Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
aa820537 | 3 | 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <ian@cygnus.com>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <mark@codesourcery.com> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <kk@ddeorg.soft.net> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 16 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 17 | (at your option) any later version. |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
27 | MA 02110-1301, USA. */ | |
28 | ||
b49e97c9 TS |
29 | |
30 | /* This file handles functionality common to the different MIPS ABI's. */ | |
31 | ||
b49e97c9 | 32 | #include "sysdep.h" |
3db64b00 | 33 | #include "bfd.h" |
b49e97c9 | 34 | #include "libbfd.h" |
64543e1a | 35 | #include "libiberty.h" |
b49e97c9 TS |
36 | #include "elf-bfd.h" |
37 | #include "elfxx-mips.h" | |
38 | #include "elf/mips.h" | |
0a44bf69 | 39 | #include "elf-vxworks.h" |
b49e97c9 TS |
40 | |
41 | /* Get the ECOFF swapping routines. */ | |
42 | #include "coff/sym.h" | |
43 | #include "coff/symconst.h" | |
44 | #include "coff/ecoff.h" | |
45 | #include "coff/mips.h" | |
46 | ||
b15e6682 AO |
47 | #include "hashtab.h" |
48 | ||
ead49a57 RS |
49 | /* This structure is used to hold information about one GOT entry. |
50 | There are three types of entry: | |
51 | ||
52 | (1) absolute addresses | |
53 | (abfd == NULL) | |
54 | (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd | |
55 | (abfd != NULL, symndx >= 0) | |
56 | (3) global and forced-local symbols | |
57 | (abfd != NULL, symndx == -1) | |
58 | ||
59 | Type (3) entries are treated differently for different types of GOT. | |
60 | In the "master" GOT -- i.e. the one that describes every GOT | |
61 | reference needed in the link -- the mips_got_entry is keyed on both | |
62 | the symbol and the input bfd that references it. If it turns out | |
63 | that we need multiple GOTs, we can then use this information to | |
64 | create separate GOTs for each input bfd. | |
65 | ||
66 | However, we want each of these separate GOTs to have at most one | |
67 | entry for a given symbol, so their type (3) entries are keyed only | |
68 | on the symbol. The input bfd given by the "abfd" field is somewhat | |
69 | arbitrary in this case. | |
70 | ||
71 | This means that when there are multiple GOTs, each GOT has a unique | |
72 | mips_got_entry for every symbol within it. We can therefore use the | |
73 | mips_got_entry fields (tls_type and gotidx) to track the symbol's | |
74 | GOT index. | |
75 | ||
76 | However, if it turns out that we need only a single GOT, we continue | |
77 | to use the master GOT to describe it. There may therefore be several | |
78 | mips_got_entries for the same symbol, each with a different input bfd. | |
79 | We want to make sure that each symbol gets a unique GOT entry, so when | |
80 | there's a single GOT, we use the symbol's hash entry, not the | |
81 | mips_got_entry fields, to track a symbol's GOT index. */ | |
b15e6682 AO |
82 | struct mips_got_entry |
83 | { | |
84 | /* The input bfd in which the symbol is defined. */ | |
85 | bfd *abfd; | |
f4416af6 AO |
86 | /* The index of the symbol, as stored in the relocation r_info, if |
87 | we have a local symbol; -1 otherwise. */ | |
88 | long symndx; | |
89 | union | |
90 | { | |
91 | /* If abfd == NULL, an address that must be stored in the got. */ | |
92 | bfd_vma address; | |
93 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
94 | that should be added to the symbol value. */ | |
95 | bfd_vma addend; | |
96 | /* If abfd != NULL && symndx == -1, the hash table entry | |
97 | corresponding to a global symbol in the got (or, local, if | |
98 | h->forced_local). */ | |
99 | struct mips_elf_link_hash_entry *h; | |
100 | } d; | |
0f20cc35 DJ |
101 | |
102 | /* The TLS types included in this GOT entry (specifically, GD and | |
103 | IE). The GD and IE flags can be added as we encounter new | |
104 | relocations. LDM can also be set; it will always be alone, not | |
105 | combined with any GD or IE flags. An LDM GOT entry will be | |
106 | a local symbol entry with r_symndx == 0. */ | |
107 | unsigned char tls_type; | |
108 | ||
b15e6682 | 109 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
110 | corresponding to this symbol+addend. If it's a global symbol |
111 | whose offset is yet to be decided, it's going to be -1. */ | |
112 | long gotidx; | |
b15e6682 AO |
113 | }; |
114 | ||
c224138d RS |
115 | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
116 | The structures form a non-overlapping list that is sorted by increasing | |
117 | MIN_ADDEND. */ | |
118 | struct mips_got_page_range | |
119 | { | |
120 | struct mips_got_page_range *next; | |
121 | bfd_signed_vma min_addend; | |
122 | bfd_signed_vma max_addend; | |
123 | }; | |
124 | ||
125 | /* This structure describes the range of addends that are applied to page | |
126 | relocations against a given symbol. */ | |
127 | struct mips_got_page_entry | |
128 | { | |
129 | /* The input bfd in which the symbol is defined. */ | |
130 | bfd *abfd; | |
131 | /* The index of the symbol, as stored in the relocation r_info. */ | |
132 | long symndx; | |
133 | /* The ranges for this page entry. */ | |
134 | struct mips_got_page_range *ranges; | |
135 | /* The maximum number of page entries needed for RANGES. */ | |
136 | bfd_vma num_pages; | |
137 | }; | |
138 | ||
f0abc2a1 | 139 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
140 | |
141 | struct mips_got_info | |
142 | { | |
143 | /* The global symbol in the GOT with the lowest index in the dynamic | |
144 | symbol table. */ | |
145 | struct elf_link_hash_entry *global_gotsym; | |
146 | /* The number of global .got entries. */ | |
147 | unsigned int global_gotno; | |
23cc69b6 RS |
148 | /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ |
149 | unsigned int reloc_only_gotno; | |
0f20cc35 DJ |
150 | /* The number of .got slots used for TLS. */ |
151 | unsigned int tls_gotno; | |
152 | /* The first unused TLS .got entry. Used only during | |
153 | mips_elf_initialize_tls_index. */ | |
154 | unsigned int tls_assigned_gotno; | |
c224138d | 155 | /* The number of local .got entries, eventually including page entries. */ |
b49e97c9 | 156 | unsigned int local_gotno; |
c224138d RS |
157 | /* The maximum number of page entries needed. */ |
158 | unsigned int page_gotno; | |
b49e97c9 TS |
159 | /* The number of local .got entries we have used. */ |
160 | unsigned int assigned_gotno; | |
b15e6682 AO |
161 | /* A hash table holding members of the got. */ |
162 | struct htab *got_entries; | |
c224138d RS |
163 | /* A hash table of mips_got_page_entry structures. */ |
164 | struct htab *got_page_entries; | |
f4416af6 AO |
165 | /* A hash table mapping input bfds to other mips_got_info. NULL |
166 | unless multi-got was necessary. */ | |
167 | struct htab *bfd2got; | |
168 | /* In multi-got links, a pointer to the next got (err, rather, most | |
169 | of the time, it points to the previous got). */ | |
170 | struct mips_got_info *next; | |
0f20cc35 DJ |
171 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
172 | for none, or MINUS_TWO for not yet assigned. This is needed | |
173 | because a single-GOT link may have multiple hash table entries | |
174 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
175 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
176 | }; |
177 | ||
178 | /* Map an input bfd to a got in a multi-got link. */ | |
179 | ||
180 | struct mips_elf_bfd2got_hash { | |
181 | bfd *bfd; | |
182 | struct mips_got_info *g; | |
183 | }; | |
184 | ||
185 | /* Structure passed when traversing the bfd2got hash table, used to | |
186 | create and merge bfd's gots. */ | |
187 | ||
188 | struct mips_elf_got_per_bfd_arg | |
189 | { | |
190 | /* A hashtable that maps bfds to gots. */ | |
191 | htab_t bfd2got; | |
192 | /* The output bfd. */ | |
193 | bfd *obfd; | |
194 | /* The link information. */ | |
195 | struct bfd_link_info *info; | |
196 | /* A pointer to the primary got, i.e., the one that's going to get | |
197 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
198 | DT_MIPS_GOTSYM. */ | |
199 | struct mips_got_info *primary; | |
200 | /* A non-primary got we're trying to merge with other input bfd's | |
201 | gots. */ | |
202 | struct mips_got_info *current; | |
203 | /* The maximum number of got entries that can be addressed with a | |
204 | 16-bit offset. */ | |
205 | unsigned int max_count; | |
c224138d RS |
206 | /* The maximum number of page entries needed by each got. */ |
207 | unsigned int max_pages; | |
0f20cc35 DJ |
208 | /* The total number of global entries which will live in the |
209 | primary got and be automatically relocated. This includes | |
210 | those not referenced by the primary GOT but included in | |
211 | the "master" GOT. */ | |
212 | unsigned int global_count; | |
f4416af6 AO |
213 | }; |
214 | ||
215 | /* Another structure used to pass arguments for got entries traversal. */ | |
216 | ||
217 | struct mips_elf_set_global_got_offset_arg | |
218 | { | |
219 | struct mips_got_info *g; | |
220 | int value; | |
221 | unsigned int needed_relocs; | |
222 | struct bfd_link_info *info; | |
b49e97c9 TS |
223 | }; |
224 | ||
0f20cc35 DJ |
225 | /* A structure used to count TLS relocations or GOT entries, for GOT |
226 | entry or ELF symbol table traversal. */ | |
227 | ||
228 | struct mips_elf_count_tls_arg | |
229 | { | |
230 | struct bfd_link_info *info; | |
231 | unsigned int needed; | |
232 | }; | |
233 | ||
f0abc2a1 AM |
234 | struct _mips_elf_section_data |
235 | { | |
236 | struct bfd_elf_section_data elf; | |
237 | union | |
238 | { | |
f0abc2a1 AM |
239 | bfd_byte *tdata; |
240 | } u; | |
241 | }; | |
242 | ||
243 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 244 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 245 | |
d5eaccd7 RS |
246 | #define is_mips_elf(bfd) \ |
247 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
248 | && elf_tdata (bfd) != NULL \ | |
249 | && elf_object_id (bfd) == MIPS_ELF_TDATA) | |
250 | ||
634835ae RS |
251 | /* The ABI says that every symbol used by dynamic relocations must have |
252 | a global GOT entry. Among other things, this provides the dynamic | |
253 | linker with a free, directly-indexed cache. The GOT can therefore | |
254 | contain symbols that are not referenced by GOT relocations themselves | |
255 | (in other words, it may have symbols that are not referenced by things | |
256 | like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). | |
257 | ||
258 | GOT relocations are less likely to overflow if we put the associated | |
259 | GOT entries towards the beginning. We therefore divide the global | |
260 | GOT entries into two areas: "normal" and "reloc-only". Entries in | |
261 | the first area can be used for both dynamic relocations and GP-relative | |
262 | accesses, while those in the "reloc-only" area are for dynamic | |
263 | relocations only. | |
264 | ||
265 | These GGA_* ("Global GOT Area") values are organised so that lower | |
266 | values are more general than higher values. Also, non-GGA_NONE | |
267 | values are ordered by the position of the area in the GOT. */ | |
268 | #define GGA_NORMAL 0 | |
269 | #define GGA_RELOC_ONLY 1 | |
270 | #define GGA_NONE 2 | |
271 | ||
861fb55a DJ |
272 | /* Information about a non-PIC interface to a PIC function. There are |
273 | two ways of creating these interfaces. The first is to add: | |
274 | ||
275 | lui $25,%hi(func) | |
276 | addiu $25,$25,%lo(func) | |
277 | ||
278 | immediately before a PIC function "func". The second is to add: | |
279 | ||
280 | lui $25,%hi(func) | |
281 | j func | |
282 | addiu $25,$25,%lo(func) | |
283 | ||
284 | to a separate trampoline section. | |
285 | ||
286 | Stubs of the first kind go in a new section immediately before the | |
287 | target function. Stubs of the second kind go in a single section | |
288 | pointed to by the hash table's "strampoline" field. */ | |
289 | struct mips_elf_la25_stub { | |
290 | /* The generated section that contains this stub. */ | |
291 | asection *stub_section; | |
292 | ||
293 | /* The offset of the stub from the start of STUB_SECTION. */ | |
294 | bfd_vma offset; | |
295 | ||
296 | /* One symbol for the original function. Its location is available | |
297 | in H->root.root.u.def. */ | |
298 | struct mips_elf_link_hash_entry *h; | |
299 | }; | |
300 | ||
301 | /* Macros for populating a mips_elf_la25_stub. */ | |
302 | ||
303 | #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ | |
304 | #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ | |
305 | #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ | |
306 | ||
b49e97c9 TS |
307 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
308 | the dynamic symbols. */ | |
309 | ||
310 | struct mips_elf_hash_sort_data | |
311 | { | |
312 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
313 | index. */ | |
314 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
315 | /* The least dynamic symbol table index corresponding to a non-TLS |
316 | symbol with a GOT entry. */ | |
b49e97c9 | 317 | long min_got_dynindx; |
f4416af6 AO |
318 | /* The greatest dynamic symbol table index corresponding to a symbol |
319 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 320 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 321 | long max_unref_got_dynindx; |
b49e97c9 TS |
322 | /* The greatest dynamic symbol table index not corresponding to a |
323 | symbol without a GOT entry. */ | |
324 | long max_non_got_dynindx; | |
325 | }; | |
326 | ||
327 | /* The MIPS ELF linker needs additional information for each symbol in | |
328 | the global hash table. */ | |
329 | ||
330 | struct mips_elf_link_hash_entry | |
331 | { | |
332 | struct elf_link_hash_entry root; | |
333 | ||
334 | /* External symbol information. */ | |
335 | EXTR esym; | |
336 | ||
861fb55a DJ |
337 | /* The la25 stub we have created for ths symbol, if any. */ |
338 | struct mips_elf_la25_stub *la25_stub; | |
339 | ||
b49e97c9 TS |
340 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
341 | this symbol. */ | |
342 | unsigned int possibly_dynamic_relocs; | |
343 | ||
b49e97c9 TS |
344 | /* If there is a stub that 32 bit functions should use to call this |
345 | 16 bit function, this points to the section containing the stub. */ | |
346 | asection *fn_stub; | |
347 | ||
b49e97c9 TS |
348 | /* If there is a stub that 16 bit functions should use to call this |
349 | 32 bit function, this points to the section containing the stub. */ | |
350 | asection *call_stub; | |
351 | ||
352 | /* This is like the call_stub field, but it is used if the function | |
353 | being called returns a floating point value. */ | |
354 | asection *call_fp_stub; | |
7c5fcef7 | 355 | |
0f20cc35 DJ |
356 | #define GOT_NORMAL 0 |
357 | #define GOT_TLS_GD 1 | |
358 | #define GOT_TLS_LDM 2 | |
359 | #define GOT_TLS_IE 4 | |
360 | #define GOT_TLS_OFFSET_DONE 0x40 | |
361 | #define GOT_TLS_DONE 0x80 | |
362 | unsigned char tls_type; | |
71782a75 | 363 | |
0f20cc35 DJ |
364 | /* This is only used in single-GOT mode; in multi-GOT mode there |
365 | is one mips_got_entry per GOT entry, so the offset is stored | |
366 | there. In single-GOT mode there may be many mips_got_entry | |
367 | structures all referring to the same GOT slot. It might be | |
368 | possible to use root.got.offset instead, but that field is | |
369 | overloaded already. */ | |
370 | bfd_vma tls_got_offset; | |
71782a75 | 371 | |
634835ae RS |
372 | /* The highest GGA_* value that satisfies all references to this symbol. */ |
373 | unsigned int global_got_area : 2; | |
374 | ||
71782a75 RS |
375 | /* True if one of the relocations described by possibly_dynamic_relocs |
376 | is against a readonly section. */ | |
377 | unsigned int readonly_reloc : 1; | |
378 | ||
861fb55a DJ |
379 | /* True if there is a relocation against this symbol that must be |
380 | resolved by the static linker (in other words, if the relocation | |
381 | cannot possibly be made dynamic). */ | |
382 | unsigned int has_static_relocs : 1; | |
383 | ||
71782a75 RS |
384 | /* True if we must not create a .MIPS.stubs entry for this symbol. |
385 | This is set, for example, if there are relocations related to | |
386 | taking the function's address, i.e. any but R_MIPS_CALL*16 ones. | |
387 | See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ | |
388 | unsigned int no_fn_stub : 1; | |
389 | ||
390 | /* Whether we need the fn_stub; this is true if this symbol appears | |
391 | in any relocs other than a 16 bit call. */ | |
392 | unsigned int need_fn_stub : 1; | |
393 | ||
861fb55a DJ |
394 | /* True if this symbol is referenced by branch relocations from |
395 | any non-PIC input file. This is used to determine whether an | |
396 | la25 stub is required. */ | |
397 | unsigned int has_nonpic_branches : 1; | |
33bb52fb RS |
398 | |
399 | /* Does this symbol need a traditional MIPS lazy-binding stub | |
400 | (as opposed to a PLT entry)? */ | |
401 | unsigned int needs_lazy_stub : 1; | |
b49e97c9 TS |
402 | }; |
403 | ||
404 | /* MIPS ELF linker hash table. */ | |
405 | ||
406 | struct mips_elf_link_hash_table | |
407 | { | |
408 | struct elf_link_hash_table root; | |
409 | #if 0 | |
410 | /* We no longer use this. */ | |
411 | /* String section indices for the dynamic section symbols. */ | |
412 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
413 | #endif | |
861fb55a | 414 | |
b49e97c9 TS |
415 | /* The number of .rtproc entries. */ |
416 | bfd_size_type procedure_count; | |
861fb55a | 417 | |
b49e97c9 TS |
418 | /* The size of the .compact_rel section (if SGI_COMPAT). */ |
419 | bfd_size_type compact_rel_size; | |
861fb55a | 420 | |
b49e97c9 | 421 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic |
8dc1a139 | 422 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 423 | bfd_boolean use_rld_obj_head; |
861fb55a | 424 | |
b49e97c9 TS |
425 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
426 | bfd_vma rld_value; | |
861fb55a | 427 | |
b49e97c9 | 428 | /* This is set if we see any mips16 stub sections. */ |
b34976b6 | 429 | bfd_boolean mips16_stubs_seen; |
861fb55a DJ |
430 | |
431 | /* True if we can generate copy relocs and PLTs. */ | |
432 | bfd_boolean use_plts_and_copy_relocs; | |
433 | ||
0a44bf69 RS |
434 | /* True if we're generating code for VxWorks. */ |
435 | bfd_boolean is_vxworks; | |
861fb55a | 436 | |
0e53d9da AN |
437 | /* True if we already reported the small-data section overflow. */ |
438 | bfd_boolean small_data_overflow_reported; | |
861fb55a | 439 | |
0a44bf69 RS |
440 | /* Shortcuts to some dynamic sections, or NULL if they are not |
441 | being used. */ | |
442 | asection *srelbss; | |
443 | asection *sdynbss; | |
444 | asection *srelplt; | |
445 | asection *srelplt2; | |
446 | asection *sgotplt; | |
447 | asection *splt; | |
4e41d0d7 | 448 | asection *sstubs; |
a8028dd0 | 449 | asection *sgot; |
861fb55a | 450 | |
a8028dd0 RS |
451 | /* The master GOT information. */ |
452 | struct mips_got_info *got_info; | |
861fb55a DJ |
453 | |
454 | /* The size of the PLT header in bytes. */ | |
0a44bf69 | 455 | bfd_vma plt_header_size; |
861fb55a DJ |
456 | |
457 | /* The size of a PLT entry in bytes. */ | |
0a44bf69 | 458 | bfd_vma plt_entry_size; |
861fb55a | 459 | |
33bb52fb RS |
460 | /* The number of functions that need a lazy-binding stub. */ |
461 | bfd_vma lazy_stub_count; | |
861fb55a | 462 | |
5108fc1b RS |
463 | /* The size of a function stub entry in bytes. */ |
464 | bfd_vma function_stub_size; | |
861fb55a DJ |
465 | |
466 | /* The number of reserved entries at the beginning of the GOT. */ | |
467 | unsigned int reserved_gotno; | |
468 | ||
469 | /* The section used for mips_elf_la25_stub trampolines. | |
470 | See the comment above that structure for details. */ | |
471 | asection *strampoline; | |
472 | ||
473 | /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) | |
474 | pairs. */ | |
475 | htab_t la25_stubs; | |
476 | ||
477 | /* A function FN (NAME, IS, OS) that creates a new input section | |
478 | called NAME and links it to output section OS. If IS is nonnull, | |
479 | the new section should go immediately before it, otherwise it | |
480 | should go at the (current) beginning of OS. | |
481 | ||
482 | The function returns the new section on success, otherwise it | |
483 | returns null. */ | |
484 | asection *(*add_stub_section) (const char *, asection *, asection *); | |
485 | }; | |
486 | ||
487 | /* A structure used to communicate with htab_traverse callbacks. */ | |
488 | struct mips_htab_traverse_info { | |
489 | /* The usual link-wide information. */ | |
490 | struct bfd_link_info *info; | |
491 | bfd *output_bfd; | |
492 | ||
493 | /* Starts off FALSE and is set to TRUE if the link should be aborted. */ | |
494 | bfd_boolean error; | |
b49e97c9 TS |
495 | }; |
496 | ||
0f20cc35 DJ |
497 | #define TLS_RELOC_P(r_type) \ |
498 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
499 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
500 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
501 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
502 | || r_type == R_MIPS_TLS_GD \ | |
503 | || r_type == R_MIPS_TLS_LDM \ | |
504 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
505 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
506 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
507 | || r_type == R_MIPS_TLS_TPREL32 \ | |
508 | || r_type == R_MIPS_TLS_TPREL64 \ | |
509 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
510 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
511 | ||
b49e97c9 TS |
512 | /* Structure used to pass information to mips_elf_output_extsym. */ |
513 | ||
514 | struct extsym_info | |
515 | { | |
9e4aeb93 RS |
516 | bfd *abfd; |
517 | struct bfd_link_info *info; | |
b49e97c9 TS |
518 | struct ecoff_debug_info *debug; |
519 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 520 | bfd_boolean failed; |
b49e97c9 TS |
521 | }; |
522 | ||
8dc1a139 | 523 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
524 | |
525 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
526 | { | |
527 | "_procedure_table", | |
528 | "_procedure_string_table", | |
529 | "_procedure_table_size", | |
530 | NULL | |
531 | }; | |
532 | ||
533 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 534 | IRIX5. */ |
b49e97c9 TS |
535 | |
536 | typedef struct | |
537 | { | |
538 | unsigned long id1; /* Always one? */ | |
539 | unsigned long num; /* Number of compact relocation entries. */ | |
540 | unsigned long id2; /* Always two? */ | |
541 | unsigned long offset; /* The file offset of the first relocation. */ | |
542 | unsigned long reserved0; /* Zero? */ | |
543 | unsigned long reserved1; /* Zero? */ | |
544 | } Elf32_compact_rel; | |
545 | ||
546 | typedef struct | |
547 | { | |
548 | bfd_byte id1[4]; | |
549 | bfd_byte num[4]; | |
550 | bfd_byte id2[4]; | |
551 | bfd_byte offset[4]; | |
552 | bfd_byte reserved0[4]; | |
553 | bfd_byte reserved1[4]; | |
554 | } Elf32_External_compact_rel; | |
555 | ||
556 | typedef struct | |
557 | { | |
558 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
559 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
560 | unsigned int dist2to : 8; | |
561 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
562 | unsigned long konst; /* KONST field. See below. */ | |
563 | unsigned long vaddr; /* VADDR to be relocated. */ | |
564 | } Elf32_crinfo; | |
565 | ||
566 | typedef struct | |
567 | { | |
568 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
569 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
570 | unsigned int dist2to : 8; | |
571 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
572 | unsigned long konst; /* KONST field. See below. */ | |
573 | } Elf32_crinfo2; | |
574 | ||
575 | typedef struct | |
576 | { | |
577 | bfd_byte info[4]; | |
578 | bfd_byte konst[4]; | |
579 | bfd_byte vaddr[4]; | |
580 | } Elf32_External_crinfo; | |
581 | ||
582 | typedef struct | |
583 | { | |
584 | bfd_byte info[4]; | |
585 | bfd_byte konst[4]; | |
586 | } Elf32_External_crinfo2; | |
587 | ||
588 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
589 | ||
590 | #define CRINFO_CTYPE (0x1) | |
591 | #define CRINFO_CTYPE_SH (31) | |
592 | #define CRINFO_RTYPE (0xf) | |
593 | #define CRINFO_RTYPE_SH (27) | |
594 | #define CRINFO_DIST2TO (0xff) | |
595 | #define CRINFO_DIST2TO_SH (19) | |
596 | #define CRINFO_RELVADDR (0x7ffff) | |
597 | #define CRINFO_RELVADDR_SH (0) | |
598 | ||
599 | /* A compact relocation info has long (3 words) or short (2 words) | |
600 | formats. A short format doesn't have VADDR field and relvaddr | |
601 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
602 | #define CRF_MIPS_LONG 1 | |
603 | #define CRF_MIPS_SHORT 0 | |
604 | ||
605 | /* There are 4 types of compact relocation at least. The value KONST | |
606 | has different meaning for each type: | |
607 | ||
608 | (type) (konst) | |
609 | CT_MIPS_REL32 Address in data | |
610 | CT_MIPS_WORD Address in word (XXX) | |
611 | CT_MIPS_GPHI_LO GP - vaddr | |
612 | CT_MIPS_JMPAD Address to jump | |
613 | */ | |
614 | ||
615 | #define CRT_MIPS_REL32 0xa | |
616 | #define CRT_MIPS_WORD 0xb | |
617 | #define CRT_MIPS_GPHI_LO 0xc | |
618 | #define CRT_MIPS_JMPAD 0xd | |
619 | ||
620 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
621 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
622 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
623 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
624 | \f | |
625 | /* The structure of the runtime procedure descriptor created by the | |
626 | loader for use by the static exception system. */ | |
627 | ||
628 | typedef struct runtime_pdr { | |
ae9a127f NC |
629 | bfd_vma adr; /* Memory address of start of procedure. */ |
630 | long regmask; /* Save register mask. */ | |
631 | long regoffset; /* Save register offset. */ | |
632 | long fregmask; /* Save floating point register mask. */ | |
633 | long fregoffset; /* Save floating point register offset. */ | |
634 | long frameoffset; /* Frame size. */ | |
635 | short framereg; /* Frame pointer register. */ | |
636 | short pcreg; /* Offset or reg of return pc. */ | |
637 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 638 | long reserved; |
ae9a127f | 639 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
640 | } RPDR, *pRPDR; |
641 | #define cbRPDR sizeof (RPDR) | |
642 | #define rpdNil ((pRPDR) 0) | |
643 | \f | |
b15e6682 | 644 | static struct mips_got_entry *mips_elf_create_local_got_entry |
a8028dd0 RS |
645 | (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, |
646 | struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 647 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 648 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
649 | static bfd_vma mips_elf_high |
650 | (bfd_vma); | |
b34976b6 | 651 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
652 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
653 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
654 | bfd_vma *, asection *); | |
9719ad41 RS |
655 | static hashval_t mips_elf_got_entry_hash |
656 | (const void *); | |
f4416af6 | 657 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 658 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 659 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 660 | (struct mips_got_info *, bfd *); |
f4416af6 | 661 | |
b49e97c9 TS |
662 | /* This will be used when we sort the dynamic relocation records. */ |
663 | static bfd *reldyn_sorting_bfd; | |
664 | ||
6d30f5b2 NC |
665 | /* True if ABFD is for CPUs with load interlocking that include |
666 | non-MIPS1 CPUs and R3900. */ | |
667 | #define LOAD_INTERLOCKS_P(abfd) \ | |
668 | ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ | |
669 | || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) | |
670 | ||
cd8d5a82 CF |
671 | /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. |
672 | This should be safe for all architectures. We enable this predicate | |
673 | for RM9000 for now. */ | |
674 | #define JAL_TO_BAL_P(abfd) \ | |
675 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) | |
676 | ||
677 | /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. | |
678 | This should be safe for all architectures. We enable this predicate for | |
679 | all CPUs. */ | |
680 | #define JALR_TO_BAL_P(abfd) 1 | |
681 | ||
861fb55a DJ |
682 | /* True if ABFD is a PIC object. */ |
683 | #define PIC_OBJECT_P(abfd) \ | |
684 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) | |
685 | ||
b49e97c9 | 686 | /* Nonzero if ABFD is using the N32 ABI. */ |
b49e97c9 TS |
687 | #define ABI_N32_P(abfd) \ |
688 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
689 | ||
4a14403c | 690 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 691 | #define ABI_64_P(abfd) \ |
141ff970 | 692 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 693 | |
4a14403c TS |
694 | /* Nonzero if ABFD is using NewABI conventions. */ |
695 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
696 | ||
697 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
698 | #define IRIX_COMPAT(abfd) \ |
699 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
700 | ||
b49e97c9 TS |
701 | /* Whether we are trying to be compatible with IRIX at all. */ |
702 | #define SGI_COMPAT(abfd) \ | |
703 | (IRIX_COMPAT (abfd) != ict_none) | |
704 | ||
705 | /* The name of the options section. */ | |
706 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 707 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 708 | |
cc2e31b9 RS |
709 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
710 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
711 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
712 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
713 | ||
943284cc DJ |
714 | /* Whether the section is readonly. */ |
715 | #define MIPS_ELF_READONLY_SECTION(sec) \ | |
716 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ | |
717 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
718 | ||
b49e97c9 | 719 | /* The name of the stub section. */ |
ca07892d | 720 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
721 | |
722 | /* The size of an external REL relocation. */ | |
723 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
724 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
725 | ||
0a44bf69 RS |
726 | /* The size of an external RELA relocation. */ |
727 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
728 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
729 | ||
b49e97c9 TS |
730 | /* The size of an external dynamic table entry. */ |
731 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
732 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
733 | ||
734 | /* The size of a GOT entry. */ | |
735 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
736 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
737 | ||
738 | /* The size of a symbol-table entry. */ | |
739 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
740 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
741 | ||
742 | /* The default alignment for sections, as a power of two. */ | |
743 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 744 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
745 | |
746 | /* Get word-sized data. */ | |
747 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
748 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
749 | ||
750 | /* Put out word-sized data. */ | |
751 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
752 | (ABI_64_P (abfd) \ | |
753 | ? bfd_put_64 (abfd, val, ptr) \ | |
754 | : bfd_put_32 (abfd, val, ptr)) | |
755 | ||
861fb55a DJ |
756 | /* The opcode for word-sized loads (LW or LD). */ |
757 | #define MIPS_ELF_LOAD_WORD(abfd) \ | |
758 | (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) | |
759 | ||
b49e97c9 | 760 | /* Add a dynamic symbol table-entry. */ |
9719ad41 | 761 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 762 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
763 | |
764 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
765 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
766 | ||
4ffba85c AO |
767 | /* Determine whether the internal relocation of index REL_IDX is REL |
768 | (zero) or RELA (non-zero). The assumption is that, if there are | |
769 | two relocation sections for this section, one of them is REL and | |
770 | the other is RELA. If the index of the relocation we're testing is | |
771 | in range for the first relocation section, check that the external | |
772 | relocation size is that for RELA. It is also assumed that, if | |
773 | rel_idx is not in range for the first section, and this first | |
774 | section contains REL relocs, then the relocation is in the second | |
775 | section, that is RELA. */ | |
776 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
777 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
778 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
779 | > (bfd_vma)(rel_idx)) \ | |
780 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
781 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
782 | : sizeof (Elf32_External_Rela)))) | |
783 | ||
0a44bf69 RS |
784 | /* The name of the dynamic relocation section. */ |
785 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
786 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
787 | ||
b49e97c9 TS |
788 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
789 | from smaller values. Start with zero, widen, *then* decrement. */ | |
790 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 791 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 | 792 | |
51e38d68 RS |
793 | /* The value to write into got[1] for SVR4 targets, to identify it is |
794 | a GNU object. The dynamic linker can then use got[1] to store the | |
795 | module pointer. */ | |
796 | #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ | |
797 | ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) | |
798 | ||
f4416af6 | 799 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
800 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
801 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
802 | |
803 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
804 | offsets from $gp. */ | |
0a44bf69 | 805 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 806 | |
6a691779 | 807 | /* Instructions which appear in a stub. */ |
3d6746ca DD |
808 | #define STUB_LW(abfd) \ |
809 | ((ABI_64_P (abfd) \ | |
810 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
811 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
812 | #define STUB_MOVE(abfd) \ | |
813 | ((ABI_64_P (abfd) \ | |
814 | ? 0x03e0782d /* daddu t7,ra */ \ | |
815 | : 0x03e07821)) /* addu t7,ra */ | |
816 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ | |
817 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
5108fc1b RS |
818 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
819 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
3d6746ca DD |
820 | #define STUB_LI16S(abfd, VAL) \ |
821 | ((ABI_64_P (abfd) \ | |
822 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ | |
823 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ | |
824 | ||
5108fc1b RS |
825 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
826 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | |
b49e97c9 TS |
827 | |
828 | /* The name of the dynamic interpreter. This is put in the .interp | |
829 | section. */ | |
830 | ||
831 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
832 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
833 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
834 | : "/usr/lib/libc.so.1") | |
835 | ||
836 | #ifdef BFD64 | |
ee6423ed AO |
837 | #define MNAME(bfd,pre,pos) \ |
838 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
839 | #define ELF_R_SYM(bfd, i) \ |
840 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
841 | #define ELF_R_TYPE(bfd, i) \ | |
842 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
843 | #define ELF_R_INFO(bfd, s, t) \ | |
844 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
845 | #else | |
ee6423ed | 846 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
847 | #define ELF_R_SYM(bfd, i) \ |
848 | (ELF32_R_SYM (i)) | |
849 | #define ELF_R_TYPE(bfd, i) \ | |
850 | (ELF32_R_TYPE (i)) | |
851 | #define ELF_R_INFO(bfd, s, t) \ | |
852 | (ELF32_R_INFO (s, t)) | |
853 | #endif | |
854 | \f | |
855 | /* The mips16 compiler uses a couple of special sections to handle | |
856 | floating point arguments. | |
857 | ||
858 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
859 | copy floating point arguments from the fp regs to the gp regs and | |
860 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
861 | call should be redirected to the stub instead. If no 32 bit | |
862 | function calls FNNAME, the stub should be discarded. We need to | |
863 | consider any reference to the function, not just a call, because | |
864 | if the address of the function is taken we will need the stub, | |
865 | since the address might be passed to a 32 bit function. | |
866 | ||
867 | Section names that look like .mips16.call.FNNAME contain stubs | |
868 | that copy floating point arguments from the gp regs to the fp | |
869 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
870 | then any 16 bit function that calls FNNAME should be redirected | |
871 | to the stub instead. If FNNAME is not a 32 bit function, the | |
872 | stub should be discarded. | |
873 | ||
874 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
875 | which call FNNAME and then copy the return value from the fp regs | |
876 | to the gp regs. These stubs store the return value in $18 while | |
877 | calling FNNAME; any function which might call one of these stubs | |
878 | must arrange to save $18 around the call. (This case is not | |
879 | needed for 32 bit functions that call 16 bit functions, because | |
880 | 16 bit functions always return floating point values in both | |
881 | $f0/$f1 and $2/$3.) | |
882 | ||
883 | Note that in all cases FNNAME might be defined statically. | |
884 | Therefore, FNNAME is not used literally. Instead, the relocation | |
885 | information will indicate which symbol the section is for. | |
886 | ||
887 | We record any stubs that we find in the symbol table. */ | |
888 | ||
889 | #define FN_STUB ".mips16.fn." | |
890 | #define CALL_STUB ".mips16.call." | |
891 | #define CALL_FP_STUB ".mips16.call.fp." | |
b9d58d71 TS |
892 | |
893 | #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) | |
894 | #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) | |
895 | #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) | |
b49e97c9 | 896 | \f |
861fb55a | 897 | /* The format of the first PLT entry in an O32 executable. */ |
6d30f5b2 NC |
898 | static const bfd_vma mips_o32_exec_plt0_entry[] = |
899 | { | |
861fb55a DJ |
900 | 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
901 | 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ | |
902 | 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ | |
903 | 0x031cc023, /* subu $24, $24, $28 */ | |
904 | 0x03e07821, /* move $15, $31 */ | |
905 | 0x0018c082, /* srl $24, $24, 2 */ | |
906 | 0x0320f809, /* jalr $25 */ | |
907 | 0x2718fffe /* subu $24, $24, 2 */ | |
908 | }; | |
909 | ||
910 | /* The format of the first PLT entry in an N32 executable. Different | |
911 | because gp ($28) is not available; we use t2 ($14) instead. */ | |
6d30f5b2 NC |
912 | static const bfd_vma mips_n32_exec_plt0_entry[] = |
913 | { | |
861fb55a DJ |
914 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
915 | 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ | |
916 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
917 | 0x030ec023, /* subu $24, $24, $14 */ | |
918 | 0x03e07821, /* move $15, $31 */ | |
919 | 0x0018c082, /* srl $24, $24, 2 */ | |
920 | 0x0320f809, /* jalr $25 */ | |
921 | 0x2718fffe /* subu $24, $24, 2 */ | |
922 | }; | |
923 | ||
924 | /* The format of the first PLT entry in an N64 executable. Different | |
925 | from N32 because of the increased size of GOT entries. */ | |
6d30f5b2 NC |
926 | static const bfd_vma mips_n64_exec_plt0_entry[] = |
927 | { | |
861fb55a DJ |
928 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
929 | 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ | |
930 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
931 | 0x030ec023, /* subu $24, $24, $14 */ | |
932 | 0x03e07821, /* move $15, $31 */ | |
933 | 0x0018c0c2, /* srl $24, $24, 3 */ | |
934 | 0x0320f809, /* jalr $25 */ | |
935 | 0x2718fffe /* subu $24, $24, 2 */ | |
936 | }; | |
937 | ||
938 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
939 | static const bfd_vma mips_exec_plt_entry[] = |
940 | { | |
861fb55a DJ |
941 | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
942 | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ | |
943 | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ | |
944 | 0x03200008 /* jr $25 */ | |
945 | }; | |
946 | ||
0a44bf69 | 947 | /* The format of the first PLT entry in a VxWorks executable. */ |
6d30f5b2 NC |
948 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = |
949 | { | |
0a44bf69 RS |
950 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
951 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
952 | 0x8f390008, /* lw t9, 8(t9) */ | |
953 | 0x00000000, /* nop */ | |
954 | 0x03200008, /* jr t9 */ | |
955 | 0x00000000 /* nop */ | |
956 | }; | |
957 | ||
958 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
959 | static const bfd_vma mips_vxworks_exec_plt_entry[] = |
960 | { | |
0a44bf69 RS |
961 | 0x10000000, /* b .PLT_resolver */ |
962 | 0x24180000, /* li t8, <pltindex> */ | |
963 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
964 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
965 | 0x8f390000, /* lw t9, 0(t9) */ | |
966 | 0x00000000, /* nop */ | |
967 | 0x03200008, /* jr t9 */ | |
968 | 0x00000000 /* nop */ | |
969 | }; | |
970 | ||
971 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
6d30f5b2 NC |
972 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = |
973 | { | |
0a44bf69 RS |
974 | 0x8f990008, /* lw t9, 8(gp) */ |
975 | 0x00000000, /* nop */ | |
976 | 0x03200008, /* jr t9 */ | |
977 | 0x00000000, /* nop */ | |
978 | 0x00000000, /* nop */ | |
979 | 0x00000000 /* nop */ | |
980 | }; | |
981 | ||
982 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
983 | static const bfd_vma mips_vxworks_shared_plt_entry[] = |
984 | { | |
0a44bf69 RS |
985 | 0x10000000, /* b .PLT_resolver */ |
986 | 0x24180000 /* li t8, <pltindex> */ | |
987 | }; | |
988 | \f | |
b49e97c9 TS |
989 | /* Look up an entry in a MIPS ELF linker hash table. */ |
990 | ||
991 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
992 | ((struct mips_elf_link_hash_entry *) \ | |
993 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
994 | (copy), (follow))) | |
995 | ||
996 | /* Traverse a MIPS ELF linker hash table. */ | |
997 | ||
998 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
999 | (elf_link_hash_traverse \ | |
1000 | (&(table)->root, \ | |
9719ad41 | 1001 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
1002 | (info))) |
1003 | ||
1004 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
1005 | ||
1006 | #define mips_elf_hash_table(p) \ | |
1007 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
1008 | ||
0f20cc35 DJ |
1009 | /* Find the base offsets for thread-local storage in this object, |
1010 | for GD/LD and IE/LE respectively. */ | |
1011 | ||
1012 | #define TP_OFFSET 0x7000 | |
1013 | #define DTP_OFFSET 0x8000 | |
1014 | ||
1015 | static bfd_vma | |
1016 | dtprel_base (struct bfd_link_info *info) | |
1017 | { | |
1018 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1019 | if (elf_hash_table (info)->tls_sec == NULL) | |
1020 | return 0; | |
1021 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
1022 | } | |
1023 | ||
1024 | static bfd_vma | |
1025 | tprel_base (struct bfd_link_info *info) | |
1026 | { | |
1027 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1028 | if (elf_hash_table (info)->tls_sec == NULL) | |
1029 | return 0; | |
1030 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
1031 | } | |
1032 | ||
b49e97c9 TS |
1033 | /* Create an entry in a MIPS ELF linker hash table. */ |
1034 | ||
1035 | static struct bfd_hash_entry * | |
9719ad41 RS |
1036 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
1037 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
1038 | { |
1039 | struct mips_elf_link_hash_entry *ret = | |
1040 | (struct mips_elf_link_hash_entry *) entry; | |
1041 | ||
1042 | /* Allocate the structure if it has not already been allocated by a | |
1043 | subclass. */ | |
9719ad41 RS |
1044 | if (ret == NULL) |
1045 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
1046 | if (ret == NULL) | |
b49e97c9 TS |
1047 | return (struct bfd_hash_entry *) ret; |
1048 | ||
1049 | /* Call the allocation method of the superclass. */ | |
1050 | ret = ((struct mips_elf_link_hash_entry *) | |
1051 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
1052 | table, string)); | |
9719ad41 | 1053 | if (ret != NULL) |
b49e97c9 TS |
1054 | { |
1055 | /* Set local fields. */ | |
1056 | memset (&ret->esym, 0, sizeof (EXTR)); | |
1057 | /* We use -2 as a marker to indicate that the information has | |
1058 | not been set. -1 means there is no associated ifd. */ | |
1059 | ret->esym.ifd = -2; | |
861fb55a | 1060 | ret->la25_stub = 0; |
b49e97c9 | 1061 | ret->possibly_dynamic_relocs = 0; |
b49e97c9 | 1062 | ret->fn_stub = NULL; |
b49e97c9 TS |
1063 | ret->call_stub = NULL; |
1064 | ret->call_fp_stub = NULL; | |
71782a75 | 1065 | ret->tls_type = GOT_NORMAL; |
634835ae | 1066 | ret->global_got_area = GGA_NONE; |
71782a75 | 1067 | ret->readonly_reloc = FALSE; |
861fb55a | 1068 | ret->has_static_relocs = FALSE; |
71782a75 RS |
1069 | ret->no_fn_stub = FALSE; |
1070 | ret->need_fn_stub = FALSE; | |
861fb55a | 1071 | ret->has_nonpic_branches = FALSE; |
33bb52fb | 1072 | ret->needs_lazy_stub = FALSE; |
b49e97c9 TS |
1073 | } |
1074 | ||
1075 | return (struct bfd_hash_entry *) ret; | |
1076 | } | |
f0abc2a1 AM |
1077 | |
1078 | bfd_boolean | |
9719ad41 | 1079 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 | 1080 | { |
f592407e AM |
1081 | if (!sec->used_by_bfd) |
1082 | { | |
1083 | struct _mips_elf_section_data *sdata; | |
1084 | bfd_size_type amt = sizeof (*sdata); | |
f0abc2a1 | 1085 | |
f592407e AM |
1086 | sdata = bfd_zalloc (abfd, amt); |
1087 | if (sdata == NULL) | |
1088 | return FALSE; | |
1089 | sec->used_by_bfd = sdata; | |
1090 | } | |
f0abc2a1 AM |
1091 | |
1092 | return _bfd_elf_new_section_hook (abfd, sec); | |
1093 | } | |
b49e97c9 TS |
1094 | \f |
1095 | /* Read ECOFF debugging information from a .mdebug section into a | |
1096 | ecoff_debug_info structure. */ | |
1097 | ||
b34976b6 | 1098 | bfd_boolean |
9719ad41 RS |
1099 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
1100 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1101 | { |
1102 | HDRR *symhdr; | |
1103 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 1104 | char *ext_hdr; |
b49e97c9 TS |
1105 | |
1106 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1107 | memset (debug, 0, sizeof (*debug)); | |
1108 | ||
9719ad41 | 1109 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
1110 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
1111 | goto error_return; | |
1112 | ||
9719ad41 | 1113 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 1114 | swap->external_hdr_size)) |
b49e97c9 TS |
1115 | goto error_return; |
1116 | ||
1117 | symhdr = &debug->symbolic_header; | |
1118 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
1119 | ||
1120 | /* The symbolic header contains absolute file offsets and sizes to | |
1121 | read. */ | |
1122 | #define READ(ptr, offset, count, size, type) \ | |
1123 | if (symhdr->count == 0) \ | |
1124 | debug->ptr = NULL; \ | |
1125 | else \ | |
1126 | { \ | |
1127 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 1128 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
1129 | if (debug->ptr == NULL) \ |
1130 | goto error_return; \ | |
9719ad41 | 1131 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
1132 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
1133 | goto error_return; \ | |
1134 | } | |
1135 | ||
1136 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
1137 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
1138 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
1139 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
1140 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
1141 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
1142 | union aux_ext *); | |
1143 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
1144 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
1145 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
1146 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
1147 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
1148 | #undef READ |
1149 | ||
1150 | debug->fdr = NULL; | |
b49e97c9 | 1151 | |
b34976b6 | 1152 | return TRUE; |
b49e97c9 TS |
1153 | |
1154 | error_return: | |
1155 | if (ext_hdr != NULL) | |
1156 | free (ext_hdr); | |
1157 | if (debug->line != NULL) | |
1158 | free (debug->line); | |
1159 | if (debug->external_dnr != NULL) | |
1160 | free (debug->external_dnr); | |
1161 | if (debug->external_pdr != NULL) | |
1162 | free (debug->external_pdr); | |
1163 | if (debug->external_sym != NULL) | |
1164 | free (debug->external_sym); | |
1165 | if (debug->external_opt != NULL) | |
1166 | free (debug->external_opt); | |
1167 | if (debug->external_aux != NULL) | |
1168 | free (debug->external_aux); | |
1169 | if (debug->ss != NULL) | |
1170 | free (debug->ss); | |
1171 | if (debug->ssext != NULL) | |
1172 | free (debug->ssext); | |
1173 | if (debug->external_fdr != NULL) | |
1174 | free (debug->external_fdr); | |
1175 | if (debug->external_rfd != NULL) | |
1176 | free (debug->external_rfd); | |
1177 | if (debug->external_ext != NULL) | |
1178 | free (debug->external_ext); | |
b34976b6 | 1179 | return FALSE; |
b49e97c9 TS |
1180 | } |
1181 | \f | |
1182 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
1183 | ||
1184 | static void | |
9719ad41 | 1185 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
1186 | { |
1187 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
1188 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
1189 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
1190 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
1191 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
1192 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
1193 | ||
1194 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
1195 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
1196 | ||
1197 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
1198 | } |
1199 | ||
1200 | /* Create a runtime procedure table from the .mdebug section. */ | |
1201 | ||
b34976b6 | 1202 | static bfd_boolean |
9719ad41 RS |
1203 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
1204 | struct bfd_link_info *info, asection *s, | |
1205 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1206 | { |
1207 | const struct ecoff_debug_swap *swap; | |
1208 | HDRR *hdr = &debug->symbolic_header; | |
1209 | RPDR *rpdr, *rp; | |
1210 | struct rpdr_ext *erp; | |
9719ad41 | 1211 | void *rtproc; |
b49e97c9 TS |
1212 | struct pdr_ext *epdr; |
1213 | struct sym_ext *esym; | |
1214 | char *ss, **sv; | |
1215 | char *str; | |
1216 | bfd_size_type size; | |
1217 | bfd_size_type count; | |
1218 | unsigned long sindex; | |
1219 | unsigned long i; | |
1220 | PDR pdr; | |
1221 | SYMR sym; | |
1222 | const char *no_name_func = _("static procedure (no name)"); | |
1223 | ||
1224 | epdr = NULL; | |
1225 | rpdr = NULL; | |
1226 | esym = NULL; | |
1227 | ss = NULL; | |
1228 | sv = NULL; | |
1229 | ||
1230 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1231 | ||
1232 | sindex = strlen (no_name_func) + 1; | |
1233 | count = hdr->ipdMax; | |
1234 | if (count > 0) | |
1235 | { | |
1236 | size = swap->external_pdr_size; | |
1237 | ||
9719ad41 | 1238 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
1239 | if (epdr == NULL) |
1240 | goto error_return; | |
1241 | ||
9719ad41 | 1242 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
1243 | goto error_return; |
1244 | ||
1245 | size = sizeof (RPDR); | |
9719ad41 | 1246 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
1247 | if (rpdr == NULL) |
1248 | goto error_return; | |
1249 | ||
1250 | size = sizeof (char *); | |
9719ad41 | 1251 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
1252 | if (sv == NULL) |
1253 | goto error_return; | |
1254 | ||
1255 | count = hdr->isymMax; | |
1256 | size = swap->external_sym_size; | |
9719ad41 | 1257 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1258 | if (esym == NULL) |
1259 | goto error_return; | |
1260 | ||
9719ad41 | 1261 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1262 | goto error_return; |
1263 | ||
1264 | count = hdr->issMax; | |
9719ad41 | 1265 | ss = bfd_malloc (count); |
b49e97c9 TS |
1266 | if (ss == NULL) |
1267 | goto error_return; | |
f075ee0c | 1268 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1269 | goto error_return; |
1270 | ||
1271 | count = hdr->ipdMax; | |
1272 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1273 | { | |
9719ad41 RS |
1274 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1275 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1276 | rp->adr = sym.value; |
1277 | rp->regmask = pdr.regmask; | |
1278 | rp->regoffset = pdr.regoffset; | |
1279 | rp->fregmask = pdr.fregmask; | |
1280 | rp->fregoffset = pdr.fregoffset; | |
1281 | rp->frameoffset = pdr.frameoffset; | |
1282 | rp->framereg = pdr.framereg; | |
1283 | rp->pcreg = pdr.pcreg; | |
1284 | rp->irpss = sindex; | |
1285 | sv[i] = ss + sym.iss; | |
1286 | sindex += strlen (sv[i]) + 1; | |
1287 | } | |
1288 | } | |
1289 | ||
1290 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1291 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1292 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1293 | if (rtproc == NULL) |
1294 | { | |
1295 | mips_elf_hash_table (info)->procedure_count = 0; | |
1296 | goto error_return; | |
1297 | } | |
1298 | ||
1299 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1300 | ||
9719ad41 | 1301 | erp = rtproc; |
b49e97c9 TS |
1302 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1303 | erp++; | |
1304 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1305 | strcpy (str, no_name_func); | |
1306 | str += strlen (no_name_func) + 1; | |
1307 | for (i = 0; i < count; i++) | |
1308 | { | |
1309 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1310 | strcpy (str, sv[i]); | |
1311 | str += strlen (sv[i]) + 1; | |
1312 | } | |
1313 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1314 | ||
1315 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1316 | s->size = size; |
9719ad41 | 1317 | s->contents = rtproc; |
b49e97c9 TS |
1318 | |
1319 | /* Skip this section later on (I don't think this currently | |
1320 | matters, but someday it might). */ | |
8423293d | 1321 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1322 | |
1323 | if (epdr != NULL) | |
1324 | free (epdr); | |
1325 | if (rpdr != NULL) | |
1326 | free (rpdr); | |
1327 | if (esym != NULL) | |
1328 | free (esym); | |
1329 | if (ss != NULL) | |
1330 | free (ss); | |
1331 | if (sv != NULL) | |
1332 | free (sv); | |
1333 | ||
b34976b6 | 1334 | return TRUE; |
b49e97c9 TS |
1335 | |
1336 | error_return: | |
1337 | if (epdr != NULL) | |
1338 | free (epdr); | |
1339 | if (rpdr != NULL) | |
1340 | free (rpdr); | |
1341 | if (esym != NULL) | |
1342 | free (esym); | |
1343 | if (ss != NULL) | |
1344 | free (ss); | |
1345 | if (sv != NULL) | |
1346 | free (sv); | |
b34976b6 | 1347 | return FALSE; |
b49e97c9 | 1348 | } |
738e5348 | 1349 | \f |
861fb55a DJ |
1350 | /* We're going to create a stub for H. Create a symbol for the stub's |
1351 | value and size, to help make the disassembly easier to read. */ | |
1352 | ||
1353 | static bfd_boolean | |
1354 | mips_elf_create_stub_symbol (struct bfd_link_info *info, | |
1355 | struct mips_elf_link_hash_entry *h, | |
1356 | const char *prefix, asection *s, bfd_vma value, | |
1357 | bfd_vma size) | |
1358 | { | |
1359 | struct bfd_link_hash_entry *bh; | |
1360 | struct elf_link_hash_entry *elfh; | |
1361 | const char *name; | |
1362 | ||
1363 | /* Create a new symbol. */ | |
1364 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1365 | bh = NULL; | |
1366 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1367 | BSF_LOCAL, s, value, NULL, | |
1368 | TRUE, FALSE, &bh)) | |
1369 | return FALSE; | |
1370 | ||
1371 | /* Make it a local function. */ | |
1372 | elfh = (struct elf_link_hash_entry *) bh; | |
1373 | elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); | |
1374 | elfh->size = size; | |
1375 | elfh->forced_local = 1; | |
1376 | return TRUE; | |
1377 | } | |
1378 | ||
738e5348 RS |
1379 | /* We're about to redefine H. Create a symbol to represent H's |
1380 | current value and size, to help make the disassembly easier | |
1381 | to read. */ | |
1382 | ||
1383 | static bfd_boolean | |
1384 | mips_elf_create_shadow_symbol (struct bfd_link_info *info, | |
1385 | struct mips_elf_link_hash_entry *h, | |
1386 | const char *prefix) | |
1387 | { | |
1388 | struct bfd_link_hash_entry *bh; | |
1389 | struct elf_link_hash_entry *elfh; | |
1390 | const char *name; | |
1391 | asection *s; | |
1392 | bfd_vma value; | |
1393 | ||
1394 | /* Read the symbol's value. */ | |
1395 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1396 | || h->root.root.type == bfd_link_hash_defweak); | |
1397 | s = h->root.root.u.def.section; | |
1398 | value = h->root.root.u.def.value; | |
1399 | ||
1400 | /* Create a new symbol. */ | |
1401 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1402 | bh = NULL; | |
1403 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1404 | BSF_LOCAL, s, value, NULL, | |
1405 | TRUE, FALSE, &bh)) | |
1406 | return FALSE; | |
1407 | ||
1408 | /* Make it local and copy the other attributes from H. */ | |
1409 | elfh = (struct elf_link_hash_entry *) bh; | |
1410 | elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); | |
1411 | elfh->other = h->root.other; | |
1412 | elfh->size = h->root.size; | |
1413 | elfh->forced_local = 1; | |
1414 | return TRUE; | |
1415 | } | |
1416 | ||
1417 | /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 | |
1418 | function rather than to a hard-float stub. */ | |
1419 | ||
1420 | static bfd_boolean | |
1421 | section_allows_mips16_refs_p (asection *section) | |
1422 | { | |
1423 | const char *name; | |
1424 | ||
1425 | name = bfd_get_section_name (section->owner, section); | |
1426 | return (FN_STUB_P (name) | |
1427 | || CALL_STUB_P (name) | |
1428 | || CALL_FP_STUB_P (name) | |
1429 | || strcmp (name, ".pdr") == 0); | |
1430 | } | |
1431 | ||
1432 | /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 | |
1433 | stub section of some kind. Return the R_SYMNDX of the target | |
1434 | function, or 0 if we can't decide which function that is. */ | |
1435 | ||
1436 | static unsigned long | |
502e814e TT |
1437 | mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED, |
1438 | const Elf_Internal_Rela *relocs, | |
738e5348 RS |
1439 | const Elf_Internal_Rela *relend) |
1440 | { | |
1441 | const Elf_Internal_Rela *rel; | |
1442 | ||
1443 | /* Trust the first R_MIPS_NONE relocation, if any. */ | |
1444 | for (rel = relocs; rel < relend; rel++) | |
1445 | if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) | |
1446 | return ELF_R_SYM (sec->owner, rel->r_info); | |
1447 | ||
1448 | /* Otherwise trust the first relocation, whatever its kind. This is | |
1449 | the traditional behavior. */ | |
1450 | if (relocs < relend) | |
1451 | return ELF_R_SYM (sec->owner, relocs->r_info); | |
1452 | ||
1453 | return 0; | |
1454 | } | |
b49e97c9 TS |
1455 | |
1456 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1457 | discard them. */ | |
1458 | ||
861fb55a DJ |
1459 | static void |
1460 | mips_elf_check_mips16_stubs (struct bfd_link_info *info, | |
1461 | struct mips_elf_link_hash_entry *h) | |
b49e97c9 | 1462 | { |
738e5348 RS |
1463 | /* Dynamic symbols must use the standard call interface, in case other |
1464 | objects try to call them. */ | |
1465 | if (h->fn_stub != NULL | |
1466 | && h->root.dynindx != -1) | |
1467 | { | |
1468 | mips_elf_create_shadow_symbol (info, h, ".mips16."); | |
1469 | h->need_fn_stub = TRUE; | |
1470 | } | |
1471 | ||
b49e97c9 TS |
1472 | if (h->fn_stub != NULL |
1473 | && ! h->need_fn_stub) | |
1474 | { | |
1475 | /* We don't need the fn_stub; the only references to this symbol | |
1476 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1477 | being included in the link. */ | |
eea6121a | 1478 | h->fn_stub->size = 0; |
b49e97c9 TS |
1479 | h->fn_stub->flags &= ~SEC_RELOC; |
1480 | h->fn_stub->reloc_count = 0; | |
1481 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1482 | } | |
1483 | ||
1484 | if (h->call_stub != NULL | |
30c09090 | 1485 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1486 | { |
1487 | /* We don't need the call_stub; this is a 16 bit function, so | |
1488 | calls from other 16 bit functions are OK. Clobber the size | |
1489 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1490 | h->call_stub->size = 0; |
b49e97c9 TS |
1491 | h->call_stub->flags &= ~SEC_RELOC; |
1492 | h->call_stub->reloc_count = 0; | |
1493 | h->call_stub->flags |= SEC_EXCLUDE; | |
1494 | } | |
1495 | ||
1496 | if (h->call_fp_stub != NULL | |
30c09090 | 1497 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1498 | { |
1499 | /* We don't need the call_stub; this is a 16 bit function, so | |
1500 | calls from other 16 bit functions are OK. Clobber the size | |
1501 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1502 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1503 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1504 | h->call_fp_stub->reloc_count = 0; | |
1505 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1506 | } | |
861fb55a DJ |
1507 | } |
1508 | ||
1509 | /* Hashtable callbacks for mips_elf_la25_stubs. */ | |
1510 | ||
1511 | static hashval_t | |
1512 | mips_elf_la25_stub_hash (const void *entry_) | |
1513 | { | |
1514 | const struct mips_elf_la25_stub *entry; | |
1515 | ||
1516 | entry = (struct mips_elf_la25_stub *) entry_; | |
1517 | return entry->h->root.root.u.def.section->id | |
1518 | + entry->h->root.root.u.def.value; | |
1519 | } | |
1520 | ||
1521 | static int | |
1522 | mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) | |
1523 | { | |
1524 | const struct mips_elf_la25_stub *entry1, *entry2; | |
1525 | ||
1526 | entry1 = (struct mips_elf_la25_stub *) entry1_; | |
1527 | entry2 = (struct mips_elf_la25_stub *) entry2_; | |
1528 | return ((entry1->h->root.root.u.def.section | |
1529 | == entry2->h->root.root.u.def.section) | |
1530 | && (entry1->h->root.root.u.def.value | |
1531 | == entry2->h->root.root.u.def.value)); | |
1532 | } | |
1533 | ||
1534 | /* Called by the linker to set up the la25 stub-creation code. FN is | |
1535 | the linker's implementation of add_stub_function. Return true on | |
1536 | success. */ | |
1537 | ||
1538 | bfd_boolean | |
1539 | _bfd_mips_elf_init_stubs (struct bfd_link_info *info, | |
1540 | asection *(*fn) (const char *, asection *, | |
1541 | asection *)) | |
1542 | { | |
1543 | struct mips_elf_link_hash_table *htab; | |
1544 | ||
1545 | htab = mips_elf_hash_table (info); | |
1546 | htab->add_stub_section = fn; | |
1547 | htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, | |
1548 | mips_elf_la25_stub_eq, NULL); | |
1549 | if (htab->la25_stubs == NULL) | |
1550 | return FALSE; | |
1551 | ||
1552 | return TRUE; | |
1553 | } | |
1554 | ||
1555 | /* Return true if H is a locally-defined PIC function, in the sense | |
1556 | that it might need $25 to be valid on entry. Note that MIPS16 | |
1557 | functions never need $25 to be valid on entry; they set up $gp | |
1558 | using PC-relative instructions instead. */ | |
1559 | ||
1560 | static bfd_boolean | |
1561 | mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) | |
1562 | { | |
1563 | return ((h->root.root.type == bfd_link_hash_defined | |
1564 | || h->root.root.type == bfd_link_hash_defweak) | |
1565 | && h->root.def_regular | |
1566 | && !bfd_is_abs_section (h->root.root.u.def.section) | |
1567 | && !ELF_ST_IS_MIPS16 (h->root.other) | |
1568 | && (PIC_OBJECT_P (h->root.root.u.def.section->owner) | |
1569 | || ELF_ST_IS_MIPS_PIC (h->root.other))); | |
1570 | } | |
1571 | ||
1572 | /* STUB describes an la25 stub that we have decided to implement | |
1573 | by inserting an LUI/ADDIU pair before the target function. | |
1574 | Create the section and redirect the function symbol to it. */ | |
1575 | ||
1576 | static bfd_boolean | |
1577 | mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, | |
1578 | struct bfd_link_info *info) | |
1579 | { | |
1580 | struct mips_elf_link_hash_table *htab; | |
1581 | char *name; | |
1582 | asection *s, *input_section; | |
1583 | unsigned int align; | |
1584 | ||
1585 | htab = mips_elf_hash_table (info); | |
1586 | ||
1587 | /* Create a unique name for the new section. */ | |
1588 | name = bfd_malloc (11 + sizeof (".text.stub.")); | |
1589 | if (name == NULL) | |
1590 | return FALSE; | |
1591 | sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); | |
1592 | ||
1593 | /* Create the section. */ | |
1594 | input_section = stub->h->root.root.u.def.section; | |
1595 | s = htab->add_stub_section (name, input_section, | |
1596 | input_section->output_section); | |
1597 | if (s == NULL) | |
1598 | return FALSE; | |
1599 | ||
1600 | /* Make sure that any padding goes before the stub. */ | |
1601 | align = input_section->alignment_power; | |
1602 | if (!bfd_set_section_alignment (s->owner, s, align)) | |
1603 | return FALSE; | |
1604 | if (align > 3) | |
1605 | s->size = (1 << align) - 8; | |
1606 | ||
1607 | /* Create a symbol for the stub. */ | |
1608 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); | |
1609 | stub->stub_section = s; | |
1610 | stub->offset = s->size; | |
1611 | ||
1612 | /* Allocate room for it. */ | |
1613 | s->size += 8; | |
1614 | return TRUE; | |
1615 | } | |
1616 | ||
1617 | /* STUB describes an la25 stub that we have decided to implement | |
1618 | with a separate trampoline. Allocate room for it and redirect | |
1619 | the function symbol to it. */ | |
1620 | ||
1621 | static bfd_boolean | |
1622 | mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, | |
1623 | struct bfd_link_info *info) | |
1624 | { | |
1625 | struct mips_elf_link_hash_table *htab; | |
1626 | asection *s; | |
1627 | ||
1628 | htab = mips_elf_hash_table (info); | |
1629 | ||
1630 | /* Create a trampoline section, if we haven't already. */ | |
1631 | s = htab->strampoline; | |
1632 | if (s == NULL) | |
1633 | { | |
1634 | asection *input_section = stub->h->root.root.u.def.section; | |
1635 | s = htab->add_stub_section (".text", NULL, | |
1636 | input_section->output_section); | |
1637 | if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) | |
1638 | return FALSE; | |
1639 | htab->strampoline = s; | |
1640 | } | |
1641 | ||
1642 | /* Create a symbol for the stub. */ | |
1643 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); | |
1644 | stub->stub_section = s; | |
1645 | stub->offset = s->size; | |
1646 | ||
1647 | /* Allocate room for it. */ | |
1648 | s->size += 16; | |
1649 | return TRUE; | |
1650 | } | |
1651 | ||
1652 | /* H describes a symbol that needs an la25 stub. Make sure that an | |
1653 | appropriate stub exists and point H at it. */ | |
1654 | ||
1655 | static bfd_boolean | |
1656 | mips_elf_add_la25_stub (struct bfd_link_info *info, | |
1657 | struct mips_elf_link_hash_entry *h) | |
1658 | { | |
1659 | struct mips_elf_link_hash_table *htab; | |
1660 | struct mips_elf_la25_stub search, *stub; | |
1661 | bfd_boolean use_trampoline_p; | |
1662 | asection *s; | |
1663 | bfd_vma value; | |
1664 | void **slot; | |
1665 | ||
1666 | /* Prefer to use LUI/ADDIU stubs if the function is at the beginning | |
1667 | of the section and if we would need no more than 2 nops. */ | |
1668 | s = h->root.root.u.def.section; | |
1669 | value = h->root.root.u.def.value; | |
1670 | use_trampoline_p = (value != 0 || s->alignment_power > 4); | |
1671 | ||
1672 | /* Describe the stub we want. */ | |
1673 | search.stub_section = NULL; | |
1674 | search.offset = 0; | |
1675 | search.h = h; | |
1676 | ||
1677 | /* See if we've already created an equivalent stub. */ | |
1678 | htab = mips_elf_hash_table (info); | |
1679 | slot = htab_find_slot (htab->la25_stubs, &search, INSERT); | |
1680 | if (slot == NULL) | |
1681 | return FALSE; | |
1682 | ||
1683 | stub = (struct mips_elf_la25_stub *) *slot; | |
1684 | if (stub != NULL) | |
1685 | { | |
1686 | /* We can reuse the existing stub. */ | |
1687 | h->la25_stub = stub; | |
1688 | return TRUE; | |
1689 | } | |
1690 | ||
1691 | /* Create a permanent copy of ENTRY and add it to the hash table. */ | |
1692 | stub = bfd_malloc (sizeof (search)); | |
1693 | if (stub == NULL) | |
1694 | return FALSE; | |
1695 | *stub = search; | |
1696 | *slot = stub; | |
1697 | ||
1698 | h->la25_stub = stub; | |
1699 | return (use_trampoline_p | |
1700 | ? mips_elf_add_la25_trampoline (stub, info) | |
1701 | : mips_elf_add_la25_intro (stub, info)); | |
1702 | } | |
1703 | ||
1704 | /* A mips_elf_link_hash_traverse callback that is called before sizing | |
1705 | sections. DATA points to a mips_htab_traverse_info structure. */ | |
1706 | ||
1707 | static bfd_boolean | |
1708 | mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) | |
1709 | { | |
1710 | struct mips_htab_traverse_info *hti; | |
1711 | ||
1712 | hti = (struct mips_htab_traverse_info *) data; | |
1713 | if (h->root.root.type == bfd_link_hash_warning) | |
1714 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1715 | ||
1716 | if (!hti->info->relocatable) | |
1717 | mips_elf_check_mips16_stubs (hti->info, h); | |
b49e97c9 | 1718 | |
861fb55a DJ |
1719 | if (mips_elf_local_pic_function_p (h)) |
1720 | { | |
1721 | /* H is a function that might need $25 to be valid on entry. | |
1722 | If we're creating a non-PIC relocatable object, mark H as | |
1723 | being PIC. If we're creating a non-relocatable object with | |
1724 | non-PIC branches and jumps to H, make sure that H has an la25 | |
1725 | stub. */ | |
1726 | if (hti->info->relocatable) | |
1727 | { | |
1728 | if (!PIC_OBJECT_P (hti->output_bfd)) | |
1729 | h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); | |
1730 | } | |
1731 | else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) | |
1732 | { | |
1733 | hti->error = TRUE; | |
1734 | return FALSE; | |
1735 | } | |
1736 | } | |
b34976b6 | 1737 | return TRUE; |
b49e97c9 TS |
1738 | } |
1739 | \f | |
d6f16593 MR |
1740 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1741 | Most mips16 instructions are 16 bits, but these instructions | |
1742 | are 32 bits. | |
1743 | ||
1744 | The format of these instructions is: | |
1745 | ||
1746 | +--------------+--------------------------------+ | |
1747 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1748 | +--------------+--------------------------------+ | |
1749 | | Immediate 15:0 | | |
1750 | +-----------------------------------------------+ | |
1751 | ||
1752 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1753 | Note that the immediate value in the first word is swapped. | |
1754 | ||
1755 | When producing a relocatable object file, R_MIPS16_26 is | |
1756 | handled mostly like R_MIPS_26. In particular, the addend is | |
1757 | stored as a straight 26-bit value in a 32-bit instruction. | |
1758 | (gas makes life simpler for itself by never adjusting a | |
1759 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1760 | always zero). However, the 32 bit instruction is stored as 2 | |
1761 | 16-bit values, rather than a single 32-bit value. In a | |
1762 | big-endian file, the result is the same; in a little-endian | |
1763 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1764 | This is so that a disassembler can recognize the jal | |
1765 | instruction. | |
1766 | ||
1767 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1768 | instruction stored as two 16-bit values. The addend A is the | |
1769 | contents of the targ26 field. The calculation is the same as | |
1770 | R_MIPS_26. When storing the calculated value, reorder the | |
1771 | immediate value as shown above, and don't forget to store the | |
1772 | value as two 16-bit values. | |
1773 | ||
1774 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1775 | defined as | |
1776 | ||
1777 | big-endian: | |
1778 | +--------+----------------------+ | |
1779 | | | | | |
1780 | | | targ26-16 | | |
1781 | |31 26|25 0| | |
1782 | +--------+----------------------+ | |
1783 | ||
1784 | little-endian: | |
1785 | +----------+------+-------------+ | |
1786 | | | | | | |
1787 | | sub1 | | sub2 | | |
1788 | |0 9|10 15|16 31| | |
1789 | +----------+--------------------+ | |
1790 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1791 | ((sub1 << 16) | sub2)). | |
1792 | ||
1793 | When producing a relocatable object file, the calculation is | |
1794 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1795 | When producing a fully linked file, the calculation is | |
1796 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1797 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1798 | ||
738e5348 RS |
1799 | The table below lists the other MIPS16 instruction relocations. |
1800 | Each one is calculated in the same way as the non-MIPS16 relocation | |
1801 | given on the right, but using the extended MIPS16 layout of 16-bit | |
1802 | immediate fields: | |
1803 | ||
1804 | R_MIPS16_GPREL R_MIPS_GPREL16 | |
1805 | R_MIPS16_GOT16 R_MIPS_GOT16 | |
1806 | R_MIPS16_CALL16 R_MIPS_CALL16 | |
1807 | R_MIPS16_HI16 R_MIPS_HI16 | |
1808 | R_MIPS16_LO16 R_MIPS_LO16 | |
1809 | ||
1810 | A typical instruction will have a format like this: | |
d6f16593 MR |
1811 | |
1812 | +--------------+--------------------------------+ | |
1813 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1814 | +--------------+--------------------------------+ | |
1815 | | Major | rx | ry | Imm 4:0 | | |
1816 | +--------------+--------------------------------+ | |
1817 | ||
1818 | EXTEND is the five bit value 11110. Major is the instruction | |
1819 | opcode. | |
1820 | ||
738e5348 RS |
1821 | All we need to do here is shuffle the bits appropriately. |
1822 | As above, the two 16-bit halves must be swapped on a | |
1823 | little-endian system. */ | |
1824 | ||
1825 | static inline bfd_boolean | |
1826 | mips16_reloc_p (int r_type) | |
1827 | { | |
1828 | switch (r_type) | |
1829 | { | |
1830 | case R_MIPS16_26: | |
1831 | case R_MIPS16_GPREL: | |
1832 | case R_MIPS16_GOT16: | |
1833 | case R_MIPS16_CALL16: | |
1834 | case R_MIPS16_HI16: | |
1835 | case R_MIPS16_LO16: | |
1836 | return TRUE; | |
1837 | ||
1838 | default: | |
1839 | return FALSE; | |
1840 | } | |
1841 | } | |
1842 | ||
1843 | static inline bfd_boolean | |
1844 | got16_reloc_p (int r_type) | |
1845 | { | |
1846 | return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16; | |
1847 | } | |
1848 | ||
1849 | static inline bfd_boolean | |
1850 | call16_reloc_p (int r_type) | |
1851 | { | |
1852 | return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16; | |
1853 | } | |
1854 | ||
1855 | static inline bfd_boolean | |
1856 | hi16_reloc_p (int r_type) | |
1857 | { | |
1858 | return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16; | |
1859 | } | |
d6f16593 | 1860 | |
738e5348 RS |
1861 | static inline bfd_boolean |
1862 | lo16_reloc_p (int r_type) | |
1863 | { | |
1864 | return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16; | |
1865 | } | |
1866 | ||
1867 | static inline bfd_boolean | |
1868 | mips16_call_reloc_p (int r_type) | |
1869 | { | |
1870 | return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; | |
1871 | } | |
d6f16593 | 1872 | |
d6f16593 MR |
1873 | void |
1874 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1875 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1876 | { | |
1877 | bfd_vma extend, insn, val; | |
1878 | ||
738e5348 | 1879 | if (!mips16_reloc_p (r_type)) |
d6f16593 MR |
1880 | return; |
1881 | ||
1882 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1883 | extend = bfd_get_16 (abfd, data); | |
1884 | insn = bfd_get_16 (abfd, data + 2); | |
1885 | if (r_type == R_MIPS16_26) | |
1886 | { | |
1887 | if (jal_shuffle) | |
1888 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1889 | | ((extend & 0x1f) << 21) | insn; | |
1890 | else | |
1891 | val = extend << 16 | insn; | |
1892 | } | |
1893 | else | |
1894 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1895 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1896 | bfd_put_32 (abfd, val, data); | |
1897 | } | |
1898 | ||
1899 | void | |
1900 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1901 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1902 | { | |
1903 | bfd_vma extend, insn, val; | |
1904 | ||
738e5348 | 1905 | if (!mips16_reloc_p (r_type)) |
d6f16593 MR |
1906 | return; |
1907 | ||
1908 | val = bfd_get_32 (abfd, data); | |
1909 | if (r_type == R_MIPS16_26) | |
1910 | { | |
1911 | if (jal_shuffle) | |
1912 | { | |
1913 | insn = val & 0xffff; | |
1914 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1915 | | ((val >> 21) & 0x1f); | |
1916 | } | |
1917 | else | |
1918 | { | |
1919 | insn = val & 0xffff; | |
1920 | extend = val >> 16; | |
1921 | } | |
1922 | } | |
1923 | else | |
1924 | { | |
1925 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1926 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1927 | } | |
1928 | bfd_put_16 (abfd, insn, data + 2); | |
1929 | bfd_put_16 (abfd, extend, data); | |
1930 | } | |
1931 | ||
b49e97c9 | 1932 | bfd_reloc_status_type |
9719ad41 RS |
1933 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1934 | arelent *reloc_entry, asection *input_section, | |
1935 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1936 | { |
1937 | bfd_vma relocation; | |
a7ebbfdf | 1938 | bfd_signed_vma val; |
30ac9238 | 1939 | bfd_reloc_status_type status; |
b49e97c9 TS |
1940 | |
1941 | if (bfd_is_com_section (symbol->section)) | |
1942 | relocation = 0; | |
1943 | else | |
1944 | relocation = symbol->value; | |
1945 | ||
1946 | relocation += symbol->section->output_section->vma; | |
1947 | relocation += symbol->section->output_offset; | |
1948 | ||
07515404 | 1949 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1950 | return bfd_reloc_outofrange; |
1951 | ||
b49e97c9 | 1952 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1953 | val = reloc_entry->addend; |
1954 | ||
30ac9238 | 1955 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1956 | |
b49e97c9 | 1957 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1958 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1959 | an external symbol. */ |
1049f94e | 1960 | if (! relocatable |
b49e97c9 TS |
1961 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1962 | val += relocation - gp; | |
1963 | ||
a7ebbfdf TS |
1964 | if (reloc_entry->howto->partial_inplace) |
1965 | { | |
30ac9238 RS |
1966 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1967 | (bfd_byte *) data | |
1968 | + reloc_entry->address); | |
1969 | if (status != bfd_reloc_ok) | |
1970 | return status; | |
a7ebbfdf TS |
1971 | } |
1972 | else | |
1973 | reloc_entry->addend = val; | |
b49e97c9 | 1974 | |
1049f94e | 1975 | if (relocatable) |
b49e97c9 | 1976 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1977 | |
1978 | return bfd_reloc_ok; | |
1979 | } | |
1980 | ||
1981 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1982 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1983 | that contains the relocation field and DATA points to the start of | |
1984 | INPUT_SECTION. */ | |
1985 | ||
1986 | struct mips_hi16 | |
1987 | { | |
1988 | struct mips_hi16 *next; | |
1989 | bfd_byte *data; | |
1990 | asection *input_section; | |
1991 | arelent rel; | |
1992 | }; | |
1993 | ||
1994 | /* FIXME: This should not be a static variable. */ | |
1995 | ||
1996 | static struct mips_hi16 *mips_hi16_list; | |
1997 | ||
1998 | /* A howto special_function for REL *HI16 relocations. We can only | |
1999 | calculate the correct value once we've seen the partnering | |
2000 | *LO16 relocation, so just save the information for later. | |
2001 | ||
2002 | The ABI requires that the *LO16 immediately follow the *HI16. | |
2003 | However, as a GNU extension, we permit an arbitrary number of | |
2004 | *HI16s to be associated with a single *LO16. This significantly | |
2005 | simplies the relocation handling in gcc. */ | |
2006 | ||
2007 | bfd_reloc_status_type | |
2008 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2009 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
2010 | asection *input_section, bfd *output_bfd, | |
2011 | char **error_message ATTRIBUTE_UNUSED) | |
2012 | { | |
2013 | struct mips_hi16 *n; | |
2014 | ||
07515404 | 2015 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2016 | return bfd_reloc_outofrange; |
2017 | ||
2018 | n = bfd_malloc (sizeof *n); | |
2019 | if (n == NULL) | |
2020 | return bfd_reloc_outofrange; | |
2021 | ||
2022 | n->next = mips_hi16_list; | |
2023 | n->data = data; | |
2024 | n->input_section = input_section; | |
2025 | n->rel = *reloc_entry; | |
2026 | mips_hi16_list = n; | |
2027 | ||
2028 | if (output_bfd != NULL) | |
2029 | reloc_entry->address += input_section->output_offset; | |
2030 | ||
2031 | return bfd_reloc_ok; | |
2032 | } | |
2033 | ||
738e5348 | 2034 | /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just |
30ac9238 RS |
2035 | like any other 16-bit relocation when applied to global symbols, but is |
2036 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
2037 | ||
2038 | bfd_reloc_status_type | |
2039 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2040 | void *data, asection *input_section, | |
2041 | bfd *output_bfd, char **error_message) | |
2042 | { | |
2043 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
2044 | || bfd_is_und_section (bfd_get_section (symbol)) | |
2045 | || bfd_is_com_section (bfd_get_section (symbol))) | |
2046 | /* The relocation is against a global symbol. */ | |
2047 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2048 | input_section, output_bfd, | |
2049 | error_message); | |
2050 | ||
2051 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
2052 | input_section, output_bfd, error_message); | |
2053 | } | |
2054 | ||
2055 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
2056 | is a straightforward 16 bit inplace relocation, but we must deal with | |
2057 | any partnering high-part relocations as well. */ | |
2058 | ||
2059 | bfd_reloc_status_type | |
2060 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2061 | void *data, asection *input_section, | |
2062 | bfd *output_bfd, char **error_message) | |
2063 | { | |
2064 | bfd_vma vallo; | |
d6f16593 | 2065 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 2066 | |
07515404 | 2067 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2068 | return bfd_reloc_outofrange; |
2069 | ||
d6f16593 MR |
2070 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
2071 | location); | |
2072 | vallo = bfd_get_32 (abfd, location); | |
2073 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
2074 | location); | |
2075 | ||
30ac9238 RS |
2076 | while (mips_hi16_list != NULL) |
2077 | { | |
2078 | bfd_reloc_status_type ret; | |
2079 | struct mips_hi16 *hi; | |
2080 | ||
2081 | hi = mips_hi16_list; | |
2082 | ||
738e5348 RS |
2083 | /* R_MIPS*_GOT16 relocations are something of a special case. We |
2084 | want to install the addend in the same way as for a R_MIPS*_HI16 | |
30ac9238 RS |
2085 | relocation (with a rightshift of 16). However, since GOT16 |
2086 | relocations can also be used with global symbols, their howto | |
2087 | has a rightshift of 0. */ | |
2088 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
2089 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
738e5348 RS |
2090 | else if (hi->rel.howto->type == R_MIPS16_GOT16) |
2091 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); | |
30ac9238 RS |
2092 | |
2093 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
2094 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
2095 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
2096 | ||
30ac9238 RS |
2097 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
2098 | hi->input_section, output_bfd, | |
2099 | error_message); | |
2100 | if (ret != bfd_reloc_ok) | |
2101 | return ret; | |
2102 | ||
2103 | mips_hi16_list = hi->next; | |
2104 | free (hi); | |
2105 | } | |
2106 | ||
2107 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2108 | input_section, output_bfd, | |
2109 | error_message); | |
2110 | } | |
2111 | ||
2112 | /* A generic howto special_function. This calculates and installs the | |
2113 | relocation itself, thus avoiding the oft-discussed problems in | |
2114 | bfd_perform_relocation and bfd_install_relocation. */ | |
2115 | ||
2116 | bfd_reloc_status_type | |
2117 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2118 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
2119 | asection *input_section, bfd *output_bfd, | |
2120 | char **error_message ATTRIBUTE_UNUSED) | |
2121 | { | |
2122 | bfd_signed_vma val; | |
2123 | bfd_reloc_status_type status; | |
2124 | bfd_boolean relocatable; | |
2125 | ||
2126 | relocatable = (output_bfd != NULL); | |
2127 | ||
07515404 | 2128 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2129 | return bfd_reloc_outofrange; |
2130 | ||
2131 | /* Build up the field adjustment in VAL. */ | |
2132 | val = 0; | |
2133 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
2134 | { | |
2135 | /* Either we're calculating the final field value or we have a | |
2136 | relocation against a section symbol. Add in the section's | |
2137 | offset or address. */ | |
2138 | val += symbol->section->output_section->vma; | |
2139 | val += symbol->section->output_offset; | |
2140 | } | |
2141 | ||
2142 | if (!relocatable) | |
2143 | { | |
2144 | /* We're calculating the final field value. Add in the symbol's value | |
2145 | and, if pc-relative, subtract the address of the field itself. */ | |
2146 | val += symbol->value; | |
2147 | if (reloc_entry->howto->pc_relative) | |
2148 | { | |
2149 | val -= input_section->output_section->vma; | |
2150 | val -= input_section->output_offset; | |
2151 | val -= reloc_entry->address; | |
2152 | } | |
2153 | } | |
2154 | ||
2155 | /* VAL is now the final adjustment. If we're keeping this relocation | |
2156 | in the output file, and if the relocation uses a separate addend, | |
2157 | we just need to add VAL to that addend. Otherwise we need to add | |
2158 | VAL to the relocation field itself. */ | |
2159 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
2160 | reloc_entry->addend += val; | |
2161 | else | |
2162 | { | |
d6f16593 MR |
2163 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
2164 | ||
30ac9238 RS |
2165 | /* Add in the separate addend, if any. */ |
2166 | val += reloc_entry->addend; | |
2167 | ||
2168 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
2169 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
2170 | location); | |
30ac9238 | 2171 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
2172 | location); |
2173 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
2174 | location); | |
2175 | ||
30ac9238 RS |
2176 | if (status != bfd_reloc_ok) |
2177 | return status; | |
2178 | } | |
2179 | ||
2180 | if (relocatable) | |
2181 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
2182 | |
2183 | return bfd_reloc_ok; | |
2184 | } | |
2185 | \f | |
2186 | /* Swap an entry in a .gptab section. Note that these routines rely | |
2187 | on the equivalence of the two elements of the union. */ | |
2188 | ||
2189 | static void | |
9719ad41 RS |
2190 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
2191 | Elf32_gptab *in) | |
b49e97c9 TS |
2192 | { |
2193 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
2194 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
2195 | } | |
2196 | ||
2197 | static void | |
9719ad41 RS |
2198 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
2199 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
2200 | { |
2201 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
2202 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
2203 | } | |
2204 | ||
2205 | static void | |
9719ad41 RS |
2206 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
2207 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
2208 | { |
2209 | H_PUT_32 (abfd, in->id1, ex->id1); | |
2210 | H_PUT_32 (abfd, in->num, ex->num); | |
2211 | H_PUT_32 (abfd, in->id2, ex->id2); | |
2212 | H_PUT_32 (abfd, in->offset, ex->offset); | |
2213 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
2214 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
2215 | } | |
2216 | ||
2217 | static void | |
9719ad41 RS |
2218 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
2219 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
2220 | { |
2221 | unsigned long l; | |
2222 | ||
2223 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
2224 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
2225 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
2226 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
2227 | H_PUT_32 (abfd, l, ex->info); | |
2228 | H_PUT_32 (abfd, in->konst, ex->konst); | |
2229 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
2230 | } | |
b49e97c9 TS |
2231 | \f |
2232 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
2233 | routines swap this structure in and out. They are used outside of | |
2234 | BFD, so they are globally visible. */ | |
2235 | ||
2236 | void | |
9719ad41 RS |
2237 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
2238 | Elf32_RegInfo *in) | |
b49e97c9 TS |
2239 | { |
2240 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2241 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2242 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2243 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2244 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2245 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
2246 | } | |
2247 | ||
2248 | void | |
9719ad41 RS |
2249 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
2250 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
2251 | { |
2252 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2253 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2254 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2255 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2256 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2257 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2258 | } | |
2259 | ||
2260 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
2261 | information in an Elf64_Reginfo structure. These routines swap | |
2262 | them in and out. They are globally visible because they are used | |
2263 | outside of BFD. These routines are here so that gas can call them | |
2264 | without worrying about whether the 64 bit ABI has been included. */ | |
2265 | ||
2266 | void | |
9719ad41 RS |
2267 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
2268 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
2269 | { |
2270 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2271 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
2272 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2273 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2274 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2275 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2276 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
2277 | } | |
2278 | ||
2279 | void | |
9719ad41 RS |
2280 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
2281 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
2282 | { |
2283 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2284 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
2285 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2286 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2287 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2288 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2289 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2290 | } | |
2291 | ||
2292 | /* Swap in an options header. */ | |
2293 | ||
2294 | void | |
9719ad41 RS |
2295 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
2296 | Elf_Internal_Options *in) | |
b49e97c9 TS |
2297 | { |
2298 | in->kind = H_GET_8 (abfd, ex->kind); | |
2299 | in->size = H_GET_8 (abfd, ex->size); | |
2300 | in->section = H_GET_16 (abfd, ex->section); | |
2301 | in->info = H_GET_32 (abfd, ex->info); | |
2302 | } | |
2303 | ||
2304 | /* Swap out an options header. */ | |
2305 | ||
2306 | void | |
9719ad41 RS |
2307 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
2308 | Elf_External_Options *ex) | |
b49e97c9 TS |
2309 | { |
2310 | H_PUT_8 (abfd, in->kind, ex->kind); | |
2311 | H_PUT_8 (abfd, in->size, ex->size); | |
2312 | H_PUT_16 (abfd, in->section, ex->section); | |
2313 | H_PUT_32 (abfd, in->info, ex->info); | |
2314 | } | |
2315 | \f | |
2316 | /* This function is called via qsort() to sort the dynamic relocation | |
2317 | entries by increasing r_symndx value. */ | |
2318 | ||
2319 | static int | |
9719ad41 | 2320 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 2321 | { |
947216bf AM |
2322 | Elf_Internal_Rela int_reloc1; |
2323 | Elf_Internal_Rela int_reloc2; | |
6870500c | 2324 | int diff; |
b49e97c9 | 2325 | |
947216bf AM |
2326 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
2327 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 2328 | |
6870500c RS |
2329 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
2330 | if (diff != 0) | |
2331 | return diff; | |
2332 | ||
2333 | if (int_reloc1.r_offset < int_reloc2.r_offset) | |
2334 | return -1; | |
2335 | if (int_reloc1.r_offset > int_reloc2.r_offset) | |
2336 | return 1; | |
2337 | return 0; | |
b49e97c9 TS |
2338 | } |
2339 | ||
f4416af6 AO |
2340 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
2341 | ||
2342 | static int | |
7e3102a7 AM |
2343 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
2344 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 2345 | { |
7e3102a7 | 2346 | #ifdef BFD64 |
f4416af6 AO |
2347 | Elf_Internal_Rela int_reloc1[3]; |
2348 | Elf_Internal_Rela int_reloc2[3]; | |
2349 | ||
2350 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2351 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
2352 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2353 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
2354 | ||
6870500c RS |
2355 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
2356 | return -1; | |
2357 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) | |
2358 | return 1; | |
2359 | ||
2360 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) | |
2361 | return -1; | |
2362 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) | |
2363 | return 1; | |
2364 | return 0; | |
7e3102a7 AM |
2365 | #else |
2366 | abort (); | |
2367 | #endif | |
f4416af6 AO |
2368 | } |
2369 | ||
2370 | ||
b49e97c9 TS |
2371 | /* This routine is used to write out ECOFF debugging external symbol |
2372 | information. It is called via mips_elf_link_hash_traverse. The | |
2373 | ECOFF external symbol information must match the ELF external | |
2374 | symbol information. Unfortunately, at this point we don't know | |
2375 | whether a symbol is required by reloc information, so the two | |
2376 | tables may wind up being different. We must sort out the external | |
2377 | symbol information before we can set the final size of the .mdebug | |
2378 | section, and we must set the size of the .mdebug section before we | |
2379 | can relocate any sections, and we can't know which symbols are | |
2380 | required by relocation until we relocate the sections. | |
2381 | Fortunately, it is relatively unlikely that any symbol will be | |
2382 | stripped but required by a reloc. In particular, it can not happen | |
2383 | when generating a final executable. */ | |
2384 | ||
b34976b6 | 2385 | static bfd_boolean |
9719ad41 | 2386 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2387 | { |
9719ad41 | 2388 | struct extsym_info *einfo = data; |
b34976b6 | 2389 | bfd_boolean strip; |
b49e97c9 TS |
2390 | asection *sec, *output_section; |
2391 | ||
2392 | if (h->root.root.type == bfd_link_hash_warning) | |
2393 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2394 | ||
2395 | if (h->root.indx == -2) | |
b34976b6 | 2396 | strip = FALSE; |
f5385ebf | 2397 | else if ((h->root.def_dynamic |
77cfaee6 AM |
2398 | || h->root.ref_dynamic |
2399 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
2400 | && !h->root.def_regular |
2401 | && !h->root.ref_regular) | |
b34976b6 | 2402 | strip = TRUE; |
b49e97c9 TS |
2403 | else if (einfo->info->strip == strip_all |
2404 | || (einfo->info->strip == strip_some | |
2405 | && bfd_hash_lookup (einfo->info->keep_hash, | |
2406 | h->root.root.root.string, | |
b34976b6 AM |
2407 | FALSE, FALSE) == NULL)) |
2408 | strip = TRUE; | |
b49e97c9 | 2409 | else |
b34976b6 | 2410 | strip = FALSE; |
b49e97c9 TS |
2411 | |
2412 | if (strip) | |
b34976b6 | 2413 | return TRUE; |
b49e97c9 TS |
2414 | |
2415 | if (h->esym.ifd == -2) | |
2416 | { | |
2417 | h->esym.jmptbl = 0; | |
2418 | h->esym.cobol_main = 0; | |
2419 | h->esym.weakext = 0; | |
2420 | h->esym.reserved = 0; | |
2421 | h->esym.ifd = ifdNil; | |
2422 | h->esym.asym.value = 0; | |
2423 | h->esym.asym.st = stGlobal; | |
2424 | ||
2425 | if (h->root.root.type == bfd_link_hash_undefined | |
2426 | || h->root.root.type == bfd_link_hash_undefweak) | |
2427 | { | |
2428 | const char *name; | |
2429 | ||
2430 | /* Use undefined class. Also, set class and type for some | |
2431 | special symbols. */ | |
2432 | name = h->root.root.root.string; | |
2433 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
2434 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
2435 | { | |
2436 | h->esym.asym.sc = scData; | |
2437 | h->esym.asym.st = stLabel; | |
2438 | h->esym.asym.value = 0; | |
2439 | } | |
2440 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
2441 | { | |
2442 | h->esym.asym.sc = scAbs; | |
2443 | h->esym.asym.st = stLabel; | |
2444 | h->esym.asym.value = | |
2445 | mips_elf_hash_table (einfo->info)->procedure_count; | |
2446 | } | |
4a14403c | 2447 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
2448 | { |
2449 | h->esym.asym.sc = scAbs; | |
2450 | h->esym.asym.st = stLabel; | |
2451 | h->esym.asym.value = elf_gp (einfo->abfd); | |
2452 | } | |
2453 | else | |
2454 | h->esym.asym.sc = scUndefined; | |
2455 | } | |
2456 | else if (h->root.root.type != bfd_link_hash_defined | |
2457 | && h->root.root.type != bfd_link_hash_defweak) | |
2458 | h->esym.asym.sc = scAbs; | |
2459 | else | |
2460 | { | |
2461 | const char *name; | |
2462 | ||
2463 | sec = h->root.root.u.def.section; | |
2464 | output_section = sec->output_section; | |
2465 | ||
2466 | /* When making a shared library and symbol h is the one from | |
2467 | the another shared library, OUTPUT_SECTION may be null. */ | |
2468 | if (output_section == NULL) | |
2469 | h->esym.asym.sc = scUndefined; | |
2470 | else | |
2471 | { | |
2472 | name = bfd_section_name (output_section->owner, output_section); | |
2473 | ||
2474 | if (strcmp (name, ".text") == 0) | |
2475 | h->esym.asym.sc = scText; | |
2476 | else if (strcmp (name, ".data") == 0) | |
2477 | h->esym.asym.sc = scData; | |
2478 | else if (strcmp (name, ".sdata") == 0) | |
2479 | h->esym.asym.sc = scSData; | |
2480 | else if (strcmp (name, ".rodata") == 0 | |
2481 | || strcmp (name, ".rdata") == 0) | |
2482 | h->esym.asym.sc = scRData; | |
2483 | else if (strcmp (name, ".bss") == 0) | |
2484 | h->esym.asym.sc = scBss; | |
2485 | else if (strcmp (name, ".sbss") == 0) | |
2486 | h->esym.asym.sc = scSBss; | |
2487 | else if (strcmp (name, ".init") == 0) | |
2488 | h->esym.asym.sc = scInit; | |
2489 | else if (strcmp (name, ".fini") == 0) | |
2490 | h->esym.asym.sc = scFini; | |
2491 | else | |
2492 | h->esym.asym.sc = scAbs; | |
2493 | } | |
2494 | } | |
2495 | ||
2496 | h->esym.asym.reserved = 0; | |
2497 | h->esym.asym.index = indexNil; | |
2498 | } | |
2499 | ||
2500 | if (h->root.root.type == bfd_link_hash_common) | |
2501 | h->esym.asym.value = h->root.root.u.c.size; | |
2502 | else if (h->root.root.type == bfd_link_hash_defined | |
2503 | || h->root.root.type == bfd_link_hash_defweak) | |
2504 | { | |
2505 | if (h->esym.asym.sc == scCommon) | |
2506 | h->esym.asym.sc = scBss; | |
2507 | else if (h->esym.asym.sc == scSCommon) | |
2508 | h->esym.asym.sc = scSBss; | |
2509 | ||
2510 | sec = h->root.root.u.def.section; | |
2511 | output_section = sec->output_section; | |
2512 | if (output_section != NULL) | |
2513 | h->esym.asym.value = (h->root.root.u.def.value | |
2514 | + sec->output_offset | |
2515 | + output_section->vma); | |
2516 | else | |
2517 | h->esym.asym.value = 0; | |
2518 | } | |
33bb52fb | 2519 | else |
b49e97c9 TS |
2520 | { |
2521 | struct mips_elf_link_hash_entry *hd = h; | |
b49e97c9 TS |
2522 | |
2523 | while (hd->root.root.type == bfd_link_hash_indirect) | |
33bb52fb | 2524 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
b49e97c9 | 2525 | |
33bb52fb | 2526 | if (hd->needs_lazy_stub) |
b49e97c9 TS |
2527 | { |
2528 | /* Set type and value for a symbol with a function stub. */ | |
2529 | h->esym.asym.st = stProc; | |
2530 | sec = hd->root.root.u.def.section; | |
2531 | if (sec == NULL) | |
2532 | h->esym.asym.value = 0; | |
2533 | else | |
2534 | { | |
2535 | output_section = sec->output_section; | |
2536 | if (output_section != NULL) | |
2537 | h->esym.asym.value = (hd->root.plt.offset | |
2538 | + sec->output_offset | |
2539 | + output_section->vma); | |
2540 | else | |
2541 | h->esym.asym.value = 0; | |
2542 | } | |
b49e97c9 TS |
2543 | } |
2544 | } | |
2545 | ||
2546 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
2547 | h->root.root.root.string, | |
2548 | &h->esym)) | |
2549 | { | |
b34976b6 AM |
2550 | einfo->failed = TRUE; |
2551 | return FALSE; | |
b49e97c9 TS |
2552 | } |
2553 | ||
b34976b6 | 2554 | return TRUE; |
b49e97c9 TS |
2555 | } |
2556 | ||
2557 | /* A comparison routine used to sort .gptab entries. */ | |
2558 | ||
2559 | static int | |
9719ad41 | 2560 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 2561 | { |
9719ad41 RS |
2562 | const Elf32_gptab *a1 = p1; |
2563 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
2564 | |
2565 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
2566 | } | |
2567 | \f | |
b15e6682 | 2568 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
2569 | |
2570 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
2571 | hash number. */ | |
2572 | ||
2573 | static INLINE hashval_t | |
9719ad41 | 2574 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
2575 | { |
2576 | #ifdef BFD64 | |
2577 | return addr + (addr >> 32); | |
2578 | #else | |
2579 | return addr; | |
2580 | #endif | |
2581 | } | |
2582 | ||
2583 | /* got_entries only match if they're identical, except for gotidx, so | |
2584 | use all fields to compute the hash, and compare the appropriate | |
2585 | union members. */ | |
2586 | ||
b15e6682 | 2587 | static hashval_t |
9719ad41 | 2588 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
2589 | { |
2590 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
2591 | ||
38985a1c | 2592 | return entry->symndx |
0f20cc35 | 2593 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 2594 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
2595 | : entry->abfd->id |
2596 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
2597 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
2598 | } |
2599 | ||
2600 | static int | |
9719ad41 | 2601 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
2602 | { |
2603 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
2604 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2605 | ||
0f20cc35 DJ |
2606 | /* An LDM entry can only match another LDM entry. */ |
2607 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
2608 | return 0; | |
2609 | ||
b15e6682 | 2610 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
2611 | && (! e1->abfd ? e1->d.address == e2->d.address |
2612 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
2613 | : e1->d.h == e2->d.h); | |
2614 | } | |
2615 | ||
2616 | /* multi_got_entries are still a match in the case of global objects, | |
2617 | even if the input bfd in which they're referenced differs, so the | |
2618 | hash computation and compare functions are adjusted | |
2619 | accordingly. */ | |
2620 | ||
2621 | static hashval_t | |
9719ad41 | 2622 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
2623 | { |
2624 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
2625 | ||
2626 | return entry->symndx | |
2627 | + (! entry->abfd | |
2628 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
2629 | : entry->symndx >= 0 | |
0f20cc35 DJ |
2630 | ? ((entry->tls_type & GOT_TLS_LDM) |
2631 | ? (GOT_TLS_LDM << 17) | |
2632 | : (entry->abfd->id | |
2633 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
2634 | : entry->d.h->root.root.root.hash); |
2635 | } | |
2636 | ||
2637 | static int | |
9719ad41 | 2638 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2639 | { |
2640 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
2641 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2642 | ||
0f20cc35 DJ |
2643 | /* Any two LDM entries match. */ |
2644 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
2645 | return 1; | |
2646 | ||
2647 | /* Nothing else matches an LDM entry. */ | |
2648 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
2649 | return 0; | |
2650 | ||
f4416af6 AO |
2651 | return e1->symndx == e2->symndx |
2652 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
2653 | : e1->abfd == NULL || e2->abfd == NULL | |
2654 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
2655 | : e1->d.h == e2->d.h); | |
b15e6682 | 2656 | } |
c224138d RS |
2657 | |
2658 | static hashval_t | |
2659 | mips_got_page_entry_hash (const void *entry_) | |
2660 | { | |
2661 | const struct mips_got_page_entry *entry; | |
2662 | ||
2663 | entry = (const struct mips_got_page_entry *) entry_; | |
2664 | return entry->abfd->id + entry->symndx; | |
2665 | } | |
2666 | ||
2667 | static int | |
2668 | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) | |
2669 | { | |
2670 | const struct mips_got_page_entry *entry1, *entry2; | |
2671 | ||
2672 | entry1 = (const struct mips_got_page_entry *) entry1_; | |
2673 | entry2 = (const struct mips_got_page_entry *) entry2_; | |
2674 | return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx; | |
2675 | } | |
b15e6682 | 2676 | \f |
0a44bf69 RS |
2677 | /* Return the dynamic relocation section. If it doesn't exist, try to |
2678 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
2679 | if creation fails. */ | |
f4416af6 AO |
2680 | |
2681 | static asection * | |
0a44bf69 | 2682 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 2683 | { |
0a44bf69 | 2684 | const char *dname; |
f4416af6 | 2685 | asection *sreloc; |
0a44bf69 | 2686 | bfd *dynobj; |
f4416af6 | 2687 | |
0a44bf69 RS |
2688 | dname = MIPS_ELF_REL_DYN_NAME (info); |
2689 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 AO |
2690 | sreloc = bfd_get_section_by_name (dynobj, dname); |
2691 | if (sreloc == NULL && create_p) | |
2692 | { | |
3496cb2a L |
2693 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
2694 | (SEC_ALLOC | |
2695 | | SEC_LOAD | |
2696 | | SEC_HAS_CONTENTS | |
2697 | | SEC_IN_MEMORY | |
2698 | | SEC_LINKER_CREATED | |
2699 | | SEC_READONLY)); | |
f4416af6 | 2700 | if (sreloc == NULL |
f4416af6 | 2701 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 2702 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
2703 | return NULL; |
2704 | } | |
2705 | return sreloc; | |
2706 | } | |
2707 | ||
0f20cc35 DJ |
2708 | /* Count the number of relocations needed for a TLS GOT entry, with |
2709 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
2710 | is NULL). */ | |
2711 | ||
2712 | static int | |
2713 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
2714 | struct elf_link_hash_entry *h) | |
2715 | { | |
2716 | int indx = 0; | |
2717 | int ret = 0; | |
2718 | bfd_boolean need_relocs = FALSE; | |
2719 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2720 | ||
2721 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
2722 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2723 | indx = h->dynindx; | |
2724 | ||
2725 | if ((info->shared || indx != 0) | |
2726 | && (h == NULL | |
2727 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2728 | || h->root.type != bfd_link_hash_undefweak)) | |
2729 | need_relocs = TRUE; | |
2730 | ||
2731 | if (!need_relocs) | |
2732 | return FALSE; | |
2733 | ||
2734 | if (tls_type & GOT_TLS_GD) | |
2735 | { | |
2736 | ret++; | |
2737 | if (indx != 0) | |
2738 | ret++; | |
2739 | } | |
2740 | ||
2741 | if (tls_type & GOT_TLS_IE) | |
2742 | ret++; | |
2743 | ||
2744 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
2745 | ret++; | |
2746 | ||
2747 | return ret; | |
2748 | } | |
2749 | ||
2750 | /* Count the number of TLS relocations required for the GOT entry in | |
2751 | ARG1, if it describes a local symbol. */ | |
2752 | ||
2753 | static int | |
2754 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2755 | { | |
2756 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2757 | struct mips_elf_count_tls_arg *arg = arg2; | |
2758 | ||
2759 | if (entry->abfd != NULL && entry->symndx != -1) | |
2760 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2761 | ||
2762 | return 1; | |
2763 | } | |
2764 | ||
2765 | /* Count the number of TLS GOT entries required for the global (or | |
2766 | forced-local) symbol in ARG1. */ | |
2767 | ||
2768 | static int | |
2769 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2770 | { | |
2771 | struct mips_elf_link_hash_entry *hm | |
2772 | = (struct mips_elf_link_hash_entry *) arg1; | |
2773 | struct mips_elf_count_tls_arg *arg = arg2; | |
2774 | ||
2775 | if (hm->tls_type & GOT_TLS_GD) | |
2776 | arg->needed += 2; | |
2777 | if (hm->tls_type & GOT_TLS_IE) | |
2778 | arg->needed += 1; | |
2779 | ||
2780 | return 1; | |
2781 | } | |
2782 | ||
2783 | /* Count the number of TLS relocations required for the global (or | |
2784 | forced-local) symbol in ARG1. */ | |
2785 | ||
2786 | static int | |
2787 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2788 | { | |
2789 | struct mips_elf_link_hash_entry *hm | |
2790 | = (struct mips_elf_link_hash_entry *) arg1; | |
2791 | struct mips_elf_count_tls_arg *arg = arg2; | |
2792 | ||
2793 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2794 | ||
2795 | return 1; | |
2796 | } | |
2797 | ||
2798 | /* Output a simple dynamic relocation into SRELOC. */ | |
2799 | ||
2800 | static void | |
2801 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2802 | asection *sreloc, | |
861fb55a | 2803 | unsigned long reloc_index, |
0f20cc35 DJ |
2804 | unsigned long indx, |
2805 | int r_type, | |
2806 | bfd_vma offset) | |
2807 | { | |
2808 | Elf_Internal_Rela rel[3]; | |
2809 | ||
2810 | memset (rel, 0, sizeof (rel)); | |
2811 | ||
2812 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2813 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2814 | ||
2815 | if (ABI_64_P (output_bfd)) | |
2816 | { | |
2817 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2818 | (output_bfd, &rel[0], | |
2819 | (sreloc->contents | |
861fb55a | 2820 | + reloc_index * sizeof (Elf64_Mips_External_Rel))); |
0f20cc35 DJ |
2821 | } |
2822 | else | |
2823 | bfd_elf32_swap_reloc_out | |
2824 | (output_bfd, &rel[0], | |
2825 | (sreloc->contents | |
861fb55a | 2826 | + reloc_index * sizeof (Elf32_External_Rel))); |
0f20cc35 DJ |
2827 | } |
2828 | ||
2829 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2830 | ||
2831 | static void | |
2832 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2833 | unsigned char *tls_type_p, | |
2834 | struct bfd_link_info *info, | |
2835 | struct mips_elf_link_hash_entry *h, | |
2836 | bfd_vma value) | |
2837 | { | |
23cc69b6 | 2838 | struct mips_elf_link_hash_table *htab; |
0f20cc35 DJ |
2839 | int indx; |
2840 | asection *sreloc, *sgot; | |
2841 | bfd_vma offset, offset2; | |
0f20cc35 DJ |
2842 | bfd_boolean need_relocs = FALSE; |
2843 | ||
23cc69b6 RS |
2844 | htab = mips_elf_hash_table (info); |
2845 | sgot = htab->sgot; | |
0f20cc35 DJ |
2846 | |
2847 | indx = 0; | |
2848 | if (h != NULL) | |
2849 | { | |
2850 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2851 | ||
2852 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2853 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2854 | indx = h->root.dynindx; | |
2855 | } | |
2856 | ||
2857 | if (*tls_type_p & GOT_TLS_DONE) | |
2858 | return; | |
2859 | ||
2860 | if ((info->shared || indx != 0) | |
2861 | && (h == NULL | |
2862 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2863 | || h->root.type != bfd_link_hash_undefweak)) | |
2864 | need_relocs = TRUE; | |
2865 | ||
2866 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2867 | be defined at all; assume that the value doesn't matter in that | |
2868 | case. Otherwise complain if we would use the value. */ | |
2869 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2870 | || h->root.root.type == bfd_link_hash_undefweak); | |
2871 | ||
2872 | /* Emit necessary relocations. */ | |
0a44bf69 | 2873 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
0f20cc35 DJ |
2874 | |
2875 | /* General Dynamic. */ | |
2876 | if (*tls_type_p & GOT_TLS_GD) | |
2877 | { | |
2878 | offset = got_offset; | |
2879 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2880 | ||
2881 | if (need_relocs) | |
2882 | { | |
2883 | mips_elf_output_dynamic_relocation | |
861fb55a | 2884 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
2885 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
2886 | sgot->output_offset + sgot->output_section->vma + offset); | |
2887 | ||
2888 | if (indx) | |
2889 | mips_elf_output_dynamic_relocation | |
861fb55a | 2890 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
2891 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
2892 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2893 | else | |
2894 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2895 | sgot->contents + offset2); | |
2896 | } | |
2897 | else | |
2898 | { | |
2899 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2900 | sgot->contents + offset); | |
2901 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2902 | sgot->contents + offset2); | |
2903 | } | |
2904 | ||
2905 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2906 | } | |
2907 | ||
2908 | /* Initial Exec model. */ | |
2909 | if (*tls_type_p & GOT_TLS_IE) | |
2910 | { | |
2911 | offset = got_offset; | |
2912 | ||
2913 | if (need_relocs) | |
2914 | { | |
2915 | if (indx == 0) | |
2916 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2917 | sgot->contents + offset); | |
2918 | else | |
2919 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2920 | sgot->contents + offset); | |
2921 | ||
2922 | mips_elf_output_dynamic_relocation | |
861fb55a | 2923 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
2924 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
2925 | sgot->output_offset + sgot->output_section->vma + offset); | |
2926 | } | |
2927 | else | |
2928 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2929 | sgot->contents + offset); | |
2930 | } | |
2931 | ||
2932 | if (*tls_type_p & GOT_TLS_LDM) | |
2933 | { | |
2934 | /* The initial offset is zero, and the LD offsets will include the | |
2935 | bias by DTP_OFFSET. */ | |
2936 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2937 | sgot->contents + got_offset | |
2938 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2939 | ||
2940 | if (!info->shared) | |
2941 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2942 | sgot->contents + got_offset); | |
2943 | else | |
2944 | mips_elf_output_dynamic_relocation | |
861fb55a | 2945 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
2946 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
2947 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2948 | } | |
2949 | ||
2950 | *tls_type_p |= GOT_TLS_DONE; | |
2951 | } | |
2952 | ||
2953 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2954 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2955 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2956 | GOT entries and corresponding relocations. */ | |
2957 | ||
2958 | static bfd_vma | |
2959 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2960 | int r_type, struct bfd_link_info *info, | |
2961 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2962 | { | |
2963 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2964 | || r_type == R_MIPS_TLS_LDM); | |
2965 | ||
2966 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2967 | ||
2968 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2969 | { | |
2970 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2971 | if (*tls_type & GOT_TLS_GD) | |
2972 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2973 | else | |
2974 | return got_index; | |
2975 | } | |
2976 | ||
2977 | if (r_type == R_MIPS_TLS_GD) | |
2978 | { | |
2979 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2980 | return got_index; | |
2981 | } | |
2982 | ||
2983 | if (r_type == R_MIPS_TLS_LDM) | |
2984 | { | |
2985 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2986 | return got_index; | |
2987 | } | |
2988 | ||
2989 | return got_index; | |
2990 | } | |
2991 | ||
0a44bf69 RS |
2992 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
2993 | for global symbol H. .got.plt comes before the GOT, so the offset | |
2994 | will be negative. */ | |
2995 | ||
2996 | static bfd_vma | |
2997 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
2998 | struct elf_link_hash_entry *h) | |
2999 | { | |
3000 | bfd_vma plt_index, got_address, got_value; | |
3001 | struct mips_elf_link_hash_table *htab; | |
3002 | ||
3003 | htab = mips_elf_hash_table (info); | |
3004 | BFD_ASSERT (h->plt.offset != (bfd_vma) -1); | |
3005 | ||
861fb55a DJ |
3006 | /* This function only works for VxWorks, because a non-VxWorks .got.plt |
3007 | section starts with reserved entries. */ | |
3008 | BFD_ASSERT (htab->is_vxworks); | |
3009 | ||
0a44bf69 RS |
3010 | /* Calculate the index of the symbol's PLT entry. */ |
3011 | plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; | |
3012 | ||
3013 | /* Calculate the address of the associated .got.plt entry. */ | |
3014 | got_address = (htab->sgotplt->output_section->vma | |
3015 | + htab->sgotplt->output_offset | |
3016 | + plt_index * 4); | |
3017 | ||
3018 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
3019 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
3020 | + htab->root.hgot->root.u.def.section->output_offset | |
3021 | + htab->root.hgot->root.u.def.value); | |
3022 | ||
3023 | return got_address - got_value; | |
3024 | } | |
3025 | ||
5c18022e | 3026 | /* Return the GOT offset for address VALUE. If there is not yet a GOT |
0a44bf69 RS |
3027 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
3028 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
3029 | offset can be found. */ | |
b49e97c9 TS |
3030 | |
3031 | static bfd_vma | |
9719ad41 | 3032 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3033 | bfd_vma value, unsigned long r_symndx, |
0f20cc35 | 3034 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 | 3035 | { |
a8028dd0 | 3036 | struct mips_elf_link_hash_table *htab; |
b15e6682 | 3037 | struct mips_got_entry *entry; |
b49e97c9 | 3038 | |
a8028dd0 RS |
3039 | htab = mips_elf_hash_table (info); |
3040 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, | |
3041 | r_symndx, h, r_type); | |
0f20cc35 | 3042 | if (!entry) |
b15e6682 | 3043 | return MINUS_ONE; |
0f20cc35 DJ |
3044 | |
3045 | if (TLS_RELOC_P (r_type)) | |
ead49a57 | 3046 | { |
a8028dd0 | 3047 | if (entry->symndx == -1 && htab->got_info->next == NULL) |
ead49a57 RS |
3048 | /* A type (3) entry in the single-GOT case. We use the symbol's |
3049 | hash table entry to track the index. */ | |
3050 | return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, | |
3051 | r_type, info, h, value); | |
3052 | else | |
3053 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, | |
3054 | r_type, info, h, value); | |
3055 | } | |
0f20cc35 DJ |
3056 | else |
3057 | return entry->gotidx; | |
b49e97c9 TS |
3058 | } |
3059 | ||
3060 | /* Returns the GOT index for the global symbol indicated by H. */ | |
3061 | ||
3062 | static bfd_vma | |
0f20cc35 DJ |
3063 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
3064 | int r_type, struct bfd_link_info *info) | |
b49e97c9 | 3065 | { |
a8028dd0 | 3066 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 3067 | bfd_vma index; |
f4416af6 | 3068 | struct mips_got_info *g, *gg; |
d0c7ff07 | 3069 | long global_got_dynindx = 0; |
b49e97c9 | 3070 | |
a8028dd0 RS |
3071 | htab = mips_elf_hash_table (info); |
3072 | gg = g = htab->got_info; | |
f4416af6 AO |
3073 | if (g->bfd2got && ibfd) |
3074 | { | |
3075 | struct mips_got_entry e, *p; | |
143d77c5 | 3076 | |
f4416af6 AO |
3077 | BFD_ASSERT (h->dynindx >= 0); |
3078 | ||
3079 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 3080 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
3081 | { |
3082 | e.abfd = ibfd; | |
3083 | e.symndx = -1; | |
3084 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 3085 | e.tls_type = 0; |
f4416af6 | 3086 | |
9719ad41 | 3087 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
3088 | |
3089 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
3090 | |
3091 | if (TLS_RELOC_P (r_type)) | |
3092 | { | |
3093 | bfd_vma value = MINUS_ONE; | |
3094 | if ((h->root.type == bfd_link_hash_defined | |
3095 | || h->root.type == bfd_link_hash_defweak) | |
3096 | && h->root.u.def.section->output_section) | |
3097 | value = (h->root.u.def.value | |
3098 | + h->root.u.def.section->output_offset | |
3099 | + h->root.u.def.section->output_section->vma); | |
3100 | ||
3101 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
3102 | info, e.d.h, value); | |
3103 | } | |
3104 | else | |
3105 | return p->gotidx; | |
f4416af6 AO |
3106 | } |
3107 | } | |
3108 | ||
3109 | if (gg->global_gotsym != NULL) | |
3110 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 3111 | |
0f20cc35 DJ |
3112 | if (TLS_RELOC_P (r_type)) |
3113 | { | |
3114 | struct mips_elf_link_hash_entry *hm | |
3115 | = (struct mips_elf_link_hash_entry *) h; | |
3116 | bfd_vma value = MINUS_ONE; | |
3117 | ||
3118 | if ((h->root.type == bfd_link_hash_defined | |
3119 | || h->root.type == bfd_link_hash_defweak) | |
3120 | && h->root.u.def.section->output_section) | |
3121 | value = (h->root.u.def.value | |
3122 | + h->root.u.def.section->output_offset | |
3123 | + h->root.u.def.section->output_section->vma); | |
3124 | ||
3125 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
3126 | r_type, info, hm, value); | |
3127 | } | |
3128 | else | |
3129 | { | |
3130 | /* Once we determine the global GOT entry with the lowest dynamic | |
3131 | symbol table index, we must put all dynamic symbols with greater | |
3132 | indices into the GOT. That makes it easy to calculate the GOT | |
3133 | offset. */ | |
3134 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
3135 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
3136 | * MIPS_ELF_GOT_SIZE (abfd)); | |
3137 | } | |
a8028dd0 | 3138 | BFD_ASSERT (index < htab->sgot->size); |
b49e97c9 TS |
3139 | |
3140 | return index; | |
3141 | } | |
3142 | ||
5c18022e RS |
3143 | /* Find a GOT page entry that points to within 32KB of VALUE. These |
3144 | entries are supposed to be placed at small offsets in the GOT, i.e., | |
3145 | within 32KB of GP. Return the index of the GOT entry, or -1 if no | |
3146 | entry could be created. If OFFSETP is nonnull, use it to return the | |
0a44bf69 | 3147 | offset of the GOT entry from VALUE. */ |
b49e97c9 TS |
3148 | |
3149 | static bfd_vma | |
9719ad41 | 3150 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3151 | bfd_vma value, bfd_vma *offsetp) |
b49e97c9 | 3152 | { |
0a44bf69 | 3153 | bfd_vma page, index; |
b15e6682 | 3154 | struct mips_got_entry *entry; |
b49e97c9 | 3155 | |
0a44bf69 | 3156 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
a8028dd0 RS |
3157 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, |
3158 | NULL, R_MIPS_GOT_PAGE); | |
b49e97c9 | 3159 | |
b15e6682 AO |
3160 | if (!entry) |
3161 | return MINUS_ONE; | |
143d77c5 | 3162 | |
b15e6682 | 3163 | index = entry->gotidx; |
b49e97c9 TS |
3164 | |
3165 | if (offsetp) | |
f4416af6 | 3166 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
3167 | |
3168 | return index; | |
3169 | } | |
3170 | ||
738e5348 | 3171 | /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. |
0a44bf69 RS |
3172 | EXTERNAL is true if the relocation was against a global symbol |
3173 | that has been forced local. */ | |
b49e97c9 TS |
3174 | |
3175 | static bfd_vma | |
9719ad41 | 3176 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3177 | bfd_vma value, bfd_boolean external) |
b49e97c9 | 3178 | { |
b15e6682 | 3179 | struct mips_got_entry *entry; |
b49e97c9 | 3180 | |
0a44bf69 RS |
3181 | /* GOT16 relocations against local symbols are followed by a LO16 |
3182 | relocation; those against global symbols are not. Thus if the | |
3183 | symbol was originally local, the GOT16 relocation should load the | |
3184 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 3185 | if (! external) |
0a44bf69 | 3186 | value = mips_elf_high (value) << 16; |
b49e97c9 | 3187 | |
738e5348 RS |
3188 | /* It doesn't matter whether the original relocation was R_MIPS_GOT16, |
3189 | R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the | |
3190 | same in all cases. */ | |
a8028dd0 RS |
3191 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, |
3192 | NULL, R_MIPS_GOT16); | |
b15e6682 AO |
3193 | if (entry) |
3194 | return entry->gotidx; | |
3195 | else | |
3196 | return MINUS_ONE; | |
b49e97c9 TS |
3197 | } |
3198 | ||
3199 | /* Returns the offset for the entry at the INDEXth position | |
3200 | in the GOT. */ | |
3201 | ||
3202 | static bfd_vma | |
a8028dd0 | 3203 | mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, |
9719ad41 | 3204 | bfd *input_bfd, bfd_vma index) |
b49e97c9 | 3205 | { |
a8028dd0 | 3206 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3207 | asection *sgot; |
3208 | bfd_vma gp; | |
3209 | ||
a8028dd0 RS |
3210 | htab = mips_elf_hash_table (info); |
3211 | sgot = htab->sgot; | |
f4416af6 | 3212 | gp = _bfd_get_gp_value (output_bfd) |
a8028dd0 | 3213 | + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); |
143d77c5 | 3214 | |
f4416af6 | 3215 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
3216 | } |
3217 | ||
0a44bf69 RS |
3218 | /* Create and return a local GOT entry for VALUE, which was calculated |
3219 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
3220 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
3221 | instead. */ | |
b49e97c9 | 3222 | |
b15e6682 | 3223 | static struct mips_got_entry * |
0a44bf69 | 3224 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 3225 | bfd *ibfd, bfd_vma value, |
5c18022e | 3226 | unsigned long r_symndx, |
0f20cc35 DJ |
3227 | struct mips_elf_link_hash_entry *h, |
3228 | int r_type) | |
b49e97c9 | 3229 | { |
b15e6682 | 3230 | struct mips_got_entry entry, **loc; |
f4416af6 | 3231 | struct mips_got_info *g; |
0a44bf69 RS |
3232 | struct mips_elf_link_hash_table *htab; |
3233 | ||
3234 | htab = mips_elf_hash_table (info); | |
b15e6682 | 3235 | |
f4416af6 AO |
3236 | entry.abfd = NULL; |
3237 | entry.symndx = -1; | |
3238 | entry.d.address = value; | |
0f20cc35 | 3239 | entry.tls_type = 0; |
f4416af6 | 3240 | |
a8028dd0 | 3241 | g = mips_elf_got_for_ibfd (htab->got_info, ibfd); |
f4416af6 AO |
3242 | if (g == NULL) |
3243 | { | |
a8028dd0 | 3244 | g = mips_elf_got_for_ibfd (htab->got_info, abfd); |
f4416af6 AO |
3245 | BFD_ASSERT (g != NULL); |
3246 | } | |
b15e6682 | 3247 | |
0f20cc35 DJ |
3248 | /* We might have a symbol, H, if it has been forced local. Use the |
3249 | global entry then. It doesn't matter whether an entry is local | |
3250 | or global for TLS, since the dynamic linker does not | |
3251 | automatically relocate TLS GOT entries. */ | |
a008ac03 | 3252 | BFD_ASSERT (h == NULL || h->root.forced_local); |
0f20cc35 DJ |
3253 | if (TLS_RELOC_P (r_type)) |
3254 | { | |
3255 | struct mips_got_entry *p; | |
3256 | ||
3257 | entry.abfd = ibfd; | |
3258 | if (r_type == R_MIPS_TLS_LDM) | |
3259 | { | |
3260 | entry.tls_type = GOT_TLS_LDM; | |
3261 | entry.symndx = 0; | |
3262 | entry.d.addend = 0; | |
3263 | } | |
3264 | else if (h == NULL) | |
3265 | { | |
3266 | entry.symndx = r_symndx; | |
3267 | entry.d.addend = 0; | |
3268 | } | |
3269 | else | |
3270 | entry.d.h = h; | |
3271 | ||
3272 | p = (struct mips_got_entry *) | |
3273 | htab_find (g->got_entries, &entry); | |
3274 | ||
3275 | BFD_ASSERT (p); | |
3276 | return p; | |
3277 | } | |
3278 | ||
b15e6682 AO |
3279 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
3280 | INSERT); | |
3281 | if (*loc) | |
3282 | return *loc; | |
143d77c5 | 3283 | |
b15e6682 | 3284 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 3285 | entry.tls_type = 0; |
b15e6682 AO |
3286 | |
3287 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
3288 | ||
3289 | if (! *loc) | |
3290 | return NULL; | |
143d77c5 | 3291 | |
b15e6682 AO |
3292 | memcpy (*loc, &entry, sizeof entry); |
3293 | ||
8275b357 | 3294 | if (g->assigned_gotno > g->local_gotno) |
b49e97c9 | 3295 | { |
f4416af6 | 3296 | (*loc)->gotidx = -1; |
b49e97c9 TS |
3297 | /* We didn't allocate enough space in the GOT. */ |
3298 | (*_bfd_error_handler) | |
3299 | (_("not enough GOT space for local GOT entries")); | |
3300 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 3301 | return NULL; |
b49e97c9 TS |
3302 | } |
3303 | ||
3304 | MIPS_ELF_PUT_WORD (abfd, value, | |
a8028dd0 | 3305 | (htab->sgot->contents + entry.gotidx)); |
b15e6682 | 3306 | |
5c18022e | 3307 | /* These GOT entries need a dynamic relocation on VxWorks. */ |
0a44bf69 RS |
3308 | if (htab->is_vxworks) |
3309 | { | |
3310 | Elf_Internal_Rela outrel; | |
5c18022e | 3311 | asection *s; |
0a44bf69 RS |
3312 | bfd_byte *loc; |
3313 | bfd_vma got_address; | |
0a44bf69 RS |
3314 | |
3315 | s = mips_elf_rel_dyn_section (info, FALSE); | |
a8028dd0 RS |
3316 | got_address = (htab->sgot->output_section->vma |
3317 | + htab->sgot->output_offset | |
0a44bf69 RS |
3318 | + entry.gotidx); |
3319 | ||
3320 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
3321 | outrel.r_offset = got_address; | |
5c18022e RS |
3322 | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
3323 | outrel.r_addend = value; | |
0a44bf69 RS |
3324 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
3325 | } | |
3326 | ||
b15e6682 | 3327 | return *loc; |
b49e97c9 TS |
3328 | } |
3329 | ||
d4596a51 RS |
3330 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
3331 | The number might be exact or a worst-case estimate, depending on how | |
3332 | much information is available to elf_backend_omit_section_dynsym at | |
3333 | the current linking stage. */ | |
3334 | ||
3335 | static bfd_size_type | |
3336 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | |
3337 | { | |
3338 | bfd_size_type count; | |
3339 | ||
3340 | count = 0; | |
3341 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) | |
3342 | { | |
3343 | asection *p; | |
3344 | const struct elf_backend_data *bed; | |
3345 | ||
3346 | bed = get_elf_backend_data (output_bfd); | |
3347 | for (p = output_bfd->sections; p ; p = p->next) | |
3348 | if ((p->flags & SEC_EXCLUDE) == 0 | |
3349 | && (p->flags & SEC_ALLOC) != 0 | |
3350 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
3351 | ++count; | |
3352 | } | |
3353 | return count; | |
3354 | } | |
3355 | ||
b49e97c9 | 3356 | /* Sort the dynamic symbol table so that symbols that need GOT entries |
d4596a51 | 3357 | appear towards the end. */ |
b49e97c9 | 3358 | |
b34976b6 | 3359 | static bfd_boolean |
d4596a51 | 3360 | mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 3361 | { |
a8028dd0 | 3362 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3363 | struct mips_elf_hash_sort_data hsd; |
3364 | struct mips_got_info *g; | |
b49e97c9 | 3365 | |
d4596a51 RS |
3366 | if (elf_hash_table (info)->dynsymcount == 0) |
3367 | return TRUE; | |
3368 | ||
a8028dd0 RS |
3369 | htab = mips_elf_hash_table (info); |
3370 | g = htab->got_info; | |
d4596a51 RS |
3371 | if (g == NULL) |
3372 | return TRUE; | |
f4416af6 | 3373 | |
b49e97c9 | 3374 | hsd.low = NULL; |
23cc69b6 RS |
3375 | hsd.max_unref_got_dynindx |
3376 | = hsd.min_got_dynindx | |
3377 | = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); | |
d4596a51 | 3378 | hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; |
b49e97c9 TS |
3379 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) |
3380 | elf_hash_table (info)), | |
3381 | mips_elf_sort_hash_table_f, | |
3382 | &hsd); | |
3383 | ||
3384 | /* There should have been enough room in the symbol table to | |
44c410de | 3385 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 3386 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
d4596a51 RS |
3387 | BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx |
3388 | == elf_hash_table (info)->dynsymcount); | |
3389 | BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx | |
3390 | == g->global_gotno); | |
b49e97c9 TS |
3391 | |
3392 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
3393 | table index in the GOT. */ | |
b49e97c9 TS |
3394 | g->global_gotsym = hsd.low; |
3395 | ||
b34976b6 | 3396 | return TRUE; |
b49e97c9 TS |
3397 | } |
3398 | ||
3399 | /* If H needs a GOT entry, assign it the highest available dynamic | |
3400 | index. Otherwise, assign it the lowest available dynamic | |
3401 | index. */ | |
3402 | ||
b34976b6 | 3403 | static bfd_boolean |
9719ad41 | 3404 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 3405 | { |
9719ad41 | 3406 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
3407 | |
3408 | if (h->root.root.type == bfd_link_hash_warning) | |
3409 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3410 | ||
3411 | /* Symbols without dynamic symbol table entries aren't interesting | |
3412 | at all. */ | |
3413 | if (h->root.dynindx == -1) | |
b34976b6 | 3414 | return TRUE; |
b49e97c9 | 3415 | |
634835ae | 3416 | switch (h->global_got_area) |
f4416af6 | 3417 | { |
634835ae RS |
3418 | case GGA_NONE: |
3419 | h->root.dynindx = hsd->max_non_got_dynindx++; | |
3420 | break; | |
0f20cc35 | 3421 | |
634835ae | 3422 | case GGA_NORMAL: |
0f20cc35 DJ |
3423 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
3424 | ||
b49e97c9 TS |
3425 | h->root.dynindx = --hsd->min_got_dynindx; |
3426 | hsd->low = (struct elf_link_hash_entry *) h; | |
634835ae RS |
3427 | break; |
3428 | ||
3429 | case GGA_RELOC_ONLY: | |
3430 | BFD_ASSERT (h->tls_type == GOT_NORMAL); | |
3431 | ||
3432 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) | |
3433 | hsd->low = (struct elf_link_hash_entry *) h; | |
3434 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
3435 | break; | |
b49e97c9 TS |
3436 | } |
3437 | ||
b34976b6 | 3438 | return TRUE; |
b49e97c9 TS |
3439 | } |
3440 | ||
3441 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
3442 | symbol table index lower than any we've seen to date, record it for | |
3443 | posterity. */ | |
3444 | ||
b34976b6 | 3445 | static bfd_boolean |
9719ad41 RS |
3446 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
3447 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 | 3448 | unsigned char tls_flag) |
b49e97c9 | 3449 | { |
a8028dd0 | 3450 | struct mips_elf_link_hash_table *htab; |
634835ae | 3451 | struct mips_elf_link_hash_entry *hmips; |
f4416af6 | 3452 | struct mips_got_entry entry, **loc; |
a8028dd0 RS |
3453 | struct mips_got_info *g; |
3454 | ||
3455 | htab = mips_elf_hash_table (info); | |
634835ae | 3456 | hmips = (struct mips_elf_link_hash_entry *) h; |
f4416af6 | 3457 | |
b49e97c9 TS |
3458 | /* A global symbol in the GOT must also be in the dynamic symbol |
3459 | table. */ | |
7c5fcef7 L |
3460 | if (h->dynindx == -1) |
3461 | { | |
3462 | switch (ELF_ST_VISIBILITY (h->other)) | |
3463 | { | |
3464 | case STV_INTERNAL: | |
3465 | case STV_HIDDEN: | |
33bb52fb | 3466 | _bfd_elf_link_hash_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
3467 | break; |
3468 | } | |
c152c796 | 3469 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3470 | return FALSE; |
7c5fcef7 | 3471 | } |
b49e97c9 | 3472 | |
86324f90 | 3473 | /* Make sure we have a GOT to put this entry into. */ |
a8028dd0 | 3474 | g = htab->got_info; |
86324f90 EC |
3475 | BFD_ASSERT (g != NULL); |
3476 | ||
f4416af6 AO |
3477 | entry.abfd = abfd; |
3478 | entry.symndx = -1; | |
3479 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 3480 | entry.tls_type = 0; |
f4416af6 AO |
3481 | |
3482 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
3483 | INSERT); | |
3484 | ||
b49e97c9 TS |
3485 | /* If we've already marked this entry as needing GOT space, we don't |
3486 | need to do it again. */ | |
f4416af6 | 3487 | if (*loc) |
0f20cc35 DJ |
3488 | { |
3489 | (*loc)->tls_type |= tls_flag; | |
3490 | return TRUE; | |
3491 | } | |
f4416af6 AO |
3492 | |
3493 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
3494 | ||
3495 | if (! *loc) | |
3496 | return FALSE; | |
143d77c5 | 3497 | |
f4416af6 | 3498 | entry.gotidx = -1; |
0f20cc35 DJ |
3499 | entry.tls_type = tls_flag; |
3500 | ||
f4416af6 AO |
3501 | memcpy (*loc, &entry, sizeof entry); |
3502 | ||
0f20cc35 | 3503 | if (tls_flag == 0) |
634835ae | 3504 | hmips->global_got_area = GGA_NORMAL; |
b49e97c9 | 3505 | |
b34976b6 | 3506 | return TRUE; |
b49e97c9 | 3507 | } |
f4416af6 AO |
3508 | |
3509 | /* Reserve space in G for a GOT entry containing the value of symbol | |
3510 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
3511 | ||
3512 | static bfd_boolean | |
9719ad41 | 3513 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
a8028dd0 | 3514 | struct bfd_link_info *info, |
0f20cc35 | 3515 | unsigned char tls_flag) |
f4416af6 | 3516 | { |
a8028dd0 RS |
3517 | struct mips_elf_link_hash_table *htab; |
3518 | struct mips_got_info *g; | |
f4416af6 AO |
3519 | struct mips_got_entry entry, **loc; |
3520 | ||
a8028dd0 RS |
3521 | htab = mips_elf_hash_table (info); |
3522 | g = htab->got_info; | |
3523 | BFD_ASSERT (g != NULL); | |
3524 | ||
f4416af6 AO |
3525 | entry.abfd = abfd; |
3526 | entry.symndx = symndx; | |
3527 | entry.d.addend = addend; | |
0f20cc35 | 3528 | entry.tls_type = tls_flag; |
f4416af6 AO |
3529 | loc = (struct mips_got_entry **) |
3530 | htab_find_slot (g->got_entries, &entry, INSERT); | |
3531 | ||
3532 | if (*loc) | |
0f20cc35 DJ |
3533 | { |
3534 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
3535 | { | |
3536 | g->tls_gotno += 2; | |
3537 | (*loc)->tls_type |= tls_flag; | |
3538 | } | |
3539 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
3540 | { | |
3541 | g->tls_gotno += 1; | |
3542 | (*loc)->tls_type |= tls_flag; | |
3543 | } | |
3544 | return TRUE; | |
3545 | } | |
f4416af6 | 3546 | |
0f20cc35 DJ |
3547 | if (tls_flag != 0) |
3548 | { | |
3549 | entry.gotidx = -1; | |
3550 | entry.tls_type = tls_flag; | |
3551 | if (tls_flag == GOT_TLS_IE) | |
3552 | g->tls_gotno += 1; | |
3553 | else if (tls_flag == GOT_TLS_GD) | |
3554 | g->tls_gotno += 2; | |
3555 | else if (g->tls_ldm_offset == MINUS_ONE) | |
3556 | { | |
3557 | g->tls_ldm_offset = MINUS_TWO; | |
3558 | g->tls_gotno += 2; | |
3559 | } | |
3560 | } | |
3561 | else | |
3562 | { | |
3563 | entry.gotidx = g->local_gotno++; | |
3564 | entry.tls_type = 0; | |
3565 | } | |
f4416af6 AO |
3566 | |
3567 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
3568 | ||
3569 | if (! *loc) | |
3570 | return FALSE; | |
143d77c5 | 3571 | |
f4416af6 AO |
3572 | memcpy (*loc, &entry, sizeof entry); |
3573 | ||
3574 | return TRUE; | |
3575 | } | |
c224138d RS |
3576 | |
3577 | /* Return the maximum number of GOT page entries required for RANGE. */ | |
3578 | ||
3579 | static bfd_vma | |
3580 | mips_elf_pages_for_range (const struct mips_got_page_range *range) | |
3581 | { | |
3582 | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; | |
3583 | } | |
3584 | ||
3a3b6725 | 3585 | /* Record that ABFD has a page relocation against symbol SYMNDX and |
a8028dd0 RS |
3586 | that ADDEND is the addend for that relocation. |
3587 | ||
3588 | This function creates an upper bound on the number of GOT slots | |
3589 | required; no attempt is made to combine references to non-overridable | |
3590 | global symbols across multiple input files. */ | |
c224138d RS |
3591 | |
3592 | static bfd_boolean | |
a8028dd0 RS |
3593 | mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd, |
3594 | long symndx, bfd_signed_vma addend) | |
c224138d | 3595 | { |
a8028dd0 RS |
3596 | struct mips_elf_link_hash_table *htab; |
3597 | struct mips_got_info *g; | |
c224138d RS |
3598 | struct mips_got_page_entry lookup, *entry; |
3599 | struct mips_got_page_range **range_ptr, *range; | |
3600 | bfd_vma old_pages, new_pages; | |
3601 | void **loc; | |
3602 | ||
a8028dd0 RS |
3603 | htab = mips_elf_hash_table (info); |
3604 | g = htab->got_info; | |
3605 | BFD_ASSERT (g != NULL); | |
3606 | ||
c224138d RS |
3607 | /* Find the mips_got_page_entry hash table entry for this symbol. */ |
3608 | lookup.abfd = abfd; | |
3609 | lookup.symndx = symndx; | |
3610 | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); | |
3611 | if (loc == NULL) | |
3612 | return FALSE; | |
3613 | ||
3614 | /* Create a mips_got_page_entry if this is the first time we've | |
3615 | seen the symbol. */ | |
3616 | entry = (struct mips_got_page_entry *) *loc; | |
3617 | if (!entry) | |
3618 | { | |
3619 | entry = bfd_alloc (abfd, sizeof (*entry)); | |
3620 | if (!entry) | |
3621 | return FALSE; | |
3622 | ||
3623 | entry->abfd = abfd; | |
3624 | entry->symndx = symndx; | |
3625 | entry->ranges = NULL; | |
3626 | entry->num_pages = 0; | |
3627 | *loc = entry; | |
3628 | } | |
3629 | ||
3630 | /* Skip over ranges whose maximum extent cannot share a page entry | |
3631 | with ADDEND. */ | |
3632 | range_ptr = &entry->ranges; | |
3633 | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) | |
3634 | range_ptr = &(*range_ptr)->next; | |
3635 | ||
3636 | /* If we scanned to the end of the list, or found a range whose | |
3637 | minimum extent cannot share a page entry with ADDEND, create | |
3638 | a new singleton range. */ | |
3639 | range = *range_ptr; | |
3640 | if (!range || addend < range->min_addend - 0xffff) | |
3641 | { | |
3642 | range = bfd_alloc (abfd, sizeof (*range)); | |
3643 | if (!range) | |
3644 | return FALSE; | |
3645 | ||
3646 | range->next = *range_ptr; | |
3647 | range->min_addend = addend; | |
3648 | range->max_addend = addend; | |
3649 | ||
3650 | *range_ptr = range; | |
3651 | entry->num_pages++; | |
3652 | g->page_gotno++; | |
3653 | return TRUE; | |
3654 | } | |
3655 | ||
3656 | /* Remember how many pages the old range contributed. */ | |
3657 | old_pages = mips_elf_pages_for_range (range); | |
3658 | ||
3659 | /* Update the ranges. */ | |
3660 | if (addend < range->min_addend) | |
3661 | range->min_addend = addend; | |
3662 | else if (addend > range->max_addend) | |
3663 | { | |
3664 | if (range->next && addend >= range->next->min_addend - 0xffff) | |
3665 | { | |
3666 | old_pages += mips_elf_pages_for_range (range->next); | |
3667 | range->max_addend = range->next->max_addend; | |
3668 | range->next = range->next->next; | |
3669 | } | |
3670 | else | |
3671 | range->max_addend = addend; | |
3672 | } | |
3673 | ||
3674 | /* Record any change in the total estimate. */ | |
3675 | new_pages = mips_elf_pages_for_range (range); | |
3676 | if (old_pages != new_pages) | |
3677 | { | |
3678 | entry->num_pages += new_pages - old_pages; | |
3679 | g->page_gotno += new_pages - old_pages; | |
3680 | } | |
3681 | ||
3682 | return TRUE; | |
3683 | } | |
33bb52fb RS |
3684 | |
3685 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ | |
3686 | ||
3687 | static void | |
3688 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, | |
3689 | unsigned int n) | |
3690 | { | |
3691 | asection *s; | |
3692 | struct mips_elf_link_hash_table *htab; | |
3693 | ||
3694 | htab = mips_elf_hash_table (info); | |
3695 | s = mips_elf_rel_dyn_section (info, FALSE); | |
3696 | BFD_ASSERT (s != NULL); | |
3697 | ||
3698 | if (htab->is_vxworks) | |
3699 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
3700 | else | |
3701 | { | |
3702 | if (s->size == 0) | |
3703 | { | |
3704 | /* Make room for a null element. */ | |
3705 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
3706 | ++s->reloc_count; | |
3707 | } | |
3708 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
3709 | } | |
3710 | } | |
3711 | \f | |
3712 | /* A htab_traverse callback for GOT entries. Set boolean *DATA to true | |
3713 | if the GOT entry is for an indirect or warning symbol. */ | |
3714 | ||
3715 | static int | |
3716 | mips_elf_check_recreate_got (void **entryp, void *data) | |
3717 | { | |
3718 | struct mips_got_entry *entry; | |
3719 | bfd_boolean *must_recreate; | |
3720 | ||
3721 | entry = (struct mips_got_entry *) *entryp; | |
3722 | must_recreate = (bfd_boolean *) data; | |
3723 | if (entry->abfd != NULL && entry->symndx == -1) | |
3724 | { | |
3725 | struct mips_elf_link_hash_entry *h; | |
3726 | ||
3727 | h = entry->d.h; | |
3728 | if (h->root.root.type == bfd_link_hash_indirect | |
3729 | || h->root.root.type == bfd_link_hash_warning) | |
3730 | { | |
3731 | *must_recreate = TRUE; | |
3732 | return 0; | |
3733 | } | |
3734 | } | |
3735 | return 1; | |
3736 | } | |
3737 | ||
3738 | /* A htab_traverse callback for GOT entries. Add all entries to | |
3739 | hash table *DATA, converting entries for indirect and warning | |
3740 | symbols into entries for the target symbol. Set *DATA to null | |
3741 | on error. */ | |
3742 | ||
3743 | static int | |
3744 | mips_elf_recreate_got (void **entryp, void *data) | |
3745 | { | |
3746 | htab_t *new_got; | |
3747 | struct mips_got_entry *entry; | |
3748 | void **slot; | |
3749 | ||
3750 | new_got = (htab_t *) data; | |
3751 | entry = (struct mips_got_entry *) *entryp; | |
3752 | if (entry->abfd != NULL && entry->symndx == -1) | |
3753 | { | |
3754 | struct mips_elf_link_hash_entry *h; | |
3755 | ||
3756 | h = entry->d.h; | |
3757 | while (h->root.root.type == bfd_link_hash_indirect | |
3758 | || h->root.root.type == bfd_link_hash_warning) | |
634835ae RS |
3759 | { |
3760 | BFD_ASSERT (h->global_got_area == GGA_NONE); | |
3761 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3762 | } | |
33bb52fb RS |
3763 | entry->d.h = h; |
3764 | } | |
3765 | slot = htab_find_slot (*new_got, entry, INSERT); | |
3766 | if (slot == NULL) | |
3767 | { | |
3768 | *new_got = NULL; | |
3769 | return 0; | |
3770 | } | |
3771 | if (*slot == NULL) | |
3772 | *slot = entry; | |
3773 | else | |
3774 | free (entry); | |
3775 | return 1; | |
3776 | } | |
3777 | ||
3778 | /* If any entries in G->got_entries are for indirect or warning symbols, | |
3779 | replace them with entries for the target symbol. */ | |
3780 | ||
3781 | static bfd_boolean | |
3782 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) | |
3783 | { | |
3784 | bfd_boolean must_recreate; | |
3785 | htab_t new_got; | |
3786 | ||
3787 | must_recreate = FALSE; | |
3788 | htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate); | |
3789 | if (must_recreate) | |
3790 | { | |
3791 | new_got = htab_create (htab_size (g->got_entries), | |
3792 | mips_elf_got_entry_hash, | |
3793 | mips_elf_got_entry_eq, NULL); | |
3794 | htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got); | |
3795 | if (new_got == NULL) | |
3796 | return FALSE; | |
3797 | ||
3798 | /* Each entry in g->got_entries has either been copied to new_got | |
3799 | or freed. Now delete the hash table itself. */ | |
3800 | htab_delete (g->got_entries); | |
3801 | g->got_entries = new_got; | |
3802 | } | |
3803 | return TRUE; | |
3804 | } | |
3805 | ||
634835ae | 3806 | /* A mips_elf_link_hash_traverse callback for which DATA points |
d4596a51 | 3807 | to a mips_got_info. Count the number of type (3) entries. */ |
33bb52fb RS |
3808 | |
3809 | static int | |
d4596a51 | 3810 | mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) |
33bb52fb RS |
3811 | { |
3812 | struct mips_got_info *g; | |
3813 | ||
3814 | g = (struct mips_got_info *) data; | |
d4596a51 | 3815 | if (h->global_got_area != GGA_NONE) |
33bb52fb | 3816 | { |
d4596a51 RS |
3817 | if (h->root.forced_local || h->root.dynindx == -1) |
3818 | { | |
3819 | /* We no longer need this entry if it was only used for | |
3820 | relocations; those relocations will be against the | |
3821 | null or section symbol instead of H. */ | |
3822 | if (h->global_got_area != GGA_RELOC_ONLY) | |
3823 | g->local_gotno++; | |
3824 | h->global_got_area = GGA_NONE; | |
3825 | } | |
3826 | else | |
23cc69b6 RS |
3827 | { |
3828 | g->global_gotno++; | |
3829 | if (h->global_got_area == GGA_RELOC_ONLY) | |
3830 | g->reloc_only_gotno++; | |
3831 | } | |
33bb52fb RS |
3832 | } |
3833 | return 1; | |
3834 | } | |
f4416af6 AO |
3835 | \f |
3836 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
3837 | ||
3838 | static hashval_t | |
9719ad41 | 3839 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
3840 | { |
3841 | const struct mips_elf_bfd2got_hash *entry | |
3842 | = (struct mips_elf_bfd2got_hash *)entry_; | |
3843 | ||
3844 | return entry->bfd->id; | |
3845 | } | |
3846 | ||
3847 | /* Check whether two hash entries have the same bfd. */ | |
3848 | ||
3849 | static int | |
9719ad41 | 3850 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
3851 | { |
3852 | const struct mips_elf_bfd2got_hash *e1 | |
3853 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
3854 | const struct mips_elf_bfd2got_hash *e2 | |
3855 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
3856 | ||
3857 | return e1->bfd == e2->bfd; | |
3858 | } | |
3859 | ||
bad36eac | 3860 | /* In a multi-got link, determine the GOT to be used for IBFD. G must |
f4416af6 AO |
3861 | be the master GOT data. */ |
3862 | ||
3863 | static struct mips_got_info * | |
9719ad41 | 3864 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3865 | { |
3866 | struct mips_elf_bfd2got_hash e, *p; | |
3867 | ||
3868 | if (! g->bfd2got) | |
3869 | return g; | |
3870 | ||
3871 | e.bfd = ibfd; | |
9719ad41 | 3872 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
3873 | return p ? p->g : NULL; |
3874 | } | |
3875 | ||
c224138d RS |
3876 | /* Use BFD2GOT to find ABFD's got entry, creating one if none exists. |
3877 | Return NULL if an error occured. */ | |
f4416af6 | 3878 | |
c224138d RS |
3879 | static struct mips_got_info * |
3880 | mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd, | |
3881 | bfd *input_bfd) | |
f4416af6 | 3882 | { |
f4416af6 | 3883 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; |
c224138d | 3884 | struct mips_got_info *g; |
f4416af6 | 3885 | void **bfdgotp; |
143d77c5 | 3886 | |
c224138d | 3887 | bfdgot_entry.bfd = input_bfd; |
f4416af6 | 3888 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); |
c224138d | 3889 | bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp; |
f4416af6 | 3890 | |
c224138d | 3891 | if (bfdgot == NULL) |
f4416af6 | 3892 | { |
c224138d RS |
3893 | bfdgot = ((struct mips_elf_bfd2got_hash *) |
3894 | bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash))); | |
f4416af6 | 3895 | if (bfdgot == NULL) |
c224138d | 3896 | return NULL; |
f4416af6 AO |
3897 | |
3898 | *bfdgotp = bfdgot; | |
3899 | ||
c224138d RS |
3900 | g = ((struct mips_got_info *) |
3901 | bfd_alloc (output_bfd, sizeof (struct mips_got_info))); | |
f4416af6 | 3902 | if (g == NULL) |
c224138d RS |
3903 | return NULL; |
3904 | ||
3905 | bfdgot->bfd = input_bfd; | |
3906 | bfdgot->g = g; | |
f4416af6 AO |
3907 | |
3908 | g->global_gotsym = NULL; | |
3909 | g->global_gotno = 0; | |
23cc69b6 | 3910 | g->reloc_only_gotno = 0; |
f4416af6 | 3911 | g->local_gotno = 0; |
c224138d | 3912 | g->page_gotno = 0; |
f4416af6 | 3913 | g->assigned_gotno = -1; |
0f20cc35 DJ |
3914 | g->tls_gotno = 0; |
3915 | g->tls_assigned_gotno = 0; | |
3916 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 3917 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 3918 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 | 3919 | if (g->got_entries == NULL) |
c224138d RS |
3920 | return NULL; |
3921 | ||
3922 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, | |
3923 | mips_got_page_entry_eq, NULL); | |
3924 | if (g->got_page_entries == NULL) | |
3925 | return NULL; | |
f4416af6 AO |
3926 | |
3927 | g->bfd2got = NULL; | |
3928 | g->next = NULL; | |
3929 | } | |
3930 | ||
c224138d RS |
3931 | return bfdgot->g; |
3932 | } | |
3933 | ||
3934 | /* A htab_traverse callback for the entries in the master got. | |
3935 | Create one separate got for each bfd that has entries in the global | |
3936 | got, such that we can tell how many local and global entries each | |
3937 | bfd requires. */ | |
3938 | ||
3939 | static int | |
3940 | mips_elf_make_got_per_bfd (void **entryp, void *p) | |
3941 | { | |
3942 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3943 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
3944 | struct mips_got_info *g; | |
3945 | ||
3946 | g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); | |
3947 | if (g == NULL) | |
3948 | { | |
3949 | arg->obfd = NULL; | |
3950 | return 0; | |
3951 | } | |
3952 | ||
f4416af6 AO |
3953 | /* Insert the GOT entry in the bfd's got entry hash table. */ |
3954 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
3955 | if (*entryp != NULL) | |
3956 | return 1; | |
143d77c5 | 3957 | |
f4416af6 AO |
3958 | *entryp = entry; |
3959 | ||
0f20cc35 DJ |
3960 | if (entry->tls_type) |
3961 | { | |
3962 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3963 | g->tls_gotno += 2; | |
3964 | if (entry->tls_type & GOT_TLS_IE) | |
3965 | g->tls_gotno += 1; | |
3966 | } | |
33bb52fb | 3967 | else if (entry->symndx >= 0 || entry->d.h->root.forced_local) |
f4416af6 AO |
3968 | ++g->local_gotno; |
3969 | else | |
3970 | ++g->global_gotno; | |
3971 | ||
3972 | return 1; | |
3973 | } | |
3974 | ||
c224138d RS |
3975 | /* A htab_traverse callback for the page entries in the master got. |
3976 | Associate each page entry with the bfd's got. */ | |
3977 | ||
3978 | static int | |
3979 | mips_elf_make_got_pages_per_bfd (void **entryp, void *p) | |
3980 | { | |
3981 | struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp; | |
3982 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p; | |
3983 | struct mips_got_info *g; | |
3984 | ||
3985 | g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); | |
3986 | if (g == NULL) | |
3987 | { | |
3988 | arg->obfd = NULL; | |
3989 | return 0; | |
3990 | } | |
3991 | ||
3992 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
3993 | entryp = htab_find_slot (g->got_page_entries, entry, INSERT); | |
3994 | if (*entryp != NULL) | |
3995 | return 1; | |
3996 | ||
3997 | *entryp = entry; | |
3998 | g->page_gotno += entry->num_pages; | |
3999 | return 1; | |
4000 | } | |
4001 | ||
4002 | /* Consider merging the got described by BFD2GOT with TO, using the | |
4003 | information given by ARG. Return -1 if this would lead to overflow, | |
4004 | 1 if they were merged successfully, and 0 if a merge failed due to | |
4005 | lack of memory. (These values are chosen so that nonnegative return | |
4006 | values can be returned by a htab_traverse callback.) */ | |
4007 | ||
4008 | static int | |
4009 | mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got, | |
4010 | struct mips_got_info *to, | |
4011 | struct mips_elf_got_per_bfd_arg *arg) | |
4012 | { | |
4013 | struct mips_got_info *from = bfd2got->g; | |
4014 | unsigned int estimate; | |
4015 | ||
4016 | /* Work out how many page entries we would need for the combined GOT. */ | |
4017 | estimate = arg->max_pages; | |
4018 | if (estimate >= from->page_gotno + to->page_gotno) | |
4019 | estimate = from->page_gotno + to->page_gotno; | |
4020 | ||
4021 | /* And conservatively estimate how many local, global and TLS entries | |
4022 | would be needed. */ | |
4023 | estimate += (from->local_gotno | |
4024 | + from->global_gotno | |
4025 | + from->tls_gotno | |
4026 | + to->local_gotno | |
4027 | + to->global_gotno | |
4028 | + to->tls_gotno); | |
4029 | ||
4030 | /* Bail out if the combined GOT might be too big. */ | |
4031 | if (estimate > arg->max_count) | |
4032 | return -1; | |
4033 | ||
4034 | /* Commit to the merge. Record that TO is now the bfd for this got. */ | |
4035 | bfd2got->g = to; | |
4036 | ||
4037 | /* Transfer the bfd's got information from FROM to TO. */ | |
4038 | htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg); | |
4039 | if (arg->obfd == NULL) | |
4040 | return 0; | |
4041 | ||
4042 | htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg); | |
4043 | if (arg->obfd == NULL) | |
4044 | return 0; | |
4045 | ||
4046 | /* We don't have to worry about releasing memory of the actual | |
4047 | got entries, since they're all in the master got_entries hash | |
4048 | table anyway. */ | |
4049 | htab_delete (from->got_entries); | |
4050 | htab_delete (from->got_page_entries); | |
4051 | return 1; | |
4052 | } | |
4053 | ||
f4416af6 AO |
4054 | /* Attempt to merge gots of different input bfds. Try to use as much |
4055 | as possible of the primary got, since it doesn't require explicit | |
4056 | dynamic relocations, but don't use bfds that would reference global | |
4057 | symbols out of the addressable range. Failing the primary got, | |
4058 | attempt to merge with the current got, or finish the current got | |
4059 | and then make make the new got current. */ | |
4060 | ||
4061 | static int | |
9719ad41 | 4062 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
4063 | { |
4064 | struct mips_elf_bfd2got_hash *bfd2got | |
4065 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
4066 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
c224138d RS |
4067 | struct mips_got_info *g; |
4068 | unsigned int estimate; | |
4069 | int result; | |
4070 | ||
4071 | g = bfd2got->g; | |
4072 | ||
4073 | /* Work out the number of page, local and TLS entries. */ | |
4074 | estimate = arg->max_pages; | |
4075 | if (estimate > g->page_gotno) | |
4076 | estimate = g->page_gotno; | |
4077 | estimate += g->local_gotno + g->tls_gotno; | |
0f20cc35 DJ |
4078 | |
4079 | /* We place TLS GOT entries after both locals and globals. The globals | |
4080 | for the primary GOT may overflow the normal GOT size limit, so be | |
4081 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
4082 | case. This doesn't affect non-primary GOTs. */ | |
c224138d | 4083 | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
143d77c5 | 4084 | |
c224138d | 4085 | if (estimate <= arg->max_count) |
f4416af6 | 4086 | { |
c224138d RS |
4087 | /* If we don't have a primary GOT, use it as |
4088 | a starting point for the primary GOT. */ | |
4089 | if (!arg->primary) | |
4090 | { | |
4091 | arg->primary = bfd2got->g; | |
4092 | return 1; | |
4093 | } | |
f4416af6 | 4094 | |
c224138d RS |
4095 | /* Try merging with the primary GOT. */ |
4096 | result = mips_elf_merge_got_with (bfd2got, arg->primary, arg); | |
4097 | if (result >= 0) | |
4098 | return result; | |
f4416af6 | 4099 | } |
c224138d | 4100 | |
f4416af6 | 4101 | /* If we can merge with the last-created got, do it. */ |
c224138d | 4102 | if (arg->current) |
f4416af6 | 4103 | { |
c224138d RS |
4104 | result = mips_elf_merge_got_with (bfd2got, arg->current, arg); |
4105 | if (result >= 0) | |
4106 | return result; | |
f4416af6 | 4107 | } |
c224138d | 4108 | |
f4416af6 AO |
4109 | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
4110 | fits; if it turns out that it doesn't, we'll get relocation | |
4111 | overflows anyway. */ | |
c224138d RS |
4112 | g->next = arg->current; |
4113 | arg->current = g; | |
0f20cc35 DJ |
4114 | |
4115 | return 1; | |
4116 | } | |
4117 | ||
ead49a57 RS |
4118 | /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field |
4119 | is null iff there is just a single GOT. */ | |
0f20cc35 DJ |
4120 | |
4121 | static int | |
4122 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
4123 | { | |
4124 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
4125 | struct mips_got_info *g = p; | |
ead49a57 | 4126 | bfd_vma next_index; |
cbf2cba4 | 4127 | unsigned char tls_type; |
0f20cc35 DJ |
4128 | |
4129 | /* We're only interested in TLS symbols. */ | |
4130 | if (entry->tls_type == 0) | |
4131 | return 1; | |
4132 | ||
ead49a57 RS |
4133 | next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; |
4134 | ||
4135 | if (entry->symndx == -1 && g->next == NULL) | |
0f20cc35 | 4136 | { |
ead49a57 RS |
4137 | /* A type (3) got entry in the single-GOT case. We use the symbol's |
4138 | hash table entry to track its index. */ | |
4139 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
4140 | return 1; | |
4141 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
4142 | entry->d.h->tls_got_offset = next_index; | |
cbf2cba4 | 4143 | tls_type = entry->d.h->tls_type; |
ead49a57 RS |
4144 | } |
4145 | else | |
4146 | { | |
4147 | if (entry->tls_type & GOT_TLS_LDM) | |
0f20cc35 | 4148 | { |
ead49a57 RS |
4149 | /* There are separate mips_got_entry objects for each input bfd |
4150 | that requires an LDM entry. Make sure that all LDM entries in | |
4151 | a GOT resolve to the same index. */ | |
4152 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
4005427f | 4153 | { |
ead49a57 | 4154 | entry->gotidx = g->tls_ldm_offset; |
4005427f RS |
4155 | return 1; |
4156 | } | |
ead49a57 | 4157 | g->tls_ldm_offset = next_index; |
0f20cc35 | 4158 | } |
ead49a57 | 4159 | entry->gotidx = next_index; |
cbf2cba4 | 4160 | tls_type = entry->tls_type; |
f4416af6 AO |
4161 | } |
4162 | ||
ead49a57 | 4163 | /* Account for the entries we've just allocated. */ |
cbf2cba4 | 4164 | if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
0f20cc35 | 4165 | g->tls_assigned_gotno += 2; |
cbf2cba4 | 4166 | if (tls_type & GOT_TLS_IE) |
0f20cc35 DJ |
4167 | g->tls_assigned_gotno += 1; |
4168 | ||
f4416af6 AO |
4169 | return 1; |
4170 | } | |
4171 | ||
4172 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
4173 | to tell whether a global symbol needs a got entry (in the primary | |
4174 | got) to the given VALUE. | |
4175 | ||
4176 | If passed a pointer G to a mips_got_info in the argument (it must | |
4177 | not be the primary GOT), compute the offset from the beginning of | |
4178 | the (primary) GOT section to the entry in G corresponding to the | |
4179 | global symbol. G's assigned_gotno must contain the index of the | |
4180 | first available global GOT entry in G. VALUE must contain the size | |
4181 | of a GOT entry in bytes. For each global GOT entry that requires a | |
4182 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 4183 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
4184 | stub. */ |
4185 | static int | |
9719ad41 | 4186 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
4187 | { |
4188 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
4189 | struct mips_elf_set_global_got_offset_arg *arg | |
4190 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
4191 | struct mips_got_info *g = arg->g; | |
4192 | ||
0f20cc35 DJ |
4193 | if (g && entry->tls_type != GOT_NORMAL) |
4194 | arg->needed_relocs += | |
4195 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
4196 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
4197 | ||
634835ae RS |
4198 | if (entry->abfd != NULL |
4199 | && entry->symndx == -1 | |
4200 | && entry->d.h->global_got_area != GGA_NONE) | |
f4416af6 AO |
4201 | { |
4202 | if (g) | |
4203 | { | |
4204 | BFD_ASSERT (g->global_gotsym == NULL); | |
4205 | ||
4206 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
4207 | if (arg->info->shared |
4208 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
4209 | && entry->d.h->root.def_dynamic |
4210 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
4211 | ++arg->needed_relocs; |
4212 | } | |
4213 | else | |
634835ae | 4214 | entry->d.h->global_got_area = arg->value; |
f4416af6 AO |
4215 | } |
4216 | ||
4217 | return 1; | |
4218 | } | |
4219 | ||
33bb52fb RS |
4220 | /* A htab_traverse callback for GOT entries for which DATA is the |
4221 | bfd_link_info. Forbid any global symbols from having traditional | |
4222 | lazy-binding stubs. */ | |
4223 | ||
0626d451 | 4224 | static int |
33bb52fb | 4225 | mips_elf_forbid_lazy_stubs (void **entryp, void *data) |
0626d451 | 4226 | { |
33bb52fb RS |
4227 | struct bfd_link_info *info; |
4228 | struct mips_elf_link_hash_table *htab; | |
4229 | struct mips_got_entry *entry; | |
0626d451 | 4230 | |
33bb52fb RS |
4231 | entry = (struct mips_got_entry *) *entryp; |
4232 | info = (struct bfd_link_info *) data; | |
4233 | htab = mips_elf_hash_table (info); | |
0626d451 RS |
4234 | if (entry->abfd != NULL |
4235 | && entry->symndx == -1 | |
33bb52fb | 4236 | && entry->d.h->needs_lazy_stub) |
f4416af6 | 4237 | { |
33bb52fb RS |
4238 | entry->d.h->needs_lazy_stub = FALSE; |
4239 | htab->lazy_stub_count--; | |
f4416af6 | 4240 | } |
143d77c5 | 4241 | |
f4416af6 AO |
4242 | return 1; |
4243 | } | |
4244 | ||
f4416af6 AO |
4245 | /* Return the offset of an input bfd IBFD's GOT from the beginning of |
4246 | the primary GOT. */ | |
4247 | static bfd_vma | |
9719ad41 | 4248 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
4249 | { |
4250 | if (g->bfd2got == NULL) | |
4251 | return 0; | |
4252 | ||
4253 | g = mips_elf_got_for_ibfd (g, ibfd); | |
4254 | if (! g) | |
4255 | return 0; | |
4256 | ||
4257 | BFD_ASSERT (g->next); | |
4258 | ||
4259 | g = g->next; | |
143d77c5 | 4260 | |
0f20cc35 DJ |
4261 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
4262 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
4263 | } |
4264 | ||
4265 | /* Turn a single GOT that is too big for 16-bit addressing into | |
4266 | a sequence of GOTs, each one 16-bit addressable. */ | |
4267 | ||
4268 | static bfd_boolean | |
9719ad41 | 4269 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 4270 | asection *got, bfd_size_type pages) |
f4416af6 | 4271 | { |
a8028dd0 | 4272 | struct mips_elf_link_hash_table *htab; |
f4416af6 AO |
4273 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
4274 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
a8028dd0 | 4275 | struct mips_got_info *g, *gg; |
33bb52fb RS |
4276 | unsigned int assign, needed_relocs; |
4277 | bfd *dynobj; | |
f4416af6 | 4278 | |
33bb52fb | 4279 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 RS |
4280 | htab = mips_elf_hash_table (info); |
4281 | g = htab->got_info; | |
f4416af6 | 4282 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, |
9719ad41 | 4283 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
4284 | if (g->bfd2got == NULL) |
4285 | return FALSE; | |
4286 | ||
4287 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
4288 | got_per_bfd_arg.obfd = abfd; | |
4289 | got_per_bfd_arg.info = info; | |
4290 | ||
4291 | /* Count how many GOT entries each input bfd requires, creating a | |
4292 | map from bfd to got info while at that. */ | |
f4416af6 AO |
4293 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
4294 | if (got_per_bfd_arg.obfd == NULL) | |
4295 | return FALSE; | |
4296 | ||
c224138d RS |
4297 | /* Also count how many page entries each input bfd requires. */ |
4298 | htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd, | |
4299 | &got_per_bfd_arg); | |
4300 | if (got_per_bfd_arg.obfd == NULL) | |
4301 | return FALSE; | |
4302 | ||
f4416af6 AO |
4303 | got_per_bfd_arg.current = NULL; |
4304 | got_per_bfd_arg.primary = NULL; | |
0a44bf69 | 4305 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 4306 | / MIPS_ELF_GOT_SIZE (abfd)) |
861fb55a | 4307 | - htab->reserved_gotno); |
c224138d | 4308 | got_per_bfd_arg.max_pages = pages; |
0f20cc35 DJ |
4309 | /* The number of globals that will be included in the primary GOT. |
4310 | See the calls to mips_elf_set_global_got_offset below for more | |
4311 | information. */ | |
4312 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
4313 | |
4314 | /* Try to merge the GOTs of input bfds together, as long as they | |
4315 | don't seem to exceed the maximum GOT size, choosing one of them | |
4316 | to be the primary GOT. */ | |
4317 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
4318 | if (got_per_bfd_arg.obfd == NULL) | |
4319 | return FALSE; | |
4320 | ||
0f20cc35 | 4321 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
4322 | if (got_per_bfd_arg.primary == NULL) |
4323 | { | |
4324 | g->next = (struct mips_got_info *) | |
4325 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
4326 | if (g->next == NULL) | |
4327 | return FALSE; | |
4328 | ||
4329 | g->next->global_gotsym = NULL; | |
4330 | g->next->global_gotno = 0; | |
23cc69b6 | 4331 | g->next->reloc_only_gotno = 0; |
f4416af6 | 4332 | g->next->local_gotno = 0; |
c224138d | 4333 | g->next->page_gotno = 0; |
0f20cc35 | 4334 | g->next->tls_gotno = 0; |
f4416af6 | 4335 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
4336 | g->next->tls_assigned_gotno = 0; |
4337 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
4338 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
4339 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 4340 | NULL); |
f4416af6 AO |
4341 | if (g->next->got_entries == NULL) |
4342 | return FALSE; | |
c224138d RS |
4343 | g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
4344 | mips_got_page_entry_eq, | |
4345 | NULL); | |
4346 | if (g->next->got_page_entries == NULL) | |
4347 | return FALSE; | |
f4416af6 AO |
4348 | g->next->bfd2got = NULL; |
4349 | } | |
4350 | else | |
4351 | g->next = got_per_bfd_arg.primary; | |
4352 | g->next->next = got_per_bfd_arg.current; | |
4353 | ||
4354 | /* GG is now the master GOT, and G is the primary GOT. */ | |
4355 | gg = g; | |
4356 | g = g->next; | |
4357 | ||
4358 | /* Map the output bfd to the primary got. That's what we're going | |
4359 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
4360 | didn't mark in check_relocs, and we want a quick way to find it. | |
4361 | We can't just use gg->next because we're going to reverse the | |
4362 | list. */ | |
4363 | { | |
4364 | struct mips_elf_bfd2got_hash *bfdgot; | |
4365 | void **bfdgotp; | |
143d77c5 | 4366 | |
f4416af6 AO |
4367 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
4368 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
4369 | ||
4370 | if (bfdgot == NULL) | |
4371 | return FALSE; | |
4372 | ||
4373 | bfdgot->bfd = abfd; | |
4374 | bfdgot->g = g; | |
4375 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
4376 | ||
4377 | BFD_ASSERT (*bfdgotp == NULL); | |
4378 | *bfdgotp = bfdgot; | |
4379 | } | |
4380 | ||
634835ae RS |
4381 | /* Every symbol that is referenced in a dynamic relocation must be |
4382 | present in the primary GOT, so arrange for them to appear after | |
4383 | those that are actually referenced. */ | |
23cc69b6 | 4384 | gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; |
634835ae | 4385 | g->global_gotno = gg->global_gotno; |
f4416af6 | 4386 | |
f4416af6 | 4387 | set_got_offset_arg.g = NULL; |
634835ae | 4388 | set_got_offset_arg.value = GGA_RELOC_ONLY; |
f4416af6 AO |
4389 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, |
4390 | &set_got_offset_arg); | |
634835ae | 4391 | set_got_offset_arg.value = GGA_NORMAL; |
f4416af6 AO |
4392 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, |
4393 | &set_got_offset_arg); | |
f4416af6 AO |
4394 | |
4395 | /* Now go through the GOTs assigning them offset ranges. | |
4396 | [assigned_gotno, local_gotno[ will be set to the range of local | |
4397 | entries in each GOT. We can then compute the end of a GOT by | |
4398 | adding local_gotno to global_gotno. We reverse the list and make | |
4399 | it circular since then we'll be able to quickly compute the | |
4400 | beginning of a GOT, by computing the end of its predecessor. To | |
4401 | avoid special cases for the primary GOT, while still preserving | |
4402 | assertions that are valid for both single- and multi-got links, | |
4403 | we arrange for the main got struct to have the right number of | |
4404 | global entries, but set its local_gotno such that the initial | |
4405 | offset of the primary GOT is zero. Remember that the primary GOT | |
4406 | will become the last item in the circular linked list, so it | |
4407 | points back to the master GOT. */ | |
4408 | gg->local_gotno = -g->global_gotno; | |
4409 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 4410 | gg->tls_gotno = 0; |
f4416af6 AO |
4411 | assign = 0; |
4412 | gg->next = gg; | |
4413 | ||
4414 | do | |
4415 | { | |
4416 | struct mips_got_info *gn; | |
4417 | ||
861fb55a | 4418 | assign += htab->reserved_gotno; |
f4416af6 | 4419 | g->assigned_gotno = assign; |
c224138d RS |
4420 | g->local_gotno += assign; |
4421 | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); | |
0f20cc35 DJ |
4422 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
4423 | ||
ead49a57 RS |
4424 | /* Take g out of the direct list, and push it onto the reversed |
4425 | list that gg points to. g->next is guaranteed to be nonnull after | |
4426 | this operation, as required by mips_elf_initialize_tls_index. */ | |
4427 | gn = g->next; | |
4428 | g->next = gg->next; | |
4429 | gg->next = g; | |
4430 | ||
0f20cc35 DJ |
4431 | /* Set up any TLS entries. We always place the TLS entries after |
4432 | all non-TLS entries. */ | |
4433 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
4434 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 | 4435 | |
ead49a57 | 4436 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 4437 | g = gn; |
0626d451 | 4438 | |
33bb52fb RS |
4439 | /* Forbid global symbols in every non-primary GOT from having |
4440 | lazy-binding stubs. */ | |
0626d451 | 4441 | if (g) |
33bb52fb | 4442 | htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); |
f4416af6 AO |
4443 | } |
4444 | while (g); | |
4445 | ||
eea6121a | 4446 | got->size = (gg->next->local_gotno |
33bb52fb RS |
4447 | + gg->next->global_gotno |
4448 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
4449 | ||
4450 | needed_relocs = 0; | |
4451 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd); | |
4452 | set_got_offset_arg.info = info; | |
4453 | for (g = gg->next; g && g->next != gg; g = g->next) | |
4454 | { | |
4455 | unsigned int save_assign; | |
4456 | ||
4457 | /* Assign offsets to global GOT entries. */ | |
4458 | save_assign = g->assigned_gotno; | |
4459 | g->assigned_gotno = g->local_gotno; | |
4460 | set_got_offset_arg.g = g; | |
4461 | set_got_offset_arg.needed_relocs = 0; | |
4462 | htab_traverse (g->got_entries, | |
4463 | mips_elf_set_global_got_offset, | |
4464 | &set_got_offset_arg); | |
4465 | needed_relocs += set_got_offset_arg.needed_relocs; | |
4466 | BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno); | |
4467 | ||
4468 | g->assigned_gotno = save_assign; | |
4469 | if (info->shared) | |
4470 | { | |
4471 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
4472 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
4473 | + g->next->global_gotno | |
4474 | + g->next->tls_gotno | |
861fb55a | 4475 | + htab->reserved_gotno); |
33bb52fb RS |
4476 | } |
4477 | } | |
4478 | ||
4479 | if (needed_relocs) | |
4480 | mips_elf_allocate_dynamic_relocations (dynobj, info, | |
4481 | needed_relocs); | |
143d77c5 | 4482 | |
f4416af6 AO |
4483 | return TRUE; |
4484 | } | |
143d77c5 | 4485 | |
b49e97c9 TS |
4486 | \f |
4487 | /* Returns the first relocation of type r_type found, beginning with | |
4488 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
4489 | ||
4490 | static const Elf_Internal_Rela * | |
9719ad41 RS |
4491 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
4492 | const Elf_Internal_Rela *relocation, | |
4493 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 4494 | { |
c000e262 TS |
4495 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
4496 | ||
b49e97c9 TS |
4497 | while (relocation < relend) |
4498 | { | |
c000e262 TS |
4499 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
4500 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | |
b49e97c9 TS |
4501 | return relocation; |
4502 | ||
4503 | ++relocation; | |
4504 | } | |
4505 | ||
4506 | /* We didn't find it. */ | |
b49e97c9 TS |
4507 | return NULL; |
4508 | } | |
4509 | ||
4510 | /* Return whether a relocation is against a local symbol. */ | |
4511 | ||
b34976b6 | 4512 | static bfd_boolean |
9719ad41 RS |
4513 | mips_elf_local_relocation_p (bfd *input_bfd, |
4514 | const Elf_Internal_Rela *relocation, | |
4515 | asection **local_sections, | |
4516 | bfd_boolean check_forced) | |
b49e97c9 TS |
4517 | { |
4518 | unsigned long r_symndx; | |
4519 | Elf_Internal_Shdr *symtab_hdr; | |
4520 | struct mips_elf_link_hash_entry *h; | |
4521 | size_t extsymoff; | |
4522 | ||
4523 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
4524 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4525 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
4526 | ||
4527 | if (r_symndx < extsymoff) | |
b34976b6 | 4528 | return TRUE; |
b49e97c9 | 4529 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 4530 | return TRUE; |
b49e97c9 TS |
4531 | |
4532 | if (check_forced) | |
4533 | { | |
4534 | /* Look up the hash table to check whether the symbol | |
4535 | was forced local. */ | |
4536 | h = (struct mips_elf_link_hash_entry *) | |
4537 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
4538 | /* Find the real hash-table entry for this symbol. */ | |
4539 | while (h->root.root.type == bfd_link_hash_indirect | |
4540 | || h->root.root.type == bfd_link_hash_warning) | |
4541 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 4542 | if (h->root.forced_local) |
b34976b6 | 4543 | return TRUE; |
b49e97c9 TS |
4544 | } |
4545 | ||
b34976b6 | 4546 | return FALSE; |
b49e97c9 TS |
4547 | } |
4548 | \f | |
4549 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
4550 | ||
a7ebbfdf | 4551 | bfd_vma |
9719ad41 | 4552 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
4553 | { |
4554 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
4555 | /* VALUE is negative. */ | |
4556 | value |= ((bfd_vma) - 1) << bits; | |
4557 | ||
4558 | return value; | |
4559 | } | |
4560 | ||
4561 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 4562 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
4563 | BITS. */ |
4564 | ||
b34976b6 | 4565 | static bfd_boolean |
9719ad41 | 4566 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
4567 | { |
4568 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
4569 | ||
4570 | if (svalue > (1 << (bits - 1)) - 1) | |
4571 | /* The value is too big. */ | |
b34976b6 | 4572 | return TRUE; |
b49e97c9 TS |
4573 | else if (svalue < -(1 << (bits - 1))) |
4574 | /* The value is too small. */ | |
b34976b6 | 4575 | return TRUE; |
b49e97c9 TS |
4576 | |
4577 | /* All is well. */ | |
b34976b6 | 4578 | return FALSE; |
b49e97c9 TS |
4579 | } |
4580 | ||
4581 | /* Calculate the %high function. */ | |
4582 | ||
4583 | static bfd_vma | |
9719ad41 | 4584 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
4585 | { |
4586 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
4587 | } | |
4588 | ||
4589 | /* Calculate the %higher function. */ | |
4590 | ||
4591 | static bfd_vma | |
9719ad41 | 4592 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
4593 | { |
4594 | #ifdef BFD64 | |
4595 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
4596 | #else | |
4597 | abort (); | |
c5ae1840 | 4598 | return MINUS_ONE; |
b49e97c9 TS |
4599 | #endif |
4600 | } | |
4601 | ||
4602 | /* Calculate the %highest function. */ | |
4603 | ||
4604 | static bfd_vma | |
9719ad41 | 4605 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
4606 | { |
4607 | #ifdef BFD64 | |
b15e6682 | 4608 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
4609 | #else |
4610 | abort (); | |
c5ae1840 | 4611 | return MINUS_ONE; |
b49e97c9 TS |
4612 | #endif |
4613 | } | |
4614 | \f | |
4615 | /* Create the .compact_rel section. */ | |
4616 | ||
b34976b6 | 4617 | static bfd_boolean |
9719ad41 RS |
4618 | mips_elf_create_compact_rel_section |
4619 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
4620 | { |
4621 | flagword flags; | |
4622 | register asection *s; | |
4623 | ||
4624 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
4625 | { | |
4626 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
4627 | | SEC_READONLY); | |
4628 | ||
3496cb2a | 4629 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 4630 | if (s == NULL |
b49e97c9 TS |
4631 | || ! bfd_set_section_alignment (abfd, s, |
4632 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 4633 | return FALSE; |
b49e97c9 | 4634 | |
eea6121a | 4635 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
4636 | } |
4637 | ||
b34976b6 | 4638 | return TRUE; |
b49e97c9 TS |
4639 | } |
4640 | ||
4641 | /* Create the .got section to hold the global offset table. */ | |
4642 | ||
b34976b6 | 4643 | static bfd_boolean |
23cc69b6 | 4644 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
4645 | { |
4646 | flagword flags; | |
4647 | register asection *s; | |
4648 | struct elf_link_hash_entry *h; | |
14a793b2 | 4649 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
4650 | struct mips_got_info *g; |
4651 | bfd_size_type amt; | |
0a44bf69 RS |
4652 | struct mips_elf_link_hash_table *htab; |
4653 | ||
4654 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
4655 | |
4656 | /* This function may be called more than once. */ | |
23cc69b6 RS |
4657 | if (htab->sgot) |
4658 | return TRUE; | |
b49e97c9 TS |
4659 | |
4660 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
4661 | | SEC_LINKER_CREATED); | |
4662 | ||
72b4917c TS |
4663 | /* We have to use an alignment of 2**4 here because this is hardcoded |
4664 | in the function stub generation and in the linker script. */ | |
3496cb2a | 4665 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
b49e97c9 | 4666 | if (s == NULL |
72b4917c | 4667 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 4668 | return FALSE; |
a8028dd0 | 4669 | htab->sgot = s; |
b49e97c9 TS |
4670 | |
4671 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
4672 | linker script because we don't want to define the symbol if we | |
4673 | are not creating a global offset table. */ | |
14a793b2 | 4674 | bh = NULL; |
b49e97c9 TS |
4675 | if (! (_bfd_generic_link_add_one_symbol |
4676 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 4677 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4678 | return FALSE; |
14a793b2 AM |
4679 | |
4680 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
4681 | h->non_elf = 0; |
4682 | h->def_regular = 1; | |
b49e97c9 | 4683 | h->type = STT_OBJECT; |
d329bcd1 | 4684 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
4685 | |
4686 | if (info->shared | |
c152c796 | 4687 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 4688 | return FALSE; |
b49e97c9 | 4689 | |
b49e97c9 | 4690 | amt = sizeof (struct mips_got_info); |
9719ad41 | 4691 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 4692 | if (g == NULL) |
b34976b6 | 4693 | return FALSE; |
b49e97c9 | 4694 | g->global_gotsym = NULL; |
e3d54347 | 4695 | g->global_gotno = 0; |
23cc69b6 | 4696 | g->reloc_only_gotno = 0; |
0f20cc35 | 4697 | g->tls_gotno = 0; |
861fb55a | 4698 | g->local_gotno = 0; |
c224138d | 4699 | g->page_gotno = 0; |
861fb55a | 4700 | g->assigned_gotno = 0; |
f4416af6 AO |
4701 | g->bfd2got = NULL; |
4702 | g->next = NULL; | |
0f20cc35 | 4703 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 4704 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 4705 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
4706 | if (g->got_entries == NULL) |
4707 | return FALSE; | |
c224138d RS |
4708 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
4709 | mips_got_page_entry_eq, NULL); | |
4710 | if (g->got_page_entries == NULL) | |
4711 | return FALSE; | |
a8028dd0 | 4712 | htab->got_info = g; |
f0abc2a1 | 4713 | mips_elf_section_data (s)->elf.this_hdr.sh_flags |
b49e97c9 TS |
4714 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
4715 | ||
861fb55a DJ |
4716 | /* We also need a .got.plt section when generating PLTs. */ |
4717 | s = bfd_make_section_with_flags (abfd, ".got.plt", | |
4718 | SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
4719 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
4720 | if (s == NULL) | |
4721 | return FALSE; | |
4722 | htab->sgotplt = s; | |
0a44bf69 | 4723 | |
b34976b6 | 4724 | return TRUE; |
b49e97c9 | 4725 | } |
b49e97c9 | 4726 | \f |
0a44bf69 RS |
4727 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
4728 | __GOTT_INDEX__ symbols. These symbols are only special for | |
4729 | shared objects; they are not used in executables. */ | |
4730 | ||
4731 | static bfd_boolean | |
4732 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
4733 | { | |
4734 | return (mips_elf_hash_table (info)->is_vxworks | |
4735 | && info->shared | |
4736 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
4737 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
4738 | } | |
861fb55a DJ |
4739 | |
4740 | /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might | |
4741 | require an la25 stub. See also mips_elf_local_pic_function_p, | |
4742 | which determines whether the destination function ever requires a | |
4743 | stub. */ | |
4744 | ||
4745 | static bfd_boolean | |
4746 | mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type) | |
4747 | { | |
4748 | /* We specifically ignore branches and jumps from EF_PIC objects, | |
4749 | where the onus is on the compiler or programmer to perform any | |
4750 | necessary initialization of $25. Sometimes such initialization | |
4751 | is unnecessary; for example, -mno-shared functions do not use | |
4752 | the incoming value of $25, and may therefore be called directly. */ | |
4753 | if (PIC_OBJECT_P (input_bfd)) | |
4754 | return FALSE; | |
4755 | ||
4756 | switch (r_type) | |
4757 | { | |
4758 | case R_MIPS_26: | |
4759 | case R_MIPS_PC16: | |
4760 | case R_MIPS16_26: | |
4761 | return TRUE; | |
4762 | ||
4763 | default: | |
4764 | return FALSE; | |
4765 | } | |
4766 | } | |
0a44bf69 | 4767 | \f |
b49e97c9 TS |
4768 | /* Calculate the value produced by the RELOCATION (which comes from |
4769 | the INPUT_BFD). The ADDEND is the addend to use for this | |
4770 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
4771 | ||
4772 | The result of the relocation calculation is stored in VALUEP. | |
4773 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
4774 | relocation must be JALX. | |
4775 | ||
4776 | This function returns bfd_reloc_continue if the caller need take no | |
4777 | further action regarding this relocation, bfd_reloc_notsupported if | |
4778 | something goes dramatically wrong, bfd_reloc_overflow if an | |
4779 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
4780 | ||
4781 | static bfd_reloc_status_type | |
9719ad41 RS |
4782 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
4783 | asection *input_section, | |
4784 | struct bfd_link_info *info, | |
4785 | const Elf_Internal_Rela *relocation, | |
4786 | bfd_vma addend, reloc_howto_type *howto, | |
4787 | Elf_Internal_Sym *local_syms, | |
4788 | asection **local_sections, bfd_vma *valuep, | |
4789 | const char **namep, bfd_boolean *require_jalxp, | |
4790 | bfd_boolean save_addend) | |
b49e97c9 TS |
4791 | { |
4792 | /* The eventual value we will return. */ | |
4793 | bfd_vma value; | |
4794 | /* The address of the symbol against which the relocation is | |
4795 | occurring. */ | |
4796 | bfd_vma symbol = 0; | |
4797 | /* The final GP value to be used for the relocatable, executable, or | |
4798 | shared object file being produced. */ | |
0a61c8c2 | 4799 | bfd_vma gp; |
b49e97c9 TS |
4800 | /* The place (section offset or address) of the storage unit being |
4801 | relocated. */ | |
4802 | bfd_vma p; | |
4803 | /* The value of GP used to create the relocatable object. */ | |
0a61c8c2 | 4804 | bfd_vma gp0; |
b49e97c9 TS |
4805 | /* The offset into the global offset table at which the address of |
4806 | the relocation entry symbol, adjusted by the addend, resides | |
4807 | during execution. */ | |
4808 | bfd_vma g = MINUS_ONE; | |
4809 | /* The section in which the symbol referenced by the relocation is | |
4810 | located. */ | |
4811 | asection *sec = NULL; | |
4812 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 4813 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 4814 | symbol. */ |
b34976b6 AM |
4815 | bfd_boolean local_p, was_local_p; |
4816 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
4817 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
4818 | /* TRUE if the symbol referred to by this relocation is |
4819 | "__gnu_local_gp". */ | |
4820 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
4821 | Elf_Internal_Shdr *symtab_hdr; |
4822 | size_t extsymoff; | |
4823 | unsigned long r_symndx; | |
4824 | int r_type; | |
b34976b6 | 4825 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 4826 | relocation value. */ |
b34976b6 AM |
4827 | bfd_boolean overflowed_p; |
4828 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
4829 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
0a44bf69 RS |
4830 | struct mips_elf_link_hash_table *htab; |
4831 | bfd *dynobj; | |
4832 | ||
4833 | dynobj = elf_hash_table (info)->dynobj; | |
4834 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
4835 | |
4836 | /* Parse the relocation. */ | |
4837 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
4838 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4839 | p = (input_section->output_section->vma | |
4840 | + input_section->output_offset | |
4841 | + relocation->r_offset); | |
4842 | ||
4843 | /* Assume that there will be no overflow. */ | |
b34976b6 | 4844 | overflowed_p = FALSE; |
b49e97c9 TS |
4845 | |
4846 | /* Figure out whether or not the symbol is local, and get the offset | |
4847 | used in the array of hash table entries. */ | |
4848 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4849 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4850 | local_sections, FALSE); |
bce03d3d | 4851 | was_local_p = local_p; |
b49e97c9 TS |
4852 | if (! elf_bad_symtab (input_bfd)) |
4853 | extsymoff = symtab_hdr->sh_info; | |
4854 | else | |
4855 | { | |
4856 | /* The symbol table does not follow the rule that local symbols | |
4857 | must come before globals. */ | |
4858 | extsymoff = 0; | |
4859 | } | |
4860 | ||
4861 | /* Figure out the value of the symbol. */ | |
4862 | if (local_p) | |
4863 | { | |
4864 | Elf_Internal_Sym *sym; | |
4865 | ||
4866 | sym = local_syms + r_symndx; | |
4867 | sec = local_sections[r_symndx]; | |
4868 | ||
4869 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
4870 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
4871 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 4872 | symbol += sym->st_value; |
d4df96e6 L |
4873 | if ((sec->flags & SEC_MERGE) |
4874 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
4875 | { | |
4876 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
4877 | addend -= symbol; | |
4878 | addend += sec->output_section->vma + sec->output_offset; | |
4879 | } | |
b49e97c9 TS |
4880 | |
4881 | /* MIPS16 text labels should be treated as odd. */ | |
30c09090 | 4882 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
b49e97c9 TS |
4883 | ++symbol; |
4884 | ||
4885 | /* Record the name of this symbol, for our caller. */ | |
4886 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
4887 | symtab_hdr->sh_link, | |
4888 | sym->st_name); | |
4889 | if (*namep == '\0') | |
4890 | *namep = bfd_section_name (input_bfd, sec); | |
4891 | ||
30c09090 | 4892 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); |
b49e97c9 TS |
4893 | } |
4894 | else | |
4895 | { | |
560e09e9 NC |
4896 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
4897 | ||
b49e97c9 TS |
4898 | /* For global symbols we look up the symbol in the hash-table. */ |
4899 | h = ((struct mips_elf_link_hash_entry *) | |
4900 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
4901 | /* Find the real hash-table entry for this symbol. */ | |
4902 | while (h->root.root.type == bfd_link_hash_indirect | |
4903 | || h->root.root.type == bfd_link_hash_warning) | |
4904 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
4905 | ||
4906 | /* Record the name of this symbol, for our caller. */ | |
4907 | *namep = h->root.root.root.string; | |
4908 | ||
4909 | /* See if this is the special _gp_disp symbol. Note that such a | |
4910 | symbol must always be a global symbol. */ | |
560e09e9 | 4911 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
4912 | && ! NEWABI_P (input_bfd)) |
4913 | { | |
4914 | /* Relocations against _gp_disp are permitted only with | |
4915 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
738e5348 | 4916 | if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) |
b49e97c9 TS |
4917 | return bfd_reloc_notsupported; |
4918 | ||
b34976b6 | 4919 | gp_disp_p = TRUE; |
b49e97c9 | 4920 | } |
bbe506e8 TS |
4921 | /* See if this is the special _gp symbol. Note that such a |
4922 | symbol must always be a global symbol. */ | |
4923 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
4924 | gnu_local_gp_p = TRUE; | |
4925 | ||
4926 | ||
b49e97c9 TS |
4927 | /* If this symbol is defined, calculate its address. Note that |
4928 | _gp_disp is a magic symbol, always implicitly defined by the | |
4929 | linker, so it's inappropriate to check to see whether or not | |
4930 | its defined. */ | |
4931 | else if ((h->root.root.type == bfd_link_hash_defined | |
4932 | || h->root.root.type == bfd_link_hash_defweak) | |
4933 | && h->root.root.u.def.section) | |
4934 | { | |
4935 | sec = h->root.root.u.def.section; | |
4936 | if (sec->output_section) | |
4937 | symbol = (h->root.root.u.def.value | |
4938 | + sec->output_section->vma | |
4939 | + sec->output_offset); | |
4940 | else | |
4941 | symbol = h->root.root.u.def.value; | |
4942 | } | |
4943 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
4944 | /* We allow relocations against undefined weak symbols, giving | |
4945 | it the value zero, so that you can undefined weak functions | |
4946 | and check to see if they exist by looking at their | |
4947 | addresses. */ | |
4948 | symbol = 0; | |
59c2e50f | 4949 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
4950 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
4951 | symbol = 0; | |
a4d0f181 TS |
4952 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
4953 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
4954 | { |
4955 | /* If this is a dynamic link, we should have created a | |
4956 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
4957 | in in _bfd_mips_elf_create_dynamic_sections. | |
4958 | Otherwise, we should define the symbol with a value of 0. | |
4959 | FIXME: It should probably get into the symbol table | |
4960 | somehow as well. */ | |
4961 | BFD_ASSERT (! info->shared); | |
4962 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
4963 | symbol = 0; | |
4964 | } | |
5e2b0d47 NC |
4965 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
4966 | { | |
4967 | /* This is an optional symbol - an Irix specific extension to the | |
4968 | ELF spec. Ignore it for now. | |
4969 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
4970 | than simply ignoring them, but we do not handle this for now. | |
4971 | For information see the "64-bit ELF Object File Specification" | |
4972 | which is available from here: | |
4973 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
4974 | symbol = 0; | |
4975 | } | |
b49e97c9 TS |
4976 | else |
4977 | { | |
4978 | if (! ((*info->callbacks->undefined_symbol) | |
4979 | (info, h->root.root.root.string, input_bfd, | |
4980 | input_section, relocation->r_offset, | |
59c2e50f L |
4981 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
4982 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
4983 | return bfd_reloc_undefined; |
4984 | symbol = 0; | |
4985 | } | |
4986 | ||
30c09090 | 4987 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); |
b49e97c9 TS |
4988 | } |
4989 | ||
738e5348 RS |
4990 | /* If this is a reference to a 16-bit function with a stub, we need |
4991 | to redirect the relocation to the stub unless: | |
4992 | ||
4993 | (a) the relocation is for a MIPS16 JAL; | |
4994 | ||
4995 | (b) the relocation is for a MIPS16 PIC call, and there are no | |
4996 | non-MIPS16 uses of the GOT slot; or | |
4997 | ||
4998 | (c) the section allows direct references to MIPS16 functions. */ | |
4999 | if (r_type != R_MIPS16_26 | |
5000 | && !info->relocatable | |
5001 | && ((h != NULL | |
5002 | && h->fn_stub != NULL | |
5003 | && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) | |
b9d58d71 TS |
5004 | || (local_p |
5005 | && elf_tdata (input_bfd)->local_stubs != NULL | |
b49e97c9 | 5006 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
738e5348 | 5007 | && !section_allows_mips16_refs_p (input_section)) |
b49e97c9 TS |
5008 | { |
5009 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
5010 | have already noticed that we were going to need the | |
5011 | stub. */ | |
5012 | if (local_p) | |
5013 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
5014 | else | |
5015 | { | |
5016 | BFD_ASSERT (h->need_fn_stub); | |
5017 | sec = h->fn_stub; | |
5018 | } | |
5019 | ||
5020 | symbol = sec->output_section->vma + sec->output_offset; | |
f38c2df5 TS |
5021 | /* The target is 16-bit, but the stub isn't. */ |
5022 | target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
5023 | } |
5024 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
738e5348 RS |
5025 | need to redirect the call to the stub. Note that we specifically |
5026 | exclude R_MIPS16_CALL16 from this behavior; indirect calls should | |
5027 | use an indirect stub instead. */ | |
1049f94e | 5028 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b314ec0e | 5029 | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
b9d58d71 TS |
5030 | || (local_p |
5031 | && elf_tdata (input_bfd)->local_call_stubs != NULL | |
5032 | && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) | |
b49e97c9 TS |
5033 | && !target_is_16_bit_code_p) |
5034 | { | |
b9d58d71 TS |
5035 | if (local_p) |
5036 | sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx]; | |
5037 | else | |
b49e97c9 | 5038 | { |
b9d58d71 TS |
5039 | /* If both call_stub and call_fp_stub are defined, we can figure |
5040 | out which one to use by checking which one appears in the input | |
5041 | file. */ | |
5042 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
b49e97c9 | 5043 | { |
b9d58d71 TS |
5044 | asection *o; |
5045 | ||
5046 | sec = NULL; | |
5047 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
b49e97c9 | 5048 | { |
b9d58d71 TS |
5049 | if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) |
5050 | { | |
5051 | sec = h->call_fp_stub; | |
5052 | break; | |
5053 | } | |
b49e97c9 | 5054 | } |
b9d58d71 TS |
5055 | if (sec == NULL) |
5056 | sec = h->call_stub; | |
b49e97c9 | 5057 | } |
b9d58d71 | 5058 | else if (h->call_stub != NULL) |
b49e97c9 | 5059 | sec = h->call_stub; |
b9d58d71 TS |
5060 | else |
5061 | sec = h->call_fp_stub; | |
5062 | } | |
b49e97c9 | 5063 | |
eea6121a | 5064 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
5065 | symbol = sec->output_section->vma + sec->output_offset; |
5066 | } | |
861fb55a DJ |
5067 | /* If this is a direct call to a PIC function, redirect to the |
5068 | non-PIC stub. */ | |
5069 | else if (h != NULL && h->la25_stub | |
5070 | && mips_elf_relocation_needs_la25_stub (input_bfd, r_type)) | |
5071 | symbol = (h->la25_stub->stub_section->output_section->vma | |
5072 | + h->la25_stub->stub_section->output_offset | |
5073 | + h->la25_stub->offset); | |
b49e97c9 TS |
5074 | |
5075 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
5076 | special jalx instruction. */ | |
1049f94e | 5077 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
5078 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
5079 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
5080 | ||
5081 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 5082 | local_sections, TRUE); |
b49e97c9 | 5083 | |
0a61c8c2 RS |
5084 | gp0 = _bfd_get_gp_value (input_bfd); |
5085 | gp = _bfd_get_gp_value (abfd); | |
23cc69b6 | 5086 | if (htab->got_info) |
a8028dd0 | 5087 | gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); |
0a61c8c2 RS |
5088 | |
5089 | if (gnu_local_gp_p) | |
5090 | symbol = gp; | |
5091 | ||
5092 | /* If we haven't already determined the GOT offset, oand we're going | |
5093 | to need it, get it now. */ | |
b49e97c9 TS |
5094 | switch (r_type) |
5095 | { | |
0fdc1bf1 | 5096 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 5097 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
5098 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
5099 | bind locally. */ | |
5100 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 5101 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
5102 | break; |
5103 | /* Fall through. */ | |
5104 | ||
738e5348 RS |
5105 | case R_MIPS16_CALL16: |
5106 | case R_MIPS16_GOT16: | |
b49e97c9 TS |
5107 | case R_MIPS_CALL16: |
5108 | case R_MIPS_GOT16: | |
5109 | case R_MIPS_GOT_DISP: | |
5110 | case R_MIPS_GOT_HI16: | |
5111 | case R_MIPS_CALL_HI16: | |
5112 | case R_MIPS_GOT_LO16: | |
5113 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
5114 | case R_MIPS_TLS_GD: |
5115 | case R_MIPS_TLS_GOTTPREL: | |
5116 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 5117 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
5118 | if (r_type == R_MIPS_TLS_LDM) |
5119 | { | |
0a44bf69 | 5120 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
5c18022e | 5121 | 0, 0, NULL, r_type); |
0f20cc35 DJ |
5122 | if (g == MINUS_ONE) |
5123 | return bfd_reloc_outofrange; | |
5124 | } | |
5125 | else if (!local_p) | |
b49e97c9 | 5126 | { |
0a44bf69 RS |
5127 | /* On VxWorks, CALL relocations should refer to the .got.plt |
5128 | entry, which is initialized to point at the PLT stub. */ | |
5129 | if (htab->is_vxworks | |
5130 | && (r_type == R_MIPS_CALL_HI16 | |
5131 | || r_type == R_MIPS_CALL_LO16 | |
738e5348 | 5132 | || call16_reloc_p (r_type))) |
0a44bf69 RS |
5133 | { |
5134 | BFD_ASSERT (addend == 0); | |
5135 | BFD_ASSERT (h->root.needs_plt); | |
5136 | g = mips_elf_gotplt_index (info, &h->root); | |
5137 | } | |
5138 | else | |
b49e97c9 | 5139 | { |
0a44bf69 RS |
5140 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
5141 | GOT_PAGE relocation that decays to GOT_DISP because the | |
5142 | symbol turns out to be global. The addend is then added | |
5143 | as GOT_OFST. */ | |
5144 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
5145 | g = mips_elf_global_got_index (dynobj, input_bfd, | |
5146 | &h->root, r_type, info); | |
5147 | if (h->tls_type == GOT_NORMAL | |
5148 | && (! elf_hash_table(info)->dynamic_sections_created | |
5149 | || (info->shared | |
5150 | && (info->symbolic || h->root.forced_local) | |
5151 | && h->root.def_regular))) | |
a8028dd0 RS |
5152 | /* This is a static link or a -Bsymbolic link. The |
5153 | symbol is defined locally, or was forced to be local. | |
5154 | We must initialize this entry in the GOT. */ | |
5155 | MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); | |
b49e97c9 TS |
5156 | } |
5157 | } | |
0a44bf69 | 5158 | else if (!htab->is_vxworks |
738e5348 | 5159 | && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) |
0a44bf69 | 5160 | /* The calculation below does not involve "g". */ |
b49e97c9 TS |
5161 | break; |
5162 | else | |
5163 | { | |
5c18022e | 5164 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
0a44bf69 | 5165 | symbol + addend, r_symndx, h, r_type); |
b49e97c9 TS |
5166 | if (g == MINUS_ONE) |
5167 | return bfd_reloc_outofrange; | |
5168 | } | |
5169 | ||
5170 | /* Convert GOT indices to actual offsets. */ | |
a8028dd0 | 5171 | g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); |
b49e97c9 | 5172 | break; |
b49e97c9 TS |
5173 | } |
5174 | ||
0a44bf69 RS |
5175 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
5176 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
5177 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
5178 | { | |
5179 | Elf_Internal_Rela outrel; | |
5180 | bfd_byte *loc; | |
5181 | asection *s; | |
5182 | ||
5183 | s = mips_elf_rel_dyn_section (info, FALSE); | |
5184 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
5185 | ||
5186 | outrel.r_offset = (input_section->output_section->vma | |
5187 | + input_section->output_offset | |
5188 | + relocation->r_offset); | |
5189 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
5190 | outrel.r_addend = addend; | |
5191 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
9e3313ae RS |
5192 | |
5193 | /* If we've written this relocation for a readonly section, | |
5194 | we need to set DF_TEXTREL again, so that we do not delete the | |
5195 | DT_TEXTREL tag. */ | |
5196 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
5197 | info->flags |= DF_TEXTREL; | |
5198 | ||
0a44bf69 RS |
5199 | *valuep = 0; |
5200 | return bfd_reloc_ok; | |
5201 | } | |
5202 | ||
b49e97c9 TS |
5203 | /* Figure out what kind of relocation is being performed. */ |
5204 | switch (r_type) | |
5205 | { | |
5206 | case R_MIPS_NONE: | |
5207 | return bfd_reloc_continue; | |
5208 | ||
5209 | case R_MIPS_16: | |
a7ebbfdf | 5210 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
5211 | overflowed_p = mips_elf_overflow_p (value, 16); |
5212 | break; | |
5213 | ||
5214 | case R_MIPS_32: | |
5215 | case R_MIPS_REL32: | |
5216 | case R_MIPS_64: | |
5217 | if ((info->shared | |
861fb55a | 5218 | || (htab->root.dynamic_sections_created |
b49e97c9 | 5219 | && h != NULL |
f5385ebf | 5220 | && h->root.def_dynamic |
861fb55a DJ |
5221 | && !h->root.def_regular |
5222 | && !h->has_static_relocs)) | |
b49e97c9 | 5223 | && r_symndx != 0 |
9a59ad6b DJ |
5224 | && (h == NULL |
5225 | || h->root.root.type != bfd_link_hash_undefweak | |
5226 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) | |
b49e97c9 TS |
5227 | && (input_section->flags & SEC_ALLOC) != 0) |
5228 | { | |
861fb55a | 5229 | /* If we're creating a shared library, then we can't know |
b49e97c9 TS |
5230 | where the symbol will end up. So, we create a relocation |
5231 | record in the output, and leave the job up to the dynamic | |
861fb55a DJ |
5232 | linker. We must do the same for executable references to |
5233 | shared library symbols, unless we've decided to use copy | |
5234 | relocs or PLTs instead. */ | |
b49e97c9 TS |
5235 | value = addend; |
5236 | if (!mips_elf_create_dynamic_relocation (abfd, | |
5237 | info, | |
5238 | relocation, | |
5239 | h, | |
5240 | sec, | |
5241 | symbol, | |
5242 | &value, | |
5243 | input_section)) | |
5244 | return bfd_reloc_undefined; | |
5245 | } | |
5246 | else | |
5247 | { | |
5248 | if (r_type != R_MIPS_REL32) | |
5249 | value = symbol + addend; | |
5250 | else | |
5251 | value = addend; | |
5252 | } | |
5253 | value &= howto->dst_mask; | |
092dcd75 CD |
5254 | break; |
5255 | ||
5256 | case R_MIPS_PC32: | |
5257 | value = symbol + addend - p; | |
5258 | value &= howto->dst_mask; | |
b49e97c9 TS |
5259 | break; |
5260 | ||
b49e97c9 TS |
5261 | case R_MIPS16_26: |
5262 | /* The calculation for R_MIPS16_26 is just the same as for an | |
5263 | R_MIPS_26. It's only the storage of the relocated field into | |
5264 | the output file that's different. That's handled in | |
5265 | mips_elf_perform_relocation. So, we just fall through to the | |
5266 | R_MIPS_26 case here. */ | |
5267 | case R_MIPS_26: | |
5268 | if (local_p) | |
30ac9238 | 5269 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 5270 | else |
728b2f21 ILT |
5271 | { |
5272 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
5273 | if (h->root.root.type != bfd_link_hash_undefweak) |
5274 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 5275 | } |
b49e97c9 TS |
5276 | value &= howto->dst_mask; |
5277 | break; | |
5278 | ||
0f20cc35 DJ |
5279 | case R_MIPS_TLS_DTPREL_HI16: |
5280 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
5281 | & howto->dst_mask); | |
5282 | break; | |
5283 | ||
5284 | case R_MIPS_TLS_DTPREL_LO16: | |
741d6ea8 JM |
5285 | case R_MIPS_TLS_DTPREL32: |
5286 | case R_MIPS_TLS_DTPREL64: | |
0f20cc35 DJ |
5287 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
5288 | break; | |
5289 | ||
5290 | case R_MIPS_TLS_TPREL_HI16: | |
5291 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
5292 | & howto->dst_mask); | |
5293 | break; | |
5294 | ||
5295 | case R_MIPS_TLS_TPREL_LO16: | |
5296 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
5297 | break; | |
5298 | ||
b49e97c9 | 5299 | case R_MIPS_HI16: |
d6f16593 | 5300 | case R_MIPS16_HI16: |
b49e97c9 TS |
5301 | if (!gp_disp_p) |
5302 | { | |
5303 | value = mips_elf_high (addend + symbol); | |
5304 | value &= howto->dst_mask; | |
5305 | } | |
5306 | else | |
5307 | { | |
d6f16593 MR |
5308 | /* For MIPS16 ABI code we generate this sequence |
5309 | 0: li $v0,%hi(_gp_disp) | |
5310 | 4: addiupc $v1,%lo(_gp_disp) | |
5311 | 8: sll $v0,16 | |
5312 | 12: addu $v0,$v1 | |
5313 | 14: move $gp,$v0 | |
5314 | So the offsets of hi and lo relocs are the same, but the | |
5315 | $pc is four higher than $t9 would be, so reduce | |
5316 | both reloc addends by 4. */ | |
5317 | if (r_type == R_MIPS16_HI16) | |
5318 | value = mips_elf_high (addend + gp - p - 4); | |
5319 | else | |
5320 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
5321 | overflowed_p = mips_elf_overflow_p (value, 16); |
5322 | } | |
5323 | break; | |
5324 | ||
5325 | case R_MIPS_LO16: | |
d6f16593 | 5326 | case R_MIPS16_LO16: |
b49e97c9 TS |
5327 | if (!gp_disp_p) |
5328 | value = (symbol + addend) & howto->dst_mask; | |
5329 | else | |
5330 | { | |
d6f16593 MR |
5331 | /* See the comment for R_MIPS16_HI16 above for the reason |
5332 | for this conditional. */ | |
5333 | if (r_type == R_MIPS16_LO16) | |
5334 | value = addend + gp - p; | |
5335 | else | |
5336 | value = addend + gp - p + 4; | |
b49e97c9 | 5337 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 5338 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
5339 | _gp_disp are normally generated from the .cpload |
5340 | pseudo-op. It generates code that normally looks like | |
5341 | this: | |
5342 | ||
5343 | lui $gp,%hi(_gp_disp) | |
5344 | addiu $gp,$gp,%lo(_gp_disp) | |
5345 | addu $gp,$gp,$t9 | |
5346 | ||
5347 | Here $t9 holds the address of the function being called, | |
5348 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
5349 | relocation can easily overflow in this situation, but the | |
5350 | R_MIPS_HI16 relocation will handle the overflow. | |
5351 | Therefore, we consider this a bug in the MIPS ABI, and do | |
5352 | not check for overflow here. */ | |
5353 | } | |
5354 | break; | |
5355 | ||
5356 | case R_MIPS_LITERAL: | |
5357 | /* Because we don't merge literal sections, we can handle this | |
5358 | just like R_MIPS_GPREL16. In the long run, we should merge | |
5359 | shared literals, and then we will need to additional work | |
5360 | here. */ | |
5361 | ||
5362 | /* Fall through. */ | |
5363 | ||
5364 | case R_MIPS16_GPREL: | |
5365 | /* The R_MIPS16_GPREL performs the same calculation as | |
5366 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
5367 | order. We don't need to do anything special here; the | |
5368 | differences are handled in mips_elf_perform_relocation. */ | |
5369 | case R_MIPS_GPREL16: | |
bce03d3d AO |
5370 | /* Only sign-extend the addend if it was extracted from the |
5371 | instruction. If the addend was separate, leave it alone, | |
5372 | otherwise we may lose significant bits. */ | |
5373 | if (howto->partial_inplace) | |
a7ebbfdf | 5374 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
5375 | value = symbol + addend - gp; |
5376 | /* If the symbol was local, any earlier relocatable links will | |
5377 | have adjusted its addend with the gp offset, so compensate | |
5378 | for that now. Don't do it for symbols forced local in this | |
5379 | link, though, since they won't have had the gp offset applied | |
5380 | to them before. */ | |
5381 | if (was_local_p) | |
5382 | value += gp0; | |
b49e97c9 TS |
5383 | overflowed_p = mips_elf_overflow_p (value, 16); |
5384 | break; | |
5385 | ||
738e5348 RS |
5386 | case R_MIPS16_GOT16: |
5387 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
5388 | case R_MIPS_GOT16: |
5389 | case R_MIPS_CALL16: | |
0a44bf69 | 5390 | /* VxWorks does not have separate local and global semantics for |
738e5348 | 5391 | R_MIPS*_GOT16; every relocation evaluates to "G". */ |
0a44bf69 | 5392 | if (!htab->is_vxworks && local_p) |
b49e97c9 | 5393 | { |
b34976b6 | 5394 | bfd_boolean forced; |
b49e97c9 | 5395 | |
b49e97c9 | 5396 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
b34976b6 | 5397 | local_sections, FALSE); |
5c18022e | 5398 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
f4416af6 | 5399 | symbol + addend, forced); |
b49e97c9 TS |
5400 | if (value == MINUS_ONE) |
5401 | return bfd_reloc_outofrange; | |
5402 | value | |
a8028dd0 | 5403 | = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
5404 | overflowed_p = mips_elf_overflow_p (value, 16); |
5405 | break; | |
5406 | } | |
5407 | ||
5408 | /* Fall through. */ | |
5409 | ||
0f20cc35 DJ |
5410 | case R_MIPS_TLS_GD: |
5411 | case R_MIPS_TLS_GOTTPREL: | |
5412 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 5413 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 5414 | got_disp: |
b49e97c9 TS |
5415 | value = g; |
5416 | overflowed_p = mips_elf_overflow_p (value, 16); | |
5417 | break; | |
5418 | ||
5419 | case R_MIPS_GPREL32: | |
bce03d3d AO |
5420 | value = (addend + symbol + gp0 - gp); |
5421 | if (!save_addend) | |
5422 | value &= howto->dst_mask; | |
b49e97c9 TS |
5423 | break; |
5424 | ||
5425 | case R_MIPS_PC16: | |
bad36eac DJ |
5426 | case R_MIPS_GNU_REL16_S2: |
5427 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; | |
5428 | overflowed_p = mips_elf_overflow_p (value, 18); | |
37caec6b TS |
5429 | value >>= howto->rightshift; |
5430 | value &= howto->dst_mask; | |
b49e97c9 TS |
5431 | break; |
5432 | ||
5433 | case R_MIPS_GOT_HI16: | |
5434 | case R_MIPS_CALL_HI16: | |
5435 | /* We're allowed to handle these two relocations identically. | |
5436 | The dynamic linker is allowed to handle the CALL relocations | |
5437 | differently by creating a lazy evaluation stub. */ | |
5438 | value = g; | |
5439 | value = mips_elf_high (value); | |
5440 | value &= howto->dst_mask; | |
5441 | break; | |
5442 | ||
5443 | case R_MIPS_GOT_LO16: | |
5444 | case R_MIPS_CALL_LO16: | |
5445 | value = g & howto->dst_mask; | |
5446 | break; | |
5447 | ||
5448 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
5449 | /* GOT_PAGE relocations that reference non-local symbols decay |
5450 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
5451 | 0. */ | |
93a2b7ae | 5452 | if (! local_p) |
0fdc1bf1 | 5453 | goto got_disp; |
5c18022e | 5454 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
5455 | if (value == MINUS_ONE) |
5456 | return bfd_reloc_outofrange; | |
a8028dd0 | 5457 | value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
5458 | overflowed_p = mips_elf_overflow_p (value, 16); |
5459 | break; | |
5460 | ||
5461 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 5462 | if (local_p) |
5c18022e | 5463 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
0fdc1bf1 AO |
5464 | else |
5465 | value = addend; | |
b49e97c9 TS |
5466 | overflowed_p = mips_elf_overflow_p (value, 16); |
5467 | break; | |
5468 | ||
5469 | case R_MIPS_SUB: | |
5470 | value = symbol - addend; | |
5471 | value &= howto->dst_mask; | |
5472 | break; | |
5473 | ||
5474 | case R_MIPS_HIGHER: | |
5475 | value = mips_elf_higher (addend + symbol); | |
5476 | value &= howto->dst_mask; | |
5477 | break; | |
5478 | ||
5479 | case R_MIPS_HIGHEST: | |
5480 | value = mips_elf_highest (addend + symbol); | |
5481 | value &= howto->dst_mask; | |
5482 | break; | |
5483 | ||
5484 | case R_MIPS_SCN_DISP: | |
5485 | value = symbol + addend - sec->output_offset; | |
5486 | value &= howto->dst_mask; | |
5487 | break; | |
5488 | ||
b49e97c9 | 5489 | case R_MIPS_JALR: |
1367d393 ILT |
5490 | /* This relocation is only a hint. In some cases, we optimize |
5491 | it into a bal instruction. But we don't try to optimize | |
5bbc5ae7 AN |
5492 | when the symbol does not resolve locally. */ |
5493 | if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) | |
1367d393 ILT |
5494 | return bfd_reloc_continue; |
5495 | value = symbol + addend; | |
5496 | break; | |
b49e97c9 | 5497 | |
1367d393 | 5498 | case R_MIPS_PJUMP: |
b49e97c9 TS |
5499 | case R_MIPS_GNU_VTINHERIT: |
5500 | case R_MIPS_GNU_VTENTRY: | |
5501 | /* We don't do anything with these at present. */ | |
5502 | return bfd_reloc_continue; | |
5503 | ||
5504 | default: | |
5505 | /* An unrecognized relocation type. */ | |
5506 | return bfd_reloc_notsupported; | |
5507 | } | |
5508 | ||
5509 | /* Store the VALUE for our caller. */ | |
5510 | *valuep = value; | |
5511 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
5512 | } | |
5513 | ||
5514 | /* Obtain the field relocated by RELOCATION. */ | |
5515 | ||
5516 | static bfd_vma | |
9719ad41 RS |
5517 | mips_elf_obtain_contents (reloc_howto_type *howto, |
5518 | const Elf_Internal_Rela *relocation, | |
5519 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
5520 | { |
5521 | bfd_vma x; | |
5522 | bfd_byte *location = contents + relocation->r_offset; | |
5523 | ||
5524 | /* Obtain the bytes. */ | |
5525 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
5526 | ||
b49e97c9 TS |
5527 | return x; |
5528 | } | |
5529 | ||
5530 | /* It has been determined that the result of the RELOCATION is the | |
5531 | VALUE. Use HOWTO to place VALUE into the output file at the | |
5532 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 5533 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
5534 | for the relocation must be either JAL or JALX, and it is |
5535 | unconditionally converted to JALX. | |
5536 | ||
b34976b6 | 5537 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 5538 | |
b34976b6 | 5539 | static bfd_boolean |
9719ad41 RS |
5540 | mips_elf_perform_relocation (struct bfd_link_info *info, |
5541 | reloc_howto_type *howto, | |
5542 | const Elf_Internal_Rela *relocation, | |
5543 | bfd_vma value, bfd *input_bfd, | |
5544 | asection *input_section, bfd_byte *contents, | |
5545 | bfd_boolean require_jalx) | |
b49e97c9 TS |
5546 | { |
5547 | bfd_vma x; | |
5548 | bfd_byte *location; | |
5549 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
5550 | ||
5551 | /* Figure out where the relocation is occurring. */ | |
5552 | location = contents + relocation->r_offset; | |
5553 | ||
d6f16593 MR |
5554 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
5555 | ||
b49e97c9 TS |
5556 | /* Obtain the current value. */ |
5557 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
5558 | ||
5559 | /* Clear the field we are setting. */ | |
5560 | x &= ~howto->dst_mask; | |
5561 | ||
b49e97c9 TS |
5562 | /* Set the field. */ |
5563 | x |= (value & howto->dst_mask); | |
5564 | ||
5565 | /* If required, turn JAL into JALX. */ | |
5566 | if (require_jalx) | |
5567 | { | |
b34976b6 | 5568 | bfd_boolean ok; |
b49e97c9 TS |
5569 | bfd_vma opcode = x >> 26; |
5570 | bfd_vma jalx_opcode; | |
5571 | ||
5572 | /* Check to see if the opcode is already JAL or JALX. */ | |
5573 | if (r_type == R_MIPS16_26) | |
5574 | { | |
5575 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
5576 | jalx_opcode = 0x7; | |
5577 | } | |
5578 | else | |
5579 | { | |
5580 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
5581 | jalx_opcode = 0x1d; | |
5582 | } | |
5583 | ||
5584 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
5585 | if (!ok) | |
5586 | { | |
5587 | (*_bfd_error_handler) | |
d003868e AM |
5588 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
5589 | input_bfd, | |
5590 | input_section, | |
b49e97c9 TS |
5591 | (unsigned long) relocation->r_offset); |
5592 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 5593 | return FALSE; |
b49e97c9 TS |
5594 | } |
5595 | ||
5596 | /* Make this the JALX opcode. */ | |
5597 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
5598 | } | |
5599 | ||
cd8d5a82 CF |
5600 | /* Try converting JAL and JALR to BAL, if the target is in range. */ |
5601 | if (!info->relocatable | |
1367d393 | 5602 | && !require_jalx |
cd8d5a82 CF |
5603 | && ((JAL_TO_BAL_P (input_bfd) |
5604 | && r_type == R_MIPS_26 | |
5605 | && (x >> 26) == 0x3) /* jal addr */ | |
5606 | || (JALR_TO_BAL_P (input_bfd) | |
5607 | && r_type == R_MIPS_JALR | |
5608 | && x == 0x0320f809))) /* jalr t9 */ | |
1367d393 ILT |
5609 | { |
5610 | bfd_vma addr; | |
5611 | bfd_vma dest; | |
5612 | bfd_signed_vma off; | |
5613 | ||
5614 | addr = (input_section->output_section->vma | |
5615 | + input_section->output_offset | |
5616 | + relocation->r_offset | |
5617 | + 4); | |
5618 | if (r_type == R_MIPS_26) | |
5619 | dest = (value << 2) | ((addr >> 28) << 28); | |
5620 | else | |
5621 | dest = value; | |
5622 | off = dest - addr; | |
5623 | if (off <= 0x1ffff && off >= -0x20000) | |
5624 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
5625 | } | |
5626 | ||
b49e97c9 TS |
5627 | /* Put the value into the output. */ |
5628 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
5629 | |
5630 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
5631 | location); | |
5632 | ||
b34976b6 | 5633 | return TRUE; |
b49e97c9 | 5634 | } |
b49e97c9 | 5635 | \f |
b49e97c9 TS |
5636 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
5637 | is the original relocation, which is now being transformed into a | |
5638 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
5639 | caller should store the result in place of the original addend. */ | |
5640 | ||
b34976b6 | 5641 | static bfd_boolean |
9719ad41 RS |
5642 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
5643 | struct bfd_link_info *info, | |
5644 | const Elf_Internal_Rela *rel, | |
5645 | struct mips_elf_link_hash_entry *h, | |
5646 | asection *sec, bfd_vma symbol, | |
5647 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 5648 | { |
947216bf | 5649 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
5650 | asection *sreloc; |
5651 | bfd *dynobj; | |
5652 | int r_type; | |
5d41f0b6 RS |
5653 | long indx; |
5654 | bfd_boolean defined_p; | |
0a44bf69 | 5655 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 5656 | |
0a44bf69 | 5657 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
5658 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
5659 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 5660 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
5661 | BFD_ASSERT (sreloc != NULL); |
5662 | BFD_ASSERT (sreloc->contents != NULL); | |
5663 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 5664 | < sreloc->size); |
b49e97c9 | 5665 | |
b49e97c9 TS |
5666 | outrel[0].r_offset = |
5667 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
9ddf8309 TS |
5668 | if (ABI_64_P (output_bfd)) |
5669 | { | |
5670 | outrel[1].r_offset = | |
5671 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
5672 | outrel[2].r_offset = | |
5673 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
5674 | } | |
b49e97c9 | 5675 | |
c5ae1840 | 5676 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 5677 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
5678 | return TRUE; |
5679 | ||
5680 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
5681 | { |
5682 | /* The relocation field has been converted into a relative value of | |
5683 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
5684 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 5685 | *addendp += symbol; |
5d41f0b6 | 5686 | return TRUE; |
0d591ff7 | 5687 | } |
b49e97c9 | 5688 | |
5d41f0b6 RS |
5689 | /* We must now calculate the dynamic symbol table index to use |
5690 | in the relocation. */ | |
5691 | if (h != NULL | |
6ece8836 TS |
5692 | && (!h->root.def_regular |
5693 | || (info->shared && !info->symbolic && !h->root.forced_local))) | |
5d41f0b6 RS |
5694 | { |
5695 | indx = h->root.dynindx; | |
5696 | if (SGI_COMPAT (output_bfd)) | |
5697 | defined_p = h->root.def_regular; | |
5698 | else | |
5699 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
5700 | relocation field. It therefore treats relocs against | |
5701 | defined symbols in the same way as relocs against | |
5702 | undefined symbols. */ | |
5703 | defined_p = FALSE; | |
5704 | } | |
b49e97c9 TS |
5705 | else |
5706 | { | |
5d41f0b6 RS |
5707 | if (sec != NULL && bfd_is_abs_section (sec)) |
5708 | indx = 0; | |
5709 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 5710 | { |
5d41f0b6 RS |
5711 | bfd_set_error (bfd_error_bad_value); |
5712 | return FALSE; | |
b49e97c9 TS |
5713 | } |
5714 | else | |
5715 | { | |
5d41f0b6 | 5716 | indx = elf_section_data (sec->output_section)->dynindx; |
74541ad4 AM |
5717 | if (indx == 0) |
5718 | { | |
5719 | asection *osec = htab->root.text_index_section; | |
5720 | indx = elf_section_data (osec)->dynindx; | |
5721 | } | |
5d41f0b6 RS |
5722 | if (indx == 0) |
5723 | abort (); | |
b49e97c9 TS |
5724 | } |
5725 | ||
5d41f0b6 RS |
5726 | /* Instead of generating a relocation using the section |
5727 | symbol, we may as well make it a fully relative | |
5728 | relocation. We want to avoid generating relocations to | |
5729 | local symbols because we used to generate them | |
5730 | incorrectly, without adding the original symbol value, | |
5731 | which is mandated by the ABI for section symbols. In | |
5732 | order to give dynamic loaders and applications time to | |
5733 | phase out the incorrect use, we refrain from emitting | |
5734 | section-relative relocations. It's not like they're | |
5735 | useful, after all. This should be a bit more efficient | |
5736 | as well. */ | |
5737 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
5738 | the ABI says that relocations against STN_UNDEF should have | |
5739 | a symbol value of 0. Irix rld honors this, so relocations | |
5740 | against STN_UNDEF have no effect. */ | |
5741 | if (!SGI_COMPAT (output_bfd)) | |
5742 | indx = 0; | |
5743 | defined_p = TRUE; | |
b49e97c9 TS |
5744 | } |
5745 | ||
5d41f0b6 RS |
5746 | /* If the relocation was previously an absolute relocation and |
5747 | this symbol will not be referred to by the relocation, we must | |
5748 | adjust it by the value we give it in the dynamic symbol table. | |
5749 | Otherwise leave the job up to the dynamic linker. */ | |
5750 | if (defined_p && r_type != R_MIPS_REL32) | |
5751 | *addendp += symbol; | |
5752 | ||
0a44bf69 RS |
5753 | if (htab->is_vxworks) |
5754 | /* VxWorks uses non-relative relocations for this. */ | |
5755 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
5756 | else | |
5757 | /* The relocation is always an REL32 relocation because we don't | |
5758 | know where the shared library will wind up at load-time. */ | |
5759 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
5760 | R_MIPS_REL32); | |
5761 | ||
5d41f0b6 RS |
5762 | /* For strict adherence to the ABI specification, we should |
5763 | generate a R_MIPS_64 relocation record by itself before the | |
5764 | _REL32/_64 record as well, such that the addend is read in as | |
5765 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
5766 | However, since none of the existing ELF64 MIPS dynamic | |
5767 | loaders seems to care, we don't waste space with these | |
5768 | artificial relocations. If this turns out to not be true, | |
5769 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
5770 | as to make room for a pair of dynamic relocations per | |
5771 | invocation if ABI_64_P, and here we should generate an | |
5772 | additional relocation record with R_MIPS_64 by itself for a | |
5773 | NULL symbol before this relocation record. */ | |
5774 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
5775 | ABI_64_P (output_bfd) | |
5776 | ? R_MIPS_64 | |
5777 | : R_MIPS_NONE); | |
5778 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
5779 | ||
5780 | /* Adjust the output offset of the relocation to reference the | |
5781 | correct location in the output file. */ | |
5782 | outrel[0].r_offset += (input_section->output_section->vma | |
5783 | + input_section->output_offset); | |
5784 | outrel[1].r_offset += (input_section->output_section->vma | |
5785 | + input_section->output_offset); | |
5786 | outrel[2].r_offset += (input_section->output_section->vma | |
5787 | + input_section->output_offset); | |
5788 | ||
b49e97c9 TS |
5789 | /* Put the relocation back out. We have to use the special |
5790 | relocation outputter in the 64-bit case since the 64-bit | |
5791 | relocation format is non-standard. */ | |
5792 | if (ABI_64_P (output_bfd)) | |
5793 | { | |
5794 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
5795 | (output_bfd, &outrel[0], | |
5796 | (sreloc->contents | |
5797 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
5798 | } | |
0a44bf69 RS |
5799 | else if (htab->is_vxworks) |
5800 | { | |
5801 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
5802 | outrel[0].r_addend = *addendp; | |
5803 | bfd_elf32_swap_reloca_out | |
5804 | (output_bfd, &outrel[0], | |
5805 | (sreloc->contents | |
5806 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
5807 | } | |
b49e97c9 | 5808 | else |
947216bf AM |
5809 | bfd_elf32_swap_reloc_out |
5810 | (output_bfd, &outrel[0], | |
5811 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 5812 | |
b49e97c9 TS |
5813 | /* We've now added another relocation. */ |
5814 | ++sreloc->reloc_count; | |
5815 | ||
5816 | /* Make sure the output section is writable. The dynamic linker | |
5817 | will be writing to it. */ | |
5818 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
5819 | |= SHF_WRITE; | |
5820 | ||
5821 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 5822 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
5823 | { |
5824 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
5825 | bfd_byte *cr; | |
5826 | ||
5827 | if (scpt) | |
5828 | { | |
5829 | Elf32_crinfo cptrel; | |
5830 | ||
5831 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
5832 | cptrel.vaddr = (rel->r_offset | |
5833 | + input_section->output_section->vma | |
5834 | + input_section->output_offset); | |
5835 | if (r_type == R_MIPS_REL32) | |
5836 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
5837 | else | |
5838 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
5839 | mips_elf_set_cr_dist2to (cptrel, 0); | |
5840 | cptrel.konst = *addendp; | |
5841 | ||
5842 | cr = (scpt->contents | |
5843 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 5844 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
5845 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
5846 | ((Elf32_External_crinfo *) cr | |
5847 | + scpt->reloc_count)); | |
5848 | ++scpt->reloc_count; | |
5849 | } | |
5850 | } | |
5851 | ||
943284cc DJ |
5852 | /* If we've written this relocation for a readonly section, |
5853 | we need to set DF_TEXTREL again, so that we do not delete the | |
5854 | DT_TEXTREL tag. */ | |
5855 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
5856 | info->flags |= DF_TEXTREL; | |
5857 | ||
b34976b6 | 5858 | return TRUE; |
b49e97c9 TS |
5859 | } |
5860 | \f | |
b49e97c9 TS |
5861 | /* Return the MACH for a MIPS e_flags value. */ |
5862 | ||
5863 | unsigned long | |
9719ad41 | 5864 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
5865 | { |
5866 | switch (flags & EF_MIPS_MACH) | |
5867 | { | |
5868 | case E_MIPS_MACH_3900: | |
5869 | return bfd_mach_mips3900; | |
5870 | ||
5871 | case E_MIPS_MACH_4010: | |
5872 | return bfd_mach_mips4010; | |
5873 | ||
5874 | case E_MIPS_MACH_4100: | |
5875 | return bfd_mach_mips4100; | |
5876 | ||
5877 | case E_MIPS_MACH_4111: | |
5878 | return bfd_mach_mips4111; | |
5879 | ||
00707a0e RS |
5880 | case E_MIPS_MACH_4120: |
5881 | return bfd_mach_mips4120; | |
5882 | ||
b49e97c9 TS |
5883 | case E_MIPS_MACH_4650: |
5884 | return bfd_mach_mips4650; | |
5885 | ||
00707a0e RS |
5886 | case E_MIPS_MACH_5400: |
5887 | return bfd_mach_mips5400; | |
5888 | ||
5889 | case E_MIPS_MACH_5500: | |
5890 | return bfd_mach_mips5500; | |
5891 | ||
0d2e43ed ILT |
5892 | case E_MIPS_MACH_9000: |
5893 | return bfd_mach_mips9000; | |
5894 | ||
b49e97c9 TS |
5895 | case E_MIPS_MACH_SB1: |
5896 | return bfd_mach_mips_sb1; | |
5897 | ||
350cc38d MS |
5898 | case E_MIPS_MACH_LS2E: |
5899 | return bfd_mach_mips_loongson_2e; | |
5900 | ||
5901 | case E_MIPS_MACH_LS2F: | |
5902 | return bfd_mach_mips_loongson_2f; | |
5903 | ||
6f179bd0 AN |
5904 | case E_MIPS_MACH_OCTEON: |
5905 | return bfd_mach_mips_octeon; | |
5906 | ||
52b6b6b9 JM |
5907 | case E_MIPS_MACH_XLR: |
5908 | return bfd_mach_mips_xlr; | |
5909 | ||
b49e97c9 TS |
5910 | default: |
5911 | switch (flags & EF_MIPS_ARCH) | |
5912 | { | |
5913 | default: | |
5914 | case E_MIPS_ARCH_1: | |
5915 | return bfd_mach_mips3000; | |
b49e97c9 TS |
5916 | |
5917 | case E_MIPS_ARCH_2: | |
5918 | return bfd_mach_mips6000; | |
b49e97c9 TS |
5919 | |
5920 | case E_MIPS_ARCH_3: | |
5921 | return bfd_mach_mips4000; | |
b49e97c9 TS |
5922 | |
5923 | case E_MIPS_ARCH_4: | |
5924 | return bfd_mach_mips8000; | |
b49e97c9 TS |
5925 | |
5926 | case E_MIPS_ARCH_5: | |
5927 | return bfd_mach_mips5; | |
b49e97c9 TS |
5928 | |
5929 | case E_MIPS_ARCH_32: | |
5930 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
5931 | |
5932 | case E_MIPS_ARCH_64: | |
5933 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
5934 | |
5935 | case E_MIPS_ARCH_32R2: | |
5936 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
5937 | |
5938 | case E_MIPS_ARCH_64R2: | |
5939 | return bfd_mach_mipsisa64r2; | |
b49e97c9 TS |
5940 | } |
5941 | } | |
5942 | ||
5943 | return 0; | |
5944 | } | |
5945 | ||
5946 | /* Return printable name for ABI. */ | |
5947 | ||
5948 | static INLINE char * | |
9719ad41 | 5949 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
5950 | { |
5951 | flagword flags; | |
5952 | ||
5953 | flags = elf_elfheader (abfd)->e_flags; | |
5954 | switch (flags & EF_MIPS_ABI) | |
5955 | { | |
5956 | case 0: | |
5957 | if (ABI_N32_P (abfd)) | |
5958 | return "N32"; | |
5959 | else if (ABI_64_P (abfd)) | |
5960 | return "64"; | |
5961 | else | |
5962 | return "none"; | |
5963 | case E_MIPS_ABI_O32: | |
5964 | return "O32"; | |
5965 | case E_MIPS_ABI_O64: | |
5966 | return "O64"; | |
5967 | case E_MIPS_ABI_EABI32: | |
5968 | return "EABI32"; | |
5969 | case E_MIPS_ABI_EABI64: | |
5970 | return "EABI64"; | |
5971 | default: | |
5972 | return "unknown abi"; | |
5973 | } | |
5974 | } | |
5975 | \f | |
5976 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
5977 | other is for small objects. All the small objects are kept | |
5978 | together, and then referenced via the gp pointer, which yields | |
5979 | faster assembler code. This is what we use for the small common | |
5980 | section. This approach is copied from ecoff.c. */ | |
5981 | static asection mips_elf_scom_section; | |
5982 | static asymbol mips_elf_scom_symbol; | |
5983 | static asymbol *mips_elf_scom_symbol_ptr; | |
5984 | ||
5985 | /* MIPS ELF also uses an acommon section, which represents an | |
5986 | allocated common symbol which may be overridden by a | |
5987 | definition in a shared library. */ | |
5988 | static asection mips_elf_acom_section; | |
5989 | static asymbol mips_elf_acom_symbol; | |
5990 | static asymbol *mips_elf_acom_symbol_ptr; | |
5991 | ||
738e5348 | 5992 | /* This is used for both the 32-bit and the 64-bit ABI. */ |
b49e97c9 TS |
5993 | |
5994 | void | |
9719ad41 | 5995 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
5996 | { |
5997 | elf_symbol_type *elfsym; | |
5998 | ||
738e5348 | 5999 | /* Handle the special MIPS section numbers that a symbol may use. */ |
b49e97c9 TS |
6000 | elfsym = (elf_symbol_type *) asym; |
6001 | switch (elfsym->internal_elf_sym.st_shndx) | |
6002 | { | |
6003 | case SHN_MIPS_ACOMMON: | |
6004 | /* This section is used in a dynamically linked executable file. | |
6005 | It is an allocated common section. The dynamic linker can | |
6006 | either resolve these symbols to something in a shared | |
6007 | library, or it can just leave them here. For our purposes, | |
6008 | we can consider these symbols to be in a new section. */ | |
6009 | if (mips_elf_acom_section.name == NULL) | |
6010 | { | |
6011 | /* Initialize the acommon section. */ | |
6012 | mips_elf_acom_section.name = ".acommon"; | |
6013 | mips_elf_acom_section.flags = SEC_ALLOC; | |
6014 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
6015 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
6016 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
6017 | mips_elf_acom_symbol.name = ".acommon"; | |
6018 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
6019 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
6020 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
6021 | } | |
6022 | asym->section = &mips_elf_acom_section; | |
6023 | break; | |
6024 | ||
6025 | case SHN_COMMON: | |
6026 | /* Common symbols less than the GP size are automatically | |
6027 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
6028 | if (asym->value > elf_gp_size (abfd) | |
b59eed79 | 6029 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
b49e97c9 TS |
6030 | || IRIX_COMPAT (abfd) == ict_irix6) |
6031 | break; | |
6032 | /* Fall through. */ | |
6033 | case SHN_MIPS_SCOMMON: | |
6034 | if (mips_elf_scom_section.name == NULL) | |
6035 | { | |
6036 | /* Initialize the small common section. */ | |
6037 | mips_elf_scom_section.name = ".scommon"; | |
6038 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
6039 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
6040 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
6041 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
6042 | mips_elf_scom_symbol.name = ".scommon"; | |
6043 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
6044 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
6045 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
6046 | } | |
6047 | asym->section = &mips_elf_scom_section; | |
6048 | asym->value = elfsym->internal_elf_sym.st_size; | |
6049 | break; | |
6050 | ||
6051 | case SHN_MIPS_SUNDEFINED: | |
6052 | asym->section = bfd_und_section_ptr; | |
6053 | break; | |
6054 | ||
b49e97c9 | 6055 | case SHN_MIPS_TEXT: |
00b4930b TS |
6056 | { |
6057 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
6058 | ||
6059 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
6060 | if (section != NULL) | |
6061 | { | |
6062 | asym->section = section; | |
6063 | /* MIPS_TEXT is a bit special, the address is not an offset | |
6064 | to the base of the .text section. So substract the section | |
6065 | base address to make it an offset. */ | |
6066 | asym->value -= section->vma; | |
6067 | } | |
6068 | } | |
b49e97c9 TS |
6069 | break; |
6070 | ||
6071 | case SHN_MIPS_DATA: | |
00b4930b TS |
6072 | { |
6073 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
6074 | ||
6075 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
6076 | if (section != NULL) | |
6077 | { | |
6078 | asym->section = section; | |
6079 | /* MIPS_DATA is a bit special, the address is not an offset | |
6080 | to the base of the .data section. So substract the section | |
6081 | base address to make it an offset. */ | |
6082 | asym->value -= section->vma; | |
6083 | } | |
6084 | } | |
b49e97c9 | 6085 | break; |
b49e97c9 | 6086 | } |
738e5348 RS |
6087 | |
6088 | /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */ | |
6089 | if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC | |
6090 | && (asym->value & 1) != 0) | |
6091 | { | |
6092 | asym->value--; | |
6093 | elfsym->internal_elf_sym.st_other | |
6094 | = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); | |
6095 | } | |
b49e97c9 TS |
6096 | } |
6097 | \f | |
8c946ed5 RS |
6098 | /* Implement elf_backend_eh_frame_address_size. This differs from |
6099 | the default in the way it handles EABI64. | |
6100 | ||
6101 | EABI64 was originally specified as an LP64 ABI, and that is what | |
6102 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
6103 | historically accepted the combination of -mabi=eabi and -mlong32, | |
6104 | and this ILP32 variation has become semi-official over time. | |
6105 | Both forms use elf32 and have pointer-sized FDE addresses. | |
6106 | ||
6107 | If an EABI object was generated by GCC 4.0 or above, it will have | |
6108 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
6109 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
6110 | have no special marking to distinguish them from LP64 objects. | |
6111 | ||
6112 | We don't want users of the official LP64 ABI to be punished for the | |
6113 | existence of the ILP32 variant, but at the same time, we don't want | |
6114 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
6115 | We therefore take the following approach: | |
6116 | ||
6117 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
6118 | determine the pointer size. | |
6119 | ||
6120 | - Otherwise check the type of the first relocation. Assume that | |
6121 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
6122 | ||
6123 | - Otherwise punt. | |
6124 | ||
6125 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
6126 | compilers because, in the kind of output generated by those compilers, | |
6127 | the first relocation will be associated with either a CIE personality | |
6128 | routine or an FDE start address. Furthermore, the compilers never | |
6129 | used a special (non-pointer) encoding for this ABI. | |
6130 | ||
6131 | Checking the relocation type should also be safe because there is no | |
6132 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
6133 | did so. */ | |
6134 | ||
6135 | unsigned int | |
6136 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
6137 | { | |
6138 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
6139 | return 8; | |
6140 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
6141 | { | |
6142 | bfd_boolean long32_p, long64_p; | |
6143 | ||
6144 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
6145 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
6146 | if (long32_p && long64_p) | |
6147 | return 0; | |
6148 | if (long32_p) | |
6149 | return 4; | |
6150 | if (long64_p) | |
6151 | return 8; | |
6152 | ||
6153 | if (sec->reloc_count > 0 | |
6154 | && elf_section_data (sec)->relocs != NULL | |
6155 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
6156 | == R_MIPS_64)) | |
6157 | return 8; | |
6158 | ||
6159 | return 0; | |
6160 | } | |
6161 | return 4; | |
6162 | } | |
6163 | \f | |
174fd7f9 RS |
6164 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
6165 | relocations against two unnamed section symbols to resolve to the | |
6166 | same address. For example, if we have code like: | |
6167 | ||
6168 | lw $4,%got_disp(.data)($gp) | |
6169 | lw $25,%got_disp(.text)($gp) | |
6170 | jalr $25 | |
6171 | ||
6172 | then the linker will resolve both relocations to .data and the program | |
6173 | will jump there rather than to .text. | |
6174 | ||
6175 | We can work around this problem by giving names to local section symbols. | |
6176 | This is also what the MIPSpro tools do. */ | |
6177 | ||
6178 | bfd_boolean | |
6179 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
6180 | { | |
6181 | return SGI_COMPAT (abfd); | |
6182 | } | |
6183 | \f | |
b49e97c9 TS |
6184 | /* Work over a section just before writing it out. This routine is |
6185 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
6186 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
6187 | a better way. */ | |
6188 | ||
b34976b6 | 6189 | bfd_boolean |
9719ad41 | 6190 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
6191 | { |
6192 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
6193 | && hdr->sh_size > 0) | |
6194 | { | |
6195 | bfd_byte buf[4]; | |
6196 | ||
6197 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
6198 | BFD_ASSERT (hdr->contents == NULL); | |
6199 | ||
6200 | if (bfd_seek (abfd, | |
6201 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
6202 | SEEK_SET) != 0) | |
b34976b6 | 6203 | return FALSE; |
b49e97c9 | 6204 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6205 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6206 | return FALSE; |
b49e97c9 TS |
6207 | } |
6208 | ||
6209 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
6210 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
6211 | && mips_elf_section_data (hdr->bfd_section) != NULL |
6212 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
6213 | { |
6214 | bfd_byte *contents, *l, *lend; | |
6215 | ||
f0abc2a1 AM |
6216 | /* We stored the section contents in the tdata field in the |
6217 | set_section_contents routine. We save the section contents | |
6218 | so that we don't have to read them again. | |
b49e97c9 TS |
6219 | At this point we know that elf_gp is set, so we can look |
6220 | through the section contents to see if there is an | |
6221 | ODK_REGINFO structure. */ | |
6222 | ||
f0abc2a1 | 6223 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
6224 | l = contents; |
6225 | lend = contents + hdr->sh_size; | |
6226 | while (l + sizeof (Elf_External_Options) <= lend) | |
6227 | { | |
6228 | Elf_Internal_Options intopt; | |
6229 | ||
6230 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
6231 | &intopt); | |
1bc8074d MR |
6232 | if (intopt.size < sizeof (Elf_External_Options)) |
6233 | { | |
6234 | (*_bfd_error_handler) | |
6235 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
6236 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
6237 | break; | |
6238 | } | |
b49e97c9 TS |
6239 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
6240 | { | |
6241 | bfd_byte buf[8]; | |
6242 | ||
6243 | if (bfd_seek (abfd, | |
6244 | (hdr->sh_offset | |
6245 | + (l - contents) | |
6246 | + sizeof (Elf_External_Options) | |
6247 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
6248 | SEEK_SET) != 0) | |
b34976b6 | 6249 | return FALSE; |
b49e97c9 | 6250 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6251 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 6252 | return FALSE; |
b49e97c9 TS |
6253 | } |
6254 | else if (intopt.kind == ODK_REGINFO) | |
6255 | { | |
6256 | bfd_byte buf[4]; | |
6257 | ||
6258 | if (bfd_seek (abfd, | |
6259 | (hdr->sh_offset | |
6260 | + (l - contents) | |
6261 | + sizeof (Elf_External_Options) | |
6262 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
6263 | SEEK_SET) != 0) | |
b34976b6 | 6264 | return FALSE; |
b49e97c9 | 6265 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6266 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6267 | return FALSE; |
b49e97c9 TS |
6268 | } |
6269 | l += intopt.size; | |
6270 | } | |
6271 | } | |
6272 | ||
6273 | if (hdr->bfd_section != NULL) | |
6274 | { | |
6275 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
6276 | ||
2d0f9ad9 JM |
6277 | /* .sbss is not handled specially here because the GNU/Linux |
6278 | prelinker can convert .sbss from NOBITS to PROGBITS and | |
6279 | changing it back to NOBITS breaks the binary. The entry in | |
6280 | _bfd_mips_elf_special_sections will ensure the correct flags | |
6281 | are set on .sbss if BFD creates it without reading it from an | |
6282 | input file, and without special handling here the flags set | |
6283 | on it in an input file will be followed. */ | |
b49e97c9 TS |
6284 | if (strcmp (name, ".sdata") == 0 |
6285 | || strcmp (name, ".lit8") == 0 | |
6286 | || strcmp (name, ".lit4") == 0) | |
6287 | { | |
6288 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
6289 | hdr->sh_type = SHT_PROGBITS; | |
6290 | } | |
b49e97c9 TS |
6291 | else if (strcmp (name, ".srdata") == 0) |
6292 | { | |
6293 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
6294 | hdr->sh_type = SHT_PROGBITS; | |
6295 | } | |
6296 | else if (strcmp (name, ".compact_rel") == 0) | |
6297 | { | |
6298 | hdr->sh_flags = 0; | |
6299 | hdr->sh_type = SHT_PROGBITS; | |
6300 | } | |
6301 | else if (strcmp (name, ".rtproc") == 0) | |
6302 | { | |
6303 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
6304 | { | |
6305 | unsigned int adjust; | |
6306 | ||
6307 | adjust = hdr->sh_size % hdr->sh_addralign; | |
6308 | if (adjust != 0) | |
6309 | hdr->sh_size += hdr->sh_addralign - adjust; | |
6310 | } | |
6311 | } | |
6312 | } | |
6313 | ||
b34976b6 | 6314 | return TRUE; |
b49e97c9 TS |
6315 | } |
6316 | ||
6317 | /* Handle a MIPS specific section when reading an object file. This | |
6318 | is called when elfcode.h finds a section with an unknown type. | |
6319 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
6320 | ||
6321 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
6322 | how to. */ | |
6323 | ||
b34976b6 | 6324 | bfd_boolean |
6dc132d9 L |
6325 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
6326 | Elf_Internal_Shdr *hdr, | |
6327 | const char *name, | |
6328 | int shindex) | |
b49e97c9 TS |
6329 | { |
6330 | flagword flags = 0; | |
6331 | ||
6332 | /* There ought to be a place to keep ELF backend specific flags, but | |
6333 | at the moment there isn't one. We just keep track of the | |
6334 | sections by their name, instead. Fortunately, the ABI gives | |
6335 | suggested names for all the MIPS specific sections, so we will | |
6336 | probably get away with this. */ | |
6337 | switch (hdr->sh_type) | |
6338 | { | |
6339 | case SHT_MIPS_LIBLIST: | |
6340 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 6341 | return FALSE; |
b49e97c9 TS |
6342 | break; |
6343 | case SHT_MIPS_MSYM: | |
6344 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 6345 | return FALSE; |
b49e97c9 TS |
6346 | break; |
6347 | case SHT_MIPS_CONFLICT: | |
6348 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 6349 | return FALSE; |
b49e97c9 TS |
6350 | break; |
6351 | case SHT_MIPS_GPTAB: | |
0112cd26 | 6352 | if (! CONST_STRNEQ (name, ".gptab.")) |
b34976b6 | 6353 | return FALSE; |
b49e97c9 TS |
6354 | break; |
6355 | case SHT_MIPS_UCODE: | |
6356 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 6357 | return FALSE; |
b49e97c9 TS |
6358 | break; |
6359 | case SHT_MIPS_DEBUG: | |
6360 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 6361 | return FALSE; |
b49e97c9 TS |
6362 | flags = SEC_DEBUGGING; |
6363 | break; | |
6364 | case SHT_MIPS_REGINFO: | |
6365 | if (strcmp (name, ".reginfo") != 0 | |
6366 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 6367 | return FALSE; |
b49e97c9 TS |
6368 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
6369 | break; | |
6370 | case SHT_MIPS_IFACE: | |
6371 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 6372 | return FALSE; |
b49e97c9 TS |
6373 | break; |
6374 | case SHT_MIPS_CONTENT: | |
0112cd26 | 6375 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
b34976b6 | 6376 | return FALSE; |
b49e97c9 TS |
6377 | break; |
6378 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 6379 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 6380 | return FALSE; |
b49e97c9 TS |
6381 | break; |
6382 | case SHT_MIPS_DWARF: | |
1b315056 | 6383 | if (! CONST_STRNEQ (name, ".debug_") |
355d10dc | 6384 | && ! CONST_STRNEQ (name, ".zdebug_")) |
b34976b6 | 6385 | return FALSE; |
b49e97c9 TS |
6386 | break; |
6387 | case SHT_MIPS_SYMBOL_LIB: | |
6388 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 6389 | return FALSE; |
b49e97c9 TS |
6390 | break; |
6391 | case SHT_MIPS_EVENTS: | |
0112cd26 NC |
6392 | if (! CONST_STRNEQ (name, ".MIPS.events") |
6393 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b34976b6 | 6394 | return FALSE; |
b49e97c9 TS |
6395 | break; |
6396 | default: | |
cc2e31b9 | 6397 | break; |
b49e97c9 TS |
6398 | } |
6399 | ||
6dc132d9 | 6400 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 6401 | return FALSE; |
b49e97c9 TS |
6402 | |
6403 | if (flags) | |
6404 | { | |
6405 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
6406 | (bfd_get_section_flags (abfd, | |
6407 | hdr->bfd_section) | |
6408 | | flags))) | |
b34976b6 | 6409 | return FALSE; |
b49e97c9 TS |
6410 | } |
6411 | ||
6412 | /* FIXME: We should record sh_info for a .gptab section. */ | |
6413 | ||
6414 | /* For a .reginfo section, set the gp value in the tdata information | |
6415 | from the contents of this section. We need the gp value while | |
6416 | processing relocs, so we just get it now. The .reginfo section | |
6417 | is not used in the 64-bit MIPS ELF ABI. */ | |
6418 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
6419 | { | |
6420 | Elf32_External_RegInfo ext; | |
6421 | Elf32_RegInfo s; | |
6422 | ||
9719ad41 RS |
6423 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
6424 | &ext, 0, sizeof ext)) | |
b34976b6 | 6425 | return FALSE; |
b49e97c9 TS |
6426 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
6427 | elf_gp (abfd) = s.ri_gp_value; | |
6428 | } | |
6429 | ||
6430 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
6431 | set the gp value based on what we find. We may see both | |
6432 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
6433 | they should agree. */ | |
6434 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
6435 | { | |
6436 | bfd_byte *contents, *l, *lend; | |
6437 | ||
9719ad41 | 6438 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 6439 | if (contents == NULL) |
b34976b6 | 6440 | return FALSE; |
b49e97c9 | 6441 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 6442 | 0, hdr->sh_size)) |
b49e97c9 TS |
6443 | { |
6444 | free (contents); | |
b34976b6 | 6445 | return FALSE; |
b49e97c9 TS |
6446 | } |
6447 | l = contents; | |
6448 | lend = contents + hdr->sh_size; | |
6449 | while (l + sizeof (Elf_External_Options) <= lend) | |
6450 | { | |
6451 | Elf_Internal_Options intopt; | |
6452 | ||
6453 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
6454 | &intopt); | |
1bc8074d MR |
6455 | if (intopt.size < sizeof (Elf_External_Options)) |
6456 | { | |
6457 | (*_bfd_error_handler) | |
6458 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
6459 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
6460 | break; | |
6461 | } | |
b49e97c9 TS |
6462 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
6463 | { | |
6464 | Elf64_Internal_RegInfo intreg; | |
6465 | ||
6466 | bfd_mips_elf64_swap_reginfo_in | |
6467 | (abfd, | |
6468 | ((Elf64_External_RegInfo *) | |
6469 | (l + sizeof (Elf_External_Options))), | |
6470 | &intreg); | |
6471 | elf_gp (abfd) = intreg.ri_gp_value; | |
6472 | } | |
6473 | else if (intopt.kind == ODK_REGINFO) | |
6474 | { | |
6475 | Elf32_RegInfo intreg; | |
6476 | ||
6477 | bfd_mips_elf32_swap_reginfo_in | |
6478 | (abfd, | |
6479 | ((Elf32_External_RegInfo *) | |
6480 | (l + sizeof (Elf_External_Options))), | |
6481 | &intreg); | |
6482 | elf_gp (abfd) = intreg.ri_gp_value; | |
6483 | } | |
6484 | l += intopt.size; | |
6485 | } | |
6486 | free (contents); | |
6487 | } | |
6488 | ||
b34976b6 | 6489 | return TRUE; |
b49e97c9 TS |
6490 | } |
6491 | ||
6492 | /* Set the correct type for a MIPS ELF section. We do this by the | |
6493 | section name, which is a hack, but ought to work. This routine is | |
6494 | used by both the 32-bit and the 64-bit ABI. */ | |
6495 | ||
b34976b6 | 6496 | bfd_boolean |
9719ad41 | 6497 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 | 6498 | { |
0414f35b | 6499 | const char *name = bfd_get_section_name (abfd, sec); |
b49e97c9 TS |
6500 | |
6501 | if (strcmp (name, ".liblist") == 0) | |
6502 | { | |
6503 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 6504 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
6505 | /* The sh_link field is set in final_write_processing. */ |
6506 | } | |
6507 | else if (strcmp (name, ".conflict") == 0) | |
6508 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
0112cd26 | 6509 | else if (CONST_STRNEQ (name, ".gptab.")) |
b49e97c9 TS |
6510 | { |
6511 | hdr->sh_type = SHT_MIPS_GPTAB; | |
6512 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
6513 | /* The sh_info field is set in final_write_processing. */ | |
6514 | } | |
6515 | else if (strcmp (name, ".ucode") == 0) | |
6516 | hdr->sh_type = SHT_MIPS_UCODE; | |
6517 | else if (strcmp (name, ".mdebug") == 0) | |
6518 | { | |
6519 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 6520 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
6521 | entsize of 0. FIXME: Does this matter? */ |
6522 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
6523 | hdr->sh_entsize = 0; | |
6524 | else | |
6525 | hdr->sh_entsize = 1; | |
6526 | } | |
6527 | else if (strcmp (name, ".reginfo") == 0) | |
6528 | { | |
6529 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 6530 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
6531 | entsize of 0x18. FIXME: Does this matter? */ |
6532 | if (SGI_COMPAT (abfd)) | |
6533 | { | |
6534 | if ((abfd->flags & DYNAMIC) != 0) | |
6535 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
6536 | else | |
6537 | hdr->sh_entsize = 1; | |
6538 | } | |
6539 | else | |
6540 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
6541 | } | |
6542 | else if (SGI_COMPAT (abfd) | |
6543 | && (strcmp (name, ".hash") == 0 | |
6544 | || strcmp (name, ".dynamic") == 0 | |
6545 | || strcmp (name, ".dynstr") == 0)) | |
6546 | { | |
6547 | if (SGI_COMPAT (abfd)) | |
6548 | hdr->sh_entsize = 0; | |
6549 | #if 0 | |
8dc1a139 | 6550 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
6551 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
6552 | #endif | |
6553 | } | |
6554 | else if (strcmp (name, ".got") == 0 | |
6555 | || strcmp (name, ".srdata") == 0 | |
6556 | || strcmp (name, ".sdata") == 0 | |
6557 | || strcmp (name, ".sbss") == 0 | |
6558 | || strcmp (name, ".lit4") == 0 | |
6559 | || strcmp (name, ".lit8") == 0) | |
6560 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
6561 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
6562 | { | |
6563 | hdr->sh_type = SHT_MIPS_IFACE; | |
6564 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
6565 | } | |
0112cd26 | 6566 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
b49e97c9 TS |
6567 | { |
6568 | hdr->sh_type = SHT_MIPS_CONTENT; | |
6569 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
6570 | /* The sh_info field is set in final_write_processing. */ | |
6571 | } | |
cc2e31b9 | 6572 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
6573 | { |
6574 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
6575 | hdr->sh_entsize = 1; | |
6576 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
6577 | } | |
1b315056 CS |
6578 | else if (CONST_STRNEQ (name, ".debug_") |
6579 | || CONST_STRNEQ (name, ".zdebug_")) | |
b5482f21 NC |
6580 | { |
6581 | hdr->sh_type = SHT_MIPS_DWARF; | |
6582 | ||
6583 | /* Irix facilities such as libexc expect a single .debug_frame | |
6584 | per executable, the system ones have NOSTRIP set and the linker | |
6585 | doesn't merge sections with different flags so ... */ | |
6586 | if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) | |
6587 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
6588 | } | |
b49e97c9 TS |
6589 | else if (strcmp (name, ".MIPS.symlib") == 0) |
6590 | { | |
6591 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
6592 | /* The sh_link and sh_info fields are set in | |
6593 | final_write_processing. */ | |
6594 | } | |
0112cd26 NC |
6595 | else if (CONST_STRNEQ (name, ".MIPS.events") |
6596 | || CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b49e97c9 TS |
6597 | { |
6598 | hdr->sh_type = SHT_MIPS_EVENTS; | |
6599 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
6600 | /* The sh_link field is set in final_write_processing. */ | |
6601 | } | |
6602 | else if (strcmp (name, ".msym") == 0) | |
6603 | { | |
6604 | hdr->sh_type = SHT_MIPS_MSYM; | |
6605 | hdr->sh_flags |= SHF_ALLOC; | |
6606 | hdr->sh_entsize = 8; | |
6607 | } | |
6608 | ||
7a79a000 TS |
6609 | /* The generic elf_fake_sections will set up REL_HDR using the default |
6610 | kind of relocations. We used to set up a second header for the | |
6611 | non-default kind of relocations here, but only NewABI would use | |
6612 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
6613 | Thus we create those header only on demand now. */ | |
b49e97c9 | 6614 | |
b34976b6 | 6615 | return TRUE; |
b49e97c9 TS |
6616 | } |
6617 | ||
6618 | /* Given a BFD section, try to locate the corresponding ELF section | |
6619 | index. This is used by both the 32-bit and the 64-bit ABI. | |
6620 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
6621 | but for non-PIC objects we will certainly want support for at least | |
6622 | the .scommon section. */ | |
6623 | ||
b34976b6 | 6624 | bfd_boolean |
9719ad41 RS |
6625 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
6626 | asection *sec, int *retval) | |
b49e97c9 TS |
6627 | { |
6628 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
6629 | { | |
6630 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 6631 | return TRUE; |
b49e97c9 TS |
6632 | } |
6633 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
6634 | { | |
6635 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 6636 | return TRUE; |
b49e97c9 | 6637 | } |
b34976b6 | 6638 | return FALSE; |
b49e97c9 TS |
6639 | } |
6640 | \f | |
6641 | /* Hook called by the linker routine which adds symbols from an object | |
6642 | file. We must handle the special MIPS section numbers here. */ | |
6643 | ||
b34976b6 | 6644 | bfd_boolean |
9719ad41 | 6645 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 6646 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
6647 | flagword *flagsp ATTRIBUTE_UNUSED, |
6648 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
6649 | { |
6650 | if (SGI_COMPAT (abfd) | |
6651 | && (abfd->flags & DYNAMIC) != 0 | |
6652 | && strcmp (*namep, "_rld_new_interface") == 0) | |
6653 | { | |
8dc1a139 | 6654 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 6655 | *namep = NULL; |
b34976b6 | 6656 | return TRUE; |
b49e97c9 TS |
6657 | } |
6658 | ||
eedecc07 DD |
6659 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
6660 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
6661 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
6662 | a magic symbol resolved by the linker, we ignore this bogus definition | |
6663 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
6664 | is not done for them. */ | |
6665 | if (!NEWABI_P(abfd) | |
6666 | && (sym->st_shndx == SHN_ABS) | |
6667 | && (strcmp (*namep, "_gp_disp") == 0)) | |
6668 | { | |
6669 | *namep = NULL; | |
6670 | return TRUE; | |
6671 | } | |
6672 | ||
b49e97c9 TS |
6673 | switch (sym->st_shndx) |
6674 | { | |
6675 | case SHN_COMMON: | |
6676 | /* Common symbols less than the GP size are automatically | |
6677 | treated as SHN_MIPS_SCOMMON symbols. */ | |
6678 | if (sym->st_size > elf_gp_size (abfd) | |
b59eed79 | 6679 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
b49e97c9 TS |
6680 | || IRIX_COMPAT (abfd) == ict_irix6) |
6681 | break; | |
6682 | /* Fall through. */ | |
6683 | case SHN_MIPS_SCOMMON: | |
6684 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
6685 | (*secp)->flags |= SEC_IS_COMMON; | |
6686 | *valp = sym->st_size; | |
6687 | break; | |
6688 | ||
6689 | case SHN_MIPS_TEXT: | |
6690 | /* This section is used in a shared object. */ | |
6691 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
6692 | { | |
6693 | asymbol *elf_text_symbol; | |
6694 | asection *elf_text_section; | |
6695 | bfd_size_type amt = sizeof (asection); | |
6696 | ||
6697 | elf_text_section = bfd_zalloc (abfd, amt); | |
6698 | if (elf_text_section == NULL) | |
b34976b6 | 6699 | return FALSE; |
b49e97c9 TS |
6700 | |
6701 | amt = sizeof (asymbol); | |
6702 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
6703 | if (elf_text_symbol == NULL) | |
b34976b6 | 6704 | return FALSE; |
b49e97c9 TS |
6705 | |
6706 | /* Initialize the section. */ | |
6707 | ||
6708 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
6709 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
6710 | ||
6711 | elf_text_section->symbol = elf_text_symbol; | |
6712 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
6713 | ||
6714 | elf_text_section->name = ".text"; | |
6715 | elf_text_section->flags = SEC_NO_FLAGS; | |
6716 | elf_text_section->output_section = NULL; | |
6717 | elf_text_section->owner = abfd; | |
6718 | elf_text_symbol->name = ".text"; | |
6719 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
6720 | elf_text_symbol->section = elf_text_section; | |
6721 | } | |
6722 | /* This code used to do *secp = bfd_und_section_ptr if | |
6723 | info->shared. I don't know why, and that doesn't make sense, | |
6724 | so I took it out. */ | |
6725 | *secp = elf_tdata (abfd)->elf_text_section; | |
6726 | break; | |
6727 | ||
6728 | case SHN_MIPS_ACOMMON: | |
6729 | /* Fall through. XXX Can we treat this as allocated data? */ | |
6730 | case SHN_MIPS_DATA: | |
6731 | /* This section is used in a shared object. */ | |
6732 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
6733 | { | |
6734 | asymbol *elf_data_symbol; | |
6735 | asection *elf_data_section; | |
6736 | bfd_size_type amt = sizeof (asection); | |
6737 | ||
6738 | elf_data_section = bfd_zalloc (abfd, amt); | |
6739 | if (elf_data_section == NULL) | |
b34976b6 | 6740 | return FALSE; |
b49e97c9 TS |
6741 | |
6742 | amt = sizeof (asymbol); | |
6743 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
6744 | if (elf_data_symbol == NULL) | |
b34976b6 | 6745 | return FALSE; |
b49e97c9 TS |
6746 | |
6747 | /* Initialize the section. */ | |
6748 | ||
6749 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
6750 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
6751 | ||
6752 | elf_data_section->symbol = elf_data_symbol; | |
6753 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
6754 | ||
6755 | elf_data_section->name = ".data"; | |
6756 | elf_data_section->flags = SEC_NO_FLAGS; | |
6757 | elf_data_section->output_section = NULL; | |
6758 | elf_data_section->owner = abfd; | |
6759 | elf_data_symbol->name = ".data"; | |
6760 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
6761 | elf_data_symbol->section = elf_data_section; | |
6762 | } | |
6763 | /* This code used to do *secp = bfd_und_section_ptr if | |
6764 | info->shared. I don't know why, and that doesn't make sense, | |
6765 | so I took it out. */ | |
6766 | *secp = elf_tdata (abfd)->elf_data_section; | |
6767 | break; | |
6768 | ||
6769 | case SHN_MIPS_SUNDEFINED: | |
6770 | *secp = bfd_und_section_ptr; | |
6771 | break; | |
6772 | } | |
6773 | ||
6774 | if (SGI_COMPAT (abfd) | |
6775 | && ! info->shared | |
f13a99db | 6776 | && info->output_bfd->xvec == abfd->xvec |
b49e97c9 TS |
6777 | && strcmp (*namep, "__rld_obj_head") == 0) |
6778 | { | |
6779 | struct elf_link_hash_entry *h; | |
14a793b2 | 6780 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
6781 | |
6782 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 6783 | bh = NULL; |
b49e97c9 | 6784 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 6785 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 6786 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6787 | return FALSE; |
14a793b2 AM |
6788 | |
6789 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6790 | h->non_elf = 0; |
6791 | h->def_regular = 1; | |
b49e97c9 TS |
6792 | h->type = STT_OBJECT; |
6793 | ||
c152c796 | 6794 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6795 | return FALSE; |
b49e97c9 | 6796 | |
b34976b6 | 6797 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
6798 | } |
6799 | ||
6800 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
6801 | odd. This will cause something like .word SYM to come up with | |
6802 | the right value when it is loaded into the PC. */ | |
30c09090 | 6803 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
b49e97c9 TS |
6804 | ++*valp; |
6805 | ||
b34976b6 | 6806 | return TRUE; |
b49e97c9 TS |
6807 | } |
6808 | ||
6809 | /* This hook function is called before the linker writes out a global | |
6810 | symbol. We mark symbols as small common if appropriate. This is | |
6811 | also where we undo the increment of the value for a mips16 symbol. */ | |
6812 | ||
6e0b88f1 | 6813 | int |
9719ad41 RS |
6814 | _bfd_mips_elf_link_output_symbol_hook |
6815 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
6816 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
6817 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
6818 | { |
6819 | /* If we see a common symbol, which implies a relocatable link, then | |
6820 | if a symbol was small common in an input file, mark it as small | |
6821 | common in the output file. */ | |
6822 | if (sym->st_shndx == SHN_COMMON | |
6823 | && strcmp (input_sec->name, ".scommon") == 0) | |
6824 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
6825 | ||
30c09090 | 6826 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
79cda7cf | 6827 | sym->st_value &= ~1; |
b49e97c9 | 6828 | |
6e0b88f1 | 6829 | return 1; |
b49e97c9 TS |
6830 | } |
6831 | \f | |
6832 | /* Functions for the dynamic linker. */ | |
6833 | ||
6834 | /* Create dynamic sections when linking against a dynamic object. */ | |
6835 | ||
b34976b6 | 6836 | bfd_boolean |
9719ad41 | 6837 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
6838 | { |
6839 | struct elf_link_hash_entry *h; | |
14a793b2 | 6840 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
6841 | flagword flags; |
6842 | register asection *s; | |
6843 | const char * const *namep; | |
0a44bf69 | 6844 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6845 | |
0a44bf69 | 6846 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6847 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
6848 | | SEC_LINKER_CREATED | SEC_READONLY); | |
6849 | ||
0a44bf69 RS |
6850 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
6851 | EABI doesn't. */ | |
6852 | if (!htab->is_vxworks) | |
b49e97c9 | 6853 | { |
0a44bf69 RS |
6854 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
6855 | if (s != NULL) | |
6856 | { | |
6857 | if (! bfd_set_section_flags (abfd, s, flags)) | |
6858 | return FALSE; | |
6859 | } | |
b49e97c9 TS |
6860 | } |
6861 | ||
6862 | /* We need to create .got section. */ | |
23cc69b6 | 6863 | if (!mips_elf_create_got_section (abfd, info)) |
f4416af6 AO |
6864 | return FALSE; |
6865 | ||
0a44bf69 | 6866 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 6867 | return FALSE; |
b49e97c9 | 6868 | |
b49e97c9 | 6869 | /* Create .stub section. */ |
4e41d0d7 RS |
6870 | s = bfd_make_section_with_flags (abfd, |
6871 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
6872 | flags | SEC_CODE); | |
6873 | if (s == NULL | |
6874 | || ! bfd_set_section_alignment (abfd, s, | |
6875 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
6876 | return FALSE; | |
6877 | htab->sstubs = s; | |
b49e97c9 TS |
6878 | |
6879 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
6880 | && !info->shared | |
6881 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
6882 | { | |
3496cb2a L |
6883 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
6884 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 6885 | if (s == NULL |
b49e97c9 TS |
6886 | || ! bfd_set_section_alignment (abfd, s, |
6887 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 6888 | return FALSE; |
b49e97c9 TS |
6889 | } |
6890 | ||
6891 | /* On IRIX5, we adjust add some additional symbols and change the | |
6892 | alignments of several sections. There is no ABI documentation | |
6893 | indicating that this is necessary on IRIX6, nor any evidence that | |
6894 | the linker takes such action. */ | |
6895 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
6896 | { | |
6897 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
6898 | { | |
14a793b2 | 6899 | bh = NULL; |
b49e97c9 | 6900 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
6901 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
6902 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 6903 | return FALSE; |
14a793b2 AM |
6904 | |
6905 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6906 | h->non_elf = 0; |
6907 | h->def_regular = 1; | |
b49e97c9 TS |
6908 | h->type = STT_SECTION; |
6909 | ||
c152c796 | 6910 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6911 | return FALSE; |
b49e97c9 TS |
6912 | } |
6913 | ||
6914 | /* We need to create a .compact_rel section. */ | |
6915 | if (SGI_COMPAT (abfd)) | |
6916 | { | |
6917 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 6918 | return FALSE; |
b49e97c9 TS |
6919 | } |
6920 | ||
44c410de | 6921 | /* Change alignments of some sections. */ |
b49e97c9 TS |
6922 | s = bfd_get_section_by_name (abfd, ".hash"); |
6923 | if (s != NULL) | |
d80dcc6a | 6924 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6925 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
6926 | if (s != NULL) | |
d80dcc6a | 6927 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6928 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
6929 | if (s != NULL) | |
d80dcc6a | 6930 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6931 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
6932 | if (s != NULL) | |
d80dcc6a | 6933 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6934 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
6935 | if (s != NULL) | |
d80dcc6a | 6936 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
6937 | } |
6938 | ||
6939 | if (!info->shared) | |
6940 | { | |
14a793b2 AM |
6941 | const char *name; |
6942 | ||
6943 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
6944 | bh = NULL; | |
6945 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
6946 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
6947 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 6948 | return FALSE; |
14a793b2 AM |
6949 | |
6950 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6951 | h->non_elf = 0; |
6952 | h->def_regular = 1; | |
b49e97c9 TS |
6953 | h->type = STT_SECTION; |
6954 | ||
c152c796 | 6955 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6956 | return FALSE; |
b49e97c9 TS |
6957 | |
6958 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
6959 | { | |
6960 | /* __rld_map is a four byte word located in the .data section | |
6961 | and is filled in by the rtld to contain a pointer to | |
6962 | the _r_debug structure. Its symbol value will be set in | |
6963 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
6964 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
6965 | BFD_ASSERT (s != NULL); | |
6966 | ||
14a793b2 AM |
6967 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
6968 | bh = NULL; | |
6969 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 6970 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 6971 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6972 | return FALSE; |
14a793b2 AM |
6973 | |
6974 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6975 | h->non_elf = 0; |
6976 | h->def_regular = 1; | |
b49e97c9 TS |
6977 | h->type = STT_OBJECT; |
6978 | ||
c152c796 | 6979 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6980 | return FALSE; |
b49e97c9 TS |
6981 | } |
6982 | } | |
6983 | ||
861fb55a DJ |
6984 | /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. |
6985 | Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ | |
6986 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) | |
6987 | return FALSE; | |
6988 | ||
6989 | /* Cache the sections created above. */ | |
6990 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); | |
6991 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); | |
0a44bf69 RS |
6992 | if (htab->is_vxworks) |
6993 | { | |
0a44bf69 RS |
6994 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); |
6995 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); | |
861fb55a DJ |
6996 | } |
6997 | else | |
6998 | htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt"); | |
6999 | if (!htab->sdynbss | |
7000 | || (htab->is_vxworks && !htab->srelbss && !info->shared) | |
7001 | || !htab->srelplt | |
7002 | || !htab->splt) | |
7003 | abort (); | |
0a44bf69 | 7004 | |
861fb55a DJ |
7005 | if (htab->is_vxworks) |
7006 | { | |
0a44bf69 RS |
7007 | /* Do the usual VxWorks handling. */ |
7008 | if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
7009 | return FALSE; | |
7010 | ||
7011 | /* Work out the PLT sizes. */ | |
7012 | if (info->shared) | |
7013 | { | |
7014 | htab->plt_header_size | |
7015 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
7016 | htab->plt_entry_size | |
7017 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
7018 | } | |
7019 | else | |
7020 | { | |
7021 | htab->plt_header_size | |
7022 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
7023 | htab->plt_entry_size | |
7024 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
7025 | } | |
7026 | } | |
861fb55a DJ |
7027 | else if (!info->shared) |
7028 | { | |
7029 | /* All variants of the plt0 entry are the same size. */ | |
7030 | htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | |
7031 | htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
7032 | } | |
0a44bf69 | 7033 | |
b34976b6 | 7034 | return TRUE; |
b49e97c9 TS |
7035 | } |
7036 | \f | |
c224138d RS |
7037 | /* Return true if relocation REL against section SEC is a REL rather than |
7038 | RELA relocation. RELOCS is the first relocation in the section and | |
7039 | ABFD is the bfd that contains SEC. */ | |
7040 | ||
7041 | static bfd_boolean | |
7042 | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, | |
7043 | const Elf_Internal_Rela *relocs, | |
7044 | const Elf_Internal_Rela *rel) | |
7045 | { | |
7046 | Elf_Internal_Shdr *rel_hdr; | |
7047 | const struct elf_backend_data *bed; | |
7048 | ||
7049 | /* To determine which flavor or relocation this is, we depend on the | |
7050 | fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */ | |
7051 | rel_hdr = &elf_section_data (sec)->rel_hdr; | |
7052 | bed = get_elf_backend_data (abfd); | |
7053 | if ((size_t) (rel - relocs) | |
7054 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
7055 | rel_hdr = elf_section_data (sec)->rel_hdr2; | |
7056 | return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd); | |
7057 | } | |
7058 | ||
7059 | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. | |
7060 | HOWTO is the relocation's howto and CONTENTS points to the contents | |
7061 | of the section that REL is against. */ | |
7062 | ||
7063 | static bfd_vma | |
7064 | mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, | |
7065 | reloc_howto_type *howto, bfd_byte *contents) | |
7066 | { | |
7067 | bfd_byte *location; | |
7068 | unsigned int r_type; | |
7069 | bfd_vma addend; | |
7070 | ||
7071 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
7072 | location = contents + rel->r_offset; | |
7073 | ||
7074 | /* Get the addend, which is stored in the input file. */ | |
7075 | _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location); | |
7076 | addend = mips_elf_obtain_contents (howto, rel, abfd, contents); | |
7077 | _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location); | |
7078 | ||
7079 | return addend & howto->src_mask; | |
7080 | } | |
7081 | ||
7082 | /* REL is a relocation in ABFD that needs a partnering LO16 relocation | |
7083 | and *ADDEND is the addend for REL itself. Look for the LO16 relocation | |
7084 | and update *ADDEND with the final addend. Return true on success | |
7085 | or false if the LO16 could not be found. RELEND is the exclusive | |
7086 | upper bound on the relocations for REL's section. */ | |
7087 | ||
7088 | static bfd_boolean | |
7089 | mips_elf_add_lo16_rel_addend (bfd *abfd, | |
7090 | const Elf_Internal_Rela *rel, | |
7091 | const Elf_Internal_Rela *relend, | |
7092 | bfd_byte *contents, bfd_vma *addend) | |
7093 | { | |
7094 | unsigned int r_type, lo16_type; | |
7095 | const Elf_Internal_Rela *lo16_relocation; | |
7096 | reloc_howto_type *lo16_howto; | |
7097 | bfd_vma l; | |
7098 | ||
7099 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
738e5348 | 7100 | if (mips16_reloc_p (r_type)) |
c224138d RS |
7101 | lo16_type = R_MIPS16_LO16; |
7102 | else | |
7103 | lo16_type = R_MIPS_LO16; | |
7104 | ||
7105 | /* The combined value is the sum of the HI16 addend, left-shifted by | |
7106 | sixteen bits, and the LO16 addend, sign extended. (Usually, the | |
7107 | code does a `lui' of the HI16 value, and then an `addiu' of the | |
7108 | LO16 value.) | |
7109 | ||
7110 | Scan ahead to find a matching LO16 relocation. | |
7111 | ||
7112 | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must | |
7113 | be immediately following. However, for the IRIX6 ABI, the next | |
7114 | relocation may be a composed relocation consisting of several | |
7115 | relocations for the same address. In that case, the R_MIPS_LO16 | |
7116 | relocation may occur as one of these. We permit a similar | |
7117 | extension in general, as that is useful for GCC. | |
7118 | ||
7119 | In some cases GCC dead code elimination removes the LO16 but keeps | |
7120 | the corresponding HI16. This is strictly speaking a violation of | |
7121 | the ABI but not immediately harmful. */ | |
7122 | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); | |
7123 | if (lo16_relocation == NULL) | |
7124 | return FALSE; | |
7125 | ||
7126 | /* Obtain the addend kept there. */ | |
7127 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); | |
7128 | l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); | |
7129 | ||
7130 | l <<= lo16_howto->rightshift; | |
7131 | l = _bfd_mips_elf_sign_extend (l, 16); | |
7132 | ||
7133 | *addend <<= 16; | |
7134 | *addend += l; | |
7135 | return TRUE; | |
7136 | } | |
7137 | ||
7138 | /* Try to read the contents of section SEC in bfd ABFD. Return true and | |
7139 | store the contents in *CONTENTS on success. Assume that *CONTENTS | |
7140 | already holds the contents if it is nonull on entry. */ | |
7141 | ||
7142 | static bfd_boolean | |
7143 | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) | |
7144 | { | |
7145 | if (*contents) | |
7146 | return TRUE; | |
7147 | ||
7148 | /* Get cached copy if it exists. */ | |
7149 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
7150 | { | |
7151 | *contents = elf_section_data (sec)->this_hdr.contents; | |
7152 | return TRUE; | |
7153 | } | |
7154 | ||
7155 | return bfd_malloc_and_get_section (abfd, sec, contents); | |
7156 | } | |
7157 | ||
b49e97c9 TS |
7158 | /* Look through the relocs for a section during the first phase, and |
7159 | allocate space in the global offset table. */ | |
7160 | ||
b34976b6 | 7161 | bfd_boolean |
9719ad41 RS |
7162 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
7163 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
7164 | { |
7165 | const char *name; | |
7166 | bfd *dynobj; | |
7167 | Elf_Internal_Shdr *symtab_hdr; | |
7168 | struct elf_link_hash_entry **sym_hashes; | |
b49e97c9 TS |
7169 | size_t extsymoff; |
7170 | const Elf_Internal_Rela *rel; | |
7171 | const Elf_Internal_Rela *rel_end; | |
b49e97c9 | 7172 | asection *sreloc; |
9c5bfbb7 | 7173 | const struct elf_backend_data *bed; |
0a44bf69 | 7174 | struct mips_elf_link_hash_table *htab; |
c224138d RS |
7175 | bfd_byte *contents; |
7176 | bfd_vma addend; | |
7177 | reloc_howto_type *howto; | |
b49e97c9 | 7178 | |
1049f94e | 7179 | if (info->relocatable) |
b34976b6 | 7180 | return TRUE; |
b49e97c9 | 7181 | |
0a44bf69 | 7182 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
7183 | dynobj = elf_hash_table (info)->dynobj; |
7184 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7185 | sym_hashes = elf_sym_hashes (abfd); | |
7186 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
7187 | ||
738e5348 RS |
7188 | bed = get_elf_backend_data (abfd); |
7189 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
7190 | ||
b49e97c9 TS |
7191 | /* Check for the mips16 stub sections. */ |
7192 | ||
7193 | name = bfd_get_section_name (abfd, sec); | |
b9d58d71 | 7194 | if (FN_STUB_P (name)) |
b49e97c9 TS |
7195 | { |
7196 | unsigned long r_symndx; | |
7197 | ||
7198 | /* Look at the relocation information to figure out which symbol | |
7199 | this is for. */ | |
7200 | ||
738e5348 RS |
7201 | r_symndx = mips16_stub_symndx (sec, relocs, rel_end); |
7202 | if (r_symndx == 0) | |
7203 | { | |
7204 | (*_bfd_error_handler) | |
7205 | (_("%B: Warning: cannot determine the target function for" | |
7206 | " stub section `%s'"), | |
7207 | abfd, name); | |
7208 | bfd_set_error (bfd_error_bad_value); | |
7209 | return FALSE; | |
7210 | } | |
b49e97c9 TS |
7211 | |
7212 | if (r_symndx < extsymoff | |
7213 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
7214 | { | |
7215 | asection *o; | |
7216 | ||
7217 | /* This stub is for a local symbol. This stub will only be | |
7218 | needed if there is some relocation in this BFD, other | |
7219 | than a 16 bit function call, which refers to this symbol. */ | |
7220 | for (o = abfd->sections; o != NULL; o = o->next) | |
7221 | { | |
7222 | Elf_Internal_Rela *sec_relocs; | |
7223 | const Elf_Internal_Rela *r, *rend; | |
7224 | ||
7225 | /* We can ignore stub sections when looking for relocs. */ | |
7226 | if ((o->flags & SEC_RELOC) == 0 | |
7227 | || o->reloc_count == 0 | |
738e5348 | 7228 | || section_allows_mips16_refs_p (o)) |
b49e97c9 TS |
7229 | continue; |
7230 | ||
45d6a902 | 7231 | sec_relocs |
9719ad41 | 7232 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 7233 | info->keep_memory); |
b49e97c9 | 7234 | if (sec_relocs == NULL) |
b34976b6 | 7235 | return FALSE; |
b49e97c9 TS |
7236 | |
7237 | rend = sec_relocs + o->reloc_count; | |
7238 | for (r = sec_relocs; r < rend; r++) | |
7239 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
738e5348 | 7240 | && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) |
b49e97c9 TS |
7241 | break; |
7242 | ||
6cdc0ccc | 7243 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
7244 | free (sec_relocs); |
7245 | ||
7246 | if (r < rend) | |
7247 | break; | |
7248 | } | |
7249 | ||
7250 | if (o == NULL) | |
7251 | { | |
7252 | /* There is no non-call reloc for this stub, so we do | |
7253 | not need it. Since this function is called before | |
7254 | the linker maps input sections to output sections, we | |
7255 | can easily discard it by setting the SEC_EXCLUDE | |
7256 | flag. */ | |
7257 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 7258 | return TRUE; |
b49e97c9 TS |
7259 | } |
7260 | ||
7261 | /* Record this stub in an array of local symbol stubs for | |
7262 | this BFD. */ | |
7263 | if (elf_tdata (abfd)->local_stubs == NULL) | |
7264 | { | |
7265 | unsigned long symcount; | |
7266 | asection **n; | |
7267 | bfd_size_type amt; | |
7268 | ||
7269 | if (elf_bad_symtab (abfd)) | |
7270 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
7271 | else | |
7272 | symcount = symtab_hdr->sh_info; | |
7273 | amt = symcount * sizeof (asection *); | |
9719ad41 | 7274 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 7275 | if (n == NULL) |
b34976b6 | 7276 | return FALSE; |
b49e97c9 TS |
7277 | elf_tdata (abfd)->local_stubs = n; |
7278 | } | |
7279 | ||
b9d58d71 | 7280 | sec->flags |= SEC_KEEP; |
b49e97c9 TS |
7281 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
7282 | ||
7283 | /* We don't need to set mips16_stubs_seen in this case. | |
7284 | That flag is used to see whether we need to look through | |
7285 | the global symbol table for stubs. We don't need to set | |
7286 | it here, because we just have a local stub. */ | |
7287 | } | |
7288 | else | |
7289 | { | |
7290 | struct mips_elf_link_hash_entry *h; | |
7291 | ||
7292 | h = ((struct mips_elf_link_hash_entry *) | |
7293 | sym_hashes[r_symndx - extsymoff]); | |
7294 | ||
973a3492 L |
7295 | while (h->root.root.type == bfd_link_hash_indirect |
7296 | || h->root.root.type == bfd_link_hash_warning) | |
7297 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
7298 | ||
b49e97c9 TS |
7299 | /* H is the symbol this stub is for. */ |
7300 | ||
b9d58d71 TS |
7301 | /* If we already have an appropriate stub for this function, we |
7302 | don't need another one, so we can discard this one. Since | |
7303 | this function is called before the linker maps input sections | |
7304 | to output sections, we can easily discard it by setting the | |
7305 | SEC_EXCLUDE flag. */ | |
7306 | if (h->fn_stub != NULL) | |
7307 | { | |
7308 | sec->flags |= SEC_EXCLUDE; | |
7309 | return TRUE; | |
7310 | } | |
7311 | ||
7312 | sec->flags |= SEC_KEEP; | |
b49e97c9 | 7313 | h->fn_stub = sec; |
b34976b6 | 7314 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
7315 | } |
7316 | } | |
b9d58d71 | 7317 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
b49e97c9 TS |
7318 | { |
7319 | unsigned long r_symndx; | |
7320 | struct mips_elf_link_hash_entry *h; | |
7321 | asection **loc; | |
7322 | ||
7323 | /* Look at the relocation information to figure out which symbol | |
7324 | this is for. */ | |
7325 | ||
738e5348 RS |
7326 | r_symndx = mips16_stub_symndx (sec, relocs, rel_end); |
7327 | if (r_symndx == 0) | |
7328 | { | |
7329 | (*_bfd_error_handler) | |
7330 | (_("%B: Warning: cannot determine the target function for" | |
7331 | " stub section `%s'"), | |
7332 | abfd, name); | |
7333 | bfd_set_error (bfd_error_bad_value); | |
7334 | return FALSE; | |
7335 | } | |
b49e97c9 TS |
7336 | |
7337 | if (r_symndx < extsymoff | |
7338 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
7339 | { | |
b9d58d71 | 7340 | asection *o; |
b49e97c9 | 7341 | |
b9d58d71 TS |
7342 | /* This stub is for a local symbol. This stub will only be |
7343 | needed if there is some relocation (R_MIPS16_26) in this BFD | |
7344 | that refers to this symbol. */ | |
7345 | for (o = abfd->sections; o != NULL; o = o->next) | |
7346 | { | |
7347 | Elf_Internal_Rela *sec_relocs; | |
7348 | const Elf_Internal_Rela *r, *rend; | |
7349 | ||
7350 | /* We can ignore stub sections when looking for relocs. */ | |
7351 | if ((o->flags & SEC_RELOC) == 0 | |
7352 | || o->reloc_count == 0 | |
738e5348 | 7353 | || section_allows_mips16_refs_p (o)) |
b9d58d71 TS |
7354 | continue; |
7355 | ||
7356 | sec_relocs | |
7357 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
7358 | info->keep_memory); | |
7359 | if (sec_relocs == NULL) | |
7360 | return FALSE; | |
7361 | ||
7362 | rend = sec_relocs + o->reloc_count; | |
7363 | for (r = sec_relocs; r < rend; r++) | |
7364 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
7365 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) | |
7366 | break; | |
7367 | ||
7368 | if (elf_section_data (o)->relocs != sec_relocs) | |
7369 | free (sec_relocs); | |
7370 | ||
7371 | if (r < rend) | |
7372 | break; | |
7373 | } | |
7374 | ||
7375 | if (o == NULL) | |
7376 | { | |
7377 | /* There is no non-call reloc for this stub, so we do | |
7378 | not need it. Since this function is called before | |
7379 | the linker maps input sections to output sections, we | |
7380 | can easily discard it by setting the SEC_EXCLUDE | |
7381 | flag. */ | |
7382 | sec->flags |= SEC_EXCLUDE; | |
7383 | return TRUE; | |
7384 | } | |
7385 | ||
7386 | /* Record this stub in an array of local symbol call_stubs for | |
7387 | this BFD. */ | |
7388 | if (elf_tdata (abfd)->local_call_stubs == NULL) | |
7389 | { | |
7390 | unsigned long symcount; | |
7391 | asection **n; | |
7392 | bfd_size_type amt; | |
7393 | ||
7394 | if (elf_bad_symtab (abfd)) | |
7395 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
7396 | else | |
7397 | symcount = symtab_hdr->sh_info; | |
7398 | amt = symcount * sizeof (asection *); | |
7399 | n = bfd_zalloc (abfd, amt); | |
7400 | if (n == NULL) | |
7401 | return FALSE; | |
7402 | elf_tdata (abfd)->local_call_stubs = n; | |
7403 | } | |
b49e97c9 | 7404 | |
b9d58d71 TS |
7405 | sec->flags |= SEC_KEEP; |
7406 | elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; | |
b49e97c9 | 7407 | |
b9d58d71 TS |
7408 | /* We don't need to set mips16_stubs_seen in this case. |
7409 | That flag is used to see whether we need to look through | |
7410 | the global symbol table for stubs. We don't need to set | |
7411 | it here, because we just have a local stub. */ | |
7412 | } | |
b49e97c9 | 7413 | else |
b49e97c9 | 7414 | { |
b9d58d71 TS |
7415 | h = ((struct mips_elf_link_hash_entry *) |
7416 | sym_hashes[r_symndx - extsymoff]); | |
7417 | ||
7418 | /* H is the symbol this stub is for. */ | |
7419 | ||
7420 | if (CALL_FP_STUB_P (name)) | |
7421 | loc = &h->call_fp_stub; | |
7422 | else | |
7423 | loc = &h->call_stub; | |
7424 | ||
7425 | /* If we already have an appropriate stub for this function, we | |
7426 | don't need another one, so we can discard this one. Since | |
7427 | this function is called before the linker maps input sections | |
7428 | to output sections, we can easily discard it by setting the | |
7429 | SEC_EXCLUDE flag. */ | |
7430 | if (*loc != NULL) | |
7431 | { | |
7432 | sec->flags |= SEC_EXCLUDE; | |
7433 | return TRUE; | |
7434 | } | |
b49e97c9 | 7435 | |
b9d58d71 TS |
7436 | sec->flags |= SEC_KEEP; |
7437 | *loc = sec; | |
7438 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; | |
7439 | } | |
b49e97c9 TS |
7440 | } |
7441 | ||
b49e97c9 | 7442 | sreloc = NULL; |
c224138d | 7443 | contents = NULL; |
b49e97c9 TS |
7444 | for (rel = relocs; rel < rel_end; ++rel) |
7445 | { | |
7446 | unsigned long r_symndx; | |
7447 | unsigned int r_type; | |
7448 | struct elf_link_hash_entry *h; | |
861fb55a | 7449 | bfd_boolean can_make_dynamic_p; |
b49e97c9 TS |
7450 | |
7451 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
7452 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
7453 | ||
7454 | if (r_symndx < extsymoff) | |
7455 | h = NULL; | |
7456 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
7457 | { | |
7458 | (*_bfd_error_handler) | |
d003868e AM |
7459 | (_("%B: Malformed reloc detected for section %s"), |
7460 | abfd, name); | |
b49e97c9 | 7461 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 7462 | return FALSE; |
b49e97c9 TS |
7463 | } |
7464 | else | |
7465 | { | |
7466 | h = sym_hashes[r_symndx - extsymoff]; | |
3e08fb72 NC |
7467 | while (h != NULL |
7468 | && (h->root.type == bfd_link_hash_indirect | |
7469 | || h->root.type == bfd_link_hash_warning)) | |
861fb55a DJ |
7470 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
7471 | } | |
b49e97c9 | 7472 | |
861fb55a DJ |
7473 | /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this |
7474 | relocation into a dynamic one. */ | |
7475 | can_make_dynamic_p = FALSE; | |
7476 | switch (r_type) | |
7477 | { | |
7478 | case R_MIPS16_GOT16: | |
7479 | case R_MIPS16_CALL16: | |
7480 | case R_MIPS_GOT16: | |
7481 | case R_MIPS_CALL16: | |
7482 | case R_MIPS_CALL_HI16: | |
7483 | case R_MIPS_CALL_LO16: | |
7484 | case R_MIPS_GOT_HI16: | |
7485 | case R_MIPS_GOT_LO16: | |
7486 | case R_MIPS_GOT_PAGE: | |
7487 | case R_MIPS_GOT_OFST: | |
7488 | case R_MIPS_GOT_DISP: | |
7489 | case R_MIPS_TLS_GOTTPREL: | |
7490 | case R_MIPS_TLS_GD: | |
7491 | case R_MIPS_TLS_LDM: | |
7492 | if (dynobj == NULL) | |
7493 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
7494 | if (!mips_elf_create_got_section (dynobj, info)) | |
7495 | return FALSE; | |
7496 | if (htab->is_vxworks && !info->shared) | |
b49e97c9 | 7497 | { |
861fb55a DJ |
7498 | (*_bfd_error_handler) |
7499 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
7500 | abfd, (unsigned long) rel->r_offset); | |
7501 | bfd_set_error (bfd_error_bad_value); | |
7502 | return FALSE; | |
b49e97c9 | 7503 | } |
861fb55a | 7504 | break; |
b49e97c9 | 7505 | |
99da6b5f AN |
7506 | /* This is just a hint; it can safely be ignored. Don't set |
7507 | has_static_relocs for the corresponding symbol. */ | |
7508 | case R_MIPS_JALR: | |
7509 | break; | |
7510 | ||
861fb55a DJ |
7511 | case R_MIPS_32: |
7512 | case R_MIPS_REL32: | |
7513 | case R_MIPS_64: | |
7514 | /* In VxWorks executables, references to external symbols | |
7515 | must be handled using copy relocs or PLT entries; it is not | |
7516 | possible to convert this relocation into a dynamic one. | |
7517 | ||
7518 | For executables that use PLTs and copy-relocs, we have a | |
7519 | choice between converting the relocation into a dynamic | |
7520 | one or using copy relocations or PLT entries. It is | |
7521 | usually better to do the former, unless the relocation is | |
7522 | against a read-only section. */ | |
7523 | if ((info->shared | |
7524 | || (h != NULL | |
7525 | && !htab->is_vxworks | |
7526 | && strcmp (h->root.root.string, "__gnu_local_gp") != 0 | |
7527 | && !(!info->nocopyreloc | |
7528 | && !PIC_OBJECT_P (abfd) | |
7529 | && MIPS_ELF_READONLY_SECTION (sec)))) | |
7530 | && (sec->flags & SEC_ALLOC) != 0) | |
b49e97c9 | 7531 | { |
861fb55a | 7532 | can_make_dynamic_p = TRUE; |
b49e97c9 TS |
7533 | if (dynobj == NULL) |
7534 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
b49e97c9 | 7535 | break; |
861fb55a DJ |
7536 | } |
7537 | /* Fall through. */ | |
b49e97c9 | 7538 | |
861fb55a DJ |
7539 | default: |
7540 | /* Most static relocations require pointer equality, except | |
7541 | for branches. */ | |
7542 | if (h) | |
7543 | h->pointer_equality_needed = TRUE; | |
7544 | /* Fall through. */ | |
b49e97c9 | 7545 | |
861fb55a DJ |
7546 | case R_MIPS_26: |
7547 | case R_MIPS_PC16: | |
7548 | case R_MIPS16_26: | |
7549 | if (h) | |
7550 | ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE; | |
7551 | break; | |
b49e97c9 TS |
7552 | } |
7553 | ||
0a44bf69 RS |
7554 | if (h) |
7555 | { | |
0a44bf69 RS |
7556 | /* Relocations against the special VxWorks __GOTT_BASE__ and |
7557 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
7558 | room for them in .rela.dyn. */ | |
7559 | if (is_gott_symbol (info, h)) | |
7560 | { | |
7561 | if (sreloc == NULL) | |
7562 | { | |
7563 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
7564 | if (sreloc == NULL) | |
7565 | return FALSE; | |
7566 | } | |
7567 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
9e3313ae RS |
7568 | if (MIPS_ELF_READONLY_SECTION (sec)) |
7569 | /* We tell the dynamic linker that there are | |
7570 | relocations against the text segment. */ | |
7571 | info->flags |= DF_TEXTREL; | |
0a44bf69 RS |
7572 | } |
7573 | } | |
7574 | else if (r_type == R_MIPS_CALL_LO16 | |
7575 | || r_type == R_MIPS_GOT_LO16 | |
7576 | || r_type == R_MIPS_GOT_DISP | |
738e5348 | 7577 | || (got16_reloc_p (r_type) && htab->is_vxworks)) |
b49e97c9 TS |
7578 | { |
7579 | /* We may need a local GOT entry for this relocation. We | |
7580 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
7581 | maximum number of pages needed by looking at the size of | |
738e5348 RS |
7582 | the segment. Similar comments apply to R_MIPS*_GOT16 and |
7583 | R_MIPS*_CALL16, except on VxWorks, where GOT relocations | |
0a44bf69 | 7584 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
b49e97c9 | 7585 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 7586 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
a8028dd0 RS |
7587 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
7588 | rel->r_addend, info, 0)) | |
f4416af6 | 7589 | return FALSE; |
b49e97c9 TS |
7590 | } |
7591 | ||
861fb55a DJ |
7592 | if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type)) |
7593 | ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; | |
7594 | ||
b49e97c9 TS |
7595 | switch (r_type) |
7596 | { | |
7597 | case R_MIPS_CALL16: | |
738e5348 | 7598 | case R_MIPS16_CALL16: |
b49e97c9 TS |
7599 | if (h == NULL) |
7600 | { | |
7601 | (*_bfd_error_handler) | |
d003868e AM |
7602 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
7603 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 7604 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 7605 | return FALSE; |
b49e97c9 TS |
7606 | } |
7607 | /* Fall through. */ | |
7608 | ||
7609 | case R_MIPS_CALL_HI16: | |
7610 | case R_MIPS_CALL_LO16: | |
7611 | if (h != NULL) | |
7612 | { | |
d334575b | 7613 | /* VxWorks call relocations point at the function's .got.plt |
0a44bf69 RS |
7614 | entry, which will be allocated by adjust_dynamic_symbol. |
7615 | Otherwise, this symbol requires a global GOT entry. */ | |
8275b357 | 7616 | if ((!htab->is_vxworks || h->forced_local) |
a8028dd0 | 7617 | && !mips_elf_record_global_got_symbol (h, abfd, info, 0)) |
b34976b6 | 7618 | return FALSE; |
b49e97c9 TS |
7619 | |
7620 | /* We need a stub, not a plt entry for the undefined | |
7621 | function. But we record it as if it needs plt. See | |
c152c796 | 7622 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 7623 | h->needs_plt = 1; |
b49e97c9 TS |
7624 | h->type = STT_FUNC; |
7625 | } | |
7626 | break; | |
7627 | ||
0fdc1bf1 AO |
7628 | case R_MIPS_GOT_PAGE: |
7629 | /* If this is a global, overridable symbol, GOT_PAGE will | |
7630 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
c224138d | 7631 | if (h) |
0fdc1bf1 AO |
7632 | { |
7633 | struct mips_elf_link_hash_entry *hmips = | |
7634 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 7635 | |
3a3b6725 | 7636 | /* This symbol is definitely not overridable. */ |
f5385ebf | 7637 | if (hmips->root.def_regular |
0fdc1bf1 | 7638 | && ! (info->shared && ! info->symbolic |
f5385ebf | 7639 | && ! hmips->root.forced_local)) |
c224138d | 7640 | h = NULL; |
0fdc1bf1 AO |
7641 | } |
7642 | /* Fall through. */ | |
7643 | ||
738e5348 | 7644 | case R_MIPS16_GOT16: |
b49e97c9 TS |
7645 | case R_MIPS_GOT16: |
7646 | case R_MIPS_GOT_HI16: | |
7647 | case R_MIPS_GOT_LO16: | |
3a3b6725 | 7648 | if (!h || r_type == R_MIPS_GOT_PAGE) |
c224138d | 7649 | { |
3a3b6725 DJ |
7650 | /* This relocation needs (or may need, if h != NULL) a |
7651 | page entry in the GOT. For R_MIPS_GOT_PAGE we do not | |
7652 | know for sure until we know whether the symbol is | |
7653 | preemptible. */ | |
c224138d RS |
7654 | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) |
7655 | { | |
7656 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | |
7657 | return FALSE; | |
7658 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); | |
7659 | addend = mips_elf_read_rel_addend (abfd, rel, | |
7660 | howto, contents); | |
7661 | if (r_type == R_MIPS_GOT16) | |
7662 | mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, | |
7663 | contents, &addend); | |
7664 | else | |
7665 | addend <<= howto->rightshift; | |
7666 | } | |
7667 | else | |
7668 | addend = rel->r_addend; | |
a8028dd0 RS |
7669 | if (!mips_elf_record_got_page_entry (info, abfd, r_symndx, |
7670 | addend)) | |
c224138d RS |
7671 | return FALSE; |
7672 | break; | |
7673 | } | |
7674 | /* Fall through. */ | |
7675 | ||
b49e97c9 | 7676 | case R_MIPS_GOT_DISP: |
a8028dd0 | 7677 | if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0)) |
b34976b6 | 7678 | return FALSE; |
b49e97c9 TS |
7679 | break; |
7680 | ||
0f20cc35 DJ |
7681 | case R_MIPS_TLS_GOTTPREL: |
7682 | if (info->shared) | |
7683 | info->flags |= DF_STATIC_TLS; | |
7684 | /* Fall through */ | |
7685 | ||
7686 | case R_MIPS_TLS_LDM: | |
7687 | if (r_type == R_MIPS_TLS_LDM) | |
7688 | { | |
7689 | r_symndx = 0; | |
7690 | h = NULL; | |
7691 | } | |
7692 | /* Fall through */ | |
7693 | ||
7694 | case R_MIPS_TLS_GD: | |
7695 | /* This symbol requires a global offset table entry, or two | |
7696 | for TLS GD relocations. */ | |
7697 | { | |
7698 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
7699 | ? GOT_TLS_GD | |
7700 | : r_type == R_MIPS_TLS_LDM | |
7701 | ? GOT_TLS_LDM | |
7702 | : GOT_TLS_IE); | |
7703 | if (h != NULL) | |
7704 | { | |
7705 | struct mips_elf_link_hash_entry *hmips = | |
7706 | (struct mips_elf_link_hash_entry *) h; | |
7707 | hmips->tls_type |= flag; | |
7708 | ||
a8028dd0 RS |
7709 | if (h && !mips_elf_record_global_got_symbol (h, abfd, |
7710 | info, flag)) | |
0f20cc35 DJ |
7711 | return FALSE; |
7712 | } | |
7713 | else | |
7714 | { | |
7715 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
7716 | ||
a8028dd0 RS |
7717 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
7718 | rel->r_addend, | |
7719 | info, flag)) | |
0f20cc35 DJ |
7720 | return FALSE; |
7721 | } | |
7722 | } | |
7723 | break; | |
7724 | ||
b49e97c9 TS |
7725 | case R_MIPS_32: |
7726 | case R_MIPS_REL32: | |
7727 | case R_MIPS_64: | |
0a44bf69 RS |
7728 | /* In VxWorks executables, references to external symbols |
7729 | are handled using copy relocs or PLT stubs, so there's | |
7730 | no need to add a .rela.dyn entry for this relocation. */ | |
861fb55a | 7731 | if (can_make_dynamic_p) |
b49e97c9 TS |
7732 | { |
7733 | if (sreloc == NULL) | |
7734 | { | |
0a44bf69 | 7735 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 7736 | if (sreloc == NULL) |
f4416af6 | 7737 | return FALSE; |
b49e97c9 | 7738 | } |
9a59ad6b | 7739 | if (info->shared && h == NULL) |
82f0cfbd EC |
7740 | { |
7741 | /* When creating a shared object, we must copy these | |
7742 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
7743 | relocs. Make room for this reloc in .rel(a).dyn. */ |
7744 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
943284cc | 7745 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
7746 | /* We tell the dynamic linker that there are |
7747 | relocations against the text segment. */ | |
7748 | info->flags |= DF_TEXTREL; | |
7749 | } | |
b49e97c9 TS |
7750 | else |
7751 | { | |
7752 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 7753 | |
9a59ad6b DJ |
7754 | /* For a shared object, we must copy this relocation |
7755 | unless the symbol turns out to be undefined and | |
7756 | weak with non-default visibility, in which case | |
7757 | it will be left as zero. | |
7758 | ||
7759 | We could elide R_MIPS_REL32 for locally binding symbols | |
7760 | in shared libraries, but do not yet do so. | |
7761 | ||
7762 | For an executable, we only need to copy this | |
7763 | reloc if the symbol is defined in a dynamic | |
7764 | object. */ | |
b49e97c9 TS |
7765 | hmips = (struct mips_elf_link_hash_entry *) h; |
7766 | ++hmips->possibly_dynamic_relocs; | |
943284cc | 7767 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
7768 | /* We need it to tell the dynamic linker if there |
7769 | are relocations against the text segment. */ | |
7770 | hmips->readonly_reloc = TRUE; | |
b49e97c9 | 7771 | } |
b49e97c9 TS |
7772 | } |
7773 | ||
7774 | if (SGI_COMPAT (abfd)) | |
7775 | mips_elf_hash_table (info)->compact_rel_size += | |
7776 | sizeof (Elf32_External_crinfo); | |
7777 | break; | |
7778 | ||
7779 | case R_MIPS_26: | |
7780 | case R_MIPS_GPREL16: | |
7781 | case R_MIPS_LITERAL: | |
7782 | case R_MIPS_GPREL32: | |
7783 | if (SGI_COMPAT (abfd)) | |
7784 | mips_elf_hash_table (info)->compact_rel_size += | |
7785 | sizeof (Elf32_External_crinfo); | |
7786 | break; | |
7787 | ||
7788 | /* This relocation describes the C++ object vtable hierarchy. | |
7789 | Reconstruct it for later use during GC. */ | |
7790 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 7791 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 7792 | return FALSE; |
b49e97c9 TS |
7793 | break; |
7794 | ||
7795 | /* This relocation describes which C++ vtable entries are actually | |
7796 | used. Record for later use during GC. */ | |
7797 | case R_MIPS_GNU_VTENTRY: | |
d17e0c6e JB |
7798 | BFD_ASSERT (h != NULL); |
7799 | if (h != NULL | |
7800 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 7801 | return FALSE; |
b49e97c9 TS |
7802 | break; |
7803 | ||
7804 | default: | |
7805 | break; | |
7806 | } | |
7807 | ||
7808 | /* We must not create a stub for a symbol that has relocations | |
0a44bf69 RS |
7809 | related to taking the function's address. This doesn't apply to |
7810 | VxWorks, where CALL relocs refer to a .got.plt entry instead of | |
7811 | a normal .got entry. */ | |
7812 | if (!htab->is_vxworks && h != NULL) | |
7813 | switch (r_type) | |
7814 | { | |
7815 | default: | |
7816 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
7817 | break; | |
738e5348 | 7818 | case R_MIPS16_CALL16: |
0a44bf69 RS |
7819 | case R_MIPS_CALL16: |
7820 | case R_MIPS_CALL_HI16: | |
7821 | case R_MIPS_CALL_LO16: | |
7822 | case R_MIPS_JALR: | |
7823 | break; | |
7824 | } | |
b49e97c9 | 7825 | |
738e5348 RS |
7826 | /* See if this reloc would need to refer to a MIPS16 hard-float stub, |
7827 | if there is one. We only need to handle global symbols here; | |
7828 | we decide whether to keep or delete stubs for local symbols | |
7829 | when processing the stub's relocations. */ | |
b49e97c9 | 7830 | if (h != NULL |
738e5348 RS |
7831 | && !mips16_call_reloc_p (r_type) |
7832 | && !section_allows_mips16_refs_p (sec)) | |
b49e97c9 TS |
7833 | { |
7834 | struct mips_elf_link_hash_entry *mh; | |
7835 | ||
7836 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 7837 | mh->need_fn_stub = TRUE; |
b49e97c9 | 7838 | } |
861fb55a DJ |
7839 | |
7840 | /* Refuse some position-dependent relocations when creating a | |
7841 | shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're | |
7842 | not PIC, but we can create dynamic relocations and the result | |
7843 | will be fine. Also do not refuse R_MIPS_LO16, which can be | |
7844 | combined with R_MIPS_GOT16. */ | |
7845 | if (info->shared) | |
7846 | { | |
7847 | switch (r_type) | |
7848 | { | |
7849 | case R_MIPS16_HI16: | |
7850 | case R_MIPS_HI16: | |
7851 | case R_MIPS_HIGHER: | |
7852 | case R_MIPS_HIGHEST: | |
7853 | /* Don't refuse a high part relocation if it's against | |
7854 | no symbol (e.g. part of a compound relocation). */ | |
7855 | if (r_symndx == 0) | |
7856 | break; | |
7857 | ||
7858 | /* R_MIPS_HI16 against _gp_disp is used for $gp setup, | |
7859 | and has a special meaning. */ | |
7860 | if (!NEWABI_P (abfd) && h != NULL | |
7861 | && strcmp (h->root.root.string, "_gp_disp") == 0) | |
7862 | break; | |
7863 | ||
7864 | /* FALLTHROUGH */ | |
7865 | ||
7866 | case R_MIPS16_26: | |
7867 | case R_MIPS_26: | |
7868 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); | |
7869 | (*_bfd_error_handler) | |
7870 | (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), | |
7871 | abfd, howto->name, | |
7872 | (h) ? h->root.root.string : "a local symbol"); | |
7873 | bfd_set_error (bfd_error_bad_value); | |
7874 | return FALSE; | |
7875 | default: | |
7876 | break; | |
7877 | } | |
7878 | } | |
b49e97c9 TS |
7879 | } |
7880 | ||
b34976b6 | 7881 | return TRUE; |
b49e97c9 TS |
7882 | } |
7883 | \f | |
d0647110 | 7884 | bfd_boolean |
9719ad41 RS |
7885 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
7886 | struct bfd_link_info *link_info, | |
7887 | bfd_boolean *again) | |
d0647110 AO |
7888 | { |
7889 | Elf_Internal_Rela *internal_relocs; | |
7890 | Elf_Internal_Rela *irel, *irelend; | |
7891 | Elf_Internal_Shdr *symtab_hdr; | |
7892 | bfd_byte *contents = NULL; | |
d0647110 AO |
7893 | size_t extsymoff; |
7894 | bfd_boolean changed_contents = FALSE; | |
7895 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
7896 | Elf_Internal_Sym *isymbuf = NULL; | |
7897 | ||
7898 | /* We are not currently changing any sizes, so only one pass. */ | |
7899 | *again = FALSE; | |
7900 | ||
1049f94e | 7901 | if (link_info->relocatable) |
d0647110 AO |
7902 | return TRUE; |
7903 | ||
9719ad41 | 7904 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 7905 | link_info->keep_memory); |
d0647110 AO |
7906 | if (internal_relocs == NULL) |
7907 | return TRUE; | |
7908 | ||
7909 | irelend = internal_relocs + sec->reloc_count | |
7910 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
7911 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7912 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
7913 | ||
7914 | for (irel = internal_relocs; irel < irelend; irel++) | |
7915 | { | |
7916 | bfd_vma symval; | |
7917 | bfd_signed_vma sym_offset; | |
7918 | unsigned int r_type; | |
7919 | unsigned long r_symndx; | |
7920 | asection *sym_sec; | |
7921 | unsigned long instruction; | |
7922 | ||
7923 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
7924 | with a JALR relocation, that indicate where they jump to. | |
7925 | This saves some pipeline bubbles. */ | |
7926 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
7927 | if (r_type != R_MIPS_JALR) | |
7928 | continue; | |
7929 | ||
7930 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
7931 | /* Compute the address of the jump target. */ | |
7932 | if (r_symndx >= extsymoff) | |
7933 | { | |
7934 | struct mips_elf_link_hash_entry *h | |
7935 | = ((struct mips_elf_link_hash_entry *) | |
7936 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
7937 | ||
7938 | while (h->root.root.type == bfd_link_hash_indirect | |
7939 | || h->root.root.type == bfd_link_hash_warning) | |
7940 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 7941 | |
d0647110 AO |
7942 | /* If a symbol is undefined, or if it may be overridden, |
7943 | skip it. */ | |
7944 | if (! ((h->root.root.type == bfd_link_hash_defined | |
7945 | || h->root.root.type == bfd_link_hash_defweak) | |
7946 | && h->root.root.u.def.section) | |
7947 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 7948 | && !h->root.forced_local)) |
d0647110 AO |
7949 | continue; |
7950 | ||
7951 | sym_sec = h->root.root.u.def.section; | |
7952 | if (sym_sec->output_section) | |
7953 | symval = (h->root.root.u.def.value | |
7954 | + sym_sec->output_section->vma | |
7955 | + sym_sec->output_offset); | |
7956 | else | |
7957 | symval = h->root.root.u.def.value; | |
7958 | } | |
7959 | else | |
7960 | { | |
7961 | Elf_Internal_Sym *isym; | |
7962 | ||
7963 | /* Read this BFD's symbols if we haven't done so already. */ | |
7964 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
7965 | { | |
7966 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
7967 | if (isymbuf == NULL) | |
7968 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
7969 | symtab_hdr->sh_info, 0, | |
7970 | NULL, NULL, NULL); | |
7971 | if (isymbuf == NULL) | |
7972 | goto relax_return; | |
7973 | } | |
7974 | ||
7975 | isym = isymbuf + r_symndx; | |
7976 | if (isym->st_shndx == SHN_UNDEF) | |
7977 | continue; | |
7978 | else if (isym->st_shndx == SHN_ABS) | |
7979 | sym_sec = bfd_abs_section_ptr; | |
7980 | else if (isym->st_shndx == SHN_COMMON) | |
7981 | sym_sec = bfd_com_section_ptr; | |
7982 | else | |
7983 | sym_sec | |
7984 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
7985 | symval = isym->st_value | |
7986 | + sym_sec->output_section->vma | |
7987 | + sym_sec->output_offset; | |
7988 | } | |
7989 | ||
7990 | /* Compute branch offset, from delay slot of the jump to the | |
7991 | branch target. */ | |
7992 | sym_offset = (symval + irel->r_addend) | |
7993 | - (sec_start + irel->r_offset + 4); | |
7994 | ||
7995 | /* Branch offset must be properly aligned. */ | |
7996 | if ((sym_offset & 3) != 0) | |
7997 | continue; | |
7998 | ||
7999 | sym_offset >>= 2; | |
8000 | ||
8001 | /* Check that it's in range. */ | |
8002 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
8003 | continue; | |
143d77c5 | 8004 | |
d0647110 | 8005 | /* Get the section contents if we haven't done so already. */ |
c224138d RS |
8006 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
8007 | goto relax_return; | |
d0647110 AO |
8008 | |
8009 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
8010 | ||
8011 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
8012 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
8013 | instruction = 0x04110000; | |
8014 | /* If it was jr <reg>, turn it into b <target>. */ | |
8015 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
8016 | instruction = 0x10000000; | |
8017 | else | |
8018 | continue; | |
8019 | ||
8020 | instruction |= (sym_offset & 0xffff); | |
8021 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
8022 | changed_contents = TRUE; | |
8023 | } | |
8024 | ||
8025 | if (contents != NULL | |
8026 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8027 | { | |
8028 | if (!changed_contents && !link_info->keep_memory) | |
8029 | free (contents); | |
8030 | else | |
8031 | { | |
8032 | /* Cache the section contents for elf_link_input_bfd. */ | |
8033 | elf_section_data (sec)->this_hdr.contents = contents; | |
8034 | } | |
8035 | } | |
8036 | return TRUE; | |
8037 | ||
143d77c5 | 8038 | relax_return: |
eea6121a AM |
8039 | if (contents != NULL |
8040 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8041 | free (contents); | |
d0647110 AO |
8042 | return FALSE; |
8043 | } | |
8044 | \f | |
9a59ad6b DJ |
8045 | /* Allocate space for global sym dynamic relocs. */ |
8046 | ||
8047 | static bfd_boolean | |
8048 | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
8049 | { | |
8050 | struct bfd_link_info *info = inf; | |
8051 | bfd *dynobj; | |
8052 | struct mips_elf_link_hash_entry *hmips; | |
8053 | struct mips_elf_link_hash_table *htab; | |
8054 | ||
8055 | htab = mips_elf_hash_table (info); | |
8056 | dynobj = elf_hash_table (info)->dynobj; | |
8057 | hmips = (struct mips_elf_link_hash_entry *) h; | |
8058 | ||
8059 | /* VxWorks executables are handled elsewhere; we only need to | |
8060 | allocate relocations in shared objects. */ | |
8061 | if (htab->is_vxworks && !info->shared) | |
8062 | return TRUE; | |
8063 | ||
63897e2c RS |
8064 | /* Ignore indirect and warning symbols. All relocations against |
8065 | such symbols will be redirected to the target symbol. */ | |
8066 | if (h->root.type == bfd_link_hash_indirect | |
8067 | || h->root.type == bfd_link_hash_warning) | |
8068 | return TRUE; | |
8069 | ||
9a59ad6b DJ |
8070 | /* If this symbol is defined in a dynamic object, or we are creating |
8071 | a shared library, we will need to copy any R_MIPS_32 or | |
8072 | R_MIPS_REL32 relocs against it into the output file. */ | |
8073 | if (! info->relocatable | |
8074 | && hmips->possibly_dynamic_relocs != 0 | |
8075 | && (h->root.type == bfd_link_hash_defweak | |
8076 | || !h->def_regular | |
8077 | || info->shared)) | |
8078 | { | |
8079 | bfd_boolean do_copy = TRUE; | |
8080 | ||
8081 | if (h->root.type == bfd_link_hash_undefweak) | |
8082 | { | |
8083 | /* Do not copy relocations for undefined weak symbols with | |
8084 | non-default visibility. */ | |
8085 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | |
8086 | do_copy = FALSE; | |
8087 | ||
8088 | /* Make sure undefined weak symbols are output as a dynamic | |
8089 | symbol in PIEs. */ | |
8090 | else if (h->dynindx == -1 && !h->forced_local) | |
8091 | { | |
8092 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
8093 | return FALSE; | |
8094 | } | |
8095 | } | |
8096 | ||
8097 | if (do_copy) | |
8098 | { | |
aff469fa RS |
8099 | /* Even though we don't directly need a GOT entry for this symbol, |
8100 | a symbol must have a dynamic symbol table index greater that | |
8101 | DT_MIPS_GOTSYM if there are dynamic relocations against it. */ | |
8102 | if (hmips->global_got_area > GGA_RELOC_ONLY) | |
8103 | hmips->global_got_area = GGA_RELOC_ONLY; | |
8104 | ||
9a59ad6b DJ |
8105 | mips_elf_allocate_dynamic_relocations |
8106 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
8107 | if (hmips->readonly_reloc) | |
8108 | /* We tell the dynamic linker that there are relocations | |
8109 | against the text segment. */ | |
8110 | info->flags |= DF_TEXTREL; | |
8111 | } | |
8112 | } | |
8113 | ||
8114 | return TRUE; | |
8115 | } | |
8116 | ||
b49e97c9 TS |
8117 | /* Adjust a symbol defined by a dynamic object and referenced by a |
8118 | regular object. The current definition is in some section of the | |
8119 | dynamic object, but we're not including those sections. We have to | |
8120 | change the definition to something the rest of the link can | |
8121 | understand. */ | |
8122 | ||
b34976b6 | 8123 | bfd_boolean |
9719ad41 RS |
8124 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
8125 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
8126 | { |
8127 | bfd *dynobj; | |
8128 | struct mips_elf_link_hash_entry *hmips; | |
5108fc1b | 8129 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8130 | |
5108fc1b | 8131 | htab = mips_elf_hash_table (info); |
b49e97c9 | 8132 | dynobj = elf_hash_table (info)->dynobj; |
861fb55a | 8133 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 TS |
8134 | |
8135 | /* Make sure we know what is going on here. */ | |
8136 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 8137 | && (h->needs_plt |
f6e332e6 | 8138 | || h->u.weakdef != NULL |
f5385ebf AM |
8139 | || (h->def_dynamic |
8140 | && h->ref_regular | |
8141 | && !h->def_regular))); | |
b49e97c9 | 8142 | |
b49e97c9 | 8143 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 8144 | |
861fb55a DJ |
8145 | /* If there are call relocations against an externally-defined symbol, |
8146 | see whether we can create a MIPS lazy-binding stub for it. We can | |
8147 | only do this if all references to the function are through call | |
8148 | relocations, and in that case, the traditional lazy-binding stubs | |
8149 | are much more efficient than PLT entries. | |
8150 | ||
8151 | Traditional stubs are only available on SVR4 psABI-based systems; | |
8152 | VxWorks always uses PLTs instead. */ | |
8153 | if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) | |
b49e97c9 TS |
8154 | { |
8155 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 8156 | return TRUE; |
b49e97c9 TS |
8157 | |
8158 | /* If this symbol is not defined in a regular file, then set | |
8159 | the symbol to the stub location. This is required to make | |
8160 | function pointers compare as equal between the normal | |
8161 | executable and the shared library. */ | |
f5385ebf | 8162 | if (!h->def_regular) |
b49e97c9 | 8163 | { |
33bb52fb RS |
8164 | hmips->needs_lazy_stub = TRUE; |
8165 | htab->lazy_stub_count++; | |
b34976b6 | 8166 | return TRUE; |
b49e97c9 TS |
8167 | } |
8168 | } | |
861fb55a DJ |
8169 | /* As above, VxWorks requires PLT entries for externally-defined |
8170 | functions that are only accessed through call relocations. | |
b49e97c9 | 8171 | |
861fb55a DJ |
8172 | Both VxWorks and non-VxWorks targets also need PLT entries if there |
8173 | are static-only relocations against an externally-defined function. | |
8174 | This can technically occur for shared libraries if there are | |
8175 | branches to the symbol, although it is unlikely that this will be | |
8176 | used in practice due to the short ranges involved. It can occur | |
8177 | for any relative or absolute relocation in executables; in that | |
8178 | case, the PLT entry becomes the function's canonical address. */ | |
8179 | else if (((h->needs_plt && !hmips->no_fn_stub) | |
8180 | || (h->type == STT_FUNC && hmips->has_static_relocs)) | |
8181 | && htab->use_plts_and_copy_relocs | |
8182 | && !SYMBOL_CALLS_LOCAL (info, h) | |
8183 | && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
8184 | && h->root.type == bfd_link_hash_undefweak)) | |
b49e97c9 | 8185 | { |
861fb55a DJ |
8186 | /* If this is the first symbol to need a PLT entry, allocate room |
8187 | for the header. */ | |
8188 | if (htab->splt->size == 0) | |
8189 | { | |
8190 | BFD_ASSERT (htab->sgotplt->size == 0); | |
0a44bf69 | 8191 | |
861fb55a DJ |
8192 | /* If we're using the PLT additions to the psABI, each PLT |
8193 | entry is 16 bytes and the PLT0 entry is 32 bytes. | |
8194 | Encourage better cache usage by aligning. We do this | |
8195 | lazily to avoid pessimizing traditional objects. */ | |
8196 | if (!htab->is_vxworks | |
8197 | && !bfd_set_section_alignment (dynobj, htab->splt, 5)) | |
8198 | return FALSE; | |
0a44bf69 | 8199 | |
861fb55a DJ |
8200 | /* Make sure that .got.plt is word-aligned. We do this lazily |
8201 | for the same reason as above. */ | |
8202 | if (!bfd_set_section_alignment (dynobj, htab->sgotplt, | |
8203 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) | |
8204 | return FALSE; | |
0a44bf69 | 8205 | |
861fb55a | 8206 | htab->splt->size += htab->plt_header_size; |
0a44bf69 | 8207 | |
861fb55a DJ |
8208 | /* On non-VxWorks targets, the first two entries in .got.plt |
8209 | are reserved. */ | |
8210 | if (!htab->is_vxworks) | |
8211 | htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj); | |
0a44bf69 | 8212 | |
861fb55a DJ |
8213 | /* On VxWorks, also allocate room for the header's |
8214 | .rela.plt.unloaded entries. */ | |
8215 | if (htab->is_vxworks && !info->shared) | |
0a44bf69 RS |
8216 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
8217 | } | |
8218 | ||
8219 | /* Assign the next .plt entry to this symbol. */ | |
8220 | h->plt.offset = htab->splt->size; | |
8221 | htab->splt->size += htab->plt_entry_size; | |
8222 | ||
8223 | /* If the output file has no definition of the symbol, set the | |
861fb55a | 8224 | symbol's value to the address of the stub. */ |
131eb6b7 | 8225 | if (!info->shared && !h->def_regular) |
0a44bf69 RS |
8226 | { |
8227 | h->root.u.def.section = htab->splt; | |
8228 | h->root.u.def.value = h->plt.offset; | |
861fb55a DJ |
8229 | /* For VxWorks, point at the PLT load stub rather than the |
8230 | lazy resolution stub; this stub will become the canonical | |
8231 | function address. */ | |
8232 | if (htab->is_vxworks) | |
8233 | h->root.u.def.value += 8; | |
0a44bf69 RS |
8234 | } |
8235 | ||
861fb55a DJ |
8236 | /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT |
8237 | relocation. */ | |
8238 | htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj); | |
8239 | htab->srelplt->size += (htab->is_vxworks | |
8240 | ? MIPS_ELF_RELA_SIZE (dynobj) | |
8241 | : MIPS_ELF_REL_SIZE (dynobj)); | |
0a44bf69 RS |
8242 | |
8243 | /* Make room for the .rela.plt.unloaded relocations. */ | |
861fb55a | 8244 | if (htab->is_vxworks && !info->shared) |
0a44bf69 RS |
8245 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
8246 | ||
861fb55a DJ |
8247 | /* All relocations against this symbol that could have been made |
8248 | dynamic will now refer to the PLT entry instead. */ | |
8249 | hmips->possibly_dynamic_relocs = 0; | |
0a44bf69 | 8250 | |
0a44bf69 RS |
8251 | return TRUE; |
8252 | } | |
8253 | ||
8254 | /* If this is a weak symbol, and there is a real definition, the | |
8255 | processor independent code will have arranged for us to see the | |
8256 | real definition first, and we can just use the same value. */ | |
8257 | if (h->u.weakdef != NULL) | |
8258 | { | |
8259 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
8260 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
8261 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
8262 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
8263 | return TRUE; | |
8264 | } | |
8265 | ||
861fb55a DJ |
8266 | /* Otherwise, there is nothing further to do for symbols defined |
8267 | in regular objects. */ | |
8268 | if (h->def_regular) | |
0a44bf69 RS |
8269 | return TRUE; |
8270 | ||
861fb55a DJ |
8271 | /* There's also nothing more to do if we'll convert all relocations |
8272 | against this symbol into dynamic relocations. */ | |
8273 | if (!hmips->has_static_relocs) | |
8274 | return TRUE; | |
8275 | ||
8276 | /* We're now relying on copy relocations. Complain if we have | |
8277 | some that we can't convert. */ | |
8278 | if (!htab->use_plts_and_copy_relocs || info->shared) | |
8279 | { | |
8280 | (*_bfd_error_handler) (_("non-dynamic relocations refer to " | |
8281 | "dynamic symbol %s"), | |
8282 | h->root.root.string); | |
8283 | bfd_set_error (bfd_error_bad_value); | |
8284 | return FALSE; | |
8285 | } | |
8286 | ||
0a44bf69 RS |
8287 | /* We must allocate the symbol in our .dynbss section, which will |
8288 | become part of the .bss section of the executable. There will be | |
8289 | an entry for this symbol in the .dynsym section. The dynamic | |
8290 | object will contain position independent code, so all references | |
8291 | from the dynamic object to this symbol will go through the global | |
8292 | offset table. The dynamic linker will use the .dynsym entry to | |
8293 | determine the address it must put in the global offset table, so | |
8294 | both the dynamic object and the regular object will refer to the | |
8295 | same memory location for the variable. */ | |
8296 | ||
8297 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
8298 | { | |
861fb55a DJ |
8299 | if (htab->is_vxworks) |
8300 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
8301 | else | |
8302 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
0a44bf69 RS |
8303 | h->needs_copy = 1; |
8304 | } | |
8305 | ||
861fb55a DJ |
8306 | /* All relocations against this symbol that could have been made |
8307 | dynamic will now refer to the local copy instead. */ | |
8308 | hmips->possibly_dynamic_relocs = 0; | |
8309 | ||
027297b7 | 8310 | return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); |
0a44bf69 | 8311 | } |
b49e97c9 TS |
8312 | \f |
8313 | /* This function is called after all the input files have been read, | |
8314 | and the input sections have been assigned to output sections. We | |
8315 | check for any mips16 stub sections that we can discard. */ | |
8316 | ||
b34976b6 | 8317 | bfd_boolean |
9719ad41 RS |
8318 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
8319 | struct bfd_link_info *info) | |
b49e97c9 TS |
8320 | { |
8321 | asection *ri; | |
0a44bf69 | 8322 | struct mips_elf_link_hash_table *htab; |
861fb55a | 8323 | struct mips_htab_traverse_info hti; |
0a44bf69 RS |
8324 | |
8325 | htab = mips_elf_hash_table (info); | |
f4416af6 | 8326 | |
b49e97c9 TS |
8327 | /* The .reginfo section has a fixed size. */ |
8328 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
8329 | if (ri != NULL) | |
9719ad41 | 8330 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 8331 | |
861fb55a DJ |
8332 | hti.info = info; |
8333 | hti.output_bfd = output_bfd; | |
8334 | hti.error = FALSE; | |
8335 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
8336 | mips_elf_check_symbols, &hti); | |
8337 | if (hti.error) | |
8338 | return FALSE; | |
f4416af6 | 8339 | |
33bb52fb RS |
8340 | return TRUE; |
8341 | } | |
8342 | ||
8343 | /* If the link uses a GOT, lay it out and work out its size. */ | |
8344 | ||
8345 | static bfd_boolean | |
8346 | mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) | |
8347 | { | |
8348 | bfd *dynobj; | |
8349 | asection *s; | |
8350 | struct mips_got_info *g; | |
33bb52fb RS |
8351 | bfd_size_type loadable_size = 0; |
8352 | bfd_size_type page_gotno; | |
8353 | bfd *sub; | |
8354 | struct mips_elf_count_tls_arg count_tls_arg; | |
8355 | struct mips_elf_link_hash_table *htab; | |
8356 | ||
8357 | htab = mips_elf_hash_table (info); | |
a8028dd0 | 8358 | s = htab->sgot; |
f4416af6 | 8359 | if (s == NULL) |
b34976b6 | 8360 | return TRUE; |
b49e97c9 | 8361 | |
33bb52fb | 8362 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 RS |
8363 | g = htab->got_info; |
8364 | ||
861fb55a DJ |
8365 | /* Allocate room for the reserved entries. VxWorks always reserves |
8366 | 3 entries; other objects only reserve 2 entries. */ | |
8367 | BFD_ASSERT (g->assigned_gotno == 0); | |
8368 | if (htab->is_vxworks) | |
8369 | htab->reserved_gotno = 3; | |
8370 | else | |
8371 | htab->reserved_gotno = 2; | |
8372 | g->local_gotno += htab->reserved_gotno; | |
8373 | g->assigned_gotno = htab->reserved_gotno; | |
8374 | ||
33bb52fb RS |
8375 | /* Replace entries for indirect and warning symbols with entries for |
8376 | the target symbol. */ | |
8377 | if (!mips_elf_resolve_final_got_entries (g)) | |
8378 | return FALSE; | |
f4416af6 | 8379 | |
d4596a51 RS |
8380 | /* Count the number of GOT symbols. */ |
8381 | mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g); | |
f4416af6 | 8382 | |
33bb52fb RS |
8383 | /* Calculate the total loadable size of the output. That |
8384 | will give us the maximum number of GOT_PAGE entries | |
8385 | required. */ | |
8386 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
8387 | { | |
8388 | asection *subsection; | |
5108fc1b | 8389 | |
33bb52fb RS |
8390 | for (subsection = sub->sections; |
8391 | subsection; | |
8392 | subsection = subsection->next) | |
8393 | { | |
8394 | if ((subsection->flags & SEC_ALLOC) == 0) | |
8395 | continue; | |
8396 | loadable_size += ((subsection->size + 0xf) | |
8397 | &~ (bfd_size_type) 0xf); | |
8398 | } | |
8399 | } | |
f4416af6 | 8400 | |
0a44bf69 | 8401 | if (htab->is_vxworks) |
738e5348 | 8402 | /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 |
0a44bf69 RS |
8403 | relocations against local symbols evaluate to "G", and the EABI does |
8404 | not include R_MIPS_GOT_PAGE. */ | |
c224138d | 8405 | page_gotno = 0; |
0a44bf69 RS |
8406 | else |
8407 | /* Assume there are two loadable segments consisting of contiguous | |
8408 | sections. Is 5 enough? */ | |
c224138d RS |
8409 | page_gotno = (loadable_size >> 16) + 5; |
8410 | ||
8411 | /* Choose the smaller of the two estimates; both are intended to be | |
8412 | conservative. */ | |
8413 | if (page_gotno > g->page_gotno) | |
8414 | page_gotno = g->page_gotno; | |
f4416af6 | 8415 | |
c224138d | 8416 | g->local_gotno += page_gotno; |
eea6121a | 8417 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
d4596a51 | 8418 | s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 8419 | |
0f20cc35 DJ |
8420 | /* We need to calculate tls_gotno for global symbols at this point |
8421 | instead of building it up earlier, to avoid doublecounting | |
8422 | entries for one global symbol from multiple input files. */ | |
8423 | count_tls_arg.info = info; | |
8424 | count_tls_arg.needed = 0; | |
8425 | elf_link_hash_traverse (elf_hash_table (info), | |
8426 | mips_elf_count_global_tls_entries, | |
8427 | &count_tls_arg); | |
8428 | g->tls_gotno += count_tls_arg.needed; | |
8429 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
8430 | ||
0a44bf69 RS |
8431 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
8432 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
8433 | dynamic loader. */ | |
33bb52fb RS |
8434 | if (htab->is_vxworks) |
8435 | { | |
8436 | /* VxWorks executables do not need a GOT. */ | |
8437 | if (info->shared) | |
8438 | { | |
8439 | /* Each VxWorks GOT entry needs an explicit relocation. */ | |
8440 | unsigned int count; | |
8441 | ||
861fb55a | 8442 | count = g->global_gotno + g->local_gotno - htab->reserved_gotno; |
33bb52fb RS |
8443 | if (count) |
8444 | mips_elf_allocate_dynamic_relocations (dynobj, info, count); | |
8445 | } | |
8446 | } | |
8447 | else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info)) | |
0f20cc35 | 8448 | { |
a8028dd0 | 8449 | if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) |
0f20cc35 DJ |
8450 | return FALSE; |
8451 | } | |
8452 | else | |
8453 | { | |
33bb52fb RS |
8454 | struct mips_elf_count_tls_arg arg; |
8455 | ||
8456 | /* Set up TLS entries. */ | |
0f20cc35 DJ |
8457 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
8458 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
33bb52fb RS |
8459 | |
8460 | /* Allocate room for the TLS relocations. */ | |
8461 | arg.info = info; | |
8462 | arg.needed = 0; | |
8463 | htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg); | |
8464 | elf_link_hash_traverse (elf_hash_table (info), | |
8465 | mips_elf_count_global_tls_relocs, | |
8466 | &arg); | |
8467 | if (arg.needed) | |
8468 | mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed); | |
0f20cc35 | 8469 | } |
b49e97c9 | 8470 | |
b34976b6 | 8471 | return TRUE; |
b49e97c9 TS |
8472 | } |
8473 | ||
33bb52fb RS |
8474 | /* Estimate the size of the .MIPS.stubs section. */ |
8475 | ||
8476 | static void | |
8477 | mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) | |
8478 | { | |
8479 | struct mips_elf_link_hash_table *htab; | |
8480 | bfd_size_type dynsymcount; | |
8481 | ||
8482 | htab = mips_elf_hash_table (info); | |
8483 | if (htab->lazy_stub_count == 0) | |
8484 | return; | |
8485 | ||
8486 | /* IRIX rld assumes that a function stub isn't at the end of the .text | |
8487 | section, so add a dummy entry to the end. */ | |
8488 | htab->lazy_stub_count++; | |
8489 | ||
8490 | /* Get a worst-case estimate of the number of dynamic symbols needed. | |
8491 | At this point, dynsymcount does not account for section symbols | |
8492 | and count_section_dynsyms may overestimate the number that will | |
8493 | be needed. */ | |
8494 | dynsymcount = (elf_hash_table (info)->dynsymcount | |
8495 | + count_section_dynsyms (output_bfd, info)); | |
8496 | ||
8497 | /* Determine the size of one stub entry. */ | |
8498 | htab->function_stub_size = (dynsymcount > 0x10000 | |
8499 | ? MIPS_FUNCTION_STUB_BIG_SIZE | |
8500 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | |
8501 | ||
8502 | htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; | |
8503 | } | |
8504 | ||
8505 | /* A mips_elf_link_hash_traverse callback for which DATA points to the | |
8506 | MIPS hash table. If H needs a traditional MIPS lazy-binding stub, | |
8507 | allocate an entry in the stubs section. */ | |
8508 | ||
8509 | static bfd_boolean | |
8510 | mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data) | |
8511 | { | |
8512 | struct mips_elf_link_hash_table *htab; | |
8513 | ||
8514 | htab = (struct mips_elf_link_hash_table *) data; | |
8515 | if (h->needs_lazy_stub) | |
8516 | { | |
8517 | h->root.root.u.def.section = htab->sstubs; | |
8518 | h->root.root.u.def.value = htab->sstubs->size; | |
8519 | h->root.plt.offset = htab->sstubs->size; | |
8520 | htab->sstubs->size += htab->function_stub_size; | |
8521 | } | |
8522 | return TRUE; | |
8523 | } | |
8524 | ||
8525 | /* Allocate offsets in the stubs section to each symbol that needs one. | |
8526 | Set the final size of the .MIPS.stub section. */ | |
8527 | ||
8528 | static void | |
8529 | mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) | |
8530 | { | |
8531 | struct mips_elf_link_hash_table *htab; | |
8532 | ||
8533 | htab = mips_elf_hash_table (info); | |
8534 | if (htab->lazy_stub_count == 0) | |
8535 | return; | |
8536 | ||
8537 | htab->sstubs->size = 0; | |
8538 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
8539 | mips_elf_allocate_lazy_stub, htab); | |
8540 | htab->sstubs->size += htab->function_stub_size; | |
8541 | BFD_ASSERT (htab->sstubs->size | |
8542 | == htab->lazy_stub_count * htab->function_stub_size); | |
8543 | } | |
8544 | ||
b49e97c9 TS |
8545 | /* Set the sizes of the dynamic sections. */ |
8546 | ||
b34976b6 | 8547 | bfd_boolean |
9719ad41 RS |
8548 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
8549 | struct bfd_link_info *info) | |
b49e97c9 TS |
8550 | { |
8551 | bfd *dynobj; | |
861fb55a | 8552 | asection *s, *sreldyn; |
b34976b6 | 8553 | bfd_boolean reltext; |
0a44bf69 | 8554 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8555 | |
0a44bf69 | 8556 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
8557 | dynobj = elf_hash_table (info)->dynobj; |
8558 | BFD_ASSERT (dynobj != NULL); | |
8559 | ||
8560 | if (elf_hash_table (info)->dynamic_sections_created) | |
8561 | { | |
8562 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 8563 | if (info->executable) |
b49e97c9 TS |
8564 | { |
8565 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
8566 | BFD_ASSERT (s != NULL); | |
eea6121a | 8567 | s->size |
b49e97c9 TS |
8568 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
8569 | s->contents | |
8570 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
8571 | } | |
861fb55a DJ |
8572 | |
8573 | /* Create a symbol for the PLT, if we know that we are using it. */ | |
8574 | if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL) | |
8575 | { | |
8576 | struct elf_link_hash_entry *h; | |
8577 | ||
8578 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
8579 | ||
8580 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, | |
8581 | "_PROCEDURE_LINKAGE_TABLE_"); | |
8582 | htab->root.hplt = h; | |
8583 | if (h == NULL) | |
8584 | return FALSE; | |
8585 | h->type = STT_FUNC; | |
8586 | } | |
8587 | } | |
4e41d0d7 | 8588 | |
9a59ad6b DJ |
8589 | /* Allocate space for global sym dynamic relocs. */ |
8590 | elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info); | |
8591 | ||
33bb52fb RS |
8592 | mips_elf_estimate_stub_size (output_bfd, info); |
8593 | ||
8594 | if (!mips_elf_lay_out_got (output_bfd, info)) | |
8595 | return FALSE; | |
8596 | ||
8597 | mips_elf_lay_out_lazy_stubs (info); | |
8598 | ||
b49e97c9 TS |
8599 | /* The check_relocs and adjust_dynamic_symbol entry points have |
8600 | determined the sizes of the various dynamic sections. Allocate | |
8601 | memory for them. */ | |
b34976b6 | 8602 | reltext = FALSE; |
b49e97c9 TS |
8603 | for (s = dynobj->sections; s != NULL; s = s->next) |
8604 | { | |
8605 | const char *name; | |
b49e97c9 TS |
8606 | |
8607 | /* It's OK to base decisions on the section name, because none | |
8608 | of the dynobj section names depend upon the input files. */ | |
8609 | name = bfd_get_section_name (dynobj, s); | |
8610 | ||
8611 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
8612 | continue; | |
8613 | ||
0112cd26 | 8614 | if (CONST_STRNEQ (name, ".rel")) |
b49e97c9 | 8615 | { |
c456f082 | 8616 | if (s->size != 0) |
b49e97c9 TS |
8617 | { |
8618 | const char *outname; | |
8619 | asection *target; | |
8620 | ||
8621 | /* If this relocation section applies to a read only | |
8622 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 8623 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
8624 | assert a DT_TEXTREL entry rather than testing whether |
8625 | there exists a relocation to a read only section or | |
8626 | not. */ | |
8627 | outname = bfd_get_section_name (output_bfd, | |
8628 | s->output_section); | |
8629 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
8630 | if ((target != NULL | |
8631 | && (target->flags & SEC_READONLY) != 0 | |
8632 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 8633 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 8634 | reltext = TRUE; |
b49e97c9 TS |
8635 | |
8636 | /* We use the reloc_count field as a counter if we need | |
8637 | to copy relocs into the output file. */ | |
0a44bf69 | 8638 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 8639 | s->reloc_count = 0; |
f4416af6 AO |
8640 | |
8641 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
8642 | sort relocations, but in a different way than we do, | |
8643 | and before we're done creating relocations. Also, it | |
8644 | will move them around between input sections' | |
8645 | relocation's contents, so our sorting would be | |
8646 | broken, so don't let it run. */ | |
8647 | info->combreloc = 0; | |
b49e97c9 TS |
8648 | } |
8649 | } | |
b49e97c9 TS |
8650 | else if (! info->shared |
8651 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
0112cd26 | 8652 | && CONST_STRNEQ (name, ".rld_map")) |
b49e97c9 | 8653 | { |
5108fc1b | 8654 | /* We add a room for __rld_map. It will be filled in by the |
b49e97c9 | 8655 | rtld to contain a pointer to the _r_debug structure. */ |
eea6121a | 8656 | s->size += 4; |
b49e97c9 TS |
8657 | } |
8658 | else if (SGI_COMPAT (output_bfd) | |
0112cd26 | 8659 | && CONST_STRNEQ (name, ".compact_rel")) |
eea6121a | 8660 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
861fb55a DJ |
8661 | else if (s == htab->splt) |
8662 | { | |
8663 | /* If the last PLT entry has a branch delay slot, allocate | |
6d30f5b2 NC |
8664 | room for an extra nop to fill the delay slot. This is |
8665 | for CPUs without load interlocking. */ | |
8666 | if (! LOAD_INTERLOCKS_P (output_bfd) | |
8667 | && ! htab->is_vxworks && s->size > 0) | |
861fb55a DJ |
8668 | s->size += 4; |
8669 | } | |
0112cd26 | 8670 | else if (! CONST_STRNEQ (name, ".init") |
33bb52fb | 8671 | && s != htab->sgot |
0a44bf69 | 8672 | && s != htab->sgotplt |
861fb55a DJ |
8673 | && s != htab->sstubs |
8674 | && s != htab->sdynbss) | |
b49e97c9 TS |
8675 | { |
8676 | /* It's not one of our sections, so don't allocate space. */ | |
8677 | continue; | |
8678 | } | |
8679 | ||
c456f082 | 8680 | if (s->size == 0) |
b49e97c9 | 8681 | { |
8423293d | 8682 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
8683 | continue; |
8684 | } | |
8685 | ||
c456f082 AM |
8686 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
8687 | continue; | |
8688 | ||
b49e97c9 | 8689 | /* Allocate memory for the section contents. */ |
eea6121a | 8690 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 8691 | if (s->contents == NULL) |
b49e97c9 TS |
8692 | { |
8693 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 8694 | return FALSE; |
b49e97c9 TS |
8695 | } |
8696 | } | |
8697 | ||
8698 | if (elf_hash_table (info)->dynamic_sections_created) | |
8699 | { | |
8700 | /* Add some entries to the .dynamic section. We fill in the | |
8701 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
8702 | must add the entries now so that we get the correct size for | |
5750dcec | 8703 | the .dynamic section. */ |
af5978fb RS |
8704 | |
8705 | /* SGI object has the equivalence of DT_DEBUG in the | |
5750dcec DJ |
8706 | DT_MIPS_RLD_MAP entry. This must come first because glibc |
8707 | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only | |
8708 | looks at the first one it sees. */ | |
af5978fb RS |
8709 | if (!info->shared |
8710 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
8711 | return FALSE; | |
b49e97c9 | 8712 | |
5750dcec DJ |
8713 | /* The DT_DEBUG entry may be filled in by the dynamic linker and |
8714 | used by the debugger. */ | |
8715 | if (info->executable | |
8716 | && !SGI_COMPAT (output_bfd) | |
8717 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
8718 | return FALSE; | |
8719 | ||
0a44bf69 | 8720 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
8721 | info->flags |= DF_TEXTREL; |
8722 | ||
8723 | if ((info->flags & DF_TEXTREL) != 0) | |
8724 | { | |
8725 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 8726 | return FALSE; |
943284cc DJ |
8727 | |
8728 | /* Clear the DF_TEXTREL flag. It will be set again if we | |
8729 | write out an actual text relocation; we may not, because | |
8730 | at this point we do not know whether e.g. any .eh_frame | |
8731 | absolute relocations have been converted to PC-relative. */ | |
8732 | info->flags &= ~DF_TEXTREL; | |
b49e97c9 TS |
8733 | } |
8734 | ||
8735 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 8736 | return FALSE; |
b49e97c9 | 8737 | |
861fb55a | 8738 | sreldyn = mips_elf_rel_dyn_section (info, FALSE); |
0a44bf69 | 8739 | if (htab->is_vxworks) |
b49e97c9 | 8740 | { |
0a44bf69 RS |
8741 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
8742 | use any of the DT_MIPS_* tags. */ | |
861fb55a | 8743 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
8744 | { |
8745 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
8746 | return FALSE; | |
b49e97c9 | 8747 | |
0a44bf69 RS |
8748 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
8749 | return FALSE; | |
b49e97c9 | 8750 | |
0a44bf69 RS |
8751 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
8752 | return FALSE; | |
8753 | } | |
b49e97c9 | 8754 | } |
0a44bf69 RS |
8755 | else |
8756 | { | |
861fb55a | 8757 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
8758 | { |
8759 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
8760 | return FALSE; | |
b49e97c9 | 8761 | |
0a44bf69 RS |
8762 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
8763 | return FALSE; | |
b49e97c9 | 8764 | |
0a44bf69 RS |
8765 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
8766 | return FALSE; | |
8767 | } | |
b49e97c9 | 8768 | |
0a44bf69 RS |
8769 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
8770 | return FALSE; | |
b49e97c9 | 8771 | |
0a44bf69 RS |
8772 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
8773 | return FALSE; | |
b49e97c9 | 8774 | |
0a44bf69 RS |
8775 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
8776 | return FALSE; | |
b49e97c9 | 8777 | |
0a44bf69 RS |
8778 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
8779 | return FALSE; | |
b49e97c9 | 8780 | |
0a44bf69 RS |
8781 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
8782 | return FALSE; | |
b49e97c9 | 8783 | |
0a44bf69 RS |
8784 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
8785 | return FALSE; | |
b49e97c9 | 8786 | |
0a44bf69 RS |
8787 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
8788 | return FALSE; | |
8789 | ||
8790 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
8791 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
8792 | return FALSE; | |
8793 | ||
8794 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
8795 | && (bfd_get_section_by_name | |
8796 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
8797 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
8798 | return FALSE; | |
8799 | } | |
861fb55a DJ |
8800 | if (htab->splt->size > 0) |
8801 | { | |
8802 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
8803 | return FALSE; | |
8804 | ||
8805 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
8806 | return FALSE; | |
8807 | ||
8808 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
8809 | return FALSE; | |
8810 | ||
8811 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) | |
8812 | return FALSE; | |
8813 | } | |
7a2b07ff NS |
8814 | if (htab->is_vxworks |
8815 | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) | |
8816 | return FALSE; | |
b49e97c9 TS |
8817 | } |
8818 | ||
b34976b6 | 8819 | return TRUE; |
b49e97c9 TS |
8820 | } |
8821 | \f | |
81d43bff RS |
8822 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
8823 | Adjust its R_ADDEND field so that it is correct for the output file. | |
8824 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
8825 | and sections respectively; both use symbol indexes. */ | |
8826 | ||
8827 | static void | |
8828 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
8829 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
8830 | asection **local_sections, Elf_Internal_Rela *rel) | |
8831 | { | |
8832 | unsigned int r_type, r_symndx; | |
8833 | Elf_Internal_Sym *sym; | |
8834 | asection *sec; | |
8835 | ||
8836 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) | |
8837 | { | |
8838 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
8839 | if (r_type == R_MIPS16_GPREL | |
8840 | || r_type == R_MIPS_GPREL16 | |
8841 | || r_type == R_MIPS_GPREL32 | |
8842 | || r_type == R_MIPS_LITERAL) | |
8843 | { | |
8844 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
8845 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
8846 | } | |
8847 | ||
8848 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
8849 | sym = local_syms + r_symndx; | |
8850 | ||
8851 | /* Adjust REL's addend to account for section merging. */ | |
8852 | if (!info->relocatable) | |
8853 | { | |
8854 | sec = local_sections[r_symndx]; | |
8855 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
8856 | } | |
8857 | ||
8858 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
8859 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
8860 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
8861 | } | |
8862 | } | |
8863 | ||
b49e97c9 TS |
8864 | /* Relocate a MIPS ELF section. */ |
8865 | ||
b34976b6 | 8866 | bfd_boolean |
9719ad41 RS |
8867 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
8868 | bfd *input_bfd, asection *input_section, | |
8869 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
8870 | Elf_Internal_Sym *local_syms, | |
8871 | asection **local_sections) | |
b49e97c9 TS |
8872 | { |
8873 | Elf_Internal_Rela *rel; | |
8874 | const Elf_Internal_Rela *relend; | |
8875 | bfd_vma addend = 0; | |
b34976b6 | 8876 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 8877 | const struct elf_backend_data *bed; |
b49e97c9 TS |
8878 | |
8879 | bed = get_elf_backend_data (output_bfd); | |
8880 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
8881 | for (rel = relocs; rel < relend; ++rel) | |
8882 | { | |
8883 | const char *name; | |
c9adbffe | 8884 | bfd_vma value = 0; |
b49e97c9 | 8885 | reloc_howto_type *howto; |
b34976b6 AM |
8886 | bfd_boolean require_jalx; |
8887 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 8888 | REL relocation. */ |
b34976b6 | 8889 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 8890 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 8891 | const char *msg; |
ab96bf03 AM |
8892 | unsigned long r_symndx; |
8893 | asection *sec; | |
749b8d9d L |
8894 | Elf_Internal_Shdr *symtab_hdr; |
8895 | struct elf_link_hash_entry *h; | |
b49e97c9 TS |
8896 | |
8897 | /* Find the relocation howto for this relocation. */ | |
ab96bf03 AM |
8898 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, |
8899 | NEWABI_P (input_bfd) | |
8900 | && (MIPS_RELOC_RELA_P | |
8901 | (input_bfd, input_section, | |
8902 | rel - relocs))); | |
8903 | ||
8904 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); | |
749b8d9d | 8905 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
ab96bf03 | 8906 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) |
749b8d9d L |
8907 | { |
8908 | sec = local_sections[r_symndx]; | |
8909 | h = NULL; | |
8910 | } | |
ab96bf03 AM |
8911 | else |
8912 | { | |
ab96bf03 | 8913 | unsigned long extsymoff; |
ab96bf03 | 8914 | |
ab96bf03 AM |
8915 | extsymoff = 0; |
8916 | if (!elf_bad_symtab (input_bfd)) | |
8917 | extsymoff = symtab_hdr->sh_info; | |
8918 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
8919 | while (h->root.type == bfd_link_hash_indirect | |
8920 | || h->root.type == bfd_link_hash_warning) | |
8921 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8922 | ||
8923 | sec = NULL; | |
8924 | if (h->root.type == bfd_link_hash_defined | |
8925 | || h->root.type == bfd_link_hash_defweak) | |
8926 | sec = h->root.u.def.section; | |
8927 | } | |
8928 | ||
8929 | if (sec != NULL && elf_discarded_section (sec)) | |
8930 | { | |
8931 | /* For relocs against symbols from removed linkonce sections, | |
8932 | or sections discarded by a linker script, we just want the | |
8933 | section contents zeroed. Avoid any special processing. */ | |
8934 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
8935 | rel->r_info = 0; | |
8936 | rel->r_addend = 0; | |
8937 | continue; | |
8938 | } | |
8939 | ||
4a14403c | 8940 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
8941 | { |
8942 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
8943 | 64-bit code, but make sure all their addresses are in the | |
8944 | lowermost or uppermost 32-bit section of the 64-bit address | |
8945 | space. Thus, when they use an R_MIPS_64 they mean what is | |
8946 | usually meant by R_MIPS_32, with the exception that the | |
8947 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 8948 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
8949 | |
8950 | /* On big-endian systems, we need to lie about the position | |
8951 | of the reloc. */ | |
8952 | if (bfd_big_endian (input_bfd)) | |
8953 | rel->r_offset += 4; | |
8954 | } | |
b49e97c9 TS |
8955 | |
8956 | if (!use_saved_addend_p) | |
8957 | { | |
b49e97c9 TS |
8958 | /* If these relocations were originally of the REL variety, |
8959 | we must pull the addend out of the field that will be | |
8960 | relocated. Otherwise, we simply use the contents of the | |
c224138d RS |
8961 | RELA relocation. */ |
8962 | if (mips_elf_rel_relocation_p (input_bfd, input_section, | |
8963 | relocs, rel)) | |
b49e97c9 | 8964 | { |
b34976b6 | 8965 | rela_relocation_p = FALSE; |
c224138d RS |
8966 | addend = mips_elf_read_rel_addend (input_bfd, rel, |
8967 | howto, contents); | |
738e5348 RS |
8968 | if (hi16_reloc_p (r_type) |
8969 | || (got16_reloc_p (r_type) | |
b49e97c9 | 8970 | && mips_elf_local_relocation_p (input_bfd, rel, |
b34976b6 | 8971 | local_sections, FALSE))) |
b49e97c9 | 8972 | { |
c224138d RS |
8973 | if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, |
8974 | contents, &addend)) | |
749b8d9d L |
8975 | { |
8976 | const char *name; | |
8977 | ||
8978 | if (h) | |
8979 | name = h->root.root.string; | |
8980 | else | |
8981 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
8982 | local_syms + r_symndx, | |
8983 | sec); | |
8984 | (*_bfd_error_handler) | |
8985 | (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), | |
8986 | input_bfd, input_section, name, howto->name, | |
8987 | rel->r_offset); | |
749b8d9d | 8988 | } |
b49e97c9 | 8989 | } |
30ac9238 RS |
8990 | else |
8991 | addend <<= howto->rightshift; | |
b49e97c9 TS |
8992 | } |
8993 | else | |
8994 | addend = rel->r_addend; | |
81d43bff RS |
8995 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
8996 | local_syms, local_sections, rel); | |
b49e97c9 TS |
8997 | } |
8998 | ||
1049f94e | 8999 | if (info->relocatable) |
b49e97c9 | 9000 | { |
4a14403c | 9001 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
9002 | && bfd_big_endian (input_bfd)) |
9003 | rel->r_offset -= 4; | |
9004 | ||
81d43bff | 9005 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 9006 | { |
81d43bff | 9007 | addend += rel->r_addend; |
738e5348 | 9008 | if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) |
5a659663 TS |
9009 | addend = mips_elf_high (addend); |
9010 | else if (r_type == R_MIPS_HIGHER) | |
9011 | addend = mips_elf_higher (addend); | |
9012 | else if (r_type == R_MIPS_HIGHEST) | |
9013 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
9014 | else |
9015 | addend >>= howto->rightshift; | |
b49e97c9 | 9016 | |
30ac9238 RS |
9017 | /* We use the source mask, rather than the destination |
9018 | mask because the place to which we are writing will be | |
9019 | source of the addend in the final link. */ | |
b49e97c9 TS |
9020 | addend &= howto->src_mask; |
9021 | ||
5a659663 | 9022 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
9023 | /* See the comment above about using R_MIPS_64 in the 32-bit |
9024 | ABI. Here, we need to update the addend. It would be | |
9025 | possible to get away with just using the R_MIPS_32 reloc | |
9026 | but for endianness. */ | |
9027 | { | |
9028 | bfd_vma sign_bits; | |
9029 | bfd_vma low_bits; | |
9030 | bfd_vma high_bits; | |
9031 | ||
9032 | if (addend & ((bfd_vma) 1 << 31)) | |
9033 | #ifdef BFD64 | |
9034 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
9035 | #else | |
9036 | sign_bits = -1; | |
9037 | #endif | |
9038 | else | |
9039 | sign_bits = 0; | |
9040 | ||
9041 | /* If we don't know that we have a 64-bit type, | |
9042 | do two separate stores. */ | |
9043 | if (bfd_big_endian (input_bfd)) | |
9044 | { | |
9045 | /* Store the sign-bits (which are most significant) | |
9046 | first. */ | |
9047 | low_bits = sign_bits; | |
9048 | high_bits = addend; | |
9049 | } | |
9050 | else | |
9051 | { | |
9052 | low_bits = addend; | |
9053 | high_bits = sign_bits; | |
9054 | } | |
9055 | bfd_put_32 (input_bfd, low_bits, | |
9056 | contents + rel->r_offset); | |
9057 | bfd_put_32 (input_bfd, high_bits, | |
9058 | contents + rel->r_offset + 4); | |
9059 | continue; | |
9060 | } | |
9061 | ||
9062 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
9063 | input_bfd, input_section, | |
b34976b6 AM |
9064 | contents, FALSE)) |
9065 | return FALSE; | |
b49e97c9 TS |
9066 | } |
9067 | ||
9068 | /* Go on to the next relocation. */ | |
9069 | continue; | |
9070 | } | |
9071 | ||
9072 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
9073 | relocations for the same offset. In that case we are | |
9074 | supposed to treat the output of each relocation as the addend | |
9075 | for the next. */ | |
9076 | if (rel + 1 < relend | |
9077 | && rel->r_offset == rel[1].r_offset | |
9078 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 9079 | use_saved_addend_p = TRUE; |
b49e97c9 | 9080 | else |
b34976b6 | 9081 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
9082 | |
9083 | /* Figure out what value we are supposed to relocate. */ | |
9084 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
9085 | input_section, info, rel, | |
9086 | addend, howto, local_syms, | |
9087 | local_sections, &value, | |
bce03d3d AO |
9088 | &name, &require_jalx, |
9089 | use_saved_addend_p)) | |
b49e97c9 TS |
9090 | { |
9091 | case bfd_reloc_continue: | |
9092 | /* There's nothing to do. */ | |
9093 | continue; | |
9094 | ||
9095 | case bfd_reloc_undefined: | |
9096 | /* mips_elf_calculate_relocation already called the | |
9097 | undefined_symbol callback. There's no real point in | |
9098 | trying to perform the relocation at this point, so we | |
9099 | just skip ahead to the next relocation. */ | |
9100 | continue; | |
9101 | ||
9102 | case bfd_reloc_notsupported: | |
9103 | msg = _("internal error: unsupported relocation error"); | |
9104 | info->callbacks->warning | |
9105 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 9106 | return FALSE; |
b49e97c9 TS |
9107 | |
9108 | case bfd_reloc_overflow: | |
9109 | if (use_saved_addend_p) | |
9110 | /* Ignore overflow until we reach the last relocation for | |
9111 | a given location. */ | |
9112 | ; | |
9113 | else | |
9114 | { | |
0e53d9da AN |
9115 | struct mips_elf_link_hash_table *htab; |
9116 | ||
9117 | htab = mips_elf_hash_table (info); | |
b49e97c9 | 9118 | BFD_ASSERT (name != NULL); |
0e53d9da AN |
9119 | if (!htab->small_data_overflow_reported |
9120 | && (howto->type == R_MIPS_GPREL16 | |
9121 | || howto->type == R_MIPS_LITERAL)) | |
9122 | { | |
9123 | const char *msg = | |
9124 | _("small-data section exceeds 64KB;" | |
9125 | " lower small-data size limit (see option -G)"); | |
9126 | ||
9127 | htab->small_data_overflow_reported = TRUE; | |
9128 | (*info->callbacks->einfo) ("%P: %s\n", msg); | |
9129 | } | |
b49e97c9 | 9130 | if (! ((*info->callbacks->reloc_overflow) |
dfeffb9f | 9131 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 9132 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 9133 | return FALSE; |
b49e97c9 TS |
9134 | } |
9135 | break; | |
9136 | ||
9137 | case bfd_reloc_ok: | |
9138 | break; | |
9139 | ||
9140 | default: | |
9141 | abort (); | |
9142 | break; | |
9143 | } | |
9144 | ||
9145 | /* If we've got another relocation for the address, keep going | |
9146 | until we reach the last one. */ | |
9147 | if (use_saved_addend_p) | |
9148 | { | |
9149 | addend = value; | |
9150 | continue; | |
9151 | } | |
9152 | ||
4a14403c | 9153 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
9154 | /* See the comment above about using R_MIPS_64 in the 32-bit |
9155 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
9156 | that calculated the right value. Now, however, we | |
9157 | sign-extend the 32-bit result to 64-bits, and store it as a | |
9158 | 64-bit value. We are especially generous here in that we | |
9159 | go to extreme lengths to support this usage on systems with | |
9160 | only a 32-bit VMA. */ | |
9161 | { | |
9162 | bfd_vma sign_bits; | |
9163 | bfd_vma low_bits; | |
9164 | bfd_vma high_bits; | |
9165 | ||
9166 | if (value & ((bfd_vma) 1 << 31)) | |
9167 | #ifdef BFD64 | |
9168 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
9169 | #else | |
9170 | sign_bits = -1; | |
9171 | #endif | |
9172 | else | |
9173 | sign_bits = 0; | |
9174 | ||
9175 | /* If we don't know that we have a 64-bit type, | |
9176 | do two separate stores. */ | |
9177 | if (bfd_big_endian (input_bfd)) | |
9178 | { | |
9179 | /* Undo what we did above. */ | |
9180 | rel->r_offset -= 4; | |
9181 | /* Store the sign-bits (which are most significant) | |
9182 | first. */ | |
9183 | low_bits = sign_bits; | |
9184 | high_bits = value; | |
9185 | } | |
9186 | else | |
9187 | { | |
9188 | low_bits = value; | |
9189 | high_bits = sign_bits; | |
9190 | } | |
9191 | bfd_put_32 (input_bfd, low_bits, | |
9192 | contents + rel->r_offset); | |
9193 | bfd_put_32 (input_bfd, high_bits, | |
9194 | contents + rel->r_offset + 4); | |
9195 | continue; | |
9196 | } | |
9197 | ||
9198 | /* Actually perform the relocation. */ | |
9199 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
9200 | input_bfd, input_section, | |
9201 | contents, require_jalx)) | |
b34976b6 | 9202 | return FALSE; |
b49e97c9 TS |
9203 | } |
9204 | ||
b34976b6 | 9205 | return TRUE; |
b49e97c9 TS |
9206 | } |
9207 | \f | |
861fb55a DJ |
9208 | /* A function that iterates over each entry in la25_stubs and fills |
9209 | in the code for each one. DATA points to a mips_htab_traverse_info. */ | |
9210 | ||
9211 | static int | |
9212 | mips_elf_create_la25_stub (void **slot, void *data) | |
9213 | { | |
9214 | struct mips_htab_traverse_info *hti; | |
9215 | struct mips_elf_link_hash_table *htab; | |
9216 | struct mips_elf_la25_stub *stub; | |
9217 | asection *s; | |
9218 | bfd_byte *loc; | |
9219 | bfd_vma offset, target, target_high, target_low; | |
9220 | ||
9221 | stub = (struct mips_elf_la25_stub *) *slot; | |
9222 | hti = (struct mips_htab_traverse_info *) data; | |
9223 | htab = mips_elf_hash_table (hti->info); | |
9224 | ||
9225 | /* Create the section contents, if we haven't already. */ | |
9226 | s = stub->stub_section; | |
9227 | loc = s->contents; | |
9228 | if (loc == NULL) | |
9229 | { | |
9230 | loc = bfd_malloc (s->size); | |
9231 | if (loc == NULL) | |
9232 | { | |
9233 | hti->error = TRUE; | |
9234 | return FALSE; | |
9235 | } | |
9236 | s->contents = loc; | |
9237 | } | |
9238 | ||
9239 | /* Work out where in the section this stub should go. */ | |
9240 | offset = stub->offset; | |
9241 | ||
9242 | /* Work out the target address. */ | |
9243 | target = (stub->h->root.root.u.def.section->output_section->vma | |
9244 | + stub->h->root.root.u.def.section->output_offset | |
9245 | + stub->h->root.root.u.def.value); | |
9246 | target_high = ((target + 0x8000) >> 16) & 0xffff; | |
9247 | target_low = (target & 0xffff); | |
9248 | ||
9249 | if (stub->stub_section != htab->strampoline) | |
9250 | { | |
9251 | /* This is a simple LUI/ADIDU stub. Zero out the beginning | |
9252 | of the section and write the two instructions at the end. */ | |
9253 | memset (loc, 0, offset); | |
9254 | loc += offset; | |
9255 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
9256 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); | |
9257 | } | |
9258 | else | |
9259 | { | |
9260 | /* This is trampoline. */ | |
9261 | loc += offset; | |
9262 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
9263 | bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); | |
9264 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); | |
9265 | bfd_put_32 (hti->output_bfd, 0, loc + 12); | |
9266 | } | |
9267 | return TRUE; | |
9268 | } | |
9269 | ||
b49e97c9 TS |
9270 | /* If NAME is one of the special IRIX6 symbols defined by the linker, |
9271 | adjust it appropriately now. */ | |
9272 | ||
9273 | static void | |
9719ad41 RS |
9274 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
9275 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
9276 | { |
9277 | /* The linker script takes care of providing names and values for | |
9278 | these, but we must place them into the right sections. */ | |
9279 | static const char* const text_section_symbols[] = { | |
9280 | "_ftext", | |
9281 | "_etext", | |
9282 | "__dso_displacement", | |
9283 | "__elf_header", | |
9284 | "__program_header_table", | |
9285 | NULL | |
9286 | }; | |
9287 | ||
9288 | static const char* const data_section_symbols[] = { | |
9289 | "_fdata", | |
9290 | "_edata", | |
9291 | "_end", | |
9292 | "_fbss", | |
9293 | NULL | |
9294 | }; | |
9295 | ||
9296 | const char* const *p; | |
9297 | int i; | |
9298 | ||
9299 | for (i = 0; i < 2; ++i) | |
9300 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
9301 | *p; | |
9302 | ++p) | |
9303 | if (strcmp (*p, name) == 0) | |
9304 | { | |
9305 | /* All of these symbols are given type STT_SECTION by the | |
9306 | IRIX6 linker. */ | |
9307 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 9308 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
9309 | |
9310 | /* The IRIX linker puts these symbols in special sections. */ | |
9311 | if (i == 0) | |
9312 | sym->st_shndx = SHN_MIPS_TEXT; | |
9313 | else | |
9314 | sym->st_shndx = SHN_MIPS_DATA; | |
9315 | ||
9316 | break; | |
9317 | } | |
9318 | } | |
9319 | ||
9320 | /* Finish up dynamic symbol handling. We set the contents of various | |
9321 | dynamic sections here. */ | |
9322 | ||
b34976b6 | 9323 | bfd_boolean |
9719ad41 RS |
9324 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
9325 | struct bfd_link_info *info, | |
9326 | struct elf_link_hash_entry *h, | |
9327 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
9328 | { |
9329 | bfd *dynobj; | |
b49e97c9 | 9330 | asection *sgot; |
f4416af6 | 9331 | struct mips_got_info *g, *gg; |
b49e97c9 | 9332 | const char *name; |
3d6746ca | 9333 | int idx; |
5108fc1b | 9334 | struct mips_elf_link_hash_table *htab; |
738e5348 | 9335 | struct mips_elf_link_hash_entry *hmips; |
b49e97c9 | 9336 | |
5108fc1b | 9337 | htab = mips_elf_hash_table (info); |
b49e97c9 | 9338 | dynobj = elf_hash_table (info)->dynobj; |
738e5348 | 9339 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 9340 | |
861fb55a DJ |
9341 | BFD_ASSERT (!htab->is_vxworks); |
9342 | ||
9343 | if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub) | |
9344 | { | |
9345 | /* We've decided to create a PLT entry for this symbol. */ | |
9346 | bfd_byte *loc; | |
9347 | bfd_vma header_address, plt_index, got_address; | |
9348 | bfd_vma got_address_high, got_address_low, load; | |
9349 | const bfd_vma *plt_entry; | |
9350 | ||
9351 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
9352 | BFD_ASSERT (h->dynindx != -1); | |
9353 | BFD_ASSERT (htab->splt != NULL); | |
9354 | BFD_ASSERT (h->plt.offset <= htab->splt->size); | |
9355 | BFD_ASSERT (!h->def_regular); | |
9356 | ||
9357 | /* Calculate the address of the PLT header. */ | |
9358 | header_address = (htab->splt->output_section->vma | |
9359 | + htab->splt->output_offset); | |
9360 | ||
9361 | /* Calculate the index of the entry. */ | |
9362 | plt_index = ((h->plt.offset - htab->plt_header_size) | |
9363 | / htab->plt_entry_size); | |
9364 | ||
9365 | /* Calculate the address of the .got.plt entry. */ | |
9366 | got_address = (htab->sgotplt->output_section->vma | |
9367 | + htab->sgotplt->output_offset | |
9368 | + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj)); | |
9369 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
9370 | got_address_low = got_address & 0xffff; | |
9371 | ||
9372 | /* Initially point the .got.plt entry at the PLT header. */ | |
9373 | loc = (htab->sgotplt->contents | |
9374 | + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj)); | |
9375 | if (ABI_64_P (output_bfd)) | |
9376 | bfd_put_64 (output_bfd, header_address, loc); | |
9377 | else | |
9378 | bfd_put_32 (output_bfd, header_address, loc); | |
9379 | ||
9380 | /* Find out where the .plt entry should go. */ | |
9381 | loc = htab->splt->contents + h->plt.offset; | |
9382 | ||
9383 | /* Pick the load opcode. */ | |
9384 | load = MIPS_ELF_LOAD_WORD (output_bfd); | |
9385 | ||
9386 | /* Fill in the PLT entry itself. */ | |
9387 | plt_entry = mips_exec_plt_entry; | |
9388 | bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); | |
9389 | bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4); | |
6d30f5b2 NC |
9390 | |
9391 | if (! LOAD_INTERLOCKS_P (output_bfd)) | |
9392 | { | |
9393 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); | |
9394 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
9395 | } | |
9396 | else | |
9397 | { | |
9398 | bfd_put_32 (output_bfd, plt_entry[3], loc + 8); | |
9399 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12); | |
9400 | } | |
861fb55a DJ |
9401 | |
9402 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
9403 | mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, | |
9404 | plt_index, h->dynindx, | |
9405 | R_MIPS_JUMP_SLOT, got_address); | |
9406 | ||
9407 | /* We distinguish between PLT entries and lazy-binding stubs by | |
9408 | giving the former an st_other value of STO_MIPS_PLT. Set the | |
9409 | flag and leave the value if there are any relocations in the | |
9410 | binary where pointer equality matters. */ | |
9411 | sym->st_shndx = SHN_UNDEF; | |
9412 | if (h->pointer_equality_needed) | |
9413 | sym->st_other = STO_MIPS_PLT; | |
9414 | else | |
9415 | sym->st_value = 0; | |
9416 | } | |
9417 | else if (h->plt.offset != MINUS_ONE) | |
b49e97c9 | 9418 | { |
861fb55a | 9419 | /* We've decided to create a lazy-binding stub. */ |
5108fc1b | 9420 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
b49e97c9 TS |
9421 | |
9422 | /* This symbol has a stub. Set it up. */ | |
9423 | ||
9424 | BFD_ASSERT (h->dynindx != -1); | |
9425 | ||
5108fc1b RS |
9426 | BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
9427 | || (h->dynindx <= 0xffff)); | |
3d6746ca DD |
9428 | |
9429 | /* Values up to 2^31 - 1 are allowed. Larger values would cause | |
5108fc1b RS |
9430 | sign extension at runtime in the stub, resulting in a negative |
9431 | index value. */ | |
9432 | if (h->dynindx & ~0x7fffffff) | |
b34976b6 | 9433 | return FALSE; |
b49e97c9 TS |
9434 | |
9435 | /* Fill the stub. */ | |
3d6746ca DD |
9436 | idx = 0; |
9437 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | |
9438 | idx += 4; | |
9439 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); | |
9440 | idx += 4; | |
5108fc1b | 9441 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
3d6746ca | 9442 | { |
5108fc1b | 9443 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
3d6746ca DD |
9444 | stub + idx); |
9445 | idx += 4; | |
9446 | } | |
9447 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | |
9448 | idx += 4; | |
b49e97c9 | 9449 | |
3d6746ca DD |
9450 | /* If a large stub is not required and sign extension is not a |
9451 | problem, then use legacy code in the stub. */ | |
5108fc1b RS |
9452 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
9453 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); | |
9454 | else if (h->dynindx & ~0x7fff) | |
3d6746ca DD |
9455 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); |
9456 | else | |
5108fc1b RS |
9457 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
9458 | stub + idx); | |
9459 | ||
4e41d0d7 RS |
9460 | BFD_ASSERT (h->plt.offset <= htab->sstubs->size); |
9461 | memcpy (htab->sstubs->contents + h->plt.offset, | |
9462 | stub, htab->function_stub_size); | |
b49e97c9 TS |
9463 | |
9464 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
9465 | only for the referenced symbol. */ | |
9466 | sym->st_shndx = SHN_UNDEF; | |
9467 | ||
9468 | /* The run-time linker uses the st_value field of the symbol | |
9469 | to reset the global offset table entry for this external | |
9470 | to its stub address when unlinking a shared object. */ | |
4e41d0d7 RS |
9471 | sym->st_value = (htab->sstubs->output_section->vma |
9472 | + htab->sstubs->output_offset | |
c5ae1840 | 9473 | + h->plt.offset); |
b49e97c9 TS |
9474 | } |
9475 | ||
738e5348 RS |
9476 | /* If we have a MIPS16 function with a stub, the dynamic symbol must |
9477 | refer to the stub, since only the stub uses the standard calling | |
9478 | conventions. */ | |
9479 | if (h->dynindx != -1 && hmips->fn_stub != NULL) | |
9480 | { | |
9481 | BFD_ASSERT (hmips->need_fn_stub); | |
9482 | sym->st_value = (hmips->fn_stub->output_section->vma | |
9483 | + hmips->fn_stub->output_offset); | |
9484 | sym->st_size = hmips->fn_stub->size; | |
9485 | sym->st_other = ELF_ST_VISIBILITY (sym->st_other); | |
9486 | } | |
9487 | ||
b49e97c9 | 9488 | BFD_ASSERT (h->dynindx != -1 |
f5385ebf | 9489 | || h->forced_local); |
b49e97c9 | 9490 | |
23cc69b6 | 9491 | sgot = htab->sgot; |
a8028dd0 | 9492 | g = htab->got_info; |
b49e97c9 TS |
9493 | BFD_ASSERT (g != NULL); |
9494 | ||
9495 | /* Run through the global symbol table, creating GOT entries for all | |
9496 | the symbols that need them. */ | |
9497 | if (g->global_gotsym != NULL | |
9498 | && h->dynindx >= g->global_gotsym->dynindx) | |
9499 | { | |
9500 | bfd_vma offset; | |
9501 | bfd_vma value; | |
9502 | ||
6eaa6adc | 9503 | value = sym->st_value; |
738e5348 RS |
9504 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, |
9505 | R_MIPS_GOT16, info); | |
b49e97c9 TS |
9506 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
9507 | } | |
9508 | ||
0f20cc35 | 9509 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
9510 | { |
9511 | struct mips_got_entry e, *p; | |
0626d451 | 9512 | bfd_vma entry; |
f4416af6 | 9513 | bfd_vma offset; |
f4416af6 AO |
9514 | |
9515 | gg = g; | |
9516 | ||
9517 | e.abfd = output_bfd; | |
9518 | e.symndx = -1; | |
738e5348 | 9519 | e.d.h = hmips; |
0f20cc35 | 9520 | e.tls_type = 0; |
143d77c5 | 9521 | |
f4416af6 AO |
9522 | for (g = g->next; g->next != gg; g = g->next) |
9523 | { | |
9524 | if (g->got_entries | |
9525 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
9526 | &e))) | |
9527 | { | |
9528 | offset = p->gotidx; | |
0626d451 RS |
9529 | if (info->shared |
9530 | || (elf_hash_table (info)->dynamic_sections_created | |
9531 | && p->d.h != NULL | |
f5385ebf AM |
9532 | && p->d.h->root.def_dynamic |
9533 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
9534 | { |
9535 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
9536 | the various compatibility problems, it's easier to mock | |
9537 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
9538 | mips_elf_create_dynamic_relocation to calculate the | |
9539 | appropriate addend. */ | |
9540 | Elf_Internal_Rela rel[3]; | |
9541 | ||
9542 | memset (rel, 0, sizeof (rel)); | |
9543 | if (ABI_64_P (output_bfd)) | |
9544 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
9545 | else | |
9546 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
9547 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
9548 | ||
9549 | entry = 0; | |
9550 | if (! (mips_elf_create_dynamic_relocation | |
9551 | (output_bfd, info, rel, | |
9552 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
9553 | return FALSE; | |
9554 | } | |
9555 | else | |
9556 | entry = sym->st_value; | |
9557 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
9558 | } |
9559 | } | |
9560 | } | |
9561 | ||
b49e97c9 TS |
9562 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
9563 | name = h->root.root.string; | |
9564 | if (strcmp (name, "_DYNAMIC") == 0 | |
22edb2f1 | 9565 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
9566 | sym->st_shndx = SHN_ABS; |
9567 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
9568 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
9569 | { | |
9570 | sym->st_shndx = SHN_ABS; | |
9571 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
9572 | sym->st_value = 1; | |
9573 | } | |
4a14403c | 9574 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
9575 | { |
9576 | sym->st_shndx = SHN_ABS; | |
9577 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
9578 | sym->st_value = elf_gp (output_bfd); | |
9579 | } | |
9580 | else if (SGI_COMPAT (output_bfd)) | |
9581 | { | |
9582 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
9583 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
9584 | { | |
9585 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
9586 | sym->st_other = STO_PROTECTED; | |
9587 | sym->st_value = 0; | |
9588 | sym->st_shndx = SHN_MIPS_DATA; | |
9589 | } | |
9590 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
9591 | { | |
9592 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
9593 | sym->st_other = STO_PROTECTED; | |
9594 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
9595 | sym->st_shndx = SHN_ABS; | |
9596 | } | |
9597 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
9598 | { | |
9599 | if (h->type == STT_FUNC) | |
9600 | sym->st_shndx = SHN_MIPS_TEXT; | |
9601 | else if (h->type == STT_OBJECT) | |
9602 | sym->st_shndx = SHN_MIPS_DATA; | |
9603 | } | |
9604 | } | |
9605 | ||
861fb55a DJ |
9606 | /* Emit a copy reloc, if needed. */ |
9607 | if (h->needs_copy) | |
9608 | { | |
9609 | asection *s; | |
9610 | bfd_vma symval; | |
9611 | ||
9612 | BFD_ASSERT (h->dynindx != -1); | |
9613 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
9614 | ||
9615 | s = mips_elf_rel_dyn_section (info, FALSE); | |
9616 | symval = (h->root.u.def.section->output_section->vma | |
9617 | + h->root.u.def.section->output_offset | |
9618 | + h->root.u.def.value); | |
9619 | mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, | |
9620 | h->dynindx, R_MIPS_COPY, symval); | |
9621 | } | |
9622 | ||
b49e97c9 TS |
9623 | /* Handle the IRIX6-specific symbols. */ |
9624 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
9625 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
9626 | ||
9627 | if (! info->shared) | |
9628 | { | |
9629 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
9630 | && (strcmp (name, "__rld_map") == 0 | |
9631 | || strcmp (name, "__RLD_MAP") == 0)) | |
9632 | { | |
9633 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
9634 | BFD_ASSERT (s != NULL); | |
9635 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 9636 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
9637 | if (mips_elf_hash_table (info)->rld_value == 0) |
9638 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
9639 | } | |
9640 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
9641 | && strcmp (name, "__rld_obj_head") == 0) | |
9642 | { | |
9643 | /* IRIX6 does not use a .rld_map section. */ | |
9644 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
9645 | || IRIX_COMPAT (output_bfd) == ict_none) | |
9646 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
9647 | != NULL); | |
9648 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
9649 | } | |
9650 | } | |
9651 | ||
738e5348 RS |
9652 | /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to |
9653 | treat MIPS16 symbols like any other. */ | |
30c09090 | 9654 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
738e5348 RS |
9655 | { |
9656 | BFD_ASSERT (sym->st_value & 1); | |
9657 | sym->st_other -= STO_MIPS16; | |
9658 | } | |
b49e97c9 | 9659 | |
b34976b6 | 9660 | return TRUE; |
b49e97c9 TS |
9661 | } |
9662 | ||
0a44bf69 RS |
9663 | /* Likewise, for VxWorks. */ |
9664 | ||
9665 | bfd_boolean | |
9666 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
9667 | struct bfd_link_info *info, | |
9668 | struct elf_link_hash_entry *h, | |
9669 | Elf_Internal_Sym *sym) | |
9670 | { | |
9671 | bfd *dynobj; | |
9672 | asection *sgot; | |
9673 | struct mips_got_info *g; | |
9674 | struct mips_elf_link_hash_table *htab; | |
9675 | ||
9676 | htab = mips_elf_hash_table (info); | |
9677 | dynobj = elf_hash_table (info)->dynobj; | |
9678 | ||
9679 | if (h->plt.offset != (bfd_vma) -1) | |
9680 | { | |
6d79d2ed | 9681 | bfd_byte *loc; |
0a44bf69 RS |
9682 | bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; |
9683 | Elf_Internal_Rela rel; | |
9684 | static const bfd_vma *plt_entry; | |
9685 | ||
9686 | BFD_ASSERT (h->dynindx != -1); | |
9687 | BFD_ASSERT (htab->splt != NULL); | |
9688 | BFD_ASSERT (h->plt.offset <= htab->splt->size); | |
9689 | ||
9690 | /* Calculate the address of the .plt entry. */ | |
9691 | plt_address = (htab->splt->output_section->vma | |
9692 | + htab->splt->output_offset | |
9693 | + h->plt.offset); | |
9694 | ||
9695 | /* Calculate the index of the entry. */ | |
9696 | plt_index = ((h->plt.offset - htab->plt_header_size) | |
9697 | / htab->plt_entry_size); | |
9698 | ||
9699 | /* Calculate the address of the .got.plt entry. */ | |
9700 | got_address = (htab->sgotplt->output_section->vma | |
9701 | + htab->sgotplt->output_offset | |
9702 | + plt_index * 4); | |
9703 | ||
9704 | /* Calculate the offset of the .got.plt entry from | |
9705 | _GLOBAL_OFFSET_TABLE_. */ | |
9706 | got_offset = mips_elf_gotplt_index (info, h); | |
9707 | ||
9708 | /* Calculate the offset for the branch at the start of the PLT | |
9709 | entry. The branch jumps to the beginning of .plt. */ | |
9710 | branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; | |
9711 | ||
9712 | /* Fill in the initial value of the .got.plt entry. */ | |
9713 | bfd_put_32 (output_bfd, plt_address, | |
9714 | htab->sgotplt->contents + plt_index * 4); | |
9715 | ||
9716 | /* Find out where the .plt entry should go. */ | |
9717 | loc = htab->splt->contents + h->plt.offset; | |
9718 | ||
9719 | if (info->shared) | |
9720 | { | |
9721 | plt_entry = mips_vxworks_shared_plt_entry; | |
9722 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
9723 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
9724 | } | |
9725 | else | |
9726 | { | |
9727 | bfd_vma got_address_high, got_address_low; | |
9728 | ||
9729 | plt_entry = mips_vxworks_exec_plt_entry; | |
9730 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
9731 | got_address_low = got_address & 0xffff; | |
9732 | ||
9733 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
9734 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
9735 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); | |
9736 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
9737 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
9738 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
9739 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
9740 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
9741 | ||
9742 | loc = (htab->srelplt2->contents | |
9743 | + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); | |
9744 | ||
9745 | /* Emit a relocation for the .got.plt entry. */ | |
9746 | rel.r_offset = got_address; | |
9747 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
9748 | rel.r_addend = h->plt.offset; | |
9749 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9750 | ||
9751 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
9752 | loc += sizeof (Elf32_External_Rela); | |
9753 | rel.r_offset = plt_address + 8; | |
9754 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
9755 | rel.r_addend = got_offset; | |
9756 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9757 | ||
9758 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
9759 | loc += sizeof (Elf32_External_Rela); | |
9760 | rel.r_offset += 4; | |
9761 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
9762 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9763 | } | |
9764 | ||
9765 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
9766 | loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); | |
9767 | rel.r_offset = got_address; | |
9768 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
9769 | rel.r_addend = 0; | |
9770 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9771 | ||
9772 | if (!h->def_regular) | |
9773 | sym->st_shndx = SHN_UNDEF; | |
9774 | } | |
9775 | ||
9776 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
9777 | ||
23cc69b6 | 9778 | sgot = htab->sgot; |
a8028dd0 | 9779 | g = htab->got_info; |
0a44bf69 RS |
9780 | BFD_ASSERT (g != NULL); |
9781 | ||
9782 | /* See if this symbol has an entry in the GOT. */ | |
9783 | if (g->global_gotsym != NULL | |
9784 | && h->dynindx >= g->global_gotsym->dynindx) | |
9785 | { | |
9786 | bfd_vma offset; | |
9787 | Elf_Internal_Rela outrel; | |
9788 | bfd_byte *loc; | |
9789 | asection *s; | |
9790 | ||
9791 | /* Install the symbol value in the GOT. */ | |
9792 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, | |
9793 | R_MIPS_GOT16, info); | |
9794 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); | |
9795 | ||
9796 | /* Add a dynamic relocation for it. */ | |
9797 | s = mips_elf_rel_dyn_section (info, FALSE); | |
9798 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
9799 | outrel.r_offset = (sgot->output_section->vma | |
9800 | + sgot->output_offset | |
9801 | + offset); | |
9802 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
9803 | outrel.r_addend = 0; | |
9804 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
9805 | } | |
9806 | ||
9807 | /* Emit a copy reloc, if needed. */ | |
9808 | if (h->needs_copy) | |
9809 | { | |
9810 | Elf_Internal_Rela rel; | |
9811 | ||
9812 | BFD_ASSERT (h->dynindx != -1); | |
9813 | ||
9814 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
9815 | + h->root.u.def.section->output_offset | |
9816 | + h->root.u.def.value); | |
9817 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
9818 | rel.r_addend = 0; | |
9819 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
9820 | htab->srelbss->contents | |
9821 | + (htab->srelbss->reloc_count | |
9822 | * sizeof (Elf32_External_Rela))); | |
9823 | ++htab->srelbss->reloc_count; | |
9824 | } | |
9825 | ||
9826 | /* If this is a mips16 symbol, force the value to be even. */ | |
30c09090 | 9827 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
0a44bf69 RS |
9828 | sym->st_value &= ~1; |
9829 | ||
9830 | return TRUE; | |
9831 | } | |
9832 | ||
861fb55a DJ |
9833 | /* Write out a plt0 entry to the beginning of .plt. */ |
9834 | ||
9835 | static void | |
9836 | mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
9837 | { | |
9838 | bfd_byte *loc; | |
9839 | bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; | |
9840 | static const bfd_vma *plt_entry; | |
9841 | struct mips_elf_link_hash_table *htab; | |
9842 | ||
9843 | htab = mips_elf_hash_table (info); | |
9844 | if (ABI_64_P (output_bfd)) | |
9845 | plt_entry = mips_n64_exec_plt0_entry; | |
9846 | else if (ABI_N32_P (output_bfd)) | |
9847 | plt_entry = mips_n32_exec_plt0_entry; | |
9848 | else | |
9849 | plt_entry = mips_o32_exec_plt0_entry; | |
9850 | ||
9851 | /* Calculate the value of .got.plt. */ | |
9852 | gotplt_value = (htab->sgotplt->output_section->vma | |
9853 | + htab->sgotplt->output_offset); | |
9854 | gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; | |
9855 | gotplt_value_low = gotplt_value & 0xffff; | |
9856 | ||
9857 | /* The PLT sequence is not safe for N64 if .got.plt's address can | |
9858 | not be loaded in two instructions. */ | |
9859 | BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 | |
9860 | || ~(gotplt_value | 0x7fffffff) == 0); | |
9861 | ||
9862 | /* Install the PLT header. */ | |
9863 | loc = htab->splt->contents; | |
9864 | bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); | |
9865 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); | |
9866 | bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); | |
9867 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
9868 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
9869 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
9870 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
9871 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
9872 | } | |
9873 | ||
0a44bf69 RS |
9874 | /* Install the PLT header for a VxWorks executable and finalize the |
9875 | contents of .rela.plt.unloaded. */ | |
9876 | ||
9877 | static void | |
9878 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
9879 | { | |
9880 | Elf_Internal_Rela rela; | |
9881 | bfd_byte *loc; | |
9882 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
9883 | static const bfd_vma *plt_entry; | |
9884 | struct mips_elf_link_hash_table *htab; | |
9885 | ||
9886 | htab = mips_elf_hash_table (info); | |
9887 | plt_entry = mips_vxworks_exec_plt0_entry; | |
9888 | ||
9889 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
9890 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
9891 | + htab->root.hgot->root.u.def.section->output_offset | |
9892 | + htab->root.hgot->root.u.def.value); | |
9893 | ||
9894 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
9895 | got_value_low = got_value & 0xffff; | |
9896 | ||
9897 | /* Calculate the address of the PLT header. */ | |
9898 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
9899 | ||
9900 | /* Install the PLT header. */ | |
9901 | loc = htab->splt->contents; | |
9902 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
9903 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
9904 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
9905 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
9906 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
9907 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
9908 | ||
9909 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
9910 | loc = htab->srelplt2->contents; | |
9911 | rela.r_offset = plt_address; | |
9912 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
9913 | rela.r_addend = 0; | |
9914 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
9915 | loc += sizeof (Elf32_External_Rela); | |
9916 | ||
9917 | /* Output the relocation for the following addiu of | |
9918 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
9919 | rela.r_offset += 4; | |
9920 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
9921 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
9922 | loc += sizeof (Elf32_External_Rela); | |
9923 | ||
9924 | /* Fix up the remaining relocations. They may have the wrong | |
9925 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
9926 | in which symbols were output. */ | |
9927 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
9928 | { | |
9929 | Elf_Internal_Rela rel; | |
9930 | ||
9931 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
9932 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
9933 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9934 | loc += sizeof (Elf32_External_Rela); | |
9935 | ||
9936 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
9937 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
9938 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9939 | loc += sizeof (Elf32_External_Rela); | |
9940 | ||
9941 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
9942 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
9943 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
9944 | loc += sizeof (Elf32_External_Rela); | |
9945 | } | |
9946 | } | |
9947 | ||
9948 | /* Install the PLT header for a VxWorks shared library. */ | |
9949 | ||
9950 | static void | |
9951 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
9952 | { | |
9953 | unsigned int i; | |
9954 | struct mips_elf_link_hash_table *htab; | |
9955 | ||
9956 | htab = mips_elf_hash_table (info); | |
9957 | ||
9958 | /* We just need to copy the entry byte-by-byte. */ | |
9959 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
9960 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
9961 | htab->splt->contents + i * 4); | |
9962 | } | |
9963 | ||
b49e97c9 TS |
9964 | /* Finish up the dynamic sections. */ |
9965 | ||
b34976b6 | 9966 | bfd_boolean |
9719ad41 RS |
9967 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
9968 | struct bfd_link_info *info) | |
b49e97c9 TS |
9969 | { |
9970 | bfd *dynobj; | |
9971 | asection *sdyn; | |
9972 | asection *sgot; | |
f4416af6 | 9973 | struct mips_got_info *gg, *g; |
0a44bf69 | 9974 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 9975 | |
0a44bf69 | 9976 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
9977 | dynobj = elf_hash_table (info)->dynobj; |
9978 | ||
9979 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
9980 | ||
23cc69b6 RS |
9981 | sgot = htab->sgot; |
9982 | gg = htab->got_info; | |
b49e97c9 TS |
9983 | |
9984 | if (elf_hash_table (info)->dynamic_sections_created) | |
9985 | { | |
9986 | bfd_byte *b; | |
943284cc | 9987 | int dyn_to_skip = 0, dyn_skipped = 0; |
b49e97c9 TS |
9988 | |
9989 | BFD_ASSERT (sdyn != NULL); | |
23cc69b6 RS |
9990 | BFD_ASSERT (gg != NULL); |
9991 | ||
9992 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
9993 | BFD_ASSERT (g != NULL); |
9994 | ||
9995 | for (b = sdyn->contents; | |
eea6121a | 9996 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
9997 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
9998 | { | |
9999 | Elf_Internal_Dyn dyn; | |
10000 | const char *name; | |
10001 | size_t elemsize; | |
10002 | asection *s; | |
b34976b6 | 10003 | bfd_boolean swap_out_p; |
b49e97c9 TS |
10004 | |
10005 | /* Read in the current dynamic entry. */ | |
10006 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
10007 | ||
10008 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 10009 | swap_out_p = TRUE; |
b49e97c9 TS |
10010 | |
10011 | switch (dyn.d_tag) | |
10012 | { | |
10013 | case DT_RELENT: | |
b49e97c9 TS |
10014 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
10015 | break; | |
10016 | ||
0a44bf69 RS |
10017 | case DT_RELAENT: |
10018 | BFD_ASSERT (htab->is_vxworks); | |
10019 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
10020 | break; | |
10021 | ||
b49e97c9 TS |
10022 | case DT_STRSZ: |
10023 | /* Rewrite DT_STRSZ. */ | |
10024 | dyn.d_un.d_val = | |
10025 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
10026 | break; | |
10027 | ||
10028 | case DT_PLTGOT: | |
861fb55a DJ |
10029 | s = htab->sgot; |
10030 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
10031 | break; | |
10032 | ||
10033 | case DT_MIPS_PLTGOT: | |
10034 | s = htab->sgotplt; | |
10035 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
b49e97c9 TS |
10036 | break; |
10037 | ||
10038 | case DT_MIPS_RLD_VERSION: | |
10039 | dyn.d_un.d_val = 1; /* XXX */ | |
10040 | break; | |
10041 | ||
10042 | case DT_MIPS_FLAGS: | |
10043 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
10044 | break; | |
10045 | ||
b49e97c9 | 10046 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
10047 | { |
10048 | time_t t; | |
10049 | time (&t); | |
10050 | dyn.d_un.d_val = t; | |
10051 | } | |
b49e97c9 TS |
10052 | break; |
10053 | ||
10054 | case DT_MIPS_ICHECKSUM: | |
10055 | /* XXX FIXME: */ | |
b34976b6 | 10056 | swap_out_p = FALSE; |
b49e97c9 TS |
10057 | break; |
10058 | ||
10059 | case DT_MIPS_IVERSION: | |
10060 | /* XXX FIXME: */ | |
b34976b6 | 10061 | swap_out_p = FALSE; |
b49e97c9 TS |
10062 | break; |
10063 | ||
10064 | case DT_MIPS_BASE_ADDRESS: | |
10065 | s = output_bfd->sections; | |
10066 | BFD_ASSERT (s != NULL); | |
10067 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
10068 | break; | |
10069 | ||
10070 | case DT_MIPS_LOCAL_GOTNO: | |
10071 | dyn.d_un.d_val = g->local_gotno; | |
10072 | break; | |
10073 | ||
10074 | case DT_MIPS_UNREFEXTNO: | |
10075 | /* The index into the dynamic symbol table which is the | |
10076 | entry of the first external symbol that is not | |
10077 | referenced within the same object. */ | |
10078 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
10079 | break; | |
10080 | ||
10081 | case DT_MIPS_GOTSYM: | |
f4416af6 | 10082 | if (gg->global_gotsym) |
b49e97c9 | 10083 | { |
f4416af6 | 10084 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
10085 | break; |
10086 | } | |
10087 | /* In case if we don't have global got symbols we default | |
10088 | to setting DT_MIPS_GOTSYM to the same value as | |
10089 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
10090 | ||
10091 | case DT_MIPS_SYMTABNO: | |
10092 | name = ".dynsym"; | |
10093 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
10094 | s = bfd_get_section_by_name (output_bfd, name); | |
10095 | BFD_ASSERT (s != NULL); | |
10096 | ||
eea6121a | 10097 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
10098 | break; |
10099 | ||
10100 | case DT_MIPS_HIPAGENO: | |
861fb55a | 10101 | dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; |
b49e97c9 TS |
10102 | break; |
10103 | ||
10104 | case DT_MIPS_RLD_MAP: | |
10105 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
10106 | break; | |
10107 | ||
10108 | case DT_MIPS_OPTIONS: | |
10109 | s = (bfd_get_section_by_name | |
10110 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
10111 | dyn.d_un.d_ptr = s->vma; | |
10112 | break; | |
10113 | ||
0a44bf69 RS |
10114 | case DT_RELASZ: |
10115 | BFD_ASSERT (htab->is_vxworks); | |
10116 | /* The count does not include the JUMP_SLOT relocations. */ | |
10117 | if (htab->srelplt) | |
10118 | dyn.d_un.d_val -= htab->srelplt->size; | |
10119 | break; | |
10120 | ||
10121 | case DT_PLTREL: | |
861fb55a DJ |
10122 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
10123 | if (htab->is_vxworks) | |
10124 | dyn.d_un.d_val = DT_RELA; | |
10125 | else | |
10126 | dyn.d_un.d_val = DT_REL; | |
0a44bf69 RS |
10127 | break; |
10128 | ||
10129 | case DT_PLTRELSZ: | |
861fb55a | 10130 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
0a44bf69 RS |
10131 | dyn.d_un.d_val = htab->srelplt->size; |
10132 | break; | |
10133 | ||
10134 | case DT_JMPREL: | |
861fb55a DJ |
10135 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
10136 | dyn.d_un.d_ptr = (htab->srelplt->output_section->vma | |
0a44bf69 RS |
10137 | + htab->srelplt->output_offset); |
10138 | break; | |
10139 | ||
943284cc DJ |
10140 | case DT_TEXTREL: |
10141 | /* If we didn't need any text relocations after all, delete | |
10142 | the dynamic tag. */ | |
10143 | if (!(info->flags & DF_TEXTREL)) | |
10144 | { | |
10145 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
10146 | swap_out_p = FALSE; | |
10147 | } | |
10148 | break; | |
10149 | ||
10150 | case DT_FLAGS: | |
10151 | /* If we didn't need any text relocations after all, clear | |
10152 | DF_TEXTREL from DT_FLAGS. */ | |
10153 | if (!(info->flags & DF_TEXTREL)) | |
10154 | dyn.d_un.d_val &= ~DF_TEXTREL; | |
10155 | else | |
10156 | swap_out_p = FALSE; | |
10157 | break; | |
10158 | ||
b49e97c9 | 10159 | default: |
b34976b6 | 10160 | swap_out_p = FALSE; |
7a2b07ff NS |
10161 | if (htab->is_vxworks |
10162 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | |
10163 | swap_out_p = TRUE; | |
b49e97c9 TS |
10164 | break; |
10165 | } | |
10166 | ||
943284cc | 10167 | if (swap_out_p || dyn_skipped) |
b49e97c9 | 10168 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
943284cc DJ |
10169 | (dynobj, &dyn, b - dyn_skipped); |
10170 | ||
10171 | if (dyn_to_skip) | |
10172 | { | |
10173 | dyn_skipped += dyn_to_skip; | |
10174 | dyn_to_skip = 0; | |
10175 | } | |
b49e97c9 | 10176 | } |
943284cc DJ |
10177 | |
10178 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ | |
10179 | if (dyn_skipped > 0) | |
10180 | memset (b - dyn_skipped, 0, dyn_skipped); | |
b49e97c9 TS |
10181 | } |
10182 | ||
b55fd4d4 DJ |
10183 | if (sgot != NULL && sgot->size > 0 |
10184 | && !bfd_is_abs_section (sgot->output_section)) | |
b49e97c9 | 10185 | { |
0a44bf69 RS |
10186 | if (htab->is_vxworks) |
10187 | { | |
10188 | /* The first entry of the global offset table points to the | |
10189 | ".dynamic" section. The second is initialized by the | |
10190 | loader and contains the shared library identifier. | |
10191 | The third is also initialized by the loader and points | |
10192 | to the lazy resolution stub. */ | |
10193 | MIPS_ELF_PUT_WORD (output_bfd, | |
10194 | sdyn->output_offset + sdyn->output_section->vma, | |
10195 | sgot->contents); | |
10196 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
10197 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
10198 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
10199 | sgot->contents | |
10200 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
10201 | } | |
10202 | else | |
10203 | { | |
10204 | /* The first entry of the global offset table will be filled at | |
10205 | runtime. The second entry will be used by some runtime loaders. | |
10206 | This isn't the case of IRIX rld. */ | |
10207 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
51e38d68 | 10208 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
0a44bf69 RS |
10209 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
10210 | } | |
b49e97c9 | 10211 | |
54938e2a TS |
10212 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
10213 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
10214 | } | |
b49e97c9 | 10215 | |
f4416af6 AO |
10216 | /* Generate dynamic relocations for the non-primary gots. */ |
10217 | if (gg != NULL && gg->next) | |
10218 | { | |
10219 | Elf_Internal_Rela rel[3]; | |
10220 | bfd_vma addend = 0; | |
10221 | ||
10222 | memset (rel, 0, sizeof (rel)); | |
10223 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
10224 | ||
10225 | for (g = gg->next; g->next != gg; g = g->next) | |
10226 | { | |
0f20cc35 DJ |
10227 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
10228 | + g->next->tls_gotno; | |
f4416af6 | 10229 | |
9719ad41 | 10230 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 10231 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
51e38d68 RS |
10232 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
10233 | sgot->contents | |
f4416af6 AO |
10234 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
10235 | ||
10236 | if (! info->shared) | |
10237 | continue; | |
10238 | ||
10239 | while (index < g->assigned_gotno) | |
10240 | { | |
10241 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
10242 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
10243 | if (!(mips_elf_create_dynamic_relocation | |
10244 | (output_bfd, info, rel, NULL, | |
10245 | bfd_abs_section_ptr, | |
10246 | 0, &addend, sgot))) | |
10247 | return FALSE; | |
10248 | BFD_ASSERT (addend == 0); | |
10249 | } | |
10250 | } | |
10251 | } | |
10252 | ||
3133ddbf DJ |
10253 | /* The generation of dynamic relocations for the non-primary gots |
10254 | adds more dynamic relocations. We cannot count them until | |
10255 | here. */ | |
10256 | ||
10257 | if (elf_hash_table (info)->dynamic_sections_created) | |
10258 | { | |
10259 | bfd_byte *b; | |
10260 | bfd_boolean swap_out_p; | |
10261 | ||
10262 | BFD_ASSERT (sdyn != NULL); | |
10263 | ||
10264 | for (b = sdyn->contents; | |
10265 | b < sdyn->contents + sdyn->size; | |
10266 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
10267 | { | |
10268 | Elf_Internal_Dyn dyn; | |
10269 | asection *s; | |
10270 | ||
10271 | /* Read in the current dynamic entry. */ | |
10272 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
10273 | ||
10274 | /* Assume that we're going to modify it and write it out. */ | |
10275 | swap_out_p = TRUE; | |
10276 | ||
10277 | switch (dyn.d_tag) | |
10278 | { | |
10279 | case DT_RELSZ: | |
10280 | /* Reduce DT_RELSZ to account for any relocations we | |
10281 | decided not to make. This is for the n64 irix rld, | |
10282 | which doesn't seem to apply any relocations if there | |
10283 | are trailing null entries. */ | |
0a44bf69 | 10284 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
10285 | dyn.d_un.d_val = (s->reloc_count |
10286 | * (ABI_64_P (output_bfd) | |
10287 | ? sizeof (Elf64_Mips_External_Rel) | |
10288 | : sizeof (Elf32_External_Rel))); | |
bcfdf036 RS |
10289 | /* Adjust the section size too. Tools like the prelinker |
10290 | can reasonably expect the values to the same. */ | |
10291 | elf_section_data (s->output_section)->this_hdr.sh_size | |
10292 | = dyn.d_un.d_val; | |
3133ddbf DJ |
10293 | break; |
10294 | ||
10295 | default: | |
10296 | swap_out_p = FALSE; | |
10297 | break; | |
10298 | } | |
10299 | ||
10300 | if (swap_out_p) | |
10301 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
10302 | (dynobj, &dyn, b); | |
10303 | } | |
10304 | } | |
10305 | ||
b49e97c9 | 10306 | { |
b49e97c9 TS |
10307 | asection *s; |
10308 | Elf32_compact_rel cpt; | |
10309 | ||
b49e97c9 TS |
10310 | if (SGI_COMPAT (output_bfd)) |
10311 | { | |
10312 | /* Write .compact_rel section out. */ | |
10313 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
10314 | if (s != NULL) | |
10315 | { | |
10316 | cpt.id1 = 1; | |
10317 | cpt.num = s->reloc_count; | |
10318 | cpt.id2 = 2; | |
10319 | cpt.offset = (s->output_section->filepos | |
10320 | + sizeof (Elf32_External_compact_rel)); | |
10321 | cpt.reserved0 = 0; | |
10322 | cpt.reserved1 = 0; | |
10323 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
10324 | ((Elf32_External_compact_rel *) | |
10325 | s->contents)); | |
10326 | ||
10327 | /* Clean up a dummy stub function entry in .text. */ | |
4e41d0d7 | 10328 | if (htab->sstubs != NULL) |
b49e97c9 TS |
10329 | { |
10330 | file_ptr dummy_offset; | |
10331 | ||
4e41d0d7 RS |
10332 | BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); |
10333 | dummy_offset = htab->sstubs->size - htab->function_stub_size; | |
10334 | memset (htab->sstubs->contents + dummy_offset, 0, | |
5108fc1b | 10335 | htab->function_stub_size); |
b49e97c9 TS |
10336 | } |
10337 | } | |
10338 | } | |
10339 | ||
0a44bf69 RS |
10340 | /* The psABI says that the dynamic relocations must be sorted in |
10341 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
10342 | this, and because the code below handles REL rather than RELA | |
10343 | relocations, using it for VxWorks would be outright harmful. */ | |
10344 | if (!htab->is_vxworks) | |
b49e97c9 | 10345 | { |
0a44bf69 RS |
10346 | s = mips_elf_rel_dyn_section (info, FALSE); |
10347 | if (s != NULL | |
10348 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
10349 | { | |
10350 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 10351 | |
0a44bf69 RS |
10352 | if (ABI_64_P (output_bfd)) |
10353 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
10354 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
10355 | sort_dynamic_relocs_64); | |
10356 | else | |
10357 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
10358 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
10359 | sort_dynamic_relocs); | |
10360 | } | |
b49e97c9 | 10361 | } |
b49e97c9 TS |
10362 | } |
10363 | ||
861fb55a | 10364 | if (htab->splt && htab->splt->size > 0) |
0a44bf69 | 10365 | { |
861fb55a DJ |
10366 | if (htab->is_vxworks) |
10367 | { | |
10368 | if (info->shared) | |
10369 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
10370 | else | |
10371 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
10372 | } | |
0a44bf69 | 10373 | else |
861fb55a DJ |
10374 | { |
10375 | BFD_ASSERT (!info->shared); | |
10376 | mips_finish_exec_plt (output_bfd, info); | |
10377 | } | |
0a44bf69 | 10378 | } |
b34976b6 | 10379 | return TRUE; |
b49e97c9 TS |
10380 | } |
10381 | ||
b49e97c9 | 10382 | |
64543e1a RS |
10383 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
10384 | ||
10385 | static void | |
9719ad41 | 10386 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 10387 | { |
64543e1a | 10388 | flagword val; |
b49e97c9 TS |
10389 | |
10390 | switch (bfd_get_mach (abfd)) | |
10391 | { | |
10392 | default: | |
10393 | case bfd_mach_mips3000: | |
10394 | val = E_MIPS_ARCH_1; | |
10395 | break; | |
10396 | ||
10397 | case bfd_mach_mips3900: | |
10398 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
10399 | break; | |
10400 | ||
10401 | case bfd_mach_mips6000: | |
10402 | val = E_MIPS_ARCH_2; | |
10403 | break; | |
10404 | ||
10405 | case bfd_mach_mips4000: | |
10406 | case bfd_mach_mips4300: | |
10407 | case bfd_mach_mips4400: | |
10408 | case bfd_mach_mips4600: | |
10409 | val = E_MIPS_ARCH_3; | |
10410 | break; | |
10411 | ||
10412 | case bfd_mach_mips4010: | |
10413 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
10414 | break; | |
10415 | ||
10416 | case bfd_mach_mips4100: | |
10417 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
10418 | break; | |
10419 | ||
10420 | case bfd_mach_mips4111: | |
10421 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
10422 | break; | |
10423 | ||
00707a0e RS |
10424 | case bfd_mach_mips4120: |
10425 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
10426 | break; | |
10427 | ||
b49e97c9 TS |
10428 | case bfd_mach_mips4650: |
10429 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
10430 | break; | |
10431 | ||
00707a0e RS |
10432 | case bfd_mach_mips5400: |
10433 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
10434 | break; | |
10435 | ||
10436 | case bfd_mach_mips5500: | |
10437 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
10438 | break; | |
10439 | ||
0d2e43ed ILT |
10440 | case bfd_mach_mips9000: |
10441 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
10442 | break; | |
10443 | ||
b49e97c9 | 10444 | case bfd_mach_mips5000: |
5a7ea749 | 10445 | case bfd_mach_mips7000: |
b49e97c9 TS |
10446 | case bfd_mach_mips8000: |
10447 | case bfd_mach_mips10000: | |
10448 | case bfd_mach_mips12000: | |
3aa3176b TS |
10449 | case bfd_mach_mips14000: |
10450 | case bfd_mach_mips16000: | |
b49e97c9 TS |
10451 | val = E_MIPS_ARCH_4; |
10452 | break; | |
10453 | ||
10454 | case bfd_mach_mips5: | |
10455 | val = E_MIPS_ARCH_5; | |
10456 | break; | |
10457 | ||
350cc38d MS |
10458 | case bfd_mach_mips_loongson_2e: |
10459 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; | |
10460 | break; | |
10461 | ||
10462 | case bfd_mach_mips_loongson_2f: | |
10463 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; | |
10464 | break; | |
10465 | ||
b49e97c9 TS |
10466 | case bfd_mach_mips_sb1: |
10467 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
10468 | break; | |
10469 | ||
6f179bd0 AN |
10470 | case bfd_mach_mips_octeon: |
10471 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; | |
10472 | break; | |
10473 | ||
52b6b6b9 JM |
10474 | case bfd_mach_mips_xlr: |
10475 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; | |
10476 | break; | |
10477 | ||
b49e97c9 TS |
10478 | case bfd_mach_mipsisa32: |
10479 | val = E_MIPS_ARCH_32; | |
10480 | break; | |
10481 | ||
10482 | case bfd_mach_mipsisa64: | |
10483 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
10484 | break; |
10485 | ||
10486 | case bfd_mach_mipsisa32r2: | |
10487 | val = E_MIPS_ARCH_32R2; | |
10488 | break; | |
5f74bc13 CD |
10489 | |
10490 | case bfd_mach_mipsisa64r2: | |
10491 | val = E_MIPS_ARCH_64R2; | |
10492 | break; | |
b49e97c9 | 10493 | } |
b49e97c9 TS |
10494 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
10495 | elf_elfheader (abfd)->e_flags |= val; | |
10496 | ||
64543e1a RS |
10497 | } |
10498 | ||
10499 | ||
10500 | /* The final processing done just before writing out a MIPS ELF object | |
10501 | file. This gets the MIPS architecture right based on the machine | |
10502 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
10503 | ||
10504 | void | |
9719ad41 RS |
10505 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
10506 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
10507 | { |
10508 | unsigned int i; | |
10509 | Elf_Internal_Shdr **hdrpp; | |
10510 | const char *name; | |
10511 | asection *sec; | |
10512 | ||
10513 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
10514 | is nonzero. This is for compatibility with old objects, which used | |
10515 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
10516 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
10517 | mips_set_isa_flags (abfd); | |
10518 | ||
b49e97c9 TS |
10519 | /* Set the sh_info field for .gptab sections and other appropriate |
10520 | info for each special section. */ | |
10521 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
10522 | i < elf_numsections (abfd); | |
10523 | i++, hdrpp++) | |
10524 | { | |
10525 | switch ((*hdrpp)->sh_type) | |
10526 | { | |
10527 | case SHT_MIPS_MSYM: | |
10528 | case SHT_MIPS_LIBLIST: | |
10529 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
10530 | if (sec != NULL) | |
10531 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
10532 | break; | |
10533 | ||
10534 | case SHT_MIPS_GPTAB: | |
10535 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
10536 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
10537 | BFD_ASSERT (name != NULL | |
0112cd26 | 10538 | && CONST_STRNEQ (name, ".gptab.")); |
b49e97c9 TS |
10539 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
10540 | BFD_ASSERT (sec != NULL); | |
10541 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
10542 | break; | |
10543 | ||
10544 | case SHT_MIPS_CONTENT: | |
10545 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
10546 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
10547 | BFD_ASSERT (name != NULL | |
0112cd26 | 10548 | && CONST_STRNEQ (name, ".MIPS.content")); |
b49e97c9 TS |
10549 | sec = bfd_get_section_by_name (abfd, |
10550 | name + sizeof ".MIPS.content" - 1); | |
10551 | BFD_ASSERT (sec != NULL); | |
10552 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
10553 | break; | |
10554 | ||
10555 | case SHT_MIPS_SYMBOL_LIB: | |
10556 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
10557 | if (sec != NULL) | |
10558 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
10559 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
10560 | if (sec != NULL) | |
10561 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
10562 | break; | |
10563 | ||
10564 | case SHT_MIPS_EVENTS: | |
10565 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
10566 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
10567 | BFD_ASSERT (name != NULL); | |
0112cd26 | 10568 | if (CONST_STRNEQ (name, ".MIPS.events")) |
b49e97c9 TS |
10569 | sec = bfd_get_section_by_name (abfd, |
10570 | name + sizeof ".MIPS.events" - 1); | |
10571 | else | |
10572 | { | |
0112cd26 | 10573 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
b49e97c9 TS |
10574 | sec = bfd_get_section_by_name (abfd, |
10575 | (name | |
10576 | + sizeof ".MIPS.post_rel" - 1)); | |
10577 | } | |
10578 | BFD_ASSERT (sec != NULL); | |
10579 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
10580 | break; | |
10581 | ||
10582 | } | |
10583 | } | |
10584 | } | |
10585 | \f | |
8dc1a139 | 10586 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
10587 | segments. */ |
10588 | ||
10589 | int | |
a6b96beb AM |
10590 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
10591 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
10592 | { |
10593 | asection *s; | |
10594 | int ret = 0; | |
10595 | ||
10596 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
10597 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
10598 | if (s && (s->flags & SEC_LOAD)) | |
10599 | ++ret; | |
10600 | ||
10601 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
10602 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
10603 | && bfd_get_section_by_name (abfd, | |
10604 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
10605 | ++ret; | |
10606 | ||
10607 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
10608 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
10609 | && bfd_get_section_by_name (abfd, ".dynamic") | |
10610 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
10611 | ++ret; | |
10612 | ||
98c904a8 RS |
10613 | /* Allocate a PT_NULL header in dynamic objects. See |
10614 | _bfd_mips_elf_modify_segment_map for details. */ | |
10615 | if (!SGI_COMPAT (abfd) | |
10616 | && bfd_get_section_by_name (abfd, ".dynamic")) | |
10617 | ++ret; | |
10618 | ||
b49e97c9 TS |
10619 | return ret; |
10620 | } | |
10621 | ||
8dc1a139 | 10622 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 10623 | |
b34976b6 | 10624 | bfd_boolean |
9719ad41 | 10625 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
7c8b76cc | 10626 | struct bfd_link_info *info) |
b49e97c9 TS |
10627 | { |
10628 | asection *s; | |
10629 | struct elf_segment_map *m, **pm; | |
10630 | bfd_size_type amt; | |
10631 | ||
10632 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
10633 | segment. */ | |
10634 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
10635 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
10636 | { | |
10637 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
10638 | if (m->p_type == PT_MIPS_REGINFO) | |
10639 | break; | |
10640 | if (m == NULL) | |
10641 | { | |
10642 | amt = sizeof *m; | |
9719ad41 | 10643 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 10644 | if (m == NULL) |
b34976b6 | 10645 | return FALSE; |
b49e97c9 TS |
10646 | |
10647 | m->p_type = PT_MIPS_REGINFO; | |
10648 | m->count = 1; | |
10649 | m->sections[0] = s; | |
10650 | ||
10651 | /* We want to put it after the PHDR and INTERP segments. */ | |
10652 | pm = &elf_tdata (abfd)->segment_map; | |
10653 | while (*pm != NULL | |
10654 | && ((*pm)->p_type == PT_PHDR | |
10655 | || (*pm)->p_type == PT_INTERP)) | |
10656 | pm = &(*pm)->next; | |
10657 | ||
10658 | m->next = *pm; | |
10659 | *pm = m; | |
10660 | } | |
10661 | } | |
10662 | ||
10663 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
10664 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 10665 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 10666 | table. */ |
c1fd6598 AO |
10667 | if (NEWABI_P (abfd) |
10668 | /* On non-IRIX6 new abi, we'll have already created a segment | |
10669 | for this section, so don't create another. I'm not sure this | |
10670 | is not also the case for IRIX 6, but I can't test it right | |
10671 | now. */ | |
10672 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
10673 | { |
10674 | for (s = abfd->sections; s; s = s->next) | |
10675 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
10676 | break; | |
10677 | ||
10678 | if (s) | |
10679 | { | |
10680 | struct elf_segment_map *options_segment; | |
10681 | ||
98a8deaf RS |
10682 | pm = &elf_tdata (abfd)->segment_map; |
10683 | while (*pm != NULL | |
10684 | && ((*pm)->p_type == PT_PHDR | |
10685 | || (*pm)->p_type == PT_INTERP)) | |
10686 | pm = &(*pm)->next; | |
b49e97c9 | 10687 | |
8ded5a0f AM |
10688 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
10689 | { | |
10690 | amt = sizeof (struct elf_segment_map); | |
10691 | options_segment = bfd_zalloc (abfd, amt); | |
10692 | options_segment->next = *pm; | |
10693 | options_segment->p_type = PT_MIPS_OPTIONS; | |
10694 | options_segment->p_flags = PF_R; | |
10695 | options_segment->p_flags_valid = TRUE; | |
10696 | options_segment->count = 1; | |
10697 | options_segment->sections[0] = s; | |
10698 | *pm = options_segment; | |
10699 | } | |
b49e97c9 TS |
10700 | } |
10701 | } | |
10702 | else | |
10703 | { | |
10704 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
10705 | { | |
10706 | /* If there are .dynamic and .mdebug sections, we make a room | |
10707 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
10708 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
10709 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
10710 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
10711 | { | |
10712 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
10713 | if (m->p_type == PT_MIPS_RTPROC) | |
10714 | break; | |
10715 | if (m == NULL) | |
10716 | { | |
10717 | amt = sizeof *m; | |
9719ad41 | 10718 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 10719 | if (m == NULL) |
b34976b6 | 10720 | return FALSE; |
b49e97c9 TS |
10721 | |
10722 | m->p_type = PT_MIPS_RTPROC; | |
10723 | ||
10724 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
10725 | if (s == NULL) | |
10726 | { | |
10727 | m->count = 0; | |
10728 | m->p_flags = 0; | |
10729 | m->p_flags_valid = 1; | |
10730 | } | |
10731 | else | |
10732 | { | |
10733 | m->count = 1; | |
10734 | m->sections[0] = s; | |
10735 | } | |
10736 | ||
10737 | /* We want to put it after the DYNAMIC segment. */ | |
10738 | pm = &elf_tdata (abfd)->segment_map; | |
10739 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
10740 | pm = &(*pm)->next; | |
10741 | if (*pm != NULL) | |
10742 | pm = &(*pm)->next; | |
10743 | ||
10744 | m->next = *pm; | |
10745 | *pm = m; | |
10746 | } | |
10747 | } | |
10748 | } | |
8dc1a139 | 10749 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
10750 | .dynstr, .dynsym, and .hash sections, and everything in |
10751 | between. */ | |
10752 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
10753 | pm = &(*pm)->next) | |
10754 | if ((*pm)->p_type == PT_DYNAMIC) | |
10755 | break; | |
10756 | m = *pm; | |
10757 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
10758 | { | |
10759 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
10760 | segment are read, write and execute. We do that here since | |
10761 | the code in elf.c sets only the read permission. This matters | |
10762 | sometimes for the dynamic linker. */ | |
10763 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
10764 | { | |
10765 | m->p_flags = PF_R | PF_W | PF_X; | |
10766 | m->p_flags_valid = 1; | |
10767 | } | |
10768 | } | |
f6f62d6f RS |
10769 | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
10770 | glibc's dynamic linker has traditionally derived the number of | |
10771 | tags from the p_filesz field, and sometimes allocates stack | |
10772 | arrays of that size. An overly-big PT_DYNAMIC segment can | |
10773 | be actively harmful in such cases. Making PT_DYNAMIC contain | |
10774 | other sections can also make life hard for the prelinker, | |
10775 | which might move one of the other sections to a different | |
10776 | PT_LOAD segment. */ | |
10777 | if (SGI_COMPAT (abfd) | |
10778 | && m != NULL | |
10779 | && m->count == 1 | |
10780 | && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
b49e97c9 TS |
10781 | { |
10782 | static const char *sec_names[] = | |
10783 | { | |
10784 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
10785 | }; | |
10786 | bfd_vma low, high; | |
10787 | unsigned int i, c; | |
10788 | struct elf_segment_map *n; | |
10789 | ||
792b4a53 | 10790 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
10791 | high = 0; |
10792 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
10793 | { | |
10794 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
10795 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
10796 | { | |
10797 | bfd_size_type sz; | |
10798 | ||
10799 | if (low > s->vma) | |
10800 | low = s->vma; | |
eea6121a | 10801 | sz = s->size; |
b49e97c9 TS |
10802 | if (high < s->vma + sz) |
10803 | high = s->vma + sz; | |
10804 | } | |
10805 | } | |
10806 | ||
10807 | c = 0; | |
10808 | for (s = abfd->sections; s != NULL; s = s->next) | |
10809 | if ((s->flags & SEC_LOAD) != 0 | |
10810 | && s->vma >= low | |
eea6121a | 10811 | && s->vma + s->size <= high) |
b49e97c9 TS |
10812 | ++c; |
10813 | ||
10814 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 10815 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 10816 | if (n == NULL) |
b34976b6 | 10817 | return FALSE; |
b49e97c9 TS |
10818 | *n = *m; |
10819 | n->count = c; | |
10820 | ||
10821 | i = 0; | |
10822 | for (s = abfd->sections; s != NULL; s = s->next) | |
10823 | { | |
10824 | if ((s->flags & SEC_LOAD) != 0 | |
10825 | && s->vma >= low | |
eea6121a | 10826 | && s->vma + s->size <= high) |
b49e97c9 TS |
10827 | { |
10828 | n->sections[i] = s; | |
10829 | ++i; | |
10830 | } | |
10831 | } | |
10832 | ||
10833 | *pm = n; | |
10834 | } | |
10835 | } | |
10836 | ||
98c904a8 RS |
10837 | /* Allocate a spare program header in dynamic objects so that tools |
10838 | like the prelinker can add an extra PT_LOAD entry. | |
10839 | ||
10840 | If the prelinker needs to make room for a new PT_LOAD entry, its | |
10841 | standard procedure is to move the first (read-only) sections into | |
10842 | the new (writable) segment. However, the MIPS ABI requires | |
10843 | .dynamic to be in a read-only segment, and the section will often | |
10844 | start within sizeof (ElfNN_Phdr) bytes of the last program header. | |
10845 | ||
10846 | Although the prelinker could in principle move .dynamic to a | |
10847 | writable segment, it seems better to allocate a spare program | |
10848 | header instead, and avoid the need to move any sections. | |
10849 | There is a long tradition of allocating spare dynamic tags, | |
10850 | so allocating a spare program header seems like a natural | |
7c8b76cc JM |
10851 | extension. |
10852 | ||
10853 | If INFO is NULL, we may be copying an already prelinked binary | |
10854 | with objcopy or strip, so do not add this header. */ | |
10855 | if (info != NULL | |
10856 | && !SGI_COMPAT (abfd) | |
98c904a8 RS |
10857 | && bfd_get_section_by_name (abfd, ".dynamic")) |
10858 | { | |
10859 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) | |
10860 | if ((*pm)->p_type == PT_NULL) | |
10861 | break; | |
10862 | if (*pm == NULL) | |
10863 | { | |
10864 | m = bfd_zalloc (abfd, sizeof (*m)); | |
10865 | if (m == NULL) | |
10866 | return FALSE; | |
10867 | ||
10868 | m->p_type = PT_NULL; | |
10869 | *pm = m; | |
10870 | } | |
10871 | } | |
10872 | ||
b34976b6 | 10873 | return TRUE; |
b49e97c9 TS |
10874 | } |
10875 | \f | |
10876 | /* Return the section that should be marked against GC for a given | |
10877 | relocation. */ | |
10878 | ||
10879 | asection * | |
9719ad41 | 10880 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
07adf181 | 10881 | struct bfd_link_info *info, |
9719ad41 RS |
10882 | Elf_Internal_Rela *rel, |
10883 | struct elf_link_hash_entry *h, | |
10884 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
10885 | { |
10886 | /* ??? Do mips16 stub sections need to be handled special? */ | |
10887 | ||
10888 | if (h != NULL) | |
07adf181 AM |
10889 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
10890 | { | |
10891 | case R_MIPS_GNU_VTINHERIT: | |
10892 | case R_MIPS_GNU_VTENTRY: | |
10893 | return NULL; | |
10894 | } | |
b49e97c9 | 10895 | |
07adf181 | 10896 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
b49e97c9 TS |
10897 | } |
10898 | ||
10899 | /* Update the got entry reference counts for the section being removed. */ | |
10900 | ||
b34976b6 | 10901 | bfd_boolean |
9719ad41 RS |
10902 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
10903 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
10904 | asection *sec ATTRIBUTE_UNUSED, | |
10905 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
10906 | { |
10907 | #if 0 | |
10908 | Elf_Internal_Shdr *symtab_hdr; | |
10909 | struct elf_link_hash_entry **sym_hashes; | |
10910 | bfd_signed_vma *local_got_refcounts; | |
10911 | const Elf_Internal_Rela *rel, *relend; | |
10912 | unsigned long r_symndx; | |
10913 | struct elf_link_hash_entry *h; | |
10914 | ||
7dda2462 TG |
10915 | if (info->relocatable) |
10916 | return TRUE; | |
10917 | ||
b49e97c9 TS |
10918 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10919 | sym_hashes = elf_sym_hashes (abfd); | |
10920 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
10921 | ||
10922 | relend = relocs + sec->reloc_count; | |
10923 | for (rel = relocs; rel < relend; rel++) | |
10924 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
10925 | { | |
738e5348 RS |
10926 | case R_MIPS16_GOT16: |
10927 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
10928 | case R_MIPS_GOT16: |
10929 | case R_MIPS_CALL16: | |
10930 | case R_MIPS_CALL_HI16: | |
10931 | case R_MIPS_CALL_LO16: | |
10932 | case R_MIPS_GOT_HI16: | |
10933 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
10934 | case R_MIPS_GOT_DISP: |
10935 | case R_MIPS_GOT_PAGE: | |
10936 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
10937 | /* ??? It would seem that the existing MIPS code does no sort |
10938 | of reference counting or whatnot on its GOT and PLT entries, | |
10939 | so it is not possible to garbage collect them at this time. */ | |
10940 | break; | |
10941 | ||
10942 | default: | |
10943 | break; | |
10944 | } | |
10945 | #endif | |
10946 | ||
b34976b6 | 10947 | return TRUE; |
b49e97c9 TS |
10948 | } |
10949 | \f | |
10950 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
10951 | hiding the old indirect symbol. Process additional relocation | |
10952 | information. Also called for weakdefs, in which case we just let | |
10953 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
10954 | ||
10955 | void | |
fcfa13d2 | 10956 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
10957 | struct elf_link_hash_entry *dir, |
10958 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
10959 | { |
10960 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
10961 | ||
fcfa13d2 | 10962 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 | 10963 | |
861fb55a DJ |
10964 | dirmips = (struct mips_elf_link_hash_entry *) dir; |
10965 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
10966 | /* Any absolute non-dynamic relocations against an indirect or weak | |
10967 | definition will be against the target symbol. */ | |
10968 | if (indmips->has_static_relocs) | |
10969 | dirmips->has_static_relocs = TRUE; | |
10970 | ||
b49e97c9 TS |
10971 | if (ind->root.type != bfd_link_hash_indirect) |
10972 | return; | |
10973 | ||
b49e97c9 TS |
10974 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
10975 | if (indmips->readonly_reloc) | |
b34976b6 | 10976 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 10977 | if (indmips->no_fn_stub) |
b34976b6 | 10978 | dirmips->no_fn_stub = TRUE; |
61b0a4af RS |
10979 | if (indmips->fn_stub) |
10980 | { | |
10981 | dirmips->fn_stub = indmips->fn_stub; | |
10982 | indmips->fn_stub = NULL; | |
10983 | } | |
10984 | if (indmips->need_fn_stub) | |
10985 | { | |
10986 | dirmips->need_fn_stub = TRUE; | |
10987 | indmips->need_fn_stub = FALSE; | |
10988 | } | |
10989 | if (indmips->call_stub) | |
10990 | { | |
10991 | dirmips->call_stub = indmips->call_stub; | |
10992 | indmips->call_stub = NULL; | |
10993 | } | |
10994 | if (indmips->call_fp_stub) | |
10995 | { | |
10996 | dirmips->call_fp_stub = indmips->call_fp_stub; | |
10997 | indmips->call_fp_stub = NULL; | |
10998 | } | |
634835ae RS |
10999 | if (indmips->global_got_area < dirmips->global_got_area) |
11000 | dirmips->global_got_area = indmips->global_got_area; | |
11001 | if (indmips->global_got_area < GGA_NONE) | |
11002 | indmips->global_got_area = GGA_NONE; | |
861fb55a DJ |
11003 | if (indmips->has_nonpic_branches) |
11004 | dirmips->has_nonpic_branches = TRUE; | |
0f20cc35 DJ |
11005 | |
11006 | if (dirmips->tls_type == 0) | |
11007 | dirmips->tls_type = indmips->tls_type; | |
b49e97c9 | 11008 | } |
b49e97c9 | 11009 | \f |
d01414a5 TS |
11010 | #define PDR_SIZE 32 |
11011 | ||
b34976b6 | 11012 | bfd_boolean |
9719ad41 RS |
11013 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
11014 | struct bfd_link_info *info) | |
d01414a5 TS |
11015 | { |
11016 | asection *o; | |
b34976b6 | 11017 | bfd_boolean ret = FALSE; |
d01414a5 TS |
11018 | unsigned char *tdata; |
11019 | size_t i, skip; | |
11020 | ||
11021 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
11022 | if (! o) | |
b34976b6 | 11023 | return FALSE; |
eea6121a | 11024 | if (o->size == 0) |
b34976b6 | 11025 | return FALSE; |
eea6121a | 11026 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 11027 | return FALSE; |
d01414a5 TS |
11028 | if (o->output_section != NULL |
11029 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 11030 | return FALSE; |
d01414a5 | 11031 | |
eea6121a | 11032 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 11033 | if (! tdata) |
b34976b6 | 11034 | return FALSE; |
d01414a5 | 11035 | |
9719ad41 | 11036 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 11037 | info->keep_memory); |
d01414a5 TS |
11038 | if (!cookie->rels) |
11039 | { | |
11040 | free (tdata); | |
b34976b6 | 11041 | return FALSE; |
d01414a5 TS |
11042 | } |
11043 | ||
11044 | cookie->rel = cookie->rels; | |
11045 | cookie->relend = cookie->rels + o->reloc_count; | |
11046 | ||
eea6121a | 11047 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 11048 | { |
c152c796 | 11049 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
11050 | { |
11051 | tdata[i] = 1; | |
11052 | skip ++; | |
11053 | } | |
11054 | } | |
11055 | ||
11056 | if (skip != 0) | |
11057 | { | |
f0abc2a1 | 11058 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 11059 | o->size -= skip * PDR_SIZE; |
b34976b6 | 11060 | ret = TRUE; |
d01414a5 TS |
11061 | } |
11062 | else | |
11063 | free (tdata); | |
11064 | ||
11065 | if (! info->keep_memory) | |
11066 | free (cookie->rels); | |
11067 | ||
11068 | return ret; | |
11069 | } | |
11070 | ||
b34976b6 | 11071 | bfd_boolean |
9719ad41 | 11072 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
11073 | { |
11074 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
11075 | return TRUE; |
11076 | return FALSE; | |
53bfd6b4 | 11077 | } |
d01414a5 | 11078 | |
b34976b6 | 11079 | bfd_boolean |
c7b8f16e JB |
11080 | _bfd_mips_elf_write_section (bfd *output_bfd, |
11081 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | |
11082 | asection *sec, bfd_byte *contents) | |
d01414a5 TS |
11083 | { |
11084 | bfd_byte *to, *from, *end; | |
11085 | int i; | |
11086 | ||
11087 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 11088 | return FALSE; |
d01414a5 | 11089 | |
f0abc2a1 | 11090 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 11091 | return FALSE; |
d01414a5 TS |
11092 | |
11093 | to = contents; | |
eea6121a | 11094 | end = contents + sec->size; |
d01414a5 TS |
11095 | for (from = contents, i = 0; |
11096 | from < end; | |
11097 | from += PDR_SIZE, i++) | |
11098 | { | |
f0abc2a1 | 11099 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
11100 | continue; |
11101 | if (to != from) | |
11102 | memcpy (to, from, PDR_SIZE); | |
11103 | to += PDR_SIZE; | |
11104 | } | |
11105 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 11106 | sec->output_offset, sec->size); |
b34976b6 | 11107 | return TRUE; |
d01414a5 | 11108 | } |
53bfd6b4 | 11109 | \f |
b49e97c9 TS |
11110 | /* MIPS ELF uses a special find_nearest_line routine in order the |
11111 | handle the ECOFF debugging information. */ | |
11112 | ||
11113 | struct mips_elf_find_line | |
11114 | { | |
11115 | struct ecoff_debug_info d; | |
11116 | struct ecoff_find_line i; | |
11117 | }; | |
11118 | ||
b34976b6 | 11119 | bfd_boolean |
9719ad41 RS |
11120 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
11121 | asymbol **symbols, bfd_vma offset, | |
11122 | const char **filename_ptr, | |
11123 | const char **functionname_ptr, | |
11124 | unsigned int *line_ptr) | |
b49e97c9 TS |
11125 | { |
11126 | asection *msec; | |
11127 | ||
11128 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
11129 | filename_ptr, functionname_ptr, | |
11130 | line_ptr)) | |
b34976b6 | 11131 | return TRUE; |
b49e97c9 TS |
11132 | |
11133 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
11134 | filename_ptr, functionname_ptr, | |
9719ad41 | 11135 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 11136 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 11137 | return TRUE; |
b49e97c9 TS |
11138 | |
11139 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
11140 | if (msec != NULL) | |
11141 | { | |
11142 | flagword origflags; | |
11143 | struct mips_elf_find_line *fi; | |
11144 | const struct ecoff_debug_swap * const swap = | |
11145 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
11146 | ||
11147 | /* If we are called during a link, mips_elf_final_link may have | |
11148 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
11149 | if appropriate (which it normally will be). */ | |
11150 | origflags = msec->flags; | |
11151 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
11152 | msec->flags |= SEC_HAS_CONTENTS; | |
11153 | ||
11154 | fi = elf_tdata (abfd)->find_line_info; | |
11155 | if (fi == NULL) | |
11156 | { | |
11157 | bfd_size_type external_fdr_size; | |
11158 | char *fraw_src; | |
11159 | char *fraw_end; | |
11160 | struct fdr *fdr_ptr; | |
11161 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
11162 | ||
9719ad41 | 11163 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
11164 | if (fi == NULL) |
11165 | { | |
11166 | msec->flags = origflags; | |
b34976b6 | 11167 | return FALSE; |
b49e97c9 TS |
11168 | } |
11169 | ||
11170 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
11171 | { | |
11172 | msec->flags = origflags; | |
b34976b6 | 11173 | return FALSE; |
b49e97c9 TS |
11174 | } |
11175 | ||
11176 | /* Swap in the FDR information. */ | |
11177 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 11178 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
11179 | if (fi->d.fdr == NULL) |
11180 | { | |
11181 | msec->flags = origflags; | |
b34976b6 | 11182 | return FALSE; |
b49e97c9 TS |
11183 | } |
11184 | external_fdr_size = swap->external_fdr_size; | |
11185 | fdr_ptr = fi->d.fdr; | |
11186 | fraw_src = (char *) fi->d.external_fdr; | |
11187 | fraw_end = (fraw_src | |
11188 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
11189 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 11190 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
11191 | |
11192 | elf_tdata (abfd)->find_line_info = fi; | |
11193 | ||
11194 | /* Note that we don't bother to ever free this information. | |
11195 | find_nearest_line is either called all the time, as in | |
11196 | objdump -l, so the information should be saved, or it is | |
11197 | rarely called, as in ld error messages, so the memory | |
11198 | wasted is unimportant. Still, it would probably be a | |
11199 | good idea for free_cached_info to throw it away. */ | |
11200 | } | |
11201 | ||
11202 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
11203 | &fi->i, filename_ptr, functionname_ptr, | |
11204 | line_ptr)) | |
11205 | { | |
11206 | msec->flags = origflags; | |
b34976b6 | 11207 | return TRUE; |
b49e97c9 TS |
11208 | } |
11209 | ||
11210 | msec->flags = origflags; | |
11211 | } | |
11212 | ||
11213 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
11214 | ||
11215 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
11216 | filename_ptr, functionname_ptr, | |
11217 | line_ptr); | |
11218 | } | |
4ab527b0 FF |
11219 | |
11220 | bfd_boolean | |
11221 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
11222 | const char **filename_ptr, | |
11223 | const char **functionname_ptr, | |
11224 | unsigned int *line_ptr) | |
11225 | { | |
11226 | bfd_boolean found; | |
11227 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
11228 | functionname_ptr, line_ptr, | |
11229 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
11230 | return found; | |
11231 | } | |
11232 | ||
b49e97c9 TS |
11233 | \f |
11234 | /* When are writing out the .options or .MIPS.options section, | |
11235 | remember the bytes we are writing out, so that we can install the | |
11236 | GP value in the section_processing routine. */ | |
11237 | ||
b34976b6 | 11238 | bfd_boolean |
9719ad41 RS |
11239 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
11240 | const void *location, | |
11241 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 11242 | { |
cc2e31b9 | 11243 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
11244 | { |
11245 | bfd_byte *c; | |
11246 | ||
11247 | if (elf_section_data (section) == NULL) | |
11248 | { | |
11249 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 11250 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 11251 | if (elf_section_data (section) == NULL) |
b34976b6 | 11252 | return FALSE; |
b49e97c9 | 11253 | } |
f0abc2a1 | 11254 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
11255 | if (c == NULL) |
11256 | { | |
eea6121a | 11257 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 11258 | if (c == NULL) |
b34976b6 | 11259 | return FALSE; |
f0abc2a1 | 11260 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
11261 | } |
11262 | ||
9719ad41 | 11263 | memcpy (c + offset, location, count); |
b49e97c9 TS |
11264 | } |
11265 | ||
11266 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
11267 | count); | |
11268 | } | |
11269 | ||
11270 | /* This is almost identical to bfd_generic_get_... except that some | |
11271 | MIPS relocations need to be handled specially. Sigh. */ | |
11272 | ||
11273 | bfd_byte * | |
9719ad41 RS |
11274 | _bfd_elf_mips_get_relocated_section_contents |
11275 | (bfd *abfd, | |
11276 | struct bfd_link_info *link_info, | |
11277 | struct bfd_link_order *link_order, | |
11278 | bfd_byte *data, | |
11279 | bfd_boolean relocatable, | |
11280 | asymbol **symbols) | |
b49e97c9 TS |
11281 | { |
11282 | /* Get enough memory to hold the stuff */ | |
11283 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
11284 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 11285 | bfd_size_type sz; |
b49e97c9 TS |
11286 | |
11287 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
11288 | arelent **reloc_vector = NULL; | |
11289 | long reloc_count; | |
11290 | ||
11291 | if (reloc_size < 0) | |
11292 | goto error_return; | |
11293 | ||
9719ad41 | 11294 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
11295 | if (reloc_vector == NULL && reloc_size != 0) |
11296 | goto error_return; | |
11297 | ||
11298 | /* read in the section */ | |
eea6121a AM |
11299 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
11300 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
11301 | goto error_return; |
11302 | ||
b49e97c9 TS |
11303 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
11304 | input_section, | |
11305 | reloc_vector, | |
11306 | symbols); | |
11307 | if (reloc_count < 0) | |
11308 | goto error_return; | |
11309 | ||
11310 | if (reloc_count > 0) | |
11311 | { | |
11312 | arelent **parent; | |
11313 | /* for mips */ | |
11314 | int gp_found; | |
11315 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
11316 | ||
11317 | { | |
11318 | struct bfd_hash_entry *h; | |
11319 | struct bfd_link_hash_entry *lh; | |
11320 | /* Skip all this stuff if we aren't mixing formats. */ | |
11321 | if (abfd && input_bfd | |
11322 | && abfd->xvec == input_bfd->xvec) | |
11323 | lh = 0; | |
11324 | else | |
11325 | { | |
b34976b6 | 11326 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
11327 | lh = (struct bfd_link_hash_entry *) h; |
11328 | } | |
11329 | lookup: | |
11330 | if (lh) | |
11331 | { | |
11332 | switch (lh->type) | |
11333 | { | |
11334 | case bfd_link_hash_undefined: | |
11335 | case bfd_link_hash_undefweak: | |
11336 | case bfd_link_hash_common: | |
11337 | gp_found = 0; | |
11338 | break; | |
11339 | case bfd_link_hash_defined: | |
11340 | case bfd_link_hash_defweak: | |
11341 | gp_found = 1; | |
11342 | gp = lh->u.def.value; | |
11343 | break; | |
11344 | case bfd_link_hash_indirect: | |
11345 | case bfd_link_hash_warning: | |
11346 | lh = lh->u.i.link; | |
11347 | /* @@FIXME ignoring warning for now */ | |
11348 | goto lookup; | |
11349 | case bfd_link_hash_new: | |
11350 | default: | |
11351 | abort (); | |
11352 | } | |
11353 | } | |
11354 | else | |
11355 | gp_found = 0; | |
11356 | } | |
11357 | /* end mips */ | |
9719ad41 | 11358 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 11359 | { |
9719ad41 | 11360 | char *error_message = NULL; |
b49e97c9 TS |
11361 | bfd_reloc_status_type r; |
11362 | ||
11363 | /* Specific to MIPS: Deal with relocation types that require | |
11364 | knowing the gp of the output bfd. */ | |
11365 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 11366 | |
8236346f EC |
11367 | /* If we've managed to find the gp and have a special |
11368 | function for the relocation then go ahead, else default | |
11369 | to the generic handling. */ | |
11370 | if (gp_found | |
11371 | && (*parent)->howto->special_function | |
11372 | == _bfd_mips_elf32_gprel16_reloc) | |
11373 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
11374 | input_section, relocatable, | |
11375 | data, gp); | |
11376 | else | |
86324f90 | 11377 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
11378 | input_section, |
11379 | relocatable ? abfd : NULL, | |
11380 | &error_message); | |
b49e97c9 | 11381 | |
1049f94e | 11382 | if (relocatable) |
b49e97c9 TS |
11383 | { |
11384 | asection *os = input_section->output_section; | |
11385 | ||
11386 | /* A partial link, so keep the relocs */ | |
11387 | os->orelocation[os->reloc_count] = *parent; | |
11388 | os->reloc_count++; | |
11389 | } | |
11390 | ||
11391 | if (r != bfd_reloc_ok) | |
11392 | { | |
11393 | switch (r) | |
11394 | { | |
11395 | case bfd_reloc_undefined: | |
11396 | if (!((*link_info->callbacks->undefined_symbol) | |
11397 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 11398 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
11399 | goto error_return; |
11400 | break; | |
11401 | case bfd_reloc_dangerous: | |
9719ad41 | 11402 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
11403 | if (!((*link_info->callbacks->reloc_dangerous) |
11404 | (link_info, error_message, input_bfd, input_section, | |
11405 | (*parent)->address))) | |
11406 | goto error_return; | |
11407 | break; | |
11408 | case bfd_reloc_overflow: | |
11409 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
11410 | (link_info, NULL, |
11411 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
11412 | (*parent)->howto->name, (*parent)->addend, |
11413 | input_bfd, input_section, (*parent)->address))) | |
11414 | goto error_return; | |
11415 | break; | |
11416 | case bfd_reloc_outofrange: | |
11417 | default: | |
11418 | abort (); | |
11419 | break; | |
11420 | } | |
11421 | ||
11422 | } | |
11423 | } | |
11424 | } | |
11425 | if (reloc_vector != NULL) | |
11426 | free (reloc_vector); | |
11427 | return data; | |
11428 | ||
11429 | error_return: | |
11430 | if (reloc_vector != NULL) | |
11431 | free (reloc_vector); | |
11432 | return NULL; | |
11433 | } | |
11434 | \f | |
d5eaccd7 RS |
11435 | /* Allocate ABFD's target-dependent data. */ |
11436 | ||
11437 | bfd_boolean | |
11438 | _bfd_mips_elf_mkobject (bfd *abfd) | |
11439 | { | |
11440 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), | |
11441 | MIPS_ELF_TDATA); | |
11442 | } | |
11443 | ||
b49e97c9 TS |
11444 | /* Create a MIPS ELF linker hash table. */ |
11445 | ||
11446 | struct bfd_link_hash_table * | |
9719ad41 | 11447 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
11448 | { |
11449 | struct mips_elf_link_hash_table *ret; | |
11450 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
11451 | ||
9719ad41 RS |
11452 | ret = bfd_malloc (amt); |
11453 | if (ret == NULL) | |
b49e97c9 TS |
11454 | return NULL; |
11455 | ||
66eb6687 AM |
11456 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
11457 | mips_elf_link_hash_newfunc, | |
11458 | sizeof (struct mips_elf_link_hash_entry))) | |
b49e97c9 | 11459 | { |
e2d34d7d | 11460 | free (ret); |
b49e97c9 TS |
11461 | return NULL; |
11462 | } | |
11463 | ||
11464 | #if 0 | |
11465 | /* We no longer use this. */ | |
11466 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
11467 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
11468 | #endif | |
11469 | ret->procedure_count = 0; | |
11470 | ret->compact_rel_size = 0; | |
b34976b6 | 11471 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 11472 | ret->rld_value = 0; |
b34976b6 | 11473 | ret->mips16_stubs_seen = FALSE; |
861fb55a | 11474 | ret->use_plts_and_copy_relocs = FALSE; |
0a44bf69 | 11475 | ret->is_vxworks = FALSE; |
0e53d9da | 11476 | ret->small_data_overflow_reported = FALSE; |
0a44bf69 RS |
11477 | ret->srelbss = NULL; |
11478 | ret->sdynbss = NULL; | |
11479 | ret->srelplt = NULL; | |
11480 | ret->srelplt2 = NULL; | |
11481 | ret->sgotplt = NULL; | |
11482 | ret->splt = NULL; | |
4e41d0d7 | 11483 | ret->sstubs = NULL; |
a8028dd0 RS |
11484 | ret->sgot = NULL; |
11485 | ret->got_info = NULL; | |
0a44bf69 RS |
11486 | ret->plt_header_size = 0; |
11487 | ret->plt_entry_size = 0; | |
33bb52fb | 11488 | ret->lazy_stub_count = 0; |
5108fc1b | 11489 | ret->function_stub_size = 0; |
861fb55a DJ |
11490 | ret->strampoline = NULL; |
11491 | ret->la25_stubs = NULL; | |
11492 | ret->add_stub_section = NULL; | |
b49e97c9 TS |
11493 | |
11494 | return &ret->root.root; | |
11495 | } | |
0a44bf69 RS |
11496 | |
11497 | /* Likewise, but indicate that the target is VxWorks. */ | |
11498 | ||
11499 | struct bfd_link_hash_table * | |
11500 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
11501 | { | |
11502 | struct bfd_link_hash_table *ret; | |
11503 | ||
11504 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
11505 | if (ret) | |
11506 | { | |
11507 | struct mips_elf_link_hash_table *htab; | |
11508 | ||
11509 | htab = (struct mips_elf_link_hash_table *) ret; | |
861fb55a DJ |
11510 | htab->use_plts_and_copy_relocs = TRUE; |
11511 | htab->is_vxworks = TRUE; | |
0a44bf69 RS |
11512 | } |
11513 | return ret; | |
11514 | } | |
861fb55a DJ |
11515 | |
11516 | /* A function that the linker calls if we are allowed to use PLTs | |
11517 | and copy relocs. */ | |
11518 | ||
11519 | void | |
11520 | _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) | |
11521 | { | |
11522 | mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; | |
11523 | } | |
b49e97c9 TS |
11524 | \f |
11525 | /* We need to use a special link routine to handle the .reginfo and | |
11526 | the .mdebug sections. We need to merge all instances of these | |
11527 | sections together, not write them all out sequentially. */ | |
11528 | ||
b34976b6 | 11529 | bfd_boolean |
9719ad41 | 11530 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 11531 | { |
b49e97c9 TS |
11532 | asection *o; |
11533 | struct bfd_link_order *p; | |
11534 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
11535 | asection *rtproc_sec; | |
11536 | Elf32_RegInfo reginfo; | |
11537 | struct ecoff_debug_info debug; | |
861fb55a | 11538 | struct mips_htab_traverse_info hti; |
7a2a6943 NC |
11539 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
11540 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 11541 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 11542 | void *mdebug_handle = NULL; |
b49e97c9 TS |
11543 | asection *s; |
11544 | EXTR esym; | |
11545 | unsigned int i; | |
11546 | bfd_size_type amt; | |
0a44bf69 | 11547 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
11548 | |
11549 | static const char * const secname[] = | |
11550 | { | |
11551 | ".text", ".init", ".fini", ".data", | |
11552 | ".rodata", ".sdata", ".sbss", ".bss" | |
11553 | }; | |
11554 | static const int sc[] = | |
11555 | { | |
11556 | scText, scInit, scFini, scData, | |
11557 | scRData, scSData, scSBss, scBss | |
11558 | }; | |
11559 | ||
d4596a51 RS |
11560 | /* Sort the dynamic symbols so that those with GOT entries come after |
11561 | those without. */ | |
0a44bf69 | 11562 | htab = mips_elf_hash_table (info); |
d4596a51 RS |
11563 | if (!mips_elf_sort_hash_table (abfd, info)) |
11564 | return FALSE; | |
b49e97c9 | 11565 | |
861fb55a DJ |
11566 | /* Create any scheduled LA25 stubs. */ |
11567 | hti.info = info; | |
11568 | hti.output_bfd = abfd; | |
11569 | hti.error = FALSE; | |
11570 | htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); | |
11571 | if (hti.error) | |
11572 | return FALSE; | |
11573 | ||
b49e97c9 TS |
11574 | /* Get a value for the GP register. */ |
11575 | if (elf_gp (abfd) == 0) | |
11576 | { | |
11577 | struct bfd_link_hash_entry *h; | |
11578 | ||
b34976b6 | 11579 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 11580 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
11581 | elf_gp (abfd) = (h->u.def.value |
11582 | + h->u.def.section->output_section->vma | |
11583 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
11584 | else if (htab->is_vxworks |
11585 | && (h = bfd_link_hash_lookup (info->hash, | |
11586 | "_GLOBAL_OFFSET_TABLE_", | |
11587 | FALSE, FALSE, TRUE)) | |
11588 | && h->type == bfd_link_hash_defined) | |
11589 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
11590 | + h->u.def.section->output_offset | |
11591 | + h->u.def.value); | |
1049f94e | 11592 | else if (info->relocatable) |
b49e97c9 TS |
11593 | { |
11594 | bfd_vma lo = MINUS_ONE; | |
11595 | ||
11596 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 11597 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
11598 | if (o->vma < lo |
11599 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
11600 | lo = o->vma; | |
11601 | ||
11602 | /* And calculate GP relative to that. */ | |
0a44bf69 | 11603 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
11604 | } |
11605 | else | |
11606 | { | |
11607 | /* If the relocate_section function needs to do a reloc | |
11608 | involving the GP value, it should make a reloc_dangerous | |
11609 | callback to warn that GP is not defined. */ | |
11610 | } | |
11611 | } | |
11612 | ||
11613 | /* Go through the sections and collect the .reginfo and .mdebug | |
11614 | information. */ | |
11615 | reginfo_sec = NULL; | |
11616 | mdebug_sec = NULL; | |
11617 | gptab_data_sec = NULL; | |
11618 | gptab_bss_sec = NULL; | |
9719ad41 | 11619 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
11620 | { |
11621 | if (strcmp (o->name, ".reginfo") == 0) | |
11622 | { | |
11623 | memset (®info, 0, sizeof reginfo); | |
11624 | ||
11625 | /* We have found the .reginfo section in the output file. | |
11626 | Look through all the link_orders comprising it and merge | |
11627 | the information together. */ | |
8423293d | 11628 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
11629 | { |
11630 | asection *input_section; | |
11631 | bfd *input_bfd; | |
11632 | Elf32_External_RegInfo ext; | |
11633 | Elf32_RegInfo sub; | |
11634 | ||
11635 | if (p->type != bfd_indirect_link_order) | |
11636 | { | |
11637 | if (p->type == bfd_data_link_order) | |
11638 | continue; | |
11639 | abort (); | |
11640 | } | |
11641 | ||
11642 | input_section = p->u.indirect.section; | |
11643 | input_bfd = input_section->owner; | |
11644 | ||
b49e97c9 | 11645 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 11646 | &ext, 0, sizeof ext)) |
b34976b6 | 11647 | return FALSE; |
b49e97c9 TS |
11648 | |
11649 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
11650 | ||
11651 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
11652 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
11653 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
11654 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
11655 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
11656 | ||
11657 | /* ri_gp_value is set by the function | |
11658 | mips_elf32_section_processing when the section is | |
11659 | finally written out. */ | |
11660 | ||
11661 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
11662 | elf_link_input_bfd ignores this section. */ | |
11663 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
11664 | } | |
11665 | ||
11666 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 11667 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
11668 | |
11669 | /* Skip this section later on (I don't think this currently | |
11670 | matters, but someday it might). */ | |
8423293d | 11671 | o->map_head.link_order = NULL; |
b49e97c9 TS |
11672 | |
11673 | reginfo_sec = o; | |
11674 | } | |
11675 | ||
11676 | if (strcmp (o->name, ".mdebug") == 0) | |
11677 | { | |
11678 | struct extsym_info einfo; | |
11679 | bfd_vma last; | |
11680 | ||
11681 | /* We have found the .mdebug section in the output file. | |
11682 | Look through all the link_orders comprising it and merge | |
11683 | the information together. */ | |
11684 | symhdr->magic = swap->sym_magic; | |
11685 | /* FIXME: What should the version stamp be? */ | |
11686 | symhdr->vstamp = 0; | |
11687 | symhdr->ilineMax = 0; | |
11688 | symhdr->cbLine = 0; | |
11689 | symhdr->idnMax = 0; | |
11690 | symhdr->ipdMax = 0; | |
11691 | symhdr->isymMax = 0; | |
11692 | symhdr->ioptMax = 0; | |
11693 | symhdr->iauxMax = 0; | |
11694 | symhdr->issMax = 0; | |
11695 | symhdr->issExtMax = 0; | |
11696 | symhdr->ifdMax = 0; | |
11697 | symhdr->crfd = 0; | |
11698 | symhdr->iextMax = 0; | |
11699 | ||
11700 | /* We accumulate the debugging information itself in the | |
11701 | debug_info structure. */ | |
11702 | debug.line = NULL; | |
11703 | debug.external_dnr = NULL; | |
11704 | debug.external_pdr = NULL; | |
11705 | debug.external_sym = NULL; | |
11706 | debug.external_opt = NULL; | |
11707 | debug.external_aux = NULL; | |
11708 | debug.ss = NULL; | |
11709 | debug.ssext = debug.ssext_end = NULL; | |
11710 | debug.external_fdr = NULL; | |
11711 | debug.external_rfd = NULL; | |
11712 | debug.external_ext = debug.external_ext_end = NULL; | |
11713 | ||
11714 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 11715 | if (mdebug_handle == NULL) |
b34976b6 | 11716 | return FALSE; |
b49e97c9 TS |
11717 | |
11718 | esym.jmptbl = 0; | |
11719 | esym.cobol_main = 0; | |
11720 | esym.weakext = 0; | |
11721 | esym.reserved = 0; | |
11722 | esym.ifd = ifdNil; | |
11723 | esym.asym.iss = issNil; | |
11724 | esym.asym.st = stLocal; | |
11725 | esym.asym.reserved = 0; | |
11726 | esym.asym.index = indexNil; | |
11727 | last = 0; | |
11728 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
11729 | { | |
11730 | esym.asym.sc = sc[i]; | |
11731 | s = bfd_get_section_by_name (abfd, secname[i]); | |
11732 | if (s != NULL) | |
11733 | { | |
11734 | esym.asym.value = s->vma; | |
eea6121a | 11735 | last = s->vma + s->size; |
b49e97c9 TS |
11736 | } |
11737 | else | |
11738 | esym.asym.value = last; | |
11739 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
11740 | secname[i], &esym)) | |
b34976b6 | 11741 | return FALSE; |
b49e97c9 TS |
11742 | } |
11743 | ||
8423293d | 11744 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
11745 | { |
11746 | asection *input_section; | |
11747 | bfd *input_bfd; | |
11748 | const struct ecoff_debug_swap *input_swap; | |
11749 | struct ecoff_debug_info input_debug; | |
11750 | char *eraw_src; | |
11751 | char *eraw_end; | |
11752 | ||
11753 | if (p->type != bfd_indirect_link_order) | |
11754 | { | |
11755 | if (p->type == bfd_data_link_order) | |
11756 | continue; | |
11757 | abort (); | |
11758 | } | |
11759 | ||
11760 | input_section = p->u.indirect.section; | |
11761 | input_bfd = input_section->owner; | |
11762 | ||
d5eaccd7 | 11763 | if (!is_mips_elf (input_bfd)) |
b49e97c9 TS |
11764 | { |
11765 | /* I don't know what a non MIPS ELF bfd would be | |
11766 | doing with a .mdebug section, but I don't really | |
11767 | want to deal with it. */ | |
11768 | continue; | |
11769 | } | |
11770 | ||
11771 | input_swap = (get_elf_backend_data (input_bfd) | |
11772 | ->elf_backend_ecoff_debug_swap); | |
11773 | ||
eea6121a | 11774 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
11775 | |
11776 | /* The ECOFF linking code expects that we have already | |
11777 | read in the debugging information and set up an | |
11778 | ecoff_debug_info structure, so we do that now. */ | |
11779 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
11780 | &input_debug)) | |
b34976b6 | 11781 | return FALSE; |
b49e97c9 TS |
11782 | |
11783 | if (! (bfd_ecoff_debug_accumulate | |
11784 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
11785 | &input_debug, input_swap, info))) | |
b34976b6 | 11786 | return FALSE; |
b49e97c9 TS |
11787 | |
11788 | /* Loop through the external symbols. For each one with | |
11789 | interesting information, try to find the symbol in | |
11790 | the linker global hash table and save the information | |
11791 | for the output external symbols. */ | |
11792 | eraw_src = input_debug.external_ext; | |
11793 | eraw_end = (eraw_src | |
11794 | + (input_debug.symbolic_header.iextMax | |
11795 | * input_swap->external_ext_size)); | |
11796 | for (; | |
11797 | eraw_src < eraw_end; | |
11798 | eraw_src += input_swap->external_ext_size) | |
11799 | { | |
11800 | EXTR ext; | |
11801 | const char *name; | |
11802 | struct mips_elf_link_hash_entry *h; | |
11803 | ||
9719ad41 | 11804 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
11805 | if (ext.asym.sc == scNil |
11806 | || ext.asym.sc == scUndefined | |
11807 | || ext.asym.sc == scSUndefined) | |
11808 | continue; | |
11809 | ||
11810 | name = input_debug.ssext + ext.asym.iss; | |
11811 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 11812 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
11813 | if (h == NULL || h->esym.ifd != -2) |
11814 | continue; | |
11815 | ||
11816 | if (ext.ifd != -1) | |
11817 | { | |
11818 | BFD_ASSERT (ext.ifd | |
11819 | < input_debug.symbolic_header.ifdMax); | |
11820 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
11821 | } | |
11822 | ||
11823 | h->esym = ext; | |
11824 | } | |
11825 | ||
11826 | /* Free up the information we just read. */ | |
11827 | free (input_debug.line); | |
11828 | free (input_debug.external_dnr); | |
11829 | free (input_debug.external_pdr); | |
11830 | free (input_debug.external_sym); | |
11831 | free (input_debug.external_opt); | |
11832 | free (input_debug.external_aux); | |
11833 | free (input_debug.ss); | |
11834 | free (input_debug.ssext); | |
11835 | free (input_debug.external_fdr); | |
11836 | free (input_debug.external_rfd); | |
11837 | free (input_debug.external_ext); | |
11838 | ||
11839 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
11840 | elf_link_input_bfd ignores this section. */ | |
11841 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
11842 | } | |
11843 | ||
11844 | if (SGI_COMPAT (abfd) && info->shared) | |
11845 | { | |
11846 | /* Create .rtproc section. */ | |
11847 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
11848 | if (rtproc_sec == NULL) | |
11849 | { | |
11850 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
11851 | | SEC_LINKER_CREATED | SEC_READONLY); | |
11852 | ||
3496cb2a L |
11853 | rtproc_sec = bfd_make_section_with_flags (abfd, |
11854 | ".rtproc", | |
11855 | flags); | |
b49e97c9 | 11856 | if (rtproc_sec == NULL |
b49e97c9 | 11857 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 11858 | return FALSE; |
b49e97c9 TS |
11859 | } |
11860 | ||
11861 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
11862 | info, rtproc_sec, | |
11863 | &debug)) | |
b34976b6 | 11864 | return FALSE; |
b49e97c9 TS |
11865 | } |
11866 | ||
11867 | /* Build the external symbol information. */ | |
11868 | einfo.abfd = abfd; | |
11869 | einfo.info = info; | |
11870 | einfo.debug = &debug; | |
11871 | einfo.swap = swap; | |
b34976b6 | 11872 | einfo.failed = FALSE; |
b49e97c9 | 11873 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 11874 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 11875 | if (einfo.failed) |
b34976b6 | 11876 | return FALSE; |
b49e97c9 TS |
11877 | |
11878 | /* Set the size of the .mdebug section. */ | |
eea6121a | 11879 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
11880 | |
11881 | /* Skip this section later on (I don't think this currently | |
11882 | matters, but someday it might). */ | |
8423293d | 11883 | o->map_head.link_order = NULL; |
b49e97c9 TS |
11884 | |
11885 | mdebug_sec = o; | |
11886 | } | |
11887 | ||
0112cd26 | 11888 | if (CONST_STRNEQ (o->name, ".gptab.")) |
b49e97c9 TS |
11889 | { |
11890 | const char *subname; | |
11891 | unsigned int c; | |
11892 | Elf32_gptab *tab; | |
11893 | Elf32_External_gptab *ext_tab; | |
11894 | unsigned int j; | |
11895 | ||
11896 | /* The .gptab.sdata and .gptab.sbss sections hold | |
11897 | information describing how the small data area would | |
11898 | change depending upon the -G switch. These sections | |
11899 | not used in executables files. */ | |
1049f94e | 11900 | if (! info->relocatable) |
b49e97c9 | 11901 | { |
8423293d | 11902 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
11903 | { |
11904 | asection *input_section; | |
11905 | ||
11906 | if (p->type != bfd_indirect_link_order) | |
11907 | { | |
11908 | if (p->type == bfd_data_link_order) | |
11909 | continue; | |
11910 | abort (); | |
11911 | } | |
11912 | ||
11913 | input_section = p->u.indirect.section; | |
11914 | ||
11915 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
11916 | elf_link_input_bfd ignores this section. */ | |
11917 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
11918 | } | |
11919 | ||
11920 | /* Skip this section later on (I don't think this | |
11921 | currently matters, but someday it might). */ | |
8423293d | 11922 | o->map_head.link_order = NULL; |
b49e97c9 TS |
11923 | |
11924 | /* Really remove the section. */ | |
5daa8fe7 | 11925 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
11926 | --abfd->section_count; |
11927 | ||
11928 | continue; | |
11929 | } | |
11930 | ||
11931 | /* There is one gptab for initialized data, and one for | |
11932 | uninitialized data. */ | |
11933 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
11934 | gptab_data_sec = o; | |
11935 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
11936 | gptab_bss_sec = o; | |
11937 | else | |
11938 | { | |
11939 | (*_bfd_error_handler) | |
11940 | (_("%s: illegal section name `%s'"), | |
11941 | bfd_get_filename (abfd), o->name); | |
11942 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 11943 | return FALSE; |
b49e97c9 TS |
11944 | } |
11945 | ||
11946 | /* The linker script always combines .gptab.data and | |
11947 | .gptab.sdata into .gptab.sdata, and likewise for | |
11948 | .gptab.bss and .gptab.sbss. It is possible that there is | |
11949 | no .sdata or .sbss section in the output file, in which | |
11950 | case we must change the name of the output section. */ | |
11951 | subname = o->name + sizeof ".gptab" - 1; | |
11952 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
11953 | { | |
11954 | if (o == gptab_data_sec) | |
11955 | o->name = ".gptab.data"; | |
11956 | else | |
11957 | o->name = ".gptab.bss"; | |
11958 | subname = o->name + sizeof ".gptab" - 1; | |
11959 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
11960 | } | |
11961 | ||
11962 | /* Set up the first entry. */ | |
11963 | c = 1; | |
11964 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 11965 | tab = bfd_malloc (amt); |
b49e97c9 | 11966 | if (tab == NULL) |
b34976b6 | 11967 | return FALSE; |
b49e97c9 TS |
11968 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
11969 | tab[0].gt_header.gt_unused = 0; | |
11970 | ||
11971 | /* Combine the input sections. */ | |
8423293d | 11972 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
11973 | { |
11974 | asection *input_section; | |
11975 | bfd *input_bfd; | |
11976 | bfd_size_type size; | |
11977 | unsigned long last; | |
11978 | bfd_size_type gpentry; | |
11979 | ||
11980 | if (p->type != bfd_indirect_link_order) | |
11981 | { | |
11982 | if (p->type == bfd_data_link_order) | |
11983 | continue; | |
11984 | abort (); | |
11985 | } | |
11986 | ||
11987 | input_section = p->u.indirect.section; | |
11988 | input_bfd = input_section->owner; | |
11989 | ||
11990 | /* Combine the gptab entries for this input section one | |
11991 | by one. We know that the input gptab entries are | |
11992 | sorted by ascending -G value. */ | |
eea6121a | 11993 | size = input_section->size; |
b49e97c9 TS |
11994 | last = 0; |
11995 | for (gpentry = sizeof (Elf32_External_gptab); | |
11996 | gpentry < size; | |
11997 | gpentry += sizeof (Elf32_External_gptab)) | |
11998 | { | |
11999 | Elf32_External_gptab ext_gptab; | |
12000 | Elf32_gptab int_gptab; | |
12001 | unsigned long val; | |
12002 | unsigned long add; | |
b34976b6 | 12003 | bfd_boolean exact; |
b49e97c9 TS |
12004 | unsigned int look; |
12005 | ||
12006 | if (! (bfd_get_section_contents | |
9719ad41 RS |
12007 | (input_bfd, input_section, &ext_gptab, gpentry, |
12008 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
12009 | { |
12010 | free (tab); | |
b34976b6 | 12011 | return FALSE; |
b49e97c9 TS |
12012 | } |
12013 | ||
12014 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
12015 | &int_gptab); | |
12016 | val = int_gptab.gt_entry.gt_g_value; | |
12017 | add = int_gptab.gt_entry.gt_bytes - last; | |
12018 | ||
b34976b6 | 12019 | exact = FALSE; |
b49e97c9 TS |
12020 | for (look = 1; look < c; look++) |
12021 | { | |
12022 | if (tab[look].gt_entry.gt_g_value >= val) | |
12023 | tab[look].gt_entry.gt_bytes += add; | |
12024 | ||
12025 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 12026 | exact = TRUE; |
b49e97c9 TS |
12027 | } |
12028 | ||
12029 | if (! exact) | |
12030 | { | |
12031 | Elf32_gptab *new_tab; | |
12032 | unsigned int max; | |
12033 | ||
12034 | /* We need a new table entry. */ | |
12035 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 12036 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
12037 | if (new_tab == NULL) |
12038 | { | |
12039 | free (tab); | |
b34976b6 | 12040 | return FALSE; |
b49e97c9 TS |
12041 | } |
12042 | tab = new_tab; | |
12043 | tab[c].gt_entry.gt_g_value = val; | |
12044 | tab[c].gt_entry.gt_bytes = add; | |
12045 | ||
12046 | /* Merge in the size for the next smallest -G | |
12047 | value, since that will be implied by this new | |
12048 | value. */ | |
12049 | max = 0; | |
12050 | for (look = 1; look < c; look++) | |
12051 | { | |
12052 | if (tab[look].gt_entry.gt_g_value < val | |
12053 | && (max == 0 | |
12054 | || (tab[look].gt_entry.gt_g_value | |
12055 | > tab[max].gt_entry.gt_g_value))) | |
12056 | max = look; | |
12057 | } | |
12058 | if (max != 0) | |
12059 | tab[c].gt_entry.gt_bytes += | |
12060 | tab[max].gt_entry.gt_bytes; | |
12061 | ||
12062 | ++c; | |
12063 | } | |
12064 | ||
12065 | last = int_gptab.gt_entry.gt_bytes; | |
12066 | } | |
12067 | ||
12068 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
12069 | elf_link_input_bfd ignores this section. */ | |
12070 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
12071 | } | |
12072 | ||
12073 | /* The table must be sorted by -G value. */ | |
12074 | if (c > 2) | |
12075 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
12076 | ||
12077 | /* Swap out the table. */ | |
12078 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 12079 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
12080 | if (ext_tab == NULL) |
12081 | { | |
12082 | free (tab); | |
b34976b6 | 12083 | return FALSE; |
b49e97c9 TS |
12084 | } |
12085 | ||
12086 | for (j = 0; j < c; j++) | |
12087 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
12088 | free (tab); | |
12089 | ||
eea6121a | 12090 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
12091 | o->contents = (bfd_byte *) ext_tab; |
12092 | ||
12093 | /* Skip this section later on (I don't think this currently | |
12094 | matters, but someday it might). */ | |
8423293d | 12095 | o->map_head.link_order = NULL; |
b49e97c9 TS |
12096 | } |
12097 | } | |
12098 | ||
12099 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 12100 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 12101 | return FALSE; |
b49e97c9 TS |
12102 | |
12103 | /* Now write out the computed sections. */ | |
12104 | ||
9719ad41 | 12105 | if (reginfo_sec != NULL) |
b49e97c9 TS |
12106 | { |
12107 | Elf32_External_RegInfo ext; | |
12108 | ||
12109 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 12110 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 12111 | return FALSE; |
b49e97c9 TS |
12112 | } |
12113 | ||
9719ad41 | 12114 | if (mdebug_sec != NULL) |
b49e97c9 TS |
12115 | { |
12116 | BFD_ASSERT (abfd->output_has_begun); | |
12117 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
12118 | swap, info, | |
12119 | mdebug_sec->filepos)) | |
b34976b6 | 12120 | return FALSE; |
b49e97c9 TS |
12121 | |
12122 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
12123 | } | |
12124 | ||
9719ad41 | 12125 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
12126 | { |
12127 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
12128 | gptab_data_sec->contents, | |
eea6121a | 12129 | 0, gptab_data_sec->size)) |
b34976b6 | 12130 | return FALSE; |
b49e97c9 TS |
12131 | } |
12132 | ||
9719ad41 | 12133 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
12134 | { |
12135 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
12136 | gptab_bss_sec->contents, | |
eea6121a | 12137 | 0, gptab_bss_sec->size)) |
b34976b6 | 12138 | return FALSE; |
b49e97c9 TS |
12139 | } |
12140 | ||
12141 | if (SGI_COMPAT (abfd)) | |
12142 | { | |
12143 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
12144 | if (rtproc_sec != NULL) | |
12145 | { | |
12146 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
12147 | rtproc_sec->contents, | |
eea6121a | 12148 | 0, rtproc_sec->size)) |
b34976b6 | 12149 | return FALSE; |
b49e97c9 TS |
12150 | } |
12151 | } | |
12152 | ||
b34976b6 | 12153 | return TRUE; |
b49e97c9 TS |
12154 | } |
12155 | \f | |
64543e1a RS |
12156 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
12157 | ||
12158 | struct mips_mach_extension { | |
12159 | unsigned long extension, base; | |
12160 | }; | |
12161 | ||
12162 | ||
12163 | /* An array describing how BFD machines relate to one another. The entries | |
12164 | are ordered topologically with MIPS I extensions listed last. */ | |
12165 | ||
12166 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
6f179bd0 AN |
12167 | /* MIPS64r2 extensions. */ |
12168 | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, | |
12169 | ||
64543e1a | 12170 | /* MIPS64 extensions. */ |
5f74bc13 | 12171 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a | 12172 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
52b6b6b9 | 12173 | { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, |
64543e1a RS |
12174 | |
12175 | /* MIPS V extensions. */ | |
12176 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
12177 | ||
12178 | /* R10000 extensions. */ | |
12179 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
3aa3176b TS |
12180 | { bfd_mach_mips14000, bfd_mach_mips10000 }, |
12181 | { bfd_mach_mips16000, bfd_mach_mips10000 }, | |
64543e1a RS |
12182 | |
12183 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
12184 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
12185 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
12186 | many libraries will just use the core ISA. Perhaps we could add | |
12187 | some sort of ASE flag if this ever proves a problem. */ | |
12188 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
12189 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
12190 | ||
12191 | /* MIPS IV extensions. */ | |
12192 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
12193 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
12194 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 12195 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 12196 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
12197 | |
12198 | /* VR4100 extensions. */ | |
12199 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
12200 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
12201 | ||
12202 | /* MIPS III extensions. */ | |
350cc38d MS |
12203 | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
12204 | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, | |
64543e1a RS |
12205 | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
12206 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
12207 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
12208 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
12209 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
12210 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
12211 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
12212 | ||
12213 | /* MIPS32 extensions. */ | |
12214 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
12215 | ||
12216 | /* MIPS II extensions. */ | |
12217 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
12218 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
12219 | ||
12220 | /* MIPS I extensions. */ | |
12221 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
12222 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
12223 | }; | |
12224 | ||
12225 | ||
12226 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
12227 | ||
12228 | static bfd_boolean | |
9719ad41 | 12229 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
12230 | { |
12231 | size_t i; | |
12232 | ||
c5211a54 RS |
12233 | if (extension == base) |
12234 | return TRUE; | |
12235 | ||
12236 | if (base == bfd_mach_mipsisa32 | |
12237 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
12238 | return TRUE; | |
12239 | ||
12240 | if (base == bfd_mach_mipsisa32r2 | |
12241 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
12242 | return TRUE; | |
12243 | ||
12244 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 12245 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
12246 | { |
12247 | extension = mips_mach_extensions[i].base; | |
12248 | if (extension == base) | |
12249 | return TRUE; | |
12250 | } | |
64543e1a | 12251 | |
c5211a54 | 12252 | return FALSE; |
64543e1a RS |
12253 | } |
12254 | ||
12255 | ||
12256 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 12257 | |
b34976b6 | 12258 | static bfd_boolean |
9719ad41 | 12259 | mips_32bit_flags_p (flagword flags) |
00707a0e | 12260 | { |
64543e1a RS |
12261 | return ((flags & EF_MIPS_32BITMODE) != 0 |
12262 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
12263 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
12264 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
12265 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
12266 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
12267 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
12268 | } |
12269 | ||
64543e1a | 12270 | |
2cf19d5c JM |
12271 | /* Merge object attributes from IBFD into OBFD. Raise an error if |
12272 | there are conflicting attributes. */ | |
12273 | static bfd_boolean | |
12274 | mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) | |
12275 | { | |
12276 | obj_attribute *in_attr; | |
12277 | obj_attribute *out_attr; | |
12278 | ||
12279 | if (!elf_known_obj_attributes_proc (obfd)[0].i) | |
12280 | { | |
12281 | /* This is the first object. Copy the attributes. */ | |
12282 | _bfd_elf_copy_obj_attributes (ibfd, obfd); | |
12283 | ||
12284 | /* Use the Tag_null value to indicate the attributes have been | |
12285 | initialized. */ | |
12286 | elf_known_obj_attributes_proc (obfd)[0].i = 1; | |
12287 | ||
12288 | return TRUE; | |
12289 | } | |
12290 | ||
12291 | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge | |
12292 | non-conflicting ones. */ | |
12293 | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | |
12294 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; | |
12295 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12296 | { | |
12297 | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; | |
12298 | if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0) | |
12299 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
12300 | else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0) | |
12301 | ; | |
42554f6a | 12302 | else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4) |
2cf19d5c JM |
12303 | _bfd_error_handler |
12304 | (_("Warning: %B uses unknown floating point ABI %d"), ibfd, | |
12305 | in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
42554f6a | 12306 | else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4) |
2cf19d5c JM |
12307 | _bfd_error_handler |
12308 | (_("Warning: %B uses unknown floating point ABI %d"), obfd, | |
12309 | out_attr[Tag_GNU_MIPS_ABI_FP].i); | |
12310 | else | |
12311 | switch (out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12312 | { | |
12313 | case 1: | |
12314 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12315 | { | |
12316 | case 2: | |
12317 | _bfd_error_handler | |
12318 | (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), | |
12319 | obfd, ibfd); | |
51a0dd31 | 12320 | break; |
2cf19d5c JM |
12321 | |
12322 | case 3: | |
12323 | _bfd_error_handler | |
12324 | (_("Warning: %B uses hard float, %B uses soft float"), | |
12325 | obfd, ibfd); | |
12326 | break; | |
12327 | ||
42554f6a TS |
12328 | case 4: |
12329 | _bfd_error_handler | |
12330 | (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), | |
12331 | obfd, ibfd); | |
12332 | break; | |
12333 | ||
2cf19d5c JM |
12334 | default: |
12335 | abort (); | |
12336 | } | |
12337 | break; | |
12338 | ||
12339 | case 2: | |
12340 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12341 | { | |
12342 | case 1: | |
12343 | _bfd_error_handler | |
12344 | (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), | |
12345 | ibfd, obfd); | |
51a0dd31 | 12346 | break; |
2cf19d5c JM |
12347 | |
12348 | case 3: | |
12349 | _bfd_error_handler | |
12350 | (_("Warning: %B uses hard float, %B uses soft float"), | |
12351 | obfd, ibfd); | |
12352 | break; | |
12353 | ||
42554f6a TS |
12354 | case 4: |
12355 | _bfd_error_handler | |
12356 | (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), | |
12357 | obfd, ibfd); | |
12358 | break; | |
12359 | ||
2cf19d5c JM |
12360 | default: |
12361 | abort (); | |
12362 | } | |
12363 | break; | |
12364 | ||
12365 | case 3: | |
12366 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12367 | { | |
12368 | case 1: | |
12369 | case 2: | |
42554f6a | 12370 | case 4: |
2cf19d5c JM |
12371 | _bfd_error_handler |
12372 | (_("Warning: %B uses hard float, %B uses soft float"), | |
12373 | ibfd, obfd); | |
12374 | break; | |
12375 | ||
12376 | default: | |
12377 | abort (); | |
12378 | } | |
12379 | break; | |
12380 | ||
42554f6a TS |
12381 | case 4: |
12382 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) | |
12383 | { | |
12384 | case 1: | |
12385 | _bfd_error_handler | |
12386 | (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), | |
12387 | ibfd, obfd); | |
12388 | break; | |
12389 | ||
12390 | case 2: | |
12391 | _bfd_error_handler | |
12392 | (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), | |
12393 | ibfd, obfd); | |
12394 | break; | |
12395 | ||
12396 | case 3: | |
12397 | _bfd_error_handler | |
12398 | (_("Warning: %B uses hard float, %B uses soft float"), | |
12399 | obfd, ibfd); | |
12400 | break; | |
12401 | ||
12402 | default: | |
12403 | abort (); | |
12404 | } | |
12405 | break; | |
12406 | ||
2cf19d5c JM |
12407 | default: |
12408 | abort (); | |
12409 | } | |
12410 | } | |
12411 | ||
12412 | /* Merge Tag_compatibility attributes and any common GNU ones. */ | |
12413 | _bfd_elf_merge_object_attributes (ibfd, obfd); | |
12414 | ||
12415 | return TRUE; | |
12416 | } | |
12417 | ||
b49e97c9 TS |
12418 | /* Merge backend specific data from an object file to the output |
12419 | object file when linking. */ | |
12420 | ||
b34976b6 | 12421 | bfd_boolean |
9719ad41 | 12422 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
12423 | { |
12424 | flagword old_flags; | |
12425 | flagword new_flags; | |
b34976b6 AM |
12426 | bfd_boolean ok; |
12427 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
12428 | asection *sec; |
12429 | ||
12430 | /* Check if we have the same endianess */ | |
82e51918 | 12431 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
12432 | { |
12433 | (*_bfd_error_handler) | |
d003868e AM |
12434 | (_("%B: endianness incompatible with that of the selected emulation"), |
12435 | ibfd); | |
aa701218 AO |
12436 | return FALSE; |
12437 | } | |
b49e97c9 | 12438 | |
d5eaccd7 | 12439 | if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) |
b34976b6 | 12440 | return TRUE; |
b49e97c9 | 12441 | |
aa701218 AO |
12442 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
12443 | { | |
12444 | (*_bfd_error_handler) | |
d003868e AM |
12445 | (_("%B: ABI is incompatible with that of the selected emulation"), |
12446 | ibfd); | |
aa701218 AO |
12447 | return FALSE; |
12448 | } | |
12449 | ||
2cf19d5c JM |
12450 | if (!mips_elf_merge_obj_attributes (ibfd, obfd)) |
12451 | return FALSE; | |
12452 | ||
b49e97c9 TS |
12453 | new_flags = elf_elfheader (ibfd)->e_flags; |
12454 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
12455 | old_flags = elf_elfheader (obfd)->e_flags; | |
12456 | ||
12457 | if (! elf_flags_init (obfd)) | |
12458 | { | |
b34976b6 | 12459 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
12460 | elf_elfheader (obfd)->e_flags = new_flags; |
12461 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
12462 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
12463 | ||
12464 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2907b861 TS |
12465 | && (bfd_get_arch_info (obfd)->the_default |
12466 | || mips_mach_extends_p (bfd_get_mach (obfd), | |
12467 | bfd_get_mach (ibfd)))) | |
b49e97c9 TS |
12468 | { |
12469 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
12470 | bfd_get_mach (ibfd))) | |
b34976b6 | 12471 | return FALSE; |
b49e97c9 TS |
12472 | } |
12473 | ||
b34976b6 | 12474 | return TRUE; |
b49e97c9 TS |
12475 | } |
12476 | ||
12477 | /* Check flag compatibility. */ | |
12478 | ||
12479 | new_flags &= ~EF_MIPS_NOREORDER; | |
12480 | old_flags &= ~EF_MIPS_NOREORDER; | |
12481 | ||
f4416af6 AO |
12482 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
12483 | doesn't seem to matter. */ | |
12484 | new_flags &= ~EF_MIPS_XGOT; | |
12485 | old_flags &= ~EF_MIPS_XGOT; | |
12486 | ||
98a8deaf RS |
12487 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
12488 | just be able to ignore this. */ | |
12489 | new_flags &= ~EF_MIPS_UCODE; | |
12490 | old_flags &= ~EF_MIPS_UCODE; | |
12491 | ||
861fb55a DJ |
12492 | /* DSOs should only be linked with CPIC code. */ |
12493 | if ((ibfd->flags & DYNAMIC) != 0) | |
12494 | new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; | |
0a44bf69 | 12495 | |
b49e97c9 | 12496 | if (new_flags == old_flags) |
b34976b6 | 12497 | return TRUE; |
b49e97c9 TS |
12498 | |
12499 | /* Check to see if the input BFD actually contains any sections. | |
12500 | If not, its flags may not have been initialised either, but it cannot | |
12501 | actually cause any incompatibility. */ | |
12502 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
12503 | { | |
12504 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
12505 | which are automatically generated by gas. */ | |
12506 | if (strcmp (sec->name, ".reginfo") | |
12507 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 12508 | && (sec->size != 0 |
d13d89fa NS |
12509 | || (strcmp (sec->name, ".text") |
12510 | && strcmp (sec->name, ".data") | |
12511 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 12512 | { |
b34976b6 | 12513 | null_input_bfd = FALSE; |
b49e97c9 TS |
12514 | break; |
12515 | } | |
12516 | } | |
12517 | if (null_input_bfd) | |
b34976b6 | 12518 | return TRUE; |
b49e97c9 | 12519 | |
b34976b6 | 12520 | ok = TRUE; |
b49e97c9 | 12521 | |
143d77c5 EC |
12522 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
12523 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 12524 | { |
b49e97c9 | 12525 | (*_bfd_error_handler) |
861fb55a | 12526 | (_("%B: warning: linking abicalls files with non-abicalls files"), |
d003868e | 12527 | ibfd); |
143d77c5 | 12528 | ok = TRUE; |
b49e97c9 TS |
12529 | } |
12530 | ||
143d77c5 EC |
12531 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
12532 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
12533 | if (! (new_flags & EF_MIPS_PIC)) | |
12534 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
12535 | ||
12536 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
12537 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 12538 | |
64543e1a RS |
12539 | /* Compare the ISAs. */ |
12540 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 12541 | { |
64543e1a | 12542 | (*_bfd_error_handler) |
d003868e AM |
12543 | (_("%B: linking 32-bit code with 64-bit code"), |
12544 | ibfd); | |
64543e1a RS |
12545 | ok = FALSE; |
12546 | } | |
12547 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
12548 | { | |
12549 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
12550 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 12551 | { |
64543e1a RS |
12552 | /* Copy the architecture info from IBFD to OBFD. Also copy |
12553 | the 32-bit flag (if set) so that we continue to recognise | |
12554 | OBFD as a 32-bit binary. */ | |
12555 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
12556 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
12557 | elf_elfheader (obfd)->e_flags | |
12558 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
12559 | ||
12560 | /* Copy across the ABI flags if OBFD doesn't use them | |
12561 | and if that was what caused us to treat IBFD as 32-bit. */ | |
12562 | if ((old_flags & EF_MIPS_ABI) == 0 | |
12563 | && mips_32bit_flags_p (new_flags) | |
12564 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
12565 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
12566 | } |
12567 | else | |
12568 | { | |
64543e1a | 12569 | /* The ISAs aren't compatible. */ |
b49e97c9 | 12570 | (*_bfd_error_handler) |
d003868e AM |
12571 | (_("%B: linking %s module with previous %s modules"), |
12572 | ibfd, | |
64543e1a RS |
12573 | bfd_printable_name (ibfd), |
12574 | bfd_printable_name (obfd)); | |
b34976b6 | 12575 | ok = FALSE; |
b49e97c9 | 12576 | } |
b49e97c9 TS |
12577 | } |
12578 | ||
64543e1a RS |
12579 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
12580 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
12581 | ||
12582 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
12583 | does set EI_CLASS differently from any 32-bit ABI. */ |
12584 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
12585 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
12586 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
12587 | { | |
12588 | /* Only error if both are set (to different values). */ | |
12589 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
12590 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
12591 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
12592 | { | |
12593 | (*_bfd_error_handler) | |
d003868e AM |
12594 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
12595 | ibfd, | |
b49e97c9 TS |
12596 | elf_mips_abi_name (ibfd), |
12597 | elf_mips_abi_name (obfd)); | |
b34976b6 | 12598 | ok = FALSE; |
b49e97c9 TS |
12599 | } |
12600 | new_flags &= ~EF_MIPS_ABI; | |
12601 | old_flags &= ~EF_MIPS_ABI; | |
12602 | } | |
12603 | ||
fb39dac1 RS |
12604 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
12605 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
12606 | { | |
12607 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
12608 | ||
12609 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
12610 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
12611 | } | |
12612 | ||
b49e97c9 TS |
12613 | /* Warn about any other mismatches */ |
12614 | if (new_flags != old_flags) | |
12615 | { | |
12616 | (*_bfd_error_handler) | |
d003868e AM |
12617 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
12618 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 12619 | (unsigned long) old_flags); |
b34976b6 | 12620 | ok = FALSE; |
b49e97c9 TS |
12621 | } |
12622 | ||
12623 | if (! ok) | |
12624 | { | |
12625 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 12626 | return FALSE; |
b49e97c9 TS |
12627 | } |
12628 | ||
b34976b6 | 12629 | return TRUE; |
b49e97c9 TS |
12630 | } |
12631 | ||
12632 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
12633 | ||
b34976b6 | 12634 | bfd_boolean |
9719ad41 | 12635 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
12636 | { |
12637 | BFD_ASSERT (!elf_flags_init (abfd) | |
12638 | || elf_elfheader (abfd)->e_flags == flags); | |
12639 | ||
12640 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
12641 | elf_flags_init (abfd) = TRUE; |
12642 | return TRUE; | |
b49e97c9 TS |
12643 | } |
12644 | ||
ad9563d6 CM |
12645 | char * |
12646 | _bfd_mips_elf_get_target_dtag (bfd_vma dtag) | |
12647 | { | |
12648 | switch (dtag) | |
12649 | { | |
12650 | default: return ""; | |
12651 | case DT_MIPS_RLD_VERSION: | |
12652 | return "MIPS_RLD_VERSION"; | |
12653 | case DT_MIPS_TIME_STAMP: | |
12654 | return "MIPS_TIME_STAMP"; | |
12655 | case DT_MIPS_ICHECKSUM: | |
12656 | return "MIPS_ICHECKSUM"; | |
12657 | case DT_MIPS_IVERSION: | |
12658 | return "MIPS_IVERSION"; | |
12659 | case DT_MIPS_FLAGS: | |
12660 | return "MIPS_FLAGS"; | |
12661 | case DT_MIPS_BASE_ADDRESS: | |
12662 | return "MIPS_BASE_ADDRESS"; | |
12663 | case DT_MIPS_MSYM: | |
12664 | return "MIPS_MSYM"; | |
12665 | case DT_MIPS_CONFLICT: | |
12666 | return "MIPS_CONFLICT"; | |
12667 | case DT_MIPS_LIBLIST: | |
12668 | return "MIPS_LIBLIST"; | |
12669 | case DT_MIPS_LOCAL_GOTNO: | |
12670 | return "MIPS_LOCAL_GOTNO"; | |
12671 | case DT_MIPS_CONFLICTNO: | |
12672 | return "MIPS_CONFLICTNO"; | |
12673 | case DT_MIPS_LIBLISTNO: | |
12674 | return "MIPS_LIBLISTNO"; | |
12675 | case DT_MIPS_SYMTABNO: | |
12676 | return "MIPS_SYMTABNO"; | |
12677 | case DT_MIPS_UNREFEXTNO: | |
12678 | return "MIPS_UNREFEXTNO"; | |
12679 | case DT_MIPS_GOTSYM: | |
12680 | return "MIPS_GOTSYM"; | |
12681 | case DT_MIPS_HIPAGENO: | |
12682 | return "MIPS_HIPAGENO"; | |
12683 | case DT_MIPS_RLD_MAP: | |
12684 | return "MIPS_RLD_MAP"; | |
12685 | case DT_MIPS_DELTA_CLASS: | |
12686 | return "MIPS_DELTA_CLASS"; | |
12687 | case DT_MIPS_DELTA_CLASS_NO: | |
12688 | return "MIPS_DELTA_CLASS_NO"; | |
12689 | case DT_MIPS_DELTA_INSTANCE: | |
12690 | return "MIPS_DELTA_INSTANCE"; | |
12691 | case DT_MIPS_DELTA_INSTANCE_NO: | |
12692 | return "MIPS_DELTA_INSTANCE_NO"; | |
12693 | case DT_MIPS_DELTA_RELOC: | |
12694 | return "MIPS_DELTA_RELOC"; | |
12695 | case DT_MIPS_DELTA_RELOC_NO: | |
12696 | return "MIPS_DELTA_RELOC_NO"; | |
12697 | case DT_MIPS_DELTA_SYM: | |
12698 | return "MIPS_DELTA_SYM"; | |
12699 | case DT_MIPS_DELTA_SYM_NO: | |
12700 | return "MIPS_DELTA_SYM_NO"; | |
12701 | case DT_MIPS_DELTA_CLASSSYM: | |
12702 | return "MIPS_DELTA_CLASSSYM"; | |
12703 | case DT_MIPS_DELTA_CLASSSYM_NO: | |
12704 | return "MIPS_DELTA_CLASSSYM_NO"; | |
12705 | case DT_MIPS_CXX_FLAGS: | |
12706 | return "MIPS_CXX_FLAGS"; | |
12707 | case DT_MIPS_PIXIE_INIT: | |
12708 | return "MIPS_PIXIE_INIT"; | |
12709 | case DT_MIPS_SYMBOL_LIB: | |
12710 | return "MIPS_SYMBOL_LIB"; | |
12711 | case DT_MIPS_LOCALPAGE_GOTIDX: | |
12712 | return "MIPS_LOCALPAGE_GOTIDX"; | |
12713 | case DT_MIPS_LOCAL_GOTIDX: | |
12714 | return "MIPS_LOCAL_GOTIDX"; | |
12715 | case DT_MIPS_HIDDEN_GOTIDX: | |
12716 | return "MIPS_HIDDEN_GOTIDX"; | |
12717 | case DT_MIPS_PROTECTED_GOTIDX: | |
12718 | return "MIPS_PROTECTED_GOT_IDX"; | |
12719 | case DT_MIPS_OPTIONS: | |
12720 | return "MIPS_OPTIONS"; | |
12721 | case DT_MIPS_INTERFACE: | |
12722 | return "MIPS_INTERFACE"; | |
12723 | case DT_MIPS_DYNSTR_ALIGN: | |
12724 | return "DT_MIPS_DYNSTR_ALIGN"; | |
12725 | case DT_MIPS_INTERFACE_SIZE: | |
12726 | return "DT_MIPS_INTERFACE_SIZE"; | |
12727 | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: | |
12728 | return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; | |
12729 | case DT_MIPS_PERF_SUFFIX: | |
12730 | return "DT_MIPS_PERF_SUFFIX"; | |
12731 | case DT_MIPS_COMPACT_SIZE: | |
12732 | return "DT_MIPS_COMPACT_SIZE"; | |
12733 | case DT_MIPS_GP_VALUE: | |
12734 | return "DT_MIPS_GP_VALUE"; | |
12735 | case DT_MIPS_AUX_DYNAMIC: | |
12736 | return "DT_MIPS_AUX_DYNAMIC"; | |
861fb55a DJ |
12737 | case DT_MIPS_PLTGOT: |
12738 | return "DT_MIPS_PLTGOT"; | |
12739 | case DT_MIPS_RWPLT: | |
12740 | return "DT_MIPS_RWPLT"; | |
ad9563d6 CM |
12741 | } |
12742 | } | |
12743 | ||
b34976b6 | 12744 | bfd_boolean |
9719ad41 | 12745 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 12746 | { |
9719ad41 | 12747 | FILE *file = ptr; |
b49e97c9 TS |
12748 | |
12749 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
12750 | ||
12751 | /* Print normal ELF private data. */ | |
12752 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
12753 | ||
12754 | /* xgettext:c-format */ | |
12755 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
12756 | ||
12757 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
12758 | fprintf (file, _(" [abi=O32]")); | |
12759 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
12760 | fprintf (file, _(" [abi=O64]")); | |
12761 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
12762 | fprintf (file, _(" [abi=EABI32]")); | |
12763 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
12764 | fprintf (file, _(" [abi=EABI64]")); | |
12765 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
12766 | fprintf (file, _(" [abi unknown]")); | |
12767 | else if (ABI_N32_P (abfd)) | |
12768 | fprintf (file, _(" [abi=N32]")); | |
12769 | else if (ABI_64_P (abfd)) | |
12770 | fprintf (file, _(" [abi=64]")); | |
12771 | else | |
12772 | fprintf (file, _(" [no abi set]")); | |
12773 | ||
12774 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
ae0d2616 | 12775 | fprintf (file, " [mips1]"); |
b49e97c9 | 12776 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
ae0d2616 | 12777 | fprintf (file, " [mips2]"); |
b49e97c9 | 12778 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
ae0d2616 | 12779 | fprintf (file, " [mips3]"); |
b49e97c9 | 12780 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
ae0d2616 | 12781 | fprintf (file, " [mips4]"); |
b49e97c9 | 12782 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
ae0d2616 | 12783 | fprintf (file, " [mips5]"); |
b49e97c9 | 12784 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
ae0d2616 | 12785 | fprintf (file, " [mips32]"); |
b49e97c9 | 12786 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
ae0d2616 | 12787 | fprintf (file, " [mips64]"); |
af7ee8bf | 12788 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
ae0d2616 | 12789 | fprintf (file, " [mips32r2]"); |
5f74bc13 | 12790 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
ae0d2616 | 12791 | fprintf (file, " [mips64r2]"); |
b49e97c9 TS |
12792 | else |
12793 | fprintf (file, _(" [unknown ISA]")); | |
12794 | ||
40d32fc6 | 12795 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
ae0d2616 | 12796 | fprintf (file, " [mdmx]"); |
40d32fc6 CD |
12797 | |
12798 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
ae0d2616 | 12799 | fprintf (file, " [mips16]"); |
40d32fc6 | 12800 | |
b49e97c9 | 12801 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
ae0d2616 | 12802 | fprintf (file, " [32bitmode]"); |
b49e97c9 TS |
12803 | else |
12804 | fprintf (file, _(" [not 32bitmode]")); | |
12805 | ||
c0e3f241 | 12806 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
ae0d2616 | 12807 | fprintf (file, " [noreorder]"); |
c0e3f241 CD |
12808 | |
12809 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | |
ae0d2616 | 12810 | fprintf (file, " [PIC]"); |
c0e3f241 CD |
12811 | |
12812 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) | |
ae0d2616 | 12813 | fprintf (file, " [CPIC]"); |
c0e3f241 CD |
12814 | |
12815 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) | |
ae0d2616 | 12816 | fprintf (file, " [XGOT]"); |
c0e3f241 CD |
12817 | |
12818 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) | |
ae0d2616 | 12819 | fprintf (file, " [UCODE]"); |
c0e3f241 | 12820 | |
b49e97c9 TS |
12821 | fputc ('\n', file); |
12822 | ||
b34976b6 | 12823 | return TRUE; |
b49e97c9 | 12824 | } |
2f89ff8d | 12825 | |
b35d266b | 12826 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 12827 | { |
0112cd26 NC |
12828 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
12829 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
12830 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | |
12831 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
12832 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
12833 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, | |
12834 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 12835 | }; |
5e2b0d47 | 12836 | |
8992f0d7 TS |
12837 | /* Merge non visibility st_other attributes. Ensure that the |
12838 | STO_OPTIONAL flag is copied into h->other, even if this is not a | |
12839 | definiton of the symbol. */ | |
5e2b0d47 NC |
12840 | void |
12841 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
12842 | const Elf_Internal_Sym *isym, | |
12843 | bfd_boolean definition, | |
12844 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
12845 | { | |
8992f0d7 TS |
12846 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
12847 | { | |
12848 | unsigned char other; | |
12849 | ||
12850 | other = (definition ? isym->st_other : h->other); | |
12851 | other &= ~ELF_ST_VISIBILITY (-1); | |
12852 | h->other = other | ELF_ST_VISIBILITY (h->other); | |
12853 | } | |
12854 | ||
12855 | if (!definition | |
5e2b0d47 NC |
12856 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
12857 | h->other |= STO_OPTIONAL; | |
12858 | } | |
12ac1cf5 NC |
12859 | |
12860 | /* Decide whether an undefined symbol is special and can be ignored. | |
12861 | This is the case for OPTIONAL symbols on IRIX. */ | |
12862 | bfd_boolean | |
12863 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
12864 | { | |
12865 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
12866 | } | |
e0764319 NC |
12867 | |
12868 | bfd_boolean | |
12869 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | |
12870 | { | |
12871 | return (sym->st_shndx == SHN_COMMON | |
12872 | || sym->st_shndx == SHN_MIPS_ACOMMON | |
12873 | || sym->st_shndx == SHN_MIPS_SCOMMON); | |
12874 | } | |
861fb55a DJ |
12875 | |
12876 | /* Return address for Ith PLT stub in section PLT, for relocation REL | |
12877 | or (bfd_vma) -1 if it should not be included. */ | |
12878 | ||
12879 | bfd_vma | |
12880 | _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, | |
12881 | const arelent *rel ATTRIBUTE_UNUSED) | |
12882 | { | |
12883 | return (plt->vma | |
12884 | + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) | |
12885 | + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); | |
12886 | } | |
12887 | ||
12888 | void | |
12889 | _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) | |
12890 | { | |
12891 | struct mips_elf_link_hash_table *htab; | |
12892 | Elf_Internal_Ehdr *i_ehdrp; | |
12893 | ||
12894 | i_ehdrp = elf_elfheader (abfd); | |
12895 | if (link_info) | |
12896 | { | |
12897 | htab = mips_elf_hash_table (link_info); | |
12898 | if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) | |
12899 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
12900 | } | |
12901 | } |