* configure.srv (powerpc64-*-linux*, powerpc-*-linux*): Merge into single
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
6f179bd0 3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
0f20cc35
DJ
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
c224138d 153 /* The number of local .got entries, eventually including page entries. */
b49e97c9 154 unsigned int local_gotno;
c224138d
RS
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
b49e97c9
TS
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
b15e6682
AO
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
c224138d
RS
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
f4416af6
AO
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
0f20cc35
DJ
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
f4416af6
AO
174};
175
176/* Map an input bfd to a got in a multi-got link. */
177
178struct mips_elf_bfd2got_hash {
179 bfd *bfd;
180 struct mips_got_info *g;
181};
182
183/* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186struct mips_elf_got_per_bfd_arg
187{
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
213/* Another structure used to pass arguments for got entries traversal. */
214
215struct mips_elf_set_global_got_offset_arg
216{
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
b49e97c9
TS
221};
222
0f20cc35
DJ
223/* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226struct mips_elf_count_tls_arg
227{
228 struct bfd_link_info *info;
229 unsigned int needed;
230};
231
f0abc2a1
AM
232struct _mips_elf_section_data
233{
234 struct bfd_elf_section_data elf;
235 union
236 {
237 struct mips_got_info *got_info;
238 bfd_byte *tdata;
239 } u;
240};
241
242#define mips_elf_section_data(sec) \
68bfbfcc 243 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 244
b49e97c9
TS
245/* This structure is passed to mips_elf_sort_hash_table_f when sorting
246 the dynamic symbols. */
247
248struct mips_elf_hash_sort_data
249{
250 /* The symbol in the global GOT with the lowest dynamic symbol table
251 index. */
252 struct elf_link_hash_entry *low;
0f20cc35
DJ
253 /* The least dynamic symbol table index corresponding to a non-TLS
254 symbol with a GOT entry. */
b49e97c9 255 long min_got_dynindx;
f4416af6
AO
256 /* The greatest dynamic symbol table index corresponding to a symbol
257 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 258 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 259 long max_unref_got_dynindx;
b49e97c9
TS
260 /* The greatest dynamic symbol table index not corresponding to a
261 symbol without a GOT entry. */
262 long max_non_got_dynindx;
263};
264
265/* The MIPS ELF linker needs additional information for each symbol in
266 the global hash table. */
267
268struct mips_elf_link_hash_entry
269{
270 struct elf_link_hash_entry root;
271
272 /* External symbol information. */
273 EXTR esym;
274
275 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
276 this symbol. */
277 unsigned int possibly_dynamic_relocs;
278
279 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
280 a readonly section. */
b34976b6 281 bfd_boolean readonly_reloc;
b49e97c9 282
b49e97c9
TS
283 /* We must not create a stub for a symbol that has relocations
284 related to taking the function's address, i.e. any but
285 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
286 p. 4-20. */
b34976b6 287 bfd_boolean no_fn_stub;
b49e97c9
TS
288
289 /* If there is a stub that 32 bit functions should use to call this
290 16 bit function, this points to the section containing the stub. */
291 asection *fn_stub;
292
293 /* Whether we need the fn_stub; this is set if this symbol appears
294 in any relocs other than a 16 bit call. */
b34976b6 295 bfd_boolean need_fn_stub;
b49e97c9
TS
296
297 /* If there is a stub that 16 bit functions should use to call this
298 32 bit function, this points to the section containing the stub. */
299 asection *call_stub;
300
301 /* This is like the call_stub field, but it is used if the function
302 being called returns a floating point value. */
303 asection *call_fp_stub;
7c5fcef7 304
a008ac03
DJ
305 /* Are we forced local? This will only be set if we have converted
306 the initial global GOT entry to a local GOT entry. */
b34976b6 307 bfd_boolean forced_local;
0f20cc35 308
0a44bf69
RS
309 /* Are we referenced by some kind of relocation? */
310 bfd_boolean is_relocation_target;
311
312 /* Are we referenced by branch relocations? */
313 bfd_boolean is_branch_target;
314
0f20cc35
DJ
315#define GOT_NORMAL 0
316#define GOT_TLS_GD 1
317#define GOT_TLS_LDM 2
318#define GOT_TLS_IE 4
319#define GOT_TLS_OFFSET_DONE 0x40
320#define GOT_TLS_DONE 0x80
321 unsigned char tls_type;
322 /* This is only used in single-GOT mode; in multi-GOT mode there
323 is one mips_got_entry per GOT entry, so the offset is stored
324 there. In single-GOT mode there may be many mips_got_entry
325 structures all referring to the same GOT slot. It might be
326 possible to use root.got.offset instead, but that field is
327 overloaded already. */
328 bfd_vma tls_got_offset;
b49e97c9
TS
329};
330
331/* MIPS ELF linker hash table. */
332
333struct mips_elf_link_hash_table
334{
335 struct elf_link_hash_table root;
336#if 0
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
340#endif
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 346 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 347 bfd_boolean use_rld_obj_head;
b49e97c9
TS
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
349 bfd_vma rld_value;
350 /* This is set if we see any mips16 stub sections. */
b34976b6 351 bfd_boolean mips16_stubs_seen;
8275b357
RS
352 /* True if we've computed the size of the GOT. */
353 bfd_boolean computed_got_sizes;
0a44bf69
RS
354 /* True if we're generating code for VxWorks. */
355 bfd_boolean is_vxworks;
0e53d9da
AN
356 /* True if we already reported the small-data section overflow. */
357 bfd_boolean small_data_overflow_reported;
0a44bf69
RS
358 /* Shortcuts to some dynamic sections, or NULL if they are not
359 being used. */
360 asection *srelbss;
361 asection *sdynbss;
362 asection *srelplt;
363 asection *srelplt2;
364 asection *sgotplt;
365 asection *splt;
366 /* The size of the PLT header in bytes (VxWorks only). */
367 bfd_vma plt_header_size;
368 /* The size of a PLT entry in bytes (VxWorks only). */
369 bfd_vma plt_entry_size;
5108fc1b
RS
370 /* The size of a function stub entry in bytes. */
371 bfd_vma function_stub_size;
b49e97c9
TS
372};
373
0f20cc35
DJ
374#define TLS_RELOC_P(r_type) \
375 (r_type == R_MIPS_TLS_DTPMOD32 \
376 || r_type == R_MIPS_TLS_DTPMOD64 \
377 || r_type == R_MIPS_TLS_DTPREL32 \
378 || r_type == R_MIPS_TLS_DTPREL64 \
379 || r_type == R_MIPS_TLS_GD \
380 || r_type == R_MIPS_TLS_LDM \
381 || r_type == R_MIPS_TLS_DTPREL_HI16 \
382 || r_type == R_MIPS_TLS_DTPREL_LO16 \
383 || r_type == R_MIPS_TLS_GOTTPREL \
384 || r_type == R_MIPS_TLS_TPREL32 \
385 || r_type == R_MIPS_TLS_TPREL64 \
386 || r_type == R_MIPS_TLS_TPREL_HI16 \
387 || r_type == R_MIPS_TLS_TPREL_LO16)
388
b49e97c9
TS
389/* Structure used to pass information to mips_elf_output_extsym. */
390
391struct extsym_info
392{
9e4aeb93
RS
393 bfd *abfd;
394 struct bfd_link_info *info;
b49e97c9
TS
395 struct ecoff_debug_info *debug;
396 const struct ecoff_debug_swap *swap;
b34976b6 397 bfd_boolean failed;
b49e97c9
TS
398};
399
8dc1a139 400/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
401
402static const char * const mips_elf_dynsym_rtproc_names[] =
403{
404 "_procedure_table",
405 "_procedure_string_table",
406 "_procedure_table_size",
407 NULL
408};
409
410/* These structures are used to generate the .compact_rel section on
8dc1a139 411 IRIX5. */
b49e97c9
TS
412
413typedef struct
414{
415 unsigned long id1; /* Always one? */
416 unsigned long num; /* Number of compact relocation entries. */
417 unsigned long id2; /* Always two? */
418 unsigned long offset; /* The file offset of the first relocation. */
419 unsigned long reserved0; /* Zero? */
420 unsigned long reserved1; /* Zero? */
421} Elf32_compact_rel;
422
423typedef struct
424{
425 bfd_byte id1[4];
426 bfd_byte num[4];
427 bfd_byte id2[4];
428 bfd_byte offset[4];
429 bfd_byte reserved0[4];
430 bfd_byte reserved1[4];
431} Elf32_External_compact_rel;
432
433typedef struct
434{
435 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
436 unsigned int rtype : 4; /* Relocation types. See below. */
437 unsigned int dist2to : 8;
438 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
439 unsigned long konst; /* KONST field. See below. */
440 unsigned long vaddr; /* VADDR to be relocated. */
441} Elf32_crinfo;
442
443typedef struct
444{
445 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
446 unsigned int rtype : 4; /* Relocation types. See below. */
447 unsigned int dist2to : 8;
448 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
449 unsigned long konst; /* KONST field. See below. */
450} Elf32_crinfo2;
451
452typedef struct
453{
454 bfd_byte info[4];
455 bfd_byte konst[4];
456 bfd_byte vaddr[4];
457} Elf32_External_crinfo;
458
459typedef struct
460{
461 bfd_byte info[4];
462 bfd_byte konst[4];
463} Elf32_External_crinfo2;
464
465/* These are the constants used to swap the bitfields in a crinfo. */
466
467#define CRINFO_CTYPE (0x1)
468#define CRINFO_CTYPE_SH (31)
469#define CRINFO_RTYPE (0xf)
470#define CRINFO_RTYPE_SH (27)
471#define CRINFO_DIST2TO (0xff)
472#define CRINFO_DIST2TO_SH (19)
473#define CRINFO_RELVADDR (0x7ffff)
474#define CRINFO_RELVADDR_SH (0)
475
476/* A compact relocation info has long (3 words) or short (2 words)
477 formats. A short format doesn't have VADDR field and relvaddr
478 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
479#define CRF_MIPS_LONG 1
480#define CRF_MIPS_SHORT 0
481
482/* There are 4 types of compact relocation at least. The value KONST
483 has different meaning for each type:
484
485 (type) (konst)
486 CT_MIPS_REL32 Address in data
487 CT_MIPS_WORD Address in word (XXX)
488 CT_MIPS_GPHI_LO GP - vaddr
489 CT_MIPS_JMPAD Address to jump
490 */
491
492#define CRT_MIPS_REL32 0xa
493#define CRT_MIPS_WORD 0xb
494#define CRT_MIPS_GPHI_LO 0xc
495#define CRT_MIPS_JMPAD 0xd
496
497#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
498#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
499#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
500#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
501\f
502/* The structure of the runtime procedure descriptor created by the
503 loader for use by the static exception system. */
504
505typedef struct runtime_pdr {
ae9a127f
NC
506 bfd_vma adr; /* Memory address of start of procedure. */
507 long regmask; /* Save register mask. */
508 long regoffset; /* Save register offset. */
509 long fregmask; /* Save floating point register mask. */
510 long fregoffset; /* Save floating point register offset. */
511 long frameoffset; /* Frame size. */
512 short framereg; /* Frame pointer register. */
513 short pcreg; /* Offset or reg of return pc. */
514 long irpss; /* Index into the runtime string table. */
b49e97c9 515 long reserved;
ae9a127f 516 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
517} RPDR, *pRPDR;
518#define cbRPDR sizeof (RPDR)
519#define rpdNil ((pRPDR) 0)
520\f
b15e6682 521static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 522 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 523 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 524static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 525 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
526static bfd_vma mips_elf_high
527 (bfd_vma);
b9d58d71 528static bfd_boolean mips16_stub_section_p
9719ad41 529 (bfd *, asection *);
b34976b6 530static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
531 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
532 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
533 bfd_vma *, asection *);
9719ad41
RS
534static hashval_t mips_elf_got_entry_hash
535 (const void *);
f4416af6 536static bfd_vma mips_elf_adjust_gp
9719ad41 537 (bfd *, struct mips_got_info *, bfd *);
f4416af6 538static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 539 (struct mips_got_info *, bfd *);
f4416af6 540
b49e97c9
TS
541/* This will be used when we sort the dynamic relocation records. */
542static bfd *reldyn_sorting_bfd;
543
544/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
545#define ABI_N32_P(abfd) \
546 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
547
4a14403c 548/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 549#define ABI_64_P(abfd) \
141ff970 550 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 551
4a14403c
TS
552/* Nonzero if ABFD is using NewABI conventions. */
553#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
554
555/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
556#define IRIX_COMPAT(abfd) \
557 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
558
b49e97c9
TS
559/* Whether we are trying to be compatible with IRIX at all. */
560#define SGI_COMPAT(abfd) \
561 (IRIX_COMPAT (abfd) != ict_none)
562
563/* The name of the options section. */
564#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 565 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 566
cc2e31b9
RS
567/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
568 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
569#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
570 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
571
943284cc
DJ
572/* Whether the section is readonly. */
573#define MIPS_ELF_READONLY_SECTION(sec) \
574 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
575 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
576
b49e97c9 577/* The name of the stub section. */
ca07892d 578#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
579
580/* The size of an external REL relocation. */
581#define MIPS_ELF_REL_SIZE(abfd) \
582 (get_elf_backend_data (abfd)->s->sizeof_rel)
583
0a44bf69
RS
584/* The size of an external RELA relocation. */
585#define MIPS_ELF_RELA_SIZE(abfd) \
586 (get_elf_backend_data (abfd)->s->sizeof_rela)
587
b49e97c9
TS
588/* The size of an external dynamic table entry. */
589#define MIPS_ELF_DYN_SIZE(abfd) \
590 (get_elf_backend_data (abfd)->s->sizeof_dyn)
591
592/* The size of a GOT entry. */
593#define MIPS_ELF_GOT_SIZE(abfd) \
594 (get_elf_backend_data (abfd)->s->arch_size / 8)
595
596/* The size of a symbol-table entry. */
597#define MIPS_ELF_SYM_SIZE(abfd) \
598 (get_elf_backend_data (abfd)->s->sizeof_sym)
599
600/* The default alignment for sections, as a power of two. */
601#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 602 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
603
604/* Get word-sized data. */
605#define MIPS_ELF_GET_WORD(abfd, ptr) \
606 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
607
608/* Put out word-sized data. */
609#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
610 (ABI_64_P (abfd) \
611 ? bfd_put_64 (abfd, val, ptr) \
612 : bfd_put_32 (abfd, val, ptr))
613
614/* Add a dynamic symbol table-entry. */
9719ad41 615#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 616 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
617
618#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
619 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
620
4ffba85c
AO
621/* Determine whether the internal relocation of index REL_IDX is REL
622 (zero) or RELA (non-zero). The assumption is that, if there are
623 two relocation sections for this section, one of them is REL and
624 the other is RELA. If the index of the relocation we're testing is
625 in range for the first relocation section, check that the external
626 relocation size is that for RELA. It is also assumed that, if
627 rel_idx is not in range for the first section, and this first
628 section contains REL relocs, then the relocation is in the second
629 section, that is RELA. */
630#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
631 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
632 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
633 > (bfd_vma)(rel_idx)) \
634 == (elf_section_data (sec)->rel_hdr.sh_entsize \
635 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
636 : sizeof (Elf32_External_Rela))))
637
0a44bf69
RS
638/* The name of the dynamic relocation section. */
639#define MIPS_ELF_REL_DYN_NAME(INFO) \
640 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
641
b49e97c9
TS
642/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
643 from smaller values. Start with zero, widen, *then* decrement. */
644#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 645#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
646
647/* The number of local .got entries we reserve. */
0a44bf69
RS
648#define MIPS_RESERVED_GOTNO(INFO) \
649 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 650
51e38d68
RS
651/* The value to write into got[1] for SVR4 targets, to identify it is
652 a GNU object. The dynamic linker can then use got[1] to store the
653 module pointer. */
654#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
655 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
656
f4416af6 657/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
658#define ELF_MIPS_GP_OFFSET(INFO) \
659 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
660
661/* The maximum size of the GOT for it to be addressable using 16-bit
662 offsets from $gp. */
0a44bf69 663#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 664
6a691779 665/* Instructions which appear in a stub. */
3d6746ca
DD
666#define STUB_LW(abfd) \
667 ((ABI_64_P (abfd) \
668 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
669 : 0x8f998010)) /* lw t9,0x8010(gp) */
670#define STUB_MOVE(abfd) \
671 ((ABI_64_P (abfd) \
672 ? 0x03e0782d /* daddu t7,ra */ \
673 : 0x03e07821)) /* addu t7,ra */
674#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
675#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
676#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
677#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
678#define STUB_LI16S(abfd, VAL) \
679 ((ABI_64_P (abfd) \
680 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
681 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
682
5108fc1b
RS
683#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
684#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
685
686/* The name of the dynamic interpreter. This is put in the .interp
687 section. */
688
689#define ELF_DYNAMIC_INTERPRETER(abfd) \
690 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
691 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
692 : "/usr/lib/libc.so.1")
693
694#ifdef BFD64
ee6423ed
AO
695#define MNAME(bfd,pre,pos) \
696 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
697#define ELF_R_SYM(bfd, i) \
698 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
699#define ELF_R_TYPE(bfd, i) \
700 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
701#define ELF_R_INFO(bfd, s, t) \
702 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
703#else
ee6423ed 704#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
705#define ELF_R_SYM(bfd, i) \
706 (ELF32_R_SYM (i))
707#define ELF_R_TYPE(bfd, i) \
708 (ELF32_R_TYPE (i))
709#define ELF_R_INFO(bfd, s, t) \
710 (ELF32_R_INFO (s, t))
711#endif
712\f
713 /* The mips16 compiler uses a couple of special sections to handle
714 floating point arguments.
715
716 Section names that look like .mips16.fn.FNNAME contain stubs that
717 copy floating point arguments from the fp regs to the gp regs and
718 then jump to FNNAME. If any 32 bit function calls FNNAME, the
719 call should be redirected to the stub instead. If no 32 bit
720 function calls FNNAME, the stub should be discarded. We need to
721 consider any reference to the function, not just a call, because
722 if the address of the function is taken we will need the stub,
723 since the address might be passed to a 32 bit function.
724
725 Section names that look like .mips16.call.FNNAME contain stubs
726 that copy floating point arguments from the gp regs to the fp
727 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
728 then any 16 bit function that calls FNNAME should be redirected
729 to the stub instead. If FNNAME is not a 32 bit function, the
730 stub should be discarded.
731
732 .mips16.call.fp.FNNAME sections are similar, but contain stubs
733 which call FNNAME and then copy the return value from the fp regs
734 to the gp regs. These stubs store the return value in $18 while
735 calling FNNAME; any function which might call one of these stubs
736 must arrange to save $18 around the call. (This case is not
737 needed for 32 bit functions that call 16 bit functions, because
738 16 bit functions always return floating point values in both
739 $f0/$f1 and $2/$3.)
740
741 Note that in all cases FNNAME might be defined statically.
742 Therefore, FNNAME is not used literally. Instead, the relocation
743 information will indicate which symbol the section is for.
744
745 We record any stubs that we find in the symbol table. */
746
747#define FN_STUB ".mips16.fn."
748#define CALL_STUB ".mips16.call."
749#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
750
751#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
752#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
753#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 754\f
0a44bf69
RS
755/* The format of the first PLT entry in a VxWorks executable. */
756static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
757 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
758 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
759 0x8f390008, /* lw t9, 8(t9) */
760 0x00000000, /* nop */
761 0x03200008, /* jr t9 */
762 0x00000000 /* nop */
763};
764
765/* The format of subsequent PLT entries. */
766static const bfd_vma mips_vxworks_exec_plt_entry[] = {
767 0x10000000, /* b .PLT_resolver */
768 0x24180000, /* li t8, <pltindex> */
769 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
770 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
771 0x8f390000, /* lw t9, 0(t9) */
772 0x00000000, /* nop */
773 0x03200008, /* jr t9 */
774 0x00000000 /* nop */
775};
776
777/* The format of the first PLT entry in a VxWorks shared object. */
778static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
779 0x8f990008, /* lw t9, 8(gp) */
780 0x00000000, /* nop */
781 0x03200008, /* jr t9 */
782 0x00000000, /* nop */
783 0x00000000, /* nop */
784 0x00000000 /* nop */
785};
786
787/* The format of subsequent PLT entries. */
788static const bfd_vma mips_vxworks_shared_plt_entry[] = {
789 0x10000000, /* b .PLT_resolver */
790 0x24180000 /* li t8, <pltindex> */
791};
792\f
b49e97c9
TS
793/* Look up an entry in a MIPS ELF linker hash table. */
794
795#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
796 ((struct mips_elf_link_hash_entry *) \
797 elf_link_hash_lookup (&(table)->root, (string), (create), \
798 (copy), (follow)))
799
800/* Traverse a MIPS ELF linker hash table. */
801
802#define mips_elf_link_hash_traverse(table, func, info) \
803 (elf_link_hash_traverse \
804 (&(table)->root, \
9719ad41 805 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
806 (info)))
807
808/* Get the MIPS ELF linker hash table from a link_info structure. */
809
810#define mips_elf_hash_table(p) \
811 ((struct mips_elf_link_hash_table *) ((p)->hash))
812
0f20cc35
DJ
813/* Find the base offsets for thread-local storage in this object,
814 for GD/LD and IE/LE respectively. */
815
816#define TP_OFFSET 0x7000
817#define DTP_OFFSET 0x8000
818
819static bfd_vma
820dtprel_base (struct bfd_link_info *info)
821{
822 /* If tls_sec is NULL, we should have signalled an error already. */
823 if (elf_hash_table (info)->tls_sec == NULL)
824 return 0;
825 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
826}
827
828static bfd_vma
829tprel_base (struct bfd_link_info *info)
830{
831 /* If tls_sec is NULL, we should have signalled an error already. */
832 if (elf_hash_table (info)->tls_sec == NULL)
833 return 0;
834 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
835}
836
b49e97c9
TS
837/* Create an entry in a MIPS ELF linker hash table. */
838
839static struct bfd_hash_entry *
9719ad41
RS
840mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
841 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
842{
843 struct mips_elf_link_hash_entry *ret =
844 (struct mips_elf_link_hash_entry *) entry;
845
846 /* Allocate the structure if it has not already been allocated by a
847 subclass. */
9719ad41
RS
848 if (ret == NULL)
849 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
850 if (ret == NULL)
b49e97c9
TS
851 return (struct bfd_hash_entry *) ret;
852
853 /* Call the allocation method of the superclass. */
854 ret = ((struct mips_elf_link_hash_entry *)
855 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
856 table, string));
9719ad41 857 if (ret != NULL)
b49e97c9
TS
858 {
859 /* Set local fields. */
860 memset (&ret->esym, 0, sizeof (EXTR));
861 /* We use -2 as a marker to indicate that the information has
862 not been set. -1 means there is no associated ifd. */
863 ret->esym.ifd = -2;
864 ret->possibly_dynamic_relocs = 0;
b34976b6 865 ret->readonly_reloc = FALSE;
b34976b6 866 ret->no_fn_stub = FALSE;
b49e97c9 867 ret->fn_stub = NULL;
b34976b6 868 ret->need_fn_stub = FALSE;
b49e97c9
TS
869 ret->call_stub = NULL;
870 ret->call_fp_stub = NULL;
b34976b6 871 ret->forced_local = FALSE;
0a44bf69
RS
872 ret->is_branch_target = FALSE;
873 ret->is_relocation_target = FALSE;
0f20cc35 874 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
875 }
876
877 return (struct bfd_hash_entry *) ret;
878}
f0abc2a1
AM
879
880bfd_boolean
9719ad41 881_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 882{
f592407e
AM
883 if (!sec->used_by_bfd)
884 {
885 struct _mips_elf_section_data *sdata;
886 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 887
f592407e
AM
888 sdata = bfd_zalloc (abfd, amt);
889 if (sdata == NULL)
890 return FALSE;
891 sec->used_by_bfd = sdata;
892 }
f0abc2a1
AM
893
894 return _bfd_elf_new_section_hook (abfd, sec);
895}
b49e97c9
TS
896\f
897/* Read ECOFF debugging information from a .mdebug section into a
898 ecoff_debug_info structure. */
899
b34976b6 900bfd_boolean
9719ad41
RS
901_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
902 struct ecoff_debug_info *debug)
b49e97c9
TS
903{
904 HDRR *symhdr;
905 const struct ecoff_debug_swap *swap;
9719ad41 906 char *ext_hdr;
b49e97c9
TS
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909 memset (debug, 0, sizeof (*debug));
910
9719ad41 911 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
912 if (ext_hdr == NULL && swap->external_hdr_size != 0)
913 goto error_return;
914
9719ad41 915 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 916 swap->external_hdr_size))
b49e97c9
TS
917 goto error_return;
918
919 symhdr = &debug->symbolic_header;
920 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
921
922 /* The symbolic header contains absolute file offsets and sizes to
923 read. */
924#define READ(ptr, offset, count, size, type) \
925 if (symhdr->count == 0) \
926 debug->ptr = NULL; \
927 else \
928 { \
929 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 930 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
931 if (debug->ptr == NULL) \
932 goto error_return; \
9719ad41 933 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
934 || bfd_bread (debug->ptr, amt, abfd) != amt) \
935 goto error_return; \
936 }
937
938 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
939 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
940 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
941 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
942 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
943 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
944 union aux_ext *);
945 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
946 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
947 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
948 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
949 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
950#undef READ
951
952 debug->fdr = NULL;
b49e97c9 953
b34976b6 954 return TRUE;
b49e97c9
TS
955
956 error_return:
957 if (ext_hdr != NULL)
958 free (ext_hdr);
959 if (debug->line != NULL)
960 free (debug->line);
961 if (debug->external_dnr != NULL)
962 free (debug->external_dnr);
963 if (debug->external_pdr != NULL)
964 free (debug->external_pdr);
965 if (debug->external_sym != NULL)
966 free (debug->external_sym);
967 if (debug->external_opt != NULL)
968 free (debug->external_opt);
969 if (debug->external_aux != NULL)
970 free (debug->external_aux);
971 if (debug->ss != NULL)
972 free (debug->ss);
973 if (debug->ssext != NULL)
974 free (debug->ssext);
975 if (debug->external_fdr != NULL)
976 free (debug->external_fdr);
977 if (debug->external_rfd != NULL)
978 free (debug->external_rfd);
979 if (debug->external_ext != NULL)
980 free (debug->external_ext);
b34976b6 981 return FALSE;
b49e97c9
TS
982}
983\f
984/* Swap RPDR (runtime procedure table entry) for output. */
985
986static void
9719ad41 987ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
988{
989 H_PUT_S32 (abfd, in->adr, ex->p_adr);
990 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
991 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
992 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
993 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
994 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
995
996 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
997 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
998
999 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1000}
1001
1002/* Create a runtime procedure table from the .mdebug section. */
1003
b34976b6 1004static bfd_boolean
9719ad41
RS
1005mips_elf_create_procedure_table (void *handle, bfd *abfd,
1006 struct bfd_link_info *info, asection *s,
1007 struct ecoff_debug_info *debug)
b49e97c9
TS
1008{
1009 const struct ecoff_debug_swap *swap;
1010 HDRR *hdr = &debug->symbolic_header;
1011 RPDR *rpdr, *rp;
1012 struct rpdr_ext *erp;
9719ad41 1013 void *rtproc;
b49e97c9
TS
1014 struct pdr_ext *epdr;
1015 struct sym_ext *esym;
1016 char *ss, **sv;
1017 char *str;
1018 bfd_size_type size;
1019 bfd_size_type count;
1020 unsigned long sindex;
1021 unsigned long i;
1022 PDR pdr;
1023 SYMR sym;
1024 const char *no_name_func = _("static procedure (no name)");
1025
1026 epdr = NULL;
1027 rpdr = NULL;
1028 esym = NULL;
1029 ss = NULL;
1030 sv = NULL;
1031
1032 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1033
1034 sindex = strlen (no_name_func) + 1;
1035 count = hdr->ipdMax;
1036 if (count > 0)
1037 {
1038 size = swap->external_pdr_size;
1039
9719ad41 1040 epdr = bfd_malloc (size * count);
b49e97c9
TS
1041 if (epdr == NULL)
1042 goto error_return;
1043
9719ad41 1044 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1045 goto error_return;
1046
1047 size = sizeof (RPDR);
9719ad41 1048 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1049 if (rpdr == NULL)
1050 goto error_return;
1051
1052 size = sizeof (char *);
9719ad41 1053 sv = bfd_malloc (size * count);
b49e97c9
TS
1054 if (sv == NULL)
1055 goto error_return;
1056
1057 count = hdr->isymMax;
1058 size = swap->external_sym_size;
9719ad41 1059 esym = bfd_malloc (size * count);
b49e97c9
TS
1060 if (esym == NULL)
1061 goto error_return;
1062
9719ad41 1063 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1064 goto error_return;
1065
1066 count = hdr->issMax;
9719ad41 1067 ss = bfd_malloc (count);
b49e97c9
TS
1068 if (ss == NULL)
1069 goto error_return;
f075ee0c 1070 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1071 goto error_return;
1072
1073 count = hdr->ipdMax;
1074 for (i = 0; i < (unsigned long) count; i++, rp++)
1075 {
9719ad41
RS
1076 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1077 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1078 rp->adr = sym.value;
1079 rp->regmask = pdr.regmask;
1080 rp->regoffset = pdr.regoffset;
1081 rp->fregmask = pdr.fregmask;
1082 rp->fregoffset = pdr.fregoffset;
1083 rp->frameoffset = pdr.frameoffset;
1084 rp->framereg = pdr.framereg;
1085 rp->pcreg = pdr.pcreg;
1086 rp->irpss = sindex;
1087 sv[i] = ss + sym.iss;
1088 sindex += strlen (sv[i]) + 1;
1089 }
1090 }
1091
1092 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1093 size = BFD_ALIGN (size, 16);
9719ad41 1094 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1095 if (rtproc == NULL)
1096 {
1097 mips_elf_hash_table (info)->procedure_count = 0;
1098 goto error_return;
1099 }
1100
1101 mips_elf_hash_table (info)->procedure_count = count + 2;
1102
9719ad41 1103 erp = rtproc;
b49e97c9
TS
1104 memset (erp, 0, sizeof (struct rpdr_ext));
1105 erp++;
1106 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1107 strcpy (str, no_name_func);
1108 str += strlen (no_name_func) + 1;
1109 for (i = 0; i < count; i++)
1110 {
1111 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1112 strcpy (str, sv[i]);
1113 str += strlen (sv[i]) + 1;
1114 }
1115 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1116
1117 /* Set the size and contents of .rtproc section. */
eea6121a 1118 s->size = size;
9719ad41 1119 s->contents = rtproc;
b49e97c9
TS
1120
1121 /* Skip this section later on (I don't think this currently
1122 matters, but someday it might). */
8423293d 1123 s->map_head.link_order = NULL;
b49e97c9
TS
1124
1125 if (epdr != NULL)
1126 free (epdr);
1127 if (rpdr != NULL)
1128 free (rpdr);
1129 if (esym != NULL)
1130 free (esym);
1131 if (ss != NULL)
1132 free (ss);
1133 if (sv != NULL)
1134 free (sv);
1135
b34976b6 1136 return TRUE;
b49e97c9
TS
1137
1138 error_return:
1139 if (epdr != NULL)
1140 free (epdr);
1141 if (rpdr != NULL)
1142 free (rpdr);
1143 if (esym != NULL)
1144 free (esym);
1145 if (ss != NULL)
1146 free (ss);
1147 if (sv != NULL)
1148 free (sv);
b34976b6 1149 return FALSE;
b49e97c9
TS
1150}
1151
1152/* Check the mips16 stubs for a particular symbol, and see if we can
1153 discard them. */
1154
b34976b6 1155static bfd_boolean
9719ad41
RS
1156mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1157 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1158{
1159 if (h->root.root.type == bfd_link_hash_warning)
1160 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1161
1162 if (h->fn_stub != NULL
1163 && ! h->need_fn_stub)
1164 {
1165 /* We don't need the fn_stub; the only references to this symbol
1166 are 16 bit calls. Clobber the size to 0 to prevent it from
1167 being included in the link. */
eea6121a 1168 h->fn_stub->size = 0;
b49e97c9
TS
1169 h->fn_stub->flags &= ~SEC_RELOC;
1170 h->fn_stub->reloc_count = 0;
1171 h->fn_stub->flags |= SEC_EXCLUDE;
1172 }
1173
1174 if (h->call_stub != NULL
1175 && h->root.other == STO_MIPS16)
1176 {
1177 /* We don't need the call_stub; this is a 16 bit function, so
1178 calls from other 16 bit functions are OK. Clobber the size
1179 to 0 to prevent it from being included in the link. */
eea6121a 1180 h->call_stub->size = 0;
b49e97c9
TS
1181 h->call_stub->flags &= ~SEC_RELOC;
1182 h->call_stub->reloc_count = 0;
1183 h->call_stub->flags |= SEC_EXCLUDE;
1184 }
1185
1186 if (h->call_fp_stub != NULL
1187 && h->root.other == STO_MIPS16)
1188 {
1189 /* We don't need the call_stub; this is a 16 bit function, so
1190 calls from other 16 bit functions are OK. Clobber the size
1191 to 0 to prevent it from being included in the link. */
eea6121a 1192 h->call_fp_stub->size = 0;
b49e97c9
TS
1193 h->call_fp_stub->flags &= ~SEC_RELOC;
1194 h->call_fp_stub->reloc_count = 0;
1195 h->call_fp_stub->flags |= SEC_EXCLUDE;
1196 }
1197
b34976b6 1198 return TRUE;
b49e97c9
TS
1199}
1200\f
d6f16593
MR
1201/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1202 Most mips16 instructions are 16 bits, but these instructions
1203 are 32 bits.
1204
1205 The format of these instructions is:
1206
1207 +--------------+--------------------------------+
1208 | JALX | X| Imm 20:16 | Imm 25:21 |
1209 +--------------+--------------------------------+
1210 | Immediate 15:0 |
1211 +-----------------------------------------------+
1212
1213 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1214 Note that the immediate value in the first word is swapped.
1215
1216 When producing a relocatable object file, R_MIPS16_26 is
1217 handled mostly like R_MIPS_26. In particular, the addend is
1218 stored as a straight 26-bit value in a 32-bit instruction.
1219 (gas makes life simpler for itself by never adjusting a
1220 R_MIPS16_26 reloc to be against a section, so the addend is
1221 always zero). However, the 32 bit instruction is stored as 2
1222 16-bit values, rather than a single 32-bit value. In a
1223 big-endian file, the result is the same; in a little-endian
1224 file, the two 16-bit halves of the 32 bit value are swapped.
1225 This is so that a disassembler can recognize the jal
1226 instruction.
1227
1228 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1229 instruction stored as two 16-bit values. The addend A is the
1230 contents of the targ26 field. The calculation is the same as
1231 R_MIPS_26. When storing the calculated value, reorder the
1232 immediate value as shown above, and don't forget to store the
1233 value as two 16-bit values.
1234
1235 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1236 defined as
1237
1238 big-endian:
1239 +--------+----------------------+
1240 | | |
1241 | | targ26-16 |
1242 |31 26|25 0|
1243 +--------+----------------------+
1244
1245 little-endian:
1246 +----------+------+-------------+
1247 | | | |
1248 | sub1 | | sub2 |
1249 |0 9|10 15|16 31|
1250 +----------+--------------------+
1251 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1252 ((sub1 << 16) | sub2)).
1253
1254 When producing a relocatable object file, the calculation is
1255 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1256 When producing a fully linked file, the calculation is
1257 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1258 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1259
1260 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1261 mode. A typical instruction will have a format like this:
1262
1263 +--------------+--------------------------------+
1264 | EXTEND | Imm 10:5 | Imm 15:11 |
1265 +--------------+--------------------------------+
1266 | Major | rx | ry | Imm 4:0 |
1267 +--------------+--------------------------------+
1268
1269 EXTEND is the five bit value 11110. Major is the instruction
1270 opcode.
1271
1272 This is handled exactly like R_MIPS_GPREL16, except that the
1273 addend is retrieved and stored as shown in this diagram; that
1274 is, the Imm fields above replace the V-rel16 field.
1275
1276 All we need to do here is shuffle the bits appropriately. As
1277 above, the two 16-bit halves must be swapped on a
1278 little-endian system.
1279
1280 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1281 access data when neither GP-relative nor PC-relative addressing
1282 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1283 except that the addend is retrieved and stored as shown above
1284 for R_MIPS16_GPREL.
1285 */
1286void
1287_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1288 bfd_boolean jal_shuffle, bfd_byte *data)
1289{
1290 bfd_vma extend, insn, val;
1291
1292 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1293 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1294 return;
1295
1296 /* Pick up the mips16 extend instruction and the real instruction. */
1297 extend = bfd_get_16 (abfd, data);
1298 insn = bfd_get_16 (abfd, data + 2);
1299 if (r_type == R_MIPS16_26)
1300 {
1301 if (jal_shuffle)
1302 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1303 | ((extend & 0x1f) << 21) | insn;
1304 else
1305 val = extend << 16 | insn;
1306 }
1307 else
1308 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1309 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1310 bfd_put_32 (abfd, val, data);
1311}
1312
1313void
1314_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1315 bfd_boolean jal_shuffle, bfd_byte *data)
1316{
1317 bfd_vma extend, insn, val;
1318
1319 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1320 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1321 return;
1322
1323 val = bfd_get_32 (abfd, data);
1324 if (r_type == R_MIPS16_26)
1325 {
1326 if (jal_shuffle)
1327 {
1328 insn = val & 0xffff;
1329 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1330 | ((val >> 21) & 0x1f);
1331 }
1332 else
1333 {
1334 insn = val & 0xffff;
1335 extend = val >> 16;
1336 }
1337 }
1338 else
1339 {
1340 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1341 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1342 }
1343 bfd_put_16 (abfd, insn, data + 2);
1344 bfd_put_16 (abfd, extend, data);
1345}
1346
b49e97c9 1347bfd_reloc_status_type
9719ad41
RS
1348_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1349 arelent *reloc_entry, asection *input_section,
1350 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1351{
1352 bfd_vma relocation;
a7ebbfdf 1353 bfd_signed_vma val;
30ac9238 1354 bfd_reloc_status_type status;
b49e97c9
TS
1355
1356 if (bfd_is_com_section (symbol->section))
1357 relocation = 0;
1358 else
1359 relocation = symbol->value;
1360
1361 relocation += symbol->section->output_section->vma;
1362 relocation += symbol->section->output_offset;
1363
07515404 1364 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1365 return bfd_reloc_outofrange;
1366
b49e97c9 1367 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1368 val = reloc_entry->addend;
1369
30ac9238 1370 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1371
b49e97c9 1372 /* Adjust val for the final section location and GP value. If we
1049f94e 1373 are producing relocatable output, we don't want to do this for
b49e97c9 1374 an external symbol. */
1049f94e 1375 if (! relocatable
b49e97c9
TS
1376 || (symbol->flags & BSF_SECTION_SYM) != 0)
1377 val += relocation - gp;
1378
a7ebbfdf
TS
1379 if (reloc_entry->howto->partial_inplace)
1380 {
30ac9238
RS
1381 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1382 (bfd_byte *) data
1383 + reloc_entry->address);
1384 if (status != bfd_reloc_ok)
1385 return status;
a7ebbfdf
TS
1386 }
1387 else
1388 reloc_entry->addend = val;
b49e97c9 1389
1049f94e 1390 if (relocatable)
b49e97c9 1391 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1392
1393 return bfd_reloc_ok;
1394}
1395
1396/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1397 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1398 that contains the relocation field and DATA points to the start of
1399 INPUT_SECTION. */
1400
1401struct mips_hi16
1402{
1403 struct mips_hi16 *next;
1404 bfd_byte *data;
1405 asection *input_section;
1406 arelent rel;
1407};
1408
1409/* FIXME: This should not be a static variable. */
1410
1411static struct mips_hi16 *mips_hi16_list;
1412
1413/* A howto special_function for REL *HI16 relocations. We can only
1414 calculate the correct value once we've seen the partnering
1415 *LO16 relocation, so just save the information for later.
1416
1417 The ABI requires that the *LO16 immediately follow the *HI16.
1418 However, as a GNU extension, we permit an arbitrary number of
1419 *HI16s to be associated with a single *LO16. This significantly
1420 simplies the relocation handling in gcc. */
1421
1422bfd_reloc_status_type
1423_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1424 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1425 asection *input_section, bfd *output_bfd,
1426 char **error_message ATTRIBUTE_UNUSED)
1427{
1428 struct mips_hi16 *n;
1429
07515404 1430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1431 return bfd_reloc_outofrange;
1432
1433 n = bfd_malloc (sizeof *n);
1434 if (n == NULL)
1435 return bfd_reloc_outofrange;
1436
1437 n->next = mips_hi16_list;
1438 n->data = data;
1439 n->input_section = input_section;
1440 n->rel = *reloc_entry;
1441 mips_hi16_list = n;
1442
1443 if (output_bfd != NULL)
1444 reloc_entry->address += input_section->output_offset;
1445
1446 return bfd_reloc_ok;
1447}
1448
1449/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1450 like any other 16-bit relocation when applied to global symbols, but is
1451 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1452
1453bfd_reloc_status_type
1454_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1455 void *data, asection *input_section,
1456 bfd *output_bfd, char **error_message)
1457{
1458 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1459 || bfd_is_und_section (bfd_get_section (symbol))
1460 || bfd_is_com_section (bfd_get_section (symbol)))
1461 /* The relocation is against a global symbol. */
1462 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1463 input_section, output_bfd,
1464 error_message);
1465
1466 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1467 input_section, output_bfd, error_message);
1468}
1469
1470/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1471 is a straightforward 16 bit inplace relocation, but we must deal with
1472 any partnering high-part relocations as well. */
1473
1474bfd_reloc_status_type
1475_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1476 void *data, asection *input_section,
1477 bfd *output_bfd, char **error_message)
1478{
1479 bfd_vma vallo;
d6f16593 1480 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1481
07515404 1482 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1483 return bfd_reloc_outofrange;
1484
d6f16593
MR
1485 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1486 location);
1487 vallo = bfd_get_32 (abfd, location);
1488 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1489 location);
1490
30ac9238
RS
1491 while (mips_hi16_list != NULL)
1492 {
1493 bfd_reloc_status_type ret;
1494 struct mips_hi16 *hi;
1495
1496 hi = mips_hi16_list;
1497
1498 /* R_MIPS_GOT16 relocations are something of a special case. We
1499 want to install the addend in the same way as for a R_MIPS_HI16
1500 relocation (with a rightshift of 16). However, since GOT16
1501 relocations can also be used with global symbols, their howto
1502 has a rightshift of 0. */
1503 if (hi->rel.howto->type == R_MIPS_GOT16)
1504 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1505
1506 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1507 carry or borrow will induce a change of +1 or -1 in the high part. */
1508 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1509
30ac9238
RS
1510 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1511 hi->input_section, output_bfd,
1512 error_message);
1513 if (ret != bfd_reloc_ok)
1514 return ret;
1515
1516 mips_hi16_list = hi->next;
1517 free (hi);
1518 }
1519
1520 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1521 input_section, output_bfd,
1522 error_message);
1523}
1524
1525/* A generic howto special_function. This calculates and installs the
1526 relocation itself, thus avoiding the oft-discussed problems in
1527 bfd_perform_relocation and bfd_install_relocation. */
1528
1529bfd_reloc_status_type
1530_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1531 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1532 asection *input_section, bfd *output_bfd,
1533 char **error_message ATTRIBUTE_UNUSED)
1534{
1535 bfd_signed_vma val;
1536 bfd_reloc_status_type status;
1537 bfd_boolean relocatable;
1538
1539 relocatable = (output_bfd != NULL);
1540
07515404 1541 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1542 return bfd_reloc_outofrange;
1543
1544 /* Build up the field adjustment in VAL. */
1545 val = 0;
1546 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1547 {
1548 /* Either we're calculating the final field value or we have a
1549 relocation against a section symbol. Add in the section's
1550 offset or address. */
1551 val += symbol->section->output_section->vma;
1552 val += symbol->section->output_offset;
1553 }
1554
1555 if (!relocatable)
1556 {
1557 /* We're calculating the final field value. Add in the symbol's value
1558 and, if pc-relative, subtract the address of the field itself. */
1559 val += symbol->value;
1560 if (reloc_entry->howto->pc_relative)
1561 {
1562 val -= input_section->output_section->vma;
1563 val -= input_section->output_offset;
1564 val -= reloc_entry->address;
1565 }
1566 }
1567
1568 /* VAL is now the final adjustment. If we're keeping this relocation
1569 in the output file, and if the relocation uses a separate addend,
1570 we just need to add VAL to that addend. Otherwise we need to add
1571 VAL to the relocation field itself. */
1572 if (relocatable && !reloc_entry->howto->partial_inplace)
1573 reloc_entry->addend += val;
1574 else
1575 {
d6f16593
MR
1576 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1577
30ac9238
RS
1578 /* Add in the separate addend, if any. */
1579 val += reloc_entry->addend;
1580
1581 /* Add VAL to the relocation field. */
d6f16593
MR
1582 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1583 location);
30ac9238 1584 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1585 location);
1586 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1587 location);
1588
30ac9238
RS
1589 if (status != bfd_reloc_ok)
1590 return status;
1591 }
1592
1593 if (relocatable)
1594 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1595
1596 return bfd_reloc_ok;
1597}
1598\f
1599/* Swap an entry in a .gptab section. Note that these routines rely
1600 on the equivalence of the two elements of the union. */
1601
1602static void
9719ad41
RS
1603bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1604 Elf32_gptab *in)
b49e97c9
TS
1605{
1606 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1607 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1608}
1609
1610static void
9719ad41
RS
1611bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1612 Elf32_External_gptab *ex)
b49e97c9
TS
1613{
1614 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1615 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1616}
1617
1618static void
9719ad41
RS
1619bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1620 Elf32_External_compact_rel *ex)
b49e97c9
TS
1621{
1622 H_PUT_32 (abfd, in->id1, ex->id1);
1623 H_PUT_32 (abfd, in->num, ex->num);
1624 H_PUT_32 (abfd, in->id2, ex->id2);
1625 H_PUT_32 (abfd, in->offset, ex->offset);
1626 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1627 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1628}
1629
1630static void
9719ad41
RS
1631bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1632 Elf32_External_crinfo *ex)
b49e97c9
TS
1633{
1634 unsigned long l;
1635
1636 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1637 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1638 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1639 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1640 H_PUT_32 (abfd, l, ex->info);
1641 H_PUT_32 (abfd, in->konst, ex->konst);
1642 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1643}
b49e97c9
TS
1644\f
1645/* A .reginfo section holds a single Elf32_RegInfo structure. These
1646 routines swap this structure in and out. They are used outside of
1647 BFD, so they are globally visible. */
1648
1649void
9719ad41
RS
1650bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1651 Elf32_RegInfo *in)
b49e97c9
TS
1652{
1653 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1654 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1655 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1656 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1657 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1658 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1659}
1660
1661void
9719ad41
RS
1662bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1663 Elf32_External_RegInfo *ex)
b49e97c9
TS
1664{
1665 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1671}
1672
1673/* In the 64 bit ABI, the .MIPS.options section holds register
1674 information in an Elf64_Reginfo structure. These routines swap
1675 them in and out. They are globally visible because they are used
1676 outside of BFD. These routines are here so that gas can call them
1677 without worrying about whether the 64 bit ABI has been included. */
1678
1679void
9719ad41
RS
1680bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1681 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1682{
1683 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1684 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1685 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1686 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1687 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1688 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1689 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1690}
1691
1692void
9719ad41
RS
1693bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1694 Elf64_External_RegInfo *ex)
b49e97c9
TS
1695{
1696 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1697 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1698 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1699 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1700 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1701 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1702 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1703}
1704
1705/* Swap in an options header. */
1706
1707void
9719ad41
RS
1708bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1709 Elf_Internal_Options *in)
b49e97c9
TS
1710{
1711 in->kind = H_GET_8 (abfd, ex->kind);
1712 in->size = H_GET_8 (abfd, ex->size);
1713 in->section = H_GET_16 (abfd, ex->section);
1714 in->info = H_GET_32 (abfd, ex->info);
1715}
1716
1717/* Swap out an options header. */
1718
1719void
9719ad41
RS
1720bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1721 Elf_External_Options *ex)
b49e97c9
TS
1722{
1723 H_PUT_8 (abfd, in->kind, ex->kind);
1724 H_PUT_8 (abfd, in->size, ex->size);
1725 H_PUT_16 (abfd, in->section, ex->section);
1726 H_PUT_32 (abfd, in->info, ex->info);
1727}
1728\f
1729/* This function is called via qsort() to sort the dynamic relocation
1730 entries by increasing r_symndx value. */
1731
1732static int
9719ad41 1733sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1734{
947216bf
AM
1735 Elf_Internal_Rela int_reloc1;
1736 Elf_Internal_Rela int_reloc2;
6870500c 1737 int diff;
b49e97c9 1738
947216bf
AM
1739 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1740 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1741
6870500c
RS
1742 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1743 if (diff != 0)
1744 return diff;
1745
1746 if (int_reloc1.r_offset < int_reloc2.r_offset)
1747 return -1;
1748 if (int_reloc1.r_offset > int_reloc2.r_offset)
1749 return 1;
1750 return 0;
b49e97c9
TS
1751}
1752
f4416af6
AO
1753/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1754
1755static int
7e3102a7
AM
1756sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1757 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1758{
7e3102a7 1759#ifdef BFD64
f4416af6
AO
1760 Elf_Internal_Rela int_reloc1[3];
1761 Elf_Internal_Rela int_reloc2[3];
1762
1763 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1764 (reldyn_sorting_bfd, arg1, int_reloc1);
1765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1766 (reldyn_sorting_bfd, arg2, int_reloc2);
1767
6870500c
RS
1768 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1769 return -1;
1770 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1771 return 1;
1772
1773 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1774 return -1;
1775 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1776 return 1;
1777 return 0;
7e3102a7
AM
1778#else
1779 abort ();
1780#endif
f4416af6
AO
1781}
1782
1783
b49e97c9
TS
1784/* This routine is used to write out ECOFF debugging external symbol
1785 information. It is called via mips_elf_link_hash_traverse. The
1786 ECOFF external symbol information must match the ELF external
1787 symbol information. Unfortunately, at this point we don't know
1788 whether a symbol is required by reloc information, so the two
1789 tables may wind up being different. We must sort out the external
1790 symbol information before we can set the final size of the .mdebug
1791 section, and we must set the size of the .mdebug section before we
1792 can relocate any sections, and we can't know which symbols are
1793 required by relocation until we relocate the sections.
1794 Fortunately, it is relatively unlikely that any symbol will be
1795 stripped but required by a reloc. In particular, it can not happen
1796 when generating a final executable. */
1797
b34976b6 1798static bfd_boolean
9719ad41 1799mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1800{
9719ad41 1801 struct extsym_info *einfo = data;
b34976b6 1802 bfd_boolean strip;
b49e97c9
TS
1803 asection *sec, *output_section;
1804
1805 if (h->root.root.type == bfd_link_hash_warning)
1806 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1807
1808 if (h->root.indx == -2)
b34976b6 1809 strip = FALSE;
f5385ebf 1810 else if ((h->root.def_dynamic
77cfaee6
AM
1811 || h->root.ref_dynamic
1812 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1813 && !h->root.def_regular
1814 && !h->root.ref_regular)
b34976b6 1815 strip = TRUE;
b49e97c9
TS
1816 else if (einfo->info->strip == strip_all
1817 || (einfo->info->strip == strip_some
1818 && bfd_hash_lookup (einfo->info->keep_hash,
1819 h->root.root.root.string,
b34976b6
AM
1820 FALSE, FALSE) == NULL))
1821 strip = TRUE;
b49e97c9 1822 else
b34976b6 1823 strip = FALSE;
b49e97c9
TS
1824
1825 if (strip)
b34976b6 1826 return TRUE;
b49e97c9
TS
1827
1828 if (h->esym.ifd == -2)
1829 {
1830 h->esym.jmptbl = 0;
1831 h->esym.cobol_main = 0;
1832 h->esym.weakext = 0;
1833 h->esym.reserved = 0;
1834 h->esym.ifd = ifdNil;
1835 h->esym.asym.value = 0;
1836 h->esym.asym.st = stGlobal;
1837
1838 if (h->root.root.type == bfd_link_hash_undefined
1839 || h->root.root.type == bfd_link_hash_undefweak)
1840 {
1841 const char *name;
1842
1843 /* Use undefined class. Also, set class and type for some
1844 special symbols. */
1845 name = h->root.root.root.string;
1846 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1847 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1848 {
1849 h->esym.asym.sc = scData;
1850 h->esym.asym.st = stLabel;
1851 h->esym.asym.value = 0;
1852 }
1853 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1854 {
1855 h->esym.asym.sc = scAbs;
1856 h->esym.asym.st = stLabel;
1857 h->esym.asym.value =
1858 mips_elf_hash_table (einfo->info)->procedure_count;
1859 }
4a14403c 1860 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1861 {
1862 h->esym.asym.sc = scAbs;
1863 h->esym.asym.st = stLabel;
1864 h->esym.asym.value = elf_gp (einfo->abfd);
1865 }
1866 else
1867 h->esym.asym.sc = scUndefined;
1868 }
1869 else if (h->root.root.type != bfd_link_hash_defined
1870 && h->root.root.type != bfd_link_hash_defweak)
1871 h->esym.asym.sc = scAbs;
1872 else
1873 {
1874 const char *name;
1875
1876 sec = h->root.root.u.def.section;
1877 output_section = sec->output_section;
1878
1879 /* When making a shared library and symbol h is the one from
1880 the another shared library, OUTPUT_SECTION may be null. */
1881 if (output_section == NULL)
1882 h->esym.asym.sc = scUndefined;
1883 else
1884 {
1885 name = bfd_section_name (output_section->owner, output_section);
1886
1887 if (strcmp (name, ".text") == 0)
1888 h->esym.asym.sc = scText;
1889 else if (strcmp (name, ".data") == 0)
1890 h->esym.asym.sc = scData;
1891 else if (strcmp (name, ".sdata") == 0)
1892 h->esym.asym.sc = scSData;
1893 else if (strcmp (name, ".rodata") == 0
1894 || strcmp (name, ".rdata") == 0)
1895 h->esym.asym.sc = scRData;
1896 else if (strcmp (name, ".bss") == 0)
1897 h->esym.asym.sc = scBss;
1898 else if (strcmp (name, ".sbss") == 0)
1899 h->esym.asym.sc = scSBss;
1900 else if (strcmp (name, ".init") == 0)
1901 h->esym.asym.sc = scInit;
1902 else if (strcmp (name, ".fini") == 0)
1903 h->esym.asym.sc = scFini;
1904 else
1905 h->esym.asym.sc = scAbs;
1906 }
1907 }
1908
1909 h->esym.asym.reserved = 0;
1910 h->esym.asym.index = indexNil;
1911 }
1912
1913 if (h->root.root.type == bfd_link_hash_common)
1914 h->esym.asym.value = h->root.root.u.c.size;
1915 else if (h->root.root.type == bfd_link_hash_defined
1916 || h->root.root.type == bfd_link_hash_defweak)
1917 {
1918 if (h->esym.asym.sc == scCommon)
1919 h->esym.asym.sc = scBss;
1920 else if (h->esym.asym.sc == scSCommon)
1921 h->esym.asym.sc = scSBss;
1922
1923 sec = h->root.root.u.def.section;
1924 output_section = sec->output_section;
1925 if (output_section != NULL)
1926 h->esym.asym.value = (h->root.root.u.def.value
1927 + sec->output_offset
1928 + output_section->vma);
1929 else
1930 h->esym.asym.value = 0;
1931 }
f5385ebf 1932 else if (h->root.needs_plt)
b49e97c9
TS
1933 {
1934 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1935 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1936
1937 while (hd->root.root.type == bfd_link_hash_indirect)
1938 {
1939 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1940 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1941 }
1942
1943 if (!no_fn_stub)
1944 {
1945 /* Set type and value for a symbol with a function stub. */
1946 h->esym.asym.st = stProc;
1947 sec = hd->root.root.u.def.section;
1948 if (sec == NULL)
1949 h->esym.asym.value = 0;
1950 else
1951 {
1952 output_section = sec->output_section;
1953 if (output_section != NULL)
1954 h->esym.asym.value = (hd->root.plt.offset
1955 + sec->output_offset
1956 + output_section->vma);
1957 else
1958 h->esym.asym.value = 0;
1959 }
b49e97c9
TS
1960 }
1961 }
1962
1963 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1964 h->root.root.root.string,
1965 &h->esym))
1966 {
b34976b6
AM
1967 einfo->failed = TRUE;
1968 return FALSE;
b49e97c9
TS
1969 }
1970
b34976b6 1971 return TRUE;
b49e97c9
TS
1972}
1973
1974/* A comparison routine used to sort .gptab entries. */
1975
1976static int
9719ad41 1977gptab_compare (const void *p1, const void *p2)
b49e97c9 1978{
9719ad41
RS
1979 const Elf32_gptab *a1 = p1;
1980 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1981
1982 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1983}
1984\f
b15e6682 1985/* Functions to manage the got entry hash table. */
f4416af6
AO
1986
1987/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1988 hash number. */
1989
1990static INLINE hashval_t
9719ad41 1991mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1992{
1993#ifdef BFD64
1994 return addr + (addr >> 32);
1995#else
1996 return addr;
1997#endif
1998}
1999
2000/* got_entries only match if they're identical, except for gotidx, so
2001 use all fields to compute the hash, and compare the appropriate
2002 union members. */
2003
b15e6682 2004static hashval_t
9719ad41 2005mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
2006{
2007 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2008
38985a1c 2009 return entry->symndx
0f20cc35 2010 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 2011 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
2012 : entry->abfd->id
2013 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2014 : entry->d.h->root.root.root.hash));
b15e6682
AO
2015}
2016
2017static int
9719ad41 2018mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2019{
2020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2022
0f20cc35
DJ
2023 /* An LDM entry can only match another LDM entry. */
2024 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2025 return 0;
2026
b15e6682 2027 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
2028 && (! e1->abfd ? e1->d.address == e2->d.address
2029 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2030 : e1->d.h == e2->d.h);
2031}
2032
2033/* multi_got_entries are still a match in the case of global objects,
2034 even if the input bfd in which they're referenced differs, so the
2035 hash computation and compare functions are adjusted
2036 accordingly. */
2037
2038static hashval_t
9719ad41 2039mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2040{
2041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2042
2043 return entry->symndx
2044 + (! entry->abfd
2045 ? mips_elf_hash_bfd_vma (entry->d.address)
2046 : entry->symndx >= 0
0f20cc35
DJ
2047 ? ((entry->tls_type & GOT_TLS_LDM)
2048 ? (GOT_TLS_LDM << 17)
2049 : (entry->abfd->id
2050 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2051 : entry->d.h->root.root.root.hash);
2052}
2053
2054static int
9719ad41 2055mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2056{
2057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2059
0f20cc35
DJ
2060 /* Any two LDM entries match. */
2061 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2062 return 1;
2063
2064 /* Nothing else matches an LDM entry. */
2065 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2066 return 0;
2067
f4416af6
AO
2068 return e1->symndx == e2->symndx
2069 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2070 : e1->abfd == NULL || e2->abfd == NULL
2071 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2072 : e1->d.h == e2->d.h);
b15e6682 2073}
c224138d
RS
2074
2075static hashval_t
2076mips_got_page_entry_hash (const void *entry_)
2077{
2078 const struct mips_got_page_entry *entry;
2079
2080 entry = (const struct mips_got_page_entry *) entry_;
2081 return entry->abfd->id + entry->symndx;
2082}
2083
2084static int
2085mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2086{
2087 const struct mips_got_page_entry *entry1, *entry2;
2088
2089 entry1 = (const struct mips_got_page_entry *) entry1_;
2090 entry2 = (const struct mips_got_page_entry *) entry2_;
2091 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2092}
b15e6682 2093\f
0a44bf69
RS
2094/* Return the dynamic relocation section. If it doesn't exist, try to
2095 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2096 if creation fails. */
f4416af6
AO
2097
2098static asection *
0a44bf69 2099mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2100{
0a44bf69 2101 const char *dname;
f4416af6 2102 asection *sreloc;
0a44bf69 2103 bfd *dynobj;
f4416af6 2104
0a44bf69
RS
2105 dname = MIPS_ELF_REL_DYN_NAME (info);
2106 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2107 sreloc = bfd_get_section_by_name (dynobj, dname);
2108 if (sreloc == NULL && create_p)
2109 {
3496cb2a
L
2110 sreloc = bfd_make_section_with_flags (dynobj, dname,
2111 (SEC_ALLOC
2112 | SEC_LOAD
2113 | SEC_HAS_CONTENTS
2114 | SEC_IN_MEMORY
2115 | SEC_LINKER_CREATED
2116 | SEC_READONLY));
f4416af6 2117 if (sreloc == NULL
f4416af6 2118 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2119 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2120 return NULL;
2121 }
2122 return sreloc;
2123}
2124
b49e97c9
TS
2125/* Returns the GOT section for ABFD. */
2126
2127static asection *
9719ad41 2128mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2129{
f4416af6
AO
2130 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2131 if (sgot == NULL
2132 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2133 return NULL;
2134 return sgot;
b49e97c9
TS
2135}
2136
2137/* Returns the GOT information associated with the link indicated by
2138 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2139 section. */
2140
2141static struct mips_got_info *
9719ad41 2142mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2143{
2144 asection *sgot;
2145 struct mips_got_info *g;
2146
f4416af6 2147 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2148 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2149 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2150 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2151 BFD_ASSERT (g != NULL);
2152
2153 if (sgotp)
f4416af6
AO
2154 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2155
b49e97c9
TS
2156 return g;
2157}
2158
0f20cc35
DJ
2159/* Count the number of relocations needed for a TLS GOT entry, with
2160 access types from TLS_TYPE, and symbol H (or a local symbol if H
2161 is NULL). */
2162
2163static int
2164mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2165 struct elf_link_hash_entry *h)
2166{
2167 int indx = 0;
2168 int ret = 0;
2169 bfd_boolean need_relocs = FALSE;
2170 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2171
2172 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2173 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2174 indx = h->dynindx;
2175
2176 if ((info->shared || indx != 0)
2177 && (h == NULL
2178 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2179 || h->root.type != bfd_link_hash_undefweak))
2180 need_relocs = TRUE;
2181
2182 if (!need_relocs)
2183 return FALSE;
2184
2185 if (tls_type & GOT_TLS_GD)
2186 {
2187 ret++;
2188 if (indx != 0)
2189 ret++;
2190 }
2191
2192 if (tls_type & GOT_TLS_IE)
2193 ret++;
2194
2195 if ((tls_type & GOT_TLS_LDM) && info->shared)
2196 ret++;
2197
2198 return ret;
2199}
2200
2201/* Count the number of TLS relocations required for the GOT entry in
2202 ARG1, if it describes a local symbol. */
2203
2204static int
2205mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2206{
2207 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2208 struct mips_elf_count_tls_arg *arg = arg2;
2209
2210 if (entry->abfd != NULL && entry->symndx != -1)
2211 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2212
2213 return 1;
2214}
2215
2216/* Count the number of TLS GOT entries required for the global (or
2217 forced-local) symbol in ARG1. */
2218
2219static int
2220mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2221{
2222 struct mips_elf_link_hash_entry *hm
2223 = (struct mips_elf_link_hash_entry *) arg1;
2224 struct mips_elf_count_tls_arg *arg = arg2;
2225
2226 if (hm->tls_type & GOT_TLS_GD)
2227 arg->needed += 2;
2228 if (hm->tls_type & GOT_TLS_IE)
2229 arg->needed += 1;
2230
2231 return 1;
2232}
2233
2234/* Count the number of TLS relocations required for the global (or
2235 forced-local) symbol in ARG1. */
2236
2237static int
2238mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2239{
2240 struct mips_elf_link_hash_entry *hm
2241 = (struct mips_elf_link_hash_entry *) arg1;
2242 struct mips_elf_count_tls_arg *arg = arg2;
2243
2244 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2245
2246 return 1;
2247}
2248
2249/* Output a simple dynamic relocation into SRELOC. */
2250
2251static void
2252mips_elf_output_dynamic_relocation (bfd *output_bfd,
2253 asection *sreloc,
2254 unsigned long indx,
2255 int r_type,
2256 bfd_vma offset)
2257{
2258 Elf_Internal_Rela rel[3];
2259
2260 memset (rel, 0, sizeof (rel));
2261
2262 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2263 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2264
2265 if (ABI_64_P (output_bfd))
2266 {
2267 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2268 (output_bfd, &rel[0],
2269 (sreloc->contents
2270 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2271 }
2272 else
2273 bfd_elf32_swap_reloc_out
2274 (output_bfd, &rel[0],
2275 (sreloc->contents
2276 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2277 ++sreloc->reloc_count;
2278}
2279
2280/* Initialize a set of TLS GOT entries for one symbol. */
2281
2282static void
2283mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2284 unsigned char *tls_type_p,
2285 struct bfd_link_info *info,
2286 struct mips_elf_link_hash_entry *h,
2287 bfd_vma value)
2288{
2289 int indx;
2290 asection *sreloc, *sgot;
2291 bfd_vma offset, offset2;
2292 bfd *dynobj;
2293 bfd_boolean need_relocs = FALSE;
2294
2295 dynobj = elf_hash_table (info)->dynobj;
2296 sgot = mips_elf_got_section (dynobj, FALSE);
2297
2298 indx = 0;
2299 if (h != NULL)
2300 {
2301 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2302
2303 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2304 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2305 indx = h->root.dynindx;
2306 }
2307
2308 if (*tls_type_p & GOT_TLS_DONE)
2309 return;
2310
2311 if ((info->shared || indx != 0)
2312 && (h == NULL
2313 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2314 || h->root.type != bfd_link_hash_undefweak))
2315 need_relocs = TRUE;
2316
2317 /* MINUS_ONE means the symbol is not defined in this object. It may not
2318 be defined at all; assume that the value doesn't matter in that
2319 case. Otherwise complain if we would use the value. */
2320 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2321 || h->root.root.type == bfd_link_hash_undefweak);
2322
2323 /* Emit necessary relocations. */
0a44bf69 2324 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2325
2326 /* General Dynamic. */
2327 if (*tls_type_p & GOT_TLS_GD)
2328 {
2329 offset = got_offset;
2330 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2331
2332 if (need_relocs)
2333 {
2334 mips_elf_output_dynamic_relocation
2335 (abfd, sreloc, indx,
2336 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2337 sgot->output_offset + sgot->output_section->vma + offset);
2338
2339 if (indx)
2340 mips_elf_output_dynamic_relocation
2341 (abfd, sreloc, indx,
2342 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2343 sgot->output_offset + sgot->output_section->vma + offset2);
2344 else
2345 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2346 sgot->contents + offset2);
2347 }
2348 else
2349 {
2350 MIPS_ELF_PUT_WORD (abfd, 1,
2351 sgot->contents + offset);
2352 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2353 sgot->contents + offset2);
2354 }
2355
2356 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2357 }
2358
2359 /* Initial Exec model. */
2360 if (*tls_type_p & GOT_TLS_IE)
2361 {
2362 offset = got_offset;
2363
2364 if (need_relocs)
2365 {
2366 if (indx == 0)
2367 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2368 sgot->contents + offset);
2369 else
2370 MIPS_ELF_PUT_WORD (abfd, 0,
2371 sgot->contents + offset);
2372
2373 mips_elf_output_dynamic_relocation
2374 (abfd, sreloc, indx,
2375 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2376 sgot->output_offset + sgot->output_section->vma + offset);
2377 }
2378 else
2379 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2380 sgot->contents + offset);
2381 }
2382
2383 if (*tls_type_p & GOT_TLS_LDM)
2384 {
2385 /* The initial offset is zero, and the LD offsets will include the
2386 bias by DTP_OFFSET. */
2387 MIPS_ELF_PUT_WORD (abfd, 0,
2388 sgot->contents + got_offset
2389 + MIPS_ELF_GOT_SIZE (abfd));
2390
2391 if (!info->shared)
2392 MIPS_ELF_PUT_WORD (abfd, 1,
2393 sgot->contents + got_offset);
2394 else
2395 mips_elf_output_dynamic_relocation
2396 (abfd, sreloc, indx,
2397 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2398 sgot->output_offset + sgot->output_section->vma + got_offset);
2399 }
2400
2401 *tls_type_p |= GOT_TLS_DONE;
2402}
2403
2404/* Return the GOT index to use for a relocation of type R_TYPE against
2405 a symbol accessed using TLS_TYPE models. The GOT entries for this
2406 symbol in this GOT start at GOT_INDEX. This function initializes the
2407 GOT entries and corresponding relocations. */
2408
2409static bfd_vma
2410mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2411 int r_type, struct bfd_link_info *info,
2412 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2413{
2414 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2415 || r_type == R_MIPS_TLS_LDM);
2416
2417 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2418
2419 if (r_type == R_MIPS_TLS_GOTTPREL)
2420 {
2421 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2422 if (*tls_type & GOT_TLS_GD)
2423 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2424 else
2425 return got_index;
2426 }
2427
2428 if (r_type == R_MIPS_TLS_GD)
2429 {
2430 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2431 return got_index;
2432 }
2433
2434 if (r_type == R_MIPS_TLS_LDM)
2435 {
2436 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2437 return got_index;
2438 }
2439
2440 return got_index;
2441}
2442
0a44bf69
RS
2443/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2444 for global symbol H. .got.plt comes before the GOT, so the offset
2445 will be negative. */
2446
2447static bfd_vma
2448mips_elf_gotplt_index (struct bfd_link_info *info,
2449 struct elf_link_hash_entry *h)
2450{
2451 bfd_vma plt_index, got_address, got_value;
2452 struct mips_elf_link_hash_table *htab;
2453
2454 htab = mips_elf_hash_table (info);
2455 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2456
2457 /* Calculate the index of the symbol's PLT entry. */
2458 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2459
2460 /* Calculate the address of the associated .got.plt entry. */
2461 got_address = (htab->sgotplt->output_section->vma
2462 + htab->sgotplt->output_offset
2463 + plt_index * 4);
2464
2465 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2466 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2467 + htab->root.hgot->root.u.def.section->output_offset
2468 + htab->root.hgot->root.u.def.value);
2469
2470 return got_address - got_value;
2471}
2472
5c18022e 2473/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2474 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2475 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2476 offset can be found. */
b49e97c9
TS
2477
2478static bfd_vma
9719ad41 2479mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2480 bfd_vma value, unsigned long r_symndx,
0f20cc35 2481 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2482{
2483 asection *sgot;
2484 struct mips_got_info *g;
b15e6682 2485 struct mips_got_entry *entry;
b49e97c9
TS
2486
2487 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2488
0a44bf69 2489 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2490 value, r_symndx, h, r_type);
0f20cc35 2491 if (!entry)
b15e6682 2492 return MINUS_ONE;
0f20cc35
DJ
2493
2494 if (TLS_RELOC_P (r_type))
ead49a57
RS
2495 {
2496 if (entry->symndx == -1 && g->next == NULL)
2497 /* A type (3) entry in the single-GOT case. We use the symbol's
2498 hash table entry to track the index. */
2499 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2500 r_type, info, h, value);
2501 else
2502 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2503 r_type, info, h, value);
2504 }
0f20cc35
DJ
2505 else
2506 return entry->gotidx;
b49e97c9
TS
2507}
2508
2509/* Returns the GOT index for the global symbol indicated by H. */
2510
2511static bfd_vma
0f20cc35
DJ
2512mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2513 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2514{
2515 bfd_vma index;
2516 asection *sgot;
f4416af6 2517 struct mips_got_info *g, *gg;
d0c7ff07 2518 long global_got_dynindx = 0;
b49e97c9 2519
f4416af6
AO
2520 gg = g = mips_elf_got_info (abfd, &sgot);
2521 if (g->bfd2got && ibfd)
2522 {
2523 struct mips_got_entry e, *p;
143d77c5 2524
f4416af6
AO
2525 BFD_ASSERT (h->dynindx >= 0);
2526
2527 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2528 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2529 {
2530 e.abfd = ibfd;
2531 e.symndx = -1;
2532 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2533 e.tls_type = 0;
f4416af6 2534
9719ad41 2535 p = htab_find (g->got_entries, &e);
f4416af6
AO
2536
2537 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2538
2539 if (TLS_RELOC_P (r_type))
2540 {
2541 bfd_vma value = MINUS_ONE;
2542 if ((h->root.type == bfd_link_hash_defined
2543 || h->root.type == bfd_link_hash_defweak)
2544 && h->root.u.def.section->output_section)
2545 value = (h->root.u.def.value
2546 + h->root.u.def.section->output_offset
2547 + h->root.u.def.section->output_section->vma);
2548
2549 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2550 info, e.d.h, value);
2551 }
2552 else
2553 return p->gotidx;
f4416af6
AO
2554 }
2555 }
2556
2557 if (gg->global_gotsym != NULL)
2558 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2559
0f20cc35
DJ
2560 if (TLS_RELOC_P (r_type))
2561 {
2562 struct mips_elf_link_hash_entry *hm
2563 = (struct mips_elf_link_hash_entry *) h;
2564 bfd_vma value = MINUS_ONE;
2565
2566 if ((h->root.type == bfd_link_hash_defined
2567 || h->root.type == bfd_link_hash_defweak)
2568 && h->root.u.def.section->output_section)
2569 value = (h->root.u.def.value
2570 + h->root.u.def.section->output_offset
2571 + h->root.u.def.section->output_section->vma);
2572
2573 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2574 r_type, info, hm, value);
2575 }
2576 else
2577 {
2578 /* Once we determine the global GOT entry with the lowest dynamic
2579 symbol table index, we must put all dynamic symbols with greater
2580 indices into the GOT. That makes it easy to calculate the GOT
2581 offset. */
2582 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2583 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2584 * MIPS_ELF_GOT_SIZE (abfd));
2585 }
eea6121a 2586 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2587
2588 return index;
2589}
2590
5c18022e
RS
2591/* Find a GOT page entry that points to within 32KB of VALUE. These
2592 entries are supposed to be placed at small offsets in the GOT, i.e.,
2593 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2594 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2595 offset of the GOT entry from VALUE. */
b49e97c9
TS
2596
2597static bfd_vma
9719ad41 2598mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2599 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2600{
2601 asection *sgot;
2602 struct mips_got_info *g;
0a44bf69 2603 bfd_vma page, index;
b15e6682 2604 struct mips_got_entry *entry;
b49e97c9
TS
2605
2606 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2607
0a44bf69
RS
2608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2610 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2611
b15e6682
AO
2612 if (!entry)
2613 return MINUS_ONE;
143d77c5 2614
b15e6682 2615 index = entry->gotidx;
b49e97c9
TS
2616
2617 if (offsetp)
f4416af6 2618 *offsetp = value - entry->d.address;
b49e97c9
TS
2619
2620 return index;
2621}
2622
5c18022e 2623/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2624 EXTERNAL is true if the relocation was against a global symbol
2625 that has been forced local. */
b49e97c9
TS
2626
2627static bfd_vma
9719ad41 2628mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2629 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2630{
2631 asection *sgot;
2632 struct mips_got_info *g;
b15e6682 2633 struct mips_got_entry *entry;
b49e97c9 2634
0a44bf69
RS
2635 /* GOT16 relocations against local symbols are followed by a LO16
2636 relocation; those against global symbols are not. Thus if the
2637 symbol was originally local, the GOT16 relocation should load the
2638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2639 if (! external)
0a44bf69 2640 value = mips_elf_high (value) << 16;
b49e97c9
TS
2641
2642 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2643
0a44bf69 2644 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2645 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2646 if (entry)
2647 return entry->gotidx;
2648 else
2649 return MINUS_ONE;
b49e97c9
TS
2650}
2651
2652/* Returns the offset for the entry at the INDEXth position
2653 in the GOT. */
2654
2655static bfd_vma
9719ad41
RS
2656mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2657 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2658{
2659 asection *sgot;
2660 bfd_vma gp;
f4416af6 2661 struct mips_got_info *g;
b49e97c9 2662
f4416af6
AO
2663 g = mips_elf_got_info (dynobj, &sgot);
2664 gp = _bfd_get_gp_value (output_bfd)
2665 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2666
f4416af6 2667 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2668}
2669
0a44bf69
RS
2670/* Create and return a local GOT entry for VALUE, which was calculated
2671 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2672 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2673 instead. */
b49e97c9 2674
b15e6682 2675static struct mips_got_entry *
0a44bf69
RS
2676mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2677 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2678 asection *sgot, bfd_vma value,
2679 unsigned long r_symndx,
0f20cc35
DJ
2680 struct mips_elf_link_hash_entry *h,
2681 int r_type)
b49e97c9 2682{
b15e6682 2683 struct mips_got_entry entry, **loc;
f4416af6 2684 struct mips_got_info *g;
0a44bf69
RS
2685 struct mips_elf_link_hash_table *htab;
2686
2687 htab = mips_elf_hash_table (info);
b15e6682 2688
f4416af6
AO
2689 entry.abfd = NULL;
2690 entry.symndx = -1;
2691 entry.d.address = value;
0f20cc35 2692 entry.tls_type = 0;
f4416af6
AO
2693
2694 g = mips_elf_got_for_ibfd (gg, ibfd);
2695 if (g == NULL)
2696 {
2697 g = mips_elf_got_for_ibfd (gg, abfd);
2698 BFD_ASSERT (g != NULL);
2699 }
b15e6682 2700
0f20cc35
DJ
2701 /* We might have a symbol, H, if it has been forced local. Use the
2702 global entry then. It doesn't matter whether an entry is local
2703 or global for TLS, since the dynamic linker does not
2704 automatically relocate TLS GOT entries. */
a008ac03 2705 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2706 if (TLS_RELOC_P (r_type))
2707 {
2708 struct mips_got_entry *p;
2709
2710 entry.abfd = ibfd;
2711 if (r_type == R_MIPS_TLS_LDM)
2712 {
2713 entry.tls_type = GOT_TLS_LDM;
2714 entry.symndx = 0;
2715 entry.d.addend = 0;
2716 }
2717 else if (h == NULL)
2718 {
2719 entry.symndx = r_symndx;
2720 entry.d.addend = 0;
2721 }
2722 else
2723 entry.d.h = h;
2724
2725 p = (struct mips_got_entry *)
2726 htab_find (g->got_entries, &entry);
2727
2728 BFD_ASSERT (p);
2729 return p;
2730 }
2731
b15e6682
AO
2732 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2733 INSERT);
2734 if (*loc)
2735 return *loc;
143d77c5 2736
b15e6682 2737 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2738 entry.tls_type = 0;
b15e6682
AO
2739
2740 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2741
2742 if (! *loc)
2743 return NULL;
143d77c5 2744
b15e6682
AO
2745 memcpy (*loc, &entry, sizeof entry);
2746
8275b357 2747 if (g->assigned_gotno > g->local_gotno)
b49e97c9 2748 {
f4416af6 2749 (*loc)->gotidx = -1;
b49e97c9
TS
2750 /* We didn't allocate enough space in the GOT. */
2751 (*_bfd_error_handler)
2752 (_("not enough GOT space for local GOT entries"));
2753 bfd_set_error (bfd_error_bad_value);
b15e6682 2754 return NULL;
b49e97c9
TS
2755 }
2756
2757 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2758 (sgot->contents + entry.gotidx));
2759
5c18022e 2760 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2761 if (htab->is_vxworks)
2762 {
2763 Elf_Internal_Rela outrel;
5c18022e 2764 asection *s;
0a44bf69
RS
2765 bfd_byte *loc;
2766 bfd_vma got_address;
0a44bf69
RS
2767
2768 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2769 got_address = (sgot->output_section->vma
2770 + sgot->output_offset
2771 + entry.gotidx);
2772
2773 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2774 outrel.r_offset = got_address;
5c18022e
RS
2775 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2776 outrel.r_addend = value;
0a44bf69
RS
2777 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2778 }
2779
b15e6682 2780 return *loc;
b49e97c9
TS
2781}
2782
2783/* Sort the dynamic symbol table so that symbols that need GOT entries
2784 appear towards the end. This reduces the amount of GOT space
2785 required. MAX_LOCAL is used to set the number of local symbols
2786 known to be in the dynamic symbol table. During
2787 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2788 section symbols are added and the count is higher. */
2789
b34976b6 2790static bfd_boolean
9719ad41 2791mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2792{
2793 struct mips_elf_hash_sort_data hsd;
2794 struct mips_got_info *g;
2795 bfd *dynobj;
2796
2797 dynobj = elf_hash_table (info)->dynobj;
2798
f4416af6
AO
2799 g = mips_elf_got_info (dynobj, NULL);
2800
b49e97c9 2801 hsd.low = NULL;
143d77c5 2802 hsd.max_unref_got_dynindx =
f4416af6
AO
2803 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2804 /* In the multi-got case, assigned_gotno of the master got_info
2805 indicate the number of entries that aren't referenced in the
2806 primary GOT, but that must have entries because there are
2807 dynamic relocations that reference it. Since they aren't
2808 referenced, we move them to the end of the GOT, so that they
2809 don't prevent other entries that are referenced from getting
2810 too large offsets. */
2811 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2812 hsd.max_non_got_dynindx = max_local;
2813 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2814 elf_hash_table (info)),
2815 mips_elf_sort_hash_table_f,
2816 &hsd);
2817
2818 /* There should have been enough room in the symbol table to
44c410de 2819 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2820 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2821 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2822 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2823
2824 /* Now we know which dynamic symbol has the lowest dynamic symbol
2825 table index in the GOT. */
b49e97c9
TS
2826 g->global_gotsym = hsd.low;
2827
b34976b6 2828 return TRUE;
b49e97c9
TS
2829}
2830
2831/* If H needs a GOT entry, assign it the highest available dynamic
2832 index. Otherwise, assign it the lowest available dynamic
2833 index. */
2834
b34976b6 2835static bfd_boolean
9719ad41 2836mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2837{
9719ad41 2838 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2839
2840 if (h->root.root.type == bfd_link_hash_warning)
2841 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2842
2843 /* Symbols without dynamic symbol table entries aren't interesting
2844 at all. */
2845 if (h->root.dynindx == -1)
b34976b6 2846 return TRUE;
b49e97c9 2847
f4416af6
AO
2848 /* Global symbols that need GOT entries that are not explicitly
2849 referenced are marked with got offset 2. Those that are
2850 referenced get a 1, and those that don't need GOT entries get
720199d6
DJ
2851 -1. Forced local symbols may also be marked with got offset 1,
2852 but are never given global GOT entries. */
f4416af6
AO
2853 if (h->root.got.offset == 2)
2854 {
0f20cc35
DJ
2855 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2856
f4416af6
AO
2857 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2858 hsd->low = (struct elf_link_hash_entry *) h;
2859 h->root.dynindx = hsd->max_unref_got_dynindx++;
2860 }
720199d6 2861 else if (h->root.got.offset != 1 || h->forced_local)
b49e97c9
TS
2862 h->root.dynindx = hsd->max_non_got_dynindx++;
2863 else
2864 {
0f20cc35
DJ
2865 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2866
b49e97c9
TS
2867 h->root.dynindx = --hsd->min_got_dynindx;
2868 hsd->low = (struct elf_link_hash_entry *) h;
2869 }
2870
b34976b6 2871 return TRUE;
b49e97c9
TS
2872}
2873
2874/* If H is a symbol that needs a global GOT entry, but has a dynamic
2875 symbol table index lower than any we've seen to date, record it for
2876 posterity. */
2877
b34976b6 2878static bfd_boolean
9719ad41
RS
2879mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2880 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2881 struct mips_got_info *g,
2882 unsigned char tls_flag)
b49e97c9 2883{
f4416af6
AO
2884 struct mips_got_entry entry, **loc;
2885
b49e97c9
TS
2886 /* A global symbol in the GOT must also be in the dynamic symbol
2887 table. */
7c5fcef7
L
2888 if (h->dynindx == -1)
2889 {
2890 switch (ELF_ST_VISIBILITY (h->other))
2891 {
2892 case STV_INTERNAL:
2893 case STV_HIDDEN:
b34976b6 2894 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2895 break;
2896 }
c152c796 2897 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2898 return FALSE;
7c5fcef7 2899 }
b49e97c9 2900
86324f90
EC
2901 /* Make sure we have a GOT to put this entry into. */
2902 BFD_ASSERT (g != NULL);
2903
f4416af6
AO
2904 entry.abfd = abfd;
2905 entry.symndx = -1;
2906 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2907 entry.tls_type = 0;
f4416af6
AO
2908
2909 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2910 INSERT);
2911
b49e97c9
TS
2912 /* If we've already marked this entry as needing GOT space, we don't
2913 need to do it again. */
f4416af6 2914 if (*loc)
0f20cc35
DJ
2915 {
2916 (*loc)->tls_type |= tls_flag;
2917 return TRUE;
2918 }
f4416af6
AO
2919
2920 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2921
2922 if (! *loc)
2923 return FALSE;
143d77c5 2924
f4416af6 2925 entry.gotidx = -1;
0f20cc35
DJ
2926 entry.tls_type = tls_flag;
2927
f4416af6
AO
2928 memcpy (*loc, &entry, sizeof entry);
2929
b49e97c9 2930 if (h->got.offset != MINUS_ONE)
b34976b6 2931 return TRUE;
b49e97c9 2932
0f20cc35 2933 if (tls_flag == 0)
8275b357
RS
2934 {
2935 /* By setting this to a value other than -1, we are indicating that
2936 there needs to be a GOT entry for H. Avoid using zero, as the
2937 generic ELF copy_indirect_symbol tests for <= 0. */
2938 h->got.offset = 1;
2939 if (h->forced_local)
2940 g->local_gotno++;
2941 }
b49e97c9 2942
b34976b6 2943 return TRUE;
b49e97c9 2944}
f4416af6
AO
2945
2946/* Reserve space in G for a GOT entry containing the value of symbol
2947 SYMNDX in input bfd ABDF, plus ADDEND. */
2948
2949static bfd_boolean
9719ad41 2950mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2951 struct mips_got_info *g,
2952 unsigned char tls_flag)
f4416af6
AO
2953{
2954 struct mips_got_entry entry, **loc;
2955
2956 entry.abfd = abfd;
2957 entry.symndx = symndx;
2958 entry.d.addend = addend;
0f20cc35 2959 entry.tls_type = tls_flag;
f4416af6
AO
2960 loc = (struct mips_got_entry **)
2961 htab_find_slot (g->got_entries, &entry, INSERT);
2962
2963 if (*loc)
0f20cc35
DJ
2964 {
2965 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2966 {
2967 g->tls_gotno += 2;
2968 (*loc)->tls_type |= tls_flag;
2969 }
2970 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2971 {
2972 g->tls_gotno += 1;
2973 (*loc)->tls_type |= tls_flag;
2974 }
2975 return TRUE;
2976 }
f4416af6 2977
0f20cc35
DJ
2978 if (tls_flag != 0)
2979 {
2980 entry.gotidx = -1;
2981 entry.tls_type = tls_flag;
2982 if (tls_flag == GOT_TLS_IE)
2983 g->tls_gotno += 1;
2984 else if (tls_flag == GOT_TLS_GD)
2985 g->tls_gotno += 2;
2986 else if (g->tls_ldm_offset == MINUS_ONE)
2987 {
2988 g->tls_ldm_offset = MINUS_TWO;
2989 g->tls_gotno += 2;
2990 }
2991 }
2992 else
2993 {
2994 entry.gotidx = g->local_gotno++;
2995 entry.tls_type = 0;
2996 }
f4416af6
AO
2997
2998 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2999
3000 if (! *loc)
3001 return FALSE;
143d77c5 3002
f4416af6
AO
3003 memcpy (*loc, &entry, sizeof entry);
3004
3005 return TRUE;
3006}
c224138d
RS
3007
3008/* Return the maximum number of GOT page entries required for RANGE. */
3009
3010static bfd_vma
3011mips_elf_pages_for_range (const struct mips_got_page_range *range)
3012{
3013 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3014}
3015
3a3b6725
DJ
3016/* Record that ABFD has a page relocation against symbol SYMNDX and
3017 that ADDEND is the addend for that relocation. G is the GOT
3018 information. This function creates an upper bound on the number of
3019 GOT slots required; no attempt is made to combine references to
3020 non-overridable global symbols across multiple input files. */
c224138d
RS
3021
3022static bfd_boolean
3023mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
3024 struct mips_got_info *g)
3025{
3026 struct mips_got_page_entry lookup, *entry;
3027 struct mips_got_page_range **range_ptr, *range;
3028 bfd_vma old_pages, new_pages;
3029 void **loc;
3030
3031 /* Find the mips_got_page_entry hash table entry for this symbol. */
3032 lookup.abfd = abfd;
3033 lookup.symndx = symndx;
3034 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3035 if (loc == NULL)
3036 return FALSE;
3037
3038 /* Create a mips_got_page_entry if this is the first time we've
3039 seen the symbol. */
3040 entry = (struct mips_got_page_entry *) *loc;
3041 if (!entry)
3042 {
3043 entry = bfd_alloc (abfd, sizeof (*entry));
3044 if (!entry)
3045 return FALSE;
3046
3047 entry->abfd = abfd;
3048 entry->symndx = symndx;
3049 entry->ranges = NULL;
3050 entry->num_pages = 0;
3051 *loc = entry;
3052 }
3053
3054 /* Skip over ranges whose maximum extent cannot share a page entry
3055 with ADDEND. */
3056 range_ptr = &entry->ranges;
3057 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3058 range_ptr = &(*range_ptr)->next;
3059
3060 /* If we scanned to the end of the list, or found a range whose
3061 minimum extent cannot share a page entry with ADDEND, create
3062 a new singleton range. */
3063 range = *range_ptr;
3064 if (!range || addend < range->min_addend - 0xffff)
3065 {
3066 range = bfd_alloc (abfd, sizeof (*range));
3067 if (!range)
3068 return FALSE;
3069
3070 range->next = *range_ptr;
3071 range->min_addend = addend;
3072 range->max_addend = addend;
3073
3074 *range_ptr = range;
3075 entry->num_pages++;
3076 g->page_gotno++;
3077 return TRUE;
3078 }
3079
3080 /* Remember how many pages the old range contributed. */
3081 old_pages = mips_elf_pages_for_range (range);
3082
3083 /* Update the ranges. */
3084 if (addend < range->min_addend)
3085 range->min_addend = addend;
3086 else if (addend > range->max_addend)
3087 {
3088 if (range->next && addend >= range->next->min_addend - 0xffff)
3089 {
3090 old_pages += mips_elf_pages_for_range (range->next);
3091 range->max_addend = range->next->max_addend;
3092 range->next = range->next->next;
3093 }
3094 else
3095 range->max_addend = addend;
3096 }
3097
3098 /* Record any change in the total estimate. */
3099 new_pages = mips_elf_pages_for_range (range);
3100 if (old_pages != new_pages)
3101 {
3102 entry->num_pages += new_pages - old_pages;
3103 g->page_gotno += new_pages - old_pages;
3104 }
3105
3106 return TRUE;
3107}
f4416af6
AO
3108\f
3109/* Compute the hash value of the bfd in a bfd2got hash entry. */
3110
3111static hashval_t
9719ad41 3112mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
3113{
3114 const struct mips_elf_bfd2got_hash *entry
3115 = (struct mips_elf_bfd2got_hash *)entry_;
3116
3117 return entry->bfd->id;
3118}
3119
3120/* Check whether two hash entries have the same bfd. */
3121
3122static int
9719ad41 3123mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3124{
3125 const struct mips_elf_bfd2got_hash *e1
3126 = (const struct mips_elf_bfd2got_hash *)entry1;
3127 const struct mips_elf_bfd2got_hash *e2
3128 = (const struct mips_elf_bfd2got_hash *)entry2;
3129
3130 return e1->bfd == e2->bfd;
3131}
3132
bad36eac 3133/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
3134 be the master GOT data. */
3135
3136static struct mips_got_info *
9719ad41 3137mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3138{
3139 struct mips_elf_bfd2got_hash e, *p;
3140
3141 if (! g->bfd2got)
3142 return g;
3143
3144 e.bfd = ibfd;
9719ad41 3145 p = htab_find (g->bfd2got, &e);
f4416af6
AO
3146 return p ? p->g : NULL;
3147}
3148
c224138d
RS
3149/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3150 Return NULL if an error occured. */
f4416af6 3151
c224138d
RS
3152static struct mips_got_info *
3153mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3154 bfd *input_bfd)
f4416af6 3155{
f4416af6 3156 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
c224138d 3157 struct mips_got_info *g;
f4416af6 3158 void **bfdgotp;
143d77c5 3159
c224138d 3160 bfdgot_entry.bfd = input_bfd;
f4416af6 3161 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 3162 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 3163
c224138d 3164 if (bfdgot == NULL)
f4416af6 3165 {
c224138d
RS
3166 bfdgot = ((struct mips_elf_bfd2got_hash *)
3167 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 3168 if (bfdgot == NULL)
c224138d 3169 return NULL;
f4416af6
AO
3170
3171 *bfdgotp = bfdgot;
3172
c224138d
RS
3173 g = ((struct mips_got_info *)
3174 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
f4416af6 3175 if (g == NULL)
c224138d
RS
3176 return NULL;
3177
3178 bfdgot->bfd = input_bfd;
3179 bfdgot->g = g;
f4416af6
AO
3180
3181 g->global_gotsym = NULL;
3182 g->global_gotno = 0;
3183 g->local_gotno = 0;
c224138d 3184 g->page_gotno = 0;
f4416af6 3185 g->assigned_gotno = -1;
0f20cc35
DJ
3186 g->tls_gotno = 0;
3187 g->tls_assigned_gotno = 0;
3188 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3189 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3190 mips_elf_multi_got_entry_eq, NULL);
f4416af6 3191 if (g->got_entries == NULL)
c224138d
RS
3192 return NULL;
3193
3194 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3195 mips_got_page_entry_eq, NULL);
3196 if (g->got_page_entries == NULL)
3197 return NULL;
f4416af6
AO
3198
3199 g->bfd2got = NULL;
3200 g->next = NULL;
3201 }
3202
c224138d
RS
3203 return bfdgot->g;
3204}
3205
3206/* A htab_traverse callback for the entries in the master got.
3207 Create one separate got for each bfd that has entries in the global
3208 got, such that we can tell how many local and global entries each
3209 bfd requires. */
3210
3211static int
3212mips_elf_make_got_per_bfd (void **entryp, void *p)
3213{
3214 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3215 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3216 struct mips_got_info *g;
3217
3218 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3219 if (g == NULL)
3220 {
3221 arg->obfd = NULL;
3222 return 0;
3223 }
3224
f4416af6
AO
3225 /* Insert the GOT entry in the bfd's got entry hash table. */
3226 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3227 if (*entryp != NULL)
3228 return 1;
143d77c5 3229
f4416af6
AO
3230 *entryp = entry;
3231
0f20cc35
DJ
3232 if (entry->tls_type)
3233 {
3234 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3235 g->tls_gotno += 2;
3236 if (entry->tls_type & GOT_TLS_IE)
3237 g->tls_gotno += 1;
3238 }
3239 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3240 ++g->local_gotno;
3241 else
3242 ++g->global_gotno;
3243
3244 return 1;
3245}
3246
c224138d
RS
3247/* A htab_traverse callback for the page entries in the master got.
3248 Associate each page entry with the bfd's got. */
3249
3250static int
3251mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3252{
3253 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3254 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3255 struct mips_got_info *g;
3256
3257 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3258 if (g == NULL)
3259 {
3260 arg->obfd = NULL;
3261 return 0;
3262 }
3263
3264 /* Insert the GOT entry in the bfd's got entry hash table. */
3265 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3266 if (*entryp != NULL)
3267 return 1;
3268
3269 *entryp = entry;
3270 g->page_gotno += entry->num_pages;
3271 return 1;
3272}
3273
3274/* Consider merging the got described by BFD2GOT with TO, using the
3275 information given by ARG. Return -1 if this would lead to overflow,
3276 1 if they were merged successfully, and 0 if a merge failed due to
3277 lack of memory. (These values are chosen so that nonnegative return
3278 values can be returned by a htab_traverse callback.) */
3279
3280static int
3281mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3282 struct mips_got_info *to,
3283 struct mips_elf_got_per_bfd_arg *arg)
3284{
3285 struct mips_got_info *from = bfd2got->g;
3286 unsigned int estimate;
3287
3288 /* Work out how many page entries we would need for the combined GOT. */
3289 estimate = arg->max_pages;
3290 if (estimate >= from->page_gotno + to->page_gotno)
3291 estimate = from->page_gotno + to->page_gotno;
3292
3293 /* And conservatively estimate how many local, global and TLS entries
3294 would be needed. */
3295 estimate += (from->local_gotno
3296 + from->global_gotno
3297 + from->tls_gotno
3298 + to->local_gotno
3299 + to->global_gotno
3300 + to->tls_gotno);
3301
3302 /* Bail out if the combined GOT might be too big. */
3303 if (estimate > arg->max_count)
3304 return -1;
3305
3306 /* Commit to the merge. Record that TO is now the bfd for this got. */
3307 bfd2got->g = to;
3308
3309 /* Transfer the bfd's got information from FROM to TO. */
3310 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3311 if (arg->obfd == NULL)
3312 return 0;
3313
3314 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3315 if (arg->obfd == NULL)
3316 return 0;
3317
3318 /* We don't have to worry about releasing memory of the actual
3319 got entries, since they're all in the master got_entries hash
3320 table anyway. */
3321 htab_delete (from->got_entries);
3322 htab_delete (from->got_page_entries);
3323 return 1;
3324}
3325
f4416af6
AO
3326/* Attempt to merge gots of different input bfds. Try to use as much
3327 as possible of the primary got, since it doesn't require explicit
3328 dynamic relocations, but don't use bfds that would reference global
3329 symbols out of the addressable range. Failing the primary got,
3330 attempt to merge with the current got, or finish the current got
3331 and then make make the new got current. */
3332
3333static int
9719ad41 3334mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3335{
3336 struct mips_elf_bfd2got_hash *bfd2got
3337 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3338 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
3339 struct mips_got_info *g;
3340 unsigned int estimate;
3341 int result;
3342
3343 g = bfd2got->g;
3344
3345 /* Work out the number of page, local and TLS entries. */
3346 estimate = arg->max_pages;
3347 if (estimate > g->page_gotno)
3348 estimate = g->page_gotno;
3349 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
3350
3351 /* We place TLS GOT entries after both locals and globals. The globals
3352 for the primary GOT may overflow the normal GOT size limit, so be
3353 sure not to merge a GOT which requires TLS with the primary GOT in that
3354 case. This doesn't affect non-primary GOTs. */
c224138d 3355 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 3356
c224138d 3357 if (estimate <= arg->max_count)
f4416af6 3358 {
c224138d
RS
3359 /* If we don't have a primary GOT, use it as
3360 a starting point for the primary GOT. */
3361 if (!arg->primary)
3362 {
3363 arg->primary = bfd2got->g;
3364 return 1;
3365 }
f4416af6 3366
c224138d
RS
3367 /* Try merging with the primary GOT. */
3368 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3369 if (result >= 0)
3370 return result;
f4416af6 3371 }
c224138d 3372
f4416af6 3373 /* If we can merge with the last-created got, do it. */
c224138d 3374 if (arg->current)
f4416af6 3375 {
c224138d
RS
3376 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3377 if (result >= 0)
3378 return result;
f4416af6 3379 }
c224138d 3380
f4416af6
AO
3381 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3382 fits; if it turns out that it doesn't, we'll get relocation
3383 overflows anyway. */
c224138d
RS
3384 g->next = arg->current;
3385 arg->current = g;
0f20cc35
DJ
3386
3387 return 1;
3388}
3389
ead49a57
RS
3390/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3391 is null iff there is just a single GOT. */
0f20cc35
DJ
3392
3393static int
3394mips_elf_initialize_tls_index (void **entryp, void *p)
3395{
3396 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3397 struct mips_got_info *g = p;
ead49a57 3398 bfd_vma next_index;
cbf2cba4 3399 unsigned char tls_type;
0f20cc35
DJ
3400
3401 /* We're only interested in TLS symbols. */
3402 if (entry->tls_type == 0)
3403 return 1;
3404
ead49a57
RS
3405 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3406
3407 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3408 {
ead49a57
RS
3409 /* A type (3) got entry in the single-GOT case. We use the symbol's
3410 hash table entry to track its index. */
3411 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3412 return 1;
3413 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3414 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3415 tls_type = entry->d.h->tls_type;
ead49a57
RS
3416 }
3417 else
3418 {
3419 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3420 {
ead49a57
RS
3421 /* There are separate mips_got_entry objects for each input bfd
3422 that requires an LDM entry. Make sure that all LDM entries in
3423 a GOT resolve to the same index. */
3424 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3425 {
ead49a57 3426 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3427 return 1;
3428 }
ead49a57 3429 g->tls_ldm_offset = next_index;
0f20cc35 3430 }
ead49a57 3431 entry->gotidx = next_index;
cbf2cba4 3432 tls_type = entry->tls_type;
f4416af6
AO
3433 }
3434
ead49a57 3435 /* Account for the entries we've just allocated. */
cbf2cba4 3436 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3437 g->tls_assigned_gotno += 2;
cbf2cba4 3438 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3439 g->tls_assigned_gotno += 1;
3440
f4416af6
AO
3441 return 1;
3442}
3443
3444/* If passed a NULL mips_got_info in the argument, set the marker used
3445 to tell whether a global symbol needs a got entry (in the primary
3446 got) to the given VALUE.
3447
3448 If passed a pointer G to a mips_got_info in the argument (it must
3449 not be the primary GOT), compute the offset from the beginning of
3450 the (primary) GOT section to the entry in G corresponding to the
3451 global symbol. G's assigned_gotno must contain the index of the
3452 first available global GOT entry in G. VALUE must contain the size
3453 of a GOT entry in bytes. For each global GOT entry that requires a
3454 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3455 marked as not eligible for lazy resolution through a function
f4416af6
AO
3456 stub. */
3457static int
9719ad41 3458mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3459{
3460 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3461 struct mips_elf_set_global_got_offset_arg *arg
3462 = (struct mips_elf_set_global_got_offset_arg *)p;
3463 struct mips_got_info *g = arg->g;
3464
0f20cc35
DJ
3465 if (g && entry->tls_type != GOT_NORMAL)
3466 arg->needed_relocs +=
3467 mips_tls_got_relocs (arg->info, entry->tls_type,
3468 entry->symndx == -1 ? &entry->d.h->root : NULL);
3469
f4416af6 3470 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35 3471 && entry->d.h->root.dynindx != -1
720199d6 3472 && !entry->d.h->forced_local
0f20cc35 3473 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3474 {
3475 if (g)
3476 {
3477 BFD_ASSERT (g->global_gotsym == NULL);
3478
3479 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3480 if (arg->info->shared
3481 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3482 && entry->d.h->root.def_dynamic
3483 && !entry->d.h->root.def_regular))
f4416af6
AO
3484 ++arg->needed_relocs;
3485 }
3486 else
3487 entry->d.h->root.got.offset = arg->value;
3488 }
3489
3490 return 1;
3491}
3492
0626d451
RS
3493/* Mark any global symbols referenced in the GOT we are iterating over
3494 as inelligible for lazy resolution stubs. */
3495static int
9719ad41 3496mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3497{
3498 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3499
3500 if (entry->abfd != NULL
3501 && entry->symndx == -1
3502 && entry->d.h->root.dynindx != -1)
3503 entry->d.h->no_fn_stub = TRUE;
3504
3505 return 1;
3506}
3507
f4416af6
AO
3508/* Follow indirect and warning hash entries so that each got entry
3509 points to the final symbol definition. P must point to a pointer
3510 to the hash table we're traversing. Since this traversal may
3511 modify the hash table, we set this pointer to NULL to indicate
3512 we've made a potentially-destructive change to the hash table, so
3513 the traversal must be restarted. */
3514static int
9719ad41 3515mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3516{
3517 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3518 htab_t got_entries = *(htab_t *)p;
3519
3520 if (entry->abfd != NULL && entry->symndx == -1)
3521 {
3522 struct mips_elf_link_hash_entry *h = entry->d.h;
3523
3524 while (h->root.root.type == bfd_link_hash_indirect
3525 || h->root.root.type == bfd_link_hash_warning)
3526 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3527
3528 if (entry->d.h == h)
3529 return 1;
143d77c5 3530
f4416af6
AO
3531 entry->d.h = h;
3532
3533 /* If we can't find this entry with the new bfd hash, re-insert
3534 it, and get the traversal restarted. */
3535 if (! htab_find (got_entries, entry))
3536 {
3537 htab_clear_slot (got_entries, entryp);
3538 entryp = htab_find_slot (got_entries, entry, INSERT);
3539 if (! *entryp)
3540 *entryp = entry;
3541 /* Abort the traversal, since the whole table may have
3542 moved, and leave it up to the parent to restart the
3543 process. */
3544 *(htab_t *)p = NULL;
3545 return 0;
3546 }
3547 /* We might want to decrement the global_gotno count, but it's
3548 either too early or too late for that at this point. */
3549 }
143d77c5 3550
f4416af6
AO
3551 return 1;
3552}
3553
3554/* Turn indirect got entries in a got_entries table into their final
3555 locations. */
3556static void
9719ad41 3557mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3558{
3559 htab_t got_entries;
3560
3561 do
3562 {
3563 got_entries = g->got_entries;
3564
3565 htab_traverse (got_entries,
3566 mips_elf_resolve_final_got_entry,
3567 &got_entries);
3568 }
3569 while (got_entries == NULL);
3570}
3571
3572/* Return the offset of an input bfd IBFD's GOT from the beginning of
3573 the primary GOT. */
3574static bfd_vma
9719ad41 3575mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3576{
3577 if (g->bfd2got == NULL)
3578 return 0;
3579
3580 g = mips_elf_got_for_ibfd (g, ibfd);
3581 if (! g)
3582 return 0;
3583
3584 BFD_ASSERT (g->next);
3585
3586 g = g->next;
143d77c5 3587
0f20cc35
DJ
3588 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3589 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3590}
3591
3592/* Turn a single GOT that is too big for 16-bit addressing into
3593 a sequence of GOTs, each one 16-bit addressable. */
3594
3595static bfd_boolean
9719ad41
RS
3596mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3597 struct mips_got_info *g, asection *got,
3598 bfd_size_type pages)
f4416af6
AO
3599{
3600 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3601 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3602 struct mips_got_info *gg;
3603 unsigned int assign;
3604
3605 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3606 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3607 if (g->bfd2got == NULL)
3608 return FALSE;
3609
3610 got_per_bfd_arg.bfd2got = g->bfd2got;
3611 got_per_bfd_arg.obfd = abfd;
3612 got_per_bfd_arg.info = info;
3613
3614 /* Count how many GOT entries each input bfd requires, creating a
3615 map from bfd to got info while at that. */
f4416af6
AO
3616 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3617 if (got_per_bfd_arg.obfd == NULL)
3618 return FALSE;
3619
c224138d
RS
3620 /* Also count how many page entries each input bfd requires. */
3621 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3622 &got_per_bfd_arg);
3623 if (got_per_bfd_arg.obfd == NULL)
3624 return FALSE;
3625
f4416af6
AO
3626 got_per_bfd_arg.current = NULL;
3627 got_per_bfd_arg.primary = NULL;
0a44bf69 3628 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3629 / MIPS_ELF_GOT_SIZE (abfd))
c224138d
RS
3630 - MIPS_RESERVED_GOTNO (info));
3631 got_per_bfd_arg.max_pages = pages;
0f20cc35
DJ
3632 /* The number of globals that will be included in the primary GOT.
3633 See the calls to mips_elf_set_global_got_offset below for more
3634 information. */
3635 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3636
3637 /* Try to merge the GOTs of input bfds together, as long as they
3638 don't seem to exceed the maximum GOT size, choosing one of them
3639 to be the primary GOT. */
3640 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3641 if (got_per_bfd_arg.obfd == NULL)
3642 return FALSE;
3643
0f20cc35 3644 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3645 if (got_per_bfd_arg.primary == NULL)
3646 {
3647 g->next = (struct mips_got_info *)
3648 bfd_alloc (abfd, sizeof (struct mips_got_info));
3649 if (g->next == NULL)
3650 return FALSE;
3651
3652 g->next->global_gotsym = NULL;
3653 g->next->global_gotno = 0;
3654 g->next->local_gotno = 0;
c224138d 3655 g->next->page_gotno = 0;
0f20cc35 3656 g->next->tls_gotno = 0;
f4416af6 3657 g->next->assigned_gotno = 0;
0f20cc35
DJ
3658 g->next->tls_assigned_gotno = 0;
3659 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3660 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3661 mips_elf_multi_got_entry_eq,
9719ad41 3662 NULL);
f4416af6
AO
3663 if (g->next->got_entries == NULL)
3664 return FALSE;
c224138d
RS
3665 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3666 mips_got_page_entry_eq,
3667 NULL);
3668 if (g->next->got_page_entries == NULL)
3669 return FALSE;
f4416af6
AO
3670 g->next->bfd2got = NULL;
3671 }
3672 else
3673 g->next = got_per_bfd_arg.primary;
3674 g->next->next = got_per_bfd_arg.current;
3675
3676 /* GG is now the master GOT, and G is the primary GOT. */
3677 gg = g;
3678 g = g->next;
3679
3680 /* Map the output bfd to the primary got. That's what we're going
3681 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3682 didn't mark in check_relocs, and we want a quick way to find it.
3683 We can't just use gg->next because we're going to reverse the
3684 list. */
3685 {
3686 struct mips_elf_bfd2got_hash *bfdgot;
3687 void **bfdgotp;
143d77c5 3688
f4416af6
AO
3689 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3690 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3691
3692 if (bfdgot == NULL)
3693 return FALSE;
3694
3695 bfdgot->bfd = abfd;
3696 bfdgot->g = g;
3697 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3698
3699 BFD_ASSERT (*bfdgotp == NULL);
3700 *bfdgotp = bfdgot;
3701 }
3702
3703 /* The IRIX dynamic linker requires every symbol that is referenced
3704 in a dynamic relocation to be present in the primary GOT, so
3705 arrange for them to appear after those that are actually
3706 referenced.
3707
3708 GNU/Linux could very well do without it, but it would slow down
3709 the dynamic linker, since it would have to resolve every dynamic
3710 symbol referenced in other GOTs more than once, without help from
3711 the cache. Also, knowing that every external symbol has a GOT
3712 helps speed up the resolution of local symbols too, so GNU/Linux
3713 follows IRIX's practice.
143d77c5 3714
f4416af6
AO
3715 The number 2 is used by mips_elf_sort_hash_table_f to count
3716 global GOT symbols that are unreferenced in the primary GOT, with
3717 an initial dynamic index computed from gg->assigned_gotno, where
3718 the number of unreferenced global entries in the primary GOT is
3719 preserved. */
3720 if (1)
3721 {
3722 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3723 g->global_gotno = gg->global_gotno;
3724 set_got_offset_arg.value = 2;
3725 }
3726 else
3727 {
3728 /* This could be used for dynamic linkers that don't optimize
3729 symbol resolution while applying relocations so as to use
3730 primary GOT entries or assuming the symbol is locally-defined.
3731 With this code, we assign lower dynamic indices to global
3732 symbols that are not referenced in the primary GOT, so that
3733 their entries can be omitted. */
3734 gg->assigned_gotno = 0;
3735 set_got_offset_arg.value = -1;
3736 }
3737
3738 /* Reorder dynamic symbols as described above (which behavior
3739 depends on the setting of VALUE). */
3740 set_got_offset_arg.g = NULL;
3741 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3742 &set_got_offset_arg);
3743 set_got_offset_arg.value = 1;
3744 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3745 &set_got_offset_arg);
3746 if (! mips_elf_sort_hash_table (info, 1))
3747 return FALSE;
3748
3749 /* Now go through the GOTs assigning them offset ranges.
3750 [assigned_gotno, local_gotno[ will be set to the range of local
3751 entries in each GOT. We can then compute the end of a GOT by
3752 adding local_gotno to global_gotno. We reverse the list and make
3753 it circular since then we'll be able to quickly compute the
3754 beginning of a GOT, by computing the end of its predecessor. To
3755 avoid special cases for the primary GOT, while still preserving
3756 assertions that are valid for both single- and multi-got links,
3757 we arrange for the main got struct to have the right number of
3758 global entries, but set its local_gotno such that the initial
3759 offset of the primary GOT is zero. Remember that the primary GOT
3760 will become the last item in the circular linked list, so it
3761 points back to the master GOT. */
3762 gg->local_gotno = -g->global_gotno;
3763 gg->global_gotno = g->global_gotno;
0f20cc35 3764 gg->tls_gotno = 0;
f4416af6
AO
3765 assign = 0;
3766 gg->next = gg;
3767
3768 do
3769 {
3770 struct mips_got_info *gn;
3771
0a44bf69 3772 assign += MIPS_RESERVED_GOTNO (info);
f4416af6 3773 g->assigned_gotno = assign;
c224138d
RS
3774 g->local_gotno += assign;
3775 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
3776 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3777
ead49a57
RS
3778 /* Take g out of the direct list, and push it onto the reversed
3779 list that gg points to. g->next is guaranteed to be nonnull after
3780 this operation, as required by mips_elf_initialize_tls_index. */
3781 gn = g->next;
3782 g->next = gg->next;
3783 gg->next = g;
3784
0f20cc35
DJ
3785 /* Set up any TLS entries. We always place the TLS entries after
3786 all non-TLS entries. */
3787 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3788 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3789
ead49a57 3790 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3791 g = gn;
0626d451
RS
3792
3793 /* Mark global symbols in every non-primary GOT as ineligible for
3794 stubs. */
3795 if (g)
3796 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3797 }
3798 while (g);
3799
eea6121a 3800 got->size = (gg->next->local_gotno
0f20cc35
DJ
3801 + gg->next->global_gotno
3802 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3803
f4416af6
AO
3804 return TRUE;
3805}
143d77c5 3806
b49e97c9
TS
3807\f
3808/* Returns the first relocation of type r_type found, beginning with
3809 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3810
3811static const Elf_Internal_Rela *
9719ad41
RS
3812mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3813 const Elf_Internal_Rela *relocation,
3814 const Elf_Internal_Rela *relend)
b49e97c9 3815{
c000e262
TS
3816 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3817
b49e97c9
TS
3818 while (relocation < relend)
3819 {
c000e262
TS
3820 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3821 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3822 return relocation;
3823
3824 ++relocation;
3825 }
3826
3827 /* We didn't find it. */
b49e97c9
TS
3828 return NULL;
3829}
3830
3831/* Return whether a relocation is against a local symbol. */
3832
b34976b6 3833static bfd_boolean
9719ad41
RS
3834mips_elf_local_relocation_p (bfd *input_bfd,
3835 const Elf_Internal_Rela *relocation,
3836 asection **local_sections,
3837 bfd_boolean check_forced)
b49e97c9
TS
3838{
3839 unsigned long r_symndx;
3840 Elf_Internal_Shdr *symtab_hdr;
3841 struct mips_elf_link_hash_entry *h;
3842 size_t extsymoff;
3843
3844 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3845 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3846 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3847
3848 if (r_symndx < extsymoff)
b34976b6 3849 return TRUE;
b49e97c9 3850 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3851 return TRUE;
b49e97c9
TS
3852
3853 if (check_forced)
3854 {
3855 /* Look up the hash table to check whether the symbol
3856 was forced local. */
3857 h = (struct mips_elf_link_hash_entry *)
3858 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3859 /* Find the real hash-table entry for this symbol. */
3860 while (h->root.root.type == bfd_link_hash_indirect
3861 || h->root.root.type == bfd_link_hash_warning)
3862 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3863 if (h->root.forced_local)
b34976b6 3864 return TRUE;
b49e97c9
TS
3865 }
3866
b34976b6 3867 return FALSE;
b49e97c9
TS
3868}
3869\f
3870/* Sign-extend VALUE, which has the indicated number of BITS. */
3871
a7ebbfdf 3872bfd_vma
9719ad41 3873_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3874{
3875 if (value & ((bfd_vma) 1 << (bits - 1)))
3876 /* VALUE is negative. */
3877 value |= ((bfd_vma) - 1) << bits;
3878
3879 return value;
3880}
3881
3882/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3883 range expressible by a signed number with the indicated number of
b49e97c9
TS
3884 BITS. */
3885
b34976b6 3886static bfd_boolean
9719ad41 3887mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3888{
3889 bfd_signed_vma svalue = (bfd_signed_vma) value;
3890
3891 if (svalue > (1 << (bits - 1)) - 1)
3892 /* The value is too big. */
b34976b6 3893 return TRUE;
b49e97c9
TS
3894 else if (svalue < -(1 << (bits - 1)))
3895 /* The value is too small. */
b34976b6 3896 return TRUE;
b49e97c9
TS
3897
3898 /* All is well. */
b34976b6 3899 return FALSE;
b49e97c9
TS
3900}
3901
3902/* Calculate the %high function. */
3903
3904static bfd_vma
9719ad41 3905mips_elf_high (bfd_vma value)
b49e97c9
TS
3906{
3907 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3908}
3909
3910/* Calculate the %higher function. */
3911
3912static bfd_vma
9719ad41 3913mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3914{
3915#ifdef BFD64
3916 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3917#else
3918 abort ();
c5ae1840 3919 return MINUS_ONE;
b49e97c9
TS
3920#endif
3921}
3922
3923/* Calculate the %highest function. */
3924
3925static bfd_vma
9719ad41 3926mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3927{
3928#ifdef BFD64
b15e6682 3929 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3930#else
3931 abort ();
c5ae1840 3932 return MINUS_ONE;
b49e97c9
TS
3933#endif
3934}
3935\f
3936/* Create the .compact_rel section. */
3937
b34976b6 3938static bfd_boolean
9719ad41
RS
3939mips_elf_create_compact_rel_section
3940 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3941{
3942 flagword flags;
3943 register asection *s;
3944
3945 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3946 {
3947 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3948 | SEC_READONLY);
3949
3496cb2a 3950 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3951 if (s == NULL
b49e97c9
TS
3952 || ! bfd_set_section_alignment (abfd, s,
3953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3954 return FALSE;
b49e97c9 3955
eea6121a 3956 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3957 }
3958
b34976b6 3959 return TRUE;
b49e97c9
TS
3960}
3961
3962/* Create the .got section to hold the global offset table. */
3963
b34976b6 3964static bfd_boolean
9719ad41
RS
3965mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3966 bfd_boolean maybe_exclude)
b49e97c9
TS
3967{
3968 flagword flags;
3969 register asection *s;
3970 struct elf_link_hash_entry *h;
14a793b2 3971 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3972 struct mips_got_info *g;
3973 bfd_size_type amt;
0a44bf69
RS
3974 struct mips_elf_link_hash_table *htab;
3975
3976 htab = mips_elf_hash_table (info);
b49e97c9
TS
3977
3978 /* This function may be called more than once. */
f4416af6
AO
3979 s = mips_elf_got_section (abfd, TRUE);
3980 if (s)
3981 {
3982 if (! maybe_exclude)
3983 s->flags &= ~SEC_EXCLUDE;
3984 return TRUE;
3985 }
b49e97c9
TS
3986
3987 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3988 | SEC_LINKER_CREATED);
3989
f4416af6
AO
3990 if (maybe_exclude)
3991 flags |= SEC_EXCLUDE;
3992
72b4917c
TS
3993 /* We have to use an alignment of 2**4 here because this is hardcoded
3994 in the function stub generation and in the linker script. */
3496cb2a 3995 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3996 if (s == NULL
72b4917c 3997 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3998 return FALSE;
b49e97c9
TS
3999
4000 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4001 linker script because we don't want to define the symbol if we
4002 are not creating a global offset table. */
14a793b2 4003 bh = NULL;
b49e97c9
TS
4004 if (! (_bfd_generic_link_add_one_symbol
4005 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4006 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4007 return FALSE;
14a793b2
AM
4008
4009 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4010 h->non_elf = 0;
4011 h->def_regular = 1;
b49e97c9 4012 h->type = STT_OBJECT;
d329bcd1 4013 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4014
4015 if (info->shared
c152c796 4016 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4017 return FALSE;
b49e97c9 4018
b49e97c9 4019 amt = sizeof (struct mips_got_info);
9719ad41 4020 g = bfd_alloc (abfd, amt);
b49e97c9 4021 if (g == NULL)
b34976b6 4022 return FALSE;
b49e97c9 4023 g->global_gotsym = NULL;
e3d54347 4024 g->global_gotno = 0;
0f20cc35 4025 g->tls_gotno = 0;
0a44bf69 4026 g->local_gotno = MIPS_RESERVED_GOTNO (info);
c224138d 4027 g->page_gotno = 0;
0a44bf69 4028 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
4029 g->bfd2got = NULL;
4030 g->next = NULL;
0f20cc35 4031 g->tls_ldm_offset = MINUS_ONE;
b15e6682 4032 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 4033 mips_elf_got_entry_eq, NULL);
b15e6682
AO
4034 if (g->got_entries == NULL)
4035 return FALSE;
c224138d
RS
4036 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4037 mips_got_page_entry_eq, NULL);
4038 if (g->got_page_entries == NULL)
4039 return FALSE;
f0abc2a1
AM
4040 mips_elf_section_data (s)->u.got_info = g;
4041 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4042 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4043
0a44bf69
RS
4044 /* VxWorks also needs a .got.plt section. */
4045 if (htab->is_vxworks)
4046 {
4047 s = bfd_make_section_with_flags (abfd, ".got.plt",
4048 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4049 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4050 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4051 return FALSE;
4052
4053 htab->sgotplt = s;
4054 }
b34976b6 4055 return TRUE;
b49e97c9 4056}
b49e97c9 4057\f
0a44bf69
RS
4058/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4059 __GOTT_INDEX__ symbols. These symbols are only special for
4060 shared objects; they are not used in executables. */
4061
4062static bfd_boolean
4063is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4064{
4065 return (mips_elf_hash_table (info)->is_vxworks
4066 && info->shared
4067 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4068 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4069}
4070\f
b49e97c9
TS
4071/* Calculate the value produced by the RELOCATION (which comes from
4072 the INPUT_BFD). The ADDEND is the addend to use for this
4073 RELOCATION; RELOCATION->R_ADDEND is ignored.
4074
4075 The result of the relocation calculation is stored in VALUEP.
4076 REQUIRE_JALXP indicates whether or not the opcode used with this
4077 relocation must be JALX.
4078
4079 This function returns bfd_reloc_continue if the caller need take no
4080 further action regarding this relocation, bfd_reloc_notsupported if
4081 something goes dramatically wrong, bfd_reloc_overflow if an
4082 overflow occurs, and bfd_reloc_ok to indicate success. */
4083
4084static bfd_reloc_status_type
9719ad41
RS
4085mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4086 asection *input_section,
4087 struct bfd_link_info *info,
4088 const Elf_Internal_Rela *relocation,
4089 bfd_vma addend, reloc_howto_type *howto,
4090 Elf_Internal_Sym *local_syms,
4091 asection **local_sections, bfd_vma *valuep,
4092 const char **namep, bfd_boolean *require_jalxp,
4093 bfd_boolean save_addend)
b49e97c9
TS
4094{
4095 /* The eventual value we will return. */
4096 bfd_vma value;
4097 /* The address of the symbol against which the relocation is
4098 occurring. */
4099 bfd_vma symbol = 0;
4100 /* The final GP value to be used for the relocatable, executable, or
4101 shared object file being produced. */
4102 bfd_vma gp = MINUS_ONE;
4103 /* The place (section offset or address) of the storage unit being
4104 relocated. */
4105 bfd_vma p;
4106 /* The value of GP used to create the relocatable object. */
4107 bfd_vma gp0 = MINUS_ONE;
4108 /* The offset into the global offset table at which the address of
4109 the relocation entry symbol, adjusted by the addend, resides
4110 during execution. */
4111 bfd_vma g = MINUS_ONE;
4112 /* The section in which the symbol referenced by the relocation is
4113 located. */
4114 asection *sec = NULL;
4115 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4116 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4117 symbol. */
b34976b6
AM
4118 bfd_boolean local_p, was_local_p;
4119 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4120 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
4121 /* TRUE if the symbol referred to by this relocation is
4122 "__gnu_local_gp". */
4123 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
4124 Elf_Internal_Shdr *symtab_hdr;
4125 size_t extsymoff;
4126 unsigned long r_symndx;
4127 int r_type;
b34976b6 4128 /* TRUE if overflow occurred during the calculation of the
b49e97c9 4129 relocation value. */
b34976b6
AM
4130 bfd_boolean overflowed_p;
4131 /* TRUE if this relocation refers to a MIPS16 function. */
4132 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
4133 struct mips_elf_link_hash_table *htab;
4134 bfd *dynobj;
4135
4136 dynobj = elf_hash_table (info)->dynobj;
4137 htab = mips_elf_hash_table (info);
b49e97c9
TS
4138
4139 /* Parse the relocation. */
4140 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4141 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4142 p = (input_section->output_section->vma
4143 + input_section->output_offset
4144 + relocation->r_offset);
4145
4146 /* Assume that there will be no overflow. */
b34976b6 4147 overflowed_p = FALSE;
b49e97c9
TS
4148
4149 /* Figure out whether or not the symbol is local, and get the offset
4150 used in the array of hash table entries. */
4151 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4153 local_sections, FALSE);
bce03d3d 4154 was_local_p = local_p;
b49e97c9
TS
4155 if (! elf_bad_symtab (input_bfd))
4156 extsymoff = symtab_hdr->sh_info;
4157 else
4158 {
4159 /* The symbol table does not follow the rule that local symbols
4160 must come before globals. */
4161 extsymoff = 0;
4162 }
4163
4164 /* Figure out the value of the symbol. */
4165 if (local_p)
4166 {
4167 Elf_Internal_Sym *sym;
4168
4169 sym = local_syms + r_symndx;
4170 sec = local_sections[r_symndx];
4171
4172 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
4173 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4174 || (sec->flags & SEC_MERGE))
b49e97c9 4175 symbol += sym->st_value;
d4df96e6
L
4176 if ((sec->flags & SEC_MERGE)
4177 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4178 {
4179 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4180 addend -= symbol;
4181 addend += sec->output_section->vma + sec->output_offset;
4182 }
b49e97c9
TS
4183
4184 /* MIPS16 text labels should be treated as odd. */
4185 if (sym->st_other == STO_MIPS16)
4186 ++symbol;
4187
4188 /* Record the name of this symbol, for our caller. */
4189 *namep = bfd_elf_string_from_elf_section (input_bfd,
4190 symtab_hdr->sh_link,
4191 sym->st_name);
4192 if (*namep == '\0')
4193 *namep = bfd_section_name (input_bfd, sec);
4194
4195 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
4196 }
4197 else
4198 {
560e09e9
NC
4199 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4200
b49e97c9
TS
4201 /* For global symbols we look up the symbol in the hash-table. */
4202 h = ((struct mips_elf_link_hash_entry *)
4203 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4204 /* Find the real hash-table entry for this symbol. */
4205 while (h->root.root.type == bfd_link_hash_indirect
4206 || h->root.root.type == bfd_link_hash_warning)
4207 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4208
4209 /* Record the name of this symbol, for our caller. */
4210 *namep = h->root.root.root.string;
4211
4212 /* See if this is the special _gp_disp symbol. Note that such a
4213 symbol must always be a global symbol. */
560e09e9 4214 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
4215 && ! NEWABI_P (input_bfd))
4216 {
4217 /* Relocations against _gp_disp are permitted only with
4218 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
4219 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4220 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
4221 return bfd_reloc_notsupported;
4222
b34976b6 4223 gp_disp_p = TRUE;
b49e97c9 4224 }
bbe506e8
TS
4225 /* See if this is the special _gp symbol. Note that such a
4226 symbol must always be a global symbol. */
4227 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4228 gnu_local_gp_p = TRUE;
4229
4230
b49e97c9
TS
4231 /* If this symbol is defined, calculate its address. Note that
4232 _gp_disp is a magic symbol, always implicitly defined by the
4233 linker, so it's inappropriate to check to see whether or not
4234 its defined. */
4235 else if ((h->root.root.type == bfd_link_hash_defined
4236 || h->root.root.type == bfd_link_hash_defweak)
4237 && h->root.root.u.def.section)
4238 {
4239 sec = h->root.root.u.def.section;
4240 if (sec->output_section)
4241 symbol = (h->root.root.u.def.value
4242 + sec->output_section->vma
4243 + sec->output_offset);
4244 else
4245 symbol = h->root.root.u.def.value;
4246 }
4247 else if (h->root.root.type == bfd_link_hash_undefweak)
4248 /* We allow relocations against undefined weak symbols, giving
4249 it the value zero, so that you can undefined weak functions
4250 and check to see if they exist by looking at their
4251 addresses. */
4252 symbol = 0;
59c2e50f 4253 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4254 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4255 symbol = 0;
a4d0f181
TS
4256 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4257 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4258 {
4259 /* If this is a dynamic link, we should have created a
4260 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4261 in in _bfd_mips_elf_create_dynamic_sections.
4262 Otherwise, we should define the symbol with a value of 0.
4263 FIXME: It should probably get into the symbol table
4264 somehow as well. */
4265 BFD_ASSERT (! info->shared);
4266 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4267 symbol = 0;
4268 }
5e2b0d47
NC
4269 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4270 {
4271 /* This is an optional symbol - an Irix specific extension to the
4272 ELF spec. Ignore it for now.
4273 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4274 than simply ignoring them, but we do not handle this for now.
4275 For information see the "64-bit ELF Object File Specification"
4276 which is available from here:
4277 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4278 symbol = 0;
4279 }
b49e97c9
TS
4280 else
4281 {
4282 if (! ((*info->callbacks->undefined_symbol)
4283 (info, h->root.root.root.string, input_bfd,
4284 input_section, relocation->r_offset,
59c2e50f
L
4285 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4286 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4287 return bfd_reloc_undefined;
4288 symbol = 0;
4289 }
4290
4291 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4292 }
4293
4294 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4295 need to redirect the call to the stub, unless we're already *in*
4296 a stub. */
1049f94e 4297 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4298 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4299 || (local_p
4300 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4301 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4302 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4303 {
4304 /* This is a 32- or 64-bit call to a 16-bit function. We should
4305 have already noticed that we were going to need the
4306 stub. */
4307 if (local_p)
4308 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4309 else
4310 {
4311 BFD_ASSERT (h->need_fn_stub);
4312 sec = h->fn_stub;
4313 }
4314
4315 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4316 /* The target is 16-bit, but the stub isn't. */
4317 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4318 }
4319 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4320 need to redirect the call to the stub. */
1049f94e 4321 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4322 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4323 || (local_p
4324 && elf_tdata (input_bfd)->local_call_stubs != NULL
4325 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4326 && !target_is_16_bit_code_p)
4327 {
b9d58d71
TS
4328 if (local_p)
4329 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4330 else
b49e97c9 4331 {
b9d58d71
TS
4332 /* If both call_stub and call_fp_stub are defined, we can figure
4333 out which one to use by checking which one appears in the input
4334 file. */
4335 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4336 {
b9d58d71
TS
4337 asection *o;
4338
4339 sec = NULL;
4340 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4341 {
b9d58d71
TS
4342 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4343 {
4344 sec = h->call_fp_stub;
4345 break;
4346 }
b49e97c9 4347 }
b9d58d71
TS
4348 if (sec == NULL)
4349 sec = h->call_stub;
b49e97c9 4350 }
b9d58d71 4351 else if (h->call_stub != NULL)
b49e97c9 4352 sec = h->call_stub;
b9d58d71
TS
4353 else
4354 sec = h->call_fp_stub;
4355 }
b49e97c9 4356
eea6121a 4357 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4358 symbol = sec->output_section->vma + sec->output_offset;
4359 }
4360
4361 /* Calls from 16-bit code to 32-bit code and vice versa require the
4362 special jalx instruction. */
1049f94e 4363 *require_jalxp = (!info->relocatable
b49e97c9
TS
4364 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4365 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4366
4367 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4368 local_sections, TRUE);
b49e97c9
TS
4369
4370 /* If we haven't already determined the GOT offset, or the GP value,
4371 and we're going to need it, get it now. */
4372 switch (r_type)
4373 {
0fdc1bf1 4374 case R_MIPS_GOT_PAGE:
93a2b7ae 4375 case R_MIPS_GOT_OFST:
d25aed71
RS
4376 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4377 bind locally. */
4378 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4379 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4380 break;
4381 /* Fall through. */
4382
b49e97c9
TS
4383 case R_MIPS_CALL16:
4384 case R_MIPS_GOT16:
4385 case R_MIPS_GOT_DISP:
4386 case R_MIPS_GOT_HI16:
4387 case R_MIPS_CALL_HI16:
4388 case R_MIPS_GOT_LO16:
4389 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4390 case R_MIPS_TLS_GD:
4391 case R_MIPS_TLS_GOTTPREL:
4392 case R_MIPS_TLS_LDM:
b49e97c9 4393 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4394 if (r_type == R_MIPS_TLS_LDM)
4395 {
0a44bf69 4396 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4397 0, 0, NULL, r_type);
0f20cc35
DJ
4398 if (g == MINUS_ONE)
4399 return bfd_reloc_outofrange;
4400 }
4401 else if (!local_p)
b49e97c9 4402 {
0a44bf69
RS
4403 /* On VxWorks, CALL relocations should refer to the .got.plt
4404 entry, which is initialized to point at the PLT stub. */
4405 if (htab->is_vxworks
4406 && (r_type == R_MIPS_CALL_HI16
4407 || r_type == R_MIPS_CALL_LO16
4408 || r_type == R_MIPS_CALL16))
4409 {
4410 BFD_ASSERT (addend == 0);
4411 BFD_ASSERT (h->root.needs_plt);
4412 g = mips_elf_gotplt_index (info, &h->root);
4413 }
4414 else
b49e97c9 4415 {
0a44bf69
RS
4416 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4417 GOT_PAGE relocation that decays to GOT_DISP because the
4418 symbol turns out to be global. The addend is then added
4419 as GOT_OFST. */
4420 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4421 g = mips_elf_global_got_index (dynobj, input_bfd,
4422 &h->root, r_type, info);
4423 if (h->tls_type == GOT_NORMAL
4424 && (! elf_hash_table(info)->dynamic_sections_created
4425 || (info->shared
4426 && (info->symbolic || h->root.forced_local)
4427 && h->root.def_regular)))
4428 {
4429 /* This is a static link or a -Bsymbolic link. The
4430 symbol is defined locally, or was forced to be local.
4431 We must initialize this entry in the GOT. */
4432 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4433 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4434 }
b49e97c9
TS
4435 }
4436 }
0a44bf69
RS
4437 else if (!htab->is_vxworks
4438 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4439 /* The calculation below does not involve "g". */
b49e97c9
TS
4440 break;
4441 else
4442 {
5c18022e 4443 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4444 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4445 if (g == MINUS_ONE)
4446 return bfd_reloc_outofrange;
4447 }
4448
4449 /* Convert GOT indices to actual offsets. */
0a44bf69 4450 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4451 break;
4452
4453 case R_MIPS_HI16:
4454 case R_MIPS_LO16:
b49e97c9
TS
4455 case R_MIPS_GPREL16:
4456 case R_MIPS_GPREL32:
4457 case R_MIPS_LITERAL:
d6f16593
MR
4458 case R_MIPS16_HI16:
4459 case R_MIPS16_LO16:
4460 case R_MIPS16_GPREL:
b49e97c9
TS
4461 gp0 = _bfd_get_gp_value (input_bfd);
4462 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4463 if (dynobj)
4464 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4465 input_bfd);
b49e97c9
TS
4466 break;
4467
4468 default:
4469 break;
4470 }
4471
bbe506e8
TS
4472 if (gnu_local_gp_p)
4473 symbol = gp;
86324f90 4474
0a44bf69
RS
4475 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4476 symbols are resolved by the loader. Add them to .rela.dyn. */
4477 if (h != NULL && is_gott_symbol (info, &h->root))
4478 {
4479 Elf_Internal_Rela outrel;
4480 bfd_byte *loc;
4481 asection *s;
4482
4483 s = mips_elf_rel_dyn_section (info, FALSE);
4484 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4485
4486 outrel.r_offset = (input_section->output_section->vma
4487 + input_section->output_offset
4488 + relocation->r_offset);
4489 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4490 outrel.r_addend = addend;
4491 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4492
4493 /* If we've written this relocation for a readonly section,
4494 we need to set DF_TEXTREL again, so that we do not delete the
4495 DT_TEXTREL tag. */
4496 if (MIPS_ELF_READONLY_SECTION (input_section))
4497 info->flags |= DF_TEXTREL;
4498
0a44bf69
RS
4499 *valuep = 0;
4500 return bfd_reloc_ok;
4501 }
4502
b49e97c9
TS
4503 /* Figure out what kind of relocation is being performed. */
4504 switch (r_type)
4505 {
4506 case R_MIPS_NONE:
4507 return bfd_reloc_continue;
4508
4509 case R_MIPS_16:
a7ebbfdf 4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4511 overflowed_p = mips_elf_overflow_p (value, 16);
4512 break;
4513
4514 case R_MIPS_32:
4515 case R_MIPS_REL32:
4516 case R_MIPS_64:
4517 if ((info->shared
0a44bf69
RS
4518 || (!htab->is_vxworks
4519 && htab->root.dynamic_sections_created
b49e97c9 4520 && h != NULL
f5385ebf
AM
4521 && h->root.def_dynamic
4522 && !h->root.def_regular))
b49e97c9
TS
4523 && r_symndx != 0
4524 && (input_section->flags & SEC_ALLOC) != 0)
4525 {
4526 /* If we're creating a shared library, or this relocation is
4527 against a symbol in a shared library, then we can't know
4528 where the symbol will end up. So, we create a relocation
4529 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4530 linker.
4531
4532 In VxWorks executables, references to external symbols
4533 are handled using copy relocs or PLT stubs, so there's
4534 no need to add a dynamic relocation here. */
b49e97c9
TS
4535 value = addend;
4536 if (!mips_elf_create_dynamic_relocation (abfd,
4537 info,
4538 relocation,
4539 h,
4540 sec,
4541 symbol,
4542 &value,
4543 input_section))
4544 return bfd_reloc_undefined;
4545 }
4546 else
4547 {
4548 if (r_type != R_MIPS_REL32)
4549 value = symbol + addend;
4550 else
4551 value = addend;
4552 }
4553 value &= howto->dst_mask;
092dcd75
CD
4554 break;
4555
4556 case R_MIPS_PC32:
4557 value = symbol + addend - p;
4558 value &= howto->dst_mask;
b49e97c9
TS
4559 break;
4560
b49e97c9
TS
4561 case R_MIPS16_26:
4562 /* The calculation for R_MIPS16_26 is just the same as for an
4563 R_MIPS_26. It's only the storage of the relocated field into
4564 the output file that's different. That's handled in
4565 mips_elf_perform_relocation. So, we just fall through to the
4566 R_MIPS_26 case here. */
4567 case R_MIPS_26:
4568 if (local_p)
30ac9238 4569 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4570 else
728b2f21
ILT
4571 {
4572 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4573 if (h->root.root.type != bfd_link_hash_undefweak)
4574 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4575 }
b49e97c9
TS
4576 value &= howto->dst_mask;
4577 break;
4578
0f20cc35
DJ
4579 case R_MIPS_TLS_DTPREL_HI16:
4580 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4581 & howto->dst_mask);
4582 break;
4583
4584 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4585 case R_MIPS_TLS_DTPREL32:
4586 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4587 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4588 break;
4589
4590 case R_MIPS_TLS_TPREL_HI16:
4591 value = (mips_elf_high (addend + symbol - tprel_base (info))
4592 & howto->dst_mask);
4593 break;
4594
4595 case R_MIPS_TLS_TPREL_LO16:
4596 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4597 break;
4598
b49e97c9 4599 case R_MIPS_HI16:
d6f16593 4600 case R_MIPS16_HI16:
b49e97c9
TS
4601 if (!gp_disp_p)
4602 {
4603 value = mips_elf_high (addend + symbol);
4604 value &= howto->dst_mask;
4605 }
4606 else
4607 {
d6f16593
MR
4608 /* For MIPS16 ABI code we generate this sequence
4609 0: li $v0,%hi(_gp_disp)
4610 4: addiupc $v1,%lo(_gp_disp)
4611 8: sll $v0,16
4612 12: addu $v0,$v1
4613 14: move $gp,$v0
4614 So the offsets of hi and lo relocs are the same, but the
4615 $pc is four higher than $t9 would be, so reduce
4616 both reloc addends by 4. */
4617 if (r_type == R_MIPS16_HI16)
4618 value = mips_elf_high (addend + gp - p - 4);
4619 else
4620 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4621 overflowed_p = mips_elf_overflow_p (value, 16);
4622 }
4623 break;
4624
4625 case R_MIPS_LO16:
d6f16593 4626 case R_MIPS16_LO16:
b49e97c9
TS
4627 if (!gp_disp_p)
4628 value = (symbol + addend) & howto->dst_mask;
4629 else
4630 {
d6f16593
MR
4631 /* See the comment for R_MIPS16_HI16 above for the reason
4632 for this conditional. */
4633 if (r_type == R_MIPS16_LO16)
4634 value = addend + gp - p;
4635 else
4636 value = addend + gp - p + 4;
b49e97c9 4637 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4638 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4639 _gp_disp are normally generated from the .cpload
4640 pseudo-op. It generates code that normally looks like
4641 this:
4642
4643 lui $gp,%hi(_gp_disp)
4644 addiu $gp,$gp,%lo(_gp_disp)
4645 addu $gp,$gp,$t9
4646
4647 Here $t9 holds the address of the function being called,
4648 as required by the MIPS ELF ABI. The R_MIPS_LO16
4649 relocation can easily overflow in this situation, but the
4650 R_MIPS_HI16 relocation will handle the overflow.
4651 Therefore, we consider this a bug in the MIPS ABI, and do
4652 not check for overflow here. */
4653 }
4654 break;
4655
4656 case R_MIPS_LITERAL:
4657 /* Because we don't merge literal sections, we can handle this
4658 just like R_MIPS_GPREL16. In the long run, we should merge
4659 shared literals, and then we will need to additional work
4660 here. */
4661
4662 /* Fall through. */
4663
4664 case R_MIPS16_GPREL:
4665 /* The R_MIPS16_GPREL performs the same calculation as
4666 R_MIPS_GPREL16, but stores the relocated bits in a different
4667 order. We don't need to do anything special here; the
4668 differences are handled in mips_elf_perform_relocation. */
4669 case R_MIPS_GPREL16:
bce03d3d
AO
4670 /* Only sign-extend the addend if it was extracted from the
4671 instruction. If the addend was separate, leave it alone,
4672 otherwise we may lose significant bits. */
4673 if (howto->partial_inplace)
a7ebbfdf 4674 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4675 value = symbol + addend - gp;
4676 /* If the symbol was local, any earlier relocatable links will
4677 have adjusted its addend with the gp offset, so compensate
4678 for that now. Don't do it for symbols forced local in this
4679 link, though, since they won't have had the gp offset applied
4680 to them before. */
4681 if (was_local_p)
4682 value += gp0;
b49e97c9
TS
4683 overflowed_p = mips_elf_overflow_p (value, 16);
4684 break;
4685
4686 case R_MIPS_GOT16:
4687 case R_MIPS_CALL16:
0a44bf69
RS
4688 /* VxWorks does not have separate local and global semantics for
4689 R_MIPS_GOT16; every relocation evaluates to "G". */
4690 if (!htab->is_vxworks && local_p)
b49e97c9 4691 {
b34976b6 4692 bfd_boolean forced;
b49e97c9 4693
b49e97c9 4694 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4695 local_sections, FALSE);
5c18022e 4696 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4697 symbol + addend, forced);
b49e97c9
TS
4698 if (value == MINUS_ONE)
4699 return bfd_reloc_outofrange;
4700 value
0a44bf69 4701 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4702 overflowed_p = mips_elf_overflow_p (value, 16);
4703 break;
4704 }
4705
4706 /* Fall through. */
4707
0f20cc35
DJ
4708 case R_MIPS_TLS_GD:
4709 case R_MIPS_TLS_GOTTPREL:
4710 case R_MIPS_TLS_LDM:
b49e97c9 4711 case R_MIPS_GOT_DISP:
0fdc1bf1 4712 got_disp:
b49e97c9
TS
4713 value = g;
4714 overflowed_p = mips_elf_overflow_p (value, 16);
4715 break;
4716
4717 case R_MIPS_GPREL32:
bce03d3d
AO
4718 value = (addend + symbol + gp0 - gp);
4719 if (!save_addend)
4720 value &= howto->dst_mask;
b49e97c9
TS
4721 break;
4722
4723 case R_MIPS_PC16:
bad36eac
DJ
4724 case R_MIPS_GNU_REL16_S2:
4725 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4726 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4727 value >>= howto->rightshift;
4728 value &= howto->dst_mask;
b49e97c9
TS
4729 break;
4730
4731 case R_MIPS_GOT_HI16:
4732 case R_MIPS_CALL_HI16:
4733 /* We're allowed to handle these two relocations identically.
4734 The dynamic linker is allowed to handle the CALL relocations
4735 differently by creating a lazy evaluation stub. */
4736 value = g;
4737 value = mips_elf_high (value);
4738 value &= howto->dst_mask;
4739 break;
4740
4741 case R_MIPS_GOT_LO16:
4742 case R_MIPS_CALL_LO16:
4743 value = g & howto->dst_mask;
4744 break;
4745
4746 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4747 /* GOT_PAGE relocations that reference non-local symbols decay
4748 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4749 0. */
93a2b7ae 4750 if (! local_p)
0fdc1bf1 4751 goto got_disp;
5c18022e 4752 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4753 if (value == MINUS_ONE)
4754 return bfd_reloc_outofrange;
0a44bf69 4755 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4756 overflowed_p = mips_elf_overflow_p (value, 16);
4757 break;
4758
4759 case R_MIPS_GOT_OFST:
93a2b7ae 4760 if (local_p)
5c18022e 4761 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4762 else
4763 value = addend;
b49e97c9
TS
4764 overflowed_p = mips_elf_overflow_p (value, 16);
4765 break;
4766
4767 case R_MIPS_SUB:
4768 value = symbol - addend;
4769 value &= howto->dst_mask;
4770 break;
4771
4772 case R_MIPS_HIGHER:
4773 value = mips_elf_higher (addend + symbol);
4774 value &= howto->dst_mask;
4775 break;
4776
4777 case R_MIPS_HIGHEST:
4778 value = mips_elf_highest (addend + symbol);
4779 value &= howto->dst_mask;
4780 break;
4781
4782 case R_MIPS_SCN_DISP:
4783 value = symbol + addend - sec->output_offset;
4784 value &= howto->dst_mask;
4785 break;
4786
b49e97c9 4787 case R_MIPS_JALR:
1367d393
ILT
4788 /* This relocation is only a hint. In some cases, we optimize
4789 it into a bal instruction. But we don't try to optimize
4790 branches to the PLT; that will wind up wasting time. */
4791 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4792 return bfd_reloc_continue;
4793 value = symbol + addend;
4794 break;
b49e97c9 4795
1367d393 4796 case R_MIPS_PJUMP:
b49e97c9
TS
4797 case R_MIPS_GNU_VTINHERIT:
4798 case R_MIPS_GNU_VTENTRY:
4799 /* We don't do anything with these at present. */
4800 return bfd_reloc_continue;
4801
4802 default:
4803 /* An unrecognized relocation type. */
4804 return bfd_reloc_notsupported;
4805 }
4806
4807 /* Store the VALUE for our caller. */
4808 *valuep = value;
4809 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4810}
4811
4812/* Obtain the field relocated by RELOCATION. */
4813
4814static bfd_vma
9719ad41
RS
4815mips_elf_obtain_contents (reloc_howto_type *howto,
4816 const Elf_Internal_Rela *relocation,
4817 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4818{
4819 bfd_vma x;
4820 bfd_byte *location = contents + relocation->r_offset;
4821
4822 /* Obtain the bytes. */
4823 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4824
b49e97c9
TS
4825 return x;
4826}
4827
4828/* It has been determined that the result of the RELOCATION is the
4829 VALUE. Use HOWTO to place VALUE into the output file at the
4830 appropriate position. The SECTION is the section to which the
b34976b6 4831 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4832 for the relocation must be either JAL or JALX, and it is
4833 unconditionally converted to JALX.
4834
b34976b6 4835 Returns FALSE if anything goes wrong. */
b49e97c9 4836
b34976b6 4837static bfd_boolean
9719ad41
RS
4838mips_elf_perform_relocation (struct bfd_link_info *info,
4839 reloc_howto_type *howto,
4840 const Elf_Internal_Rela *relocation,
4841 bfd_vma value, bfd *input_bfd,
4842 asection *input_section, bfd_byte *contents,
4843 bfd_boolean require_jalx)
b49e97c9
TS
4844{
4845 bfd_vma x;
4846 bfd_byte *location;
4847 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4848
4849 /* Figure out where the relocation is occurring. */
4850 location = contents + relocation->r_offset;
4851
d6f16593
MR
4852 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4853
b49e97c9
TS
4854 /* Obtain the current value. */
4855 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4856
4857 /* Clear the field we are setting. */
4858 x &= ~howto->dst_mask;
4859
b49e97c9
TS
4860 /* Set the field. */
4861 x |= (value & howto->dst_mask);
4862
4863 /* If required, turn JAL into JALX. */
4864 if (require_jalx)
4865 {
b34976b6 4866 bfd_boolean ok;
b49e97c9
TS
4867 bfd_vma opcode = x >> 26;
4868 bfd_vma jalx_opcode;
4869
4870 /* Check to see if the opcode is already JAL or JALX. */
4871 if (r_type == R_MIPS16_26)
4872 {
4873 ok = ((opcode == 0x6) || (opcode == 0x7));
4874 jalx_opcode = 0x7;
4875 }
4876 else
4877 {
4878 ok = ((opcode == 0x3) || (opcode == 0x1d));
4879 jalx_opcode = 0x1d;
4880 }
4881
4882 /* If the opcode is not JAL or JALX, there's a problem. */
4883 if (!ok)
4884 {
4885 (*_bfd_error_handler)
d003868e
AM
4886 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4887 input_bfd,
4888 input_section,
b49e97c9
TS
4889 (unsigned long) relocation->r_offset);
4890 bfd_set_error (bfd_error_bad_value);
b34976b6 4891 return FALSE;
b49e97c9
TS
4892 }
4893
4894 /* Make this the JALX opcode. */
4895 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4896 }
4897
1367d393
ILT
4898 /* On the RM9000, bal is faster than jal, because bal uses branch
4899 prediction hardware. If we are linking for the RM9000, and we
4900 see jal, and bal fits, use it instead. Note that this
4901 transformation should be safe for all architectures. */
4902 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4903 && !info->relocatable
4904 && !require_jalx
4905 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4906 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4907 {
4908 bfd_vma addr;
4909 bfd_vma dest;
4910 bfd_signed_vma off;
4911
4912 addr = (input_section->output_section->vma
4913 + input_section->output_offset
4914 + relocation->r_offset
4915 + 4);
4916 if (r_type == R_MIPS_26)
4917 dest = (value << 2) | ((addr >> 28) << 28);
4918 else
4919 dest = value;
4920 off = dest - addr;
4921 if (off <= 0x1ffff && off >= -0x20000)
4922 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4923 }
4924
b49e97c9
TS
4925 /* Put the value into the output. */
4926 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4927
4928 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4929 location);
4930
b34976b6 4931 return TRUE;
b49e97c9
TS
4932}
4933
b34976b6 4934/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4935
b34976b6 4936static bfd_boolean
b9d58d71 4937mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4938{
4939 const char *name = bfd_get_section_name (abfd, section);
4940
b9d58d71 4941 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4942}
4943\f
0a44bf69 4944/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4945
4946static void
0a44bf69
RS
4947mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4948 unsigned int n)
b49e97c9
TS
4949{
4950 asection *s;
0a44bf69 4951 struct mips_elf_link_hash_table *htab;
b49e97c9 4952
0a44bf69
RS
4953 htab = mips_elf_hash_table (info);
4954 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4955 BFD_ASSERT (s != NULL);
4956
0a44bf69
RS
4957 if (htab->is_vxworks)
4958 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4959 else
b49e97c9 4960 {
0a44bf69
RS
4961 if (s->size == 0)
4962 {
4963 /* Make room for a null element. */
4964 s->size += MIPS_ELF_REL_SIZE (abfd);
4965 ++s->reloc_count;
4966 }
4967 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4968 }
b49e97c9
TS
4969}
4970
4971/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4972 is the original relocation, which is now being transformed into a
4973 dynamic relocation. The ADDENDP is adjusted if necessary; the
4974 caller should store the result in place of the original addend. */
4975
b34976b6 4976static bfd_boolean
9719ad41
RS
4977mips_elf_create_dynamic_relocation (bfd *output_bfd,
4978 struct bfd_link_info *info,
4979 const Elf_Internal_Rela *rel,
4980 struct mips_elf_link_hash_entry *h,
4981 asection *sec, bfd_vma symbol,
4982 bfd_vma *addendp, asection *input_section)
b49e97c9 4983{
947216bf 4984 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4985 asection *sreloc;
4986 bfd *dynobj;
4987 int r_type;
5d41f0b6
RS
4988 long indx;
4989 bfd_boolean defined_p;
0a44bf69 4990 struct mips_elf_link_hash_table *htab;
b49e97c9 4991
0a44bf69 4992 htab = mips_elf_hash_table (info);
b49e97c9
TS
4993 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4994 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4995 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4996 BFD_ASSERT (sreloc != NULL);
4997 BFD_ASSERT (sreloc->contents != NULL);
4998 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4999 < sreloc->size);
b49e97c9 5000
b49e97c9
TS
5001 outrel[0].r_offset =
5002 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5003 if (ABI_64_P (output_bfd))
5004 {
5005 outrel[1].r_offset =
5006 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5007 outrel[2].r_offset =
5008 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5009 }
b49e97c9 5010
c5ae1840 5011 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 5012 /* The relocation field has been deleted. */
5d41f0b6
RS
5013 return TRUE;
5014
5015 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
5016 {
5017 /* The relocation field has been converted into a relative value of
5018 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5019 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 5020 *addendp += symbol;
5d41f0b6 5021 return TRUE;
0d591ff7 5022 }
b49e97c9 5023
5d41f0b6
RS
5024 /* We must now calculate the dynamic symbol table index to use
5025 in the relocation. */
5026 if (h != NULL
6ece8836
TS
5027 && (!h->root.def_regular
5028 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
5029 {
5030 indx = h->root.dynindx;
5031 if (SGI_COMPAT (output_bfd))
5032 defined_p = h->root.def_regular;
5033 else
5034 /* ??? glibc's ld.so just adds the final GOT entry to the
5035 relocation field. It therefore treats relocs against
5036 defined symbols in the same way as relocs against
5037 undefined symbols. */
5038 defined_p = FALSE;
5039 }
b49e97c9
TS
5040 else
5041 {
5d41f0b6
RS
5042 if (sec != NULL && bfd_is_abs_section (sec))
5043 indx = 0;
5044 else if (sec == NULL || sec->owner == NULL)
fdd07405 5045 {
5d41f0b6
RS
5046 bfd_set_error (bfd_error_bad_value);
5047 return FALSE;
b49e97c9
TS
5048 }
5049 else
5050 {
5d41f0b6 5051 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
5052 if (indx == 0)
5053 {
5054 asection *osec = htab->root.text_index_section;
5055 indx = elf_section_data (osec)->dynindx;
5056 }
5d41f0b6
RS
5057 if (indx == 0)
5058 abort ();
b49e97c9
TS
5059 }
5060
5d41f0b6
RS
5061 /* Instead of generating a relocation using the section
5062 symbol, we may as well make it a fully relative
5063 relocation. We want to avoid generating relocations to
5064 local symbols because we used to generate them
5065 incorrectly, without adding the original symbol value,
5066 which is mandated by the ABI for section symbols. In
5067 order to give dynamic loaders and applications time to
5068 phase out the incorrect use, we refrain from emitting
5069 section-relative relocations. It's not like they're
5070 useful, after all. This should be a bit more efficient
5071 as well. */
5072 /* ??? Although this behavior is compatible with glibc's ld.so,
5073 the ABI says that relocations against STN_UNDEF should have
5074 a symbol value of 0. Irix rld honors this, so relocations
5075 against STN_UNDEF have no effect. */
5076 if (!SGI_COMPAT (output_bfd))
5077 indx = 0;
5078 defined_p = TRUE;
b49e97c9
TS
5079 }
5080
5d41f0b6
RS
5081 /* If the relocation was previously an absolute relocation and
5082 this symbol will not be referred to by the relocation, we must
5083 adjust it by the value we give it in the dynamic symbol table.
5084 Otherwise leave the job up to the dynamic linker. */
5085 if (defined_p && r_type != R_MIPS_REL32)
5086 *addendp += symbol;
5087
0a44bf69
RS
5088 if (htab->is_vxworks)
5089 /* VxWorks uses non-relative relocations for this. */
5090 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5091 else
5092 /* The relocation is always an REL32 relocation because we don't
5093 know where the shared library will wind up at load-time. */
5094 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5095 R_MIPS_REL32);
5096
5d41f0b6
RS
5097 /* For strict adherence to the ABI specification, we should
5098 generate a R_MIPS_64 relocation record by itself before the
5099 _REL32/_64 record as well, such that the addend is read in as
5100 a 64-bit value (REL32 is a 32-bit relocation, after all).
5101 However, since none of the existing ELF64 MIPS dynamic
5102 loaders seems to care, we don't waste space with these
5103 artificial relocations. If this turns out to not be true,
5104 mips_elf_allocate_dynamic_relocation() should be tweaked so
5105 as to make room for a pair of dynamic relocations per
5106 invocation if ABI_64_P, and here we should generate an
5107 additional relocation record with R_MIPS_64 by itself for a
5108 NULL symbol before this relocation record. */
5109 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5110 ABI_64_P (output_bfd)
5111 ? R_MIPS_64
5112 : R_MIPS_NONE);
5113 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5114
5115 /* Adjust the output offset of the relocation to reference the
5116 correct location in the output file. */
5117 outrel[0].r_offset += (input_section->output_section->vma
5118 + input_section->output_offset);
5119 outrel[1].r_offset += (input_section->output_section->vma
5120 + input_section->output_offset);
5121 outrel[2].r_offset += (input_section->output_section->vma
5122 + input_section->output_offset);
5123
b49e97c9
TS
5124 /* Put the relocation back out. We have to use the special
5125 relocation outputter in the 64-bit case since the 64-bit
5126 relocation format is non-standard. */
5127 if (ABI_64_P (output_bfd))
5128 {
5129 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5130 (output_bfd, &outrel[0],
5131 (sreloc->contents
5132 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5133 }
0a44bf69
RS
5134 else if (htab->is_vxworks)
5135 {
5136 /* VxWorks uses RELA rather than REL dynamic relocations. */
5137 outrel[0].r_addend = *addendp;
5138 bfd_elf32_swap_reloca_out
5139 (output_bfd, &outrel[0],
5140 (sreloc->contents
5141 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5142 }
b49e97c9 5143 else
947216bf
AM
5144 bfd_elf32_swap_reloc_out
5145 (output_bfd, &outrel[0],
5146 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 5147
b49e97c9
TS
5148 /* We've now added another relocation. */
5149 ++sreloc->reloc_count;
5150
5151 /* Make sure the output section is writable. The dynamic linker
5152 will be writing to it. */
5153 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5154 |= SHF_WRITE;
5155
5156 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 5157 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
5158 {
5159 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5160 bfd_byte *cr;
5161
5162 if (scpt)
5163 {
5164 Elf32_crinfo cptrel;
5165
5166 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5167 cptrel.vaddr = (rel->r_offset
5168 + input_section->output_section->vma
5169 + input_section->output_offset);
5170 if (r_type == R_MIPS_REL32)
5171 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5172 else
5173 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5174 mips_elf_set_cr_dist2to (cptrel, 0);
5175 cptrel.konst = *addendp;
5176
5177 cr = (scpt->contents
5178 + sizeof (Elf32_External_compact_rel));
abc0f8d0 5179 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
5180 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5181 ((Elf32_External_crinfo *) cr
5182 + scpt->reloc_count));
5183 ++scpt->reloc_count;
5184 }
5185 }
5186
943284cc
DJ
5187 /* If we've written this relocation for a readonly section,
5188 we need to set DF_TEXTREL again, so that we do not delete the
5189 DT_TEXTREL tag. */
5190 if (MIPS_ELF_READONLY_SECTION (input_section))
5191 info->flags |= DF_TEXTREL;
5192
b34976b6 5193 return TRUE;
b49e97c9
TS
5194}
5195\f
b49e97c9
TS
5196/* Return the MACH for a MIPS e_flags value. */
5197
5198unsigned long
9719ad41 5199_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
5200{
5201 switch (flags & EF_MIPS_MACH)
5202 {
5203 case E_MIPS_MACH_3900:
5204 return bfd_mach_mips3900;
5205
5206 case E_MIPS_MACH_4010:
5207 return bfd_mach_mips4010;
5208
5209 case E_MIPS_MACH_4100:
5210 return bfd_mach_mips4100;
5211
5212 case E_MIPS_MACH_4111:
5213 return bfd_mach_mips4111;
5214
00707a0e
RS
5215 case E_MIPS_MACH_4120:
5216 return bfd_mach_mips4120;
5217
b49e97c9
TS
5218 case E_MIPS_MACH_4650:
5219 return bfd_mach_mips4650;
5220
00707a0e
RS
5221 case E_MIPS_MACH_5400:
5222 return bfd_mach_mips5400;
5223
5224 case E_MIPS_MACH_5500:
5225 return bfd_mach_mips5500;
5226
0d2e43ed
ILT
5227 case E_MIPS_MACH_9000:
5228 return bfd_mach_mips9000;
5229
b49e97c9
TS
5230 case E_MIPS_MACH_SB1:
5231 return bfd_mach_mips_sb1;
5232
350cc38d
MS
5233 case E_MIPS_MACH_LS2E:
5234 return bfd_mach_mips_loongson_2e;
5235
5236 case E_MIPS_MACH_LS2F:
5237 return bfd_mach_mips_loongson_2f;
5238
6f179bd0
AN
5239 case E_MIPS_MACH_OCTEON:
5240 return bfd_mach_mips_octeon;
5241
b49e97c9
TS
5242 default:
5243 switch (flags & EF_MIPS_ARCH)
5244 {
5245 default:
5246 case E_MIPS_ARCH_1:
5247 return bfd_mach_mips3000;
b49e97c9
TS
5248
5249 case E_MIPS_ARCH_2:
5250 return bfd_mach_mips6000;
b49e97c9
TS
5251
5252 case E_MIPS_ARCH_3:
5253 return bfd_mach_mips4000;
b49e97c9
TS
5254
5255 case E_MIPS_ARCH_4:
5256 return bfd_mach_mips8000;
b49e97c9
TS
5257
5258 case E_MIPS_ARCH_5:
5259 return bfd_mach_mips5;
b49e97c9
TS
5260
5261 case E_MIPS_ARCH_32:
5262 return bfd_mach_mipsisa32;
b49e97c9
TS
5263
5264 case E_MIPS_ARCH_64:
5265 return bfd_mach_mipsisa64;
af7ee8bf
CD
5266
5267 case E_MIPS_ARCH_32R2:
5268 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5269
5270 case E_MIPS_ARCH_64R2:
5271 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5272 }
5273 }
5274
5275 return 0;
5276}
5277
5278/* Return printable name for ABI. */
5279
5280static INLINE char *
9719ad41 5281elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5282{
5283 flagword flags;
5284
5285 flags = elf_elfheader (abfd)->e_flags;
5286 switch (flags & EF_MIPS_ABI)
5287 {
5288 case 0:
5289 if (ABI_N32_P (abfd))
5290 return "N32";
5291 else if (ABI_64_P (abfd))
5292 return "64";
5293 else
5294 return "none";
5295 case E_MIPS_ABI_O32:
5296 return "O32";
5297 case E_MIPS_ABI_O64:
5298 return "O64";
5299 case E_MIPS_ABI_EABI32:
5300 return "EABI32";
5301 case E_MIPS_ABI_EABI64:
5302 return "EABI64";
5303 default:
5304 return "unknown abi";
5305 }
5306}
5307\f
5308/* MIPS ELF uses two common sections. One is the usual one, and the
5309 other is for small objects. All the small objects are kept
5310 together, and then referenced via the gp pointer, which yields
5311 faster assembler code. This is what we use for the small common
5312 section. This approach is copied from ecoff.c. */
5313static asection mips_elf_scom_section;
5314static asymbol mips_elf_scom_symbol;
5315static asymbol *mips_elf_scom_symbol_ptr;
5316
5317/* MIPS ELF also uses an acommon section, which represents an
5318 allocated common symbol which may be overridden by a
5319 definition in a shared library. */
5320static asection mips_elf_acom_section;
5321static asymbol mips_elf_acom_symbol;
5322static asymbol *mips_elf_acom_symbol_ptr;
5323
5324/* Handle the special MIPS section numbers that a symbol may use.
5325 This is used for both the 32-bit and the 64-bit ABI. */
5326
5327void
9719ad41 5328_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5329{
5330 elf_symbol_type *elfsym;
5331
5332 elfsym = (elf_symbol_type *) asym;
5333 switch (elfsym->internal_elf_sym.st_shndx)
5334 {
5335 case SHN_MIPS_ACOMMON:
5336 /* This section is used in a dynamically linked executable file.
5337 It is an allocated common section. The dynamic linker can
5338 either resolve these symbols to something in a shared
5339 library, or it can just leave them here. For our purposes,
5340 we can consider these symbols to be in a new section. */
5341 if (mips_elf_acom_section.name == NULL)
5342 {
5343 /* Initialize the acommon section. */
5344 mips_elf_acom_section.name = ".acommon";
5345 mips_elf_acom_section.flags = SEC_ALLOC;
5346 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5347 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5348 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5349 mips_elf_acom_symbol.name = ".acommon";
5350 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5351 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5352 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5353 }
5354 asym->section = &mips_elf_acom_section;
5355 break;
5356
5357 case SHN_COMMON:
5358 /* Common symbols less than the GP size are automatically
5359 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5360 if (asym->value > elf_gp_size (abfd)
b59eed79 5361 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5362 || IRIX_COMPAT (abfd) == ict_irix6)
5363 break;
5364 /* Fall through. */
5365 case SHN_MIPS_SCOMMON:
5366 if (mips_elf_scom_section.name == NULL)
5367 {
5368 /* Initialize the small common section. */
5369 mips_elf_scom_section.name = ".scommon";
5370 mips_elf_scom_section.flags = SEC_IS_COMMON;
5371 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5372 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5373 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5374 mips_elf_scom_symbol.name = ".scommon";
5375 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5376 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5377 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5378 }
5379 asym->section = &mips_elf_scom_section;
5380 asym->value = elfsym->internal_elf_sym.st_size;
5381 break;
5382
5383 case SHN_MIPS_SUNDEFINED:
5384 asym->section = bfd_und_section_ptr;
5385 break;
5386
b49e97c9 5387 case SHN_MIPS_TEXT:
00b4930b
TS
5388 {
5389 asection *section = bfd_get_section_by_name (abfd, ".text");
5390
5391 BFD_ASSERT (SGI_COMPAT (abfd));
5392 if (section != NULL)
5393 {
5394 asym->section = section;
5395 /* MIPS_TEXT is a bit special, the address is not an offset
5396 to the base of the .text section. So substract the section
5397 base address to make it an offset. */
5398 asym->value -= section->vma;
5399 }
5400 }
b49e97c9
TS
5401 break;
5402
5403 case SHN_MIPS_DATA:
00b4930b
TS
5404 {
5405 asection *section = bfd_get_section_by_name (abfd, ".data");
5406
5407 BFD_ASSERT (SGI_COMPAT (abfd));
5408 if (section != NULL)
5409 {
5410 asym->section = section;
5411 /* MIPS_DATA is a bit special, the address is not an offset
5412 to the base of the .data section. So substract the section
5413 base address to make it an offset. */
5414 asym->value -= section->vma;
5415 }
5416 }
b49e97c9 5417 break;
b49e97c9
TS
5418 }
5419}
5420\f
8c946ed5
RS
5421/* Implement elf_backend_eh_frame_address_size. This differs from
5422 the default in the way it handles EABI64.
5423
5424 EABI64 was originally specified as an LP64 ABI, and that is what
5425 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5426 historically accepted the combination of -mabi=eabi and -mlong32,
5427 and this ILP32 variation has become semi-official over time.
5428 Both forms use elf32 and have pointer-sized FDE addresses.
5429
5430 If an EABI object was generated by GCC 4.0 or above, it will have
5431 an empty .gcc_compiled_longXX section, where XX is the size of longs
5432 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5433 have no special marking to distinguish them from LP64 objects.
5434
5435 We don't want users of the official LP64 ABI to be punished for the
5436 existence of the ILP32 variant, but at the same time, we don't want
5437 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5438 We therefore take the following approach:
5439
5440 - If ABFD contains a .gcc_compiled_longXX section, use it to
5441 determine the pointer size.
5442
5443 - Otherwise check the type of the first relocation. Assume that
5444 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5445
5446 - Otherwise punt.
5447
5448 The second check is enough to detect LP64 objects generated by pre-4.0
5449 compilers because, in the kind of output generated by those compilers,
5450 the first relocation will be associated with either a CIE personality
5451 routine or an FDE start address. Furthermore, the compilers never
5452 used a special (non-pointer) encoding for this ABI.
5453
5454 Checking the relocation type should also be safe because there is no
5455 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5456 did so. */
5457
5458unsigned int
5459_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5460{
5461 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5462 return 8;
5463 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5464 {
5465 bfd_boolean long32_p, long64_p;
5466
5467 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5468 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5469 if (long32_p && long64_p)
5470 return 0;
5471 if (long32_p)
5472 return 4;
5473 if (long64_p)
5474 return 8;
5475
5476 if (sec->reloc_count > 0
5477 && elf_section_data (sec)->relocs != NULL
5478 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5479 == R_MIPS_64))
5480 return 8;
5481
5482 return 0;
5483 }
5484 return 4;
5485}
5486\f
174fd7f9
RS
5487/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5488 relocations against two unnamed section symbols to resolve to the
5489 same address. For example, if we have code like:
5490
5491 lw $4,%got_disp(.data)($gp)
5492 lw $25,%got_disp(.text)($gp)
5493 jalr $25
5494
5495 then the linker will resolve both relocations to .data and the program
5496 will jump there rather than to .text.
5497
5498 We can work around this problem by giving names to local section symbols.
5499 This is also what the MIPSpro tools do. */
5500
5501bfd_boolean
5502_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5503{
5504 return SGI_COMPAT (abfd);
5505}
5506\f
b49e97c9
TS
5507/* Work over a section just before writing it out. This routine is
5508 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5509 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5510 a better way. */
5511
b34976b6 5512bfd_boolean
9719ad41 5513_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5514{
5515 if (hdr->sh_type == SHT_MIPS_REGINFO
5516 && hdr->sh_size > 0)
5517 {
5518 bfd_byte buf[4];
5519
5520 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5521 BFD_ASSERT (hdr->contents == NULL);
5522
5523 if (bfd_seek (abfd,
5524 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5525 SEEK_SET) != 0)
b34976b6 5526 return FALSE;
b49e97c9 5527 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5528 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5529 return FALSE;
b49e97c9
TS
5530 }
5531
5532 if (hdr->sh_type == SHT_MIPS_OPTIONS
5533 && hdr->bfd_section != NULL
f0abc2a1
AM
5534 && mips_elf_section_data (hdr->bfd_section) != NULL
5535 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5536 {
5537 bfd_byte *contents, *l, *lend;
5538
f0abc2a1
AM
5539 /* We stored the section contents in the tdata field in the
5540 set_section_contents routine. We save the section contents
5541 so that we don't have to read them again.
b49e97c9
TS
5542 At this point we know that elf_gp is set, so we can look
5543 through the section contents to see if there is an
5544 ODK_REGINFO structure. */
5545
f0abc2a1 5546 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5547 l = contents;
5548 lend = contents + hdr->sh_size;
5549 while (l + sizeof (Elf_External_Options) <= lend)
5550 {
5551 Elf_Internal_Options intopt;
5552
5553 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5554 &intopt);
1bc8074d
MR
5555 if (intopt.size < sizeof (Elf_External_Options))
5556 {
5557 (*_bfd_error_handler)
5558 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5560 break;
5561 }
b49e97c9
TS
5562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5563 {
5564 bfd_byte buf[8];
5565
5566 if (bfd_seek (abfd,
5567 (hdr->sh_offset
5568 + (l - contents)
5569 + sizeof (Elf_External_Options)
5570 + (sizeof (Elf64_External_RegInfo) - 8)),
5571 SEEK_SET) != 0)
b34976b6 5572 return FALSE;
b49e97c9 5573 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5574 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5575 return FALSE;
b49e97c9
TS
5576 }
5577 else if (intopt.kind == ODK_REGINFO)
5578 {
5579 bfd_byte buf[4];
5580
5581 if (bfd_seek (abfd,
5582 (hdr->sh_offset
5583 + (l - contents)
5584 + sizeof (Elf_External_Options)
5585 + (sizeof (Elf32_External_RegInfo) - 4)),
5586 SEEK_SET) != 0)
b34976b6 5587 return FALSE;
b49e97c9 5588 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5589 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5590 return FALSE;
b49e97c9
TS
5591 }
5592 l += intopt.size;
5593 }
5594 }
5595
5596 if (hdr->bfd_section != NULL)
5597 {
5598 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5599
5600 if (strcmp (name, ".sdata") == 0
5601 || strcmp (name, ".lit8") == 0
5602 || strcmp (name, ".lit4") == 0)
5603 {
5604 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5605 hdr->sh_type = SHT_PROGBITS;
5606 }
5607 else if (strcmp (name, ".sbss") == 0)
5608 {
5609 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5610 hdr->sh_type = SHT_NOBITS;
5611 }
5612 else if (strcmp (name, ".srdata") == 0)
5613 {
5614 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5615 hdr->sh_type = SHT_PROGBITS;
5616 }
5617 else if (strcmp (name, ".compact_rel") == 0)
5618 {
5619 hdr->sh_flags = 0;
5620 hdr->sh_type = SHT_PROGBITS;
5621 }
5622 else if (strcmp (name, ".rtproc") == 0)
5623 {
5624 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5625 {
5626 unsigned int adjust;
5627
5628 adjust = hdr->sh_size % hdr->sh_addralign;
5629 if (adjust != 0)
5630 hdr->sh_size += hdr->sh_addralign - adjust;
5631 }
5632 }
5633 }
5634
b34976b6 5635 return TRUE;
b49e97c9
TS
5636}
5637
5638/* Handle a MIPS specific section when reading an object file. This
5639 is called when elfcode.h finds a section with an unknown type.
5640 This routine supports both the 32-bit and 64-bit ELF ABI.
5641
5642 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5643 how to. */
5644
b34976b6 5645bfd_boolean
6dc132d9
L
5646_bfd_mips_elf_section_from_shdr (bfd *abfd,
5647 Elf_Internal_Shdr *hdr,
5648 const char *name,
5649 int shindex)
b49e97c9
TS
5650{
5651 flagword flags = 0;
5652
5653 /* There ought to be a place to keep ELF backend specific flags, but
5654 at the moment there isn't one. We just keep track of the
5655 sections by their name, instead. Fortunately, the ABI gives
5656 suggested names for all the MIPS specific sections, so we will
5657 probably get away with this. */
5658 switch (hdr->sh_type)
5659 {
5660 case SHT_MIPS_LIBLIST:
5661 if (strcmp (name, ".liblist") != 0)
b34976b6 5662 return FALSE;
b49e97c9
TS
5663 break;
5664 case SHT_MIPS_MSYM:
5665 if (strcmp (name, ".msym") != 0)
b34976b6 5666 return FALSE;
b49e97c9
TS
5667 break;
5668 case SHT_MIPS_CONFLICT:
5669 if (strcmp (name, ".conflict") != 0)
b34976b6 5670 return FALSE;
b49e97c9
TS
5671 break;
5672 case SHT_MIPS_GPTAB:
0112cd26 5673 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5674 return FALSE;
b49e97c9
TS
5675 break;
5676 case SHT_MIPS_UCODE:
5677 if (strcmp (name, ".ucode") != 0)
b34976b6 5678 return FALSE;
b49e97c9
TS
5679 break;
5680 case SHT_MIPS_DEBUG:
5681 if (strcmp (name, ".mdebug") != 0)
b34976b6 5682 return FALSE;
b49e97c9
TS
5683 flags = SEC_DEBUGGING;
5684 break;
5685 case SHT_MIPS_REGINFO:
5686 if (strcmp (name, ".reginfo") != 0
5687 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5688 return FALSE;
b49e97c9
TS
5689 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5690 break;
5691 case SHT_MIPS_IFACE:
5692 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5693 return FALSE;
b49e97c9
TS
5694 break;
5695 case SHT_MIPS_CONTENT:
0112cd26 5696 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5697 return FALSE;
b49e97c9
TS
5698 break;
5699 case SHT_MIPS_OPTIONS:
cc2e31b9 5700 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5701 return FALSE;
b49e97c9
TS
5702 break;
5703 case SHT_MIPS_DWARF:
0112cd26 5704 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5705 return FALSE;
b49e97c9
TS
5706 break;
5707 case SHT_MIPS_SYMBOL_LIB:
5708 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5709 return FALSE;
b49e97c9
TS
5710 break;
5711 case SHT_MIPS_EVENTS:
0112cd26
NC
5712 if (! CONST_STRNEQ (name, ".MIPS.events")
5713 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5714 return FALSE;
b49e97c9
TS
5715 break;
5716 default:
cc2e31b9 5717 break;
b49e97c9
TS
5718 }
5719
6dc132d9 5720 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5721 return FALSE;
b49e97c9
TS
5722
5723 if (flags)
5724 {
5725 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5726 (bfd_get_section_flags (abfd,
5727 hdr->bfd_section)
5728 | flags)))
b34976b6 5729 return FALSE;
b49e97c9
TS
5730 }
5731
5732 /* FIXME: We should record sh_info for a .gptab section. */
5733
5734 /* For a .reginfo section, set the gp value in the tdata information
5735 from the contents of this section. We need the gp value while
5736 processing relocs, so we just get it now. The .reginfo section
5737 is not used in the 64-bit MIPS ELF ABI. */
5738 if (hdr->sh_type == SHT_MIPS_REGINFO)
5739 {
5740 Elf32_External_RegInfo ext;
5741 Elf32_RegInfo s;
5742
9719ad41
RS
5743 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5744 &ext, 0, sizeof ext))
b34976b6 5745 return FALSE;
b49e97c9
TS
5746 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5747 elf_gp (abfd) = s.ri_gp_value;
5748 }
5749
5750 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5751 set the gp value based on what we find. We may see both
5752 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5753 they should agree. */
5754 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5755 {
5756 bfd_byte *contents, *l, *lend;
5757
9719ad41 5758 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5759 if (contents == NULL)
b34976b6 5760 return FALSE;
b49e97c9 5761 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5762 0, hdr->sh_size))
b49e97c9
TS
5763 {
5764 free (contents);
b34976b6 5765 return FALSE;
b49e97c9
TS
5766 }
5767 l = contents;
5768 lend = contents + hdr->sh_size;
5769 while (l + sizeof (Elf_External_Options) <= lend)
5770 {
5771 Elf_Internal_Options intopt;
5772
5773 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5774 &intopt);
1bc8074d
MR
5775 if (intopt.size < sizeof (Elf_External_Options))
5776 {
5777 (*_bfd_error_handler)
5778 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5779 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5780 break;
5781 }
b49e97c9
TS
5782 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5783 {
5784 Elf64_Internal_RegInfo intreg;
5785
5786 bfd_mips_elf64_swap_reginfo_in
5787 (abfd,
5788 ((Elf64_External_RegInfo *)
5789 (l + sizeof (Elf_External_Options))),
5790 &intreg);
5791 elf_gp (abfd) = intreg.ri_gp_value;
5792 }
5793 else if (intopt.kind == ODK_REGINFO)
5794 {
5795 Elf32_RegInfo intreg;
5796
5797 bfd_mips_elf32_swap_reginfo_in
5798 (abfd,
5799 ((Elf32_External_RegInfo *)
5800 (l + sizeof (Elf_External_Options))),
5801 &intreg);
5802 elf_gp (abfd) = intreg.ri_gp_value;
5803 }
5804 l += intopt.size;
5805 }
5806 free (contents);
5807 }
5808
b34976b6 5809 return TRUE;
b49e97c9
TS
5810}
5811
5812/* Set the correct type for a MIPS ELF section. We do this by the
5813 section name, which is a hack, but ought to work. This routine is
5814 used by both the 32-bit and the 64-bit ABI. */
5815
b34976b6 5816bfd_boolean
9719ad41 5817_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5818{
0414f35b 5819 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5820
5821 if (strcmp (name, ".liblist") == 0)
5822 {
5823 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5824 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5825 /* The sh_link field is set in final_write_processing. */
5826 }
5827 else if (strcmp (name, ".conflict") == 0)
5828 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5829 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5830 {
5831 hdr->sh_type = SHT_MIPS_GPTAB;
5832 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5833 /* The sh_info field is set in final_write_processing. */
5834 }
5835 else if (strcmp (name, ".ucode") == 0)
5836 hdr->sh_type = SHT_MIPS_UCODE;
5837 else if (strcmp (name, ".mdebug") == 0)
5838 {
5839 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5840 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5841 entsize of 0. FIXME: Does this matter? */
5842 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5843 hdr->sh_entsize = 0;
5844 else
5845 hdr->sh_entsize = 1;
5846 }
5847 else if (strcmp (name, ".reginfo") == 0)
5848 {
5849 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5850 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5851 entsize of 0x18. FIXME: Does this matter? */
5852 if (SGI_COMPAT (abfd))
5853 {
5854 if ((abfd->flags & DYNAMIC) != 0)
5855 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5856 else
5857 hdr->sh_entsize = 1;
5858 }
5859 else
5860 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5861 }
5862 else if (SGI_COMPAT (abfd)
5863 && (strcmp (name, ".hash") == 0
5864 || strcmp (name, ".dynamic") == 0
5865 || strcmp (name, ".dynstr") == 0))
5866 {
5867 if (SGI_COMPAT (abfd))
5868 hdr->sh_entsize = 0;
5869#if 0
8dc1a139 5870 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5871 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5872#endif
5873 }
5874 else if (strcmp (name, ".got") == 0
5875 || strcmp (name, ".srdata") == 0
5876 || strcmp (name, ".sdata") == 0
5877 || strcmp (name, ".sbss") == 0
5878 || strcmp (name, ".lit4") == 0
5879 || strcmp (name, ".lit8") == 0)
5880 hdr->sh_flags |= SHF_MIPS_GPREL;
5881 else if (strcmp (name, ".MIPS.interfaces") == 0)
5882 {
5883 hdr->sh_type = SHT_MIPS_IFACE;
5884 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5885 }
0112cd26 5886 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5887 {
5888 hdr->sh_type = SHT_MIPS_CONTENT;
5889 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5890 /* The sh_info field is set in final_write_processing. */
5891 }
cc2e31b9 5892 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5893 {
5894 hdr->sh_type = SHT_MIPS_OPTIONS;
5895 hdr->sh_entsize = 1;
5896 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5897 }
0112cd26 5898 else if (CONST_STRNEQ (name, ".debug_"))
b5482f21
NC
5899 {
5900 hdr->sh_type = SHT_MIPS_DWARF;
5901
5902 /* Irix facilities such as libexc expect a single .debug_frame
5903 per executable, the system ones have NOSTRIP set and the linker
5904 doesn't merge sections with different flags so ... */
5905 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
5906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5907 }
b49e97c9
TS
5908 else if (strcmp (name, ".MIPS.symlib") == 0)
5909 {
5910 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5911 /* The sh_link and sh_info fields are set in
5912 final_write_processing. */
5913 }
0112cd26
NC
5914 else if (CONST_STRNEQ (name, ".MIPS.events")
5915 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5916 {
5917 hdr->sh_type = SHT_MIPS_EVENTS;
5918 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5919 /* The sh_link field is set in final_write_processing. */
5920 }
5921 else if (strcmp (name, ".msym") == 0)
5922 {
5923 hdr->sh_type = SHT_MIPS_MSYM;
5924 hdr->sh_flags |= SHF_ALLOC;
5925 hdr->sh_entsize = 8;
5926 }
5927
7a79a000
TS
5928 /* The generic elf_fake_sections will set up REL_HDR using the default
5929 kind of relocations. We used to set up a second header for the
5930 non-default kind of relocations here, but only NewABI would use
5931 these, and the IRIX ld doesn't like resulting empty RELA sections.
5932 Thus we create those header only on demand now. */
b49e97c9 5933
b34976b6 5934 return TRUE;
b49e97c9
TS
5935}
5936
5937/* Given a BFD section, try to locate the corresponding ELF section
5938 index. This is used by both the 32-bit and the 64-bit ABI.
5939 Actually, it's not clear to me that the 64-bit ABI supports these,
5940 but for non-PIC objects we will certainly want support for at least
5941 the .scommon section. */
5942
b34976b6 5943bfd_boolean
9719ad41
RS
5944_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5945 asection *sec, int *retval)
b49e97c9
TS
5946{
5947 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5948 {
5949 *retval = SHN_MIPS_SCOMMON;
b34976b6 5950 return TRUE;
b49e97c9
TS
5951 }
5952 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5953 {
5954 *retval = SHN_MIPS_ACOMMON;
b34976b6 5955 return TRUE;
b49e97c9 5956 }
b34976b6 5957 return FALSE;
b49e97c9
TS
5958}
5959\f
5960/* Hook called by the linker routine which adds symbols from an object
5961 file. We must handle the special MIPS section numbers here. */
5962
b34976b6 5963bfd_boolean
9719ad41 5964_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5965 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5966 flagword *flagsp ATTRIBUTE_UNUSED,
5967 asection **secp, bfd_vma *valp)
b49e97c9
TS
5968{
5969 if (SGI_COMPAT (abfd)
5970 && (abfd->flags & DYNAMIC) != 0
5971 && strcmp (*namep, "_rld_new_interface") == 0)
5972 {
8dc1a139 5973 /* Skip IRIX5 rld entry name. */
b49e97c9 5974 *namep = NULL;
b34976b6 5975 return TRUE;
b49e97c9
TS
5976 }
5977
eedecc07
DD
5978 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5979 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5980 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5981 a magic symbol resolved by the linker, we ignore this bogus definition
5982 of _gp_disp. New ABI objects do not suffer from this problem so this
5983 is not done for them. */
5984 if (!NEWABI_P(abfd)
5985 && (sym->st_shndx == SHN_ABS)
5986 && (strcmp (*namep, "_gp_disp") == 0))
5987 {
5988 *namep = NULL;
5989 return TRUE;
5990 }
5991
b49e97c9
TS
5992 switch (sym->st_shndx)
5993 {
5994 case SHN_COMMON:
5995 /* Common symbols less than the GP size are automatically
5996 treated as SHN_MIPS_SCOMMON symbols. */
5997 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5998 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5999 || IRIX_COMPAT (abfd) == ict_irix6)
6000 break;
6001 /* Fall through. */
6002 case SHN_MIPS_SCOMMON:
6003 *secp = bfd_make_section_old_way (abfd, ".scommon");
6004 (*secp)->flags |= SEC_IS_COMMON;
6005 *valp = sym->st_size;
6006 break;
6007
6008 case SHN_MIPS_TEXT:
6009 /* This section is used in a shared object. */
6010 if (elf_tdata (abfd)->elf_text_section == NULL)
6011 {
6012 asymbol *elf_text_symbol;
6013 asection *elf_text_section;
6014 bfd_size_type amt = sizeof (asection);
6015
6016 elf_text_section = bfd_zalloc (abfd, amt);
6017 if (elf_text_section == NULL)
b34976b6 6018 return FALSE;
b49e97c9
TS
6019
6020 amt = sizeof (asymbol);
6021 elf_text_symbol = bfd_zalloc (abfd, amt);
6022 if (elf_text_symbol == NULL)
b34976b6 6023 return FALSE;
b49e97c9
TS
6024
6025 /* Initialize the section. */
6026
6027 elf_tdata (abfd)->elf_text_section = elf_text_section;
6028 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6029
6030 elf_text_section->symbol = elf_text_symbol;
6031 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6032
6033 elf_text_section->name = ".text";
6034 elf_text_section->flags = SEC_NO_FLAGS;
6035 elf_text_section->output_section = NULL;
6036 elf_text_section->owner = abfd;
6037 elf_text_symbol->name = ".text";
6038 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6039 elf_text_symbol->section = elf_text_section;
6040 }
6041 /* This code used to do *secp = bfd_und_section_ptr if
6042 info->shared. I don't know why, and that doesn't make sense,
6043 so I took it out. */
6044 *secp = elf_tdata (abfd)->elf_text_section;
6045 break;
6046
6047 case SHN_MIPS_ACOMMON:
6048 /* Fall through. XXX Can we treat this as allocated data? */
6049 case SHN_MIPS_DATA:
6050 /* This section is used in a shared object. */
6051 if (elf_tdata (abfd)->elf_data_section == NULL)
6052 {
6053 asymbol *elf_data_symbol;
6054 asection *elf_data_section;
6055 bfd_size_type amt = sizeof (asection);
6056
6057 elf_data_section = bfd_zalloc (abfd, amt);
6058 if (elf_data_section == NULL)
b34976b6 6059 return FALSE;
b49e97c9
TS
6060
6061 amt = sizeof (asymbol);
6062 elf_data_symbol = bfd_zalloc (abfd, amt);
6063 if (elf_data_symbol == NULL)
b34976b6 6064 return FALSE;
b49e97c9
TS
6065
6066 /* Initialize the section. */
6067
6068 elf_tdata (abfd)->elf_data_section = elf_data_section;
6069 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6070
6071 elf_data_section->symbol = elf_data_symbol;
6072 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6073
6074 elf_data_section->name = ".data";
6075 elf_data_section->flags = SEC_NO_FLAGS;
6076 elf_data_section->output_section = NULL;
6077 elf_data_section->owner = abfd;
6078 elf_data_symbol->name = ".data";
6079 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6080 elf_data_symbol->section = elf_data_section;
6081 }
6082 /* This code used to do *secp = bfd_und_section_ptr if
6083 info->shared. I don't know why, and that doesn't make sense,
6084 so I took it out. */
6085 *secp = elf_tdata (abfd)->elf_data_section;
6086 break;
6087
6088 case SHN_MIPS_SUNDEFINED:
6089 *secp = bfd_und_section_ptr;
6090 break;
6091 }
6092
6093 if (SGI_COMPAT (abfd)
6094 && ! info->shared
f13a99db 6095 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
6096 && strcmp (*namep, "__rld_obj_head") == 0)
6097 {
6098 struct elf_link_hash_entry *h;
14a793b2 6099 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6100
6101 /* Mark __rld_obj_head as dynamic. */
14a793b2 6102 bh = NULL;
b49e97c9 6103 if (! (_bfd_generic_link_add_one_symbol
9719ad41 6104 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 6105 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6106 return FALSE;
14a793b2
AM
6107
6108 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6109 h->non_elf = 0;
6110 h->def_regular = 1;
b49e97c9
TS
6111 h->type = STT_OBJECT;
6112
c152c796 6113 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6114 return FALSE;
b49e97c9 6115
b34976b6 6116 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
6117 }
6118
6119 /* If this is a mips16 text symbol, add 1 to the value to make it
6120 odd. This will cause something like .word SYM to come up with
6121 the right value when it is loaded into the PC. */
6122 if (sym->st_other == STO_MIPS16)
6123 ++*valp;
6124
b34976b6 6125 return TRUE;
b49e97c9
TS
6126}
6127
6128/* This hook function is called before the linker writes out a global
6129 symbol. We mark symbols as small common if appropriate. This is
6130 also where we undo the increment of the value for a mips16 symbol. */
6131
b34976b6 6132bfd_boolean
9719ad41
RS
6133_bfd_mips_elf_link_output_symbol_hook
6134 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6135 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6136 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
6137{
6138 /* If we see a common symbol, which implies a relocatable link, then
6139 if a symbol was small common in an input file, mark it as small
6140 common in the output file. */
6141 if (sym->st_shndx == SHN_COMMON
6142 && strcmp (input_sec->name, ".scommon") == 0)
6143 sym->st_shndx = SHN_MIPS_SCOMMON;
6144
79cda7cf
FF
6145 if (sym->st_other == STO_MIPS16)
6146 sym->st_value &= ~1;
b49e97c9 6147
b34976b6 6148 return TRUE;
b49e97c9
TS
6149}
6150\f
6151/* Functions for the dynamic linker. */
6152
6153/* Create dynamic sections when linking against a dynamic object. */
6154
b34976b6 6155bfd_boolean
9719ad41 6156_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
6157{
6158 struct elf_link_hash_entry *h;
14a793b2 6159 struct bfd_link_hash_entry *bh;
b49e97c9
TS
6160 flagword flags;
6161 register asection *s;
6162 const char * const *namep;
0a44bf69 6163 struct mips_elf_link_hash_table *htab;
b49e97c9 6164
0a44bf69 6165 htab = mips_elf_hash_table (info);
b49e97c9
TS
6166 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6167 | SEC_LINKER_CREATED | SEC_READONLY);
6168
0a44bf69
RS
6169 /* The psABI requires a read-only .dynamic section, but the VxWorks
6170 EABI doesn't. */
6171 if (!htab->is_vxworks)
b49e97c9 6172 {
0a44bf69
RS
6173 s = bfd_get_section_by_name (abfd, ".dynamic");
6174 if (s != NULL)
6175 {
6176 if (! bfd_set_section_flags (abfd, s, flags))
6177 return FALSE;
6178 }
b49e97c9
TS
6179 }
6180
6181 /* We need to create .got section. */
f4416af6
AO
6182 if (! mips_elf_create_got_section (abfd, info, FALSE))
6183 return FALSE;
6184
0a44bf69 6185 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 6186 return FALSE;
b49e97c9 6187
b49e97c9
TS
6188 /* Create .stub section. */
6189 if (bfd_get_section_by_name (abfd,
6190 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6191 {
3496cb2a
L
6192 s = bfd_make_section_with_flags (abfd,
6193 MIPS_ELF_STUB_SECTION_NAME (abfd),
6194 flags | SEC_CODE);
b49e97c9 6195 if (s == NULL
b49e97c9
TS
6196 || ! bfd_set_section_alignment (abfd, s,
6197 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6198 return FALSE;
b49e97c9
TS
6199 }
6200
6201 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6202 && !info->shared
6203 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6204 {
3496cb2a
L
6205 s = bfd_make_section_with_flags (abfd, ".rld_map",
6206 flags &~ (flagword) SEC_READONLY);
b49e97c9 6207 if (s == NULL
b49e97c9
TS
6208 || ! bfd_set_section_alignment (abfd, s,
6209 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 6210 return FALSE;
b49e97c9
TS
6211 }
6212
6213 /* On IRIX5, we adjust add some additional symbols and change the
6214 alignments of several sections. There is no ABI documentation
6215 indicating that this is necessary on IRIX6, nor any evidence that
6216 the linker takes such action. */
6217 if (IRIX_COMPAT (abfd) == ict_irix5)
6218 {
6219 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6220 {
14a793b2 6221 bh = NULL;
b49e97c9 6222 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
6223 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6224 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6225 return FALSE;
14a793b2
AM
6226
6227 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6228 h->non_elf = 0;
6229 h->def_regular = 1;
b49e97c9
TS
6230 h->type = STT_SECTION;
6231
c152c796 6232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6233 return FALSE;
b49e97c9
TS
6234 }
6235
6236 /* We need to create a .compact_rel section. */
6237 if (SGI_COMPAT (abfd))
6238 {
6239 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6240 return FALSE;
b49e97c9
TS
6241 }
6242
44c410de 6243 /* Change alignments of some sections. */
b49e97c9
TS
6244 s = bfd_get_section_by_name (abfd, ".hash");
6245 if (s != NULL)
d80dcc6a 6246 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6247 s = bfd_get_section_by_name (abfd, ".dynsym");
6248 if (s != NULL)
d80dcc6a 6249 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6250 s = bfd_get_section_by_name (abfd, ".dynstr");
6251 if (s != NULL)
d80dcc6a 6252 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6253 s = bfd_get_section_by_name (abfd, ".reginfo");
6254 if (s != NULL)
d80dcc6a 6255 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6256 s = bfd_get_section_by_name (abfd, ".dynamic");
6257 if (s != NULL)
d80dcc6a 6258 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6259 }
6260
6261 if (!info->shared)
6262 {
14a793b2
AM
6263 const char *name;
6264
6265 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6266 bh = NULL;
6267 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6268 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6269 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6270 return FALSE;
14a793b2
AM
6271
6272 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6273 h->non_elf = 0;
6274 h->def_regular = 1;
b49e97c9
TS
6275 h->type = STT_SECTION;
6276
c152c796 6277 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6278 return FALSE;
b49e97c9
TS
6279
6280 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6281 {
6282 /* __rld_map is a four byte word located in the .data section
6283 and is filled in by the rtld to contain a pointer to
6284 the _r_debug structure. Its symbol value will be set in
6285 _bfd_mips_elf_finish_dynamic_symbol. */
6286 s = bfd_get_section_by_name (abfd, ".rld_map");
6287 BFD_ASSERT (s != NULL);
6288
14a793b2
AM
6289 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6290 bh = NULL;
6291 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6292 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6293 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6294 return FALSE;
14a793b2
AM
6295
6296 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6297 h->non_elf = 0;
6298 h->def_regular = 1;
b49e97c9
TS
6299 h->type = STT_OBJECT;
6300
c152c796 6301 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6302 return FALSE;
b49e97c9
TS
6303 }
6304 }
6305
0a44bf69
RS
6306 if (htab->is_vxworks)
6307 {
6308 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6309 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6310 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6311 return FALSE;
6312
6313 /* Cache the sections created above. */
6314 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6315 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6316 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6317 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6318 if (!htab->sdynbss
6319 || (!htab->srelbss && !info->shared)
6320 || !htab->srelplt
6321 || !htab->splt)
6322 abort ();
6323
6324 /* Do the usual VxWorks handling. */
6325 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6326 return FALSE;
6327
6328 /* Work out the PLT sizes. */
6329 if (info->shared)
6330 {
6331 htab->plt_header_size
6332 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6333 htab->plt_entry_size
6334 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6335 }
6336 else
6337 {
6338 htab->plt_header_size
6339 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6340 htab->plt_entry_size
6341 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6342 }
6343 }
6344
b34976b6 6345 return TRUE;
b49e97c9
TS
6346}
6347\f
c224138d
RS
6348/* Return true if relocation REL against section SEC is a REL rather than
6349 RELA relocation. RELOCS is the first relocation in the section and
6350 ABFD is the bfd that contains SEC. */
6351
6352static bfd_boolean
6353mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6354 const Elf_Internal_Rela *relocs,
6355 const Elf_Internal_Rela *rel)
6356{
6357 Elf_Internal_Shdr *rel_hdr;
6358 const struct elf_backend_data *bed;
6359
6360 /* To determine which flavor or relocation this is, we depend on the
6361 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6362 rel_hdr = &elf_section_data (sec)->rel_hdr;
6363 bed = get_elf_backend_data (abfd);
6364 if ((size_t) (rel - relocs)
6365 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6366 rel_hdr = elf_section_data (sec)->rel_hdr2;
6367 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6368}
6369
6370/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6371 HOWTO is the relocation's howto and CONTENTS points to the contents
6372 of the section that REL is against. */
6373
6374static bfd_vma
6375mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6376 reloc_howto_type *howto, bfd_byte *contents)
6377{
6378 bfd_byte *location;
6379 unsigned int r_type;
6380 bfd_vma addend;
6381
6382 r_type = ELF_R_TYPE (abfd, rel->r_info);
6383 location = contents + rel->r_offset;
6384
6385 /* Get the addend, which is stored in the input file. */
6386 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6387 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6388 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6389
6390 return addend & howto->src_mask;
6391}
6392
6393/* REL is a relocation in ABFD that needs a partnering LO16 relocation
6394 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6395 and update *ADDEND with the final addend. Return true on success
6396 or false if the LO16 could not be found. RELEND is the exclusive
6397 upper bound on the relocations for REL's section. */
6398
6399static bfd_boolean
6400mips_elf_add_lo16_rel_addend (bfd *abfd,
6401 const Elf_Internal_Rela *rel,
6402 const Elf_Internal_Rela *relend,
6403 bfd_byte *contents, bfd_vma *addend)
6404{
6405 unsigned int r_type, lo16_type;
6406 const Elf_Internal_Rela *lo16_relocation;
6407 reloc_howto_type *lo16_howto;
6408 bfd_vma l;
6409
6410 r_type = ELF_R_TYPE (abfd, rel->r_info);
6411 if (r_type == R_MIPS16_HI16)
6412 lo16_type = R_MIPS16_LO16;
6413 else
6414 lo16_type = R_MIPS_LO16;
6415
6416 /* The combined value is the sum of the HI16 addend, left-shifted by
6417 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6418 code does a `lui' of the HI16 value, and then an `addiu' of the
6419 LO16 value.)
6420
6421 Scan ahead to find a matching LO16 relocation.
6422
6423 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6424 be immediately following. However, for the IRIX6 ABI, the next
6425 relocation may be a composed relocation consisting of several
6426 relocations for the same address. In that case, the R_MIPS_LO16
6427 relocation may occur as one of these. We permit a similar
6428 extension in general, as that is useful for GCC.
6429
6430 In some cases GCC dead code elimination removes the LO16 but keeps
6431 the corresponding HI16. This is strictly speaking a violation of
6432 the ABI but not immediately harmful. */
6433 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6434 if (lo16_relocation == NULL)
6435 return FALSE;
6436
6437 /* Obtain the addend kept there. */
6438 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6439 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6440
6441 l <<= lo16_howto->rightshift;
6442 l = _bfd_mips_elf_sign_extend (l, 16);
6443
6444 *addend <<= 16;
6445 *addend += l;
6446 return TRUE;
6447}
6448
6449/* Try to read the contents of section SEC in bfd ABFD. Return true and
6450 store the contents in *CONTENTS on success. Assume that *CONTENTS
6451 already holds the contents if it is nonull on entry. */
6452
6453static bfd_boolean
6454mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6455{
6456 if (*contents)
6457 return TRUE;
6458
6459 /* Get cached copy if it exists. */
6460 if (elf_section_data (sec)->this_hdr.contents != NULL)
6461 {
6462 *contents = elf_section_data (sec)->this_hdr.contents;
6463 return TRUE;
6464 }
6465
6466 return bfd_malloc_and_get_section (abfd, sec, contents);
6467}
6468
b49e97c9
TS
6469/* Look through the relocs for a section during the first phase, and
6470 allocate space in the global offset table. */
6471
b34976b6 6472bfd_boolean
9719ad41
RS
6473_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6474 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6475{
6476 const char *name;
6477 bfd *dynobj;
6478 Elf_Internal_Shdr *symtab_hdr;
6479 struct elf_link_hash_entry **sym_hashes;
6480 struct mips_got_info *g;
6481 size_t extsymoff;
6482 const Elf_Internal_Rela *rel;
6483 const Elf_Internal_Rela *rel_end;
6484 asection *sgot;
6485 asection *sreloc;
9c5bfbb7 6486 const struct elf_backend_data *bed;
0a44bf69 6487 struct mips_elf_link_hash_table *htab;
c224138d
RS
6488 bfd_byte *contents;
6489 bfd_vma addend;
6490 reloc_howto_type *howto;
b49e97c9 6491
1049f94e 6492 if (info->relocatable)
b34976b6 6493 return TRUE;
b49e97c9 6494
0a44bf69 6495 htab = mips_elf_hash_table (info);
b49e97c9
TS
6496 dynobj = elf_hash_table (info)->dynobj;
6497 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6498 sym_hashes = elf_sym_hashes (abfd);
6499 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6500
6501 /* Check for the mips16 stub sections. */
6502
6503 name = bfd_get_section_name (abfd, sec);
b9d58d71 6504 if (FN_STUB_P (name))
b49e97c9
TS
6505 {
6506 unsigned long r_symndx;
6507
6508 /* Look at the relocation information to figure out which symbol
6509 this is for. */
6510
6511 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6512
6513 if (r_symndx < extsymoff
6514 || sym_hashes[r_symndx - extsymoff] == NULL)
6515 {
6516 asection *o;
6517
6518 /* This stub is for a local symbol. This stub will only be
6519 needed if there is some relocation in this BFD, other
6520 than a 16 bit function call, which refers to this symbol. */
6521 for (o = abfd->sections; o != NULL; o = o->next)
6522 {
6523 Elf_Internal_Rela *sec_relocs;
6524 const Elf_Internal_Rela *r, *rend;
6525
6526 /* We can ignore stub sections when looking for relocs. */
6527 if ((o->flags & SEC_RELOC) == 0
6528 || o->reloc_count == 0
b9d58d71 6529 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6530 continue;
6531
45d6a902 6532 sec_relocs
9719ad41 6533 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6534 info->keep_memory);
b49e97c9 6535 if (sec_relocs == NULL)
b34976b6 6536 return FALSE;
b49e97c9
TS
6537
6538 rend = sec_relocs + o->reloc_count;
6539 for (r = sec_relocs; r < rend; r++)
6540 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6541 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6542 break;
6543
6cdc0ccc 6544 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6545 free (sec_relocs);
6546
6547 if (r < rend)
6548 break;
6549 }
6550
6551 if (o == NULL)
6552 {
6553 /* There is no non-call reloc for this stub, so we do
6554 not need it. Since this function is called before
6555 the linker maps input sections to output sections, we
6556 can easily discard it by setting the SEC_EXCLUDE
6557 flag. */
6558 sec->flags |= SEC_EXCLUDE;
b34976b6 6559 return TRUE;
b49e97c9
TS
6560 }
6561
6562 /* Record this stub in an array of local symbol stubs for
6563 this BFD. */
6564 if (elf_tdata (abfd)->local_stubs == NULL)
6565 {
6566 unsigned long symcount;
6567 asection **n;
6568 bfd_size_type amt;
6569
6570 if (elf_bad_symtab (abfd))
6571 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6572 else
6573 symcount = symtab_hdr->sh_info;
6574 amt = symcount * sizeof (asection *);
9719ad41 6575 n = bfd_zalloc (abfd, amt);
b49e97c9 6576 if (n == NULL)
b34976b6 6577 return FALSE;
b49e97c9
TS
6578 elf_tdata (abfd)->local_stubs = n;
6579 }
6580
b9d58d71 6581 sec->flags |= SEC_KEEP;
b49e97c9
TS
6582 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6583
6584 /* We don't need to set mips16_stubs_seen in this case.
6585 That flag is used to see whether we need to look through
6586 the global symbol table for stubs. We don't need to set
6587 it here, because we just have a local stub. */
6588 }
6589 else
6590 {
6591 struct mips_elf_link_hash_entry *h;
6592
6593 h = ((struct mips_elf_link_hash_entry *)
6594 sym_hashes[r_symndx - extsymoff]);
6595
973a3492
L
6596 while (h->root.root.type == bfd_link_hash_indirect
6597 || h->root.root.type == bfd_link_hash_warning)
6598 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6599
b49e97c9
TS
6600 /* H is the symbol this stub is for. */
6601
b9d58d71
TS
6602 /* If we already have an appropriate stub for this function, we
6603 don't need another one, so we can discard this one. Since
6604 this function is called before the linker maps input sections
6605 to output sections, we can easily discard it by setting the
6606 SEC_EXCLUDE flag. */
6607 if (h->fn_stub != NULL)
6608 {
6609 sec->flags |= SEC_EXCLUDE;
6610 return TRUE;
6611 }
6612
6613 sec->flags |= SEC_KEEP;
b49e97c9 6614 h->fn_stub = sec;
b34976b6 6615 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6616 }
6617 }
b9d58d71 6618 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6619 {
6620 unsigned long r_symndx;
6621 struct mips_elf_link_hash_entry *h;
6622 asection **loc;
6623
6624 /* Look at the relocation information to figure out which symbol
6625 this is for. */
6626
6627 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6628
6629 if (r_symndx < extsymoff
6630 || sym_hashes[r_symndx - extsymoff] == NULL)
6631 {
b9d58d71 6632 asection *o;
b49e97c9 6633
b9d58d71
TS
6634 /* This stub is for a local symbol. This stub will only be
6635 needed if there is some relocation (R_MIPS16_26) in this BFD
6636 that refers to this symbol. */
6637 for (o = abfd->sections; o != NULL; o = o->next)
6638 {
6639 Elf_Internal_Rela *sec_relocs;
6640 const Elf_Internal_Rela *r, *rend;
6641
6642 /* We can ignore stub sections when looking for relocs. */
6643 if ((o->flags & SEC_RELOC) == 0
6644 || o->reloc_count == 0
6645 || mips16_stub_section_p (abfd, o))
6646 continue;
6647
6648 sec_relocs
6649 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6650 info->keep_memory);
6651 if (sec_relocs == NULL)
6652 return FALSE;
6653
6654 rend = sec_relocs + o->reloc_count;
6655 for (r = sec_relocs; r < rend; r++)
6656 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6657 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6658 break;
6659
6660 if (elf_section_data (o)->relocs != sec_relocs)
6661 free (sec_relocs);
6662
6663 if (r < rend)
6664 break;
6665 }
6666
6667 if (o == NULL)
6668 {
6669 /* There is no non-call reloc for this stub, so we do
6670 not need it. Since this function is called before
6671 the linker maps input sections to output sections, we
6672 can easily discard it by setting the SEC_EXCLUDE
6673 flag. */
6674 sec->flags |= SEC_EXCLUDE;
6675 return TRUE;
6676 }
6677
6678 /* Record this stub in an array of local symbol call_stubs for
6679 this BFD. */
6680 if (elf_tdata (abfd)->local_call_stubs == NULL)
6681 {
6682 unsigned long symcount;
6683 asection **n;
6684 bfd_size_type amt;
6685
6686 if (elf_bad_symtab (abfd))
6687 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6688 else
6689 symcount = symtab_hdr->sh_info;
6690 amt = symcount * sizeof (asection *);
6691 n = bfd_zalloc (abfd, amt);
6692 if (n == NULL)
6693 return FALSE;
6694 elf_tdata (abfd)->local_call_stubs = n;
6695 }
b49e97c9 6696
b9d58d71
TS
6697 sec->flags |= SEC_KEEP;
6698 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6699
b9d58d71
TS
6700 /* We don't need to set mips16_stubs_seen in this case.
6701 That flag is used to see whether we need to look through
6702 the global symbol table for stubs. We don't need to set
6703 it here, because we just have a local stub. */
6704 }
b49e97c9 6705 else
b49e97c9 6706 {
b9d58d71
TS
6707 h = ((struct mips_elf_link_hash_entry *)
6708 sym_hashes[r_symndx - extsymoff]);
6709
6710 /* H is the symbol this stub is for. */
6711
6712 if (CALL_FP_STUB_P (name))
6713 loc = &h->call_fp_stub;
6714 else
6715 loc = &h->call_stub;
6716
6717 /* If we already have an appropriate stub for this function, we
6718 don't need another one, so we can discard this one. Since
6719 this function is called before the linker maps input sections
6720 to output sections, we can easily discard it by setting the
6721 SEC_EXCLUDE flag. */
6722 if (*loc != NULL)
6723 {
6724 sec->flags |= SEC_EXCLUDE;
6725 return TRUE;
6726 }
b49e97c9 6727
b9d58d71
TS
6728 sec->flags |= SEC_KEEP;
6729 *loc = sec;
6730 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6731 }
b49e97c9
TS
6732 }
6733
6734 if (dynobj == NULL)
6735 {
6736 sgot = NULL;
6737 g = NULL;
6738 }
6739 else
6740 {
f4416af6 6741 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6742 if (sgot == NULL)
6743 g = NULL;
6744 else
6745 {
f0abc2a1
AM
6746 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6747 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6748 BFD_ASSERT (g != NULL);
6749 }
6750 }
6751
6752 sreloc = NULL;
6753 bed = get_elf_backend_data (abfd);
6754 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
c224138d 6755 contents = NULL;
b49e97c9
TS
6756 for (rel = relocs; rel < rel_end; ++rel)
6757 {
6758 unsigned long r_symndx;
6759 unsigned int r_type;
6760 struct elf_link_hash_entry *h;
6761
6762 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6763 r_type = ELF_R_TYPE (abfd, rel->r_info);
6764
6765 if (r_symndx < extsymoff)
6766 h = NULL;
6767 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6768 {
6769 (*_bfd_error_handler)
d003868e
AM
6770 (_("%B: Malformed reloc detected for section %s"),
6771 abfd, name);
b49e97c9 6772 bfd_set_error (bfd_error_bad_value);
b34976b6 6773 return FALSE;
b49e97c9
TS
6774 }
6775 else
6776 {
6777 h = sym_hashes[r_symndx - extsymoff];
6778
6779 /* This may be an indirect symbol created because of a version. */
6780 if (h != NULL)
6781 {
6782 while (h->root.type == bfd_link_hash_indirect)
6783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6784 }
6785 }
6786
6787 /* Some relocs require a global offset table. */
6788 if (dynobj == NULL || sgot == NULL)
6789 {
6790 switch (r_type)
6791 {
6792 case R_MIPS_GOT16:
6793 case R_MIPS_CALL16:
6794 case R_MIPS_CALL_HI16:
6795 case R_MIPS_CALL_LO16:
6796 case R_MIPS_GOT_HI16:
6797 case R_MIPS_GOT_LO16:
6798 case R_MIPS_GOT_PAGE:
6799 case R_MIPS_GOT_OFST:
6800 case R_MIPS_GOT_DISP:
86324f90 6801 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6802 case R_MIPS_TLS_GD:
6803 case R_MIPS_TLS_LDM:
b49e97c9
TS
6804 if (dynobj == NULL)
6805 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6806 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6807 return FALSE;
b49e97c9 6808 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6809 if (htab->is_vxworks && !info->shared)
6810 {
6811 (*_bfd_error_handler)
6812 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6813 abfd, (unsigned long) rel->r_offset);
6814 bfd_set_error (bfd_error_bad_value);
6815 return FALSE;
6816 }
b49e97c9
TS
6817 break;
6818
6819 case R_MIPS_32:
6820 case R_MIPS_REL32:
6821 case R_MIPS_64:
0a44bf69
RS
6822 /* In VxWorks executables, references to external symbols
6823 are handled using copy relocs or PLT stubs, so there's
6824 no need to add a dynamic relocation here. */
b49e97c9 6825 if (dynobj == NULL
0a44bf69 6826 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6827 && (sec->flags & SEC_ALLOC) != 0)
6828 elf_hash_table (info)->dynobj = dynobj = abfd;
6829 break;
6830
6831 default:
6832 break;
6833 }
6834 }
6835
0a44bf69
RS
6836 if (h)
6837 {
6838 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6839
6840 /* Relocations against the special VxWorks __GOTT_BASE__ and
6841 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6842 room for them in .rela.dyn. */
6843 if (is_gott_symbol (info, h))
6844 {
6845 if (sreloc == NULL)
6846 {
6847 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6848 if (sreloc == NULL)
6849 return FALSE;
6850 }
6851 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6852 if (MIPS_ELF_READONLY_SECTION (sec))
6853 /* We tell the dynamic linker that there are
6854 relocations against the text segment. */
6855 info->flags |= DF_TEXTREL;
0a44bf69
RS
6856 }
6857 }
6858 else if (r_type == R_MIPS_CALL_LO16
6859 || r_type == R_MIPS_GOT_LO16
6860 || r_type == R_MIPS_GOT_DISP
6861 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6862 {
6863 /* We may need a local GOT entry for this relocation. We
6864 don't count R_MIPS_GOT_PAGE because we can estimate the
6865 maximum number of pages needed by looking at the size of
6866 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6867 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6868 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6869 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6870 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6871 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6872 rel->r_addend, g, 0))
f4416af6 6873 return FALSE;
b49e97c9
TS
6874 }
6875
6876 switch (r_type)
6877 {
6878 case R_MIPS_CALL16:
6879 if (h == NULL)
6880 {
6881 (*_bfd_error_handler)
d003868e
AM
6882 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6883 abfd, (unsigned long) rel->r_offset);
b49e97c9 6884 bfd_set_error (bfd_error_bad_value);
b34976b6 6885 return FALSE;
b49e97c9
TS
6886 }
6887 /* Fall through. */
6888
6889 case R_MIPS_CALL_HI16:
6890 case R_MIPS_CALL_LO16:
6891 if (h != NULL)
6892 {
0a44bf69
RS
6893 /* VxWorks call relocations point the function's .got.plt
6894 entry, which will be allocated by adjust_dynamic_symbol.
6895 Otherwise, this symbol requires a global GOT entry. */
8275b357 6896 if ((!htab->is_vxworks || h->forced_local)
0a44bf69 6897 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6898 return FALSE;
b49e97c9
TS
6899
6900 /* We need a stub, not a plt entry for the undefined
6901 function. But we record it as if it needs plt. See
c152c796 6902 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6903 h->needs_plt = 1;
b49e97c9
TS
6904 h->type = STT_FUNC;
6905 }
6906 break;
6907
0fdc1bf1
AO
6908 case R_MIPS_GOT_PAGE:
6909 /* If this is a global, overridable symbol, GOT_PAGE will
6910 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 6911 if (h)
0fdc1bf1
AO
6912 {
6913 struct mips_elf_link_hash_entry *hmips =
6914 (struct mips_elf_link_hash_entry *) h;
143d77c5 6915
0fdc1bf1
AO
6916 while (hmips->root.root.type == bfd_link_hash_indirect
6917 || hmips->root.root.type == bfd_link_hash_warning)
6918 hmips = (struct mips_elf_link_hash_entry *)
6919 hmips->root.root.u.i.link;
143d77c5 6920
3a3b6725 6921 /* This symbol is definitely not overridable. */
f5385ebf 6922 if (hmips->root.def_regular
0fdc1bf1 6923 && ! (info->shared && ! info->symbolic
f5385ebf 6924 && ! hmips->root.forced_local))
c224138d 6925 h = NULL;
0fdc1bf1
AO
6926 }
6927 /* Fall through. */
6928
b49e97c9
TS
6929 case R_MIPS_GOT16:
6930 case R_MIPS_GOT_HI16:
6931 case R_MIPS_GOT_LO16:
3a3b6725 6932 if (!h || r_type == R_MIPS_GOT_PAGE)
c224138d 6933 {
3a3b6725
DJ
6934 /* This relocation needs (or may need, if h != NULL) a
6935 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
6936 know for sure until we know whether the symbol is
6937 preemptible. */
c224138d
RS
6938 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
6939 {
6940 if (!mips_elf_get_section_contents (abfd, sec, &contents))
6941 return FALSE;
6942 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
6943 addend = mips_elf_read_rel_addend (abfd, rel,
6944 howto, contents);
6945 if (r_type == R_MIPS_GOT16)
6946 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
6947 contents, &addend);
6948 else
6949 addend <<= howto->rightshift;
6950 }
6951 else
6952 addend = rel->r_addend;
6953 if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
6954 return FALSE;
6955 break;
6956 }
6957 /* Fall through. */
6958
b49e97c9 6959 case R_MIPS_GOT_DISP:
0f20cc35 6960 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6961 return FALSE;
b49e97c9
TS
6962 break;
6963
0f20cc35
DJ
6964 case R_MIPS_TLS_GOTTPREL:
6965 if (info->shared)
6966 info->flags |= DF_STATIC_TLS;
6967 /* Fall through */
6968
6969 case R_MIPS_TLS_LDM:
6970 if (r_type == R_MIPS_TLS_LDM)
6971 {
6972 r_symndx = 0;
6973 h = NULL;
6974 }
6975 /* Fall through */
6976
6977 case R_MIPS_TLS_GD:
6978 /* This symbol requires a global offset table entry, or two
6979 for TLS GD relocations. */
6980 {
6981 unsigned char flag = (r_type == R_MIPS_TLS_GD
6982 ? GOT_TLS_GD
6983 : r_type == R_MIPS_TLS_LDM
6984 ? GOT_TLS_LDM
6985 : GOT_TLS_IE);
6986 if (h != NULL)
6987 {
6988 struct mips_elf_link_hash_entry *hmips =
6989 (struct mips_elf_link_hash_entry *) h;
6990 hmips->tls_type |= flag;
6991
6992 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6993 return FALSE;
6994 }
6995 else
6996 {
6997 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6998
6999 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
7000 rel->r_addend, g, flag))
7001 return FALSE;
7002 }
7003 }
7004 break;
7005
b49e97c9
TS
7006 case R_MIPS_32:
7007 case R_MIPS_REL32:
7008 case R_MIPS_64:
0a44bf69
RS
7009 /* In VxWorks executables, references to external symbols
7010 are handled using copy relocs or PLT stubs, so there's
7011 no need to add a .rela.dyn entry for this relocation. */
7012 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
7013 && (sec->flags & SEC_ALLOC) != 0)
7014 {
7015 if (sreloc == NULL)
7016 {
0a44bf69 7017 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 7018 if (sreloc == NULL)
f4416af6 7019 return FALSE;
b49e97c9 7020 }
b49e97c9 7021 if (info->shared)
82f0cfbd
EC
7022 {
7023 /* When creating a shared object, we must copy these
7024 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
7025 relocs. Make room for this reloc in .rel(a).dyn. */
7026 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 7027 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7028 /* We tell the dynamic linker that there are
7029 relocations against the text segment. */
7030 info->flags |= DF_TEXTREL;
7031 }
b49e97c9
TS
7032 else
7033 {
7034 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 7035
b49e97c9
TS
7036 /* We only need to copy this reloc if the symbol is
7037 defined in a dynamic object. */
7038 hmips = (struct mips_elf_link_hash_entry *) h;
7039 ++hmips->possibly_dynamic_relocs;
943284cc 7040 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
7041 /* We need it to tell the dynamic linker if there
7042 are relocations against the text segment. */
7043 hmips->readonly_reloc = TRUE;
b49e97c9
TS
7044 }
7045
7046 /* Even though we don't directly need a GOT entry for
7047 this symbol, a symbol must have a dynamic symbol
7048 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
7049 dynamic relocations against it. This does not apply
7050 to VxWorks, which does not have the usual coupling
7051 between global GOT entries and .dynsym entries. */
7052 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
7053 {
7054 if (dynobj == NULL)
7055 elf_hash_table (info)->dynobj = dynobj = abfd;
7056 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7057 return FALSE;
7058 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 7059 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
7060 return FALSE;
7061 }
b49e97c9
TS
7062 }
7063
7064 if (SGI_COMPAT (abfd))
7065 mips_elf_hash_table (info)->compact_rel_size +=
7066 sizeof (Elf32_External_crinfo);
7067 break;
7068
0a44bf69
RS
7069 case R_MIPS_PC16:
7070 if (h)
7071 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7072 break;
7073
b49e97c9 7074 case R_MIPS_26:
0a44bf69
RS
7075 if (h)
7076 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7077 /* Fall through. */
7078
b49e97c9
TS
7079 case R_MIPS_GPREL16:
7080 case R_MIPS_LITERAL:
7081 case R_MIPS_GPREL32:
7082 if (SGI_COMPAT (abfd))
7083 mips_elf_hash_table (info)->compact_rel_size +=
7084 sizeof (Elf32_External_crinfo);
7085 break;
7086
7087 /* This relocation describes the C++ object vtable hierarchy.
7088 Reconstruct it for later use during GC. */
7089 case R_MIPS_GNU_VTINHERIT:
c152c796 7090 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 7091 return FALSE;
b49e97c9
TS
7092 break;
7093
7094 /* This relocation describes which C++ vtable entries are actually
7095 used. Record for later use during GC. */
7096 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
7097 BFD_ASSERT (h != NULL);
7098 if (h != NULL
7099 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 7100 return FALSE;
b49e97c9
TS
7101 break;
7102
7103 default:
7104 break;
7105 }
7106
7107 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
7108 related to taking the function's address. This doesn't apply to
7109 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7110 a normal .got entry. */
7111 if (!htab->is_vxworks && h != NULL)
7112 switch (r_type)
7113 {
7114 default:
7115 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7116 break;
7117 case R_MIPS_CALL16:
7118 case R_MIPS_CALL_HI16:
7119 case R_MIPS_CALL_LO16:
7120 case R_MIPS_JALR:
7121 break;
7122 }
b49e97c9
TS
7123
7124 /* If this reloc is not a 16 bit call, and it has a global
7125 symbol, then we will need the fn_stub if there is one.
7126 References from a stub section do not count. */
7127 if (h != NULL
7128 && r_type != R_MIPS16_26
b9d58d71 7129 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
7130 {
7131 struct mips_elf_link_hash_entry *mh;
7132
7133 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 7134 mh->need_fn_stub = TRUE;
b49e97c9
TS
7135 }
7136 }
7137
b34976b6 7138 return TRUE;
b49e97c9
TS
7139}
7140\f
d0647110 7141bfd_boolean
9719ad41
RS
7142_bfd_mips_relax_section (bfd *abfd, asection *sec,
7143 struct bfd_link_info *link_info,
7144 bfd_boolean *again)
d0647110
AO
7145{
7146 Elf_Internal_Rela *internal_relocs;
7147 Elf_Internal_Rela *irel, *irelend;
7148 Elf_Internal_Shdr *symtab_hdr;
7149 bfd_byte *contents = NULL;
d0647110
AO
7150 size_t extsymoff;
7151 bfd_boolean changed_contents = FALSE;
7152 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7153 Elf_Internal_Sym *isymbuf = NULL;
7154
7155 /* We are not currently changing any sizes, so only one pass. */
7156 *again = FALSE;
7157
1049f94e 7158 if (link_info->relocatable)
d0647110
AO
7159 return TRUE;
7160
9719ad41 7161 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 7162 link_info->keep_memory);
d0647110
AO
7163 if (internal_relocs == NULL)
7164 return TRUE;
7165
7166 irelend = internal_relocs + sec->reloc_count
7167 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7168 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7169 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7170
7171 for (irel = internal_relocs; irel < irelend; irel++)
7172 {
7173 bfd_vma symval;
7174 bfd_signed_vma sym_offset;
7175 unsigned int r_type;
7176 unsigned long r_symndx;
7177 asection *sym_sec;
7178 unsigned long instruction;
7179
7180 /* Turn jalr into bgezal, and jr into beq, if they're marked
7181 with a JALR relocation, that indicate where they jump to.
7182 This saves some pipeline bubbles. */
7183 r_type = ELF_R_TYPE (abfd, irel->r_info);
7184 if (r_type != R_MIPS_JALR)
7185 continue;
7186
7187 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7188 /* Compute the address of the jump target. */
7189 if (r_symndx >= extsymoff)
7190 {
7191 struct mips_elf_link_hash_entry *h
7192 = ((struct mips_elf_link_hash_entry *)
7193 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7194
7195 while (h->root.root.type == bfd_link_hash_indirect
7196 || h->root.root.type == bfd_link_hash_warning)
7197 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 7198
d0647110
AO
7199 /* If a symbol is undefined, or if it may be overridden,
7200 skip it. */
7201 if (! ((h->root.root.type == bfd_link_hash_defined
7202 || h->root.root.type == bfd_link_hash_defweak)
7203 && h->root.root.u.def.section)
7204 || (link_info->shared && ! link_info->symbolic
f5385ebf 7205 && !h->root.forced_local))
d0647110
AO
7206 continue;
7207
7208 sym_sec = h->root.root.u.def.section;
7209 if (sym_sec->output_section)
7210 symval = (h->root.root.u.def.value
7211 + sym_sec->output_section->vma
7212 + sym_sec->output_offset);
7213 else
7214 symval = h->root.root.u.def.value;
7215 }
7216 else
7217 {
7218 Elf_Internal_Sym *isym;
7219
7220 /* Read this BFD's symbols if we haven't done so already. */
7221 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7222 {
7223 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7224 if (isymbuf == NULL)
7225 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7226 symtab_hdr->sh_info, 0,
7227 NULL, NULL, NULL);
7228 if (isymbuf == NULL)
7229 goto relax_return;
7230 }
7231
7232 isym = isymbuf + r_symndx;
7233 if (isym->st_shndx == SHN_UNDEF)
7234 continue;
7235 else if (isym->st_shndx == SHN_ABS)
7236 sym_sec = bfd_abs_section_ptr;
7237 else if (isym->st_shndx == SHN_COMMON)
7238 sym_sec = bfd_com_section_ptr;
7239 else
7240 sym_sec
7241 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7242 symval = isym->st_value
7243 + sym_sec->output_section->vma
7244 + sym_sec->output_offset;
7245 }
7246
7247 /* Compute branch offset, from delay slot of the jump to the
7248 branch target. */
7249 sym_offset = (symval + irel->r_addend)
7250 - (sec_start + irel->r_offset + 4);
7251
7252 /* Branch offset must be properly aligned. */
7253 if ((sym_offset & 3) != 0)
7254 continue;
7255
7256 sym_offset >>= 2;
7257
7258 /* Check that it's in range. */
7259 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7260 continue;
143d77c5 7261
d0647110 7262 /* Get the section contents if we haven't done so already. */
c224138d
RS
7263 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7264 goto relax_return;
d0647110
AO
7265
7266 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7267
7268 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7269 if ((instruction & 0xfc1fffff) == 0x0000f809)
7270 instruction = 0x04110000;
7271 /* If it was jr <reg>, turn it into b <target>. */
7272 else if ((instruction & 0xfc1fffff) == 0x00000008)
7273 instruction = 0x10000000;
7274 else
7275 continue;
7276
7277 instruction |= (sym_offset & 0xffff);
7278 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7279 changed_contents = TRUE;
7280 }
7281
7282 if (contents != NULL
7283 && elf_section_data (sec)->this_hdr.contents != contents)
7284 {
7285 if (!changed_contents && !link_info->keep_memory)
7286 free (contents);
7287 else
7288 {
7289 /* Cache the section contents for elf_link_input_bfd. */
7290 elf_section_data (sec)->this_hdr.contents = contents;
7291 }
7292 }
7293 return TRUE;
7294
143d77c5 7295 relax_return:
eea6121a
AM
7296 if (contents != NULL
7297 && elf_section_data (sec)->this_hdr.contents != contents)
7298 free (contents);
d0647110
AO
7299 return FALSE;
7300}
7301\f
b49e97c9
TS
7302/* Adjust a symbol defined by a dynamic object and referenced by a
7303 regular object. The current definition is in some section of the
7304 dynamic object, but we're not including those sections. We have to
7305 change the definition to something the rest of the link can
7306 understand. */
7307
b34976b6 7308bfd_boolean
9719ad41
RS
7309_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7310 struct elf_link_hash_entry *h)
b49e97c9
TS
7311{
7312 bfd *dynobj;
7313 struct mips_elf_link_hash_entry *hmips;
7314 asection *s;
5108fc1b 7315 struct mips_elf_link_hash_table *htab;
b49e97c9 7316
5108fc1b 7317 htab = mips_elf_hash_table (info);
b49e97c9
TS
7318 dynobj = elf_hash_table (info)->dynobj;
7319
7320 /* Make sure we know what is going on here. */
7321 BFD_ASSERT (dynobj != NULL
f5385ebf 7322 && (h->needs_plt
f6e332e6 7323 || h->u.weakdef != NULL
f5385ebf
AM
7324 || (h->def_dynamic
7325 && h->ref_regular
7326 && !h->def_regular)));
b49e97c9
TS
7327
7328 /* If this symbol is defined in a dynamic object, we need to copy
7329 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7330 file. */
7331 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 7332 if (! info->relocatable
b49e97c9
TS
7333 && hmips->possibly_dynamic_relocs != 0
7334 && (h->root.type == bfd_link_hash_defweak
f5385ebf 7335 || !h->def_regular))
b49e97c9 7336 {
0a44bf69
RS
7337 mips_elf_allocate_dynamic_relocations
7338 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 7339 if (hmips->readonly_reloc)
b49e97c9
TS
7340 /* We tell the dynamic linker that there are relocations
7341 against the text segment. */
7342 info->flags |= DF_TEXTREL;
7343 }
7344
7345 /* For a function, create a stub, if allowed. */
7346 if (! hmips->no_fn_stub
f5385ebf 7347 && h->needs_plt)
b49e97c9
TS
7348 {
7349 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 7350 return TRUE;
b49e97c9
TS
7351
7352 /* If this symbol is not defined in a regular file, then set
7353 the symbol to the stub location. This is required to make
7354 function pointers compare as equal between the normal
7355 executable and the shared library. */
f5385ebf 7356 if (!h->def_regular)
b49e97c9
TS
7357 {
7358 /* We need .stub section. */
7359 s = bfd_get_section_by_name (dynobj,
7360 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7361 BFD_ASSERT (s != NULL);
7362
7363 h->root.u.def.section = s;
eea6121a 7364 h->root.u.def.value = s->size;
b49e97c9
TS
7365
7366 /* XXX Write this stub address somewhere. */
eea6121a 7367 h->plt.offset = s->size;
b49e97c9
TS
7368
7369 /* Make room for this stub code. */
5108fc1b 7370 s->size += htab->function_stub_size;
b49e97c9
TS
7371
7372 /* The last half word of the stub will be filled with the index
7373 of this symbol in .dynsym section. */
b34976b6 7374 return TRUE;
b49e97c9
TS
7375 }
7376 }
7377 else if ((h->type == STT_FUNC)
f5385ebf 7378 && !h->needs_plt)
b49e97c9
TS
7379 {
7380 /* This will set the entry for this symbol in the GOT to 0, and
7381 the dynamic linker will take care of this. */
7382 h->root.u.def.value = 0;
b34976b6 7383 return TRUE;
b49e97c9
TS
7384 }
7385
7386 /* If this is a weak symbol, and there is a real definition, the
7387 processor independent code will have arranged for us to see the
7388 real definition first, and we can just use the same value. */
f6e332e6 7389 if (h->u.weakdef != NULL)
b49e97c9 7390 {
f6e332e6
AM
7391 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7392 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7393 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7394 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7395 return TRUE;
b49e97c9
TS
7396 }
7397
7398 /* This is a reference to a symbol defined by a dynamic object which
7399 is not a function. */
7400
b34976b6 7401 return TRUE;
b49e97c9 7402}
0a44bf69
RS
7403
7404/* Likewise, for VxWorks. */
7405
7406bfd_boolean
7407_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7408 struct elf_link_hash_entry *h)
7409{
7410 bfd *dynobj;
7411 struct mips_elf_link_hash_entry *hmips;
7412 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7413
7414 htab = mips_elf_hash_table (info);
7415 dynobj = elf_hash_table (info)->dynobj;
7416 hmips = (struct mips_elf_link_hash_entry *) h;
7417
7418 /* Make sure we know what is going on here. */
7419 BFD_ASSERT (dynobj != NULL
7420 && (h->needs_plt
7421 || h->needs_copy
7422 || h->u.weakdef != NULL
7423 || (h->def_dynamic
7424 && h->ref_regular
7425 && !h->def_regular)));
7426
7427 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7428 either (a) we want to branch to the symbol or (b) we're linking an
7429 executable that needs a canonical function address. In the latter
7430 case, the canonical address will be the address of the executable's
7431 load stub. */
7432 if ((hmips->is_branch_target
7433 || (!info->shared
7434 && h->type == STT_FUNC
7435 && hmips->is_relocation_target))
7436 && h->def_dynamic
7437 && h->ref_regular
7438 && !h->def_regular
7439 && !h->forced_local)
7440 h->needs_plt = 1;
7441
7442 /* Locally-binding symbols do not need a PLT stub; we can refer to
7443 the functions directly. */
7444 else if (h->needs_plt
7445 && (SYMBOL_CALLS_LOCAL (info, h)
7446 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7447 && h->root.type == bfd_link_hash_undefweak)))
7448 {
7449 h->needs_plt = 0;
7450 return TRUE;
7451 }
7452
7453 if (h->needs_plt)
7454 {
7455 /* If this is the first symbol to need a PLT entry, allocate room
7456 for the header, and for the header's .rela.plt.unloaded entries. */
7457 if (htab->splt->size == 0)
7458 {
7459 htab->splt->size += htab->plt_header_size;
7460 if (!info->shared)
7461 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7462 }
7463
7464 /* Assign the next .plt entry to this symbol. */
7465 h->plt.offset = htab->splt->size;
7466 htab->splt->size += htab->plt_entry_size;
7467
7468 /* If the output file has no definition of the symbol, set the
7469 symbol's value to the address of the stub. For executables,
7470 point at the PLT load stub rather than the lazy resolution stub;
7471 this stub will become the canonical function address. */
7472 if (!h->def_regular)
7473 {
7474 h->root.u.def.section = htab->splt;
7475 h->root.u.def.value = h->plt.offset;
7476 if (!info->shared)
7477 h->root.u.def.value += 8;
7478 }
7479
7480 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7481 htab->sgotplt->size += 4;
7482 htab->srelplt->size += sizeof (Elf32_External_Rela);
7483
7484 /* Make room for the .rela.plt.unloaded relocations. */
7485 if (!info->shared)
7486 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7487
7488 return TRUE;
7489 }
7490
7491 /* If a function symbol is defined by a dynamic object, and we do not
7492 need a PLT stub for it, the symbol's value should be zero. */
7493 if (h->type == STT_FUNC
7494 && h->def_dynamic
7495 && h->ref_regular
7496 && !h->def_regular)
7497 {
7498 h->root.u.def.value = 0;
7499 return TRUE;
7500 }
7501
7502 /* If this is a weak symbol, and there is a real definition, the
7503 processor independent code will have arranged for us to see the
7504 real definition first, and we can just use the same value. */
7505 if (h->u.weakdef != NULL)
7506 {
7507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7508 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7509 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7510 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7511 return TRUE;
7512 }
7513
7514 /* This is a reference to a symbol defined by a dynamic object which
7515 is not a function. */
7516 if (info->shared)
7517 return TRUE;
7518
7519 /* We must allocate the symbol in our .dynbss section, which will
7520 become part of the .bss section of the executable. There will be
7521 an entry for this symbol in the .dynsym section. The dynamic
7522 object will contain position independent code, so all references
7523 from the dynamic object to this symbol will go through the global
7524 offset table. The dynamic linker will use the .dynsym entry to
7525 determine the address it must put in the global offset table, so
7526 both the dynamic object and the regular object will refer to the
7527 same memory location for the variable. */
7528
7529 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7530 {
7531 htab->srelbss->size += sizeof (Elf32_External_Rela);
7532 h->needs_copy = 1;
7533 }
7534
027297b7 7535 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7536}
b49e97c9 7537\f
5108fc1b
RS
7538/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7539 The number might be exact or a worst-case estimate, depending on how
7540 much information is available to elf_backend_omit_section_dynsym at
7541 the current linking stage. */
7542
7543static bfd_size_type
7544count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7545{
7546 bfd_size_type count;
7547
7548 count = 0;
7549 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7550 {
7551 asection *p;
7552 const struct elf_backend_data *bed;
7553
7554 bed = get_elf_backend_data (output_bfd);
7555 for (p = output_bfd->sections; p ; p = p->next)
7556 if ((p->flags & SEC_EXCLUDE) == 0
7557 && (p->flags & SEC_ALLOC) != 0
7558 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7559 ++count;
7560 }
7561 return count;
7562}
7563
b49e97c9
TS
7564/* This function is called after all the input files have been read,
7565 and the input sections have been assigned to output sections. We
7566 check for any mips16 stub sections that we can discard. */
7567
b34976b6 7568bfd_boolean
9719ad41
RS
7569_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7570 struct bfd_link_info *info)
b49e97c9
TS
7571{
7572 asection *ri;
7573
f4416af6
AO
7574 bfd *dynobj;
7575 asection *s;
7576 struct mips_got_info *g;
7577 int i;
7578 bfd_size_type loadable_size = 0;
c224138d 7579 bfd_size_type page_gotno;
5108fc1b 7580 bfd_size_type dynsymcount;
f4416af6 7581 bfd *sub;
0f20cc35 7582 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7583 struct mips_elf_link_hash_table *htab;
7584
7585 htab = mips_elf_hash_table (info);
f4416af6 7586
b49e97c9
TS
7587 /* The .reginfo section has a fixed size. */
7588 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7589 if (ri != NULL)
9719ad41 7590 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7591
1049f94e 7592 if (! (info->relocatable
f4416af6
AO
7593 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7594 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7595 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7596
7597 dynobj = elf_hash_table (info)->dynobj;
7598 if (dynobj == NULL)
7599 /* Relocatable links don't have it. */
7600 return TRUE;
143d77c5 7601
f4416af6
AO
7602 g = mips_elf_got_info (dynobj, &s);
7603 if (s == NULL)
b34976b6 7604 return TRUE;
b49e97c9 7605
f4416af6
AO
7606 /* Calculate the total loadable size of the output. That
7607 will give us the maximum number of GOT_PAGE entries
7608 required. */
7609 for (sub = info->input_bfds; sub; sub = sub->link_next)
7610 {
7611 asection *subsection;
7612
7613 for (subsection = sub->sections;
7614 subsection;
7615 subsection = subsection->next)
7616 {
7617 if ((subsection->flags & SEC_ALLOC) == 0)
7618 continue;
eea6121a 7619 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7620 &~ (bfd_size_type) 0xf);
7621 }
7622 }
7623
7624 /* There has to be a global GOT entry for every symbol with
7625 a dynamic symbol table index of DT_MIPS_GOTSYM or
7626 higher. Therefore, it make sense to put those symbols
7627 that need GOT entries at the end of the symbol table. We
7628 do that here. */
7629 if (! mips_elf_sort_hash_table (info, 1))
7630 return FALSE;
7631
7632 if (g->global_gotsym != NULL)
7633 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7634 else
7635 /* If there are no global symbols, or none requiring
7636 relocations, then GLOBAL_GOTSYM will be NULL. */
7637 i = 0;
7638
5108fc1b
RS
7639 /* Get a worst-case estimate of the number of dynamic symbols needed.
7640 At this point, dynsymcount does not account for section symbols
7641 and count_section_dynsyms may overestimate the number that will
7642 be needed. */
7643 dynsymcount = (elf_hash_table (info)->dynsymcount
7644 + count_section_dynsyms (output_bfd, info));
7645
7646 /* Determine the size of one stub entry. */
7647 htab->function_stub_size = (dynsymcount > 0x10000
7648 ? MIPS_FUNCTION_STUB_BIG_SIZE
7649 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7650
f4416af6
AO
7651 /* In the worst case, we'll get one stub per dynamic symbol, plus
7652 one to account for the dummy entry at the end required by IRIX
7653 rld. */
5108fc1b 7654 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7655
0a44bf69
RS
7656 if (htab->is_vxworks)
7657 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7658 relocations against local symbols evaluate to "G", and the EABI does
7659 not include R_MIPS_GOT_PAGE. */
c224138d 7660 page_gotno = 0;
0a44bf69
RS
7661 else
7662 /* Assume there are two loadable segments consisting of contiguous
7663 sections. Is 5 enough? */
c224138d
RS
7664 page_gotno = (loadable_size >> 16) + 5;
7665
7666 /* Choose the smaller of the two estimates; both are intended to be
7667 conservative. */
7668 if (page_gotno > g->page_gotno)
7669 page_gotno = g->page_gotno;
f4416af6 7670
c224138d 7671 g->local_gotno += page_gotno;
eea6121a 7672 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7673
7674 g->global_gotno = i;
eea6121a 7675 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7676
0f20cc35
DJ
7677 /* We need to calculate tls_gotno for global symbols at this point
7678 instead of building it up earlier, to avoid doublecounting
7679 entries for one global symbol from multiple input files. */
7680 count_tls_arg.info = info;
7681 count_tls_arg.needed = 0;
7682 elf_link_hash_traverse (elf_hash_table (info),
7683 mips_elf_count_global_tls_entries,
7684 &count_tls_arg);
7685 g->tls_gotno += count_tls_arg.needed;
7686 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7687
7688 mips_elf_resolve_final_got_entries (g);
7689
0a44bf69
RS
7690 /* VxWorks does not support multiple GOTs. It initializes $gp to
7691 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7692 dynamic loader. */
7693 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 7694 {
c224138d 7695 if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
0f20cc35
DJ
7696 return FALSE;
7697 }
7698 else
7699 {
7700 /* Set up TLS entries for the first GOT. */
7701 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7702 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7703 }
8275b357 7704 htab->computed_got_sizes = TRUE;
b49e97c9 7705
b34976b6 7706 return TRUE;
b49e97c9
TS
7707}
7708
7709/* Set the sizes of the dynamic sections. */
7710
b34976b6 7711bfd_boolean
9719ad41
RS
7712_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7713 struct bfd_link_info *info)
b49e97c9
TS
7714{
7715 bfd *dynobj;
0a44bf69 7716 asection *s, *sreldyn;
b34976b6 7717 bfd_boolean reltext;
0a44bf69 7718 struct mips_elf_link_hash_table *htab;
b49e97c9 7719
0a44bf69 7720 htab = mips_elf_hash_table (info);
b49e97c9
TS
7721 dynobj = elf_hash_table (info)->dynobj;
7722 BFD_ASSERT (dynobj != NULL);
7723
7724 if (elf_hash_table (info)->dynamic_sections_created)
7725 {
7726 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7727 if (info->executable)
b49e97c9
TS
7728 {
7729 s = bfd_get_section_by_name (dynobj, ".interp");
7730 BFD_ASSERT (s != NULL);
eea6121a 7731 s->size
b49e97c9
TS
7732 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7733 s->contents
7734 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7735 }
7736 }
7737
7738 /* The check_relocs and adjust_dynamic_symbol entry points have
7739 determined the sizes of the various dynamic sections. Allocate
7740 memory for them. */
b34976b6 7741 reltext = FALSE;
0a44bf69 7742 sreldyn = NULL;
b49e97c9
TS
7743 for (s = dynobj->sections; s != NULL; s = s->next)
7744 {
7745 const char *name;
b49e97c9
TS
7746
7747 /* It's OK to base decisions on the section name, because none
7748 of the dynobj section names depend upon the input files. */
7749 name = bfd_get_section_name (dynobj, s);
7750
7751 if ((s->flags & SEC_LINKER_CREATED) == 0)
7752 continue;
7753
0112cd26 7754 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7755 {
c456f082 7756 if (s->size != 0)
b49e97c9
TS
7757 {
7758 const char *outname;
7759 asection *target;
7760
7761 /* If this relocation section applies to a read only
7762 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7763 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7764 assert a DT_TEXTREL entry rather than testing whether
7765 there exists a relocation to a read only section or
7766 not. */
7767 outname = bfd_get_section_name (output_bfd,
7768 s->output_section);
7769 target = bfd_get_section_by_name (output_bfd, outname + 4);
7770 if ((target != NULL
7771 && (target->flags & SEC_READONLY) != 0
7772 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7773 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7774 reltext = TRUE;
b49e97c9
TS
7775
7776 /* We use the reloc_count field as a counter if we need
7777 to copy relocs into the output file. */
0a44bf69 7778 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7779 s->reloc_count = 0;
f4416af6
AO
7780
7781 /* If combreloc is enabled, elf_link_sort_relocs() will
7782 sort relocations, but in a different way than we do,
7783 and before we're done creating relocations. Also, it
7784 will move them around between input sections'
7785 relocation's contents, so our sorting would be
7786 broken, so don't let it run. */
7787 info->combreloc = 0;
b49e97c9
TS
7788 }
7789 }
0a44bf69
RS
7790 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7791 {
7792 /* Executables do not need a GOT. */
7793 if (info->shared)
7794 {
7795 /* Allocate relocations for all but the reserved entries. */
7796 struct mips_got_info *g;
7797 unsigned int count;
7798
7799 g = mips_elf_got_info (dynobj, NULL);
7800 count = (g->global_gotno
7801 + g->local_gotno
7802 - MIPS_RESERVED_GOTNO (info));
7803 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7804 }
7805 }
0112cd26 7806 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7807 {
f4416af6
AO
7808 /* _bfd_mips_elf_always_size_sections() has already done
7809 most of the work, but some symbols may have been mapped
7810 to versions that we must now resolve in the got_entries
7811 hash tables. */
7812 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7813 struct mips_got_info *g = gg;
7814 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7815 unsigned int needed_relocs = 0;
143d77c5 7816
f4416af6 7817 if (gg->next)
b49e97c9 7818 {
f4416af6
AO
7819 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7820 set_got_offset_arg.info = info;
b49e97c9 7821
0f20cc35
DJ
7822 /* NOTE 2005-02-03: How can this call, or the next, ever
7823 find any indirect entries to resolve? They were all
7824 resolved in mips_elf_multi_got. */
f4416af6
AO
7825 mips_elf_resolve_final_got_entries (gg);
7826 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7827 {
f4416af6
AO
7828 unsigned int save_assign;
7829
7830 mips_elf_resolve_final_got_entries (g);
7831
7832 /* Assign offsets to global GOT entries. */
7833 save_assign = g->assigned_gotno;
7834 g->assigned_gotno = g->local_gotno;
7835 set_got_offset_arg.g = g;
7836 set_got_offset_arg.needed_relocs = 0;
7837 htab_traverse (g->got_entries,
7838 mips_elf_set_global_got_offset,
7839 &set_got_offset_arg);
7840 needed_relocs += set_got_offset_arg.needed_relocs;
7841 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7842 <= g->global_gotno);
7843
7844 g->assigned_gotno = save_assign;
7845 if (info->shared)
7846 {
7847 needed_relocs += g->local_gotno - g->assigned_gotno;
7848 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7849 + g->next->global_gotno
0f20cc35 7850 + g->next->tls_gotno
0a44bf69 7851 + MIPS_RESERVED_GOTNO (info));
f4416af6 7852 }
b49e97c9 7853 }
0f20cc35
DJ
7854 }
7855 else
7856 {
7857 struct mips_elf_count_tls_arg arg;
7858 arg.info = info;
7859 arg.needed = 0;
b49e97c9 7860
0f20cc35
DJ
7861 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7862 &arg);
7863 elf_link_hash_traverse (elf_hash_table (info),
7864 mips_elf_count_global_tls_relocs,
7865 &arg);
7866
7867 needed_relocs += arg.needed;
f4416af6 7868 }
0f20cc35
DJ
7869
7870 if (needed_relocs)
0a44bf69
RS
7871 mips_elf_allocate_dynamic_relocations (dynobj, info,
7872 needed_relocs);
b49e97c9
TS
7873 }
7874 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7875 {
8dc1a139 7876 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7877 of .text section. So put a dummy. XXX */
7878 s->size += htab->function_stub_size;
b49e97c9
TS
7879 }
7880 else if (! info->shared
7881 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7882 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7883 {
5108fc1b 7884 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7885 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7886 s->size += 4;
b49e97c9
TS
7887 }
7888 else if (SGI_COMPAT (output_bfd)
0112cd26 7889 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7890 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7891 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7892 && s != htab->sgotplt
7893 && s != htab->splt)
b49e97c9
TS
7894 {
7895 /* It's not one of our sections, so don't allocate space. */
7896 continue;
7897 }
7898
c456f082 7899 if (s->size == 0)
b49e97c9 7900 {
8423293d 7901 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7902 continue;
7903 }
7904
c456f082
AM
7905 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7906 continue;
7907
0a44bf69
RS
7908 /* Allocate memory for this section last, since we may increase its
7909 size above. */
7910 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7911 {
7912 sreldyn = s;
7913 continue;
7914 }
7915
b49e97c9 7916 /* Allocate memory for the section contents. */
eea6121a 7917 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7918 if (s->contents == NULL)
b49e97c9
TS
7919 {
7920 bfd_set_error (bfd_error_no_memory);
b34976b6 7921 return FALSE;
b49e97c9
TS
7922 }
7923 }
7924
0a44bf69
RS
7925 /* Allocate memory for the .rel(a).dyn section. */
7926 if (sreldyn != NULL)
7927 {
7928 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7929 if (sreldyn->contents == NULL)
7930 {
7931 bfd_set_error (bfd_error_no_memory);
7932 return FALSE;
7933 }
7934 }
7935
b49e97c9
TS
7936 if (elf_hash_table (info)->dynamic_sections_created)
7937 {
7938 /* Add some entries to the .dynamic section. We fill in the
7939 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7940 must add the entries now so that we get the correct size for
5750dcec 7941 the .dynamic section. */
af5978fb
RS
7942
7943 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7944 DT_MIPS_RLD_MAP entry. This must come first because glibc
7945 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7946 looks at the first one it sees. */
af5978fb
RS
7947 if (!info->shared
7948 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7949 return FALSE;
b49e97c9 7950
5750dcec
DJ
7951 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7952 used by the debugger. */
7953 if (info->executable
7954 && !SGI_COMPAT (output_bfd)
7955 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7956 return FALSE;
7957
0a44bf69 7958 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7959 info->flags |= DF_TEXTREL;
7960
7961 if ((info->flags & DF_TEXTREL) != 0)
7962 {
7963 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7964 return FALSE;
943284cc
DJ
7965
7966 /* Clear the DF_TEXTREL flag. It will be set again if we
7967 write out an actual text relocation; we may not, because
7968 at this point we do not know whether e.g. any .eh_frame
7969 absolute relocations have been converted to PC-relative. */
7970 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7971 }
7972
7973 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7974 return FALSE;
b49e97c9 7975
0a44bf69 7976 if (htab->is_vxworks)
b49e97c9 7977 {
0a44bf69
RS
7978 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7979 use any of the DT_MIPS_* tags. */
7980 if (mips_elf_rel_dyn_section (info, FALSE))
7981 {
7982 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7983 return FALSE;
b49e97c9 7984
0a44bf69
RS
7985 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7986 return FALSE;
b49e97c9 7987
0a44bf69
RS
7988 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7989 return FALSE;
7990 }
7991 if (htab->splt->size > 0)
7992 {
7993 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7994 return FALSE;
7995
7996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7997 return FALSE;
7998
7999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8000 return FALSE;
8001 }
b49e97c9 8002 }
0a44bf69
RS
8003 else
8004 {
8005 if (mips_elf_rel_dyn_section (info, FALSE))
8006 {
8007 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8008 return FALSE;
b49e97c9 8009
0a44bf69
RS
8010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8011 return FALSE;
b49e97c9 8012
0a44bf69
RS
8013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8014 return FALSE;
8015 }
b49e97c9 8016
0a44bf69
RS
8017 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8018 return FALSE;
b49e97c9 8019
0a44bf69
RS
8020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8021 return FALSE;
b49e97c9 8022
0a44bf69
RS
8023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8024 return FALSE;
b49e97c9 8025
0a44bf69
RS
8026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8027 return FALSE;
b49e97c9 8028
0a44bf69
RS
8029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8030 return FALSE;
b49e97c9 8031
0a44bf69
RS
8032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8033 return FALSE;
b49e97c9 8034
0a44bf69
RS
8035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8036 return FALSE;
8037
8038 if (IRIX_COMPAT (dynobj) == ict_irix5
8039 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8040 return FALSE;
8041
8042 if (IRIX_COMPAT (dynobj) == ict_irix6
8043 && (bfd_get_section_by_name
8044 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8045 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8046 return FALSE;
8047 }
7a2b07ff
NS
8048 if (htab->is_vxworks
8049 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8050 return FALSE;
b49e97c9
TS
8051 }
8052
b34976b6 8053 return TRUE;
b49e97c9
TS
8054}
8055\f
81d43bff
RS
8056/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8057 Adjust its R_ADDEND field so that it is correct for the output file.
8058 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8059 and sections respectively; both use symbol indexes. */
8060
8061static void
8062mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8063 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8064 asection **local_sections, Elf_Internal_Rela *rel)
8065{
8066 unsigned int r_type, r_symndx;
8067 Elf_Internal_Sym *sym;
8068 asection *sec;
8069
8070 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8071 {
8072 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8073 if (r_type == R_MIPS16_GPREL
8074 || r_type == R_MIPS_GPREL16
8075 || r_type == R_MIPS_GPREL32
8076 || r_type == R_MIPS_LITERAL)
8077 {
8078 rel->r_addend += _bfd_get_gp_value (input_bfd);
8079 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8080 }
8081
8082 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8083 sym = local_syms + r_symndx;
8084
8085 /* Adjust REL's addend to account for section merging. */
8086 if (!info->relocatable)
8087 {
8088 sec = local_sections[r_symndx];
8089 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8090 }
8091
8092 /* This would normally be done by the rela_normal code in elflink.c. */
8093 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8094 rel->r_addend += local_sections[r_symndx]->output_offset;
8095 }
8096}
8097
b49e97c9
TS
8098/* Relocate a MIPS ELF section. */
8099
b34976b6 8100bfd_boolean
9719ad41
RS
8101_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8102 bfd *input_bfd, asection *input_section,
8103 bfd_byte *contents, Elf_Internal_Rela *relocs,
8104 Elf_Internal_Sym *local_syms,
8105 asection **local_sections)
b49e97c9
TS
8106{
8107 Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *relend;
8109 bfd_vma addend = 0;
b34976b6 8110 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 8111 const struct elf_backend_data *bed;
b49e97c9
TS
8112
8113 bed = get_elf_backend_data (output_bfd);
8114 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8115 for (rel = relocs; rel < relend; ++rel)
8116 {
8117 const char *name;
c9adbffe 8118 bfd_vma value = 0;
b49e97c9 8119 reloc_howto_type *howto;
b34976b6
AM
8120 bfd_boolean require_jalx;
8121 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 8122 REL relocation. */
b34976b6 8123 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 8124 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 8125 const char *msg;
ab96bf03
AM
8126 unsigned long r_symndx;
8127 asection *sec;
749b8d9d
L
8128 Elf_Internal_Shdr *symtab_hdr;
8129 struct elf_link_hash_entry *h;
b49e97c9
TS
8130
8131 /* Find the relocation howto for this relocation. */
ab96bf03
AM
8132 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8133 NEWABI_P (input_bfd)
8134 && (MIPS_RELOC_RELA_P
8135 (input_bfd, input_section,
8136 rel - relocs)));
8137
8138 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 8139 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 8140 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
8141 {
8142 sec = local_sections[r_symndx];
8143 h = NULL;
8144 }
ab96bf03
AM
8145 else
8146 {
ab96bf03 8147 unsigned long extsymoff;
ab96bf03 8148
ab96bf03
AM
8149 extsymoff = 0;
8150 if (!elf_bad_symtab (input_bfd))
8151 extsymoff = symtab_hdr->sh_info;
8152 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8153 while (h->root.type == bfd_link_hash_indirect
8154 || h->root.type == bfd_link_hash_warning)
8155 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8156
8157 sec = NULL;
8158 if (h->root.type == bfd_link_hash_defined
8159 || h->root.type == bfd_link_hash_defweak)
8160 sec = h->root.u.def.section;
8161 }
8162
8163 if (sec != NULL && elf_discarded_section (sec))
8164 {
8165 /* For relocs against symbols from removed linkonce sections,
8166 or sections discarded by a linker script, we just want the
8167 section contents zeroed. Avoid any special processing. */
8168 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8169 rel->r_info = 0;
8170 rel->r_addend = 0;
8171 continue;
8172 }
8173
4a14403c 8174 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
8175 {
8176 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8177 64-bit code, but make sure all their addresses are in the
8178 lowermost or uppermost 32-bit section of the 64-bit address
8179 space. Thus, when they use an R_MIPS_64 they mean what is
8180 usually meant by R_MIPS_32, with the exception that the
8181 stored value is sign-extended to 64 bits. */
b34976b6 8182 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
8183
8184 /* On big-endian systems, we need to lie about the position
8185 of the reloc. */
8186 if (bfd_big_endian (input_bfd))
8187 rel->r_offset += 4;
8188 }
b49e97c9
TS
8189
8190 if (!use_saved_addend_p)
8191 {
b49e97c9
TS
8192 /* If these relocations were originally of the REL variety,
8193 we must pull the addend out of the field that will be
8194 relocated. Otherwise, we simply use the contents of the
c224138d
RS
8195 RELA relocation. */
8196 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8197 relocs, rel))
b49e97c9 8198 {
b34976b6 8199 rela_relocation_p = FALSE;
c224138d
RS
8200 addend = mips_elf_read_rel_addend (input_bfd, rel,
8201 howto, contents);
8202 if (r_type == R_MIPS_HI16
8203 || r_type == R_MIPS16_HI16
b49e97c9
TS
8204 || (r_type == R_MIPS_GOT16
8205 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 8206 local_sections, FALSE)))
b49e97c9 8207 {
c224138d
RS
8208 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8209 contents, &addend))
749b8d9d
L
8210 {
8211 const char *name;
8212
8213 if (h)
8214 name = h->root.root.string;
8215 else
8216 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8217 local_syms + r_symndx,
8218 sec);
8219 (*_bfd_error_handler)
8220 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8221 input_bfd, input_section, name, howto->name,
8222 rel->r_offset);
749b8d9d 8223 }
b49e97c9 8224 }
30ac9238
RS
8225 else
8226 addend <<= howto->rightshift;
b49e97c9
TS
8227 }
8228 else
8229 addend = rel->r_addend;
81d43bff
RS
8230 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8231 local_syms, local_sections, rel);
b49e97c9
TS
8232 }
8233
1049f94e 8234 if (info->relocatable)
b49e97c9 8235 {
4a14403c 8236 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
8237 && bfd_big_endian (input_bfd))
8238 rel->r_offset -= 4;
8239
81d43bff 8240 if (!rela_relocation_p && rel->r_addend)
5a659663 8241 {
81d43bff 8242 addend += rel->r_addend;
30ac9238 8243 if (r_type == R_MIPS_HI16
4030e8f6 8244 || r_type == R_MIPS_GOT16)
5a659663
TS
8245 addend = mips_elf_high (addend);
8246 else if (r_type == R_MIPS_HIGHER)
8247 addend = mips_elf_higher (addend);
8248 else if (r_type == R_MIPS_HIGHEST)
8249 addend = mips_elf_highest (addend);
30ac9238
RS
8250 else
8251 addend >>= howto->rightshift;
b49e97c9 8252
30ac9238
RS
8253 /* We use the source mask, rather than the destination
8254 mask because the place to which we are writing will be
8255 source of the addend in the final link. */
b49e97c9
TS
8256 addend &= howto->src_mask;
8257
5a659663 8258 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8259 /* See the comment above about using R_MIPS_64 in the 32-bit
8260 ABI. Here, we need to update the addend. It would be
8261 possible to get away with just using the R_MIPS_32 reloc
8262 but for endianness. */
8263 {
8264 bfd_vma sign_bits;
8265 bfd_vma low_bits;
8266 bfd_vma high_bits;
8267
8268 if (addend & ((bfd_vma) 1 << 31))
8269#ifdef BFD64
8270 sign_bits = ((bfd_vma) 1 << 32) - 1;
8271#else
8272 sign_bits = -1;
8273#endif
8274 else
8275 sign_bits = 0;
8276
8277 /* If we don't know that we have a 64-bit type,
8278 do two separate stores. */
8279 if (bfd_big_endian (input_bfd))
8280 {
8281 /* Store the sign-bits (which are most significant)
8282 first. */
8283 low_bits = sign_bits;
8284 high_bits = addend;
8285 }
8286 else
8287 {
8288 low_bits = addend;
8289 high_bits = sign_bits;
8290 }
8291 bfd_put_32 (input_bfd, low_bits,
8292 contents + rel->r_offset);
8293 bfd_put_32 (input_bfd, high_bits,
8294 contents + rel->r_offset + 4);
8295 continue;
8296 }
8297
8298 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8299 input_bfd, input_section,
b34976b6
AM
8300 contents, FALSE))
8301 return FALSE;
b49e97c9
TS
8302 }
8303
8304 /* Go on to the next relocation. */
8305 continue;
8306 }
8307
8308 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8309 relocations for the same offset. In that case we are
8310 supposed to treat the output of each relocation as the addend
8311 for the next. */
8312 if (rel + 1 < relend
8313 && rel->r_offset == rel[1].r_offset
8314 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8315 use_saved_addend_p = TRUE;
b49e97c9 8316 else
b34976b6 8317 use_saved_addend_p = FALSE;
b49e97c9
TS
8318
8319 /* Figure out what value we are supposed to relocate. */
8320 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8321 input_section, info, rel,
8322 addend, howto, local_syms,
8323 local_sections, &value,
bce03d3d
AO
8324 &name, &require_jalx,
8325 use_saved_addend_p))
b49e97c9
TS
8326 {
8327 case bfd_reloc_continue:
8328 /* There's nothing to do. */
8329 continue;
8330
8331 case bfd_reloc_undefined:
8332 /* mips_elf_calculate_relocation already called the
8333 undefined_symbol callback. There's no real point in
8334 trying to perform the relocation at this point, so we
8335 just skip ahead to the next relocation. */
8336 continue;
8337
8338 case bfd_reloc_notsupported:
8339 msg = _("internal error: unsupported relocation error");
8340 info->callbacks->warning
8341 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8342 return FALSE;
b49e97c9
TS
8343
8344 case bfd_reloc_overflow:
8345 if (use_saved_addend_p)
8346 /* Ignore overflow until we reach the last relocation for
8347 a given location. */
8348 ;
8349 else
8350 {
0e53d9da
AN
8351 struct mips_elf_link_hash_table *htab;
8352
8353 htab = mips_elf_hash_table (info);
b49e97c9 8354 BFD_ASSERT (name != NULL);
0e53d9da
AN
8355 if (!htab->small_data_overflow_reported
8356 && (howto->type == R_MIPS_GPREL16
8357 || howto->type == R_MIPS_LITERAL))
8358 {
8359 const char *msg =
8360 _("small-data section exceeds 64KB;"
8361 " lower small-data size limit (see option -G)");
8362
8363 htab->small_data_overflow_reported = TRUE;
8364 (*info->callbacks->einfo) ("%P: %s\n", msg);
8365 }
b49e97c9 8366 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8367 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8368 input_bfd, input_section, rel->r_offset)))
b34976b6 8369 return FALSE;
b49e97c9
TS
8370 }
8371 break;
8372
8373 case bfd_reloc_ok:
8374 break;
8375
8376 default:
8377 abort ();
8378 break;
8379 }
8380
8381 /* If we've got another relocation for the address, keep going
8382 until we reach the last one. */
8383 if (use_saved_addend_p)
8384 {
8385 addend = value;
8386 continue;
8387 }
8388
4a14403c 8389 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8390 /* See the comment above about using R_MIPS_64 in the 32-bit
8391 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8392 that calculated the right value. Now, however, we
8393 sign-extend the 32-bit result to 64-bits, and store it as a
8394 64-bit value. We are especially generous here in that we
8395 go to extreme lengths to support this usage on systems with
8396 only a 32-bit VMA. */
8397 {
8398 bfd_vma sign_bits;
8399 bfd_vma low_bits;
8400 bfd_vma high_bits;
8401
8402 if (value & ((bfd_vma) 1 << 31))
8403#ifdef BFD64
8404 sign_bits = ((bfd_vma) 1 << 32) - 1;
8405#else
8406 sign_bits = -1;
8407#endif
8408 else
8409 sign_bits = 0;
8410
8411 /* If we don't know that we have a 64-bit type,
8412 do two separate stores. */
8413 if (bfd_big_endian (input_bfd))
8414 {
8415 /* Undo what we did above. */
8416 rel->r_offset -= 4;
8417 /* Store the sign-bits (which are most significant)
8418 first. */
8419 low_bits = sign_bits;
8420 high_bits = value;
8421 }
8422 else
8423 {
8424 low_bits = value;
8425 high_bits = sign_bits;
8426 }
8427 bfd_put_32 (input_bfd, low_bits,
8428 contents + rel->r_offset);
8429 bfd_put_32 (input_bfd, high_bits,
8430 contents + rel->r_offset + 4);
8431 continue;
8432 }
8433
8434 /* Actually perform the relocation. */
8435 if (! mips_elf_perform_relocation (info, howto, rel, value,
8436 input_bfd, input_section,
8437 contents, require_jalx))
b34976b6 8438 return FALSE;
b49e97c9
TS
8439 }
8440
b34976b6 8441 return TRUE;
b49e97c9
TS
8442}
8443\f
8444/* If NAME is one of the special IRIX6 symbols defined by the linker,
8445 adjust it appropriately now. */
8446
8447static void
9719ad41
RS
8448mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8449 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8450{
8451 /* The linker script takes care of providing names and values for
8452 these, but we must place them into the right sections. */
8453 static const char* const text_section_symbols[] = {
8454 "_ftext",
8455 "_etext",
8456 "__dso_displacement",
8457 "__elf_header",
8458 "__program_header_table",
8459 NULL
8460 };
8461
8462 static const char* const data_section_symbols[] = {
8463 "_fdata",
8464 "_edata",
8465 "_end",
8466 "_fbss",
8467 NULL
8468 };
8469
8470 const char* const *p;
8471 int i;
8472
8473 for (i = 0; i < 2; ++i)
8474 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8475 *p;
8476 ++p)
8477 if (strcmp (*p, name) == 0)
8478 {
8479 /* All of these symbols are given type STT_SECTION by the
8480 IRIX6 linker. */
8481 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8482 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8483
8484 /* The IRIX linker puts these symbols in special sections. */
8485 if (i == 0)
8486 sym->st_shndx = SHN_MIPS_TEXT;
8487 else
8488 sym->st_shndx = SHN_MIPS_DATA;
8489
8490 break;
8491 }
8492}
8493
8494/* Finish up dynamic symbol handling. We set the contents of various
8495 dynamic sections here. */
8496
b34976b6 8497bfd_boolean
9719ad41
RS
8498_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8499 struct bfd_link_info *info,
8500 struct elf_link_hash_entry *h,
8501 Elf_Internal_Sym *sym)
b49e97c9
TS
8502{
8503 bfd *dynobj;
b49e97c9 8504 asection *sgot;
f4416af6 8505 struct mips_got_info *g, *gg;
b49e97c9 8506 const char *name;
3d6746ca 8507 int idx;
5108fc1b 8508 struct mips_elf_link_hash_table *htab;
b49e97c9 8509
5108fc1b 8510 htab = mips_elf_hash_table (info);
b49e97c9 8511 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8512
c5ae1840 8513 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8514 {
8515 asection *s;
5108fc1b 8516 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8517
8518 /* This symbol has a stub. Set it up. */
8519
8520 BFD_ASSERT (h->dynindx != -1);
8521
8522 s = bfd_get_section_by_name (dynobj,
8523 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8524 BFD_ASSERT (s != NULL);
8525
5108fc1b
RS
8526 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8527 || (h->dynindx <= 0xffff));
3d6746ca
DD
8528
8529 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8530 sign extension at runtime in the stub, resulting in a negative
8531 index value. */
8532 if (h->dynindx & ~0x7fffffff)
b34976b6 8533 return FALSE;
b49e97c9
TS
8534
8535 /* Fill the stub. */
3d6746ca
DD
8536 idx = 0;
8537 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8538 idx += 4;
8539 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8540 idx += 4;
5108fc1b 8541 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8542 {
5108fc1b 8543 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8544 stub + idx);
8545 idx += 4;
8546 }
8547 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8548 idx += 4;
b49e97c9 8549
3d6746ca
DD
8550 /* If a large stub is not required and sign extension is not a
8551 problem, then use legacy code in the stub. */
5108fc1b
RS
8552 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8553 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8554 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8555 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8556 else
5108fc1b
RS
8557 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8558 stub + idx);
8559
eea6121a 8560 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8561 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8562
8563 /* Mark the symbol as undefined. plt.offset != -1 occurs
8564 only for the referenced symbol. */
8565 sym->st_shndx = SHN_UNDEF;
8566
8567 /* The run-time linker uses the st_value field of the symbol
8568 to reset the global offset table entry for this external
8569 to its stub address when unlinking a shared object. */
c5ae1840
TS
8570 sym->st_value = (s->output_section->vma + s->output_offset
8571 + h->plt.offset);
b49e97c9
TS
8572 }
8573
8574 BFD_ASSERT (h->dynindx != -1
f5385ebf 8575 || h->forced_local);
b49e97c9 8576
f4416af6 8577 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8578 BFD_ASSERT (sgot != NULL);
f4416af6 8579 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8580 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8581 BFD_ASSERT (g != NULL);
8582
8583 /* Run through the global symbol table, creating GOT entries for all
8584 the symbols that need them. */
8585 if (g->global_gotsym != NULL
8586 && h->dynindx >= g->global_gotsym->dynindx)
8587 {
8588 bfd_vma offset;
8589 bfd_vma value;
8590
6eaa6adc 8591 value = sym->st_value;
0f20cc35 8592 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8593 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8594 }
8595
0f20cc35 8596 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8597 {
8598 struct mips_got_entry e, *p;
0626d451 8599 bfd_vma entry;
f4416af6 8600 bfd_vma offset;
f4416af6
AO
8601
8602 gg = g;
8603
8604 e.abfd = output_bfd;
8605 e.symndx = -1;
8606 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8607 e.tls_type = 0;
143d77c5 8608
f4416af6
AO
8609 for (g = g->next; g->next != gg; g = g->next)
8610 {
8611 if (g->got_entries
8612 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8613 &e)))
8614 {
8615 offset = p->gotidx;
0626d451
RS
8616 if (info->shared
8617 || (elf_hash_table (info)->dynamic_sections_created
8618 && p->d.h != NULL
f5385ebf
AM
8619 && p->d.h->root.def_dynamic
8620 && !p->d.h->root.def_regular))
0626d451
RS
8621 {
8622 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8623 the various compatibility problems, it's easier to mock
8624 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8625 mips_elf_create_dynamic_relocation to calculate the
8626 appropriate addend. */
8627 Elf_Internal_Rela rel[3];
8628
8629 memset (rel, 0, sizeof (rel));
8630 if (ABI_64_P (output_bfd))
8631 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8632 else
8633 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8634 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8635
8636 entry = 0;
8637 if (! (mips_elf_create_dynamic_relocation
8638 (output_bfd, info, rel,
8639 e.d.h, NULL, sym->st_value, &entry, sgot)))
8640 return FALSE;
8641 }
8642 else
8643 entry = sym->st_value;
8644 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8645 }
8646 }
8647 }
8648
b49e97c9
TS
8649 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8650 name = h->root.root.string;
8651 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8652 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8653 sym->st_shndx = SHN_ABS;
8654 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8655 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8656 {
8657 sym->st_shndx = SHN_ABS;
8658 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8659 sym->st_value = 1;
8660 }
4a14403c 8661 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8662 {
8663 sym->st_shndx = SHN_ABS;
8664 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8665 sym->st_value = elf_gp (output_bfd);
8666 }
8667 else if (SGI_COMPAT (output_bfd))
8668 {
8669 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8670 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8671 {
8672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8673 sym->st_other = STO_PROTECTED;
8674 sym->st_value = 0;
8675 sym->st_shndx = SHN_MIPS_DATA;
8676 }
8677 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8678 {
8679 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8680 sym->st_other = STO_PROTECTED;
8681 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8682 sym->st_shndx = SHN_ABS;
8683 }
8684 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8685 {
8686 if (h->type == STT_FUNC)
8687 sym->st_shndx = SHN_MIPS_TEXT;
8688 else if (h->type == STT_OBJECT)
8689 sym->st_shndx = SHN_MIPS_DATA;
8690 }
8691 }
8692
8693 /* Handle the IRIX6-specific symbols. */
8694 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8695 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8696
8697 if (! info->shared)
8698 {
8699 if (! mips_elf_hash_table (info)->use_rld_obj_head
8700 && (strcmp (name, "__rld_map") == 0
8701 || strcmp (name, "__RLD_MAP") == 0))
8702 {
8703 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8704 BFD_ASSERT (s != NULL);
8705 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8706 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8707 if (mips_elf_hash_table (info)->rld_value == 0)
8708 mips_elf_hash_table (info)->rld_value = sym->st_value;
8709 }
8710 else if (mips_elf_hash_table (info)->use_rld_obj_head
8711 && strcmp (name, "__rld_obj_head") == 0)
8712 {
8713 /* IRIX6 does not use a .rld_map section. */
8714 if (IRIX_COMPAT (output_bfd) == ict_irix5
8715 || IRIX_COMPAT (output_bfd) == ict_none)
8716 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8717 != NULL);
8718 mips_elf_hash_table (info)->rld_value = sym->st_value;
8719 }
8720 }
8721
8722 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8723 if (sym->st_other == STO_MIPS16)
8724 sym->st_value &= ~1;
b49e97c9 8725
b34976b6 8726 return TRUE;
b49e97c9
TS
8727}
8728
0a44bf69
RS
8729/* Likewise, for VxWorks. */
8730
8731bfd_boolean
8732_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8733 struct bfd_link_info *info,
8734 struct elf_link_hash_entry *h,
8735 Elf_Internal_Sym *sym)
8736{
8737 bfd *dynobj;
8738 asection *sgot;
8739 struct mips_got_info *g;
8740 struct mips_elf_link_hash_table *htab;
8741
8742 htab = mips_elf_hash_table (info);
8743 dynobj = elf_hash_table (info)->dynobj;
8744
8745 if (h->plt.offset != (bfd_vma) -1)
8746 {
6d79d2ed 8747 bfd_byte *loc;
0a44bf69
RS
8748 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8749 Elf_Internal_Rela rel;
8750 static const bfd_vma *plt_entry;
8751
8752 BFD_ASSERT (h->dynindx != -1);
8753 BFD_ASSERT (htab->splt != NULL);
8754 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8755
8756 /* Calculate the address of the .plt entry. */
8757 plt_address = (htab->splt->output_section->vma
8758 + htab->splt->output_offset
8759 + h->plt.offset);
8760
8761 /* Calculate the index of the entry. */
8762 plt_index = ((h->plt.offset - htab->plt_header_size)
8763 / htab->plt_entry_size);
8764
8765 /* Calculate the address of the .got.plt entry. */
8766 got_address = (htab->sgotplt->output_section->vma
8767 + htab->sgotplt->output_offset
8768 + plt_index * 4);
8769
8770 /* Calculate the offset of the .got.plt entry from
8771 _GLOBAL_OFFSET_TABLE_. */
8772 got_offset = mips_elf_gotplt_index (info, h);
8773
8774 /* Calculate the offset for the branch at the start of the PLT
8775 entry. The branch jumps to the beginning of .plt. */
8776 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8777
8778 /* Fill in the initial value of the .got.plt entry. */
8779 bfd_put_32 (output_bfd, plt_address,
8780 htab->sgotplt->contents + plt_index * 4);
8781
8782 /* Find out where the .plt entry should go. */
8783 loc = htab->splt->contents + h->plt.offset;
8784
8785 if (info->shared)
8786 {
8787 plt_entry = mips_vxworks_shared_plt_entry;
8788 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8789 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8790 }
8791 else
8792 {
8793 bfd_vma got_address_high, got_address_low;
8794
8795 plt_entry = mips_vxworks_exec_plt_entry;
8796 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8797 got_address_low = got_address & 0xffff;
8798
8799 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8800 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8801 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8802 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8803 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8804 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8805 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8806 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8807
8808 loc = (htab->srelplt2->contents
8809 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8810
8811 /* Emit a relocation for the .got.plt entry. */
8812 rel.r_offset = got_address;
8813 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8814 rel.r_addend = h->plt.offset;
8815 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8816
8817 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8818 loc += sizeof (Elf32_External_Rela);
8819 rel.r_offset = plt_address + 8;
8820 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8821 rel.r_addend = got_offset;
8822 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8823
8824 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8825 loc += sizeof (Elf32_External_Rela);
8826 rel.r_offset += 4;
8827 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8828 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8829 }
8830
8831 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8832 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8833 rel.r_offset = got_address;
8834 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8835 rel.r_addend = 0;
8836 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8837
8838 if (!h->def_regular)
8839 sym->st_shndx = SHN_UNDEF;
8840 }
8841
8842 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8843
8844 sgot = mips_elf_got_section (dynobj, FALSE);
8845 BFD_ASSERT (sgot != NULL);
8846 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8847 g = mips_elf_section_data (sgot)->u.got_info;
8848 BFD_ASSERT (g != NULL);
8849
8850 /* See if this symbol has an entry in the GOT. */
8851 if (g->global_gotsym != NULL
8852 && h->dynindx >= g->global_gotsym->dynindx)
8853 {
8854 bfd_vma offset;
8855 Elf_Internal_Rela outrel;
8856 bfd_byte *loc;
8857 asection *s;
8858
8859 /* Install the symbol value in the GOT. */
8860 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8861 R_MIPS_GOT16, info);
8862 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8863
8864 /* Add a dynamic relocation for it. */
8865 s = mips_elf_rel_dyn_section (info, FALSE);
8866 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8867 outrel.r_offset = (sgot->output_section->vma
8868 + sgot->output_offset
8869 + offset);
8870 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8871 outrel.r_addend = 0;
8872 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8873 }
8874
8875 /* Emit a copy reloc, if needed. */
8876 if (h->needs_copy)
8877 {
8878 Elf_Internal_Rela rel;
8879
8880 BFD_ASSERT (h->dynindx != -1);
8881
8882 rel.r_offset = (h->root.u.def.section->output_section->vma
8883 + h->root.u.def.section->output_offset
8884 + h->root.u.def.value);
8885 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8886 rel.r_addend = 0;
8887 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8888 htab->srelbss->contents
8889 + (htab->srelbss->reloc_count
8890 * sizeof (Elf32_External_Rela)));
8891 ++htab->srelbss->reloc_count;
8892 }
8893
8894 /* If this is a mips16 symbol, force the value to be even. */
8895 if (sym->st_other == STO_MIPS16)
8896 sym->st_value &= ~1;
8897
8898 return TRUE;
8899}
8900
8901/* Install the PLT header for a VxWorks executable and finalize the
8902 contents of .rela.plt.unloaded. */
8903
8904static void
8905mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8906{
8907 Elf_Internal_Rela rela;
8908 bfd_byte *loc;
8909 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8910 static const bfd_vma *plt_entry;
8911 struct mips_elf_link_hash_table *htab;
8912
8913 htab = mips_elf_hash_table (info);
8914 plt_entry = mips_vxworks_exec_plt0_entry;
8915
8916 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8917 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8918 + htab->root.hgot->root.u.def.section->output_offset
8919 + htab->root.hgot->root.u.def.value);
8920
8921 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8922 got_value_low = got_value & 0xffff;
8923
8924 /* Calculate the address of the PLT header. */
8925 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8926
8927 /* Install the PLT header. */
8928 loc = htab->splt->contents;
8929 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8930 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8931 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8932 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8933 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8934 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8935
8936 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8937 loc = htab->srelplt2->contents;
8938 rela.r_offset = plt_address;
8939 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8940 rela.r_addend = 0;
8941 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8942 loc += sizeof (Elf32_External_Rela);
8943
8944 /* Output the relocation for the following addiu of
8945 %lo(_GLOBAL_OFFSET_TABLE_). */
8946 rela.r_offset += 4;
8947 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8948 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8949 loc += sizeof (Elf32_External_Rela);
8950
8951 /* Fix up the remaining relocations. They may have the wrong
8952 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8953 in which symbols were output. */
8954 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8955 {
8956 Elf_Internal_Rela rel;
8957
8958 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8959 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8960 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8961 loc += sizeof (Elf32_External_Rela);
8962
8963 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8964 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8965 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8966 loc += sizeof (Elf32_External_Rela);
8967
8968 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8969 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8970 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8971 loc += sizeof (Elf32_External_Rela);
8972 }
8973}
8974
8975/* Install the PLT header for a VxWorks shared library. */
8976
8977static void
8978mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8979{
8980 unsigned int i;
8981 struct mips_elf_link_hash_table *htab;
8982
8983 htab = mips_elf_hash_table (info);
8984
8985 /* We just need to copy the entry byte-by-byte. */
8986 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8987 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8988 htab->splt->contents + i * 4);
8989}
8990
b49e97c9
TS
8991/* Finish up the dynamic sections. */
8992
b34976b6 8993bfd_boolean
9719ad41
RS
8994_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8995 struct bfd_link_info *info)
b49e97c9
TS
8996{
8997 bfd *dynobj;
8998 asection *sdyn;
8999 asection *sgot;
f4416af6 9000 struct mips_got_info *gg, *g;
0a44bf69 9001 struct mips_elf_link_hash_table *htab;
b49e97c9 9002
0a44bf69 9003 htab = mips_elf_hash_table (info);
b49e97c9
TS
9004 dynobj = elf_hash_table (info)->dynobj;
9005
9006 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9007
f4416af6 9008 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 9009 if (sgot == NULL)
f4416af6 9010 gg = g = NULL;
b49e97c9
TS
9011 else
9012 {
f4416af6
AO
9013 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
9014 gg = mips_elf_section_data (sgot)->u.got_info;
9015 BFD_ASSERT (gg != NULL);
9016 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
9017 BFD_ASSERT (g != NULL);
9018 }
9019
9020 if (elf_hash_table (info)->dynamic_sections_created)
9021 {
9022 bfd_byte *b;
943284cc 9023 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
9024
9025 BFD_ASSERT (sdyn != NULL);
9026 BFD_ASSERT (g != NULL);
9027
9028 for (b = sdyn->contents;
eea6121a 9029 b < sdyn->contents + sdyn->size;
b49e97c9
TS
9030 b += MIPS_ELF_DYN_SIZE (dynobj))
9031 {
9032 Elf_Internal_Dyn dyn;
9033 const char *name;
9034 size_t elemsize;
9035 asection *s;
b34976b6 9036 bfd_boolean swap_out_p;
b49e97c9
TS
9037
9038 /* Read in the current dynamic entry. */
9039 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9040
9041 /* Assume that we're going to modify it and write it out. */
b34976b6 9042 swap_out_p = TRUE;
b49e97c9
TS
9043
9044 switch (dyn.d_tag)
9045 {
9046 case DT_RELENT:
b49e97c9
TS
9047 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9048 break;
9049
0a44bf69
RS
9050 case DT_RELAENT:
9051 BFD_ASSERT (htab->is_vxworks);
9052 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9053 break;
9054
b49e97c9
TS
9055 case DT_STRSZ:
9056 /* Rewrite DT_STRSZ. */
9057 dyn.d_un.d_val =
9058 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9059 break;
9060
9061 case DT_PLTGOT:
9062 name = ".got";
0a44bf69
RS
9063 if (htab->is_vxworks)
9064 {
9065 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9066 of the ".got" section in DYNOBJ. */
9067 s = bfd_get_section_by_name (dynobj, name);
9068 BFD_ASSERT (s != NULL);
9069 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9070 }
9071 else
9072 {
9073 s = bfd_get_section_by_name (output_bfd, name);
9074 BFD_ASSERT (s != NULL);
9075 dyn.d_un.d_ptr = s->vma;
9076 }
b49e97c9
TS
9077 break;
9078
9079 case DT_MIPS_RLD_VERSION:
9080 dyn.d_un.d_val = 1; /* XXX */
9081 break;
9082
9083 case DT_MIPS_FLAGS:
9084 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9085 break;
9086
b49e97c9 9087 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
9088 {
9089 time_t t;
9090 time (&t);
9091 dyn.d_un.d_val = t;
9092 }
b49e97c9
TS
9093 break;
9094
9095 case DT_MIPS_ICHECKSUM:
9096 /* XXX FIXME: */
b34976b6 9097 swap_out_p = FALSE;
b49e97c9
TS
9098 break;
9099
9100 case DT_MIPS_IVERSION:
9101 /* XXX FIXME: */
b34976b6 9102 swap_out_p = FALSE;
b49e97c9
TS
9103 break;
9104
9105 case DT_MIPS_BASE_ADDRESS:
9106 s = output_bfd->sections;
9107 BFD_ASSERT (s != NULL);
9108 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9109 break;
9110
9111 case DT_MIPS_LOCAL_GOTNO:
9112 dyn.d_un.d_val = g->local_gotno;
9113 break;
9114
9115 case DT_MIPS_UNREFEXTNO:
9116 /* The index into the dynamic symbol table which is the
9117 entry of the first external symbol that is not
9118 referenced within the same object. */
9119 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9120 break;
9121
9122 case DT_MIPS_GOTSYM:
f4416af6 9123 if (gg->global_gotsym)
b49e97c9 9124 {
f4416af6 9125 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
9126 break;
9127 }
9128 /* In case if we don't have global got symbols we default
9129 to setting DT_MIPS_GOTSYM to the same value as
9130 DT_MIPS_SYMTABNO, so we just fall through. */
9131
9132 case DT_MIPS_SYMTABNO:
9133 name = ".dynsym";
9134 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9135 s = bfd_get_section_by_name (output_bfd, name);
9136 BFD_ASSERT (s != NULL);
9137
eea6121a 9138 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
9139 break;
9140
9141 case DT_MIPS_HIPAGENO:
0a44bf69 9142 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
9143 break;
9144
9145 case DT_MIPS_RLD_MAP:
9146 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9147 break;
9148
9149 case DT_MIPS_OPTIONS:
9150 s = (bfd_get_section_by_name
9151 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9152 dyn.d_un.d_ptr = s->vma;
9153 break;
9154
0a44bf69
RS
9155 case DT_RELASZ:
9156 BFD_ASSERT (htab->is_vxworks);
9157 /* The count does not include the JUMP_SLOT relocations. */
9158 if (htab->srelplt)
9159 dyn.d_un.d_val -= htab->srelplt->size;
9160 break;
9161
9162 case DT_PLTREL:
9163 BFD_ASSERT (htab->is_vxworks);
9164 dyn.d_un.d_val = DT_RELA;
9165 break;
9166
9167 case DT_PLTRELSZ:
9168 BFD_ASSERT (htab->is_vxworks);
9169 dyn.d_un.d_val = htab->srelplt->size;
9170 break;
9171
9172 case DT_JMPREL:
9173 BFD_ASSERT (htab->is_vxworks);
9174 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9175 + htab->srelplt->output_offset);
9176 break;
9177
943284cc
DJ
9178 case DT_TEXTREL:
9179 /* If we didn't need any text relocations after all, delete
9180 the dynamic tag. */
9181 if (!(info->flags & DF_TEXTREL))
9182 {
9183 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9184 swap_out_p = FALSE;
9185 }
9186 break;
9187
9188 case DT_FLAGS:
9189 /* If we didn't need any text relocations after all, clear
9190 DF_TEXTREL from DT_FLAGS. */
9191 if (!(info->flags & DF_TEXTREL))
9192 dyn.d_un.d_val &= ~DF_TEXTREL;
9193 else
9194 swap_out_p = FALSE;
9195 break;
9196
b49e97c9 9197 default:
b34976b6 9198 swap_out_p = FALSE;
7a2b07ff
NS
9199 if (htab->is_vxworks
9200 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9201 swap_out_p = TRUE;
b49e97c9
TS
9202 break;
9203 }
9204
943284cc 9205 if (swap_out_p || dyn_skipped)
b49e97c9 9206 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
9207 (dynobj, &dyn, b - dyn_skipped);
9208
9209 if (dyn_to_skip)
9210 {
9211 dyn_skipped += dyn_to_skip;
9212 dyn_to_skip = 0;
9213 }
b49e97c9 9214 }
943284cc
DJ
9215
9216 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9217 if (dyn_skipped > 0)
9218 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
9219 }
9220
b55fd4d4
DJ
9221 if (sgot != NULL && sgot->size > 0
9222 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 9223 {
0a44bf69
RS
9224 if (htab->is_vxworks)
9225 {
9226 /* The first entry of the global offset table points to the
9227 ".dynamic" section. The second is initialized by the
9228 loader and contains the shared library identifier.
9229 The third is also initialized by the loader and points
9230 to the lazy resolution stub. */
9231 MIPS_ELF_PUT_WORD (output_bfd,
9232 sdyn->output_offset + sdyn->output_section->vma,
9233 sgot->contents);
9234 MIPS_ELF_PUT_WORD (output_bfd, 0,
9235 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9236 MIPS_ELF_PUT_WORD (output_bfd, 0,
9237 sgot->contents
9238 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9239 }
9240 else
9241 {
9242 /* The first entry of the global offset table will be filled at
9243 runtime. The second entry will be used by some runtime loaders.
9244 This isn't the case of IRIX rld. */
9245 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 9246 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
9247 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9248 }
b49e97c9 9249
54938e2a
TS
9250 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9251 = MIPS_ELF_GOT_SIZE (output_bfd);
9252 }
b49e97c9 9253
f4416af6
AO
9254 /* Generate dynamic relocations for the non-primary gots. */
9255 if (gg != NULL && gg->next)
9256 {
9257 Elf_Internal_Rela rel[3];
9258 bfd_vma addend = 0;
9259
9260 memset (rel, 0, sizeof (rel));
9261 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9262
9263 for (g = gg->next; g->next != gg; g = g->next)
9264 {
0f20cc35
DJ
9265 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9266 + g->next->tls_gotno;
f4416af6 9267
9719ad41 9268 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 9269 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
9270 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9271 sgot->contents
f4416af6
AO
9272 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9273
9274 if (! info->shared)
9275 continue;
9276
9277 while (index < g->assigned_gotno)
9278 {
9279 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9280 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9281 if (!(mips_elf_create_dynamic_relocation
9282 (output_bfd, info, rel, NULL,
9283 bfd_abs_section_ptr,
9284 0, &addend, sgot)))
9285 return FALSE;
9286 BFD_ASSERT (addend == 0);
9287 }
9288 }
9289 }
9290
3133ddbf
DJ
9291 /* The generation of dynamic relocations for the non-primary gots
9292 adds more dynamic relocations. We cannot count them until
9293 here. */
9294
9295 if (elf_hash_table (info)->dynamic_sections_created)
9296 {
9297 bfd_byte *b;
9298 bfd_boolean swap_out_p;
9299
9300 BFD_ASSERT (sdyn != NULL);
9301
9302 for (b = sdyn->contents;
9303 b < sdyn->contents + sdyn->size;
9304 b += MIPS_ELF_DYN_SIZE (dynobj))
9305 {
9306 Elf_Internal_Dyn dyn;
9307 asection *s;
9308
9309 /* Read in the current dynamic entry. */
9310 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9311
9312 /* Assume that we're going to modify it and write it out. */
9313 swap_out_p = TRUE;
9314
9315 switch (dyn.d_tag)
9316 {
9317 case DT_RELSZ:
9318 /* Reduce DT_RELSZ to account for any relocations we
9319 decided not to make. This is for the n64 irix rld,
9320 which doesn't seem to apply any relocations if there
9321 are trailing null entries. */
0a44bf69 9322 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9323 dyn.d_un.d_val = (s->reloc_count
9324 * (ABI_64_P (output_bfd)
9325 ? sizeof (Elf64_Mips_External_Rel)
9326 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9327 /* Adjust the section size too. Tools like the prelinker
9328 can reasonably expect the values to the same. */
9329 elf_section_data (s->output_section)->this_hdr.sh_size
9330 = dyn.d_un.d_val;
3133ddbf
DJ
9331 break;
9332
9333 default:
9334 swap_out_p = FALSE;
9335 break;
9336 }
9337
9338 if (swap_out_p)
9339 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9340 (dynobj, &dyn, b);
9341 }
9342 }
9343
b49e97c9 9344 {
b49e97c9
TS
9345 asection *s;
9346 Elf32_compact_rel cpt;
9347
b49e97c9
TS
9348 if (SGI_COMPAT (output_bfd))
9349 {
9350 /* Write .compact_rel section out. */
9351 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9352 if (s != NULL)
9353 {
9354 cpt.id1 = 1;
9355 cpt.num = s->reloc_count;
9356 cpt.id2 = 2;
9357 cpt.offset = (s->output_section->filepos
9358 + sizeof (Elf32_External_compact_rel));
9359 cpt.reserved0 = 0;
9360 cpt.reserved1 = 0;
9361 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9362 ((Elf32_External_compact_rel *)
9363 s->contents));
9364
9365 /* Clean up a dummy stub function entry in .text. */
9366 s = bfd_get_section_by_name (dynobj,
9367 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9368 if (s != NULL)
9369 {
9370 file_ptr dummy_offset;
9371
5108fc1b
RS
9372 BFD_ASSERT (s->size >= htab->function_stub_size);
9373 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9374 memset (s->contents + dummy_offset, 0,
5108fc1b 9375 htab->function_stub_size);
b49e97c9
TS
9376 }
9377 }
9378 }
9379
0a44bf69
RS
9380 /* The psABI says that the dynamic relocations must be sorted in
9381 increasing order of r_symndx. The VxWorks EABI doesn't require
9382 this, and because the code below handles REL rather than RELA
9383 relocations, using it for VxWorks would be outright harmful. */
9384 if (!htab->is_vxworks)
b49e97c9 9385 {
0a44bf69
RS
9386 s = mips_elf_rel_dyn_section (info, FALSE);
9387 if (s != NULL
9388 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9389 {
9390 reldyn_sorting_bfd = output_bfd;
b49e97c9 9391
0a44bf69
RS
9392 if (ABI_64_P (output_bfd))
9393 qsort ((Elf64_External_Rel *) s->contents + 1,
9394 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9395 sort_dynamic_relocs_64);
9396 else
9397 qsort ((Elf32_External_Rel *) s->contents + 1,
9398 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9399 sort_dynamic_relocs);
9400 }
b49e97c9 9401 }
b49e97c9
TS
9402 }
9403
0a44bf69
RS
9404 if (htab->is_vxworks && htab->splt->size > 0)
9405 {
9406 if (info->shared)
9407 mips_vxworks_finish_shared_plt (output_bfd, info);
9408 else
9409 mips_vxworks_finish_exec_plt (output_bfd, info);
9410 }
b34976b6 9411 return TRUE;
b49e97c9
TS
9412}
9413
b49e97c9 9414
64543e1a
RS
9415/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9416
9417static void
9719ad41 9418mips_set_isa_flags (bfd *abfd)
b49e97c9 9419{
64543e1a 9420 flagword val;
b49e97c9
TS
9421
9422 switch (bfd_get_mach (abfd))
9423 {
9424 default:
9425 case bfd_mach_mips3000:
9426 val = E_MIPS_ARCH_1;
9427 break;
9428
9429 case bfd_mach_mips3900:
9430 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9431 break;
9432
9433 case bfd_mach_mips6000:
9434 val = E_MIPS_ARCH_2;
9435 break;
9436
9437 case bfd_mach_mips4000:
9438 case bfd_mach_mips4300:
9439 case bfd_mach_mips4400:
9440 case bfd_mach_mips4600:
9441 val = E_MIPS_ARCH_3;
9442 break;
9443
9444 case bfd_mach_mips4010:
9445 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9446 break;
9447
9448 case bfd_mach_mips4100:
9449 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9450 break;
9451
9452 case bfd_mach_mips4111:
9453 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9454 break;
9455
00707a0e
RS
9456 case bfd_mach_mips4120:
9457 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9458 break;
9459
b49e97c9
TS
9460 case bfd_mach_mips4650:
9461 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9462 break;
9463
00707a0e
RS
9464 case bfd_mach_mips5400:
9465 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9466 break;
9467
9468 case bfd_mach_mips5500:
9469 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9470 break;
9471
0d2e43ed
ILT
9472 case bfd_mach_mips9000:
9473 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9474 break;
9475
b49e97c9 9476 case bfd_mach_mips5000:
5a7ea749 9477 case bfd_mach_mips7000:
b49e97c9
TS
9478 case bfd_mach_mips8000:
9479 case bfd_mach_mips10000:
9480 case bfd_mach_mips12000:
9481 val = E_MIPS_ARCH_4;
9482 break;
9483
9484 case bfd_mach_mips5:
9485 val = E_MIPS_ARCH_5;
9486 break;
9487
350cc38d
MS
9488 case bfd_mach_mips_loongson_2e:
9489 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9490 break;
9491
9492 case bfd_mach_mips_loongson_2f:
9493 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9494 break;
9495
b49e97c9
TS
9496 case bfd_mach_mips_sb1:
9497 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9498 break;
9499
6f179bd0
AN
9500 case bfd_mach_mips_octeon:
9501 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9502 break;
9503
b49e97c9
TS
9504 case bfd_mach_mipsisa32:
9505 val = E_MIPS_ARCH_32;
9506 break;
9507
9508 case bfd_mach_mipsisa64:
9509 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9510 break;
9511
9512 case bfd_mach_mipsisa32r2:
9513 val = E_MIPS_ARCH_32R2;
9514 break;
5f74bc13
CD
9515
9516 case bfd_mach_mipsisa64r2:
9517 val = E_MIPS_ARCH_64R2;
9518 break;
b49e97c9 9519 }
b49e97c9
TS
9520 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9521 elf_elfheader (abfd)->e_flags |= val;
9522
64543e1a
RS
9523}
9524
9525
9526/* The final processing done just before writing out a MIPS ELF object
9527 file. This gets the MIPS architecture right based on the machine
9528 number. This is used by both the 32-bit and the 64-bit ABI. */
9529
9530void
9719ad41
RS
9531_bfd_mips_elf_final_write_processing (bfd *abfd,
9532 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9533{
9534 unsigned int i;
9535 Elf_Internal_Shdr **hdrpp;
9536 const char *name;
9537 asection *sec;
9538
9539 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9540 is nonzero. This is for compatibility with old objects, which used
9541 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9542 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9543 mips_set_isa_flags (abfd);
9544
b49e97c9
TS
9545 /* Set the sh_info field for .gptab sections and other appropriate
9546 info for each special section. */
9547 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9548 i < elf_numsections (abfd);
9549 i++, hdrpp++)
9550 {
9551 switch ((*hdrpp)->sh_type)
9552 {
9553 case SHT_MIPS_MSYM:
9554 case SHT_MIPS_LIBLIST:
9555 sec = bfd_get_section_by_name (abfd, ".dynstr");
9556 if (sec != NULL)
9557 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9558 break;
9559
9560 case SHT_MIPS_GPTAB:
9561 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9562 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9563 BFD_ASSERT (name != NULL
0112cd26 9564 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9565 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9566 BFD_ASSERT (sec != NULL);
9567 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9568 break;
9569
9570 case SHT_MIPS_CONTENT:
9571 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9572 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9573 BFD_ASSERT (name != NULL
0112cd26 9574 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9575 sec = bfd_get_section_by_name (abfd,
9576 name + sizeof ".MIPS.content" - 1);
9577 BFD_ASSERT (sec != NULL);
9578 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9579 break;
9580
9581 case SHT_MIPS_SYMBOL_LIB:
9582 sec = bfd_get_section_by_name (abfd, ".dynsym");
9583 if (sec != NULL)
9584 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9585 sec = bfd_get_section_by_name (abfd, ".liblist");
9586 if (sec != NULL)
9587 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9588 break;
9589
9590 case SHT_MIPS_EVENTS:
9591 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9592 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9593 BFD_ASSERT (name != NULL);
0112cd26 9594 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9595 sec = bfd_get_section_by_name (abfd,
9596 name + sizeof ".MIPS.events" - 1);
9597 else
9598 {
0112cd26 9599 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9600 sec = bfd_get_section_by_name (abfd,
9601 (name
9602 + sizeof ".MIPS.post_rel" - 1));
9603 }
9604 BFD_ASSERT (sec != NULL);
9605 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9606 break;
9607
9608 }
9609 }
9610}
9611\f
8dc1a139 9612/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9613 segments. */
9614
9615int
a6b96beb
AM
9616_bfd_mips_elf_additional_program_headers (bfd *abfd,
9617 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9618{
9619 asection *s;
9620 int ret = 0;
9621
9622 /* See if we need a PT_MIPS_REGINFO segment. */
9623 s = bfd_get_section_by_name (abfd, ".reginfo");
9624 if (s && (s->flags & SEC_LOAD))
9625 ++ret;
9626
9627 /* See if we need a PT_MIPS_OPTIONS segment. */
9628 if (IRIX_COMPAT (abfd) == ict_irix6
9629 && bfd_get_section_by_name (abfd,
9630 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9631 ++ret;
9632
9633 /* See if we need a PT_MIPS_RTPROC segment. */
9634 if (IRIX_COMPAT (abfd) == ict_irix5
9635 && bfd_get_section_by_name (abfd, ".dynamic")
9636 && bfd_get_section_by_name (abfd, ".mdebug"))
9637 ++ret;
9638
98c904a8
RS
9639 /* Allocate a PT_NULL header in dynamic objects. See
9640 _bfd_mips_elf_modify_segment_map for details. */
9641 if (!SGI_COMPAT (abfd)
9642 && bfd_get_section_by_name (abfd, ".dynamic"))
9643 ++ret;
9644
b49e97c9
TS
9645 return ret;
9646}
9647
8dc1a139 9648/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9649
b34976b6 9650bfd_boolean
9719ad41 9651_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 9652 struct bfd_link_info *info)
b49e97c9
TS
9653{
9654 asection *s;
9655 struct elf_segment_map *m, **pm;
9656 bfd_size_type amt;
9657
9658 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9659 segment. */
9660 s = bfd_get_section_by_name (abfd, ".reginfo");
9661 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9662 {
9663 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9664 if (m->p_type == PT_MIPS_REGINFO)
9665 break;
9666 if (m == NULL)
9667 {
9668 amt = sizeof *m;
9719ad41 9669 m = bfd_zalloc (abfd, amt);
b49e97c9 9670 if (m == NULL)
b34976b6 9671 return FALSE;
b49e97c9
TS
9672
9673 m->p_type = PT_MIPS_REGINFO;
9674 m->count = 1;
9675 m->sections[0] = s;
9676
9677 /* We want to put it after the PHDR and INTERP segments. */
9678 pm = &elf_tdata (abfd)->segment_map;
9679 while (*pm != NULL
9680 && ((*pm)->p_type == PT_PHDR
9681 || (*pm)->p_type == PT_INTERP))
9682 pm = &(*pm)->next;
9683
9684 m->next = *pm;
9685 *pm = m;
9686 }
9687 }
9688
9689 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9690 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9691 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9692 table. */
c1fd6598
AO
9693 if (NEWABI_P (abfd)
9694 /* On non-IRIX6 new abi, we'll have already created a segment
9695 for this section, so don't create another. I'm not sure this
9696 is not also the case for IRIX 6, but I can't test it right
9697 now. */
9698 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9699 {
9700 for (s = abfd->sections; s; s = s->next)
9701 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9702 break;
9703
9704 if (s)
9705 {
9706 struct elf_segment_map *options_segment;
9707
98a8deaf
RS
9708 pm = &elf_tdata (abfd)->segment_map;
9709 while (*pm != NULL
9710 && ((*pm)->p_type == PT_PHDR
9711 || (*pm)->p_type == PT_INTERP))
9712 pm = &(*pm)->next;
b49e97c9 9713
8ded5a0f
AM
9714 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9715 {
9716 amt = sizeof (struct elf_segment_map);
9717 options_segment = bfd_zalloc (abfd, amt);
9718 options_segment->next = *pm;
9719 options_segment->p_type = PT_MIPS_OPTIONS;
9720 options_segment->p_flags = PF_R;
9721 options_segment->p_flags_valid = TRUE;
9722 options_segment->count = 1;
9723 options_segment->sections[0] = s;
9724 *pm = options_segment;
9725 }
b49e97c9
TS
9726 }
9727 }
9728 else
9729 {
9730 if (IRIX_COMPAT (abfd) == ict_irix5)
9731 {
9732 /* If there are .dynamic and .mdebug sections, we make a room
9733 for the RTPROC header. FIXME: Rewrite without section names. */
9734 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9735 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9736 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9737 {
9738 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9739 if (m->p_type == PT_MIPS_RTPROC)
9740 break;
9741 if (m == NULL)
9742 {
9743 amt = sizeof *m;
9719ad41 9744 m = bfd_zalloc (abfd, amt);
b49e97c9 9745 if (m == NULL)
b34976b6 9746 return FALSE;
b49e97c9
TS
9747
9748 m->p_type = PT_MIPS_RTPROC;
9749
9750 s = bfd_get_section_by_name (abfd, ".rtproc");
9751 if (s == NULL)
9752 {
9753 m->count = 0;
9754 m->p_flags = 0;
9755 m->p_flags_valid = 1;
9756 }
9757 else
9758 {
9759 m->count = 1;
9760 m->sections[0] = s;
9761 }
9762
9763 /* We want to put it after the DYNAMIC segment. */
9764 pm = &elf_tdata (abfd)->segment_map;
9765 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9766 pm = &(*pm)->next;
9767 if (*pm != NULL)
9768 pm = &(*pm)->next;
9769
9770 m->next = *pm;
9771 *pm = m;
9772 }
9773 }
9774 }
8dc1a139 9775 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9776 .dynstr, .dynsym, and .hash sections, and everything in
9777 between. */
9778 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9779 pm = &(*pm)->next)
9780 if ((*pm)->p_type == PT_DYNAMIC)
9781 break;
9782 m = *pm;
9783 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9784 {
9785 /* For a normal mips executable the permissions for the PT_DYNAMIC
9786 segment are read, write and execute. We do that here since
9787 the code in elf.c sets only the read permission. This matters
9788 sometimes for the dynamic linker. */
9789 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9790 {
9791 m->p_flags = PF_R | PF_W | PF_X;
9792 m->p_flags_valid = 1;
9793 }
9794 }
f6f62d6f
RS
9795 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9796 glibc's dynamic linker has traditionally derived the number of
9797 tags from the p_filesz field, and sometimes allocates stack
9798 arrays of that size. An overly-big PT_DYNAMIC segment can
9799 be actively harmful in such cases. Making PT_DYNAMIC contain
9800 other sections can also make life hard for the prelinker,
9801 which might move one of the other sections to a different
9802 PT_LOAD segment. */
9803 if (SGI_COMPAT (abfd)
9804 && m != NULL
9805 && m->count == 1
9806 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9807 {
9808 static const char *sec_names[] =
9809 {
9810 ".dynamic", ".dynstr", ".dynsym", ".hash"
9811 };
9812 bfd_vma low, high;
9813 unsigned int i, c;
9814 struct elf_segment_map *n;
9815
792b4a53 9816 low = ~(bfd_vma) 0;
b49e97c9
TS
9817 high = 0;
9818 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9819 {
9820 s = bfd_get_section_by_name (abfd, sec_names[i]);
9821 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9822 {
9823 bfd_size_type sz;
9824
9825 if (low > s->vma)
9826 low = s->vma;
eea6121a 9827 sz = s->size;
b49e97c9
TS
9828 if (high < s->vma + sz)
9829 high = s->vma + sz;
9830 }
9831 }
9832
9833 c = 0;
9834 for (s = abfd->sections; s != NULL; s = s->next)
9835 if ((s->flags & SEC_LOAD) != 0
9836 && s->vma >= low
eea6121a 9837 && s->vma + s->size <= high)
b49e97c9
TS
9838 ++c;
9839
9840 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9841 n = bfd_zalloc (abfd, amt);
b49e97c9 9842 if (n == NULL)
b34976b6 9843 return FALSE;
b49e97c9
TS
9844 *n = *m;
9845 n->count = c;
9846
9847 i = 0;
9848 for (s = abfd->sections; s != NULL; s = s->next)
9849 {
9850 if ((s->flags & SEC_LOAD) != 0
9851 && s->vma >= low
eea6121a 9852 && s->vma + s->size <= high)
b49e97c9
TS
9853 {
9854 n->sections[i] = s;
9855 ++i;
9856 }
9857 }
9858
9859 *pm = n;
9860 }
9861 }
9862
98c904a8
RS
9863 /* Allocate a spare program header in dynamic objects so that tools
9864 like the prelinker can add an extra PT_LOAD entry.
9865
9866 If the prelinker needs to make room for a new PT_LOAD entry, its
9867 standard procedure is to move the first (read-only) sections into
9868 the new (writable) segment. However, the MIPS ABI requires
9869 .dynamic to be in a read-only segment, and the section will often
9870 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9871
9872 Although the prelinker could in principle move .dynamic to a
9873 writable segment, it seems better to allocate a spare program
9874 header instead, and avoid the need to move any sections.
9875 There is a long tradition of allocating spare dynamic tags,
9876 so allocating a spare program header seems like a natural
7c8b76cc
JM
9877 extension.
9878
9879 If INFO is NULL, we may be copying an already prelinked binary
9880 with objcopy or strip, so do not add this header. */
9881 if (info != NULL
9882 && !SGI_COMPAT (abfd)
98c904a8
RS
9883 && bfd_get_section_by_name (abfd, ".dynamic"))
9884 {
9885 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9886 if ((*pm)->p_type == PT_NULL)
9887 break;
9888 if (*pm == NULL)
9889 {
9890 m = bfd_zalloc (abfd, sizeof (*m));
9891 if (m == NULL)
9892 return FALSE;
9893
9894 m->p_type = PT_NULL;
9895 *pm = m;
9896 }
9897 }
9898
b34976b6 9899 return TRUE;
b49e97c9
TS
9900}
9901\f
9902/* Return the section that should be marked against GC for a given
9903 relocation. */
9904
9905asection *
9719ad41 9906_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9907 struct bfd_link_info *info,
9719ad41
RS
9908 Elf_Internal_Rela *rel,
9909 struct elf_link_hash_entry *h,
9910 Elf_Internal_Sym *sym)
b49e97c9
TS
9911{
9912 /* ??? Do mips16 stub sections need to be handled special? */
9913
9914 if (h != NULL)
07adf181
AM
9915 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9916 {
9917 case R_MIPS_GNU_VTINHERIT:
9918 case R_MIPS_GNU_VTENTRY:
9919 return NULL;
9920 }
b49e97c9 9921
07adf181 9922 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9923}
9924
9925/* Update the got entry reference counts for the section being removed. */
9926
b34976b6 9927bfd_boolean
9719ad41
RS
9928_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9929 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9930 asection *sec ATTRIBUTE_UNUSED,
9931 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9932{
9933#if 0
9934 Elf_Internal_Shdr *symtab_hdr;
9935 struct elf_link_hash_entry **sym_hashes;
9936 bfd_signed_vma *local_got_refcounts;
9937 const Elf_Internal_Rela *rel, *relend;
9938 unsigned long r_symndx;
9939 struct elf_link_hash_entry *h;
9940
7dda2462
TG
9941 if (info->relocatable)
9942 return TRUE;
9943
b49e97c9
TS
9944 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9945 sym_hashes = elf_sym_hashes (abfd);
9946 local_got_refcounts = elf_local_got_refcounts (abfd);
9947
9948 relend = relocs + sec->reloc_count;
9949 for (rel = relocs; rel < relend; rel++)
9950 switch (ELF_R_TYPE (abfd, rel->r_info))
9951 {
9952 case R_MIPS_GOT16:
9953 case R_MIPS_CALL16:
9954 case R_MIPS_CALL_HI16:
9955 case R_MIPS_CALL_LO16:
9956 case R_MIPS_GOT_HI16:
9957 case R_MIPS_GOT_LO16:
4a14403c
TS
9958 case R_MIPS_GOT_DISP:
9959 case R_MIPS_GOT_PAGE:
9960 case R_MIPS_GOT_OFST:
b49e97c9
TS
9961 /* ??? It would seem that the existing MIPS code does no sort
9962 of reference counting or whatnot on its GOT and PLT entries,
9963 so it is not possible to garbage collect them at this time. */
9964 break;
9965
9966 default:
9967 break;
9968 }
9969#endif
9970
b34976b6 9971 return TRUE;
b49e97c9
TS
9972}
9973\f
9974/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9975 hiding the old indirect symbol. Process additional relocation
9976 information. Also called for weakdefs, in which case we just let
9977 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9978
9979void
fcfa13d2 9980_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9981 struct elf_link_hash_entry *dir,
9982 struct elf_link_hash_entry *ind)
b49e97c9
TS
9983{
9984 struct mips_elf_link_hash_entry *dirmips, *indmips;
9985
fcfa13d2 9986 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9987
9988 if (ind->root.type != bfd_link_hash_indirect)
9989 return;
9990
9991 dirmips = (struct mips_elf_link_hash_entry *) dir;
9992 indmips = (struct mips_elf_link_hash_entry *) ind;
9993 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9994 if (indmips->readonly_reloc)
b34976b6 9995 dirmips->readonly_reloc = TRUE;
b49e97c9 9996 if (indmips->no_fn_stub)
b34976b6 9997 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9998
9999 if (dirmips->tls_type == 0)
10000 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
10001}
10002
10003void
9719ad41
RS
10004_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
10005 struct elf_link_hash_entry *entry,
10006 bfd_boolean force_local)
b49e97c9
TS
10007{
10008 bfd *dynobj;
10009 asection *got;
10010 struct mips_got_info *g;
10011 struct mips_elf_link_hash_entry *h;
8275b357 10012 struct mips_elf_link_hash_table *htab;
7c5fcef7 10013
b49e97c9 10014 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
10015 if (h->forced_local)
10016 return;
4b555070 10017 h->forced_local = force_local;
7c5fcef7 10018
b49e97c9 10019 dynobj = elf_hash_table (info)->dynobj;
8275b357 10020 htab = mips_elf_hash_table (info);
8d1d654f 10021 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 10022 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 10023 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 10024 {
c45a316a
AM
10025 if (g->next)
10026 {
10027 struct mips_got_entry e;
10028 struct mips_got_info *gg = g;
10029
10030 /* Since we're turning what used to be a global symbol into a
10031 local one, bump up the number of local entries of each GOT
10032 that had an entry for it. This will automatically decrease
10033 the number of global entries, since global_gotno is actually
10034 the upper limit of global entries. */
10035 e.abfd = dynobj;
10036 e.symndx = -1;
10037 e.d.h = h;
0f20cc35 10038 e.tls_type = 0;
c45a316a
AM
10039
10040 for (g = g->next; g != gg; g = g->next)
10041 if (htab_find (g->got_entries, &e))
10042 {
10043 BFD_ASSERT (g->global_gotno > 0);
10044 g->local_gotno++;
10045 g->global_gotno--;
10046 }
b49e97c9 10047
c45a316a
AM
10048 /* If this was a global symbol forced into the primary GOT, we
10049 no longer need an entry for it. We can't release the entry
10050 at this point, but we must at least stop counting it as one
10051 of the symbols that required a forced got entry. */
10052 if (h->root.got.offset == 2)
10053 {
10054 BFD_ASSERT (gg->assigned_gotno > 0);
10055 gg->assigned_gotno--;
10056 }
10057 }
c45a316a 10058 else if (h->root.got.offset == 1)
f4416af6 10059 {
8275b357
RS
10060 /* check_relocs didn't know that this symbol would be
10061 forced-local, so add an extra local got entry. */
c45a316a 10062 g->local_gotno++;
8275b357
RS
10063 if (htab->computed_got_sizes)
10064 {
10065 /* We'll have treated this symbol as global rather
10066 than local. */
10067 BFD_ASSERT (g->global_gotno > 0);
10068 g->global_gotno--;
10069 }
f4416af6 10070 }
8275b357
RS
10071 else if (htab->is_vxworks && h->root.needs_plt)
10072 {
10073 /* check_relocs didn't know that this symbol would be
10074 forced-local, so add an extra local got entry. */
10075 g->local_gotno++;
10076 if (htab->computed_got_sizes)
10077 /* The symbol is only used in call relocations, so we'll
10078 have assumed it only needs a .got.plt entry. Increase
10079 the size of .got accordingly. */
10080 got->size += MIPS_ELF_GOT_SIZE (dynobj);
10081 }
f4416af6 10082 }
f4416af6
AO
10083
10084 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
10085}
10086\f
d01414a5
TS
10087#define PDR_SIZE 32
10088
b34976b6 10089bfd_boolean
9719ad41
RS
10090_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10091 struct bfd_link_info *info)
d01414a5
TS
10092{
10093 asection *o;
b34976b6 10094 bfd_boolean ret = FALSE;
d01414a5
TS
10095 unsigned char *tdata;
10096 size_t i, skip;
10097
10098 o = bfd_get_section_by_name (abfd, ".pdr");
10099 if (! o)
b34976b6 10100 return FALSE;
eea6121a 10101 if (o->size == 0)
b34976b6 10102 return FALSE;
eea6121a 10103 if (o->size % PDR_SIZE != 0)
b34976b6 10104 return FALSE;
d01414a5
TS
10105 if (o->output_section != NULL
10106 && bfd_is_abs_section (o->output_section))
b34976b6 10107 return FALSE;
d01414a5 10108
eea6121a 10109 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 10110 if (! tdata)
b34976b6 10111 return FALSE;
d01414a5 10112
9719ad41 10113 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 10114 info->keep_memory);
d01414a5
TS
10115 if (!cookie->rels)
10116 {
10117 free (tdata);
b34976b6 10118 return FALSE;
d01414a5
TS
10119 }
10120
10121 cookie->rel = cookie->rels;
10122 cookie->relend = cookie->rels + o->reloc_count;
10123
eea6121a 10124 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 10125 {
c152c796 10126 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
10127 {
10128 tdata[i] = 1;
10129 skip ++;
10130 }
10131 }
10132
10133 if (skip != 0)
10134 {
f0abc2a1 10135 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 10136 o->size -= skip * PDR_SIZE;
b34976b6 10137 ret = TRUE;
d01414a5
TS
10138 }
10139 else
10140 free (tdata);
10141
10142 if (! info->keep_memory)
10143 free (cookie->rels);
10144
10145 return ret;
10146}
10147
b34976b6 10148bfd_boolean
9719ad41 10149_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
10150{
10151 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
10152 return TRUE;
10153 return FALSE;
53bfd6b4 10154}
d01414a5 10155
b34976b6 10156bfd_boolean
c7b8f16e
JB
10157_bfd_mips_elf_write_section (bfd *output_bfd,
10158 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10159 asection *sec, bfd_byte *contents)
d01414a5
TS
10160{
10161 bfd_byte *to, *from, *end;
10162 int i;
10163
10164 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 10165 return FALSE;
d01414a5 10166
f0abc2a1 10167 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 10168 return FALSE;
d01414a5
TS
10169
10170 to = contents;
eea6121a 10171 end = contents + sec->size;
d01414a5
TS
10172 for (from = contents, i = 0;
10173 from < end;
10174 from += PDR_SIZE, i++)
10175 {
f0abc2a1 10176 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
10177 continue;
10178 if (to != from)
10179 memcpy (to, from, PDR_SIZE);
10180 to += PDR_SIZE;
10181 }
10182 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 10183 sec->output_offset, sec->size);
b34976b6 10184 return TRUE;
d01414a5 10185}
53bfd6b4 10186\f
b49e97c9
TS
10187/* MIPS ELF uses a special find_nearest_line routine in order the
10188 handle the ECOFF debugging information. */
10189
10190struct mips_elf_find_line
10191{
10192 struct ecoff_debug_info d;
10193 struct ecoff_find_line i;
10194};
10195
b34976b6 10196bfd_boolean
9719ad41
RS
10197_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10198 asymbol **symbols, bfd_vma offset,
10199 const char **filename_ptr,
10200 const char **functionname_ptr,
10201 unsigned int *line_ptr)
b49e97c9
TS
10202{
10203 asection *msec;
10204
10205 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10206 filename_ptr, functionname_ptr,
10207 line_ptr))
b34976b6 10208 return TRUE;
b49e97c9
TS
10209
10210 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10211 filename_ptr, functionname_ptr,
9719ad41 10212 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 10213 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 10214 return TRUE;
b49e97c9
TS
10215
10216 msec = bfd_get_section_by_name (abfd, ".mdebug");
10217 if (msec != NULL)
10218 {
10219 flagword origflags;
10220 struct mips_elf_find_line *fi;
10221 const struct ecoff_debug_swap * const swap =
10222 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10223
10224 /* If we are called during a link, mips_elf_final_link may have
10225 cleared the SEC_HAS_CONTENTS field. We force it back on here
10226 if appropriate (which it normally will be). */
10227 origflags = msec->flags;
10228 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10229 msec->flags |= SEC_HAS_CONTENTS;
10230
10231 fi = elf_tdata (abfd)->find_line_info;
10232 if (fi == NULL)
10233 {
10234 bfd_size_type external_fdr_size;
10235 char *fraw_src;
10236 char *fraw_end;
10237 struct fdr *fdr_ptr;
10238 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10239
9719ad41 10240 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
10241 if (fi == NULL)
10242 {
10243 msec->flags = origflags;
b34976b6 10244 return FALSE;
b49e97c9
TS
10245 }
10246
10247 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10248 {
10249 msec->flags = origflags;
b34976b6 10250 return FALSE;
b49e97c9
TS
10251 }
10252
10253 /* Swap in the FDR information. */
10254 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 10255 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
10256 if (fi->d.fdr == NULL)
10257 {
10258 msec->flags = origflags;
b34976b6 10259 return FALSE;
b49e97c9
TS
10260 }
10261 external_fdr_size = swap->external_fdr_size;
10262 fdr_ptr = fi->d.fdr;
10263 fraw_src = (char *) fi->d.external_fdr;
10264 fraw_end = (fraw_src
10265 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10266 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 10267 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
10268
10269 elf_tdata (abfd)->find_line_info = fi;
10270
10271 /* Note that we don't bother to ever free this information.
10272 find_nearest_line is either called all the time, as in
10273 objdump -l, so the information should be saved, or it is
10274 rarely called, as in ld error messages, so the memory
10275 wasted is unimportant. Still, it would probably be a
10276 good idea for free_cached_info to throw it away. */
10277 }
10278
10279 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10280 &fi->i, filename_ptr, functionname_ptr,
10281 line_ptr))
10282 {
10283 msec->flags = origflags;
b34976b6 10284 return TRUE;
b49e97c9
TS
10285 }
10286
10287 msec->flags = origflags;
10288 }
10289
10290 /* Fall back on the generic ELF find_nearest_line routine. */
10291
10292 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10293 filename_ptr, functionname_ptr,
10294 line_ptr);
10295}
4ab527b0
FF
10296
10297bfd_boolean
10298_bfd_mips_elf_find_inliner_info (bfd *abfd,
10299 const char **filename_ptr,
10300 const char **functionname_ptr,
10301 unsigned int *line_ptr)
10302{
10303 bfd_boolean found;
10304 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10305 functionname_ptr, line_ptr,
10306 & elf_tdata (abfd)->dwarf2_find_line_info);
10307 return found;
10308}
10309
b49e97c9
TS
10310\f
10311/* When are writing out the .options or .MIPS.options section,
10312 remember the bytes we are writing out, so that we can install the
10313 GP value in the section_processing routine. */
10314
b34976b6 10315bfd_boolean
9719ad41
RS
10316_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10317 const void *location,
10318 file_ptr offset, bfd_size_type count)
b49e97c9 10319{
cc2e31b9 10320 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
10321 {
10322 bfd_byte *c;
10323
10324 if (elf_section_data (section) == NULL)
10325 {
10326 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 10327 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 10328 if (elf_section_data (section) == NULL)
b34976b6 10329 return FALSE;
b49e97c9 10330 }
f0abc2a1 10331 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
10332 if (c == NULL)
10333 {
eea6121a 10334 c = bfd_zalloc (abfd, section->size);
b49e97c9 10335 if (c == NULL)
b34976b6 10336 return FALSE;
f0abc2a1 10337 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
10338 }
10339
9719ad41 10340 memcpy (c + offset, location, count);
b49e97c9
TS
10341 }
10342
10343 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10344 count);
10345}
10346
10347/* This is almost identical to bfd_generic_get_... except that some
10348 MIPS relocations need to be handled specially. Sigh. */
10349
10350bfd_byte *
9719ad41
RS
10351_bfd_elf_mips_get_relocated_section_contents
10352 (bfd *abfd,
10353 struct bfd_link_info *link_info,
10354 struct bfd_link_order *link_order,
10355 bfd_byte *data,
10356 bfd_boolean relocatable,
10357 asymbol **symbols)
b49e97c9
TS
10358{
10359 /* Get enough memory to hold the stuff */
10360 bfd *input_bfd = link_order->u.indirect.section->owner;
10361 asection *input_section = link_order->u.indirect.section;
eea6121a 10362 bfd_size_type sz;
b49e97c9
TS
10363
10364 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10365 arelent **reloc_vector = NULL;
10366 long reloc_count;
10367
10368 if (reloc_size < 0)
10369 goto error_return;
10370
9719ad41 10371 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10372 if (reloc_vector == NULL && reloc_size != 0)
10373 goto error_return;
10374
10375 /* read in the section */
eea6121a
AM
10376 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10377 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10378 goto error_return;
10379
b49e97c9
TS
10380 reloc_count = bfd_canonicalize_reloc (input_bfd,
10381 input_section,
10382 reloc_vector,
10383 symbols);
10384 if (reloc_count < 0)
10385 goto error_return;
10386
10387 if (reloc_count > 0)
10388 {
10389 arelent **parent;
10390 /* for mips */
10391 int gp_found;
10392 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10393
10394 {
10395 struct bfd_hash_entry *h;
10396 struct bfd_link_hash_entry *lh;
10397 /* Skip all this stuff if we aren't mixing formats. */
10398 if (abfd && input_bfd
10399 && abfd->xvec == input_bfd->xvec)
10400 lh = 0;
10401 else
10402 {
b34976b6 10403 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10404 lh = (struct bfd_link_hash_entry *) h;
10405 }
10406 lookup:
10407 if (lh)
10408 {
10409 switch (lh->type)
10410 {
10411 case bfd_link_hash_undefined:
10412 case bfd_link_hash_undefweak:
10413 case bfd_link_hash_common:
10414 gp_found = 0;
10415 break;
10416 case bfd_link_hash_defined:
10417 case bfd_link_hash_defweak:
10418 gp_found = 1;
10419 gp = lh->u.def.value;
10420 break;
10421 case bfd_link_hash_indirect:
10422 case bfd_link_hash_warning:
10423 lh = lh->u.i.link;
10424 /* @@FIXME ignoring warning for now */
10425 goto lookup;
10426 case bfd_link_hash_new:
10427 default:
10428 abort ();
10429 }
10430 }
10431 else
10432 gp_found = 0;
10433 }
10434 /* end mips */
9719ad41 10435 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10436 {
9719ad41 10437 char *error_message = NULL;
b49e97c9
TS
10438 bfd_reloc_status_type r;
10439
10440 /* Specific to MIPS: Deal with relocation types that require
10441 knowing the gp of the output bfd. */
10442 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10443
8236346f
EC
10444 /* If we've managed to find the gp and have a special
10445 function for the relocation then go ahead, else default
10446 to the generic handling. */
10447 if (gp_found
10448 && (*parent)->howto->special_function
10449 == _bfd_mips_elf32_gprel16_reloc)
10450 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10451 input_section, relocatable,
10452 data, gp);
10453 else
86324f90 10454 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10455 input_section,
10456 relocatable ? abfd : NULL,
10457 &error_message);
b49e97c9 10458
1049f94e 10459 if (relocatable)
b49e97c9
TS
10460 {
10461 asection *os = input_section->output_section;
10462
10463 /* A partial link, so keep the relocs */
10464 os->orelocation[os->reloc_count] = *parent;
10465 os->reloc_count++;
10466 }
10467
10468 if (r != bfd_reloc_ok)
10469 {
10470 switch (r)
10471 {
10472 case bfd_reloc_undefined:
10473 if (!((*link_info->callbacks->undefined_symbol)
10474 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10475 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10476 goto error_return;
10477 break;
10478 case bfd_reloc_dangerous:
9719ad41 10479 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10480 if (!((*link_info->callbacks->reloc_dangerous)
10481 (link_info, error_message, input_bfd, input_section,
10482 (*parent)->address)))
10483 goto error_return;
10484 break;
10485 case bfd_reloc_overflow:
10486 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10487 (link_info, NULL,
10488 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10489 (*parent)->howto->name, (*parent)->addend,
10490 input_bfd, input_section, (*parent)->address)))
10491 goto error_return;
10492 break;
10493 case bfd_reloc_outofrange:
10494 default:
10495 abort ();
10496 break;
10497 }
10498
10499 }
10500 }
10501 }
10502 if (reloc_vector != NULL)
10503 free (reloc_vector);
10504 return data;
10505
10506error_return:
10507 if (reloc_vector != NULL)
10508 free (reloc_vector);
10509 return NULL;
10510}
10511\f
10512/* Create a MIPS ELF linker hash table. */
10513
10514struct bfd_link_hash_table *
9719ad41 10515_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10516{
10517 struct mips_elf_link_hash_table *ret;
10518 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10519
9719ad41
RS
10520 ret = bfd_malloc (amt);
10521 if (ret == NULL)
b49e97c9
TS
10522 return NULL;
10523
66eb6687
AM
10524 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10525 mips_elf_link_hash_newfunc,
10526 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10527 {
e2d34d7d 10528 free (ret);
b49e97c9
TS
10529 return NULL;
10530 }
10531
10532#if 0
10533 /* We no longer use this. */
10534 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10535 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10536#endif
10537 ret->procedure_count = 0;
10538 ret->compact_rel_size = 0;
b34976b6 10539 ret->use_rld_obj_head = FALSE;
b49e97c9 10540 ret->rld_value = 0;
b34976b6 10541 ret->mips16_stubs_seen = FALSE;
8275b357 10542 ret->computed_got_sizes = FALSE;
0a44bf69 10543 ret->is_vxworks = FALSE;
0e53d9da 10544 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
10545 ret->srelbss = NULL;
10546 ret->sdynbss = NULL;
10547 ret->srelplt = NULL;
10548 ret->srelplt2 = NULL;
10549 ret->sgotplt = NULL;
10550 ret->splt = NULL;
10551 ret->plt_header_size = 0;
10552 ret->plt_entry_size = 0;
5108fc1b 10553 ret->function_stub_size = 0;
b49e97c9
TS
10554
10555 return &ret->root.root;
10556}
0a44bf69
RS
10557
10558/* Likewise, but indicate that the target is VxWorks. */
10559
10560struct bfd_link_hash_table *
10561_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10562{
10563 struct bfd_link_hash_table *ret;
10564
10565 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10566 if (ret)
10567 {
10568 struct mips_elf_link_hash_table *htab;
10569
10570 htab = (struct mips_elf_link_hash_table *) ret;
10571 htab->is_vxworks = 1;
10572 }
10573 return ret;
10574}
b49e97c9
TS
10575\f
10576/* We need to use a special link routine to handle the .reginfo and
10577 the .mdebug sections. We need to merge all instances of these
10578 sections together, not write them all out sequentially. */
10579
b34976b6 10580bfd_boolean
9719ad41 10581_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10582{
b49e97c9
TS
10583 asection *o;
10584 struct bfd_link_order *p;
10585 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10586 asection *rtproc_sec;
10587 Elf32_RegInfo reginfo;
10588 struct ecoff_debug_info debug;
7a2a6943
NC
10589 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10590 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10591 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10592 void *mdebug_handle = NULL;
b49e97c9
TS
10593 asection *s;
10594 EXTR esym;
10595 unsigned int i;
10596 bfd_size_type amt;
0a44bf69 10597 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10598
10599 static const char * const secname[] =
10600 {
10601 ".text", ".init", ".fini", ".data",
10602 ".rodata", ".sdata", ".sbss", ".bss"
10603 };
10604 static const int sc[] =
10605 {
10606 scText, scInit, scFini, scData,
10607 scRData, scSData, scSBss, scBss
10608 };
10609
b49e97c9
TS
10610 /* We'd carefully arranged the dynamic symbol indices, and then the
10611 generic size_dynamic_sections renumbered them out from under us.
10612 Rather than trying somehow to prevent the renumbering, just do
10613 the sort again. */
0a44bf69 10614 htab = mips_elf_hash_table (info);
b49e97c9
TS
10615 if (elf_hash_table (info)->dynamic_sections_created)
10616 {
10617 bfd *dynobj;
10618 asection *got;
10619 struct mips_got_info *g;
7a2a6943 10620 bfd_size_type dynsecsymcount;
b49e97c9
TS
10621
10622 /* When we resort, we must tell mips_elf_sort_hash_table what
10623 the lowest index it may use is. That's the number of section
10624 symbols we're going to add. The generic ELF linker only
10625 adds these symbols when building a shared object. Note that
10626 we count the sections after (possibly) removing the .options
10627 section above. */
7a2a6943 10628
5108fc1b 10629 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10630 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10631 return FALSE;
b49e97c9
TS
10632
10633 /* Make sure we didn't grow the global .got region. */
10634 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10635 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10636 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10637
10638 if (g->global_gotsym != NULL)
10639 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10640 - g->global_gotsym->dynindx)
10641 <= g->global_gotno);
10642 }
10643
b49e97c9
TS
10644 /* Get a value for the GP register. */
10645 if (elf_gp (abfd) == 0)
10646 {
10647 struct bfd_link_hash_entry *h;
10648
b34976b6 10649 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10650 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10651 elf_gp (abfd) = (h->u.def.value
10652 + h->u.def.section->output_section->vma
10653 + h->u.def.section->output_offset);
0a44bf69
RS
10654 else if (htab->is_vxworks
10655 && (h = bfd_link_hash_lookup (info->hash,
10656 "_GLOBAL_OFFSET_TABLE_",
10657 FALSE, FALSE, TRUE))
10658 && h->type == bfd_link_hash_defined)
10659 elf_gp (abfd) = (h->u.def.section->output_section->vma
10660 + h->u.def.section->output_offset
10661 + h->u.def.value);
1049f94e 10662 else if (info->relocatable)
b49e97c9
TS
10663 {
10664 bfd_vma lo = MINUS_ONE;
10665
10666 /* Find the GP-relative section with the lowest offset. */
9719ad41 10667 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10668 if (o->vma < lo
10669 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10670 lo = o->vma;
10671
10672 /* And calculate GP relative to that. */
0a44bf69 10673 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10674 }
10675 else
10676 {
10677 /* If the relocate_section function needs to do a reloc
10678 involving the GP value, it should make a reloc_dangerous
10679 callback to warn that GP is not defined. */
10680 }
10681 }
10682
10683 /* Go through the sections and collect the .reginfo and .mdebug
10684 information. */
10685 reginfo_sec = NULL;
10686 mdebug_sec = NULL;
10687 gptab_data_sec = NULL;
10688 gptab_bss_sec = NULL;
9719ad41 10689 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10690 {
10691 if (strcmp (o->name, ".reginfo") == 0)
10692 {
10693 memset (&reginfo, 0, sizeof reginfo);
10694
10695 /* We have found the .reginfo section in the output file.
10696 Look through all the link_orders comprising it and merge
10697 the information together. */
8423293d 10698 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10699 {
10700 asection *input_section;
10701 bfd *input_bfd;
10702 Elf32_External_RegInfo ext;
10703 Elf32_RegInfo sub;
10704
10705 if (p->type != bfd_indirect_link_order)
10706 {
10707 if (p->type == bfd_data_link_order)
10708 continue;
10709 abort ();
10710 }
10711
10712 input_section = p->u.indirect.section;
10713 input_bfd = input_section->owner;
10714
b49e97c9 10715 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10716 &ext, 0, sizeof ext))
b34976b6 10717 return FALSE;
b49e97c9
TS
10718
10719 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10720
10721 reginfo.ri_gprmask |= sub.ri_gprmask;
10722 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10723 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10724 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10725 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10726
10727 /* ri_gp_value is set by the function
10728 mips_elf32_section_processing when the section is
10729 finally written out. */
10730
10731 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10732 elf_link_input_bfd ignores this section. */
10733 input_section->flags &= ~SEC_HAS_CONTENTS;
10734 }
10735
10736 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10737 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10738
10739 /* Skip this section later on (I don't think this currently
10740 matters, but someday it might). */
8423293d 10741 o->map_head.link_order = NULL;
b49e97c9
TS
10742
10743 reginfo_sec = o;
10744 }
10745
10746 if (strcmp (o->name, ".mdebug") == 0)
10747 {
10748 struct extsym_info einfo;
10749 bfd_vma last;
10750
10751 /* We have found the .mdebug section in the output file.
10752 Look through all the link_orders comprising it and merge
10753 the information together. */
10754 symhdr->magic = swap->sym_magic;
10755 /* FIXME: What should the version stamp be? */
10756 symhdr->vstamp = 0;
10757 symhdr->ilineMax = 0;
10758 symhdr->cbLine = 0;
10759 symhdr->idnMax = 0;
10760 symhdr->ipdMax = 0;
10761 symhdr->isymMax = 0;
10762 symhdr->ioptMax = 0;
10763 symhdr->iauxMax = 0;
10764 symhdr->issMax = 0;
10765 symhdr->issExtMax = 0;
10766 symhdr->ifdMax = 0;
10767 symhdr->crfd = 0;
10768 symhdr->iextMax = 0;
10769
10770 /* We accumulate the debugging information itself in the
10771 debug_info structure. */
10772 debug.line = NULL;
10773 debug.external_dnr = NULL;
10774 debug.external_pdr = NULL;
10775 debug.external_sym = NULL;
10776 debug.external_opt = NULL;
10777 debug.external_aux = NULL;
10778 debug.ss = NULL;
10779 debug.ssext = debug.ssext_end = NULL;
10780 debug.external_fdr = NULL;
10781 debug.external_rfd = NULL;
10782 debug.external_ext = debug.external_ext_end = NULL;
10783
10784 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10785 if (mdebug_handle == NULL)
b34976b6 10786 return FALSE;
b49e97c9
TS
10787
10788 esym.jmptbl = 0;
10789 esym.cobol_main = 0;
10790 esym.weakext = 0;
10791 esym.reserved = 0;
10792 esym.ifd = ifdNil;
10793 esym.asym.iss = issNil;
10794 esym.asym.st = stLocal;
10795 esym.asym.reserved = 0;
10796 esym.asym.index = indexNil;
10797 last = 0;
10798 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10799 {
10800 esym.asym.sc = sc[i];
10801 s = bfd_get_section_by_name (abfd, secname[i]);
10802 if (s != NULL)
10803 {
10804 esym.asym.value = s->vma;
eea6121a 10805 last = s->vma + s->size;
b49e97c9
TS
10806 }
10807 else
10808 esym.asym.value = last;
10809 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10810 secname[i], &esym))
b34976b6 10811 return FALSE;
b49e97c9
TS
10812 }
10813
8423293d 10814 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10815 {
10816 asection *input_section;
10817 bfd *input_bfd;
10818 const struct ecoff_debug_swap *input_swap;
10819 struct ecoff_debug_info input_debug;
10820 char *eraw_src;
10821 char *eraw_end;
10822
10823 if (p->type != bfd_indirect_link_order)
10824 {
10825 if (p->type == bfd_data_link_order)
10826 continue;
10827 abort ();
10828 }
10829
10830 input_section = p->u.indirect.section;
10831 input_bfd = input_section->owner;
10832
10833 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10834 || (get_elf_backend_data (input_bfd)
10835 ->elf_backend_ecoff_debug_swap) == NULL)
10836 {
10837 /* I don't know what a non MIPS ELF bfd would be
10838 doing with a .mdebug section, but I don't really
10839 want to deal with it. */
10840 continue;
10841 }
10842
10843 input_swap = (get_elf_backend_data (input_bfd)
10844 ->elf_backend_ecoff_debug_swap);
10845
eea6121a 10846 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10847
10848 /* The ECOFF linking code expects that we have already
10849 read in the debugging information and set up an
10850 ecoff_debug_info structure, so we do that now. */
10851 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10852 &input_debug))
b34976b6 10853 return FALSE;
b49e97c9
TS
10854
10855 if (! (bfd_ecoff_debug_accumulate
10856 (mdebug_handle, abfd, &debug, swap, input_bfd,
10857 &input_debug, input_swap, info)))
b34976b6 10858 return FALSE;
b49e97c9
TS
10859
10860 /* Loop through the external symbols. For each one with
10861 interesting information, try to find the symbol in
10862 the linker global hash table and save the information
10863 for the output external symbols. */
10864 eraw_src = input_debug.external_ext;
10865 eraw_end = (eraw_src
10866 + (input_debug.symbolic_header.iextMax
10867 * input_swap->external_ext_size));
10868 for (;
10869 eraw_src < eraw_end;
10870 eraw_src += input_swap->external_ext_size)
10871 {
10872 EXTR ext;
10873 const char *name;
10874 struct mips_elf_link_hash_entry *h;
10875
9719ad41 10876 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10877 if (ext.asym.sc == scNil
10878 || ext.asym.sc == scUndefined
10879 || ext.asym.sc == scSUndefined)
10880 continue;
10881
10882 name = input_debug.ssext + ext.asym.iss;
10883 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10884 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10885 if (h == NULL || h->esym.ifd != -2)
10886 continue;
10887
10888 if (ext.ifd != -1)
10889 {
10890 BFD_ASSERT (ext.ifd
10891 < input_debug.symbolic_header.ifdMax);
10892 ext.ifd = input_debug.ifdmap[ext.ifd];
10893 }
10894
10895 h->esym = ext;
10896 }
10897
10898 /* Free up the information we just read. */
10899 free (input_debug.line);
10900 free (input_debug.external_dnr);
10901 free (input_debug.external_pdr);
10902 free (input_debug.external_sym);
10903 free (input_debug.external_opt);
10904 free (input_debug.external_aux);
10905 free (input_debug.ss);
10906 free (input_debug.ssext);
10907 free (input_debug.external_fdr);
10908 free (input_debug.external_rfd);
10909 free (input_debug.external_ext);
10910
10911 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10912 elf_link_input_bfd ignores this section. */
10913 input_section->flags &= ~SEC_HAS_CONTENTS;
10914 }
10915
10916 if (SGI_COMPAT (abfd) && info->shared)
10917 {
10918 /* Create .rtproc section. */
10919 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10920 if (rtproc_sec == NULL)
10921 {
10922 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10923 | SEC_LINKER_CREATED | SEC_READONLY);
10924
3496cb2a
L
10925 rtproc_sec = bfd_make_section_with_flags (abfd,
10926 ".rtproc",
10927 flags);
b49e97c9 10928 if (rtproc_sec == NULL
b49e97c9 10929 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10930 return FALSE;
b49e97c9
TS
10931 }
10932
10933 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10934 info, rtproc_sec,
10935 &debug))
b34976b6 10936 return FALSE;
b49e97c9
TS
10937 }
10938
10939 /* Build the external symbol information. */
10940 einfo.abfd = abfd;
10941 einfo.info = info;
10942 einfo.debug = &debug;
10943 einfo.swap = swap;
b34976b6 10944 einfo.failed = FALSE;
b49e97c9 10945 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10946 mips_elf_output_extsym, &einfo);
b49e97c9 10947 if (einfo.failed)
b34976b6 10948 return FALSE;
b49e97c9
TS
10949
10950 /* Set the size of the .mdebug section. */
eea6121a 10951 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10952
10953 /* Skip this section later on (I don't think this currently
10954 matters, but someday it might). */
8423293d 10955 o->map_head.link_order = NULL;
b49e97c9
TS
10956
10957 mdebug_sec = o;
10958 }
10959
0112cd26 10960 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10961 {
10962 const char *subname;
10963 unsigned int c;
10964 Elf32_gptab *tab;
10965 Elf32_External_gptab *ext_tab;
10966 unsigned int j;
10967
10968 /* The .gptab.sdata and .gptab.sbss sections hold
10969 information describing how the small data area would
10970 change depending upon the -G switch. These sections
10971 not used in executables files. */
1049f94e 10972 if (! info->relocatable)
b49e97c9 10973 {
8423293d 10974 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10975 {
10976 asection *input_section;
10977
10978 if (p->type != bfd_indirect_link_order)
10979 {
10980 if (p->type == bfd_data_link_order)
10981 continue;
10982 abort ();
10983 }
10984
10985 input_section = p->u.indirect.section;
10986
10987 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10988 elf_link_input_bfd ignores this section. */
10989 input_section->flags &= ~SEC_HAS_CONTENTS;
10990 }
10991
10992 /* Skip this section later on (I don't think this
10993 currently matters, but someday it might). */
8423293d 10994 o->map_head.link_order = NULL;
b49e97c9
TS
10995
10996 /* Really remove the section. */
5daa8fe7 10997 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10998 --abfd->section_count;
10999
11000 continue;
11001 }
11002
11003 /* There is one gptab for initialized data, and one for
11004 uninitialized data. */
11005 if (strcmp (o->name, ".gptab.sdata") == 0)
11006 gptab_data_sec = o;
11007 else if (strcmp (o->name, ".gptab.sbss") == 0)
11008 gptab_bss_sec = o;
11009 else
11010 {
11011 (*_bfd_error_handler)
11012 (_("%s: illegal section name `%s'"),
11013 bfd_get_filename (abfd), o->name);
11014 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 11015 return FALSE;
b49e97c9
TS
11016 }
11017
11018 /* The linker script always combines .gptab.data and
11019 .gptab.sdata into .gptab.sdata, and likewise for
11020 .gptab.bss and .gptab.sbss. It is possible that there is
11021 no .sdata or .sbss section in the output file, in which
11022 case we must change the name of the output section. */
11023 subname = o->name + sizeof ".gptab" - 1;
11024 if (bfd_get_section_by_name (abfd, subname) == NULL)
11025 {
11026 if (o == gptab_data_sec)
11027 o->name = ".gptab.data";
11028 else
11029 o->name = ".gptab.bss";
11030 subname = o->name + sizeof ".gptab" - 1;
11031 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11032 }
11033
11034 /* Set up the first entry. */
11035 c = 1;
11036 amt = c * sizeof (Elf32_gptab);
9719ad41 11037 tab = bfd_malloc (amt);
b49e97c9 11038 if (tab == NULL)
b34976b6 11039 return FALSE;
b49e97c9
TS
11040 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11041 tab[0].gt_header.gt_unused = 0;
11042
11043 /* Combine the input sections. */
8423293d 11044 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
11045 {
11046 asection *input_section;
11047 bfd *input_bfd;
11048 bfd_size_type size;
11049 unsigned long last;
11050 bfd_size_type gpentry;
11051
11052 if (p->type != bfd_indirect_link_order)
11053 {
11054 if (p->type == bfd_data_link_order)
11055 continue;
11056 abort ();
11057 }
11058
11059 input_section = p->u.indirect.section;
11060 input_bfd = input_section->owner;
11061
11062 /* Combine the gptab entries for this input section one
11063 by one. We know that the input gptab entries are
11064 sorted by ascending -G value. */
eea6121a 11065 size = input_section->size;
b49e97c9
TS
11066 last = 0;
11067 for (gpentry = sizeof (Elf32_External_gptab);
11068 gpentry < size;
11069 gpentry += sizeof (Elf32_External_gptab))
11070 {
11071 Elf32_External_gptab ext_gptab;
11072 Elf32_gptab int_gptab;
11073 unsigned long val;
11074 unsigned long add;
b34976b6 11075 bfd_boolean exact;
b49e97c9
TS
11076 unsigned int look;
11077
11078 if (! (bfd_get_section_contents
9719ad41
RS
11079 (input_bfd, input_section, &ext_gptab, gpentry,
11080 sizeof (Elf32_External_gptab))))
b49e97c9
TS
11081 {
11082 free (tab);
b34976b6 11083 return FALSE;
b49e97c9
TS
11084 }
11085
11086 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11087 &int_gptab);
11088 val = int_gptab.gt_entry.gt_g_value;
11089 add = int_gptab.gt_entry.gt_bytes - last;
11090
b34976b6 11091 exact = FALSE;
b49e97c9
TS
11092 for (look = 1; look < c; look++)
11093 {
11094 if (tab[look].gt_entry.gt_g_value >= val)
11095 tab[look].gt_entry.gt_bytes += add;
11096
11097 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 11098 exact = TRUE;
b49e97c9
TS
11099 }
11100
11101 if (! exact)
11102 {
11103 Elf32_gptab *new_tab;
11104 unsigned int max;
11105
11106 /* We need a new table entry. */
11107 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 11108 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
11109 if (new_tab == NULL)
11110 {
11111 free (tab);
b34976b6 11112 return FALSE;
b49e97c9
TS
11113 }
11114 tab = new_tab;
11115 tab[c].gt_entry.gt_g_value = val;
11116 tab[c].gt_entry.gt_bytes = add;
11117
11118 /* Merge in the size for the next smallest -G
11119 value, since that will be implied by this new
11120 value. */
11121 max = 0;
11122 for (look = 1; look < c; look++)
11123 {
11124 if (tab[look].gt_entry.gt_g_value < val
11125 && (max == 0
11126 || (tab[look].gt_entry.gt_g_value
11127 > tab[max].gt_entry.gt_g_value)))
11128 max = look;
11129 }
11130 if (max != 0)
11131 tab[c].gt_entry.gt_bytes +=
11132 tab[max].gt_entry.gt_bytes;
11133
11134 ++c;
11135 }
11136
11137 last = int_gptab.gt_entry.gt_bytes;
11138 }
11139
11140 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11141 elf_link_input_bfd ignores this section. */
11142 input_section->flags &= ~SEC_HAS_CONTENTS;
11143 }
11144
11145 /* The table must be sorted by -G value. */
11146 if (c > 2)
11147 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11148
11149 /* Swap out the table. */
11150 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 11151 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
11152 if (ext_tab == NULL)
11153 {
11154 free (tab);
b34976b6 11155 return FALSE;
b49e97c9
TS
11156 }
11157
11158 for (j = 0; j < c; j++)
11159 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11160 free (tab);
11161
eea6121a 11162 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
11163 o->contents = (bfd_byte *) ext_tab;
11164
11165 /* Skip this section later on (I don't think this currently
11166 matters, but someday it might). */
8423293d 11167 o->map_head.link_order = NULL;
b49e97c9
TS
11168 }
11169 }
11170
11171 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 11172 if (!bfd_elf_final_link (abfd, info))
b34976b6 11173 return FALSE;
b49e97c9
TS
11174
11175 /* Now write out the computed sections. */
11176
9719ad41 11177 if (reginfo_sec != NULL)
b49e97c9
TS
11178 {
11179 Elf32_External_RegInfo ext;
11180
11181 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 11182 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 11183 return FALSE;
b49e97c9
TS
11184 }
11185
9719ad41 11186 if (mdebug_sec != NULL)
b49e97c9
TS
11187 {
11188 BFD_ASSERT (abfd->output_has_begun);
11189 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11190 swap, info,
11191 mdebug_sec->filepos))
b34976b6 11192 return FALSE;
b49e97c9
TS
11193
11194 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11195 }
11196
9719ad41 11197 if (gptab_data_sec != NULL)
b49e97c9
TS
11198 {
11199 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11200 gptab_data_sec->contents,
eea6121a 11201 0, gptab_data_sec->size))
b34976b6 11202 return FALSE;
b49e97c9
TS
11203 }
11204
9719ad41 11205 if (gptab_bss_sec != NULL)
b49e97c9
TS
11206 {
11207 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11208 gptab_bss_sec->contents,
eea6121a 11209 0, gptab_bss_sec->size))
b34976b6 11210 return FALSE;
b49e97c9
TS
11211 }
11212
11213 if (SGI_COMPAT (abfd))
11214 {
11215 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11216 if (rtproc_sec != NULL)
11217 {
11218 if (! bfd_set_section_contents (abfd, rtproc_sec,
11219 rtproc_sec->contents,
eea6121a 11220 0, rtproc_sec->size))
b34976b6 11221 return FALSE;
b49e97c9
TS
11222 }
11223 }
11224
b34976b6 11225 return TRUE;
b49e97c9
TS
11226}
11227\f
64543e1a
RS
11228/* Structure for saying that BFD machine EXTENSION extends BASE. */
11229
11230struct mips_mach_extension {
11231 unsigned long extension, base;
11232};
11233
11234
11235/* An array describing how BFD machines relate to one another. The entries
11236 are ordered topologically with MIPS I extensions listed last. */
11237
11238static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0
AN
11239 /* MIPS64r2 extensions. */
11240 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11241
64543e1a 11242 /* MIPS64 extensions. */
5f74bc13 11243 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
11244 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11245
11246 /* MIPS V extensions. */
11247 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11248
11249 /* R10000 extensions. */
11250 { bfd_mach_mips12000, bfd_mach_mips10000 },
11251
11252 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11253 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11254 better to allow vr5400 and vr5500 code to be merged anyway, since
11255 many libraries will just use the core ISA. Perhaps we could add
11256 some sort of ASE flag if this ever proves a problem. */
11257 { bfd_mach_mips5500, bfd_mach_mips5400 },
11258 { bfd_mach_mips5400, bfd_mach_mips5000 },
11259
11260 /* MIPS IV extensions. */
11261 { bfd_mach_mips5, bfd_mach_mips8000 },
11262 { bfd_mach_mips10000, bfd_mach_mips8000 },
11263 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 11264 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 11265 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
11266
11267 /* VR4100 extensions. */
11268 { bfd_mach_mips4120, bfd_mach_mips4100 },
11269 { bfd_mach_mips4111, bfd_mach_mips4100 },
11270
11271 /* MIPS III extensions. */
350cc38d
MS
11272 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11273 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
11274 { bfd_mach_mips8000, bfd_mach_mips4000 },
11275 { bfd_mach_mips4650, bfd_mach_mips4000 },
11276 { bfd_mach_mips4600, bfd_mach_mips4000 },
11277 { bfd_mach_mips4400, bfd_mach_mips4000 },
11278 { bfd_mach_mips4300, bfd_mach_mips4000 },
11279 { bfd_mach_mips4100, bfd_mach_mips4000 },
11280 { bfd_mach_mips4010, bfd_mach_mips4000 },
11281
11282 /* MIPS32 extensions. */
11283 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11284
11285 /* MIPS II extensions. */
11286 { bfd_mach_mips4000, bfd_mach_mips6000 },
11287 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11288
11289 /* MIPS I extensions. */
11290 { bfd_mach_mips6000, bfd_mach_mips3000 },
11291 { bfd_mach_mips3900, bfd_mach_mips3000 }
11292};
11293
11294
11295/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11296
11297static bfd_boolean
9719ad41 11298mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
11299{
11300 size_t i;
11301
c5211a54
RS
11302 if (extension == base)
11303 return TRUE;
11304
11305 if (base == bfd_mach_mipsisa32
11306 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11307 return TRUE;
11308
11309 if (base == bfd_mach_mipsisa32r2
11310 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11311 return TRUE;
11312
11313 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 11314 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
11315 {
11316 extension = mips_mach_extensions[i].base;
11317 if (extension == base)
11318 return TRUE;
11319 }
64543e1a 11320
c5211a54 11321 return FALSE;
64543e1a
RS
11322}
11323
11324
11325/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 11326
b34976b6 11327static bfd_boolean
9719ad41 11328mips_32bit_flags_p (flagword flags)
00707a0e 11329{
64543e1a
RS
11330 return ((flags & EF_MIPS_32BITMODE) != 0
11331 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11332 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11333 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11334 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11335 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11336 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
11337}
11338
64543e1a 11339
2cf19d5c
JM
11340/* Merge object attributes from IBFD into OBFD. Raise an error if
11341 there are conflicting attributes. */
11342static bfd_boolean
11343mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11344{
11345 obj_attribute *in_attr;
11346 obj_attribute *out_attr;
11347
11348 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11349 {
11350 /* This is the first object. Copy the attributes. */
11351 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11352
11353 /* Use the Tag_null value to indicate the attributes have been
11354 initialized. */
11355 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11356
11357 return TRUE;
11358 }
11359
11360 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11361 non-conflicting ones. */
11362 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11363 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11364 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11365 {
11366 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11367 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11368 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11369 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11370 ;
42554f6a 11371 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11372 _bfd_error_handler
11373 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11374 in_attr[Tag_GNU_MIPS_ABI_FP].i);
42554f6a 11375 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
2cf19d5c
JM
11376 _bfd_error_handler
11377 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11378 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11379 else
11380 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11381 {
11382 case 1:
11383 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11384 {
11385 case 2:
11386 _bfd_error_handler
11387 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11388 obfd, ibfd);
51a0dd31 11389 break;
2cf19d5c
JM
11390
11391 case 3:
11392 _bfd_error_handler
11393 (_("Warning: %B uses hard float, %B uses soft float"),
11394 obfd, ibfd);
11395 break;
11396
42554f6a
TS
11397 case 4:
11398 _bfd_error_handler
11399 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11400 obfd, ibfd);
11401 break;
11402
2cf19d5c
JM
11403 default:
11404 abort ();
11405 }
11406 break;
11407
11408 case 2:
11409 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11410 {
11411 case 1:
11412 _bfd_error_handler
11413 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11414 ibfd, obfd);
51a0dd31 11415 break;
2cf19d5c
JM
11416
11417 case 3:
11418 _bfd_error_handler
11419 (_("Warning: %B uses hard float, %B uses soft float"),
11420 obfd, ibfd);
11421 break;
11422
42554f6a
TS
11423 case 4:
11424 _bfd_error_handler
11425 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11426 obfd, ibfd);
11427 break;
11428
2cf19d5c
JM
11429 default:
11430 abort ();
11431 }
11432 break;
11433
11434 case 3:
11435 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11436 {
11437 case 1:
11438 case 2:
42554f6a 11439 case 4:
2cf19d5c
JM
11440 _bfd_error_handler
11441 (_("Warning: %B uses hard float, %B uses soft float"),
11442 ibfd, obfd);
11443 break;
11444
11445 default:
11446 abort ();
11447 }
11448 break;
11449
42554f6a
TS
11450 case 4:
11451 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11452 {
11453 case 1:
11454 _bfd_error_handler
11455 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11456 ibfd, obfd);
11457 break;
11458
11459 case 2:
11460 _bfd_error_handler
11461 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11462 ibfd, obfd);
11463 break;
11464
11465 case 3:
11466 _bfd_error_handler
11467 (_("Warning: %B uses hard float, %B uses soft float"),
11468 obfd, ibfd);
11469 break;
11470
11471 default:
11472 abort ();
11473 }
11474 break;
11475
2cf19d5c
JM
11476 default:
11477 abort ();
11478 }
11479 }
11480
11481 /* Merge Tag_compatibility attributes and any common GNU ones. */
11482 _bfd_elf_merge_object_attributes (ibfd, obfd);
11483
11484 return TRUE;
11485}
11486
b49e97c9
TS
11487/* Merge backend specific data from an object file to the output
11488 object file when linking. */
11489
b34976b6 11490bfd_boolean
9719ad41 11491_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11492{
11493 flagword old_flags;
11494 flagword new_flags;
b34976b6
AM
11495 bfd_boolean ok;
11496 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11497 asection *sec;
11498
11499 /* Check if we have the same endianess */
82e51918 11500 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11501 {
11502 (*_bfd_error_handler)
d003868e
AM
11503 (_("%B: endianness incompatible with that of the selected emulation"),
11504 ibfd);
aa701218
AO
11505 return FALSE;
11506 }
b49e97c9
TS
11507
11508 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11509 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11510 return TRUE;
b49e97c9 11511
aa701218
AO
11512 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11513 {
11514 (*_bfd_error_handler)
d003868e
AM
11515 (_("%B: ABI is incompatible with that of the selected emulation"),
11516 ibfd);
aa701218
AO
11517 return FALSE;
11518 }
11519
2cf19d5c
JM
11520 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11521 return FALSE;
11522
b49e97c9
TS
11523 new_flags = elf_elfheader (ibfd)->e_flags;
11524 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11525 old_flags = elf_elfheader (obfd)->e_flags;
11526
11527 if (! elf_flags_init (obfd))
11528 {
b34976b6 11529 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11530 elf_elfheader (obfd)->e_flags = new_flags;
11531 elf_elfheader (obfd)->e_ident[EI_CLASS]
11532 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11533
11534 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11535 && (bfd_get_arch_info (obfd)->the_default
11536 || mips_mach_extends_p (bfd_get_mach (obfd),
11537 bfd_get_mach (ibfd))))
b49e97c9
TS
11538 {
11539 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11540 bfd_get_mach (ibfd)))
b34976b6 11541 return FALSE;
b49e97c9
TS
11542 }
11543
b34976b6 11544 return TRUE;
b49e97c9
TS
11545 }
11546
11547 /* Check flag compatibility. */
11548
11549 new_flags &= ~EF_MIPS_NOREORDER;
11550 old_flags &= ~EF_MIPS_NOREORDER;
11551
f4416af6
AO
11552 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11553 doesn't seem to matter. */
11554 new_flags &= ~EF_MIPS_XGOT;
11555 old_flags &= ~EF_MIPS_XGOT;
11556
98a8deaf
RS
11557 /* MIPSpro generates ucode info in n64 objects. Again, we should
11558 just be able to ignore this. */
11559 new_flags &= ~EF_MIPS_UCODE;
11560 old_flags &= ~EF_MIPS_UCODE;
11561
0a44bf69
RS
11562 /* Don't care about the PIC flags from dynamic objects; they are
11563 PIC by design. */
11564 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11565 && (ibfd->flags & DYNAMIC) != 0)
11566 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11567
b49e97c9 11568 if (new_flags == old_flags)
b34976b6 11569 return TRUE;
b49e97c9
TS
11570
11571 /* Check to see if the input BFD actually contains any sections.
11572 If not, its flags may not have been initialised either, but it cannot
11573 actually cause any incompatibility. */
11574 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11575 {
11576 /* Ignore synthetic sections and empty .text, .data and .bss sections
11577 which are automatically generated by gas. */
11578 if (strcmp (sec->name, ".reginfo")
11579 && strcmp (sec->name, ".mdebug")
eea6121a 11580 && (sec->size != 0
d13d89fa
NS
11581 || (strcmp (sec->name, ".text")
11582 && strcmp (sec->name, ".data")
11583 && strcmp (sec->name, ".bss"))))
b49e97c9 11584 {
b34976b6 11585 null_input_bfd = FALSE;
b49e97c9
TS
11586 break;
11587 }
11588 }
11589 if (null_input_bfd)
b34976b6 11590 return TRUE;
b49e97c9 11591
b34976b6 11592 ok = TRUE;
b49e97c9 11593
143d77c5
EC
11594 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11595 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11596 {
b49e97c9 11597 (*_bfd_error_handler)
d003868e
AM
11598 (_("%B: warning: linking PIC files with non-PIC files"),
11599 ibfd);
143d77c5 11600 ok = TRUE;
b49e97c9
TS
11601 }
11602
143d77c5
EC
11603 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11604 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11605 if (! (new_flags & EF_MIPS_PIC))
11606 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11607
11608 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11609 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11610
64543e1a
RS
11611 /* Compare the ISAs. */
11612 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11613 {
64543e1a 11614 (*_bfd_error_handler)
d003868e
AM
11615 (_("%B: linking 32-bit code with 64-bit code"),
11616 ibfd);
64543e1a
RS
11617 ok = FALSE;
11618 }
11619 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11620 {
11621 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11622 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11623 {
64543e1a
RS
11624 /* Copy the architecture info from IBFD to OBFD. Also copy
11625 the 32-bit flag (if set) so that we continue to recognise
11626 OBFD as a 32-bit binary. */
11627 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11628 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11629 elf_elfheader (obfd)->e_flags
11630 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11631
11632 /* Copy across the ABI flags if OBFD doesn't use them
11633 and if that was what caused us to treat IBFD as 32-bit. */
11634 if ((old_flags & EF_MIPS_ABI) == 0
11635 && mips_32bit_flags_p (new_flags)
11636 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11637 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11638 }
11639 else
11640 {
64543e1a 11641 /* The ISAs aren't compatible. */
b49e97c9 11642 (*_bfd_error_handler)
d003868e
AM
11643 (_("%B: linking %s module with previous %s modules"),
11644 ibfd,
64543e1a
RS
11645 bfd_printable_name (ibfd),
11646 bfd_printable_name (obfd));
b34976b6 11647 ok = FALSE;
b49e97c9 11648 }
b49e97c9
TS
11649 }
11650
64543e1a
RS
11651 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11652 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11653
11654 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11655 does set EI_CLASS differently from any 32-bit ABI. */
11656 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11657 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11658 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11659 {
11660 /* Only error if both are set (to different values). */
11661 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11662 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11663 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11664 {
11665 (*_bfd_error_handler)
d003868e
AM
11666 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11667 ibfd,
b49e97c9
TS
11668 elf_mips_abi_name (ibfd),
11669 elf_mips_abi_name (obfd));
b34976b6 11670 ok = FALSE;
b49e97c9
TS
11671 }
11672 new_flags &= ~EF_MIPS_ABI;
11673 old_flags &= ~EF_MIPS_ABI;
11674 }
11675
fb39dac1
RS
11676 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11677 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11678 {
11679 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11680
11681 new_flags &= ~ EF_MIPS_ARCH_ASE;
11682 old_flags &= ~ EF_MIPS_ARCH_ASE;
11683 }
11684
b49e97c9
TS
11685 /* Warn about any other mismatches */
11686 if (new_flags != old_flags)
11687 {
11688 (*_bfd_error_handler)
d003868e
AM
11689 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11690 ibfd, (unsigned long) new_flags,
b49e97c9 11691 (unsigned long) old_flags);
b34976b6 11692 ok = FALSE;
b49e97c9
TS
11693 }
11694
11695 if (! ok)
11696 {
11697 bfd_set_error (bfd_error_bad_value);
b34976b6 11698 return FALSE;
b49e97c9
TS
11699 }
11700
b34976b6 11701 return TRUE;
b49e97c9
TS
11702}
11703
11704/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11705
b34976b6 11706bfd_boolean
9719ad41 11707_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11708{
11709 BFD_ASSERT (!elf_flags_init (abfd)
11710 || elf_elfheader (abfd)->e_flags == flags);
11711
11712 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11713 elf_flags_init (abfd) = TRUE;
11714 return TRUE;
b49e97c9
TS
11715}
11716
ad9563d6
CM
11717char *
11718_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11719{
11720 switch (dtag)
11721 {
11722 default: return "";
11723 case DT_MIPS_RLD_VERSION:
11724 return "MIPS_RLD_VERSION";
11725 case DT_MIPS_TIME_STAMP:
11726 return "MIPS_TIME_STAMP";
11727 case DT_MIPS_ICHECKSUM:
11728 return "MIPS_ICHECKSUM";
11729 case DT_MIPS_IVERSION:
11730 return "MIPS_IVERSION";
11731 case DT_MIPS_FLAGS:
11732 return "MIPS_FLAGS";
11733 case DT_MIPS_BASE_ADDRESS:
11734 return "MIPS_BASE_ADDRESS";
11735 case DT_MIPS_MSYM:
11736 return "MIPS_MSYM";
11737 case DT_MIPS_CONFLICT:
11738 return "MIPS_CONFLICT";
11739 case DT_MIPS_LIBLIST:
11740 return "MIPS_LIBLIST";
11741 case DT_MIPS_LOCAL_GOTNO:
11742 return "MIPS_LOCAL_GOTNO";
11743 case DT_MIPS_CONFLICTNO:
11744 return "MIPS_CONFLICTNO";
11745 case DT_MIPS_LIBLISTNO:
11746 return "MIPS_LIBLISTNO";
11747 case DT_MIPS_SYMTABNO:
11748 return "MIPS_SYMTABNO";
11749 case DT_MIPS_UNREFEXTNO:
11750 return "MIPS_UNREFEXTNO";
11751 case DT_MIPS_GOTSYM:
11752 return "MIPS_GOTSYM";
11753 case DT_MIPS_HIPAGENO:
11754 return "MIPS_HIPAGENO";
11755 case DT_MIPS_RLD_MAP:
11756 return "MIPS_RLD_MAP";
11757 case DT_MIPS_DELTA_CLASS:
11758 return "MIPS_DELTA_CLASS";
11759 case DT_MIPS_DELTA_CLASS_NO:
11760 return "MIPS_DELTA_CLASS_NO";
11761 case DT_MIPS_DELTA_INSTANCE:
11762 return "MIPS_DELTA_INSTANCE";
11763 case DT_MIPS_DELTA_INSTANCE_NO:
11764 return "MIPS_DELTA_INSTANCE_NO";
11765 case DT_MIPS_DELTA_RELOC:
11766 return "MIPS_DELTA_RELOC";
11767 case DT_MIPS_DELTA_RELOC_NO:
11768 return "MIPS_DELTA_RELOC_NO";
11769 case DT_MIPS_DELTA_SYM:
11770 return "MIPS_DELTA_SYM";
11771 case DT_MIPS_DELTA_SYM_NO:
11772 return "MIPS_DELTA_SYM_NO";
11773 case DT_MIPS_DELTA_CLASSSYM:
11774 return "MIPS_DELTA_CLASSSYM";
11775 case DT_MIPS_DELTA_CLASSSYM_NO:
11776 return "MIPS_DELTA_CLASSSYM_NO";
11777 case DT_MIPS_CXX_FLAGS:
11778 return "MIPS_CXX_FLAGS";
11779 case DT_MIPS_PIXIE_INIT:
11780 return "MIPS_PIXIE_INIT";
11781 case DT_MIPS_SYMBOL_LIB:
11782 return "MIPS_SYMBOL_LIB";
11783 case DT_MIPS_LOCALPAGE_GOTIDX:
11784 return "MIPS_LOCALPAGE_GOTIDX";
11785 case DT_MIPS_LOCAL_GOTIDX:
11786 return "MIPS_LOCAL_GOTIDX";
11787 case DT_MIPS_HIDDEN_GOTIDX:
11788 return "MIPS_HIDDEN_GOTIDX";
11789 case DT_MIPS_PROTECTED_GOTIDX:
11790 return "MIPS_PROTECTED_GOT_IDX";
11791 case DT_MIPS_OPTIONS:
11792 return "MIPS_OPTIONS";
11793 case DT_MIPS_INTERFACE:
11794 return "MIPS_INTERFACE";
11795 case DT_MIPS_DYNSTR_ALIGN:
11796 return "DT_MIPS_DYNSTR_ALIGN";
11797 case DT_MIPS_INTERFACE_SIZE:
11798 return "DT_MIPS_INTERFACE_SIZE";
11799 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11800 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11801 case DT_MIPS_PERF_SUFFIX:
11802 return "DT_MIPS_PERF_SUFFIX";
11803 case DT_MIPS_COMPACT_SIZE:
11804 return "DT_MIPS_COMPACT_SIZE";
11805 case DT_MIPS_GP_VALUE:
11806 return "DT_MIPS_GP_VALUE";
11807 case DT_MIPS_AUX_DYNAMIC:
11808 return "DT_MIPS_AUX_DYNAMIC";
11809 }
11810}
11811
b34976b6 11812bfd_boolean
9719ad41 11813_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11814{
9719ad41 11815 FILE *file = ptr;
b49e97c9
TS
11816
11817 BFD_ASSERT (abfd != NULL && ptr != NULL);
11818
11819 /* Print normal ELF private data. */
11820 _bfd_elf_print_private_bfd_data (abfd, ptr);
11821
11822 /* xgettext:c-format */
11823 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11824
11825 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11826 fprintf (file, _(" [abi=O32]"));
11827 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11828 fprintf (file, _(" [abi=O64]"));
11829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11830 fprintf (file, _(" [abi=EABI32]"));
11831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11832 fprintf (file, _(" [abi=EABI64]"));
11833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11834 fprintf (file, _(" [abi unknown]"));
11835 else if (ABI_N32_P (abfd))
11836 fprintf (file, _(" [abi=N32]"));
11837 else if (ABI_64_P (abfd))
11838 fprintf (file, _(" [abi=64]"));
11839 else
11840 fprintf (file, _(" [no abi set]"));
11841
11842 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11843 fprintf (file, " [mips1]");
b49e97c9 11844 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11845 fprintf (file, " [mips2]");
b49e97c9 11846 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11847 fprintf (file, " [mips3]");
b49e97c9 11848 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11849 fprintf (file, " [mips4]");
b49e97c9 11850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11851 fprintf (file, " [mips5]");
b49e97c9 11852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11853 fprintf (file, " [mips32]");
b49e97c9 11854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11855 fprintf (file, " [mips64]");
af7ee8bf 11856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11857 fprintf (file, " [mips32r2]");
5f74bc13 11858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11859 fprintf (file, " [mips64r2]");
b49e97c9
TS
11860 else
11861 fprintf (file, _(" [unknown ISA]"));
11862
40d32fc6 11863 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11864 fprintf (file, " [mdmx]");
40d32fc6
CD
11865
11866 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11867 fprintf (file, " [mips16]");
40d32fc6 11868
b49e97c9 11869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11870 fprintf (file, " [32bitmode]");
b49e97c9
TS
11871 else
11872 fprintf (file, _(" [not 32bitmode]"));
11873
c0e3f241 11874 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11875 fprintf (file, " [noreorder]");
c0e3f241
CD
11876
11877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11878 fprintf (file, " [PIC]");
c0e3f241
CD
11879
11880 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11881 fprintf (file, " [CPIC]");
c0e3f241
CD
11882
11883 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11884 fprintf (file, " [XGOT]");
c0e3f241
CD
11885
11886 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11887 fprintf (file, " [UCODE]");
c0e3f241 11888
b49e97c9
TS
11889 fputc ('\n', file);
11890
b34976b6 11891 return TRUE;
b49e97c9 11892}
2f89ff8d 11893
b35d266b 11894const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11895{
0112cd26
NC
11896 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11897 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11898 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11899 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11900 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11901 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11902 { NULL, 0, 0, 0, 0 }
2f89ff8d 11903};
5e2b0d47 11904
8992f0d7
TS
11905/* Merge non visibility st_other attributes. Ensure that the
11906 STO_OPTIONAL flag is copied into h->other, even if this is not a
11907 definiton of the symbol. */
5e2b0d47
NC
11908void
11909_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11910 const Elf_Internal_Sym *isym,
11911 bfd_boolean definition,
11912 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11913{
8992f0d7
TS
11914 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11915 {
11916 unsigned char other;
11917
11918 other = (definition ? isym->st_other : h->other);
11919 other &= ~ELF_ST_VISIBILITY (-1);
11920 h->other = other | ELF_ST_VISIBILITY (h->other);
11921 }
11922
11923 if (!definition
5e2b0d47
NC
11924 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11925 h->other |= STO_OPTIONAL;
11926}
12ac1cf5
NC
11927
11928/* Decide whether an undefined symbol is special and can be ignored.
11929 This is the case for OPTIONAL symbols on IRIX. */
11930bfd_boolean
11931_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11932{
11933 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11934}
e0764319
NC
11935
11936bfd_boolean
11937_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11938{
11939 return (sym->st_shndx == SHN_COMMON
11940 || sym->st_shndx == SHN_MIPS_ACOMMON
11941 || sym->st_shndx == SHN_MIPS_SCOMMON);
11942}
This page took 1.113353 seconds and 4 git commands to generate.