_header_size)
9363 / htab->plt_entry_size);
9364
9365 /* Calculate the address of the .got.plt entry. */
9366 got_address = (htab->sgotplt->output_section->vma
9367 + htab->sgotplt->output_offset
9368 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9369 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9370 got_address_low = got_address & 0xffff;
9371
9372 /* Initially point the .got.plt entry at the PLT header. */
9373 loc = (htab->sgotplt->contents
9374 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9375 if (ABI_64_P (output_bfd))
9376 bfd_put_64 (output_bfd, header_address, loc);
9377 else
9378 bfd_put_32 (output_bfd, header_address, loc);
9379
9380 /* Find out where the .plt entry should go. */
9381 loc = htab->splt->contents + h->plt.offset;
9382
9383 /* Pick the load opcode. */
9384 load = MIPS_ELF_LOAD_WORD (output_bfd);
9385
9386 /* Fill in the PLT entry itself. */
9387 plt_entry = mips_exec_plt_entry;
9388 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9389 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9390
9391 if (! LOAD_INTERLOCKS_P (output_bfd))
9392 {
9393 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9394 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9395 }
9396 else
9397 {
9398 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9399 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9400 }
861fb55a
DJ
9401
9402 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9403 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9404 plt_index, h->dynindx,
9405 R_MIPS_JUMP_SLOT, got_address);
9406
9407 /* We distinguish between PLT entries and lazy-binding stubs by
9408 giving the former an st_other value of STO_MIPS_PLT. Set the
9409 flag and leave the value if there are any relocations in the
9410 binary where pointer equality matters. */
9411 sym->st_shndx = SHN_UNDEF;
9412 if (h->pointer_equality_needed)
9413 sym->st_other = STO_MIPS_PLT;
9414 else
9415 sym->st_value = 0;
9416 }
9417 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9418 {
861fb55a 9419 /* We've decided to create a lazy-binding stub. */
5108fc1b 9420 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9421
9422 /* This symbol has a stub. Set it up. */
9423
9424 BFD_ASSERT (h->dynindx != -1);
9425
5108fc1b
RS
9426 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9427 || (h->dynindx <= 0xffff));
3d6746ca
DD
9428
9429 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9430 sign extension at runtime in the stub, resulting in a negative
9431 index value. */
9432 if (h->dynindx & ~0x7fffffff)
b34976b6 9433 return FALSE;
b49e97c9
TS
9434
9435 /* Fill the stub. */
3d6746ca
DD
9436 idx = 0;
9437 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9438 idx += 4;
9439 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9440 idx += 4;
5108fc1b 9441 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9442 {
5108fc1b 9443 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9444 stub + idx);
9445 idx += 4;
9446 }
9447 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9448 idx += 4;
b49e97c9 9449
3d6746ca
DD
9450 /* If a large stub is not required and sign extension is not a
9451 problem, then use legacy code in the stub. */
5108fc1b
RS
9452 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9453 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9454 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9455 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9456 else
5108fc1b
RS
9457 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9458 stub + idx);
9459
4e41d0d7
RS
9460 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9461 memcpy (htab->sstubs->contents + h->plt.offset,
9462 stub, htab->function_stub_size);
b49e97c9
TS
9463
9464 /* Mark the symbol as undefined. plt.offset != -1 occurs
9465 only for the referenced symbol. */
9466 sym->st_shndx = SHN_UNDEF;
9467
9468 /* The run-time linker uses the st_value field of the symbol
9469 to reset the global offset table entry for this external
9470 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9471 sym->st_value = (htab->sstubs->output_section->vma
9472 + htab->sstubs->output_offset
c5ae1840 9473 + h->plt.offset);
b49e97c9
TS
9474 }
9475
738e5348
RS
9476 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9477 refer to the stub, since only the stub uses the standard calling
9478 conventions. */
9479 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9480 {
9481 BFD_ASSERT (hmips->need_fn_stub);
9482 sym->st_value = (hmips->fn_stub->output_section->vma
9483 + hmips->fn_stub->output_offset);
9484 sym->st_size = hmips->fn_stub->size;
9485 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9486 }
9487
b49e97c9 9488 BFD_ASSERT (h->dynindx != -1
f5385ebf 9489 || h->forced_local);
b49e97c9 9490
23cc69b6 9491 sgot = htab->sgot;
a8028dd0 9492 g = htab->got_info;
b49e97c9
TS
9493 BFD_ASSERT (g != NULL);
9494
9495 /* Run through the global symbol table, creating GOT entries for all
9496 the symbols that need them. */
9497 if (g->global_gotsym != NULL
9498 && h->dynindx >= g->global_gotsym->dynindx)
9499 {
9500 bfd_vma offset;
9501 bfd_vma value;
9502
6eaa6adc 9503 value = sym->st_value;
738e5348
RS
9504 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9505 R_MIPS_GOT16, info);
b49e97c9
TS
9506 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9507 }
9508
0f20cc35 9509 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
9510 {
9511 struct mips_got_entry e, *p;
0626d451 9512 bfd_vma entry;
f4416af6 9513 bfd_vma offset;
f4416af6
AO
9514
9515 gg = g;
9516
9517 e.abfd = output_bfd;
9518 e.symndx = -1;
738e5348 9519 e.d.h = hmips;
0f20cc35 9520 e.tls_type = 0;
143d77c5 9521
f4416af6
AO
9522 for (g = g->next; g->next != gg; g = g->next)
9523 {
9524 if (g->got_entries
9525 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9526 &e)))
9527 {
9528 offset = p->gotidx;
0626d451
RS
9529 if (info->shared
9530 || (elf_hash_table (info)->dynamic_sections_created
9531 && p->d.h != NULL
f5385ebf
AM
9532 && p->d.h->root.def_dynamic
9533 && !p->d.h->root.def_regular))
0626d451
RS
9534 {
9535 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9536 the various compatibility problems, it's easier to mock
9537 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9538 mips_elf_create_dynamic_relocation to calculate the
9539 appropriate addend. */
9540 Elf_Internal_Rela rel[3];
9541
9542 memset (rel, 0, sizeof (rel));
9543 if (ABI_64_P (output_bfd))
9544 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9545 else
9546 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9547 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9548
9549 entry = 0;
9550 if (! (mips_elf_create_dynamic_relocation
9551 (output_bfd, info, rel,
9552 e.d.h, NULL, sym->st_value, &entry, sgot)))
9553 return FALSE;
9554 }
9555 else
9556 entry = sym->st_value;
9557 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
9558 }
9559 }
9560 }
9561
b49e97c9
TS
9562 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9563 name = h->root.root.string;
9564 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 9565 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
9566 sym->st_shndx = SHN_ABS;
9567 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9568 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9569 {
9570 sym->st_shndx = SHN_ABS;
9571 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9572 sym->st_value = 1;
9573 }
4a14403c 9574 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9575 {
9576 sym->st_shndx = SHN_ABS;
9577 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9578 sym->st_value = elf_gp (output_bfd);
9579 }
9580 else if (SGI_COMPAT (output_bfd))
9581 {
9582 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9583 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9584 {
9585 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9586 sym->st_other = STO_PROTECTED;
9587 sym->st_value = 0;
9588 sym->st_shndx = SHN_MIPS_DATA;
9589 }
9590 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9591 {
9592 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9593 sym->st_other = STO_PROTECTED;
9594 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9595 sym->st_shndx = SHN_ABS;
9596 }
9597 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9598 {
9599 if (h->type == STT_FUNC)
9600 sym->st_shndx = SHN_MIPS_TEXT;
9601 else if (h->type == STT_OBJECT)
9602 sym->st_shndx = SHN_MIPS_DATA;
9603 }
9604 }
9605
861fb55a
DJ
9606 /* Emit a copy reloc, if needed. */
9607 if (h->needs_copy)
9608 {
9609 asection *s;
9610 bfd_vma symval;
9611
9612 BFD_ASSERT (h->dynindx != -1);
9613 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9614
9615 s = mips_elf_rel_dyn_section (info, FALSE);
9616 symval = (h->root.u.def.section->output_section->vma
9617 + h->root.u.def.section->output_offset
9618 + h->root.u.def.value);
9619 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9620 h->dynindx, R_MIPS_COPY, symval);
9621 }
9622
b49e97c9
TS
9623 /* Handle the IRIX6-specific symbols. */
9624 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9625 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9626
9627 if (! info->shared)
9628 {
9629 if (! mips_elf_hash_table (info)->use_rld_obj_head
9630 && (strcmp (name, "__rld_map") == 0
9631 || strcmp (name, "__RLD_MAP") == 0))
9632 {
9633 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9634 BFD_ASSERT (s != NULL);
9635 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 9636 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
9637 if (mips_elf_hash_table (info)->rld_value == 0)
9638 mips_elf_hash_table (info)->rld_value = sym->st_value;
9639 }
9640 else if (mips_elf_hash_table (info)->use_rld_obj_head
9641 && strcmp (name, "__rld_obj_head") == 0)
9642 {
9643 /* IRIX6 does not use a .rld_map section. */
9644 if (IRIX_COMPAT (output_bfd) == ict_irix5
9645 || IRIX_COMPAT (output_bfd) == ict_none)
9646 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9647 != NULL);
9648 mips_elf_hash_table (info)->rld_value = sym->st_value;
9649 }
9650 }
9651
738e5348
RS
9652 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9653 treat MIPS16 symbols like any other. */
30c09090 9654 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
9655 {
9656 BFD_ASSERT (sym->st_value & 1);
9657 sym->st_other -= STO_MIPS16;
9658 }
b49e97c9 9659
b34976b6 9660 return TRUE;
b49e97c9
TS
9661}
9662
0a44bf69
RS
9663/* Likewise, for VxWorks. */
9664
9665bfd_boolean
9666_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9667 struct bfd_link_info *info,
9668 struct elf_link_hash_entry *h,
9669 Elf_Internal_Sym *sym)
9670{
9671 bfd *dynobj;
9672 asection *sgot;
9673 struct mips_got_info *g;
9674 struct mips_elf_link_hash_table *htab;
9675
9676 htab = mips_elf_hash_table (info);
9677 dynobj = elf_hash_table (info)->dynobj;
9678
9679 if (h->plt.offset != (bfd_vma) -1)
9680 {
6d79d2ed 9681 bfd_byte *loc;
0a44bf69
RS
9682 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9683 Elf_Internal_Rela rel;
9684 static const bfd_vma *plt_entry;
9685
9686 BFD_ASSERT (h->dynindx != -1);
9687 BFD_ASSERT (htab->splt != NULL);
9688 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9689
9690 /* Calculate the address of the .plt entry. */
9691 plt_address = (htab->splt->output_section->vma
9692 + htab->splt->output_offset
9693 + h->plt.offset);
9694
9695 /* Calculate the index of the entry. */
9696 plt_index = ((h->plt.offset - htab->plt_header_size)
9697 / htab->plt_entry_size);
9698
9699 /* Calculate the address of the .got.plt entry. */
9700 got_address = (htab->sgotplt->output_section->vma
9701 + htab->sgotplt->output_offset
9702 + plt_index * 4);
9703
9704 /* Calculate the offset of the .got.plt entry from
9705 _GLOBAL_OFFSET_TABLE_. */
9706 got_offset = mips_elf_gotplt_index (info, h);
9707
9708 /* Calculate the offset for the branch at the start of the PLT
9709 entry. The branch jumps to the beginning of .plt. */
9710 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9711
9712 /* Fill in the initial value of the .got.plt entry. */
9713 bfd_put_32 (output_bfd, plt_address,
9714 htab->sgotplt->contents + plt_index * 4);
9715
9716 /* Find out where the .plt entry should go. */
9717 loc = htab->splt->contents + h->plt.offset;
9718
9719 if (info->shared)
9720 {
9721 plt_entry = mips_vxworks_shared_plt_entry;
9722 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9723 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9724 }
9725 else
9726 {
9727 bfd_vma got_address_high, got_address_low;
9728
9729 plt_entry = mips_vxworks_exec_plt_entry;
9730 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9731 got_address_low = got_address & 0xffff;
9732
9733 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9734 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9735 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9736 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9737 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9738 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9739 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9740 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9741
9742 loc = (htab->srelplt2->contents
9743 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9744
9745 /* Emit a relocation for the .got.plt entry. */
9746 rel.r_offset = got_address;
9747 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9748 rel.r_addend = h->plt.offset;
9749 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9750
9751 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9752 loc += sizeof (Elf32_External_Rela);
9753 rel.r_offset = plt_address + 8;
9754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9755 rel.r_addend = got_offset;
9756 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9757
9758 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9759 loc += sizeof (Elf32_External_Rela);
9760 rel.r_offset += 4;
9761 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9762 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9763 }
9764
9765 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9766 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9767 rel.r_offset = got_address;
9768 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9769 rel.r_addend = 0;
9770 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9771
9772 if (!h->def_regular)
9773 sym->st_shndx = SHN_UNDEF;
9774 }
9775
9776 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9777
23cc69b6 9778 sgot = htab->sgot;
a8028dd0 9779 g = htab->got_info;
0a44bf69
RS
9780 BFD_ASSERT (g != NULL);
9781
9782 /* See if this symbol has an entry in the GOT. */
9783 if (g->global_gotsym != NULL
9784 && h->dynindx >= g->global_gotsym->dynindx)
9785 {
9786 bfd_vma offset;
9787 Elf_Internal_Rela outrel;
9788 bfd_byte *loc;
9789 asection *s;
9790
9791 /* Install the symbol value in the GOT. */
9792 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9793 R_MIPS_GOT16, info);
9794 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9795
9796 /* Add a dynamic relocation for it. */
9797 s = mips_elf_rel_dyn_section (info, FALSE);
9798 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9799 outrel.r_offset = (sgot->output_section->vma
9800 + sgot->output_offset
9801 + offset);
9802 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9803 outrel.r_addend = 0;
9804 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9805 }
9806
9807 /* Emit a copy reloc, if needed. */
9808 if (h->needs_copy)
9809 {
9810 Elf_Internal_Rela rel;
9811
9812 BFD_ASSERT (h->dynindx != -1);
9813
9814 rel.r_offset = (h->root.u.def.section->output_section->vma
9815 + h->root.u.def.section->output_offset
9816 + h->root.u.def.value);
9817 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9818 rel.r_addend = 0;
9819 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9820 htab->srelbss->contents
9821 + (htab->srelbss->reloc_count
9822 * sizeof (Elf32_External_Rela)));
9823 ++htab->srelbss->reloc_count;
9824 }
9825
9826 /* If this is a mips16 symbol, force the value to be even. */
30c09090 9827 if (ELF_ST_IS_MIPS16 (sym->st_other))
0a44bf69
RS
9828 sym->st_value &= ~1;
9829
9830 return TRUE;
9831}
9832
861fb55a
DJ
9833/* Write out a plt0 entry to the beginning of .plt. */
9834
9835static void
9836mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9837{
9838 bfd_byte *loc;
9839 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9840 static const bfd_vma *plt_entry;
9841 struct mips_elf_link_hash_table *htab;
9842
9843 htab = mips_elf_hash_table (info);
9844 if (ABI_64_P (output_bfd))
9845 plt_entry = mips_n64_exec_plt0_entry;
9846 else if (ABI_N32_P (output_bfd))
9847 plt_entry = mips_n32_exec_plt0_entry;
9848 else
9849 plt_entry = mips_o32_exec_plt0_entry;
9850
9851 /* Calculate the value of .got.plt. */
9852 gotplt_value = (htab->sgotplt->output_section->vma
9853 + htab->sgotplt->output_offset);
9854 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9855 gotplt_value_low = gotplt_value & 0xffff;
9856
9857 /* The PLT sequence is not safe for N64 if .got.plt's address can
9858 not be loaded in two instructions. */
9859 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9860 || ~(gotplt_value | 0x7fffffff) == 0);
9861
9862 /* Install the PLT header. */
9863 loc = htab->splt->contents;
9864 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9865 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9866 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9867 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9868 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9869 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9870 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9871 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9872}
9873
0a44bf69
RS
9874/* Install the PLT header for a VxWorks executable and finalize the
9875 contents of .rela.plt.unloaded. */
9876
9877static void
9878mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9879{
9880 Elf_Internal_Rela rela;
9881 bfd_byte *loc;
9882 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9883 static const bfd_vma *plt_entry;
9884 struct mips_elf_link_hash_table *htab;
9885
9886 htab = mips_elf_hash_table (info);
9887 plt_entry = mips_vxworks_exec_plt0_entry;
9888
9889 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9890 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9891 + htab->root.hgot->root.u.def.section->output_offset
9892 + htab->root.hgot->root.u.def.value);
9893
9894 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9895 got_value_low = got_value & 0xffff;
9896
9897 /* Calculate the address of the PLT header. */
9898 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9899
9900 /* Install the PLT header. */
9901 loc = htab->splt->contents;
9902 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9903 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9904 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9905 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9906 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9907 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9908
9909 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9910 loc = htab->srelplt2->contents;
9911 rela.r_offset = plt_address;
9912 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9913 rela.r_addend = 0;
9914 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9915 loc += sizeof (Elf32_External_Rela);
9916
9917 /* Output the relocation for the following addiu of
9918 %lo(_GLOBAL_OFFSET_TABLE_). */
9919 rela.r_offset += 4;
9920 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9921 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9922 loc += sizeof (Elf32_External_Rela);
9923
9924 /* Fix up the remaining relocations. They may have the wrong
9925 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9926 in which symbols were output. */
9927 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9928 {
9929 Elf_Internal_Rela rel;
9930
9931 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9932 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9933 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9934 loc += sizeof (Elf32_External_Rela);
9935
9936 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9937 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9938 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9939 loc += sizeof (Elf32_External_Rela);
9940
9941 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9942 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9943 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9944 loc += sizeof (Elf32_External_Rela);
9945 }
9946}
9947
9948/* Install the PLT header for a VxWorks shared library. */
9949
9950static void
9951mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9952{
9953 unsigned int i;
9954 struct mips_elf_link_hash_table *htab;
9955
9956 htab = mips_elf_hash_table (info);
9957
9958 /* We just need to copy the entry byte-by-byte. */
9959 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9960 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9961 htab->splt->contents + i * 4);
9962}
9963
b49e97c9
TS
9964/* Finish up the dynamic sections. */
9965
b34976b6 9966bfd_boolean
9719ad41
RS
9967_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9968 struct bfd_link_info *info)
b49e97c9
TS
9969{
9970 bfd *dynobj;
9971 asection *sdyn;
9972 asection *sgot;
f4416af6 9973 struct mips_got_info *gg, *g;
0a44bf69 9974 struct mips_elf_link_hash_table *htab;
b49e97c9 9975
0a44bf69 9976 htab = mips_elf_hash_table (info);
b49e97c9
TS
9977 dynobj = elf_hash_table (info)->dynobj;
9978
9979 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9980
23cc69b6
RS
9981 sgot = htab->sgot;
9982 gg = htab->got_info;
b49e97c9
TS
9983
9984 if (elf_hash_table (info)->dynamic_sections_created)
9985 {
9986 bfd_byte *b;
943284cc 9987 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
9988
9989 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
9990 BFD_ASSERT (gg != NULL);
9991
9992 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
9993 BFD_ASSERT (g != NULL);
9994
9995 for (b = sdyn->contents;
eea6121a 9996 b < sdyn->contents + sdyn->size;
b49e97c9
TS
9997 b += MIPS_ELF_DYN_SIZE (dynobj))
9998 {
9999 Elf_Internal_Dyn dyn;
10000 const char *name;
10001 size_t elemsize;
10002 asection *s;
b34976b6 10003 bfd_boolean swap_out_p;
b49e97c9
TS
10004
10005 /* Read in the current dynamic entry. */
10006 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10007
10008 /* Assume that we're going to modify it and write it out. */
b34976b6 10009 swap_out_p = TRUE;
b49e97c9
TS
10010
10011 switch (dyn.d_tag)
10012 {
10013 case DT_RELENT:
b49e97c9
TS
10014 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10015 break;
10016
0a44bf69
RS
10017 case DT_RELAENT:
10018 BFD_ASSERT (htab->is_vxworks);
10019 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10020 break;
10021
b49e97c9
TS
10022 case DT_STRSZ:
10023 /* Rewrite DT_STRSZ. */
10024 dyn.d_un.d_val =
10025 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10026 break;
10027
10028 case DT_PLTGOT:
861fb55a
DJ
10029 s = htab->sgot;
10030 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10031 break;
10032
10033 case DT_MIPS_PLTGOT:
10034 s = htab->sgotplt;
10035 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10036 break;
10037
10038 case DT_MIPS_RLD_VERSION:
10039 dyn.d_un.d_val = 1; /* XXX */
10040 break;
10041
10042 case DT_MIPS_FLAGS:
10043 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10044 break;
10045
b49e97c9 10046 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10047 {
10048 time_t t;
10049 time (&t);
10050 dyn.d_un.d_val = t;
10051 }
b49e97c9
TS
10052 break;
10053
10054 case DT_MIPS_ICHECKSUM:
10055 /* XXX FIXME: */
b34976b6 10056 swap_out_p = FALSE;
b49e97c9
TS
10057 break;
10058
10059 case DT_MIPS_IVERSION:
10060 /* XXX FIXME: */
b34976b6 10061 swap_out_p = FALSE;
b49e97c9
TS
10062 break;
10063
10064 case DT_MIPS_BASE_ADDRESS:
10065 s = output_bfd->sections;
10066 BFD_ASSERT (s != NULL);
10067 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10068 break;
10069
10070 case DT_MIPS_LOCAL_GOTNO:
10071 dyn.d_un.d_val = g->local_gotno;
10072 break;
10073
10074 case DT_MIPS_UNREFEXTNO:
10075 /* The index into the dynamic symbol table which is the
10076 entry of the first external symbol that is not
10077 referenced within the same object. */
10078 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10079 break;
10080
10081 case DT_MIPS_GOTSYM:
f4416af6 10082 if (gg->global_gotsym)
b49e97c9 10083 {
f4416af6 10084 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
10085 break;
10086 }
10087 /* In case if we don't have global got symbols we default
10088 to setting DT_MIPS_GOTSYM to the same value as
10089 DT_MIPS_SYMTABNO, so we just fall through. */
10090
10091 case DT_MIPS_SYMTABNO:
10092 name = ".dynsym";
10093 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10094 s = bfd_get_section_by_name (output_bfd, name);
10095 BFD_ASSERT (s != NULL);
10096
eea6121a 10097 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10098 break;
10099
10100 case DT_MIPS_HIPAGENO:
861fb55a 10101 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10102 break;
10103
10104 case DT_MIPS_RLD_MAP:
10105 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10106 break;
10107
10108 case DT_MIPS_OPTIONS:
10109 s = (bfd_get_section_by_name
10110 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10111 dyn.d_un.d_ptr = s->vma;
10112 break;
10113
0a44bf69
RS
10114 case DT_RELASZ:
10115 BFD_ASSERT (htab->is_vxworks);
10116 /* The count does not include the JUMP_SLOT relocations. */
10117 if (htab->srelplt)
10118 dyn.d_un.d_val -= htab->srelplt->size;
10119 break;
10120
10121 case DT_PLTREL:
861fb55a
DJ
10122 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10123 if (htab->is_vxworks)
10124 dyn.d_un.d_val = DT_RELA;
10125 else
10126 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10127 break;
10128
10129 case DT_PLTRELSZ:
861fb55a 10130 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10131 dyn.d_un.d_val = htab->srelplt->size;
10132 break;
10133
10134 case DT_JMPREL:
861fb55a
DJ
10135 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10136 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10137 + htab->srelplt->output_offset);
10138 break;
10139
943284cc
DJ
10140 case DT_TEXTREL:
10141 /* If we didn't need any text relocations after all, delete
10142 the dynamic tag. */
10143 if (!(info->flags & DF_TEXTREL))
10144 {
10145 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10146 swap_out_p = FALSE;
10147 }
10148 break;
10149
10150 case DT_FLAGS:
10151 /* If we didn't need any text relocations after all, clear
10152 DF_TEXTREL from DT_FLAGS. */
10153 if (!(info->flags & DF_TEXTREL))
10154 dyn.d_un.d_val &= ~DF_TEXTREL;
10155 else
10156 swap_out_p = FALSE;
10157 break;
10158
b49e97c9 10159 default:
b34976b6 10160 swap_out_p = FALSE;
7a2b07ff
NS
10161 if (htab->is_vxworks
10162 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10163 swap_out_p = TRUE;
b49e97c9
TS
10164 break;
10165 }
10166
943284cc 10167 if (swap_out_p || dyn_skipped)
b49e97c9 10168 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10169 (dynobj, &dyn, b - dyn_skipped);
10170
10171 if (dyn_to_skip)
10172 {
10173 dyn_skipped += dyn_to_skip;
10174 dyn_to_skip = 0;
10175 }
b49e97c9 10176 }
943284cc
DJ
10177
10178 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10179 if (dyn_skipped > 0)
10180 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10181 }
10182
b55fd4d4
DJ
10183 if (sgot != NULL && sgot->size > 0
10184 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10185 {
0a44bf69
RS
10186 if (htab->is_vxworks)
10187 {
10188 /* The first entry of the global offset table points to the
10189 ".dynamic" section. The second is initialized by the
10190 loader and contains the shared library identifier.
10191 The third is also initialized by the loader and points
10192 to the lazy resolution stub. */
10193 MIPS_ELF_PUT_WORD (output_bfd,
10194 sdyn->output_offset + sdyn->output_section->vma,
10195 sgot->contents);
10196 MIPS_ELF_PUT_WORD (output_bfd, 0,
10197 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10198 MIPS_ELF_PUT_WORD (output_bfd, 0,
10199 sgot->contents
10200 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10201 }
10202 else
10203 {
10204 /* The first entry of the global offset table will be filled at
10205 runtime. The second entry will be used by some runtime loaders.
10206 This isn't the case of IRIX rld. */
10207 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10208 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10209 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10210 }
b49e97c9 10211
54938e2a
TS
10212 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10213 = MIPS_ELF_GOT_SIZE (output_bfd);
10214 }
b49e97c9 10215
f4416af6
AO
10216 /* Generate dynamic relocations for the non-primary gots. */
10217 if (gg != NULL && gg->next)
10218 {
10219 Elf_Internal_Rela rel[3];
10220 bfd_vma addend = 0;
10221
10222 memset (rel, 0, sizeof (rel));
10223 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10224
10225 for (g = gg->next; g->next != gg; g = g->next)
10226 {
0f20cc35
DJ
10227 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10228 + g->next->tls_gotno;
f4416af6 10229
9719ad41 10230 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 10231 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10232 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10233 sgot->contents
f4416af6
AO
10234 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10235
10236 if (! info->shared)
10237 continue;
10238
10239 while (index < g->assigned_gotno)
10240 {
10241 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10242 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10243 if (!(mips_elf_create_dynamic_relocation
10244 (output_bfd, info, rel, NULL,
10245 bfd_abs_section_ptr,
10246 0, &addend, sgot)))
10247 return FALSE;
10248 BFD_ASSERT (addend == 0);
10249 }
10250 }
10251 }
10252
3133ddbf
DJ
10253 /* The generation of dynamic relocations for the non-primary gots
10254 adds more dynamic relocations. We cannot count them until
10255 here. */
10256
10257 if (elf_hash_table (info)->dynamic_sections_created)
10258 {
10259 bfd_byte *b;
10260 bfd_boolean swap_out_p;
10261
10262 BFD_ASSERT (sdyn != NULL);
10263
10264 for (b = sdyn->contents;
10265 b < sdyn->contents + sdyn->size;
10266 b += MIPS_ELF_DYN_SIZE (dynobj))
10267 {
10268 Elf_Internal_Dyn dyn;
10269 asection *s;
10270
10271 /* Read in the current dynamic entry. */
10272 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10273
10274 /* Assume that we're going to modify it and write it out. */
10275 swap_out_p = TRUE;
10276
10277 switch (dyn.d_tag)
10278 {
10279 case DT_RELSZ:
10280 /* Reduce DT_RELSZ to account for any relocations we
10281 decided not to make. This is for the n64 irix rld,
10282 which doesn't seem to apply any relocations if there
10283 are trailing null entries. */
0a44bf69 10284 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10285 dyn.d_un.d_val = (s->reloc_count
10286 * (ABI_64_P (output_bfd)
10287 ? sizeof (Elf64_Mips_External_Rel)
10288 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10289 /* Adjust the section size too. Tools like the prelinker
10290 can reasonably expect the values to the same. */
10291 elf_section_data (s->output_section)->this_hdr.sh_size
10292 = dyn.d_un.d_val;
3133ddbf
DJ
10293 break;
10294
10295 default:
10296 swap_out_p = FALSE;
10297 break;
10298 }
10299
10300 if (swap_out_p)
10301 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10302 (dynobj, &dyn, b);
10303 }
10304 }
10305
b49e97c9 10306 {
b49e97c9
TS
10307 asection *s;
10308 Elf32_compact_rel cpt;
10309
b49e97c9
TS
10310 if (SGI_COMPAT (output_bfd))
10311 {
10312 /* Write .compact_rel section out. */
10313 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10314 if (s != NULL)
10315 {
10316 cpt.id1 = 1;
10317 cpt.num = s->reloc_count;
10318 cpt.id2 = 2;
10319 cpt.offset = (s->output_section->filepos
10320 + sizeof (Elf32_External_compact_rel));
10321 cpt.reserved0 = 0;
10322 cpt.reserved1 = 0;
10323 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10324 ((Elf32_External_compact_rel *)
10325 s->contents));
10326
10327 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10328 if (htab->sstubs != NULL)
b49e97c9
TS
10329 {
10330 file_ptr dummy_offset;
10331
4e41d0d7
RS
10332 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10333 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10334 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10335 htab->function_stub_size);
b49e97c9
TS
10336 }
10337 }
10338 }
10339
0a44bf69
RS
10340 /* The psABI says that the dynamic relocations must be sorted in
10341 increasing order of r_symndx. The VxWorks EABI doesn't require
10342 this, and because the code below handles REL rather than RELA
10343 relocations, using it for VxWorks would be outright harmful. */
10344 if (!htab->is_vxworks)
b49e97c9 10345 {
0a44bf69
RS
10346 s = mips_elf_rel_dyn_section (info, FALSE);
10347 if (s != NULL
10348 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10349 {
10350 reldyn_sorting_bfd = output_bfd;
b49e97c9 10351
0a44bf69
RS
10352 if (ABI_64_P (output_bfd))
10353 qsort ((Elf64_External_Rel *) s->contents + 1,
10354 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10355 sort_dynamic_relocs_64);
10356 else
10357 qsort ((Elf32_External_Rel *) s->contents + 1,
10358 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10359 sort_dynamic_relocs);
10360 }
b49e97c9 10361 }
b49e97c9
TS
10362 }
10363
861fb55a 10364 if (htab->splt && htab->splt->size > 0)
0a44bf69 10365 {
861fb55a
DJ
10366 if (htab->is_vxworks)
10367 {
10368 if (info->shared)
10369 mips_vxworks_finish_shared_plt (output_bfd, info);
10370 else
10371 mips_vxworks_finish_exec_plt (output_bfd, info);
10372 }
0a44bf69 10373 else
861fb55a
DJ
10374 {
10375 BFD_ASSERT (!info->shared);
10376 mips_finish_exec_plt (output_bfd, info);
10377 }
0a44bf69 10378 }
b34976b6 10379 return TRUE;
b49e97c9
TS
10380}
10381
b49e97c9 10382
64543e1a
RS
10383/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10384
10385static void
9719ad41 10386mips_set_isa_flags (bfd *abfd)
b49e97c9 10387{
64543e1a 10388 flagword val;
b49e97c9
TS
10389
10390 switch (bfd_get_mach (abfd))
10391 {
10392 default:
10393 case bfd_mach_mips3000:
10394 val = E_MIPS_ARCH_1;
10395 break;
10396
10397 case bfd_mach_mips3900:
10398 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10399 break;
10400
10401 case bfd_mach_mips6000:
10402 val = E_MIPS_ARCH_2;
10403 break;
10404
10405 case bfd_mach_mips4000:
10406 case bfd_mach_mips4300:
10407 case bfd_mach_mips4400:
10408 case bfd_mach_mips4600:
10409 val = E_MIPS_ARCH_3;
10410 break;
10411
10412 case bfd_mach_mips4010:
10413 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10414 break;
10415
10416 case bfd_mach_mips4100:
10417 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10418 break;
10419
10420 case bfd_mach_mips4111:
10421 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10422 break;
10423
00707a0e
RS
10424 case bfd_mach_mips4120:
10425 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10426 break;
10427
b49e97c9
TS
10428 case bfd_mach_mips4650:
10429 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10430 break;
10431
00707a0e
RS
10432 case bfd_mach_mips5400:
10433 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10434 break;
10435
10436 case bfd_mach_mips5500:
10437 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10438 break;
10439
0d2e43ed
ILT
10440 case bfd_mach_mips9000:
10441 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10442 break;
10443
b49e97c9 10444 case bfd_mach_mips5000:
5a7ea749 10445 case bfd_mach_mips7000:
b49e97c9
TS
10446 case bfd_mach_mips8000:
10447 case bfd_mach_mips10000:
10448 case bfd_mach_mips12000:
3aa3176b
TS
10449 case bfd_mach_mips14000:
10450 case bfd_mach_mips16000:
b49e97c9
TS
10451 val = E_MIPS_ARCH_4;
10452 break;
10453
10454 case bfd_mach_mips5:
10455 val = E_MIPS_ARCH_5;
10456 break;
10457
350cc38d
MS
10458 case bfd_mach_mips_loongson_2e:
10459 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10460 break;
10461
10462 case bfd_mach_mips_loongson_2f:
10463 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10464 break;
10465
b49e97c9
TS
10466 case bfd_mach_mips_sb1:
10467 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10468 break;
10469
6f179bd0
AN
10470 case bfd_mach_mips_octeon:
10471 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10472 break;
10473
52b6b6b9
JM
10474 case bfd_mach_mips_xlr:
10475 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10476 break;
10477
b49e97c9
TS
10478 case bfd_mach_mipsisa32:
10479 val = E_MIPS_ARCH_32;
10480 break;
10481
10482 case bfd_mach_mipsisa64:
10483 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10484 break;
10485
10486 case bfd_mach_mipsisa32r2:
10487 val = E_MIPS_ARCH_32R2;
10488 break;
5f74bc13
CD
10489
10490 case bfd_mach_mipsisa64r2:
10491 val = E_MIPS_ARCH_64R2;
10492 break;
b49e97c9 10493 }
b49e97c9
TS
10494 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10495 elf_elfheader (abfd)->e_flags |= val;
10496
64543e1a
RS
10497}
10498
10499
10500/* The final processing done just before writing out a MIPS ELF object
10501 file. This gets the MIPS architecture right based on the machine
10502 number. This is used by both the 32-bit and the 64-bit ABI. */
10503
10504void
9719ad41
RS
10505_bfd_mips_elf_final_write_processing (bfd *abfd,
10506 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
10507{
10508 unsigned int i;
10509 Elf_Internal_Shdr **hdrpp;
10510 const char *name;
10511 asection *sec;
10512
10513 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10514 is nonzero. This is for compatibility with old objects, which used
10515 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10516 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10517 mips_set_isa_flags (abfd);
10518
b49e97c9
TS
10519 /* Set the sh_info field for .gptab sections and other appropriate
10520 info for each special section. */
10521 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10522 i < elf_numsections (abfd);
10523 i++, hdrpp++)
10524 {
10525 switch ((*hdrpp)->sh_type)
10526 {
10527 case SHT_MIPS_MSYM:
10528 case SHT_MIPS_LIBLIST:
10529 sec = bfd_get_section_by_name (abfd, ".dynstr");
10530 if (sec != NULL)
10531 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10532 break;
10533
10534 case SHT_MIPS_GPTAB:
10535 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10536 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10537 BFD_ASSERT (name != NULL
0112cd26 10538 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
10539 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10540 BFD_ASSERT (sec != NULL);
10541 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10542 break;
10543
10544 case SHT_MIPS_CONTENT:
10545 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10546 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10547 BFD_ASSERT (name != NULL
0112cd26 10548 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
10549 sec = bfd_get_section_by_name (abfd,
10550 name + sizeof ".MIPS.content" - 1);
10551 BFD_ASSERT (sec != NULL);
10552 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10553 break;
10554
10555 case SHT_MIPS_SYMBOL_LIB:
10556 sec = bfd_get_section_by_name (abfd, ".dynsym");
10557 if (sec != NULL)
10558 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10559 sec = bfd_get_section_by_name (abfd, ".liblist");
10560 if (sec != NULL)
10561 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10562 break;
10563
10564 case SHT_MIPS_EVENTS:
10565 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10566 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10567 BFD_ASSERT (name != NULL);
0112cd26 10568 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
10569 sec = bfd_get_section_by_name (abfd,
10570 name + sizeof ".MIPS.events" - 1);
10571 else
10572 {
0112cd26 10573 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
10574 sec = bfd_get_section_by_name (abfd,
10575 (name
10576 + sizeof ".MIPS.post_rel" - 1));
10577 }
10578 BFD_ASSERT (sec != NULL);
10579 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10580 break;
10581
10582 }
10583 }
10584}
10585\f
8dc1a139 10586/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
10587 segments. */
10588
10589int
a6b96beb
AM
10590_bfd_mips_elf_additional_program_headers (bfd *abfd,
10591 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
10592{
10593 asection *s;
10594 int ret = 0;
10595
10596 /* See if we need a PT_MIPS_REGINFO segment. */
10597 s = bfd_get_section_by_name (abfd, ".reginfo");
10598 if (s && (s->flags & SEC_LOAD))
10599 ++ret;
10600
10601 /* See if we need a PT_MIPS_OPTIONS segment. */
10602 if (IRIX_COMPAT (abfd) == ict_irix6
10603 && bfd_get_section_by_name (abfd,
10604 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10605 ++ret;
10606
10607 /* See if we need a PT_MIPS_RTPROC segment. */
10608 if (IRIX_COMPAT (abfd) == ict_irix5
10609 && bfd_get_section_by_name (abfd, ".dynamic")
10610 && bfd_get_section_by_name (abfd, ".mdebug"))
10611 ++ret;
10612
98c904a8
RS
10613 /* Allocate a PT_NULL header in dynamic objects. See
10614 _bfd_mips_elf_modify_segment_map for details. */
10615 if (!SGI_COMPAT (abfd)
10616 && bfd_get_section_by_name (abfd, ".dynamic"))
10617 ++ret;
10618
b49e97c9
TS
10619 return ret;
10620}
10621
8dc1a139 10622/* Modify the segment map for an IRIX5 executable. */
b49e97c9 10623
b34976b6 10624bfd_boolean
9719ad41 10625_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 10626 struct bfd_link_info *info)
b49e97c9
TS
10627{
10628 asection *s;
10629 struct elf_segment_map *m, **pm;
10630 bfd_size_type amt;
10631
10632 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10633 segment. */
10634 s = bfd_get_section_by_name (abfd, ".reginfo");
10635 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10636 {
10637 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10638 if (m->p_type == PT_MIPS_REGINFO)
10639 break;
10640 if (m == NULL)
10641 {
10642 amt = sizeof *m;
9719ad41 10643 m = bfd_zalloc (abfd, amt);
b49e97c9 10644 if (m == NULL)
b34976b6 10645 return FALSE;
b49e97c9
TS
10646
10647 m->p_type = PT_MIPS_REGINFO;
10648 m->count = 1;
10649 m->sections[0] = s;
10650
10651 /* We want to put it after the PHDR and INTERP segments. */
10652 pm = &elf_tdata (abfd)->segment_map;
10653 while (*pm != NULL
10654 && ((*pm)->p_type == PT_PHDR
10655 || (*pm)->p_type == PT_INTERP))
10656 pm = &(*pm)->next;
10657
10658 m->next = *pm;
10659 *pm = m;
10660 }
10661 }
10662
10663 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10664 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 10665 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 10666 table. */
c1fd6598
AO
10667 if (NEWABI_P (abfd)
10668 /* On non-IRIX6 new abi, we'll have already created a segment
10669 for this section, so don't create another. I'm not sure this
10670 is not also the case for IRIX 6, but I can't test it right
10671 now. */
10672 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
10673 {
10674 for (s = abfd->sections; s; s = s->next)
10675 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10676 break;
10677
10678 if (s)
10679 {
10680 struct elf_segment_map *options_segment;
10681
98a8deaf
RS
10682 pm = &elf_tdata (abfd)->segment_map;
10683 while (*pm != NULL
10684 && ((*pm)->p_type == PT_PHDR
10685 || (*pm)->p_type == PT_INTERP))
10686 pm = &(*pm)->next;
b49e97c9 10687
8ded5a0f
AM
10688 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10689 {
10690 amt = sizeof (struct elf_segment_map);
10691 options_segment = bfd_zalloc (abfd, amt);
10692 options_segment->next = *pm;
10693 options_segment->p_type = PT_MIPS_OPTIONS;
10694 options_segment->p_flags = PF_R;
10695 options_segment->p_flags_valid = TRUE;
10696 options_segment->count = 1;
10697 options_segment->sections[0] = s;
10698 *pm = options_segment;
10699 }
b49e97c9
TS
10700 }
10701 }
10702 else
10703 {
10704 if (IRIX_COMPAT (abfd) == ict_irix5)
10705 {
10706 /* If there are .dynamic and .mdebug sections, we make a room
10707 for the RTPROC header. FIXME: Rewrite without section names. */
10708 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10709 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10710 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10711 {
10712 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10713 if (m->p_type == PT_MIPS_RTPROC)
10714 break;
10715 if (m == NULL)
10716 {
10717 amt = sizeof *m;
9719ad41 10718 m = bfd_zalloc (abfd, amt);
b49e97c9 10719 if (m == NULL)
b34976b6 10720 return FALSE;
b49e97c9
TS
10721
10722 m->p_type = PT_MIPS_RTPROC;
10723
10724 s = bfd_get_section_by_name (abfd, ".rtproc");
10725 if (s == NULL)
10726 {
10727 m->count = 0;
10728 m->p_flags = 0;
10729 m->p_flags_valid = 1;
10730 }
10731 else
10732 {
10733 m->count = 1;
10734 m->sections[0] = s;
10735 }
10736
10737 /* We want to put it after the DYNAMIC segment. */
10738 pm = &elf_tdata (abfd)->segment_map;
10739 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10740 pm = &(*pm)->next;
10741 if (*pm != NULL)
10742 pm = &(*pm)->next;
10743
10744 m->next = *pm;
10745 *pm = m;
10746 }
10747 }
10748 }
8dc1a139 10749 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
10750 .dynstr, .dynsym, and .hash sections, and everything in
10751 between. */
10752 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10753 pm = &(*pm)->next)
10754 if ((*pm)->p_type == PT_DYNAMIC)
10755 break;
10756 m = *pm;
10757 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10758 {
10759 /* For a normal mips executable the permissions for the PT_DYNAMIC
10760 segment are read, write and execute. We do that here since
10761 the code in elf.c sets only the read permission. This matters
10762 sometimes for the dynamic linker. */
10763 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10764 {
10765 m->p_flags = PF_R | PF_W | PF_X;
10766 m->p_flags_valid = 1;
10767 }
10768 }
f6f62d6f
RS
10769 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10770 glibc's dynamic linker has traditionally derived the number of
10771 tags from the p_filesz field, and sometimes allocates stack
10772 arrays of that size. An overly-big PT_DYNAMIC segment can
10773 be actively harmful in such cases. Making PT_DYNAMIC contain
10774 other sections can also make life hard for the prelinker,
10775 which might move one of the other sections to a different
10776 PT_LOAD segment. */
10777 if (SGI_COMPAT (abfd)
10778 && m != NULL
10779 && m->count == 1
10780 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
10781 {
10782 static const char *sec_names[] =
10783 {
10784 ".dynamic", ".dynstr", ".dynsym", ".hash"
10785 };
10786 bfd_vma low, high;
10787 unsigned int i, c;
10788 struct elf_segment_map *n;
10789
792b4a53 10790 low = ~(bfd_vma) 0;
b49e97c9
TS
10791 high = 0;
10792 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10793 {
10794 s = bfd_get_section_by_name (abfd, sec_names[i]);
10795 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10796 {
10797 bfd_size_type sz;
10798
10799 if (low > s->vma)
10800 low = s->vma;
eea6121a 10801 sz = s->size;
b49e97c9
TS
10802 if (high < s->vma + sz)
10803 high = s->vma + sz;
10804 }
10805 }
10806
10807 c = 0;
10808 for (s = abfd->sections; s != NULL; s = s->next)
10809 if ((s->flags & SEC_LOAD) != 0
10810 && s->vma >= low
eea6121a 10811 && s->vma + s->size <= high)
b49e97c9
TS
10812 ++c;
10813
10814 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 10815 n = bfd_zalloc (abfd, amt);
b49e97c9 10816 if (n == NULL)
b34976b6 10817 return FALSE;
b49e97c9
TS
10818 *n = *m;
10819 n->count = c;
10820
10821 i = 0;
10822 for (s = abfd->sections; s != NULL; s = s->next)
10823 {
10824 if ((s->flags & SEC_LOAD) != 0
10825 && s->vma >= low
eea6121a 10826 && s->vma + s->size <= high)
b49e97c9
TS
10827 {
10828 n->sections[i] = s;
10829 ++i;
10830 }
10831 }
10832
10833 *pm = n;
10834 }
10835 }
10836
98c904a8
RS
10837 /* Allocate a spare program header in dynamic objects so that tools
10838 like the prelinker can add an extra PT_LOAD entry.
10839
10840 If the prelinker needs to make room for a new PT_LOAD entry, its
10841 standard procedure is to move the first (read-only) sections into
10842 the new (writable) segment. However, the MIPS ABI requires
10843 .dynamic to be in a read-only segment, and the section will often
10844 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10845
10846 Although the prelinker could in principle move .dynamic to a
10847 writable segment, it seems better to allocate a spare program
10848 header instead, and avoid the need to move any sections.
10849 There is a long tradition of allocating spare dynamic tags,
10850 so allocating a spare program header seems like a natural
7c8b76cc
JM
10851 extension.
10852
10853 If INFO is NULL, we may be copying an already prelinked binary
10854 with objcopy or strip, so do not add this header. */
10855 if (info != NULL
10856 && !SGI_COMPAT (abfd)
98c904a8
RS
10857 && bfd_get_section_by_name (abfd, ".dynamic"))
10858 {
10859 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10860 if ((*pm)->p_type == PT_NULL)
10861 break;
10862 if (*pm == NULL)
10863 {
10864 m = bfd_zalloc (abfd, sizeof (*m));
10865 if (m == NULL)
10866 return FALSE;
10867
10868 m->p_type = PT_NULL;
10869 *pm = m;
10870 }
10871 }
10872
b34976b6 10873 return TRUE;
b49e97c9
TS
10874}
10875\f
10876/* Return the section that should be marked against GC for a given
10877 relocation. */
10878
10879asection *
9719ad41 10880_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 10881 struct bfd_link_info *info,
9719ad41
RS
10882 Elf_Internal_Rela *rel,
10883 struct elf_link_hash_entry *h,
10884 Elf_Internal_Sym *sym)
b49e97c9
TS
10885{
10886 /* ??? Do mips16 stub sections need to be handled special? */
10887
10888 if (h != NULL)
07adf181
AM
10889 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10890 {
10891 case R_MIPS_GNU_VTINHERIT:
10892 case R_MIPS_GNU_VTENTRY:
10893 return NULL;
10894 }
b49e97c9 10895
07adf181 10896 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
10897}
10898
10899/* Update the got entry reference counts for the section being removed. */
10900
b34976b6 10901bfd_boolean
9719ad41
RS
10902_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10903 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10904 asection *sec ATTRIBUTE_UNUSED,
10905 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
10906{
10907#if 0
10908 Elf_Internal_Shdr *symtab_hdr;
10909 struct elf_link_hash_entry **sym_hashes;
10910 bfd_signed_vma *local_got_refcounts;
10911 const Elf_Internal_Rela *rel, *relend;
10912 unsigned long r_symndx;
10913 struct elf_link_hash_entry *h;
10914
7dda2462
TG
10915 if (info->relocatable)
10916 return TRUE;
10917
b49e97c9
TS
10918 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10919 sym_hashes = elf_sym_hashes (abfd);
10920 local_got_refcounts = elf_local_got_refcounts (abfd);
10921
10922 relend = relocs + sec->reloc_count;
10923 for (rel = relocs; rel < relend; rel++)
10924 switch (ELF_R_TYPE (abfd, rel->r_info))
10925 {
738e5348
RS
10926 case R_MIPS16_GOT16:
10927 case R_MIPS16_CALL16:
b49e97c9
TS
10928 case R_MIPS_GOT16:
10929 case R_MIPS_CALL16:
10930 case R_MIPS_CALL_HI16:
10931 case R_MIPS_CALL_LO16:
10932 case R_MIPS_GOT_HI16:
10933 case R_MIPS_GOT_LO16:
4a14403c
TS
10934 case R_MIPS_GOT_DISP:
10935 case R_MIPS_GOT_PAGE:
10936 case R_MIPS_GOT_OFST:
b49e97c9
TS
10937 /* ??? It would seem that the existing MIPS code does no sort
10938 of reference counting or whatnot on its GOT and PLT entries,
10939 so it is not possible to garbage collect them at this time. */
10940 break;
10941
10942 default:
10943 break;
10944 }
10945#endif
10946
b34976b6 10947 return TRUE;
b49e97c9
TS
10948}
10949\f
10950/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10951 hiding the old indirect symbol. Process additional relocation
10952 information. Also called for weakdefs, in which case we just let
10953 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10954
10955void
fcfa13d2 10956_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
10957 struct elf_link_hash_entry *dir,
10958 struct elf_link_hash_entry *ind)
b49e97c9
TS
10959{
10960 struct mips_elf_link_hash_entry *dirmips, *indmips;
10961
fcfa13d2 10962 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 10963
861fb55a
DJ
10964 dirmips = (struct mips_elf_link_hash_entry *) dir;
10965 indmips = (struct mips_elf_link_hash_entry *) ind;
10966 /* Any absolute non-dynamic relocations against an indirect or weak
10967 definition will be against the target symbol. */
10968 if (indmips->has_static_relocs)
10969 dirmips->has_static_relocs = TRUE;
10970
b49e97c9
TS
10971 if (ind->root.type != bfd_link_hash_indirect)
10972 return;
10973
b49e97c9
TS
10974 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10975 if (indmips->readonly_reloc)
b34976b6 10976 dirmips->readonly_reloc = TRUE;
b49e97c9 10977 if (indmips->no_fn_stub)
b34976b6 10978 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
10979 if (indmips->fn_stub)
10980 {
10981 dirmips->fn_stub = indmips->fn_stub;
10982 indmips->fn_stub = NULL;
10983 }
10984 if (indmips->need_fn_stub)
10985 {
10986 dirmips->need_fn_stub = TRUE;
10987 indmips->need_fn_stub = FALSE;
10988 }
10989 if (indmips->call_stub)
10990 {
10991 dirmips->call_stub = indmips->call_stub;
10992 indmips->call_stub = NULL;
10993 }
10994 if (indmips->call_fp_stub)
10995 {
10996 dirmips->call_fp_stub = indmips->call_fp_stub;
10997 indmips->call_fp_stub = NULL;
10998 }
634835ae
RS
10999 if (indmips->global_got_area < dirmips->global_got_area)
11000 dirmips->global_got_area = indmips->global_got_area;
11001 if (indmips->global_got_area < GGA_NONE)
11002 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11003 if (indmips->has_nonpic_branches)
11004 dirmips->has_nonpic_branches = TRUE;
0f20cc35
DJ
11005
11006 if (dirmips->tls_type == 0)
11007 dirmips->tls_type = indmips->tls_type;
b49e97c9 11008}
b49e97c9 11009\f
d01414a5
TS
11010#define PDR_SIZE 32
11011
b34976b6 11012bfd_boolean
9719ad41
RS
11013_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11014 struct bfd_link_info *info)
d01414a5
TS
11015{
11016 asection *o;
b34976b6 11017 bfd_boolean ret = FALSE;
d01414a5
TS
11018 unsigned char *tdata;
11019 size_t i, skip;
11020
11021 o = bfd_get_section_by_name (abfd, ".pdr");
11022 if (! o)
b34976b6 11023 return FALSE;
eea6121a 11024 if (o->size == 0)
b34976b6 11025 return FALSE;
eea6121a 11026 if (o->size % PDR_SIZE != 0)
b34976b6 11027 return FALSE;
d01414a5
TS
11028 if (o->output_section != NULL
11029 && bfd_is_abs_section (o->output_section))
b34976b6 11030 return FALSE;
d01414a5 11031
eea6121a 11032 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11033 if (! tdata)
b34976b6 11034 return FALSE;
d01414a5 11035
9719ad41 11036 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11037 info->keep_memory);
d01414a5
TS
11038 if (!cookie->rels)
11039 {
11040 free (tdata);
b34976b6 11041 return FALSE;
d01414a5
TS
11042 }
11043
11044 cookie->rel = cookie->rels;
11045 cookie->relend = cookie->rels + o->reloc_count;
11046
eea6121a 11047 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11048 {
c152c796 11049 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11050 {
11051 tdata[i] = 1;
11052 skip ++;
11053 }
11054 }
11055
11056 if (skip != 0)
11057 {
f0abc2a1 11058 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11059 o->size -= skip * PDR_SIZE;
b34976b6 11060 ret = TRUE;
d01414a5
TS
11061 }
11062 else
11063 free (tdata);
11064
11065 if (! info->keep_memory)
11066 free (cookie->rels);
11067
11068 return ret;
11069}
11070
b34976b6 11071bfd_boolean
9719ad41 11072_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11073{
11074 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11075 return TRUE;
11076 return FALSE;
53bfd6b4 11077}
d01414a5 11078
b34976b6 11079bfd_boolean
c7b8f16e
JB
11080_bfd_mips_elf_write_section (bfd *output_bfd,
11081 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11082 asection *sec, bfd_byte *contents)
d01414a5
TS
11083{
11084 bfd_byte *to, *from, *end;
11085 int i;
11086
11087 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11088 return FALSE;
d01414a5 11089
f0abc2a1 11090 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11091 return FALSE;
d01414a5
TS
11092
11093 to = contents;
eea6121a 11094 end = contents + sec->size;
d01414a5
TS
11095 for (from = contents, i = 0;
11096 from < end;
11097 from += PDR_SIZE, i++)
11098 {
f0abc2a1 11099 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11100 continue;
11101 if (to != from)
11102 memcpy (to, from, PDR_SIZE);
11103 to += PDR_SIZE;
11104 }
11105 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11106 sec->output_offset, sec->size);
b34976b6 11107 return TRUE;
d01414a5 11108}
53bfd6b4 11109\f
b49e97c9
TS
11110/* MIPS ELF uses a special find_nearest_line routine in order the
11111 handle the ECOFF debugging information. */
11112
11113struct mips_elf_find_line
11114{
11115 struct ecoff_debug_info d;
11116 struct ecoff_find_line i;
11117};
11118
b34976b6 11119bfd_boolean
9719ad41
RS
11120_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11121 asymbol **symbols, bfd_vma offset,
11122 const char **filename_ptr,
11123 const char **functionname_ptr,
11124 unsigned int *line_ptr)
b49e97c9
TS
11125{
11126 asection *msec;
11127
11128 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11129 filename_ptr, functionname_ptr,
11130 line_ptr))
b34976b6 11131 return TRUE;
b49e97c9
TS
11132
11133 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11134 filename_ptr, functionname_ptr,
9719ad41 11135 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11136 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11137 return TRUE;
b49e97c9
TS
11138
11139 msec = bfd_get_section_by_name (abfd, ".mdebug");
11140 if (msec != NULL)
11141 {
11142 flagword origflags;
11143 struct mips_elf_find_line *fi;
11144 const struct ecoff_debug_swap * const swap =
11145 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11146
11147 /* If we are called during a link, mips_elf_final_link may have
11148 cleared the SEC_HAS_CONTENTS field. We force it back on here
11149 if appropriate (which it normally will be). */
11150 origflags = msec->flags;
11151 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11152 msec->flags |= SEC_HAS_CONTENTS;
11153
11154 fi = elf_tdata (abfd)->find_line_info;
11155 if (fi == NULL)
11156 {
11157 bfd_size_type external_fdr_size;
11158 char *fraw_src;
11159 char *fraw_end;
11160 struct fdr *fdr_ptr;
11161 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11162
9719ad41 11163 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11164 if (fi == NULL)
11165 {
11166 msec->flags = origflags;
b34976b6 11167 return FALSE;
b49e97c9
TS
11168 }
11169
11170 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11171 {
11172 msec->flags = origflags;
b34976b6 11173 return FALSE;
b49e97c9
TS
11174 }
11175
11176 /* Swap in the FDR information. */
11177 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11178 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11179 if (fi->d.fdr == NULL)
11180 {
11181 msec->flags = origflags;
b34976b6 11182 return FALSE;
b49e97c9
TS
11183 }
11184 external_fdr_size = swap->external_fdr_size;
11185 fdr_ptr = fi->d.fdr;
11186 fraw_src = (char *) fi->d.external_fdr;
11187 fraw_end = (fraw_src
11188 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11189 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11190 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11191
11192 elf_tdata (abfd)->find_line_info = fi;
11193
11194 /* Note that we don't bother to ever free this information.
11195 find_nearest_line is either called all the time, as in
11196 objdump -l, so the information should be saved, or it is
11197 rarely called, as in ld error messages, so the memory
11198 wasted is unimportant. Still, it would probably be a
11199 good idea for free_cached_info to throw it away. */
11200 }
11201
11202 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11203 &fi->i, filename_ptr, functionname_ptr,
11204 line_ptr))
11205 {
11206 msec->flags = origflags;
b34976b6 11207 return TRUE;
b49e97c9
TS
11208 }
11209
11210 msec->flags = origflags;
11211 }
11212
11213 /* Fall back on the generic ELF find_nearest_line routine. */
11214
11215 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11216 filename_ptr, functionname_ptr,
11217 line_ptr);
11218}
4ab527b0
FF
11219
11220bfd_boolean
11221_bfd_mips_elf_find_inliner_info (bfd *abfd,
11222 const char **filename_ptr,
11223 const char **functionname_ptr,
11224 unsigned int *line_ptr)
11225{
11226 bfd_boolean found;
11227 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11228 functionname_ptr, line_ptr,
11229 & elf_tdata (abfd)->dwarf2_find_line_info);
11230 return found;
11231}
11232
b49e97c9
TS
11233\f
11234/* When are writing out the .options or .MIPS.options section,
11235 remember the bytes we are writing out, so that we can install the
11236 GP value in the section_processing routine. */
11237
b34976b6 11238bfd_boolean
9719ad41
RS
11239_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11240 const void *location,
11241 file_ptr offset, bfd_size_type count)
b49e97c9 11242{
cc2e31b9 11243 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11244 {
11245 bfd_byte *c;
11246
11247 if (elf_section_data (section) == NULL)
11248 {
11249 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11250 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11251 if (elf_section_data (section) == NULL)
b34976b6 11252 return FALSE;
b49e97c9 11253 }
f0abc2a1 11254 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11255 if (c == NULL)
11256 {
eea6121a 11257 c = bfd_zalloc (abfd, section->size);
b49e97c9 11258 if (c == NULL)
b34976b6 11259 return FALSE;
f0abc2a1 11260 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11261 }
11262
9719ad41 11263 memcpy (c + offset, location, count);
b49e97c9
TS
11264 }
11265
11266 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11267 count);
11268}
11269
11270/* This is almost identical to bfd_generic_get_... except that some
11271 MIPS relocations need to be handled specially. Sigh. */
11272
11273bfd_byte *
9719ad41
RS
11274_bfd_elf_mips_get_relocated_section_contents
11275 (bfd *abfd,
11276 struct bfd_link_info *link_info,
11277 struct bfd_link_order *link_order,
11278 bfd_byte *data,
11279 bfd_boolean relocatable,
11280 asymbol **symbols)
b49e97c9
TS
11281{
11282 /* Get enough memory to hold the stuff */
11283 bfd *input_bfd = link_order->u.indirect.section->owner;
11284 asection *input_section = link_order->u.indirect.section;
eea6121a 11285 bfd_size_type sz;
b49e97c9
TS
11286
11287 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11288 arelent **reloc_vector = NULL;
11289 long reloc_count;
11290
11291 if (reloc_size < 0)
11292 goto error_return;
11293
9719ad41 11294 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11295 if (reloc_vector == NULL && reloc_size != 0)
11296 goto error_return;
11297
11298 /* read in the section */
eea6121a
AM
11299 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11300 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11301 goto error_return;
11302
b49e97c9
TS
11303 reloc_count = bfd_canonicalize_reloc (input_bfd,
11304 input_section,
11305 reloc_vector,
11306 symbols);
11307 if (reloc_count < 0)
11308 goto error_return;
11309
11310 if (reloc_count > 0)
11311 {
11312 arelent **parent;
11313 /* for mips */
11314 int gp_found;
11315 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11316
11317 {
11318 struct bfd_hash_entry *h;
11319 struct bfd_link_hash_entry *lh;
11320 /* Skip all this stuff if we aren't mixing formats. */
11321 if (abfd && input_bfd
11322 && abfd->xvec == input_bfd->xvec)
11323 lh = 0;
11324 else
11325 {
b34976b6 11326 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11327 lh = (struct bfd_link_hash_entry *) h;
11328 }
11329 lookup:
11330 if (lh)
11331 {
11332 switch (lh->type)
11333 {
11334 case bfd_link_hash_undefined:
11335 case bfd_link_hash_undefweak:
11336 case bfd_link_hash_common:
11337 gp_found = 0;
11338 break;
11339 case bfd_link_hash_defined:
11340 case bfd_link_hash_defweak:
11341 gp_found = 1;
11342 gp = lh->u.def.value;
11343 break;
11344 case bfd_link_hash_indirect:
11345 case bfd_link_hash_warning:
11346 lh = lh->u.i.link;
11347 /* @@FIXME ignoring warning for now */
11348 goto lookup;
11349 case bfd_link_hash_new:
11350 default:
11351 abort ();
11352 }
11353 }
11354 else
11355 gp_found = 0;
11356 }
11357 /* end mips */
9719ad41 11358 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11359 {
9719ad41 11360 char *error_message = NULL;
b49e97c9
TS
11361 bfd_reloc_status_type r;
11362
11363 /* Specific to MIPS: Deal with relocation types that require
11364 knowing the gp of the output bfd. */
11365 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11366
8236346f
EC
11367 /* If we've managed to find the gp and have a special
11368 function for the relocation then go ahead, else default
11369 to the generic handling. */
11370 if (gp_found
11371 && (*parent)->howto->special_function
11372 == _bfd_mips_elf32_gprel16_reloc)
11373 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11374 input_section, relocatable,
11375 data, gp);
11376 else
86324f90 11377 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11378 input_section,
11379 relocatable ? abfd : NULL,
11380 &error_message);
b49e97c9 11381
1049f94e 11382 if (relocatable)
b49e97c9
TS
11383 {
11384 asection *os = input_section->output_section;
11385
11386 /* A partial link, so keep the relocs */
11387 os->orelocation[os->reloc_count] = *parent;
11388 os->reloc_count++;
11389 }
11390
11391 if (r != bfd_reloc_ok)
11392 {
11393 switch (r)
11394 {
11395 case bfd_reloc_undefined:
11396 if (!((*link_info->callbacks->undefined_symbol)
11397 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11398 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11399 goto error_return;
11400 break;
11401 case bfd_reloc_dangerous:
9719ad41 11402 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11403 if (!((*link_info->callbacks->reloc_dangerous)
11404 (link_info, error_message, input_bfd, input_section,
11405 (*parent)->address)))
11406 goto error_return;
11407 break;
11408 case bfd_reloc_overflow:
11409 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11410 (link_info, NULL,
11411 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11412 (*parent)->howto->name, (*parent)->addend,
11413 input_bfd, input_section, (*parent)->address)))
11414 goto error_return;
11415 break;
11416 case bfd_reloc_outofrange:
11417 default:
11418 abort ();
11419 break;
11420 }
11421
11422 }
11423 }
11424 }
11425 if (reloc_vector != NULL)
11426 free (reloc_vector);
11427 return data;
11428
11429error_return:
11430 if (reloc_vector != NULL)
11431 free (reloc_vector);
11432 return NULL;
11433}
11434\f
d5eaccd7
RS
11435/* Allocate ABFD's target-dependent data. */
11436
11437bfd_boolean
11438_bfd_mips_elf_mkobject (bfd *abfd)
11439{
11440 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11441 MIPS_ELF_TDATA);
11442}
11443
b49e97c9
TS
11444/* Create a MIPS ELF linker hash table. */
11445
11446struct bfd_link_hash_table *
9719ad41 11447_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
11448{
11449 struct mips_elf_link_hash_table *ret;
11450 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11451
9719ad41
RS
11452 ret = bfd_malloc (amt);
11453 if (ret == NULL)
b49e97c9
TS
11454 return NULL;
11455
66eb6687
AM
11456 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11457 mips_elf_link_hash_newfunc,
11458 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 11459 {
e2d34d7d 11460 free (ret);
b49e97c9
TS
11461 return NULL;
11462 }
11463
11464#if 0
11465 /* We no longer use this. */
11466 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11467 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11468#endif
11469 ret->procedure_count = 0;
11470 ret->compact_rel_size = 0;
b34976b6 11471 ret->use_rld_obj_head = FALSE;
b49e97c9 11472 ret->rld_value = 0;
b34976b6 11473 ret->mips16_stubs_seen = FALSE;
861fb55a 11474 ret->use_plts_and_copy_relocs = FALSE;
0a44bf69 11475 ret->is_vxworks = FALSE;
0e53d9da 11476 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
11477 ret->srelbss = NULL;
11478 ret->sdynbss = NULL;
11479 ret->srelplt = NULL;
11480 ret->srelplt2 = NULL;
11481 ret->sgotplt = NULL;
11482 ret->splt = NULL;
4e41d0d7 11483 ret->sstubs = NULL;
a8028dd0
RS
11484 ret->sgot = NULL;
11485 ret->got_info = NULL;
0a44bf69
RS
11486 ret->plt_header_size = 0;
11487 ret->plt_entry_size = 0;
33bb52fb 11488 ret->lazy_stub_count = 0;
5108fc1b 11489 ret->function_stub_size = 0;
861fb55a
DJ
11490 ret->strampoline = NULL;
11491 ret->la25_stubs = NULL;
11492 ret->add_stub_section = NULL;
b49e97c9
TS
11493
11494 return &ret->root.root;
11495}
0a44bf69
RS
11496
11497/* Likewise, but indicate that the target is VxWorks. */
11498
11499struct bfd_link_hash_table *
11500_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11501{
11502 struct bfd_link_hash_table *ret;
11503
11504 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11505 if (ret)
11506 {
11507 struct mips_elf_link_hash_table *htab;
11508
11509 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
11510 htab->use_plts_and_copy_relocs = TRUE;
11511 htab->is_vxworks = TRUE;
0a44bf69
RS
11512 }
11513 return ret;
11514}
861fb55a
DJ
11515
11516/* A function that the linker calls if we are allowed to use PLTs
11517 and copy relocs. */
11518
11519void
11520_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11521{
11522 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11523}
b49e97c9
TS
11524\f
11525/* We need to use a special link routine to handle the .reginfo and
11526 the .mdebug sections. We need to merge all instances of these
11527 sections together, not write them all out sequentially. */
11528
b34976b6 11529bfd_boolean
9719ad41 11530_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 11531{
b49e97c9
TS
11532 asection *o;
11533 struct bfd_link_order *p;
11534 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11535 asection *rtproc_sec;
11536 Elf32_RegInfo reginfo;
11537 struct ecoff_debug_info debug;
861fb55a 11538 struct mips_htab_traverse_info hti;
7a2a6943
NC
11539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11540 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 11541 HDRR *symhdr = &debug.symbolic_header;
9719ad41 11542 void *mdebug_handle = NULL;
b49e97c9
TS
11543 asection *s;
11544 EXTR esym;
11545 unsigned int i;
11546 bfd_size_type amt;
0a44bf69 11547 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
11548
11549 static const char * const secname[] =
11550 {
11551 ".text", ".init", ".fini", ".data",
11552 ".rodata", ".sdata", ".sbss", ".bss"
11553 };
11554 static const int sc[] =
11555 {
11556 scText, scInit, scFini, scData,
11557 scRData, scSData, scSBss, scBss
11558 };
11559
d4596a51
RS
11560 /* Sort the dynamic symbols so that those with GOT entries come after
11561 those without. */
0a44bf69 11562 htab = mips_elf_hash_table (info);
d4596a51
RS
11563 if (!mips_elf_sort_hash_table (abfd, info))
11564 return FALSE;
b49e97c9 11565
861fb55a
DJ
11566 /* Create any scheduled LA25 stubs. */
11567 hti.info = info;
11568 hti.output_bfd = abfd;
11569 hti.error = FALSE;
11570 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11571 if (hti.error)
11572 return FALSE;
11573
b49e97c9
TS
11574 /* Get a value for the GP register. */
11575 if (elf_gp (abfd) == 0)
11576 {
11577 struct bfd_link_hash_entry *h;
11578
b34976b6 11579 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 11580 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
11581 elf_gp (abfd) = (h->u.def.value
11582 + h->u.def.section->output_section->vma
11583 + h->u.def.section->output_offset);
0a44bf69
RS
11584 else if (htab->is_vxworks
11585 && (h = bfd_link_hash_lookup (info->hash,
11586 "_GLOBAL_OFFSET_TABLE_",
11587 FALSE, FALSE, TRUE))
11588 && h->type == bfd_link_hash_defined)
11589 elf_gp (abfd) = (h->u.def.section->output_section->vma
11590 + h->u.def.section->output_offset
11591 + h->u.def.value);
1049f94e 11592 else if (info->relocatable)
b49e97c9
TS
11593 {
11594 bfd_vma lo = MINUS_ONE;
11595
11596 /* Find the GP-relative section with the lowest offset. */
9719ad41 11597 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11598 if (o->vma < lo
11599 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11600 lo = o->vma;
11601
11602 /* And calculate GP relative to that. */
0a44bf69 11603 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
11604 }
11605 else
11606 {
11607 /* If the relocate_section function needs to do a reloc
11608 involving the GP value, it should make a reloc_dangerous
11609 callback to warn that GP is not defined. */
11610 }
11611 }
11612
11613 /* Go through the sections and collect the .reginfo and .mdebug
11614 information. */
11615 reginfo_sec = NULL;
11616 mdebug_sec = NULL;
11617 gptab_data_sec = NULL;
11618 gptab_bss_sec = NULL;
9719ad41 11619 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
11620 {
11621 if (strcmp (o->name, ".reginfo") == 0)
11622 {
11623 memset (&reginfo, 0, sizeof reginfo);
11624
11625 /* We have found the .reginfo section in the output file.
11626 Look through all the link_orders comprising it and merge
11627 the information together. */
8423293d 11628 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11629 {
11630 asection *input_section;
11631 bfd *input_bfd;
11632 Elf32_External_RegInfo ext;
11633 Elf32_RegInfo sub;
11634
11635 if (p->type != bfd_indirect_link_order)
11636 {
11637 if (p->type == bfd_data_link_order)
11638 continue;
11639 abort ();
11640 }
11641
11642 input_section = p->u.indirect.section;
11643 input_bfd = input_section->owner;
11644
b49e97c9 11645 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 11646 &ext, 0, sizeof ext))
b34976b6 11647 return FALSE;
b49e97c9
TS
11648
11649 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11650
11651 reginfo.ri_gprmask |= sub.ri_gprmask;
11652 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11653 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11654 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11655 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11656
11657 /* ri_gp_value is set by the function
11658 mips_elf32_section_processing when the section is
11659 finally written out. */
11660
11661 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11662 elf_link_input_bfd ignores this section. */
11663 input_section->flags &= ~SEC_HAS_CONTENTS;
11664 }
11665
11666 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 11667 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
11668
11669 /* Skip this section later on (I don't think this currently
11670 matters, but someday it might). */
8423293d 11671 o->map_head.link_order = NULL;
b49e97c9
TS
11672
11673 reginfo_sec = o;
11674 }
11675
11676 if (strcmp (o->name, ".mdebug") == 0)
11677 {
11678 struct extsym_info einfo;
11679 bfd_vma last;
11680
11681 /* We have found the .mdebug section in the output file.
11682 Look through all the link_orders comprising it and merge
11683 the information together. */
11684 symhdr->magic = swap->sym_magic;
11685 /* FIXME: What should the version stamp be? */
11686 symhdr->vstamp = 0;
11687 symhdr->ilineMax = 0;
11688 symhdr->cbLine = 0;
11689 symhdr->idnMax = 0;
11690 symhdr->ipdMax = 0;
11691 symhdr->isymMax = 0;
11692 symhdr->ioptMax = 0;
11693 symhdr->iauxMax = 0;
11694 symhdr->issMax = 0;
11695 symhdr->issExtMax = 0;
11696 symhdr->ifdMax = 0;
11697 symhdr->crfd = 0;
11698 symhdr->iextMax = 0;
11699
11700 /* We accumulate the debugging information itself in the
11701 debug_info structure. */
11702 debug.line = NULL;
11703 debug.external_dnr = NULL;
11704 debug.external_pdr = NULL;
11705 debug.external_sym = NULL;
11706 debug.external_opt = NULL;
11707 debug.external_aux = NULL;
11708 debug.ss = NULL;
11709 debug.ssext = debug.ssext_end = NULL;
11710 debug.external_fdr = NULL;
11711 debug.external_rfd = NULL;
11712 debug.external_ext = debug.external_ext_end = NULL;
11713
11714 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 11715 if (mdebug_handle == NULL)
b34976b6 11716 return FALSE;
b49e97c9
TS
11717
11718 esym.jmptbl = 0;
11719 esym.cobol_main = 0;
11720 esym.weakext = 0;
11721 esym.reserved = 0;
11722 esym.ifd = ifdNil;
11723 esym.asym.iss = issNil;
11724 esym.asym.st = stLocal;
11725 esym.asym.reserved = 0;
11726 esym.asym.index = indexNil;
11727 last = 0;
11728 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11729 {
11730 esym.asym.sc = sc[i];
11731 s = bfd_get_section_by_name (abfd, secname[i]);
11732 if (s != NULL)
11733 {
11734 esym.asym.value = s->vma;
eea6121a 11735 last = s->vma + s->size;
b49e97c9
TS
11736 }
11737 else
11738 esym.asym.value = last;
11739 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11740 secname[i], &esym))
b34976b6 11741 return FALSE;
b49e97c9
TS
11742 }
11743
8423293d 11744 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11745 {
11746 asection *input_section;
11747 bfd *input_bfd;
11748 const struct ecoff_debug_swap *input_swap;
11749 struct ecoff_debug_info input_debug;
11750 char *eraw_src;
11751 char *eraw_end;
11752
11753 if (p->type != bfd_indirect_link_order)
11754 {
11755 if (p->type == bfd_data_link_order)
11756 continue;
11757 abort ();
11758 }
11759
11760 input_section = p->u.indirect.section;
11761 input_bfd = input_section->owner;
11762
d5eaccd7 11763 if (!is_mips_elf (input_bfd))
b49e97c9
TS
11764 {
11765 /* I don't know what a non MIPS ELF bfd would be
11766 doing with a .mdebug section, but I don't really
11767 want to deal with it. */
11768 continue;
11769 }
11770
11771 input_swap = (get_elf_backend_data (input_bfd)
11772 ->elf_backend_ecoff_debug_swap);
11773
eea6121a 11774 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
11775
11776 /* The ECOFF linking code expects that we have already
11777 read in the debugging information and set up an
11778 ecoff_debug_info structure, so we do that now. */
11779 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11780 &input_debug))
b34976b6 11781 return FALSE;
b49e97c9
TS
11782
11783 if (! (bfd_ecoff_debug_accumulate
11784 (mdebug_handle, abfd, &debug, swap, input_bfd,
11785 &input_debug, input_swap, info)))
b34976b6 11786 return FALSE;
b49e97c9
TS
11787
11788 /* Loop through the external symbols. For each one with
11789 interesting information, try to find the symbol in
11790 the linker global hash table and save the information
11791 for the output external symbols. */
11792 eraw_src = input_debug.external_ext;
11793 eraw_end = (eraw_src
11794 + (input_debug.symbolic_header.iextMax
11795 * input_swap->external_ext_size));
11796 for (;
11797 eraw_src < eraw_end;
11798 eraw_src += input_swap->external_ext_size)
11799 {
11800 EXTR ext;
11801 const char *name;
11802 struct mips_elf_link_hash_entry *h;
11803
9719ad41 11804 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
11805 if (ext.asym.sc == scNil
11806 || ext.asym.sc == scUndefined
11807 || ext.asym.sc == scSUndefined)
11808 continue;
11809
11810 name = input_debug.ssext + ext.asym.iss;
11811 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 11812 name, FALSE, FALSE, TRUE);
b49e97c9
TS
11813 if (h == NULL || h->esym.ifd != -2)
11814 continue;
11815
11816 if (ext.ifd != -1)
11817 {
11818 BFD_ASSERT (ext.ifd
11819 < input_debug.symbolic_header.ifdMax);
11820 ext.ifd = input_debug.ifdmap[ext.ifd];
11821 }
11822
11823 h->esym = ext;
11824 }
11825
11826 /* Free up the information we just read. */
11827 free (input_debug.line);
11828 free (input_debug.external_dnr);
11829 free (input_debug.external_pdr);
11830 free (input_debug.external_sym);
11831 free (input_debug.external_opt);
11832 free (input_debug.external_aux);
11833 free (input_debug.ss);
11834 free (input_debug.ssext);
11835 free (input_debug.external_fdr);
11836 free (input_debug.external_rfd);
11837 free (input_debug.external_ext);
11838
11839 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11840 elf_link_input_bfd ignores this section. */
11841 input_section->flags &= ~SEC_HAS_CONTENTS;
11842 }
11843
11844 if (SGI_COMPAT (abfd) && info->shared)
11845 {
11846 /* Create .rtproc section. */
11847 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11848 if (rtproc_sec == NULL)
11849 {
11850 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11851 | SEC_LINKER_CREATED | SEC_READONLY);
11852
3496cb2a
L
11853 rtproc_sec = bfd_make_section_with_flags (abfd,
11854 ".rtproc",
11855 flags);
b49e97c9 11856 if (rtproc_sec == NULL
b49e97c9 11857 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 11858 return FALSE;
b49e97c9
TS
11859 }
11860
11861 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11862 info, rtproc_sec,
11863 &debug))
b34976b6 11864 return FALSE;
b49e97c9
TS
11865 }
11866
11867 /* Build the external symbol information. */
11868 einfo.abfd = abfd;
11869 einfo.info = info;
11870 einfo.debug = &debug;
11871 einfo.swap = swap;
b34976b6 11872 einfo.failed = FALSE;
b49e97c9 11873 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 11874 mips_elf_output_extsym, &einfo);
b49e97c9 11875 if (einfo.failed)
b34976b6 11876 return FALSE;
b49e97c9
TS
11877
11878 /* Set the size of the .mdebug section. */
eea6121a 11879 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
11880
11881 /* Skip this section later on (I don't think this currently
11882 matters, but someday it might). */
8423293d 11883 o->map_head.link_order = NULL;
b49e97c9
TS
11884
11885 mdebug_sec = o;
11886 }
11887
0112cd26 11888 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
11889 {
11890 const char *subname;
11891 unsigned int c;
11892 Elf32_gptab *tab;
11893 Elf32_External_gptab *ext_tab;
11894 unsigned int j;
11895
11896 /* The .gptab.sdata and .gptab.sbss sections hold
11897 information describing how the small data area would
11898 change depending upon the -G switch. These sections
11899 not used in executables files. */
1049f94e 11900 if (! info->relocatable)
b49e97c9 11901 {
8423293d 11902 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11903 {
11904 asection *input_section;
11905
11906 if (p->type != bfd_indirect_link_order)
11907 {
11908 if (p->type == bfd_data_link_order)
11909 continue;
11910 abort ();
11911 }
11912
11913 input_section = p->u.indirect.section;
11914
11915 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11916 elf_link_input_bfd ignores this section. */
11917 input_section->flags &= ~SEC_HAS_CONTENTS;
11918 }
11919
11920 /* Skip this section later on (I don't think this
11921 currently matters, but someday it might). */
8423293d 11922 o->map_head.link_order = NULL;
b49e97c9
TS
11923
11924 /* Really remove the section. */
5daa8fe7 11925 bfd_section_list_remove (abfd, o);
b49e97c9
TS
11926 --abfd->section_count;
11927
11928 continue;
11929 }
11930
11931 /* There is one gptab for initialized data, and one for
11932 uninitialized data. */
11933 if (strcmp (o->name, ".gptab.sdata") == 0)
11934 gptab_data_sec = o;
11935 else if (strcmp (o->name, ".gptab.sbss") == 0)
11936 gptab_bss_sec = o;
11937 else
11938 {
11939 (*_bfd_error_handler)
11940 (_("%s: illegal section name `%s'"),
11941 bfd_get_filename (abfd), o->name);
11942 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 11943 return FALSE;
b49e97c9
TS
11944 }
11945
11946 /* The linker script always combines .gptab.data and
11947 .gptab.sdata into .gptab.sdata, and likewise for
11948 .gptab.bss and .gptab.sbss. It is possible that there is
11949 no .sdata or .sbss section in the output file, in which
11950 case we must change the name of the output section. */
11951 subname = o->name + sizeof ".gptab" - 1;
11952 if (bfd_get_section_by_name (abfd, subname) == NULL)
11953 {
11954 if (o == gptab_data_sec)
11955 o->name = ".gptab.data";
11956 else
11957 o->name = ".gptab.bss";
11958 subname = o->name + sizeof ".gptab" - 1;
11959 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11960 }
11961
11962 /* Set up the first entry. */
11963 c = 1;
11964 amt = c * sizeof (Elf32_gptab);
9719ad41 11965 tab = bfd_malloc (amt);
b49e97c9 11966 if (tab == NULL)
b34976b6 11967 return FALSE;
b49e97c9
TS
11968 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11969 tab[0].gt_header.gt_unused = 0;
11970
11971 /* Combine the input sections. */
8423293d 11972 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11973 {
11974 asection *input_section;
11975 bfd *input_bfd;
11976 bfd_size_type size;
11977 unsigned long last;
11978 bfd_size_type gpentry;
11979
11980 if (p->type != bfd_indirect_link_order)
11981 {
11982 if (p->type == bfd_data_link_order)
11983 continue;
11984 abort ();
11985 }
11986
11987 input_section = p->u.indirect.section;
11988 input_bfd = input_section->owner;
11989
11990 /* Combine the gptab entries for this input section one
11991 by one. We know that the input gptab entries are
11992 sorted by ascending -G value. */
eea6121a 11993 size = input_section->size;
b49e97c9
TS
11994 last = 0;
11995 for (gpentry = sizeof (Elf32_External_gptab);
11996 gpentry < size;
11997 gpentry += sizeof (Elf32_External_gptab))
11998 {
11999 Elf32_External_gptab ext_gptab;
12000 Elf32_gptab int_gptab;
12001 unsigned long val;
12002 unsigned long add;
b34976b6 12003 bfd_boolean exact;
b49e97c9
TS
12004 unsigned int look;
12005
12006 if (! (bfd_get_section_contents
9719ad41
RS
12007 (input_bfd, input_section, &ext_gptab, gpentry,
12008 sizeof (Elf32_External_gptab))))
b49e97c9
TS
12009 {
12010 free (tab);
b34976b6 12011 return FALSE;
b49e97c9
TS
12012 }
12013
12014 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12015 &int_gptab);
12016 val = int_gptab.gt_entry.gt_g_value;
12017 add = int_gptab.gt_entry.gt_bytes - last;
12018
b34976b6 12019 exact = FALSE;
b49e97c9
TS
12020 for (look = 1; look < c; look++)
12021 {
12022 if (tab[look].gt_entry.gt_g_value >= val)
12023 tab[look].gt_entry.gt_bytes += add;
12024
12025 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 12026 exact = TRUE;
b49e97c9
TS
12027 }
12028
12029 if (! exact)
12030 {
12031 Elf32_gptab *new_tab;
12032 unsigned int max;
12033
12034 /* We need a new table entry. */
12035 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 12036 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
12037 if (new_tab == NULL)
12038 {
12039 free (tab);
b34976b6 12040 return FALSE;
b49e97c9
TS
12041 }
12042 tab = new_tab;
12043 tab[c].gt_entry.gt_g_value = val;
12044 tab[c].gt_entry.gt_bytes = add;
12045
12046 /* Merge in the size for the next smallest -G
12047 value, since that will be implied by this new
12048 value. */
12049 max = 0;
12050 for (look = 1; look < c; look++)
12051 {
12052 if (tab[look].gt_entry.gt_g_value < val
12053 && (max == 0
12054 || (tab[look].gt_entry.gt_g_value
12055 > tab[max].gt_entry.gt_g_value)))
12056 max = look;
12057 }
12058 if (max != 0)
12059 tab[c].gt_entry.gt_bytes +=
12060 tab[max].gt_entry.gt_bytes;
12061
12062 ++c;
12063 }
12064
12065 last = int_gptab.gt_entry.gt_bytes;
12066 }
12067
12068 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12069 elf_link_input_bfd ignores this section. */
12070 input_section->flags &= ~SEC_HAS_CONTENTS;
12071 }
12072
12073 /* The table must be sorted by -G value. */
12074 if (c > 2)
12075 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12076
12077 /* Swap out the table. */
12078 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 12079 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
12080 if (ext_tab == NULL)
12081 {
12082 free (tab);
b34976b6 12083 return FALSE;
b49e97c9
TS
12084 }
12085
12086 for (j = 0; j < c; j++)
12087 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12088 free (tab);
12089
eea6121a 12090 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
12091 o->contents = (bfd_byte *) ext_tab;
12092
12093 /* Skip this section later on (I don't think this currently
12094 matters, but someday it might). */
8423293d 12095 o->map_head.link_order = NULL;
b49e97c9
TS
12096 }
12097 }
12098
12099 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 12100 if (!bfd_elf_final_link (abfd, info))
b34976b6 12101 return FALSE;
b49e97c9
TS
12102
12103 /* Now write out the computed sections. */
12104
9719ad41 12105 if (reginfo_sec != NULL)
b49e97c9
TS
12106 {
12107 Elf32_External_RegInfo ext;
12108
12109 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 12110 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 12111 return FALSE;
b49e97c9
TS
12112 }
12113
9719ad41 12114 if (mdebug_sec != NULL)
b49e97c9
TS
12115 {
12116 BFD_ASSERT (abfd->output_has_begun);
12117 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12118 swap, info,
12119 mdebug_sec->filepos))
b34976b6 12120 return FALSE;
b49e97c9
TS
12121
12122 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12123 }
12124
9719ad41 12125 if (gptab_data_sec != NULL)
b49e97c9
TS
12126 {
12127 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12128 gptab_data_sec->contents,
eea6121a 12129 0, gptab_data_sec->size))
b34976b6 12130 return FALSE;
b49e97c9
TS
12131 }
12132
9719ad41 12133 if (gptab_bss_sec != NULL)
b49e97c9
TS
12134 {
12135 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12136 gptab_bss_sec->contents,
eea6121a 12137 0, gptab_bss_sec->size))
b34976b6 12138 return FALSE;
b49e97c9
TS
12139 }
12140
12141 if (SGI_COMPAT (abfd))
12142 {
12143 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12144 if (rtproc_sec != NULL)
12145 {
12146 if (! bfd_set_section_contents (abfd, rtproc_sec,
12147 rtproc_sec->contents,
eea6121a 12148 0, rtproc_sec->size))
b34976b6 12149 return FALSE;
b49e97c9
TS
12150 }
12151 }
12152
b34976b6 12153 return TRUE;
b49e97c9
TS
12154}
12155\f
64543e1a
RS
12156/* Structure for saying that BFD machine EXTENSION extends BASE. */
12157
12158struct mips_mach_extension {
12159 unsigned long extension, base;
12160};
12161
12162
12163/* An array describing how BFD machines relate to one another. The entries
12164 are ordered topologically with MIPS I extensions listed last. */
12165
12166static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0
AN
12167 /* MIPS64r2 extensions. */
12168 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12169
64543e1a 12170 /* MIPS64 extensions. */
5f74bc13 12171 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 12172 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 12173 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
64543e1a
RS
12174
12175 /* MIPS V extensions. */
12176 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12177
12178 /* R10000 extensions. */
12179 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
12180 { bfd_mach_mips14000, bfd_mach_mips10000 },
12181 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
12182
12183 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12184 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12185 better to allow vr5400 and vr5500 code to be merged anyway, since
12186 many libraries will just use the core ISA. Perhaps we could add
12187 some sort of ASE flag if this ever proves a problem. */
12188 { bfd_mach_mips5500, bfd_mach_mips5400 },
12189 { bfd_mach_mips5400, bfd_mach_mips5000 },
12190
12191 /* MIPS IV extensions. */
12192 { bfd_mach_mips5, bfd_mach_mips8000 },
12193 { bfd_mach_mips10000, bfd_mach_mips8000 },
12194 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 12195 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 12196 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
12197
12198 /* VR4100 extensions. */
12199 { bfd_mach_mips4120, bfd_mach_mips4100 },
12200 { bfd_mach_mips4111, bfd_mach_mips4100 },
12201
12202 /* MIPS III extensions. */
350cc38d
MS
12203 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12204 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
12205 { bfd_mach_mips8000, bfd_mach_mips4000 },
12206 { bfd_mach_mips4650, bfd_mach_mips4000 },
12207 { bfd_mach_mips4600, bfd_mach_mips4000 },
12208 { bfd_mach_mips4400, bfd_mach_mips4000 },
12209 { bfd_mach_mips4300, bfd_mach_mips4000 },
12210 { bfd_mach_mips4100, bfd_mach_mips4000 },
12211 { bfd_mach_mips4010, bfd_mach_mips4000 },
12212
12213 /* MIPS32 extensions. */
12214 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12215
12216 /* MIPS II extensions. */
12217 { bfd_mach_mips4000, bfd_mach_mips6000 },
12218 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12219
12220 /* MIPS I extensions. */
12221 { bfd_mach_mips6000, bfd_mach_mips3000 },
12222 { bfd_mach_mips3900, bfd_mach_mips3000 }
12223};
12224
12225
12226/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12227
12228static bfd_boolean
9719ad41 12229mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
12230{
12231 size_t i;
12232
c5211a54
RS
12233 if (extension == base)
12234 return TRUE;
12235
12236 if (base == bfd_mach_mipsisa32
12237 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12238 return TRUE;
12239
12240 if (base == bfd_mach_mipsisa32r2
12241 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12242 return TRUE;
12243
12244 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 12245 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
12246 {
12247 extension = mips_mach_extensions[i].base;
12248 if (extension == base)
12249 return TRUE;
12250 }
64543e1a 12251
c5211a54 12252 return FALSE;
64543e1a
RS
12253}
12254
12255
12256/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 12257
b34976b6 12258static bfd_boolean
9719ad41 12259mips_32bit_flags_p (flagword flags)
00707a0e 12260{
64543e1a
RS
12261 return ((flags & EF_MIPS_32BITMODE) != 0
12262 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12263 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12264 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12265 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12266 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12267 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
12268}
12269
64543e1a 12270
2cf19d5c
JM
12271/* Merge object attributes from IBFD into OBFD. Raise an error if
12272 there are conflicting attributes. */
12273static bfd_boolean
12274mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12275{
12276 obj_attribute *in_attr;
12277 obj_attribute *out_attr;
12278
12279 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12280 {
12281 /* This is the first object. Copy the attributes. */
12282 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12283
12284 /* Use the Tag_null value to indicate the attributes have been
12285 initialized. */
12286 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12287
12288 return TRUE;
12289 }
12290
12291 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12292 non-conflicting ones. */
12293 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12294 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12295 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12296 {
12297 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12298 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12299 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12300 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12301 ;
42554f6a 12302 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12303 _bfd_error_handler
12304 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12305 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 12306 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
12307 _bfd_error_handler
12308 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12309 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12310 else
12311 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12312 {
12313 case 1:
12314 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12315 {
12316 case 2:
12317 _bfd_error_handler
12318 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12319 obfd, ibfd);
51a0dd31 12320 break;
2cf19d5c
JM
12321
12322 case 3:
12323 _bfd_error_handler
12324 (_("Warning: %B uses hard float, %B uses soft float"),
12325 obfd, ibfd);
12326 break;
12327
42554f6a
TS
12328 case 4:
12329 _bfd_error_handler
12330 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12331 obfd, ibfd);
12332 break;
12333
2cf19d5c
JM
12334 default:
12335 abort ();
12336 }
12337 break;
12338
12339 case 2:
12340 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12341 {
12342 case 1:
12343 _bfd_error_handler
12344 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12345 ibfd, obfd);
51a0dd31 12346 break;
2cf19d5c
JM
12347
12348 case 3:
12349 _bfd_error_handler
12350 (_("Warning: %B uses hard float, %B uses soft float"),
12351 obfd, ibfd);
12352 break;
12353
42554f6a
TS
12354 case 4:
12355 _bfd_error_handler
12356 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12357 obfd, ibfd);
12358 break;
12359
2cf19d5c
JM
12360 default:
12361 abort ();
12362 }
12363 break;
12364
12365 case 3:
12366 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12367 {
12368 case 1:
12369 case 2:
42554f6a 12370 case 4:
2cf19d5c
JM
12371 _bfd_error_handler
12372 (_("Warning: %B uses hard float, %B uses soft float"),
12373 ibfd, obfd);
12374 break;
12375
12376 default:
12377 abort ();
12378 }
12379 break;
12380
42554f6a
TS
12381 case 4:
12382 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12383 {
12384 case 1:
12385 _bfd_error_handler
12386 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12387 ibfd, obfd);
12388 break;
12389
12390 case 2:
12391 _bfd_error_handler
12392 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12393 ibfd, obfd);
12394 break;
12395
12396 case 3:
12397 _bfd_error_handler
12398 (_("Warning: %B uses hard float, %B uses soft float"),
12399 obfd, ibfd);
12400 break;
12401
12402 default:
12403 abort ();
12404 }
12405 break;
12406
2cf19d5c
JM
12407 default:
12408 abort ();
12409 }
12410 }
12411
12412 /* Merge Tag_compatibility attributes and any common GNU ones. */
12413 _bfd_elf_merge_object_attributes (ibfd, obfd);
12414
12415 return TRUE;
12416}
12417
b49e97c9
TS
12418/* Merge backend specific data from an object file to the output
12419 object file when linking. */
12420
b34976b6 12421bfd_boolean
9719ad41 12422_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
12423{
12424 flagword old_flags;
12425 flagword new_flags;
b34976b6
AM
12426 bfd_boolean ok;
12427 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
12428 asection *sec;
12429
12430 /* Check if we have the same endianess */
82e51918 12431 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
12432 {
12433 (*_bfd_error_handler)
d003868e
AM
12434 (_("%B: endianness incompatible with that of the selected emulation"),
12435 ibfd);
aa701218
AO
12436 return FALSE;
12437 }
b49e97c9 12438
d5eaccd7 12439 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 12440 return TRUE;
b49e97c9 12441
aa701218
AO
12442 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12443 {
12444 (*_bfd_error_handler)
d003868e
AM
12445 (_("%B: ABI is incompatible with that of the selected emulation"),
12446 ibfd);
aa701218
AO
12447 return FALSE;
12448 }
12449
2cf19d5c
JM
12450 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12451 return FALSE;
12452
b49e97c9
TS
12453 new_flags = elf_elfheader (ibfd)->e_flags;
12454 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12455 old_flags = elf_elfheader (obfd)->e_flags;
12456
12457 if (! elf_flags_init (obfd))
12458 {
b34976b6 12459 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
12460 elf_elfheader (obfd)->e_flags = new_flags;
12461 elf_elfheader (obfd)->e_ident[EI_CLASS]
12462 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12463
12464 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
12465 && (bfd_get_arch_info (obfd)->the_default
12466 || mips_mach_extends_p (bfd_get_mach (obfd),
12467 bfd_get_mach (ibfd))))
b49e97c9
TS
12468 {
12469 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12470 bfd_get_mach (ibfd)))
b34976b6 12471 return FALSE;
b49e97c9
TS
12472 }
12473
b34976b6 12474 return TRUE;
b49e97c9
TS
12475 }
12476
12477 /* Check flag compatibility. */
12478
12479 new_flags &= ~EF_MIPS_NOREORDER;
12480 old_flags &= ~EF_MIPS_NOREORDER;
12481
f4416af6
AO
12482 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12483 doesn't seem to matter. */
12484 new_flags &= ~EF_MIPS_XGOT;
12485 old_flags &= ~EF_MIPS_XGOT;
12486
98a8deaf
RS
12487 /* MIPSpro generates ucode info in n64 objects. Again, we should
12488 just be able to ignore this. */
12489 new_flags &= ~EF_MIPS_UCODE;
12490 old_flags &= ~EF_MIPS_UCODE;
12491
861fb55a
DJ
12492 /* DSOs should only be linked with CPIC code. */
12493 if ((ibfd->flags & DYNAMIC) != 0)
12494 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 12495
b49e97c9 12496 if (new_flags == old_flags)
b34976b6 12497 return TRUE;
b49e97c9
TS
12498
12499 /* Check to see if the input BFD actually contains any sections.
12500 If not, its flags may not have been initialised either, but it cannot
12501 actually cause any incompatibility. */
12502 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12503 {
12504 /* Ignore synthetic sections and empty .text, .data and .bss sections
12505 which are automatically generated by gas. */
12506 if (strcmp (sec->name, ".reginfo")
12507 && strcmp (sec->name, ".mdebug")
eea6121a 12508 && (sec->size != 0
d13d89fa
NS
12509 || (strcmp (sec->name, ".text")
12510 && strcmp (sec->name, ".data")
12511 && strcmp (sec->name, ".bss"))))
b49e97c9 12512 {
b34976b6 12513 null_input_bfd = FALSE;
b49e97c9
TS
12514 break;
12515 }
12516 }
12517 if (null_input_bfd)
b34976b6 12518 return TRUE;
b49e97c9 12519
b34976b6 12520 ok = TRUE;
b49e97c9 12521
143d77c5
EC
12522 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12523 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 12524 {
b49e97c9 12525 (*_bfd_error_handler)
861fb55a 12526 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 12527 ibfd);
143d77c5 12528 ok = TRUE;
b49e97c9
TS
12529 }
12530
143d77c5
EC
12531 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12532 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12533 if (! (new_flags & EF_MIPS_PIC))
12534 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12535
12536 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12537 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 12538
64543e1a
RS
12539 /* Compare the ISAs. */
12540 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 12541 {
64543e1a 12542 (*_bfd_error_handler)
d003868e
AM
12543 (_("%B: linking 32-bit code with 64-bit code"),
12544 ibfd);
64543e1a
RS
12545 ok = FALSE;
12546 }
12547 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12548 {
12549 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12550 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 12551 {
64543e1a
RS
12552 /* Copy the architecture info from IBFD to OBFD. Also copy
12553 the 32-bit flag (if set) so that we continue to recognise
12554 OBFD as a 32-bit binary. */
12555 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12556 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12557 elf_elfheader (obfd)->e_flags
12558 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12559
12560 /* Copy across the ABI flags if OBFD doesn't use them
12561 and if that was what caused us to treat IBFD as 32-bit. */
12562 if ((old_flags & EF_MIPS_ABI) == 0
12563 && mips_32bit_flags_p (new_flags)
12564 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12565 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
12566 }
12567 else
12568 {
64543e1a 12569 /* The ISAs aren't compatible. */
b49e97c9 12570 (*_bfd_error_handler)
d003868e
AM
12571 (_("%B: linking %s module with previous %s modules"),
12572 ibfd,
64543e1a
RS
12573 bfd_printable_name (ibfd),
12574 bfd_printable_name (obfd));
b34976b6 12575 ok = FALSE;
b49e97c9 12576 }
b49e97c9
TS
12577 }
12578
64543e1a
RS
12579 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12580 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12581
12582 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
12583 does set EI_CLASS differently from any 32-bit ABI. */
12584 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12585 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12586 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12587 {
12588 /* Only error if both are set (to different values). */
12589 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12590 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12591 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12592 {
12593 (*_bfd_error_handler)
d003868e
AM
12594 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12595 ibfd,
b49e97c9
TS
12596 elf_mips_abi_name (ibfd),
12597 elf_mips_abi_name (obfd));
b34976b6 12598 ok = FALSE;
b49e97c9
TS
12599 }
12600 new_flags &= ~EF_MIPS_ABI;
12601 old_flags &= ~EF_MIPS_ABI;
12602 }
12603
fb39dac1
RS
12604 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12605 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12606 {
12607 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12608
12609 new_flags &= ~ EF_MIPS_ARCH_ASE;
12610 old_flags &= ~ EF_MIPS_ARCH_ASE;
12611 }
12612
b49e97c9
TS
12613 /* Warn about any other mismatches */
12614 if (new_flags != old_flags)
12615 {
12616 (*_bfd_error_handler)
d003868e
AM
12617 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12618 ibfd, (unsigned long) new_flags,
b49e97c9 12619 (unsigned long) old_flags);
b34976b6 12620 ok = FALSE;
b49e97c9
TS
12621 }
12622
12623 if (! ok)
12624 {
12625 bfd_set_error (bfd_error_bad_value);
b34976b6 12626 return FALSE;
b49e97c9
TS
12627 }
12628
b34976b6 12629 return TRUE;
b49e97c9
TS
12630}
12631
12632/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12633
b34976b6 12634bfd_boolean
9719ad41 12635_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
12636{
12637 BFD_ASSERT (!elf_flags_init (abfd)
12638 || elf_elfheader (abfd)->e_flags == flags);
12639
12640 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
12641 elf_flags_init (abfd) = TRUE;
12642 return TRUE;
b49e97c9
TS
12643}
12644
ad9563d6
CM
12645char *
12646_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12647{
12648 switch (dtag)
12649 {
12650 default: return "";
12651 case DT_MIPS_RLD_VERSION:
12652 return "MIPS_RLD_VERSION";
12653 case DT_MIPS_TIME_STAMP:
12654 return "MIPS_TIME_STAMP";
12655 case DT_MIPS_ICHECKSUM:
12656 return "MIPS_ICHECKSUM";
12657 case DT_MIPS_IVERSION:
12658 return "MIPS_IVERSION";
12659 case DT_MIPS_FLAGS:
12660 return "MIPS_FLAGS";
12661 case DT_MIPS_BASE_ADDRESS:
12662 return "MIPS_BASE_ADDRESS";
12663 case DT_MIPS_MSYM:
12664 return "MIPS_MSYM";
12665 case DT_MIPS_CONFLICT:
12666 return "MIPS_CONFLICT";
12667 case DT_MIPS_LIBLIST:
12668 return "MIPS_LIBLIST";
12669 case DT_MIPS_LOCAL_GOTNO:
12670 return "MIPS_LOCAL_GOTNO";
12671 case DT_MIPS_CONFLICTNO:
12672 return "MIPS_CONFLICTNO";
12673 case DT_MIPS_LIBLISTNO:
12674 return "MIPS_LIBLISTNO";
12675 case DT_MIPS_SYMTABNO:
12676 return "MIPS_SYMTABNO";
12677 case DT_MIPS_UNREFEXTNO:
12678 return "MIPS_UNREFEXTNO";
12679 case DT_MIPS_GOTSYM:
12680 return "MIPS_GOTSYM";
12681 case DT_MIPS_HIPAGENO:
12682 return "MIPS_HIPAGENO";
12683 case DT_MIPS_RLD_MAP:
12684 return "MIPS_RLD_MAP";
12685 case DT_MIPS_DELTA_CLASS:
12686 return "MIPS_DELTA_CLASS";
12687 case DT_MIPS_DELTA_CLASS_NO:
12688 return "MIPS_DELTA_CLASS_NO";
12689 case DT_MIPS_DELTA_INSTANCE:
12690 return "MIPS_DELTA_INSTANCE";
12691 case DT_MIPS_DELTA_INSTANCE_NO:
12692 return "MIPS_DELTA_INSTANCE_NO";
12693 case DT_MIPS_DELTA_RELOC:
12694 return "MIPS_DELTA_RELOC";
12695 case DT_MIPS_DELTA_RELOC_NO:
12696 return "MIPS_DELTA_RELOC_NO";
12697 case DT_MIPS_DELTA_SYM:
12698 return "MIPS_DELTA_SYM";
12699 case DT_MIPS_DELTA_SYM_NO:
12700 return "MIPS_DELTA_SYM_NO";
12701 case DT_MIPS_DELTA_CLASSSYM:
12702 return "MIPS_DELTA_CLASSSYM";
12703 case DT_MIPS_DELTA_CLASSSYM_NO:
12704 return "MIPS_DELTA_CLASSSYM_NO";
12705 case DT_MIPS_CXX_FLAGS:
12706 return "MIPS_CXX_FLAGS";
12707 case DT_MIPS_PIXIE_INIT:
12708 return "MIPS_PIXIE_INIT";
12709 case DT_MIPS_SYMBOL_LIB:
12710 return "MIPS_SYMBOL_LIB";
12711 case DT_MIPS_LOCALPAGE_GOTIDX:
12712 return "MIPS_LOCALPAGE_GOTIDX";
12713 case DT_MIPS_LOCAL_GOTIDX:
12714 return "MIPS_LOCAL_GOTIDX";
12715 case DT_MIPS_HIDDEN_GOTIDX:
12716 return "MIPS_HIDDEN_GOTIDX";
12717 case DT_MIPS_PROTECTED_GOTIDX:
12718 return "MIPS_PROTECTED_GOT_IDX";
12719 case DT_MIPS_OPTIONS:
12720 return "MIPS_OPTIONS";
12721 case DT_MIPS_INTERFACE:
12722 return "MIPS_INTERFACE";
12723 case DT_MIPS_DYNSTR_ALIGN:
12724 return "DT_MIPS_DYNSTR_ALIGN";
12725 case DT_MIPS_INTERFACE_SIZE:
12726 return "DT_MIPS_INTERFACE_SIZE";
12727 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12728 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12729 case DT_MIPS_PERF_SUFFIX:
12730 return "DT_MIPS_PERF_SUFFIX";
12731 case DT_MIPS_COMPACT_SIZE:
12732 return "DT_MIPS_COMPACT_SIZE";
12733 case DT_MIPS_GP_VALUE:
12734 return "DT_MIPS_GP_VALUE";
12735 case DT_MIPS_AUX_DYNAMIC:
12736 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
12737 case DT_MIPS_PLTGOT:
12738 return "DT_MIPS_PLTGOT";
12739 case DT_MIPS_RWPLT:
12740 return "DT_MIPS_RWPLT";
ad9563d6
CM
12741 }
12742}
12743
b34976b6 12744bfd_boolean
9719ad41 12745_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 12746{
9719ad41 12747 FILE *file = ptr;
b49e97c9
TS
12748
12749 BFD_ASSERT (abfd != NULL && ptr != NULL);
12750
12751 /* Print normal ELF private data. */
12752 _bfd_elf_print_private_bfd_data (abfd, ptr);
12753
12754 /* xgettext:c-format */
12755 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12756
12757 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12758 fprintf (file, _(" [abi=O32]"));
12759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12760 fprintf (file, _(" [abi=O64]"));
12761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12762 fprintf (file, _(" [abi=EABI32]"));
12763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12764 fprintf (file, _(" [abi=EABI64]"));
12765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12766 fprintf (file, _(" [abi unknown]"));
12767 else if (ABI_N32_P (abfd))
12768 fprintf (file, _(" [abi=N32]"));
12769 else if (ABI_64_P (abfd))
12770 fprintf (file, _(" [abi=64]"));
12771 else
12772 fprintf (file, _(" [no abi set]"));
12773
12774 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 12775 fprintf (file, " [mips1]");
b49e97c9 12776 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 12777 fprintf (file, " [mips2]");
b49e97c9 12778 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 12779 fprintf (file, " [mips3]");
b49e97c9 12780 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 12781 fprintf (file, " [mips4]");
b49e97c9 12782 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 12783 fprintf (file, " [mips5]");
b49e97c9 12784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 12785 fprintf (file, " [mips32]");
b49e97c9 12786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 12787 fprintf (file, " [mips64]");
af7ee8bf 12788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 12789 fprintf (file, " [mips32r2]");
5f74bc13 12790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 12791 fprintf (file, " [mips64r2]");
b49e97c9
TS
12792 else
12793 fprintf (file, _(" [unknown ISA]"));
12794
40d32fc6 12795 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 12796 fprintf (file, " [mdmx]");
40d32fc6
CD
12797
12798 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 12799 fprintf (file, " [mips16]");
40d32fc6 12800
b49e97c9 12801 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 12802 fprintf (file, " [32bitmode]");
b49e97c9
TS
12803 else
12804 fprintf (file, _(" [not 32bitmode]"));
12805
c0e3f241 12806 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 12807 fprintf (file, " [noreorder]");
c0e3f241
CD
12808
12809 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 12810 fprintf (file, " [PIC]");
c0e3f241
CD
12811
12812 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 12813 fprintf (file, " [CPIC]");
c0e3f241
CD
12814
12815 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 12816 fprintf (file, " [XGOT]");
c0e3f241
CD
12817
12818 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 12819 fprintf (file, " [UCODE]");
c0e3f241 12820
b49e97c9
TS
12821 fputc ('\n', file);
12822
b34976b6 12823 return TRUE;
b49e97c9 12824}
2f89ff8d 12825
b35d266b 12826const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 12827{
0112cd26
NC
12828 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12829 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12830 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12831 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12832 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12833 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12834 { NULL, 0, 0, 0, 0 }
2f89ff8d 12835};
5e2b0d47 12836
8992f0d7
TS
12837/* Merge non visibility st_other attributes. Ensure that the
12838 STO_OPTIONAL flag is copied into h->other, even if this is not a
12839 definiton of the symbol. */
5e2b0d47
NC
12840void
12841_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12842 const Elf_Internal_Sym *isym,
12843 bfd_boolean definition,
12844 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12845{
8992f0d7
TS
12846 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12847 {
12848 unsigned char other;
12849
12850 other = (definition ? isym->st_other : h->other);
12851 other &= ~ELF_ST_VISIBILITY (-1);
12852 h->other = other | ELF_ST_VISIBILITY (h->other);
12853 }
12854
12855 if (!definition
5e2b0d47
NC
12856 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12857 h->other |= STO_OPTIONAL;
12858}
12ac1cf5
NC
12859
12860/* Decide whether an undefined symbol is special and can be ignored.
12861 This is the case for OPTIONAL symbols on IRIX. */
12862bfd_boolean
12863_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12864{
12865 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12866}
e0764319
NC
12867
12868bfd_boolean
12869_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12870{
12871 return (sym->st_shndx == SHN_COMMON
12872 || sym->st_shndx == SHN_MIPS_ACOMMON
12873 || sym->st_shndx == SHN_MIPS_SCOMMON);
12874}
861fb55a
DJ
12875
12876/* Return address for Ith PLT stub in section PLT, for relocation REL
12877 or (bfd_vma) -1 if it should not be included. */
12878
12879bfd_vma
12880_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12881 const arelent *rel ATTRIBUTE_UNUSED)
12882{
12883 return (plt->vma
12884 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12885 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12886}
12887
12888void
12889_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12890{
12891 struct mips_elf_link_hash_table *htab;
12892 Elf_Internal_Ehdr *i_ehdrp;
12893
12894 i_ehdrp = elf_elfheader (abfd);
12895 if (link_info)
12896 {
12897 htab = mips_elf_hash_table (link_info);
12898 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12899 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12900 }
12901}
This page took 1.469005 seconds and 4 git commands to generate.