Provide the __bssstart and __bsssize symbols needed by the MSP430's crt0.o code.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
b49e97c9 313 long min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 317 long max_unref_got_dynindx;
b49e97c9
TS
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
1bbce132
MR
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
b49e97c9
TS
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
861fb55a
DJ
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
b49e97c9
TS
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
b49e97c9
TS
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
b49e97c9
TS
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
7c5fcef7 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
1bbce132
MR
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
861fb55a 423
b49e97c9
TS
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
861fb55a 426
b49e97c9
TS
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
861fb55a 429
e6aea42d
MR
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 432 bfd_boolean use_rld_obj_head;
861fb55a 433
b4082c70
DD
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
861fb55a 436
b49e97c9 437 /* This is set if we see any mips16 stub sections. */
b34976b6 438 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
833794fc
MR
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
0a44bf69
RS
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
861fb55a 448
0e53d9da
AN
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
861fb55a 451
0a44bf69
RS
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
4e41d0d7 460 asection *sstubs;
a8028dd0 461 asection *sgot;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca
DD
915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1583 char *name;
1584 bfd_boolean res;
861fb55a 1585
df58fc94
RS
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
861fb55a 1589 /* Create a new symbol. */
e1fa0163 1590 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1591 bh = NULL;
e1fa0163
NC
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
861fb55a
DJ
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605}
1606
738e5348
RS
1607/* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611static bfd_boolean
1612mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615{
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
e1fa0163 1618 char *name;
738e5348
RS
1619 asection *s;
1620 bfd_vma value;
e1fa0163 1621 bfd_boolean res;
738e5348
RS
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
e1fa0163 1630 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1631 bh = NULL;
e1fa0163
NC
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
738e5348
RS
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646}
1647
1648/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651static bfd_boolean
1652section_allows_mips16_refs_p (asection *section)
1653{
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661}
1662
1663/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667static unsigned long
cb4437b8
MR
1668mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
502e814e 1670 const Elf_Internal_Rela *relocs,
738e5348
RS
1671 const Elf_Internal_Rela *relend)
1672{
cb4437b8 1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1674 const Elf_Internal_Rela *rel;
1675
cb4437b8
MR
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688}
b49e97c9
TS
1689
1690/* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
861fb55a
DJ
1693static void
1694mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
b49e97c9 1696{
738e5348
RS
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
b49e97c9
TS
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
eea6121a 1712 h->fn_stub->size = 0;
b49e97c9
TS
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1716 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1717 }
1718
1719 if (h->call_stub != NULL
30c09090 1720 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
eea6121a 1725 h->call_stub->size = 0;
b49e97c9
TS
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1729 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1730 }
1731
1732 if (h->call_fp_stub != NULL
30c09090 1733 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
eea6121a 1738 h->call_fp_stub->size = 0;
b49e97c9
TS
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1743 }
861fb55a
DJ
1744}
1745
1746/* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748static hashval_t
1749mips_elf_la25_stub_hash (const void *entry_)
1750{
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756}
1757
1758static int
1759mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760{
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769}
1770
1771/* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775bfd_boolean
1776_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779{
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1783 if (htab == NULL)
1784 return FALSE;
1785
861fb55a
DJ
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793}
1794
1795/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
861fb55a
DJ
1800
1801static bfd_boolean
1802mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803{
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812}
1813
8f0c309a
CLT
1814/* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817static bfd_vma
1818mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820{
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832}
1833
861fb55a
DJ
1834/* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838static bfd_boolean
1839mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841{
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1848 if (htab == NULL)
1849 return FALSE;
861fb55a
DJ
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
8f0c309a 1858 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879}
1880
1881/* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885static bfd_boolean
1886mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888{
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1893 if (htab == NULL)
1894 return FALSE;
861fb55a
DJ
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916}
1917
1918/* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921static bfd_boolean
1922mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924{
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
861fb55a
DJ
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1939 if (htab == NULL)
1940 return FALSE;
1941
861fb55a
DJ
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
8f0c309a
CLT
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
861fb55a
DJ
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970}
1971
1972/* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975static bfd_boolean
1976mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977{
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1981 if (!bfd_link_relocatable (hti->info))
861fb55a 1982 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1983
861fb55a
DJ
1984 if (mips_elf_local_pic_function_p (h))
1985 {
ba85c43e
NC
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
861fb55a
DJ
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
0e1862bb 1996 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
b34976b6 2007 return TRUE;
b49e97c9
TS
2008}
2009\f
d6f16593
MR
2010/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
738e5348
RS
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
d6f16593
MR
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
738e5348
RS
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095static inline bfd_boolean
2096mips16_reloc_p (int r_type)
2097{
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
d0f13682
CLT
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118}
2119
df58fc94
RS
2120/* Check if a microMIPS reloc. */
2121
2122static inline bfd_boolean
2123micromips_reloc_p (unsigned int r_type)
2124{
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126}
2127
2128/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132static inline bfd_boolean
2133micromips_reloc_shuffle_p (unsigned int r_type)
2134{
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138}
2139
738e5348
RS
2140static inline bfd_boolean
2141got16_reloc_p (int r_type)
2142{
df58fc94
RS
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2146}
2147
2148static inline bfd_boolean
2149call16_reloc_p (int r_type)
2150{
df58fc94
RS
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154}
2155
2156static inline bfd_boolean
2157got_disp_reloc_p (unsigned int r_type)
2158{
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160}
2161
2162static inline bfd_boolean
2163got_page_reloc_p (unsigned int r_type)
2164{
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166}
2167
df58fc94
RS
2168static inline bfd_boolean
2169got_lo16_reloc_p (unsigned int r_type)
2170{
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172}
2173
2174static inline bfd_boolean
2175call_hi16_reloc_p (unsigned int r_type)
2176{
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178}
2179
2180static inline bfd_boolean
2181call_lo16_reloc_p (unsigned int r_type)
2182{
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2184}
2185
2186static inline bfd_boolean
2187hi16_reloc_p (int r_type)
2188{
df58fc94
RS
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
7361da2c
AB
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
738e5348 2193}
d6f16593 2194
738e5348
RS
2195static inline bfd_boolean
2196lo16_reloc_p (int r_type)
2197{
df58fc94
RS
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
7361da2c
AB
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
738e5348
RS
2202}
2203
2204static inline bfd_boolean
2205mips16_call_reloc_p (int r_type)
2206{
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208}
d6f16593 2209
38a7df63
CF
2210static inline bfd_boolean
2211jal_reloc_p (int r_type)
2212{
df58fc94
RS
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216}
2217
7361da2c
AB
2218static inline bfd_boolean
2219aligned_pcrel_reloc_p (int r_type)
2220{
2221 return (r_type == R_MIPS_PC18_S3
2222 || r_type == R_MIPS_PC19_S2);
2223}
2224
df58fc94
RS
2225static inline bfd_boolean
2226micromips_branch_reloc_p (int r_type)
2227{
2228 return (r_type == R_MICROMIPS_26_S1
2229 || r_type == R_MICROMIPS_PC16_S1
2230 || r_type == R_MICROMIPS_PC10_S1
2231 || r_type == R_MICROMIPS_PC7_S1);
2232}
2233
2234static inline bfd_boolean
2235tls_gd_reloc_p (unsigned int r_type)
2236{
d0f13682
CLT
2237 return (r_type == R_MIPS_TLS_GD
2238 || r_type == R_MIPS16_TLS_GD
2239 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2240}
2241
2242static inline bfd_boolean
2243tls_ldm_reloc_p (unsigned int r_type)
2244{
d0f13682
CLT
2245 return (r_type == R_MIPS_TLS_LDM
2246 || r_type == R_MIPS16_TLS_LDM
2247 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2248}
2249
2250static inline bfd_boolean
2251tls_gottprel_reloc_p (unsigned int r_type)
2252{
d0f13682
CLT
2253 return (r_type == R_MIPS_TLS_GOTTPREL
2254 || r_type == R_MIPS16_TLS_GOTTPREL
2255 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2256}
2257
d6f16593 2258void
df58fc94
RS
2259_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2260 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2261{
df58fc94 2262 bfd_vma first, second, val;
d6f16593 2263
df58fc94 2264 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2265 return;
2266
df58fc94
RS
2267 /* Pick up the first and second halfwords of the instruction. */
2268 first = bfd_get_16 (abfd, data);
2269 second = bfd_get_16 (abfd, data + 2);
2270 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2271 val = first << 16 | second;
2272 else if (r_type != R_MIPS16_26)
2273 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2274 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2275 else
df58fc94
RS
2276 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2277 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2278 bfd_put_32 (abfd, val, data);
2279}
2280
2281void
df58fc94
RS
2282_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2283 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2284{
df58fc94 2285 bfd_vma first, second, val;
d6f16593 2286
df58fc94 2287 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2288 return;
2289
2290 val = bfd_get_32 (abfd, data);
df58fc94 2291 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2292 {
df58fc94
RS
2293 second = val & 0xffff;
2294 first = val >> 16;
2295 }
2296 else if (r_type != R_MIPS16_26)
2297 {
2298 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2299 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2300 }
2301 else
2302 {
df58fc94
RS
2303 second = val & 0xffff;
2304 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2305 | ((val >> 21) & 0x1f);
d6f16593 2306 }
df58fc94
RS
2307 bfd_put_16 (abfd, second, data + 2);
2308 bfd_put_16 (abfd, first, data);
d6f16593
MR
2309}
2310
b49e97c9 2311bfd_reloc_status_type
9719ad41
RS
2312_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2313 arelent *reloc_entry, asection *input_section,
2314 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2315{
2316 bfd_vma relocation;
a7ebbfdf 2317 bfd_signed_vma val;
30ac9238 2318 bfd_reloc_status_type status;
b49e97c9
TS
2319
2320 if (bfd_is_com_section (symbol->section))
2321 relocation = 0;
2322 else
2323 relocation = symbol->value;
2324
2325 relocation += symbol->section->output_section->vma;
2326 relocation += symbol->section->output_offset;
2327
07515404 2328 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2329 return bfd_reloc_outofrange;
2330
b49e97c9 2331 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2332 val = reloc_entry->addend;
2333
30ac9238 2334 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2335
b49e97c9 2336 /* Adjust val for the final section location and GP value. If we
1049f94e 2337 are producing relocatable output, we don't want to do this for
b49e97c9 2338 an external symbol. */
1049f94e 2339 if (! relocatable
b49e97c9
TS
2340 || (symbol->flags & BSF_SECTION_SYM) != 0)
2341 val += relocation - gp;
2342
a7ebbfdf
TS
2343 if (reloc_entry->howto->partial_inplace)
2344 {
30ac9238
RS
2345 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2346 (bfd_byte *) data
2347 + reloc_entry->address);
2348 if (status != bfd_reloc_ok)
2349 return status;
a7ebbfdf
TS
2350 }
2351 else
2352 reloc_entry->addend = val;
b49e97c9 2353
1049f94e 2354 if (relocatable)
b49e97c9 2355 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2356
2357 return bfd_reloc_ok;
2358}
2359
2360/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2361 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2362 that contains the relocation field and DATA points to the start of
2363 INPUT_SECTION. */
2364
2365struct mips_hi16
2366{
2367 struct mips_hi16 *next;
2368 bfd_byte *data;
2369 asection *input_section;
2370 arelent rel;
2371};
2372
2373/* FIXME: This should not be a static variable. */
2374
2375static struct mips_hi16 *mips_hi16_list;
2376
2377/* A howto special_function for REL *HI16 relocations. We can only
2378 calculate the correct value once we've seen the partnering
2379 *LO16 relocation, so just save the information for later.
2380
2381 The ABI requires that the *LO16 immediately follow the *HI16.
2382 However, as a GNU extension, we permit an arbitrary number of
2383 *HI16s to be associated with a single *LO16. This significantly
2384 simplies the relocation handling in gcc. */
2385
2386bfd_reloc_status_type
2387_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2388 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2389 asection *input_section, bfd *output_bfd,
2390 char **error_message ATTRIBUTE_UNUSED)
2391{
2392 struct mips_hi16 *n;
2393
07515404 2394 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2395 return bfd_reloc_outofrange;
2396
2397 n = bfd_malloc (sizeof *n);
2398 if (n == NULL)
2399 return bfd_reloc_outofrange;
2400
2401 n->next = mips_hi16_list;
2402 n->data = data;
2403 n->input_section = input_section;
2404 n->rel = *reloc_entry;
2405 mips_hi16_list = n;
2406
2407 if (output_bfd != NULL)
2408 reloc_entry->address += input_section->output_offset;
2409
2410 return bfd_reloc_ok;
2411}
2412
738e5348 2413/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2414 like any other 16-bit relocation when applied to global symbols, but is
2415 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2416
2417bfd_reloc_status_type
2418_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2419 void *data, asection *input_section,
2420 bfd *output_bfd, char **error_message)
2421{
2422 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2423 || bfd_is_und_section (bfd_get_section (symbol))
2424 || bfd_is_com_section (bfd_get_section (symbol)))
2425 /* The relocation is against a global symbol. */
2426 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2427 input_section, output_bfd,
2428 error_message);
2429
2430 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2431 input_section, output_bfd, error_message);
2432}
2433
2434/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2435 is a straightforward 16 bit inplace relocation, but we must deal with
2436 any partnering high-part relocations as well. */
2437
2438bfd_reloc_status_type
2439_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2440 void *data, asection *input_section,
2441 bfd *output_bfd, char **error_message)
2442{
2443 bfd_vma vallo;
d6f16593 2444 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2445
07515404 2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2447 return bfd_reloc_outofrange;
2448
df58fc94 2449 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2450 location);
df58fc94
RS
2451 vallo = bfd_get_32 (abfd, location);
2452 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
d6f16593 2454
30ac9238
RS
2455 while (mips_hi16_list != NULL)
2456 {
2457 bfd_reloc_status_type ret;
2458 struct mips_hi16 *hi;
2459
2460 hi = mips_hi16_list;
2461
738e5348
RS
2462 /* R_MIPS*_GOT16 relocations are something of a special case. We
2463 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2464 relocation (with a rightshift of 16). However, since GOT16
2465 relocations can also be used with global symbols, their howto
2466 has a rightshift of 0. */
2467 if (hi->rel.howto->type == R_MIPS_GOT16)
2468 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2469 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2471 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2473
2474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2475 carry or borrow will induce a change of +1 or -1 in the high part. */
2476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2477
30ac9238
RS
2478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2479 hi->input_section, output_bfd,
2480 error_message);
2481 if (ret != bfd_reloc_ok)
2482 return ret;
2483
2484 mips_hi16_list = hi->next;
2485 free (hi);
2486 }
2487
2488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2489 input_section, output_bfd,
2490 error_message);
2491}
2492
2493/* A generic howto special_function. This calculates and installs the
2494 relocation itself, thus avoiding the oft-discussed problems in
2495 bfd_perform_relocation and bfd_install_relocation. */
2496
2497bfd_reloc_status_type
2498_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502{
2503 bfd_signed_vma val;
2504 bfd_reloc_status_type status;
2505 bfd_boolean relocatable;
2506
2507 relocatable = (output_bfd != NULL);
2508
07515404 2509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2510 return bfd_reloc_outofrange;
2511
2512 /* Build up the field adjustment in VAL. */
2513 val = 0;
2514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2515 {
2516 /* Either we're calculating the final field value or we have a
2517 relocation against a section symbol. Add in the section's
2518 offset or address. */
2519 val += symbol->section->output_section->vma;
2520 val += symbol->section->output_offset;
2521 }
2522
2523 if (!relocatable)
2524 {
2525 /* We're calculating the final field value. Add in the symbol's value
2526 and, if pc-relative, subtract the address of the field itself. */
2527 val += symbol->value;
2528 if (reloc_entry->howto->pc_relative)
2529 {
2530 val -= input_section->output_section->vma;
2531 val -= input_section->output_offset;
2532 val -= reloc_entry->address;
2533 }
2534 }
2535
2536 /* VAL is now the final adjustment. If we're keeping this relocation
2537 in the output file, and if the relocation uses a separate addend,
2538 we just need to add VAL to that addend. Otherwise we need to add
2539 VAL to the relocation field itself. */
2540 if (relocatable && !reloc_entry->howto->partial_inplace)
2541 reloc_entry->addend += val;
2542 else
2543 {
d6f16593
MR
2544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2545
30ac9238
RS
2546 /* Add in the separate addend, if any. */
2547 val += reloc_entry->addend;
2548
2549 /* Add VAL to the relocation field. */
df58fc94
RS
2550 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2551 location);
30ac9238 2552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2553 location);
df58fc94
RS
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
d6f16593 2556
30ac9238
RS
2557 if (status != bfd_reloc_ok)
2558 return status;
2559 }
2560
2561 if (relocatable)
2562 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2563
2564 return bfd_reloc_ok;
2565}
2566\f
2567/* Swap an entry in a .gptab section. Note that these routines rely
2568 on the equivalence of the two elements of the union. */
2569
2570static void
9719ad41
RS
2571bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2572 Elf32_gptab *in)
b49e97c9
TS
2573{
2574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2576}
2577
2578static void
9719ad41
RS
2579bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2580 Elf32_External_gptab *ex)
b49e97c9
TS
2581{
2582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2584}
2585
2586static void
9719ad41
RS
2587bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2588 Elf32_External_compact_rel *ex)
b49e97c9
TS
2589{
2590 H_PUT_32 (abfd, in->id1, ex->id1);
2591 H_PUT_32 (abfd, in->num, ex->num);
2592 H_PUT_32 (abfd, in->id2, ex->id2);
2593 H_PUT_32 (abfd, in->offset, ex->offset);
2594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2596}
2597
2598static void
9719ad41
RS
2599bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2600 Elf32_External_crinfo *ex)
b49e97c9
TS
2601{
2602 unsigned long l;
2603
2604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2608 H_PUT_32 (abfd, l, ex->info);
2609 H_PUT_32 (abfd, in->konst, ex->konst);
2610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2611}
b49e97c9
TS
2612\f
2613/* A .reginfo section holds a single Elf32_RegInfo structure. These
2614 routines swap this structure in and out. They are used outside of
2615 BFD, so they are globally visible. */
2616
2617void
9719ad41
RS
2618bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2619 Elf32_RegInfo *in)
b49e97c9
TS
2620{
2621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2627}
2628
2629void
9719ad41
RS
2630bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2631 Elf32_External_RegInfo *ex)
b49e97c9
TS
2632{
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2639}
2640
2641/* In the 64 bit ABI, the .MIPS.options section holds register
2642 information in an Elf64_Reginfo structure. These routines swap
2643 them in and out. They are globally visible because they are used
2644 outside of BFD. These routines are here so that gas can call them
2645 without worrying about whether the 64 bit ABI has been included. */
2646
2647void
9719ad41
RS
2648bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2649 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2650{
2651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2658}
2659
2660void
9719ad41
RS
2661bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2662 Elf64_External_RegInfo *ex)
b49e97c9
TS
2663{
2664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2671}
2672
2673/* Swap in an options header. */
2674
2675void
9719ad41
RS
2676bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2677 Elf_Internal_Options *in)
b49e97c9
TS
2678{
2679 in->kind = H_GET_8 (abfd, ex->kind);
2680 in->size = H_GET_8 (abfd, ex->size);
2681 in->section = H_GET_16 (abfd, ex->section);
2682 in->info = H_GET_32 (abfd, ex->info);
2683}
2684
2685/* Swap out an options header. */
2686
2687void
9719ad41
RS
2688bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2689 Elf_External_Options *ex)
b49e97c9
TS
2690{
2691 H_PUT_8 (abfd, in->kind, ex->kind);
2692 H_PUT_8 (abfd, in->size, ex->size);
2693 H_PUT_16 (abfd, in->section, ex->section);
2694 H_PUT_32 (abfd, in->info, ex->info);
2695}
351cdf24
MF
2696
2697/* Swap in an abiflags structure. */
2698
2699void
2700bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2701 const Elf_External_ABIFlags_v0 *ex,
2702 Elf_Internal_ABIFlags_v0 *in)
2703{
2704 in->version = H_GET_16 (abfd, ex->version);
2705 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2706 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2707 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2708 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2709 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2710 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2711 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2712 in->ases = H_GET_32 (abfd, ex->ases);
2713 in->flags1 = H_GET_32 (abfd, ex->flags1);
2714 in->flags2 = H_GET_32 (abfd, ex->flags2);
2715}
2716
2717/* Swap out an abiflags structure. */
2718
2719void
2720bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2721 const Elf_Internal_ABIFlags_v0 *in,
2722 Elf_External_ABIFlags_v0 *ex)
2723{
2724 H_PUT_16 (abfd, in->version, ex->version);
2725 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2726 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2727 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2728 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2729 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2730 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2731 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2732 H_PUT_32 (abfd, in->ases, ex->ases);
2733 H_PUT_32 (abfd, in->flags1, ex->flags1);
2734 H_PUT_32 (abfd, in->flags2, ex->flags2);
2735}
b49e97c9
TS
2736\f
2737/* This function is called via qsort() to sort the dynamic relocation
2738 entries by increasing r_symndx value. */
2739
2740static int
9719ad41 2741sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2742{
947216bf
AM
2743 Elf_Internal_Rela int_reloc1;
2744 Elf_Internal_Rela int_reloc2;
6870500c 2745 int diff;
b49e97c9 2746
947216bf
AM
2747 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2748 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2749
6870500c
RS
2750 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2751 if (diff != 0)
2752 return diff;
2753
2754 if (int_reloc1.r_offset < int_reloc2.r_offset)
2755 return -1;
2756 if (int_reloc1.r_offset > int_reloc2.r_offset)
2757 return 1;
2758 return 0;
b49e97c9
TS
2759}
2760
f4416af6
AO
2761/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2762
2763static int
7e3102a7
AM
2764sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2765 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2766{
7e3102a7 2767#ifdef BFD64
f4416af6
AO
2768 Elf_Internal_Rela int_reloc1[3];
2769 Elf_Internal_Rela int_reloc2[3];
2770
2771 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2772 (reldyn_sorting_bfd, arg1, int_reloc1);
2773 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2774 (reldyn_sorting_bfd, arg2, int_reloc2);
2775
6870500c
RS
2776 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2777 return -1;
2778 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2779 return 1;
2780
2781 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2782 return -1;
2783 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2784 return 1;
2785 return 0;
7e3102a7
AM
2786#else
2787 abort ();
2788#endif
f4416af6
AO
2789}
2790
2791
b49e97c9
TS
2792/* This routine is used to write out ECOFF debugging external symbol
2793 information. It is called via mips_elf_link_hash_traverse. The
2794 ECOFF external symbol information must match the ELF external
2795 symbol information. Unfortunately, at this point we don't know
2796 whether a symbol is required by reloc information, so the two
2797 tables may wind up being different. We must sort out the external
2798 symbol information before we can set the final size of the .mdebug
2799 section, and we must set the size of the .mdebug section before we
2800 can relocate any sections, and we can't know which symbols are
2801 required by relocation until we relocate the sections.
2802 Fortunately, it is relatively unlikely that any symbol will be
2803 stripped but required by a reloc. In particular, it can not happen
2804 when generating a final executable. */
2805
b34976b6 2806static bfd_boolean
9719ad41 2807mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2808{
9719ad41 2809 struct extsym_info *einfo = data;
b34976b6 2810 bfd_boolean strip;
b49e97c9
TS
2811 asection *sec, *output_section;
2812
b49e97c9 2813 if (h->root.indx == -2)
b34976b6 2814 strip = FALSE;
f5385ebf 2815 else if ((h->root.def_dynamic
77cfaee6
AM
2816 || h->root.ref_dynamic
2817 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2818 && !h->root.def_regular
2819 && !h->root.ref_regular)
b34976b6 2820 strip = TRUE;
b49e97c9
TS
2821 else if (einfo->info->strip == strip_all
2822 || (einfo->info->strip == strip_some
2823 && bfd_hash_lookup (einfo->info->keep_hash,
2824 h->root.root.root.string,
b34976b6
AM
2825 FALSE, FALSE) == NULL))
2826 strip = TRUE;
b49e97c9 2827 else
b34976b6 2828 strip = FALSE;
b49e97c9
TS
2829
2830 if (strip)
b34976b6 2831 return TRUE;
b49e97c9
TS
2832
2833 if (h->esym.ifd == -2)
2834 {
2835 h->esym.jmptbl = 0;
2836 h->esym.cobol_main = 0;
2837 h->esym.weakext = 0;
2838 h->esym.reserved = 0;
2839 h->esym.ifd = ifdNil;
2840 h->esym.asym.value = 0;
2841 h->esym.asym.st = stGlobal;
2842
2843 if (h->root.root.type == bfd_link_hash_undefined
2844 || h->root.root.type == bfd_link_hash_undefweak)
2845 {
2846 const char *name;
2847
2848 /* Use undefined class. Also, set class and type for some
2849 special symbols. */
2850 name = h->root.root.root.string;
2851 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2852 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2853 {
2854 h->esym.asym.sc = scData;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value = 0;
2857 }
2858 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2859 {
2860 h->esym.asym.sc = scAbs;
2861 h->esym.asym.st = stLabel;
2862 h->esym.asym.value =
2863 mips_elf_hash_table (einfo->info)->procedure_count;
2864 }
4a14403c 2865 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2866 {
2867 h->esym.asym.sc = scAbs;
2868 h->esym.asym.st = stLabel;
2869 h->esym.asym.value = elf_gp (einfo->abfd);
2870 }
2871 else
2872 h->esym.asym.sc = scUndefined;
2873 }
2874 else if (h->root.root.type != bfd_link_hash_defined
2875 && h->root.root.type != bfd_link_hash_defweak)
2876 h->esym.asym.sc = scAbs;
2877 else
2878 {
2879 const char *name;
2880
2881 sec = h->root.root.u.def.section;
2882 output_section = sec->output_section;
2883
2884 /* When making a shared library and symbol h is the one from
2885 the another shared library, OUTPUT_SECTION may be null. */
2886 if (output_section == NULL)
2887 h->esym.asym.sc = scUndefined;
2888 else
2889 {
2890 name = bfd_section_name (output_section->owner, output_section);
2891
2892 if (strcmp (name, ".text") == 0)
2893 h->esym.asym.sc = scText;
2894 else if (strcmp (name, ".data") == 0)
2895 h->esym.asym.sc = scData;
2896 else if (strcmp (name, ".sdata") == 0)
2897 h->esym.asym.sc = scSData;
2898 else if (strcmp (name, ".rodata") == 0
2899 || strcmp (name, ".rdata") == 0)
2900 h->esym.asym.sc = scRData;
2901 else if (strcmp (name, ".bss") == 0)
2902 h->esym.asym.sc = scBss;
2903 else if (strcmp (name, ".sbss") == 0)
2904 h->esym.asym.sc = scSBss;
2905 else if (strcmp (name, ".init") == 0)
2906 h->esym.asym.sc = scInit;
2907 else if (strcmp (name, ".fini") == 0)
2908 h->esym.asym.sc = scFini;
2909 else
2910 h->esym.asym.sc = scAbs;
2911 }
2912 }
2913
2914 h->esym.asym.reserved = 0;
2915 h->esym.asym.index = indexNil;
2916 }
2917
2918 if (h->root.root.type == bfd_link_hash_common)
2919 h->esym.asym.value = h->root.root.u.c.size;
2920 else if (h->root.root.type == bfd_link_hash_defined
2921 || h->root.root.type == bfd_link_hash_defweak)
2922 {
2923 if (h->esym.asym.sc == scCommon)
2924 h->esym.asym.sc = scBss;
2925 else if (h->esym.asym.sc == scSCommon)
2926 h->esym.asym.sc = scSBss;
2927
2928 sec = h->root.root.u.def.section;
2929 output_section = sec->output_section;
2930 if (output_section != NULL)
2931 h->esym.asym.value = (h->root.root.u.def.value
2932 + sec->output_offset
2933 + output_section->vma);
2934 else
2935 h->esym.asym.value = 0;
2936 }
33bb52fb 2937 else
b49e97c9
TS
2938 {
2939 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2940
2941 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2942 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2943
33bb52fb 2944 if (hd->needs_lazy_stub)
b49e97c9 2945 {
1bbce132
MR
2946 BFD_ASSERT (hd->root.plt.plist != NULL);
2947 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2948 /* Set type and value for a symbol with a function stub. */
2949 h->esym.asym.st = stProc;
2950 sec = hd->root.root.u.def.section;
2951 if (sec == NULL)
2952 h->esym.asym.value = 0;
2953 else
2954 {
2955 output_section = sec->output_section;
2956 if (output_section != NULL)
1bbce132 2957 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2958 + sec->output_offset
2959 + output_section->vma);
2960 else
2961 h->esym.asym.value = 0;
2962 }
b49e97c9
TS
2963 }
2964 }
2965
2966 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2967 h->root.root.root.string,
2968 &h->esym))
2969 {
b34976b6
AM
2970 einfo->failed = TRUE;
2971 return FALSE;
b49e97c9
TS
2972 }
2973
b34976b6 2974 return TRUE;
b49e97c9
TS
2975}
2976
2977/* A comparison routine used to sort .gptab entries. */
2978
2979static int
9719ad41 2980gptab_compare (const void *p1, const void *p2)
b49e97c9 2981{
9719ad41
RS
2982 const Elf32_gptab *a1 = p1;
2983 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2984
2985 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2986}
2987\f
b15e6682 2988/* Functions to manage the got entry hash table. */
f4416af6
AO
2989
2990/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2991 hash number. */
2992
2993static INLINE hashval_t
9719ad41 2994mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2995{
2996#ifdef BFD64
2997 return addr + (addr >> 32);
2998#else
2999 return addr;
3000#endif
3001}
3002
f4416af6 3003static hashval_t
d9bf376d 3004mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3005{
3006 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3007
e641e783 3008 return (entry->symndx
9ab066b4
RS
3009 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3010 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3011 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3012 : entry->symndx >= 0 ? (entry->abfd->id
3013 + mips_elf_hash_bfd_vma (entry->d.addend))
3014 : entry->d.h->root.root.root.hash));
f4416af6
AO
3015}
3016
3017static int
3dff0dd1 3018mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3019{
3020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3022
e641e783 3023 return (e1->symndx == e2->symndx
9ab066b4
RS
3024 && e1->tls_type == e2->tls_type
3025 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3026 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3027 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3028 && e1->d.addend == e2->d.addend)
3029 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3030}
c224138d 3031
13db6b44
RS
3032static hashval_t
3033mips_got_page_ref_hash (const void *ref_)
3034{
3035 const struct mips_got_page_ref *ref;
3036
3037 ref = (const struct mips_got_page_ref *) ref_;
3038 return ((ref->symndx >= 0
3039 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3040 : ref->u.h->root.root.root.hash)
3041 + mips_elf_hash_bfd_vma (ref->addend));
3042}
3043
3044static int
3045mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3046{
3047 const struct mips_got_page_ref *ref1, *ref2;
3048
3049 ref1 = (const struct mips_got_page_ref *) ref1_;
3050 ref2 = (const struct mips_got_page_ref *) ref2_;
3051 return (ref1->symndx == ref2->symndx
3052 && (ref1->symndx < 0
3053 ? ref1->u.h == ref2->u.h
3054 : ref1->u.abfd == ref2->u.abfd)
3055 && ref1->addend == ref2->addend);
3056}
3057
c224138d
RS
3058static hashval_t
3059mips_got_page_entry_hash (const void *entry_)
3060{
3061 const struct mips_got_page_entry *entry;
3062
3063 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3064 return entry->sec->id;
c224138d
RS
3065}
3066
3067static int
3068mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3069{
3070 const struct mips_got_page_entry *entry1, *entry2;
3071
3072 entry1 = (const struct mips_got_page_entry *) entry1_;
3073 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3074 return entry1->sec == entry2->sec;
c224138d 3075}
b15e6682 3076\f
3dff0dd1 3077/* Create and return a new mips_got_info structure. */
5334aa52
RS
3078
3079static struct mips_got_info *
3dff0dd1 3080mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3081{
3082 struct mips_got_info *g;
3083
3084 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3085 if (g == NULL)
3086 return NULL;
3087
3dff0dd1
RS
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3090 if (g->got_entries == NULL)
3091 return NULL;
3092
13db6b44
RS
3093 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3094 mips_got_page_ref_eq, NULL);
3095 if (g->got_page_refs == NULL)
5334aa52
RS
3096 return NULL;
3097
3098 return g;
3099}
3100
ee227692
RS
3101/* Return the GOT info for input bfd ABFD, trying to create a new one if
3102 CREATE_P and if ABFD doesn't already have a GOT. */
3103
3104static struct mips_got_info *
3105mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3106{
3107 struct mips_elf_obj_tdata *tdata;
3108
3109 if (!is_mips_elf (abfd))
3110 return NULL;
3111
3112 tdata = mips_elf_tdata (abfd);
3113 if (!tdata->got && create_p)
3dff0dd1 3114 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3115 return tdata->got;
3116}
3117
d7206569
RS
3118/* Record that ABFD should use output GOT G. */
3119
3120static void
3121mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3122{
3123 struct mips_elf_obj_tdata *tdata;
3124
3125 BFD_ASSERT (is_mips_elf (abfd));
3126 tdata = mips_elf_tdata (abfd);
3127 if (tdata->got)
3128 {
3129 /* The GOT structure itself and the hash table entries are
3130 allocated to a bfd, but the hash tables aren't. */
3131 htab_delete (tdata->got->got_entries);
13db6b44
RS
3132 htab_delete (tdata->got->got_page_refs);
3133 if (tdata->got->got_page_entries)
3134 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3135 }
3136 tdata->got = g;
3137}
3138
0a44bf69
RS
3139/* Return the dynamic relocation section. If it doesn't exist, try to
3140 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3141 if creation fails. */
f4416af6
AO
3142
3143static asection *
0a44bf69 3144mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3145{
0a44bf69 3146 const char *dname;
f4416af6 3147 asection *sreloc;
0a44bf69 3148 bfd *dynobj;
f4416af6 3149
0a44bf69
RS
3150 dname = MIPS_ELF_REL_DYN_NAME (info);
3151 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3152 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3153 if (sreloc == NULL && create_p)
3154 {
3d4d4302
AM
3155 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3156 (SEC_ALLOC
3157 | SEC_LOAD
3158 | SEC_HAS_CONTENTS
3159 | SEC_IN_MEMORY
3160 | SEC_LINKER_CREATED
3161 | SEC_READONLY));
f4416af6 3162 if (sreloc == NULL
f4416af6 3163 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3164 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3165 return NULL;
3166 }
3167 return sreloc;
3168}
3169
e641e783
RS
3170/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3171
3172static int
3173mips_elf_reloc_tls_type (unsigned int r_type)
3174{
3175 if (tls_gd_reloc_p (r_type))
3176 return GOT_TLS_GD;
3177
3178 if (tls_ldm_reloc_p (r_type))
3179 return GOT_TLS_LDM;
3180
3181 if (tls_gottprel_reloc_p (r_type))
3182 return GOT_TLS_IE;
3183
9ab066b4 3184 return GOT_TLS_NONE;
e641e783
RS
3185}
3186
3187/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3188
3189static int
3190mips_tls_got_entries (unsigned int type)
3191{
3192 switch (type)
3193 {
3194 case GOT_TLS_GD:
3195 case GOT_TLS_LDM:
3196 return 2;
3197
3198 case GOT_TLS_IE:
3199 return 1;
3200
9ab066b4 3201 case GOT_TLS_NONE:
e641e783
RS
3202 return 0;
3203 }
3204 abort ();
3205}
3206
0f20cc35
DJ
3207/* Count the number of relocations needed for a TLS GOT entry, with
3208 access types from TLS_TYPE, and symbol H (or a local symbol if H
3209 is NULL). */
3210
3211static int
3212mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3213 struct elf_link_hash_entry *h)
3214{
3215 int indx = 0;
0f20cc35
DJ
3216 bfd_boolean need_relocs = FALSE;
3217 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3218
0e1862bb
L
3219 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3220 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3221 indx = h->dynindx;
3222
0e1862bb 3223 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3224 && (h == NULL
3225 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3226 || h->root.type != bfd_link_hash_undefweak))
3227 need_relocs = TRUE;
3228
3229 if (!need_relocs)
e641e783 3230 return 0;
0f20cc35 3231
9ab066b4 3232 switch (tls_type)
0f20cc35 3233 {
e641e783
RS
3234 case GOT_TLS_GD:
3235 return indx != 0 ? 2 : 1;
0f20cc35 3236
e641e783
RS
3237 case GOT_TLS_IE:
3238 return 1;
0f20cc35 3239
e641e783 3240 case GOT_TLS_LDM:
0e1862bb 3241 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3242
e641e783
RS
3243 default:
3244 return 0;
3245 }
0f20cc35
DJ
3246}
3247
ab361d49
RS
3248/* Add the number of GOT entries and TLS relocations required by ENTRY
3249 to G. */
0f20cc35 3250
ab361d49
RS
3251static void
3252mips_elf_count_got_entry (struct bfd_link_info *info,
3253 struct mips_got_info *g,
3254 struct mips_got_entry *entry)
0f20cc35 3255{
9ab066b4 3256 if (entry->tls_type)
ab361d49 3257 {
9ab066b4
RS
3258 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3259 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3260 entry->symndx < 0
3261 ? &entry->d.h->root : NULL);
3262 }
3263 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3264 g->local_gotno += 1;
3265 else
3266 g->global_gotno += 1;
0f20cc35
DJ
3267}
3268
0f20cc35
DJ
3269/* Output a simple dynamic relocation into SRELOC. */
3270
3271static void
3272mips_elf_output_dynamic_relocation (bfd *output_bfd,
3273 asection *sreloc,
861fb55a 3274 unsigned long reloc_index,
0f20cc35
DJ
3275 unsigned long indx,
3276 int r_type,
3277 bfd_vma offset)
3278{
3279 Elf_Internal_Rela rel[3];
3280
3281 memset (rel, 0, sizeof (rel));
3282
3283 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3284 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3285
3286 if (ABI_64_P (output_bfd))
3287 {
3288 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
861fb55a 3291 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3292 }
3293 else
3294 bfd_elf32_swap_reloc_out
3295 (output_bfd, &rel[0],
3296 (sreloc->contents
861fb55a 3297 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3298}
3299
3300/* Initialize a set of TLS GOT entries for one symbol. */
3301
3302static void
9ab066b4
RS
3303mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3304 struct mips_got_entry *entry,
0f20cc35
DJ
3305 struct mips_elf_link_hash_entry *h,
3306 bfd_vma value)
3307{
23cc69b6 3308 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3309 int indx;
3310 asection *sreloc, *sgot;
9ab066b4 3311 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3312 bfd_boolean need_relocs = FALSE;
3313
23cc69b6 3314 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3315 if (htab == NULL)
3316 return;
3317
23cc69b6 3318 sgot = htab->sgot;
0f20cc35
DJ
3319
3320 indx = 0;
3321 if (h != NULL)
3322 {
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
0e1862bb
L
3325 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3326 &h->root)
3327 && (!bfd_link_pic (info)
3328 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3329 indx = h->root.dynindx;
3330 }
3331
9ab066b4 3332 if (entry->tls_initialized)
0f20cc35
DJ
3333 return;
3334
0e1862bb 3335 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3336 && (h == NULL
3337 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3338 || h->root.type != bfd_link_hash_undefweak))
3339 need_relocs = TRUE;
3340
3341 /* MINUS_ONE means the symbol is not defined in this object. It may not
3342 be defined at all; assume that the value doesn't matter in that
3343 case. Otherwise complain if we would use the value. */
3344 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3345 || h->root.root.type == bfd_link_hash_undefweak);
3346
3347 /* Emit necessary relocations. */
0a44bf69 3348 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3349 got_offset = entry->gotidx;
0f20cc35 3350
9ab066b4 3351 switch (entry->tls_type)
0f20cc35 3352 {
e641e783
RS
3353 case GOT_TLS_GD:
3354 /* General Dynamic. */
3355 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3356
3357 if (need_relocs)
3358 {
3359 mips_elf_output_dynamic_relocation
861fb55a 3360 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3362 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3363
3364 if (indx)
3365 mips_elf_output_dynamic_relocation
861fb55a 3366 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3368 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3369 else
3370 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3371 sgot->contents + got_offset2);
0f20cc35
DJ
3372 }
3373 else
3374 {
3375 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3376 sgot->contents + got_offset);
0f20cc35 3377 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3378 sgot->contents + got_offset2);
0f20cc35 3379 }
e641e783 3380 break;
0f20cc35 3381
e641e783
RS
3382 case GOT_TLS_IE:
3383 /* Initial Exec model. */
0f20cc35
DJ
3384 if (need_relocs)
3385 {
3386 if (indx == 0)
3387 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3388 sgot->contents + got_offset);
0f20cc35
DJ
3389 else
3390 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3391 sgot->contents + got_offset);
0f20cc35
DJ
3392
3393 mips_elf_output_dynamic_relocation
861fb55a 3394 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3395 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3396 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3397 }
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3400 sgot->contents + got_offset);
3401 break;
0f20cc35 3402
e641e783 3403 case GOT_TLS_LDM:
0f20cc35
DJ
3404 /* The initial offset is zero, and the LD offsets will include the
3405 bias by DTP_OFFSET. */
3406 MIPS_ELF_PUT_WORD (abfd, 0,
3407 sgot->contents + got_offset
3408 + MIPS_ELF_GOT_SIZE (abfd));
3409
0e1862bb 3410 if (!bfd_link_pic (info))
0f20cc35
DJ
3411 MIPS_ELF_PUT_WORD (abfd, 1,
3412 sgot->contents + got_offset);
3413 else
3414 mips_elf_output_dynamic_relocation
861fb55a 3415 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3416 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3417 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3418 break;
3419
3420 default:
3421 abort ();
0f20cc35
DJ
3422 }
3423
9ab066b4 3424 entry->tls_initialized = TRUE;
e641e783 3425}
0f20cc35 3426
0a44bf69
RS
3427/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3428 for global symbol H. .got.plt comes before the GOT, so the offset
3429 will be negative. */
3430
3431static bfd_vma
3432mips_elf_gotplt_index (struct bfd_link_info *info,
3433 struct elf_link_hash_entry *h)
3434{
1bbce132 3435 bfd_vma got_address, got_value;
0a44bf69
RS
3436 struct mips_elf_link_hash_table *htab;
3437
3438 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3439 BFD_ASSERT (htab != NULL);
3440
1bbce132
MR
3441 BFD_ASSERT (h->plt.plist != NULL);
3442 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3443
3444 /* Calculate the address of the associated .got.plt entry. */
3445 got_address = (htab->sgotplt->output_section->vma
3446 + htab->sgotplt->output_offset
1bbce132
MR
3447 + (h->plt.plist->gotplt_index
3448 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3449
3450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3452 + htab->root.hgot->root.u.def.section->output_offset
3453 + htab->root.hgot->root.u.def.value);
3454
3455 return got_address - got_value;
3456}
3457
5c18022e 3458/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3459 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3460 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3461 offset can be found. */
b49e97c9
TS
3462
3463static bfd_vma
9719ad41 3464mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3465 bfd_vma value, unsigned long r_symndx,
0f20cc35 3466 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3467{
a8028dd0 3468 struct mips_elf_link_hash_table *htab;
b15e6682 3469 struct mips_got_entry *entry;
b49e97c9 3470
a8028dd0 3471 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3472 BFD_ASSERT (htab != NULL);
3473
a8028dd0
RS
3474 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3475 r_symndx, h, r_type);
0f20cc35 3476 if (!entry)
b15e6682 3477 return MINUS_ONE;
0f20cc35 3478
e641e783 3479 if (entry->tls_type)
9ab066b4
RS
3480 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3481 return entry->gotidx;
b49e97c9
TS
3482}
3483
13fbec83 3484/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3485
3486static bfd_vma
13fbec83
RS
3487mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3488 struct elf_link_hash_entry *h)
3489{
3490 struct mips_elf_link_hash_table *htab;
3491 long global_got_dynindx;
3492 struct mips_got_info *g;
3493 bfd_vma got_index;
3494
3495 htab = mips_elf_hash_table (info);
3496 BFD_ASSERT (htab != NULL);
3497
3498 global_got_dynindx = 0;
3499 if (htab->global_gotsym != NULL)
3500 global_got_dynindx = htab->global_gotsym->dynindx;
3501
3502 /* Once we determine the global GOT entry with the lowest dynamic
3503 symbol table index, we must put all dynamic symbols with greater
3504 indices into the primary GOT. That makes it easy to calculate the
3505 GOT offset. */
3506 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3507 g = mips_elf_bfd_got (obfd, FALSE);
3508 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3509 * MIPS_ELF_GOT_SIZE (obfd));
3510 BFD_ASSERT (got_index < htab->sgot->size);
3511
3512 return got_index;
3513}
3514
3515/* Return the GOT index for the global symbol indicated by H, which is
3516 referenced by a relocation of type R_TYPE in IBFD. */
3517
3518static bfd_vma
3519mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3520 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3521{
a8028dd0 3522 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3523 struct mips_got_info *g;
3524 struct mips_got_entry lookup, *entry;
3525 bfd_vma gotidx;
b49e97c9 3526
a8028dd0 3527 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3528 BFD_ASSERT (htab != NULL);
3529
6c42ddb9
RS
3530 g = mips_elf_bfd_got (ibfd, FALSE);
3531 BFD_ASSERT (g);
f4416af6 3532
6c42ddb9
RS
3533 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3534 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3535 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3536
6c42ddb9
RS
3537 lookup.abfd = ibfd;
3538 lookup.symndx = -1;
3539 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3540 entry = htab_find (g->got_entries, &lookup);
3541 BFD_ASSERT (entry);
0f20cc35 3542
6c42ddb9
RS
3543 gotidx = entry->gotidx;
3544 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3545
6c42ddb9 3546 if (lookup.tls_type)
0f20cc35 3547 {
0f20cc35
DJ
3548 bfd_vma value = MINUS_ONE;
3549
3550 if ((h->root.type == bfd_link_hash_defined
3551 || h->root.type == bfd_link_hash_defweak)
3552 && h->root.u.def.section->output_section)
3553 value = (h->root.u.def.value
3554 + h->root.u.def.section->output_offset
3555 + h->root.u.def.section->output_section->vma);
3556
9ab066b4 3557 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3558 }
6c42ddb9 3559 return gotidx;
b49e97c9
TS
3560}
3561
5c18022e
RS
3562/* Find a GOT page entry that points to within 32KB of VALUE. These
3563 entries are supposed to be placed at small offsets in the GOT, i.e.,
3564 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3565 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3566 offset of the GOT entry from VALUE. */
b49e97c9
TS
3567
3568static bfd_vma
9719ad41 3569mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3570 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3571{
91d6fa6a 3572 bfd_vma page, got_index;
b15e6682 3573 struct mips_got_entry *entry;
b49e97c9 3574
0a44bf69 3575 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3576 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3577 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3578
b15e6682
AO
3579 if (!entry)
3580 return MINUS_ONE;
143d77c5 3581
91d6fa6a 3582 got_index = entry->gotidx;
b49e97c9
TS
3583
3584 if (offsetp)
f4416af6 3585 *offsetp = value - entry->d.address;
b49e97c9 3586
91d6fa6a 3587 return got_index;
b49e97c9
TS
3588}
3589
738e5348 3590/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3591 EXTERNAL is true if the relocation was originally against a global
3592 symbol that binds locally. */
b49e97c9
TS
3593
3594static bfd_vma
9719ad41 3595mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3596 bfd_vma value, bfd_boolean external)
b49e97c9 3597{
b15e6682 3598 struct mips_got_entry *entry;
b49e97c9 3599
0a44bf69
RS
3600 /* GOT16 relocations against local symbols are followed by a LO16
3601 relocation; those against global symbols are not. Thus if the
3602 symbol was originally local, the GOT16 relocation should load the
3603 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3604 if (! external)
0a44bf69 3605 value = mips_elf_high (value) << 16;
b49e97c9 3606
738e5348
RS
3607 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3608 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3609 same in all cases. */
a8028dd0
RS
3610 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3611 NULL, R_MIPS_GOT16);
b15e6682
AO
3612 if (entry)
3613 return entry->gotidx;
3614 else
3615 return MINUS_ONE;
b49e97c9
TS
3616}
3617
3618/* Returns the offset for the entry at the INDEXth position
3619 in the GOT. */
3620
3621static bfd_vma
a8028dd0 3622mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3623 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3624{
a8028dd0 3625 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3626 asection *sgot;
3627 bfd_vma gp;
3628
a8028dd0 3629 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3630 BFD_ASSERT (htab != NULL);
3631
a8028dd0 3632 sgot = htab->sgot;
f4416af6 3633 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3634 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3635
91d6fa6a 3636 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3637}
3638
0a44bf69
RS
3639/* Create and return a local GOT entry for VALUE, which was calculated
3640 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3641 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3642 instead. */
b49e97c9 3643
b15e6682 3644static struct mips_got_entry *
0a44bf69 3645mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3646 bfd *ibfd, bfd_vma value,
5c18022e 3647 unsigned long r_symndx,
0f20cc35
DJ
3648 struct mips_elf_link_hash_entry *h,
3649 int r_type)
b49e97c9 3650{
ebc53538
RS
3651 struct mips_got_entry lookup, *entry;
3652 void **loc;
f4416af6 3653 struct mips_got_info *g;
0a44bf69 3654 struct mips_elf_link_hash_table *htab;
6c42ddb9 3655 bfd_vma gotidx;
0a44bf69
RS
3656
3657 htab = mips_elf_hash_table (info);
4dfe6ac6 3658 BFD_ASSERT (htab != NULL);
b15e6682 3659
d7206569 3660 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3661 if (g == NULL)
3662 {
d7206569 3663 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3664 BFD_ASSERT (g != NULL);
3665 }
b15e6682 3666
020d7251
RS
3667 /* This function shouldn't be called for symbols that live in the global
3668 area of the GOT. */
3669 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3670
ebc53538
RS
3671 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3672 if (lookup.tls_type)
3673 {
3674 lookup.abfd = ibfd;
df58fc94 3675 if (tls_ldm_reloc_p (r_type))
0f20cc35 3676 {
ebc53538
RS
3677 lookup.symndx = 0;
3678 lookup.d.addend = 0;
0f20cc35
DJ
3679 }
3680 else if (h == NULL)
3681 {
ebc53538
RS
3682 lookup.symndx = r_symndx;
3683 lookup.d.addend = 0;
0f20cc35
DJ
3684 }
3685 else
ebc53538
RS
3686 {
3687 lookup.symndx = -1;
3688 lookup.d.h = h;
3689 }
0f20cc35 3690
ebc53538
RS
3691 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3692 BFD_ASSERT (entry);
0f20cc35 3693
6c42ddb9
RS
3694 gotidx = entry->gotidx;
3695 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3696
ebc53538 3697 return entry;
0f20cc35
DJ
3698 }
3699
ebc53538
RS
3700 lookup.abfd = NULL;
3701 lookup.symndx = -1;
3702 lookup.d.address = value;
3703 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3704 if (!loc)
b15e6682 3705 return NULL;
143d77c5 3706
ebc53538
RS
3707 entry = (struct mips_got_entry *) *loc;
3708 if (entry)
3709 return entry;
b15e6682 3710
cb22ccf4 3711 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3712 {
3713 /* We didn't allocate enough space in the GOT. */
3714 (*_bfd_error_handler)
3715 (_("not enough GOT space for local GOT entries"));
3716 bfd_set_error (bfd_error_bad_value);
b15e6682 3717 return NULL;
b49e97c9
TS
3718 }
3719
ebc53538
RS
3720 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3721 if (!entry)
3722 return NULL;
3723
cb22ccf4
KCY
3724 if (got16_reloc_p (r_type)
3725 || call16_reloc_p (r_type)
3726 || got_page_reloc_p (r_type)
3727 || got_disp_reloc_p (r_type))
3728 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3729 else
3730 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3731
ebc53538
RS
3732 *entry = lookup;
3733 *loc = entry;
3734
3735 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3736
5c18022e 3737 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3738 if (htab->is_vxworks)
3739 {
3740 Elf_Internal_Rela outrel;
5c18022e 3741 asection *s;
91d6fa6a 3742 bfd_byte *rloc;
0a44bf69 3743 bfd_vma got_address;
0a44bf69
RS
3744
3745 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3746 got_address = (htab->sgot->output_section->vma
3747 + htab->sgot->output_offset
ebc53538 3748 + entry->gotidx);
0a44bf69 3749
91d6fa6a 3750 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3751 outrel.r_offset = got_address;
5c18022e
RS
3752 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3753 outrel.r_addend = value;
91d6fa6a 3754 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3755 }
3756
ebc53538 3757 return entry;
b49e97c9
TS
3758}
3759
d4596a51
RS
3760/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3761 The number might be exact or a worst-case estimate, depending on how
3762 much information is available to elf_backend_omit_section_dynsym at
3763 the current linking stage. */
3764
3765static bfd_size_type
3766count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3767{
3768 bfd_size_type count;
3769
3770 count = 0;
0e1862bb
L
3771 if (bfd_link_pic (info)
3772 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785}
3786
b49e97c9 3787/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3788 appear towards the end. */
b49e97c9 3789
b34976b6 3790static bfd_boolean
d4596a51 3791mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3792{
a8028dd0 3793 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
b49e97c9 3796
d4596a51
RS
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
a8028dd0 3800 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3801 BFD_ASSERT (htab != NULL);
3802
a8028dd0 3803 g = htab->got_info;
d4596a51
RS
3804 if (g == NULL)
3805 return TRUE;
f4416af6 3806
b49e97c9 3807 hsd.low = NULL;
23cc69b6
RS
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
44c410de 3818 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
b49e97c9
TS
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
d222d210 3827 htab->global_gotsym = hsd.low;
b49e97c9 3828
b34976b6 3829 return TRUE;
b49e97c9
TS
3830}
3831
3832/* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
b34976b6 3836static bfd_boolean
9719ad41 3837mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3838{
9719ad41 3839 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3840
b49e97c9
TS
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
b34976b6 3844 return TRUE;
b49e97c9 3845
634835ae 3846 switch (h->global_got_area)
f4416af6 3847 {
634835ae
RS
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
0f20cc35 3851
634835ae 3852 case GGA_NORMAL:
b49e97c9
TS
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3855 break;
3856
3857 case GGA_RELOC_ONLY:
634835ae
RS
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
b49e97c9
TS
3862 }
3863
b34976b6 3864 return TRUE;
b49e97c9
TS
3865}
3866
ee227692
RS
3867/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871static bfd_boolean
3872mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874{
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
9ab066b4 3895 lookup->tls_initialized = FALSE;
ee227692
RS
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913}
3914
e641e783
RS
3915/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3917 using the GOT entry for calls. */
b49e97c9 3918
b34976b6 3919static bfd_boolean
9719ad41
RS
3920mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
e641e783 3922 bfd_boolean for_call, int r_type)
b49e97c9 3923{
a8028dd0 3924 struct mips_elf_link_hash_table *htab;
634835ae 3925 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
a8028dd0
RS
3928
3929 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3930 BFD_ASSERT (htab != NULL);
3931
634835ae 3932 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
f4416af6 3935
b49e97c9
TS
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
7c5fcef7
L
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
33bb52fb 3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3945 break;
3946 }
c152c796 3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3948 return FALSE;
7c5fcef7 3949 }
b49e97c9 3950
ee227692 3951 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3953 hmips->global_got_area = GGA_NORMAL;
86324f90 3954
f4416af6
AO
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3960}
f4416af6 3961
e641e783
RS
3962/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3964
3965static bfd_boolean
9719ad41 3966mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3967 struct bfd_link_info *info, int r_type)
f4416af6 3968{
a8028dd0
RS
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
ee227692 3971 struct mips_got_entry entry;
f4416af6 3972
a8028dd0 3973 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3974 BFD_ASSERT (htab != NULL);
3975
a8028dd0
RS
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
f4416af6
AO
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
e641e783 3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3983 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3984}
c224138d 3985
13db6b44
RS
3986/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
c224138d
RS
3989
3990static bfd_boolean
13db6b44
RS
3991mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
c224138d 3994{
a8028dd0 3995 struct mips_elf_link_hash_table *htab;
ee227692 3996 struct mips_got_info *g1, *g2;
13db6b44 3997 struct mips_got_page_ref lookup, *entry;
ee227692 3998 void **loc, **bfd_loc;
c224138d 3999
a8028dd0 4000 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4001 BFD_ASSERT (htab != NULL);
4002
ee227692
RS
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
a8028dd0 4005
13db6b44
RS
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4018 if (loc == NULL)
4019 return FALSE;
4020
13db6b44 4021 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
13db6b44 4028 *entry = lookup;
c224138d
RS
4029 *loc = entry;
4030 }
4031
ee227692
RS
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
13db6b44 4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
c224138d
RS
4044 return TRUE;
4045}
33bb52fb
RS
4046
4047/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049static void
4050mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052{
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4057 BFD_ASSERT (htab != NULL);
4058
33bb52fb
RS
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074}
4075\f
476366af
RS
4076/* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4080
4081static int
4082mips_elf_check_recreate_got (void **entryp, void *data)
4083{
4084 struct mips_got_entry *entry;
476366af 4085 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4086
4087 entry = (struct mips_got_entry *) *entryp;
476366af 4088 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
476366af 4097 arg->value = TRUE;
33bb52fb
RS
4098 return 0;
4099 }
4100 }
476366af 4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4102 return 1;
4103}
4104
476366af
RS
4105/* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4109
4110static int
4111mips_elf_recreate_got (void **entryp, void *data)
4112{
72e7511a 4113 struct mips_got_entry new_entry, *entry;
476366af 4114 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4115 void **slot;
4116
33bb52fb 4117 entry = (struct mips_got_entry *) *entryp;
476366af 4118 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
72e7511a
RS
4126 new_entry = *entry;
4127 entry = &new_entry;
33bb52fb 4128 h = entry->d.h;
72e7511a 4129 do
634835ae
RS
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
72e7511a
RS
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4136 entry->d.h = h;
4137 }
476366af 4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4139 if (slot == NULL)
4140 {
476366af 4141 arg->g = NULL;
33bb52fb
RS
4142 return 0;
4143 }
4144 if (*slot == NULL)
72e7511a
RS
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
476366af 4151 arg->g = NULL;
72e7511a
RS
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
476366af 4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4158 }
33bb52fb
RS
4159 return 1;
4160}
4161
13db6b44
RS
4162/* Return the maximum number of GOT page entries required for RANGE. */
4163
4164static bfd_vma
4165mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166{
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168}
4169
4170/* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172static bfd_boolean
b75d42bc 4173mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4174 asection *sec, bfd_signed_vma addend)
4175{
b75d42bc 4176 struct mips_got_info *g = arg->g;
13db6b44
RS
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
b75d42bc 4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
b75d42bc 4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254}
4255
4256/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261static bfd_boolean
4262mips_elf_resolve_got_page_ref (void **refp, void *data)
4263{
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
b75d42bc 4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339}
4340
33bb52fb 4341/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
33bb52fb
RS
4345
4346static bfd_boolean
476366af
RS
4347mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
33bb52fb 4349{
476366af
RS
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
33bb52fb 4354
476366af
RS
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
33bb52fb 4360 {
476366af
RS
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
33bb52fb
RS
4366 return FALSE;
4367
476366af
RS
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
33bb52fb 4373 }
13db6b44
RS
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
33bb52fb
RS
4384 return TRUE;
4385}
4386
c5d6fa44
RS
4387/* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390static bfd_boolean
4391mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393{
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
0e1862bb 4411 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4412 return TRUE;
4413
4414 return FALSE;
4415}
4416
6c42ddb9
RS
4417/* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4422
4423static int
d4596a51 4424mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4425{
020d7251 4426 struct bfd_link_info *info;
6ccf4795 4427 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4428 struct mips_got_info *g;
4429
020d7251 4430 info = (struct bfd_link_info *) data;
6ccf4795
RS
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
d4596a51 4433 if (h->global_got_area != GGA_NONE)
33bb52fb 4434 {
020d7251 4435 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
6ccf4795
RS
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
1bbce132 4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
6c42ddb9 4449 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4450 {
6c42ddb9 4451 g->reloc_only_gotno++;
23cc69b6 4452 g->global_gotno++;
23cc69b6 4453 }
33bb52fb
RS
4454 }
4455 return 1;
4456}
f4416af6 4457\f
d7206569
RS
4458/* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4460
4461static int
d7206569 4462mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4463{
d7206569
RS
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
f4416af6 4467
d7206569
RS
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
f4416af6 4472 {
d7206569
RS
4473 arg->g = NULL;
4474 return 0;
f4416af6 4475 }
d7206569 4476 if (!*slot)
c224138d 4477 {
d7206569
RS
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4480 }
f4416af6
AO
4481 return 1;
4482}
4483
d7206569
RS
4484/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4486
4487static int
d7206569 4488mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4489{
d7206569
RS
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
c224138d 4493
d7206569
RS
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
c224138d 4498 {
d7206569 4499 arg->g = NULL;
c224138d
RS
4500 return 0;
4501 }
d7206569
RS
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
c224138d
RS
4507 return 1;
4508}
4509
d7206569
RS
4510/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
c224138d
RS
4515
4516static int
d7206569 4517mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520{
d7206569 4521 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
e2ece73c 4529 /* And conservatively estimate how many local and TLS entries
c224138d 4530 would be needed. */
e2ece73c
RS
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
17214937
RS
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
e2ece73c 4536 conservatively as well. */
17214937 4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
c224138d 4546 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
c224138d
RS
4551 return 0;
4552
d7206569
RS
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
c224138d
RS
4555 return 0;
4556
d7206569 4557 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4558 return 1;
4559}
4560
d7206569 4561/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
d7206569
RS
4568static bfd_boolean
4569mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4571{
c224138d
RS
4572 unsigned int estimate;
4573 int result;
4574
476366af 4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4576 return FALSE;
4577
c224138d
RS
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
c224138d 4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4589
c224138d 4590 if (estimate <= arg->max_count)
f4416af6 4591 {
c224138d
RS
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
d7206569
RS
4596 arg->primary = g;
4597 return TRUE;
c224138d 4598 }
f4416af6 4599
c224138d 4600 /* Try merging with the primary GOT. */
d7206569 4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4602 if (result >= 0)
4603 return result;
f4416af6 4604 }
c224138d 4605
f4416af6 4606 /* If we can merge with the last-created got, do it. */
c224138d 4607 if (arg->current)
f4416af6 4608 {
d7206569 4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4610 if (result >= 0)
4611 return result;
f4416af6 4612 }
c224138d 4613
f4416af6
AO
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
c224138d
RS
4617 g->next = arg->current;
4618 arg->current = g;
0f20cc35 4619
d7206569 4620 return TRUE;
0f20cc35
DJ
4621}
4622
72e7511a
RS
4623/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627static bfd_boolean
4628mips_elf_set_gotidx (void **entryp, long gotidx)
4629{
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647}
4648
4649/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4652
4653static int
72e7511a 4654mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4655{
72e7511a
RS
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4658
4659 /* We're only interested in TLS symbols. */
72e7511a 4660 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4661 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4662 return 1;
4663
72e7511a 4664 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4666 {
6c42ddb9
RS
4667 arg->g = NULL;
4668 return 0;
f4416af6
AO
4669 }
4670
ead49a57 4671 /* Account for the entries we've just allocated. */
9ab066b4 4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4673 return 1;
4674}
4675
ab361d49
RS
4676/* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
f4416af6 4679
f4416af6 4680static int
ab361d49 4681mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4682{
ab361d49
RS
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
f4416af6 4685
ab361d49
RS
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693}
4694
4695/* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
72e7511a 4698 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4699
4700static int
4701mips_elf_set_global_gotidx (void **entryp, void *data)
4702{
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4705
ab361d49
RS
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4711 {
cb22ccf4 4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
cb22ccf4 4717 arg->g->assigned_low_gotno += 1;
72e7511a 4718
0e1862bb 4719 if (bfd_link_pic (arg->info)
ab361d49
RS
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
f4416af6
AO
4724 }
4725
4726 return 1;
4727}
4728
33bb52fb
RS
4729/* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
0626d451 4733static int
33bb52fb 4734mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4735{
33bb52fb
RS
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
0626d451 4739
33bb52fb
RS
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4743 BFD_ASSERT (htab != NULL);
4744
0626d451
RS
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
33bb52fb 4747 && entry->d.h->needs_lazy_stub)
f4416af6 4748 {
33bb52fb
RS
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
f4416af6 4751 }
143d77c5 4752
f4416af6
AO
4753 return 1;
4754}
4755
f4416af6
AO
4756/* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758static bfd_vma
9719ad41 4759mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4760{
d7206569 4761 if (!g->next)
f4416af6
AO
4762 return 0;
4763
d7206569 4764 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
143d77c5 4771
0f20cc35
DJ
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4774}
4775
4776/* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779static bfd_boolean
9719ad41 4780mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4781 asection *got, bfd_size_type pages)
f4416af6 4782{
a8028dd0 4783 struct mips_elf_link_hash_table *htab;
f4416af6 4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4785 struct mips_elf_traverse_got_arg tga;
a8028dd0 4786 struct mips_got_info *g, *gg;
33bb52fb 4787 unsigned int assign, needed_relocs;
d7206569 4788 bfd *dynobj, *ibfd;
f4416af6 4789
33bb52fb 4790 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4791 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4792 BFD_ASSERT (htab != NULL);
4793
a8028dd0 4794 g = htab->got_info;
f4416af6 4795
f4416af6
AO
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
f4416af6
AO
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
0a44bf69 4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4801 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4802 - htab->reserved_gotno);
c224138d 4803 got_per_bfd_arg.max_pages = pages;
0f20cc35 4804 /* The number of globals that will be included in the primary GOT.
ab361d49 4805 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
c72f2fb2 4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
f4416af6 4818
0f20cc35 4819 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4820 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4821 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
d7206569 4835 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4836
634835ae
RS
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
23cc69b6 4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4841 g->global_gotno = gg->global_gotno;
f4416af6 4842
ab361d49
RS
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4848
4849 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
0f20cc35 4864 gg->tls_gotno = 0;
f4416af6
AO
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
861fb55a 4872 assign += htab->reserved_gotno;
cb22ccf4 4873 g->assigned_low_gotno = assign;
c224138d
RS
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4876 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
ead49a57
RS
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
0f20cc35
DJ
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
1fd20d70 4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4895
ead49a57 4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4897 g = gn;
0626d451 4898
33bb52fb
RS
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
0626d451 4901 if (g)
33bb52fb 4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4903 }
4904 while (g);
4905
59b08994 4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4907
4908 needed_relocs = 0;
33bb52fb
RS
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
ab361d49
RS
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
cb22ccf4
KCY
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4921 if (!tga.g)
4922 return FALSE;
cb22ccf4
KCY
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
72e7511a 4925
0e1862bb 4926 if (bfd_link_pic (info))
33bb52fb 4927 {
cb22ccf4
KCY
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
861fb55a 4932 + htab->reserved_gotno);
33bb52fb 4933 }
ab361d49 4934 needed_relocs += g->relocs;
33bb52fb 4935 }
ab361d49 4936 needed_relocs += g->relocs;
33bb52fb
RS
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
143d77c5 4941
f4416af6
AO
4942 return TRUE;
4943}
143d77c5 4944
b49e97c9
TS
4945\f
4946/* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949static const Elf_Internal_Rela *
9719ad41
RS
4950mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
b49e97c9 4953{
c000e262
TS
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
b49e97c9
TS
4956 while (relocation < relend)
4957 {
c000e262
TS
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
b49e97c9
TS
4966 return NULL;
4967}
4968
020d7251 4969/* Return whether an input relocation is against a local symbol. */
b49e97c9 4970
b34976b6 4971static bfd_boolean
9719ad41
RS
4972mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
020d7251 4974 asection **local_sections)
b49e97c9
TS
4975{
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
b34976b6 4985 return TRUE;
b49e97c9 4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4987 return TRUE;
b49e97c9 4988
b34976b6 4989 return FALSE;
b49e97c9
TS
4990}
4991\f
4992/* Sign-extend VALUE, which has the indicated number of BITS. */
4993
a7ebbfdf 4994bfd_vma
9719ad41 4995_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4996{
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002}
5003
5004/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5005 range expressible by a signed number with the indicated number of
b49e97c9
TS
5006 BITS. */
5007
b34976b6 5008static bfd_boolean
9719ad41 5009mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5010{
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
b34976b6 5015 return TRUE;
b49e97c9
TS
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
b34976b6 5018 return TRUE;
b49e97c9
TS
5019
5020 /* All is well. */
b34976b6 5021 return FALSE;
b49e97c9
TS
5022}
5023
5024/* Calculate the %high function. */
5025
5026static bfd_vma
9719ad41 5027mips_elf_high (bfd_vma value)
b49e97c9
TS
5028{
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030}
5031
5032/* Calculate the %higher function. */
5033
5034static bfd_vma
9719ad41 5035mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5036{
5037#ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039#else
5040 abort ();
c5ae1840 5041 return MINUS_ONE;
b49e97c9
TS
5042#endif
5043}
5044
5045/* Calculate the %highest function. */
5046
5047static bfd_vma
9719ad41 5048mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5049{
5050#ifdef BFD64
b15e6682 5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5052#else
5053 abort ();
c5ae1840 5054 return MINUS_ONE;
b49e97c9
TS
5055#endif
5056}
5057\f
5058/* Create the .compact_rel section. */
5059
b34976b6 5060static bfd_boolean
9719ad41
RS
5061mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5063{
5064 flagword flags;
5065 register asection *s;
5066
3d4d4302 5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
3d4d4302 5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5073 if (s == NULL
b49e97c9
TS
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5076 return FALSE;
b49e97c9 5077
eea6121a 5078 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5079 }
5080
b34976b6 5081 return TRUE;
b49e97c9
TS
5082}
5083
5084/* Create the .got section to hold the global offset table. */
5085
b34976b6 5086static bfd_boolean
23cc69b6 5087mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5088{
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
14a793b2 5092 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
4dfe6ac6 5096 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5097
5098 /* This function may be called more than once. */
23cc69b6
RS
5099 if (htab->sgot)
5100 return TRUE;
b49e97c9
TS
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
72b4917c
TS
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
87e0a731 5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5108 if (s == NULL
72b4917c 5109 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5110 return FALSE;
a8028dd0 5111 htab->sgot = s;
b49e97c9
TS
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
14a793b2 5116 bh = NULL;
b49e97c9
TS
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5120 return FALSE;
14a793b2
AM
5121
5122 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5123 h->non_elf = 0;
5124 h->def_regular = 1;
b49e97c9 5125 h->type = STT_OBJECT;
2f9efdfc 5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5127 elf_hash_table (info)->hgot = h;
b49e97c9 5128
0e1862bb 5129 if (bfd_link_pic (info)
c152c796 5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5131 return FALSE;
b49e97c9 5132
3dff0dd1 5133 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
861fb55a 5137 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
861fb55a
DJ
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
0a44bf69 5146
b34976b6 5147 return TRUE;
b49e97c9 5148}
b49e97c9 5149\f
0a44bf69
RS
5150/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154static bfd_boolean
5155is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156{
5157 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5158 && bfd_link_pic (info)
0a44bf69
RS
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161}
861fb55a
DJ
5162
5163/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168static bfd_boolean
8f0c309a
CLT
5169mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5171{
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
7361da2c
AB
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
df58fc94
RS
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5191 return TRUE;
5192
8f0c309a
CLT
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
861fb55a
DJ
5196 default:
5197 return FALSE;
5198 }
5199}
0a44bf69 5200\f
b49e97c9
TS
5201/* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
38a7df63 5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214static bfd_reloc_status_type
9719ad41
RS
5215mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
9719ad41 5224 bfd_boolean save_addend)
b49e97c9
TS
5225{
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
0a61c8c2 5233 bfd_vma gp;
b49e97c9
TS
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
0a61c8c2 5238 bfd_vma gp0;
b49e97c9
TS
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5247 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5248 symbol. */
b34976b6
AM
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5251 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5252 /* TRUE if the symbol referred to by this relocation is
5253 "__gnu_local_gp". */
5254 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5255 Elf_Internal_Shdr *symtab_hdr;
5256 size_t extsymoff;
5257 unsigned long r_symndx;
5258 int r_type;
b34976b6 5259 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5260 relocation value. */
b34976b6
AM
5261 bfd_boolean overflowed_p;
5262 /* TRUE if this relocation refers to a MIPS16 function. */
5263 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5264 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5265 struct mips_elf_link_hash_table *htab;
5266 bfd *dynobj;
5267
5268 dynobj = elf_hash_table (info)->dynobj;
5269 htab = mips_elf_hash_table (info);
4dfe6ac6 5270 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5271
5272 /* Parse the relocation. */
5273 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5274 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5275 p = (input_section->output_section->vma
5276 + input_section->output_offset
5277 + relocation->r_offset);
5278
5279 /* Assume that there will be no overflow. */
b34976b6 5280 overflowed_p = FALSE;
b49e97c9
TS
5281
5282 /* Figure out whether or not the symbol is local, and get the offset
5283 used in the array of hash table entries. */
5284 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5285 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5286 local_sections);
bce03d3d 5287 was_local_p = local_p;
b49e97c9
TS
5288 if (! elf_bad_symtab (input_bfd))
5289 extsymoff = symtab_hdr->sh_info;
5290 else
5291 {
5292 /* The symbol table does not follow the rule that local symbols
5293 must come before globals. */
5294 extsymoff = 0;
5295 }
5296
5297 /* Figure out the value of the symbol. */
5298 if (local_p)
5299 {
5300 Elf_Internal_Sym *sym;
5301
5302 sym = local_syms + r_symndx;
5303 sec = local_sections[r_symndx];
5304
5305 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5306 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5307 || (sec->flags & SEC_MERGE))
b49e97c9 5308 symbol += sym->st_value;
d4df96e6
L
5309 if ((sec->flags & SEC_MERGE)
5310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5311 {
5312 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5313 addend -= symbol;
5314 addend += sec->output_section->vma + sec->output_offset;
5315 }
b49e97c9 5316
df58fc94
RS
5317 /* MIPS16/microMIPS text labels should be treated as odd. */
5318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5319 ++symbol;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = bfd_elf_string_from_elf_section (input_bfd,
5323 symtab_hdr->sh_link,
5324 sym->st_name);
5325 if (*namep == '\0')
5326 *namep = bfd_section_name (input_bfd, sec);
5327
30c09090 5328 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5329 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5330 }
5331 else
5332 {
560e09e9
NC
5333 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5334
b49e97c9
TS
5335 /* For global symbols we look up the symbol in the hash-table. */
5336 h = ((struct mips_elf_link_hash_entry *)
5337 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5338 /* Find the real hash-table entry for this symbol. */
5339 while (h->root.root.type == bfd_link_hash_indirect
5340 || h->root.root.type == bfd_link_hash_warning)
5341 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5342
5343 /* Record the name of this symbol, for our caller. */
5344 *namep = h->root.root.root.string;
5345
5346 /* See if this is the special _gp_disp symbol. Note that such a
5347 symbol must always be a global symbol. */
560e09e9 5348 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5349 && ! NEWABI_P (input_bfd))
5350 {
5351 /* Relocations against _gp_disp are permitted only with
5352 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5353 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5354 return bfd_reloc_notsupported;
5355
b34976b6 5356 gp_disp_p = TRUE;
b49e97c9 5357 }
bbe506e8
TS
5358 /* See if this is the special _gp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5361 gnu_local_gp_p = TRUE;
5362
5363
b49e97c9
TS
5364 /* If this symbol is defined, calculate its address. Note that
5365 _gp_disp is a magic symbol, always implicitly defined by the
5366 linker, so it's inappropriate to check to see whether or not
5367 its defined. */
5368 else if ((h->root.root.type == bfd_link_hash_defined
5369 || h->root.root.type == bfd_link_hash_defweak)
5370 && h->root.root.u.def.section)
5371 {
5372 sec = h->root.root.u.def.section;
5373 if (sec->output_section)
5374 symbol = (h->root.root.u.def.value
5375 + sec->output_section->vma
5376 + sec->output_offset);
5377 else
5378 symbol = h->root.root.u.def.value;
5379 }
5380 else if (h->root.root.type == bfd_link_hash_undefweak)
5381 /* We allow relocations against undefined weak symbols, giving
5382 it the value zero, so that you can undefined weak functions
5383 and check to see if they exist by looking at their
5384 addresses. */
5385 symbol = 0;
59c2e50f 5386 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5387 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5388 symbol = 0;
a4d0f181
TS
5389 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5390 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5391 {
5392 /* If this is a dynamic link, we should have created a
5393 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5394 in in _bfd_mips_elf_create_dynamic_sections.
5395 Otherwise, we should define the symbol with a value of 0.
5396 FIXME: It should probably get into the symbol table
5397 somehow as well. */
0e1862bb 5398 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5399 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5400 symbol = 0;
5401 }
5e2b0d47
NC
5402 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5403 {
5404 /* This is an optional symbol - an Irix specific extension to the
5405 ELF spec. Ignore it for now.
5406 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5407 than simply ignoring them, but we do not handle this for now.
5408 For information see the "64-bit ELF Object File Specification"
5409 which is available from here:
5410 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5411 symbol = 0;
5412 }
e7e2196d
MR
5413 else if ((*info->callbacks->undefined_symbol)
5414 (info, h->root.root.root.string, input_bfd,
5415 input_section, relocation->r_offset,
5416 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5417 || ELF_ST_VISIBILITY (h->root.other)))
5418 {
5419 return bfd_reloc_undefined;
5420 }
b49e97c9
TS
5421 else
5422 {
e7e2196d 5423 return bfd_reloc_notsupported;
b49e97c9
TS
5424 }
5425
30c09090 5426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5427 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5428 }
5429
738e5348
RS
5430 /* If this is a reference to a 16-bit function with a stub, we need
5431 to redirect the relocation to the stub unless:
5432
5433 (a) the relocation is for a MIPS16 JAL;
5434
5435 (b) the relocation is for a MIPS16 PIC call, and there are no
5436 non-MIPS16 uses of the GOT slot; or
5437
5438 (c) the section allows direct references to MIPS16 functions. */
5439 if (r_type != R_MIPS16_26
0e1862bb 5440 && !bfd_link_relocatable (info)
738e5348
RS
5441 && ((h != NULL
5442 && h->fn_stub != NULL
5443 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5444 || (local_p
698600e4
AM
5445 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5446 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5447 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5448 {
5449 /* This is a 32- or 64-bit call to a 16-bit function. We should
5450 have already noticed that we were going to need the
5451 stub. */
5452 if (local_p)
8f0c309a 5453 {
698600e4 5454 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5455 value = 0;
5456 }
b49e97c9
TS
5457 else
5458 {
5459 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5460 if (h->la25_stub)
5461 {
5462 /* If a LA25 header for the stub itself exists, point to the
5463 prepended LUI/ADDIU sequence. */
5464 sec = h->la25_stub->stub_section;
5465 value = h->la25_stub->offset;
5466 }
5467 else
5468 {
5469 sec = h->fn_stub;
5470 value = 0;
5471 }
b49e97c9
TS
5472 }
5473
8f0c309a 5474 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5475 /* The target is 16-bit, but the stub isn't. */
5476 target_is_16_bit_code_p = FALSE;
b49e97c9 5477 }
1bbce132
MR
5478 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5479 to a standard MIPS function, we need to redirect the call to the stub.
5480 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5481 indirect calls should use an indirect stub instead. */
0e1862bb 5482 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5483 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5484 || (local_p
698600e4
AM
5485 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5486 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5487 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5488 {
b9d58d71 5489 if (local_p)
698600e4 5490 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5491 else
b49e97c9 5492 {
b9d58d71
TS
5493 /* If both call_stub and call_fp_stub are defined, we can figure
5494 out which one to use by checking which one appears in the input
5495 file. */
5496 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5497 {
b9d58d71 5498 asection *o;
68ffbac6 5499
b9d58d71
TS
5500 sec = NULL;
5501 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5502 {
b9d58d71
TS
5503 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5504 {
5505 sec = h->call_fp_stub;
5506 break;
5507 }
b49e97c9 5508 }
b9d58d71
TS
5509 if (sec == NULL)
5510 sec = h->call_stub;
b49e97c9 5511 }
b9d58d71 5512 else if (h->call_stub != NULL)
b49e97c9 5513 sec = h->call_stub;
b9d58d71
TS
5514 else
5515 sec = h->call_fp_stub;
5516 }
b49e97c9 5517
eea6121a 5518 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5519 symbol = sec->output_section->vma + sec->output_offset;
5520 }
861fb55a
DJ
5521 /* If this is a direct call to a PIC function, redirect to the
5522 non-PIC stub. */
5523 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5524 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5525 target_is_16_bit_code_p))
861fb55a
DJ
5526 symbol = (h->la25_stub->stub_section->output_section->vma
5527 + h->la25_stub->stub_section->output_offset
5528 + h->la25_stub->offset);
1bbce132
MR
5529 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5530 entry is used if a standard PLT entry has also been made. In this
5531 case the symbol will have been set by mips_elf_set_plt_sym_value
5532 to point to the standard PLT entry, so redirect to the compressed
5533 one. */
5534 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
0e1862bb 5535 && !bfd_link_relocatable (info)
1bbce132
MR
5536 && h != NULL
5537 && h->use_plt_entry
5538 && h->root.plt.plist->comp_offset != MINUS_ONE
5539 && h->root.plt.plist->mips_offset != MINUS_ONE)
5540 {
5541 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5542
5543 sec = htab->splt;
5544 symbol = (sec->output_section->vma
5545 + sec->output_offset
5546 + htab->plt_header_size
5547 + htab->plt_mips_offset
5548 + h->root.plt.plist->comp_offset
5549 + 1);
5550
5551 target_is_16_bit_code_p = !micromips_p;
5552 target_is_micromips_code_p = micromips_p;
5553 }
b49e97c9 5554
df58fc94
RS
5555 /* Make sure MIPS16 and microMIPS are not used together. */
5556 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5557 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5558 {
5559 (*_bfd_error_handler)
5560 (_("MIPS16 and microMIPS functions cannot call each other"));
5561 return bfd_reloc_notsupported;
5562 }
5563
b49e97c9 5564 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5565 mode change. However, we can ignore calls to undefined weak symbols,
5566 which should never be executed at runtime. This exception is important
5567 because the assembly writer may have "known" that any definition of the
5568 symbol would be 16-bit code, and that direct jumps were therefore
5569 acceptable. */
0e1862bb 5570 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94
RS
5571 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5572 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5573 || (r_type == R_MICROMIPS_26_S1
5574 && !target_is_micromips_code_p)
5575 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5576 && (target_is_16_bit_code_p
5577 || target_is_micromips_code_p))));
b49e97c9 5578
c5d6fa44 5579 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5580
0a61c8c2
RS
5581 gp0 = _bfd_get_gp_value (input_bfd);
5582 gp = _bfd_get_gp_value (abfd);
23cc69b6 5583 if (htab->got_info)
a8028dd0 5584 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5585
5586 if (gnu_local_gp_p)
5587 symbol = gp;
5588
df58fc94
RS
5589 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5590 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5591 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5592 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5593 {
df58fc94
RS
5594 r_type = (micromips_reloc_p (r_type)
5595 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5596 addend = 0;
5597 }
5598
e77760d2 5599 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5600 to need it, get it now. */
b49e97c9
TS
5601 switch (r_type)
5602 {
738e5348
RS
5603 case R_MIPS16_CALL16:
5604 case R_MIPS16_GOT16:
b49e97c9
TS
5605 case R_MIPS_CALL16:
5606 case R_MIPS_GOT16:
5607 case R_MIPS_GOT_DISP:
5608 case R_MIPS_GOT_HI16:
5609 case R_MIPS_CALL_HI16:
5610 case R_MIPS_GOT_LO16:
5611 case R_MIPS_CALL_LO16:
df58fc94
RS
5612 case R_MICROMIPS_CALL16:
5613 case R_MICROMIPS_GOT16:
5614 case R_MICROMIPS_GOT_DISP:
5615 case R_MICROMIPS_GOT_HI16:
5616 case R_MICROMIPS_CALL_HI16:
5617 case R_MICROMIPS_GOT_LO16:
5618 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5619 case R_MIPS_TLS_GD:
5620 case R_MIPS_TLS_GOTTPREL:
5621 case R_MIPS_TLS_LDM:
d0f13682
CLT
5622 case R_MIPS16_TLS_GD:
5623 case R_MIPS16_TLS_GOTTPREL:
5624 case R_MIPS16_TLS_LDM:
df58fc94
RS
5625 case R_MICROMIPS_TLS_GD:
5626 case R_MICROMIPS_TLS_GOTTPREL:
5627 case R_MICROMIPS_TLS_LDM:
b49e97c9 5628 /* Find the index into the GOT where this value is located. */
df58fc94 5629 if (tls_ldm_reloc_p (r_type))
0f20cc35 5630 {
0a44bf69 5631 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5632 0, 0, NULL, r_type);
0f20cc35
DJ
5633 if (g == MINUS_ONE)
5634 return bfd_reloc_outofrange;
5635 }
5636 else if (!local_p)
b49e97c9 5637 {
0a44bf69
RS
5638 /* On VxWorks, CALL relocations should refer to the .got.plt
5639 entry, which is initialized to point at the PLT stub. */
5640 if (htab->is_vxworks
df58fc94
RS
5641 && (call_hi16_reloc_p (r_type)
5642 || call_lo16_reloc_p (r_type)
738e5348 5643 || call16_reloc_p (r_type)))
0a44bf69
RS
5644 {
5645 BFD_ASSERT (addend == 0);
5646 BFD_ASSERT (h->root.needs_plt);
5647 g = mips_elf_gotplt_index (info, &h->root);
5648 }
5649 else
b49e97c9 5650 {
020d7251 5651 BFD_ASSERT (addend == 0);
13fbec83
RS
5652 g = mips_elf_global_got_index (abfd, info, input_bfd,
5653 &h->root, r_type);
e641e783 5654 if (!TLS_RELOC_P (r_type)
020d7251
RS
5655 && !elf_hash_table (info)->dynamic_sections_created)
5656 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5657 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5658 }
5659 }
0a44bf69 5660 else if (!htab->is_vxworks
738e5348 5661 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5662 /* The calculation below does not involve "g". */
b49e97c9
TS
5663 break;
5664 else
5665 {
5c18022e 5666 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5667 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5668 if (g == MINUS_ONE)
5669 return bfd_reloc_outofrange;
5670 }
5671
5672 /* Convert GOT indices to actual offsets. */
a8028dd0 5673 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5674 break;
b49e97c9
TS
5675 }
5676
0a44bf69
RS
5677 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5678 symbols are resolved by the loader. Add them to .rela.dyn. */
5679 if (h != NULL && is_gott_symbol (info, &h->root))
5680 {
5681 Elf_Internal_Rela outrel;
5682 bfd_byte *loc;
5683 asection *s;
5684
5685 s = mips_elf_rel_dyn_section (info, FALSE);
5686 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5687
5688 outrel.r_offset = (input_section->output_section->vma
5689 + input_section->output_offset
5690 + relocation->r_offset);
5691 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5692 outrel.r_addend = addend;
5693 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5694
5695 /* If we've written this relocation for a readonly section,
5696 we need to set DF_TEXTREL again, so that we do not delete the
5697 DT_TEXTREL tag. */
5698 if (MIPS_ELF_READONLY_SECTION (input_section))
5699 info->flags |= DF_TEXTREL;
5700
0a44bf69
RS
5701 *valuep = 0;
5702 return bfd_reloc_ok;
5703 }
5704
b49e97c9
TS
5705 /* Figure out what kind of relocation is being performed. */
5706 switch (r_type)
5707 {
5708 case R_MIPS_NONE:
5709 return bfd_reloc_continue;
5710
5711 case R_MIPS_16:
c3eb94b4
MF
5712 if (howto->partial_inplace)
5713 addend = _bfd_mips_elf_sign_extend (addend, 16);
5714 value = symbol + addend;
b49e97c9
TS
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_32:
5719 case R_MIPS_REL32:
5720 case R_MIPS_64:
0e1862bb 5721 if ((bfd_link_pic (info)
861fb55a 5722 || (htab->root.dynamic_sections_created
b49e97c9 5723 && h != NULL
f5385ebf 5724 && h->root.def_dynamic
861fb55a
DJ
5725 && !h->root.def_regular
5726 && !h->has_static_relocs))
cf35638d 5727 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5728 && (h == NULL
5729 || h->root.root.type != bfd_link_hash_undefweak
5730 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5731 && (input_section->flags & SEC_ALLOC) != 0)
5732 {
861fb55a 5733 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5734 where the symbol will end up. So, we create a relocation
5735 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5736 linker. We must do the same for executable references to
5737 shared library symbols, unless we've decided to use copy
5738 relocs or PLTs instead. */
b49e97c9
TS
5739 value = addend;
5740 if (!mips_elf_create_dynamic_relocation (abfd,
5741 info,
5742 relocation,
5743 h,
5744 sec,
5745 symbol,
5746 &value,
5747 input_section))
5748 return bfd_reloc_undefined;
5749 }
5750 else
5751 {
5752 if (r_type != R_MIPS_REL32)
5753 value = symbol + addend;
5754 else
5755 value = addend;
5756 }
5757 value &= howto->dst_mask;
092dcd75
CD
5758 break;
5759
5760 case R_MIPS_PC32:
5761 value = symbol + addend - p;
5762 value &= howto->dst_mask;
b49e97c9
TS
5763 break;
5764
b49e97c9
TS
5765 case R_MIPS16_26:
5766 /* The calculation for R_MIPS16_26 is just the same as for an
5767 R_MIPS_26. It's only the storage of the relocated field into
5768 the output file that's different. That's handled in
5769 mips_elf_perform_relocation. So, we just fall through to the
5770 R_MIPS_26 case here. */
5771 case R_MIPS_26:
df58fc94
RS
5772 case R_MICROMIPS_26_S1:
5773 {
5774 unsigned int shift;
5775
5776 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5777 the correct ISA mode selector and bit 1 must be 0. */
5778 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5779 return bfd_reloc_outofrange;
5780
5781 /* Shift is 2, unusually, for microMIPS JALX. */
5782 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5783
5784 if (was_local_p)
5785 value = addend | ((p + 4) & (0xfc000000 << shift));
c3eb94b4 5786 else if (howto->partial_inplace)
df58fc94 5787 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5788 else
5789 value = addend;
df58fc94
RS
5790 value = (value + symbol) >> shift;
5791 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5792 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5793 value &= howto->dst_mask;
5794 }
b49e97c9
TS
5795 break;
5796
0f20cc35 5797 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5798 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5799 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5800 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5801 & howto->dst_mask);
5802 break;
5803
5804 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5805 case R_MIPS_TLS_DTPREL32:
5806 case R_MIPS_TLS_DTPREL64:
d0f13682 5807 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5808 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5809 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5813 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5814 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5815 value = (mips_elf_high (addend + symbol - tprel_base (info))
5816 & howto->dst_mask);
5817 break;
5818
5819 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5820 case R_MIPS_TLS_TPREL32:
5821 case R_MIPS_TLS_TPREL64:
5822 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5823 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5824 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5825 break;
5826
b49e97c9 5827 case R_MIPS_HI16:
d6f16593 5828 case R_MIPS16_HI16:
df58fc94 5829 case R_MICROMIPS_HI16:
b49e97c9
TS
5830 if (!gp_disp_p)
5831 {
5832 value = mips_elf_high (addend + symbol);
5833 value &= howto->dst_mask;
5834 }
5835 else
5836 {
d6f16593
MR
5837 /* For MIPS16 ABI code we generate this sequence
5838 0: li $v0,%hi(_gp_disp)
5839 4: addiupc $v1,%lo(_gp_disp)
5840 8: sll $v0,16
5841 12: addu $v0,$v1
5842 14: move $gp,$v0
5843 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5844 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5845 ADDIUPC clears the low two bits of the instruction address,
5846 so the base is ($t9 + 4) & ~3. */
d6f16593 5847 if (r_type == R_MIPS16_HI16)
888b9c01 5848 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5849 /* The microMIPS .cpload sequence uses the same assembly
5850 instructions as the traditional psABI version, but the
5851 incoming $t9 has the low bit set. */
5852 else if (r_type == R_MICROMIPS_HI16)
5853 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5854 else
5855 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5856 overflowed_p = mips_elf_overflow_p (value, 16);
5857 }
5858 break;
5859
5860 case R_MIPS_LO16:
d6f16593 5861 case R_MIPS16_LO16:
df58fc94
RS
5862 case R_MICROMIPS_LO16:
5863 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5864 if (!gp_disp_p)
5865 value = (symbol + addend) & howto->dst_mask;
5866 else
5867 {
d6f16593
MR
5868 /* See the comment for R_MIPS16_HI16 above for the reason
5869 for this conditional. */
5870 if (r_type == R_MIPS16_LO16)
888b9c01 5871 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5872 else if (r_type == R_MICROMIPS_LO16
5873 || r_type == R_MICROMIPS_HI0_LO16)
5874 value = addend + gp - p + 3;
d6f16593
MR
5875 else
5876 value = addend + gp - p + 4;
b49e97c9 5877 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5878 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5879 _gp_disp are normally generated from the .cpload
5880 pseudo-op. It generates code that normally looks like
5881 this:
5882
5883 lui $gp,%hi(_gp_disp)
5884 addiu $gp,$gp,%lo(_gp_disp)
5885 addu $gp,$gp,$t9
5886
5887 Here $t9 holds the address of the function being called,
5888 as required by the MIPS ELF ABI. The R_MIPS_LO16
5889 relocation can easily overflow in this situation, but the
5890 R_MIPS_HI16 relocation will handle the overflow.
5891 Therefore, we consider this a bug in the MIPS ABI, and do
5892 not check for overflow here. */
5893 }
5894 break;
5895
5896 case R_MIPS_LITERAL:
df58fc94 5897 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5898 /* Because we don't merge literal sections, we can handle this
5899 just like R_MIPS_GPREL16. In the long run, we should merge
5900 shared literals, and then we will need to additional work
5901 here. */
5902
5903 /* Fall through. */
5904
5905 case R_MIPS16_GPREL:
5906 /* The R_MIPS16_GPREL performs the same calculation as
5907 R_MIPS_GPREL16, but stores the relocated bits in a different
5908 order. We don't need to do anything special here; the
5909 differences are handled in mips_elf_perform_relocation. */
5910 case R_MIPS_GPREL16:
df58fc94
RS
5911 case R_MICROMIPS_GPREL7_S2:
5912 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5913 /* Only sign-extend the addend if it was extracted from the
5914 instruction. If the addend was separate, leave it alone,
5915 otherwise we may lose significant bits. */
5916 if (howto->partial_inplace)
a7ebbfdf 5917 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5918 value = symbol + addend - gp;
5919 /* If the symbol was local, any earlier relocatable links will
5920 have adjusted its addend with the gp offset, so compensate
5921 for that now. Don't do it for symbols forced local in this
5922 link, though, since they won't have had the gp offset applied
5923 to them before. */
5924 if (was_local_p)
5925 value += gp0;
538baf8b
AB
5926 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5927 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
5928 break;
5929
738e5348
RS
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
b49e97c9
TS
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
df58fc94
RS
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
0a44bf69 5936 /* VxWorks does not have separate local and global semantics for
738e5348 5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5938 if (!htab->is_vxworks && local_p)
b49e97c9 5939 {
5c18022e 5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5941 symbol + addend, !was_local_p);
b49e97c9
TS
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
a8028dd0 5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
0f20cc35
DJ
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
b49e97c9 5955 case R_MIPS_GOT_DISP:
d0f13682
CLT
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
df58fc94
RS
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
bce03d3d
AO
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
b49e97c9
TS
5971 break;
5972
5973 case R_MIPS_PC16:
bad36eac 5974 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
5975 if (howto->partial_inplace)
5976 addend = _bfd_mips_elf_sign_extend (addend, 18);
5977
5978 if ((symbol + addend) & 3)
5979 return bfd_reloc_outofrange;
5980
5981 value = symbol + addend - p;
538baf8b
AB
5982 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5983 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5984 value >>= howto->rightshift;
5985 value &= howto->dst_mask;
b49e97c9
TS
5986 break;
5987
7361da2c
AB
5988 case R_MIPS_PC21_S2:
5989 if (howto->partial_inplace)
5990 addend = _bfd_mips_elf_sign_extend (addend, 23);
5991
5992 if ((symbol + addend) & 3)
5993 return bfd_reloc_outofrange;
5994
5995 value = symbol + addend - p;
538baf8b
AB
5996 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5997 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
5998 value >>= howto->rightshift;
5999 value &= howto->dst_mask;
6000 break;
6001
6002 case R_MIPS_PC26_S2:
6003 if (howto->partial_inplace)
6004 addend = _bfd_mips_elf_sign_extend (addend, 28);
6005
6006 if ((symbol + addend) & 3)
6007 return bfd_reloc_outofrange;
6008
6009 value = symbol + addend - p;
538baf8b
AB
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6012 value >>= howto->rightshift;
6013 value &= howto->dst_mask;
6014 break;
6015
6016 case R_MIPS_PC18_S3:
6017 if (howto->partial_inplace)
6018 addend = _bfd_mips_elf_sign_extend (addend, 21);
6019
6020 if ((symbol + addend) & 7)
6021 return bfd_reloc_outofrange;
6022
6023 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6024 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6025 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
538baf8b
AB
6038 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6039 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6040 value >>= howto->rightshift;
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PCHI16:
6045 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6046 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PCLO16:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 16);
6054 value = symbol + addend - p;
6055 value &= howto->dst_mask;
6056 break;
6057
df58fc94 6058 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 8);
6061 value = symbol + addend - p;
538baf8b
AB
6062 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6063 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6064 value >>= howto->rightshift;
6065 value &= howto->dst_mask;
6066 break;
6067
6068 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6069 if (howto->partial_inplace)
6070 addend = _bfd_mips_elf_sign_extend (addend, 11);
6071 value = symbol + addend - p;
538baf8b
AB
6072 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6074 value >>= howto->rightshift;
6075 value &= howto->dst_mask;
6076 break;
6077
6078 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6079 if (howto->partial_inplace)
6080 addend = _bfd_mips_elf_sign_extend (addend, 17);
6081 value = symbol + addend - p;
538baf8b
AB
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 25);
6091 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
b49e97c9
TS
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_CALL_HI16:
df58fc94
RS
6100 case R_MICROMIPS_GOT_HI16:
6101 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6102 /* We're allowed to handle these two relocations identically.
6103 The dynamic linker is allowed to handle the CALL relocations
6104 differently by creating a lazy evaluation stub. */
6105 value = g;
6106 value = mips_elf_high (value);
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_GOT_LO16:
6111 case R_MIPS_CALL_LO16:
df58fc94
RS
6112 case R_MICROMIPS_GOT_LO16:
6113 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6114 value = g & howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_GOT_PAGE:
df58fc94 6118 case R_MICROMIPS_GOT_PAGE:
5c18022e 6119 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6120 if (value == MINUS_ONE)
6121 return bfd_reloc_outofrange;
a8028dd0 6122 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6123 overflowed_p = mips_elf_overflow_p (value, 16);
6124 break;
6125
6126 case R_MIPS_GOT_OFST:
df58fc94 6127 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6128 if (local_p)
5c18022e 6129 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6130 else
6131 value = addend;
b49e97c9
TS
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_SUB:
df58fc94 6136 case R_MICROMIPS_SUB:
b49e97c9
TS
6137 value = symbol - addend;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHER:
df58fc94 6142 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6143 value = mips_elf_higher (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_HIGHEST:
df58fc94 6148 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6149 value = mips_elf_highest (addend + symbol);
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_SCN_DISP:
df58fc94 6154 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
b49e97c9 6159 case R_MIPS_JALR:
df58fc94 6160 case R_MICROMIPS_JALR:
1367d393
ILT
6161 /* This relocation is only a hint. In some cases, we optimize
6162 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6163 when the symbol does not resolve locally. */
6164 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6165 return bfd_reloc_continue;
6166 value = symbol + addend;
6167 break;
b49e97c9 6168
1367d393 6169 case R_MIPS_PJUMP:
b49e97c9
TS
6170 case R_MIPS_GNU_VTINHERIT:
6171 case R_MIPS_GNU_VTENTRY:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue;
6174
6175 default:
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported;
6178 }
6179
6180 /* Store the VALUE for our caller. */
6181 *valuep = value;
6182 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6183}
6184
6185/* Obtain the field relocated by RELOCATION. */
6186
6187static bfd_vma
9719ad41
RS
6188mips_elf_obtain_contents (reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6191{
6346d5ca 6192 bfd_vma x = 0;
b49e97c9 6193 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6194 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6195
6196 /* Obtain the bytes. */
6346d5ca
AM
6197 if (size != 0)
6198 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6199
b49e97c9
TS
6200 return x;
6201}
6202
6203/* It has been determined that the result of the RELOCATION is the
6204 VALUE. Use HOWTO to place VALUE into the output file at the
6205 appropriate position. The SECTION is the section to which the
68ffbac6 6206 relocation applies.
38a7df63 6207 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6208 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6209
b34976b6 6210 Returns FALSE if anything goes wrong. */
b49e97c9 6211
b34976b6 6212static bfd_boolean
9719ad41
RS
6213mips_elf_perform_relocation (struct bfd_link_info *info,
6214 reloc_howto_type *howto,
6215 const Elf_Internal_Rela *relocation,
6216 bfd_vma value, bfd *input_bfd,
6217 asection *input_section, bfd_byte *contents,
38a7df63 6218 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6219{
6220 bfd_vma x;
6221 bfd_byte *location;
6222 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6223 unsigned int size;
b49e97c9
TS
6224
6225 /* Figure out where the relocation is occurring. */
6226 location = contents + relocation->r_offset;
6227
df58fc94 6228 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6229
b49e97c9
TS
6230 /* Obtain the current value. */
6231 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6232
6233 /* Clear the field we are setting. */
6234 x &= ~howto->dst_mask;
6235
b49e97c9
TS
6236 /* Set the field. */
6237 x |= (value & howto->dst_mask);
6238
6239 /* If required, turn JAL into JALX. */
38a7df63 6240 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6241 {
b34976b6 6242 bfd_boolean ok;
b49e97c9
TS
6243 bfd_vma opcode = x >> 26;
6244 bfd_vma jalx_opcode;
6245
6246 /* Check to see if the opcode is already JAL or JALX. */
6247 if (r_type == R_MIPS16_26)
6248 {
6249 ok = ((opcode == 0x6) || (opcode == 0x7));
6250 jalx_opcode = 0x7;
6251 }
df58fc94
RS
6252 else if (r_type == R_MICROMIPS_26_S1)
6253 {
6254 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6255 jalx_opcode = 0x3c;
6256 }
b49e97c9
TS
6257 else
6258 {
6259 ok = ((opcode == 0x3) || (opcode == 0x1d));
6260 jalx_opcode = 0x1d;
6261 }
6262
3bdf9505
MR
6263 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6264 convert J or JALS to JALX. */
b49e97c9
TS
6265 if (!ok)
6266 {
6267 (*_bfd_error_handler)
3bdf9505 6268 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
6269 input_bfd,
6270 input_section,
b49e97c9
TS
6271 (unsigned long) relocation->r_offset);
6272 bfd_set_error (bfd_error_bad_value);
b34976b6 6273 return FALSE;
b49e97c9
TS
6274 }
6275
6276 /* Make this the JALX opcode. */
6277 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6278 }
6279
38a7df63
CF
6280 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6281 range. */
0e1862bb 6282 if (!bfd_link_relocatable (info)
38a7df63 6283 && !cross_mode_jump_p
cd8d5a82
CF
6284 && ((JAL_TO_BAL_P (input_bfd)
6285 && r_type == R_MIPS_26
6286 && (x >> 26) == 0x3) /* jal addr */
6287 || (JALR_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_JALR
38a7df63
CF
6289 && x == 0x0320f809) /* jalr t9 */
6290 || (JR_TO_B_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6293 {
6294 bfd_vma addr;
6295 bfd_vma dest;
6296 bfd_signed_vma off;
6297
6298 addr = (input_section->output_section->vma
6299 + input_section->output_offset
6300 + relocation->r_offset
6301 + 4);
6302 if (r_type == R_MIPS_26)
6303 dest = (value << 2) | ((addr >> 28) << 28);
6304 else
6305 dest = value;
6306 off = dest - addr;
6307 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6308 {
6309 if (x == 0x03200008) /* jr t9 */
6310 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6311 else
6312 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6313 }
1367d393
ILT
6314 }
6315
b49e97c9 6316 /* Put the value into the output. */
6346d5ca
AM
6317 size = bfd_get_reloc_size (howto);
6318 if (size != 0)
6319 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6320
0e1862bb 6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6322 location);
d6f16593 6323
b34976b6 6324 return TRUE;
b49e97c9 6325}
b49e97c9 6326\f
b49e97c9
TS
6327/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
b34976b6 6332static bfd_boolean
9719ad41
RS
6333mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
b49e97c9 6339{
947216bf 6340 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
5d41f0b6
RS
6344 long indx;
6345 bfd_boolean defined_p;
0a44bf69 6346 struct mips_elf_link_hash_table *htab;
b49e97c9 6347
0a44bf69 6348 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6349 BFD_ASSERT (htab != NULL);
6350
b49e97c9
TS
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6357 < sreloc->size);
b49e97c9 6358
b49e97c9
TS
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
b49e97c9 6368
c5ae1840 6369 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6370 /* The relocation field has been deleted. */
5d41f0b6
RS
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6378 *addendp += symbol;
5d41f0b6 6379 return TRUE;
0d591ff7 6380 }
b49e97c9 6381
5d41f0b6
RS
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
d4a77f3f 6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6385 {
020d7251 6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
b49e97c9
TS
6397 else
6398 {
5d41f0b6
RS
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
fdd07405 6402 {
5d41f0b6
RS
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
b49e97c9
TS
6405 }
6406 else
6407 {
5d41f0b6 6408 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
5d41f0b6
RS
6414 if (indx == 0)
6415 abort ();
b49e97c9
TS
6416 }
6417
5d41f0b6
RS
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
b49e97c9
TS
6436 }
6437
5d41f0b6
RS
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
0a44bf69
RS
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
5d41f0b6
RS
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
b49e97c9
TS
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
0a44bf69
RS
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
b49e97c9 6500 else
947216bf
AM
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6504
b49e97c9
TS
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6515 {
3d4d4302 6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6536 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
943284cc
DJ
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
b34976b6 6550 return TRUE;
b49e97c9
TS
6551}
6552\f
b49e97c9
TS
6553/* Return the MACH for a MIPS e_flags value. */
6554
6555unsigned long
9719ad41 6556_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6557{
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
00707a0e
RS
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
b49e97c9
TS
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
00707a0e
RS
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
e407c74b
NC
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
0d2e43ed
ILT
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
b49e97c9
TS
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
350cc38d
MS
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
fd503541
NC
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
2c629856
N
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
432233b3
AP
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6f179bd0
AN
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
52b6b6b9
JM
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
b49e97c9
TS
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
b49e97c9
TS
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
b49e97c9
TS
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
b49e97c9
TS
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
b49e97c9
TS
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
b49e97c9
TS
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
b49e97c9
TS
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
af7ee8bf
CD
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
7361da2c
AB
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6650 }
6651 }
6652
6653 return 0;
6654}
6655
6656/* Return printable name for ABI. */
6657
6658static INLINE char *
9719ad41 6659elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6660{
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684}
6685\f
6686/* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691static asection mips_elf_scom_section;
6692static asymbol mips_elf_scom_symbol;
6693static asymbol *mips_elf_scom_symbol_ptr;
6694
6695/* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698static asection mips_elf_acom_section;
6699static asymbol mips_elf_acom_symbol;
6700static asymbol *mips_elf_acom_symbol_ptr;
6701
738e5348 6702/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6703
6704void
9719ad41 6705_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6706{
6707 elf_symbol_type *elfsym;
6708
738e5348 6709 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
b59eed79 6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
b49e97c9 6765 case SHN_MIPS_TEXT:
00b4930b
TS
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
00b4930b
TS
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
b49e97c9
TS
6778 break;
6779
6780 case SHN_MIPS_DATA:
00b4930b
TS
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
00b4930b
TS
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
b49e97c9 6793 break;
b49e97c9 6794 }
738e5348 6795
df58fc94
RS
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
738e5348
RS
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
e8faf7d1 6802 if (MICROMIPS_P (abfd))
df58fc94
RS
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6808 }
b49e97c9
TS
6809}
6810\f
8c946ed5
RS
6811/* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848unsigned int
6849_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850{
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875}
6876\f
174fd7f9
RS
6877/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891bfd_boolean
6892_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893{
6894 return SGI_COMPAT (abfd);
6895}
6896\f
b49e97c9
TS
6897/* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
b34976b6 6902bfd_boolean
9719ad41 6903_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6904{
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
b34976b6 6916 return FALSE;
b49e97c9 6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6918 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6919 return FALSE;
b49e97c9
TS
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
f0abc2a1
AM
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
f0abc2a1
AM
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
b49e97c9
TS
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
f0abc2a1 6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
1bc8074d
MR
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
b49e97c9
TS
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
b34976b6 6962 return FALSE;
b49e97c9 6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6964 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6965 return FALSE;
b49e97c9
TS
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
b34976b6 6977 return FALSE;
b49e97c9 6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6979 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6980 return FALSE;
b49e97c9
TS
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
2d0f9ad9
JM
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
b49e97c9
TS
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
fd6f9d17 7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7001 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7003 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7004 hdr->sh_flags = 0;
b49e97c9
TS
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
b34976b6 7018 return TRUE;
b49e97c9
TS
7019}
7020
7021/* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
b34976b6 7028bfd_boolean
6dc132d9
L
7029_bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
b49e97c9
TS
7033{
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
b34976b6 7045 return FALSE;
b49e97c9
TS
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
b34976b6 7049 return FALSE;
b49e97c9
TS
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
b34976b6 7053 return FALSE;
b49e97c9
TS
7054 break;
7055 case SHT_MIPS_GPTAB:
0112cd26 7056 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7057 return FALSE;
b49e97c9
TS
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
b34976b6 7061 return FALSE;
b49e97c9
TS
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
b34976b6 7065 return FALSE;
b49e97c9
TS
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7071 return FALSE;
b49e97c9
TS
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7076 return FALSE;
b49e97c9
TS
7077 break;
7078 case SHT_MIPS_CONTENT:
0112cd26 7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7080 return FALSE;
b49e97c9
TS
7081 break;
7082 case SHT_MIPS_OPTIONS:
cc2e31b9 7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7084 return FALSE;
b49e97c9 7085 break;
351cdf24
MF
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
b49e97c9 7091 case SHT_MIPS_DWARF:
1b315056 7092 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7093 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7094 return FALSE;
b49e97c9
TS
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7098 return FALSE;
b49e97c9
TS
7099 break;
7100 case SHT_MIPS_EVENTS:
0112cd26
NC
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7103 return FALSE;
b49e97c9
TS
7104 break;
7105 default:
cc2e31b9 7106 break;
b49e97c9
TS
7107 }
7108
6dc132d9 7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7110 return FALSE;
b49e97c9
TS
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
b34976b6 7118 return FALSE;
b49e97c9
TS
7119 }
7120
351cdf24
MF
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
b49e97c9
TS
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
9719ad41
RS
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
b34976b6 7148 return FALSE;
b49e97c9
TS
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
9719ad41 7161 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7162 if (contents == NULL)
b34976b6 7163 return FALSE;
b49e97c9 7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7165 0, hdr->sh_size))
b49e97c9
TS
7166 {
7167 free (contents);
b34976b6 7168 return FALSE;
b49e97c9
TS
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
1bc8074d
MR
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
b49e97c9
TS
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
b34976b6 7212 return TRUE;
b49e97c9
TS
7213}
7214
7215/* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
b34976b6 7219bfd_boolean
9719ad41 7220_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7221{
0414f35b 7222 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7232 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272#if 0
8dc1a139 7273 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275#endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
0112cd26 7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
cc2e31b9 7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
351cdf24
MF
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
1b315056
CS
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
b49e97c9
TS
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
0112cd26
NC
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7a79a000
TS
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
b49e97c9 7342
b34976b6 7343 return TRUE;
b49e97c9
TS
7344}
7345
7346/* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
b34976b6 7352bfd_boolean
9719ad41
RS
7353_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
b49e97c9
TS
7355{
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
b34976b6 7359 return TRUE;
b49e97c9
TS
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
b34976b6 7364 return TRUE;
b49e97c9 7365 }
b34976b6 7366 return FALSE;
b49e97c9
TS
7367}
7368\f
7369/* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
b34976b6 7372bfd_boolean
9719ad41 7373_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7374 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
b49e97c9
TS
7377{
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
8dc1a139 7382 /* Skip IRIX5 rld entry name. */
b49e97c9 7383 *namep = NULL;
b34976b6 7384 return TRUE;
b49e97c9
TS
7385 }
7386
eedecc07
DD
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
b49e97c9
TS
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
698600e4 7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
b34976b6 7427 return FALSE;
b49e97c9
TS
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
b34976b6 7432 return FALSE;
b49e97c9
TS
7433
7434 /* Initialize the section. */
7435
698600e4
AM
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7438
7439 elf_text_section->symbol = elf_text_symbol;
698600e4 7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7451 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7452 so I took it out. */
698600e4 7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
698600e4 7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
b34976b6 7468 return FALSE;
b49e97c9
TS
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
b34976b6 7473 return FALSE;
b49e97c9
TS
7474
7475 /* Initialize the section. */
7476
698600e4
AM
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7479
7480 elf_data_section->symbol = elf_data_symbol;
698600e4 7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7492 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7493 so I took it out. */
698600e4 7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
0e1862bb 7503 && ! bfd_link_pic (info)
f13a99db 7504 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
14a793b2 7508 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7509
7510 /* Mark __rld_obj_head as dynamic. */
14a793b2 7511 bh = NULL;
b49e97c9 7512 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7514 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7515 return FALSE;
14a793b2
AM
7516
7517 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7518 h->non_elf = 0;
7519 h->def_regular = 1;
b49e97c9
TS
7520 h->type = STT_OBJECT;
7521
c152c796 7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7523 return FALSE;
b49e97c9 7524
b34976b6 7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7526 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
df58fc94 7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7533 ++*valp;
7534
b34976b6 7535 return TRUE;
b49e97c9
TS
7536}
7537
7538/* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
6e0b88f1 7542int
9719ad41
RS
7543_bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7547{
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
df58fc94 7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7556 sym->st_value &= ~1;
b49e97c9 7557
6e0b88f1 7558 return 1;
b49e97c9
TS
7559}
7560\f
7561/* Functions for the dynamic linker. */
7562
7563/* Create dynamic sections when linking against a dynamic object. */
7564
b34976b6 7565bfd_boolean
9719ad41 7566_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7567{
7568 struct elf_link_hash_entry *h;
14a793b2 7569 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
0a44bf69 7573 struct mips_elf_link_hash_table *htab;
b49e97c9 7574
0a44bf69 7575 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7576 BFD_ASSERT (htab != NULL);
7577
b49e97c9
TS
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
0a44bf69
RS
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
b49e97c9 7584 {
3d4d4302 7585 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
b49e97c9
TS
7591 }
7592
7593 /* We need to create .got section. */
23cc69b6 7594 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7595 return FALSE;
7596
0a44bf69 7597 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7598 return FALSE;
b49e97c9 7599
b49e97c9 7600 /* Create .stub section. */
3d4d4302
AM
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
4e41d0d7
RS
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
b49e97c9 7609
e6aea42d 7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7611 && bfd_link_executable (info)
3d4d4302 7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7613 {
3d4d4302
AM
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
b49e97c9 7616 if (s == NULL
b49e97c9
TS
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7619 return FALSE;
b49e97c9
TS
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
14a793b2 7630 bh = NULL;
b49e97c9 7631 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7634 return FALSE;
14a793b2
AM
7635
7636 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7637 h->non_elf = 0;
7638 h->def_regular = 1;
b49e97c9
TS
7639 h->type = STT_SECTION;
7640
c152c796 7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7642 return FALSE;
b49e97c9
TS
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7649 return FALSE;
b49e97c9
TS
7650 }
7651
44c410de 7652 /* Change alignments of some sections. */
3d4d4302 7653 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7654 if (s != NULL)
a253d456
NC
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
3d4d4302 7657 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7658 if (s != NULL)
a253d456
NC
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
3d4d4302 7661 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7662 if (s != NULL)
a253d456
NC
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
3d4d4302 7665 /* ??? */
b49e97c9
TS
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
a253d456
NC
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
3d4d4302 7670 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7671 if (s != NULL)
a253d456 7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7673 }
7674
0e1862bb 7675 if (bfd_link_executable (info))
b49e97c9 7676 {
14a793b2
AM
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7684 return FALSE;
14a793b2
AM
7685
7686 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7687 h->non_elf = 0;
7688 h->def_regular = 1;
b49e97c9
TS
7689 h->type = STT_SECTION;
7690
c152c796 7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7692 return FALSE;
b49e97c9
TS
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7700 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7701 BFD_ASSERT (s != NULL);
14a793b2 7702
0abfb97a
L
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
b49e97c9 7709
0abfb97a
L
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
b4082c70 7717 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7718 }
7719 }
7720
861fb55a 7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
3d4d4302
AM
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7729 if (htab->is_vxworks)
7730 {
3d4d4302
AM
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7733 }
7734 else
3d4d4302 7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a 7736 if (!htab->sdynbss
0e1862bb 7737 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
861fb55a
DJ
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
0a44bf69 7741
1bbce132
MR
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
0a44bf69 7746
b34976b6 7747 return TRUE;
b49e97c9
TS
7748}
7749\f
c224138d
RS
7750/* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754static bfd_boolean
7755mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758{
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
d4730f92
BS
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
c224138d 7767 bed = get_elf_backend_data (abfd);
d4730f92
BS
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7770}
7771
7772/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776static bfd_vma
7777mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779{
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
17c6c9d9 7783 bfd_vma bytes;
c224138d
RS
7784
7785 r_type = ELF_R_TYPE (abfd, rel->r_info);
7786 location = contents + rel->r_offset;
7787
7788 /* Get the addend, which is stored in the input file. */
df58fc94 7789 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7790 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7791 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7792
17c6c9d9
MR
7793 addend = bytes & howto->src_mask;
7794
7795 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7796 accordingly. */
7797 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7798 addend <<= 1;
7799
7800 return addend;
c224138d
RS
7801}
7802
7803/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7804 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7805 and update *ADDEND with the final addend. Return true on success
7806 or false if the LO16 could not be found. RELEND is the exclusive
7807 upper bound on the relocations for REL's section. */
7808
7809static bfd_boolean
7810mips_elf_add_lo16_rel_addend (bfd *abfd,
7811 const Elf_Internal_Rela *rel,
7812 const Elf_Internal_Rela *relend,
7813 bfd_byte *contents, bfd_vma *addend)
7814{
7815 unsigned int r_type, lo16_type;
7816 const Elf_Internal_Rela *lo16_relocation;
7817 reloc_howto_type *lo16_howto;
7818 bfd_vma l;
7819
7820 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7821 if (mips16_reloc_p (r_type))
c224138d 7822 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7823 else if (micromips_reloc_p (r_type))
7824 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7825 else if (r_type == R_MIPS_PCHI16)
7826 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7827 else
7828 lo16_type = R_MIPS_LO16;
7829
7830 /* The combined value is the sum of the HI16 addend, left-shifted by
7831 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7832 code does a `lui' of the HI16 value, and then an `addiu' of the
7833 LO16 value.)
7834
7835 Scan ahead to find a matching LO16 relocation.
7836
7837 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7838 be immediately following. However, for the IRIX6 ABI, the next
7839 relocation may be a composed relocation consisting of several
7840 relocations for the same address. In that case, the R_MIPS_LO16
7841 relocation may occur as one of these. We permit a similar
7842 extension in general, as that is useful for GCC.
7843
7844 In some cases GCC dead code elimination removes the LO16 but keeps
7845 the corresponding HI16. This is strictly speaking a violation of
7846 the ABI but not immediately harmful. */
7847 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7848 if (lo16_relocation == NULL)
7849 return FALSE;
7850
7851 /* Obtain the addend kept there. */
7852 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7853 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7854
7855 l <<= lo16_howto->rightshift;
7856 l = _bfd_mips_elf_sign_extend (l, 16);
7857
7858 *addend <<= 16;
7859 *addend += l;
7860 return TRUE;
7861}
7862
7863/* Try to read the contents of section SEC in bfd ABFD. Return true and
7864 store the contents in *CONTENTS on success. Assume that *CONTENTS
7865 already holds the contents if it is nonull on entry. */
7866
7867static bfd_boolean
7868mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7869{
7870 if (*contents)
7871 return TRUE;
7872
7873 /* Get cached copy if it exists. */
7874 if (elf_section_data (sec)->this_hdr.contents != NULL)
7875 {
7876 *contents = elf_section_data (sec)->this_hdr.contents;
7877 return TRUE;
7878 }
7879
7880 return bfd_malloc_and_get_section (abfd, sec, contents);
7881}
7882
1bbce132
MR
7883/* Make a new PLT record to keep internal data. */
7884
7885static struct plt_entry *
7886mips_elf_make_plt_record (bfd *abfd)
7887{
7888 struct plt_entry *entry;
7889
7890 entry = bfd_zalloc (abfd, sizeof (*entry));
7891 if (entry == NULL)
7892 return NULL;
7893
7894 entry->stub_offset = MINUS_ONE;
7895 entry->mips_offset = MINUS_ONE;
7896 entry->comp_offset = MINUS_ONE;
7897 entry->gotplt_index = MINUS_ONE;
7898 return entry;
7899}
7900
b49e97c9 7901/* Look through the relocs for a section during the first phase, and
1bbce132
MR
7902 allocate space in the global offset table and record the need for
7903 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 7904
b34976b6 7905bfd_boolean
9719ad41
RS
7906_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7907 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7908{
7909 const char *name;
7910 bfd *dynobj;
7911 Elf_Internal_Shdr *symtab_hdr;
7912 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7913 size_t extsymoff;
7914 const Elf_Internal_Rela *rel;
7915 const Elf_Internal_Rela *rel_end;
b49e97c9 7916 asection *sreloc;
9c5bfbb7 7917 const struct elf_backend_data *bed;
0a44bf69 7918 struct mips_elf_link_hash_table *htab;
c224138d
RS
7919 bfd_byte *contents;
7920 bfd_vma addend;
7921 reloc_howto_type *howto;
b49e97c9 7922
0e1862bb 7923 if (bfd_link_relocatable (info))
b34976b6 7924 return TRUE;
b49e97c9 7925
0a44bf69 7926 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7927 BFD_ASSERT (htab != NULL);
7928
b49e97c9
TS
7929 dynobj = elf_hash_table (info)->dynobj;
7930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7931 sym_hashes = elf_sym_hashes (abfd);
7932 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7933
738e5348
RS
7934 bed = get_elf_backend_data (abfd);
7935 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7936
b49e97c9
TS
7937 /* Check for the mips16 stub sections. */
7938
7939 name = bfd_get_section_name (abfd, sec);
b9d58d71 7940 if (FN_STUB_P (name))
b49e97c9
TS
7941 {
7942 unsigned long r_symndx;
7943
7944 /* Look at the relocation information to figure out which symbol
7945 this is for. */
7946
cb4437b8 7947 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7948 if (r_symndx == 0)
7949 {
7950 (*_bfd_error_handler)
7951 (_("%B: Warning: cannot determine the target function for"
7952 " stub section `%s'"),
7953 abfd, name);
7954 bfd_set_error (bfd_error_bad_value);
7955 return FALSE;
7956 }
b49e97c9
TS
7957
7958 if (r_symndx < extsymoff
7959 || sym_hashes[r_symndx - extsymoff] == NULL)
7960 {
7961 asection *o;
7962
7963 /* This stub is for a local symbol. This stub will only be
7964 needed if there is some relocation in this BFD, other
7965 than a 16 bit function call, which refers to this symbol. */
7966 for (o = abfd->sections; o != NULL; o = o->next)
7967 {
7968 Elf_Internal_Rela *sec_relocs;
7969 const Elf_Internal_Rela *r, *rend;
7970
7971 /* We can ignore stub sections when looking for relocs. */
7972 if ((o->flags & SEC_RELOC) == 0
7973 || o->reloc_count == 0
738e5348 7974 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7975 continue;
7976
45d6a902 7977 sec_relocs
9719ad41 7978 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7979 info->keep_memory);
b49e97c9 7980 if (sec_relocs == NULL)
b34976b6 7981 return FALSE;
b49e97c9
TS
7982
7983 rend = sec_relocs + o->reloc_count;
7984 for (r = sec_relocs; r < rend; r++)
7985 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7986 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7987 break;
7988
6cdc0ccc 7989 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7990 free (sec_relocs);
7991
7992 if (r < rend)
7993 break;
7994 }
7995
7996 if (o == NULL)
7997 {
7998 /* There is no non-call reloc for this stub, so we do
7999 not need it. Since this function is called before
8000 the linker maps input sections to output sections, we
8001 can easily discard it by setting the SEC_EXCLUDE
8002 flag. */
8003 sec->flags |= SEC_EXCLUDE;
b34976b6 8004 return TRUE;
b49e97c9
TS
8005 }
8006
8007 /* Record this stub in an array of local symbol stubs for
8008 this BFD. */
698600e4 8009 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8010 {
8011 unsigned long symcount;
8012 asection **n;
8013 bfd_size_type amt;
8014
8015 if (elf_bad_symtab (abfd))
8016 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8017 else
8018 symcount = symtab_hdr->sh_info;
8019 amt = symcount * sizeof (asection *);
9719ad41 8020 n = bfd_zalloc (abfd, amt);
b49e97c9 8021 if (n == NULL)
b34976b6 8022 return FALSE;
698600e4 8023 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8024 }
8025
b9d58d71 8026 sec->flags |= SEC_KEEP;
698600e4 8027 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8028
8029 /* We don't need to set mips16_stubs_seen in this case.
8030 That flag is used to see whether we need to look through
8031 the global symbol table for stubs. We don't need to set
8032 it here, because we just have a local stub. */
8033 }
8034 else
8035 {
8036 struct mips_elf_link_hash_entry *h;
8037
8038 h = ((struct mips_elf_link_hash_entry *)
8039 sym_hashes[r_symndx - extsymoff]);
8040
973a3492
L
8041 while (h->root.root.type == bfd_link_hash_indirect
8042 || h->root.root.type == bfd_link_hash_warning)
8043 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8044
b49e97c9
TS
8045 /* H is the symbol this stub is for. */
8046
b9d58d71
TS
8047 /* If we already have an appropriate stub for this function, we
8048 don't need another one, so we can discard this one. Since
8049 this function is called before the linker maps input sections
8050 to output sections, we can easily discard it by setting the
8051 SEC_EXCLUDE flag. */
8052 if (h->fn_stub != NULL)
8053 {
8054 sec->flags |= SEC_EXCLUDE;
8055 return TRUE;
8056 }
8057
8058 sec->flags |= SEC_KEEP;
b49e97c9 8059 h->fn_stub = sec;
b34976b6 8060 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8061 }
8062 }
b9d58d71 8063 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8064 {
8065 unsigned long r_symndx;
8066 struct mips_elf_link_hash_entry *h;
8067 asection **loc;
8068
8069 /* Look at the relocation information to figure out which symbol
8070 this is for. */
8071
cb4437b8 8072 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8073 if (r_symndx == 0)
8074 {
8075 (*_bfd_error_handler)
8076 (_("%B: Warning: cannot determine the target function for"
8077 " stub section `%s'"),
8078 abfd, name);
8079 bfd_set_error (bfd_error_bad_value);
8080 return FALSE;
8081 }
b49e97c9
TS
8082
8083 if (r_symndx < extsymoff
8084 || sym_hashes[r_symndx - extsymoff] == NULL)
8085 {
b9d58d71 8086 asection *o;
b49e97c9 8087
b9d58d71
TS
8088 /* This stub is for a local symbol. This stub will only be
8089 needed if there is some relocation (R_MIPS16_26) in this BFD
8090 that refers to this symbol. */
8091 for (o = abfd->sections; o != NULL; o = o->next)
8092 {
8093 Elf_Internal_Rela *sec_relocs;
8094 const Elf_Internal_Rela *r, *rend;
8095
8096 /* We can ignore stub sections when looking for relocs. */
8097 if ((o->flags & SEC_RELOC) == 0
8098 || o->reloc_count == 0
738e5348 8099 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8100 continue;
8101
8102 sec_relocs
8103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8104 info->keep_memory);
8105 if (sec_relocs == NULL)
8106 return FALSE;
8107
8108 rend = sec_relocs + o->reloc_count;
8109 for (r = sec_relocs; r < rend; r++)
8110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8111 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8112 break;
8113
8114 if (elf_section_data (o)->relocs != sec_relocs)
8115 free (sec_relocs);
8116
8117 if (r < rend)
8118 break;
8119 }
8120
8121 if (o == NULL)
8122 {
8123 /* There is no non-call reloc for this stub, so we do
8124 not need it. Since this function is called before
8125 the linker maps input sections to output sections, we
8126 can easily discard it by setting the SEC_EXCLUDE
8127 flag. */
8128 sec->flags |= SEC_EXCLUDE;
8129 return TRUE;
8130 }
8131
8132 /* Record this stub in an array of local symbol call_stubs for
8133 this BFD. */
698600e4 8134 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8135 {
8136 unsigned long symcount;
8137 asection **n;
8138 bfd_size_type amt;
8139
8140 if (elf_bad_symtab (abfd))
8141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8142 else
8143 symcount = symtab_hdr->sh_info;
8144 amt = symcount * sizeof (asection *);
8145 n = bfd_zalloc (abfd, amt);
8146 if (n == NULL)
8147 return FALSE;
698600e4 8148 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8149 }
b49e97c9 8150
b9d58d71 8151 sec->flags |= SEC_KEEP;
698600e4 8152 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8153
b9d58d71
TS
8154 /* We don't need to set mips16_stubs_seen in this case.
8155 That flag is used to see whether we need to look through
8156 the global symbol table for stubs. We don't need to set
8157 it here, because we just have a local stub. */
8158 }
b49e97c9 8159 else
b49e97c9 8160 {
b9d58d71
TS
8161 h = ((struct mips_elf_link_hash_entry *)
8162 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8163
b9d58d71 8164 /* H is the symbol this stub is for. */
68ffbac6 8165
b9d58d71
TS
8166 if (CALL_FP_STUB_P (name))
8167 loc = &h->call_fp_stub;
8168 else
8169 loc = &h->call_stub;
68ffbac6 8170
b9d58d71
TS
8171 /* If we already have an appropriate stub for this function, we
8172 don't need another one, so we can discard this one. Since
8173 this function is called before the linker maps input sections
8174 to output sections, we can easily discard it by setting the
8175 SEC_EXCLUDE flag. */
8176 if (*loc != NULL)
8177 {
8178 sec->flags |= SEC_EXCLUDE;
8179 return TRUE;
8180 }
b49e97c9 8181
b9d58d71
TS
8182 sec->flags |= SEC_KEEP;
8183 *loc = sec;
8184 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 }
b49e97c9
TS
8186 }
8187
b49e97c9 8188 sreloc = NULL;
c224138d 8189 contents = NULL;
b49e97c9
TS
8190 for (rel = relocs; rel < rel_end; ++rel)
8191 {
8192 unsigned long r_symndx;
8193 unsigned int r_type;
8194 struct elf_link_hash_entry *h;
861fb55a 8195 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8196 bfd_boolean call_reloc_p;
8197 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8198
8199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8200 r_type = ELF_R_TYPE (abfd, rel->r_info);
8201
8202 if (r_symndx < extsymoff)
8203 h = NULL;
8204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8205 {
8206 (*_bfd_error_handler)
d003868e
AM
8207 (_("%B: Malformed reloc detected for section %s"),
8208 abfd, name);
b49e97c9 8209 bfd_set_error (bfd_error_bad_value);
b34976b6 8210 return FALSE;
b49e97c9
TS
8211 }
8212 else
8213 {
8214 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8215 if (h != NULL)
8216 {
8217 while (h->root.type == bfd_link_hash_indirect
8218 || h->root.type == bfd_link_hash_warning)
8219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8220
8221 /* PR15323, ref flags aren't set for references in the
8222 same object. */
8223 h->root.non_ir_ref = 1;
8224 }
861fb55a 8225 }
b49e97c9 8226
861fb55a
DJ
8227 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8228 relocation into a dynamic one. */
8229 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8230
8231 /* Set CALL_RELOC_P to true if the relocation is for a call,
8232 and if pointer equality therefore doesn't matter. */
8233 call_reloc_p = FALSE;
8234
8235 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8236 into account when deciding how to define the symbol.
8237 Relocations in nonallocatable sections such as .pdr and
8238 .debug* should have no effect. */
8239 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8240
861fb55a
DJ
8241 switch (r_type)
8242 {
861fb55a
DJ
8243 case R_MIPS_CALL16:
8244 case R_MIPS_CALL_HI16:
8245 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8246 case R_MIPS16_CALL16:
8247 case R_MICROMIPS_CALL16:
8248 case R_MICROMIPS_CALL_HI16:
8249 case R_MICROMIPS_CALL_LO16:
8250 call_reloc_p = TRUE;
8251 /* Fall through. */
8252
8253 case R_MIPS_GOT16:
861fb55a
DJ
8254 case R_MIPS_GOT_HI16:
8255 case R_MIPS_GOT_LO16:
8256 case R_MIPS_GOT_PAGE:
8257 case R_MIPS_GOT_OFST:
8258 case R_MIPS_GOT_DISP:
8259 case R_MIPS_TLS_GOTTPREL:
8260 case R_MIPS_TLS_GD:
8261 case R_MIPS_TLS_LDM:
d0f13682 8262 case R_MIPS16_GOT16:
d0f13682
CLT
8263 case R_MIPS16_TLS_GOTTPREL:
8264 case R_MIPS16_TLS_GD:
8265 case R_MIPS16_TLS_LDM:
df58fc94 8266 case R_MICROMIPS_GOT16:
df58fc94
RS
8267 case R_MICROMIPS_GOT_HI16:
8268 case R_MICROMIPS_GOT_LO16:
8269 case R_MICROMIPS_GOT_PAGE:
8270 case R_MICROMIPS_GOT_OFST:
8271 case R_MICROMIPS_GOT_DISP:
8272 case R_MICROMIPS_TLS_GOTTPREL:
8273 case R_MICROMIPS_TLS_GD:
8274 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8275 if (dynobj == NULL)
8276 elf_hash_table (info)->dynobj = dynobj = abfd;
8277 if (!mips_elf_create_got_section (dynobj, info))
8278 return FALSE;
0e1862bb 8279 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8280 {
861fb55a
DJ
8281 (*_bfd_error_handler)
8282 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8283 abfd, (unsigned long) rel->r_offset);
8284 bfd_set_error (bfd_error_bad_value);
8285 return FALSE;
b49e97c9 8286 }
c5d6fa44 8287 can_make_dynamic_p = TRUE;
861fb55a 8288 break;
b49e97c9 8289
c5d6fa44 8290 case R_MIPS_NONE:
99da6b5f 8291 case R_MIPS_JALR:
df58fc94 8292 case R_MICROMIPS_JALR:
c5d6fa44
RS
8293 /* These relocations have empty fields and are purely there to
8294 provide link information. The symbol value doesn't matter. */
8295 constrain_symbol_p = FALSE;
8296 break;
8297
8298 case R_MIPS_GPREL16:
8299 case R_MIPS_GPREL32:
8300 case R_MIPS16_GPREL:
8301 case R_MICROMIPS_GPREL16:
8302 /* GP-relative relocations always resolve to a definition in a
8303 regular input file, ignoring the one-definition rule. This is
8304 important for the GP setup sequence in NewABI code, which
8305 always resolves to a local function even if other relocations
8306 against the symbol wouldn't. */
8307 constrain_symbol_p = FALSE;
99da6b5f
AN
8308 break;
8309
861fb55a
DJ
8310 case R_MIPS_32:
8311 case R_MIPS_REL32:
8312 case R_MIPS_64:
8313 /* In VxWorks executables, references to external symbols
8314 must be handled using copy relocs or PLT entries; it is not
8315 possible to convert this relocation into a dynamic one.
8316
8317 For executables that use PLTs and copy-relocs, we have a
8318 choice between converting the relocation into a dynamic
8319 one or using copy relocations or PLT entries. It is
8320 usually better to do the former, unless the relocation is
8321 against a read-only section. */
0e1862bb 8322 if ((bfd_link_pic (info)
861fb55a
DJ
8323 || (h != NULL
8324 && !htab->is_vxworks
8325 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8326 && !(!info->nocopyreloc
8327 && !PIC_OBJECT_P (abfd)
8328 && MIPS_ELF_READONLY_SECTION (sec))))
8329 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8330 {
861fb55a 8331 can_make_dynamic_p = TRUE;
b49e97c9
TS
8332 if (dynobj == NULL)
8333 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8334 }
c5d6fa44 8335 break;
b49e97c9 8336
861fb55a
DJ
8337 case R_MIPS_26:
8338 case R_MIPS_PC16:
7361da2c
AB
8339 case R_MIPS_PC21_S2:
8340 case R_MIPS_PC26_S2:
861fb55a 8341 case R_MIPS16_26:
df58fc94
RS
8342 case R_MICROMIPS_26_S1:
8343 case R_MICROMIPS_PC7_S1:
8344 case R_MICROMIPS_PC10_S1:
8345 case R_MICROMIPS_PC16_S1:
8346 case R_MICROMIPS_PC23_S2:
c5d6fa44 8347 call_reloc_p = TRUE;
861fb55a 8348 break;
b49e97c9
TS
8349 }
8350
0a44bf69
RS
8351 if (h)
8352 {
c5d6fa44
RS
8353 if (constrain_symbol_p)
8354 {
8355 if (!can_make_dynamic_p)
8356 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8357
8358 if (!call_reloc_p)
8359 h->pointer_equality_needed = 1;
8360
8361 /* We must not create a stub for a symbol that has
8362 relocations related to taking the function's address.
8363 This doesn't apply to VxWorks, where CALL relocs refer
8364 to a .got.plt entry instead of a normal .got entry. */
8365 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8366 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8367 }
8368
0a44bf69
RS
8369 /* Relocations against the special VxWorks __GOTT_BASE__ and
8370 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8371 room for them in .rela.dyn. */
8372 if (is_gott_symbol (info, h))
8373 {
8374 if (sreloc == NULL)
8375 {
8376 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8377 if (sreloc == NULL)
8378 return FALSE;
8379 }
8380 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8381 if (MIPS_ELF_READONLY_SECTION (sec))
8382 /* We tell the dynamic linker that there are
8383 relocations against the text segment. */
8384 info->flags |= DF_TEXTREL;
0a44bf69
RS
8385 }
8386 }
df58fc94
RS
8387 else if (call_lo16_reloc_p (r_type)
8388 || got_lo16_reloc_p (r_type)
8389 || got_disp_reloc_p (r_type)
738e5348 8390 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8391 {
8392 /* We may need a local GOT entry for this relocation. We
8393 don't count R_MIPS_GOT_PAGE because we can estimate the
8394 maximum number of pages needed by looking at the size of
738e5348
RS
8395 the segment. Similar comments apply to R_MIPS*_GOT16 and
8396 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8397 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8398 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8399 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8400 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8401 rel->r_addend, info, r_type))
f4416af6 8402 return FALSE;
b49e97c9
TS
8403 }
8404
8f0c309a
CLT
8405 if (h != NULL
8406 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8407 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8408 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8409
b49e97c9
TS
8410 switch (r_type)
8411 {
8412 case R_MIPS_CALL16:
738e5348 8413 case R_MIPS16_CALL16:
df58fc94 8414 case R_MICROMIPS_CALL16:
b49e97c9
TS
8415 if (h == NULL)
8416 {
8417 (*_bfd_error_handler)
d003868e
AM
8418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8419 abfd, (unsigned long) rel->r_offset);
b49e97c9 8420 bfd_set_error (bfd_error_bad_value);
b34976b6 8421 return FALSE;
b49e97c9
TS
8422 }
8423 /* Fall through. */
8424
8425 case R_MIPS_CALL_HI16:
8426 case R_MIPS_CALL_LO16:
df58fc94
RS
8427 case R_MICROMIPS_CALL_HI16:
8428 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8429 if (h != NULL)
8430 {
6ccf4795
RS
8431 /* Make sure there is room in the regular GOT to hold the
8432 function's address. We may eliminate it in favour of
8433 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8434 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8435 r_type))
b34976b6 8436 return FALSE;
b49e97c9
TS
8437
8438 /* We need a stub, not a plt entry for the undefined
8439 function. But we record it as if it needs plt. See
c152c796 8440 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8441 h->needs_plt = 1;
b49e97c9
TS
8442 h->type = STT_FUNC;
8443 }
8444 break;
8445
0fdc1bf1 8446 case R_MIPS_GOT_PAGE:
df58fc94 8447 case R_MICROMIPS_GOT_PAGE:
738e5348 8448 case R_MIPS16_GOT16:
b49e97c9
TS
8449 case R_MIPS_GOT16:
8450 case R_MIPS_GOT_HI16:
8451 case R_MIPS_GOT_LO16:
df58fc94
RS
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 if (!h || got_page_reloc_p (r_type))
c224138d 8456 {
3a3b6725
DJ
8457 /* This relocation needs (or may need, if h != NULL) a
8458 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8459 know for sure until we know whether the symbol is
8460 preemptible. */
c224138d
RS
8461 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8462 {
8463 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8464 return FALSE;
8465 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8466 addend = mips_elf_read_rel_addend (abfd, rel,
8467 howto, contents);
9684f078 8468 if (got16_reloc_p (r_type))
c224138d
RS
8469 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8470 contents, &addend);
8471 else
8472 addend <<= howto->rightshift;
8473 }
8474 else
8475 addend = rel->r_addend;
13db6b44
RS
8476 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 h, addend))
c224138d 8478 return FALSE;
13db6b44
RS
8479
8480 if (h)
8481 {
8482 struct mips_elf_link_hash_entry *hmips =
8483 (struct mips_elf_link_hash_entry *) h;
8484
8485 /* This symbol is definitely not overridable. */
8486 if (hmips->root.def_regular
0e1862bb 8487 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8488 && ! hmips->root.forced_local))
8489 h = NULL;
8490 }
c224138d 8491 }
13db6b44
RS
8492 /* If this is a global, overridable symbol, GOT_PAGE will
8493 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8494 /* Fall through. */
8495
b49e97c9 8496 case R_MIPS_GOT_DISP:
df58fc94 8497 case R_MICROMIPS_GOT_DISP:
6ccf4795 8498 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8499 FALSE, r_type))
b34976b6 8500 return FALSE;
b49e97c9
TS
8501 break;
8502
0f20cc35 8503 case R_MIPS_TLS_GOTTPREL:
d0f13682 8504 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8505 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8506 if (bfd_link_pic (info))
0f20cc35
DJ
8507 info->flags |= DF_STATIC_TLS;
8508 /* Fall through */
8509
8510 case R_MIPS_TLS_LDM:
d0f13682 8511 case R_MIPS16_TLS_LDM:
df58fc94
RS
8512 case R_MICROMIPS_TLS_LDM:
8513 if (tls_ldm_reloc_p (r_type))
0f20cc35 8514 {
cf35638d 8515 r_symndx = STN_UNDEF;
0f20cc35
DJ
8516 h = NULL;
8517 }
8518 /* Fall through */
8519
8520 case R_MIPS_TLS_GD:
d0f13682 8521 case R_MIPS16_TLS_GD:
df58fc94 8522 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8523 /* This symbol requires a global offset table entry, or two
8524 for TLS GD relocations. */
e641e783
RS
8525 if (h != NULL)
8526 {
8527 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 FALSE, r_type))
8529 return FALSE;
8530 }
8531 else
8532 {
8533 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8534 rel->r_addend,
8535 info, r_type))
8536 return FALSE;
8537 }
0f20cc35
DJ
8538 break;
8539
b49e97c9
TS
8540 case R_MIPS_32:
8541 case R_MIPS_REL32:
8542 case R_MIPS_64:
0a44bf69
RS
8543 /* In VxWorks executables, references to external symbols
8544 are handled using copy relocs or PLT stubs, so there's
8545 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8546 if (can_make_dynamic_p)
b49e97c9
TS
8547 {
8548 if (sreloc == NULL)
8549 {
0a44bf69 8550 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8551 if (sreloc == NULL)
f4416af6 8552 return FALSE;
b49e97c9 8553 }
0e1862bb 8554 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8555 {
8556 /* When creating a shared object, we must copy these
8557 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8558 relocs. Make room for this reloc in .rel(a).dyn. */
8559 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8560 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8561 /* We tell the dynamic linker that there are
8562 relocations against the text segment. */
8563 info->flags |= DF_TEXTREL;
8564 }
b49e97c9
TS
8565 else
8566 {
8567 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8568
9a59ad6b
DJ
8569 /* For a shared object, we must copy this relocation
8570 unless the symbol turns out to be undefined and
8571 weak with non-default visibility, in which case
8572 it will be left as zero.
8573
8574 We could elide R_MIPS_REL32 for locally binding symbols
8575 in shared libraries, but do not yet do so.
8576
8577 For an executable, we only need to copy this
8578 reloc if the symbol is defined in a dynamic
8579 object. */
b49e97c9
TS
8580 hmips = (struct mips_elf_link_hash_entry *) h;
8581 ++hmips->possibly_dynamic_relocs;
943284cc 8582 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8583 /* We need it to tell the dynamic linker if there
8584 are relocations against the text segment. */
8585 hmips->readonly_reloc = TRUE;
b49e97c9 8586 }
b49e97c9
TS
8587 }
8588
8589 if (SGI_COMPAT (abfd))
8590 mips_elf_hash_table (info)->compact_rel_size +=
8591 sizeof (Elf32_External_crinfo);
8592 break;
8593
8594 case R_MIPS_26:
8595 case R_MIPS_GPREL16:
8596 case R_MIPS_LITERAL:
8597 case R_MIPS_GPREL32:
df58fc94
RS
8598 case R_MICROMIPS_26_S1:
8599 case R_MICROMIPS_GPREL16:
8600 case R_MICROMIPS_LITERAL:
8601 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8602 if (SGI_COMPAT (abfd))
8603 mips_elf_hash_table (info)->compact_rel_size +=
8604 sizeof (Elf32_External_crinfo);
8605 break;
8606
8607 /* This relocation describes the C++ object vtable hierarchy.
8608 Reconstruct it for later use during GC. */
8609 case R_MIPS_GNU_VTINHERIT:
c152c796 8610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8611 return FALSE;
b49e97c9
TS
8612 break;
8613
8614 /* This relocation describes which C++ vtable entries are actually
8615 used. Record for later use during GC. */
8616 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8617 BFD_ASSERT (h != NULL);
8618 if (h != NULL
8619 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8620 return FALSE;
b49e97c9
TS
8621 break;
8622
8623 default:
8624 break;
8625 }
8626
1bbce132
MR
8627 /* Record the need for a PLT entry. At this point we don't know
8628 yet if we are going to create a PLT in the first place, but
8629 we only record whether the relocation requires a standard MIPS
8630 or a compressed code entry anyway. If we don't make a PLT after
8631 all, then we'll just ignore these arrangements. Likewise if
8632 a PLT entry is not created because the symbol is satisfied
8633 locally. */
8634 if (h != NULL
8635 && jal_reloc_p (r_type)
8636 && !SYMBOL_CALLS_LOCAL (info, h))
8637 {
8638 if (h->plt.plist == NULL)
8639 h->plt.plist = mips_elf_make_plt_record (abfd);
8640 if (h->plt.plist == NULL)
8641 return FALSE;
8642
8643 if (r_type == R_MIPS_26)
8644 h->plt.plist->need_mips = TRUE;
8645 else
8646 h->plt.plist->need_comp = TRUE;
8647 }
8648
738e5348
RS
8649 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 if there is one. We only need to handle global symbols here;
8651 we decide whether to keep or delete stubs for local symbols
8652 when processing the stub's relocations. */
b49e97c9 8653 if (h != NULL
738e5348
RS
8654 && !mips16_call_reloc_p (r_type)
8655 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8656 {
8657 struct mips_elf_link_hash_entry *mh;
8658
8659 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8660 mh->need_fn_stub = TRUE;
b49e97c9 8661 }
861fb55a
DJ
8662
8663 /* Refuse some position-dependent relocations when creating a
8664 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 not PIC, but we can create dynamic relocations and the result
8666 will be fine. Also do not refuse R_MIPS_LO16, which can be
8667 combined with R_MIPS_GOT16. */
0e1862bb 8668 if (bfd_link_pic (info))
861fb55a
DJ
8669 {
8670 switch (r_type)
8671 {
8672 case R_MIPS16_HI16:
8673 case R_MIPS_HI16:
8674 case R_MIPS_HIGHER:
8675 case R_MIPS_HIGHEST:
df58fc94
RS
8676 case R_MICROMIPS_HI16:
8677 case R_MICROMIPS_HIGHER:
8678 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8679 /* Don't refuse a high part relocation if it's against
8680 no symbol (e.g. part of a compound relocation). */
cf35638d 8681 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8682 break;
8683
8684 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 and has a special meaning. */
8686 if (!NEWABI_P (abfd) && h != NULL
8687 && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 break;
8689
0fc1eb3c
RS
8690 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8691 if (is_gott_symbol (info, h))
8692 break;
8693
861fb55a
DJ
8694 /* FALLTHROUGH */
8695
8696 case R_MIPS16_26:
8697 case R_MIPS_26:
df58fc94 8698 case R_MICROMIPS_26_S1:
861fb55a
DJ
8699 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 (*_bfd_error_handler)
8701 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 abfd, howto->name,
8703 (h) ? h->root.root.string : "a local symbol");
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 default:
8707 break;
8708 }
8709 }
b49e97c9
TS
8710 }
8711
b34976b6 8712 return TRUE;
b49e97c9
TS
8713}
8714\f
d0647110 8715bfd_boolean
9719ad41
RS
8716_bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 struct bfd_link_info *link_info,
8718 bfd_boolean *again)
d0647110
AO
8719{
8720 Elf_Internal_Rela *internal_relocs;
8721 Elf_Internal_Rela *irel, *irelend;
8722 Elf_Internal_Shdr *symtab_hdr;
8723 bfd_byte *contents = NULL;
d0647110
AO
8724 size_t extsymoff;
8725 bfd_boolean changed_contents = FALSE;
8726 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727 Elf_Internal_Sym *isymbuf = NULL;
8728
8729 /* We are not currently changing any sizes, so only one pass. */
8730 *again = FALSE;
8731
0e1862bb 8732 if (bfd_link_relocatable (link_info))
d0647110
AO
8733 return TRUE;
8734
9719ad41 8735 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8736 link_info->keep_memory);
d0647110
AO
8737 if (internal_relocs == NULL)
8738 return TRUE;
8739
8740 irelend = internal_relocs + sec->reloc_count
8741 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744
8745 for (irel = internal_relocs; irel < irelend; irel++)
8746 {
8747 bfd_vma symval;
8748 bfd_signed_vma sym_offset;
8749 unsigned int r_type;
8750 unsigned long r_symndx;
8751 asection *sym_sec;
8752 unsigned long instruction;
8753
8754 /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 with a JALR relocation, that indicate where they jump to.
8756 This saves some pipeline bubbles. */
8757 r_type = ELF_R_TYPE (abfd, irel->r_info);
8758 if (r_type != R_MIPS_JALR)
8759 continue;
8760
8761 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762 /* Compute the address of the jump target. */
8763 if (r_symndx >= extsymoff)
8764 {
8765 struct mips_elf_link_hash_entry *h
8766 = ((struct mips_elf_link_hash_entry *)
8767 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768
8769 while (h->root.root.type == bfd_link_hash_indirect
8770 || h->root.root.type == bfd_link_hash_warning)
8771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8772
d0647110
AO
8773 /* If a symbol is undefined, or if it may be overridden,
8774 skip it. */
8775 if (! ((h->root.root.type == bfd_link_hash_defined
8776 || h->root.root.type == bfd_link_hash_defweak)
8777 && h->root.root.u.def.section)
0e1862bb 8778 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8779 && !h->root.forced_local))
d0647110
AO
8780 continue;
8781
8782 sym_sec = h->root.root.u.def.section;
8783 if (sym_sec->output_section)
8784 symval = (h->root.root.u.def.value
8785 + sym_sec->output_section->vma
8786 + sym_sec->output_offset);
8787 else
8788 symval = h->root.root.u.def.value;
8789 }
8790 else
8791 {
8792 Elf_Internal_Sym *isym;
8793
8794 /* Read this BFD's symbols if we haven't done so already. */
8795 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 {
8797 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 if (isymbuf == NULL)
8799 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 symtab_hdr->sh_info, 0,
8801 NULL, NULL, NULL);
8802 if (isymbuf == NULL)
8803 goto relax_return;
8804 }
8805
8806 isym = isymbuf + r_symndx;
8807 if (isym->st_shndx == SHN_UNDEF)
8808 continue;
8809 else if (isym->st_shndx == SHN_ABS)
8810 sym_sec = bfd_abs_section_ptr;
8811 else if (isym->st_shndx == SHN_COMMON)
8812 sym_sec = bfd_com_section_ptr;
8813 else
8814 sym_sec
8815 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 symval = isym->st_value
8817 + sym_sec->output_section->vma
8818 + sym_sec->output_offset;
8819 }
8820
8821 /* Compute branch offset, from delay slot of the jump to the
8822 branch target. */
8823 sym_offset = (symval + irel->r_addend)
8824 - (sec_start + irel->r_offset + 4);
8825
8826 /* Branch offset must be properly aligned. */
8827 if ((sym_offset & 3) != 0)
8828 continue;
8829
8830 sym_offset >>= 2;
8831
8832 /* Check that it's in range. */
8833 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 continue;
143d77c5 8835
d0647110 8836 /* Get the section contents if we haven't done so already. */
c224138d
RS
8837 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 goto relax_return;
d0647110
AO
8839
8840 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841
8842 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8843 if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 instruction = 0x04110000;
8845 /* If it was jr <reg>, turn it into b <target>. */
8846 else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 instruction = 0x10000000;
8848 else
8849 continue;
8850
8851 instruction |= (sym_offset & 0xffff);
8852 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853 changed_contents = TRUE;
8854 }
8855
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 {
8859 if (!changed_contents && !link_info->keep_memory)
8860 free (contents);
8861 else
8862 {
8863 /* Cache the section contents for elf_link_input_bfd. */
8864 elf_section_data (sec)->this_hdr.contents = contents;
8865 }
8866 }
8867 return TRUE;
8868
143d77c5 8869 relax_return:
eea6121a
AM
8870 if (contents != NULL
8871 && elf_section_data (sec)->this_hdr.contents != contents)
8872 free (contents);
d0647110
AO
8873 return FALSE;
8874}
8875\f
9a59ad6b
DJ
8876/* Allocate space for global sym dynamic relocs. */
8877
8878static bfd_boolean
8879allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880{
8881 struct bfd_link_info *info = inf;
8882 bfd *dynobj;
8883 struct mips_elf_link_hash_entry *hmips;
8884 struct mips_elf_link_hash_table *htab;
8885
8886 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8887 BFD_ASSERT (htab != NULL);
8888
9a59ad6b
DJ
8889 dynobj = elf_hash_table (info)->dynobj;
8890 hmips = (struct mips_elf_link_hash_entry *) h;
8891
8892 /* VxWorks executables are handled elsewhere; we only need to
8893 allocate relocations in shared objects. */
0e1862bb 8894 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8895 return TRUE;
8896
7686d77d
AM
8897 /* Ignore indirect symbols. All relocations against such symbols
8898 will be redirected to the target symbol. */
8899 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8900 return TRUE;
8901
9a59ad6b
DJ
8902 /* If this symbol is defined in a dynamic object, or we are creating
8903 a shared library, we will need to copy any R_MIPS_32 or
8904 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8905 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8906 && hmips->possibly_dynamic_relocs != 0
8907 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8908 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8909 || bfd_link_pic (info)))
9a59ad6b
DJ
8910 {
8911 bfd_boolean do_copy = TRUE;
8912
8913 if (h->root.type == bfd_link_hash_undefweak)
8914 {
8915 /* Do not copy relocations for undefined weak symbols with
8916 non-default visibility. */
8917 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 do_copy = FALSE;
8919
8920 /* Make sure undefined weak symbols are output as a dynamic
8921 symbol in PIEs. */
8922 else if (h->dynindx == -1 && !h->forced_local)
8923 {
8924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 return FALSE;
8926 }
8927 }
8928
8929 if (do_copy)
8930 {
aff469fa 8931 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8932 the SVR4 psABI requires it to have a dynamic symbol table
8933 index greater that DT_MIPS_GOTSYM if there are dynamic
8934 relocations against it.
8935
8936 VxWorks does not enforce the same mapping between the GOT
8937 and the symbol table, so the same requirement does not
8938 apply there. */
6ccf4795
RS
8939 if (!htab->is_vxworks)
8940 {
8941 if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 hmips->global_got_area = GGA_RELOC_ONLY;
8943 hmips->got_only_for_calls = FALSE;
8944 }
aff469fa 8945
9a59ad6b
DJ
8946 mips_elf_allocate_dynamic_relocations
8947 (dynobj, info, hmips->possibly_dynamic_relocs);
8948 if (hmips->readonly_reloc)
8949 /* We tell the dynamic linker that there are relocations
8950 against the text segment. */
8951 info->flags |= DF_TEXTREL;
8952 }
8953 }
8954
8955 return TRUE;
8956}
8957
b49e97c9
TS
8958/* Adjust a symbol defined by a dynamic object and referenced by a
8959 regular object. The current definition is in some section of the
8960 dynamic object, but we're not including those sections. We have to
8961 change the definition to something the rest of the link can
8962 understand. */
8963
b34976b6 8964bfd_boolean
9719ad41
RS
8965_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 struct elf_link_hash_entry *h)
b49e97c9
TS
8967{
8968 bfd *dynobj;
8969 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8970 struct mips_elf_link_hash_table *htab;
b49e97c9 8971
5108fc1b 8972 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8973 BFD_ASSERT (htab != NULL);
8974
b49e97c9 8975 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8976 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8977
8978 /* Make sure we know what is going on here. */
8979 BFD_ASSERT (dynobj != NULL
f5385ebf 8980 && (h->needs_plt
f6e332e6 8981 || h->u.weakdef != NULL
f5385ebf
AM
8982 || (h->def_dynamic
8983 && h->ref_regular
8984 && !h->def_regular)));
b49e97c9 8985
b49e97c9 8986 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8987
861fb55a
DJ
8988 /* If there are call relocations against an externally-defined symbol,
8989 see whether we can create a MIPS lazy-binding stub for it. We can
8990 only do this if all references to the function are through call
8991 relocations, and in that case, the traditional lazy-binding stubs
8992 are much more efficient than PLT entries.
8993
8994 Traditional stubs are only available on SVR4 psABI-based systems;
8995 VxWorks always uses PLTs instead. */
8996 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8997 {
8998 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8999 return TRUE;
b49e97c9
TS
9000
9001 /* If this symbol is not defined in a regular file, then set
9002 the symbol to the stub location. This is required to make
9003 function pointers compare as equal between the normal
9004 executable and the shared library. */
f5385ebf 9005 if (!h->def_regular)
b49e97c9 9006 {
33bb52fb
RS
9007 hmips->needs_lazy_stub = TRUE;
9008 htab->lazy_stub_count++;
b34976b6 9009 return TRUE;
b49e97c9
TS
9010 }
9011 }
861fb55a
DJ
9012 /* As above, VxWorks requires PLT entries for externally-defined
9013 functions that are only accessed through call relocations.
b49e97c9 9014
861fb55a
DJ
9015 Both VxWorks and non-VxWorks targets also need PLT entries if there
9016 are static-only relocations against an externally-defined function.
9017 This can technically occur for shared libraries if there are
9018 branches to the symbol, although it is unlikely that this will be
9019 used in practice due to the short ranges involved. It can occur
9020 for any relative or absolute relocation in executables; in that
9021 case, the PLT entry becomes the function's canonical address. */
9022 else if (((h->needs_plt && !hmips->no_fn_stub)
9023 || (h->type == STT_FUNC && hmips->has_static_relocs))
9024 && htab->use_plts_and_copy_relocs
9025 && !SYMBOL_CALLS_LOCAL (info, h)
9026 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9027 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9028 {
1bbce132
MR
9029 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9030 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9031
9032 /* If this is the first symbol to need a PLT entry, then make some
9033 basic setup. Also work out PLT entry sizes. We'll need them
9034 for PLT offset calculations. */
9035 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a
DJ
9036 {
9037 BFD_ASSERT (htab->sgotplt->size == 0);
1bbce132 9038 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9039
861fb55a
DJ
9040 /* If we're using the PLT additions to the psABI, each PLT
9041 entry is 16 bytes and the PLT0 entry is 32 bytes.
9042 Encourage better cache usage by aligning. We do this
9043 lazily to avoid pessimizing traditional objects. */
9044 if (!htab->is_vxworks
9045 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9046 return FALSE;
0a44bf69 9047
861fb55a
DJ
9048 /* Make sure that .got.plt is word-aligned. We do this lazily
9049 for the same reason as above. */
9050 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9051 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9052 return FALSE;
0a44bf69 9053
861fb55a
DJ
9054 /* On non-VxWorks targets, the first two entries in .got.plt
9055 are reserved. */
9056 if (!htab->is_vxworks)
1bbce132
MR
9057 htab->plt_got_index
9058 += (get_elf_backend_data (dynobj)->got_header_size
9059 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9060
861fb55a
DJ
9061 /* On VxWorks, also allocate room for the header's
9062 .rela.plt.unloaded entries. */
0e1862bb 9063 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9064 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9065
9066 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9067 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9070 else if (htab->is_vxworks)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9073 else if (newabi_p)
9074 htab->plt_mips_entry_size
9075 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9076 else if (!micromips_p)
1bbce132
MR
9077 {
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
833794fc
MR
9081 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9082 }
9083 else if (htab->insn32)
9084 {
9085 htab->plt_mips_entry_size
9086 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 htab->plt_comp_entry_size
9088 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9089 }
9090 else
9091 {
9092 htab->plt_mips_entry_size
9093 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 htab->plt_comp_entry_size
833794fc 9095 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9096 }
0a44bf69
RS
9097 }
9098
1bbce132
MR
9099 if (h->plt.plist == NULL)
9100 h->plt.plist = mips_elf_make_plt_record (dynobj);
9101 if (h->plt.plist == NULL)
9102 return FALSE;
9103
9104 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9105 n32 or n64, so always use a standard entry there.
9106
9107 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9108 all MIPS16 calls will go via that stub, and there is no benefit
9109 to having a MIPS16 entry. And in the case of call_stub a
9110 standard entry actually has to be used as the stub ends with a J
9111 instruction. */
9112 if (newabi_p
9113 || htab->is_vxworks
9114 || hmips->call_stub
9115 || hmips->call_fp_stub)
9116 {
9117 h->plt.plist->need_mips = TRUE;
9118 h->plt.plist->need_comp = FALSE;
9119 }
9120
9121 /* Otherwise, if there are no direct calls to the function, we
9122 have a free choice of whether to use standard or compressed
9123 entries. Prefer microMIPS entries if the object is known to
9124 contain microMIPS code, so that it becomes possible to create
9125 pure microMIPS binaries. Prefer standard entries otherwise,
9126 because MIPS16 ones are no smaller and are usually slower. */
9127 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9128 {
9129 if (micromips_p)
9130 h->plt.plist->need_comp = TRUE;
9131 else
9132 h->plt.plist->need_mips = TRUE;
9133 }
9134
9135 if (h->plt.plist->need_mips)
9136 {
9137 h->plt.plist->mips_offset = htab->plt_mips_offset;
9138 htab->plt_mips_offset += htab->plt_mips_entry_size;
9139 }
9140 if (h->plt.plist->need_comp)
9141 {
9142 h->plt.plist->comp_offset = htab->plt_comp_offset;
9143 htab->plt_comp_offset += htab->plt_comp_entry_size;
9144 }
9145
9146 /* Reserve the corresponding .got.plt entry now too. */
9147 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9148
9149 /* If the output file has no definition of the symbol, set the
861fb55a 9150 symbol's value to the address of the stub. */
0e1862bb 9151 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9152 hmips->use_plt_entry = TRUE;
0a44bf69 9153
1bbce132 9154 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
861fb55a
DJ
9155 htab->srelplt->size += (htab->is_vxworks
9156 ? MIPS_ELF_RELA_SIZE (dynobj)
9157 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9158
9159 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9160 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9161 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9162
861fb55a
DJ
9163 /* All relocations against this symbol that could have been made
9164 dynamic will now refer to the PLT entry instead. */
9165 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9166
0a44bf69
RS
9167 return TRUE;
9168 }
9169
9170 /* If this is a weak symbol, and there is a real definition, the
9171 processor independent code will have arranged for us to see the
9172 real definition first, and we can just use the same value. */
9173 if (h->u.weakdef != NULL)
9174 {
9175 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9176 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9177 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9178 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9179 return TRUE;
9180 }
9181
861fb55a
DJ
9182 /* Otherwise, there is nothing further to do for symbols defined
9183 in regular objects. */
9184 if (h->def_regular)
0a44bf69
RS
9185 return TRUE;
9186
861fb55a
DJ
9187 /* There's also nothing more to do if we'll convert all relocations
9188 against this symbol into dynamic relocations. */
9189 if (!hmips->has_static_relocs)
9190 return TRUE;
9191
9192 /* We're now relying on copy relocations. Complain if we have
9193 some that we can't convert. */
0e1862bb 9194 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a
DJ
9195 {
9196 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9197 "dynamic symbol %s"),
9198 h->root.root.string);
9199 bfd_set_error (bfd_error_bad_value);
9200 return FALSE;
9201 }
9202
0a44bf69
RS
9203 /* We must allocate the symbol in our .dynbss section, which will
9204 become part of the .bss section of the executable. There will be
9205 an entry for this symbol in the .dynsym section. The dynamic
9206 object will contain position independent code, so all references
9207 from the dynamic object to this symbol will go through the global
9208 offset table. The dynamic linker will use the .dynsym entry to
9209 determine the address it must put in the global offset table, so
9210 both the dynamic object and the regular object will refer to the
9211 same memory location for the variable. */
9212
9213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9214 {
861fb55a
DJ
9215 if (htab->is_vxworks)
9216 htab->srelbss->size += sizeof (Elf32_External_Rela);
9217 else
9218 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9219 h->needs_copy = 1;
9220 }
9221
861fb55a
DJ
9222 /* All relocations against this symbol that could have been made
9223 dynamic will now refer to the local copy instead. */
9224 hmips->possibly_dynamic_relocs = 0;
9225
6cabe1ea 9226 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
0a44bf69 9227}
b49e97c9
TS
9228\f
9229/* This function is called after all the input files have been read,
9230 and the input sections have been assigned to output sections. We
9231 check for any mips16 stub sections that we can discard. */
9232
b34976b6 9233bfd_boolean
9719ad41
RS
9234_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9235 struct bfd_link_info *info)
b49e97c9 9236{
351cdf24 9237 asection *sect;
0a44bf69 9238 struct mips_elf_link_hash_table *htab;
861fb55a 9239 struct mips_htab_traverse_info hti;
0a44bf69
RS
9240
9241 htab = mips_elf_hash_table (info);
4dfe6ac6 9242 BFD_ASSERT (htab != NULL);
f4416af6 9243
b49e97c9 9244 /* The .reginfo section has a fixed size. */
351cdf24
MF
9245 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9246 if (sect != NULL)
9247 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9248
9249 /* The .MIPS.abiflags section has a fixed size. */
9250 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9251 if (sect != NULL)
9252 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9253
861fb55a
DJ
9254 hti.info = info;
9255 hti.output_bfd = output_bfd;
9256 hti.error = FALSE;
9257 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9258 mips_elf_check_symbols, &hti);
9259 if (hti.error)
9260 return FALSE;
f4416af6 9261
33bb52fb
RS
9262 return TRUE;
9263}
9264
9265/* If the link uses a GOT, lay it out and work out its size. */
9266
9267static bfd_boolean
9268mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9269{
9270 bfd *dynobj;
9271 asection *s;
9272 struct mips_got_info *g;
33bb52fb
RS
9273 bfd_size_type loadable_size = 0;
9274 bfd_size_type page_gotno;
d7206569 9275 bfd *ibfd;
ab361d49 9276 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9277 struct mips_elf_link_hash_table *htab;
9278
9279 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9280 BFD_ASSERT (htab != NULL);
9281
a8028dd0 9282 s = htab->sgot;
f4416af6 9283 if (s == NULL)
b34976b6 9284 return TRUE;
b49e97c9 9285
33bb52fb 9286 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9287 g = htab->got_info;
9288
861fb55a
DJ
9289 /* Allocate room for the reserved entries. VxWorks always reserves
9290 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9291 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9292 if (htab->is_vxworks)
9293 htab->reserved_gotno = 3;
9294 else
9295 htab->reserved_gotno = 2;
9296 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9297 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9298
6c42ddb9
RS
9299 /* Decide which symbols need to go in the global part of the GOT and
9300 count the number of reloc-only GOT symbols. */
020d7251 9301 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9302
13db6b44
RS
9303 if (!mips_elf_resolve_final_got_entries (info, g))
9304 return FALSE;
9305
33bb52fb
RS
9306 /* Calculate the total loadable size of the output. That
9307 will give us the maximum number of GOT_PAGE entries
9308 required. */
c72f2fb2 9309 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9310 {
9311 asection *subsection;
5108fc1b 9312
d7206569 9313 for (subsection = ibfd->sections;
33bb52fb
RS
9314 subsection;
9315 subsection = subsection->next)
9316 {
9317 if ((subsection->flags & SEC_ALLOC) == 0)
9318 continue;
9319 loadable_size += ((subsection->size + 0xf)
9320 &~ (bfd_size_type) 0xf);
9321 }
9322 }
f4416af6 9323
0a44bf69 9324 if (htab->is_vxworks)
738e5348 9325 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9326 relocations against local symbols evaluate to "G", and the EABI does
9327 not include R_MIPS_GOT_PAGE. */
c224138d 9328 page_gotno = 0;
0a44bf69
RS
9329 else
9330 /* Assume there are two loadable segments consisting of contiguous
9331 sections. Is 5 enough? */
c224138d
RS
9332 page_gotno = (loadable_size >> 16) + 5;
9333
13db6b44 9334 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9335 conservative. */
9336 if (page_gotno > g->page_gotno)
9337 page_gotno = g->page_gotno;
f4416af6 9338
c224138d 9339 g->local_gotno += page_gotno;
cb22ccf4 9340 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9341
ab361d49
RS
9342 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9344 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345
0a44bf69
RS
9346 /* VxWorks does not support multiple GOTs. It initializes $gp to
9347 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9348 dynamic loader. */
57093f5e 9349 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9350 {
a8028dd0 9351 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9352 return FALSE;
9353 }
9354 else
9355 {
d7206569
RS
9356 /* Record that all bfds use G. This also has the effect of freeing
9357 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9359 if (mips_elf_bfd_got (ibfd, FALSE))
9360 mips_elf_replace_bfd_got (ibfd, g);
9361 mips_elf_replace_bfd_got (output_bfd, g);
9362
33bb52fb 9363 /* Set up TLS entries. */
0f20cc35 9364 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9365 tga.info = info;
9366 tga.g = g;
9367 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9368 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9369 if (!tga.g)
9370 return FALSE;
1fd20d70
RS
9371 BFD_ASSERT (g->tls_assigned_gotno
9372 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9373
57093f5e 9374 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9375 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9376 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9377
33bb52fb 9378 /* Allocate room for the TLS relocations. */
ab361d49
RS
9379 if (g->relocs)
9380 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9381 }
b49e97c9 9382
b34976b6 9383 return TRUE;
b49e97c9
TS
9384}
9385
33bb52fb
RS
9386/* Estimate the size of the .MIPS.stubs section. */
9387
9388static void
9389mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9390{
9391 struct mips_elf_link_hash_table *htab;
9392 bfd_size_type dynsymcount;
9393
9394 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9395 BFD_ASSERT (htab != NULL);
9396
33bb52fb
RS
9397 if (htab->lazy_stub_count == 0)
9398 return;
9399
9400 /* IRIX rld assumes that a function stub isn't at the end of the .text
9401 section, so add a dummy entry to the end. */
9402 htab->lazy_stub_count++;
9403
9404 /* Get a worst-case estimate of the number of dynamic symbols needed.
9405 At this point, dynsymcount does not account for section symbols
9406 and count_section_dynsyms may overestimate the number that will
9407 be needed. */
9408 dynsymcount = (elf_hash_table (info)->dynsymcount
9409 + count_section_dynsyms (output_bfd, info));
9410
1bbce132
MR
9411 /* Determine the size of one stub entry. There's no disadvantage
9412 from using microMIPS code here, so for the sake of pure-microMIPS
9413 binaries we prefer it whenever there's any microMIPS code in
9414 output produced at all. This has a benefit of stubs being
833794fc
MR
9415 shorter by 4 bytes each too, unless in the insn32 mode. */
9416 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MIPS_FUNCTION_STUB_BIG_SIZE
9419 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9420 else if (htab->insn32)
9421 htab->function_stub_size = (dynsymcount > 0x10000
9422 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9423 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9424 else
9425 htab->function_stub_size = (dynsymcount > 0x10000
9426 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9427 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9428
9429 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9430}
9431
1bbce132
MR
9432/* A mips_elf_link_hash_traverse callback for which DATA points to a
9433 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9434 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9435
9436static bfd_boolean
af924177 9437mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9438{
1bbce132 9439 struct mips_htab_traverse_info *hti = data;
33bb52fb 9440 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9441 struct bfd_link_info *info;
9442 bfd *output_bfd;
9443
9444 info = hti->info;
9445 output_bfd = hti->output_bfd;
9446 htab = mips_elf_hash_table (info);
9447 BFD_ASSERT (htab != NULL);
33bb52fb 9448
33bb52fb
RS
9449 if (h->needs_lazy_stub)
9450 {
1bbce132
MR
9451 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9452 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9453 bfd_vma isa_bit = micromips_p;
9454
9455 BFD_ASSERT (htab->root.dynobj != NULL);
9456 if (h->root.plt.plist == NULL)
9457 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9458 if (h->root.plt.plist == NULL)
9459 {
9460 hti->error = TRUE;
9461 return FALSE;
9462 }
33bb52fb 9463 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9464 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9465 h->root.plt.plist->stub_offset = htab->sstubs->size;
9466 h->root.other = other;
33bb52fb
RS
9467 htab->sstubs->size += htab->function_stub_size;
9468 }
9469 return TRUE;
9470}
9471
9472/* Allocate offsets in the stubs section to each symbol that needs one.
9473 Set the final size of the .MIPS.stub section. */
9474
1bbce132 9475static bfd_boolean
33bb52fb
RS
9476mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9477{
1bbce132
MR
9478 bfd *output_bfd = info->output_bfd;
9479 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9480 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481 bfd_vma isa_bit = micromips_p;
33bb52fb 9482 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9483 struct mips_htab_traverse_info hti;
9484 struct elf_link_hash_entry *h;
9485 bfd *dynobj;
33bb52fb
RS
9486
9487 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9488 BFD_ASSERT (htab != NULL);
9489
33bb52fb 9490 if (htab->lazy_stub_count == 0)
1bbce132 9491 return TRUE;
33bb52fb
RS
9492
9493 htab->sstubs->size = 0;
1bbce132
MR
9494 hti.info = info;
9495 hti.output_bfd = output_bfd;
9496 hti.error = FALSE;
9497 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9498 if (hti.error)
9499 return FALSE;
33bb52fb
RS
9500 htab->sstubs->size += htab->function_stub_size;
9501 BFD_ASSERT (htab->sstubs->size
9502 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9503
9504 dynobj = elf_hash_table (info)->dynobj;
9505 BFD_ASSERT (dynobj != NULL);
9506 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9507 if (h == NULL)
9508 return FALSE;
9509 h->root.u.def.value = isa_bit;
9510 h->other = other;
9511 h->type = STT_FUNC;
9512
9513 return TRUE;
9514}
9515
9516/* A mips_elf_link_hash_traverse callback for which DATA points to a
9517 bfd_link_info. If H uses the address of a PLT entry as the value
9518 of the symbol, then set the entry in the symbol table now. Prefer
9519 a standard MIPS PLT entry. */
9520
9521static bfd_boolean
9522mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9523{
9524 struct bfd_link_info *info = data;
9525 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9526 struct mips_elf_link_hash_table *htab;
9527 unsigned int other;
9528 bfd_vma isa_bit;
9529 bfd_vma val;
9530
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9533
9534 if (h->use_plt_entry)
9535 {
9536 BFD_ASSERT (h->root.plt.plist != NULL);
9537 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9538 || h->root.plt.plist->comp_offset != MINUS_ONE);
9539
9540 val = htab->plt_header_size;
9541 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9542 {
9543 isa_bit = 0;
9544 val += h->root.plt.plist->mips_offset;
9545 other = 0;
9546 }
9547 else
9548 {
9549 isa_bit = 1;
9550 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9551 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9552 }
9553 val += isa_bit;
9554 /* For VxWorks, point at the PLT load stub rather than the lazy
9555 resolution stub; this stub will become the canonical function
9556 address. */
9557 if (htab->is_vxworks)
9558 val += 8;
9559
9560 h->root.root.u.def.section = htab->splt;
9561 h->root.root.u.def.value = val;
9562 h->root.other = other;
9563 }
9564
9565 return TRUE;
33bb52fb
RS
9566}
9567
b49e97c9
TS
9568/* Set the sizes of the dynamic sections. */
9569
b34976b6 9570bfd_boolean
9719ad41
RS
9571_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9572 struct bfd_link_info *info)
b49e97c9
TS
9573{
9574 bfd *dynobj;
861fb55a 9575 asection *s, *sreldyn;
b34976b6 9576 bfd_boolean reltext;
0a44bf69 9577 struct mips_elf_link_hash_table *htab;
b49e97c9 9578
0a44bf69 9579 htab = mips_elf_hash_table (info);
4dfe6ac6 9580 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9581 dynobj = elf_hash_table (info)->dynobj;
9582 BFD_ASSERT (dynobj != NULL);
9583
9584 if (elf_hash_table (info)->dynamic_sections_created)
9585 {
9586 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9587 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9588 {
3d4d4302 9589 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9590 BFD_ASSERT (s != NULL);
eea6121a 9591 s->size
b49e97c9
TS
9592 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9593 s->contents
9594 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9595 }
861fb55a 9596
1bbce132
MR
9597 /* Figure out the size of the PLT header if we know that we
9598 are using it. For the sake of cache alignment always use
9599 a standard header whenever any standard entries are present
9600 even if microMIPS entries are present as well. This also
9601 lets the microMIPS header rely on the value of $v0 only set
9602 by microMIPS entries, for a small size reduction.
9603
9604 Set symbol table entry values for symbols that use the
9605 address of their PLT entry now that we can calculate it.
9606
9607 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9608 haven't already in _bfd_elf_create_dynamic_sections. */
9609 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9610 {
1bbce132
MR
9611 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9612 && !htab->plt_mips_offset);
9613 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9614 bfd_vma isa_bit = micromips_p;
861fb55a 9615 struct elf_link_hash_entry *h;
1bbce132 9616 bfd_vma size;
861fb55a
DJ
9617
9618 BFD_ASSERT (htab->use_plts_and_copy_relocs);
1bbce132
MR
9619 BFD_ASSERT (htab->sgotplt->size == 0);
9620 BFD_ASSERT (htab->splt->size == 0);
9621
0e1862bb 9622 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9623 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9624 else if (htab->is_vxworks)
9625 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9626 else if (ABI_64_P (output_bfd))
9627 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9628 else if (ABI_N32_P (output_bfd))
9629 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9630 else if (!micromips_p)
9631 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9632 else if (htab->insn32)
9633 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9634 else
9635 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9636
1bbce132
MR
9637 htab->plt_header_is_comp = micromips_p;
9638 htab->plt_header_size = size;
9639 htab->splt->size = (size
9640 + htab->plt_mips_offset
9641 + htab->plt_comp_offset);
9642 htab->sgotplt->size = (htab->plt_got_index
9643 * MIPS_ELF_GOT_SIZE (dynobj));
9644
9645 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9646
9647 if (htab->root.hplt == NULL)
9648 {
9649 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9650 "_PROCEDURE_LINKAGE_TABLE_");
9651 htab->root.hplt = h;
9652 if (h == NULL)
9653 return FALSE;
9654 }
9655
9656 h = htab->root.hplt;
9657 h->root.u.def.value = isa_bit;
9658 h->other = other;
861fb55a
DJ
9659 h->type = STT_FUNC;
9660 }
9661 }
4e41d0d7 9662
9a59ad6b 9663 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9664 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9665
33bb52fb
RS
9666 mips_elf_estimate_stub_size (output_bfd, info);
9667
9668 if (!mips_elf_lay_out_got (output_bfd, info))
9669 return FALSE;
9670
9671 mips_elf_lay_out_lazy_stubs (info);
9672
b49e97c9
TS
9673 /* The check_relocs and adjust_dynamic_symbol entry points have
9674 determined the sizes of the various dynamic sections. Allocate
9675 memory for them. */
b34976b6 9676 reltext = FALSE;
b49e97c9
TS
9677 for (s = dynobj->sections; s != NULL; s = s->next)
9678 {
9679 const char *name;
b49e97c9
TS
9680
9681 /* It's OK to base decisions on the section name, because none
9682 of the dynobj section names depend upon the input files. */
9683 name = bfd_get_section_name (dynobj, s);
9684
9685 if ((s->flags & SEC_LINKER_CREATED) == 0)
9686 continue;
9687
0112cd26 9688 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9689 {
c456f082 9690 if (s->size != 0)
b49e97c9
TS
9691 {
9692 const char *outname;
9693 asection *target;
9694
9695 /* If this relocation section applies to a read only
9696 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9697 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9698 assert a DT_TEXTREL entry rather than testing whether
9699 there exists a relocation to a read only section or
9700 not. */
9701 outname = bfd_get_section_name (output_bfd,
9702 s->output_section);
9703 target = bfd_get_section_by_name (output_bfd, outname + 4);
9704 if ((target != NULL
9705 && (target->flags & SEC_READONLY) != 0
9706 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9707 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9708 reltext = TRUE;
b49e97c9
TS
9709
9710 /* We use the reloc_count field as a counter if we need
9711 to copy relocs into the output file. */
0a44bf69 9712 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9713 s->reloc_count = 0;
f4416af6
AO
9714
9715 /* If combreloc is enabled, elf_link_sort_relocs() will
9716 sort relocations, but in a different way than we do,
9717 and before we're done creating relocations. Also, it
9718 will move them around between input sections'
9719 relocation's contents, so our sorting would be
9720 broken, so don't let it run. */
9721 info->combreloc = 0;
b49e97c9
TS
9722 }
9723 }
0e1862bb 9724 else if (bfd_link_executable (info)
b49e97c9 9725 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9726 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9727 {
5108fc1b 9728 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9729 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9730 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9731 }
9732 else if (SGI_COMPAT (output_bfd)
0112cd26 9733 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9734 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9735 else if (s == htab->splt)
9736 {
9737 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9738 room for an extra nop to fill the delay slot. This is
9739 for CPUs without load interlocking. */
9740 if (! LOAD_INTERLOCKS_P (output_bfd)
9741 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9742 s->size += 4;
9743 }
0112cd26 9744 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9745 && s != htab->sgot
0a44bf69 9746 && s != htab->sgotplt
861fb55a
DJ
9747 && s != htab->sstubs
9748 && s != htab->sdynbss)
b49e97c9
TS
9749 {
9750 /* It's not one of our sections, so don't allocate space. */
9751 continue;
9752 }
9753
c456f082 9754 if (s->size == 0)
b49e97c9 9755 {
8423293d 9756 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9757 continue;
9758 }
9759
c456f082
AM
9760 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9761 continue;
9762
b49e97c9 9763 /* Allocate memory for the section contents. */
eea6121a 9764 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9765 if (s->contents == NULL)
b49e97c9
TS
9766 {
9767 bfd_set_error (bfd_error_no_memory);
b34976b6 9768 return FALSE;
b49e97c9
TS
9769 }
9770 }
9771
9772 if (elf_hash_table (info)->dynamic_sections_created)
9773 {
9774 /* Add some entries to the .dynamic section. We fill in the
9775 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9776 must add the entries now so that we get the correct size for
5750dcec 9777 the .dynamic section. */
af5978fb
RS
9778
9779 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9780 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9781 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9782 may only look at the first one they see. */
0e1862bb 9783 if (!bfd_link_pic (info)
af5978fb
RS
9784 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9785 return FALSE;
b49e97c9 9786
0e1862bb 9787 if (bfd_link_executable (info)
a5499fa4
MF
9788 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9789 return FALSE;
9790
5750dcec
DJ
9791 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9792 used by the debugger. */
0e1862bb 9793 if (bfd_link_executable (info)
5750dcec
DJ
9794 && !SGI_COMPAT (output_bfd)
9795 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9796 return FALSE;
9797
0a44bf69 9798 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9799 info->flags |= DF_TEXTREL;
9800
9801 if ((info->flags & DF_TEXTREL) != 0)
9802 {
9803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9804 return FALSE;
943284cc
DJ
9805
9806 /* Clear the DF_TEXTREL flag. It will be set again if we
9807 write out an actual text relocation; we may not, because
9808 at this point we do not know whether e.g. any .eh_frame
9809 absolute relocations have been converted to PC-relative. */
9810 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9811 }
9812
9813 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9814 return FALSE;
b49e97c9 9815
861fb55a 9816 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9817 if (htab->is_vxworks)
b49e97c9 9818 {
0a44bf69
RS
9819 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9820 use any of the DT_MIPS_* tags. */
861fb55a 9821 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9824 return FALSE;
b49e97c9 9825
0a44bf69
RS
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9827 return FALSE;
b49e97c9 9828
0a44bf69
RS
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 return FALSE;
9831 }
b49e97c9 9832 }
0a44bf69
RS
9833 else
9834 {
861fb55a 9835 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9838 return FALSE;
b49e97c9 9839
0a44bf69
RS
9840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9841 return FALSE;
b49e97c9 9842
0a44bf69
RS
9843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9844 return FALSE;
9845 }
b49e97c9 9846
0a44bf69
RS
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9848 return FALSE;
b49e97c9 9849
0a44bf69
RS
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9851 return FALSE;
b49e97c9 9852
0a44bf69
RS
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9854 return FALSE;
b49e97c9 9855
0a44bf69
RS
9856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9857 return FALSE;
b49e97c9 9858
0a44bf69
RS
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9860 return FALSE;
b49e97c9 9861
0a44bf69
RS
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9863 return FALSE;
b49e97c9 9864
0a44bf69
RS
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9866 return FALSE;
9867
9868 if (IRIX_COMPAT (dynobj) == ict_irix5
9869 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9870 return FALSE;
9871
9872 if (IRIX_COMPAT (dynobj) == ict_irix6
9873 && (bfd_get_section_by_name
af0edeb8 9874 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9875 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9876 return FALSE;
9877 }
861fb55a
DJ
9878 if (htab->splt->size > 0)
9879 {
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9881 return FALSE;
9882
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9884 return FALSE;
9885
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9887 return FALSE;
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9890 return FALSE;
9891 }
7a2b07ff
NS
9892 if (htab->is_vxworks
9893 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9894 return FALSE;
b49e97c9
TS
9895 }
9896
b34976b6 9897 return TRUE;
b49e97c9
TS
9898}
9899\f
81d43bff
RS
9900/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9901 Adjust its R_ADDEND field so that it is correct for the output file.
9902 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9903 and sections respectively; both use symbol indexes. */
9904
9905static void
9906mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9907 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9908 asection **local_sections, Elf_Internal_Rela *rel)
9909{
9910 unsigned int r_type, r_symndx;
9911 Elf_Internal_Sym *sym;
9912 asection *sec;
9913
020d7251 9914 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9915 {
9916 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9917 if (gprel16_reloc_p (r_type)
81d43bff 9918 || r_type == R_MIPS_GPREL32
df58fc94 9919 || literal_reloc_p (r_type))
81d43bff
RS
9920 {
9921 rel->r_addend += _bfd_get_gp_value (input_bfd);
9922 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9923 }
9924
9925 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9926 sym = local_syms + r_symndx;
9927
9928 /* Adjust REL's addend to account for section merging. */
0e1862bb 9929 if (!bfd_link_relocatable (info))
81d43bff
RS
9930 {
9931 sec = local_sections[r_symndx];
9932 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9933 }
9934
9935 /* This would normally be done by the rela_normal code in elflink.c. */
9936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9937 rel->r_addend += local_sections[r_symndx]->output_offset;
9938 }
9939}
9940
545fd46b
MR
9941/* Handle relocations against symbols from removed linkonce sections,
9942 or sections discarded by a linker script. We use this wrapper around
9943 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9944 on 64-bit ELF targets. In this case for any relocation handled, which
9945 always be the first in a triplet, the remaining two have to be processed
9946 together with the first, even if they are R_MIPS_NONE. It is the symbol
9947 index referred by the first reloc that applies to all the three and the
9948 remaining two never refer to an object symbol. And it is the final
9949 relocation (the last non-null one) that determines the output field of
9950 the whole relocation so retrieve the corresponding howto structure for
9951 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9952
9953 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9954 and therefore requires to be pasted in a loop. It also defines a block
9955 and does not protect any of its arguments, hence the extra brackets. */
9956
9957static void
9958mips_reloc_against_discarded_section (bfd *output_bfd,
9959 struct bfd_link_info *info,
9960 bfd *input_bfd, asection *input_section,
9961 Elf_Internal_Rela **rel,
9962 const Elf_Internal_Rela **relend,
9963 bfd_boolean rel_reloc,
9964 reloc_howto_type *howto,
9965 bfd_byte *contents)
9966{
9967 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9968 int count = bed->s->int_rels_per_ext_rel;
9969 unsigned int r_type;
9970 int i;
9971
9972 for (i = count - 1; i > 0; i--)
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9975 if (r_type != R_MIPS_NONE)
9976 {
9977 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 break;
9979 }
9980 }
9981 do
9982 {
9983 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9984 (*rel), count, (*relend),
9985 howto, i, contents);
9986 }
9987 while (0);
9988}
9989
b49e97c9
TS
9990/* Relocate a MIPS ELF section. */
9991
b34976b6 9992bfd_boolean
9719ad41
RS
9993_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 bfd_byte *contents, Elf_Internal_Rela *relocs,
9996 Elf_Internal_Sym *local_syms,
9997 asection **local_sections)
b49e97c9
TS
9998{
9999 Elf_Internal_Rela *rel;
10000 const Elf_Internal_Rela *relend;
10001 bfd_vma addend = 0;
b34976b6 10002 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 10003 const struct elf_backend_data *bed;
b49e97c9
TS
10004
10005 bed = get_elf_backend_data (output_bfd);
10006 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10007 for (rel = relocs; rel < relend; ++rel)
10008 {
10009 const char *name;
c9adbffe 10010 bfd_vma value = 0;
b49e97c9 10011 reloc_howto_type *howto;
ad3d9127 10012 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10013 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10014 REL relocation. */
b34976b6 10015 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10016 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10017 const char *msg;
ab96bf03
AM
10018 unsigned long r_symndx;
10019 asection *sec;
749b8d9d
L
10020 Elf_Internal_Shdr *symtab_hdr;
10021 struct elf_link_hash_entry *h;
d4730f92 10022 bfd_boolean rel_reloc;
b49e97c9 10023
d4730f92
BS
10024 rel_reloc = (NEWABI_P (input_bfd)
10025 && mips_elf_rel_relocation_p (input_bfd, input_section,
10026 relocs, rel));
b49e97c9 10027 /* Find the relocation howto for this relocation. */
d4730f92 10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10029
10030 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10031 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10032 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10033 {
10034 sec = local_sections[r_symndx];
10035 h = NULL;
10036 }
ab96bf03
AM
10037 else
10038 {
ab96bf03 10039 unsigned long extsymoff;
ab96bf03 10040
ab96bf03
AM
10041 extsymoff = 0;
10042 if (!elf_bad_symtab (input_bfd))
10043 extsymoff = symtab_hdr->sh_info;
10044 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10045 while (h->root.type == bfd_link_hash_indirect
10046 || h->root.type == bfd_link_hash_warning)
10047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10048
10049 sec = NULL;
10050 if (h->root.type == bfd_link_hash_defined
10051 || h->root.type == bfd_link_hash_defweak)
10052 sec = h->root.u.def.section;
10053 }
10054
dbaa2011 10055 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10056 {
10057 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10058 input_section, &rel, &relend,
10059 rel_reloc, howto, contents);
10060 continue;
10061 }
ab96bf03 10062
4a14403c 10063 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10064 {
10065 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10066 64-bit code, but make sure all their addresses are in the
10067 lowermost or uppermost 32-bit section of the 64-bit address
10068 space. Thus, when they use an R_MIPS_64 they mean what is
10069 usually meant by R_MIPS_32, with the exception that the
10070 stored value is sign-extended to 64 bits. */
b34976b6 10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10072
10073 /* On big-endian systems, we need to lie about the position
10074 of the reloc. */
10075 if (bfd_big_endian (input_bfd))
10076 rel->r_offset += 4;
10077 }
b49e97c9
TS
10078
10079 if (!use_saved_addend_p)
10080 {
b49e97c9
TS
10081 /* If these relocations were originally of the REL variety,
10082 we must pull the addend out of the field that will be
10083 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10084 RELA relocation. */
10085 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10086 relocs, rel))
b49e97c9 10087 {
b34976b6 10088 rela_relocation_p = FALSE;
c224138d
RS
10089 addend = mips_elf_read_rel_addend (input_bfd, rel,
10090 howto, contents);
738e5348
RS
10091 if (hi16_reloc_p (r_type)
10092 || (got16_reloc_p (r_type)
b49e97c9 10093 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10094 local_sections)))
b49e97c9 10095 {
c224138d
RS
10096 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10097 contents, &addend))
749b8d9d 10098 {
749b8d9d
L
10099 if (h)
10100 name = h->root.root.string;
10101 else
10102 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10103 local_syms + r_symndx,
10104 sec);
10105 (*_bfd_error_handler)
10106 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10107 input_bfd, input_section, name, howto->name,
10108 rel->r_offset);
749b8d9d 10109 }
b49e97c9 10110 }
30ac9238
RS
10111 else
10112 addend <<= howto->rightshift;
b49e97c9
TS
10113 }
10114 else
10115 addend = rel->r_addend;
81d43bff
RS
10116 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10117 local_syms, local_sections, rel);
b49e97c9
TS
10118 }
10119
0e1862bb 10120 if (bfd_link_relocatable (info))
b49e97c9 10121 {
4a14403c 10122 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10123 && bfd_big_endian (input_bfd))
10124 rel->r_offset -= 4;
10125
81d43bff 10126 if (!rela_relocation_p && rel->r_addend)
5a659663 10127 {
81d43bff 10128 addend += rel->r_addend;
738e5348 10129 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10130 addend = mips_elf_high (addend);
10131 else if (r_type == R_MIPS_HIGHER)
10132 addend = mips_elf_higher (addend);
10133 else if (r_type == R_MIPS_HIGHEST)
10134 addend = mips_elf_highest (addend);
30ac9238
RS
10135 else
10136 addend >>= howto->rightshift;
b49e97c9 10137
30ac9238
RS
10138 /* We use the source mask, rather than the destination
10139 mask because the place to which we are writing will be
10140 source of the addend in the final link. */
b49e97c9
TS
10141 addend &= howto->src_mask;
10142
5a659663 10143 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10144 /* See the comment above about using R_MIPS_64 in the 32-bit
10145 ABI. Here, we need to update the addend. It would be
10146 possible to get away with just using the R_MIPS_32 reloc
10147 but for endianness. */
10148 {
10149 bfd_vma sign_bits;
10150 bfd_vma low_bits;
10151 bfd_vma high_bits;
10152
10153 if (addend & ((bfd_vma) 1 << 31))
10154#ifdef BFD64
10155 sign_bits = ((bfd_vma) 1 << 32) - 1;
10156#else
10157 sign_bits = -1;
10158#endif
10159 else
10160 sign_bits = 0;
10161
10162 /* If we don't know that we have a 64-bit type,
10163 do two separate stores. */
10164 if (bfd_big_endian (input_bfd))
10165 {
10166 /* Store the sign-bits (which are most significant)
10167 first. */
10168 low_bits = sign_bits;
10169 high_bits = addend;
10170 }
10171 else
10172 {
10173 low_bits = addend;
10174 high_bits = sign_bits;
10175 }
10176 bfd_put_32 (input_bfd, low_bits,
10177 contents + rel->r_offset);
10178 bfd_put_32 (input_bfd, high_bits,
10179 contents + rel->r_offset + 4);
10180 continue;
10181 }
10182
10183 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10184 input_bfd, input_section,
b34976b6
AM
10185 contents, FALSE))
10186 return FALSE;
b49e97c9
TS
10187 }
10188
10189 /* Go on to the next relocation. */
10190 continue;
10191 }
10192
10193 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10194 relocations for the same offset. In that case we are
10195 supposed to treat the output of each relocation as the addend
10196 for the next. */
10197 if (rel + 1 < relend
10198 && rel->r_offset == rel[1].r_offset
10199 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10200 use_saved_addend_p = TRUE;
b49e97c9 10201 else
b34976b6 10202 use_saved_addend_p = FALSE;
b49e97c9
TS
10203
10204 /* Figure out what value we are supposed to relocate. */
10205 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10206 input_section, info, rel,
10207 addend, howto, local_syms,
10208 local_sections, &value,
38a7df63 10209 &name, &cross_mode_jump_p,
bce03d3d 10210 use_saved_addend_p))
b49e97c9
TS
10211 {
10212 case bfd_reloc_continue:
10213 /* There's nothing to do. */
10214 continue;
10215
10216 case bfd_reloc_undefined:
10217 /* mips_elf_calculate_relocation already called the
10218 undefined_symbol callback. There's no real point in
10219 trying to perform the relocation at this point, so we
10220 just skip ahead to the next relocation. */
10221 continue;
10222
10223 case bfd_reloc_notsupported:
10224 msg = _("internal error: unsupported relocation error");
10225 info->callbacks->warning
10226 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10227 return FALSE;
b49e97c9
TS
10228
10229 case bfd_reloc_overflow:
10230 if (use_saved_addend_p)
10231 /* Ignore overflow until we reach the last relocation for
10232 a given location. */
10233 ;
10234 else
10235 {
0e53d9da
AN
10236 struct mips_elf_link_hash_table *htab;
10237
10238 htab = mips_elf_hash_table (info);
4dfe6ac6 10239 BFD_ASSERT (htab != NULL);
b49e97c9 10240 BFD_ASSERT (name != NULL);
0e53d9da 10241 if (!htab->small_data_overflow_reported
9684f078 10242 && (gprel16_reloc_p (howto->type)
df58fc94 10243 || literal_reloc_p (howto->type)))
0e53d9da 10244 {
91d6fa6a
NC
10245 msg = _("small-data section exceeds 64KB;"
10246 " lower small-data size limit (see option -G)");
0e53d9da
AN
10247
10248 htab->small_data_overflow_reported = TRUE;
10249 (*info->callbacks->einfo) ("%P: %s\n", msg);
10250 }
b49e97c9 10251 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 10252 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 10253 input_bfd, input_section, rel->r_offset)))
b34976b6 10254 return FALSE;
b49e97c9
TS
10255 }
10256 break;
10257
10258 case bfd_reloc_ok:
10259 break;
10260
df58fc94 10261 case bfd_reloc_outofrange:
7db9a74e 10262 msg = NULL;
df58fc94 10263 if (jal_reloc_p (howto->type))
7db9a74e
MR
10264 msg = _("JALX to a non-word-aligned address");
10265 else if (aligned_pcrel_reloc_p (howto->type))
10266 msg = _("PC-relative load from unaligned address");
10267 if (msg)
df58fc94 10268 {
de341542
MR
10269 info->callbacks->einfo
10270 ("%C: %s\n", input_bfd, input_section, rel->r_offset, msg);
10271 bfd_set_error (bfd_error_bad_value);
7361da2c
AB
10272 return FALSE;
10273 }
df58fc94
RS
10274 /* Fall through. */
10275
b49e97c9
TS
10276 default:
10277 abort ();
10278 break;
10279 }
10280
10281 /* If we've got another relocation for the address, keep going
10282 until we reach the last one. */
10283 if (use_saved_addend_p)
10284 {
10285 addend = value;
10286 continue;
10287 }
10288
4a14403c 10289 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10290 /* See the comment above about using R_MIPS_64 in the 32-bit
10291 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10292 that calculated the right value. Now, however, we
10293 sign-extend the 32-bit result to 64-bits, and store it as a
10294 64-bit value. We are especially generous here in that we
10295 go to extreme lengths to support this usage on systems with
10296 only a 32-bit VMA. */
10297 {
10298 bfd_vma sign_bits;
10299 bfd_vma low_bits;
10300 bfd_vma high_bits;
10301
10302 if (value & ((bfd_vma) 1 << 31))
10303#ifdef BFD64
10304 sign_bits = ((bfd_vma) 1 << 32) - 1;
10305#else
10306 sign_bits = -1;
10307#endif
10308 else
10309 sign_bits = 0;
10310
10311 /* If we don't know that we have a 64-bit type,
10312 do two separate stores. */
10313 if (bfd_big_endian (input_bfd))
10314 {
10315 /* Undo what we did above. */
10316 rel->r_offset -= 4;
10317 /* Store the sign-bits (which are most significant)
10318 first. */
10319 low_bits = sign_bits;
10320 high_bits = value;
10321 }
10322 else
10323 {
10324 low_bits = value;
10325 high_bits = sign_bits;
10326 }
10327 bfd_put_32 (input_bfd, low_bits,
10328 contents + rel->r_offset);
10329 bfd_put_32 (input_bfd, high_bits,
10330 contents + rel->r_offset + 4);
10331 continue;
10332 }
10333
10334 /* Actually perform the relocation. */
10335 if (! mips_elf_perform_relocation (info, howto, rel, value,
10336 input_bfd, input_section,
38a7df63 10337 contents, cross_mode_jump_p))
b34976b6 10338 return FALSE;
b49e97c9
TS
10339 }
10340
b34976b6 10341 return TRUE;
b49e97c9
TS
10342}
10343\f
861fb55a
DJ
10344/* A function that iterates over each entry in la25_stubs and fills
10345 in the code for each one. DATA points to a mips_htab_traverse_info. */
10346
10347static int
10348mips_elf_create_la25_stub (void **slot, void *data)
10349{
10350 struct mips_htab_traverse_info *hti;
10351 struct mips_elf_link_hash_table *htab;
10352 struct mips_elf_la25_stub *stub;
10353 asection *s;
10354 bfd_byte *loc;
10355 bfd_vma offset, target, target_high, target_low;
10356
10357 stub = (struct mips_elf_la25_stub *) *slot;
10358 hti = (struct mips_htab_traverse_info *) data;
10359 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10360 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10361
10362 /* Create the section contents, if we haven't already. */
10363 s = stub->stub_section;
10364 loc = s->contents;
10365 if (loc == NULL)
10366 {
10367 loc = bfd_malloc (s->size);
10368 if (loc == NULL)
10369 {
10370 hti->error = TRUE;
10371 return FALSE;
10372 }
10373 s->contents = loc;
10374 }
10375
10376 /* Work out where in the section this stub should go. */
10377 offset = stub->offset;
10378
10379 /* Work out the target address. */
8f0c309a
CLT
10380 target = mips_elf_get_la25_target (stub, &s);
10381 target += s->output_section->vma + s->output_offset;
10382
861fb55a
DJ
10383 target_high = ((target + 0x8000) >> 16) & 0xffff;
10384 target_low = (target & 0xffff);
10385
10386 if (stub->stub_section != htab->strampoline)
10387 {
df58fc94 10388 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10389 of the section and write the two instructions at the end. */
10390 memset (loc, 0, offset);
10391 loc += offset;
df58fc94
RS
10392 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10393 {
d21911ea
MR
10394 bfd_put_micromips_32 (hti->output_bfd,
10395 LA25_LUI_MICROMIPS (target_high),
10396 loc);
10397 bfd_put_micromips_32 (hti->output_bfd,
10398 LA25_ADDIU_MICROMIPS (target_low),
10399 loc + 4);
df58fc94
RS
10400 }
10401 else
10402 {
10403 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10404 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10405 }
861fb55a
DJ
10406 }
10407 else
10408 {
10409 /* This is trampoline. */
10410 loc += offset;
df58fc94
RS
10411 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10412 {
d21911ea
MR
10413 bfd_put_micromips_32 (hti->output_bfd,
10414 LA25_LUI_MICROMIPS (target_high), loc);
10415 bfd_put_micromips_32 (hti->output_bfd,
10416 LA25_J_MICROMIPS (target), loc + 4);
10417 bfd_put_micromips_32 (hti->output_bfd,
10418 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10419 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10420 }
10421 else
10422 {
10423 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10424 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10425 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10426 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10427 }
861fb55a
DJ
10428 }
10429 return TRUE;
10430}
10431
b49e97c9
TS
10432/* If NAME is one of the special IRIX6 symbols defined by the linker,
10433 adjust it appropriately now. */
10434
10435static void
9719ad41
RS
10436mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10437 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10438{
10439 /* The linker script takes care of providing names and values for
10440 these, but we must place them into the right sections. */
10441 static const char* const text_section_symbols[] = {
10442 "_ftext",
10443 "_etext",
10444 "__dso_displacement",
10445 "__elf_header",
10446 "__program_header_table",
10447 NULL
10448 };
10449
10450 static const char* const data_section_symbols[] = {
10451 "_fdata",
10452 "_edata",
10453 "_end",
10454 "_fbss",
10455 NULL
10456 };
10457
10458 const char* const *p;
10459 int i;
10460
10461 for (i = 0; i < 2; ++i)
10462 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10463 *p;
10464 ++p)
10465 if (strcmp (*p, name) == 0)
10466 {
10467 /* All of these symbols are given type STT_SECTION by the
10468 IRIX6 linker. */
10469 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10470 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10471
10472 /* The IRIX linker puts these symbols in special sections. */
10473 if (i == 0)
10474 sym->st_shndx = SHN_MIPS_TEXT;
10475 else
10476 sym->st_shndx = SHN_MIPS_DATA;
10477
10478 break;
10479 }
10480}
10481
10482/* Finish up dynamic symbol handling. We set the contents of various
10483 dynamic sections here. */
10484
b34976b6 10485bfd_boolean
9719ad41
RS
10486_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10487 struct bfd_link_info *info,
10488 struct elf_link_hash_entry *h,
10489 Elf_Internal_Sym *sym)
b49e97c9
TS
10490{
10491 bfd *dynobj;
b49e97c9 10492 asection *sgot;
f4416af6 10493 struct mips_got_info *g, *gg;
b49e97c9 10494 const char *name;
3d6746ca 10495 int idx;
5108fc1b 10496 struct mips_elf_link_hash_table *htab;
738e5348 10497 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10498
5108fc1b 10499 htab = mips_elf_hash_table (info);
4dfe6ac6 10500 BFD_ASSERT (htab != NULL);
b49e97c9 10501 dynobj = elf_hash_table (info)->dynobj;
738e5348 10502 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10503
861fb55a
DJ
10504 BFD_ASSERT (!htab->is_vxworks);
10505
1bbce132
MR
10506 if (h->plt.plist != NULL
10507 && (h->plt.plist->mips_offset != MINUS_ONE
10508 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10509 {
10510 /* We've decided to create a PLT entry for this symbol. */
10511 bfd_byte *loc;
1bbce132 10512 bfd_vma header_address, got_address;
861fb55a 10513 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10514 bfd_vma got_index;
10515 bfd_vma isa_bit;
10516
10517 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10518
10519 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10520 BFD_ASSERT (h->dynindx != -1);
10521 BFD_ASSERT (htab->splt != NULL);
1bbce132 10522 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10523 BFD_ASSERT (!h->def_regular);
10524
10525 /* Calculate the address of the PLT header. */
1bbce132 10526 isa_bit = htab->plt_header_is_comp;
861fb55a 10527 header_address = (htab->splt->output_section->vma
1bbce132 10528 + htab->splt->output_offset + isa_bit);
861fb55a
DJ
10529
10530 /* Calculate the address of the .got.plt entry. */
10531 got_address = (htab->sgotplt->output_section->vma
10532 + htab->sgotplt->output_offset
1bbce132
MR
10533 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10534
861fb55a
DJ
10535 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10536 got_address_low = got_address & 0xffff;
10537
10538 /* Initially point the .got.plt entry at the PLT header. */
1bbce132 10539 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10540 if (ABI_64_P (output_bfd))
10541 bfd_put_64 (output_bfd, header_address, loc);
10542 else
10543 bfd_put_32 (output_bfd, header_address, loc);
10544
1bbce132
MR
10545 /* Now handle the PLT itself. First the standard entry (the order
10546 does not matter, we just have to pick one). */
10547 if (h->plt.plist->mips_offset != MINUS_ONE)
10548 {
10549 const bfd_vma *plt_entry;
10550 bfd_vma plt_offset;
861fb55a 10551
1bbce132 10552 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10553
1bbce132 10554 BFD_ASSERT (plt_offset <= htab->splt->size);
6d30f5b2 10555
1bbce132
MR
10556 /* Find out where the .plt entry should go. */
10557 loc = htab->splt->contents + plt_offset;
10558
10559 /* Pick the load opcode. */
10560 load = MIPS_ELF_LOAD_WORD (output_bfd);
10561
10562 /* Fill in the PLT entry itself. */
7361da2c
AB
10563
10564 if (MIPSR6_P (output_bfd))
10565 plt_entry = mipsr6_exec_plt_entry;
10566 else
10567 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10568 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10569 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10570 loc + 4);
10571
10572 if (! LOAD_INTERLOCKS_P (output_bfd))
10573 {
10574 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10575 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10576 }
10577 else
10578 {
10579 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10580 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10581 loc + 12);
10582 }
6d30f5b2 10583 }
1bbce132
MR
10584
10585 /* Now the compressed entry. They come after any standard ones. */
10586 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10587 {
1bbce132
MR
10588 bfd_vma plt_offset;
10589
10590 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10591 + h->plt.plist->comp_offset);
10592
10593 BFD_ASSERT (plt_offset <= htab->splt->size);
10594
10595 /* Find out where the .plt entry should go. */
10596 loc = htab->splt->contents + plt_offset;
10597
10598 /* Fill in the PLT entry itself. */
833794fc
MR
10599 if (!MICROMIPS_P (output_bfd))
10600 {
10601 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10602
10603 bfd_put_16 (output_bfd, plt_entry[0], loc);
10604 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10605 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10606 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10607 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10608 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10609 bfd_put_32 (output_bfd, got_address, loc + 12);
10610 }
10611 else if (htab->insn32)
10612 {
10613 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10614
10615 bfd_put_16 (output_bfd, plt_entry[0], loc);
10616 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10617 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10618 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10619 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10620 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10621 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10622 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10623 }
10624 else
1bbce132
MR
10625 {
10626 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10627 bfd_signed_vma gotpc_offset;
10628 bfd_vma loc_address;
10629
10630 BFD_ASSERT (got_address % 4 == 0);
10631
10632 loc_address = (htab->splt->output_section->vma
10633 + htab->splt->output_offset + plt_offset);
10634 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10635
10636 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10637 if (gotpc_offset + 0x1000000 >= 0x2000000)
10638 {
10639 (*_bfd_error_handler)
10640 (_("%B: `%A' offset of %ld from `%A' "
10641 "beyond the range of ADDIUPC"),
10642 output_bfd,
10643 htab->sgotplt->output_section,
10644 htab->splt->output_section,
10645 (long) gotpc_offset);
10646 bfd_set_error (bfd_error_no_error);
10647 return FALSE;
10648 }
10649 bfd_put_16 (output_bfd,
10650 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10651 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10652 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10653 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10654 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10655 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10656 }
6d30f5b2 10657 }
861fb55a
DJ
10658
10659 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10660 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
1bbce132 10661 got_index - 2, h->dynindx,
861fb55a
DJ
10662 R_MIPS_JUMP_SLOT, got_address);
10663
10664 /* We distinguish between PLT entries and lazy-binding stubs by
10665 giving the former an st_other value of STO_MIPS_PLT. Set the
10666 flag and leave the value if there are any relocations in the
10667 binary where pointer equality matters. */
10668 sym->st_shndx = SHN_UNDEF;
10669 if (h->pointer_equality_needed)
1bbce132 10670 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10671 else
1bbce132
MR
10672 {
10673 sym->st_value = 0;
10674 sym->st_other = 0;
10675 }
861fb55a 10676 }
1bbce132
MR
10677
10678 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10679 {
861fb55a 10680 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10681 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10682 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10683 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10684 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10685 bfd_vma isa_bit = micromips_p;
10686 bfd_vma stub_big_size;
10687
833794fc 10688 if (!micromips_p)
1bbce132 10689 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10690 else if (htab->insn32)
10691 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10692 else
10693 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10694
10695 /* This symbol has a stub. Set it up. */
10696
10697 BFD_ASSERT (h->dynindx != -1);
10698
1bbce132 10699 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10700
10701 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10702 sign extension at runtime in the stub, resulting in a negative
10703 index value. */
10704 if (h->dynindx & ~0x7fffffff)
b34976b6 10705 return FALSE;
b49e97c9
TS
10706
10707 /* Fill the stub. */
1bbce132
MR
10708 if (micromips_p)
10709 {
10710 idx = 0;
10711 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10712 stub + idx);
10713 idx += 4;
833794fc
MR
10714 if (htab->insn32)
10715 {
10716 bfd_put_micromips_32 (output_bfd,
40fc1451 10717 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10718 idx += 4;
10719 }
10720 else
10721 {
10722 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10723 idx += 2;
10724 }
1bbce132
MR
10725 if (stub_size == stub_big_size)
10726 {
10727 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10728
10729 bfd_put_micromips_32 (output_bfd,
10730 STUB_LUI_MICROMIPS (dynindx_hi),
10731 stub + idx);
10732 idx += 4;
10733 }
833794fc
MR
10734 if (htab->insn32)
10735 {
10736 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10737 stub + idx);
10738 idx += 4;
10739 }
10740 else
10741 {
10742 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10743 idx += 2;
10744 }
1bbce132
MR
10745
10746 /* If a large stub is not required and sign extension is not a
10747 problem, then use legacy code in the stub. */
10748 if (stub_size == stub_big_size)
10749 bfd_put_micromips_32 (output_bfd,
10750 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10751 stub + idx);
10752 else if (h->dynindx & ~0x7fff)
10753 bfd_put_micromips_32 (output_bfd,
10754 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10755 stub + idx);
10756 else
10757 bfd_put_micromips_32 (output_bfd,
10758 STUB_LI16S_MICROMIPS (output_bfd,
10759 h->dynindx),
10760 stub + idx);
10761 }
3d6746ca 10762 else
1bbce132
MR
10763 {
10764 idx = 0;
10765 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10766 idx += 4;
40fc1451 10767 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10768 idx += 4;
10769 if (stub_size == stub_big_size)
10770 {
10771 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10772 stub + idx);
10773 idx += 4;
10774 }
10775 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10776 idx += 4;
10777
10778 /* If a large stub is not required and sign extension is not a
10779 problem, then use legacy code in the stub. */
10780 if (stub_size == stub_big_size)
10781 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10782 stub + idx);
10783 else if (h->dynindx & ~0x7fff)
10784 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10785 stub + idx);
10786 else
10787 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10788 stub + idx);
10789 }
5108fc1b 10790
1bbce132
MR
10791 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10792 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10793 stub, stub_size);
b49e97c9 10794
1bbce132 10795 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10796 only for the referenced symbol. */
10797 sym->st_shndx = SHN_UNDEF;
10798
10799 /* The run-time linker uses the st_value field of the symbol
10800 to reset the global offset table entry for this external
10801 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10802 sym->st_value = (htab->sstubs->output_section->vma
10803 + htab->sstubs->output_offset
1bbce132
MR
10804 + h->plt.plist->stub_offset
10805 + isa_bit);
10806 sym->st_other = other;
b49e97c9
TS
10807 }
10808
738e5348
RS
10809 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10810 refer to the stub, since only the stub uses the standard calling
10811 conventions. */
10812 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10813 {
10814 BFD_ASSERT (hmips->need_fn_stub);
10815 sym->st_value = (hmips->fn_stub->output_section->vma
10816 + hmips->fn_stub->output_offset);
10817 sym->st_size = hmips->fn_stub->size;
10818 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10819 }
10820
b49e97c9 10821 BFD_ASSERT (h->dynindx != -1
f5385ebf 10822 || h->forced_local);
b49e97c9 10823
23cc69b6 10824 sgot = htab->sgot;
a8028dd0 10825 g = htab->got_info;
b49e97c9
TS
10826 BFD_ASSERT (g != NULL);
10827
10828 /* Run through the global symbol table, creating GOT entries for all
10829 the symbols that need them. */
020d7251 10830 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10831 {
10832 bfd_vma offset;
10833 bfd_vma value;
10834
6eaa6adc 10835 value = sym->st_value;
13fbec83 10836 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10837 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10838 }
10839
e641e783 10840 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10841 {
10842 struct mips_got_entry e, *p;
0626d451 10843 bfd_vma entry;
f4416af6 10844 bfd_vma offset;
f4416af6
AO
10845
10846 gg = g;
10847
10848 e.abfd = output_bfd;
10849 e.symndx = -1;
738e5348 10850 e.d.h = hmips;
9ab066b4 10851 e.tls_type = GOT_TLS_NONE;
143d77c5 10852
f4416af6
AO
10853 for (g = g->next; g->next != gg; g = g->next)
10854 {
10855 if (g->got_entries
10856 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10857 &e)))
10858 {
10859 offset = p->gotidx;
6c42ddb9 10860 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0e1862bb 10861 if (bfd_link_pic (info)
0626d451
RS
10862 || (elf_hash_table (info)->dynamic_sections_created
10863 && p->d.h != NULL
f5385ebf
AM
10864 && p->d.h->root.def_dynamic
10865 && !p->d.h->root.def_regular))
0626d451
RS
10866 {
10867 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10868 the various compatibility problems, it's easier to mock
10869 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10870 mips_elf_create_dynamic_relocation to calculate the
10871 appropriate addend. */
10872 Elf_Internal_Rela rel[3];
10873
10874 memset (rel, 0, sizeof (rel));
10875 if (ABI_64_P (output_bfd))
10876 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10877 else
10878 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10879 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10880
10881 entry = 0;
10882 if (! (mips_elf_create_dynamic_relocation
10883 (output_bfd, info, rel,
10884 e.d.h, NULL, sym->st_value, &entry, sgot)))
10885 return FALSE;
10886 }
10887 else
10888 entry = sym->st_value;
10889 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10890 }
10891 }
10892 }
10893
b49e97c9
TS
10894 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10895 name = h->root.root.string;
9637f6ef 10896 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10897 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10898 sym->st_shndx = SHN_ABS;
10899 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10900 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10901 {
10902 sym->st_shndx = SHN_ABS;
10903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10904 sym->st_value = 1;
10905 }
4a14403c 10906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10907 {
10908 sym->st_shndx = SHN_ABS;
10909 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10910 sym->st_value = elf_gp (output_bfd);
10911 }
10912 else if (SGI_COMPAT (output_bfd))
10913 {
10914 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10915 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10916 {
10917 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10918 sym->st_other = STO_PROTECTED;
10919 sym->st_value = 0;
10920 sym->st_shndx = SHN_MIPS_DATA;
10921 }
10922 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10923 {
10924 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10925 sym->st_other = STO_PROTECTED;
10926 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10927 sym->st_shndx = SHN_ABS;
10928 }
10929 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10930 {
10931 if (h->type == STT_FUNC)
10932 sym->st_shndx = SHN_MIPS_TEXT;
10933 else if (h->type == STT_OBJECT)
10934 sym->st_shndx = SHN_MIPS_DATA;
10935 }
10936 }
10937
861fb55a
DJ
10938 /* Emit a copy reloc, if needed. */
10939 if (h->needs_copy)
10940 {
10941 asection *s;
10942 bfd_vma symval;
10943
10944 BFD_ASSERT (h->dynindx != -1);
10945 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10946
10947 s = mips_elf_rel_dyn_section (info, FALSE);
10948 symval = (h->root.u.def.section->output_section->vma
10949 + h->root.u.def.section->output_offset
10950 + h->root.u.def.value);
10951 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10952 h->dynindx, R_MIPS_COPY, symval);
10953 }
10954
b49e97c9
TS
10955 /* Handle the IRIX6-specific symbols. */
10956 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10957 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10958
cbf8d970
MR
10959 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10960 to treat compressed symbols like any other. */
30c09090 10961 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10962 {
10963 BFD_ASSERT (sym->st_value & 1);
10964 sym->st_other -= STO_MIPS16;
10965 }
cbf8d970
MR
10966 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10967 {
10968 BFD_ASSERT (sym->st_value & 1);
10969 sym->st_other -= STO_MICROMIPS;
10970 }
b49e97c9 10971
b34976b6 10972 return TRUE;
b49e97c9
TS
10973}
10974
0a44bf69
RS
10975/* Likewise, for VxWorks. */
10976
10977bfd_boolean
10978_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10979 struct bfd_link_info *info,
10980 struct elf_link_hash_entry *h,
10981 Elf_Internal_Sym *sym)
10982{
10983 bfd *dynobj;
10984 asection *sgot;
10985 struct mips_got_info *g;
10986 struct mips_elf_link_hash_table *htab;
020d7251 10987 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10988
10989 htab = mips_elf_hash_table (info);
4dfe6ac6 10990 BFD_ASSERT (htab != NULL);
0a44bf69 10991 dynobj = elf_hash_table (info)->dynobj;
020d7251 10992 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 10993
1bbce132 10994 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 10995 {
6d79d2ed 10996 bfd_byte *loc;
1bbce132 10997 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
10998 Elf_Internal_Rela rel;
10999 static const bfd_vma *plt_entry;
1bbce132
MR
11000 bfd_vma gotplt_index;
11001 bfd_vma plt_offset;
11002
11003 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11004 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11005
11006 BFD_ASSERT (h->dynindx != -1);
11007 BFD_ASSERT (htab->splt != NULL);
1bbce132
MR
11008 BFD_ASSERT (gotplt_index != MINUS_ONE);
11009 BFD_ASSERT (plt_offset <= htab->splt->size);
0a44bf69
RS
11010
11011 /* Calculate the address of the .plt entry. */
11012 plt_address = (htab->splt->output_section->vma
11013 + htab->splt->output_offset
1bbce132 11014 + plt_offset);
0a44bf69
RS
11015
11016 /* Calculate the address of the .got.plt entry. */
11017 got_address = (htab->sgotplt->output_section->vma
11018 + htab->sgotplt->output_offset
1bbce132 11019 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11020
11021 /* Calculate the offset of the .got.plt entry from
11022 _GLOBAL_OFFSET_TABLE_. */
11023 got_offset = mips_elf_gotplt_index (info, h);
11024
11025 /* Calculate the offset for the branch at the start of the PLT
11026 entry. The branch jumps to the beginning of .plt. */
1bbce132 11027 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11028
11029 /* Fill in the initial value of the .got.plt entry. */
11030 bfd_put_32 (output_bfd, plt_address,
1bbce132
MR
11031 (htab->sgotplt->contents
11032 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11033
11034 /* Find out where the .plt entry should go. */
1bbce132 11035 loc = htab->splt->contents + plt_offset;
0a44bf69 11036
0e1862bb 11037 if (bfd_link_pic (info))
0a44bf69
RS
11038 {
11039 plt_entry = mips_vxworks_shared_plt_entry;
11040 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11041 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11042 }
11043 else
11044 {
11045 bfd_vma got_address_high, got_address_low;
11046
11047 plt_entry = mips_vxworks_exec_plt_entry;
11048 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11049 got_address_low = got_address & 0xffff;
11050
11051 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11052 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11053 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11054 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11055 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11056 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11057 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11058 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11059
11060 loc = (htab->srelplt2->contents
1bbce132 11061 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11062
11063 /* Emit a relocation for the .got.plt entry. */
11064 rel.r_offset = got_address;
11065 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11066 rel.r_addend = plt_offset;
0a44bf69
RS
11067 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11068
11069 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11070 loc += sizeof (Elf32_External_Rela);
11071 rel.r_offset = plt_address + 8;
11072 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11073 rel.r_addend = got_offset;
11074 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11075
11076 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11077 loc += sizeof (Elf32_External_Rela);
11078 rel.r_offset += 4;
11079 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11080 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11081 }
11082
11083 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
1bbce132
MR
11084 loc = (htab->srelplt->contents
11085 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11086 rel.r_offset = got_address;
11087 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11088 rel.r_addend = 0;
11089 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11090
11091 if (!h->def_regular)
11092 sym->st_shndx = SHN_UNDEF;
11093 }
11094
11095 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11096
23cc69b6 11097 sgot = htab->sgot;
a8028dd0 11098 g = htab->got_info;
0a44bf69
RS
11099 BFD_ASSERT (g != NULL);
11100
11101 /* See if this symbol has an entry in the GOT. */
020d7251 11102 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11103 {
11104 bfd_vma offset;
11105 Elf_Internal_Rela outrel;
11106 bfd_byte *loc;
11107 asection *s;
11108
11109 /* Install the symbol value in the GOT. */
13fbec83 11110 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11111 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11112
11113 /* Add a dynamic relocation for it. */
11114 s = mips_elf_rel_dyn_section (info, FALSE);
11115 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11116 outrel.r_offset = (sgot->output_section->vma
11117 + sgot->output_offset
11118 + offset);
11119 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11120 outrel.r_addend = 0;
11121 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11122 }
11123
11124 /* Emit a copy reloc, if needed. */
11125 if (h->needs_copy)
11126 {
11127 Elf_Internal_Rela rel;
11128
11129 BFD_ASSERT (h->dynindx != -1);
11130
11131 rel.r_offset = (h->root.u.def.section->output_section->vma
11132 + h->root.u.def.section->output_offset
11133 + h->root.u.def.value);
11134 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11135 rel.r_addend = 0;
11136 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11137 htab->srelbss->contents
11138 + (htab->srelbss->reloc_count
11139 * sizeof (Elf32_External_Rela)));
11140 ++htab->srelbss->reloc_count;
11141 }
11142
df58fc94
RS
11143 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11144 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11145 sym->st_value &= ~1;
11146
11147 return TRUE;
11148}
11149
861fb55a
DJ
11150/* Write out a plt0 entry to the beginning of .plt. */
11151
1bbce132 11152static bfd_boolean
861fb55a
DJ
11153mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11154{
11155 bfd_byte *loc;
11156 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11157 static const bfd_vma *plt_entry;
11158 struct mips_elf_link_hash_table *htab;
11159
11160 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11161 BFD_ASSERT (htab != NULL);
11162
861fb55a
DJ
11163 if (ABI_64_P (output_bfd))
11164 plt_entry = mips_n64_exec_plt0_entry;
11165 else if (ABI_N32_P (output_bfd))
11166 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11167 else if (!htab->plt_header_is_comp)
861fb55a 11168 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11169 else if (htab->insn32)
11170 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11171 else
11172 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11173
11174 /* Calculate the value of .got.plt. */
11175 gotplt_value = (htab->sgotplt->output_section->vma
11176 + htab->sgotplt->output_offset);
11177 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11178 gotplt_value_low = gotplt_value & 0xffff;
11179
11180 /* The PLT sequence is not safe for N64 if .got.plt's address can
11181 not be loaded in two instructions. */
11182 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11183 || ~(gotplt_value | 0x7fffffff) == 0);
11184
11185 /* Install the PLT header. */
11186 loc = htab->splt->contents;
1bbce132
MR
11187 if (plt_entry == micromips_o32_exec_plt0_entry)
11188 {
11189 bfd_vma gotpc_offset;
11190 bfd_vma loc_address;
11191 size_t i;
11192
11193 BFD_ASSERT (gotplt_value % 4 == 0);
11194
11195 loc_address = (htab->splt->output_section->vma
11196 + htab->splt->output_offset);
11197 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11198
11199 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11200 if (gotpc_offset + 0x1000000 >= 0x2000000)
11201 {
11202 (*_bfd_error_handler)
11203 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11204 output_bfd,
11205 htab->sgotplt->output_section,
11206 htab->splt->output_section,
11207 (long) gotpc_offset);
11208 bfd_set_error (bfd_error_no_error);
11209 return FALSE;
11210 }
11211 bfd_put_16 (output_bfd,
11212 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11213 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11214 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11215 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11216 }
833794fc
MR
11217 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11218 {
11219 size_t i;
11220
11221 bfd_put_16 (output_bfd, plt_entry[0], loc);
11222 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11223 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11224 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11225 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11226 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11227 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11228 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11229 }
1bbce132
MR
11230 else
11231 {
11232 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11233 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11234 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11235 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11236 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11237 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11238 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11239 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11240 }
11241
11242 return TRUE;
861fb55a
DJ
11243}
11244
0a44bf69
RS
11245/* Install the PLT header for a VxWorks executable and finalize the
11246 contents of .rela.plt.unloaded. */
11247
11248static void
11249mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11250{
11251 Elf_Internal_Rela rela;
11252 bfd_byte *loc;
11253 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11254 static const bfd_vma *plt_entry;
11255 struct mips_elf_link_hash_table *htab;
11256
11257 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11258 BFD_ASSERT (htab != NULL);
11259
0a44bf69
RS
11260 plt_entry = mips_vxworks_exec_plt0_entry;
11261
11262 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11263 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11264 + htab->root.hgot->root.u.def.section->output_offset
11265 + htab->root.hgot->root.u.def.value);
11266
11267 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11268 got_value_low = got_value & 0xffff;
11269
11270 /* Calculate the address of the PLT header. */
11271 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11272
11273 /* Install the PLT header. */
11274 loc = htab->splt->contents;
11275 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11276 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11277 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11278 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11279 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11280 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11281
11282 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11283 loc = htab->srelplt2->contents;
11284 rela.r_offset = plt_address;
11285 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11286 rela.r_addend = 0;
11287 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11288 loc += sizeof (Elf32_External_Rela);
11289
11290 /* Output the relocation for the following addiu of
11291 %lo(_GLOBAL_OFFSET_TABLE_). */
11292 rela.r_offset += 4;
11293 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11294 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11295 loc += sizeof (Elf32_External_Rela);
11296
11297 /* Fix up the remaining relocations. They may have the wrong
11298 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11299 in which symbols were output. */
11300 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11301 {
11302 Elf_Internal_Rela rel;
11303
11304 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11305 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11306 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11307 loc += sizeof (Elf32_External_Rela);
11308
11309 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11310 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11311 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11312 loc += sizeof (Elf32_External_Rela);
11313
11314 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11315 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11316 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11317 loc += sizeof (Elf32_External_Rela);
11318 }
11319}
11320
11321/* Install the PLT header for a VxWorks shared library. */
11322
11323static void
11324mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11325{
11326 unsigned int i;
11327 struct mips_elf_link_hash_table *htab;
11328
11329 htab = mips_elf_hash_table (info);
4dfe6ac6 11330 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11331
11332 /* We just need to copy the entry byte-by-byte. */
11333 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11334 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11335 htab->splt->contents + i * 4);
11336}
11337
b49e97c9
TS
11338/* Finish up the dynamic sections. */
11339
b34976b6 11340bfd_boolean
9719ad41
RS
11341_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11342 struct bfd_link_info *info)
b49e97c9
TS
11343{
11344 bfd *dynobj;
11345 asection *sdyn;
11346 asection *sgot;
f4416af6 11347 struct mips_got_info *gg, *g;
0a44bf69 11348 struct mips_elf_link_hash_table *htab;
b49e97c9 11349
0a44bf69 11350 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11351 BFD_ASSERT (htab != NULL);
11352
b49e97c9
TS
11353 dynobj = elf_hash_table (info)->dynobj;
11354
3d4d4302 11355 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11356
23cc69b6
RS
11357 sgot = htab->sgot;
11358 gg = htab->got_info;
b49e97c9
TS
11359
11360 if (elf_hash_table (info)->dynamic_sections_created)
11361 {
11362 bfd_byte *b;
943284cc 11363 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11364
11365 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11366 BFD_ASSERT (gg != NULL);
11367
d7206569 11368 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11369 BFD_ASSERT (g != NULL);
11370
11371 for (b = sdyn->contents;
eea6121a 11372 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11373 b += MIPS_ELF_DYN_SIZE (dynobj))
11374 {
11375 Elf_Internal_Dyn dyn;
11376 const char *name;
11377 size_t elemsize;
11378 asection *s;
b34976b6 11379 bfd_boolean swap_out_p;
b49e97c9
TS
11380
11381 /* Read in the current dynamic entry. */
11382 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11383
11384 /* Assume that we're going to modify it and write it out. */
b34976b6 11385 swap_out_p = TRUE;
b49e97c9
TS
11386
11387 switch (dyn.d_tag)
11388 {
11389 case DT_RELENT:
b49e97c9
TS
11390 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11391 break;
11392
0a44bf69
RS
11393 case DT_RELAENT:
11394 BFD_ASSERT (htab->is_vxworks);
11395 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11396 break;
11397
b49e97c9
TS
11398 case DT_STRSZ:
11399 /* Rewrite DT_STRSZ. */
11400 dyn.d_un.d_val =
11401 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11402 break;
11403
11404 case DT_PLTGOT:
861fb55a
DJ
11405 s = htab->sgot;
11406 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11407 break;
11408
11409 case DT_MIPS_PLTGOT:
11410 s = htab->sgotplt;
11411 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11412 break;
11413
11414 case DT_MIPS_RLD_VERSION:
11415 dyn.d_un.d_val = 1; /* XXX */
11416 break;
11417
11418 case DT_MIPS_FLAGS:
11419 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11420 break;
11421
b49e97c9 11422 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11423 {
11424 time_t t;
11425 time (&t);
11426 dyn.d_un.d_val = t;
11427 }
b49e97c9
TS
11428 break;
11429
11430 case DT_MIPS_ICHECKSUM:
11431 /* XXX FIXME: */
b34976b6 11432 swap_out_p = FALSE;
b49e97c9
TS
11433 break;
11434
11435 case DT_MIPS_IVERSION:
11436 /* XXX FIXME: */
b34976b6 11437 swap_out_p = FALSE;
b49e97c9
TS
11438 break;
11439
11440 case DT_MIPS_BASE_ADDRESS:
11441 s = output_bfd->sections;
11442 BFD_ASSERT (s != NULL);
11443 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11444 break;
11445
11446 case DT_MIPS_LOCAL_GOTNO:
11447 dyn.d_un.d_val = g->local_gotno;
11448 break;
11449
11450 case DT_MIPS_UNREFEXTNO:
11451 /* The index into the dynamic symbol table which is the
11452 entry of the first external symbol that is not
11453 referenced within the same object. */
11454 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11455 break;
11456
11457 case DT_MIPS_GOTSYM:
d222d210 11458 if (htab->global_gotsym)
b49e97c9 11459 {
d222d210 11460 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11461 break;
11462 }
11463 /* In case if we don't have global got symbols we default
11464 to setting DT_MIPS_GOTSYM to the same value as
11465 DT_MIPS_SYMTABNO, so we just fall through. */
11466
11467 case DT_MIPS_SYMTABNO:
11468 name = ".dynsym";
11469 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11470 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11471
131e2f8e
MF
11472 if (s != NULL)
11473 dyn.d_un.d_val = s->size / elemsize;
11474 else
11475 dyn.d_un.d_val = 0;
b49e97c9
TS
11476 break;
11477
11478 case DT_MIPS_HIPAGENO:
861fb55a 11479 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11480 break;
11481
11482 case DT_MIPS_RLD_MAP:
b4082c70
DD
11483 {
11484 struct elf_link_hash_entry *h;
11485 h = mips_elf_hash_table (info)->rld_symbol;
11486 if (!h)
11487 {
11488 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11489 swap_out_p = FALSE;
11490 break;
11491 }
11492 s = h->root.u.def.section;
a5499fa4
MF
11493
11494 /* The MIPS_RLD_MAP tag stores the absolute address of the
11495 debug pointer. */
b4082c70
DD
11496 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11497 + h->root.u.def.value);
11498 }
b49e97c9
TS
11499 break;
11500
a5499fa4
MF
11501 case DT_MIPS_RLD_MAP_REL:
11502 {
11503 struct elf_link_hash_entry *h;
11504 bfd_vma dt_addr, rld_addr;
11505 h = mips_elf_hash_table (info)->rld_symbol;
11506 if (!h)
11507 {
11508 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11509 swap_out_p = FALSE;
11510 break;
11511 }
11512 s = h->root.u.def.section;
11513
11514 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11515 pointer, relative to the address of the tag. */
11516 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11517 + (b - sdyn->contents));
a5499fa4
MF
11518 rld_addr = (s->output_section->vma + s->output_offset
11519 + h->root.u.def.value);
11520 dyn.d_un.d_ptr = rld_addr - dt_addr;
11521 }
11522 break;
11523
b49e97c9
TS
11524 case DT_MIPS_OPTIONS:
11525 s = (bfd_get_section_by_name
11526 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11527 dyn.d_un.d_ptr = s->vma;
11528 break;
11529
0a44bf69
RS
11530 case DT_RELASZ:
11531 BFD_ASSERT (htab->is_vxworks);
11532 /* The count does not include the JUMP_SLOT relocations. */
11533 if (htab->srelplt)
11534 dyn.d_un.d_val -= htab->srelplt->size;
11535 break;
11536
11537 case DT_PLTREL:
861fb55a
DJ
11538 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11539 if (htab->is_vxworks)
11540 dyn.d_un.d_val = DT_RELA;
11541 else
11542 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11543 break;
11544
11545 case DT_PLTRELSZ:
861fb55a 11546 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
11547 dyn.d_un.d_val = htab->srelplt->size;
11548 break;
11549
11550 case DT_JMPREL:
861fb55a
DJ
11551 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11552 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
11553 + htab->srelplt->output_offset);
11554 break;
11555
943284cc
DJ
11556 case DT_TEXTREL:
11557 /* If we didn't need any text relocations after all, delete
11558 the dynamic tag. */
11559 if (!(info->flags & DF_TEXTREL))
11560 {
11561 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11562 swap_out_p = FALSE;
11563 }
11564 break;
11565
11566 case DT_FLAGS:
11567 /* If we didn't need any text relocations after all, clear
11568 DF_TEXTREL from DT_FLAGS. */
11569 if (!(info->flags & DF_TEXTREL))
11570 dyn.d_un.d_val &= ~DF_TEXTREL;
11571 else
11572 swap_out_p = FALSE;
11573 break;
11574
b49e97c9 11575 default:
b34976b6 11576 swap_out_p = FALSE;
7a2b07ff
NS
11577 if (htab->is_vxworks
11578 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11579 swap_out_p = TRUE;
b49e97c9
TS
11580 break;
11581 }
11582
943284cc 11583 if (swap_out_p || dyn_skipped)
b49e97c9 11584 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11585 (dynobj, &dyn, b - dyn_skipped);
11586
11587 if (dyn_to_skip)
11588 {
11589 dyn_skipped += dyn_to_skip;
11590 dyn_to_skip = 0;
11591 }
b49e97c9 11592 }
943284cc
DJ
11593
11594 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11595 if (dyn_skipped > 0)
11596 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11597 }
11598
b55fd4d4
DJ
11599 if (sgot != NULL && sgot->size > 0
11600 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11601 {
0a44bf69
RS
11602 if (htab->is_vxworks)
11603 {
11604 /* The first entry of the global offset table points to the
11605 ".dynamic" section. The second is initialized by the
11606 loader and contains the shared library identifier.
11607 The third is also initialized by the loader and points
11608 to the lazy resolution stub. */
11609 MIPS_ELF_PUT_WORD (output_bfd,
11610 sdyn->output_offset + sdyn->output_section->vma,
11611 sgot->contents);
11612 MIPS_ELF_PUT_WORD (output_bfd, 0,
11613 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11614 MIPS_ELF_PUT_WORD (output_bfd, 0,
11615 sgot->contents
11616 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11617 }
11618 else
11619 {
11620 /* The first entry of the global offset table will be filled at
11621 runtime. The second entry will be used by some runtime loaders.
11622 This isn't the case of IRIX rld. */
11623 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11624 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11625 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11626 }
b49e97c9 11627
54938e2a
TS
11628 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11629 = MIPS_ELF_GOT_SIZE (output_bfd);
11630 }
b49e97c9 11631
f4416af6
AO
11632 /* Generate dynamic relocations for the non-primary gots. */
11633 if (gg != NULL && gg->next)
11634 {
11635 Elf_Internal_Rela rel[3];
11636 bfd_vma addend = 0;
11637
11638 memset (rel, 0, sizeof (rel));
11639 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11640
11641 for (g = gg->next; g->next != gg; g = g->next)
11642 {
91d6fa6a 11643 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11644 + g->next->tls_gotno;
f4416af6 11645
9719ad41 11646 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11647 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11648 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11649 sgot->contents
91d6fa6a 11650 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11651
0e1862bb 11652 if (! bfd_link_pic (info))
f4416af6
AO
11653 continue;
11654
cb22ccf4 11655 for (; got_index < g->local_gotno; got_index++)
f4416af6 11656 {
cb22ccf4
KCY
11657 if (got_index >= g->assigned_low_gotno
11658 && got_index <= g->assigned_high_gotno)
11659 continue;
11660
f4416af6 11661 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11662 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11663 if (!(mips_elf_create_dynamic_relocation
11664 (output_bfd, info, rel, NULL,
11665 bfd_abs_section_ptr,
11666 0, &addend, sgot)))
11667 return FALSE;
11668 BFD_ASSERT (addend == 0);
11669 }
11670 }
11671 }
11672
3133ddbf
DJ
11673 /* The generation of dynamic relocations for the non-primary gots
11674 adds more dynamic relocations. We cannot count them until
11675 here. */
11676
11677 if (elf_hash_table (info)->dynamic_sections_created)
11678 {
11679 bfd_byte *b;
11680 bfd_boolean swap_out_p;
11681
11682 BFD_ASSERT (sdyn != NULL);
11683
11684 for (b = sdyn->contents;
11685 b < sdyn->contents + sdyn->size;
11686 b += MIPS_ELF_DYN_SIZE (dynobj))
11687 {
11688 Elf_Internal_Dyn dyn;
11689 asection *s;
11690
11691 /* Read in the current dynamic entry. */
11692 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11693
11694 /* Assume that we're going to modify it and write it out. */
11695 swap_out_p = TRUE;
11696
11697 switch (dyn.d_tag)
11698 {
11699 case DT_RELSZ:
11700 /* Reduce DT_RELSZ to account for any relocations we
11701 decided not to make. This is for the n64 irix rld,
11702 which doesn't seem to apply any relocations if there
11703 are trailing null entries. */
0a44bf69 11704 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11705 dyn.d_un.d_val = (s->reloc_count
11706 * (ABI_64_P (output_bfd)
11707 ? sizeof (Elf64_Mips_External_Rel)
11708 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11709 /* Adjust the section size too. Tools like the prelinker
11710 can reasonably expect the values to the same. */
11711 elf_section_data (s->output_section)->this_hdr.sh_size
11712 = dyn.d_un.d_val;
3133ddbf
DJ
11713 break;
11714
11715 default:
11716 swap_out_p = FALSE;
11717 break;
11718 }
11719
11720 if (swap_out_p)
11721 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11722 (dynobj, &dyn, b);
11723 }
11724 }
11725
b49e97c9 11726 {
b49e97c9
TS
11727 asection *s;
11728 Elf32_compact_rel cpt;
11729
b49e97c9
TS
11730 if (SGI_COMPAT (output_bfd))
11731 {
11732 /* Write .compact_rel section out. */
3d4d4302 11733 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11734 if (s != NULL)
11735 {
11736 cpt.id1 = 1;
11737 cpt.num = s->reloc_count;
11738 cpt.id2 = 2;
11739 cpt.offset = (s->output_section->filepos
11740 + sizeof (Elf32_External_compact_rel));
11741 cpt.reserved0 = 0;
11742 cpt.reserved1 = 0;
11743 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11744 ((Elf32_External_compact_rel *)
11745 s->contents));
11746
11747 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11748 if (htab->sstubs != NULL)
b49e97c9
TS
11749 {
11750 file_ptr dummy_offset;
11751
4e41d0d7
RS
11752 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11753 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11754 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11755 htab->function_stub_size);
b49e97c9
TS
11756 }
11757 }
11758 }
11759
0a44bf69
RS
11760 /* The psABI says that the dynamic relocations must be sorted in
11761 increasing order of r_symndx. The VxWorks EABI doesn't require
11762 this, and because the code below handles REL rather than RELA
11763 relocations, using it for VxWorks would be outright harmful. */
11764 if (!htab->is_vxworks)
b49e97c9 11765 {
0a44bf69
RS
11766 s = mips_elf_rel_dyn_section (info, FALSE);
11767 if (s != NULL
11768 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11769 {
11770 reldyn_sorting_bfd = output_bfd;
b49e97c9 11771
0a44bf69
RS
11772 if (ABI_64_P (output_bfd))
11773 qsort ((Elf64_External_Rel *) s->contents + 1,
11774 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11775 sort_dynamic_relocs_64);
11776 else
11777 qsort ((Elf32_External_Rel *) s->contents + 1,
11778 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11779 sort_dynamic_relocs);
11780 }
b49e97c9 11781 }
b49e97c9
TS
11782 }
11783
861fb55a 11784 if (htab->splt && htab->splt->size > 0)
0a44bf69 11785 {
861fb55a
DJ
11786 if (htab->is_vxworks)
11787 {
0e1862bb 11788 if (bfd_link_pic (info))
861fb55a
DJ
11789 mips_vxworks_finish_shared_plt (output_bfd, info);
11790 else
11791 mips_vxworks_finish_exec_plt (output_bfd, info);
11792 }
0a44bf69 11793 else
861fb55a 11794 {
0e1862bb 11795 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11796 if (!mips_finish_exec_plt (output_bfd, info))
11797 return FALSE;
861fb55a 11798 }
0a44bf69 11799 }
b34976b6 11800 return TRUE;
b49e97c9
TS
11801}
11802
b49e97c9 11803
64543e1a
RS
11804/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11805
11806static void
9719ad41 11807mips_set_isa_flags (bfd *abfd)
b49e97c9 11808{
64543e1a 11809 flagword val;
b49e97c9
TS
11810
11811 switch (bfd_get_mach (abfd))
11812 {
11813 default:
11814 case bfd_mach_mips3000:
11815 val = E_MIPS_ARCH_1;
11816 break;
11817
11818 case bfd_mach_mips3900:
11819 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11820 break;
11821
11822 case bfd_mach_mips6000:
11823 val = E_MIPS_ARCH_2;
11824 break;
11825
11826 case bfd_mach_mips4000:
11827 case bfd_mach_mips4300:
11828 case bfd_mach_mips4400:
11829 case bfd_mach_mips4600:
11830 val = E_MIPS_ARCH_3;
11831 break;
11832
11833 case bfd_mach_mips4010:
11834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11835 break;
11836
11837 case bfd_mach_mips4100:
11838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11839 break;
11840
11841 case bfd_mach_mips4111:
11842 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11843 break;
11844
00707a0e
RS
11845 case bfd_mach_mips4120:
11846 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11847 break;
11848
b49e97c9
TS
11849 case bfd_mach_mips4650:
11850 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11851 break;
11852
00707a0e
RS
11853 case bfd_mach_mips5400:
11854 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11855 break;
11856
11857 case bfd_mach_mips5500:
11858 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11859 break;
11860
e407c74b
NC
11861 case bfd_mach_mips5900:
11862 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11863 break;
11864
0d2e43ed
ILT
11865 case bfd_mach_mips9000:
11866 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11867 break;
11868
b49e97c9 11869 case bfd_mach_mips5000:
5a7ea749 11870 case bfd_mach_mips7000:
b49e97c9
TS
11871 case bfd_mach_mips8000:
11872 case bfd_mach_mips10000:
11873 case bfd_mach_mips12000:
3aa3176b
TS
11874 case bfd_mach_mips14000:
11875 case bfd_mach_mips16000:
b49e97c9
TS
11876 val = E_MIPS_ARCH_4;
11877 break;
11878
11879 case bfd_mach_mips5:
11880 val = E_MIPS_ARCH_5;
11881 break;
11882
350cc38d
MS
11883 case bfd_mach_mips_loongson_2e:
11884 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11885 break;
11886
11887 case bfd_mach_mips_loongson_2f:
11888 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11889 break;
11890
b49e97c9
TS
11891 case bfd_mach_mips_sb1:
11892 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11893 break;
11894
d051516a 11895 case bfd_mach_mips_loongson_3a:
4ba154f5 11896 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11897 break;
11898
6f179bd0 11899 case bfd_mach_mips_octeon:
dd6a37e7 11900 case bfd_mach_mips_octeonp:
6f179bd0
AN
11901 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11902 break;
11903
2c629856
N
11904 case bfd_mach_mips_octeon3:
11905 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11906 break;
11907
52b6b6b9
JM
11908 case bfd_mach_mips_xlr:
11909 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11910 break;
11911
432233b3
AP
11912 case bfd_mach_mips_octeon2:
11913 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11914 break;
11915
b49e97c9
TS
11916 case bfd_mach_mipsisa32:
11917 val = E_MIPS_ARCH_32;
11918 break;
11919
11920 case bfd_mach_mipsisa64:
11921 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11922 break;
11923
11924 case bfd_mach_mipsisa32r2:
ae52f483
AB
11925 case bfd_mach_mipsisa32r3:
11926 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11927 val = E_MIPS_ARCH_32R2;
11928 break;
5f74bc13
CD
11929
11930 case bfd_mach_mipsisa64r2:
ae52f483
AB
11931 case bfd_mach_mipsisa64r3:
11932 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11933 val = E_MIPS_ARCH_64R2;
11934 break;
7361da2c
AB
11935
11936 case bfd_mach_mipsisa32r6:
11937 val = E_MIPS_ARCH_32R6;
11938 break;
11939
11940 case bfd_mach_mipsisa64r6:
11941 val = E_MIPS_ARCH_64R6;
11942 break;
b49e97c9 11943 }
b49e97c9
TS
11944 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11945 elf_elfheader (abfd)->e_flags |= val;
11946
64543e1a
RS
11947}
11948
11949
28dbcedc
AM
11950/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11951 Don't do so for code sections. We want to keep ordering of HI16/LO16
11952 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11953 relocs to be sorted. */
11954
11955bfd_boolean
11956_bfd_mips_elf_sort_relocs_p (asection *sec)
11957{
11958 return (sec->flags & SEC_CODE) == 0;
11959}
11960
11961
64543e1a
RS
11962/* The final processing done just before writing out a MIPS ELF object
11963 file. This gets the MIPS architecture right based on the machine
11964 number. This is used by both the 32-bit and the 64-bit ABI. */
11965
11966void
9719ad41
RS
11967_bfd_mips_elf_final_write_processing (bfd *abfd,
11968 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11969{
11970 unsigned int i;
11971 Elf_Internal_Shdr **hdrpp;
11972 const char *name;
11973 asection *sec;
11974
11975 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11976 is nonzero. This is for compatibility with old objects, which used
11977 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11978 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11979 mips_set_isa_flags (abfd);
11980
b49e97c9
TS
11981 /* Set the sh_info field for .gptab sections and other appropriate
11982 info for each special section. */
11983 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11984 i < elf_numsections (abfd);
11985 i++, hdrpp++)
11986 {
11987 switch ((*hdrpp)->sh_type)
11988 {
11989 case SHT_MIPS_MSYM:
11990 case SHT_MIPS_LIBLIST:
11991 sec = bfd_get_section_by_name (abfd, ".dynstr");
11992 if (sec != NULL)
11993 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11994 break;
11995
11996 case SHT_MIPS_GPTAB:
11997 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11998 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11999 BFD_ASSERT (name != NULL
0112cd26 12000 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12001 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12002 BFD_ASSERT (sec != NULL);
12003 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12004 break;
12005
12006 case SHT_MIPS_CONTENT:
12007 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12008 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12009 BFD_ASSERT (name != NULL
0112cd26 12010 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12011 sec = bfd_get_section_by_name (abfd,
12012 name + sizeof ".MIPS.content" - 1);
12013 BFD_ASSERT (sec != NULL);
12014 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12015 break;
12016
12017 case SHT_MIPS_SYMBOL_LIB:
12018 sec = bfd_get_section_by_name (abfd, ".dynsym");
12019 if (sec != NULL)
12020 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12021 sec = bfd_get_section_by_name (abfd, ".liblist");
12022 if (sec != NULL)
12023 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12024 break;
12025
12026 case SHT_MIPS_EVENTS:
12027 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12028 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12029 BFD_ASSERT (name != NULL);
0112cd26 12030 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12031 sec = bfd_get_section_by_name (abfd,
12032 name + sizeof ".MIPS.events" - 1);
12033 else
12034 {
0112cd26 12035 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12036 sec = bfd_get_section_by_name (abfd,
12037 (name
12038 + sizeof ".MIPS.post_rel" - 1));
12039 }
12040 BFD_ASSERT (sec != NULL);
12041 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12042 break;
12043
12044 }
12045 }
12046}
12047\f
8dc1a139 12048/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12049 segments. */
12050
12051int
a6b96beb
AM
12052_bfd_mips_elf_additional_program_headers (bfd *abfd,
12053 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12054{
12055 asection *s;
12056 int ret = 0;
12057
12058 /* See if we need a PT_MIPS_REGINFO segment. */
12059 s = bfd_get_section_by_name (abfd, ".reginfo");
12060 if (s && (s->flags & SEC_LOAD))
12061 ++ret;
12062
351cdf24
MF
12063 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12064 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12065 ++ret;
12066
b49e97c9
TS
12067 /* See if we need a PT_MIPS_OPTIONS segment. */
12068 if (IRIX_COMPAT (abfd) == ict_irix6
12069 && bfd_get_section_by_name (abfd,
12070 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12071 ++ret;
12072
12073 /* See if we need a PT_MIPS_RTPROC segment. */
12074 if (IRIX_COMPAT (abfd) == ict_irix5
12075 && bfd_get_section_by_name (abfd, ".dynamic")
12076 && bfd_get_section_by_name (abfd, ".mdebug"))
12077 ++ret;
12078
98c904a8
RS
12079 /* Allocate a PT_NULL header in dynamic objects. See
12080 _bfd_mips_elf_modify_segment_map for details. */
12081 if (!SGI_COMPAT (abfd)
12082 && bfd_get_section_by_name (abfd, ".dynamic"))
12083 ++ret;
12084
b49e97c9
TS
12085 return ret;
12086}
12087
8dc1a139 12088/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12089
b34976b6 12090bfd_boolean
9719ad41 12091_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12092 struct bfd_link_info *info)
b49e97c9
TS
12093{
12094 asection *s;
12095 struct elf_segment_map *m, **pm;
12096 bfd_size_type amt;
12097
12098 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12099 segment. */
12100 s = bfd_get_section_by_name (abfd, ".reginfo");
12101 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12102 {
12bd6957 12103 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12104 if (m->p_type == PT_MIPS_REGINFO)
12105 break;
12106 if (m == NULL)
12107 {
12108 amt = sizeof *m;
9719ad41 12109 m = bfd_zalloc (abfd, amt);
b49e97c9 12110 if (m == NULL)
b34976b6 12111 return FALSE;
b49e97c9
TS
12112
12113 m->p_type = PT_MIPS_REGINFO;
12114 m->count = 1;
12115 m->sections[0] = s;
12116
12117 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12118 pm = &elf_seg_map (abfd);
b49e97c9
TS
12119 while (*pm != NULL
12120 && ((*pm)->p_type == PT_PHDR
12121 || (*pm)->p_type == PT_INTERP))
12122 pm = &(*pm)->next;
12123
12124 m->next = *pm;
12125 *pm = m;
12126 }
12127 }
12128
351cdf24
MF
12129 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12130 segment. */
12131 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12132 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12133 {
12134 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12135 if (m->p_type == PT_MIPS_ABIFLAGS)
12136 break;
12137 if (m == NULL)
12138 {
12139 amt = sizeof *m;
12140 m = bfd_zalloc (abfd, amt);
12141 if (m == NULL)
12142 return FALSE;
12143
12144 m->p_type = PT_MIPS_ABIFLAGS;
12145 m->count = 1;
12146 m->sections[0] = s;
12147
12148 /* We want to put it after the PHDR and INTERP segments. */
12149 pm = &elf_seg_map (abfd);
12150 while (*pm != NULL
12151 && ((*pm)->p_type == PT_PHDR
12152 || (*pm)->p_type == PT_INTERP))
12153 pm = &(*pm)->next;
12154
12155 m->next = *pm;
12156 *pm = m;
12157 }
12158 }
12159
b49e97c9
TS
12160 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12161 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12162 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12163 table. */
c1fd6598
AO
12164 if (NEWABI_P (abfd)
12165 /* On non-IRIX6 new abi, we'll have already created a segment
12166 for this section, so don't create another. I'm not sure this
12167 is not also the case for IRIX 6, but I can't test it right
12168 now. */
12169 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12170 {
12171 for (s = abfd->sections; s; s = s->next)
12172 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12173 break;
12174
12175 if (s)
12176 {
12177 struct elf_segment_map *options_segment;
12178
12bd6957 12179 pm = &elf_seg_map (abfd);
98a8deaf
RS
12180 while (*pm != NULL
12181 && ((*pm)->p_type == PT_PHDR
12182 || (*pm)->p_type == PT_INTERP))
12183 pm = &(*pm)->next;
b49e97c9 12184
8ded5a0f
AM
12185 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12186 {
12187 amt = sizeof (struct elf_segment_map);
12188 options_segment = bfd_zalloc (abfd, amt);
12189 options_segment->next = *pm;
12190 options_segment->p_type = PT_MIPS_OPTIONS;
12191 options_segment->p_flags = PF_R;
12192 options_segment->p_flags_valid = TRUE;
12193 options_segment->count = 1;
12194 options_segment->sections[0] = s;
12195 *pm = options_segment;
12196 }
b49e97c9
TS
12197 }
12198 }
12199 else
12200 {
12201 if (IRIX_COMPAT (abfd) == ict_irix5)
12202 {
12203 /* If there are .dynamic and .mdebug sections, we make a room
12204 for the RTPROC header. FIXME: Rewrite without section names. */
12205 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12206 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12207 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12208 {
12bd6957 12209 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12210 if (m->p_type == PT_MIPS_RTPROC)
12211 break;
12212 if (m == NULL)
12213 {
12214 amt = sizeof *m;
9719ad41 12215 m = bfd_zalloc (abfd, amt);
b49e97c9 12216 if (m == NULL)
b34976b6 12217 return FALSE;
b49e97c9
TS
12218
12219 m->p_type = PT_MIPS_RTPROC;
12220
12221 s = bfd_get_section_by_name (abfd, ".rtproc");
12222 if (s == NULL)
12223 {
12224 m->count = 0;
12225 m->p_flags = 0;
12226 m->p_flags_valid = 1;
12227 }
12228 else
12229 {
12230 m->count = 1;
12231 m->sections[0] = s;
12232 }
12233
12234 /* We want to put it after the DYNAMIC segment. */
12bd6957 12235 pm = &elf_seg_map (abfd);
b49e97c9
TS
12236 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12237 pm = &(*pm)->next;
12238 if (*pm != NULL)
12239 pm = &(*pm)->next;
12240
12241 m->next = *pm;
12242 *pm = m;
12243 }
12244 }
12245 }
8dc1a139 12246 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12247 .dynstr, .dynsym, and .hash sections, and everything in
12248 between. */
12bd6957 12249 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12250 pm = &(*pm)->next)
12251 if ((*pm)->p_type == PT_DYNAMIC)
12252 break;
12253 m = *pm;
f6f62d6f
RS
12254 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12255 glibc's dynamic linker has traditionally derived the number of
12256 tags from the p_filesz field, and sometimes allocates stack
12257 arrays of that size. An overly-big PT_DYNAMIC segment can
12258 be actively harmful in such cases. Making PT_DYNAMIC contain
12259 other sections can also make life hard for the prelinker,
12260 which might move one of the other sections to a different
12261 PT_LOAD segment. */
12262 if (SGI_COMPAT (abfd)
12263 && m != NULL
12264 && m->count == 1
12265 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12266 {
12267 static const char *sec_names[] =
12268 {
12269 ".dynamic", ".dynstr", ".dynsym", ".hash"
12270 };
12271 bfd_vma low, high;
12272 unsigned int i, c;
12273 struct elf_segment_map *n;
12274
792b4a53 12275 low = ~(bfd_vma) 0;
b49e97c9
TS
12276 high = 0;
12277 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12278 {
12279 s = bfd_get_section_by_name (abfd, sec_names[i]);
12280 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12281 {
12282 bfd_size_type sz;
12283
12284 if (low > s->vma)
12285 low = s->vma;
eea6121a 12286 sz = s->size;
b49e97c9
TS
12287 if (high < s->vma + sz)
12288 high = s->vma + sz;
12289 }
12290 }
12291
12292 c = 0;
12293 for (s = abfd->sections; s != NULL; s = s->next)
12294 if ((s->flags & SEC_LOAD) != 0
12295 && s->vma >= low
eea6121a 12296 && s->vma + s->size <= high)
b49e97c9
TS
12297 ++c;
12298
12299 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12300 n = bfd_zalloc (abfd, amt);
b49e97c9 12301 if (n == NULL)
b34976b6 12302 return FALSE;
b49e97c9
TS
12303 *n = *m;
12304 n->count = c;
12305
12306 i = 0;
12307 for (s = abfd->sections; s != NULL; s = s->next)
12308 {
12309 if ((s->flags & SEC_LOAD) != 0
12310 && s->vma >= low
eea6121a 12311 && s->vma + s->size <= high)
b49e97c9
TS
12312 {
12313 n->sections[i] = s;
12314 ++i;
12315 }
12316 }
12317
12318 *pm = n;
12319 }
12320 }
12321
98c904a8
RS
12322 /* Allocate a spare program header in dynamic objects so that tools
12323 like the prelinker can add an extra PT_LOAD entry.
12324
12325 If the prelinker needs to make room for a new PT_LOAD entry, its
12326 standard procedure is to move the first (read-only) sections into
12327 the new (writable) segment. However, the MIPS ABI requires
12328 .dynamic to be in a read-only segment, and the section will often
12329 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12330
12331 Although the prelinker could in principle move .dynamic to a
12332 writable segment, it seems better to allocate a spare program
12333 header instead, and avoid the need to move any sections.
12334 There is a long tradition of allocating spare dynamic tags,
12335 so allocating a spare program header seems like a natural
7c8b76cc
JM
12336 extension.
12337
12338 If INFO is NULL, we may be copying an already prelinked binary
12339 with objcopy or strip, so do not add this header. */
12340 if (info != NULL
12341 && !SGI_COMPAT (abfd)
98c904a8
RS
12342 && bfd_get_section_by_name (abfd, ".dynamic"))
12343 {
12bd6957 12344 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12345 if ((*pm)->p_type == PT_NULL)
12346 break;
12347 if (*pm == NULL)
12348 {
12349 m = bfd_zalloc (abfd, sizeof (*m));
12350 if (m == NULL)
12351 return FALSE;
12352
12353 m->p_type = PT_NULL;
12354 *pm = m;
12355 }
12356 }
12357
b34976b6 12358 return TRUE;
b49e97c9
TS
12359}
12360\f
12361/* Return the section that should be marked against GC for a given
12362 relocation. */
12363
12364asection *
9719ad41 12365_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12366 struct bfd_link_info *info,
9719ad41
RS
12367 Elf_Internal_Rela *rel,
12368 struct elf_link_hash_entry *h,
12369 Elf_Internal_Sym *sym)
b49e97c9
TS
12370{
12371 /* ??? Do mips16 stub sections need to be handled special? */
12372
12373 if (h != NULL)
07adf181
AM
12374 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12375 {
12376 case R_MIPS_GNU_VTINHERIT:
12377 case R_MIPS_GNU_VTENTRY:
12378 return NULL;
12379 }
b49e97c9 12380
07adf181 12381 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12382}
12383
12384/* Update the got entry reference counts for the section being removed. */
12385
b34976b6 12386bfd_boolean
9719ad41
RS
12387_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12388 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12389 asection *sec ATTRIBUTE_UNUSED,
12390 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12391{
12392#if 0
12393 Elf_Internal_Shdr *symtab_hdr;
12394 struct elf_link_hash_entry **sym_hashes;
12395 bfd_signed_vma *local_got_refcounts;
12396 const Elf_Internal_Rela *rel, *relend;
12397 unsigned long r_symndx;
12398 struct elf_link_hash_entry *h;
12399
0e1862bb 12400 if (bfd_link_relocatable (info))
7dda2462
TG
12401 return TRUE;
12402
b49e97c9
TS
12403 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12404 sym_hashes = elf_sym_hashes (abfd);
12405 local_got_refcounts = elf_local_got_refcounts (abfd);
12406
12407 relend = relocs + sec->reloc_count;
12408 for (rel = relocs; rel < relend; rel++)
12409 switch (ELF_R_TYPE (abfd, rel->r_info))
12410 {
738e5348
RS
12411 case R_MIPS16_GOT16:
12412 case R_MIPS16_CALL16:
b49e97c9
TS
12413 case R_MIPS_GOT16:
12414 case R_MIPS_CALL16:
12415 case R_MIPS_CALL_HI16:
12416 case R_MIPS_CALL_LO16:
12417 case R_MIPS_GOT_HI16:
12418 case R_MIPS_GOT_LO16:
4a14403c
TS
12419 case R_MIPS_GOT_DISP:
12420 case R_MIPS_GOT_PAGE:
12421 case R_MIPS_GOT_OFST:
df58fc94
RS
12422 case R_MICROMIPS_GOT16:
12423 case R_MICROMIPS_CALL16:
12424 case R_MICROMIPS_CALL_HI16:
12425 case R_MICROMIPS_CALL_LO16:
12426 case R_MICROMIPS_GOT_HI16:
12427 case R_MICROMIPS_GOT_LO16:
12428 case R_MICROMIPS_GOT_DISP:
12429 case R_MICROMIPS_GOT_PAGE:
12430 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12431 /* ??? It would seem that the existing MIPS code does no sort
12432 of reference counting or whatnot on its GOT and PLT entries,
12433 so it is not possible to garbage collect them at this time. */
12434 break;
12435
12436 default:
12437 break;
12438 }
12439#endif
12440
b34976b6 12441 return TRUE;
b49e97c9 12442}
351cdf24
MF
12443
12444/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12445
12446bfd_boolean
12447_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12448 elf_gc_mark_hook_fn gc_mark_hook)
12449{
12450 bfd *sub;
12451
12452 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12453
12454 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12455 {
12456 asection *o;
12457
12458 if (! is_mips_elf (sub))
12459 continue;
12460
12461 for (o = sub->sections; o != NULL; o = o->next)
12462 if (!o->gc_mark
12463 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12464 (bfd_get_section_name (sub, o)))
12465 {
12466 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12467 return FALSE;
12468 }
12469 }
12470
12471 return TRUE;
12472}
b49e97c9
TS
12473\f
12474/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12475 hiding the old indirect symbol. Process additional relocation
12476 information. Also called for weakdefs, in which case we just let
12477 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12478
12479void
fcfa13d2 12480_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12481 struct elf_link_hash_entry *dir,
12482 struct elf_link_hash_entry *ind)
b49e97c9
TS
12483{
12484 struct mips_elf_link_hash_entry *dirmips, *indmips;
12485
fcfa13d2 12486 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12487
861fb55a
DJ
12488 dirmips = (struct mips_elf_link_hash_entry *) dir;
12489 indmips = (struct mips_elf_link_hash_entry *) ind;
12490 /* Any absolute non-dynamic relocations against an indirect or weak
12491 definition will be against the target symbol. */
12492 if (indmips->has_static_relocs)
12493 dirmips->has_static_relocs = TRUE;
12494
b49e97c9
TS
12495 if (ind->root.type != bfd_link_hash_indirect)
12496 return;
12497
b49e97c9
TS
12498 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12499 if (indmips->readonly_reloc)
b34976b6 12500 dirmips->readonly_reloc = TRUE;
b49e97c9 12501 if (indmips->no_fn_stub)
b34976b6 12502 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12503 if (indmips->fn_stub)
12504 {
12505 dirmips->fn_stub = indmips->fn_stub;
12506 indmips->fn_stub = NULL;
12507 }
12508 if (indmips->need_fn_stub)
12509 {
12510 dirmips->need_fn_stub = TRUE;
12511 indmips->need_fn_stub = FALSE;
12512 }
12513 if (indmips->call_stub)
12514 {
12515 dirmips->call_stub = indmips->call_stub;
12516 indmips->call_stub = NULL;
12517 }
12518 if (indmips->call_fp_stub)
12519 {
12520 dirmips->call_fp_stub = indmips->call_fp_stub;
12521 indmips->call_fp_stub = NULL;
12522 }
634835ae
RS
12523 if (indmips->global_got_area < dirmips->global_got_area)
12524 dirmips->global_got_area = indmips->global_got_area;
12525 if (indmips->global_got_area < GGA_NONE)
12526 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12527 if (indmips->has_nonpic_branches)
12528 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12529}
b49e97c9 12530\f
d01414a5
TS
12531#define PDR_SIZE 32
12532
b34976b6 12533bfd_boolean
9719ad41
RS
12534_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12535 struct bfd_link_info *info)
d01414a5
TS
12536{
12537 asection *o;
b34976b6 12538 bfd_boolean ret = FALSE;
d01414a5
TS
12539 unsigned char *tdata;
12540 size_t i, skip;
12541
12542 o = bfd_get_section_by_name (abfd, ".pdr");
12543 if (! o)
b34976b6 12544 return FALSE;
eea6121a 12545 if (o->size == 0)
b34976b6 12546 return FALSE;
eea6121a 12547 if (o->size % PDR_SIZE != 0)
b34976b6 12548 return FALSE;
d01414a5
TS
12549 if (o->output_section != NULL
12550 && bfd_is_abs_section (o->output_section))
b34976b6 12551 return FALSE;
d01414a5 12552
eea6121a 12553 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12554 if (! tdata)
b34976b6 12555 return FALSE;
d01414a5 12556
9719ad41 12557 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12558 info->keep_memory);
d01414a5
TS
12559 if (!cookie->rels)
12560 {
12561 free (tdata);
b34976b6 12562 return FALSE;
d01414a5
TS
12563 }
12564
12565 cookie->rel = cookie->rels;
12566 cookie->relend = cookie->rels + o->reloc_count;
12567
eea6121a 12568 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12569 {
c152c796 12570 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12571 {
12572 tdata[i] = 1;
12573 skip ++;
12574 }
12575 }
12576
12577 if (skip != 0)
12578 {
f0abc2a1 12579 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12580 if (o->rawsize == 0)
12581 o->rawsize = o->size;
eea6121a 12582 o->size -= skip * PDR_SIZE;
b34976b6 12583 ret = TRUE;
d01414a5
TS
12584 }
12585 else
12586 free (tdata);
12587
12588 if (! info->keep_memory)
12589 free (cookie->rels);
12590
12591 return ret;
12592}
12593
b34976b6 12594bfd_boolean
9719ad41 12595_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12596{
12597 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12598 return TRUE;
12599 return FALSE;
53bfd6b4 12600}
d01414a5 12601
b34976b6 12602bfd_boolean
c7b8f16e
JB
12603_bfd_mips_elf_write_section (bfd *output_bfd,
12604 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12605 asection *sec, bfd_byte *contents)
d01414a5
TS
12606{
12607 bfd_byte *to, *from, *end;
12608 int i;
12609
12610 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12611 return FALSE;
d01414a5 12612
f0abc2a1 12613 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12614 return FALSE;
d01414a5
TS
12615
12616 to = contents;
eea6121a 12617 end = contents + sec->size;
d01414a5
TS
12618 for (from = contents, i = 0;
12619 from < end;
12620 from += PDR_SIZE, i++)
12621 {
f0abc2a1 12622 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12623 continue;
12624 if (to != from)
12625 memcpy (to, from, PDR_SIZE);
12626 to += PDR_SIZE;
12627 }
12628 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12629 sec->output_offset, sec->size);
b34976b6 12630 return TRUE;
d01414a5 12631}
53bfd6b4 12632\f
df58fc94
RS
12633/* microMIPS code retains local labels for linker relaxation. Omit them
12634 from output by default for clarity. */
12635
12636bfd_boolean
12637_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12638{
12639 return _bfd_elf_is_local_label_name (abfd, sym->name);
12640}
12641
b49e97c9
TS
12642/* MIPS ELF uses a special find_nearest_line routine in order the
12643 handle the ECOFF debugging information. */
12644
12645struct mips_elf_find_line
12646{
12647 struct ecoff_debug_info d;
12648 struct ecoff_find_line i;
12649};
12650
b34976b6 12651bfd_boolean
fb167eb2
AM
12652_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12653 asection *section, bfd_vma offset,
9719ad41
RS
12654 const char **filename_ptr,
12655 const char **functionname_ptr,
fb167eb2
AM
12656 unsigned int *line_ptr,
12657 unsigned int *discriminator_ptr)
b49e97c9
TS
12658{
12659 asection *msec;
12660
fb167eb2 12661 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12662 filename_ptr, functionname_ptr,
fb167eb2
AM
12663 line_ptr, discriminator_ptr,
12664 dwarf_debug_sections,
12665 ABI_64_P (abfd) ? 8 : 0,
12666 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12667 return TRUE;
b49e97c9 12668
fb167eb2 12669 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12670 filename_ptr, functionname_ptr,
fb167eb2 12671 line_ptr))
b34976b6 12672 return TRUE;
b49e97c9
TS
12673
12674 msec = bfd_get_section_by_name (abfd, ".mdebug");
12675 if (msec != NULL)
12676 {
12677 flagword origflags;
12678 struct mips_elf_find_line *fi;
12679 const struct ecoff_debug_swap * const swap =
12680 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12681
12682 /* If we are called during a link, mips_elf_final_link may have
12683 cleared the SEC_HAS_CONTENTS field. We force it back on here
12684 if appropriate (which it normally will be). */
12685 origflags = msec->flags;
12686 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12687 msec->flags |= SEC_HAS_CONTENTS;
12688
698600e4 12689 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12690 if (fi == NULL)
12691 {
12692 bfd_size_type external_fdr_size;
12693 char *fraw_src;
12694 char *fraw_end;
12695 struct fdr *fdr_ptr;
12696 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12697
9719ad41 12698 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12699 if (fi == NULL)
12700 {
12701 msec->flags = origflags;
b34976b6 12702 return FALSE;
b49e97c9
TS
12703 }
12704
12705 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12706 {
12707 msec->flags = origflags;
b34976b6 12708 return FALSE;
b49e97c9
TS
12709 }
12710
12711 /* Swap in the FDR information. */
12712 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12713 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12714 if (fi->d.fdr == NULL)
12715 {
12716 msec->flags = origflags;
b34976b6 12717 return FALSE;
b49e97c9
TS
12718 }
12719 external_fdr_size = swap->external_fdr_size;
12720 fdr_ptr = fi->d.fdr;
12721 fraw_src = (char *) fi->d.external_fdr;
12722 fraw_end = (fraw_src
12723 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12724 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12725 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12726
698600e4 12727 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12728
12729 /* Note that we don't bother to ever free this information.
12730 find_nearest_line is either called all the time, as in
12731 objdump -l, so the information should be saved, or it is
12732 rarely called, as in ld error messages, so the memory
12733 wasted is unimportant. Still, it would probably be a
12734 good idea for free_cached_info to throw it away. */
12735 }
12736
12737 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12738 &fi->i, filename_ptr, functionname_ptr,
12739 line_ptr))
12740 {
12741 msec->flags = origflags;
b34976b6 12742 return TRUE;
b49e97c9
TS
12743 }
12744
12745 msec->flags = origflags;
12746 }
12747
12748 /* Fall back on the generic ELF find_nearest_line routine. */
12749
fb167eb2 12750 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12751 filename_ptr, functionname_ptr,
fb167eb2 12752 line_ptr, discriminator_ptr);
b49e97c9 12753}
4ab527b0
FF
12754
12755bfd_boolean
12756_bfd_mips_elf_find_inliner_info (bfd *abfd,
12757 const char **filename_ptr,
12758 const char **functionname_ptr,
12759 unsigned int *line_ptr)
12760{
12761 bfd_boolean found;
12762 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12763 functionname_ptr, line_ptr,
12764 & elf_tdata (abfd)->dwarf2_find_line_info);
12765 return found;
12766}
12767
b49e97c9
TS
12768\f
12769/* When are writing out the .options or .MIPS.options section,
12770 remember the bytes we are writing out, so that we can install the
12771 GP value in the section_processing routine. */
12772
b34976b6 12773bfd_boolean
9719ad41
RS
12774_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12775 const void *location,
12776 file_ptr offset, bfd_size_type count)
b49e97c9 12777{
cc2e31b9 12778 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12779 {
12780 bfd_byte *c;
12781
12782 if (elf_section_data (section) == NULL)
12783 {
12784 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12785 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12786 if (elf_section_data (section) == NULL)
b34976b6 12787 return FALSE;
b49e97c9 12788 }
f0abc2a1 12789 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12790 if (c == NULL)
12791 {
eea6121a 12792 c = bfd_zalloc (abfd, section->size);
b49e97c9 12793 if (c == NULL)
b34976b6 12794 return FALSE;
f0abc2a1 12795 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12796 }
12797
9719ad41 12798 memcpy (c + offset, location, count);
b49e97c9
TS
12799 }
12800
12801 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12802 count);
12803}
12804
12805/* This is almost identical to bfd_generic_get_... except that some
12806 MIPS relocations need to be handled specially. Sigh. */
12807
12808bfd_byte *
9719ad41
RS
12809_bfd_elf_mips_get_relocated_section_contents
12810 (bfd *abfd,
12811 struct bfd_link_info *link_info,
12812 struct bfd_link_order *link_order,
12813 bfd_byte *data,
12814 bfd_boolean relocatable,
12815 asymbol **symbols)
b49e97c9
TS
12816{
12817 /* Get enough memory to hold the stuff */
12818 bfd *input_bfd = link_order->u.indirect.section->owner;
12819 asection *input_section = link_order->u.indirect.section;
eea6121a 12820 bfd_size_type sz;
b49e97c9
TS
12821
12822 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12823 arelent **reloc_vector = NULL;
12824 long reloc_count;
12825
12826 if (reloc_size < 0)
12827 goto error_return;
12828
9719ad41 12829 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12830 if (reloc_vector == NULL && reloc_size != 0)
12831 goto error_return;
12832
12833 /* read in the section */
eea6121a
AM
12834 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12835 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12836 goto error_return;
12837
b49e97c9
TS
12838 reloc_count = bfd_canonicalize_reloc (input_bfd,
12839 input_section,
12840 reloc_vector,
12841 symbols);
12842 if (reloc_count < 0)
12843 goto error_return;
12844
12845 if (reloc_count > 0)
12846 {
12847 arelent **parent;
12848 /* for mips */
12849 int gp_found;
12850 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12851
12852 {
12853 struct bfd_hash_entry *h;
12854 struct bfd_link_hash_entry *lh;
12855 /* Skip all this stuff if we aren't mixing formats. */
12856 if (abfd && input_bfd
12857 && abfd->xvec == input_bfd->xvec)
12858 lh = 0;
12859 else
12860 {
b34976b6 12861 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12862 lh = (struct bfd_link_hash_entry *) h;
12863 }
12864 lookup:
12865 if (lh)
12866 {
12867 switch (lh->type)
12868 {
12869 case bfd_link_hash_undefined:
12870 case bfd_link_hash_undefweak:
12871 case bfd_link_hash_common:
12872 gp_found = 0;
12873 break;
12874 case bfd_link_hash_defined:
12875 case bfd_link_hash_defweak:
12876 gp_found = 1;
12877 gp = lh->u.def.value;
12878 break;
12879 case bfd_link_hash_indirect:
12880 case bfd_link_hash_warning:
12881 lh = lh->u.i.link;
12882 /* @@FIXME ignoring warning for now */
12883 goto lookup;
12884 case bfd_link_hash_new:
12885 default:
12886 abort ();
12887 }
12888 }
12889 else
12890 gp_found = 0;
12891 }
12892 /* end mips */
9719ad41 12893 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12894 {
9719ad41 12895 char *error_message = NULL;
b49e97c9
TS
12896 bfd_reloc_status_type r;
12897
12898 /* Specific to MIPS: Deal with relocation types that require
12899 knowing the gp of the output bfd. */
12900 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12901
8236346f
EC
12902 /* If we've managed to find the gp and have a special
12903 function for the relocation then go ahead, else default
12904 to the generic handling. */
12905 if (gp_found
12906 && (*parent)->howto->special_function
12907 == _bfd_mips_elf32_gprel16_reloc)
12908 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12909 input_section, relocatable,
12910 data, gp);
12911 else
86324f90 12912 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12913 input_section,
12914 relocatable ? abfd : NULL,
12915 &error_message);
b49e97c9 12916
1049f94e 12917 if (relocatable)
b49e97c9
TS
12918 {
12919 asection *os = input_section->output_section;
12920
12921 /* A partial link, so keep the relocs */
12922 os->orelocation[os->reloc_count] = *parent;
12923 os->reloc_count++;
12924 }
12925
12926 if (r != bfd_reloc_ok)
12927 {
12928 switch (r)
12929 {
12930 case bfd_reloc_undefined:
12931 if (!((*link_info->callbacks->undefined_symbol)
12932 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 12933 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
12934 goto error_return;
12935 break;
12936 case bfd_reloc_dangerous:
9719ad41 12937 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
12938 if (!((*link_info->callbacks->reloc_dangerous)
12939 (link_info, error_message, input_bfd, input_section,
12940 (*parent)->address)))
12941 goto error_return;
12942 break;
12943 case bfd_reloc_overflow:
12944 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
12945 (link_info, NULL,
12946 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
12947 (*parent)->howto->name, (*parent)->addend,
12948 input_bfd, input_section, (*parent)->address)))
12949 goto error_return;
12950 break;
12951 case bfd_reloc_outofrange:
12952 default:
12953 abort ();
12954 break;
12955 }
12956
12957 }
12958 }
12959 }
12960 if (reloc_vector != NULL)
12961 free (reloc_vector);
12962 return data;
12963
12964error_return:
12965 if (reloc_vector != NULL)
12966 free (reloc_vector);
12967 return NULL;
12968}
12969\f
df58fc94
RS
12970static bfd_boolean
12971mips_elf_relax_delete_bytes (bfd *abfd,
12972 asection *sec, bfd_vma addr, int count)
12973{
12974 Elf_Internal_Shdr *symtab_hdr;
12975 unsigned int sec_shndx;
12976 bfd_byte *contents;
12977 Elf_Internal_Rela *irel, *irelend;
12978 Elf_Internal_Sym *isym;
12979 Elf_Internal_Sym *isymend;
12980 struct elf_link_hash_entry **sym_hashes;
12981 struct elf_link_hash_entry **end_hashes;
12982 struct elf_link_hash_entry **start_hashes;
12983 unsigned int symcount;
12984
12985 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12986 contents = elf_section_data (sec)->this_hdr.contents;
12987
12988 irel = elf_section_data (sec)->relocs;
12989 irelend = irel + sec->reloc_count;
12990
12991 /* Actually delete the bytes. */
12992 memmove (contents + addr, contents + addr + count,
12993 (size_t) (sec->size - addr - count));
12994 sec->size -= count;
12995
12996 /* Adjust all the relocs. */
12997 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12998 {
12999 /* Get the new reloc address. */
13000 if (irel->r_offset > addr)
13001 irel->r_offset -= count;
13002 }
13003
13004 BFD_ASSERT (addr % 2 == 0);
13005 BFD_ASSERT (count % 2 == 0);
13006
13007 /* Adjust the local symbols defined in this section. */
13008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13009 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13010 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13011 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13012 isym->st_value -= count;
13013
13014 /* Now adjust the global symbols defined in this section. */
13015 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13016 - symtab_hdr->sh_info);
13017 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13018 end_hashes = sym_hashes + symcount;
13019
13020 for (; sym_hashes < end_hashes; sym_hashes++)
13021 {
13022 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13023
13024 if ((sym_hash->root.type == bfd_link_hash_defined
13025 || sym_hash->root.type == bfd_link_hash_defweak)
13026 && sym_hash->root.u.def.section == sec)
13027 {
2309ddf2 13028 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13029
df58fc94
RS
13030 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13031 value &= MINUS_TWO;
13032 if (value > addr)
13033 sym_hash->root.u.def.value -= count;
13034 }
13035 }
13036
13037 return TRUE;
13038}
13039
13040
13041/* Opcodes needed for microMIPS relaxation as found in
13042 opcodes/micromips-opc.c. */
13043
13044struct opcode_descriptor {
13045 unsigned long match;
13046 unsigned long mask;
13047};
13048
13049/* The $ra register aka $31. */
13050
13051#define RA 31
13052
13053/* 32-bit instruction format register fields. */
13054
13055#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13056#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13057
13058/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13059
13060#define OP16_VALID_REG(r) \
13061 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13062
13063
13064/* 32-bit and 16-bit branches. */
13065
13066static const struct opcode_descriptor b_insns_32[] = {
13067 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13068 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13069 { 0, 0 } /* End marker for find_match(). */
13070};
13071
13072static const struct opcode_descriptor bc_insn_32 =
13073 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13074
13075static const struct opcode_descriptor bz_insn_32 =
13076 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13077
13078static const struct opcode_descriptor bzal_insn_32 =
13079 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13080
13081static const struct opcode_descriptor beq_insn_32 =
13082 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13083
13084static const struct opcode_descriptor b_insn_16 =
13085 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13086
13087static const struct opcode_descriptor bz_insn_16 =
c088dedf 13088 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13089
13090
13091/* 32-bit and 16-bit branch EQ and NE zero. */
13092
13093/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13094 eq and second the ne. This convention is used when replacing a
13095 32-bit BEQ/BNE with the 16-bit version. */
13096
13097#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13098
13099static const struct opcode_descriptor bz_rs_insns_32[] = {
13100 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13101 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13102 { 0, 0 } /* End marker for find_match(). */
13103};
13104
13105static const struct opcode_descriptor bz_rt_insns_32[] = {
13106 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13107 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109};
13110
13111static const struct opcode_descriptor bzc_insns_32[] = {
13112 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13113 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13114 { 0, 0 } /* End marker for find_match(). */
13115};
13116
13117static const struct opcode_descriptor bz_insns_16[] = {
13118 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13119 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13120 { 0, 0 } /* End marker for find_match(). */
13121};
13122
13123/* Switch between a 5-bit register index and its 3-bit shorthand. */
13124
e67f83e5 13125#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13126#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13127
13128
13129/* 32-bit instructions with a delay slot. */
13130
13131static const struct opcode_descriptor jal_insn_32_bd16 =
13132 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13133
13134static const struct opcode_descriptor jal_insn_32_bd32 =
13135 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13136
13137static const struct opcode_descriptor jal_x_insn_32_bd32 =
13138 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13139
13140static const struct opcode_descriptor j_insn_32 =
13141 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13142
13143static const struct opcode_descriptor jalr_insn_32 =
13144 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13145
13146/* This table can be compacted, because no opcode replacement is made. */
13147
13148static const struct opcode_descriptor ds_insns_32_bd16[] = {
13149 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13150
13151 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13152 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13153
13154 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13155 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13156 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13157 { 0, 0 } /* End marker for find_match(). */
13158};
13159
13160/* This table can be compacted, because no opcode replacement is made. */
13161
13162static const struct opcode_descriptor ds_insns_32_bd32[] = {
13163 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13164
13165 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13166 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13167 { 0, 0 } /* End marker for find_match(). */
13168};
13169
13170
13171/* 16-bit instructions with a delay slot. */
13172
13173static const struct opcode_descriptor jalr_insn_16_bd16 =
13174 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13175
13176static const struct opcode_descriptor jalr_insn_16_bd32 =
13177 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13178
13179static const struct opcode_descriptor jr_insn_16 =
13180 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13181
13182#define JR16_REG(opcode) ((opcode) & 0x1f)
13183
13184/* This table can be compacted, because no opcode replacement is made. */
13185
13186static const struct opcode_descriptor ds_insns_16_bd16[] = {
13187 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13188
13189 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13190 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13191 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13192 { 0, 0 } /* End marker for find_match(). */
13193};
13194
13195
13196/* LUI instruction. */
13197
13198static const struct opcode_descriptor lui_insn =
13199 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13200
13201
13202/* ADDIU instruction. */
13203
13204static const struct opcode_descriptor addiu_insn =
13205 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13206
13207static const struct opcode_descriptor addiupc_insn =
13208 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13209
13210#define ADDIUPC_REG_FIELD(r) \
13211 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13212
13213
13214/* Relaxable instructions in a JAL delay slot: MOVE. */
13215
13216/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13217 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13218#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13219#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13220
13221#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13222#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13223
13224static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13225 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13226 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13227 { 0, 0 } /* End marker for find_match(). */
13228};
13229
13230static const struct opcode_descriptor move_insn_16 =
13231 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13232
13233
13234/* NOP instructions. */
13235
13236static const struct opcode_descriptor nop_insn_32 =
13237 { /* "nop", "", */ 0x00000000, 0xffffffff };
13238
13239static const struct opcode_descriptor nop_insn_16 =
13240 { /* "nop", "", */ 0x0c00, 0xffff };
13241
13242
13243/* Instruction match support. */
13244
13245#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13246
13247static int
13248find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13249{
13250 unsigned long indx;
13251
13252 for (indx = 0; insn[indx].mask != 0; indx++)
13253 if (MATCH (opcode, insn[indx]))
13254 return indx;
13255
13256 return -1;
13257}
13258
13259
13260/* Branch and delay slot decoding support. */
13261
13262/* If PTR points to what *might* be a 16-bit branch or jump, then
13263 return the minimum length of its delay slot, otherwise return 0.
13264 Non-zero results are not definitive as we might be checking against
13265 the second half of another instruction. */
13266
13267static int
13268check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13269{
13270 unsigned long opcode;
13271 int bdsize;
13272
13273 opcode = bfd_get_16 (abfd, ptr);
13274 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13275 /* 16-bit branch/jump with a 32-bit delay slot. */
13276 bdsize = 4;
13277 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13278 || find_match (opcode, ds_insns_16_bd16) >= 0)
13279 /* 16-bit branch/jump with a 16-bit delay slot. */
13280 bdsize = 2;
13281 else
13282 /* No delay slot. */
13283 bdsize = 0;
13284
13285 return bdsize;
13286}
13287
13288/* If PTR points to what *might* be a 32-bit branch or jump, then
13289 return the minimum length of its delay slot, otherwise return 0.
13290 Non-zero results are not definitive as we might be checking against
13291 the second half of another instruction. */
13292
13293static int
13294check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13295{
13296 unsigned long opcode;
13297 int bdsize;
13298
d21911ea 13299 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13300 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13301 /* 32-bit branch/jump with a 32-bit delay slot. */
13302 bdsize = 4;
13303 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13304 /* 32-bit branch/jump with a 16-bit delay slot. */
13305 bdsize = 2;
13306 else
13307 /* No delay slot. */
13308 bdsize = 0;
13309
13310 return bdsize;
13311}
13312
13313/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13314 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13315
13316static bfd_boolean
13317check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13318{
13319 unsigned long opcode;
13320
13321 opcode = bfd_get_16 (abfd, ptr);
13322 if (MATCH (opcode, b_insn_16)
13323 /* B16 */
13324 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13325 /* JR16 */
13326 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13327 /* BEQZ16, BNEZ16 */
13328 || (MATCH (opcode, jalr_insn_16_bd32)
13329 /* JALR16 */
13330 && reg != JR16_REG (opcode) && reg != RA))
13331 return TRUE;
13332
13333 return FALSE;
13334}
13335
13336/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13337 then return TRUE, otherwise FALSE. */
13338
f41e5fcc 13339static bfd_boolean
df58fc94
RS
13340check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13341{
13342 unsigned long opcode;
13343
d21911ea 13344 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13345 if (MATCH (opcode, j_insn_32)
13346 /* J */
13347 || MATCH (opcode, bc_insn_32)
13348 /* BC1F, BC1T, BC2F, BC2T */
13349 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13350 /* JAL, JALX */
13351 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13352 /* BGEZ, BGTZ, BLEZ, BLTZ */
13353 || (MATCH (opcode, bzal_insn_32)
13354 /* BGEZAL, BLTZAL */
13355 && reg != OP32_SREG (opcode) && reg != RA)
13356 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13357 /* JALR, JALR.HB, BEQ, BNE */
13358 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13359 return TRUE;
13360
13361 return FALSE;
13362}
13363
80cab405
MR
13364/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13365 IRELEND) at OFFSET indicate that there must be a compact branch there,
13366 then return TRUE, otherwise FALSE. */
df58fc94
RS
13367
13368static bfd_boolean
80cab405
MR
13369check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13370 const Elf_Internal_Rela *internal_relocs,
13371 const Elf_Internal_Rela *irelend)
df58fc94 13372{
80cab405
MR
13373 const Elf_Internal_Rela *irel;
13374 unsigned long opcode;
13375
d21911ea 13376 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13377 if (find_match (opcode, bzc_insns_32) < 0)
13378 return FALSE;
df58fc94
RS
13379
13380 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13381 if (irel->r_offset == offset
13382 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13383 return TRUE;
13384
df58fc94
RS
13385 return FALSE;
13386}
80cab405
MR
13387
13388/* Bitsize checking. */
13389#define IS_BITSIZE(val, N) \
13390 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13391 - (1ULL << ((N) - 1))) == (val))
13392
df58fc94
RS
13393\f
13394bfd_boolean
13395_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13396 struct bfd_link_info *link_info,
13397 bfd_boolean *again)
13398{
833794fc 13399 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13400 Elf_Internal_Shdr *symtab_hdr;
13401 Elf_Internal_Rela *internal_relocs;
13402 Elf_Internal_Rela *irel, *irelend;
13403 bfd_byte *contents = NULL;
13404 Elf_Internal_Sym *isymbuf = NULL;
13405
13406 /* Assume nothing changes. */
13407 *again = FALSE;
13408
13409 /* We don't have to do anything for a relocatable link, if
13410 this section does not have relocs, or if this is not a
13411 code section. */
13412
0e1862bb 13413 if (bfd_link_relocatable (link_info)
df58fc94
RS
13414 || (sec->flags & SEC_RELOC) == 0
13415 || sec->reloc_count == 0
13416 || (sec->flags & SEC_CODE) == 0)
13417 return TRUE;
13418
13419 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13420
13421 /* Get a copy of the native relocations. */
13422 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13423 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13424 link_info->keep_memory));
13425 if (internal_relocs == NULL)
13426 goto error_return;
13427
13428 /* Walk through them looking for relaxing opportunities. */
13429 irelend = internal_relocs + sec->reloc_count;
13430 for (irel = internal_relocs; irel < irelend; irel++)
13431 {
13432 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13433 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13434 bfd_boolean target_is_micromips_code_p;
13435 unsigned long opcode;
13436 bfd_vma symval;
13437 bfd_vma pcrval;
2309ddf2 13438 bfd_byte *ptr;
df58fc94
RS
13439 int fndopc;
13440
13441 /* The number of bytes to delete for relaxation and from where
13442 to delete these bytes starting at irel->r_offset. */
13443 int delcnt = 0;
13444 int deloff = 0;
13445
13446 /* If this isn't something that can be relaxed, then ignore
13447 this reloc. */
13448 if (r_type != R_MICROMIPS_HI16
13449 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13450 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13451 continue;
13452
13453 /* Get the section contents if we haven't done so already. */
13454 if (contents == NULL)
13455 {
13456 /* Get cached copy if it exists. */
13457 if (elf_section_data (sec)->this_hdr.contents != NULL)
13458 contents = elf_section_data (sec)->this_hdr.contents;
13459 /* Go get them off disk. */
13460 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13461 goto error_return;
13462 }
2309ddf2 13463 ptr = contents + irel->r_offset;
df58fc94
RS
13464
13465 /* Read this BFD's local symbols if we haven't done so already. */
13466 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13467 {
13468 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13469 if (isymbuf == NULL)
13470 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13471 symtab_hdr->sh_info, 0,
13472 NULL, NULL, NULL);
13473 if (isymbuf == NULL)
13474 goto error_return;
13475 }
13476
13477 /* Get the value of the symbol referred to by the reloc. */
13478 if (r_symndx < symtab_hdr->sh_info)
13479 {
13480 /* A local symbol. */
13481 Elf_Internal_Sym *isym;
13482 asection *sym_sec;
13483
13484 isym = isymbuf + r_symndx;
13485 if (isym->st_shndx == SHN_UNDEF)
13486 sym_sec = bfd_und_section_ptr;
13487 else if (isym->st_shndx == SHN_ABS)
13488 sym_sec = bfd_abs_section_ptr;
13489 else if (isym->st_shndx == SHN_COMMON)
13490 sym_sec = bfd_com_section_ptr;
13491 else
13492 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13493 symval = (isym->st_value
13494 + sym_sec->output_section->vma
13495 + sym_sec->output_offset);
13496 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13497 }
13498 else
13499 {
13500 unsigned long indx;
13501 struct elf_link_hash_entry *h;
13502
13503 /* An external symbol. */
13504 indx = r_symndx - symtab_hdr->sh_info;
13505 h = elf_sym_hashes (abfd)[indx];
13506 BFD_ASSERT (h != NULL);
13507
13508 if (h->root.type != bfd_link_hash_defined
13509 && h->root.type != bfd_link_hash_defweak)
13510 /* This appears to be a reference to an undefined
13511 symbol. Just ignore it -- it will be caught by the
13512 regular reloc processing. */
13513 continue;
13514
13515 symval = (h->root.u.def.value
13516 + h->root.u.def.section->output_section->vma
13517 + h->root.u.def.section->output_offset);
13518 target_is_micromips_code_p = (!h->needs_plt
13519 && ELF_ST_IS_MICROMIPS (h->other));
13520 }
13521
13522
13523 /* For simplicity of coding, we are going to modify the
13524 section contents, the section relocs, and the BFD symbol
13525 table. We must tell the rest of the code not to free up this
13526 information. It would be possible to instead create a table
13527 of changes which have to be made, as is done in coff-mips.c;
13528 that would be more work, but would require less memory when
13529 the linker is run. */
13530
13531 /* Only 32-bit instructions relaxed. */
13532 if (irel->r_offset + 4 > sec->size)
13533 continue;
13534
d21911ea 13535 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13536
13537 /* This is the pc-relative distance from the instruction the
13538 relocation is applied to, to the symbol referred. */
13539 pcrval = (symval
13540 - (sec->output_section->vma + sec->output_offset)
13541 - irel->r_offset);
13542
13543 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13544 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13545 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13546
13547 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13548
13549 where pcrval has first to be adjusted to apply against the LO16
13550 location (we make the adjustment later on, when we have figured
13551 out the offset). */
13552 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13553 {
80cab405 13554 bfd_boolean bzc = FALSE;
df58fc94
RS
13555 unsigned long nextopc;
13556 unsigned long reg;
13557 bfd_vma offset;
13558
13559 /* Give up if the previous reloc was a HI16 against this symbol
13560 too. */
13561 if (irel > internal_relocs
13562 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13563 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13564 continue;
13565
13566 /* Or if the next reloc is not a LO16 against this symbol. */
13567 if (irel + 1 >= irelend
13568 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13569 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13570 continue;
13571
13572 /* Or if the second next reloc is a LO16 against this symbol too. */
13573 if (irel + 2 >= irelend
13574 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13575 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13576 continue;
13577
80cab405
MR
13578 /* See if the LUI instruction *might* be in a branch delay slot.
13579 We check whether what looks like a 16-bit branch or jump is
13580 actually an immediate argument to a compact branch, and let
13581 it through if so. */
df58fc94 13582 if (irel->r_offset >= 2
2309ddf2 13583 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13584 && !(irel->r_offset >= 4
80cab405
MR
13585 && (bzc = check_relocated_bzc (abfd,
13586 ptr - 4, irel->r_offset - 4,
13587 internal_relocs, irelend))))
df58fc94
RS
13588 continue;
13589 if (irel->r_offset >= 4
80cab405 13590 && !bzc
2309ddf2 13591 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13592 continue;
13593
13594 reg = OP32_SREG (opcode);
13595
13596 /* We only relax adjacent instructions or ones separated with
13597 a branch or jump that has a delay slot. The branch or jump
13598 must not fiddle with the register used to hold the address.
13599 Subtract 4 for the LUI itself. */
13600 offset = irel[1].r_offset - irel[0].r_offset;
13601 switch (offset - 4)
13602 {
13603 case 0:
13604 break;
13605 case 2:
2309ddf2 13606 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13607 break;
13608 continue;
13609 case 4:
2309ddf2 13610 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13611 break;
13612 continue;
13613 default:
13614 continue;
13615 }
13616
d21911ea 13617 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13618
13619 /* Give up unless the same register is used with both
13620 relocations. */
13621 if (OP32_SREG (nextopc) != reg)
13622 continue;
13623
13624 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13625 and rounding up to take masking of the two LSBs into account. */
13626 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13627
13628 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13629 if (IS_BITSIZE (symval, 16))
13630 {
13631 /* Fix the relocation's type. */
13632 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13633
13634 /* Instructions using R_MICROMIPS_LO16 have the base or
13635 source register in bits 20:16. This register becomes $0
13636 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13637 nextopc &= ~0x001f0000;
13638 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13639 contents + irel[1].r_offset);
13640 }
13641
13642 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13643 We add 4 to take LUI deletion into account while checking
13644 the PC-relative distance. */
13645 else if (symval % 4 == 0
13646 && IS_BITSIZE (pcrval + 4, 25)
13647 && MATCH (nextopc, addiu_insn)
13648 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13649 && OP16_VALID_REG (OP32_TREG (nextopc)))
13650 {
13651 /* Fix the relocation's type. */
13652 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13653
13654 /* Replace ADDIU with the ADDIUPC version. */
13655 nextopc = (addiupc_insn.match
13656 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13657
d21911ea
MR
13658 bfd_put_micromips_32 (abfd, nextopc,
13659 contents + irel[1].r_offset);
df58fc94
RS
13660 }
13661
13662 /* Can't do anything, give up, sigh... */
13663 else
13664 continue;
13665
13666 /* Fix the relocation's type. */
13667 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13668
13669 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13670 delcnt = 4;
13671 deloff = 0;
13672 }
13673
13674 /* Compact branch relaxation -- due to the multitude of macros
13675 employed by the compiler/assembler, compact branches are not
13676 always generated. Obviously, this can/will be fixed elsewhere,
13677 but there is no drawback in double checking it here. */
13678 else if (r_type == R_MICROMIPS_PC16_S1
13679 && irel->r_offset + 5 < sec->size
13680 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13681 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13682 && ((!insn32
13683 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13684 nop_insn_16) ? 2 : 0))
13685 || (irel->r_offset + 7 < sec->size
13686 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13687 ptr + 4),
13688 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13689 {
13690 unsigned long reg;
13691
13692 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13693
13694 /* Replace BEQZ/BNEZ with the compact version. */
13695 opcode = (bzc_insns_32[fndopc].match
13696 | BZC32_REG_FIELD (reg)
13697 | (opcode & 0xffff)); /* Addend value. */
13698
d21911ea 13699 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13700
833794fc
MR
13701 /* Delete the delay slot NOP: two or four bytes from
13702 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13703 deloff = 4;
13704 }
13705
13706 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13707 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13708 else if (!insn32
13709 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13710 && IS_BITSIZE (pcrval - 2, 11)
13711 && find_match (opcode, b_insns_32) >= 0)
13712 {
13713 /* Fix the relocation's type. */
13714 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13715
a8685210 13716 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13717 bfd_put_16 (abfd,
13718 (b_insn_16.match
13719 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13720 ptr);
df58fc94
RS
13721
13722 /* Delete 2 bytes from irel->r_offset + 2. */
13723 delcnt = 2;
13724 deloff = 2;
13725 }
13726
13727 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13728 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13729 else if (!insn32
13730 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13731 && IS_BITSIZE (pcrval - 2, 8)
13732 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13733 && OP16_VALID_REG (OP32_SREG (opcode)))
13734 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13735 && OP16_VALID_REG (OP32_TREG (opcode)))))
13736 {
13737 unsigned long reg;
13738
13739 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13740
13741 /* Fix the relocation's type. */
13742 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13743
a8685210 13744 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13745 bfd_put_16 (abfd,
13746 (bz_insns_16[fndopc].match
13747 | BZ16_REG_FIELD (reg)
13748 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13749 ptr);
df58fc94
RS
13750
13751 /* Delete 2 bytes from irel->r_offset + 2. */
13752 delcnt = 2;
13753 deloff = 2;
13754 }
13755
13756 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13757 else if (!insn32
13758 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13759 && target_is_micromips_code_p
13760 && irel->r_offset + 7 < sec->size
13761 && MATCH (opcode, jal_insn_32_bd32))
13762 {
13763 unsigned long n32opc;
13764 bfd_boolean relaxed = FALSE;
13765
d21911ea 13766 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13767
13768 if (MATCH (n32opc, nop_insn_32))
13769 {
13770 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13771 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13772
13773 relaxed = TRUE;
13774 }
13775 else if (find_match (n32opc, move_insns_32) >= 0)
13776 {
13777 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13778 bfd_put_16 (abfd,
13779 (move_insn_16.match
13780 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13781 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13782 ptr + 4);
df58fc94
RS
13783
13784 relaxed = TRUE;
13785 }
13786 /* Other 32-bit instructions relaxable to 16-bit
13787 instructions will be handled here later. */
13788
13789 if (relaxed)
13790 {
13791 /* JAL with 32-bit delay slot that is changed to a JALS
13792 with 16-bit delay slot. */
d21911ea 13793 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13794
13795 /* Delete 2 bytes from irel->r_offset + 6. */
13796 delcnt = 2;
13797 deloff = 6;
13798 }
13799 }
13800
13801 if (delcnt != 0)
13802 {
13803 /* Note that we've changed the relocs, section contents, etc. */
13804 elf_section_data (sec)->relocs = internal_relocs;
13805 elf_section_data (sec)->this_hdr.contents = contents;
13806 symtab_hdr->contents = (unsigned char *) isymbuf;
13807
13808 /* Delete bytes depending on the delcnt and deloff. */
13809 if (!mips_elf_relax_delete_bytes (abfd, sec,
13810 irel->r_offset + deloff, delcnt))
13811 goto error_return;
13812
13813 /* That will change things, so we should relax again.
13814 Note that this is not required, and it may be slow. */
13815 *again = TRUE;
13816 }
13817 }
13818
13819 if (isymbuf != NULL
13820 && symtab_hdr->contents != (unsigned char *) isymbuf)
13821 {
13822 if (! link_info->keep_memory)
13823 free (isymbuf);
13824 else
13825 {
13826 /* Cache the symbols for elf_link_input_bfd. */
13827 symtab_hdr->contents = (unsigned char *) isymbuf;
13828 }
13829 }
13830
13831 if (contents != NULL
13832 && elf_section_data (sec)->this_hdr.contents != contents)
13833 {
13834 if (! link_info->keep_memory)
13835 free (contents);
13836 else
13837 {
13838 /* Cache the section contents for elf_link_input_bfd. */
13839 elf_section_data (sec)->this_hdr.contents = contents;
13840 }
13841 }
13842
13843 if (internal_relocs != NULL
13844 && elf_section_data (sec)->relocs != internal_relocs)
13845 free (internal_relocs);
13846
13847 return TRUE;
13848
13849 error_return:
13850 if (isymbuf != NULL
13851 && symtab_hdr->contents != (unsigned char *) isymbuf)
13852 free (isymbuf);
13853 if (contents != NULL
13854 && elf_section_data (sec)->this_hdr.contents != contents)
13855 free (contents);
13856 if (internal_relocs != NULL
13857 && elf_section_data (sec)->relocs != internal_relocs)
13858 free (internal_relocs);
13859
13860 return FALSE;
13861}
13862\f
b49e97c9
TS
13863/* Create a MIPS ELF linker hash table. */
13864
13865struct bfd_link_hash_table *
9719ad41 13866_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13867{
13868 struct mips_elf_link_hash_table *ret;
13869 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13870
7bf52ea2 13871 ret = bfd_zmalloc (amt);
9719ad41 13872 if (ret == NULL)
b49e97c9
TS
13873 return NULL;
13874
66eb6687
AM
13875 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13876 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13877 sizeof (struct mips_elf_link_hash_entry),
13878 MIPS_ELF_DATA))
b49e97c9 13879 {
e2d34d7d 13880 free (ret);
b49e97c9
TS
13881 return NULL;
13882 }
1bbce132
MR
13883 ret->root.init_plt_refcount.plist = NULL;
13884 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13885
b49e97c9
TS
13886 return &ret->root.root;
13887}
0a44bf69
RS
13888
13889/* Likewise, but indicate that the target is VxWorks. */
13890
13891struct bfd_link_hash_table *
13892_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13893{
13894 struct bfd_link_hash_table *ret;
13895
13896 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13897 if (ret)
13898 {
13899 struct mips_elf_link_hash_table *htab;
13900
13901 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13902 htab->use_plts_and_copy_relocs = TRUE;
13903 htab->is_vxworks = TRUE;
0a44bf69
RS
13904 }
13905 return ret;
13906}
861fb55a
DJ
13907
13908/* A function that the linker calls if we are allowed to use PLTs
13909 and copy relocs. */
13910
13911void
13912_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13913{
13914 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13915}
833794fc
MR
13916
13917/* A function that the linker calls to select between all or only
13918 32-bit microMIPS instructions. */
13919
13920void
13921_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13922{
13923 mips_elf_hash_table (info)->insn32 = on;
13924}
b49e97c9 13925\f
c97c330b
MF
13926/* Structure for saying that BFD machine EXTENSION extends BASE. */
13927
13928struct mips_mach_extension
13929{
13930 unsigned long extension, base;
13931};
13932
13933
13934/* An array describing how BFD machines relate to one another. The entries
13935 are ordered topologically with MIPS I extensions listed last. */
13936
13937static const struct mips_mach_extension mips_mach_extensions[] =
13938{
13939 /* MIPS64r2 extensions. */
13940 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13941 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13942 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13943 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13944 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13945
13946 /* MIPS64 extensions. */
13947 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13948 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13949 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13950
13951 /* MIPS V extensions. */
13952 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13953
13954 /* R10000 extensions. */
13955 { bfd_mach_mips12000, bfd_mach_mips10000 },
13956 { bfd_mach_mips14000, bfd_mach_mips10000 },
13957 { bfd_mach_mips16000, bfd_mach_mips10000 },
13958
13959 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13960 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13961 better to allow vr5400 and vr5500 code to be merged anyway, since
13962 many libraries will just use the core ISA. Perhaps we could add
13963 some sort of ASE flag if this ever proves a problem. */
13964 { bfd_mach_mips5500, bfd_mach_mips5400 },
13965 { bfd_mach_mips5400, bfd_mach_mips5000 },
13966
13967 /* MIPS IV extensions. */
13968 { bfd_mach_mips5, bfd_mach_mips8000 },
13969 { bfd_mach_mips10000, bfd_mach_mips8000 },
13970 { bfd_mach_mips5000, bfd_mach_mips8000 },
13971 { bfd_mach_mips7000, bfd_mach_mips8000 },
13972 { bfd_mach_mips9000, bfd_mach_mips8000 },
13973
13974 /* VR4100 extensions. */
13975 { bfd_mach_mips4120, bfd_mach_mips4100 },
13976 { bfd_mach_mips4111, bfd_mach_mips4100 },
13977
13978 /* MIPS III extensions. */
13979 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13980 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13981 { bfd_mach_mips8000, bfd_mach_mips4000 },
13982 { bfd_mach_mips4650, bfd_mach_mips4000 },
13983 { bfd_mach_mips4600, bfd_mach_mips4000 },
13984 { bfd_mach_mips4400, bfd_mach_mips4000 },
13985 { bfd_mach_mips4300, bfd_mach_mips4000 },
13986 { bfd_mach_mips4100, bfd_mach_mips4000 },
13987 { bfd_mach_mips4010, bfd_mach_mips4000 },
13988 { bfd_mach_mips5900, bfd_mach_mips4000 },
13989
13990 /* MIPS32 extensions. */
13991 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13992
13993 /* MIPS II extensions. */
13994 { bfd_mach_mips4000, bfd_mach_mips6000 },
13995 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13996
13997 /* MIPS I extensions. */
13998 { bfd_mach_mips6000, bfd_mach_mips3000 },
13999 { bfd_mach_mips3900, bfd_mach_mips3000 }
14000};
14001
14002/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14003
14004static bfd_boolean
14005mips_mach_extends_p (unsigned long base, unsigned long extension)
14006{
14007 size_t i;
14008
14009 if (extension == base)
14010 return TRUE;
14011
14012 if (base == bfd_mach_mipsisa32
14013 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14014 return TRUE;
14015
14016 if (base == bfd_mach_mipsisa32r2
14017 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14018 return TRUE;
14019
14020 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14021 if (extension == mips_mach_extensions[i].extension)
14022 {
14023 extension = mips_mach_extensions[i].base;
14024 if (extension == base)
14025 return TRUE;
14026 }
14027
14028 return FALSE;
14029}
14030
14031/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14032
14033static unsigned long
14034bfd_mips_isa_ext_mach (unsigned int isa_ext)
14035{
14036 switch (isa_ext)
14037 {
14038 case AFL_EXT_3900: return bfd_mach_mips3900;
14039 case AFL_EXT_4010: return bfd_mach_mips4010;
14040 case AFL_EXT_4100: return bfd_mach_mips4100;
14041 case AFL_EXT_4111: return bfd_mach_mips4111;
14042 case AFL_EXT_4120: return bfd_mach_mips4120;
14043 case AFL_EXT_4650: return bfd_mach_mips4650;
14044 case AFL_EXT_5400: return bfd_mach_mips5400;
14045 case AFL_EXT_5500: return bfd_mach_mips5500;
14046 case AFL_EXT_5900: return bfd_mach_mips5900;
14047 case AFL_EXT_10000: return bfd_mach_mips10000;
14048 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14049 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14050 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14051 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14052 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14053 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14054 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14055 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14056 default: return bfd_mach_mips3000;
14057 }
14058}
14059
351cdf24
MF
14060/* Return the .MIPS.abiflags value representing each ISA Extension. */
14061
14062unsigned int
14063bfd_mips_isa_ext (bfd *abfd)
14064{
14065 switch (bfd_get_mach (abfd))
14066 {
c97c330b
MF
14067 case bfd_mach_mips3900: return AFL_EXT_3900;
14068 case bfd_mach_mips4010: return AFL_EXT_4010;
14069 case bfd_mach_mips4100: return AFL_EXT_4100;
14070 case bfd_mach_mips4111: return AFL_EXT_4111;
14071 case bfd_mach_mips4120: return AFL_EXT_4120;
14072 case bfd_mach_mips4650: return AFL_EXT_4650;
14073 case bfd_mach_mips5400: return AFL_EXT_5400;
14074 case bfd_mach_mips5500: return AFL_EXT_5500;
14075 case bfd_mach_mips5900: return AFL_EXT_5900;
14076 case bfd_mach_mips10000: return AFL_EXT_10000;
14077 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14078 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14079 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14080 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14081 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14082 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14083 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14084 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14085 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14086 default: return 0;
14087 }
14088}
14089
14090/* Encode ISA level and revision as a single value. */
14091#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14092
14093/* Decode a single value into level and revision. */
14094#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14095#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14096
14097/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14098
14099static void
14100update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14101{
c97c330b 14102 int new_isa = 0;
351cdf24
MF
14103 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14104 {
c97c330b
MF
14105 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14106 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14107 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14108 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14109 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14110 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14111 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14112 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14113 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14114 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14115 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24
MF
14116 default:
14117 (*_bfd_error_handler)
14118 (_("%B: Unknown architecture %s"),
14119 abfd, bfd_printable_name (abfd));
14120 }
14121
c97c330b
MF
14122 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14123 {
14124 abiflags->isa_level = ISA_LEVEL (new_isa);
14125 abiflags->isa_rev = ISA_REV (new_isa);
14126 }
14127
14128 /* Update the isa_ext if ABFD describes a further extension. */
14129 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14130 bfd_get_mach (abfd)))
14131 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14132}
14133
14134/* Return true if the given ELF header flags describe a 32-bit binary. */
14135
14136static bfd_boolean
14137mips_32bit_flags_p (flagword flags)
14138{
14139 return ((flags & EF_MIPS_32BITMODE) != 0
14140 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14141 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14142 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14143 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14144 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14145 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14146 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14147}
14148
14149/* Infer the content of the ABI flags based on the elf header. */
14150
14151static void
14152infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14153{
14154 obj_attribute *in_attr;
14155
14156 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14157 update_mips_abiflags_isa (abfd, abiflags);
14158
14159 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14160 abiflags->gpr_size = AFL_REG_32;
14161 else
14162 abiflags->gpr_size = AFL_REG_64;
14163
14164 abiflags->cpr1_size = AFL_REG_NONE;
14165
14166 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14167 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14168
14169 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14170 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14171 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14172 && abiflags->gpr_size == AFL_REG_32))
14173 abiflags->cpr1_size = AFL_REG_32;
14174 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14175 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14176 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14177 abiflags->cpr1_size = AFL_REG_64;
14178
14179 abiflags->cpr2_size = AFL_REG_NONE;
14180
14181 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14182 abiflags->ases |= AFL_ASE_MDMX;
14183 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14184 abiflags->ases |= AFL_ASE_MIPS16;
14185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14186 abiflags->ases |= AFL_ASE_MICROMIPS;
14187
14188 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14189 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14190 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14191 && abiflags->isa_level >= 32
14192 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14193 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14194}
14195
b49e97c9
TS
14196/* We need to use a special link routine to handle the .reginfo and
14197 the .mdebug sections. We need to merge all instances of these
14198 sections together, not write them all out sequentially. */
14199
b34976b6 14200bfd_boolean
9719ad41 14201_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14202{
b49e97c9
TS
14203 asection *o;
14204 struct bfd_link_order *p;
14205 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14206 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14207 Elf32_RegInfo reginfo;
14208 struct ecoff_debug_info debug;
861fb55a 14209 struct mips_htab_traverse_info hti;
7a2a6943
NC
14210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14211 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14212 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14213 void *mdebug_handle = NULL;
b49e97c9
TS
14214 asection *s;
14215 EXTR esym;
14216 unsigned int i;
14217 bfd_size_type amt;
0a44bf69 14218 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14219
14220 static const char * const secname[] =
14221 {
14222 ".text", ".init", ".fini", ".data",
14223 ".rodata", ".sdata", ".sbss", ".bss"
14224 };
14225 static const int sc[] =
14226 {
14227 scText, scInit, scFini, scData,
14228 scRData, scSData, scSBss, scBss
14229 };
14230
d4596a51
RS
14231 /* Sort the dynamic symbols so that those with GOT entries come after
14232 those without. */
0a44bf69 14233 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14234 BFD_ASSERT (htab != NULL);
14235
d4596a51
RS
14236 if (!mips_elf_sort_hash_table (abfd, info))
14237 return FALSE;
b49e97c9 14238
861fb55a
DJ
14239 /* Create any scheduled LA25 stubs. */
14240 hti.info = info;
14241 hti.output_bfd = abfd;
14242 hti.error = FALSE;
14243 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14244 if (hti.error)
14245 return FALSE;
14246
b49e97c9
TS
14247 /* Get a value for the GP register. */
14248 if (elf_gp (abfd) == 0)
14249 {
14250 struct bfd_link_hash_entry *h;
14251
b34976b6 14252 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14253 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14254 elf_gp (abfd) = (h->u.def.value
14255 + h->u.def.section->output_section->vma
14256 + h->u.def.section->output_offset);
0a44bf69
RS
14257 else if (htab->is_vxworks
14258 && (h = bfd_link_hash_lookup (info->hash,
14259 "_GLOBAL_OFFSET_TABLE_",
14260 FALSE, FALSE, TRUE))
14261 && h->type == bfd_link_hash_defined)
14262 elf_gp (abfd) = (h->u.def.section->output_section->vma
14263 + h->u.def.section->output_offset
14264 + h->u.def.value);
0e1862bb 14265 else if (bfd_link_relocatable (info))
b49e97c9
TS
14266 {
14267 bfd_vma lo = MINUS_ONE;
14268
14269 /* Find the GP-relative section with the lowest offset. */
9719ad41 14270 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14271 if (o->vma < lo
14272 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14273 lo = o->vma;
14274
14275 /* And calculate GP relative to that. */
0a44bf69 14276 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14277 }
14278 else
14279 {
14280 /* If the relocate_section function needs to do a reloc
14281 involving the GP value, it should make a reloc_dangerous
14282 callback to warn that GP is not defined. */
14283 }
14284 }
14285
14286 /* Go through the sections and collect the .reginfo and .mdebug
14287 information. */
351cdf24 14288 abiflags_sec = NULL;
b49e97c9
TS
14289 reginfo_sec = NULL;
14290 mdebug_sec = NULL;
14291 gptab_data_sec = NULL;
14292 gptab_bss_sec = NULL;
9719ad41 14293 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14294 {
351cdf24
MF
14295 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14296 {
14297 /* We have found the .MIPS.abiflags section in the output file.
14298 Look through all the link_orders comprising it and remove them.
14299 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14300 for (p = o->map_head.link_order; p != NULL; p = p->next)
14301 {
14302 asection *input_section;
14303
14304 if (p->type != bfd_indirect_link_order)
14305 {
14306 if (p->type == bfd_data_link_order)
14307 continue;
14308 abort ();
14309 }
14310
14311 input_section = p->u.indirect.section;
14312
14313 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14314 elf_link_input_bfd ignores this section. */
14315 input_section->flags &= ~SEC_HAS_CONTENTS;
14316 }
14317
14318 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14319 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14320
14321 /* Skip this section later on (I don't think this currently
14322 matters, but someday it might). */
14323 o->map_head.link_order = NULL;
14324
14325 abiflags_sec = o;
14326 }
14327
b49e97c9
TS
14328 if (strcmp (o->name, ".reginfo") == 0)
14329 {
14330 memset (&reginfo, 0, sizeof reginfo);
14331
14332 /* We have found the .reginfo section in the output file.
14333 Look through all the link_orders comprising it and merge
14334 the information together. */
8423293d 14335 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14336 {
14337 asection *input_section;
14338 bfd *input_bfd;
14339 Elf32_External_RegInfo ext;
14340 Elf32_RegInfo sub;
14341
14342 if (p->type != bfd_indirect_link_order)
14343 {
14344 if (p->type == bfd_data_link_order)
14345 continue;
14346 abort ();
14347 }
14348
14349 input_section = p->u.indirect.section;
14350 input_bfd = input_section->owner;
14351
b49e97c9 14352 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14353 &ext, 0, sizeof ext))
b34976b6 14354 return FALSE;
b49e97c9
TS
14355
14356 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14357
14358 reginfo.ri_gprmask |= sub.ri_gprmask;
14359 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14360 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14361 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14362 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14363
14364 /* ri_gp_value is set by the function
14365 mips_elf32_section_processing when the section is
14366 finally written out. */
14367
14368 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14369 elf_link_input_bfd ignores this section. */
14370 input_section->flags &= ~SEC_HAS_CONTENTS;
14371 }
14372
14373 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14374 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14375
14376 /* Skip this section later on (I don't think this currently
14377 matters, but someday it might). */
8423293d 14378 o->map_head.link_order = NULL;
b49e97c9
TS
14379
14380 reginfo_sec = o;
14381 }
14382
14383 if (strcmp (o->name, ".mdebug") == 0)
14384 {
14385 struct extsym_info einfo;
14386 bfd_vma last;
14387
14388 /* We have found the .mdebug section in the output file.
14389 Look through all the link_orders comprising it and merge
14390 the information together. */
14391 symhdr->magic = swap->sym_magic;
14392 /* FIXME: What should the version stamp be? */
14393 symhdr->vstamp = 0;
14394 symhdr->ilineMax = 0;
14395 symhdr->cbLine = 0;
14396 symhdr->idnMax = 0;
14397 symhdr->ipdMax = 0;
14398 symhdr->isymMax = 0;
14399 symhdr->ioptMax = 0;
14400 symhdr->iauxMax = 0;
14401 symhdr->issMax = 0;
14402 symhdr->issExtMax = 0;
14403 symhdr->ifdMax = 0;
14404 symhdr->crfd = 0;
14405 symhdr->iextMax = 0;
14406
14407 /* We accumulate the debugging information itself in the
14408 debug_info structure. */
14409 debug.line = NULL;
14410 debug.external_dnr = NULL;
14411 debug.external_pdr = NULL;
14412 debug.external_sym = NULL;
14413 debug.external_opt = NULL;
14414 debug.external_aux = NULL;
14415 debug.ss = NULL;
14416 debug.ssext = debug.ssext_end = NULL;
14417 debug.external_fdr = NULL;
14418 debug.external_rfd = NULL;
14419 debug.external_ext = debug.external_ext_end = NULL;
14420
14421 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14422 if (mdebug_handle == NULL)
b34976b6 14423 return FALSE;
b49e97c9
TS
14424
14425 esym.jmptbl = 0;
14426 esym.cobol_main = 0;
14427 esym.weakext = 0;
14428 esym.reserved = 0;
14429 esym.ifd = ifdNil;
14430 esym.asym.iss = issNil;
14431 esym.asym.st = stLocal;
14432 esym.asym.reserved = 0;
14433 esym.asym.index = indexNil;
14434 last = 0;
14435 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14436 {
14437 esym.asym.sc = sc[i];
14438 s = bfd_get_section_by_name (abfd, secname[i]);
14439 if (s != NULL)
14440 {
14441 esym.asym.value = s->vma;
eea6121a 14442 last = s->vma + s->size;
b49e97c9
TS
14443 }
14444 else
14445 esym.asym.value = last;
14446 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14447 secname[i], &esym))
b34976b6 14448 return FALSE;
b49e97c9
TS
14449 }
14450
8423293d 14451 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14452 {
14453 asection *input_section;
14454 bfd *input_bfd;
14455 const struct ecoff_debug_swap *input_swap;
14456 struct ecoff_debug_info input_debug;
14457 char *eraw_src;
14458 char *eraw_end;
14459
14460 if (p->type != bfd_indirect_link_order)
14461 {
14462 if (p->type == bfd_data_link_order)
14463 continue;
14464 abort ();
14465 }
14466
14467 input_section = p->u.indirect.section;
14468 input_bfd = input_section->owner;
14469
d5eaccd7 14470 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14471 {
14472 /* I don't know what a non MIPS ELF bfd would be
14473 doing with a .mdebug section, but I don't really
14474 want to deal with it. */
14475 continue;
14476 }
14477
14478 input_swap = (get_elf_backend_data (input_bfd)
14479 ->elf_backend_ecoff_debug_swap);
14480
eea6121a 14481 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14482
14483 /* The ECOFF linking code expects that we have already
14484 read in the debugging information and set up an
14485 ecoff_debug_info structure, so we do that now. */
14486 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14487 &input_debug))
b34976b6 14488 return FALSE;
b49e97c9
TS
14489
14490 if (! (bfd_ecoff_debug_accumulate
14491 (mdebug_handle, abfd, &debug, swap, input_bfd,
14492 &input_debug, input_swap, info)))
b34976b6 14493 return FALSE;
b49e97c9
TS
14494
14495 /* Loop through the external symbols. For each one with
14496 interesting information, try to find the symbol in
14497 the linker global hash table and save the information
14498 for the output external symbols. */
14499 eraw_src = input_debug.external_ext;
14500 eraw_end = (eraw_src
14501 + (input_debug.symbolic_header.iextMax
14502 * input_swap->external_ext_size));
14503 for (;
14504 eraw_src < eraw_end;
14505 eraw_src += input_swap->external_ext_size)
14506 {
14507 EXTR ext;
14508 const char *name;
14509 struct mips_elf_link_hash_entry *h;
14510
9719ad41 14511 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14512 if (ext.asym.sc == scNil
14513 || ext.asym.sc == scUndefined
14514 || ext.asym.sc == scSUndefined)
14515 continue;
14516
14517 name = input_debug.ssext + ext.asym.iss;
14518 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14519 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14520 if (h == NULL || h->esym.ifd != -2)
14521 continue;
14522
14523 if (ext.ifd != -1)
14524 {
14525 BFD_ASSERT (ext.ifd
14526 < input_debug.symbolic_header.ifdMax);
14527 ext.ifd = input_debug.ifdmap[ext.ifd];
14528 }
14529
14530 h->esym = ext;
14531 }
14532
14533 /* Free up the information we just read. */
14534 free (input_debug.line);
14535 free (input_debug.external_dnr);
14536 free (input_debug.external_pdr);
14537 free (input_debug.external_sym);
14538 free (input_debug.external_opt);
14539 free (input_debug.external_aux);
14540 free (input_debug.ss);
14541 free (input_debug.ssext);
14542 free (input_debug.external_fdr);
14543 free (input_debug.external_rfd);
14544 free (input_debug.external_ext);
14545
14546 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14547 elf_link_input_bfd ignores this section. */
14548 input_section->flags &= ~SEC_HAS_CONTENTS;
14549 }
14550
0e1862bb 14551 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14552 {
14553 /* Create .rtproc section. */
87e0a731 14554 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14555 if (rtproc_sec == NULL)
14556 {
14557 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14558 | SEC_LINKER_CREATED | SEC_READONLY);
14559
87e0a731
AM
14560 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14561 ".rtproc",
14562 flags);
b49e97c9 14563 if (rtproc_sec == NULL
b49e97c9 14564 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14565 return FALSE;
b49e97c9
TS
14566 }
14567
14568 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14569 info, rtproc_sec,
14570 &debug))
b34976b6 14571 return FALSE;
b49e97c9
TS
14572 }
14573
14574 /* Build the external symbol information. */
14575 einfo.abfd = abfd;
14576 einfo.info = info;
14577 einfo.debug = &debug;
14578 einfo.swap = swap;
b34976b6 14579 einfo.failed = FALSE;
b49e97c9 14580 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14581 mips_elf_output_extsym, &einfo);
b49e97c9 14582 if (einfo.failed)
b34976b6 14583 return FALSE;
b49e97c9
TS
14584
14585 /* Set the size of the .mdebug section. */
eea6121a 14586 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14587
14588 /* Skip this section later on (I don't think this currently
14589 matters, but someday it might). */
8423293d 14590 o->map_head.link_order = NULL;
b49e97c9
TS
14591
14592 mdebug_sec = o;
14593 }
14594
0112cd26 14595 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14596 {
14597 const char *subname;
14598 unsigned int c;
14599 Elf32_gptab *tab;
14600 Elf32_External_gptab *ext_tab;
14601 unsigned int j;
14602
14603 /* The .gptab.sdata and .gptab.sbss sections hold
14604 information describing how the small data area would
14605 change depending upon the -G switch. These sections
14606 not used in executables files. */
0e1862bb 14607 if (! bfd_link_relocatable (info))
b49e97c9 14608 {
8423293d 14609 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14610 {
14611 asection *input_section;
14612
14613 if (p->type != bfd_indirect_link_order)
14614 {
14615 if (p->type == bfd_data_link_order)
14616 continue;
14617 abort ();
14618 }
14619
14620 input_section = p->u.indirect.section;
14621
14622 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14623 elf_link_input_bfd ignores this section. */
14624 input_section->flags &= ~SEC_HAS_CONTENTS;
14625 }
14626
14627 /* Skip this section later on (I don't think this
14628 currently matters, but someday it might). */
8423293d 14629 o->map_head.link_order = NULL;
b49e97c9
TS
14630
14631 /* Really remove the section. */
5daa8fe7 14632 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14633 --abfd->section_count;
14634
14635 continue;
14636 }
14637
14638 /* There is one gptab for initialized data, and one for
14639 uninitialized data. */
14640 if (strcmp (o->name, ".gptab.sdata") == 0)
14641 gptab_data_sec = o;
14642 else if (strcmp (o->name, ".gptab.sbss") == 0)
14643 gptab_bss_sec = o;
14644 else
14645 {
14646 (*_bfd_error_handler)
14647 (_("%s: illegal section name `%s'"),
14648 bfd_get_filename (abfd), o->name);
14649 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14650 return FALSE;
b49e97c9
TS
14651 }
14652
14653 /* The linker script always combines .gptab.data and
14654 .gptab.sdata into .gptab.sdata, and likewise for
14655 .gptab.bss and .gptab.sbss. It is possible that there is
14656 no .sdata or .sbss section in the output file, in which
14657 case we must change the name of the output section. */
14658 subname = o->name + sizeof ".gptab" - 1;
14659 if (bfd_get_section_by_name (abfd, subname) == NULL)
14660 {
14661 if (o == gptab_data_sec)
14662 o->name = ".gptab.data";
14663 else
14664 o->name = ".gptab.bss";
14665 subname = o->name + sizeof ".gptab" - 1;
14666 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14667 }
14668
14669 /* Set up the first entry. */
14670 c = 1;
14671 amt = c * sizeof (Elf32_gptab);
9719ad41 14672 tab = bfd_malloc (amt);
b49e97c9 14673 if (tab == NULL)
b34976b6 14674 return FALSE;
b49e97c9
TS
14675 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14676 tab[0].gt_header.gt_unused = 0;
14677
14678 /* Combine the input sections. */
8423293d 14679 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14680 {
14681 asection *input_section;
14682 bfd *input_bfd;
14683 bfd_size_type size;
14684 unsigned long last;
14685 bfd_size_type gpentry;
14686
14687 if (p->type != bfd_indirect_link_order)
14688 {
14689 if (p->type == bfd_data_link_order)
14690 continue;
14691 abort ();
14692 }
14693
14694 input_section = p->u.indirect.section;
14695 input_bfd = input_section->owner;
14696
14697 /* Combine the gptab entries for this input section one
14698 by one. We know that the input gptab entries are
14699 sorted by ascending -G value. */
eea6121a 14700 size = input_section->size;
b49e97c9
TS
14701 last = 0;
14702 for (gpentry = sizeof (Elf32_External_gptab);
14703 gpentry < size;
14704 gpentry += sizeof (Elf32_External_gptab))
14705 {
14706 Elf32_External_gptab ext_gptab;
14707 Elf32_gptab int_gptab;
14708 unsigned long val;
14709 unsigned long add;
b34976b6 14710 bfd_boolean exact;
b49e97c9
TS
14711 unsigned int look;
14712
14713 if (! (bfd_get_section_contents
9719ad41
RS
14714 (input_bfd, input_section, &ext_gptab, gpentry,
14715 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14716 {
14717 free (tab);
b34976b6 14718 return FALSE;
b49e97c9
TS
14719 }
14720
14721 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14722 &int_gptab);
14723 val = int_gptab.gt_entry.gt_g_value;
14724 add = int_gptab.gt_entry.gt_bytes - last;
14725
b34976b6 14726 exact = FALSE;
b49e97c9
TS
14727 for (look = 1; look < c; look++)
14728 {
14729 if (tab[look].gt_entry.gt_g_value >= val)
14730 tab[look].gt_entry.gt_bytes += add;
14731
14732 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14733 exact = TRUE;
b49e97c9
TS
14734 }
14735
14736 if (! exact)
14737 {
14738 Elf32_gptab *new_tab;
14739 unsigned int max;
14740
14741 /* We need a new table entry. */
14742 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14743 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14744 if (new_tab == NULL)
14745 {
14746 free (tab);
b34976b6 14747 return FALSE;
b49e97c9
TS
14748 }
14749 tab = new_tab;
14750 tab[c].gt_entry.gt_g_value = val;
14751 tab[c].gt_entry.gt_bytes = add;
14752
14753 /* Merge in the size for the next smallest -G
14754 value, since that will be implied by this new
14755 value. */
14756 max = 0;
14757 for (look = 1; look < c; look++)
14758 {
14759 if (tab[look].gt_entry.gt_g_value < val
14760 && (max == 0
14761 || (tab[look].gt_entry.gt_g_value
14762 > tab[max].gt_entry.gt_g_value)))
14763 max = look;
14764 }
14765 if (max != 0)
14766 tab[c].gt_entry.gt_bytes +=
14767 tab[max].gt_entry.gt_bytes;
14768
14769 ++c;
14770 }
14771
14772 last = int_gptab.gt_entry.gt_bytes;
14773 }
14774
14775 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14776 elf_link_input_bfd ignores this section. */
14777 input_section->flags &= ~SEC_HAS_CONTENTS;
14778 }
14779
14780 /* The table must be sorted by -G value. */
14781 if (c > 2)
14782 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14783
14784 /* Swap out the table. */
14785 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14786 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14787 if (ext_tab == NULL)
14788 {
14789 free (tab);
b34976b6 14790 return FALSE;
b49e97c9
TS
14791 }
14792
14793 for (j = 0; j < c; j++)
14794 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14795 free (tab);
14796
eea6121a 14797 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14798 o->contents = (bfd_byte *) ext_tab;
14799
14800 /* Skip this section later on (I don't think this currently
14801 matters, but someday it might). */
8423293d 14802 o->map_head.link_order = NULL;
b49e97c9
TS
14803 }
14804 }
14805
14806 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14807 if (!bfd_elf_final_link (abfd, info))
b34976b6 14808 return FALSE;
b49e97c9
TS
14809
14810 /* Now write out the computed sections. */
14811
351cdf24
MF
14812 if (abiflags_sec != NULL)
14813 {
14814 Elf_External_ABIFlags_v0 ext;
14815 Elf_Internal_ABIFlags_v0 *abiflags;
14816
14817 abiflags = &mips_elf_tdata (abfd)->abiflags;
14818
14819 /* Set up the abiflags if no valid input sections were found. */
14820 if (!mips_elf_tdata (abfd)->abiflags_valid)
14821 {
14822 infer_mips_abiflags (abfd, abiflags);
14823 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14824 }
14825 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14826 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14827 return FALSE;
14828 }
14829
9719ad41 14830 if (reginfo_sec != NULL)
b49e97c9
TS
14831 {
14832 Elf32_External_RegInfo ext;
14833
14834 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14835 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14836 return FALSE;
b49e97c9
TS
14837 }
14838
9719ad41 14839 if (mdebug_sec != NULL)
b49e97c9
TS
14840 {
14841 BFD_ASSERT (abfd->output_has_begun);
14842 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14843 swap, info,
14844 mdebug_sec->filepos))
b34976b6 14845 return FALSE;
b49e97c9
TS
14846
14847 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14848 }
14849
9719ad41 14850 if (gptab_data_sec != NULL)
b49e97c9
TS
14851 {
14852 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14853 gptab_data_sec->contents,
eea6121a 14854 0, gptab_data_sec->size))
b34976b6 14855 return FALSE;
b49e97c9
TS
14856 }
14857
9719ad41 14858 if (gptab_bss_sec != NULL)
b49e97c9
TS
14859 {
14860 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14861 gptab_bss_sec->contents,
eea6121a 14862 0, gptab_bss_sec->size))
b34976b6 14863 return FALSE;
b49e97c9
TS
14864 }
14865
14866 if (SGI_COMPAT (abfd))
14867 {
14868 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14869 if (rtproc_sec != NULL)
14870 {
14871 if (! bfd_set_section_contents (abfd, rtproc_sec,
14872 rtproc_sec->contents,
eea6121a 14873 0, rtproc_sec->size))
b34976b6 14874 return FALSE;
b49e97c9
TS
14875 }
14876 }
14877
b34976b6 14878 return TRUE;
b49e97c9
TS
14879}
14880\f
b2e9744f
MR
14881/* Merge object file header flags from IBFD into OBFD. Raise an error
14882 if there are conflicting settings. */
14883
14884static bfd_boolean
14885mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14886{
14887 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14888 flagword old_flags;
14889 flagword new_flags;
14890 bfd_boolean ok;
14891
14892 new_flags = elf_elfheader (ibfd)->e_flags;
14893 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14894 old_flags = elf_elfheader (obfd)->e_flags;
14895
14896 /* Check flag compatibility. */
14897
14898 new_flags &= ~EF_MIPS_NOREORDER;
14899 old_flags &= ~EF_MIPS_NOREORDER;
14900
14901 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14902 doesn't seem to matter. */
14903 new_flags &= ~EF_MIPS_XGOT;
14904 old_flags &= ~EF_MIPS_XGOT;
14905
14906 /* MIPSpro generates ucode info in n64 objects. Again, we should
14907 just be able to ignore this. */
14908 new_flags &= ~EF_MIPS_UCODE;
14909 old_flags &= ~EF_MIPS_UCODE;
14910
14911 /* DSOs should only be linked with CPIC code. */
14912 if ((ibfd->flags & DYNAMIC) != 0)
14913 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14914
14915 if (new_flags == old_flags)
14916 return TRUE;
14917
14918 ok = TRUE;
14919
14920 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14921 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14922 {
14923 (*_bfd_error_handler)
14924 (_("%B: warning: linking abicalls files with non-abicalls files"),
14925 ibfd);
14926 ok = TRUE;
14927 }
14928
14929 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14930 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14931 if (! (new_flags & EF_MIPS_PIC))
14932 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14933
14934 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14935 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14936
14937 /* Compare the ISAs. */
14938 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14939 {
14940 (*_bfd_error_handler)
14941 (_("%B: linking 32-bit code with 64-bit code"),
14942 ibfd);
14943 ok = FALSE;
14944 }
14945 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14946 {
14947 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14948 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14949 {
14950 /* Copy the architecture info from IBFD to OBFD. Also copy
14951 the 32-bit flag (if set) so that we continue to recognise
14952 OBFD as a 32-bit binary. */
14953 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14954 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14955 elf_elfheader (obfd)->e_flags
14956 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14957
14958 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14959 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14960
14961 /* Copy across the ABI flags if OBFD doesn't use them
14962 and if that was what caused us to treat IBFD as 32-bit. */
14963 if ((old_flags & EF_MIPS_ABI) == 0
14964 && mips_32bit_flags_p (new_flags)
14965 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14966 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14967 }
14968 else
14969 {
14970 /* The ISAs aren't compatible. */
14971 (*_bfd_error_handler)
14972 (_("%B: linking %s module with previous %s modules"),
14973 ibfd,
14974 bfd_printable_name (ibfd),
14975 bfd_printable_name (obfd));
14976 ok = FALSE;
14977 }
14978 }
14979
14980 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14981 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14982
14983 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14984 does set EI_CLASS differently from any 32-bit ABI. */
14985 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14986 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14987 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14988 {
14989 /* Only error if both are set (to different values). */
14990 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14991 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14992 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14993 {
14994 (*_bfd_error_handler)
14995 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14996 ibfd,
14997 elf_mips_abi_name (ibfd),
14998 elf_mips_abi_name (obfd));
14999 ok = FALSE;
15000 }
15001 new_flags &= ~EF_MIPS_ABI;
15002 old_flags &= ~EF_MIPS_ABI;
15003 }
15004
15005 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15006 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15007 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15008 {
15009 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15010 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15011 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15012 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15013 int micro_mis = old_m16 && new_micro;
15014 int m16_mis = old_micro && new_m16;
15015
15016 if (m16_mis || micro_mis)
15017 {
15018 (*_bfd_error_handler)
15019 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15020 ibfd,
15021 m16_mis ? "MIPS16" : "microMIPS",
15022 m16_mis ? "microMIPS" : "MIPS16");
15023 ok = FALSE;
15024 }
15025
15026 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15027
15028 new_flags &= ~ EF_MIPS_ARCH_ASE;
15029 old_flags &= ~ EF_MIPS_ARCH_ASE;
15030 }
15031
15032 /* Compare NaN encodings. */
15033 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15034 {
15035 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15036 ibfd,
15037 (new_flags & EF_MIPS_NAN2008
15038 ? "-mnan=2008" : "-mnan=legacy"),
15039 (old_flags & EF_MIPS_NAN2008
15040 ? "-mnan=2008" : "-mnan=legacy"));
15041 ok = FALSE;
15042 new_flags &= ~EF_MIPS_NAN2008;
15043 old_flags &= ~EF_MIPS_NAN2008;
15044 }
15045
15046 /* Compare FP64 state. */
15047 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15048 {
15049 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15050 ibfd,
15051 (new_flags & EF_MIPS_FP64
15052 ? "-mfp64" : "-mfp32"),
15053 (old_flags & EF_MIPS_FP64
15054 ? "-mfp64" : "-mfp32"));
15055 ok = FALSE;
15056 new_flags &= ~EF_MIPS_FP64;
15057 old_flags &= ~EF_MIPS_FP64;
15058 }
15059
15060 /* Warn about any other mismatches */
15061 if (new_flags != old_flags)
15062 {
15063 (*_bfd_error_handler)
15064 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15065 "(0x%lx)"),
15066 ibfd, (unsigned long) new_flags,
15067 (unsigned long) old_flags);
15068 ok = FALSE;
15069 }
15070
15071 return ok;
15072}
15073
2cf19d5c
JM
15074/* Merge object attributes from IBFD into OBFD. Raise an error if
15075 there are conflicting attributes. */
15076static bfd_boolean
15077mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15078{
15079 obj_attribute *in_attr;
15080 obj_attribute *out_attr;
6ae68ba3 15081 bfd *abi_fp_bfd;
b60bf9be 15082 bfd *abi_msa_bfd;
6ae68ba3
MR
15083
15084 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15085 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15086 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15087 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15088
b60bf9be
CF
15089 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15090 if (!abi_msa_bfd
15091 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15092 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15093
2cf19d5c
JM
15094 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15095 {
15096 /* This is the first object. Copy the attributes. */
15097 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15098
15099 /* Use the Tag_null value to indicate the attributes have been
15100 initialized. */
15101 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15102
15103 return TRUE;
15104 }
15105
15106 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15107 non-conflicting ones. */
2cf19d5c
JM
15108 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15109 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15110 {
757a636f 15111 int out_fp, in_fp;
6ae68ba3 15112
757a636f
RS
15113 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15114 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15115 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15116 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15117 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15118 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15119 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15120 || in_fp == Val_GNU_MIPS_ABI_FP_64
15121 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15122 {
15123 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15124 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15125 }
15126 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15127 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15128 || out_fp == Val_GNU_MIPS_ABI_FP_64
15129 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15130 /* Keep the current setting. */;
15131 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15132 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15133 {
15134 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15135 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15136 }
15137 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15138 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15139 /* Keep the current setting. */;
757a636f
RS
15140 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15141 {
15142 const char *out_string, *in_string;
6ae68ba3 15143
757a636f
RS
15144 out_string = _bfd_mips_fp_abi_string (out_fp);
15145 in_string = _bfd_mips_fp_abi_string (in_fp);
15146 /* First warn about cases involving unrecognised ABIs. */
15147 if (!out_string && !in_string)
15148 _bfd_error_handler
15149 (_("Warning: %B uses unknown floating point ABI %d "
15150 "(set by %B), %B uses unknown floating point ABI %d"),
15151 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15152 else if (!out_string)
15153 _bfd_error_handler
15154 (_("Warning: %B uses unknown floating point ABI %d "
15155 "(set by %B), %B uses %s"),
15156 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15157 else if (!in_string)
15158 _bfd_error_handler
15159 (_("Warning: %B uses %s (set by %B), "
15160 "%B uses unknown floating point ABI %d"),
15161 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15162 else
15163 {
15164 /* If one of the bfds is soft-float, the other must be
15165 hard-float. The exact choice of hard-float ABI isn't
15166 really relevant to the error message. */
15167 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15168 out_string = "-mhard-float";
15169 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15170 in_string = "-mhard-float";
15171 _bfd_error_handler
15172 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15173 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15174 }
15175 }
2cf19d5c
JM
15176 }
15177
b60bf9be
CF
15178 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15179 non-conflicting ones. */
15180 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15181 {
15182 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15183 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15184 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15185 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15186 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15187 {
15188 case Val_GNU_MIPS_ABI_MSA_128:
15189 _bfd_error_handler
15190 (_("Warning: %B uses %s (set by %B), "
15191 "%B uses unknown MSA ABI %d"),
15192 obfd, abi_msa_bfd, ibfd,
15193 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15194 break;
15195
15196 default:
15197 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15198 {
15199 case Val_GNU_MIPS_ABI_MSA_128:
15200 _bfd_error_handler
15201 (_("Warning: %B uses unknown MSA ABI %d "
15202 "(set by %B), %B uses %s"),
15203 obfd, abi_msa_bfd, ibfd,
15204 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15205 break;
15206
15207 default:
15208 _bfd_error_handler
15209 (_("Warning: %B uses unknown MSA ABI %d "
15210 "(set by %B), %B uses unknown MSA ABI %d"),
15211 obfd, abi_msa_bfd, ibfd,
15212 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15213 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15214 break;
15215 }
15216 }
15217 }
15218
2cf19d5c 15219 /* Merge Tag_compatibility attributes and any common GNU ones. */
43d223b5 15220 return _bfd_elf_merge_object_attributes (ibfd, obfd);
2cf19d5c
JM
15221}
15222
a3dc0a7f
MR
15223/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15224 there are conflicting settings. */
15225
15226static bfd_boolean
15227mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15228{
15229 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15230 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15231 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15232
15233 /* Update the output abiflags fp_abi using the computed fp_abi. */
15234 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15235
15236#define max(a, b) ((a) > (b) ? (a) : (b))
15237 /* Merge abiflags. */
15238 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15239 in_tdata->abiflags.isa_level);
15240 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15241 in_tdata->abiflags.isa_rev);
15242 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15243 in_tdata->abiflags.gpr_size);
15244 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15245 in_tdata->abiflags.cpr1_size);
15246 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15247 in_tdata->abiflags.cpr2_size);
15248#undef max
15249 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15250 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15251
15252 return TRUE;
15253}
15254
b49e97c9
TS
15255/* Merge backend specific data from an object file to the output
15256 object file when linking. */
15257
b34976b6 15258bfd_boolean
9719ad41 15259_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9 15260{
cf8502c1
MR
15261 struct mips_elf_obj_tdata *out_tdata;
15262 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15263 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15264 asection *sec;
d537eeb5 15265 bfd_boolean ok;
b49e97c9 15266
58238693 15267 /* Check if we have the same endianness. */
82e51918 15268 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
15269 {
15270 (*_bfd_error_handler)
d003868e
AM
15271 (_("%B: endianness incompatible with that of the selected emulation"),
15272 ibfd);
aa701218
AO
15273 return FALSE;
15274 }
b49e97c9 15275
d5eaccd7 15276 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15277 return TRUE;
b49e97c9 15278
cf8502c1
MR
15279 in_tdata = mips_elf_tdata (ibfd);
15280 out_tdata = mips_elf_tdata (obfd);
15281
aa701218
AO
15282 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15283 {
15284 (*_bfd_error_handler)
d003868e
AM
15285 (_("%B: ABI is incompatible with that of the selected emulation"),
15286 ibfd);
aa701218
AO
15287 return FALSE;
15288 }
15289
23ba6f18
MR
15290 /* Check to see if the input BFD actually contains any sections. If not,
15291 then it has no attributes, and its flags may not have been initialized
15292 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15293 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15294 {
15295 /* Ignore synthetic sections and empty .text, .data and .bss sections
15296 which are automatically generated by gas. Also ignore fake
15297 (s)common sections, since merely defining a common symbol does
15298 not affect compatibility. */
15299 if ((sec->flags & SEC_IS_COMMON) == 0
15300 && strcmp (sec->name, ".reginfo")
15301 && strcmp (sec->name, ".mdebug")
15302 && (sec->size != 0
15303 || (strcmp (sec->name, ".text")
15304 && strcmp (sec->name, ".data")
15305 && strcmp (sec->name, ".bss"))))
15306 {
15307 null_input_bfd = FALSE;
15308 break;
15309 }
15310 }
15311 if (null_input_bfd)
15312 return TRUE;
15313
28d45e28 15314 /* Populate abiflags using existing information. */
23ba6f18
MR
15315 if (in_tdata->abiflags_valid)
15316 {
15317 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15318 Elf_Internal_ABIFlags_v0 in_abiflags;
15319 Elf_Internal_ABIFlags_v0 abiflags;
15320
15321 /* Set up the FP ABI attribute from the abiflags if it is not already
15322 set. */
23ba6f18
MR
15323 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15324 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15325
351cdf24 15326 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15327 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15328
15329 /* It is not possible to infer the correct ISA revision
15330 for R3 or R5 so drop down to R2 for the checks. */
15331 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15332 in_abiflags.isa_rev = 2;
15333
c97c330b
MF
15334 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15335 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
351cdf24
MF
15336 (*_bfd_error_handler)
15337 (_("%B: warning: Inconsistent ISA between e_flags and "
15338 ".MIPS.abiflags"), ibfd);
15339 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15340 && in_abiflags.fp_abi != abiflags.fp_abi)
15341 (*_bfd_error_handler)
dcb1c796 15342 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15343 ".MIPS.abiflags"), ibfd);
15344 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15345 (*_bfd_error_handler)
15346 (_("%B: warning: Inconsistent ASEs between e_flags and "
15347 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15348 /* The isa_ext is allowed to be an extension of what can be inferred
15349 from e_flags. */
15350 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15351 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
351cdf24
MF
15352 (*_bfd_error_handler)
15353 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15354 ".MIPS.abiflags"), ibfd);
15355 if (in_abiflags.flags2 != 0)
15356 (*_bfd_error_handler)
15357 (_("%B: warning: Unexpected flag in the flags2 field of "
15358 ".MIPS.abiflags (0x%lx)"), ibfd,
15359 (unsigned long) in_abiflags.flags2);
15360 }
28d45e28
MR
15361 else
15362 {
15363 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15364 in_tdata->abiflags_valid = TRUE;
15365 }
15366
cf8502c1 15367 if (!out_tdata->abiflags_valid)
351cdf24
MF
15368 {
15369 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15370 out_tdata->abiflags = in_tdata->abiflags;
15371 out_tdata->abiflags_valid = TRUE;
351cdf24 15372 }
b49e97c9
TS
15373
15374 if (! elf_flags_init (obfd))
15375 {
b34976b6 15376 elf_flags_init (obfd) = TRUE;
351cdf24 15377 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15378 elf_elfheader (obfd)->e_ident[EI_CLASS]
15379 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15380
15381 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15382 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15383 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15384 bfd_get_mach (ibfd))))
b49e97c9
TS
15385 {
15386 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15387 bfd_get_mach (ibfd)))
b34976b6 15388 return FALSE;
351cdf24
MF
15389
15390 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15391 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15392 }
15393
d537eeb5 15394 ok = TRUE;
b49e97c9 15395 }
d537eeb5
MR
15396 else
15397 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15398
15399 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
b49e97c9 15400
a3dc0a7f 15401 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15402
d537eeb5 15403 if (!ok)
b49e97c9
TS
15404 {
15405 bfd_set_error (bfd_error_bad_value);
b34976b6 15406 return FALSE;
b49e97c9
TS
15407 }
15408
b34976b6 15409 return TRUE;
b49e97c9
TS
15410}
15411
15412/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15413
b34976b6 15414bfd_boolean
9719ad41 15415_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15416{
15417 BFD_ASSERT (!elf_flags_init (abfd)
15418 || elf_elfheader (abfd)->e_flags == flags);
15419
15420 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15421 elf_flags_init (abfd) = TRUE;
15422 return TRUE;
b49e97c9
TS
15423}
15424
ad9563d6
CM
15425char *
15426_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15427{
15428 switch (dtag)
15429 {
15430 default: return "";
15431 case DT_MIPS_RLD_VERSION:
15432 return "MIPS_RLD_VERSION";
15433 case DT_MIPS_TIME_STAMP:
15434 return "MIPS_TIME_STAMP";
15435 case DT_MIPS_ICHECKSUM:
15436 return "MIPS_ICHECKSUM";
15437 case DT_MIPS_IVERSION:
15438 return "MIPS_IVERSION";
15439 case DT_MIPS_FLAGS:
15440 return "MIPS_FLAGS";
15441 case DT_MIPS_BASE_ADDRESS:
15442 return "MIPS_BASE_ADDRESS";
15443 case DT_MIPS_MSYM:
15444 return "MIPS_MSYM";
15445 case DT_MIPS_CONFLICT:
15446 return "MIPS_CONFLICT";
15447 case DT_MIPS_LIBLIST:
15448 return "MIPS_LIBLIST";
15449 case DT_MIPS_LOCAL_GOTNO:
15450 return "MIPS_LOCAL_GOTNO";
15451 case DT_MIPS_CONFLICTNO:
15452 return "MIPS_CONFLICTNO";
15453 case DT_MIPS_LIBLISTNO:
15454 return "MIPS_LIBLISTNO";
15455 case DT_MIPS_SYMTABNO:
15456 return "MIPS_SYMTABNO";
15457 case DT_MIPS_UNREFEXTNO:
15458 return "MIPS_UNREFEXTNO";
15459 case DT_MIPS_GOTSYM:
15460 return "MIPS_GOTSYM";
15461 case DT_MIPS_HIPAGENO:
15462 return "MIPS_HIPAGENO";
15463 case DT_MIPS_RLD_MAP:
15464 return "MIPS_RLD_MAP";
a5499fa4
MF
15465 case DT_MIPS_RLD_MAP_REL:
15466 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15467 case DT_MIPS_DELTA_CLASS:
15468 return "MIPS_DELTA_CLASS";
15469 case DT_MIPS_DELTA_CLASS_NO:
15470 return "MIPS_DELTA_CLASS_NO";
15471 case DT_MIPS_DELTA_INSTANCE:
15472 return "MIPS_DELTA_INSTANCE";
15473 case DT_MIPS_DELTA_INSTANCE_NO:
15474 return "MIPS_DELTA_INSTANCE_NO";
15475 case DT_MIPS_DELTA_RELOC:
15476 return "MIPS_DELTA_RELOC";
15477 case DT_MIPS_DELTA_RELOC_NO:
15478 return "MIPS_DELTA_RELOC_NO";
15479 case DT_MIPS_DELTA_SYM:
15480 return "MIPS_DELTA_SYM";
15481 case DT_MIPS_DELTA_SYM_NO:
15482 return "MIPS_DELTA_SYM_NO";
15483 case DT_MIPS_DELTA_CLASSSYM:
15484 return "MIPS_DELTA_CLASSSYM";
15485 case DT_MIPS_DELTA_CLASSSYM_NO:
15486 return "MIPS_DELTA_CLASSSYM_NO";
15487 case DT_MIPS_CXX_FLAGS:
15488 return "MIPS_CXX_FLAGS";
15489 case DT_MIPS_PIXIE_INIT:
15490 return "MIPS_PIXIE_INIT";
15491 case DT_MIPS_SYMBOL_LIB:
15492 return "MIPS_SYMBOL_LIB";
15493 case DT_MIPS_LOCALPAGE_GOTIDX:
15494 return "MIPS_LOCALPAGE_GOTIDX";
15495 case DT_MIPS_LOCAL_GOTIDX:
15496 return "MIPS_LOCAL_GOTIDX";
15497 case DT_MIPS_HIDDEN_GOTIDX:
15498 return "MIPS_HIDDEN_GOTIDX";
15499 case DT_MIPS_PROTECTED_GOTIDX:
15500 return "MIPS_PROTECTED_GOT_IDX";
15501 case DT_MIPS_OPTIONS:
15502 return "MIPS_OPTIONS";
15503 case DT_MIPS_INTERFACE:
15504 return "MIPS_INTERFACE";
15505 case DT_MIPS_DYNSTR_ALIGN:
15506 return "DT_MIPS_DYNSTR_ALIGN";
15507 case DT_MIPS_INTERFACE_SIZE:
15508 return "DT_MIPS_INTERFACE_SIZE";
15509 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15510 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15511 case DT_MIPS_PERF_SUFFIX:
15512 return "DT_MIPS_PERF_SUFFIX";
15513 case DT_MIPS_COMPACT_SIZE:
15514 return "DT_MIPS_COMPACT_SIZE";
15515 case DT_MIPS_GP_VALUE:
15516 return "DT_MIPS_GP_VALUE";
15517 case DT_MIPS_AUX_DYNAMIC:
15518 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15519 case DT_MIPS_PLTGOT:
15520 return "DT_MIPS_PLTGOT";
15521 case DT_MIPS_RWPLT:
15522 return "DT_MIPS_RWPLT";
ad9563d6
CM
15523 }
15524}
15525
757a636f
RS
15526/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15527 not known. */
15528
15529const char *
15530_bfd_mips_fp_abi_string (int fp)
15531{
15532 switch (fp)
15533 {
15534 /* These strings aren't translated because they're simply
15535 option lists. */
15536 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15537 return "-mdouble-float";
15538
15539 case Val_GNU_MIPS_ABI_FP_SINGLE:
15540 return "-msingle-float";
15541
15542 case Val_GNU_MIPS_ABI_FP_SOFT:
15543 return "-msoft-float";
15544
351cdf24
MF
15545 case Val_GNU_MIPS_ABI_FP_OLD_64:
15546 return _("-mips32r2 -mfp64 (12 callee-saved)");
15547
15548 case Val_GNU_MIPS_ABI_FP_XX:
15549 return "-mfpxx";
15550
757a636f 15551 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15552 return "-mgp32 -mfp64";
15553
15554 case Val_GNU_MIPS_ABI_FP_64A:
15555 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15556
15557 default:
15558 return 0;
15559 }
15560}
15561
351cdf24
MF
15562static void
15563print_mips_ases (FILE *file, unsigned int mask)
15564{
15565 if (mask & AFL_ASE_DSP)
15566 fputs ("\n\tDSP ASE", file);
15567 if (mask & AFL_ASE_DSPR2)
15568 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15569 if (mask & AFL_ASE_DSPR3)
15570 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15571 if (mask & AFL_ASE_EVA)
15572 fputs ("\n\tEnhanced VA Scheme", file);
15573 if (mask & AFL_ASE_MCU)
15574 fputs ("\n\tMCU (MicroController) ASE", file);
15575 if (mask & AFL_ASE_MDMX)
15576 fputs ("\n\tMDMX ASE", file);
15577 if (mask & AFL_ASE_MIPS3D)
15578 fputs ("\n\tMIPS-3D ASE", file);
15579 if (mask & AFL_ASE_MT)
15580 fputs ("\n\tMT ASE", file);
15581 if (mask & AFL_ASE_SMARTMIPS)
15582 fputs ("\n\tSmartMIPS ASE", file);
15583 if (mask & AFL_ASE_VIRT)
15584 fputs ("\n\tVZ ASE", file);
15585 if (mask & AFL_ASE_MSA)
15586 fputs ("\n\tMSA ASE", file);
15587 if (mask & AFL_ASE_MIPS16)
15588 fputs ("\n\tMIPS16 ASE", file);
15589 if (mask & AFL_ASE_MICROMIPS)
15590 fputs ("\n\tMICROMIPS ASE", file);
15591 if (mask & AFL_ASE_XPA)
15592 fputs ("\n\tXPA ASE", file);
15593 if (mask == 0)
15594 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15595 else if ((mask & ~AFL_ASE_MASK) != 0)
15596 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15597}
15598
15599static void
15600print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15601{
15602 switch (isa_ext)
15603 {
15604 case 0:
15605 fputs (_("None"), file);
15606 break;
15607 case AFL_EXT_XLR:
15608 fputs ("RMI XLR", file);
15609 break;
2c629856
N
15610 case AFL_EXT_OCTEON3:
15611 fputs ("Cavium Networks Octeon3", file);
15612 break;
351cdf24
MF
15613 case AFL_EXT_OCTEON2:
15614 fputs ("Cavium Networks Octeon2", file);
15615 break;
15616 case AFL_EXT_OCTEONP:
15617 fputs ("Cavium Networks OcteonP", file);
15618 break;
15619 case AFL_EXT_LOONGSON_3A:
15620 fputs ("Loongson 3A", file);
15621 break;
15622 case AFL_EXT_OCTEON:
15623 fputs ("Cavium Networks Octeon", file);
15624 break;
15625 case AFL_EXT_5900:
15626 fputs ("Toshiba R5900", file);
15627 break;
15628 case AFL_EXT_4650:
15629 fputs ("MIPS R4650", file);
15630 break;
15631 case AFL_EXT_4010:
15632 fputs ("LSI R4010", file);
15633 break;
15634 case AFL_EXT_4100:
15635 fputs ("NEC VR4100", file);
15636 break;
15637 case AFL_EXT_3900:
15638 fputs ("Toshiba R3900", file);
15639 break;
15640 case AFL_EXT_10000:
15641 fputs ("MIPS R10000", file);
15642 break;
15643 case AFL_EXT_SB1:
15644 fputs ("Broadcom SB-1", file);
15645 break;
15646 case AFL_EXT_4111:
15647 fputs ("NEC VR4111/VR4181", file);
15648 break;
15649 case AFL_EXT_4120:
15650 fputs ("NEC VR4120", file);
15651 break;
15652 case AFL_EXT_5400:
15653 fputs ("NEC VR5400", file);
15654 break;
15655 case AFL_EXT_5500:
15656 fputs ("NEC VR5500", file);
15657 break;
15658 case AFL_EXT_LOONGSON_2E:
15659 fputs ("ST Microelectronics Loongson 2E", file);
15660 break;
15661 case AFL_EXT_LOONGSON_2F:
15662 fputs ("ST Microelectronics Loongson 2F", file);
15663 break;
15664 default:
00ac7aa0 15665 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15666 break;
15667 }
15668}
15669
15670static void
15671print_mips_fp_abi_value (FILE *file, int val)
15672{
15673 switch (val)
15674 {
15675 case Val_GNU_MIPS_ABI_FP_ANY:
15676 fprintf (file, _("Hard or soft float\n"));
15677 break;
15678 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15679 fprintf (file, _("Hard float (double precision)\n"));
15680 break;
15681 case Val_GNU_MIPS_ABI_FP_SINGLE:
15682 fprintf (file, _("Hard float (single precision)\n"));
15683 break;
15684 case Val_GNU_MIPS_ABI_FP_SOFT:
15685 fprintf (file, _("Soft float\n"));
15686 break;
15687 case Val_GNU_MIPS_ABI_FP_OLD_64:
15688 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15689 break;
15690 case Val_GNU_MIPS_ABI_FP_XX:
15691 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15692 break;
15693 case Val_GNU_MIPS_ABI_FP_64:
15694 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15695 break;
15696 case Val_GNU_MIPS_ABI_FP_64A:
15697 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15698 break;
15699 default:
15700 fprintf (file, "??? (%d)\n", val);
15701 break;
15702 }
15703}
15704
15705static int
15706get_mips_reg_size (int reg_size)
15707{
15708 return (reg_size == AFL_REG_NONE) ? 0
15709 : (reg_size == AFL_REG_32) ? 32
15710 : (reg_size == AFL_REG_64) ? 64
15711 : (reg_size == AFL_REG_128) ? 128
15712 : -1;
15713}
15714
b34976b6 15715bfd_boolean
9719ad41 15716_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15717{
9719ad41 15718 FILE *file = ptr;
b49e97c9
TS
15719
15720 BFD_ASSERT (abfd != NULL && ptr != NULL);
15721
15722 /* Print normal ELF private data. */
15723 _bfd_elf_print_private_bfd_data (abfd, ptr);
15724
15725 /* xgettext:c-format */
15726 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15727
15728 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15729 fprintf (file, _(" [abi=O32]"));
15730 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15731 fprintf (file, _(" [abi=O64]"));
15732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15733 fprintf (file, _(" [abi=EABI32]"));
15734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15735 fprintf (file, _(" [abi=EABI64]"));
15736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15737 fprintf (file, _(" [abi unknown]"));
15738 else if (ABI_N32_P (abfd))
15739 fprintf (file, _(" [abi=N32]"));
15740 else if (ABI_64_P (abfd))
15741 fprintf (file, _(" [abi=64]"));
15742 else
15743 fprintf (file, _(" [no abi set]"));
15744
15745 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15746 fprintf (file, " [mips1]");
b49e97c9 15747 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15748 fprintf (file, " [mips2]");
b49e97c9 15749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15750 fprintf (file, " [mips3]");
b49e97c9 15751 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15752 fprintf (file, " [mips4]");
b49e97c9 15753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15754 fprintf (file, " [mips5]");
b49e97c9 15755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15756 fprintf (file, " [mips32]");
b49e97c9 15757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15758 fprintf (file, " [mips64]");
af7ee8bf 15759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15760 fprintf (file, " [mips32r2]");
5f74bc13 15761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15762 fprintf (file, " [mips64r2]");
7361da2c
AB
15763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15764 fprintf (file, " [mips32r6]");
15765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15766 fprintf (file, " [mips64r6]");
b49e97c9
TS
15767 else
15768 fprintf (file, _(" [unknown ISA]"));
15769
40d32fc6 15770 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15771 fprintf (file, " [mdmx]");
40d32fc6
CD
15772
15773 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15774 fprintf (file, " [mips16]");
40d32fc6 15775
df58fc94
RS
15776 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15777 fprintf (file, " [micromips]");
15778
ba92f887
MR
15779 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15780 fprintf (file, " [nan2008]");
15781
5baf5e34 15782 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15783 fprintf (file, " [old fp64]");
5baf5e34 15784
b49e97c9 15785 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15786 fprintf (file, " [32bitmode]");
b49e97c9
TS
15787 else
15788 fprintf (file, _(" [not 32bitmode]"));
15789
c0e3f241 15790 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15791 fprintf (file, " [noreorder]");
c0e3f241
CD
15792
15793 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15794 fprintf (file, " [PIC]");
c0e3f241
CD
15795
15796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15797 fprintf (file, " [CPIC]");
c0e3f241
CD
15798
15799 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15800 fprintf (file, " [XGOT]");
c0e3f241
CD
15801
15802 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15803 fprintf (file, " [UCODE]");
c0e3f241 15804
b49e97c9
TS
15805 fputc ('\n', file);
15806
351cdf24
MF
15807 if (mips_elf_tdata (abfd)->abiflags_valid)
15808 {
15809 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15810 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15811 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15812 if (abiflags->isa_rev > 1)
15813 fprintf (file, "r%d", abiflags->isa_rev);
15814 fprintf (file, "\nGPR size: %d",
15815 get_mips_reg_size (abiflags->gpr_size));
15816 fprintf (file, "\nCPR1 size: %d",
15817 get_mips_reg_size (abiflags->cpr1_size));
15818 fprintf (file, "\nCPR2 size: %d",
15819 get_mips_reg_size (abiflags->cpr2_size));
15820 fputs ("\nFP ABI: ", file);
15821 print_mips_fp_abi_value (file, abiflags->fp_abi);
15822 fputs ("ISA Extension: ", file);
15823 print_mips_isa_ext (file, abiflags->isa_ext);
15824 fputs ("\nASEs:", file);
15825 print_mips_ases (file, abiflags->ases);
15826 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15827 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15828 fputc ('\n', file);
15829 }
15830
b34976b6 15831 return TRUE;
b49e97c9 15832}
2f89ff8d 15833
b35d266b 15834const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15835{
0112cd26
NC
15836 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15837 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15838 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15839 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15840 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15841 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15842 { NULL, 0, 0, 0, 0 }
2f89ff8d 15843};
5e2b0d47 15844
8992f0d7
TS
15845/* Merge non visibility st_other attributes. Ensure that the
15846 STO_OPTIONAL flag is copied into h->other, even if this is not a
15847 definiton of the symbol. */
5e2b0d47
NC
15848void
15849_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15850 const Elf_Internal_Sym *isym,
15851 bfd_boolean definition,
15852 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15853{
8992f0d7
TS
15854 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15855 {
15856 unsigned char other;
15857
15858 other = (definition ? isym->st_other : h->other);
15859 other &= ~ELF_ST_VISIBILITY (-1);
15860 h->other = other | ELF_ST_VISIBILITY (h->other);
15861 }
15862
15863 if (!definition
5e2b0d47
NC
15864 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15865 h->other |= STO_OPTIONAL;
15866}
12ac1cf5
NC
15867
15868/* Decide whether an undefined symbol is special and can be ignored.
15869 This is the case for OPTIONAL symbols on IRIX. */
15870bfd_boolean
15871_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15872{
15873 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15874}
e0764319
NC
15875
15876bfd_boolean
15877_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15878{
15879 return (sym->st_shndx == SHN_COMMON
15880 || sym->st_shndx == SHN_MIPS_ACOMMON
15881 || sym->st_shndx == SHN_MIPS_SCOMMON);
15882}
861fb55a
DJ
15883
15884/* Return address for Ith PLT stub in section PLT, for relocation REL
15885 or (bfd_vma) -1 if it should not be included. */
15886
15887bfd_vma
15888_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15889 const arelent *rel ATTRIBUTE_UNUSED)
15890{
15891 return (plt->vma
15892 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15893 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15894}
15895
1bbce132
MR
15896/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15897 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15898 and .got.plt and also the slots may be of a different size each we walk
15899 the PLT manually fetching instructions and matching them against known
15900 patterns. To make things easier standard MIPS slots, if any, always come
15901 first. As we don't create proper ELF symbols we use the UDATA.I member
15902 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15903 with the ST_OTHER member of the ELF symbol. */
15904
15905long
15906_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15907 long symcount ATTRIBUTE_UNUSED,
15908 asymbol **syms ATTRIBUTE_UNUSED,
15909 long dynsymcount, asymbol **dynsyms,
15910 asymbol **ret)
15911{
15912 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15913 static const char microsuffix[] = "@micromipsplt";
15914 static const char m16suffix[] = "@mips16plt";
15915 static const char mipssuffix[] = "@plt";
15916
15917 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15918 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15919 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15920 Elf_Internal_Shdr *hdr;
15921 bfd_byte *plt_data;
15922 bfd_vma plt_offset;
15923 unsigned int other;
15924 bfd_vma entry_size;
15925 bfd_vma plt0_size;
15926 asection *relplt;
15927 bfd_vma opcode;
15928 asection *plt;
15929 asymbol *send;
15930 size_t size;
15931 char *names;
15932 long counti;
15933 arelent *p;
15934 asymbol *s;
15935 char *nend;
15936 long count;
15937 long pi;
15938 long i;
15939 long n;
15940
15941 *ret = NULL;
15942
15943 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15944 return 0;
15945
15946 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15947 if (relplt == NULL)
15948 return 0;
15949
15950 hdr = &elf_section_data (relplt)->this_hdr;
15951 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15952 return 0;
15953
15954 plt = bfd_get_section_by_name (abfd, ".plt");
15955 if (plt == NULL)
15956 return 0;
15957
15958 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15959 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15960 return -1;
15961 p = relplt->relocation;
15962
15963 /* Calculating the exact amount of space required for symbols would
15964 require two passes over the PLT, so just pessimise assuming two
15965 PLT slots per relocation. */
15966 count = relplt->size / hdr->sh_entsize;
15967 counti = count * bed->s->int_rels_per_ext_rel;
15968 size = 2 * count * sizeof (asymbol);
15969 size += count * (sizeof (mipssuffix) +
15970 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15971 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15972 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15973
15974 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15975 size += sizeof (asymbol) + sizeof (pltname);
15976
15977 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15978 return -1;
15979
15980 if (plt->size < 16)
15981 return -1;
15982
15983 s = *ret = bfd_malloc (size);
15984 if (s == NULL)
15985 return -1;
15986 send = s + 2 * count + 1;
15987
15988 names = (char *) send;
15989 nend = (char *) s + size;
15990 n = 0;
15991
15992 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15993 if (opcode == 0x3302fffe)
15994 {
15995 if (!micromips_p)
15996 return -1;
15997 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15998 other = STO_MICROMIPS;
15999 }
833794fc
MR
16000 else if (opcode == 0x0398c1d0)
16001 {
16002 if (!micromips_p)
16003 return -1;
16004 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16005 other = STO_MICROMIPS;
16006 }
1bbce132
MR
16007 else
16008 {
16009 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16010 other = 0;
16011 }
16012
16013 s->the_bfd = abfd;
16014 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16015 s->section = plt;
16016 s->value = 0;
16017 s->name = names;
16018 s->udata.i = other;
16019 memcpy (names, pltname, sizeof (pltname));
16020 names += sizeof (pltname);
16021 ++s, ++n;
16022
16023 pi = 0;
16024 for (plt_offset = plt0_size;
16025 plt_offset + 8 <= plt->size && s < send;
16026 plt_offset += entry_size)
16027 {
16028 bfd_vma gotplt_addr;
16029 const char *suffix;
16030 bfd_vma gotplt_hi;
16031 bfd_vma gotplt_lo;
16032 size_t suffixlen;
16033
16034 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16035
16036 /* Check if the second word matches the expected MIPS16 instruction. */
16037 if (opcode == 0x651aeb00)
16038 {
16039 if (micromips_p)
16040 return -1;
16041 /* Truncated table??? */
16042 if (plt_offset + 16 > plt->size)
16043 break;
16044 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16045 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16046 suffixlen = sizeof (m16suffix);
16047 suffix = m16suffix;
16048 other = STO_MIPS16;
16049 }
833794fc 16050 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16051 else if (opcode == 0xff220000)
16052 {
16053 if (!micromips_p)
16054 return -1;
16055 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16056 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16057 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16058 gotplt_lo <<= 2;
16059 gotplt_addr = gotplt_hi + gotplt_lo;
16060 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16061 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16062 suffixlen = sizeof (microsuffix);
16063 suffix = microsuffix;
16064 other = STO_MICROMIPS;
16065 }
833794fc
MR
16066 /* Likewise the expected microMIPS instruction (insn32 mode). */
16067 else if ((opcode & 0xffff0000) == 0xff2f0000)
16068 {
16069 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16070 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16071 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16072 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16073 gotplt_addr = gotplt_hi + gotplt_lo;
16074 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16075 suffixlen = sizeof (microsuffix);
16076 suffix = microsuffix;
16077 other = STO_MICROMIPS;
16078 }
1bbce132
MR
16079 /* Otherwise assume standard MIPS code. */
16080 else
16081 {
16082 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16083 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16084 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16085 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16086 gotplt_addr = gotplt_hi + gotplt_lo;
16087 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16088 suffixlen = sizeof (mipssuffix);
16089 suffix = mipssuffix;
16090 other = 0;
16091 }
16092 /* Truncated table??? */
16093 if (plt_offset + entry_size > plt->size)
16094 break;
16095
16096 for (i = 0;
16097 i < count && p[pi].address != gotplt_addr;
16098 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16099
16100 if (i < count)
16101 {
16102 size_t namelen;
16103 size_t len;
16104
16105 *s = **p[pi].sym_ptr_ptr;
16106 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16107 we are defining a symbol, ensure one of them is set. */
16108 if ((s->flags & BSF_LOCAL) == 0)
16109 s->flags |= BSF_GLOBAL;
16110 s->flags |= BSF_SYNTHETIC;
16111 s->section = plt;
16112 s->value = plt_offset;
16113 s->name = names;
16114 s->udata.i = other;
16115
16116 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16117 namelen = len + suffixlen;
16118 if (names + namelen > nend)
16119 break;
16120
16121 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16122 names += len;
16123 memcpy (names, suffix, suffixlen);
16124 names += suffixlen;
16125
16126 ++s, ++n;
16127 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16128 }
16129 }
16130
16131 free (plt_data);
16132
16133 return n;
16134}
16135
861fb55a
DJ
16136void
16137_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16138{
16139 struct mips_elf_link_hash_table *htab;
16140 Elf_Internal_Ehdr *i_ehdrp;
16141
16142 i_ehdrp = elf_elfheader (abfd);
16143 if (link_info)
16144 {
16145 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16146 BFD_ASSERT (htab != NULL);
16147
861fb55a
DJ
16148 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16149 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16150 }
0af03126
L
16151
16152 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16153
16154 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16155 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16156 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
17733f5b
FS
16157
16158 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16159 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
861fb55a 16160}
2f0c68f2
CM
16161
16162int
16163_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16164{
16165 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16166}
16167
16168/* Return the opcode for can't unwind. */
16169
16170int
16171_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16172{
16173 return COMPACT_EH_CANT_UNWIND_OPCODE;
16174}
This page took 2.005517 seconds and 4 git commands to generate.