gas/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
b49e97c9 30#include "sysdep.h"
3db64b00 31#include "bfd.h"
b49e97c9 32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
2416/* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
b49e97c9
TS
2421
2422static bfd_vma
9719ad41 2423mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
0f20cc35 2426 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2427{
2428 asection *sgot;
2429 struct mips_got_info *g;
b15e6682 2430 struct mips_got_entry *entry;
b49e97c9
TS
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
0a44bf69
RS
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
0f20cc35
DJ
2436 r_symndx, h, r_type);
2437 if (!entry)
b15e6682 2438 return MINUS_ONE;
0f20cc35
DJ
2439
2440 if (TLS_RELOC_P (r_type))
ead49a57
RS
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
0f20cc35
DJ
2451 else
2452 return entry->gotidx;
b49e97c9
TS
2453}
2454
2455/* Returns the GOT index for the global symbol indicated by H. */
2456
2457static bfd_vma
0f20cc35
DJ
2458mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2460{
2461 bfd_vma index;
2462 asection *sgot;
f4416af6 2463 struct mips_got_info *g, *gg;
d0c7ff07 2464 long global_got_dynindx = 0;
b49e97c9 2465
f4416af6
AO
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
143d77c5 2470
f4416af6
AO
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2474 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2479 e.tls_type = 0;
f4416af6 2480
9719ad41 2481 p = htab_find (g->got_entries, &e);
f4416af6
AO
2482
2483 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
f4416af6
AO
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2505
0f20cc35
DJ
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
eea6121a 2532 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2533
2534 return index;
2535}
2536
0a44bf69
RS
2537/* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
b49e97c9
TS
2543
2544static bfd_vma
9719ad41 2545mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2547{
2548 asection *sgot;
2549 struct mips_got_info *g;
0a44bf69 2550 bfd_vma page, index;
b15e6682 2551 struct mips_got_entry *entry;
b49e97c9
TS
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
0a44bf69
RS
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
0f20cc35 2558 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2559
b15e6682
AO
2560 if (!entry)
2561 return MINUS_ONE;
143d77c5 2562
b15e6682 2563 index = entry->gotidx;
b49e97c9
TS
2564
2565 if (offsetp)
f4416af6 2566 *offsetp = value - entry->d.address;
b49e97c9
TS
2567
2568 return index;
2569}
2570
0a44bf69
RS
2571/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
b49e97c9
TS
2575
2576static bfd_vma
9719ad41 2577mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
b49e97c9
TS
2580{
2581 asection *sgot;
2582 struct mips_got_info *g;
b15e6682 2583 struct mips_got_entry *entry;
b49e97c9 2584
0a44bf69
RS
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2589 if (! external)
0a44bf69 2590 value = mips_elf_high (value) << 16;
b49e97c9
TS
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
0a44bf69
RS
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
b15e6682
AO
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
b49e97c9
TS
2601}
2602
2603/* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606static bfd_vma
9719ad41
RS
2607mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2609{
2610 asection *sgot;
2611 bfd_vma gp;
f4416af6 2612 struct mips_got_info *g;
b49e97c9 2613
f4416af6
AO
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2617
f4416af6 2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2619}
2620
0a44bf69
RS
2621/* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
b49e97c9 2625
b15e6682 2626static struct mips_got_entry *
0a44bf69
RS
2627mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
b49e97c9 2633{
b15e6682 2634 struct mips_got_entry entry, **loc;
f4416af6 2635 struct mips_got_info *g;
0a44bf69
RS
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
b15e6682 2639
f4416af6
AO
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
0f20cc35 2643 entry.tls_type = 0;
f4416af6
AO
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
b15e6682 2651
0f20cc35
DJ
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
a008ac03 2656 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
b15e6682
AO
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
143d77c5 2687
b15e6682 2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2689 entry.tls_type = 0;
b15e6682
AO
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
143d77c5 2695
b15e6682
AO
2696 memcpy (*loc, &entry, sizeof entry);
2697
b49e97c9
TS
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
f4416af6 2700 (*loc)->gotidx = -1;
b49e97c9
TS
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
b15e6682 2705 return NULL;
b49e97c9
TS
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2709 (sgot->contents + entry.gotidx));
2710
0a44bf69
RS
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
b15e6682 2738 return *loc;
b49e97c9
TS
2739}
2740
2741/* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
b34976b6 2748static bfd_boolean
9719ad41 2749mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2750{
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
f4416af6
AO
2757 g = mips_elf_got_info (dynobj, NULL);
2758
b49e97c9 2759 hsd.low = NULL;
143d77c5 2760 hsd.max_unref_got_dynindx =
f4416af6
AO
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
44c410de 2777 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
b49e97c9
TS
2784 g->global_gotsym = hsd.low;
2785
b34976b6 2786 return TRUE;
b49e97c9
TS
2787}
2788
2789/* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
b34976b6 2793static bfd_boolean
9719ad41 2794mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2795{
9719ad41 2796 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
b34976b6 2804 return TRUE;
b49e97c9 2805
f4416af6
AO
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
0f20cc35
DJ
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
f4416af6
AO
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
b49e97c9
TS
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
0f20cc35
DJ
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
b49e97c9
TS
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
b34976b6 2828 return TRUE;
b49e97c9
TS
2829}
2830
2831/* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
b34976b6 2835static bfd_boolean
9719ad41
RS
2836mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
b49e97c9 2840{
f4416af6
AO
2841 struct mips_got_entry entry, **loc;
2842
b49e97c9
TS
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
7c5fcef7
L
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
b34976b6 2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2852 break;
2853 }
c152c796 2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2855 return FALSE;
7c5fcef7 2856 }
b49e97c9 2857
86324f90
EC
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
f4416af6
AO
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2864 entry.tls_type = 0;
f4416af6
AO
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
b49e97c9
TS
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
f4416af6 2871 if (*loc)
0f20cc35
DJ
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
f4416af6
AO
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
143d77c5 2881
f4416af6 2882 entry.gotidx = -1;
0f20cc35
DJ
2883 entry.tls_type = tls_flag;
2884
f4416af6
AO
2885 memcpy (*loc, &entry, sizeof entry);
2886
b49e97c9 2887 if (h->got.offset != MINUS_ONE)
b34976b6 2888 return TRUE;
b49e97c9
TS
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
b49e97c9 2895
b34976b6 2896 return TRUE;
b49e97c9 2897}
f4416af6
AO
2898
2899/* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902static bfd_boolean
9719ad41 2903mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
f4416af6
AO
2906{
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
0f20cc35 2912 entry.tls_type = tls_flag;
f4416af6
AO
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
0f20cc35
DJ
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
f4416af6 2930
0f20cc35
DJ
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
f4416af6
AO
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
143d77c5 2955
f4416af6
AO
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959}
2960\f
2961/* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963static hashval_t
9719ad41 2964mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2965{
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970}
2971
2972/* Check whether two hash entries have the same bfd. */
2973
2974static int
9719ad41 2975mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2976{
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983}
2984
bad36eac 2985/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2986 be the master GOT data. */
2987
2988static struct mips_got_info *
9719ad41 2989mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2990{
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
9719ad41 2997 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2998 return p ? p->g : NULL;
2999}
3000
3001/* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005static int
9719ad41 3006mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
3007{
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
143d77c5 3014
f4416af6
AO
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
0f20cc35
DJ
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3053 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
143d77c5 3068
f4416af6
AO
3069 *entryp = entry;
3070
0f20cc35
DJ
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084}
3085
3086/* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093static int
9719ad41 3094mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3095{
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3101 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3102 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3112 if (primary_total > maxcnt)
0f20cc35
DJ
3113 too_many_for_tls = TRUE;
3114 }
143d77c5 3115
f4416af6
AO
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
0f20cc35
DJ
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
f4416af6
AO
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
0f20cc35
DJ
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
0f20cc35 3133 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
caec41ff 3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3151
3152 arg->primary_count = arg->primary->local_gotno
0f20cc35 3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
0f20cc35 3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
0f20cc35 3162 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
caec41ff 3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3177
3178 arg->current_count = arg->current->local_gotno
0f20cc35 3179 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
143d77c5 3188
0f20cc35
DJ
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193}
3194
ead49a57
RS
3195/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
0f20cc35
DJ
3197
3198static int
3199mips_elf_initialize_tls_index (void **entryp, void *p)
3200{
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
ead49a57 3203 bfd_vma next_index;
0f20cc35
DJ
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
ead49a57
RS
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3212 {
ead49a57
RS
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3223 {
ead49a57
RS
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3228 {
ead49a57 3229 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3230 return 1;
3231 }
ead49a57 3232 g->tls_ldm_offset = next_index;
0f20cc35 3233 }
ead49a57 3234 entry->gotidx = next_index;
f4416af6
AO
3235 }
3236
ead49a57 3237 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
f4416af6
AO
3243 return 1;
3244}
3245
3246/* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3257 marked as not eligible for lazy resolution through a function
f4416af6
AO
3258 stub. */
3259static int
9719ad41 3260mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3261{
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
0f20cc35
DJ
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
f4416af6 3272 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
f4416af6
AO
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292}
3293
0626d451
RS
3294/* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296static int
9719ad41 3297mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3298{
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307}
3308
f4416af6
AO
3309/* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315static int
9719ad41 3316mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3317{
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
143d77c5 3331
f4416af6
AO
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
143d77c5 3351
f4416af6
AO
3352 return 1;
3353}
3354
3355/* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357static void
9719ad41 3358mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3359{
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371}
3372
3373/* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375static bfd_vma
9719ad41 3376mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3377{
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
143d77c5 3388
0f20cc35
DJ
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3391}
3392
3393/* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396static bfd_boolean
9719ad41
RS
3397mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
f4416af6
AO
3400{
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3407 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
f4416af6
AO
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
0a44bf69 3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3427 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3428 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
0f20cc35 3441 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
0f20cc35 3452 g->next->tls_gotno = 0;
f4416af6 3453 g->next->assigned_gotno = 0;
0f20cc35
DJ
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
9719ad41 3458 NULL);
f4416af6
AO
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
143d77c5 3479
f4416af6
AO
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
143d77c5 3505
f4416af6
AO
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
0f20cc35 3555 gg->tls_gotno = 0;
f4416af6
AO
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
0a44bf69 3563 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
0f20cc35
DJ
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
ead49a57
RS
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
0f20cc35
DJ
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3579
ead49a57 3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3581 g = gn;
0626d451
RS
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3587 }
3588 while (g);
3589
eea6121a 3590 got->size = (gg->next->local_gotno
0f20cc35
DJ
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3593
f4416af6
AO
3594 return TRUE;
3595}
143d77c5 3596
b49e97c9
TS
3597\f
3598/* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601static const Elf_Internal_Rela *
9719ad41
RS
3602mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
b49e97c9 3605{
c000e262
TS
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
b49e97c9
TS
3608 while (relocation < relend)
3609 {
c000e262
TS
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
b49e97c9
TS
3618 return NULL;
3619}
3620
3621/* Return whether a relocation is against a local symbol. */
3622
b34976b6 3623static bfd_boolean
9719ad41
RS
3624mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
b49e97c9
TS
3628{
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
b34976b6 3639 return TRUE;
b49e97c9 3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3641 return TRUE;
b49e97c9
TS
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3653 if (h->root.forced_local)
b34976b6 3654 return TRUE;
b49e97c9
TS
3655 }
3656
b34976b6 3657 return FALSE;
b49e97c9
TS
3658}
3659\f
3660/* Sign-extend VALUE, which has the indicated number of BITS. */
3661
a7ebbfdf 3662bfd_vma
9719ad41 3663_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3664{
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670}
3671
3672/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3673 range expressible by a signed number with the indicated number of
b49e97c9
TS
3674 BITS. */
3675
b34976b6 3676static bfd_boolean
9719ad41 3677mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3678{
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
b34976b6 3683 return TRUE;
b49e97c9
TS
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
b34976b6 3686 return TRUE;
b49e97c9
TS
3687
3688 /* All is well. */
b34976b6 3689 return FALSE;
b49e97c9
TS
3690}
3691
3692/* Calculate the %high function. */
3693
3694static bfd_vma
9719ad41 3695mips_elf_high (bfd_vma value)
b49e97c9
TS
3696{
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698}
3699
3700/* Calculate the %higher function. */
3701
3702static bfd_vma
9719ad41 3703mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3704{
3705#ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707#else
3708 abort ();
c5ae1840 3709 return MINUS_ONE;
b49e97c9
TS
3710#endif
3711}
3712
3713/* Calculate the %highest function. */
3714
3715static bfd_vma
9719ad41 3716mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3717{
3718#ifdef BFD64
b15e6682 3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3720#else
3721 abort ();
c5ae1840 3722 return MINUS_ONE;
b49e97c9
TS
3723#endif
3724}
3725\f
3726/* Create the .compact_rel section. */
3727
b34976b6 3728static bfd_boolean
9719ad41
RS
3729mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3731{
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3496cb2a 3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3741 if (s == NULL
b49e97c9
TS
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3744 return FALSE;
b49e97c9 3745
eea6121a 3746 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3747 }
3748
b34976b6 3749 return TRUE;
b49e97c9
TS
3750}
3751
3752/* Create the .got section to hold the global offset table. */
3753
b34976b6 3754static bfd_boolean
9719ad41
RS
3755mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
b49e97c9
TS
3757{
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
14a793b2 3761 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
0a44bf69
RS
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
b49e97c9
TS
3767
3768 /* This function may be called more than once. */
f4416af6
AO
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
b49e97c9
TS
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
f4416af6
AO
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
72b4917c
TS
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3496cb2a 3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3786 if (s == NULL
72b4917c 3787 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3788 return FALSE;
b49e97c9
TS
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
14a793b2 3793 bh = NULL;
b49e97c9
TS
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3797 return FALSE;
14a793b2
AM
3798
3799 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3800 h->non_elf = 0;
3801 h->def_regular = 1;
b49e97c9 3802 h->type = STT_OBJECT;
d329bcd1 3803 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3804
3805 if (info->shared
c152c796 3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3807 return FALSE;
b49e97c9 3808
b49e97c9 3809 amt = sizeof (struct mips_got_info);
9719ad41 3810 g = bfd_alloc (abfd, amt);
b49e97c9 3811 if (g == NULL)
b34976b6 3812 return FALSE;
b49e97c9 3813 g->global_gotsym = NULL;
e3d54347 3814 g->global_gotno = 0;
0f20cc35 3815 g->tls_gotno = 0;
0a44bf69
RS
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3818 g->bfd2got = NULL;
3819 g->next = NULL;
0f20cc35 3820 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3822 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3823 if (g->got_entries == NULL)
3824 return FALSE;
f0abc2a1
AM
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
0a44bf69
RS
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
b34976b6 3840 return TRUE;
b49e97c9 3841}
b49e97c9 3842\f
0a44bf69
RS
3843/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847static bfd_boolean
3848is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849{
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854}
3855\f
b49e97c9
TS
3856/* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869static bfd_reloc_status_type
9719ad41
RS
3870mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
b49e97c9
TS
3879{
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3901 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3902 symbol. */
b34976b6
AM
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
b34976b6 3913 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3914 relocation value. */
b34976b6
AM
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
b49e97c9
TS
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
b34976b6 3932 overflowed_p = FALSE;
b49e97c9
TS
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3938 local_sections, FALSE);
bce03d3d 3939 was_local_p = local_p;
b49e97c9
TS
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
b49e97c9 3960 symbol += sym->st_value;
d4df96e6
L
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
b49e97c9
TS
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
560e09e9
NC
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
b49e97c9
TS
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
560e09e9 3999 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4006 return bfd_reloc_notsupported;
4007
b34976b6 4008 gp_disp_p = TRUE;
b49e97c9 4009 }
bbe506e8
TS
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
b49e97c9
TS
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
59c2e50f 4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
a4d0f181
TS
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
5e2b0d47
NC
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
b49e97c9
TS
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
59c2e50f
L
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
1049f94e 4082 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4083 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4087 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
1049f94e 4106 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9 4107 && h != NULL
b9d58d71
TS
4108 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4109 || (local_p
4110 && elf_tdata (input_bfd)->local_call_stubs != NULL
4111 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4112 && !target_is_16_bit_code_p)
4113 {
b9d58d71
TS
4114 if (local_p)
4115 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4116 else
b49e97c9 4117 {
b9d58d71
TS
4118 /* If both call_stub and call_fp_stub are defined, we can figure
4119 out which one to use by checking which one appears in the input
4120 file. */
4121 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4122 {
b9d58d71
TS
4123 asection *o;
4124
4125 sec = NULL;
4126 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4127 {
b9d58d71
TS
4128 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4129 {
4130 sec = h->call_fp_stub;
4131 break;
4132 }
b49e97c9 4133 }
b9d58d71
TS
4134 if (sec == NULL)
4135 sec = h->call_stub;
b49e97c9 4136 }
b9d58d71 4137 else if (h->call_stub != NULL)
b49e97c9 4138 sec = h->call_stub;
b9d58d71
TS
4139 else
4140 sec = h->call_fp_stub;
4141 }
b49e97c9 4142
eea6121a 4143 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4144 symbol = sec->output_section->vma + sec->output_offset;
4145 }
4146
4147 /* Calls from 16-bit code to 32-bit code and vice versa require the
4148 special jalx instruction. */
1049f94e 4149 *require_jalxp = (!info->relocatable
b49e97c9
TS
4150 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4151 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4152
4153 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4154 local_sections, TRUE);
b49e97c9
TS
4155
4156 /* If we haven't already determined the GOT offset, or the GP value,
4157 and we're going to need it, get it now. */
4158 switch (r_type)
4159 {
0fdc1bf1 4160 case R_MIPS_GOT_PAGE:
93a2b7ae 4161 case R_MIPS_GOT_OFST:
d25aed71
RS
4162 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4163 bind locally. */
4164 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4165 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4166 break;
4167 /* Fall through. */
4168
b49e97c9
TS
4169 case R_MIPS_CALL16:
4170 case R_MIPS_GOT16:
4171 case R_MIPS_GOT_DISP:
4172 case R_MIPS_GOT_HI16:
4173 case R_MIPS_CALL_HI16:
4174 case R_MIPS_GOT_LO16:
4175 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4176 case R_MIPS_TLS_GD:
4177 case R_MIPS_TLS_GOTTPREL:
4178 case R_MIPS_TLS_LDM:
b49e97c9 4179 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4180 if (r_type == R_MIPS_TLS_LDM)
4181 {
0a44bf69
RS
4182 g = mips_elf_local_got_index (abfd, input_bfd, info,
4183 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187 else if (!local_p)
b49e97c9 4188 {
0a44bf69
RS
4189 /* On VxWorks, CALL relocations should refer to the .got.plt
4190 entry, which is initialized to point at the PLT stub. */
4191 if (htab->is_vxworks
4192 && (r_type == R_MIPS_CALL_HI16
4193 || r_type == R_MIPS_CALL_LO16
4194 || r_type == R_MIPS_CALL16))
4195 {
4196 BFD_ASSERT (addend == 0);
4197 BFD_ASSERT (h->root.needs_plt);
4198 g = mips_elf_gotplt_index (info, &h->root);
4199 }
4200 else
b49e97c9 4201 {
0a44bf69
RS
4202 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4203 GOT_PAGE relocation that decays to GOT_DISP because the
4204 symbol turns out to be global. The addend is then added
4205 as GOT_OFST. */
4206 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4207 g = mips_elf_global_got_index (dynobj, input_bfd,
4208 &h->root, r_type, info);
4209 if (h->tls_type == GOT_NORMAL
4210 && (! elf_hash_table(info)->dynamic_sections_created
4211 || (info->shared
4212 && (info->symbolic || h->root.forced_local)
4213 && h->root.def_regular)))
4214 {
4215 /* This is a static link or a -Bsymbolic link. The
4216 symbol is defined locally, or was forced to be local.
4217 We must initialize this entry in the GOT. */
4218 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4219 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4220 }
b49e97c9
TS
4221 }
4222 }
0a44bf69
RS
4223 else if (!htab->is_vxworks
4224 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4225 /* The calculation below does not involve "g". */
b49e97c9
TS
4226 break;
4227 else
4228 {
0a44bf69
RS
4229 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4230 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4231 if (g == MINUS_ONE)
4232 return bfd_reloc_outofrange;
4233 }
4234
4235 /* Convert GOT indices to actual offsets. */
0a44bf69 4236 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4237 break;
4238
4239 case R_MIPS_HI16:
4240 case R_MIPS_LO16:
b49e97c9
TS
4241 case R_MIPS_GPREL16:
4242 case R_MIPS_GPREL32:
4243 case R_MIPS_LITERAL:
d6f16593
MR
4244 case R_MIPS16_HI16:
4245 case R_MIPS16_LO16:
4246 case R_MIPS16_GPREL:
b49e97c9
TS
4247 gp0 = _bfd_get_gp_value (input_bfd);
4248 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4249 if (dynobj)
4250 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4251 input_bfd);
b49e97c9
TS
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
bbe506e8
TS
4258 if (gnu_local_gp_p)
4259 symbol = gp;
86324f90 4260
0a44bf69
RS
4261 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4262 symbols are resolved by the loader. Add them to .rela.dyn. */
4263 if (h != NULL && is_gott_symbol (info, &h->root))
4264 {
4265 Elf_Internal_Rela outrel;
4266 bfd_byte *loc;
4267 asection *s;
4268
4269 s = mips_elf_rel_dyn_section (info, FALSE);
4270 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4271
4272 outrel.r_offset = (input_section->output_section->vma
4273 + input_section->output_offset
4274 + relocation->r_offset);
4275 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4276 outrel.r_addend = addend;
4277 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4278
4279 /* If we've written this relocation for a readonly section,
4280 we need to set DF_TEXTREL again, so that we do not delete the
4281 DT_TEXTREL tag. */
4282 if (MIPS_ELF_READONLY_SECTION (input_section))
4283 info->flags |= DF_TEXTREL;
4284
0a44bf69
RS
4285 *valuep = 0;
4286 return bfd_reloc_ok;
4287 }
4288
b49e97c9
TS
4289 /* Figure out what kind of relocation is being performed. */
4290 switch (r_type)
4291 {
4292 case R_MIPS_NONE:
4293 return bfd_reloc_continue;
4294
4295 case R_MIPS_16:
a7ebbfdf 4296 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4297 overflowed_p = mips_elf_overflow_p (value, 16);
4298 break;
4299
4300 case R_MIPS_32:
4301 case R_MIPS_REL32:
4302 case R_MIPS_64:
4303 if ((info->shared
0a44bf69
RS
4304 || (!htab->is_vxworks
4305 && htab->root.dynamic_sections_created
b49e97c9 4306 && h != NULL
f5385ebf
AM
4307 && h->root.def_dynamic
4308 && !h->root.def_regular))
b49e97c9
TS
4309 && r_symndx != 0
4310 && (input_section->flags & SEC_ALLOC) != 0)
4311 {
4312 /* If we're creating a shared library, or this relocation is
4313 against a symbol in a shared library, then we can't know
4314 where the symbol will end up. So, we create a relocation
4315 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4316 linker.
4317
4318 In VxWorks executables, references to external symbols
4319 are handled using copy relocs or PLT stubs, so there's
4320 no need to add a dynamic relocation here. */
b49e97c9
TS
4321 value = addend;
4322 if (!mips_elf_create_dynamic_relocation (abfd,
4323 info,
4324 relocation,
4325 h,
4326 sec,
4327 symbol,
4328 &value,
4329 input_section))
4330 return bfd_reloc_undefined;
4331 }
4332 else
4333 {
4334 if (r_type != R_MIPS_REL32)
4335 value = symbol + addend;
4336 else
4337 value = addend;
4338 }
4339 value &= howto->dst_mask;
092dcd75
CD
4340 break;
4341
4342 case R_MIPS_PC32:
4343 value = symbol + addend - p;
4344 value &= howto->dst_mask;
b49e97c9
TS
4345 break;
4346
b49e97c9
TS
4347 case R_MIPS16_26:
4348 /* The calculation for R_MIPS16_26 is just the same as for an
4349 R_MIPS_26. It's only the storage of the relocated field into
4350 the output file that's different. That's handled in
4351 mips_elf_perform_relocation. So, we just fall through to the
4352 R_MIPS_26 case here. */
4353 case R_MIPS_26:
4354 if (local_p)
30ac9238 4355 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4356 else
728b2f21
ILT
4357 {
4358 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4359 if (h->root.root.type != bfd_link_hash_undefweak)
4360 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4361 }
b49e97c9
TS
4362 value &= howto->dst_mask;
4363 break;
4364
0f20cc35
DJ
4365 case R_MIPS_TLS_DTPREL_HI16:
4366 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4367 & howto->dst_mask);
4368 break;
4369
4370 case R_MIPS_TLS_DTPREL_LO16:
4371 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4372 break;
4373
4374 case R_MIPS_TLS_TPREL_HI16:
4375 value = (mips_elf_high (addend + symbol - tprel_base (info))
4376 & howto->dst_mask);
4377 break;
4378
4379 case R_MIPS_TLS_TPREL_LO16:
4380 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4381 break;
4382
b49e97c9 4383 case R_MIPS_HI16:
d6f16593 4384 case R_MIPS16_HI16:
b49e97c9
TS
4385 if (!gp_disp_p)
4386 {
4387 value = mips_elf_high (addend + symbol);
4388 value &= howto->dst_mask;
4389 }
4390 else
4391 {
d6f16593
MR
4392 /* For MIPS16 ABI code we generate this sequence
4393 0: li $v0,%hi(_gp_disp)
4394 4: addiupc $v1,%lo(_gp_disp)
4395 8: sll $v0,16
4396 12: addu $v0,$v1
4397 14: move $gp,$v0
4398 So the offsets of hi and lo relocs are the same, but the
4399 $pc is four higher than $t9 would be, so reduce
4400 both reloc addends by 4. */
4401 if (r_type == R_MIPS16_HI16)
4402 value = mips_elf_high (addend + gp - p - 4);
4403 else
4404 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4405 overflowed_p = mips_elf_overflow_p (value, 16);
4406 }
4407 break;
4408
4409 case R_MIPS_LO16:
d6f16593 4410 case R_MIPS16_LO16:
b49e97c9
TS
4411 if (!gp_disp_p)
4412 value = (symbol + addend) & howto->dst_mask;
4413 else
4414 {
d6f16593
MR
4415 /* See the comment for R_MIPS16_HI16 above for the reason
4416 for this conditional. */
4417 if (r_type == R_MIPS16_LO16)
4418 value = addend + gp - p;
4419 else
4420 value = addend + gp - p + 4;
b49e97c9 4421 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4422 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4423 _gp_disp are normally generated from the .cpload
4424 pseudo-op. It generates code that normally looks like
4425 this:
4426
4427 lui $gp,%hi(_gp_disp)
4428 addiu $gp,$gp,%lo(_gp_disp)
4429 addu $gp,$gp,$t9
4430
4431 Here $t9 holds the address of the function being called,
4432 as required by the MIPS ELF ABI. The R_MIPS_LO16
4433 relocation can easily overflow in this situation, but the
4434 R_MIPS_HI16 relocation will handle the overflow.
4435 Therefore, we consider this a bug in the MIPS ABI, and do
4436 not check for overflow here. */
4437 }
4438 break;
4439
4440 case R_MIPS_LITERAL:
4441 /* Because we don't merge literal sections, we can handle this
4442 just like R_MIPS_GPREL16. In the long run, we should merge
4443 shared literals, and then we will need to additional work
4444 here. */
4445
4446 /* Fall through. */
4447
4448 case R_MIPS16_GPREL:
4449 /* The R_MIPS16_GPREL performs the same calculation as
4450 R_MIPS_GPREL16, but stores the relocated bits in a different
4451 order. We don't need to do anything special here; the
4452 differences are handled in mips_elf_perform_relocation. */
4453 case R_MIPS_GPREL16:
bce03d3d
AO
4454 /* Only sign-extend the addend if it was extracted from the
4455 instruction. If the addend was separate, leave it alone,
4456 otherwise we may lose significant bits. */
4457 if (howto->partial_inplace)
a7ebbfdf 4458 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4459 value = symbol + addend - gp;
4460 /* If the symbol was local, any earlier relocatable links will
4461 have adjusted its addend with the gp offset, so compensate
4462 for that now. Don't do it for symbols forced local in this
4463 link, though, since they won't have had the gp offset applied
4464 to them before. */
4465 if (was_local_p)
4466 value += gp0;
b49e97c9
TS
4467 overflowed_p = mips_elf_overflow_p (value, 16);
4468 break;
4469
4470 case R_MIPS_GOT16:
4471 case R_MIPS_CALL16:
0a44bf69
RS
4472 /* VxWorks does not have separate local and global semantics for
4473 R_MIPS_GOT16; every relocation evaluates to "G". */
4474 if (!htab->is_vxworks && local_p)
b49e97c9 4475 {
b34976b6 4476 bfd_boolean forced;
b49e97c9 4477
b49e97c9 4478 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4479 local_sections, FALSE);
0a44bf69 4480 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4481 symbol + addend, forced);
b49e97c9
TS
4482 if (value == MINUS_ONE)
4483 return bfd_reloc_outofrange;
4484 value
0a44bf69 4485 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488 }
4489
4490 /* Fall through. */
4491
0f20cc35
DJ
4492 case R_MIPS_TLS_GD:
4493 case R_MIPS_TLS_GOTTPREL:
4494 case R_MIPS_TLS_LDM:
b49e97c9 4495 case R_MIPS_GOT_DISP:
0fdc1bf1 4496 got_disp:
b49e97c9
TS
4497 value = g;
4498 overflowed_p = mips_elf_overflow_p (value, 16);
4499 break;
4500
4501 case R_MIPS_GPREL32:
bce03d3d
AO
4502 value = (addend + symbol + gp0 - gp);
4503 if (!save_addend)
4504 value &= howto->dst_mask;
b49e97c9
TS
4505 break;
4506
4507 case R_MIPS_PC16:
bad36eac
DJ
4508 case R_MIPS_GNU_REL16_S2:
4509 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4510 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4511 value >>= howto->rightshift;
4512 value &= howto->dst_mask;
b49e97c9
TS
4513 break;
4514
4515 case R_MIPS_GOT_HI16:
4516 case R_MIPS_CALL_HI16:
4517 /* We're allowed to handle these two relocations identically.
4518 The dynamic linker is allowed to handle the CALL relocations
4519 differently by creating a lazy evaluation stub. */
4520 value = g;
4521 value = mips_elf_high (value);
4522 value &= howto->dst_mask;
4523 break;
4524
4525 case R_MIPS_GOT_LO16:
4526 case R_MIPS_CALL_LO16:
4527 value = g & howto->dst_mask;
4528 break;
4529
4530 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4531 /* GOT_PAGE relocations that reference non-local symbols decay
4532 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4533 0. */
93a2b7ae 4534 if (! local_p)
0fdc1bf1 4535 goto got_disp;
0a44bf69
RS
4536 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4537 symbol + addend, NULL);
b49e97c9
TS
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
0a44bf69 4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_GOT_OFST:
93a2b7ae 4545 if (local_p)
0a44bf69
RS
4546 mips_elf_got_page (abfd, input_bfd, info, sec,
4547 symbol + addend, &value);
0fdc1bf1
AO
4548 else
4549 value = addend;
b49e97c9
TS
4550 overflowed_p = mips_elf_overflow_p (value, 16);
4551 break;
4552
4553 case R_MIPS_SUB:
4554 value = symbol - addend;
4555 value &= howto->dst_mask;
4556 break;
4557
4558 case R_MIPS_HIGHER:
4559 value = mips_elf_higher (addend + symbol);
4560 value &= howto->dst_mask;
4561 break;
4562
4563 case R_MIPS_HIGHEST:
4564 value = mips_elf_highest (addend + symbol);
4565 value &= howto->dst_mask;
4566 break;
4567
4568 case R_MIPS_SCN_DISP:
4569 value = symbol + addend - sec->output_offset;
4570 value &= howto->dst_mask;
4571 break;
4572
b49e97c9 4573 case R_MIPS_JALR:
1367d393
ILT
4574 /* This relocation is only a hint. In some cases, we optimize
4575 it into a bal instruction. But we don't try to optimize
4576 branches to the PLT; that will wind up wasting time. */
4577 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4578 return bfd_reloc_continue;
4579 value = symbol + addend;
4580 break;
b49e97c9 4581
1367d393 4582 case R_MIPS_PJUMP:
b49e97c9
TS
4583 case R_MIPS_GNU_VTINHERIT:
4584 case R_MIPS_GNU_VTENTRY:
4585 /* We don't do anything with these at present. */
4586 return bfd_reloc_continue;
4587
4588 default:
4589 /* An unrecognized relocation type. */
4590 return bfd_reloc_notsupported;
4591 }
4592
4593 /* Store the VALUE for our caller. */
4594 *valuep = value;
4595 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4596}
4597
4598/* Obtain the field relocated by RELOCATION. */
4599
4600static bfd_vma
9719ad41
RS
4601mips_elf_obtain_contents (reloc_howto_type *howto,
4602 const Elf_Internal_Rela *relocation,
4603 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4604{
4605 bfd_vma x;
4606 bfd_byte *location = contents + relocation->r_offset;
4607
4608 /* Obtain the bytes. */
4609 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4610
b49e97c9
TS
4611 return x;
4612}
4613
4614/* It has been determined that the result of the RELOCATION is the
4615 VALUE. Use HOWTO to place VALUE into the output file at the
4616 appropriate position. The SECTION is the section to which the
b34976b6 4617 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4618 for the relocation must be either JAL or JALX, and it is
4619 unconditionally converted to JALX.
4620
b34976b6 4621 Returns FALSE if anything goes wrong. */
b49e97c9 4622
b34976b6 4623static bfd_boolean
9719ad41
RS
4624mips_elf_perform_relocation (struct bfd_link_info *info,
4625 reloc_howto_type *howto,
4626 const Elf_Internal_Rela *relocation,
4627 bfd_vma value, bfd *input_bfd,
4628 asection *input_section, bfd_byte *contents,
4629 bfd_boolean require_jalx)
b49e97c9
TS
4630{
4631 bfd_vma x;
4632 bfd_byte *location;
4633 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4634
4635 /* Figure out where the relocation is occurring. */
4636 location = contents + relocation->r_offset;
4637
d6f16593
MR
4638 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4639
b49e97c9
TS
4640 /* Obtain the current value. */
4641 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4642
4643 /* Clear the field we are setting. */
4644 x &= ~howto->dst_mask;
4645
b49e97c9
TS
4646 /* Set the field. */
4647 x |= (value & howto->dst_mask);
4648
4649 /* If required, turn JAL into JALX. */
4650 if (require_jalx)
4651 {
b34976b6 4652 bfd_boolean ok;
b49e97c9
TS
4653 bfd_vma opcode = x >> 26;
4654 bfd_vma jalx_opcode;
4655
4656 /* Check to see if the opcode is already JAL or JALX. */
4657 if (r_type == R_MIPS16_26)
4658 {
4659 ok = ((opcode == 0x6) || (opcode == 0x7));
4660 jalx_opcode = 0x7;
4661 }
4662 else
4663 {
4664 ok = ((opcode == 0x3) || (opcode == 0x1d));
4665 jalx_opcode = 0x1d;
4666 }
4667
4668 /* If the opcode is not JAL or JALX, there's a problem. */
4669 if (!ok)
4670 {
4671 (*_bfd_error_handler)
d003868e
AM
4672 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4673 input_bfd,
4674 input_section,
b49e97c9
TS
4675 (unsigned long) relocation->r_offset);
4676 bfd_set_error (bfd_error_bad_value);
b34976b6 4677 return FALSE;
b49e97c9
TS
4678 }
4679
4680 /* Make this the JALX opcode. */
4681 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4682 }
4683
1367d393
ILT
4684 /* On the RM9000, bal is faster than jal, because bal uses branch
4685 prediction hardware. If we are linking for the RM9000, and we
4686 see jal, and bal fits, use it instead. Note that this
4687 transformation should be safe for all architectures. */
4688 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4689 && !info->relocatable
4690 && !require_jalx
4691 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4692 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4693 {
4694 bfd_vma addr;
4695 bfd_vma dest;
4696 bfd_signed_vma off;
4697
4698 addr = (input_section->output_section->vma
4699 + input_section->output_offset
4700 + relocation->r_offset
4701 + 4);
4702 if (r_type == R_MIPS_26)
4703 dest = (value << 2) | ((addr >> 28) << 28);
4704 else
4705 dest = value;
4706 off = dest - addr;
4707 if (off <= 0x1ffff && off >= -0x20000)
4708 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4709 }
4710
b49e97c9
TS
4711 /* Put the value into the output. */
4712 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4713
4714 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4715 location);
4716
b34976b6 4717 return TRUE;
b49e97c9
TS
4718}
4719
b34976b6 4720/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4721
b34976b6 4722static bfd_boolean
b9d58d71 4723mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4724{
4725 const char *name = bfd_get_section_name (abfd, section);
4726
b9d58d71 4727 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4728}
4729\f
0a44bf69 4730/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4731
4732static void
0a44bf69
RS
4733mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4734 unsigned int n)
b49e97c9
TS
4735{
4736 asection *s;
0a44bf69 4737 struct mips_elf_link_hash_table *htab;
b49e97c9 4738
0a44bf69
RS
4739 htab = mips_elf_hash_table (info);
4740 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4741 BFD_ASSERT (s != NULL);
4742
0a44bf69
RS
4743 if (htab->is_vxworks)
4744 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4745 else
b49e97c9 4746 {
0a44bf69
RS
4747 if (s->size == 0)
4748 {
4749 /* Make room for a null element. */
4750 s->size += MIPS_ELF_REL_SIZE (abfd);
4751 ++s->reloc_count;
4752 }
4753 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4754 }
b49e97c9
TS
4755}
4756
4757/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4758 is the original relocation, which is now being transformed into a
4759 dynamic relocation. The ADDENDP is adjusted if necessary; the
4760 caller should store the result in place of the original addend. */
4761
b34976b6 4762static bfd_boolean
9719ad41
RS
4763mips_elf_create_dynamic_relocation (bfd *output_bfd,
4764 struct bfd_link_info *info,
4765 const Elf_Internal_Rela *rel,
4766 struct mips_elf_link_hash_entry *h,
4767 asection *sec, bfd_vma symbol,
4768 bfd_vma *addendp, asection *input_section)
b49e97c9 4769{
947216bf 4770 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4771 asection *sreloc;
4772 bfd *dynobj;
4773 int r_type;
5d41f0b6
RS
4774 long indx;
4775 bfd_boolean defined_p;
0a44bf69 4776 struct mips_elf_link_hash_table *htab;
b49e97c9 4777
0a44bf69 4778 htab = mips_elf_hash_table (info);
b49e97c9
TS
4779 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4780 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4781 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4782 BFD_ASSERT (sreloc != NULL);
4783 BFD_ASSERT (sreloc->contents != NULL);
4784 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4785 < sreloc->size);
b49e97c9 4786
b49e97c9
TS
4787 outrel[0].r_offset =
4788 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4789 if (ABI_64_P (output_bfd))
4790 {
4791 outrel[1].r_offset =
4792 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4793 outrel[2].r_offset =
4794 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4795 }
b49e97c9 4796
c5ae1840 4797 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4798 /* The relocation field has been deleted. */
5d41f0b6
RS
4799 return TRUE;
4800
4801 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4802 {
4803 /* The relocation field has been converted into a relative value of
4804 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4805 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4806 *addendp += symbol;
5d41f0b6 4807 return TRUE;
0d591ff7 4808 }
b49e97c9 4809
5d41f0b6
RS
4810 /* We must now calculate the dynamic symbol table index to use
4811 in the relocation. */
4812 if (h != NULL
6ece8836
TS
4813 && (!h->root.def_regular
4814 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4815 {
4816 indx = h->root.dynindx;
4817 if (SGI_COMPAT (output_bfd))
4818 defined_p = h->root.def_regular;
4819 else
4820 /* ??? glibc's ld.so just adds the final GOT entry to the
4821 relocation field. It therefore treats relocs against
4822 defined symbols in the same way as relocs against
4823 undefined symbols. */
4824 defined_p = FALSE;
4825 }
b49e97c9
TS
4826 else
4827 {
5d41f0b6
RS
4828 if (sec != NULL && bfd_is_abs_section (sec))
4829 indx = 0;
4830 else if (sec == NULL || sec->owner == NULL)
fdd07405 4831 {
5d41f0b6
RS
4832 bfd_set_error (bfd_error_bad_value);
4833 return FALSE;
b49e97c9
TS
4834 }
4835 else
4836 {
5d41f0b6 4837 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4838 if (indx == 0)
4839 {
4840 asection *osec = htab->root.text_index_section;
4841 indx = elf_section_data (osec)->dynindx;
4842 }
5d41f0b6
RS
4843 if (indx == 0)
4844 abort ();
b49e97c9
TS
4845 }
4846
5d41f0b6
RS
4847 /* Instead of generating a relocation using the section
4848 symbol, we may as well make it a fully relative
4849 relocation. We want to avoid generating relocations to
4850 local symbols because we used to generate them
4851 incorrectly, without adding the original symbol value,
4852 which is mandated by the ABI for section symbols. In
4853 order to give dynamic loaders and applications time to
4854 phase out the incorrect use, we refrain from emitting
4855 section-relative relocations. It's not like they're
4856 useful, after all. This should be a bit more efficient
4857 as well. */
4858 /* ??? Although this behavior is compatible with glibc's ld.so,
4859 the ABI says that relocations against STN_UNDEF should have
4860 a symbol value of 0. Irix rld honors this, so relocations
4861 against STN_UNDEF have no effect. */
4862 if (!SGI_COMPAT (output_bfd))
4863 indx = 0;
4864 defined_p = TRUE;
b49e97c9
TS
4865 }
4866
5d41f0b6
RS
4867 /* If the relocation was previously an absolute relocation and
4868 this symbol will not be referred to by the relocation, we must
4869 adjust it by the value we give it in the dynamic symbol table.
4870 Otherwise leave the job up to the dynamic linker. */
4871 if (defined_p && r_type != R_MIPS_REL32)
4872 *addendp += symbol;
4873
0a44bf69
RS
4874 if (htab->is_vxworks)
4875 /* VxWorks uses non-relative relocations for this. */
4876 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4877 else
4878 /* The relocation is always an REL32 relocation because we don't
4879 know where the shared library will wind up at load-time. */
4880 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4881 R_MIPS_REL32);
4882
5d41f0b6
RS
4883 /* For strict adherence to the ABI specification, we should
4884 generate a R_MIPS_64 relocation record by itself before the
4885 _REL32/_64 record as well, such that the addend is read in as
4886 a 64-bit value (REL32 is a 32-bit relocation, after all).
4887 However, since none of the existing ELF64 MIPS dynamic
4888 loaders seems to care, we don't waste space with these
4889 artificial relocations. If this turns out to not be true,
4890 mips_elf_allocate_dynamic_relocation() should be tweaked so
4891 as to make room for a pair of dynamic relocations per
4892 invocation if ABI_64_P, and here we should generate an
4893 additional relocation record with R_MIPS_64 by itself for a
4894 NULL symbol before this relocation record. */
4895 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4896 ABI_64_P (output_bfd)
4897 ? R_MIPS_64
4898 : R_MIPS_NONE);
4899 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4900
4901 /* Adjust the output offset of the relocation to reference the
4902 correct location in the output file. */
4903 outrel[0].r_offset += (input_section->output_section->vma
4904 + input_section->output_offset);
4905 outrel[1].r_offset += (input_section->output_section->vma
4906 + input_section->output_offset);
4907 outrel[2].r_offset += (input_section->output_section->vma
4908 + input_section->output_offset);
4909
b49e97c9
TS
4910 /* Put the relocation back out. We have to use the special
4911 relocation outputter in the 64-bit case since the 64-bit
4912 relocation format is non-standard. */
4913 if (ABI_64_P (output_bfd))
4914 {
4915 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4919 }
0a44bf69
RS
4920 else if (htab->is_vxworks)
4921 {
4922 /* VxWorks uses RELA rather than REL dynamic relocations. */
4923 outrel[0].r_addend = *addendp;
4924 bfd_elf32_swap_reloca_out
4925 (output_bfd, &outrel[0],
4926 (sreloc->contents
4927 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4928 }
b49e97c9 4929 else
947216bf
AM
4930 bfd_elf32_swap_reloc_out
4931 (output_bfd, &outrel[0],
4932 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4933
b49e97c9
TS
4934 /* We've now added another relocation. */
4935 ++sreloc->reloc_count;
4936
4937 /* Make sure the output section is writable. The dynamic linker
4938 will be writing to it. */
4939 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4940 |= SHF_WRITE;
4941
4942 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4943 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4944 {
4945 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4946 bfd_byte *cr;
4947
4948 if (scpt)
4949 {
4950 Elf32_crinfo cptrel;
4951
4952 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4953 cptrel.vaddr = (rel->r_offset
4954 + input_section->output_section->vma
4955 + input_section->output_offset);
4956 if (r_type == R_MIPS_REL32)
4957 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4958 else
4959 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4960 mips_elf_set_cr_dist2to (cptrel, 0);
4961 cptrel.konst = *addendp;
4962
4963 cr = (scpt->contents
4964 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4965 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4966 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4967 ((Elf32_External_crinfo *) cr
4968 + scpt->reloc_count));
4969 ++scpt->reloc_count;
4970 }
4971 }
4972
943284cc
DJ
4973 /* If we've written this relocation for a readonly section,
4974 we need to set DF_TEXTREL again, so that we do not delete the
4975 DT_TEXTREL tag. */
4976 if (MIPS_ELF_READONLY_SECTION (input_section))
4977 info->flags |= DF_TEXTREL;
4978
b34976b6 4979 return TRUE;
b49e97c9
TS
4980}
4981\f
b49e97c9
TS
4982/* Return the MACH for a MIPS e_flags value. */
4983
4984unsigned long
9719ad41 4985_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4986{
4987 switch (flags & EF_MIPS_MACH)
4988 {
4989 case E_MIPS_MACH_3900:
4990 return bfd_mach_mips3900;
4991
4992 case E_MIPS_MACH_4010:
4993 return bfd_mach_mips4010;
4994
4995 case E_MIPS_MACH_4100:
4996 return bfd_mach_mips4100;
4997
4998 case E_MIPS_MACH_4111:
4999 return bfd_mach_mips4111;
5000
00707a0e
RS
5001 case E_MIPS_MACH_4120:
5002 return bfd_mach_mips4120;
5003
b49e97c9
TS
5004 case E_MIPS_MACH_4650:
5005 return bfd_mach_mips4650;
5006
00707a0e
RS
5007 case E_MIPS_MACH_5400:
5008 return bfd_mach_mips5400;
5009
5010 case E_MIPS_MACH_5500:
5011 return bfd_mach_mips5500;
5012
0d2e43ed
ILT
5013 case E_MIPS_MACH_9000:
5014 return bfd_mach_mips9000;
5015
b49e97c9
TS
5016 case E_MIPS_MACH_SB1:
5017 return bfd_mach_mips_sb1;
5018
5019 default:
5020 switch (flags & EF_MIPS_ARCH)
5021 {
5022 default:
5023 case E_MIPS_ARCH_1:
5024 return bfd_mach_mips3000;
b49e97c9
TS
5025
5026 case E_MIPS_ARCH_2:
5027 return bfd_mach_mips6000;
b49e97c9
TS
5028
5029 case E_MIPS_ARCH_3:
5030 return bfd_mach_mips4000;
b49e97c9
TS
5031
5032 case E_MIPS_ARCH_4:
5033 return bfd_mach_mips8000;
b49e97c9
TS
5034
5035 case E_MIPS_ARCH_5:
5036 return bfd_mach_mips5;
b49e97c9
TS
5037
5038 case E_MIPS_ARCH_32:
5039 return bfd_mach_mipsisa32;
b49e97c9
TS
5040
5041 case E_MIPS_ARCH_64:
5042 return bfd_mach_mipsisa64;
af7ee8bf
CD
5043
5044 case E_MIPS_ARCH_32R2:
5045 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5046
5047 case E_MIPS_ARCH_64R2:
5048 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5049 }
5050 }
5051
5052 return 0;
5053}
5054
5055/* Return printable name for ABI. */
5056
5057static INLINE char *
9719ad41 5058elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5059{
5060 flagword flags;
5061
5062 flags = elf_elfheader (abfd)->e_flags;
5063 switch (flags & EF_MIPS_ABI)
5064 {
5065 case 0:
5066 if (ABI_N32_P (abfd))
5067 return "N32";
5068 else if (ABI_64_P (abfd))
5069 return "64";
5070 else
5071 return "none";
5072 case E_MIPS_ABI_O32:
5073 return "O32";
5074 case E_MIPS_ABI_O64:
5075 return "O64";
5076 case E_MIPS_ABI_EABI32:
5077 return "EABI32";
5078 case E_MIPS_ABI_EABI64:
5079 return "EABI64";
5080 default:
5081 return "unknown abi";
5082 }
5083}
5084\f
5085/* MIPS ELF uses two common sections. One is the usual one, and the
5086 other is for small objects. All the small objects are kept
5087 together, and then referenced via the gp pointer, which yields
5088 faster assembler code. This is what we use for the small common
5089 section. This approach is copied from ecoff.c. */
5090static asection mips_elf_scom_section;
5091static asymbol mips_elf_scom_symbol;
5092static asymbol *mips_elf_scom_symbol_ptr;
5093
5094/* MIPS ELF also uses an acommon section, which represents an
5095 allocated common symbol which may be overridden by a
5096 definition in a shared library. */
5097static asection mips_elf_acom_section;
5098static asymbol mips_elf_acom_symbol;
5099static asymbol *mips_elf_acom_symbol_ptr;
5100
5101/* Handle the special MIPS section numbers that a symbol may use.
5102 This is used for both the 32-bit and the 64-bit ABI. */
5103
5104void
9719ad41 5105_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5106{
5107 elf_symbol_type *elfsym;
5108
5109 elfsym = (elf_symbol_type *) asym;
5110 switch (elfsym->internal_elf_sym.st_shndx)
5111 {
5112 case SHN_MIPS_ACOMMON:
5113 /* This section is used in a dynamically linked executable file.
5114 It is an allocated common section. The dynamic linker can
5115 either resolve these symbols to something in a shared
5116 library, or it can just leave them here. For our purposes,
5117 we can consider these symbols to be in a new section. */
5118 if (mips_elf_acom_section.name == NULL)
5119 {
5120 /* Initialize the acommon section. */
5121 mips_elf_acom_section.name = ".acommon";
5122 mips_elf_acom_section.flags = SEC_ALLOC;
5123 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5124 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5125 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5126 mips_elf_acom_symbol.name = ".acommon";
5127 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5128 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5129 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5130 }
5131 asym->section = &mips_elf_acom_section;
5132 break;
5133
5134 case SHN_COMMON:
5135 /* Common symbols less than the GP size are automatically
5136 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5137 if (asym->value > elf_gp_size (abfd)
b59eed79 5138 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5139 || IRIX_COMPAT (abfd) == ict_irix6)
5140 break;
5141 /* Fall through. */
5142 case SHN_MIPS_SCOMMON:
5143 if (mips_elf_scom_section.name == NULL)
5144 {
5145 /* Initialize the small common section. */
5146 mips_elf_scom_section.name = ".scommon";
5147 mips_elf_scom_section.flags = SEC_IS_COMMON;
5148 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5149 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5150 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5151 mips_elf_scom_symbol.name = ".scommon";
5152 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5153 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5154 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5155 }
5156 asym->section = &mips_elf_scom_section;
5157 asym->value = elfsym->internal_elf_sym.st_size;
5158 break;
5159
5160 case SHN_MIPS_SUNDEFINED:
5161 asym->section = bfd_und_section_ptr;
5162 break;
5163
b49e97c9 5164 case SHN_MIPS_TEXT:
00b4930b
TS
5165 {
5166 asection *section = bfd_get_section_by_name (abfd, ".text");
5167
5168 BFD_ASSERT (SGI_COMPAT (abfd));
5169 if (section != NULL)
5170 {
5171 asym->section = section;
5172 /* MIPS_TEXT is a bit special, the address is not an offset
5173 to the base of the .text section. So substract the section
5174 base address to make it an offset. */
5175 asym->value -= section->vma;
5176 }
5177 }
b49e97c9
TS
5178 break;
5179
5180 case SHN_MIPS_DATA:
00b4930b
TS
5181 {
5182 asection *section = bfd_get_section_by_name (abfd, ".data");
5183
5184 BFD_ASSERT (SGI_COMPAT (abfd));
5185 if (section != NULL)
5186 {
5187 asym->section = section;
5188 /* MIPS_DATA is a bit special, the address is not an offset
5189 to the base of the .data section. So substract the section
5190 base address to make it an offset. */
5191 asym->value -= section->vma;
5192 }
5193 }
b49e97c9 5194 break;
b49e97c9
TS
5195 }
5196}
5197\f
8c946ed5
RS
5198/* Implement elf_backend_eh_frame_address_size. This differs from
5199 the default in the way it handles EABI64.
5200
5201 EABI64 was originally specified as an LP64 ABI, and that is what
5202 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5203 historically accepted the combination of -mabi=eabi and -mlong32,
5204 and this ILP32 variation has become semi-official over time.
5205 Both forms use elf32 and have pointer-sized FDE addresses.
5206
5207 If an EABI object was generated by GCC 4.0 or above, it will have
5208 an empty .gcc_compiled_longXX section, where XX is the size of longs
5209 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5210 have no special marking to distinguish them from LP64 objects.
5211
5212 We don't want users of the official LP64 ABI to be punished for the
5213 existence of the ILP32 variant, but at the same time, we don't want
5214 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5215 We therefore take the following approach:
5216
5217 - If ABFD contains a .gcc_compiled_longXX section, use it to
5218 determine the pointer size.
5219
5220 - Otherwise check the type of the first relocation. Assume that
5221 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5222
5223 - Otherwise punt.
5224
5225 The second check is enough to detect LP64 objects generated by pre-4.0
5226 compilers because, in the kind of output generated by those compilers,
5227 the first relocation will be associated with either a CIE personality
5228 routine or an FDE start address. Furthermore, the compilers never
5229 used a special (non-pointer) encoding for this ABI.
5230
5231 Checking the relocation type should also be safe because there is no
5232 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5233 did so. */
5234
5235unsigned int
5236_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5237{
5238 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5239 return 8;
5240 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5241 {
5242 bfd_boolean long32_p, long64_p;
5243
5244 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5245 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5246 if (long32_p && long64_p)
5247 return 0;
5248 if (long32_p)
5249 return 4;
5250 if (long64_p)
5251 return 8;
5252
5253 if (sec->reloc_count > 0
5254 && elf_section_data (sec)->relocs != NULL
5255 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5256 == R_MIPS_64))
5257 return 8;
5258
5259 return 0;
5260 }
5261 return 4;
5262}
5263\f
174fd7f9
RS
5264/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5265 relocations against two unnamed section symbols to resolve to the
5266 same address. For example, if we have code like:
5267
5268 lw $4,%got_disp(.data)($gp)
5269 lw $25,%got_disp(.text)($gp)
5270 jalr $25
5271
5272 then the linker will resolve both relocations to .data and the program
5273 will jump there rather than to .text.
5274
5275 We can work around this problem by giving names to local section symbols.
5276 This is also what the MIPSpro tools do. */
5277
5278bfd_boolean
5279_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5280{
5281 return SGI_COMPAT (abfd);
5282}
5283\f
b49e97c9
TS
5284/* Work over a section just before writing it out. This routine is
5285 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5286 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5287 a better way. */
5288
b34976b6 5289bfd_boolean
9719ad41 5290_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5291{
5292 if (hdr->sh_type == SHT_MIPS_REGINFO
5293 && hdr->sh_size > 0)
5294 {
5295 bfd_byte buf[4];
5296
5297 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5298 BFD_ASSERT (hdr->contents == NULL);
5299
5300 if (bfd_seek (abfd,
5301 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5302 SEEK_SET) != 0)
b34976b6 5303 return FALSE;
b49e97c9 5304 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5305 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5306 return FALSE;
b49e97c9
TS
5307 }
5308
5309 if (hdr->sh_type == SHT_MIPS_OPTIONS
5310 && hdr->bfd_section != NULL
f0abc2a1
AM
5311 && mips_elf_section_data (hdr->bfd_section) != NULL
5312 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5313 {
5314 bfd_byte *contents, *l, *lend;
5315
f0abc2a1
AM
5316 /* We stored the section contents in the tdata field in the
5317 set_section_contents routine. We save the section contents
5318 so that we don't have to read them again.
b49e97c9
TS
5319 At this point we know that elf_gp is set, so we can look
5320 through the section contents to see if there is an
5321 ODK_REGINFO structure. */
5322
f0abc2a1 5323 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5324 l = contents;
5325 lend = contents + hdr->sh_size;
5326 while (l + sizeof (Elf_External_Options) <= lend)
5327 {
5328 Elf_Internal_Options intopt;
5329
5330 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5331 &intopt);
1bc8074d
MR
5332 if (intopt.size < sizeof (Elf_External_Options))
5333 {
5334 (*_bfd_error_handler)
5335 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5336 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5337 break;
5338 }
b49e97c9
TS
5339 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5340 {
5341 bfd_byte buf[8];
5342
5343 if (bfd_seek (abfd,
5344 (hdr->sh_offset
5345 + (l - contents)
5346 + sizeof (Elf_External_Options)
5347 + (sizeof (Elf64_External_RegInfo) - 8)),
5348 SEEK_SET) != 0)
b34976b6 5349 return FALSE;
b49e97c9 5350 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5351 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5352 return FALSE;
b49e97c9
TS
5353 }
5354 else if (intopt.kind == ODK_REGINFO)
5355 {
5356 bfd_byte buf[4];
5357
5358 if (bfd_seek (abfd,
5359 (hdr->sh_offset
5360 + (l - contents)
5361 + sizeof (Elf_External_Options)
5362 + (sizeof (Elf32_External_RegInfo) - 4)),
5363 SEEK_SET) != 0)
b34976b6 5364 return FALSE;
b49e97c9 5365 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5366 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5367 return FALSE;
b49e97c9
TS
5368 }
5369 l += intopt.size;
5370 }
5371 }
5372
5373 if (hdr->bfd_section != NULL)
5374 {
5375 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5376
5377 if (strcmp (name, ".sdata") == 0
5378 || strcmp (name, ".lit8") == 0
5379 || strcmp (name, ".lit4") == 0)
5380 {
5381 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5382 hdr->sh_type = SHT_PROGBITS;
5383 }
5384 else if (strcmp (name, ".sbss") == 0)
5385 {
5386 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5387 hdr->sh_type = SHT_NOBITS;
5388 }
5389 else if (strcmp (name, ".srdata") == 0)
5390 {
5391 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5392 hdr->sh_type = SHT_PROGBITS;
5393 }
5394 else if (strcmp (name, ".compact_rel") == 0)
5395 {
5396 hdr->sh_flags = 0;
5397 hdr->sh_type = SHT_PROGBITS;
5398 }
5399 else if (strcmp (name, ".rtproc") == 0)
5400 {
5401 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5402 {
5403 unsigned int adjust;
5404
5405 adjust = hdr->sh_size % hdr->sh_addralign;
5406 if (adjust != 0)
5407 hdr->sh_size += hdr->sh_addralign - adjust;
5408 }
5409 }
5410 }
5411
b34976b6 5412 return TRUE;
b49e97c9
TS
5413}
5414
5415/* Handle a MIPS specific section when reading an object file. This
5416 is called when elfcode.h finds a section with an unknown type.
5417 This routine supports both the 32-bit and 64-bit ELF ABI.
5418
5419 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5420 how to. */
5421
b34976b6 5422bfd_boolean
6dc132d9
L
5423_bfd_mips_elf_section_from_shdr (bfd *abfd,
5424 Elf_Internal_Shdr *hdr,
5425 const char *name,
5426 int shindex)
b49e97c9
TS
5427{
5428 flagword flags = 0;
5429
5430 /* There ought to be a place to keep ELF backend specific flags, but
5431 at the moment there isn't one. We just keep track of the
5432 sections by their name, instead. Fortunately, the ABI gives
5433 suggested names for all the MIPS specific sections, so we will
5434 probably get away with this. */
5435 switch (hdr->sh_type)
5436 {
5437 case SHT_MIPS_LIBLIST:
5438 if (strcmp (name, ".liblist") != 0)
b34976b6 5439 return FALSE;
b49e97c9
TS
5440 break;
5441 case SHT_MIPS_MSYM:
5442 if (strcmp (name, ".msym") != 0)
b34976b6 5443 return FALSE;
b49e97c9
TS
5444 break;
5445 case SHT_MIPS_CONFLICT:
5446 if (strcmp (name, ".conflict") != 0)
b34976b6 5447 return FALSE;
b49e97c9
TS
5448 break;
5449 case SHT_MIPS_GPTAB:
0112cd26 5450 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5451 return FALSE;
b49e97c9
TS
5452 break;
5453 case SHT_MIPS_UCODE:
5454 if (strcmp (name, ".ucode") != 0)
b34976b6 5455 return FALSE;
b49e97c9
TS
5456 break;
5457 case SHT_MIPS_DEBUG:
5458 if (strcmp (name, ".mdebug") != 0)
b34976b6 5459 return FALSE;
b49e97c9
TS
5460 flags = SEC_DEBUGGING;
5461 break;
5462 case SHT_MIPS_REGINFO:
5463 if (strcmp (name, ".reginfo") != 0
5464 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5465 return FALSE;
b49e97c9
TS
5466 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5467 break;
5468 case SHT_MIPS_IFACE:
5469 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5470 return FALSE;
b49e97c9
TS
5471 break;
5472 case SHT_MIPS_CONTENT:
0112cd26 5473 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5474 return FALSE;
b49e97c9
TS
5475 break;
5476 case SHT_MIPS_OPTIONS:
cc2e31b9 5477 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5478 return FALSE;
b49e97c9
TS
5479 break;
5480 case SHT_MIPS_DWARF:
0112cd26 5481 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5482 return FALSE;
b49e97c9
TS
5483 break;
5484 case SHT_MIPS_SYMBOL_LIB:
5485 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5486 return FALSE;
b49e97c9
TS
5487 break;
5488 case SHT_MIPS_EVENTS:
0112cd26
NC
5489 if (! CONST_STRNEQ (name, ".MIPS.events")
5490 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5491 return FALSE;
b49e97c9
TS
5492 break;
5493 default:
cc2e31b9 5494 break;
b49e97c9
TS
5495 }
5496
6dc132d9 5497 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5498 return FALSE;
b49e97c9
TS
5499
5500 if (flags)
5501 {
5502 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5503 (bfd_get_section_flags (abfd,
5504 hdr->bfd_section)
5505 | flags)))
b34976b6 5506 return FALSE;
b49e97c9
TS
5507 }
5508
5509 /* FIXME: We should record sh_info for a .gptab section. */
5510
5511 /* For a .reginfo section, set the gp value in the tdata information
5512 from the contents of this section. We need the gp value while
5513 processing relocs, so we just get it now. The .reginfo section
5514 is not used in the 64-bit MIPS ELF ABI. */
5515 if (hdr->sh_type == SHT_MIPS_REGINFO)
5516 {
5517 Elf32_External_RegInfo ext;
5518 Elf32_RegInfo s;
5519
9719ad41
RS
5520 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5521 &ext, 0, sizeof ext))
b34976b6 5522 return FALSE;
b49e97c9
TS
5523 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5524 elf_gp (abfd) = s.ri_gp_value;
5525 }
5526
5527 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5528 set the gp value based on what we find. We may see both
5529 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5530 they should agree. */
5531 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5532 {
5533 bfd_byte *contents, *l, *lend;
5534
9719ad41 5535 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5536 if (contents == NULL)
b34976b6 5537 return FALSE;
b49e97c9 5538 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5539 0, hdr->sh_size))
b49e97c9
TS
5540 {
5541 free (contents);
b34976b6 5542 return FALSE;
b49e97c9
TS
5543 }
5544 l = contents;
5545 lend = contents + hdr->sh_size;
5546 while (l + sizeof (Elf_External_Options) <= lend)
5547 {
5548 Elf_Internal_Options intopt;
5549
5550 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5551 &intopt);
1bc8074d
MR
5552 if (intopt.size < sizeof (Elf_External_Options))
5553 {
5554 (*_bfd_error_handler)
5555 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5556 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5557 break;
5558 }
b49e97c9
TS
5559 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5560 {
5561 Elf64_Internal_RegInfo intreg;
5562
5563 bfd_mips_elf64_swap_reginfo_in
5564 (abfd,
5565 ((Elf64_External_RegInfo *)
5566 (l + sizeof (Elf_External_Options))),
5567 &intreg);
5568 elf_gp (abfd) = intreg.ri_gp_value;
5569 }
5570 else if (intopt.kind == ODK_REGINFO)
5571 {
5572 Elf32_RegInfo intreg;
5573
5574 bfd_mips_elf32_swap_reginfo_in
5575 (abfd,
5576 ((Elf32_External_RegInfo *)
5577 (l + sizeof (Elf_External_Options))),
5578 &intreg);
5579 elf_gp (abfd) = intreg.ri_gp_value;
5580 }
5581 l += intopt.size;
5582 }
5583 free (contents);
5584 }
5585
b34976b6 5586 return TRUE;
b49e97c9
TS
5587}
5588
5589/* Set the correct type for a MIPS ELF section. We do this by the
5590 section name, which is a hack, but ought to work. This routine is
5591 used by both the 32-bit and the 64-bit ABI. */
5592
b34976b6 5593bfd_boolean
9719ad41 5594_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5595{
0414f35b 5596 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5597
5598 if (strcmp (name, ".liblist") == 0)
5599 {
5600 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5601 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5602 /* The sh_link field is set in final_write_processing. */
5603 }
5604 else if (strcmp (name, ".conflict") == 0)
5605 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5606 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5607 {
5608 hdr->sh_type = SHT_MIPS_GPTAB;
5609 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5610 /* The sh_info field is set in final_write_processing. */
5611 }
5612 else if (strcmp (name, ".ucode") == 0)
5613 hdr->sh_type = SHT_MIPS_UCODE;
5614 else if (strcmp (name, ".mdebug") == 0)
5615 {
5616 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5617 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5618 entsize of 0. FIXME: Does this matter? */
5619 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5620 hdr->sh_entsize = 0;
5621 else
5622 hdr->sh_entsize = 1;
5623 }
5624 else if (strcmp (name, ".reginfo") == 0)
5625 {
5626 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5627 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5628 entsize of 0x18. FIXME: Does this matter? */
5629 if (SGI_COMPAT (abfd))
5630 {
5631 if ((abfd->flags & DYNAMIC) != 0)
5632 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5633 else
5634 hdr->sh_entsize = 1;
5635 }
5636 else
5637 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5638 }
5639 else if (SGI_COMPAT (abfd)
5640 && (strcmp (name, ".hash") == 0
5641 || strcmp (name, ".dynamic") == 0
5642 || strcmp (name, ".dynstr") == 0))
5643 {
5644 if (SGI_COMPAT (abfd))
5645 hdr->sh_entsize = 0;
5646#if 0
8dc1a139 5647 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5648 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5649#endif
5650 }
5651 else if (strcmp (name, ".got") == 0
5652 || strcmp (name, ".srdata") == 0
5653 || strcmp (name, ".sdata") == 0
5654 || strcmp (name, ".sbss") == 0
5655 || strcmp (name, ".lit4") == 0
5656 || strcmp (name, ".lit8") == 0)
5657 hdr->sh_flags |= SHF_MIPS_GPREL;
5658 else if (strcmp (name, ".MIPS.interfaces") == 0)
5659 {
5660 hdr->sh_type = SHT_MIPS_IFACE;
5661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 }
0112cd26 5663 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5664 {
5665 hdr->sh_type = SHT_MIPS_CONTENT;
5666 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5667 /* The sh_info field is set in final_write_processing. */
5668 }
cc2e31b9 5669 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5670 {
5671 hdr->sh_type = SHT_MIPS_OPTIONS;
5672 hdr->sh_entsize = 1;
5673 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5674 }
0112cd26 5675 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5676 hdr->sh_type = SHT_MIPS_DWARF;
5677 else if (strcmp (name, ".MIPS.symlib") == 0)
5678 {
5679 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5680 /* The sh_link and sh_info fields are set in
5681 final_write_processing. */
5682 }
0112cd26
NC
5683 else if (CONST_STRNEQ (name, ".MIPS.events")
5684 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5685 {
5686 hdr->sh_type = SHT_MIPS_EVENTS;
5687 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5688 /* The sh_link field is set in final_write_processing. */
5689 }
5690 else if (strcmp (name, ".msym") == 0)
5691 {
5692 hdr->sh_type = SHT_MIPS_MSYM;
5693 hdr->sh_flags |= SHF_ALLOC;
5694 hdr->sh_entsize = 8;
5695 }
5696
7a79a000
TS
5697 /* The generic elf_fake_sections will set up REL_HDR using the default
5698 kind of relocations. We used to set up a second header for the
5699 non-default kind of relocations here, but only NewABI would use
5700 these, and the IRIX ld doesn't like resulting empty RELA sections.
5701 Thus we create those header only on demand now. */
b49e97c9 5702
b34976b6 5703 return TRUE;
b49e97c9
TS
5704}
5705
5706/* Given a BFD section, try to locate the corresponding ELF section
5707 index. This is used by both the 32-bit and the 64-bit ABI.
5708 Actually, it's not clear to me that the 64-bit ABI supports these,
5709 but for non-PIC objects we will certainly want support for at least
5710 the .scommon section. */
5711
b34976b6 5712bfd_boolean
9719ad41
RS
5713_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5714 asection *sec, int *retval)
b49e97c9
TS
5715{
5716 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5717 {
5718 *retval = SHN_MIPS_SCOMMON;
b34976b6 5719 return TRUE;
b49e97c9
TS
5720 }
5721 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5722 {
5723 *retval = SHN_MIPS_ACOMMON;
b34976b6 5724 return TRUE;
b49e97c9 5725 }
b34976b6 5726 return FALSE;
b49e97c9
TS
5727}
5728\f
5729/* Hook called by the linker routine which adds symbols from an object
5730 file. We must handle the special MIPS section numbers here. */
5731
b34976b6 5732bfd_boolean
9719ad41 5733_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5734 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5735 flagword *flagsp ATTRIBUTE_UNUSED,
5736 asection **secp, bfd_vma *valp)
b49e97c9
TS
5737{
5738 if (SGI_COMPAT (abfd)
5739 && (abfd->flags & DYNAMIC) != 0
5740 && strcmp (*namep, "_rld_new_interface") == 0)
5741 {
8dc1a139 5742 /* Skip IRIX5 rld entry name. */
b49e97c9 5743 *namep = NULL;
b34976b6 5744 return TRUE;
b49e97c9
TS
5745 }
5746
eedecc07
DD
5747 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5748 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5749 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5750 a magic symbol resolved by the linker, we ignore this bogus definition
5751 of _gp_disp. New ABI objects do not suffer from this problem so this
5752 is not done for them. */
5753 if (!NEWABI_P(abfd)
5754 && (sym->st_shndx == SHN_ABS)
5755 && (strcmp (*namep, "_gp_disp") == 0))
5756 {
5757 *namep = NULL;
5758 return TRUE;
5759 }
5760
b49e97c9
TS
5761 switch (sym->st_shndx)
5762 {
5763 case SHN_COMMON:
5764 /* Common symbols less than the GP size are automatically
5765 treated as SHN_MIPS_SCOMMON symbols. */
5766 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5767 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5768 || IRIX_COMPAT (abfd) == ict_irix6)
5769 break;
5770 /* Fall through. */
5771 case SHN_MIPS_SCOMMON:
5772 *secp = bfd_make_section_old_way (abfd, ".scommon");
5773 (*secp)->flags |= SEC_IS_COMMON;
5774 *valp = sym->st_size;
5775 break;
5776
5777 case SHN_MIPS_TEXT:
5778 /* This section is used in a shared object. */
5779 if (elf_tdata (abfd)->elf_text_section == NULL)
5780 {
5781 asymbol *elf_text_symbol;
5782 asection *elf_text_section;
5783 bfd_size_type amt = sizeof (asection);
5784
5785 elf_text_section = bfd_zalloc (abfd, amt);
5786 if (elf_text_section == NULL)
b34976b6 5787 return FALSE;
b49e97c9
TS
5788
5789 amt = sizeof (asymbol);
5790 elf_text_symbol = bfd_zalloc (abfd, amt);
5791 if (elf_text_symbol == NULL)
b34976b6 5792 return FALSE;
b49e97c9
TS
5793
5794 /* Initialize the section. */
5795
5796 elf_tdata (abfd)->elf_text_section = elf_text_section;
5797 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5798
5799 elf_text_section->symbol = elf_text_symbol;
5800 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5801
5802 elf_text_section->name = ".text";
5803 elf_text_section->flags = SEC_NO_FLAGS;
5804 elf_text_section->output_section = NULL;
5805 elf_text_section->owner = abfd;
5806 elf_text_symbol->name = ".text";
5807 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5808 elf_text_symbol->section = elf_text_section;
5809 }
5810 /* This code used to do *secp = bfd_und_section_ptr if
5811 info->shared. I don't know why, and that doesn't make sense,
5812 so I took it out. */
5813 *secp = elf_tdata (abfd)->elf_text_section;
5814 break;
5815
5816 case SHN_MIPS_ACOMMON:
5817 /* Fall through. XXX Can we treat this as allocated data? */
5818 case SHN_MIPS_DATA:
5819 /* This section is used in a shared object. */
5820 if (elf_tdata (abfd)->elf_data_section == NULL)
5821 {
5822 asymbol *elf_data_symbol;
5823 asection *elf_data_section;
5824 bfd_size_type amt = sizeof (asection);
5825
5826 elf_data_section = bfd_zalloc (abfd, amt);
5827 if (elf_data_section == NULL)
b34976b6 5828 return FALSE;
b49e97c9
TS
5829
5830 amt = sizeof (asymbol);
5831 elf_data_symbol = bfd_zalloc (abfd, amt);
5832 if (elf_data_symbol == NULL)
b34976b6 5833 return FALSE;
b49e97c9
TS
5834
5835 /* Initialize the section. */
5836
5837 elf_tdata (abfd)->elf_data_section = elf_data_section;
5838 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5839
5840 elf_data_section->symbol = elf_data_symbol;
5841 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5842
5843 elf_data_section->name = ".data";
5844 elf_data_section->flags = SEC_NO_FLAGS;
5845 elf_data_section->output_section = NULL;
5846 elf_data_section->owner = abfd;
5847 elf_data_symbol->name = ".data";
5848 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5849 elf_data_symbol->section = elf_data_section;
5850 }
5851 /* This code used to do *secp = bfd_und_section_ptr if
5852 info->shared. I don't know why, and that doesn't make sense,
5853 so I took it out. */
5854 *secp = elf_tdata (abfd)->elf_data_section;
5855 break;
5856
5857 case SHN_MIPS_SUNDEFINED:
5858 *secp = bfd_und_section_ptr;
5859 break;
5860 }
5861
5862 if (SGI_COMPAT (abfd)
5863 && ! info->shared
5864 && info->hash->creator == abfd->xvec
5865 && strcmp (*namep, "__rld_obj_head") == 0)
5866 {
5867 struct elf_link_hash_entry *h;
14a793b2 5868 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5869
5870 /* Mark __rld_obj_head as dynamic. */
14a793b2 5871 bh = NULL;
b49e97c9 5872 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5873 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5874 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5875 return FALSE;
14a793b2
AM
5876
5877 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5878 h->non_elf = 0;
5879 h->def_regular = 1;
b49e97c9
TS
5880 h->type = STT_OBJECT;
5881
c152c796 5882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5883 return FALSE;
b49e97c9 5884
b34976b6 5885 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5886 }
5887
5888 /* If this is a mips16 text symbol, add 1 to the value to make it
5889 odd. This will cause something like .word SYM to come up with
5890 the right value when it is loaded into the PC. */
5891 if (sym->st_other == STO_MIPS16)
5892 ++*valp;
5893
b34976b6 5894 return TRUE;
b49e97c9
TS
5895}
5896
5897/* This hook function is called before the linker writes out a global
5898 symbol. We mark symbols as small common if appropriate. This is
5899 also where we undo the increment of the value for a mips16 symbol. */
5900
b34976b6 5901bfd_boolean
9719ad41
RS
5902_bfd_mips_elf_link_output_symbol_hook
5903 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5904 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5905 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5906{
5907 /* If we see a common symbol, which implies a relocatable link, then
5908 if a symbol was small common in an input file, mark it as small
5909 common in the output file. */
5910 if (sym->st_shndx == SHN_COMMON
5911 && strcmp (input_sec->name, ".scommon") == 0)
5912 sym->st_shndx = SHN_MIPS_SCOMMON;
5913
79cda7cf
FF
5914 if (sym->st_other == STO_MIPS16)
5915 sym->st_value &= ~1;
b49e97c9 5916
b34976b6 5917 return TRUE;
b49e97c9
TS
5918}
5919\f
5920/* Functions for the dynamic linker. */
5921
5922/* Create dynamic sections when linking against a dynamic object. */
5923
b34976b6 5924bfd_boolean
9719ad41 5925_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5926{
5927 struct elf_link_hash_entry *h;
14a793b2 5928 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5929 flagword flags;
5930 register asection *s;
5931 const char * const *namep;
0a44bf69 5932 struct mips_elf_link_hash_table *htab;
b49e97c9 5933
0a44bf69 5934 htab = mips_elf_hash_table (info);
b49e97c9
TS
5935 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5936 | SEC_LINKER_CREATED | SEC_READONLY);
5937
0a44bf69
RS
5938 /* The psABI requires a read-only .dynamic section, but the VxWorks
5939 EABI doesn't. */
5940 if (!htab->is_vxworks)
b49e97c9 5941 {
0a44bf69
RS
5942 s = bfd_get_section_by_name (abfd, ".dynamic");
5943 if (s != NULL)
5944 {
5945 if (! bfd_set_section_flags (abfd, s, flags))
5946 return FALSE;
5947 }
b49e97c9
TS
5948 }
5949
5950 /* We need to create .got section. */
f4416af6
AO
5951 if (! mips_elf_create_got_section (abfd, info, FALSE))
5952 return FALSE;
5953
0a44bf69 5954 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5955 return FALSE;
b49e97c9 5956
b49e97c9
TS
5957 /* Create .stub section. */
5958 if (bfd_get_section_by_name (abfd,
5959 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5960 {
3496cb2a
L
5961 s = bfd_make_section_with_flags (abfd,
5962 MIPS_ELF_STUB_SECTION_NAME (abfd),
5963 flags | SEC_CODE);
b49e97c9 5964 if (s == NULL
b49e97c9
TS
5965 || ! bfd_set_section_alignment (abfd, s,
5966 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5967 return FALSE;
b49e97c9
TS
5968 }
5969
5970 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5971 && !info->shared
5972 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5973 {
3496cb2a
L
5974 s = bfd_make_section_with_flags (abfd, ".rld_map",
5975 flags &~ (flagword) SEC_READONLY);
b49e97c9 5976 if (s == NULL
b49e97c9
TS
5977 || ! bfd_set_section_alignment (abfd, s,
5978 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5979 return FALSE;
b49e97c9
TS
5980 }
5981
5982 /* On IRIX5, we adjust add some additional symbols and change the
5983 alignments of several sections. There is no ABI documentation
5984 indicating that this is necessary on IRIX6, nor any evidence that
5985 the linker takes such action. */
5986 if (IRIX_COMPAT (abfd) == ict_irix5)
5987 {
5988 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5989 {
14a793b2 5990 bh = NULL;
b49e97c9 5991 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5992 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5993 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5994 return FALSE;
14a793b2
AM
5995
5996 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5997 h->non_elf = 0;
5998 h->def_regular = 1;
b49e97c9
TS
5999 h->type = STT_SECTION;
6000
c152c796 6001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6002 return FALSE;
b49e97c9
TS
6003 }
6004
6005 /* We need to create a .compact_rel section. */
6006 if (SGI_COMPAT (abfd))
6007 {
6008 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6009 return FALSE;
b49e97c9
TS
6010 }
6011
44c410de 6012 /* Change alignments of some sections. */
b49e97c9
TS
6013 s = bfd_get_section_by_name (abfd, ".hash");
6014 if (s != NULL)
d80dcc6a 6015 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6016 s = bfd_get_section_by_name (abfd, ".dynsym");
6017 if (s != NULL)
d80dcc6a 6018 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6019 s = bfd_get_section_by_name (abfd, ".dynstr");
6020 if (s != NULL)
d80dcc6a 6021 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6022 s = bfd_get_section_by_name (abfd, ".reginfo");
6023 if (s != NULL)
d80dcc6a 6024 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6025 s = bfd_get_section_by_name (abfd, ".dynamic");
6026 if (s != NULL)
d80dcc6a 6027 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6028 }
6029
6030 if (!info->shared)
6031 {
14a793b2
AM
6032 const char *name;
6033
6034 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6035 bh = NULL;
6036 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6037 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6038 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6039 return FALSE;
14a793b2
AM
6040
6041 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6042 h->non_elf = 0;
6043 h->def_regular = 1;
b49e97c9
TS
6044 h->type = STT_SECTION;
6045
c152c796 6046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6047 return FALSE;
b49e97c9
TS
6048
6049 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6050 {
6051 /* __rld_map is a four byte word located in the .data section
6052 and is filled in by the rtld to contain a pointer to
6053 the _r_debug structure. Its symbol value will be set in
6054 _bfd_mips_elf_finish_dynamic_symbol. */
6055 s = bfd_get_section_by_name (abfd, ".rld_map");
6056 BFD_ASSERT (s != NULL);
6057
14a793b2
AM
6058 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6059 bh = NULL;
6060 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6061 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6062 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6063 return FALSE;
14a793b2
AM
6064
6065 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6066 h->non_elf = 0;
6067 h->def_regular = 1;
b49e97c9
TS
6068 h->type = STT_OBJECT;
6069
c152c796 6070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6071 return FALSE;
b49e97c9
TS
6072 }
6073 }
6074
0a44bf69
RS
6075 if (htab->is_vxworks)
6076 {
6077 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6078 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6079 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6080 return FALSE;
6081
6082 /* Cache the sections created above. */
6083 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6084 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6085 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6086 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6087 if (!htab->sdynbss
6088 || (!htab->srelbss && !info->shared)
6089 || !htab->srelplt
6090 || !htab->splt)
6091 abort ();
6092
6093 /* Do the usual VxWorks handling. */
6094 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6095 return FALSE;
6096
6097 /* Work out the PLT sizes. */
6098 if (info->shared)
6099 {
6100 htab->plt_header_size
6101 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6102 htab->plt_entry_size
6103 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6104 }
6105 else
6106 {
6107 htab->plt_header_size
6108 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6109 htab->plt_entry_size
6110 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6111 }
6112 }
6113
b34976b6 6114 return TRUE;
b49e97c9
TS
6115}
6116\f
6117/* Look through the relocs for a section during the first phase, and
6118 allocate space in the global offset table. */
6119
b34976b6 6120bfd_boolean
9719ad41
RS
6121_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6122 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6123{
6124 const char *name;
6125 bfd *dynobj;
6126 Elf_Internal_Shdr *symtab_hdr;
6127 struct elf_link_hash_entry **sym_hashes;
6128 struct mips_got_info *g;
6129 size_t extsymoff;
6130 const Elf_Internal_Rela *rel;
6131 const Elf_Internal_Rela *rel_end;
6132 asection *sgot;
6133 asection *sreloc;
9c5bfbb7 6134 const struct elf_backend_data *bed;
0a44bf69 6135 struct mips_elf_link_hash_table *htab;
b49e97c9 6136
1049f94e 6137 if (info->relocatable)
b34976b6 6138 return TRUE;
b49e97c9 6139
0a44bf69 6140 htab = mips_elf_hash_table (info);
b49e97c9
TS
6141 dynobj = elf_hash_table (info)->dynobj;
6142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6143 sym_hashes = elf_sym_hashes (abfd);
6144 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6145
6146 /* Check for the mips16 stub sections. */
6147
6148 name = bfd_get_section_name (abfd, sec);
b9d58d71 6149 if (FN_STUB_P (name))
b49e97c9
TS
6150 {
6151 unsigned long r_symndx;
6152
6153 /* Look at the relocation information to figure out which symbol
6154 this is for. */
6155
6156 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6157
6158 if (r_symndx < extsymoff
6159 || sym_hashes[r_symndx - extsymoff] == NULL)
6160 {
6161 asection *o;
6162
6163 /* This stub is for a local symbol. This stub will only be
6164 needed if there is some relocation in this BFD, other
6165 than a 16 bit function call, which refers to this symbol. */
6166 for (o = abfd->sections; o != NULL; o = o->next)
6167 {
6168 Elf_Internal_Rela *sec_relocs;
6169 const Elf_Internal_Rela *r, *rend;
6170
6171 /* We can ignore stub sections when looking for relocs. */
6172 if ((o->flags & SEC_RELOC) == 0
6173 || o->reloc_count == 0
b9d58d71 6174 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6175 continue;
6176
45d6a902 6177 sec_relocs
9719ad41 6178 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6179 info->keep_memory);
b49e97c9 6180 if (sec_relocs == NULL)
b34976b6 6181 return FALSE;
b49e97c9
TS
6182
6183 rend = sec_relocs + o->reloc_count;
6184 for (r = sec_relocs; r < rend; r++)
6185 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6186 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6187 break;
6188
6cdc0ccc 6189 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6190 free (sec_relocs);
6191
6192 if (r < rend)
6193 break;
6194 }
6195
6196 if (o == NULL)
6197 {
6198 /* There is no non-call reloc for this stub, so we do
6199 not need it. Since this function is called before
6200 the linker maps input sections to output sections, we
6201 can easily discard it by setting the SEC_EXCLUDE
6202 flag. */
6203 sec->flags |= SEC_EXCLUDE;
b34976b6 6204 return TRUE;
b49e97c9
TS
6205 }
6206
6207 /* Record this stub in an array of local symbol stubs for
6208 this BFD. */
6209 if (elf_tdata (abfd)->local_stubs == NULL)
6210 {
6211 unsigned long symcount;
6212 asection **n;
6213 bfd_size_type amt;
6214
6215 if (elf_bad_symtab (abfd))
6216 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6217 else
6218 symcount = symtab_hdr->sh_info;
6219 amt = symcount * sizeof (asection *);
9719ad41 6220 n = bfd_zalloc (abfd, amt);
b49e97c9 6221 if (n == NULL)
b34976b6 6222 return FALSE;
b49e97c9
TS
6223 elf_tdata (abfd)->local_stubs = n;
6224 }
6225
b9d58d71 6226 sec->flags |= SEC_KEEP;
b49e97c9
TS
6227 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6228
6229 /* We don't need to set mips16_stubs_seen in this case.
6230 That flag is used to see whether we need to look through
6231 the global symbol table for stubs. We don't need to set
6232 it here, because we just have a local stub. */
6233 }
6234 else
6235 {
6236 struct mips_elf_link_hash_entry *h;
6237
6238 h = ((struct mips_elf_link_hash_entry *)
6239 sym_hashes[r_symndx - extsymoff]);
6240
973a3492
L
6241 while (h->root.root.type == bfd_link_hash_indirect
6242 || h->root.root.type == bfd_link_hash_warning)
6243 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6244
b49e97c9
TS
6245 /* H is the symbol this stub is for. */
6246
b9d58d71
TS
6247 /* If we already have an appropriate stub for this function, we
6248 don't need another one, so we can discard this one. Since
6249 this function is called before the linker maps input sections
6250 to output sections, we can easily discard it by setting the
6251 SEC_EXCLUDE flag. */
6252 if (h->fn_stub != NULL)
6253 {
6254 sec->flags |= SEC_EXCLUDE;
6255 return TRUE;
6256 }
6257
6258 sec->flags |= SEC_KEEP;
b49e97c9 6259 h->fn_stub = sec;
b34976b6 6260 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6261 }
6262 }
b9d58d71 6263 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6264 {
6265 unsigned long r_symndx;
6266 struct mips_elf_link_hash_entry *h;
6267 asection **loc;
6268
6269 /* Look at the relocation information to figure out which symbol
6270 this is for. */
6271
6272 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6273
6274 if (r_symndx < extsymoff
6275 || sym_hashes[r_symndx - extsymoff] == NULL)
6276 {
b9d58d71 6277 asection *o;
b49e97c9 6278
b9d58d71
TS
6279 /* This stub is for a local symbol. This stub will only be
6280 needed if there is some relocation (R_MIPS16_26) in this BFD
6281 that refers to this symbol. */
6282 for (o = abfd->sections; o != NULL; o = o->next)
6283 {
6284 Elf_Internal_Rela *sec_relocs;
6285 const Elf_Internal_Rela *r, *rend;
6286
6287 /* We can ignore stub sections when looking for relocs. */
6288 if ((o->flags & SEC_RELOC) == 0
6289 || o->reloc_count == 0
6290 || mips16_stub_section_p (abfd, o))
6291 continue;
6292
6293 sec_relocs
6294 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6295 info->keep_memory);
6296 if (sec_relocs == NULL)
6297 return FALSE;
6298
6299 rend = sec_relocs + o->reloc_count;
6300 for (r = sec_relocs; r < rend; r++)
6301 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6302 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6303 break;
6304
6305 if (elf_section_data (o)->relocs != sec_relocs)
6306 free (sec_relocs);
6307
6308 if (r < rend)
6309 break;
6310 }
6311
6312 if (o == NULL)
6313 {
6314 /* There is no non-call reloc for this stub, so we do
6315 not need it. Since this function is called before
6316 the linker maps input sections to output sections, we
6317 can easily discard it by setting the SEC_EXCLUDE
6318 flag. */
6319 sec->flags |= SEC_EXCLUDE;
6320 return TRUE;
6321 }
6322
6323 /* Record this stub in an array of local symbol call_stubs for
6324 this BFD. */
6325 if (elf_tdata (abfd)->local_call_stubs == NULL)
6326 {
6327 unsigned long symcount;
6328 asection **n;
6329 bfd_size_type amt;
6330
6331 if (elf_bad_symtab (abfd))
6332 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6333 else
6334 symcount = symtab_hdr->sh_info;
6335 amt = symcount * sizeof (asection *);
6336 n = bfd_zalloc (abfd, amt);
6337 if (n == NULL)
6338 return FALSE;
6339 elf_tdata (abfd)->local_call_stubs = n;
6340 }
b49e97c9 6341
b9d58d71
TS
6342 sec->flags |= SEC_KEEP;
6343 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6344
b9d58d71
TS
6345 /* We don't need to set mips16_stubs_seen in this case.
6346 That flag is used to see whether we need to look through
6347 the global symbol table for stubs. We don't need to set
6348 it here, because we just have a local stub. */
6349 }
b49e97c9 6350 else
b49e97c9 6351 {
b9d58d71
TS
6352 h = ((struct mips_elf_link_hash_entry *)
6353 sym_hashes[r_symndx - extsymoff]);
6354
6355 /* H is the symbol this stub is for. */
6356
6357 if (CALL_FP_STUB_P (name))
6358 loc = &h->call_fp_stub;
6359 else
6360 loc = &h->call_stub;
6361
6362 /* If we already have an appropriate stub for this function, we
6363 don't need another one, so we can discard this one. Since
6364 this function is called before the linker maps input sections
6365 to output sections, we can easily discard it by setting the
6366 SEC_EXCLUDE flag. */
6367 if (*loc != NULL)
6368 {
6369 sec->flags |= SEC_EXCLUDE;
6370 return TRUE;
6371 }
b49e97c9 6372
b9d58d71
TS
6373 sec->flags |= SEC_KEEP;
6374 *loc = sec;
6375 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6376 }
b49e97c9
TS
6377 }
6378
6379 if (dynobj == NULL)
6380 {
6381 sgot = NULL;
6382 g = NULL;
6383 }
6384 else
6385 {
f4416af6 6386 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6387 if (sgot == NULL)
6388 g = NULL;
6389 else
6390 {
f0abc2a1
AM
6391 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6392 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6393 BFD_ASSERT (g != NULL);
6394 }
6395 }
6396
6397 sreloc = NULL;
6398 bed = get_elf_backend_data (abfd);
6399 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6400 for (rel = relocs; rel < rel_end; ++rel)
6401 {
6402 unsigned long r_symndx;
6403 unsigned int r_type;
6404 struct elf_link_hash_entry *h;
6405
6406 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6407 r_type = ELF_R_TYPE (abfd, rel->r_info);
6408
6409 if (r_symndx < extsymoff)
6410 h = NULL;
6411 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6412 {
6413 (*_bfd_error_handler)
d003868e
AM
6414 (_("%B: Malformed reloc detected for section %s"),
6415 abfd, name);
b49e97c9 6416 bfd_set_error (bfd_error_bad_value);
b34976b6 6417 return FALSE;
b49e97c9
TS
6418 }
6419 else
6420 {
6421 h = sym_hashes[r_symndx - extsymoff];
6422
6423 /* This may be an indirect symbol created because of a version. */
6424 if (h != NULL)
6425 {
6426 while (h->root.type == bfd_link_hash_indirect)
6427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6428 }
6429 }
6430
6431 /* Some relocs require a global offset table. */
6432 if (dynobj == NULL || sgot == NULL)
6433 {
6434 switch (r_type)
6435 {
6436 case R_MIPS_GOT16:
6437 case R_MIPS_CALL16:
6438 case R_MIPS_CALL_HI16:
6439 case R_MIPS_CALL_LO16:
6440 case R_MIPS_GOT_HI16:
6441 case R_MIPS_GOT_LO16:
6442 case R_MIPS_GOT_PAGE:
6443 case R_MIPS_GOT_OFST:
6444 case R_MIPS_GOT_DISP:
86324f90 6445 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6446 case R_MIPS_TLS_GD:
6447 case R_MIPS_TLS_LDM:
b49e97c9
TS
6448 if (dynobj == NULL)
6449 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6450 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6451 return FALSE;
b49e97c9 6452 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6453 if (htab->is_vxworks && !info->shared)
6454 {
6455 (*_bfd_error_handler)
6456 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6457 abfd, (unsigned long) rel->r_offset);
6458 bfd_set_error (bfd_error_bad_value);
6459 return FALSE;
6460 }
b49e97c9
TS
6461 break;
6462
6463 case R_MIPS_32:
6464 case R_MIPS_REL32:
6465 case R_MIPS_64:
0a44bf69
RS
6466 /* In VxWorks executables, references to external symbols
6467 are handled using copy relocs or PLT stubs, so there's
6468 no need to add a dynamic relocation here. */
b49e97c9 6469 if (dynobj == NULL
0a44bf69 6470 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6471 && (sec->flags & SEC_ALLOC) != 0)
6472 elf_hash_table (info)->dynobj = dynobj = abfd;
6473 break;
6474
6475 default:
6476 break;
6477 }
6478 }
6479
0a44bf69
RS
6480 if (h)
6481 {
6482 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6483
6484 /* Relocations against the special VxWorks __GOTT_BASE__ and
6485 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6486 room for them in .rela.dyn. */
6487 if (is_gott_symbol (info, h))
6488 {
6489 if (sreloc == NULL)
6490 {
6491 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6492 if (sreloc == NULL)
6493 return FALSE;
6494 }
6495 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6496 if (MIPS_ELF_READONLY_SECTION (sec))
6497 /* We tell the dynamic linker that there are
6498 relocations against the text segment. */
6499 info->flags |= DF_TEXTREL;
0a44bf69
RS
6500 }
6501 }
6502 else if (r_type == R_MIPS_CALL_LO16
6503 || r_type == R_MIPS_GOT_LO16
6504 || r_type == R_MIPS_GOT_DISP
6505 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6506 {
6507 /* We may need a local GOT entry for this relocation. We
6508 don't count R_MIPS_GOT_PAGE because we can estimate the
6509 maximum number of pages needed by looking at the size of
6510 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6511 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6512 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6513 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6514 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6515 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6516 rel->r_addend, g, 0))
f4416af6 6517 return FALSE;
b49e97c9
TS
6518 }
6519
6520 switch (r_type)
6521 {
6522 case R_MIPS_CALL16:
6523 if (h == NULL)
6524 {
6525 (*_bfd_error_handler)
d003868e
AM
6526 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6527 abfd, (unsigned long) rel->r_offset);
b49e97c9 6528 bfd_set_error (bfd_error_bad_value);
b34976b6 6529 return FALSE;
b49e97c9
TS
6530 }
6531 /* Fall through. */
6532
6533 case R_MIPS_CALL_HI16:
6534 case R_MIPS_CALL_LO16:
6535 if (h != NULL)
6536 {
0a44bf69
RS
6537 /* VxWorks call relocations point the function's .got.plt
6538 entry, which will be allocated by adjust_dynamic_symbol.
6539 Otherwise, this symbol requires a global GOT entry. */
6540 if (!htab->is_vxworks
6541 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6542 return FALSE;
b49e97c9
TS
6543
6544 /* We need a stub, not a plt entry for the undefined
6545 function. But we record it as if it needs plt. See
c152c796 6546 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6547 h->needs_plt = 1;
b49e97c9
TS
6548 h->type = STT_FUNC;
6549 }
6550 break;
6551
0fdc1bf1
AO
6552 case R_MIPS_GOT_PAGE:
6553 /* If this is a global, overridable symbol, GOT_PAGE will
6554 decay to GOT_DISP, so we'll need a GOT entry for it. */
6555 if (h == NULL)
6556 break;
6557 else
6558 {
6559 struct mips_elf_link_hash_entry *hmips =
6560 (struct mips_elf_link_hash_entry *) h;
143d77c5 6561
0fdc1bf1
AO
6562 while (hmips->root.root.type == bfd_link_hash_indirect
6563 || hmips->root.root.type == bfd_link_hash_warning)
6564 hmips = (struct mips_elf_link_hash_entry *)
6565 hmips->root.root.u.i.link;
143d77c5 6566
f5385ebf 6567 if (hmips->root.def_regular
0fdc1bf1 6568 && ! (info->shared && ! info->symbolic
f5385ebf 6569 && ! hmips->root.forced_local))
0fdc1bf1
AO
6570 break;
6571 }
6572 /* Fall through. */
6573
b49e97c9
TS
6574 case R_MIPS_GOT16:
6575 case R_MIPS_GOT_HI16:
6576 case R_MIPS_GOT_LO16:
6577 case R_MIPS_GOT_DISP:
0f20cc35 6578 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6579 return FALSE;
b49e97c9
TS
6580 break;
6581
0f20cc35
DJ
6582 case R_MIPS_TLS_GOTTPREL:
6583 if (info->shared)
6584 info->flags |= DF_STATIC_TLS;
6585 /* Fall through */
6586
6587 case R_MIPS_TLS_LDM:
6588 if (r_type == R_MIPS_TLS_LDM)
6589 {
6590 r_symndx = 0;
6591 h = NULL;
6592 }
6593 /* Fall through */
6594
6595 case R_MIPS_TLS_GD:
6596 /* This symbol requires a global offset table entry, or two
6597 for TLS GD relocations. */
6598 {
6599 unsigned char flag = (r_type == R_MIPS_TLS_GD
6600 ? GOT_TLS_GD
6601 : r_type == R_MIPS_TLS_LDM
6602 ? GOT_TLS_LDM
6603 : GOT_TLS_IE);
6604 if (h != NULL)
6605 {
6606 struct mips_elf_link_hash_entry *hmips =
6607 (struct mips_elf_link_hash_entry *) h;
6608 hmips->tls_type |= flag;
6609
6610 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6611 return FALSE;
6612 }
6613 else
6614 {
6615 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6616
6617 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6618 rel->r_addend, g, flag))
6619 return FALSE;
6620 }
6621 }
6622 break;
6623
b49e97c9
TS
6624 case R_MIPS_32:
6625 case R_MIPS_REL32:
6626 case R_MIPS_64:
0a44bf69
RS
6627 /* In VxWorks executables, references to external symbols
6628 are handled using copy relocs or PLT stubs, so there's
6629 no need to add a .rela.dyn entry for this relocation. */
6630 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6631 && (sec->flags & SEC_ALLOC) != 0)
6632 {
6633 if (sreloc == NULL)
6634 {
0a44bf69 6635 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6636 if (sreloc == NULL)
f4416af6 6637 return FALSE;
b49e97c9 6638 }
b49e97c9 6639 if (info->shared)
82f0cfbd
EC
6640 {
6641 /* When creating a shared object, we must copy these
6642 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6643 relocs. Make room for this reloc in .rel(a).dyn. */
6644 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6645 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6646 /* We tell the dynamic linker that there are
6647 relocations against the text segment. */
6648 info->flags |= DF_TEXTREL;
6649 }
b49e97c9
TS
6650 else
6651 {
6652 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6653
b49e97c9
TS
6654 /* We only need to copy this reloc if the symbol is
6655 defined in a dynamic object. */
6656 hmips = (struct mips_elf_link_hash_entry *) h;
6657 ++hmips->possibly_dynamic_relocs;
943284cc 6658 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6659 /* We need it to tell the dynamic linker if there
6660 are relocations against the text segment. */
6661 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6662 }
6663
6664 /* Even though we don't directly need a GOT entry for
6665 this symbol, a symbol must have a dynamic symbol
6666 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6667 dynamic relocations against it. This does not apply
6668 to VxWorks, which does not have the usual coupling
6669 between global GOT entries and .dynsym entries. */
6670 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6671 {
6672 if (dynobj == NULL)
6673 elf_hash_table (info)->dynobj = dynobj = abfd;
6674 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6675 return FALSE;
6676 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6677 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6678 return FALSE;
6679 }
b49e97c9
TS
6680 }
6681
6682 if (SGI_COMPAT (abfd))
6683 mips_elf_hash_table (info)->compact_rel_size +=
6684 sizeof (Elf32_External_crinfo);
6685 break;
6686
0a44bf69
RS
6687 case R_MIPS_PC16:
6688 if (h)
6689 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6690 break;
6691
b49e97c9 6692 case R_MIPS_26:
0a44bf69
RS
6693 if (h)
6694 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6695 /* Fall through. */
6696
b49e97c9
TS
6697 case R_MIPS_GPREL16:
6698 case R_MIPS_LITERAL:
6699 case R_MIPS_GPREL32:
6700 if (SGI_COMPAT (abfd))
6701 mips_elf_hash_table (info)->compact_rel_size +=
6702 sizeof (Elf32_External_crinfo);
6703 break;
6704
6705 /* This relocation describes the C++ object vtable hierarchy.
6706 Reconstruct it for later use during GC. */
6707 case R_MIPS_GNU_VTINHERIT:
c152c796 6708 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6709 return FALSE;
b49e97c9
TS
6710 break;
6711
6712 /* This relocation describes which C++ vtable entries are actually
6713 used. Record for later use during GC. */
6714 case R_MIPS_GNU_VTENTRY:
c152c796 6715 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6716 return FALSE;
b49e97c9
TS
6717 break;
6718
6719 default:
6720 break;
6721 }
6722
6723 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6724 related to taking the function's address. This doesn't apply to
6725 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6726 a normal .got entry. */
6727 if (!htab->is_vxworks && h != NULL)
6728 switch (r_type)
6729 {
6730 default:
6731 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6732 break;
6733 case R_MIPS_CALL16:
6734 case R_MIPS_CALL_HI16:
6735 case R_MIPS_CALL_LO16:
6736 case R_MIPS_JALR:
6737 break;
6738 }
b49e97c9
TS
6739
6740 /* If this reloc is not a 16 bit call, and it has a global
6741 symbol, then we will need the fn_stub if there is one.
6742 References from a stub section do not count. */
6743 if (h != NULL
6744 && r_type != R_MIPS16_26
b9d58d71 6745 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6746 {
6747 struct mips_elf_link_hash_entry *mh;
6748
6749 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6750 mh->need_fn_stub = TRUE;
b49e97c9
TS
6751 }
6752 }
6753
b34976b6 6754 return TRUE;
b49e97c9
TS
6755}
6756\f
d0647110 6757bfd_boolean
9719ad41
RS
6758_bfd_mips_relax_section (bfd *abfd, asection *sec,
6759 struct bfd_link_info *link_info,
6760 bfd_boolean *again)
d0647110
AO
6761{
6762 Elf_Internal_Rela *internal_relocs;
6763 Elf_Internal_Rela *irel, *irelend;
6764 Elf_Internal_Shdr *symtab_hdr;
6765 bfd_byte *contents = NULL;
d0647110
AO
6766 size_t extsymoff;
6767 bfd_boolean changed_contents = FALSE;
6768 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6769 Elf_Internal_Sym *isymbuf = NULL;
6770
6771 /* We are not currently changing any sizes, so only one pass. */
6772 *again = FALSE;
6773
1049f94e 6774 if (link_info->relocatable)
d0647110
AO
6775 return TRUE;
6776
9719ad41 6777 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6778 link_info->keep_memory);
d0647110
AO
6779 if (internal_relocs == NULL)
6780 return TRUE;
6781
6782 irelend = internal_relocs + sec->reloc_count
6783 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6784 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6785 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6786
6787 for (irel = internal_relocs; irel < irelend; irel++)
6788 {
6789 bfd_vma symval;
6790 bfd_signed_vma sym_offset;
6791 unsigned int r_type;
6792 unsigned long r_symndx;
6793 asection *sym_sec;
6794 unsigned long instruction;
6795
6796 /* Turn jalr into bgezal, and jr into beq, if they're marked
6797 with a JALR relocation, that indicate where they jump to.
6798 This saves some pipeline bubbles. */
6799 r_type = ELF_R_TYPE (abfd, irel->r_info);
6800 if (r_type != R_MIPS_JALR)
6801 continue;
6802
6803 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6804 /* Compute the address of the jump target. */
6805 if (r_symndx >= extsymoff)
6806 {
6807 struct mips_elf_link_hash_entry *h
6808 = ((struct mips_elf_link_hash_entry *)
6809 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6810
6811 while (h->root.root.type == bfd_link_hash_indirect
6812 || h->root.root.type == bfd_link_hash_warning)
6813 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6814
d0647110
AO
6815 /* If a symbol is undefined, or if it may be overridden,
6816 skip it. */
6817 if (! ((h->root.root.type == bfd_link_hash_defined
6818 || h->root.root.type == bfd_link_hash_defweak)
6819 && h->root.root.u.def.section)
6820 || (link_info->shared && ! link_info->symbolic
f5385ebf 6821 && !h->root.forced_local))
d0647110
AO
6822 continue;
6823
6824 sym_sec = h->root.root.u.def.section;
6825 if (sym_sec->output_section)
6826 symval = (h->root.root.u.def.value
6827 + sym_sec->output_section->vma
6828 + sym_sec->output_offset);
6829 else
6830 symval = h->root.root.u.def.value;
6831 }
6832 else
6833 {
6834 Elf_Internal_Sym *isym;
6835
6836 /* Read this BFD's symbols if we haven't done so already. */
6837 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6838 {
6839 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6840 if (isymbuf == NULL)
6841 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6842 symtab_hdr->sh_info, 0,
6843 NULL, NULL, NULL);
6844 if (isymbuf == NULL)
6845 goto relax_return;
6846 }
6847
6848 isym = isymbuf + r_symndx;
6849 if (isym->st_shndx == SHN_UNDEF)
6850 continue;
6851 else if (isym->st_shndx == SHN_ABS)
6852 sym_sec = bfd_abs_section_ptr;
6853 else if (isym->st_shndx == SHN_COMMON)
6854 sym_sec = bfd_com_section_ptr;
6855 else
6856 sym_sec
6857 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6858 symval = isym->st_value
6859 + sym_sec->output_section->vma
6860 + sym_sec->output_offset;
6861 }
6862
6863 /* Compute branch offset, from delay slot of the jump to the
6864 branch target. */
6865 sym_offset = (symval + irel->r_addend)
6866 - (sec_start + irel->r_offset + 4);
6867
6868 /* Branch offset must be properly aligned. */
6869 if ((sym_offset & 3) != 0)
6870 continue;
6871
6872 sym_offset >>= 2;
6873
6874 /* Check that it's in range. */
6875 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6876 continue;
143d77c5 6877
d0647110
AO
6878 /* Get the section contents if we haven't done so already. */
6879 if (contents == NULL)
6880 {
6881 /* Get cached copy if it exists. */
6882 if (elf_section_data (sec)->this_hdr.contents != NULL)
6883 contents = elf_section_data (sec)->this_hdr.contents;
6884 else
6885 {
eea6121a 6886 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6887 goto relax_return;
6888 }
6889 }
6890
6891 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6892
6893 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6894 if ((instruction & 0xfc1fffff) == 0x0000f809)
6895 instruction = 0x04110000;
6896 /* If it was jr <reg>, turn it into b <target>. */
6897 else if ((instruction & 0xfc1fffff) == 0x00000008)
6898 instruction = 0x10000000;
6899 else
6900 continue;
6901
6902 instruction |= (sym_offset & 0xffff);
6903 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6904 changed_contents = TRUE;
6905 }
6906
6907 if (contents != NULL
6908 && elf_section_data (sec)->this_hdr.contents != contents)
6909 {
6910 if (!changed_contents && !link_info->keep_memory)
6911 free (contents);
6912 else
6913 {
6914 /* Cache the section contents for elf_link_input_bfd. */
6915 elf_section_data (sec)->this_hdr.contents = contents;
6916 }
6917 }
6918 return TRUE;
6919
143d77c5 6920 relax_return:
eea6121a
AM
6921 if (contents != NULL
6922 && elf_section_data (sec)->this_hdr.contents != contents)
6923 free (contents);
d0647110
AO
6924 return FALSE;
6925}
6926\f
b49e97c9
TS
6927/* Adjust a symbol defined by a dynamic object and referenced by a
6928 regular object. The current definition is in some section of the
6929 dynamic object, but we're not including those sections. We have to
6930 change the definition to something the rest of the link can
6931 understand. */
6932
b34976b6 6933bfd_boolean
9719ad41
RS
6934_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6935 struct elf_link_hash_entry *h)
b49e97c9
TS
6936{
6937 bfd *dynobj;
6938 struct mips_elf_link_hash_entry *hmips;
6939 asection *s;
5108fc1b 6940 struct mips_elf_link_hash_table *htab;
b49e97c9 6941
5108fc1b 6942 htab = mips_elf_hash_table (info);
b49e97c9
TS
6943 dynobj = elf_hash_table (info)->dynobj;
6944
6945 /* Make sure we know what is going on here. */
6946 BFD_ASSERT (dynobj != NULL
f5385ebf 6947 && (h->needs_plt
f6e332e6 6948 || h->u.weakdef != NULL
f5385ebf
AM
6949 || (h->def_dynamic
6950 && h->ref_regular
6951 && !h->def_regular)));
b49e97c9
TS
6952
6953 /* If this symbol is defined in a dynamic object, we need to copy
6954 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6955 file. */
6956 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6957 if (! info->relocatable
b49e97c9
TS
6958 && hmips->possibly_dynamic_relocs != 0
6959 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6960 || !h->def_regular))
b49e97c9 6961 {
0a44bf69
RS
6962 mips_elf_allocate_dynamic_relocations
6963 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6964 if (hmips->readonly_reloc)
b49e97c9
TS
6965 /* We tell the dynamic linker that there are relocations
6966 against the text segment. */
6967 info->flags |= DF_TEXTREL;
6968 }
6969
6970 /* For a function, create a stub, if allowed. */
6971 if (! hmips->no_fn_stub
f5385ebf 6972 && h->needs_plt)
b49e97c9
TS
6973 {
6974 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6975 return TRUE;
b49e97c9
TS
6976
6977 /* If this symbol is not defined in a regular file, then set
6978 the symbol to the stub location. This is required to make
6979 function pointers compare as equal between the normal
6980 executable and the shared library. */
f5385ebf 6981 if (!h->def_regular)
b49e97c9
TS
6982 {
6983 /* We need .stub section. */
6984 s = bfd_get_section_by_name (dynobj,
6985 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6986 BFD_ASSERT (s != NULL);
6987
6988 h->root.u.def.section = s;
eea6121a 6989 h->root.u.def.value = s->size;
b49e97c9
TS
6990
6991 /* XXX Write this stub address somewhere. */
eea6121a 6992 h->plt.offset = s->size;
b49e97c9
TS
6993
6994 /* Make room for this stub code. */
5108fc1b 6995 s->size += htab->function_stub_size;
b49e97c9
TS
6996
6997 /* The last half word of the stub will be filled with the index
6998 of this symbol in .dynsym section. */
b34976b6 6999 return TRUE;
b49e97c9
TS
7000 }
7001 }
7002 else if ((h->type == STT_FUNC)
f5385ebf 7003 && !h->needs_plt)
b49e97c9
TS
7004 {
7005 /* This will set the entry for this symbol in the GOT to 0, and
7006 the dynamic linker will take care of this. */
7007 h->root.u.def.value = 0;
b34976b6 7008 return TRUE;
b49e97c9
TS
7009 }
7010
7011 /* If this is a weak symbol, and there is a real definition, the
7012 processor independent code will have arranged for us to see the
7013 real definition first, and we can just use the same value. */
f6e332e6 7014 if (h->u.weakdef != NULL)
b49e97c9 7015 {
f6e332e6
AM
7016 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7017 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7018 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7019 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7020 return TRUE;
b49e97c9
TS
7021 }
7022
7023 /* This is a reference to a symbol defined by a dynamic object which
7024 is not a function. */
7025
b34976b6 7026 return TRUE;
b49e97c9 7027}
0a44bf69
RS
7028
7029/* Likewise, for VxWorks. */
7030
7031bfd_boolean
7032_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7033 struct elf_link_hash_entry *h)
7034{
7035 bfd *dynobj;
7036 struct mips_elf_link_hash_entry *hmips;
7037 struct mips_elf_link_hash_table *htab;
7038 unsigned int power_of_two;
7039
7040 htab = mips_elf_hash_table (info);
7041 dynobj = elf_hash_table (info)->dynobj;
7042 hmips = (struct mips_elf_link_hash_entry *) h;
7043
7044 /* Make sure we know what is going on here. */
7045 BFD_ASSERT (dynobj != NULL
7046 && (h->needs_plt
7047 || h->needs_copy
7048 || h->u.weakdef != NULL
7049 || (h->def_dynamic
7050 && h->ref_regular
7051 && !h->def_regular)));
7052
7053 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7054 either (a) we want to branch to the symbol or (b) we're linking an
7055 executable that needs a canonical function address. In the latter
7056 case, the canonical address will be the address of the executable's
7057 load stub. */
7058 if ((hmips->is_branch_target
7059 || (!info->shared
7060 && h->type == STT_FUNC
7061 && hmips->is_relocation_target))
7062 && h->def_dynamic
7063 && h->ref_regular
7064 && !h->def_regular
7065 && !h->forced_local)
7066 h->needs_plt = 1;
7067
7068 /* Locally-binding symbols do not need a PLT stub; we can refer to
7069 the functions directly. */
7070 else if (h->needs_plt
7071 && (SYMBOL_CALLS_LOCAL (info, h)
7072 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7073 && h->root.type == bfd_link_hash_undefweak)))
7074 {
7075 h->needs_plt = 0;
7076 return TRUE;
7077 }
7078
7079 if (h->needs_plt)
7080 {
7081 /* If this is the first symbol to need a PLT entry, allocate room
7082 for the header, and for the header's .rela.plt.unloaded entries. */
7083 if (htab->splt->size == 0)
7084 {
7085 htab->splt->size += htab->plt_header_size;
7086 if (!info->shared)
7087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7088 }
7089
7090 /* Assign the next .plt entry to this symbol. */
7091 h->plt.offset = htab->splt->size;
7092 htab->splt->size += htab->plt_entry_size;
7093
7094 /* If the output file has no definition of the symbol, set the
7095 symbol's value to the address of the stub. For executables,
7096 point at the PLT load stub rather than the lazy resolution stub;
7097 this stub will become the canonical function address. */
7098 if (!h->def_regular)
7099 {
7100 h->root.u.def.section = htab->splt;
7101 h->root.u.def.value = h->plt.offset;
7102 if (!info->shared)
7103 h->root.u.def.value += 8;
7104 }
7105
7106 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7107 htab->sgotplt->size += 4;
7108 htab->srelplt->size += sizeof (Elf32_External_Rela);
7109
7110 /* Make room for the .rela.plt.unloaded relocations. */
7111 if (!info->shared)
7112 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7113
7114 return TRUE;
7115 }
7116
7117 /* If a function symbol is defined by a dynamic object, and we do not
7118 need a PLT stub for it, the symbol's value should be zero. */
7119 if (h->type == STT_FUNC
7120 && h->def_dynamic
7121 && h->ref_regular
7122 && !h->def_regular)
7123 {
7124 h->root.u.def.value = 0;
7125 return TRUE;
7126 }
7127
7128 /* If this is a weak symbol, and there is a real definition, the
7129 processor independent code will have arranged for us to see the
7130 real definition first, and we can just use the same value. */
7131 if (h->u.weakdef != NULL)
7132 {
7133 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7134 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7135 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7136 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7137 return TRUE;
7138 }
7139
7140 /* This is a reference to a symbol defined by a dynamic object which
7141 is not a function. */
7142 if (info->shared)
7143 return TRUE;
7144
7145 /* We must allocate the symbol in our .dynbss section, which will
7146 become part of the .bss section of the executable. There will be
7147 an entry for this symbol in the .dynsym section. The dynamic
7148 object will contain position independent code, so all references
7149 from the dynamic object to this symbol will go through the global
7150 offset table. The dynamic linker will use the .dynsym entry to
7151 determine the address it must put in the global offset table, so
7152 both the dynamic object and the regular object will refer to the
7153 same memory location for the variable. */
7154
7155 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7156 {
7157 htab->srelbss->size += sizeof (Elf32_External_Rela);
7158 h->needs_copy = 1;
7159 }
7160
7161 /* We need to figure out the alignment required for this symbol. */
7162 power_of_two = bfd_log2 (h->size);
7163 if (power_of_two > 4)
7164 power_of_two = 4;
7165
7166 /* Apply the required alignment. */
7167 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7168 (bfd_size_type) 1 << power_of_two);
7169 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7170 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7171 return FALSE;
7172
7173 /* Define the symbol as being at this point in the section. */
7174 h->root.u.def.section = htab->sdynbss;
7175 h->root.u.def.value = htab->sdynbss->size;
7176
7177 /* Increment the section size to make room for the symbol. */
7178 htab->sdynbss->size += h->size;
7179
7180 return TRUE;
7181}
b49e97c9 7182\f
5108fc1b
RS
7183/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7184 The number might be exact or a worst-case estimate, depending on how
7185 much information is available to elf_backend_omit_section_dynsym at
7186 the current linking stage. */
7187
7188static bfd_size_type
7189count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7190{
7191 bfd_size_type count;
7192
7193 count = 0;
7194 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7195 {
7196 asection *p;
7197 const struct elf_backend_data *bed;
7198
7199 bed = get_elf_backend_data (output_bfd);
7200 for (p = output_bfd->sections; p ; p = p->next)
7201 if ((p->flags & SEC_EXCLUDE) == 0
7202 && (p->flags & SEC_ALLOC) != 0
7203 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7204 ++count;
7205 }
7206 return count;
7207}
7208
b49e97c9
TS
7209/* This function is called after all the input files have been read,
7210 and the input sections have been assigned to output sections. We
7211 check for any mips16 stub sections that we can discard. */
7212
b34976b6 7213bfd_boolean
9719ad41
RS
7214_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7215 struct bfd_link_info *info)
b49e97c9
TS
7216{
7217 asection *ri;
7218
f4416af6
AO
7219 bfd *dynobj;
7220 asection *s;
7221 struct mips_got_info *g;
7222 int i;
7223 bfd_size_type loadable_size = 0;
7224 bfd_size_type local_gotno;
5108fc1b 7225 bfd_size_type dynsymcount;
f4416af6 7226 bfd *sub;
0f20cc35 7227 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7228 struct mips_elf_link_hash_table *htab;
7229
7230 htab = mips_elf_hash_table (info);
f4416af6 7231
b49e97c9
TS
7232 /* The .reginfo section has a fixed size. */
7233 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7234 if (ri != NULL)
9719ad41 7235 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7236
1049f94e 7237 if (! (info->relocatable
f4416af6
AO
7238 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7239 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7240 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7241
7242 dynobj = elf_hash_table (info)->dynobj;
7243 if (dynobj == NULL)
7244 /* Relocatable links don't have it. */
7245 return TRUE;
143d77c5 7246
f4416af6
AO
7247 g = mips_elf_got_info (dynobj, &s);
7248 if (s == NULL)
b34976b6 7249 return TRUE;
b49e97c9 7250
f4416af6
AO
7251 /* Calculate the total loadable size of the output. That
7252 will give us the maximum number of GOT_PAGE entries
7253 required. */
7254 for (sub = info->input_bfds; sub; sub = sub->link_next)
7255 {
7256 asection *subsection;
7257
7258 for (subsection = sub->sections;
7259 subsection;
7260 subsection = subsection->next)
7261 {
7262 if ((subsection->flags & SEC_ALLOC) == 0)
7263 continue;
eea6121a 7264 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7265 &~ (bfd_size_type) 0xf);
7266 }
7267 }
7268
7269 /* There has to be a global GOT entry for every symbol with
7270 a dynamic symbol table index of DT_MIPS_GOTSYM or
7271 higher. Therefore, it make sense to put those symbols
7272 that need GOT entries at the end of the symbol table. We
7273 do that here. */
7274 if (! mips_elf_sort_hash_table (info, 1))
7275 return FALSE;
7276
7277 if (g->global_gotsym != NULL)
7278 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7279 else
7280 /* If there are no global symbols, or none requiring
7281 relocations, then GLOBAL_GOTSYM will be NULL. */
7282 i = 0;
7283
5108fc1b
RS
7284 /* Get a worst-case estimate of the number of dynamic symbols needed.
7285 At this point, dynsymcount does not account for section symbols
7286 and count_section_dynsyms may overestimate the number that will
7287 be needed. */
7288 dynsymcount = (elf_hash_table (info)->dynsymcount
7289 + count_section_dynsyms (output_bfd, info));
7290
7291 /* Determine the size of one stub entry. */
7292 htab->function_stub_size = (dynsymcount > 0x10000
7293 ? MIPS_FUNCTION_STUB_BIG_SIZE
7294 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7295
f4416af6
AO
7296 /* In the worst case, we'll get one stub per dynamic symbol, plus
7297 one to account for the dummy entry at the end required by IRIX
7298 rld. */
5108fc1b 7299 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7300
0a44bf69
RS
7301 if (htab->is_vxworks)
7302 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7303 relocations against local symbols evaluate to "G", and the EABI does
7304 not include R_MIPS_GOT_PAGE. */
7305 local_gotno = 0;
7306 else
7307 /* Assume there are two loadable segments consisting of contiguous
7308 sections. Is 5 enough? */
7309 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7310
7311 g->local_gotno += local_gotno;
eea6121a 7312 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7313
7314 g->global_gotno = i;
eea6121a 7315 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7316
0f20cc35
DJ
7317 /* We need to calculate tls_gotno for global symbols at this point
7318 instead of building it up earlier, to avoid doublecounting
7319 entries for one global symbol from multiple input files. */
7320 count_tls_arg.info = info;
7321 count_tls_arg.needed = 0;
7322 elf_link_hash_traverse (elf_hash_table (info),
7323 mips_elf_count_global_tls_entries,
7324 &count_tls_arg);
7325 g->tls_gotno += count_tls_arg.needed;
7326 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7327
7328 mips_elf_resolve_final_got_entries (g);
7329
0a44bf69
RS
7330 /* VxWorks does not support multiple GOTs. It initializes $gp to
7331 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7332 dynamic loader. */
7333 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7334 {
7335 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7336 return FALSE;
7337 }
7338 else
7339 {
7340 /* Set up TLS entries for the first GOT. */
7341 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7342 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7343 }
b49e97c9 7344
b34976b6 7345 return TRUE;
b49e97c9
TS
7346}
7347
7348/* Set the sizes of the dynamic sections. */
7349
b34976b6 7350bfd_boolean
9719ad41
RS
7351_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7352 struct bfd_link_info *info)
b49e97c9
TS
7353{
7354 bfd *dynobj;
0a44bf69 7355 asection *s, *sreldyn;
b34976b6 7356 bfd_boolean reltext;
0a44bf69 7357 struct mips_elf_link_hash_table *htab;
b49e97c9 7358
0a44bf69 7359 htab = mips_elf_hash_table (info);
b49e97c9
TS
7360 dynobj = elf_hash_table (info)->dynobj;
7361 BFD_ASSERT (dynobj != NULL);
7362
7363 if (elf_hash_table (info)->dynamic_sections_created)
7364 {
7365 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7366 if (info->executable)
b49e97c9
TS
7367 {
7368 s = bfd_get_section_by_name (dynobj, ".interp");
7369 BFD_ASSERT (s != NULL);
eea6121a 7370 s->size
b49e97c9
TS
7371 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7372 s->contents
7373 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7374 }
7375 }
7376
7377 /* The check_relocs and adjust_dynamic_symbol entry points have
7378 determined the sizes of the various dynamic sections. Allocate
7379 memory for them. */
b34976b6 7380 reltext = FALSE;
0a44bf69 7381 sreldyn = NULL;
b49e97c9
TS
7382 for (s = dynobj->sections; s != NULL; s = s->next)
7383 {
7384 const char *name;
b49e97c9
TS
7385
7386 /* It's OK to base decisions on the section name, because none
7387 of the dynobj section names depend upon the input files. */
7388 name = bfd_get_section_name (dynobj, s);
7389
7390 if ((s->flags & SEC_LINKER_CREATED) == 0)
7391 continue;
7392
0112cd26 7393 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7394 {
c456f082 7395 if (s->size != 0)
b49e97c9
TS
7396 {
7397 const char *outname;
7398 asection *target;
7399
7400 /* If this relocation section applies to a read only
7401 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7402 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7403 assert a DT_TEXTREL entry rather than testing whether
7404 there exists a relocation to a read only section or
7405 not. */
7406 outname = bfd_get_section_name (output_bfd,
7407 s->output_section);
7408 target = bfd_get_section_by_name (output_bfd, outname + 4);
7409 if ((target != NULL
7410 && (target->flags & SEC_READONLY) != 0
7411 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7412 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7413 reltext = TRUE;
b49e97c9
TS
7414
7415 /* We use the reloc_count field as a counter if we need
7416 to copy relocs into the output file. */
0a44bf69 7417 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7418 s->reloc_count = 0;
f4416af6
AO
7419
7420 /* If combreloc is enabled, elf_link_sort_relocs() will
7421 sort relocations, but in a different way than we do,
7422 and before we're done creating relocations. Also, it
7423 will move them around between input sections'
7424 relocation's contents, so our sorting would be
7425 broken, so don't let it run. */
7426 info->combreloc = 0;
b49e97c9
TS
7427 }
7428 }
0a44bf69
RS
7429 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7430 {
7431 /* Executables do not need a GOT. */
7432 if (info->shared)
7433 {
7434 /* Allocate relocations for all but the reserved entries. */
7435 struct mips_got_info *g;
7436 unsigned int count;
7437
7438 g = mips_elf_got_info (dynobj, NULL);
7439 count = (g->global_gotno
7440 + g->local_gotno
7441 - MIPS_RESERVED_GOTNO (info));
7442 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7443 }
7444 }
0112cd26 7445 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7446 {
f4416af6
AO
7447 /* _bfd_mips_elf_always_size_sections() has already done
7448 most of the work, but some symbols may have been mapped
7449 to versions that we must now resolve in the got_entries
7450 hash tables. */
7451 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7452 struct mips_got_info *g = gg;
7453 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7454 unsigned int needed_relocs = 0;
143d77c5 7455
f4416af6 7456 if (gg->next)
b49e97c9 7457 {
f4416af6
AO
7458 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7459 set_got_offset_arg.info = info;
b49e97c9 7460
0f20cc35
DJ
7461 /* NOTE 2005-02-03: How can this call, or the next, ever
7462 find any indirect entries to resolve? They were all
7463 resolved in mips_elf_multi_got. */
f4416af6
AO
7464 mips_elf_resolve_final_got_entries (gg);
7465 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7466 {
f4416af6
AO
7467 unsigned int save_assign;
7468
7469 mips_elf_resolve_final_got_entries (g);
7470
7471 /* Assign offsets to global GOT entries. */
7472 save_assign = g->assigned_gotno;
7473 g->assigned_gotno = g->local_gotno;
7474 set_got_offset_arg.g = g;
7475 set_got_offset_arg.needed_relocs = 0;
7476 htab_traverse (g->got_entries,
7477 mips_elf_set_global_got_offset,
7478 &set_got_offset_arg);
7479 needed_relocs += set_got_offset_arg.needed_relocs;
7480 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7481 <= g->global_gotno);
7482
7483 g->assigned_gotno = save_assign;
7484 if (info->shared)
7485 {
7486 needed_relocs += g->local_gotno - g->assigned_gotno;
7487 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7488 + g->next->global_gotno
0f20cc35 7489 + g->next->tls_gotno
0a44bf69 7490 + MIPS_RESERVED_GOTNO (info));
f4416af6 7491 }
b49e97c9 7492 }
0f20cc35
DJ
7493 }
7494 else
7495 {
7496 struct mips_elf_count_tls_arg arg;
7497 arg.info = info;
7498 arg.needed = 0;
b49e97c9 7499
0f20cc35
DJ
7500 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7501 &arg);
7502 elf_link_hash_traverse (elf_hash_table (info),
7503 mips_elf_count_global_tls_relocs,
7504 &arg);
7505
7506 needed_relocs += arg.needed;
f4416af6 7507 }
0f20cc35
DJ
7508
7509 if (needed_relocs)
0a44bf69
RS
7510 mips_elf_allocate_dynamic_relocations (dynobj, info,
7511 needed_relocs);
b49e97c9
TS
7512 }
7513 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7514 {
8dc1a139 7515 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7516 of .text section. So put a dummy. XXX */
7517 s->size += htab->function_stub_size;
b49e97c9
TS
7518 }
7519 else if (! info->shared
7520 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7521 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7522 {
5108fc1b 7523 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7524 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7525 s->size += 4;
b49e97c9
TS
7526 }
7527 else if (SGI_COMPAT (output_bfd)
0112cd26 7528 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7529 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7530 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7531 && s != htab->sgotplt
7532 && s != htab->splt)
b49e97c9
TS
7533 {
7534 /* It's not one of our sections, so don't allocate space. */
7535 continue;
7536 }
7537
c456f082 7538 if (s->size == 0)
b49e97c9 7539 {
8423293d 7540 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7541 continue;
7542 }
7543
c456f082
AM
7544 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7545 continue;
7546
0a44bf69
RS
7547 /* Allocate memory for this section last, since we may increase its
7548 size above. */
7549 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7550 {
7551 sreldyn = s;
7552 continue;
7553 }
7554
b49e97c9 7555 /* Allocate memory for the section contents. */
eea6121a 7556 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7557 if (s->contents == NULL)
b49e97c9
TS
7558 {
7559 bfd_set_error (bfd_error_no_memory);
b34976b6 7560 return FALSE;
b49e97c9
TS
7561 }
7562 }
7563
0a44bf69
RS
7564 /* Allocate memory for the .rel(a).dyn section. */
7565 if (sreldyn != NULL)
7566 {
7567 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7568 if (sreldyn->contents == NULL)
7569 {
7570 bfd_set_error (bfd_error_no_memory);
7571 return FALSE;
7572 }
7573 }
7574
b49e97c9
TS
7575 if (elf_hash_table (info)->dynamic_sections_created)
7576 {
7577 /* Add some entries to the .dynamic section. We fill in the
7578 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7579 must add the entries now so that we get the correct size for
5750dcec 7580 the .dynamic section. */
af5978fb
RS
7581
7582 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7583 DT_MIPS_RLD_MAP entry. This must come first because glibc
7584 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7585 looks at the first one it sees. */
af5978fb
RS
7586 if (!info->shared
7587 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7588 return FALSE;
b49e97c9 7589
5750dcec
DJ
7590 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7591 used by the debugger. */
7592 if (info->executable
7593 && !SGI_COMPAT (output_bfd)
7594 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7595 return FALSE;
7596
0a44bf69 7597 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7598 info->flags |= DF_TEXTREL;
7599
7600 if ((info->flags & DF_TEXTREL) != 0)
7601 {
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7603 return FALSE;
943284cc
DJ
7604
7605 /* Clear the DF_TEXTREL flag. It will be set again if we
7606 write out an actual text relocation; we may not, because
7607 at this point we do not know whether e.g. any .eh_frame
7608 absolute relocations have been converted to PC-relative. */
7609 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7610 }
7611
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7613 return FALSE;
b49e97c9 7614
0a44bf69 7615 if (htab->is_vxworks)
b49e97c9 7616 {
0a44bf69
RS
7617 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7618 use any of the DT_MIPS_* tags. */
7619 if (mips_elf_rel_dyn_section (info, FALSE))
7620 {
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7622 return FALSE;
b49e97c9 7623
0a44bf69
RS
7624 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7625 return FALSE;
b49e97c9 7626
0a44bf69
RS
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7628 return FALSE;
7629 }
7630 if (htab->splt->size > 0)
7631 {
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7633 return FALSE;
7634
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7636 return FALSE;
7637
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7639 return FALSE;
7640 }
b49e97c9 7641 }
0a44bf69
RS
7642 else
7643 {
7644 if (mips_elf_rel_dyn_section (info, FALSE))
7645 {
7646 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7647 return FALSE;
b49e97c9 7648
0a44bf69
RS
7649 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7650 return FALSE;
b49e97c9 7651
0a44bf69
RS
7652 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7653 return FALSE;
7654 }
b49e97c9 7655
0a44bf69
RS
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7657 return FALSE;
b49e97c9 7658
0a44bf69
RS
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7660 return FALSE;
b49e97c9 7661
0a44bf69
RS
7662 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7663 return FALSE;
b49e97c9 7664
0a44bf69
RS
7665 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7666 return FALSE;
b49e97c9 7667
0a44bf69
RS
7668 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7669 return FALSE;
b49e97c9 7670
0a44bf69
RS
7671 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7672 return FALSE;
b49e97c9 7673
0a44bf69
RS
7674 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7675 return FALSE;
7676
7677 if (IRIX_COMPAT (dynobj) == ict_irix5
7678 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7679 return FALSE;
7680
7681 if (IRIX_COMPAT (dynobj) == ict_irix6
7682 && (bfd_get_section_by_name
7683 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7684 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7685 return FALSE;
7686 }
b49e97c9
TS
7687 }
7688
b34976b6 7689 return TRUE;
b49e97c9
TS
7690}
7691\f
81d43bff
RS
7692/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7693 Adjust its R_ADDEND field so that it is correct for the output file.
7694 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7695 and sections respectively; both use symbol indexes. */
7696
7697static void
7698mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7699 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7700 asection **local_sections, Elf_Internal_Rela *rel)
7701{
7702 unsigned int r_type, r_symndx;
7703 Elf_Internal_Sym *sym;
7704 asection *sec;
7705
7706 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7707 {
7708 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7709 if (r_type == R_MIPS16_GPREL
7710 || r_type == R_MIPS_GPREL16
7711 || r_type == R_MIPS_GPREL32
7712 || r_type == R_MIPS_LITERAL)
7713 {
7714 rel->r_addend += _bfd_get_gp_value (input_bfd);
7715 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7716 }
7717
7718 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7719 sym = local_syms + r_symndx;
7720
7721 /* Adjust REL's addend to account for section merging. */
7722 if (!info->relocatable)
7723 {
7724 sec = local_sections[r_symndx];
7725 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7726 }
7727
7728 /* This would normally be done by the rela_normal code in elflink.c. */
7729 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7730 rel->r_addend += local_sections[r_symndx]->output_offset;
7731 }
7732}
7733
b49e97c9
TS
7734/* Relocate a MIPS ELF section. */
7735
b34976b6 7736bfd_boolean
9719ad41
RS
7737_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7738 bfd *input_bfd, asection *input_section,
7739 bfd_byte *contents, Elf_Internal_Rela *relocs,
7740 Elf_Internal_Sym *local_syms,
7741 asection **local_sections)
b49e97c9
TS
7742{
7743 Elf_Internal_Rela *rel;
7744 const Elf_Internal_Rela *relend;
7745 bfd_vma addend = 0;
b34976b6 7746 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7747 const struct elf_backend_data *bed;
b49e97c9
TS
7748
7749 bed = get_elf_backend_data (output_bfd);
7750 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7751 for (rel = relocs; rel < relend; ++rel)
7752 {
7753 const char *name;
c9adbffe 7754 bfd_vma value = 0;
b49e97c9 7755 reloc_howto_type *howto;
b34976b6
AM
7756 bfd_boolean require_jalx;
7757 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7758 REL relocation. */
b34976b6 7759 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7760 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7761 const char *msg;
ab96bf03
AM
7762 unsigned long r_symndx;
7763 asection *sec;
749b8d9d
L
7764 Elf_Internal_Shdr *symtab_hdr;
7765 struct elf_link_hash_entry *h;
b49e97c9
TS
7766
7767 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7768 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7769 NEWABI_P (input_bfd)
7770 && (MIPS_RELOC_RELA_P
7771 (input_bfd, input_section,
7772 rel - relocs)));
7773
7774 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7775 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7776 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7777 {
7778 sec = local_sections[r_symndx];
7779 h = NULL;
7780 }
ab96bf03
AM
7781 else
7782 {
ab96bf03 7783 unsigned long extsymoff;
ab96bf03 7784
ab96bf03
AM
7785 extsymoff = 0;
7786 if (!elf_bad_symtab (input_bfd))
7787 extsymoff = symtab_hdr->sh_info;
7788 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7789 while (h->root.type == bfd_link_hash_indirect
7790 || h->root.type == bfd_link_hash_warning)
7791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7792
7793 sec = NULL;
7794 if (h->root.type == bfd_link_hash_defined
7795 || h->root.type == bfd_link_hash_defweak)
7796 sec = h->root.u.def.section;
7797 }
7798
7799 if (sec != NULL && elf_discarded_section (sec))
7800 {
7801 /* For relocs against symbols from removed linkonce sections,
7802 or sections discarded by a linker script, we just want the
7803 section contents zeroed. Avoid any special processing. */
7804 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7805 rel->r_info = 0;
7806 rel->r_addend = 0;
7807 continue;
7808 }
7809
4a14403c 7810 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7811 {
7812 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7813 64-bit code, but make sure all their addresses are in the
7814 lowermost or uppermost 32-bit section of the 64-bit address
7815 space. Thus, when they use an R_MIPS_64 they mean what is
7816 usually meant by R_MIPS_32, with the exception that the
7817 stored value is sign-extended to 64 bits. */
b34976b6 7818 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7819
7820 /* On big-endian systems, we need to lie about the position
7821 of the reloc. */
7822 if (bfd_big_endian (input_bfd))
7823 rel->r_offset += 4;
7824 }
b49e97c9
TS
7825
7826 if (!use_saved_addend_p)
7827 {
7828 Elf_Internal_Shdr *rel_hdr;
7829
7830 /* If these relocations were originally of the REL variety,
7831 we must pull the addend out of the field that will be
7832 relocated. Otherwise, we simply use the contents of the
7833 RELA relocation. To determine which flavor or relocation
7834 this is, we depend on the fact that the INPUT_SECTION's
7835 REL_HDR is read before its REL_HDR2. */
7836 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7837 if ((size_t) (rel - relocs)
7838 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7839 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7840 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7841 {
d6f16593
MR
7842 bfd_byte *location = contents + rel->r_offset;
7843
b49e97c9 7844 /* Note that this is a REL relocation. */
b34976b6 7845 rela_relocation_p = FALSE;
b49e97c9
TS
7846
7847 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7848 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7849 location);
b49e97c9
TS
7850 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7851 contents);
d6f16593
MR
7852 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7853 location);
7854
b49e97c9
TS
7855 addend &= howto->src_mask;
7856
7857 /* For some kinds of relocations, the ADDEND is a
7858 combination of the addend stored in two different
7859 relocations. */
d6f16593 7860 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7861 || (r_type == R_MIPS_GOT16
7862 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7863 local_sections, FALSE)))
b49e97c9 7864 {
b49e97c9
TS
7865 const Elf_Internal_Rela *lo16_relocation;
7866 reloc_howto_type *lo16_howto;
d6f16593
MR
7867 int lo16_type;
7868
7869 if (r_type == R_MIPS16_HI16)
7870 lo16_type = R_MIPS16_LO16;
7871 else
7872 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7873
7874 /* The combined value is the sum of the HI16 addend,
7875 left-shifted by sixteen bits, and the LO16
7876 addend, sign extended. (Usually, the code does
7877 a `lui' of the HI16 value, and then an `addiu' of
7878 the LO16 value.)
7879
4030e8f6
CD
7880 Scan ahead to find a matching LO16 relocation.
7881
7882 According to the MIPS ELF ABI, the R_MIPS_LO16
7883 relocation must be immediately following.
7884 However, for the IRIX6 ABI, the next relocation
7885 may be a composed relocation consisting of
7886 several relocations for the same address. In
7887 that case, the R_MIPS_LO16 relocation may occur
7888 as one of these. We permit a similar extension
2d82d84d
TS
7889 in general, as that is useful for GCC.
7890
7891 In some cases GCC dead code elimination removes
7892 the LO16 but keeps the corresponding HI16. This
7893 is strictly speaking a violation of the ABI but
7894 not immediately harmful. */
4030e8f6 7895 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7896 lo16_type,
b49e97c9
TS
7897 rel, relend);
7898 if (lo16_relocation == NULL)
749b8d9d
L
7899 {
7900 const char *name;
7901
7902 if (h)
7903 name = h->root.root.string;
7904 else
7905 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7906 local_syms + r_symndx,
7907 sec);
7908 (*_bfd_error_handler)
7909 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7910 input_bfd, input_section, name, howto->name,
7911 rel->r_offset);
749b8d9d 7912 }
2d82d84d
TS
7913 else
7914 {
7915 bfd_byte *lo16_location;
7916 bfd_vma l;
7917
7918 lo16_location = contents + lo16_relocation->r_offset;
7919
7920 /* Obtain the addend kept there. */
7921 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7922 lo16_type, FALSE);
7923 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7924 FALSE, lo16_location);
7925 l = mips_elf_obtain_contents (lo16_howto,
7926 lo16_relocation,
7927 input_bfd, contents);
7928 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7929 FALSE, lo16_location);
7930 l &= lo16_howto->src_mask;
7931 l <<= lo16_howto->rightshift;
7932 l = _bfd_mips_elf_sign_extend (l, 16);
7933
7934 addend <<= 16;
7935
7936 /* Compute the combined addend. */
7937 addend += l;
7938 }
b49e97c9 7939 }
30ac9238
RS
7940 else
7941 addend <<= howto->rightshift;
b49e97c9
TS
7942 }
7943 else
7944 addend = rel->r_addend;
81d43bff
RS
7945 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7946 local_syms, local_sections, rel);
b49e97c9
TS
7947 }
7948
1049f94e 7949 if (info->relocatable)
b49e97c9 7950 {
4a14403c 7951 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7952 && bfd_big_endian (input_bfd))
7953 rel->r_offset -= 4;
7954
81d43bff 7955 if (!rela_relocation_p && rel->r_addend)
5a659663 7956 {
81d43bff 7957 addend += rel->r_addend;
30ac9238 7958 if (r_type == R_MIPS_HI16
4030e8f6 7959 || r_type == R_MIPS_GOT16)
5a659663
TS
7960 addend = mips_elf_high (addend);
7961 else if (r_type == R_MIPS_HIGHER)
7962 addend = mips_elf_higher (addend);
7963 else if (r_type == R_MIPS_HIGHEST)
7964 addend = mips_elf_highest (addend);
30ac9238
RS
7965 else
7966 addend >>= howto->rightshift;
b49e97c9 7967
30ac9238
RS
7968 /* We use the source mask, rather than the destination
7969 mask because the place to which we are writing will be
7970 source of the addend in the final link. */
b49e97c9
TS
7971 addend &= howto->src_mask;
7972
5a659663 7973 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7974 /* See the comment above about using R_MIPS_64 in the 32-bit
7975 ABI. Here, we need to update the addend. It would be
7976 possible to get away with just using the R_MIPS_32 reloc
7977 but for endianness. */
7978 {
7979 bfd_vma sign_bits;
7980 bfd_vma low_bits;
7981 bfd_vma high_bits;
7982
7983 if (addend & ((bfd_vma) 1 << 31))
7984#ifdef BFD64
7985 sign_bits = ((bfd_vma) 1 << 32) - 1;
7986#else
7987 sign_bits = -1;
7988#endif
7989 else
7990 sign_bits = 0;
7991
7992 /* If we don't know that we have a 64-bit type,
7993 do two separate stores. */
7994 if (bfd_big_endian (input_bfd))
7995 {
7996 /* Store the sign-bits (which are most significant)
7997 first. */
7998 low_bits = sign_bits;
7999 high_bits = addend;
8000 }
8001 else
8002 {
8003 low_bits = addend;
8004 high_bits = sign_bits;
8005 }
8006 bfd_put_32 (input_bfd, low_bits,
8007 contents + rel->r_offset);
8008 bfd_put_32 (input_bfd, high_bits,
8009 contents + rel->r_offset + 4);
8010 continue;
8011 }
8012
8013 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8014 input_bfd, input_section,
b34976b6
AM
8015 contents, FALSE))
8016 return FALSE;
b49e97c9
TS
8017 }
8018
8019 /* Go on to the next relocation. */
8020 continue;
8021 }
8022
8023 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8024 relocations for the same offset. In that case we are
8025 supposed to treat the output of each relocation as the addend
8026 for the next. */
8027 if (rel + 1 < relend
8028 && rel->r_offset == rel[1].r_offset
8029 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8030 use_saved_addend_p = TRUE;
b49e97c9 8031 else
b34976b6 8032 use_saved_addend_p = FALSE;
b49e97c9
TS
8033
8034 /* Figure out what value we are supposed to relocate. */
8035 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8036 input_section, info, rel,
8037 addend, howto, local_syms,
8038 local_sections, &value,
bce03d3d
AO
8039 &name, &require_jalx,
8040 use_saved_addend_p))
b49e97c9
TS
8041 {
8042 case bfd_reloc_continue:
8043 /* There's nothing to do. */
8044 continue;
8045
8046 case bfd_reloc_undefined:
8047 /* mips_elf_calculate_relocation already called the
8048 undefined_symbol callback. There's no real point in
8049 trying to perform the relocation at this point, so we
8050 just skip ahead to the next relocation. */
8051 continue;
8052
8053 case bfd_reloc_notsupported:
8054 msg = _("internal error: unsupported relocation error");
8055 info->callbacks->warning
8056 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8057 return FALSE;
b49e97c9
TS
8058
8059 case bfd_reloc_overflow:
8060 if (use_saved_addend_p)
8061 /* Ignore overflow until we reach the last relocation for
8062 a given location. */
8063 ;
8064 else
8065 {
8066 BFD_ASSERT (name != NULL);
8067 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8068 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8069 input_bfd, input_section, rel->r_offset)))
b34976b6 8070 return FALSE;
b49e97c9
TS
8071 }
8072 break;
8073
8074 case bfd_reloc_ok:
8075 break;
8076
8077 default:
8078 abort ();
8079 break;
8080 }
8081
8082 /* If we've got another relocation for the address, keep going
8083 until we reach the last one. */
8084 if (use_saved_addend_p)
8085 {
8086 addend = value;
8087 continue;
8088 }
8089
4a14403c 8090 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8091 /* See the comment above about using R_MIPS_64 in the 32-bit
8092 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8093 that calculated the right value. Now, however, we
8094 sign-extend the 32-bit result to 64-bits, and store it as a
8095 64-bit value. We are especially generous here in that we
8096 go to extreme lengths to support this usage on systems with
8097 only a 32-bit VMA. */
8098 {
8099 bfd_vma sign_bits;
8100 bfd_vma low_bits;
8101 bfd_vma high_bits;
8102
8103 if (value & ((bfd_vma) 1 << 31))
8104#ifdef BFD64
8105 sign_bits = ((bfd_vma) 1 << 32) - 1;
8106#else
8107 sign_bits = -1;
8108#endif
8109 else
8110 sign_bits = 0;
8111
8112 /* If we don't know that we have a 64-bit type,
8113 do two separate stores. */
8114 if (bfd_big_endian (input_bfd))
8115 {
8116 /* Undo what we did above. */
8117 rel->r_offset -= 4;
8118 /* Store the sign-bits (which are most significant)
8119 first. */
8120 low_bits = sign_bits;
8121 high_bits = value;
8122 }
8123 else
8124 {
8125 low_bits = value;
8126 high_bits = sign_bits;
8127 }
8128 bfd_put_32 (input_bfd, low_bits,
8129 contents + rel->r_offset);
8130 bfd_put_32 (input_bfd, high_bits,
8131 contents + rel->r_offset + 4);
8132 continue;
8133 }
8134
8135 /* Actually perform the relocation. */
8136 if (! mips_elf_perform_relocation (info, howto, rel, value,
8137 input_bfd, input_section,
8138 contents, require_jalx))
b34976b6 8139 return FALSE;
b49e97c9
TS
8140 }
8141
b34976b6 8142 return TRUE;
b49e97c9
TS
8143}
8144\f
8145/* If NAME is one of the special IRIX6 symbols defined by the linker,
8146 adjust it appropriately now. */
8147
8148static void
9719ad41
RS
8149mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8150 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8151{
8152 /* The linker script takes care of providing names and values for
8153 these, but we must place them into the right sections. */
8154 static const char* const text_section_symbols[] = {
8155 "_ftext",
8156 "_etext",
8157 "__dso_displacement",
8158 "__elf_header",
8159 "__program_header_table",
8160 NULL
8161 };
8162
8163 static const char* const data_section_symbols[] = {
8164 "_fdata",
8165 "_edata",
8166 "_end",
8167 "_fbss",
8168 NULL
8169 };
8170
8171 const char* const *p;
8172 int i;
8173
8174 for (i = 0; i < 2; ++i)
8175 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8176 *p;
8177 ++p)
8178 if (strcmp (*p, name) == 0)
8179 {
8180 /* All of these symbols are given type STT_SECTION by the
8181 IRIX6 linker. */
8182 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8183 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8184
8185 /* The IRIX linker puts these symbols in special sections. */
8186 if (i == 0)
8187 sym->st_shndx = SHN_MIPS_TEXT;
8188 else
8189 sym->st_shndx = SHN_MIPS_DATA;
8190
8191 break;
8192 }
8193}
8194
8195/* Finish up dynamic symbol handling. We set the contents of various
8196 dynamic sections here. */
8197
b34976b6 8198bfd_boolean
9719ad41
RS
8199_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8200 struct bfd_link_info *info,
8201 struct elf_link_hash_entry *h,
8202 Elf_Internal_Sym *sym)
b49e97c9
TS
8203{
8204 bfd *dynobj;
b49e97c9 8205 asection *sgot;
f4416af6 8206 struct mips_got_info *g, *gg;
b49e97c9 8207 const char *name;
3d6746ca 8208 int idx;
5108fc1b 8209 struct mips_elf_link_hash_table *htab;
b49e97c9 8210
5108fc1b 8211 htab = mips_elf_hash_table (info);
b49e97c9 8212 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8213
c5ae1840 8214 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8215 {
8216 asection *s;
5108fc1b 8217 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8218
8219 /* This symbol has a stub. Set it up. */
8220
8221 BFD_ASSERT (h->dynindx != -1);
8222
8223 s = bfd_get_section_by_name (dynobj,
8224 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8225 BFD_ASSERT (s != NULL);
8226
5108fc1b
RS
8227 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8228 || (h->dynindx <= 0xffff));
3d6746ca
DD
8229
8230 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8231 sign extension at runtime in the stub, resulting in a negative
8232 index value. */
8233 if (h->dynindx & ~0x7fffffff)
b34976b6 8234 return FALSE;
b49e97c9
TS
8235
8236 /* Fill the stub. */
3d6746ca
DD
8237 idx = 0;
8238 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8239 idx += 4;
8240 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8241 idx += 4;
5108fc1b 8242 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8243 {
5108fc1b 8244 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8245 stub + idx);
8246 idx += 4;
8247 }
8248 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8249 idx += 4;
b49e97c9 8250
3d6746ca
DD
8251 /* If a large stub is not required and sign extension is not a
8252 problem, then use legacy code in the stub. */
5108fc1b
RS
8253 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8254 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8255 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8256 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8257 else
5108fc1b
RS
8258 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8259 stub + idx);
8260
eea6121a 8261 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8262 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8263
8264 /* Mark the symbol as undefined. plt.offset != -1 occurs
8265 only for the referenced symbol. */
8266 sym->st_shndx = SHN_UNDEF;
8267
8268 /* The run-time linker uses the st_value field of the symbol
8269 to reset the global offset table entry for this external
8270 to its stub address when unlinking a shared object. */
c5ae1840
TS
8271 sym->st_value = (s->output_section->vma + s->output_offset
8272 + h->plt.offset);
b49e97c9
TS
8273 }
8274
8275 BFD_ASSERT (h->dynindx != -1
f5385ebf 8276 || h->forced_local);
b49e97c9 8277
f4416af6 8278 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8279 BFD_ASSERT (sgot != NULL);
f4416af6 8280 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8281 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8282 BFD_ASSERT (g != NULL);
8283
8284 /* Run through the global symbol table, creating GOT entries for all
8285 the symbols that need them. */
8286 if (g->global_gotsym != NULL
8287 && h->dynindx >= g->global_gotsym->dynindx)
8288 {
8289 bfd_vma offset;
8290 bfd_vma value;
8291
6eaa6adc 8292 value = sym->st_value;
0f20cc35 8293 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8294 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8295 }
8296
0f20cc35 8297 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8298 {
8299 struct mips_got_entry e, *p;
0626d451 8300 bfd_vma entry;
f4416af6 8301 bfd_vma offset;
f4416af6
AO
8302
8303 gg = g;
8304
8305 e.abfd = output_bfd;
8306 e.symndx = -1;
8307 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8308 e.tls_type = 0;
143d77c5 8309
f4416af6
AO
8310 for (g = g->next; g->next != gg; g = g->next)
8311 {
8312 if (g->got_entries
8313 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8314 &e)))
8315 {
8316 offset = p->gotidx;
0626d451
RS
8317 if (info->shared
8318 || (elf_hash_table (info)->dynamic_sections_created
8319 && p->d.h != NULL
f5385ebf
AM
8320 && p->d.h->root.def_dynamic
8321 && !p->d.h->root.def_regular))
0626d451
RS
8322 {
8323 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8324 the various compatibility problems, it's easier to mock
8325 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8326 mips_elf_create_dynamic_relocation to calculate the
8327 appropriate addend. */
8328 Elf_Internal_Rela rel[3];
8329
8330 memset (rel, 0, sizeof (rel));
8331 if (ABI_64_P (output_bfd))
8332 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8333 else
8334 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8335 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8336
8337 entry = 0;
8338 if (! (mips_elf_create_dynamic_relocation
8339 (output_bfd, info, rel,
8340 e.d.h, NULL, sym->st_value, &entry, sgot)))
8341 return FALSE;
8342 }
8343 else
8344 entry = sym->st_value;
8345 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8346 }
8347 }
8348 }
8349
b49e97c9
TS
8350 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8351 name = h->root.root.string;
8352 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8353 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8354 sym->st_shndx = SHN_ABS;
8355 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8356 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8357 {
8358 sym->st_shndx = SHN_ABS;
8359 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8360 sym->st_value = 1;
8361 }
4a14403c 8362 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8363 {
8364 sym->st_shndx = SHN_ABS;
8365 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8366 sym->st_value = elf_gp (output_bfd);
8367 }
8368 else if (SGI_COMPAT (output_bfd))
8369 {
8370 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8371 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8372 {
8373 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8374 sym->st_other = STO_PROTECTED;
8375 sym->st_value = 0;
8376 sym->st_shndx = SHN_MIPS_DATA;
8377 }
8378 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8379 {
8380 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8381 sym->st_other = STO_PROTECTED;
8382 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8383 sym->st_shndx = SHN_ABS;
8384 }
8385 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8386 {
8387 if (h->type == STT_FUNC)
8388 sym->st_shndx = SHN_MIPS_TEXT;
8389 else if (h->type == STT_OBJECT)
8390 sym->st_shndx = SHN_MIPS_DATA;
8391 }
8392 }
8393
8394 /* Handle the IRIX6-specific symbols. */
8395 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8396 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8397
8398 if (! info->shared)
8399 {
8400 if (! mips_elf_hash_table (info)->use_rld_obj_head
8401 && (strcmp (name, "__rld_map") == 0
8402 || strcmp (name, "__RLD_MAP") == 0))
8403 {
8404 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8405 BFD_ASSERT (s != NULL);
8406 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8407 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8408 if (mips_elf_hash_table (info)->rld_value == 0)
8409 mips_elf_hash_table (info)->rld_value = sym->st_value;
8410 }
8411 else if (mips_elf_hash_table (info)->use_rld_obj_head
8412 && strcmp (name, "__rld_obj_head") == 0)
8413 {
8414 /* IRIX6 does not use a .rld_map section. */
8415 if (IRIX_COMPAT (output_bfd) == ict_irix5
8416 || IRIX_COMPAT (output_bfd) == ict_none)
8417 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8418 != NULL);
8419 mips_elf_hash_table (info)->rld_value = sym->st_value;
8420 }
8421 }
8422
8423 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8424 if (sym->st_other == STO_MIPS16)
8425 sym->st_value &= ~1;
b49e97c9 8426
b34976b6 8427 return TRUE;
b49e97c9
TS
8428}
8429
0a44bf69
RS
8430/* Likewise, for VxWorks. */
8431
8432bfd_boolean
8433_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8434 struct bfd_link_info *info,
8435 struct elf_link_hash_entry *h,
8436 Elf_Internal_Sym *sym)
8437{
8438 bfd *dynobj;
8439 asection *sgot;
8440 struct mips_got_info *g;
8441 struct mips_elf_link_hash_table *htab;
8442
8443 htab = mips_elf_hash_table (info);
8444 dynobj = elf_hash_table (info)->dynobj;
8445
8446 if (h->plt.offset != (bfd_vma) -1)
8447 {
6d79d2ed 8448 bfd_byte *loc;
0a44bf69
RS
8449 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8450 Elf_Internal_Rela rel;
8451 static const bfd_vma *plt_entry;
8452
8453 BFD_ASSERT (h->dynindx != -1);
8454 BFD_ASSERT (htab->splt != NULL);
8455 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8456
8457 /* Calculate the address of the .plt entry. */
8458 plt_address = (htab->splt->output_section->vma
8459 + htab->splt->output_offset
8460 + h->plt.offset);
8461
8462 /* Calculate the index of the entry. */
8463 plt_index = ((h->plt.offset - htab->plt_header_size)
8464 / htab->plt_entry_size);
8465
8466 /* Calculate the address of the .got.plt entry. */
8467 got_address = (htab->sgotplt->output_section->vma
8468 + htab->sgotplt->output_offset
8469 + plt_index * 4);
8470
8471 /* Calculate the offset of the .got.plt entry from
8472 _GLOBAL_OFFSET_TABLE_. */
8473 got_offset = mips_elf_gotplt_index (info, h);
8474
8475 /* Calculate the offset for the branch at the start of the PLT
8476 entry. The branch jumps to the beginning of .plt. */
8477 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8478
8479 /* Fill in the initial value of the .got.plt entry. */
8480 bfd_put_32 (output_bfd, plt_address,
8481 htab->sgotplt->contents + plt_index * 4);
8482
8483 /* Find out where the .plt entry should go. */
8484 loc = htab->splt->contents + h->plt.offset;
8485
8486 if (info->shared)
8487 {
8488 plt_entry = mips_vxworks_shared_plt_entry;
8489 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8490 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8491 }
8492 else
8493 {
8494 bfd_vma got_address_high, got_address_low;
8495
8496 plt_entry = mips_vxworks_exec_plt_entry;
8497 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8498 got_address_low = got_address & 0xffff;
8499
8500 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8501 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8502 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8503 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8504 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8505 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8506 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8507 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8508
8509 loc = (htab->srelplt2->contents
8510 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8511
8512 /* Emit a relocation for the .got.plt entry. */
8513 rel.r_offset = got_address;
8514 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8515 rel.r_addend = h->plt.offset;
8516 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8517
8518 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8519 loc += sizeof (Elf32_External_Rela);
8520 rel.r_offset = plt_address + 8;
8521 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8522 rel.r_addend = got_offset;
8523 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8524
8525 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8526 loc += sizeof (Elf32_External_Rela);
8527 rel.r_offset += 4;
8528 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8529 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8530 }
8531
8532 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8533 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8534 rel.r_offset = got_address;
8535 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8536 rel.r_addend = 0;
8537 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8538
8539 if (!h->def_regular)
8540 sym->st_shndx = SHN_UNDEF;
8541 }
8542
8543 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8544
8545 sgot = mips_elf_got_section (dynobj, FALSE);
8546 BFD_ASSERT (sgot != NULL);
8547 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8548 g = mips_elf_section_data (sgot)->u.got_info;
8549 BFD_ASSERT (g != NULL);
8550
8551 /* See if this symbol has an entry in the GOT. */
8552 if (g->global_gotsym != NULL
8553 && h->dynindx >= g->global_gotsym->dynindx)
8554 {
8555 bfd_vma offset;
8556 Elf_Internal_Rela outrel;
8557 bfd_byte *loc;
8558 asection *s;
8559
8560 /* Install the symbol value in the GOT. */
8561 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8562 R_MIPS_GOT16, info);
8563 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8564
8565 /* Add a dynamic relocation for it. */
8566 s = mips_elf_rel_dyn_section (info, FALSE);
8567 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8568 outrel.r_offset = (sgot->output_section->vma
8569 + sgot->output_offset
8570 + offset);
8571 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8572 outrel.r_addend = 0;
8573 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8574 }
8575
8576 /* Emit a copy reloc, if needed. */
8577 if (h->needs_copy)
8578 {
8579 Elf_Internal_Rela rel;
8580
8581 BFD_ASSERT (h->dynindx != -1);
8582
8583 rel.r_offset = (h->root.u.def.section->output_section->vma
8584 + h->root.u.def.section->output_offset
8585 + h->root.u.def.value);
8586 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8587 rel.r_addend = 0;
8588 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8589 htab->srelbss->contents
8590 + (htab->srelbss->reloc_count
8591 * sizeof (Elf32_External_Rela)));
8592 ++htab->srelbss->reloc_count;
8593 }
8594
8595 /* If this is a mips16 symbol, force the value to be even. */
8596 if (sym->st_other == STO_MIPS16)
8597 sym->st_value &= ~1;
8598
8599 return TRUE;
8600}
8601
8602/* Install the PLT header for a VxWorks executable and finalize the
8603 contents of .rela.plt.unloaded. */
8604
8605static void
8606mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8607{
8608 Elf_Internal_Rela rela;
8609 bfd_byte *loc;
8610 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8611 static const bfd_vma *plt_entry;
8612 struct mips_elf_link_hash_table *htab;
8613
8614 htab = mips_elf_hash_table (info);
8615 plt_entry = mips_vxworks_exec_plt0_entry;
8616
8617 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8618 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8619 + htab->root.hgot->root.u.def.section->output_offset
8620 + htab->root.hgot->root.u.def.value);
8621
8622 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8623 got_value_low = got_value & 0xffff;
8624
8625 /* Calculate the address of the PLT header. */
8626 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8627
8628 /* Install the PLT header. */
8629 loc = htab->splt->contents;
8630 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8631 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8632 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8633 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8634 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8635 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8636
8637 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8638 loc = htab->srelplt2->contents;
8639 rela.r_offset = plt_address;
8640 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8641 rela.r_addend = 0;
8642 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8643 loc += sizeof (Elf32_External_Rela);
8644
8645 /* Output the relocation for the following addiu of
8646 %lo(_GLOBAL_OFFSET_TABLE_). */
8647 rela.r_offset += 4;
8648 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8649 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8650 loc += sizeof (Elf32_External_Rela);
8651
8652 /* Fix up the remaining relocations. They may have the wrong
8653 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8654 in which symbols were output. */
8655 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8656 {
8657 Elf_Internal_Rela rel;
8658
8659 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8660 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8661 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8662 loc += sizeof (Elf32_External_Rela);
8663
8664 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8665 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8666 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8667 loc += sizeof (Elf32_External_Rela);
8668
8669 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8670 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8671 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8672 loc += sizeof (Elf32_External_Rela);
8673 }
8674}
8675
8676/* Install the PLT header for a VxWorks shared library. */
8677
8678static void
8679mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8680{
8681 unsigned int i;
8682 struct mips_elf_link_hash_table *htab;
8683
8684 htab = mips_elf_hash_table (info);
8685
8686 /* We just need to copy the entry byte-by-byte. */
8687 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8688 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8689 htab->splt->contents + i * 4);
8690}
8691
b49e97c9
TS
8692/* Finish up the dynamic sections. */
8693
b34976b6 8694bfd_boolean
9719ad41
RS
8695_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8696 struct bfd_link_info *info)
b49e97c9
TS
8697{
8698 bfd *dynobj;
8699 asection *sdyn;
8700 asection *sgot;
f4416af6 8701 struct mips_got_info *gg, *g;
0a44bf69 8702 struct mips_elf_link_hash_table *htab;
b49e97c9 8703
0a44bf69 8704 htab = mips_elf_hash_table (info);
b49e97c9
TS
8705 dynobj = elf_hash_table (info)->dynobj;
8706
8707 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8708
f4416af6 8709 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8710 if (sgot == NULL)
f4416af6 8711 gg = g = NULL;
b49e97c9
TS
8712 else
8713 {
f4416af6
AO
8714 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8715 gg = mips_elf_section_data (sgot)->u.got_info;
8716 BFD_ASSERT (gg != NULL);
8717 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8718 BFD_ASSERT (g != NULL);
8719 }
8720
8721 if (elf_hash_table (info)->dynamic_sections_created)
8722 {
8723 bfd_byte *b;
943284cc 8724 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8725
8726 BFD_ASSERT (sdyn != NULL);
8727 BFD_ASSERT (g != NULL);
8728
8729 for (b = sdyn->contents;
eea6121a 8730 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8731 b += MIPS_ELF_DYN_SIZE (dynobj))
8732 {
8733 Elf_Internal_Dyn dyn;
8734 const char *name;
8735 size_t elemsize;
8736 asection *s;
b34976b6 8737 bfd_boolean swap_out_p;
b49e97c9
TS
8738
8739 /* Read in the current dynamic entry. */
8740 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8741
8742 /* Assume that we're going to modify it and write it out. */
b34976b6 8743 swap_out_p = TRUE;
b49e97c9
TS
8744
8745 switch (dyn.d_tag)
8746 {
8747 case DT_RELENT:
b49e97c9
TS
8748 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8749 break;
8750
0a44bf69
RS
8751 case DT_RELAENT:
8752 BFD_ASSERT (htab->is_vxworks);
8753 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8754 break;
8755
b49e97c9
TS
8756 case DT_STRSZ:
8757 /* Rewrite DT_STRSZ. */
8758 dyn.d_un.d_val =
8759 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8760 break;
8761
8762 case DT_PLTGOT:
8763 name = ".got";
0a44bf69
RS
8764 if (htab->is_vxworks)
8765 {
8766 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8767 of the ".got" section in DYNOBJ. */
8768 s = bfd_get_section_by_name (dynobj, name);
8769 BFD_ASSERT (s != NULL);
8770 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8771 }
8772 else
8773 {
8774 s = bfd_get_section_by_name (output_bfd, name);
8775 BFD_ASSERT (s != NULL);
8776 dyn.d_un.d_ptr = s->vma;
8777 }
b49e97c9
TS
8778 break;
8779
8780 case DT_MIPS_RLD_VERSION:
8781 dyn.d_un.d_val = 1; /* XXX */
8782 break;
8783
8784 case DT_MIPS_FLAGS:
8785 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8786 break;
8787
b49e97c9 8788 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8789 {
8790 time_t t;
8791 time (&t);
8792 dyn.d_un.d_val = t;
8793 }
b49e97c9
TS
8794 break;
8795
8796 case DT_MIPS_ICHECKSUM:
8797 /* XXX FIXME: */
b34976b6 8798 swap_out_p = FALSE;
b49e97c9
TS
8799 break;
8800
8801 case DT_MIPS_IVERSION:
8802 /* XXX FIXME: */
b34976b6 8803 swap_out_p = FALSE;
b49e97c9
TS
8804 break;
8805
8806 case DT_MIPS_BASE_ADDRESS:
8807 s = output_bfd->sections;
8808 BFD_ASSERT (s != NULL);
8809 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8810 break;
8811
8812 case DT_MIPS_LOCAL_GOTNO:
8813 dyn.d_un.d_val = g->local_gotno;
8814 break;
8815
8816 case DT_MIPS_UNREFEXTNO:
8817 /* The index into the dynamic symbol table which is the
8818 entry of the first external symbol that is not
8819 referenced within the same object. */
8820 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8821 break;
8822
8823 case DT_MIPS_GOTSYM:
f4416af6 8824 if (gg->global_gotsym)
b49e97c9 8825 {
f4416af6 8826 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8827 break;
8828 }
8829 /* In case if we don't have global got symbols we default
8830 to setting DT_MIPS_GOTSYM to the same value as
8831 DT_MIPS_SYMTABNO, so we just fall through. */
8832
8833 case DT_MIPS_SYMTABNO:
8834 name = ".dynsym";
8835 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8836 s = bfd_get_section_by_name (output_bfd, name);
8837 BFD_ASSERT (s != NULL);
8838
eea6121a 8839 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8840 break;
8841
8842 case DT_MIPS_HIPAGENO:
0a44bf69 8843 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8844 break;
8845
8846 case DT_MIPS_RLD_MAP:
8847 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8848 break;
8849
8850 case DT_MIPS_OPTIONS:
8851 s = (bfd_get_section_by_name
8852 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8853 dyn.d_un.d_ptr = s->vma;
8854 break;
8855
0a44bf69
RS
8856 case DT_RELASZ:
8857 BFD_ASSERT (htab->is_vxworks);
8858 /* The count does not include the JUMP_SLOT relocations. */
8859 if (htab->srelplt)
8860 dyn.d_un.d_val -= htab->srelplt->size;
8861 break;
8862
8863 case DT_PLTREL:
8864 BFD_ASSERT (htab->is_vxworks);
8865 dyn.d_un.d_val = DT_RELA;
8866 break;
8867
8868 case DT_PLTRELSZ:
8869 BFD_ASSERT (htab->is_vxworks);
8870 dyn.d_un.d_val = htab->srelplt->size;
8871 break;
8872
8873 case DT_JMPREL:
8874 BFD_ASSERT (htab->is_vxworks);
8875 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8876 + htab->srelplt->output_offset);
8877 break;
8878
943284cc
DJ
8879 case DT_TEXTREL:
8880 /* If we didn't need any text relocations after all, delete
8881 the dynamic tag. */
8882 if (!(info->flags & DF_TEXTREL))
8883 {
8884 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8885 swap_out_p = FALSE;
8886 }
8887 break;
8888
8889 case DT_FLAGS:
8890 /* If we didn't need any text relocations after all, clear
8891 DF_TEXTREL from DT_FLAGS. */
8892 if (!(info->flags & DF_TEXTREL))
8893 dyn.d_un.d_val &= ~DF_TEXTREL;
8894 else
8895 swap_out_p = FALSE;
8896 break;
8897
b49e97c9 8898 default:
b34976b6 8899 swap_out_p = FALSE;
b49e97c9
TS
8900 break;
8901 }
8902
943284cc 8903 if (swap_out_p || dyn_skipped)
b49e97c9 8904 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8905 (dynobj, &dyn, b - dyn_skipped);
8906
8907 if (dyn_to_skip)
8908 {
8909 dyn_skipped += dyn_to_skip;
8910 dyn_to_skip = 0;
8911 }
b49e97c9 8912 }
943284cc
DJ
8913
8914 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8915 if (dyn_skipped > 0)
8916 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8917 }
8918
eea6121a 8919 if (sgot != NULL && sgot->size > 0)
b49e97c9 8920 {
0a44bf69
RS
8921 if (htab->is_vxworks)
8922 {
8923 /* The first entry of the global offset table points to the
8924 ".dynamic" section. The second is initialized by the
8925 loader and contains the shared library identifier.
8926 The third is also initialized by the loader and points
8927 to the lazy resolution stub. */
8928 MIPS_ELF_PUT_WORD (output_bfd,
8929 sdyn->output_offset + sdyn->output_section->vma,
8930 sgot->contents);
8931 MIPS_ELF_PUT_WORD (output_bfd, 0,
8932 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8933 MIPS_ELF_PUT_WORD (output_bfd, 0,
8934 sgot->contents
8935 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8936 }
8937 else
8938 {
8939 /* The first entry of the global offset table will be filled at
8940 runtime. The second entry will be used by some runtime loaders.
8941 This isn't the case of IRIX rld. */
8942 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8943 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8944 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8945 }
b49e97c9 8946
54938e2a
TS
8947 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8948 = MIPS_ELF_GOT_SIZE (output_bfd);
8949 }
b49e97c9 8950
f4416af6
AO
8951 /* Generate dynamic relocations for the non-primary gots. */
8952 if (gg != NULL && gg->next)
8953 {
8954 Elf_Internal_Rela rel[3];
8955 bfd_vma addend = 0;
8956
8957 memset (rel, 0, sizeof (rel));
8958 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8959
8960 for (g = gg->next; g->next != gg; g = g->next)
8961 {
0f20cc35
DJ
8962 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8963 + g->next->tls_gotno;
f4416af6 8964
9719ad41 8965 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8966 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8967 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8968 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8969
8970 if (! info->shared)
8971 continue;
8972
8973 while (index < g->assigned_gotno)
8974 {
8975 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8976 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8977 if (!(mips_elf_create_dynamic_relocation
8978 (output_bfd, info, rel, NULL,
8979 bfd_abs_section_ptr,
8980 0, &addend, sgot)))
8981 return FALSE;
8982 BFD_ASSERT (addend == 0);
8983 }
8984 }
8985 }
8986
3133ddbf
DJ
8987 /* The generation of dynamic relocations for the non-primary gots
8988 adds more dynamic relocations. We cannot count them until
8989 here. */
8990
8991 if (elf_hash_table (info)->dynamic_sections_created)
8992 {
8993 bfd_byte *b;
8994 bfd_boolean swap_out_p;
8995
8996 BFD_ASSERT (sdyn != NULL);
8997
8998 for (b = sdyn->contents;
8999 b < sdyn->contents + sdyn->size;
9000 b += MIPS_ELF_DYN_SIZE (dynobj))
9001 {
9002 Elf_Internal_Dyn dyn;
9003 asection *s;
9004
9005 /* Read in the current dynamic entry. */
9006 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9007
9008 /* Assume that we're going to modify it and write it out. */
9009 swap_out_p = TRUE;
9010
9011 switch (dyn.d_tag)
9012 {
9013 case DT_RELSZ:
9014 /* Reduce DT_RELSZ to account for any relocations we
9015 decided not to make. This is for the n64 irix rld,
9016 which doesn't seem to apply any relocations if there
9017 are trailing null entries. */
0a44bf69 9018 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9019 dyn.d_un.d_val = (s->reloc_count
9020 * (ABI_64_P (output_bfd)
9021 ? sizeof (Elf64_Mips_External_Rel)
9022 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9023 /* Adjust the section size too. Tools like the prelinker
9024 can reasonably expect the values to the same. */
9025 elf_section_data (s->output_section)->this_hdr.sh_size
9026 = dyn.d_un.d_val;
3133ddbf
DJ
9027 break;
9028
9029 default:
9030 swap_out_p = FALSE;
9031 break;
9032 }
9033
9034 if (swap_out_p)
9035 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9036 (dynobj, &dyn, b);
9037 }
9038 }
9039
b49e97c9 9040 {
b49e97c9
TS
9041 asection *s;
9042 Elf32_compact_rel cpt;
9043
b49e97c9
TS
9044 if (SGI_COMPAT (output_bfd))
9045 {
9046 /* Write .compact_rel section out. */
9047 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9048 if (s != NULL)
9049 {
9050 cpt.id1 = 1;
9051 cpt.num = s->reloc_count;
9052 cpt.id2 = 2;
9053 cpt.offset = (s->output_section->filepos
9054 + sizeof (Elf32_External_compact_rel));
9055 cpt.reserved0 = 0;
9056 cpt.reserved1 = 0;
9057 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9058 ((Elf32_External_compact_rel *)
9059 s->contents));
9060
9061 /* Clean up a dummy stub function entry in .text. */
9062 s = bfd_get_section_by_name (dynobj,
9063 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9064 if (s != NULL)
9065 {
9066 file_ptr dummy_offset;
9067
5108fc1b
RS
9068 BFD_ASSERT (s->size >= htab->function_stub_size);
9069 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9070 memset (s->contents + dummy_offset, 0,
5108fc1b 9071 htab->function_stub_size);
b49e97c9
TS
9072 }
9073 }
9074 }
9075
0a44bf69
RS
9076 /* The psABI says that the dynamic relocations must be sorted in
9077 increasing order of r_symndx. The VxWorks EABI doesn't require
9078 this, and because the code below handles REL rather than RELA
9079 relocations, using it for VxWorks would be outright harmful. */
9080 if (!htab->is_vxworks)
b49e97c9 9081 {
0a44bf69
RS
9082 s = mips_elf_rel_dyn_section (info, FALSE);
9083 if (s != NULL
9084 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9085 {
9086 reldyn_sorting_bfd = output_bfd;
b49e97c9 9087
0a44bf69
RS
9088 if (ABI_64_P (output_bfd))
9089 qsort ((Elf64_External_Rel *) s->contents + 1,
9090 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9091 sort_dynamic_relocs_64);
9092 else
9093 qsort ((Elf32_External_Rel *) s->contents + 1,
9094 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9095 sort_dynamic_relocs);
9096 }
b49e97c9 9097 }
b49e97c9
TS
9098 }
9099
0a44bf69
RS
9100 if (htab->is_vxworks && htab->splt->size > 0)
9101 {
9102 if (info->shared)
9103 mips_vxworks_finish_shared_plt (output_bfd, info);
9104 else
9105 mips_vxworks_finish_exec_plt (output_bfd, info);
9106 }
b34976b6 9107 return TRUE;
b49e97c9
TS
9108}
9109
b49e97c9 9110
64543e1a
RS
9111/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9112
9113static void
9719ad41 9114mips_set_isa_flags (bfd *abfd)
b49e97c9 9115{
64543e1a 9116 flagword val;
b49e97c9
TS
9117
9118 switch (bfd_get_mach (abfd))
9119 {
9120 default:
9121 case bfd_mach_mips3000:
9122 val = E_MIPS_ARCH_1;
9123 break;
9124
9125 case bfd_mach_mips3900:
9126 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9127 break;
9128
9129 case bfd_mach_mips6000:
9130 val = E_MIPS_ARCH_2;
9131 break;
9132
9133 case bfd_mach_mips4000:
9134 case bfd_mach_mips4300:
9135 case bfd_mach_mips4400:
9136 case bfd_mach_mips4600:
9137 val = E_MIPS_ARCH_3;
9138 break;
9139
9140 case bfd_mach_mips4010:
9141 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9142 break;
9143
9144 case bfd_mach_mips4100:
9145 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9146 break;
9147
9148 case bfd_mach_mips4111:
9149 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9150 break;
9151
00707a0e
RS
9152 case bfd_mach_mips4120:
9153 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9154 break;
9155
b49e97c9
TS
9156 case bfd_mach_mips4650:
9157 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9158 break;
9159
00707a0e
RS
9160 case bfd_mach_mips5400:
9161 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9162 break;
9163
9164 case bfd_mach_mips5500:
9165 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9166 break;
9167
0d2e43ed
ILT
9168 case bfd_mach_mips9000:
9169 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9170 break;
9171
b49e97c9 9172 case bfd_mach_mips5000:
5a7ea749 9173 case bfd_mach_mips7000:
b49e97c9
TS
9174 case bfd_mach_mips8000:
9175 case bfd_mach_mips10000:
9176 case bfd_mach_mips12000:
9177 val = E_MIPS_ARCH_4;
9178 break;
9179
9180 case bfd_mach_mips5:
9181 val = E_MIPS_ARCH_5;
9182 break;
9183
9184 case bfd_mach_mips_sb1:
9185 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9186 break;
9187
9188 case bfd_mach_mipsisa32:
9189 val = E_MIPS_ARCH_32;
9190 break;
9191
9192 case bfd_mach_mipsisa64:
9193 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9194 break;
9195
9196 case bfd_mach_mipsisa32r2:
9197 val = E_MIPS_ARCH_32R2;
9198 break;
5f74bc13
CD
9199
9200 case bfd_mach_mipsisa64r2:
9201 val = E_MIPS_ARCH_64R2;
9202 break;
b49e97c9 9203 }
b49e97c9
TS
9204 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9205 elf_elfheader (abfd)->e_flags |= val;
9206
64543e1a
RS
9207}
9208
9209
9210/* The final processing done just before writing out a MIPS ELF object
9211 file. This gets the MIPS architecture right based on the machine
9212 number. This is used by both the 32-bit and the 64-bit ABI. */
9213
9214void
9719ad41
RS
9215_bfd_mips_elf_final_write_processing (bfd *abfd,
9216 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9217{
9218 unsigned int i;
9219 Elf_Internal_Shdr **hdrpp;
9220 const char *name;
9221 asection *sec;
9222
9223 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9224 is nonzero. This is for compatibility with old objects, which used
9225 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9226 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9227 mips_set_isa_flags (abfd);
9228
b49e97c9
TS
9229 /* Set the sh_info field for .gptab sections and other appropriate
9230 info for each special section. */
9231 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9232 i < elf_numsections (abfd);
9233 i++, hdrpp++)
9234 {
9235 switch ((*hdrpp)->sh_type)
9236 {
9237 case SHT_MIPS_MSYM:
9238 case SHT_MIPS_LIBLIST:
9239 sec = bfd_get_section_by_name (abfd, ".dynstr");
9240 if (sec != NULL)
9241 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9242 break;
9243
9244 case SHT_MIPS_GPTAB:
9245 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9246 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9247 BFD_ASSERT (name != NULL
0112cd26 9248 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9249 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9250 BFD_ASSERT (sec != NULL);
9251 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9252 break;
9253
9254 case SHT_MIPS_CONTENT:
9255 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9256 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9257 BFD_ASSERT (name != NULL
0112cd26 9258 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9259 sec = bfd_get_section_by_name (abfd,
9260 name + sizeof ".MIPS.content" - 1);
9261 BFD_ASSERT (sec != NULL);
9262 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9263 break;
9264
9265 case SHT_MIPS_SYMBOL_LIB:
9266 sec = bfd_get_section_by_name (abfd, ".dynsym");
9267 if (sec != NULL)
9268 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9269 sec = bfd_get_section_by_name (abfd, ".liblist");
9270 if (sec != NULL)
9271 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9272 break;
9273
9274 case SHT_MIPS_EVENTS:
9275 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9276 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9277 BFD_ASSERT (name != NULL);
0112cd26 9278 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9279 sec = bfd_get_section_by_name (abfd,
9280 name + sizeof ".MIPS.events" - 1);
9281 else
9282 {
0112cd26 9283 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9284 sec = bfd_get_section_by_name (abfd,
9285 (name
9286 + sizeof ".MIPS.post_rel" - 1));
9287 }
9288 BFD_ASSERT (sec != NULL);
9289 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9290 break;
9291
9292 }
9293 }
9294}
9295\f
8dc1a139 9296/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9297 segments. */
9298
9299int
a6b96beb
AM
9300_bfd_mips_elf_additional_program_headers (bfd *abfd,
9301 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9302{
9303 asection *s;
9304 int ret = 0;
9305
9306 /* See if we need a PT_MIPS_REGINFO segment. */
9307 s = bfd_get_section_by_name (abfd, ".reginfo");
9308 if (s && (s->flags & SEC_LOAD))
9309 ++ret;
9310
9311 /* See if we need a PT_MIPS_OPTIONS segment. */
9312 if (IRIX_COMPAT (abfd) == ict_irix6
9313 && bfd_get_section_by_name (abfd,
9314 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9315 ++ret;
9316
9317 /* See if we need a PT_MIPS_RTPROC segment. */
9318 if (IRIX_COMPAT (abfd) == ict_irix5
9319 && bfd_get_section_by_name (abfd, ".dynamic")
9320 && bfd_get_section_by_name (abfd, ".mdebug"))
9321 ++ret;
9322
98c904a8
RS
9323 /* Allocate a PT_NULL header in dynamic objects. See
9324 _bfd_mips_elf_modify_segment_map for details. */
9325 if (!SGI_COMPAT (abfd)
9326 && bfd_get_section_by_name (abfd, ".dynamic"))
9327 ++ret;
9328
b49e97c9
TS
9329 return ret;
9330}
9331
8dc1a139 9332/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9333
b34976b6 9334bfd_boolean
9719ad41
RS
9335_bfd_mips_elf_modify_segment_map (bfd *abfd,
9336 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9337{
9338 asection *s;
9339 struct elf_segment_map *m, **pm;
9340 bfd_size_type amt;
9341
9342 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9343 segment. */
9344 s = bfd_get_section_by_name (abfd, ".reginfo");
9345 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9346 {
9347 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9348 if (m->p_type == PT_MIPS_REGINFO)
9349 break;
9350 if (m == NULL)
9351 {
9352 amt = sizeof *m;
9719ad41 9353 m = bfd_zalloc (abfd, amt);
b49e97c9 9354 if (m == NULL)
b34976b6 9355 return FALSE;
b49e97c9
TS
9356
9357 m->p_type = PT_MIPS_REGINFO;
9358 m->count = 1;
9359 m->sections[0] = s;
9360
9361 /* We want to put it after the PHDR and INTERP segments. */
9362 pm = &elf_tdata (abfd)->segment_map;
9363 while (*pm != NULL
9364 && ((*pm)->p_type == PT_PHDR
9365 || (*pm)->p_type == PT_INTERP))
9366 pm = &(*pm)->next;
9367
9368 m->next = *pm;
9369 *pm = m;
9370 }
9371 }
9372
9373 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9374 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9375 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9376 table. */
c1fd6598
AO
9377 if (NEWABI_P (abfd)
9378 /* On non-IRIX6 new abi, we'll have already created a segment
9379 for this section, so don't create another. I'm not sure this
9380 is not also the case for IRIX 6, but I can't test it right
9381 now. */
9382 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9383 {
9384 for (s = abfd->sections; s; s = s->next)
9385 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9386 break;
9387
9388 if (s)
9389 {
9390 struct elf_segment_map *options_segment;
9391
98a8deaf
RS
9392 pm = &elf_tdata (abfd)->segment_map;
9393 while (*pm != NULL
9394 && ((*pm)->p_type == PT_PHDR
9395 || (*pm)->p_type == PT_INTERP))
9396 pm = &(*pm)->next;
b49e97c9 9397
8ded5a0f
AM
9398 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9399 {
9400 amt = sizeof (struct elf_segment_map);
9401 options_segment = bfd_zalloc (abfd, amt);
9402 options_segment->next = *pm;
9403 options_segment->p_type = PT_MIPS_OPTIONS;
9404 options_segment->p_flags = PF_R;
9405 options_segment->p_flags_valid = TRUE;
9406 options_segment->count = 1;
9407 options_segment->sections[0] = s;
9408 *pm = options_segment;
9409 }
b49e97c9
TS
9410 }
9411 }
9412 else
9413 {
9414 if (IRIX_COMPAT (abfd) == ict_irix5)
9415 {
9416 /* If there are .dynamic and .mdebug sections, we make a room
9417 for the RTPROC header. FIXME: Rewrite without section names. */
9418 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9419 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9420 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9421 {
9422 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9423 if (m->p_type == PT_MIPS_RTPROC)
9424 break;
9425 if (m == NULL)
9426 {
9427 amt = sizeof *m;
9719ad41 9428 m = bfd_zalloc (abfd, amt);
b49e97c9 9429 if (m == NULL)
b34976b6 9430 return FALSE;
b49e97c9
TS
9431
9432 m->p_type = PT_MIPS_RTPROC;
9433
9434 s = bfd_get_section_by_name (abfd, ".rtproc");
9435 if (s == NULL)
9436 {
9437 m->count = 0;
9438 m->p_flags = 0;
9439 m->p_flags_valid = 1;
9440 }
9441 else
9442 {
9443 m->count = 1;
9444 m->sections[0] = s;
9445 }
9446
9447 /* We want to put it after the DYNAMIC segment. */
9448 pm = &elf_tdata (abfd)->segment_map;
9449 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9450 pm = &(*pm)->next;
9451 if (*pm != NULL)
9452 pm = &(*pm)->next;
9453
9454 m->next = *pm;
9455 *pm = m;
9456 }
9457 }
9458 }
8dc1a139 9459 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9460 .dynstr, .dynsym, and .hash sections, and everything in
9461 between. */
9462 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9463 pm = &(*pm)->next)
9464 if ((*pm)->p_type == PT_DYNAMIC)
9465 break;
9466 m = *pm;
9467 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9468 {
9469 /* For a normal mips executable the permissions for the PT_DYNAMIC
9470 segment are read, write and execute. We do that here since
9471 the code in elf.c sets only the read permission. This matters
9472 sometimes for the dynamic linker. */
9473 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9474 {
9475 m->p_flags = PF_R | PF_W | PF_X;
9476 m->p_flags_valid = 1;
9477 }
9478 }
f6f62d6f
RS
9479 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9480 glibc's dynamic linker has traditionally derived the number of
9481 tags from the p_filesz field, and sometimes allocates stack
9482 arrays of that size. An overly-big PT_DYNAMIC segment can
9483 be actively harmful in such cases. Making PT_DYNAMIC contain
9484 other sections can also make life hard for the prelinker,
9485 which might move one of the other sections to a different
9486 PT_LOAD segment. */
9487 if (SGI_COMPAT (abfd)
9488 && m != NULL
9489 && m->count == 1
9490 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9491 {
9492 static const char *sec_names[] =
9493 {
9494 ".dynamic", ".dynstr", ".dynsym", ".hash"
9495 };
9496 bfd_vma low, high;
9497 unsigned int i, c;
9498 struct elf_segment_map *n;
9499
792b4a53 9500 low = ~(bfd_vma) 0;
b49e97c9
TS
9501 high = 0;
9502 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9503 {
9504 s = bfd_get_section_by_name (abfd, sec_names[i]);
9505 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9506 {
9507 bfd_size_type sz;
9508
9509 if (low > s->vma)
9510 low = s->vma;
eea6121a 9511 sz = s->size;
b49e97c9
TS
9512 if (high < s->vma + sz)
9513 high = s->vma + sz;
9514 }
9515 }
9516
9517 c = 0;
9518 for (s = abfd->sections; s != NULL; s = s->next)
9519 if ((s->flags & SEC_LOAD) != 0
9520 && s->vma >= low
eea6121a 9521 && s->vma + s->size <= high)
b49e97c9
TS
9522 ++c;
9523
9524 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9525 n = bfd_zalloc (abfd, amt);
b49e97c9 9526 if (n == NULL)
b34976b6 9527 return FALSE;
b49e97c9
TS
9528 *n = *m;
9529 n->count = c;
9530
9531 i = 0;
9532 for (s = abfd->sections; s != NULL; s = s->next)
9533 {
9534 if ((s->flags & SEC_LOAD) != 0
9535 && s->vma >= low
eea6121a 9536 && s->vma + s->size <= high)
b49e97c9
TS
9537 {
9538 n->sections[i] = s;
9539 ++i;
9540 }
9541 }
9542
9543 *pm = n;
9544 }
9545 }
9546
98c904a8
RS
9547 /* Allocate a spare program header in dynamic objects so that tools
9548 like the prelinker can add an extra PT_LOAD entry.
9549
9550 If the prelinker needs to make room for a new PT_LOAD entry, its
9551 standard procedure is to move the first (read-only) sections into
9552 the new (writable) segment. However, the MIPS ABI requires
9553 .dynamic to be in a read-only segment, and the section will often
9554 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9555
9556 Although the prelinker could in principle move .dynamic to a
9557 writable segment, it seems better to allocate a spare program
9558 header instead, and avoid the need to move any sections.
9559 There is a long tradition of allocating spare dynamic tags,
9560 so allocating a spare program header seems like a natural
9561 extension. */
9562 if (!SGI_COMPAT (abfd)
9563 && bfd_get_section_by_name (abfd, ".dynamic"))
9564 {
9565 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9566 if ((*pm)->p_type == PT_NULL)
9567 break;
9568 if (*pm == NULL)
9569 {
9570 m = bfd_zalloc (abfd, sizeof (*m));
9571 if (m == NULL)
9572 return FALSE;
9573
9574 m->p_type = PT_NULL;
9575 *pm = m;
9576 }
9577 }
9578
b34976b6 9579 return TRUE;
b49e97c9
TS
9580}
9581\f
9582/* Return the section that should be marked against GC for a given
9583 relocation. */
9584
9585asection *
9719ad41 9586_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9587 struct bfd_link_info *info,
9719ad41
RS
9588 Elf_Internal_Rela *rel,
9589 struct elf_link_hash_entry *h,
9590 Elf_Internal_Sym *sym)
b49e97c9
TS
9591{
9592 /* ??? Do mips16 stub sections need to be handled special? */
9593
9594 if (h != NULL)
07adf181
AM
9595 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9596 {
9597 case R_MIPS_GNU_VTINHERIT:
9598 case R_MIPS_GNU_VTENTRY:
9599 return NULL;
9600 }
b49e97c9 9601
07adf181 9602 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9603}
9604
9605/* Update the got entry reference counts for the section being removed. */
9606
b34976b6 9607bfd_boolean
9719ad41
RS
9608_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9609 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9610 asection *sec ATTRIBUTE_UNUSED,
9611 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9612{
9613#if 0
9614 Elf_Internal_Shdr *symtab_hdr;
9615 struct elf_link_hash_entry **sym_hashes;
9616 bfd_signed_vma *local_got_refcounts;
9617 const Elf_Internal_Rela *rel, *relend;
9618 unsigned long r_symndx;
9619 struct elf_link_hash_entry *h;
9620
9621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9622 sym_hashes = elf_sym_hashes (abfd);
9623 local_got_refcounts = elf_local_got_refcounts (abfd);
9624
9625 relend = relocs + sec->reloc_count;
9626 for (rel = relocs; rel < relend; rel++)
9627 switch (ELF_R_TYPE (abfd, rel->r_info))
9628 {
9629 case R_MIPS_GOT16:
9630 case R_MIPS_CALL16:
9631 case R_MIPS_CALL_HI16:
9632 case R_MIPS_CALL_LO16:
9633 case R_MIPS_GOT_HI16:
9634 case R_MIPS_GOT_LO16:
4a14403c
TS
9635 case R_MIPS_GOT_DISP:
9636 case R_MIPS_GOT_PAGE:
9637 case R_MIPS_GOT_OFST:
b49e97c9
TS
9638 /* ??? It would seem that the existing MIPS code does no sort
9639 of reference counting or whatnot on its GOT and PLT entries,
9640 so it is not possible to garbage collect them at this time. */
9641 break;
9642
9643 default:
9644 break;
9645 }
9646#endif
9647
b34976b6 9648 return TRUE;
b49e97c9
TS
9649}
9650\f
9651/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9652 hiding the old indirect symbol. Process additional relocation
9653 information. Also called for weakdefs, in which case we just let
9654 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9655
9656void
fcfa13d2 9657_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9658 struct elf_link_hash_entry *dir,
9659 struct elf_link_hash_entry *ind)
b49e97c9
TS
9660{
9661 struct mips_elf_link_hash_entry *dirmips, *indmips;
9662
fcfa13d2 9663 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9664
9665 if (ind->root.type != bfd_link_hash_indirect)
9666 return;
9667
9668 dirmips = (struct mips_elf_link_hash_entry *) dir;
9669 indmips = (struct mips_elf_link_hash_entry *) ind;
9670 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9671 if (indmips->readonly_reloc)
b34976b6 9672 dirmips->readonly_reloc = TRUE;
b49e97c9 9673 if (indmips->no_fn_stub)
b34976b6 9674 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9675
9676 if (dirmips->tls_type == 0)
9677 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9678}
9679
9680void
9719ad41
RS
9681_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9682 struct elf_link_hash_entry *entry,
9683 bfd_boolean force_local)
b49e97c9
TS
9684{
9685 bfd *dynobj;
9686 asection *got;
9687 struct mips_got_info *g;
9688 struct mips_elf_link_hash_entry *h;
7c5fcef7 9689
b49e97c9 9690 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9691 if (h->forced_local)
9692 return;
4b555070 9693 h->forced_local = force_local;
7c5fcef7 9694
b49e97c9 9695 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9696 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9697 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9698 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9699 {
c45a316a
AM
9700 if (g->next)
9701 {
9702 struct mips_got_entry e;
9703 struct mips_got_info *gg = g;
9704
9705 /* Since we're turning what used to be a global symbol into a
9706 local one, bump up the number of local entries of each GOT
9707 that had an entry for it. This will automatically decrease
9708 the number of global entries, since global_gotno is actually
9709 the upper limit of global entries. */
9710 e.abfd = dynobj;
9711 e.symndx = -1;
9712 e.d.h = h;
0f20cc35 9713 e.tls_type = 0;
c45a316a
AM
9714
9715 for (g = g->next; g != gg; g = g->next)
9716 if (htab_find (g->got_entries, &e))
9717 {
9718 BFD_ASSERT (g->global_gotno > 0);
9719 g->local_gotno++;
9720 g->global_gotno--;
9721 }
b49e97c9 9722
c45a316a
AM
9723 /* If this was a global symbol forced into the primary GOT, we
9724 no longer need an entry for it. We can't release the entry
9725 at this point, but we must at least stop counting it as one
9726 of the symbols that required a forced got entry. */
9727 if (h->root.got.offset == 2)
9728 {
9729 BFD_ASSERT (gg->assigned_gotno > 0);
9730 gg->assigned_gotno--;
9731 }
9732 }
9733 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9734 /* If we haven't got through GOT allocation yet, just bump up the
9735 number of local entries, as this symbol won't be counted as
9736 global. */
9737 g->local_gotno++;
9738 else if (h->root.got.offset == 1)
f4416af6 9739 {
c45a316a
AM
9740 /* If we're past non-multi-GOT allocation and this symbol had
9741 been marked for a global got entry, give it a local entry
9742 instead. */
9743 BFD_ASSERT (g->global_gotno > 0);
9744 g->local_gotno++;
9745 g->global_gotno--;
f4416af6
AO
9746 }
9747 }
f4416af6
AO
9748
9749 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9750}
9751\f
d01414a5
TS
9752#define PDR_SIZE 32
9753
b34976b6 9754bfd_boolean
9719ad41
RS
9755_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9756 struct bfd_link_info *info)
d01414a5
TS
9757{
9758 asection *o;
b34976b6 9759 bfd_boolean ret = FALSE;
d01414a5
TS
9760 unsigned char *tdata;
9761 size_t i, skip;
9762
9763 o = bfd_get_section_by_name (abfd, ".pdr");
9764 if (! o)
b34976b6 9765 return FALSE;
eea6121a 9766 if (o->size == 0)
b34976b6 9767 return FALSE;
eea6121a 9768 if (o->size % PDR_SIZE != 0)
b34976b6 9769 return FALSE;
d01414a5
TS
9770 if (o->output_section != NULL
9771 && bfd_is_abs_section (o->output_section))
b34976b6 9772 return FALSE;
d01414a5 9773
eea6121a 9774 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9775 if (! tdata)
b34976b6 9776 return FALSE;
d01414a5 9777
9719ad41 9778 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9779 info->keep_memory);
d01414a5
TS
9780 if (!cookie->rels)
9781 {
9782 free (tdata);
b34976b6 9783 return FALSE;
d01414a5
TS
9784 }
9785
9786 cookie->rel = cookie->rels;
9787 cookie->relend = cookie->rels + o->reloc_count;
9788
eea6121a 9789 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9790 {
c152c796 9791 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9792 {
9793 tdata[i] = 1;
9794 skip ++;
9795 }
9796 }
9797
9798 if (skip != 0)
9799 {
f0abc2a1 9800 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9801 o->size -= skip * PDR_SIZE;
b34976b6 9802 ret = TRUE;
d01414a5
TS
9803 }
9804 else
9805 free (tdata);
9806
9807 if (! info->keep_memory)
9808 free (cookie->rels);
9809
9810 return ret;
9811}
9812
b34976b6 9813bfd_boolean
9719ad41 9814_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9815{
9816 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9817 return TRUE;
9818 return FALSE;
53bfd6b4 9819}
d01414a5 9820
b34976b6 9821bfd_boolean
c7b8f16e
JB
9822_bfd_mips_elf_write_section (bfd *output_bfd,
9823 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9824 asection *sec, bfd_byte *contents)
d01414a5
TS
9825{
9826 bfd_byte *to, *from, *end;
9827 int i;
9828
9829 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9830 return FALSE;
d01414a5 9831
f0abc2a1 9832 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9833 return FALSE;
d01414a5
TS
9834
9835 to = contents;
eea6121a 9836 end = contents + sec->size;
d01414a5
TS
9837 for (from = contents, i = 0;
9838 from < end;
9839 from += PDR_SIZE, i++)
9840 {
f0abc2a1 9841 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9842 continue;
9843 if (to != from)
9844 memcpy (to, from, PDR_SIZE);
9845 to += PDR_SIZE;
9846 }
9847 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9848 sec->output_offset, sec->size);
b34976b6 9849 return TRUE;
d01414a5 9850}
53bfd6b4 9851\f
b49e97c9
TS
9852/* MIPS ELF uses a special find_nearest_line routine in order the
9853 handle the ECOFF debugging information. */
9854
9855struct mips_elf_find_line
9856{
9857 struct ecoff_debug_info d;
9858 struct ecoff_find_line i;
9859};
9860
b34976b6 9861bfd_boolean
9719ad41
RS
9862_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9863 asymbol **symbols, bfd_vma offset,
9864 const char **filename_ptr,
9865 const char **functionname_ptr,
9866 unsigned int *line_ptr)
b49e97c9
TS
9867{
9868 asection *msec;
9869
9870 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9871 filename_ptr, functionname_ptr,
9872 line_ptr))
b34976b6 9873 return TRUE;
b49e97c9
TS
9874
9875 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9876 filename_ptr, functionname_ptr,
9719ad41 9877 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9878 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9879 return TRUE;
b49e97c9
TS
9880
9881 msec = bfd_get_section_by_name (abfd, ".mdebug");
9882 if (msec != NULL)
9883 {
9884 flagword origflags;
9885 struct mips_elf_find_line *fi;
9886 const struct ecoff_debug_swap * const swap =
9887 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9888
9889 /* If we are called during a link, mips_elf_final_link may have
9890 cleared the SEC_HAS_CONTENTS field. We force it back on here
9891 if appropriate (which it normally will be). */
9892 origflags = msec->flags;
9893 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9894 msec->flags |= SEC_HAS_CONTENTS;
9895
9896 fi = elf_tdata (abfd)->find_line_info;
9897 if (fi == NULL)
9898 {
9899 bfd_size_type external_fdr_size;
9900 char *fraw_src;
9901 char *fraw_end;
9902 struct fdr *fdr_ptr;
9903 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9904
9719ad41 9905 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9906 if (fi == NULL)
9907 {
9908 msec->flags = origflags;
b34976b6 9909 return FALSE;
b49e97c9
TS
9910 }
9911
9912 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9913 {
9914 msec->flags = origflags;
b34976b6 9915 return FALSE;
b49e97c9
TS
9916 }
9917
9918 /* Swap in the FDR information. */
9919 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9920 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9921 if (fi->d.fdr == NULL)
9922 {
9923 msec->flags = origflags;
b34976b6 9924 return FALSE;
b49e97c9
TS
9925 }
9926 external_fdr_size = swap->external_fdr_size;
9927 fdr_ptr = fi->d.fdr;
9928 fraw_src = (char *) fi->d.external_fdr;
9929 fraw_end = (fraw_src
9930 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9931 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9932 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9933
9934 elf_tdata (abfd)->find_line_info = fi;
9935
9936 /* Note that we don't bother to ever free this information.
9937 find_nearest_line is either called all the time, as in
9938 objdump -l, so the information should be saved, or it is
9939 rarely called, as in ld error messages, so the memory
9940 wasted is unimportant. Still, it would probably be a
9941 good idea for free_cached_info to throw it away. */
9942 }
9943
9944 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9945 &fi->i, filename_ptr, functionname_ptr,
9946 line_ptr))
9947 {
9948 msec->flags = origflags;
b34976b6 9949 return TRUE;
b49e97c9
TS
9950 }
9951
9952 msec->flags = origflags;
9953 }
9954
9955 /* Fall back on the generic ELF find_nearest_line routine. */
9956
9957 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9958 filename_ptr, functionname_ptr,
9959 line_ptr);
9960}
4ab527b0
FF
9961
9962bfd_boolean
9963_bfd_mips_elf_find_inliner_info (bfd *abfd,
9964 const char **filename_ptr,
9965 const char **functionname_ptr,
9966 unsigned int *line_ptr)
9967{
9968 bfd_boolean found;
9969 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9970 functionname_ptr, line_ptr,
9971 & elf_tdata (abfd)->dwarf2_find_line_info);
9972 return found;
9973}
9974
b49e97c9
TS
9975\f
9976/* When are writing out the .options or .MIPS.options section,
9977 remember the bytes we are writing out, so that we can install the
9978 GP value in the section_processing routine. */
9979
b34976b6 9980bfd_boolean
9719ad41
RS
9981_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9982 const void *location,
9983 file_ptr offset, bfd_size_type count)
b49e97c9 9984{
cc2e31b9 9985 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9986 {
9987 bfd_byte *c;
9988
9989 if (elf_section_data (section) == NULL)
9990 {
9991 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9992 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9993 if (elf_section_data (section) == NULL)
b34976b6 9994 return FALSE;
b49e97c9 9995 }
f0abc2a1 9996 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9997 if (c == NULL)
9998 {
eea6121a 9999 c = bfd_zalloc (abfd, section->size);
b49e97c9 10000 if (c == NULL)
b34976b6 10001 return FALSE;
f0abc2a1 10002 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
10003 }
10004
9719ad41 10005 memcpy (c + offset, location, count);
b49e97c9
TS
10006 }
10007
10008 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10009 count);
10010}
10011
10012/* This is almost identical to bfd_generic_get_... except that some
10013 MIPS relocations need to be handled specially. Sigh. */
10014
10015bfd_byte *
9719ad41
RS
10016_bfd_elf_mips_get_relocated_section_contents
10017 (bfd *abfd,
10018 struct bfd_link_info *link_info,
10019 struct bfd_link_order *link_order,
10020 bfd_byte *data,
10021 bfd_boolean relocatable,
10022 asymbol **symbols)
b49e97c9
TS
10023{
10024 /* Get enough memory to hold the stuff */
10025 bfd *input_bfd = link_order->u.indirect.section->owner;
10026 asection *input_section = link_order->u.indirect.section;
eea6121a 10027 bfd_size_type sz;
b49e97c9
TS
10028
10029 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10030 arelent **reloc_vector = NULL;
10031 long reloc_count;
10032
10033 if (reloc_size < 0)
10034 goto error_return;
10035
9719ad41 10036 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10037 if (reloc_vector == NULL && reloc_size != 0)
10038 goto error_return;
10039
10040 /* read in the section */
eea6121a
AM
10041 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10042 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10043 goto error_return;
10044
b49e97c9
TS
10045 reloc_count = bfd_canonicalize_reloc (input_bfd,
10046 input_section,
10047 reloc_vector,
10048 symbols);
10049 if (reloc_count < 0)
10050 goto error_return;
10051
10052 if (reloc_count > 0)
10053 {
10054 arelent **parent;
10055 /* for mips */
10056 int gp_found;
10057 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10058
10059 {
10060 struct bfd_hash_entry *h;
10061 struct bfd_link_hash_entry *lh;
10062 /* Skip all this stuff if we aren't mixing formats. */
10063 if (abfd && input_bfd
10064 && abfd->xvec == input_bfd->xvec)
10065 lh = 0;
10066 else
10067 {
b34976b6 10068 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10069 lh = (struct bfd_link_hash_entry *) h;
10070 }
10071 lookup:
10072 if (lh)
10073 {
10074 switch (lh->type)
10075 {
10076 case bfd_link_hash_undefined:
10077 case bfd_link_hash_undefweak:
10078 case bfd_link_hash_common:
10079 gp_found = 0;
10080 break;
10081 case bfd_link_hash_defined:
10082 case bfd_link_hash_defweak:
10083 gp_found = 1;
10084 gp = lh->u.def.value;
10085 break;
10086 case bfd_link_hash_indirect:
10087 case bfd_link_hash_warning:
10088 lh = lh->u.i.link;
10089 /* @@FIXME ignoring warning for now */
10090 goto lookup;
10091 case bfd_link_hash_new:
10092 default:
10093 abort ();
10094 }
10095 }
10096 else
10097 gp_found = 0;
10098 }
10099 /* end mips */
9719ad41 10100 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10101 {
9719ad41 10102 char *error_message = NULL;
b49e97c9
TS
10103 bfd_reloc_status_type r;
10104
10105 /* Specific to MIPS: Deal with relocation types that require
10106 knowing the gp of the output bfd. */
10107 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10108
8236346f
EC
10109 /* If we've managed to find the gp and have a special
10110 function for the relocation then go ahead, else default
10111 to the generic handling. */
10112 if (gp_found
10113 && (*parent)->howto->special_function
10114 == _bfd_mips_elf32_gprel16_reloc)
10115 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10116 input_section, relocatable,
10117 data, gp);
10118 else
86324f90 10119 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10120 input_section,
10121 relocatable ? abfd : NULL,
10122 &error_message);
b49e97c9 10123
1049f94e 10124 if (relocatable)
b49e97c9
TS
10125 {
10126 asection *os = input_section->output_section;
10127
10128 /* A partial link, so keep the relocs */
10129 os->orelocation[os->reloc_count] = *parent;
10130 os->reloc_count++;
10131 }
10132
10133 if (r != bfd_reloc_ok)
10134 {
10135 switch (r)
10136 {
10137 case bfd_reloc_undefined:
10138 if (!((*link_info->callbacks->undefined_symbol)
10139 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10140 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10141 goto error_return;
10142 break;
10143 case bfd_reloc_dangerous:
9719ad41 10144 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10145 if (!((*link_info->callbacks->reloc_dangerous)
10146 (link_info, error_message, input_bfd, input_section,
10147 (*parent)->address)))
10148 goto error_return;
10149 break;
10150 case bfd_reloc_overflow:
10151 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10152 (link_info, NULL,
10153 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10154 (*parent)->howto->name, (*parent)->addend,
10155 input_bfd, input_section, (*parent)->address)))
10156 goto error_return;
10157 break;
10158 case bfd_reloc_outofrange:
10159 default:
10160 abort ();
10161 break;
10162 }
10163
10164 }
10165 }
10166 }
10167 if (reloc_vector != NULL)
10168 free (reloc_vector);
10169 return data;
10170
10171error_return:
10172 if (reloc_vector != NULL)
10173 free (reloc_vector);
10174 return NULL;
10175}
10176\f
10177/* Create a MIPS ELF linker hash table. */
10178
10179struct bfd_link_hash_table *
9719ad41 10180_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10181{
10182 struct mips_elf_link_hash_table *ret;
10183 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10184
9719ad41
RS
10185 ret = bfd_malloc (amt);
10186 if (ret == NULL)
b49e97c9
TS
10187 return NULL;
10188
66eb6687
AM
10189 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10190 mips_elf_link_hash_newfunc,
10191 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10192 {
e2d34d7d 10193 free (ret);
b49e97c9
TS
10194 return NULL;
10195 }
10196
10197#if 0
10198 /* We no longer use this. */
10199 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10200 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10201#endif
10202 ret->procedure_count = 0;
10203 ret->compact_rel_size = 0;
b34976b6 10204 ret->use_rld_obj_head = FALSE;
b49e97c9 10205 ret->rld_value = 0;
b34976b6 10206 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10207 ret->is_vxworks = FALSE;
10208 ret->srelbss = NULL;
10209 ret->sdynbss = NULL;
10210 ret->srelplt = NULL;
10211 ret->srelplt2 = NULL;
10212 ret->sgotplt = NULL;
10213 ret->splt = NULL;
10214 ret->plt_header_size = 0;
10215 ret->plt_entry_size = 0;
5108fc1b 10216 ret->function_stub_size = 0;
b49e97c9
TS
10217
10218 return &ret->root.root;
10219}
0a44bf69
RS
10220
10221/* Likewise, but indicate that the target is VxWorks. */
10222
10223struct bfd_link_hash_table *
10224_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10225{
10226 struct bfd_link_hash_table *ret;
10227
10228 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10229 if (ret)
10230 {
10231 struct mips_elf_link_hash_table *htab;
10232
10233 htab = (struct mips_elf_link_hash_table *) ret;
10234 htab->is_vxworks = 1;
10235 }
10236 return ret;
10237}
b49e97c9
TS
10238\f
10239/* We need to use a special link routine to handle the .reginfo and
10240 the .mdebug sections. We need to merge all instances of these
10241 sections together, not write them all out sequentially. */
10242
b34976b6 10243bfd_boolean
9719ad41 10244_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10245{
b49e97c9
TS
10246 asection *o;
10247 struct bfd_link_order *p;
10248 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10249 asection *rtproc_sec;
10250 Elf32_RegInfo reginfo;
10251 struct ecoff_debug_info debug;
7a2a6943
NC
10252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10253 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10254 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10255 void *mdebug_handle = NULL;
b49e97c9
TS
10256 asection *s;
10257 EXTR esym;
10258 unsigned int i;
10259 bfd_size_type amt;
0a44bf69 10260 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10261
10262 static const char * const secname[] =
10263 {
10264 ".text", ".init", ".fini", ".data",
10265 ".rodata", ".sdata", ".sbss", ".bss"
10266 };
10267 static const int sc[] =
10268 {
10269 scText, scInit, scFini, scData,
10270 scRData, scSData, scSBss, scBss
10271 };
10272
b49e97c9
TS
10273 /* We'd carefully arranged the dynamic symbol indices, and then the
10274 generic size_dynamic_sections renumbered them out from under us.
10275 Rather than trying somehow to prevent the renumbering, just do
10276 the sort again. */
0a44bf69 10277 htab = mips_elf_hash_table (info);
b49e97c9
TS
10278 if (elf_hash_table (info)->dynamic_sections_created)
10279 {
10280 bfd *dynobj;
10281 asection *got;
10282 struct mips_got_info *g;
7a2a6943 10283 bfd_size_type dynsecsymcount;
b49e97c9
TS
10284
10285 /* When we resort, we must tell mips_elf_sort_hash_table what
10286 the lowest index it may use is. That's the number of section
10287 symbols we're going to add. The generic ELF linker only
10288 adds these symbols when building a shared object. Note that
10289 we count the sections after (possibly) removing the .options
10290 section above. */
7a2a6943 10291
5108fc1b 10292 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10293 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10294 return FALSE;
b49e97c9
TS
10295
10296 /* Make sure we didn't grow the global .got region. */
10297 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10298 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10299 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10300
10301 if (g->global_gotsym != NULL)
10302 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10303 - g->global_gotsym->dynindx)
10304 <= g->global_gotno);
10305 }
10306
b49e97c9
TS
10307 /* Get a value for the GP register. */
10308 if (elf_gp (abfd) == 0)
10309 {
10310 struct bfd_link_hash_entry *h;
10311
b34976b6 10312 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10313 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10314 elf_gp (abfd) = (h->u.def.value
10315 + h->u.def.section->output_section->vma
10316 + h->u.def.section->output_offset);
0a44bf69
RS
10317 else if (htab->is_vxworks
10318 && (h = bfd_link_hash_lookup (info->hash,
10319 "_GLOBAL_OFFSET_TABLE_",
10320 FALSE, FALSE, TRUE))
10321 && h->type == bfd_link_hash_defined)
10322 elf_gp (abfd) = (h->u.def.section->output_section->vma
10323 + h->u.def.section->output_offset
10324 + h->u.def.value);
1049f94e 10325 else if (info->relocatable)
b49e97c9
TS
10326 {
10327 bfd_vma lo = MINUS_ONE;
10328
10329 /* Find the GP-relative section with the lowest offset. */
9719ad41 10330 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10331 if (o->vma < lo
10332 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10333 lo = o->vma;
10334
10335 /* And calculate GP relative to that. */
0a44bf69 10336 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10337 }
10338 else
10339 {
10340 /* If the relocate_section function needs to do a reloc
10341 involving the GP value, it should make a reloc_dangerous
10342 callback to warn that GP is not defined. */
10343 }
10344 }
10345
10346 /* Go through the sections and collect the .reginfo and .mdebug
10347 information. */
10348 reginfo_sec = NULL;
10349 mdebug_sec = NULL;
10350 gptab_data_sec = NULL;
10351 gptab_bss_sec = NULL;
9719ad41 10352 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10353 {
10354 if (strcmp (o->name, ".reginfo") == 0)
10355 {
10356 memset (&reginfo, 0, sizeof reginfo);
10357
10358 /* We have found the .reginfo section in the output file.
10359 Look through all the link_orders comprising it and merge
10360 the information together. */
8423293d 10361 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10362 {
10363 asection *input_section;
10364 bfd *input_bfd;
10365 Elf32_External_RegInfo ext;
10366 Elf32_RegInfo sub;
10367
10368 if (p->type != bfd_indirect_link_order)
10369 {
10370 if (p->type == bfd_data_link_order)
10371 continue;
10372 abort ();
10373 }
10374
10375 input_section = p->u.indirect.section;
10376 input_bfd = input_section->owner;
10377
b49e97c9 10378 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10379 &ext, 0, sizeof ext))
b34976b6 10380 return FALSE;
b49e97c9
TS
10381
10382 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10383
10384 reginfo.ri_gprmask |= sub.ri_gprmask;
10385 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10386 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10387 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10388 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10389
10390 /* ri_gp_value is set by the function
10391 mips_elf32_section_processing when the section is
10392 finally written out. */
10393
10394 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10395 elf_link_input_bfd ignores this section. */
10396 input_section->flags &= ~SEC_HAS_CONTENTS;
10397 }
10398
10399 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10400 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10401
10402 /* Skip this section later on (I don't think this currently
10403 matters, but someday it might). */
8423293d 10404 o->map_head.link_order = NULL;
b49e97c9
TS
10405
10406 reginfo_sec = o;
10407 }
10408
10409 if (strcmp (o->name, ".mdebug") == 0)
10410 {
10411 struct extsym_info einfo;
10412 bfd_vma last;
10413
10414 /* We have found the .mdebug section in the output file.
10415 Look through all the link_orders comprising it and merge
10416 the information together. */
10417 symhdr->magic = swap->sym_magic;
10418 /* FIXME: What should the version stamp be? */
10419 symhdr->vstamp = 0;
10420 symhdr->ilineMax = 0;
10421 symhdr->cbLine = 0;
10422 symhdr->idnMax = 0;
10423 symhdr->ipdMax = 0;
10424 symhdr->isymMax = 0;
10425 symhdr->ioptMax = 0;
10426 symhdr->iauxMax = 0;
10427 symhdr->issMax = 0;
10428 symhdr->issExtMax = 0;
10429 symhdr->ifdMax = 0;
10430 symhdr->crfd = 0;
10431 symhdr->iextMax = 0;
10432
10433 /* We accumulate the debugging information itself in the
10434 debug_info structure. */
10435 debug.line = NULL;
10436 debug.external_dnr = NULL;
10437 debug.external_pdr = NULL;
10438 debug.external_sym = NULL;
10439 debug.external_opt = NULL;
10440 debug.external_aux = NULL;
10441 debug.ss = NULL;
10442 debug.ssext = debug.ssext_end = NULL;
10443 debug.external_fdr = NULL;
10444 debug.external_rfd = NULL;
10445 debug.external_ext = debug.external_ext_end = NULL;
10446
10447 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10448 if (mdebug_handle == NULL)
b34976b6 10449 return FALSE;
b49e97c9
TS
10450
10451 esym.jmptbl = 0;
10452 esym.cobol_main = 0;
10453 esym.weakext = 0;
10454 esym.reserved = 0;
10455 esym.ifd = ifdNil;
10456 esym.asym.iss = issNil;
10457 esym.asym.st = stLocal;
10458 esym.asym.reserved = 0;
10459 esym.asym.index = indexNil;
10460 last = 0;
10461 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10462 {
10463 esym.asym.sc = sc[i];
10464 s = bfd_get_section_by_name (abfd, secname[i]);
10465 if (s != NULL)
10466 {
10467 esym.asym.value = s->vma;
eea6121a 10468 last = s->vma + s->size;
b49e97c9
TS
10469 }
10470 else
10471 esym.asym.value = last;
10472 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10473 secname[i], &esym))
b34976b6 10474 return FALSE;
b49e97c9
TS
10475 }
10476
8423293d 10477 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10478 {
10479 asection *input_section;
10480 bfd *input_bfd;
10481 const struct ecoff_debug_swap *input_swap;
10482 struct ecoff_debug_info input_debug;
10483 char *eraw_src;
10484 char *eraw_end;
10485
10486 if (p->type != bfd_indirect_link_order)
10487 {
10488 if (p->type == bfd_data_link_order)
10489 continue;
10490 abort ();
10491 }
10492
10493 input_section = p->u.indirect.section;
10494 input_bfd = input_section->owner;
10495
10496 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10497 || (get_elf_backend_data (input_bfd)
10498 ->elf_backend_ecoff_debug_swap) == NULL)
10499 {
10500 /* I don't know what a non MIPS ELF bfd would be
10501 doing with a .mdebug section, but I don't really
10502 want to deal with it. */
10503 continue;
10504 }
10505
10506 input_swap = (get_elf_backend_data (input_bfd)
10507 ->elf_backend_ecoff_debug_swap);
10508
eea6121a 10509 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10510
10511 /* The ECOFF linking code expects that we have already
10512 read in the debugging information and set up an
10513 ecoff_debug_info structure, so we do that now. */
10514 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10515 &input_debug))
b34976b6 10516 return FALSE;
b49e97c9
TS
10517
10518 if (! (bfd_ecoff_debug_accumulate
10519 (mdebug_handle, abfd, &debug, swap, input_bfd,
10520 &input_debug, input_swap, info)))
b34976b6 10521 return FALSE;
b49e97c9
TS
10522
10523 /* Loop through the external symbols. For each one with
10524 interesting information, try to find the symbol in
10525 the linker global hash table and save the information
10526 for the output external symbols. */
10527 eraw_src = input_debug.external_ext;
10528 eraw_end = (eraw_src
10529 + (input_debug.symbolic_header.iextMax
10530 * input_swap->external_ext_size));
10531 for (;
10532 eraw_src < eraw_end;
10533 eraw_src += input_swap->external_ext_size)
10534 {
10535 EXTR ext;
10536 const char *name;
10537 struct mips_elf_link_hash_entry *h;
10538
9719ad41 10539 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10540 if (ext.asym.sc == scNil
10541 || ext.asym.sc == scUndefined
10542 || ext.asym.sc == scSUndefined)
10543 continue;
10544
10545 name = input_debug.ssext + ext.asym.iss;
10546 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10547 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10548 if (h == NULL || h->esym.ifd != -2)
10549 continue;
10550
10551 if (ext.ifd != -1)
10552 {
10553 BFD_ASSERT (ext.ifd
10554 < input_debug.symbolic_header.ifdMax);
10555 ext.ifd = input_debug.ifdmap[ext.ifd];
10556 }
10557
10558 h->esym = ext;
10559 }
10560
10561 /* Free up the information we just read. */
10562 free (input_debug.line);
10563 free (input_debug.external_dnr);
10564 free (input_debug.external_pdr);
10565 free (input_debug.external_sym);
10566 free (input_debug.external_opt);
10567 free (input_debug.external_aux);
10568 free (input_debug.ss);
10569 free (input_debug.ssext);
10570 free (input_debug.external_fdr);
10571 free (input_debug.external_rfd);
10572 free (input_debug.external_ext);
10573
10574 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10575 elf_link_input_bfd ignores this section. */
10576 input_section->flags &= ~SEC_HAS_CONTENTS;
10577 }
10578
10579 if (SGI_COMPAT (abfd) && info->shared)
10580 {
10581 /* Create .rtproc section. */
10582 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10583 if (rtproc_sec == NULL)
10584 {
10585 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10586 | SEC_LINKER_CREATED | SEC_READONLY);
10587
3496cb2a
L
10588 rtproc_sec = bfd_make_section_with_flags (abfd,
10589 ".rtproc",
10590 flags);
b49e97c9 10591 if (rtproc_sec == NULL
b49e97c9 10592 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10593 return FALSE;
b49e97c9
TS
10594 }
10595
10596 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10597 info, rtproc_sec,
10598 &debug))
b34976b6 10599 return FALSE;
b49e97c9
TS
10600 }
10601
10602 /* Build the external symbol information. */
10603 einfo.abfd = abfd;
10604 einfo.info = info;
10605 einfo.debug = &debug;
10606 einfo.swap = swap;
b34976b6 10607 einfo.failed = FALSE;
b49e97c9 10608 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10609 mips_elf_output_extsym, &einfo);
b49e97c9 10610 if (einfo.failed)
b34976b6 10611 return FALSE;
b49e97c9
TS
10612
10613 /* Set the size of the .mdebug section. */
eea6121a 10614 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10615
10616 /* Skip this section later on (I don't think this currently
10617 matters, but someday it might). */
8423293d 10618 o->map_head.link_order = NULL;
b49e97c9
TS
10619
10620 mdebug_sec = o;
10621 }
10622
0112cd26 10623 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10624 {
10625 const char *subname;
10626 unsigned int c;
10627 Elf32_gptab *tab;
10628 Elf32_External_gptab *ext_tab;
10629 unsigned int j;
10630
10631 /* The .gptab.sdata and .gptab.sbss sections hold
10632 information describing how the small data area would
10633 change depending upon the -G switch. These sections
10634 not used in executables files. */
1049f94e 10635 if (! info->relocatable)
b49e97c9 10636 {
8423293d 10637 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10638 {
10639 asection *input_section;
10640
10641 if (p->type != bfd_indirect_link_order)
10642 {
10643 if (p->type == bfd_data_link_order)
10644 continue;
10645 abort ();
10646 }
10647
10648 input_section = p->u.indirect.section;
10649
10650 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10651 elf_link_input_bfd ignores this section. */
10652 input_section->flags &= ~SEC_HAS_CONTENTS;
10653 }
10654
10655 /* Skip this section later on (I don't think this
10656 currently matters, but someday it might). */
8423293d 10657 o->map_head.link_order = NULL;
b49e97c9
TS
10658
10659 /* Really remove the section. */
5daa8fe7 10660 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10661 --abfd->section_count;
10662
10663 continue;
10664 }
10665
10666 /* There is one gptab for initialized data, and one for
10667 uninitialized data. */
10668 if (strcmp (o->name, ".gptab.sdata") == 0)
10669 gptab_data_sec = o;
10670 else if (strcmp (o->name, ".gptab.sbss") == 0)
10671 gptab_bss_sec = o;
10672 else
10673 {
10674 (*_bfd_error_handler)
10675 (_("%s: illegal section name `%s'"),
10676 bfd_get_filename (abfd), o->name);
10677 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10678 return FALSE;
b49e97c9
TS
10679 }
10680
10681 /* The linker script always combines .gptab.data and
10682 .gptab.sdata into .gptab.sdata, and likewise for
10683 .gptab.bss and .gptab.sbss. It is possible that there is
10684 no .sdata or .sbss section in the output file, in which
10685 case we must change the name of the output section. */
10686 subname = o->name + sizeof ".gptab" - 1;
10687 if (bfd_get_section_by_name (abfd, subname) == NULL)
10688 {
10689 if (o == gptab_data_sec)
10690 o->name = ".gptab.data";
10691 else
10692 o->name = ".gptab.bss";
10693 subname = o->name + sizeof ".gptab" - 1;
10694 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10695 }
10696
10697 /* Set up the first entry. */
10698 c = 1;
10699 amt = c * sizeof (Elf32_gptab);
9719ad41 10700 tab = bfd_malloc (amt);
b49e97c9 10701 if (tab == NULL)
b34976b6 10702 return FALSE;
b49e97c9
TS
10703 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10704 tab[0].gt_header.gt_unused = 0;
10705
10706 /* Combine the input sections. */
8423293d 10707 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10708 {
10709 asection *input_section;
10710 bfd *input_bfd;
10711 bfd_size_type size;
10712 unsigned long last;
10713 bfd_size_type gpentry;
10714
10715 if (p->type != bfd_indirect_link_order)
10716 {
10717 if (p->type == bfd_data_link_order)
10718 continue;
10719 abort ();
10720 }
10721
10722 input_section = p->u.indirect.section;
10723 input_bfd = input_section->owner;
10724
10725 /* Combine the gptab entries for this input section one
10726 by one. We know that the input gptab entries are
10727 sorted by ascending -G value. */
eea6121a 10728 size = input_section->size;
b49e97c9
TS
10729 last = 0;
10730 for (gpentry = sizeof (Elf32_External_gptab);
10731 gpentry < size;
10732 gpentry += sizeof (Elf32_External_gptab))
10733 {
10734 Elf32_External_gptab ext_gptab;
10735 Elf32_gptab int_gptab;
10736 unsigned long val;
10737 unsigned long add;
b34976b6 10738 bfd_boolean exact;
b49e97c9
TS
10739 unsigned int look;
10740
10741 if (! (bfd_get_section_contents
9719ad41
RS
10742 (input_bfd, input_section, &ext_gptab, gpentry,
10743 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10744 {
10745 free (tab);
b34976b6 10746 return FALSE;
b49e97c9
TS
10747 }
10748
10749 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10750 &int_gptab);
10751 val = int_gptab.gt_entry.gt_g_value;
10752 add = int_gptab.gt_entry.gt_bytes - last;
10753
b34976b6 10754 exact = FALSE;
b49e97c9
TS
10755 for (look = 1; look < c; look++)
10756 {
10757 if (tab[look].gt_entry.gt_g_value >= val)
10758 tab[look].gt_entry.gt_bytes += add;
10759
10760 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10761 exact = TRUE;
b49e97c9
TS
10762 }
10763
10764 if (! exact)
10765 {
10766 Elf32_gptab *new_tab;
10767 unsigned int max;
10768
10769 /* We need a new table entry. */
10770 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10771 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10772 if (new_tab == NULL)
10773 {
10774 free (tab);
b34976b6 10775 return FALSE;
b49e97c9
TS
10776 }
10777 tab = new_tab;
10778 tab[c].gt_entry.gt_g_value = val;
10779 tab[c].gt_entry.gt_bytes = add;
10780
10781 /* Merge in the size for the next smallest -G
10782 value, since that will be implied by this new
10783 value. */
10784 max = 0;
10785 for (look = 1; look < c; look++)
10786 {
10787 if (tab[look].gt_entry.gt_g_value < val
10788 && (max == 0
10789 || (tab[look].gt_entry.gt_g_value
10790 > tab[max].gt_entry.gt_g_value)))
10791 max = look;
10792 }
10793 if (max != 0)
10794 tab[c].gt_entry.gt_bytes +=
10795 tab[max].gt_entry.gt_bytes;
10796
10797 ++c;
10798 }
10799
10800 last = int_gptab.gt_entry.gt_bytes;
10801 }
10802
10803 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10804 elf_link_input_bfd ignores this section. */
10805 input_section->flags &= ~SEC_HAS_CONTENTS;
10806 }
10807
10808 /* The table must be sorted by -G value. */
10809 if (c > 2)
10810 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10811
10812 /* Swap out the table. */
10813 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10814 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10815 if (ext_tab == NULL)
10816 {
10817 free (tab);
b34976b6 10818 return FALSE;
b49e97c9
TS
10819 }
10820
10821 for (j = 0; j < c; j++)
10822 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10823 free (tab);
10824
eea6121a 10825 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10826 o->contents = (bfd_byte *) ext_tab;
10827
10828 /* Skip this section later on (I don't think this currently
10829 matters, but someday it might). */
8423293d 10830 o->map_head.link_order = NULL;
b49e97c9
TS
10831 }
10832 }
10833
10834 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10835 if (!bfd_elf_final_link (abfd, info))
b34976b6 10836 return FALSE;
b49e97c9
TS
10837
10838 /* Now write out the computed sections. */
10839
9719ad41 10840 if (reginfo_sec != NULL)
b49e97c9
TS
10841 {
10842 Elf32_External_RegInfo ext;
10843
10844 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10845 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10846 return FALSE;
b49e97c9
TS
10847 }
10848
9719ad41 10849 if (mdebug_sec != NULL)
b49e97c9
TS
10850 {
10851 BFD_ASSERT (abfd->output_has_begun);
10852 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10853 swap, info,
10854 mdebug_sec->filepos))
b34976b6 10855 return FALSE;
b49e97c9
TS
10856
10857 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10858 }
10859
9719ad41 10860 if (gptab_data_sec != NULL)
b49e97c9
TS
10861 {
10862 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10863 gptab_data_sec->contents,
eea6121a 10864 0, gptab_data_sec->size))
b34976b6 10865 return FALSE;
b49e97c9
TS
10866 }
10867
9719ad41 10868 if (gptab_bss_sec != NULL)
b49e97c9
TS
10869 {
10870 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10871 gptab_bss_sec->contents,
eea6121a 10872 0, gptab_bss_sec->size))
b34976b6 10873 return FALSE;
b49e97c9
TS
10874 }
10875
10876 if (SGI_COMPAT (abfd))
10877 {
10878 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10879 if (rtproc_sec != NULL)
10880 {
10881 if (! bfd_set_section_contents (abfd, rtproc_sec,
10882 rtproc_sec->contents,
eea6121a 10883 0, rtproc_sec->size))
b34976b6 10884 return FALSE;
b49e97c9
TS
10885 }
10886 }
10887
b34976b6 10888 return TRUE;
b49e97c9
TS
10889}
10890\f
64543e1a
RS
10891/* Structure for saying that BFD machine EXTENSION extends BASE. */
10892
10893struct mips_mach_extension {
10894 unsigned long extension, base;
10895};
10896
10897
10898/* An array describing how BFD machines relate to one another. The entries
10899 are ordered topologically with MIPS I extensions listed last. */
10900
10901static const struct mips_mach_extension mips_mach_extensions[] = {
10902 /* MIPS64 extensions. */
5f74bc13 10903 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10904 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10905
10906 /* MIPS V extensions. */
10907 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10908
10909 /* R10000 extensions. */
10910 { bfd_mach_mips12000, bfd_mach_mips10000 },
10911
10912 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10913 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10914 better to allow vr5400 and vr5500 code to be merged anyway, since
10915 many libraries will just use the core ISA. Perhaps we could add
10916 some sort of ASE flag if this ever proves a problem. */
10917 { bfd_mach_mips5500, bfd_mach_mips5400 },
10918 { bfd_mach_mips5400, bfd_mach_mips5000 },
10919
10920 /* MIPS IV extensions. */
10921 { bfd_mach_mips5, bfd_mach_mips8000 },
10922 { bfd_mach_mips10000, bfd_mach_mips8000 },
10923 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10924 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10925 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10926
10927 /* VR4100 extensions. */
10928 { bfd_mach_mips4120, bfd_mach_mips4100 },
10929 { bfd_mach_mips4111, bfd_mach_mips4100 },
10930
10931 /* MIPS III extensions. */
10932 { bfd_mach_mips8000, bfd_mach_mips4000 },
10933 { bfd_mach_mips4650, bfd_mach_mips4000 },
10934 { bfd_mach_mips4600, bfd_mach_mips4000 },
10935 { bfd_mach_mips4400, bfd_mach_mips4000 },
10936 { bfd_mach_mips4300, bfd_mach_mips4000 },
10937 { bfd_mach_mips4100, bfd_mach_mips4000 },
10938 { bfd_mach_mips4010, bfd_mach_mips4000 },
10939
10940 /* MIPS32 extensions. */
10941 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10942
10943 /* MIPS II extensions. */
10944 { bfd_mach_mips4000, bfd_mach_mips6000 },
10945 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10946
10947 /* MIPS I extensions. */
10948 { bfd_mach_mips6000, bfd_mach_mips3000 },
10949 { bfd_mach_mips3900, bfd_mach_mips3000 }
10950};
10951
10952
10953/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10954
10955static bfd_boolean
9719ad41 10956mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10957{
10958 size_t i;
10959
c5211a54
RS
10960 if (extension == base)
10961 return TRUE;
10962
10963 if (base == bfd_mach_mipsisa32
10964 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10965 return TRUE;
10966
10967 if (base == bfd_mach_mipsisa32r2
10968 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10969 return TRUE;
10970
10971 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10972 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10973 {
10974 extension = mips_mach_extensions[i].base;
10975 if (extension == base)
10976 return TRUE;
10977 }
64543e1a 10978
c5211a54 10979 return FALSE;
64543e1a
RS
10980}
10981
10982
10983/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10984
b34976b6 10985static bfd_boolean
9719ad41 10986mips_32bit_flags_p (flagword flags)
00707a0e 10987{
64543e1a
RS
10988 return ((flags & EF_MIPS_32BITMODE) != 0
10989 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10990 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10991 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10992 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10993 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10994 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10995}
10996
64543e1a 10997
b49e97c9
TS
10998/* Merge backend specific data from an object file to the output
10999 object file when linking. */
11000
b34976b6 11001bfd_boolean
9719ad41 11002_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11003{
11004 flagword old_flags;
11005 flagword new_flags;
b34976b6
AM
11006 bfd_boolean ok;
11007 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11008 asection *sec;
11009
11010 /* Check if we have the same endianess */
82e51918 11011 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11012 {
11013 (*_bfd_error_handler)
d003868e
AM
11014 (_("%B: endianness incompatible with that of the selected emulation"),
11015 ibfd);
aa701218
AO
11016 return FALSE;
11017 }
b49e97c9
TS
11018
11019 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11020 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11021 return TRUE;
b49e97c9 11022
aa701218
AO
11023 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11024 {
11025 (*_bfd_error_handler)
d003868e
AM
11026 (_("%B: ABI is incompatible with that of the selected emulation"),
11027 ibfd);
aa701218
AO
11028 return FALSE;
11029 }
11030
b49e97c9
TS
11031 new_flags = elf_elfheader (ibfd)->e_flags;
11032 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11033 old_flags = elf_elfheader (obfd)->e_flags;
11034
11035 if (! elf_flags_init (obfd))
11036 {
b34976b6 11037 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11038 elf_elfheader (obfd)->e_flags = new_flags;
11039 elf_elfheader (obfd)->e_ident[EI_CLASS]
11040 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11041
11042 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11043 && (bfd_get_arch_info (obfd)->the_default
11044 || mips_mach_extends_p (bfd_get_mach (obfd),
11045 bfd_get_mach (ibfd))))
b49e97c9
TS
11046 {
11047 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11048 bfd_get_mach (ibfd)))
b34976b6 11049 return FALSE;
b49e97c9
TS
11050 }
11051
b34976b6 11052 return TRUE;
b49e97c9
TS
11053 }
11054
11055 /* Check flag compatibility. */
11056
11057 new_flags &= ~EF_MIPS_NOREORDER;
11058 old_flags &= ~EF_MIPS_NOREORDER;
11059
f4416af6
AO
11060 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11061 doesn't seem to matter. */
11062 new_flags &= ~EF_MIPS_XGOT;
11063 old_flags &= ~EF_MIPS_XGOT;
11064
98a8deaf
RS
11065 /* MIPSpro generates ucode info in n64 objects. Again, we should
11066 just be able to ignore this. */
11067 new_flags &= ~EF_MIPS_UCODE;
11068 old_flags &= ~EF_MIPS_UCODE;
11069
0a44bf69
RS
11070 /* Don't care about the PIC flags from dynamic objects; they are
11071 PIC by design. */
11072 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11073 && (ibfd->flags & DYNAMIC) != 0)
11074 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11075
b49e97c9 11076 if (new_flags == old_flags)
b34976b6 11077 return TRUE;
b49e97c9
TS
11078
11079 /* Check to see if the input BFD actually contains any sections.
11080 If not, its flags may not have been initialised either, but it cannot
11081 actually cause any incompatibility. */
11082 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11083 {
11084 /* Ignore synthetic sections and empty .text, .data and .bss sections
11085 which are automatically generated by gas. */
11086 if (strcmp (sec->name, ".reginfo")
11087 && strcmp (sec->name, ".mdebug")
eea6121a 11088 && (sec->size != 0
d13d89fa
NS
11089 || (strcmp (sec->name, ".text")
11090 && strcmp (sec->name, ".data")
11091 && strcmp (sec->name, ".bss"))))
b49e97c9 11092 {
b34976b6 11093 null_input_bfd = FALSE;
b49e97c9
TS
11094 break;
11095 }
11096 }
11097 if (null_input_bfd)
b34976b6 11098 return TRUE;
b49e97c9 11099
b34976b6 11100 ok = TRUE;
b49e97c9 11101
143d77c5
EC
11102 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11103 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11104 {
b49e97c9 11105 (*_bfd_error_handler)
d003868e
AM
11106 (_("%B: warning: linking PIC files with non-PIC files"),
11107 ibfd);
143d77c5 11108 ok = TRUE;
b49e97c9
TS
11109 }
11110
143d77c5
EC
11111 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11112 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11113 if (! (new_flags & EF_MIPS_PIC))
11114 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11115
11116 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11117 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11118
64543e1a
RS
11119 /* Compare the ISAs. */
11120 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11121 {
64543e1a 11122 (*_bfd_error_handler)
d003868e
AM
11123 (_("%B: linking 32-bit code with 64-bit code"),
11124 ibfd);
64543e1a
RS
11125 ok = FALSE;
11126 }
11127 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11128 {
11129 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11130 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11131 {
64543e1a
RS
11132 /* Copy the architecture info from IBFD to OBFD. Also copy
11133 the 32-bit flag (if set) so that we continue to recognise
11134 OBFD as a 32-bit binary. */
11135 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11136 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11137 elf_elfheader (obfd)->e_flags
11138 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11139
11140 /* Copy across the ABI flags if OBFD doesn't use them
11141 and if that was what caused us to treat IBFD as 32-bit. */
11142 if ((old_flags & EF_MIPS_ABI) == 0
11143 && mips_32bit_flags_p (new_flags)
11144 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11145 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11146 }
11147 else
11148 {
64543e1a 11149 /* The ISAs aren't compatible. */
b49e97c9 11150 (*_bfd_error_handler)
d003868e
AM
11151 (_("%B: linking %s module with previous %s modules"),
11152 ibfd,
64543e1a
RS
11153 bfd_printable_name (ibfd),
11154 bfd_printable_name (obfd));
b34976b6 11155 ok = FALSE;
b49e97c9 11156 }
b49e97c9
TS
11157 }
11158
64543e1a
RS
11159 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11160 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11161
11162 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11163 does set EI_CLASS differently from any 32-bit ABI. */
11164 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11165 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11166 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11167 {
11168 /* Only error if both are set (to different values). */
11169 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11170 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11171 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11172 {
11173 (*_bfd_error_handler)
d003868e
AM
11174 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11175 ibfd,
b49e97c9
TS
11176 elf_mips_abi_name (ibfd),
11177 elf_mips_abi_name (obfd));
b34976b6 11178 ok = FALSE;
b49e97c9
TS
11179 }
11180 new_flags &= ~EF_MIPS_ABI;
11181 old_flags &= ~EF_MIPS_ABI;
11182 }
11183
fb39dac1
RS
11184 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11185 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11186 {
11187 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11188
11189 new_flags &= ~ EF_MIPS_ARCH_ASE;
11190 old_flags &= ~ EF_MIPS_ARCH_ASE;
11191 }
11192
b49e97c9
TS
11193 /* Warn about any other mismatches */
11194 if (new_flags != old_flags)
11195 {
11196 (*_bfd_error_handler)
d003868e
AM
11197 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11198 ibfd, (unsigned long) new_flags,
b49e97c9 11199 (unsigned long) old_flags);
b34976b6 11200 ok = FALSE;
b49e97c9
TS
11201 }
11202
11203 if (! ok)
11204 {
11205 bfd_set_error (bfd_error_bad_value);
b34976b6 11206 return FALSE;
b49e97c9
TS
11207 }
11208
b34976b6 11209 return TRUE;
b49e97c9
TS
11210}
11211
11212/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11213
b34976b6 11214bfd_boolean
9719ad41 11215_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11216{
11217 BFD_ASSERT (!elf_flags_init (abfd)
11218 || elf_elfheader (abfd)->e_flags == flags);
11219
11220 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11221 elf_flags_init (abfd) = TRUE;
11222 return TRUE;
b49e97c9
TS
11223}
11224
b34976b6 11225bfd_boolean
9719ad41 11226_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11227{
9719ad41 11228 FILE *file = ptr;
b49e97c9
TS
11229
11230 BFD_ASSERT (abfd != NULL && ptr != NULL);
11231
11232 /* Print normal ELF private data. */
11233 _bfd_elf_print_private_bfd_data (abfd, ptr);
11234
11235 /* xgettext:c-format */
11236 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11237
11238 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11239 fprintf (file, _(" [abi=O32]"));
11240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11241 fprintf (file, _(" [abi=O64]"));
11242 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11243 fprintf (file, _(" [abi=EABI32]"));
11244 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11245 fprintf (file, _(" [abi=EABI64]"));
11246 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11247 fprintf (file, _(" [abi unknown]"));
11248 else if (ABI_N32_P (abfd))
11249 fprintf (file, _(" [abi=N32]"));
11250 else if (ABI_64_P (abfd))
11251 fprintf (file, _(" [abi=64]"));
11252 else
11253 fprintf (file, _(" [no abi set]"));
11254
11255 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11256 fprintf (file, " [mips1]");
b49e97c9 11257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11258 fprintf (file, " [mips2]");
b49e97c9 11259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11260 fprintf (file, " [mips3]");
b49e97c9 11261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11262 fprintf (file, " [mips4]");
b49e97c9 11263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11264 fprintf (file, " [mips5]");
b49e97c9 11265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11266 fprintf (file, " [mips32]");
b49e97c9 11267 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11268 fprintf (file, " [mips64]");
af7ee8bf 11269 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11270 fprintf (file, " [mips32r2]");
5f74bc13 11271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11272 fprintf (file, " [mips64r2]");
b49e97c9
TS
11273 else
11274 fprintf (file, _(" [unknown ISA]"));
11275
40d32fc6 11276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11277 fprintf (file, " [mdmx]");
40d32fc6
CD
11278
11279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11280 fprintf (file, " [mips16]");
40d32fc6 11281
b49e97c9 11282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11283 fprintf (file, " [32bitmode]");
b49e97c9
TS
11284 else
11285 fprintf (file, _(" [not 32bitmode]"));
11286
c0e3f241 11287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11288 fprintf (file, " [noreorder]");
c0e3f241
CD
11289
11290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11291 fprintf (file, " [PIC]");
c0e3f241
CD
11292
11293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11294 fprintf (file, " [CPIC]");
c0e3f241
CD
11295
11296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11297 fprintf (file, " [XGOT]");
c0e3f241
CD
11298
11299 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11300 fprintf (file, " [UCODE]");
c0e3f241 11301
b49e97c9
TS
11302 fputc ('\n', file);
11303
b34976b6 11304 return TRUE;
b49e97c9 11305}
2f89ff8d 11306
b35d266b 11307const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11308{
0112cd26
NC
11309 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11310 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11311 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11312 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11313 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11314 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11315 { NULL, 0, 0, 0, 0 }
2f89ff8d 11316};
5e2b0d47 11317
8992f0d7
TS
11318/* Merge non visibility st_other attributes. Ensure that the
11319 STO_OPTIONAL flag is copied into h->other, even if this is not a
11320 definiton of the symbol. */
5e2b0d47
NC
11321void
11322_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11323 const Elf_Internal_Sym *isym,
11324 bfd_boolean definition,
11325 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11326{
8992f0d7
TS
11327 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11328 {
11329 unsigned char other;
11330
11331 other = (definition ? isym->st_other : h->other);
11332 other &= ~ELF_ST_VISIBILITY (-1);
11333 h->other = other | ELF_ST_VISIBILITY (h->other);
11334 }
11335
11336 if (!definition
5e2b0d47
NC
11337 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11338 h->other |= STO_OPTIONAL;
11339}
12ac1cf5
NC
11340
11341/* Decide whether an undefined symbol is special and can be ignored.
11342 This is the case for OPTIONAL symbols on IRIX. */
11343bfd_boolean
11344_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11345{
11346 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11347}
e0764319
NC
11348
11349bfd_boolean
11350_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11351{
11352 return (sym->st_shndx == SHN_COMMON
11353 || sym->st_shndx == SHN_MIPS_ACOMMON
11354 || sym->st_shndx == SHN_MIPS_SCOMMON);
11355}
This page took 0.978373 seconds and 4 git commands to generate.