bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b34976b6 496static bfd_boolean mips_elf_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
712\f
0a44bf69
RS
713/* The format of the first PLT entry in a VxWorks executable. */
714static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721};
722
723/* The format of subsequent PLT entries. */
724static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733};
734
735/* The format of the first PLT entry in a VxWorks shared object. */
736static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743};
744
745/* The format of subsequent PLT entries. */
746static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749};
750\f
b49e97c9
TS
751/* Look up an entry in a MIPS ELF linker hash table. */
752
753#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758/* Traverse a MIPS ELF linker hash table. */
759
760#define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
9719ad41 763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
764 (info)))
765
766/* Get the MIPS ELF linker hash table from a link_info structure. */
767
768#define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
0f20cc35
DJ
771/* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774#define TP_OFFSET 0x7000
775#define DTP_OFFSET 0x8000
776
777static bfd_vma
778dtprel_base (struct bfd_link_info *info)
779{
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784}
785
786static bfd_vma
787tprel_base (struct bfd_link_info *info)
788{
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793}
794
b49e97c9
TS
795/* Create an entry in a MIPS ELF linker hash table. */
796
797static struct bfd_hash_entry *
9719ad41
RS
798mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
800{
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
9719ad41
RS
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
b49e97c9
TS
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
9719ad41 815 if (ret != NULL)
b49e97c9
TS
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
b34976b6 823 ret->readonly_reloc = FALSE;
b34976b6 824 ret->no_fn_stub = FALSE;
b49e97c9 825 ret->fn_stub = NULL;
b34976b6 826 ret->need_fn_stub = FALSE;
b49e97c9
TS
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
b34976b6 829 ret->forced_local = FALSE;
0a44bf69
RS
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
0f20cc35 832 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
833 }
834
835 return (struct bfd_hash_entry *) ret;
836}
f0abc2a1
AM
837
838bfd_boolean
9719ad41 839_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 840{
f592407e
AM
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 845
f592407e
AM
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
f0abc2a1
AM
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853}
b49e97c9
TS
854\f
855/* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
b34976b6 858bfd_boolean
9719ad41
RS
859_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
b49e97c9
TS
861{
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
9719ad41 864 char *ext_hdr;
b49e97c9
TS
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
9719ad41 869 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
9719ad41 873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 874 swap->external_hdr_size))
b49e97c9
TS
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882#define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 888 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
889 if (debug->ptr == NULL) \
890 goto error_return; \
9719ad41 891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
908#undef READ
909
910 debug->fdr = NULL;
b49e97c9 911
b34976b6 912 return TRUE;
b49e97c9
TS
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
b34976b6 939 return FALSE;
b49e97c9
TS
940}
941\f
942/* Swap RPDR (runtime procedure table entry) for output. */
943
944static void
9719ad41 945ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
946{
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
958}
959
960/* Create a runtime procedure table from the .mdebug section. */
961
b34976b6 962static bfd_boolean
9719ad41
RS
963mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
b49e97c9
TS
966{
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
9719ad41 971 void *rtproc;
b49e97c9
TS
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
9719ad41 998 epdr = bfd_malloc (size * count);
b49e97c9
TS
999 if (epdr == NULL)
1000 goto error_return;
1001
9719ad41 1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
9719ad41 1006 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
9719ad41 1011 sv = bfd_malloc (size * count);
b49e97c9
TS
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
9719ad41 1017 esym = bfd_malloc (size * count);
b49e97c9
TS
1018 if (esym == NULL)
1019 goto error_return;
1020
9719ad41 1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1022 goto error_return;
1023
1024 count = hdr->issMax;
9719ad41 1025 ss = bfd_malloc (count);
b49e97c9
TS
1026 if (ss == NULL)
1027 goto error_return;
f075ee0c 1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
9719ad41
RS
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
9719ad41 1052 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
9719ad41 1061 erp = rtproc;
b49e97c9
TS
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
eea6121a 1076 s->size = size;
9719ad41 1077 s->contents = rtproc;
b49e97c9
TS
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
8423293d 1081 s->map_head.link_order = NULL;
b49e97c9
TS
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
b34976b6 1094 return TRUE;
b49e97c9
TS
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
b34976b6 1107 return FALSE;
b49e97c9
TS
1108}
1109
1110/* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
b34976b6 1113static bfd_boolean
9719ad41
RS
1114mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1116{
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
eea6121a 1126 h->fn_stub->size = 0;
b49e97c9
TS
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
eea6121a 1138 h->call_stub->size = 0;
b49e97c9
TS
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
eea6121a 1150 h->call_fp_stub->size = 0;
b49e97c9
TS
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
b34976b6 1156 return TRUE;
b49e97c9
TS
1157}
1158\f
d6f16593
MR
1159/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244void
1245_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247{
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269}
1270
1271void
1272_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274{
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303}
1304
b49e97c9 1305bfd_reloc_status_type
9719ad41
RS
1306_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1309{
1310 bfd_vma relocation;
a7ebbfdf 1311 bfd_signed_vma val;
30ac9238 1312 bfd_reloc_status_type status;
b49e97c9
TS
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
07515404 1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1323 return bfd_reloc_outofrange;
1324
b49e97c9 1325 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1326 val = reloc_entry->addend;
1327
30ac9238 1328 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1329
b49e97c9 1330 /* Adjust val for the final section location and GP value. If we
1049f94e 1331 are producing relocatable output, we don't want to do this for
b49e97c9 1332 an external symbol. */
1049f94e 1333 if (! relocatable
b49e97c9
TS
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
a7ebbfdf
TS
1337 if (reloc_entry->howto->partial_inplace)
1338 {
30ac9238
RS
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
a7ebbfdf
TS
1344 }
1345 else
1346 reloc_entry->addend = val;
b49e97c9 1347
1049f94e 1348 if (relocatable)
b49e97c9 1349 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1350
1351 return bfd_reloc_ok;
1352}
1353
1354/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359struct mips_hi16
1360{
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365};
1366
1367/* FIXME: This should not be a static variable. */
1368
1369static struct mips_hi16 *mips_hi16_list;
1370
1371/* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380bfd_reloc_status_type
1381_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385{
1386 struct mips_hi16 *n;
1387
07515404 1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405}
1406
1407/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411bfd_reloc_status_type
1412_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415{
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426}
1427
1428/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432bfd_reloc_status_type
1433_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436{
1437 bfd_vma vallo;
d6f16593 1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1439
07515404 1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1441 return bfd_reloc_outofrange;
1442
d6f16593
MR
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
30ac9238
RS
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
30ac9238
RS
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481}
1482
1483/* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487bfd_reloc_status_type
1488_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492{
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
07515404 1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
d6f16593
MR
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
30ac9238
RS
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
d6f16593
MR
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
30ac9238 1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
30ac9238
RS
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1553
1554 return bfd_reloc_ok;
1555}
1556\f
1557/* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560static void
9719ad41
RS
1561bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
b49e97c9
TS
1563{
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566}
1567
1568static void
9719ad41
RS
1569bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
b49e97c9
TS
1571{
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574}
1575
1576static void
9719ad41
RS
1577bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
b49e97c9
TS
1579{
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586}
1587
1588static void
9719ad41
RS
1589bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
b49e97c9
TS
1591{
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601}
b49e97c9
TS
1602\f
1603/* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607void
9719ad41
RS
1608bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
b49e97c9
TS
1610{
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617}
1618
1619void
9719ad41
RS
1620bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
b49e97c9
TS
1622{
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629}
1630
1631/* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637void
9719ad41
RS
1638bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1640{
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648}
1649
1650void
9719ad41
RS
1651bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
b49e97c9
TS
1653{
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661}
1662
1663/* Swap in an options header. */
1664
1665void
9719ad41
RS
1666bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
b49e97c9
TS
1668{
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673}
1674
1675/* Swap out an options header. */
1676
1677void
9719ad41
RS
1678bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
b49e97c9
TS
1680{
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685}
1686\f
1687/* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690static int
9719ad41 1691sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1692{
947216bf
AM
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
b49e97c9 1695
947216bf
AM
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1698
947216bf 1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1700}
1701
f4416af6
AO
1702/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704static int
7e3102a7
AM
1705sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1707{
7e3102a7 1708#ifdef BFD64
f4416af6
AO
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1719#else
1720 abort ();
1721#endif
f4416af6
AO
1722}
1723
1724
b49e97c9
TS
1725/* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
b34976b6 1739static bfd_boolean
9719ad41 1740mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1741{
9719ad41 1742 struct extsym_info *einfo = data;
b34976b6 1743 bfd_boolean strip;
b49e97c9
TS
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
b34976b6 1750 strip = FALSE;
f5385ebf 1751 else if ((h->root.def_dynamic
77cfaee6
AM
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
b34976b6 1756 strip = TRUE;
b49e97c9
TS
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
b34976b6
AM
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
b49e97c9 1763 else
b34976b6 1764 strip = FALSE;
b49e97c9
TS
1765
1766 if (strip)
b34976b6 1767 return TRUE;
b49e97c9
TS
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
4a14403c 1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
f5385ebf 1873 else if (h->root.needs_plt)
b49e97c9
TS
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1876 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
b49e97c9
TS
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
b34976b6
AM
1908 einfo->failed = TRUE;
1909 return FALSE;
b49e97c9
TS
1910 }
1911
b34976b6 1912 return TRUE;
b49e97c9
TS
1913}
1914
1915/* A comparison routine used to sort .gptab entries. */
1916
1917static int
9719ad41 1918gptab_compare (const void *p1, const void *p2)
b49e97c9 1919{
9719ad41
RS
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924}
1925\f
b15e6682 1926/* Functions to manage the got entry hash table. */
f4416af6
AO
1927
1928/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931static INLINE hashval_t
9719ad41 1932mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1933{
1934#ifdef BFD64
1935 return addr + (addr >> 32);
1936#else
1937 return addr;
1938#endif
1939}
1940
1941/* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
b15e6682 1945static hashval_t
9719ad41 1946mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1947{
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
38985a1c 1950 return entry->symndx
0f20cc35 1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
b15e6682
AO
1956}
1957
1958static int
9719ad41 1959mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1960{
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
0f20cc35
DJ
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
b15e6682 1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972}
1973
1974/* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979static hashval_t
9719ad41 1980mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1981{
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
0f20cc35
DJ
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1992 : entry->d.h->root.root.root.hash);
1993}
1994
1995static int
9719ad41 1996mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1997{
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
0f20cc35
DJ
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
f4416af6
AO
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
b15e6682
AO
2014}
2015\f
0a44bf69
RS
2016/* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
f4416af6
AO
2019
2020static asection *
0a44bf69 2021mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2022{
0a44bf69 2023 const char *dname;
f4416af6 2024 asection *sreloc;
0a44bf69 2025 bfd *dynobj;
f4416af6 2026
0a44bf69
RS
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
3496cb2a
L
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
f4416af6 2039 if (sreloc == NULL
f4416af6 2040 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2042 return NULL;
2043 }
2044 return sreloc;
2045}
2046
b49e97c9
TS
2047/* Returns the GOT section for ABFD. */
2048
2049static asection *
9719ad41 2050mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2051{
f4416af6
AO
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
b49e97c9
TS
2057}
2058
2059/* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063static struct mips_got_info *
9719ad41 2064mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2065{
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
f4416af6 2069 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2070 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
f4416af6
AO
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
b49e97c9
TS
2078 return g;
2079}
2080
0f20cc35
DJ
2081/* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085static int
2086mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088{
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121}
2122
2123/* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126static int
2127mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128{
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136}
2137
2138/* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141static int
2142mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143{
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154}
2155
2156/* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159static int
2160mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161{
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169}
2170
2171/* Output a simple dynamic relocation into SRELOC. */
2172
2173static void
2174mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179{
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200}
2201
2202/* Initialize a set of TLS GOT entries for one symbol. */
2203
2204static void
2205mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210{
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
0a44bf69 2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324}
2325
2326/* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331static bfd_vma
2332mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335{
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363}
2364
0a44bf69
RS
2365/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369static bfd_vma
2370mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372{
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393}
2394
2395/* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
b49e97c9
TS
2400
2401static bfd_vma
9719ad41 2402mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
0f20cc35 2405 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2406{
2407 asection *sgot;
2408 struct mips_got_info *g;
b15e6682 2409 struct mips_got_entry *entry;
b49e97c9
TS
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
0a44bf69
RS
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
0f20cc35
DJ
2415 r_symndx, h, r_type);
2416 if (!entry)
b15e6682 2417 return MINUS_ONE;
0f20cc35
DJ
2418
2419 if (TLS_RELOC_P (r_type))
ead49a57
RS
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
0f20cc35
DJ
2430 else
2431 return entry->gotidx;
b49e97c9
TS
2432}
2433
2434/* Returns the GOT index for the global symbol indicated by H. */
2435
2436static bfd_vma
0f20cc35
DJ
2437mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2439{
2440 bfd_vma index;
2441 asection *sgot;
f4416af6 2442 struct mips_got_info *g, *gg;
d0c7ff07 2443 long global_got_dynindx = 0;
b49e97c9 2444
f4416af6
AO
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
143d77c5 2449
f4416af6
AO
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2453 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2458 e.tls_type = 0;
f4416af6 2459
9719ad41 2460 p = htab_find (g->got_entries, &e);
f4416af6
AO
2461
2462 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
f4416af6
AO
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2484
0f20cc35
DJ
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
eea6121a 2511 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2512
2513 return index;
2514}
2515
0a44bf69
RS
2516/* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
b49e97c9
TS
2522
2523static bfd_vma
9719ad41 2524mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2526{
2527 asection *sgot;
2528 struct mips_got_info *g;
0a44bf69 2529 bfd_vma page, index;
b15e6682 2530 struct mips_got_entry *entry;
b49e97c9
TS
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
0a44bf69
RS
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
0f20cc35 2537 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2538
b15e6682
AO
2539 if (!entry)
2540 return MINUS_ONE;
143d77c5 2541
b15e6682 2542 index = entry->gotidx;
b49e97c9
TS
2543
2544 if (offsetp)
f4416af6 2545 *offsetp = value - entry->d.address;
b49e97c9
TS
2546
2547 return index;
2548}
2549
0a44bf69
RS
2550/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
b49e97c9
TS
2554
2555static bfd_vma
9719ad41 2556mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
b49e97c9
TS
2559{
2560 asection *sgot;
2561 struct mips_got_info *g;
b15e6682 2562 struct mips_got_entry *entry;
b49e97c9 2563
0a44bf69
RS
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2568 if (! external)
0a44bf69 2569 value = mips_elf_high (value) << 16;
b49e97c9
TS
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
0a44bf69
RS
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
b15e6682
AO
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
b49e97c9
TS
2580}
2581
2582/* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585static bfd_vma
9719ad41
RS
2586mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2588{
2589 asection *sgot;
2590 bfd_vma gp;
f4416af6 2591 struct mips_got_info *g;
b49e97c9 2592
f4416af6
AO
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2596
f4416af6 2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2598}
2599
0a44bf69
RS
2600/* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
b49e97c9 2604
b15e6682 2605static struct mips_got_entry *
0a44bf69
RS
2606mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
b49e97c9 2612{
b15e6682 2613 struct mips_got_entry entry, **loc;
f4416af6 2614 struct mips_got_info *g;
0a44bf69
RS
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
b15e6682 2618
f4416af6
AO
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
0f20cc35 2622 entry.tls_type = 0;
f4416af6
AO
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
b15e6682 2630
0f20cc35
DJ
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
a008ac03 2635 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
b15e6682
AO
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
143d77c5 2666
b15e6682 2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2668 entry.tls_type = 0;
b15e6682
AO
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
143d77c5 2674
b15e6682
AO
2675 memcpy (*loc, &entry, sizeof entry);
2676
b49e97c9
TS
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
f4416af6 2679 (*loc)->gotidx = -1;
b49e97c9
TS
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
b15e6682 2684 return NULL;
b49e97c9
TS
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2688 (sgot->contents + entry.gotidx));
2689
0a44bf69
RS
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
b15e6682 2717 return *loc;
b49e97c9
TS
2718}
2719
2720/* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
b34976b6 2727static bfd_boolean
9719ad41 2728mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2729{
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
f4416af6
AO
2736 g = mips_elf_got_info (dynobj, NULL);
2737
b49e97c9 2738 hsd.low = NULL;
143d77c5 2739 hsd.max_unref_got_dynindx =
f4416af6
AO
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
44c410de 2756 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
b49e97c9
TS
2763 g->global_gotsym = hsd.low;
2764
b34976b6 2765 return TRUE;
b49e97c9
TS
2766}
2767
2768/* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
b34976b6 2772static bfd_boolean
9719ad41 2773mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2774{
9719ad41 2775 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
b34976b6 2783 return TRUE;
b49e97c9 2784
f4416af6
AO
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
0f20cc35
DJ
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
f4416af6
AO
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
b49e97c9
TS
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
0f20cc35
DJ
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
b49e97c9
TS
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
b34976b6 2807 return TRUE;
b49e97c9
TS
2808}
2809
2810/* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
b34976b6 2814static bfd_boolean
9719ad41
RS
2815mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
b49e97c9 2819{
f4416af6
AO
2820 struct mips_got_entry entry, **loc;
2821
b49e97c9
TS
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
7c5fcef7
L
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
b34976b6 2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2831 break;
2832 }
c152c796 2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2834 return FALSE;
7c5fcef7 2835 }
b49e97c9 2836
86324f90
EC
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
f4416af6
AO
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2843 entry.tls_type = 0;
f4416af6
AO
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
b49e97c9
TS
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
f4416af6 2850 if (*loc)
0f20cc35
DJ
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
f4416af6
AO
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
143d77c5 2860
f4416af6 2861 entry.gotidx = -1;
0f20cc35
DJ
2862 entry.tls_type = tls_flag;
2863
f4416af6
AO
2864 memcpy (*loc, &entry, sizeof entry);
2865
b49e97c9 2866 if (h->got.offset != MINUS_ONE)
b34976b6 2867 return TRUE;
b49e97c9
TS
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
b49e97c9 2874
b34976b6 2875 return TRUE;
b49e97c9 2876}
f4416af6
AO
2877
2878/* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881static bfd_boolean
9719ad41 2882mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
f4416af6
AO
2885{
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
0f20cc35 2891 entry.tls_type = tls_flag;
f4416af6
AO
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
0f20cc35
DJ
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
f4416af6 2909
0f20cc35
DJ
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
f4416af6
AO
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
143d77c5 2934
f4416af6
AO
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938}
2939\f
2940/* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942static hashval_t
9719ad41 2943mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2944{
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949}
2950
2951/* Check whether two hash entries have the same bfd. */
2952
2953static int
9719ad41 2954mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2955{
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962}
2963
bad36eac 2964/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2965 be the master GOT data. */
2966
2967static struct mips_got_info *
9719ad41 2968mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2969{
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
9719ad41 2976 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2977 return p ? p->g : NULL;
2978}
2979
2980/* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984static int
9719ad41 2985mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2986{
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
143d77c5 2993
f4416af6
AO
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
0f20cc35
DJ
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3032 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
143d77c5 3047
f4416af6
AO
3048 *entryp = entry;
3049
0f20cc35
DJ
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063}
3064
3065/* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072static int
9719ad41 3073mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3074{
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3080 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3081 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
0a44bf69 3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
0f20cc35
DJ
3093 too_many_for_tls = TRUE;
3094 }
143d77c5 3095
f4416af6
AO
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
0f20cc35
DJ
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
f4416af6
AO
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
0f20cc35
DJ
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
0f20cc35 3113 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
caec41ff 3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3131
3132 arg->primary_count = arg->primary->local_gotno
0f20cc35 3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
0f20cc35 3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
0f20cc35 3142 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
caec41ff 3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3157
3158 arg->current_count = arg->current->local_gotno
0f20cc35 3159 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
143d77c5 3168
0f20cc35
DJ
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173}
3174
ead49a57
RS
3175/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
0f20cc35
DJ
3177
3178static int
3179mips_elf_initialize_tls_index (void **entryp, void *p)
3180{
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
ead49a57 3183 bfd_vma next_index;
0f20cc35
DJ
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
ead49a57
RS
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3192 {
ead49a57
RS
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3203 {
ead49a57
RS
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3208 {
ead49a57 3209 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3210 return 1;
3211 }
ead49a57 3212 g->tls_ldm_offset = next_index;
0f20cc35 3213 }
ead49a57 3214 entry->gotidx = next_index;
f4416af6
AO
3215 }
3216
ead49a57 3217 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
f4416af6
AO
3223 return 1;
3224}
3225
3226/* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3237 marked as not eligible for lazy resolution through a function
f4416af6
AO
3238 stub. */
3239static int
9719ad41 3240mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3241{
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
0f20cc35
DJ
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
f4416af6 3252 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
f4416af6
AO
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272}
3273
0626d451
RS
3274/* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276static int
9719ad41 3277mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3278{
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287}
3288
f4416af6
AO
3289/* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295static int
9719ad41 3296mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3297{
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
143d77c5 3311
f4416af6
AO
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
143d77c5 3331
f4416af6
AO
3332 return 1;
3333}
3334
3335/* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337static void
9719ad41 3338mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3339{
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351}
3352
3353/* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355static bfd_vma
9719ad41 3356mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3357{
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
143d77c5 3368
0f20cc35
DJ
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3371}
3372
3373/* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376static bfd_boolean
9719ad41
RS
3377mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
f4416af6
AO
3380{
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3387 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
f4416af6
AO
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
0a44bf69 3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3407 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3408 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
0f20cc35 3421 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
0f20cc35 3432 g->next->tls_gotno = 0;
f4416af6 3433 g->next->assigned_gotno = 0;
0f20cc35
DJ
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
9719ad41 3438 NULL);
f4416af6
AO
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
143d77c5 3459
f4416af6
AO
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
143d77c5 3485
f4416af6
AO
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
0f20cc35 3535 gg->tls_gotno = 0;
f4416af6
AO
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
0a44bf69 3543 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
0f20cc35
DJ
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
ead49a57
RS
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
0f20cc35
DJ
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3559
ead49a57 3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3561 g = gn;
0626d451
RS
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3567 }
3568 while (g);
3569
eea6121a 3570 got->size = (gg->next->local_gotno
0f20cc35
DJ
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3573
f4416af6
AO
3574 return TRUE;
3575}
143d77c5 3576
b49e97c9
TS
3577\f
3578/* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581static const Elf_Internal_Rela *
9719ad41
RS
3582mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
b49e97c9 3585{
c000e262
TS
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3587
b49e97c9
TS
3588 while (relocation < relend)
3589 {
c000e262
TS
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600}
3601
3602/* Return whether a relocation is against a local symbol. */
3603
b34976b6 3604static bfd_boolean
9719ad41
RS
3605mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
b49e97c9
TS
3609{
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
b34976b6 3620 return TRUE;
b49e97c9 3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3622 return TRUE;
b49e97c9
TS
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3634 if (h->root.forced_local)
b34976b6 3635 return TRUE;
b49e97c9
TS
3636 }
3637
b34976b6 3638 return FALSE;
b49e97c9
TS
3639}
3640\f
3641/* Sign-extend VALUE, which has the indicated number of BITS. */
3642
a7ebbfdf 3643bfd_vma
9719ad41 3644_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3645{
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651}
3652
3653/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3654 range expressible by a signed number with the indicated number of
b49e97c9
TS
3655 BITS. */
3656
b34976b6 3657static bfd_boolean
9719ad41 3658mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3659{
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
b34976b6 3664 return TRUE;
b49e97c9
TS
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
b34976b6 3667 return TRUE;
b49e97c9
TS
3668
3669 /* All is well. */
b34976b6 3670 return FALSE;
b49e97c9
TS
3671}
3672
3673/* Calculate the %high function. */
3674
3675static bfd_vma
9719ad41 3676mips_elf_high (bfd_vma value)
b49e97c9
TS
3677{
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679}
3680
3681/* Calculate the %higher function. */
3682
3683static bfd_vma
9719ad41 3684mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3685{
3686#ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688#else
3689 abort ();
c5ae1840 3690 return MINUS_ONE;
b49e97c9
TS
3691#endif
3692}
3693
3694/* Calculate the %highest function. */
3695
3696static bfd_vma
9719ad41 3697mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3698{
3699#ifdef BFD64
b15e6682 3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3701#else
3702 abort ();
c5ae1840 3703 return MINUS_ONE;
b49e97c9
TS
3704#endif
3705}
3706\f
3707/* Create the .compact_rel section. */
3708
b34976b6 3709static bfd_boolean
9719ad41
RS
3710mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3712{
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3496cb2a 3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3722 if (s == NULL
b49e97c9
TS
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3725 return FALSE;
b49e97c9 3726
eea6121a 3727 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3728 }
3729
b34976b6 3730 return TRUE;
b49e97c9
TS
3731}
3732
3733/* Create the .got section to hold the global offset table. */
3734
b34976b6 3735static bfd_boolean
9719ad41
RS
3736mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
b49e97c9
TS
3738{
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
14a793b2 3742 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
0a44bf69
RS
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
b49e97c9
TS
3748
3749 /* This function may be called more than once. */
f4416af6
AO
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
b49e97c9
TS
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
f4416af6
AO
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
72b4917c
TS
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3496cb2a 3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3767 if (s == NULL
72b4917c 3768 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3769 return FALSE;
b49e97c9
TS
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
14a793b2 3774 bh = NULL;
b49e97c9
TS
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3778 return FALSE;
14a793b2
AM
3779
3780 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3781 h->non_elf = 0;
3782 h->def_regular = 1;
b49e97c9 3783 h->type = STT_OBJECT;
d329bcd1 3784 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3785
3786 if (info->shared
c152c796 3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3788 return FALSE;
b49e97c9 3789
b49e97c9 3790 amt = sizeof (struct mips_got_info);
9719ad41 3791 g = bfd_alloc (abfd, amt);
b49e97c9 3792 if (g == NULL)
b34976b6 3793 return FALSE;
b49e97c9 3794 g->global_gotsym = NULL;
e3d54347 3795 g->global_gotno = 0;
0f20cc35 3796 g->tls_gotno = 0;
0a44bf69
RS
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3799 g->bfd2got = NULL;
3800 g->next = NULL;
0f20cc35 3801 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3803 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3804 if (g->got_entries == NULL)
3805 return FALSE;
f0abc2a1
AM
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
0a44bf69
RS
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
b34976b6 3821 return TRUE;
b49e97c9 3822}
b49e97c9 3823\f
0a44bf69
RS
3824/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828static bfd_boolean
3829is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830{
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835}
3836\f
b49e97c9
TS
3837/* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850static bfd_reloc_status_type
9719ad41
RS
3851mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
b49e97c9
TS
3860{
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3882 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3883 symbol. */
b34976b6
AM
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
b34976b6 3894 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3895 relocation value. */
b34976b6
AM
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
b49e97c9
TS
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
b34976b6 3913 overflowed_p = FALSE;
b49e97c9
TS
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3919 local_sections, FALSE);
bce03d3d 3920 was_local_p = local_p;
b49e97c9
TS
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
b49e97c9 3941 symbol += sym->st_value;
d4df96e6
L
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
b49e97c9
TS
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
560e09e9
NC
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
b49e97c9
TS
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
560e09e9 3980 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3987 return bfd_reloc_notsupported;
3988
b34976b6 3989 gp_disp_p = TRUE;
b49e97c9 3990 }
bbe506e8
TS
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
b49e97c9
TS
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
59c2e50f 4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
a4d0f181
TS
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
5e2b0d47
NC
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
b49e97c9
TS
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
59c2e50f
L
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
1049f94e 4063 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4083 }
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
1049f94e 4086 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4087 && h != NULL
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4090 {
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4093 file. */
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4095 {
4096 asection *o;
4097
4098 sec = NULL;
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4100 {
0112cd26
NC
4101 if (CONST_STRNEQ (bfd_get_section_name (input_bfd, o),
4102 CALL_FP_STUB))
b49e97c9
TS
4103 {
4104 sec = h->call_fp_stub;
4105 break;
4106 }
4107 }
4108 if (sec == NULL)
4109 sec = h->call_stub;
4110 }
4111 else if (h->call_stub != NULL)
4112 sec = h->call_stub;
4113 else
4114 sec = h->call_fp_stub;
4115
eea6121a 4116 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4117 symbol = sec->output_section->vma + sec->output_offset;
4118 }
4119
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
1049f94e 4122 *require_jalxp = (!info->relocatable
b49e97c9
TS
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4125
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4127 local_sections, TRUE);
b49e97c9
TS
4128
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4131 switch (r_type)
4132 {
0fdc1bf1 4133 case R_MIPS_GOT_PAGE:
93a2b7ae 4134 case R_MIPS_GOT_OFST:
d25aed71
RS
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4136 bind locally. */
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4138 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4139 break;
4140 /* Fall through. */
4141
b49e97c9
TS
4142 case R_MIPS_CALL16:
4143 case R_MIPS_GOT16:
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4149 case R_MIPS_TLS_GD:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
b49e97c9 4152 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4153 if (r_type == R_MIPS_TLS_LDM)
4154 {
0a44bf69
RS
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4157 if (g == MINUS_ONE)
4158 return bfd_reloc_outofrange;
4159 }
4160 else if (!local_p)
b49e97c9 4161 {
0a44bf69
RS
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4168 {
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4172 }
4173 else
b49e97c9 4174 {
0a44bf69
RS
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4178 as GOT_OFST. */
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4184 || (info->shared
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4187 {
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4193 }
b49e97c9
TS
4194 }
4195 }
0a44bf69
RS
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
b49e97c9
TS
4199 break;
4200 else
4201 {
0a44bf69
RS
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4204 if (g == MINUS_ONE)
4205 return bfd_reloc_outofrange;
4206 }
4207
4208 /* Convert GOT indices to actual offsets. */
0a44bf69 4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4210 break;
4211
4212 case R_MIPS_HI16:
4213 case R_MIPS_LO16:
b49e97c9
TS
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
d6f16593
MR
4217 case R_MIPS16_HI16:
4218 case R_MIPS16_LO16:
4219 case R_MIPS16_GPREL:
b49e97c9
TS
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4222 if (dynobj)
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4224 input_bfd);
b49e97c9
TS
4225 break;
4226
4227 default:
4228 break;
4229 }
4230
bbe506e8
TS
4231 if (gnu_local_gp_p)
4232 symbol = gp;
86324f90 4233
0a44bf69
RS
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4237 {
4238 Elf_Internal_Rela outrel;
4239 bfd_byte *loc;
4240 asection *s;
4241
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4244
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4251 *valuep = 0;
4252 return bfd_reloc_ok;
4253 }
4254
b49e97c9
TS
4255 /* Figure out what kind of relocation is being performed. */
4256 switch (r_type)
4257 {
4258 case R_MIPS_NONE:
4259 return bfd_reloc_continue;
4260
4261 case R_MIPS_16:
a7ebbfdf 4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4264 break;
4265
4266 case R_MIPS_32:
4267 case R_MIPS_REL32:
4268 case R_MIPS_64:
4269 if ((info->shared
0a44bf69
RS
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
b49e97c9 4272 && h != NULL
f5385ebf
AM
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
b49e97c9
TS
4275 && r_symndx != 0
4276 && (input_section->flags & SEC_ALLOC) != 0)
4277 {
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4282 linker.
4283
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
b49e97c9
TS
4287 value = addend;
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4289 info,
4290 relocation,
4291 h,
4292 sec,
4293 symbol,
4294 &value,
4295 input_section))
4296 return bfd_reloc_undefined;
4297 }
4298 else
4299 {
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4302 else
4303 value = addend;
4304 }
4305 value &= howto->dst_mask;
092dcd75
CD
4306 break;
4307
4308 case R_MIPS_PC32:
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
b49e97c9
TS
4311 break;
4312
b49e97c9
TS
4313 case R_MIPS16_26:
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4319 case R_MIPS_26:
4320 if (local_p)
30ac9238 4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4322 else
728b2f21
ILT
4323 {
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4327 }
b49e97c9
TS
4328 value &= howto->dst_mask;
4329 break;
4330
0f20cc35
DJ
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4333 & howto->dst_mask);
4334 break;
4335
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4338 break;
4339
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4342 & howto->dst_mask);
4343 break;
4344
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4347 break;
4348
b49e97c9 4349 case R_MIPS_HI16:
d6f16593 4350 case R_MIPS16_HI16:
b49e97c9
TS
4351 if (!gp_disp_p)
4352 {
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4355 }
4356 else
4357 {
d6f16593
MR
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4361 8: sll $v0,16
4362 12: addu $v0,$v1
4363 14: move $gp,$v0
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4369 else
4370 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4372 }
4373 break;
4374
4375 case R_MIPS_LO16:
d6f16593 4376 case R_MIPS16_LO16:
b49e97c9
TS
4377 if (!gp_disp_p)
4378 value = (symbol + addend) & howto->dst_mask;
4379 else
4380 {
d6f16593
MR
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4385 else
4386 value = addend + gp - p + 4;
b49e97c9 4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4388 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4391 this:
4392
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4395 addu $gp,$gp,$t9
4396
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4403 }
4404 break;
4405
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4410 here. */
4411
4412 /* Fall through. */
4413
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
bce03d3d
AO
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
a7ebbfdf 4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4430 to them before. */
4431 if (was_local_p)
4432 value += gp0;
b49e97c9
TS
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4434 break;
4435
4436 case R_MIPS_GOT16:
4437 case R_MIPS_CALL16:
0a44bf69
RS
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
b49e97c9 4441 {
b34976b6 4442 bfd_boolean forced;
b49e97c9 4443
b49e97c9 4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4445 local_sections, FALSE);
0a44bf69 4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4447 symbol + addend, forced);
b49e97c9
TS
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4450 value
0a44bf69 4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454 }
4455
4456 /* Fall through. */
4457
0f20cc35
DJ
4458 case R_MIPS_TLS_GD:
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
b49e97c9 4461 case R_MIPS_GOT_DISP:
0fdc1bf1 4462 got_disp:
b49e97c9
TS
4463 value = g;
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4465 break;
4466
4467 case R_MIPS_GPREL32:
bce03d3d
AO
4468 value = (addend + symbol + gp0 - gp);
4469 if (!save_addend)
4470 value &= howto->dst_mask;
b49e97c9
TS
4471 break;
4472
4473 case R_MIPS_PC16:
bad36eac
DJ
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
b49e97c9
TS
4479 break;
4480
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4486 value = g;
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4489 break;
4490
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4499 0. */
93a2b7ae 4500 if (! local_p)
0fdc1bf1 4501 goto got_disp;
0a44bf69
RS
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
b49e97c9
TS
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
0a44bf69 4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4509
4510 case R_MIPS_GOT_OFST:
93a2b7ae 4511 if (local_p)
0a44bf69
RS
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
0fdc1bf1
AO
4514 else
4515 value = addend;
b49e97c9
TS
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4517 break;
4518
4519 case R_MIPS_SUB:
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_HIGHER:
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4532 break;
4533
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4537 break;
4538
b49e97c9 4539 case R_MIPS_JALR:
1367d393
ILT
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4546 break;
b49e97c9 4547
1367d393 4548 case R_MIPS_PJUMP:
b49e97c9
TS
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4553
4554 default:
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4557 }
4558
4559 /* Store the VALUE for our caller. */
4560 *valuep = value;
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4562}
4563
4564/* Obtain the field relocated by RELOCATION. */
4565
4566static bfd_vma
9719ad41
RS
4567mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4570{
4571 bfd_vma x;
4572 bfd_byte *location = contents + relocation->r_offset;
4573
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4576
b49e97c9
TS
4577 return x;
4578}
4579
4580/* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
b34976b6 4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4586
b34976b6 4587 Returns FALSE if anything goes wrong. */
b49e97c9 4588
b34976b6 4589static bfd_boolean
9719ad41
RS
4590mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
b49e97c9
TS
4596{
4597 bfd_vma x;
4598 bfd_byte *location;
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4600
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4603
d6f16593
MR
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4605
b49e97c9
TS
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4608
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4611
b49e97c9
TS
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4614
4615 /* If required, turn JAL into JALX. */
4616 if (require_jalx)
4617 {
b34976b6 4618 bfd_boolean ok;
b49e97c9
TS
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4621
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4624 {
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4626 jalx_opcode = 0x7;
4627 }
4628 else
4629 {
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4631 jalx_opcode = 0x1d;
4632 }
4633
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4635 if (!ok)
4636 {
4637 (*_bfd_error_handler)
d003868e
AM
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4639 input_bfd,
4640 input_section,
b49e97c9
TS
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
b34976b6 4643 return FALSE;
b49e97c9
TS
4644 }
4645
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4648 }
4649
1367d393
ILT
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4656 && !require_jalx
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4659 {
4660 bfd_vma addr;
4661 bfd_vma dest;
4662 bfd_signed_vma off;
4663
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4667 + 4);
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4670 else
4671 dest = value;
4672 off = dest - addr;
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4675 }
4676
b49e97c9
TS
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4679
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4681 location);
4682
b34976b6 4683 return TRUE;
b49e97c9
TS
4684}
4685
b34976b6 4686/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4687
b34976b6 4688static bfd_boolean
9719ad41 4689mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4690{
4691 const char *name = bfd_get_section_name (abfd, section);
4692
0112cd26
NC
4693 return (CONST_STRNEQ (name, FN_STUB)
4694 || CONST_STRNEQ (name, CALL_STUB)
4695 || CONST_STRNEQ (name, CALL_FP_STUB));
b49e97c9
TS
4696}
4697\f
0a44bf69 4698/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4699
4700static void
0a44bf69
RS
4701mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4702 unsigned int n)
b49e97c9
TS
4703{
4704 asection *s;
0a44bf69 4705 struct mips_elf_link_hash_table *htab;
b49e97c9 4706
0a44bf69
RS
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4709 BFD_ASSERT (s != NULL);
4710
0a44bf69
RS
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4713 else
b49e97c9 4714 {
0a44bf69
RS
4715 if (s->size == 0)
4716 {
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4719 ++s->reloc_count;
4720 }
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4722 }
b49e97c9
TS
4723}
4724
4725/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4729
b34976b6 4730static bfd_boolean
9719ad41
RS
4731mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
b49e97c9 4737{
947216bf 4738 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4739 asection *sreloc;
4740 bfd *dynobj;
4741 int r_type;
5d41f0b6
RS
4742 long indx;
4743 bfd_boolean defined_p;
0a44bf69 4744 struct mips_elf_link_hash_table *htab;
b49e97c9 4745
0a44bf69 4746 htab = mips_elf_hash_table (info);
b49e97c9
TS
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4753 < sreloc->size);
b49e97c9 4754
b49e97c9
TS
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4761
c5ae1840 4762 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4763 /* The relocation field has been deleted. */
5d41f0b6
RS
4764 return TRUE;
4765
4766 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4767 {
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4771 *addendp += symbol;
5d41f0b6 4772 return TRUE;
0d591ff7 4773 }
b49e97c9 4774
5d41f0b6
RS
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4777 if (h != NULL
6ece8836
TS
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4780 {
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4784 else
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4789 defined_p = FALSE;
4790 }
b49e97c9
TS
4791 else
4792 {
5d41f0b6
RS
4793 if (sec != NULL && bfd_is_abs_section (sec))
4794 indx = 0;
4795 else if (sec == NULL || sec->owner == NULL)
fdd07405 4796 {
5d41f0b6
RS
4797 bfd_set_error (bfd_error_bad_value);
4798 return FALSE;
b49e97c9
TS
4799 }
4800 else
4801 {
5d41f0b6 4802 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4803 if (indx == 0)
4804 {
4805 asection *osec = htab->root.text_index_section;
4806 indx = elf_section_data (osec)->dynindx;
4807 }
5d41f0b6
RS
4808 if (indx == 0)
4809 abort ();
b49e97c9
TS
4810 }
4811
5d41f0b6
RS
4812 /* Instead of generating a relocation using the section
4813 symbol, we may as well make it a fully relative
4814 relocation. We want to avoid generating relocations to
4815 local symbols because we used to generate them
4816 incorrectly, without adding the original symbol value,
4817 which is mandated by the ABI for section symbols. In
4818 order to give dynamic loaders and applications time to
4819 phase out the incorrect use, we refrain from emitting
4820 section-relative relocations. It's not like they're
4821 useful, after all. This should be a bit more efficient
4822 as well. */
4823 /* ??? Although this behavior is compatible with glibc's ld.so,
4824 the ABI says that relocations against STN_UNDEF should have
4825 a symbol value of 0. Irix rld honors this, so relocations
4826 against STN_UNDEF have no effect. */
4827 if (!SGI_COMPAT (output_bfd))
4828 indx = 0;
4829 defined_p = TRUE;
b49e97c9
TS
4830 }
4831
5d41f0b6
RS
4832 /* If the relocation was previously an absolute relocation and
4833 this symbol will not be referred to by the relocation, we must
4834 adjust it by the value we give it in the dynamic symbol table.
4835 Otherwise leave the job up to the dynamic linker. */
4836 if (defined_p && r_type != R_MIPS_REL32)
4837 *addendp += symbol;
4838
0a44bf69
RS
4839 if (htab->is_vxworks)
4840 /* VxWorks uses non-relative relocations for this. */
4841 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4842 else
4843 /* The relocation is always an REL32 relocation because we don't
4844 know where the shared library will wind up at load-time. */
4845 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4846 R_MIPS_REL32);
4847
5d41f0b6
RS
4848 /* For strict adherence to the ABI specification, we should
4849 generate a R_MIPS_64 relocation record by itself before the
4850 _REL32/_64 record as well, such that the addend is read in as
4851 a 64-bit value (REL32 is a 32-bit relocation, after all).
4852 However, since none of the existing ELF64 MIPS dynamic
4853 loaders seems to care, we don't waste space with these
4854 artificial relocations. If this turns out to not be true,
4855 mips_elf_allocate_dynamic_relocation() should be tweaked so
4856 as to make room for a pair of dynamic relocations per
4857 invocation if ABI_64_P, and here we should generate an
4858 additional relocation record with R_MIPS_64 by itself for a
4859 NULL symbol before this relocation record. */
4860 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4861 ABI_64_P (output_bfd)
4862 ? R_MIPS_64
4863 : R_MIPS_NONE);
4864 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4865
4866 /* Adjust the output offset of the relocation to reference the
4867 correct location in the output file. */
4868 outrel[0].r_offset += (input_section->output_section->vma
4869 + input_section->output_offset);
4870 outrel[1].r_offset += (input_section->output_section->vma
4871 + input_section->output_offset);
4872 outrel[2].r_offset += (input_section->output_section->vma
4873 + input_section->output_offset);
4874
b49e97c9
TS
4875 /* Put the relocation back out. We have to use the special
4876 relocation outputter in the 64-bit case since the 64-bit
4877 relocation format is non-standard. */
4878 if (ABI_64_P (output_bfd))
4879 {
4880 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4881 (output_bfd, &outrel[0],
4882 (sreloc->contents
4883 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4884 }
0a44bf69
RS
4885 else if (htab->is_vxworks)
4886 {
4887 /* VxWorks uses RELA rather than REL dynamic relocations. */
4888 outrel[0].r_addend = *addendp;
4889 bfd_elf32_swap_reloca_out
4890 (output_bfd, &outrel[0],
4891 (sreloc->contents
4892 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4893 }
b49e97c9 4894 else
947216bf
AM
4895 bfd_elf32_swap_reloc_out
4896 (output_bfd, &outrel[0],
4897 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4898
b49e97c9
TS
4899 /* We've now added another relocation. */
4900 ++sreloc->reloc_count;
4901
4902 /* Make sure the output section is writable. The dynamic linker
4903 will be writing to it. */
4904 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4905 |= SHF_WRITE;
4906
4907 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4908 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4909 {
4910 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4911 bfd_byte *cr;
4912
4913 if (scpt)
4914 {
4915 Elf32_crinfo cptrel;
4916
4917 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4918 cptrel.vaddr = (rel->r_offset
4919 + input_section->output_section->vma
4920 + input_section->output_offset);
4921 if (r_type == R_MIPS_REL32)
4922 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4923 else
4924 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4925 mips_elf_set_cr_dist2to (cptrel, 0);
4926 cptrel.konst = *addendp;
4927
4928 cr = (scpt->contents
4929 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4930 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4931 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4932 ((Elf32_External_crinfo *) cr
4933 + scpt->reloc_count));
4934 ++scpt->reloc_count;
4935 }
4936 }
4937
943284cc
DJ
4938 /* If we've written this relocation for a readonly section,
4939 we need to set DF_TEXTREL again, so that we do not delete the
4940 DT_TEXTREL tag. */
4941 if (MIPS_ELF_READONLY_SECTION (input_section))
4942 info->flags |= DF_TEXTREL;
4943
b34976b6 4944 return TRUE;
b49e97c9
TS
4945}
4946\f
b49e97c9
TS
4947/* Return the MACH for a MIPS e_flags value. */
4948
4949unsigned long
9719ad41 4950_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4951{
4952 switch (flags & EF_MIPS_MACH)
4953 {
4954 case E_MIPS_MACH_3900:
4955 return bfd_mach_mips3900;
4956
4957 case E_MIPS_MACH_4010:
4958 return bfd_mach_mips4010;
4959
4960 case E_MIPS_MACH_4100:
4961 return bfd_mach_mips4100;
4962
4963 case E_MIPS_MACH_4111:
4964 return bfd_mach_mips4111;
4965
00707a0e
RS
4966 case E_MIPS_MACH_4120:
4967 return bfd_mach_mips4120;
4968
b49e97c9
TS
4969 case E_MIPS_MACH_4650:
4970 return bfd_mach_mips4650;
4971
00707a0e
RS
4972 case E_MIPS_MACH_5400:
4973 return bfd_mach_mips5400;
4974
4975 case E_MIPS_MACH_5500:
4976 return bfd_mach_mips5500;
4977
0d2e43ed
ILT
4978 case E_MIPS_MACH_9000:
4979 return bfd_mach_mips9000;
4980
b49e97c9
TS
4981 case E_MIPS_MACH_SB1:
4982 return bfd_mach_mips_sb1;
4983
4984 default:
4985 switch (flags & EF_MIPS_ARCH)
4986 {
4987 default:
4988 case E_MIPS_ARCH_1:
4989 return bfd_mach_mips3000;
b49e97c9
TS
4990
4991 case E_MIPS_ARCH_2:
4992 return bfd_mach_mips6000;
b49e97c9
TS
4993
4994 case E_MIPS_ARCH_3:
4995 return bfd_mach_mips4000;
b49e97c9
TS
4996
4997 case E_MIPS_ARCH_4:
4998 return bfd_mach_mips8000;
b49e97c9
TS
4999
5000 case E_MIPS_ARCH_5:
5001 return bfd_mach_mips5;
b49e97c9
TS
5002
5003 case E_MIPS_ARCH_32:
5004 return bfd_mach_mipsisa32;
b49e97c9
TS
5005
5006 case E_MIPS_ARCH_64:
5007 return bfd_mach_mipsisa64;
af7ee8bf
CD
5008
5009 case E_MIPS_ARCH_32R2:
5010 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5011
5012 case E_MIPS_ARCH_64R2:
5013 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5014 }
5015 }
5016
5017 return 0;
5018}
5019
5020/* Return printable name for ABI. */
5021
5022static INLINE char *
9719ad41 5023elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5024{
5025 flagword flags;
5026
5027 flags = elf_elfheader (abfd)->e_flags;
5028 switch (flags & EF_MIPS_ABI)
5029 {
5030 case 0:
5031 if (ABI_N32_P (abfd))
5032 return "N32";
5033 else if (ABI_64_P (abfd))
5034 return "64";
5035 else
5036 return "none";
5037 case E_MIPS_ABI_O32:
5038 return "O32";
5039 case E_MIPS_ABI_O64:
5040 return "O64";
5041 case E_MIPS_ABI_EABI32:
5042 return "EABI32";
5043 case E_MIPS_ABI_EABI64:
5044 return "EABI64";
5045 default:
5046 return "unknown abi";
5047 }
5048}
5049\f
5050/* MIPS ELF uses two common sections. One is the usual one, and the
5051 other is for small objects. All the small objects are kept
5052 together, and then referenced via the gp pointer, which yields
5053 faster assembler code. This is what we use for the small common
5054 section. This approach is copied from ecoff.c. */
5055static asection mips_elf_scom_section;
5056static asymbol mips_elf_scom_symbol;
5057static asymbol *mips_elf_scom_symbol_ptr;
5058
5059/* MIPS ELF also uses an acommon section, which represents an
5060 allocated common symbol which may be overridden by a
5061 definition in a shared library. */
5062static asection mips_elf_acom_section;
5063static asymbol mips_elf_acom_symbol;
5064static asymbol *mips_elf_acom_symbol_ptr;
5065
5066/* Handle the special MIPS section numbers that a symbol may use.
5067 This is used for both the 32-bit and the 64-bit ABI. */
5068
5069void
9719ad41 5070_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5071{
5072 elf_symbol_type *elfsym;
5073
5074 elfsym = (elf_symbol_type *) asym;
5075 switch (elfsym->internal_elf_sym.st_shndx)
5076 {
5077 case SHN_MIPS_ACOMMON:
5078 /* This section is used in a dynamically linked executable file.
5079 It is an allocated common section. The dynamic linker can
5080 either resolve these symbols to something in a shared
5081 library, or it can just leave them here. For our purposes,
5082 we can consider these symbols to be in a new section. */
5083 if (mips_elf_acom_section.name == NULL)
5084 {
5085 /* Initialize the acommon section. */
5086 mips_elf_acom_section.name = ".acommon";
5087 mips_elf_acom_section.flags = SEC_ALLOC;
5088 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5089 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5090 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5091 mips_elf_acom_symbol.name = ".acommon";
5092 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5093 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5094 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5095 }
5096 asym->section = &mips_elf_acom_section;
5097 break;
5098
5099 case SHN_COMMON:
5100 /* Common symbols less than the GP size are automatically
5101 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5102 if (asym->value > elf_gp_size (abfd)
b59eed79 5103 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5104 || IRIX_COMPAT (abfd) == ict_irix6)
5105 break;
5106 /* Fall through. */
5107 case SHN_MIPS_SCOMMON:
5108 if (mips_elf_scom_section.name == NULL)
5109 {
5110 /* Initialize the small common section. */
5111 mips_elf_scom_section.name = ".scommon";
5112 mips_elf_scom_section.flags = SEC_IS_COMMON;
5113 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5114 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5115 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5116 mips_elf_scom_symbol.name = ".scommon";
5117 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5118 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5119 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5120 }
5121 asym->section = &mips_elf_scom_section;
5122 asym->value = elfsym->internal_elf_sym.st_size;
5123 break;
5124
5125 case SHN_MIPS_SUNDEFINED:
5126 asym->section = bfd_und_section_ptr;
5127 break;
5128
b49e97c9 5129 case SHN_MIPS_TEXT:
00b4930b
TS
5130 {
5131 asection *section = bfd_get_section_by_name (abfd, ".text");
5132
5133 BFD_ASSERT (SGI_COMPAT (abfd));
5134 if (section != NULL)
5135 {
5136 asym->section = section;
5137 /* MIPS_TEXT is a bit special, the address is not an offset
5138 to the base of the .text section. So substract the section
5139 base address to make it an offset. */
5140 asym->value -= section->vma;
5141 }
5142 }
b49e97c9
TS
5143 break;
5144
5145 case SHN_MIPS_DATA:
00b4930b
TS
5146 {
5147 asection *section = bfd_get_section_by_name (abfd, ".data");
5148
5149 BFD_ASSERT (SGI_COMPAT (abfd));
5150 if (section != NULL)
5151 {
5152 asym->section = section;
5153 /* MIPS_DATA is a bit special, the address is not an offset
5154 to the base of the .data section. So substract the section
5155 base address to make it an offset. */
5156 asym->value -= section->vma;
5157 }
5158 }
b49e97c9 5159 break;
b49e97c9
TS
5160 }
5161}
5162\f
8c946ed5
RS
5163/* Implement elf_backend_eh_frame_address_size. This differs from
5164 the default in the way it handles EABI64.
5165
5166 EABI64 was originally specified as an LP64 ABI, and that is what
5167 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5168 historically accepted the combination of -mabi=eabi and -mlong32,
5169 and this ILP32 variation has become semi-official over time.
5170 Both forms use elf32 and have pointer-sized FDE addresses.
5171
5172 If an EABI object was generated by GCC 4.0 or above, it will have
5173 an empty .gcc_compiled_longXX section, where XX is the size of longs
5174 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5175 have no special marking to distinguish them from LP64 objects.
5176
5177 We don't want users of the official LP64 ABI to be punished for the
5178 existence of the ILP32 variant, but at the same time, we don't want
5179 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5180 We therefore take the following approach:
5181
5182 - If ABFD contains a .gcc_compiled_longXX section, use it to
5183 determine the pointer size.
5184
5185 - Otherwise check the type of the first relocation. Assume that
5186 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5187
5188 - Otherwise punt.
5189
5190 The second check is enough to detect LP64 objects generated by pre-4.0
5191 compilers because, in the kind of output generated by those compilers,
5192 the first relocation will be associated with either a CIE personality
5193 routine or an FDE start address. Furthermore, the compilers never
5194 used a special (non-pointer) encoding for this ABI.
5195
5196 Checking the relocation type should also be safe because there is no
5197 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5198 did so. */
5199
5200unsigned int
5201_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5202{
5203 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5204 return 8;
5205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5206 {
5207 bfd_boolean long32_p, long64_p;
5208
5209 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5210 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5211 if (long32_p && long64_p)
5212 return 0;
5213 if (long32_p)
5214 return 4;
5215 if (long64_p)
5216 return 8;
5217
5218 if (sec->reloc_count > 0
5219 && elf_section_data (sec)->relocs != NULL
5220 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5221 == R_MIPS_64))
5222 return 8;
5223
5224 return 0;
5225 }
5226 return 4;
5227}
5228\f
174fd7f9
RS
5229/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5230 relocations against two unnamed section symbols to resolve to the
5231 same address. For example, if we have code like:
5232
5233 lw $4,%got_disp(.data)($gp)
5234 lw $25,%got_disp(.text)($gp)
5235 jalr $25
5236
5237 then the linker will resolve both relocations to .data and the program
5238 will jump there rather than to .text.
5239
5240 We can work around this problem by giving names to local section symbols.
5241 This is also what the MIPSpro tools do. */
5242
5243bfd_boolean
5244_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5245{
5246 return SGI_COMPAT (abfd);
5247}
5248\f
b49e97c9
TS
5249/* Work over a section just before writing it out. This routine is
5250 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5251 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5252 a better way. */
5253
b34976b6 5254bfd_boolean
9719ad41 5255_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5256{
5257 if (hdr->sh_type == SHT_MIPS_REGINFO
5258 && hdr->sh_size > 0)
5259 {
5260 bfd_byte buf[4];
5261
5262 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5263 BFD_ASSERT (hdr->contents == NULL);
5264
5265 if (bfd_seek (abfd,
5266 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5267 SEEK_SET) != 0)
b34976b6 5268 return FALSE;
b49e97c9 5269 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5270 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5271 return FALSE;
b49e97c9
TS
5272 }
5273
5274 if (hdr->sh_type == SHT_MIPS_OPTIONS
5275 && hdr->bfd_section != NULL
f0abc2a1
AM
5276 && mips_elf_section_data (hdr->bfd_section) != NULL
5277 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5278 {
5279 bfd_byte *contents, *l, *lend;
5280
f0abc2a1
AM
5281 /* We stored the section contents in the tdata field in the
5282 set_section_contents routine. We save the section contents
5283 so that we don't have to read them again.
b49e97c9
TS
5284 At this point we know that elf_gp is set, so we can look
5285 through the section contents to see if there is an
5286 ODK_REGINFO structure. */
5287
f0abc2a1 5288 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5289 l = contents;
5290 lend = contents + hdr->sh_size;
5291 while (l + sizeof (Elf_External_Options) <= lend)
5292 {
5293 Elf_Internal_Options intopt;
5294
5295 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5296 &intopt);
1bc8074d
MR
5297 if (intopt.size < sizeof (Elf_External_Options))
5298 {
5299 (*_bfd_error_handler)
5300 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5301 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5302 break;
5303 }
b49e97c9
TS
5304 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5305 {
5306 bfd_byte buf[8];
5307
5308 if (bfd_seek (abfd,
5309 (hdr->sh_offset
5310 + (l - contents)
5311 + sizeof (Elf_External_Options)
5312 + (sizeof (Elf64_External_RegInfo) - 8)),
5313 SEEK_SET) != 0)
b34976b6 5314 return FALSE;
b49e97c9 5315 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5316 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5317 return FALSE;
b49e97c9
TS
5318 }
5319 else if (intopt.kind == ODK_REGINFO)
5320 {
5321 bfd_byte buf[4];
5322
5323 if (bfd_seek (abfd,
5324 (hdr->sh_offset
5325 + (l - contents)
5326 + sizeof (Elf_External_Options)
5327 + (sizeof (Elf32_External_RegInfo) - 4)),
5328 SEEK_SET) != 0)
b34976b6 5329 return FALSE;
b49e97c9 5330 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5331 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5332 return FALSE;
b49e97c9
TS
5333 }
5334 l += intopt.size;
5335 }
5336 }
5337
5338 if (hdr->bfd_section != NULL)
5339 {
5340 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5341
5342 if (strcmp (name, ".sdata") == 0
5343 || strcmp (name, ".lit8") == 0
5344 || strcmp (name, ".lit4") == 0)
5345 {
5346 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_PROGBITS;
5348 }
5349 else if (strcmp (name, ".sbss") == 0)
5350 {
5351 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5352 hdr->sh_type = SHT_NOBITS;
5353 }
5354 else if (strcmp (name, ".srdata") == 0)
5355 {
5356 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5357 hdr->sh_type = SHT_PROGBITS;
5358 }
5359 else if (strcmp (name, ".compact_rel") == 0)
5360 {
5361 hdr->sh_flags = 0;
5362 hdr->sh_type = SHT_PROGBITS;
5363 }
5364 else if (strcmp (name, ".rtproc") == 0)
5365 {
5366 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5367 {
5368 unsigned int adjust;
5369
5370 adjust = hdr->sh_size % hdr->sh_addralign;
5371 if (adjust != 0)
5372 hdr->sh_size += hdr->sh_addralign - adjust;
5373 }
5374 }
5375 }
5376
b34976b6 5377 return TRUE;
b49e97c9
TS
5378}
5379
5380/* Handle a MIPS specific section when reading an object file. This
5381 is called when elfcode.h finds a section with an unknown type.
5382 This routine supports both the 32-bit and 64-bit ELF ABI.
5383
5384 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5385 how to. */
5386
b34976b6 5387bfd_boolean
6dc132d9
L
5388_bfd_mips_elf_section_from_shdr (bfd *abfd,
5389 Elf_Internal_Shdr *hdr,
5390 const char *name,
5391 int shindex)
b49e97c9
TS
5392{
5393 flagword flags = 0;
5394
5395 /* There ought to be a place to keep ELF backend specific flags, but
5396 at the moment there isn't one. We just keep track of the
5397 sections by their name, instead. Fortunately, the ABI gives
5398 suggested names for all the MIPS specific sections, so we will
5399 probably get away with this. */
5400 switch (hdr->sh_type)
5401 {
5402 case SHT_MIPS_LIBLIST:
5403 if (strcmp (name, ".liblist") != 0)
b34976b6 5404 return FALSE;
b49e97c9
TS
5405 break;
5406 case SHT_MIPS_MSYM:
5407 if (strcmp (name, ".msym") != 0)
b34976b6 5408 return FALSE;
b49e97c9
TS
5409 break;
5410 case SHT_MIPS_CONFLICT:
5411 if (strcmp (name, ".conflict") != 0)
b34976b6 5412 return FALSE;
b49e97c9
TS
5413 break;
5414 case SHT_MIPS_GPTAB:
0112cd26 5415 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5416 return FALSE;
b49e97c9
TS
5417 break;
5418 case SHT_MIPS_UCODE:
5419 if (strcmp (name, ".ucode") != 0)
b34976b6 5420 return FALSE;
b49e97c9
TS
5421 break;
5422 case SHT_MIPS_DEBUG:
5423 if (strcmp (name, ".mdebug") != 0)
b34976b6 5424 return FALSE;
b49e97c9
TS
5425 flags = SEC_DEBUGGING;
5426 break;
5427 case SHT_MIPS_REGINFO:
5428 if (strcmp (name, ".reginfo") != 0
5429 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5432 break;
5433 case SHT_MIPS_IFACE:
5434 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5435 return FALSE;
b49e97c9
TS
5436 break;
5437 case SHT_MIPS_CONTENT:
0112cd26 5438 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5439 return FALSE;
b49e97c9
TS
5440 break;
5441 case SHT_MIPS_OPTIONS:
cc2e31b9 5442 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5443 return FALSE;
b49e97c9
TS
5444 break;
5445 case SHT_MIPS_DWARF:
0112cd26 5446 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5447 return FALSE;
b49e97c9
TS
5448 break;
5449 case SHT_MIPS_SYMBOL_LIB:
5450 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5451 return FALSE;
b49e97c9
TS
5452 break;
5453 case SHT_MIPS_EVENTS:
0112cd26
NC
5454 if (! CONST_STRNEQ (name, ".MIPS.events")
5455 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5456 return FALSE;
b49e97c9
TS
5457 break;
5458 default:
cc2e31b9 5459 break;
b49e97c9
TS
5460 }
5461
6dc132d9 5462 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5463 return FALSE;
b49e97c9
TS
5464
5465 if (flags)
5466 {
5467 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5468 (bfd_get_section_flags (abfd,
5469 hdr->bfd_section)
5470 | flags)))
b34976b6 5471 return FALSE;
b49e97c9
TS
5472 }
5473
5474 /* FIXME: We should record sh_info for a .gptab section. */
5475
5476 /* For a .reginfo section, set the gp value in the tdata information
5477 from the contents of this section. We need the gp value while
5478 processing relocs, so we just get it now. The .reginfo section
5479 is not used in the 64-bit MIPS ELF ABI. */
5480 if (hdr->sh_type == SHT_MIPS_REGINFO)
5481 {
5482 Elf32_External_RegInfo ext;
5483 Elf32_RegInfo s;
5484
9719ad41
RS
5485 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5486 &ext, 0, sizeof ext))
b34976b6 5487 return FALSE;
b49e97c9
TS
5488 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5489 elf_gp (abfd) = s.ri_gp_value;
5490 }
5491
5492 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5493 set the gp value based on what we find. We may see both
5494 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5495 they should agree. */
5496 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5497 {
5498 bfd_byte *contents, *l, *lend;
5499
9719ad41 5500 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5501 if (contents == NULL)
b34976b6 5502 return FALSE;
b49e97c9 5503 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5504 0, hdr->sh_size))
b49e97c9
TS
5505 {
5506 free (contents);
b34976b6 5507 return FALSE;
b49e97c9
TS
5508 }
5509 l = contents;
5510 lend = contents + hdr->sh_size;
5511 while (l + sizeof (Elf_External_Options) <= lend)
5512 {
5513 Elf_Internal_Options intopt;
5514
5515 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5516 &intopt);
1bc8074d
MR
5517 if (intopt.size < sizeof (Elf_External_Options))
5518 {
5519 (*_bfd_error_handler)
5520 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5521 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5522 break;
5523 }
b49e97c9
TS
5524 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5525 {
5526 Elf64_Internal_RegInfo intreg;
5527
5528 bfd_mips_elf64_swap_reginfo_in
5529 (abfd,
5530 ((Elf64_External_RegInfo *)
5531 (l + sizeof (Elf_External_Options))),
5532 &intreg);
5533 elf_gp (abfd) = intreg.ri_gp_value;
5534 }
5535 else if (intopt.kind == ODK_REGINFO)
5536 {
5537 Elf32_RegInfo intreg;
5538
5539 bfd_mips_elf32_swap_reginfo_in
5540 (abfd,
5541 ((Elf32_External_RegInfo *)
5542 (l + sizeof (Elf_External_Options))),
5543 &intreg);
5544 elf_gp (abfd) = intreg.ri_gp_value;
5545 }
5546 l += intopt.size;
5547 }
5548 free (contents);
5549 }
5550
b34976b6 5551 return TRUE;
b49e97c9
TS
5552}
5553
5554/* Set the correct type for a MIPS ELF section. We do this by the
5555 section name, which is a hack, but ought to work. This routine is
5556 used by both the 32-bit and the 64-bit ABI. */
5557
b34976b6 5558bfd_boolean
9719ad41 5559_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5560{
5561 register const char *name;
1bc8074d 5562 unsigned int sh_type;
b49e97c9
TS
5563
5564 name = bfd_get_section_name (abfd, sec);
1bc8074d 5565 sh_type = hdr->sh_type;
b49e97c9
TS
5566
5567 if (strcmp (name, ".liblist") == 0)
5568 {
5569 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5570 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5571 /* The sh_link field is set in final_write_processing. */
5572 }
5573 else if (strcmp (name, ".conflict") == 0)
5574 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5575 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5576 {
5577 hdr->sh_type = SHT_MIPS_GPTAB;
5578 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5579 /* The sh_info field is set in final_write_processing. */
5580 }
5581 else if (strcmp (name, ".ucode") == 0)
5582 hdr->sh_type = SHT_MIPS_UCODE;
5583 else if (strcmp (name, ".mdebug") == 0)
5584 {
5585 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5586 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5587 entsize of 0. FIXME: Does this matter? */
5588 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5589 hdr->sh_entsize = 0;
5590 else
5591 hdr->sh_entsize = 1;
5592 }
5593 else if (strcmp (name, ".reginfo") == 0)
5594 {
5595 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5596 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5597 entsize of 0x18. FIXME: Does this matter? */
5598 if (SGI_COMPAT (abfd))
5599 {
5600 if ((abfd->flags & DYNAMIC) != 0)
5601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5602 else
5603 hdr->sh_entsize = 1;
5604 }
5605 else
5606 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5607 }
5608 else if (SGI_COMPAT (abfd)
5609 && (strcmp (name, ".hash") == 0
5610 || strcmp (name, ".dynamic") == 0
5611 || strcmp (name, ".dynstr") == 0))
5612 {
5613 if (SGI_COMPAT (abfd))
5614 hdr->sh_entsize = 0;
5615#if 0
8dc1a139 5616 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5617 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5618#endif
5619 }
5620 else if (strcmp (name, ".got") == 0
5621 || strcmp (name, ".srdata") == 0
5622 || strcmp (name, ".sdata") == 0
5623 || strcmp (name, ".sbss") == 0
5624 || strcmp (name, ".lit4") == 0
5625 || strcmp (name, ".lit8") == 0)
5626 hdr->sh_flags |= SHF_MIPS_GPREL;
5627 else if (strcmp (name, ".MIPS.interfaces") == 0)
5628 {
5629 hdr->sh_type = SHT_MIPS_IFACE;
5630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5631 }
0112cd26 5632 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5633 {
5634 hdr->sh_type = SHT_MIPS_CONTENT;
5635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5636 /* The sh_info field is set in final_write_processing. */
5637 }
cc2e31b9 5638 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5639 {
5640 hdr->sh_type = SHT_MIPS_OPTIONS;
5641 hdr->sh_entsize = 1;
5642 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5643 }
0112cd26 5644 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5645 hdr->sh_type = SHT_MIPS_DWARF;
5646 else if (strcmp (name, ".MIPS.symlib") == 0)
5647 {
5648 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5649 /* The sh_link and sh_info fields are set in
5650 final_write_processing. */
5651 }
0112cd26
NC
5652 else if (CONST_STRNEQ (name, ".MIPS.events")
5653 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5654 {
5655 hdr->sh_type = SHT_MIPS_EVENTS;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 /* The sh_link field is set in final_write_processing. */
5658 }
5659 else if (strcmp (name, ".msym") == 0)
5660 {
5661 hdr->sh_type = SHT_MIPS_MSYM;
5662 hdr->sh_flags |= SHF_ALLOC;
5663 hdr->sh_entsize = 8;
5664 }
5665
1bc8074d
MR
5666 /* In the unlikely event a special section is empty it has to lose its
5667 special meaning. This may happen e.g. when using `strip' with the
5668 "--only-keep-debug" option. */
5669 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5670 hdr->sh_type = sh_type;
5671
7a79a000
TS
5672 /* The generic elf_fake_sections will set up REL_HDR using the default
5673 kind of relocations. We used to set up a second header for the
5674 non-default kind of relocations here, but only NewABI would use
5675 these, and the IRIX ld doesn't like resulting empty RELA sections.
5676 Thus we create those header only on demand now. */
b49e97c9 5677
b34976b6 5678 return TRUE;
b49e97c9
TS
5679}
5680
5681/* Given a BFD section, try to locate the corresponding ELF section
5682 index. This is used by both the 32-bit and the 64-bit ABI.
5683 Actually, it's not clear to me that the 64-bit ABI supports these,
5684 but for non-PIC objects we will certainly want support for at least
5685 the .scommon section. */
5686
b34976b6 5687bfd_boolean
9719ad41
RS
5688_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5689 asection *sec, int *retval)
b49e97c9
TS
5690{
5691 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5692 {
5693 *retval = SHN_MIPS_SCOMMON;
b34976b6 5694 return TRUE;
b49e97c9
TS
5695 }
5696 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5697 {
5698 *retval = SHN_MIPS_ACOMMON;
b34976b6 5699 return TRUE;
b49e97c9 5700 }
b34976b6 5701 return FALSE;
b49e97c9
TS
5702}
5703\f
5704/* Hook called by the linker routine which adds symbols from an object
5705 file. We must handle the special MIPS section numbers here. */
5706
b34976b6 5707bfd_boolean
9719ad41 5708_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5709 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5710 flagword *flagsp ATTRIBUTE_UNUSED,
5711 asection **secp, bfd_vma *valp)
b49e97c9
TS
5712{
5713 if (SGI_COMPAT (abfd)
5714 && (abfd->flags & DYNAMIC) != 0
5715 && strcmp (*namep, "_rld_new_interface") == 0)
5716 {
8dc1a139 5717 /* Skip IRIX5 rld entry name. */
b49e97c9 5718 *namep = NULL;
b34976b6 5719 return TRUE;
b49e97c9
TS
5720 }
5721
eedecc07
DD
5722 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5723 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5724 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5725 a magic symbol resolved by the linker, we ignore this bogus definition
5726 of _gp_disp. New ABI objects do not suffer from this problem so this
5727 is not done for them. */
5728 if (!NEWABI_P(abfd)
5729 && (sym->st_shndx == SHN_ABS)
5730 && (strcmp (*namep, "_gp_disp") == 0))
5731 {
5732 *namep = NULL;
5733 return TRUE;
5734 }
5735
b49e97c9
TS
5736 switch (sym->st_shndx)
5737 {
5738 case SHN_COMMON:
5739 /* Common symbols less than the GP size are automatically
5740 treated as SHN_MIPS_SCOMMON symbols. */
5741 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5742 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5743 || IRIX_COMPAT (abfd) == ict_irix6)
5744 break;
5745 /* Fall through. */
5746 case SHN_MIPS_SCOMMON:
5747 *secp = bfd_make_section_old_way (abfd, ".scommon");
5748 (*secp)->flags |= SEC_IS_COMMON;
5749 *valp = sym->st_size;
5750 break;
5751
5752 case SHN_MIPS_TEXT:
5753 /* This section is used in a shared object. */
5754 if (elf_tdata (abfd)->elf_text_section == NULL)
5755 {
5756 asymbol *elf_text_symbol;
5757 asection *elf_text_section;
5758 bfd_size_type amt = sizeof (asection);
5759
5760 elf_text_section = bfd_zalloc (abfd, amt);
5761 if (elf_text_section == NULL)
b34976b6 5762 return FALSE;
b49e97c9
TS
5763
5764 amt = sizeof (asymbol);
5765 elf_text_symbol = bfd_zalloc (abfd, amt);
5766 if (elf_text_symbol == NULL)
b34976b6 5767 return FALSE;
b49e97c9
TS
5768
5769 /* Initialize the section. */
5770
5771 elf_tdata (abfd)->elf_text_section = elf_text_section;
5772 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5773
5774 elf_text_section->symbol = elf_text_symbol;
5775 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5776
5777 elf_text_section->name = ".text";
5778 elf_text_section->flags = SEC_NO_FLAGS;
5779 elf_text_section->output_section = NULL;
5780 elf_text_section->owner = abfd;
5781 elf_text_symbol->name = ".text";
5782 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5783 elf_text_symbol->section = elf_text_section;
5784 }
5785 /* This code used to do *secp = bfd_und_section_ptr if
5786 info->shared. I don't know why, and that doesn't make sense,
5787 so I took it out. */
5788 *secp = elf_tdata (abfd)->elf_text_section;
5789 break;
5790
5791 case SHN_MIPS_ACOMMON:
5792 /* Fall through. XXX Can we treat this as allocated data? */
5793 case SHN_MIPS_DATA:
5794 /* This section is used in a shared object. */
5795 if (elf_tdata (abfd)->elf_data_section == NULL)
5796 {
5797 asymbol *elf_data_symbol;
5798 asection *elf_data_section;
5799 bfd_size_type amt = sizeof (asection);
5800
5801 elf_data_section = bfd_zalloc (abfd, amt);
5802 if (elf_data_section == NULL)
b34976b6 5803 return FALSE;
b49e97c9
TS
5804
5805 amt = sizeof (asymbol);
5806 elf_data_symbol = bfd_zalloc (abfd, amt);
5807 if (elf_data_symbol == NULL)
b34976b6 5808 return FALSE;
b49e97c9
TS
5809
5810 /* Initialize the section. */
5811
5812 elf_tdata (abfd)->elf_data_section = elf_data_section;
5813 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5814
5815 elf_data_section->symbol = elf_data_symbol;
5816 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5817
5818 elf_data_section->name = ".data";
5819 elf_data_section->flags = SEC_NO_FLAGS;
5820 elf_data_section->output_section = NULL;
5821 elf_data_section->owner = abfd;
5822 elf_data_symbol->name = ".data";
5823 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5824 elf_data_symbol->section = elf_data_section;
5825 }
5826 /* This code used to do *secp = bfd_und_section_ptr if
5827 info->shared. I don't know why, and that doesn't make sense,
5828 so I took it out. */
5829 *secp = elf_tdata (abfd)->elf_data_section;
5830 break;
5831
5832 case SHN_MIPS_SUNDEFINED:
5833 *secp = bfd_und_section_ptr;
5834 break;
5835 }
5836
5837 if (SGI_COMPAT (abfd)
5838 && ! info->shared
5839 && info->hash->creator == abfd->xvec
5840 && strcmp (*namep, "__rld_obj_head") == 0)
5841 {
5842 struct elf_link_hash_entry *h;
14a793b2 5843 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5844
5845 /* Mark __rld_obj_head as dynamic. */
14a793b2 5846 bh = NULL;
b49e97c9 5847 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5848 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5849 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5850 return FALSE;
14a793b2
AM
5851
5852 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5853 h->non_elf = 0;
5854 h->def_regular = 1;
b49e97c9
TS
5855 h->type = STT_OBJECT;
5856
c152c796 5857 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5858 return FALSE;
b49e97c9 5859
b34976b6 5860 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5861 }
5862
5863 /* If this is a mips16 text symbol, add 1 to the value to make it
5864 odd. This will cause something like .word SYM to come up with
5865 the right value when it is loaded into the PC. */
5866 if (sym->st_other == STO_MIPS16)
5867 ++*valp;
5868
b34976b6 5869 return TRUE;
b49e97c9
TS
5870}
5871
5872/* This hook function is called before the linker writes out a global
5873 symbol. We mark symbols as small common if appropriate. This is
5874 also where we undo the increment of the value for a mips16 symbol. */
5875
b34976b6 5876bfd_boolean
9719ad41
RS
5877_bfd_mips_elf_link_output_symbol_hook
5878 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5879 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5880 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5881{
5882 /* If we see a common symbol, which implies a relocatable link, then
5883 if a symbol was small common in an input file, mark it as small
5884 common in the output file. */
5885 if (sym->st_shndx == SHN_COMMON
5886 && strcmp (input_sec->name, ".scommon") == 0)
5887 sym->st_shndx = SHN_MIPS_SCOMMON;
5888
79cda7cf
FF
5889 if (sym->st_other == STO_MIPS16)
5890 sym->st_value &= ~1;
b49e97c9 5891
b34976b6 5892 return TRUE;
b49e97c9
TS
5893}
5894\f
5895/* Functions for the dynamic linker. */
5896
5897/* Create dynamic sections when linking against a dynamic object. */
5898
b34976b6 5899bfd_boolean
9719ad41 5900_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5901{
5902 struct elf_link_hash_entry *h;
14a793b2 5903 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5904 flagword flags;
5905 register asection *s;
5906 const char * const *namep;
0a44bf69 5907 struct mips_elf_link_hash_table *htab;
b49e97c9 5908
0a44bf69 5909 htab = mips_elf_hash_table (info);
b49e97c9
TS
5910 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5911 | SEC_LINKER_CREATED | SEC_READONLY);
5912
0a44bf69
RS
5913 /* The psABI requires a read-only .dynamic section, but the VxWorks
5914 EABI doesn't. */
5915 if (!htab->is_vxworks)
b49e97c9 5916 {
0a44bf69
RS
5917 s = bfd_get_section_by_name (abfd, ".dynamic");
5918 if (s != NULL)
5919 {
5920 if (! bfd_set_section_flags (abfd, s, flags))
5921 return FALSE;
5922 }
b49e97c9
TS
5923 }
5924
5925 /* We need to create .got section. */
f4416af6
AO
5926 if (! mips_elf_create_got_section (abfd, info, FALSE))
5927 return FALSE;
5928
0a44bf69 5929 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5930 return FALSE;
b49e97c9 5931
b49e97c9
TS
5932 /* Create .stub section. */
5933 if (bfd_get_section_by_name (abfd,
5934 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5935 {
3496cb2a
L
5936 s = bfd_make_section_with_flags (abfd,
5937 MIPS_ELF_STUB_SECTION_NAME (abfd),
5938 flags | SEC_CODE);
b49e97c9 5939 if (s == NULL
b49e97c9
TS
5940 || ! bfd_set_section_alignment (abfd, s,
5941 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5942 return FALSE;
b49e97c9
TS
5943 }
5944
5945 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5946 && !info->shared
5947 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5948 {
3496cb2a
L
5949 s = bfd_make_section_with_flags (abfd, ".rld_map",
5950 flags &~ (flagword) SEC_READONLY);
b49e97c9 5951 if (s == NULL
b49e97c9
TS
5952 || ! bfd_set_section_alignment (abfd, s,
5953 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5954 return FALSE;
b49e97c9
TS
5955 }
5956
5957 /* On IRIX5, we adjust add some additional symbols and change the
5958 alignments of several sections. There is no ABI documentation
5959 indicating that this is necessary on IRIX6, nor any evidence that
5960 the linker takes such action. */
5961 if (IRIX_COMPAT (abfd) == ict_irix5)
5962 {
5963 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5964 {
14a793b2 5965 bh = NULL;
b49e97c9 5966 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5967 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5968 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5969 return FALSE;
14a793b2
AM
5970
5971 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5972 h->non_elf = 0;
5973 h->def_regular = 1;
b49e97c9
TS
5974 h->type = STT_SECTION;
5975
c152c796 5976 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5977 return FALSE;
b49e97c9
TS
5978 }
5979
5980 /* We need to create a .compact_rel section. */
5981 if (SGI_COMPAT (abfd))
5982 {
5983 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5984 return FALSE;
b49e97c9
TS
5985 }
5986
44c410de 5987 /* Change alignments of some sections. */
b49e97c9
TS
5988 s = bfd_get_section_by_name (abfd, ".hash");
5989 if (s != NULL)
d80dcc6a 5990 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5991 s = bfd_get_section_by_name (abfd, ".dynsym");
5992 if (s != NULL)
d80dcc6a 5993 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5994 s = bfd_get_section_by_name (abfd, ".dynstr");
5995 if (s != NULL)
d80dcc6a 5996 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5997 s = bfd_get_section_by_name (abfd, ".reginfo");
5998 if (s != NULL)
d80dcc6a 5999 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6000 s = bfd_get_section_by_name (abfd, ".dynamic");
6001 if (s != NULL)
d80dcc6a 6002 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6003 }
6004
6005 if (!info->shared)
6006 {
14a793b2
AM
6007 const char *name;
6008
6009 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6010 bh = NULL;
6011 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6012 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6013 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6014 return FALSE;
14a793b2
AM
6015
6016 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6017 h->non_elf = 0;
6018 h->def_regular = 1;
b49e97c9
TS
6019 h->type = STT_SECTION;
6020
c152c796 6021 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6022 return FALSE;
b49e97c9
TS
6023
6024 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6025 {
6026 /* __rld_map is a four byte word located in the .data section
6027 and is filled in by the rtld to contain a pointer to
6028 the _r_debug structure. Its symbol value will be set in
6029 _bfd_mips_elf_finish_dynamic_symbol. */
6030 s = bfd_get_section_by_name (abfd, ".rld_map");
6031 BFD_ASSERT (s != NULL);
6032
14a793b2
AM
6033 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6034 bh = NULL;
6035 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6036 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6037 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6038 return FALSE;
14a793b2
AM
6039
6040 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6041 h->non_elf = 0;
6042 h->def_regular = 1;
b49e97c9
TS
6043 h->type = STT_OBJECT;
6044
c152c796 6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6046 return FALSE;
b49e97c9
TS
6047 }
6048 }
6049
0a44bf69
RS
6050 if (htab->is_vxworks)
6051 {
6052 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6053 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6054 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6055 return FALSE;
6056
6057 /* Cache the sections created above. */
6058 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6059 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6060 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6061 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6062 if (!htab->sdynbss
6063 || (!htab->srelbss && !info->shared)
6064 || !htab->srelplt
6065 || !htab->splt)
6066 abort ();
6067
6068 /* Do the usual VxWorks handling. */
6069 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6070 return FALSE;
6071
6072 /* Work out the PLT sizes. */
6073 if (info->shared)
6074 {
6075 htab->plt_header_size
6076 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6077 htab->plt_entry_size
6078 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6079 }
6080 else
6081 {
6082 htab->plt_header_size
6083 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6084 htab->plt_entry_size
6085 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6086 }
6087 }
6088
b34976b6 6089 return TRUE;
b49e97c9
TS
6090}
6091\f
6092/* Look through the relocs for a section during the first phase, and
6093 allocate space in the global offset table. */
6094
b34976b6 6095bfd_boolean
9719ad41
RS
6096_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6097 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6098{
6099 const char *name;
6100 bfd *dynobj;
6101 Elf_Internal_Shdr *symtab_hdr;
6102 struct elf_link_hash_entry **sym_hashes;
6103 struct mips_got_info *g;
6104 size_t extsymoff;
6105 const Elf_Internal_Rela *rel;
6106 const Elf_Internal_Rela *rel_end;
6107 asection *sgot;
6108 asection *sreloc;
9c5bfbb7 6109 const struct elf_backend_data *bed;
0a44bf69 6110 struct mips_elf_link_hash_table *htab;
b49e97c9 6111
1049f94e 6112 if (info->relocatable)
b34976b6 6113 return TRUE;
b49e97c9 6114
0a44bf69 6115 htab = mips_elf_hash_table (info);
b49e97c9
TS
6116 dynobj = elf_hash_table (info)->dynobj;
6117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6118 sym_hashes = elf_sym_hashes (abfd);
6119 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6120
6121 /* Check for the mips16 stub sections. */
6122
6123 name = bfd_get_section_name (abfd, sec);
0112cd26 6124 if (CONST_STRNEQ (name, FN_STUB))
b49e97c9
TS
6125 {
6126 unsigned long r_symndx;
6127
6128 /* Look at the relocation information to figure out which symbol
6129 this is for. */
6130
6131 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6132
6133 if (r_symndx < extsymoff
6134 || sym_hashes[r_symndx - extsymoff] == NULL)
6135 {
6136 asection *o;
6137
6138 /* This stub is for a local symbol. This stub will only be
6139 needed if there is some relocation in this BFD, other
6140 than a 16 bit function call, which refers to this symbol. */
6141 for (o = abfd->sections; o != NULL; o = o->next)
6142 {
6143 Elf_Internal_Rela *sec_relocs;
6144 const Elf_Internal_Rela *r, *rend;
6145
6146 /* We can ignore stub sections when looking for relocs. */
6147 if ((o->flags & SEC_RELOC) == 0
6148 || o->reloc_count == 0
0112cd26
NC
6149 || CONST_STRNEQ (bfd_get_section_name (abfd, o), FN_STUB)
6150 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_STUB)
6151 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_FP_STUB))
b49e97c9
TS
6152 continue;
6153
45d6a902 6154 sec_relocs
9719ad41 6155 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6156 info->keep_memory);
b49e97c9 6157 if (sec_relocs == NULL)
b34976b6 6158 return FALSE;
b49e97c9
TS
6159
6160 rend = sec_relocs + o->reloc_count;
6161 for (r = sec_relocs; r < rend; r++)
6162 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6163 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6164 break;
6165
6cdc0ccc 6166 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6167 free (sec_relocs);
6168
6169 if (r < rend)
6170 break;
6171 }
6172
6173 if (o == NULL)
6174 {
6175 /* There is no non-call reloc for this stub, so we do
6176 not need it. Since this function is called before
6177 the linker maps input sections to output sections, we
6178 can easily discard it by setting the SEC_EXCLUDE
6179 flag. */
6180 sec->flags |= SEC_EXCLUDE;
b34976b6 6181 return TRUE;
b49e97c9
TS
6182 }
6183
6184 /* Record this stub in an array of local symbol stubs for
6185 this BFD. */
6186 if (elf_tdata (abfd)->local_stubs == NULL)
6187 {
6188 unsigned long symcount;
6189 asection **n;
6190 bfd_size_type amt;
6191
6192 if (elf_bad_symtab (abfd))
6193 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6194 else
6195 symcount = symtab_hdr->sh_info;
6196 amt = symcount * sizeof (asection *);
9719ad41 6197 n = bfd_zalloc (abfd, amt);
b49e97c9 6198 if (n == NULL)
b34976b6 6199 return FALSE;
b49e97c9
TS
6200 elf_tdata (abfd)->local_stubs = n;
6201 }
6202
6203 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6204
6205 /* We don't need to set mips16_stubs_seen in this case.
6206 That flag is used to see whether we need to look through
6207 the global symbol table for stubs. We don't need to set
6208 it here, because we just have a local stub. */
6209 }
6210 else
6211 {
6212 struct mips_elf_link_hash_entry *h;
6213
6214 h = ((struct mips_elf_link_hash_entry *)
6215 sym_hashes[r_symndx - extsymoff]);
6216
973a3492
L
6217 while (h->root.root.type == bfd_link_hash_indirect
6218 || h->root.root.type == bfd_link_hash_warning)
6219 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6220
b49e97c9
TS
6221 /* H is the symbol this stub is for. */
6222
6223 h->fn_stub = sec;
b34976b6 6224 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6225 }
6226 }
0112cd26
NC
6227 else if (CONST_STRNEQ (name, CALL_STUB)
6228 || CONST_STRNEQ (name, CALL_FP_STUB))
b49e97c9
TS
6229 {
6230 unsigned long r_symndx;
6231 struct mips_elf_link_hash_entry *h;
6232 asection **loc;
6233
6234 /* Look at the relocation information to figure out which symbol
6235 this is for. */
6236
6237 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6238
6239 if (r_symndx < extsymoff
6240 || sym_hashes[r_symndx - extsymoff] == NULL)
6241 {
6242 /* This stub was actually built for a static symbol defined
6243 in the same file. We assume that all static symbols in
6244 mips16 code are themselves mips16, so we can simply
6245 discard this stub. Since this function is called before
6246 the linker maps input sections to output sections, we can
6247 easily discard it by setting the SEC_EXCLUDE flag. */
6248 sec->flags |= SEC_EXCLUDE;
b34976b6 6249 return TRUE;
b49e97c9
TS
6250 }
6251
6252 h = ((struct mips_elf_link_hash_entry *)
6253 sym_hashes[r_symndx - extsymoff]);
6254
6255 /* H is the symbol this stub is for. */
6256
0112cd26 6257 if (CONST_STRNEQ (name, CALL_FP_STUB))
b49e97c9
TS
6258 loc = &h->call_fp_stub;
6259 else
6260 loc = &h->call_stub;
6261
6262 /* If we already have an appropriate stub for this function, we
6263 don't need another one, so we can discard this one. Since
6264 this function is called before the linker maps input sections
6265 to output sections, we can easily discard it by setting the
6266 SEC_EXCLUDE flag. We can also discard this section if we
6267 happen to already know that this is a mips16 function; it is
6268 not necessary to check this here, as it is checked later, but
6269 it is slightly faster to check now. */
6270 if (*loc != NULL || h->root.other == STO_MIPS16)
6271 {
6272 sec->flags |= SEC_EXCLUDE;
b34976b6 6273 return TRUE;
b49e97c9
TS
6274 }
6275
6276 *loc = sec;
b34976b6 6277 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6278 }
6279
6280 if (dynobj == NULL)
6281 {
6282 sgot = NULL;
6283 g = NULL;
6284 }
6285 else
6286 {
f4416af6 6287 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6288 if (sgot == NULL)
6289 g = NULL;
6290 else
6291 {
f0abc2a1
AM
6292 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6293 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6294 BFD_ASSERT (g != NULL);
6295 }
6296 }
6297
6298 sreloc = NULL;
6299 bed = get_elf_backend_data (abfd);
6300 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6301 for (rel = relocs; rel < rel_end; ++rel)
6302 {
6303 unsigned long r_symndx;
6304 unsigned int r_type;
6305 struct elf_link_hash_entry *h;
6306
6307 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6308 r_type = ELF_R_TYPE (abfd, rel->r_info);
6309
6310 if (r_symndx < extsymoff)
6311 h = NULL;
6312 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6313 {
6314 (*_bfd_error_handler)
d003868e
AM
6315 (_("%B: Malformed reloc detected for section %s"),
6316 abfd, name);
b49e97c9 6317 bfd_set_error (bfd_error_bad_value);
b34976b6 6318 return FALSE;
b49e97c9
TS
6319 }
6320 else
6321 {
6322 h = sym_hashes[r_symndx - extsymoff];
6323
6324 /* This may be an indirect symbol created because of a version. */
6325 if (h != NULL)
6326 {
6327 while (h->root.type == bfd_link_hash_indirect)
6328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6329 }
6330 }
6331
6332 /* Some relocs require a global offset table. */
6333 if (dynobj == NULL || sgot == NULL)
6334 {
6335 switch (r_type)
6336 {
6337 case R_MIPS_GOT16:
6338 case R_MIPS_CALL16:
6339 case R_MIPS_CALL_HI16:
6340 case R_MIPS_CALL_LO16:
6341 case R_MIPS_GOT_HI16:
6342 case R_MIPS_GOT_LO16:
6343 case R_MIPS_GOT_PAGE:
6344 case R_MIPS_GOT_OFST:
6345 case R_MIPS_GOT_DISP:
86324f90 6346 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6347 case R_MIPS_TLS_GD:
6348 case R_MIPS_TLS_LDM:
b49e97c9
TS
6349 if (dynobj == NULL)
6350 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6351 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6352 return FALSE;
b49e97c9 6353 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6354 if (htab->is_vxworks && !info->shared)
6355 {
6356 (*_bfd_error_handler)
6357 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6358 abfd, (unsigned long) rel->r_offset);
6359 bfd_set_error (bfd_error_bad_value);
6360 return FALSE;
6361 }
b49e97c9
TS
6362 break;
6363
6364 case R_MIPS_32:
6365 case R_MIPS_REL32:
6366 case R_MIPS_64:
0a44bf69
RS
6367 /* In VxWorks executables, references to external symbols
6368 are handled using copy relocs or PLT stubs, so there's
6369 no need to add a dynamic relocation here. */
b49e97c9 6370 if (dynobj == NULL
0a44bf69 6371 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6372 && (sec->flags & SEC_ALLOC) != 0)
6373 elf_hash_table (info)->dynobj = dynobj = abfd;
6374 break;
6375
6376 default:
6377 break;
6378 }
6379 }
6380
0a44bf69
RS
6381 if (h)
6382 {
6383 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6384
6385 /* Relocations against the special VxWorks __GOTT_BASE__ and
6386 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6387 room for them in .rela.dyn. */
6388 if (is_gott_symbol (info, h))
6389 {
6390 if (sreloc == NULL)
6391 {
6392 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6393 if (sreloc == NULL)
6394 return FALSE;
6395 }
6396 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6397 }
6398 }
6399 else if (r_type == R_MIPS_CALL_LO16
6400 || r_type == R_MIPS_GOT_LO16
6401 || r_type == R_MIPS_GOT_DISP
6402 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6403 {
6404 /* We may need a local GOT entry for this relocation. We
6405 don't count R_MIPS_GOT_PAGE because we can estimate the
6406 maximum number of pages needed by looking at the size of
6407 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6408 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6409 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6410 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6411 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6412 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6413 rel->r_addend, g, 0))
f4416af6 6414 return FALSE;
b49e97c9
TS
6415 }
6416
6417 switch (r_type)
6418 {
6419 case R_MIPS_CALL16:
6420 if (h == NULL)
6421 {
6422 (*_bfd_error_handler)
d003868e
AM
6423 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6424 abfd, (unsigned long) rel->r_offset);
b49e97c9 6425 bfd_set_error (bfd_error_bad_value);
b34976b6 6426 return FALSE;
b49e97c9
TS
6427 }
6428 /* Fall through. */
6429
6430 case R_MIPS_CALL_HI16:
6431 case R_MIPS_CALL_LO16:
6432 if (h != NULL)
6433 {
0a44bf69
RS
6434 /* VxWorks call relocations point the function's .got.plt
6435 entry, which will be allocated by adjust_dynamic_symbol.
6436 Otherwise, this symbol requires a global GOT entry. */
6437 if (!htab->is_vxworks
6438 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6439 return FALSE;
b49e97c9
TS
6440
6441 /* We need a stub, not a plt entry for the undefined
6442 function. But we record it as if it needs plt. See
c152c796 6443 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6444 h->needs_plt = 1;
b49e97c9
TS
6445 h->type = STT_FUNC;
6446 }
6447 break;
6448
0fdc1bf1
AO
6449 case R_MIPS_GOT_PAGE:
6450 /* If this is a global, overridable symbol, GOT_PAGE will
6451 decay to GOT_DISP, so we'll need a GOT entry for it. */
6452 if (h == NULL)
6453 break;
6454 else
6455 {
6456 struct mips_elf_link_hash_entry *hmips =
6457 (struct mips_elf_link_hash_entry *) h;
143d77c5 6458
0fdc1bf1
AO
6459 while (hmips->root.root.type == bfd_link_hash_indirect
6460 || hmips->root.root.type == bfd_link_hash_warning)
6461 hmips = (struct mips_elf_link_hash_entry *)
6462 hmips->root.root.u.i.link;
143d77c5 6463
f5385ebf 6464 if (hmips->root.def_regular
0fdc1bf1 6465 && ! (info->shared && ! info->symbolic
f5385ebf 6466 && ! hmips->root.forced_local))
0fdc1bf1
AO
6467 break;
6468 }
6469 /* Fall through. */
6470
b49e97c9
TS
6471 case R_MIPS_GOT16:
6472 case R_MIPS_GOT_HI16:
6473 case R_MIPS_GOT_LO16:
6474 case R_MIPS_GOT_DISP:
0f20cc35 6475 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6476 return FALSE;
b49e97c9
TS
6477 break;
6478
0f20cc35
DJ
6479 case R_MIPS_TLS_GOTTPREL:
6480 if (info->shared)
6481 info->flags |= DF_STATIC_TLS;
6482 /* Fall through */
6483
6484 case R_MIPS_TLS_LDM:
6485 if (r_type == R_MIPS_TLS_LDM)
6486 {
6487 r_symndx = 0;
6488 h = NULL;
6489 }
6490 /* Fall through */
6491
6492 case R_MIPS_TLS_GD:
6493 /* This symbol requires a global offset table entry, or two
6494 for TLS GD relocations. */
6495 {
6496 unsigned char flag = (r_type == R_MIPS_TLS_GD
6497 ? GOT_TLS_GD
6498 : r_type == R_MIPS_TLS_LDM
6499 ? GOT_TLS_LDM
6500 : GOT_TLS_IE);
6501 if (h != NULL)
6502 {
6503 struct mips_elf_link_hash_entry *hmips =
6504 (struct mips_elf_link_hash_entry *) h;
6505 hmips->tls_type |= flag;
6506
6507 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6508 return FALSE;
6509 }
6510 else
6511 {
6512 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6513
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, flag))
6516 return FALSE;
6517 }
6518 }
6519 break;
6520
b49e97c9
TS
6521 case R_MIPS_32:
6522 case R_MIPS_REL32:
6523 case R_MIPS_64:
0a44bf69
RS
6524 /* In VxWorks executables, references to external symbols
6525 are handled using copy relocs or PLT stubs, so there's
6526 no need to add a .rela.dyn entry for this relocation. */
6527 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6528 && (sec->flags & SEC_ALLOC) != 0)
6529 {
6530 if (sreloc == NULL)
6531 {
0a44bf69 6532 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6533 if (sreloc == NULL)
f4416af6 6534 return FALSE;
b49e97c9 6535 }
b49e97c9 6536 if (info->shared)
82f0cfbd
EC
6537 {
6538 /* When creating a shared object, we must copy these
6539 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6540 relocs. Make room for this reloc in .rel(a).dyn. */
6541 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6542 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6543 /* We tell the dynamic linker that there are
6544 relocations against the text segment. */
6545 info->flags |= DF_TEXTREL;
6546 }
b49e97c9
TS
6547 else
6548 {
6549 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6550
b49e97c9
TS
6551 /* We only need to copy this reloc if the symbol is
6552 defined in a dynamic object. */
6553 hmips = (struct mips_elf_link_hash_entry *) h;
6554 ++hmips->possibly_dynamic_relocs;
943284cc 6555 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6556 /* We need it to tell the dynamic linker if there
6557 are relocations against the text segment. */
6558 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6559 }
6560
6561 /* Even though we don't directly need a GOT entry for
6562 this symbol, a symbol must have a dynamic symbol
6563 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6564 dynamic relocations against it. This does not apply
6565 to VxWorks, which does not have the usual coupling
6566 between global GOT entries and .dynsym entries. */
6567 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6568 {
6569 if (dynobj == NULL)
6570 elf_hash_table (info)->dynobj = dynobj = abfd;
6571 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6572 return FALSE;
6573 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6574 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6575 return FALSE;
6576 }
b49e97c9
TS
6577 }
6578
6579 if (SGI_COMPAT (abfd))
6580 mips_elf_hash_table (info)->compact_rel_size +=
6581 sizeof (Elf32_External_crinfo);
6582 break;
6583
0a44bf69
RS
6584 case R_MIPS_PC16:
6585 if (h)
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6587 break;
6588
b49e97c9 6589 case R_MIPS_26:
0a44bf69
RS
6590 if (h)
6591 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6592 /* Fall through. */
6593
b49e97c9
TS
6594 case R_MIPS_GPREL16:
6595 case R_MIPS_LITERAL:
6596 case R_MIPS_GPREL32:
6597 if (SGI_COMPAT (abfd))
6598 mips_elf_hash_table (info)->compact_rel_size +=
6599 sizeof (Elf32_External_crinfo);
6600 break;
6601
6602 /* This relocation describes the C++ object vtable hierarchy.
6603 Reconstruct it for later use during GC. */
6604 case R_MIPS_GNU_VTINHERIT:
c152c796 6605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6606 return FALSE;
b49e97c9
TS
6607 break;
6608
6609 /* This relocation describes which C++ vtable entries are actually
6610 used. Record for later use during GC. */
6611 case R_MIPS_GNU_VTENTRY:
c152c796 6612 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6613 return FALSE;
b49e97c9
TS
6614 break;
6615
6616 default:
6617 break;
6618 }
6619
6620 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6621 related to taking the function's address. This doesn't apply to
6622 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6623 a normal .got entry. */
6624 if (!htab->is_vxworks && h != NULL)
6625 switch (r_type)
6626 {
6627 default:
6628 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6629 break;
6630 case R_MIPS_CALL16:
6631 case R_MIPS_CALL_HI16:
6632 case R_MIPS_CALL_LO16:
6633 case R_MIPS_JALR:
6634 break;
6635 }
b49e97c9
TS
6636
6637 /* If this reloc is not a 16 bit call, and it has a global
6638 symbol, then we will need the fn_stub if there is one.
6639 References from a stub section do not count. */
6640 if (h != NULL
6641 && r_type != R_MIPS16_26
0112cd26
NC
6642 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), FN_STUB)
6643 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_STUB)
6644 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_FP_STUB))
b49e97c9
TS
6645 {
6646 struct mips_elf_link_hash_entry *mh;
6647
6648 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6649 mh->need_fn_stub = TRUE;
b49e97c9
TS
6650 }
6651 }
6652
b34976b6 6653 return TRUE;
b49e97c9
TS
6654}
6655\f
d0647110 6656bfd_boolean
9719ad41
RS
6657_bfd_mips_relax_section (bfd *abfd, asection *sec,
6658 struct bfd_link_info *link_info,
6659 bfd_boolean *again)
d0647110
AO
6660{
6661 Elf_Internal_Rela *internal_relocs;
6662 Elf_Internal_Rela *irel, *irelend;
6663 Elf_Internal_Shdr *symtab_hdr;
6664 bfd_byte *contents = NULL;
d0647110
AO
6665 size_t extsymoff;
6666 bfd_boolean changed_contents = FALSE;
6667 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6668 Elf_Internal_Sym *isymbuf = NULL;
6669
6670 /* We are not currently changing any sizes, so only one pass. */
6671 *again = FALSE;
6672
1049f94e 6673 if (link_info->relocatable)
d0647110
AO
6674 return TRUE;
6675
9719ad41 6676 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6677 link_info->keep_memory);
d0647110
AO
6678 if (internal_relocs == NULL)
6679 return TRUE;
6680
6681 irelend = internal_relocs + sec->reloc_count
6682 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6684 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6685
6686 for (irel = internal_relocs; irel < irelend; irel++)
6687 {
6688 bfd_vma symval;
6689 bfd_signed_vma sym_offset;
6690 unsigned int r_type;
6691 unsigned long r_symndx;
6692 asection *sym_sec;
6693 unsigned long instruction;
6694
6695 /* Turn jalr into bgezal, and jr into beq, if they're marked
6696 with a JALR relocation, that indicate where they jump to.
6697 This saves some pipeline bubbles. */
6698 r_type = ELF_R_TYPE (abfd, irel->r_info);
6699 if (r_type != R_MIPS_JALR)
6700 continue;
6701
6702 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6703 /* Compute the address of the jump target. */
6704 if (r_symndx >= extsymoff)
6705 {
6706 struct mips_elf_link_hash_entry *h
6707 = ((struct mips_elf_link_hash_entry *)
6708 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6709
6710 while (h->root.root.type == bfd_link_hash_indirect
6711 || h->root.root.type == bfd_link_hash_warning)
6712 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6713
d0647110
AO
6714 /* If a symbol is undefined, or if it may be overridden,
6715 skip it. */
6716 if (! ((h->root.root.type == bfd_link_hash_defined
6717 || h->root.root.type == bfd_link_hash_defweak)
6718 && h->root.root.u.def.section)
6719 || (link_info->shared && ! link_info->symbolic
f5385ebf 6720 && !h->root.forced_local))
d0647110
AO
6721 continue;
6722
6723 sym_sec = h->root.root.u.def.section;
6724 if (sym_sec->output_section)
6725 symval = (h->root.root.u.def.value
6726 + sym_sec->output_section->vma
6727 + sym_sec->output_offset);
6728 else
6729 symval = h->root.root.u.def.value;
6730 }
6731 else
6732 {
6733 Elf_Internal_Sym *isym;
6734
6735 /* Read this BFD's symbols if we haven't done so already. */
6736 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6737 {
6738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6739 if (isymbuf == NULL)
6740 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6741 symtab_hdr->sh_info, 0,
6742 NULL, NULL, NULL);
6743 if (isymbuf == NULL)
6744 goto relax_return;
6745 }
6746
6747 isym = isymbuf + r_symndx;
6748 if (isym->st_shndx == SHN_UNDEF)
6749 continue;
6750 else if (isym->st_shndx == SHN_ABS)
6751 sym_sec = bfd_abs_section_ptr;
6752 else if (isym->st_shndx == SHN_COMMON)
6753 sym_sec = bfd_com_section_ptr;
6754 else
6755 sym_sec
6756 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6757 symval = isym->st_value
6758 + sym_sec->output_section->vma
6759 + sym_sec->output_offset;
6760 }
6761
6762 /* Compute branch offset, from delay slot of the jump to the
6763 branch target. */
6764 sym_offset = (symval + irel->r_addend)
6765 - (sec_start + irel->r_offset + 4);
6766
6767 /* Branch offset must be properly aligned. */
6768 if ((sym_offset & 3) != 0)
6769 continue;
6770
6771 sym_offset >>= 2;
6772
6773 /* Check that it's in range. */
6774 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6775 continue;
143d77c5 6776
d0647110
AO
6777 /* Get the section contents if we haven't done so already. */
6778 if (contents == NULL)
6779 {
6780 /* Get cached copy if it exists. */
6781 if (elf_section_data (sec)->this_hdr.contents != NULL)
6782 contents = elf_section_data (sec)->this_hdr.contents;
6783 else
6784 {
eea6121a 6785 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6786 goto relax_return;
6787 }
6788 }
6789
6790 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6791
6792 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6793 if ((instruction & 0xfc1fffff) == 0x0000f809)
6794 instruction = 0x04110000;
6795 /* If it was jr <reg>, turn it into b <target>. */
6796 else if ((instruction & 0xfc1fffff) == 0x00000008)
6797 instruction = 0x10000000;
6798 else
6799 continue;
6800
6801 instruction |= (sym_offset & 0xffff);
6802 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6803 changed_contents = TRUE;
6804 }
6805
6806 if (contents != NULL
6807 && elf_section_data (sec)->this_hdr.contents != contents)
6808 {
6809 if (!changed_contents && !link_info->keep_memory)
6810 free (contents);
6811 else
6812 {
6813 /* Cache the section contents for elf_link_input_bfd. */
6814 elf_section_data (sec)->this_hdr.contents = contents;
6815 }
6816 }
6817 return TRUE;
6818
143d77c5 6819 relax_return:
eea6121a
AM
6820 if (contents != NULL
6821 && elf_section_data (sec)->this_hdr.contents != contents)
6822 free (contents);
d0647110
AO
6823 return FALSE;
6824}
6825\f
b49e97c9
TS
6826/* Adjust a symbol defined by a dynamic object and referenced by a
6827 regular object. The current definition is in some section of the
6828 dynamic object, but we're not including those sections. We have to
6829 change the definition to something the rest of the link can
6830 understand. */
6831
b34976b6 6832bfd_boolean
9719ad41
RS
6833_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6834 struct elf_link_hash_entry *h)
b49e97c9
TS
6835{
6836 bfd *dynobj;
6837 struct mips_elf_link_hash_entry *hmips;
6838 asection *s;
5108fc1b 6839 struct mips_elf_link_hash_table *htab;
b49e97c9 6840
5108fc1b 6841 htab = mips_elf_hash_table (info);
b49e97c9
TS
6842 dynobj = elf_hash_table (info)->dynobj;
6843
6844 /* Make sure we know what is going on here. */
6845 BFD_ASSERT (dynobj != NULL
f5385ebf 6846 && (h->needs_plt
f6e332e6 6847 || h->u.weakdef != NULL
f5385ebf
AM
6848 || (h->def_dynamic
6849 && h->ref_regular
6850 && !h->def_regular)));
b49e97c9
TS
6851
6852 /* If this symbol is defined in a dynamic object, we need to copy
6853 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6854 file. */
6855 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6856 if (! info->relocatable
b49e97c9
TS
6857 && hmips->possibly_dynamic_relocs != 0
6858 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6859 || !h->def_regular))
b49e97c9 6860 {
0a44bf69
RS
6861 mips_elf_allocate_dynamic_relocations
6862 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6863 if (hmips->readonly_reloc)
b49e97c9
TS
6864 /* We tell the dynamic linker that there are relocations
6865 against the text segment. */
6866 info->flags |= DF_TEXTREL;
6867 }
6868
6869 /* For a function, create a stub, if allowed. */
6870 if (! hmips->no_fn_stub
f5385ebf 6871 && h->needs_plt)
b49e97c9
TS
6872 {
6873 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6874 return TRUE;
b49e97c9
TS
6875
6876 /* If this symbol is not defined in a regular file, then set
6877 the symbol to the stub location. This is required to make
6878 function pointers compare as equal between the normal
6879 executable and the shared library. */
f5385ebf 6880 if (!h->def_regular)
b49e97c9
TS
6881 {
6882 /* We need .stub section. */
6883 s = bfd_get_section_by_name (dynobj,
6884 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6885 BFD_ASSERT (s != NULL);
6886
6887 h->root.u.def.section = s;
eea6121a 6888 h->root.u.def.value = s->size;
b49e97c9
TS
6889
6890 /* XXX Write this stub address somewhere. */
eea6121a 6891 h->plt.offset = s->size;
b49e97c9
TS
6892
6893 /* Make room for this stub code. */
5108fc1b 6894 s->size += htab->function_stub_size;
b49e97c9
TS
6895
6896 /* The last half word of the stub will be filled with the index
6897 of this symbol in .dynsym section. */
b34976b6 6898 return TRUE;
b49e97c9
TS
6899 }
6900 }
6901 else if ((h->type == STT_FUNC)
f5385ebf 6902 && !h->needs_plt)
b49e97c9
TS
6903 {
6904 /* This will set the entry for this symbol in the GOT to 0, and
6905 the dynamic linker will take care of this. */
6906 h->root.u.def.value = 0;
b34976b6 6907 return TRUE;
b49e97c9
TS
6908 }
6909
6910 /* If this is a weak symbol, and there is a real definition, the
6911 processor independent code will have arranged for us to see the
6912 real definition first, and we can just use the same value. */
f6e332e6 6913 if (h->u.weakdef != NULL)
b49e97c9 6914 {
f6e332e6
AM
6915 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6916 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6917 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6918 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6919 return TRUE;
b49e97c9
TS
6920 }
6921
6922 /* This is a reference to a symbol defined by a dynamic object which
6923 is not a function. */
6924
b34976b6 6925 return TRUE;
b49e97c9 6926}
0a44bf69
RS
6927
6928/* Likewise, for VxWorks. */
6929
6930bfd_boolean
6931_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6932 struct elf_link_hash_entry *h)
6933{
6934 bfd *dynobj;
6935 struct mips_elf_link_hash_entry *hmips;
6936 struct mips_elf_link_hash_table *htab;
6937 unsigned int power_of_two;
6938
6939 htab = mips_elf_hash_table (info);
6940 dynobj = elf_hash_table (info)->dynobj;
6941 hmips = (struct mips_elf_link_hash_entry *) h;
6942
6943 /* Make sure we know what is going on here. */
6944 BFD_ASSERT (dynobj != NULL
6945 && (h->needs_plt
6946 || h->needs_copy
6947 || h->u.weakdef != NULL
6948 || (h->def_dynamic
6949 && h->ref_regular
6950 && !h->def_regular)));
6951
6952 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6953 either (a) we want to branch to the symbol or (b) we're linking an
6954 executable that needs a canonical function address. In the latter
6955 case, the canonical address will be the address of the executable's
6956 load stub. */
6957 if ((hmips->is_branch_target
6958 || (!info->shared
6959 && h->type == STT_FUNC
6960 && hmips->is_relocation_target))
6961 && h->def_dynamic
6962 && h->ref_regular
6963 && !h->def_regular
6964 && !h->forced_local)
6965 h->needs_plt = 1;
6966
6967 /* Locally-binding symbols do not need a PLT stub; we can refer to
6968 the functions directly. */
6969 else if (h->needs_plt
6970 && (SYMBOL_CALLS_LOCAL (info, h)
6971 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6972 && h->root.type == bfd_link_hash_undefweak)))
6973 {
6974 h->needs_plt = 0;
6975 return TRUE;
6976 }
6977
6978 if (h->needs_plt)
6979 {
6980 /* If this is the first symbol to need a PLT entry, allocate room
6981 for the header, and for the header's .rela.plt.unloaded entries. */
6982 if (htab->splt->size == 0)
6983 {
6984 htab->splt->size += htab->plt_header_size;
6985 if (!info->shared)
6986 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6987 }
6988
6989 /* Assign the next .plt entry to this symbol. */
6990 h->plt.offset = htab->splt->size;
6991 htab->splt->size += htab->plt_entry_size;
6992
6993 /* If the output file has no definition of the symbol, set the
6994 symbol's value to the address of the stub. For executables,
6995 point at the PLT load stub rather than the lazy resolution stub;
6996 this stub will become the canonical function address. */
6997 if (!h->def_regular)
6998 {
6999 h->root.u.def.section = htab->splt;
7000 h->root.u.def.value = h->plt.offset;
7001 if (!info->shared)
7002 h->root.u.def.value += 8;
7003 }
7004
7005 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7006 htab->sgotplt->size += 4;
7007 htab->srelplt->size += sizeof (Elf32_External_Rela);
7008
7009 /* Make room for the .rela.plt.unloaded relocations. */
7010 if (!info->shared)
7011 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7012
7013 return TRUE;
7014 }
7015
7016 /* If a function symbol is defined by a dynamic object, and we do not
7017 need a PLT stub for it, the symbol's value should be zero. */
7018 if (h->type == STT_FUNC
7019 && h->def_dynamic
7020 && h->ref_regular
7021 && !h->def_regular)
7022 {
7023 h->root.u.def.value = 0;
7024 return TRUE;
7025 }
7026
7027 /* If this is a weak symbol, and there is a real definition, the
7028 processor independent code will have arranged for us to see the
7029 real definition first, and we can just use the same value. */
7030 if (h->u.weakdef != NULL)
7031 {
7032 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7033 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7034 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7035 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7036 return TRUE;
7037 }
7038
7039 /* This is a reference to a symbol defined by a dynamic object which
7040 is not a function. */
7041 if (info->shared)
7042 return TRUE;
7043
7044 /* We must allocate the symbol in our .dynbss section, which will
7045 become part of the .bss section of the executable. There will be
7046 an entry for this symbol in the .dynsym section. The dynamic
7047 object will contain position independent code, so all references
7048 from the dynamic object to this symbol will go through the global
7049 offset table. The dynamic linker will use the .dynsym entry to
7050 determine the address it must put in the global offset table, so
7051 both the dynamic object and the regular object will refer to the
7052 same memory location for the variable. */
7053
7054 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7055 {
7056 htab->srelbss->size += sizeof (Elf32_External_Rela);
7057 h->needs_copy = 1;
7058 }
7059
7060 /* We need to figure out the alignment required for this symbol. */
7061 power_of_two = bfd_log2 (h->size);
7062 if (power_of_two > 4)
7063 power_of_two = 4;
7064
7065 /* Apply the required alignment. */
7066 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7067 (bfd_size_type) 1 << power_of_two);
7068 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7069 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7070 return FALSE;
7071
7072 /* Define the symbol as being at this point in the section. */
7073 h->root.u.def.section = htab->sdynbss;
7074 h->root.u.def.value = htab->sdynbss->size;
7075
7076 /* Increment the section size to make room for the symbol. */
7077 htab->sdynbss->size += h->size;
7078
7079 return TRUE;
7080}
b49e97c9 7081\f
5108fc1b
RS
7082/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7083 The number might be exact or a worst-case estimate, depending on how
7084 much information is available to elf_backend_omit_section_dynsym at
7085 the current linking stage. */
7086
7087static bfd_size_type
7088count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7089{
7090 bfd_size_type count;
7091
7092 count = 0;
7093 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7094 {
7095 asection *p;
7096 const struct elf_backend_data *bed;
7097
7098 bed = get_elf_backend_data (output_bfd);
7099 for (p = output_bfd->sections; p ; p = p->next)
7100 if ((p->flags & SEC_EXCLUDE) == 0
7101 && (p->flags & SEC_ALLOC) != 0
7102 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7103 ++count;
7104 }
7105 return count;
7106}
7107
b49e97c9
TS
7108/* This function is called after all the input files have been read,
7109 and the input sections have been assigned to output sections. We
7110 check for any mips16 stub sections that we can discard. */
7111
b34976b6 7112bfd_boolean
9719ad41
RS
7113_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7114 struct bfd_link_info *info)
b49e97c9
TS
7115{
7116 asection *ri;
7117
f4416af6
AO
7118 bfd *dynobj;
7119 asection *s;
7120 struct mips_got_info *g;
7121 int i;
7122 bfd_size_type loadable_size = 0;
7123 bfd_size_type local_gotno;
5108fc1b 7124 bfd_size_type dynsymcount;
f4416af6 7125 bfd *sub;
0f20cc35 7126 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7127 struct mips_elf_link_hash_table *htab;
7128
7129 htab = mips_elf_hash_table (info);
f4416af6 7130
b49e97c9
TS
7131 /* The .reginfo section has a fixed size. */
7132 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7133 if (ri != NULL)
9719ad41 7134 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7135
1049f94e 7136 if (! (info->relocatable
f4416af6
AO
7137 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7138 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7139 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7140
7141 dynobj = elf_hash_table (info)->dynobj;
7142 if (dynobj == NULL)
7143 /* Relocatable links don't have it. */
7144 return TRUE;
143d77c5 7145
f4416af6
AO
7146 g = mips_elf_got_info (dynobj, &s);
7147 if (s == NULL)
b34976b6 7148 return TRUE;
b49e97c9 7149
f4416af6
AO
7150 /* Calculate the total loadable size of the output. That
7151 will give us the maximum number of GOT_PAGE entries
7152 required. */
7153 for (sub = info->input_bfds; sub; sub = sub->link_next)
7154 {
7155 asection *subsection;
7156
7157 for (subsection = sub->sections;
7158 subsection;
7159 subsection = subsection->next)
7160 {
7161 if ((subsection->flags & SEC_ALLOC) == 0)
7162 continue;
eea6121a 7163 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7164 &~ (bfd_size_type) 0xf);
7165 }
7166 }
7167
7168 /* There has to be a global GOT entry for every symbol with
7169 a dynamic symbol table index of DT_MIPS_GOTSYM or
7170 higher. Therefore, it make sense to put those symbols
7171 that need GOT entries at the end of the symbol table. We
7172 do that here. */
7173 if (! mips_elf_sort_hash_table (info, 1))
7174 return FALSE;
7175
7176 if (g->global_gotsym != NULL)
7177 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7178 else
7179 /* If there are no global symbols, or none requiring
7180 relocations, then GLOBAL_GOTSYM will be NULL. */
7181 i = 0;
7182
5108fc1b
RS
7183 /* Get a worst-case estimate of the number of dynamic symbols needed.
7184 At this point, dynsymcount does not account for section symbols
7185 and count_section_dynsyms may overestimate the number that will
7186 be needed. */
7187 dynsymcount = (elf_hash_table (info)->dynsymcount
7188 + count_section_dynsyms (output_bfd, info));
7189
7190 /* Determine the size of one stub entry. */
7191 htab->function_stub_size = (dynsymcount > 0x10000
7192 ? MIPS_FUNCTION_STUB_BIG_SIZE
7193 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7194
f4416af6
AO
7195 /* In the worst case, we'll get one stub per dynamic symbol, plus
7196 one to account for the dummy entry at the end required by IRIX
7197 rld. */
5108fc1b 7198 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7199
0a44bf69
RS
7200 if (htab->is_vxworks)
7201 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7202 relocations against local symbols evaluate to "G", and the EABI does
7203 not include R_MIPS_GOT_PAGE. */
7204 local_gotno = 0;
7205 else
7206 /* Assume there are two loadable segments consisting of contiguous
7207 sections. Is 5 enough? */
7208 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7209
7210 g->local_gotno += local_gotno;
eea6121a 7211 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7212
7213 g->global_gotno = i;
eea6121a 7214 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7215
0f20cc35
DJ
7216 /* We need to calculate tls_gotno for global symbols at this point
7217 instead of building it up earlier, to avoid doublecounting
7218 entries for one global symbol from multiple input files. */
7219 count_tls_arg.info = info;
7220 count_tls_arg.needed = 0;
7221 elf_link_hash_traverse (elf_hash_table (info),
7222 mips_elf_count_global_tls_entries,
7223 &count_tls_arg);
7224 g->tls_gotno += count_tls_arg.needed;
7225 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7226
7227 mips_elf_resolve_final_got_entries (g);
7228
0a44bf69
RS
7229 /* VxWorks does not support multiple GOTs. It initializes $gp to
7230 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7231 dynamic loader. */
7232 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7233 {
7234 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7235 return FALSE;
7236 }
7237 else
7238 {
7239 /* Set up TLS entries for the first GOT. */
7240 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7241 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7242 }
b49e97c9 7243
b34976b6 7244 return TRUE;
b49e97c9
TS
7245}
7246
7247/* Set the sizes of the dynamic sections. */
7248
b34976b6 7249bfd_boolean
9719ad41
RS
7250_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7251 struct bfd_link_info *info)
b49e97c9
TS
7252{
7253 bfd *dynobj;
0a44bf69 7254 asection *s, *sreldyn;
b34976b6 7255 bfd_boolean reltext;
0a44bf69 7256 struct mips_elf_link_hash_table *htab;
b49e97c9 7257
0a44bf69 7258 htab = mips_elf_hash_table (info);
b49e97c9
TS
7259 dynobj = elf_hash_table (info)->dynobj;
7260 BFD_ASSERT (dynobj != NULL);
7261
7262 if (elf_hash_table (info)->dynamic_sections_created)
7263 {
7264 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7265 if (info->executable)
b49e97c9
TS
7266 {
7267 s = bfd_get_section_by_name (dynobj, ".interp");
7268 BFD_ASSERT (s != NULL);
eea6121a 7269 s->size
b49e97c9
TS
7270 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7271 s->contents
7272 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7273 }
7274 }
7275
7276 /* The check_relocs and adjust_dynamic_symbol entry points have
7277 determined the sizes of the various dynamic sections. Allocate
7278 memory for them. */
b34976b6 7279 reltext = FALSE;
0a44bf69 7280 sreldyn = NULL;
b49e97c9
TS
7281 for (s = dynobj->sections; s != NULL; s = s->next)
7282 {
7283 const char *name;
b49e97c9
TS
7284
7285 /* It's OK to base decisions on the section name, because none
7286 of the dynobj section names depend upon the input files. */
7287 name = bfd_get_section_name (dynobj, s);
7288
7289 if ((s->flags & SEC_LINKER_CREATED) == 0)
7290 continue;
7291
0112cd26 7292 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7293 {
c456f082 7294 if (s->size != 0)
b49e97c9
TS
7295 {
7296 const char *outname;
7297 asection *target;
7298
7299 /* If this relocation section applies to a read only
7300 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7301 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7302 assert a DT_TEXTREL entry rather than testing whether
7303 there exists a relocation to a read only section or
7304 not. */
7305 outname = bfd_get_section_name (output_bfd,
7306 s->output_section);
7307 target = bfd_get_section_by_name (output_bfd, outname + 4);
7308 if ((target != NULL
7309 && (target->flags & SEC_READONLY) != 0
7310 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7311 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7312 reltext = TRUE;
b49e97c9
TS
7313
7314 /* We use the reloc_count field as a counter if we need
7315 to copy relocs into the output file. */
0a44bf69 7316 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7317 s->reloc_count = 0;
f4416af6
AO
7318
7319 /* If combreloc is enabled, elf_link_sort_relocs() will
7320 sort relocations, but in a different way than we do,
7321 and before we're done creating relocations. Also, it
7322 will move them around between input sections'
7323 relocation's contents, so our sorting would be
7324 broken, so don't let it run. */
7325 info->combreloc = 0;
b49e97c9
TS
7326 }
7327 }
0a44bf69
RS
7328 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7329 {
7330 /* Executables do not need a GOT. */
7331 if (info->shared)
7332 {
7333 /* Allocate relocations for all but the reserved entries. */
7334 struct mips_got_info *g;
7335 unsigned int count;
7336
7337 g = mips_elf_got_info (dynobj, NULL);
7338 count = (g->global_gotno
7339 + g->local_gotno
7340 - MIPS_RESERVED_GOTNO (info));
7341 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7342 }
7343 }
0112cd26 7344 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7345 {
f4416af6
AO
7346 /* _bfd_mips_elf_always_size_sections() has already done
7347 most of the work, but some symbols may have been mapped
7348 to versions that we must now resolve in the got_entries
7349 hash tables. */
7350 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7351 struct mips_got_info *g = gg;
7352 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7353 unsigned int needed_relocs = 0;
143d77c5 7354
f4416af6 7355 if (gg->next)
b49e97c9 7356 {
f4416af6
AO
7357 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7358 set_got_offset_arg.info = info;
b49e97c9 7359
0f20cc35
DJ
7360 /* NOTE 2005-02-03: How can this call, or the next, ever
7361 find any indirect entries to resolve? They were all
7362 resolved in mips_elf_multi_got. */
f4416af6
AO
7363 mips_elf_resolve_final_got_entries (gg);
7364 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7365 {
f4416af6
AO
7366 unsigned int save_assign;
7367
7368 mips_elf_resolve_final_got_entries (g);
7369
7370 /* Assign offsets to global GOT entries. */
7371 save_assign = g->assigned_gotno;
7372 g->assigned_gotno = g->local_gotno;
7373 set_got_offset_arg.g = g;
7374 set_got_offset_arg.needed_relocs = 0;
7375 htab_traverse (g->got_entries,
7376 mips_elf_set_global_got_offset,
7377 &set_got_offset_arg);
7378 needed_relocs += set_got_offset_arg.needed_relocs;
7379 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7380 <= g->global_gotno);
7381
7382 g->assigned_gotno = save_assign;
7383 if (info->shared)
7384 {
7385 needed_relocs += g->local_gotno - g->assigned_gotno;
7386 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7387 + g->next->global_gotno
0f20cc35 7388 + g->next->tls_gotno
0a44bf69 7389 + MIPS_RESERVED_GOTNO (info));
f4416af6 7390 }
b49e97c9 7391 }
0f20cc35
DJ
7392 }
7393 else
7394 {
7395 struct mips_elf_count_tls_arg arg;
7396 arg.info = info;
7397 arg.needed = 0;
b49e97c9 7398
0f20cc35
DJ
7399 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7400 &arg);
7401 elf_link_hash_traverse (elf_hash_table (info),
7402 mips_elf_count_global_tls_relocs,
7403 &arg);
7404
7405 needed_relocs += arg.needed;
f4416af6 7406 }
0f20cc35
DJ
7407
7408 if (needed_relocs)
0a44bf69
RS
7409 mips_elf_allocate_dynamic_relocations (dynobj, info,
7410 needed_relocs);
b49e97c9
TS
7411 }
7412 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7413 {
8dc1a139 7414 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7415 of .text section. So put a dummy. XXX */
7416 s->size += htab->function_stub_size;
b49e97c9
TS
7417 }
7418 else if (! info->shared
7419 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7420 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7421 {
5108fc1b 7422 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7423 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7424 s->size += 4;
b49e97c9
TS
7425 }
7426 else if (SGI_COMPAT (output_bfd)
0112cd26 7427 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7428 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7429 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7430 && s != htab->sgotplt
7431 && s != htab->splt)
b49e97c9
TS
7432 {
7433 /* It's not one of our sections, so don't allocate space. */
7434 continue;
7435 }
7436
c456f082 7437 if (s->size == 0)
b49e97c9 7438 {
8423293d 7439 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7440 continue;
7441 }
7442
c456f082
AM
7443 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7444 continue;
7445
0a44bf69
RS
7446 /* Allocate memory for this section last, since we may increase its
7447 size above. */
7448 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7449 {
7450 sreldyn = s;
7451 continue;
7452 }
7453
b49e97c9 7454 /* Allocate memory for the section contents. */
eea6121a 7455 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7456 if (s->contents == NULL)
b49e97c9
TS
7457 {
7458 bfd_set_error (bfd_error_no_memory);
b34976b6 7459 return FALSE;
b49e97c9
TS
7460 }
7461 }
7462
0a44bf69
RS
7463 /* Allocate memory for the .rel(a).dyn section. */
7464 if (sreldyn != NULL)
7465 {
7466 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7467 if (sreldyn->contents == NULL)
7468 {
7469 bfd_set_error (bfd_error_no_memory);
7470 return FALSE;
7471 }
7472 }
7473
b49e97c9
TS
7474 if (elf_hash_table (info)->dynamic_sections_created)
7475 {
7476 /* Add some entries to the .dynamic section. We fill in the
7477 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7478 must add the entries now so that we get the correct size for
7479 the .dynamic section. The DT_DEBUG entry is filled in by the
7480 dynamic linker and used by the debugger. */
6a483765 7481 if (info->executable)
b49e97c9
TS
7482 {
7483 /* SGI object has the equivalence of DT_DEBUG in the
7484 DT_MIPS_RLD_MAP entry. */
7485 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7486 return FALSE;
b49e97c9
TS
7487 if (!SGI_COMPAT (output_bfd))
7488 {
7489 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7490 return FALSE;
b49e97c9
TS
7491 }
7492 }
b49e97c9 7493
0a44bf69 7494 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7495 info->flags |= DF_TEXTREL;
7496
7497 if ((info->flags & DF_TEXTREL) != 0)
7498 {
7499 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7500 return FALSE;
943284cc
DJ
7501
7502 /* Clear the DF_TEXTREL flag. It will be set again if we
7503 write out an actual text relocation; we may not, because
7504 at this point we do not know whether e.g. any .eh_frame
7505 absolute relocations have been converted to PC-relative. */
7506 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7507 }
7508
7509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7510 return FALSE;
b49e97c9 7511
0a44bf69 7512 if (htab->is_vxworks)
b49e97c9 7513 {
0a44bf69
RS
7514 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7515 use any of the DT_MIPS_* tags. */
7516 if (mips_elf_rel_dyn_section (info, FALSE))
7517 {
7518 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7519 return FALSE;
b49e97c9 7520
0a44bf69
RS
7521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7522 return FALSE;
b49e97c9 7523
0a44bf69
RS
7524 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7525 return FALSE;
7526 }
7527 if (htab->splt->size > 0)
7528 {
7529 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7530 return FALSE;
7531
7532 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7533 return FALSE;
7534
7535 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7536 return FALSE;
7537 }
b49e97c9 7538 }
0a44bf69
RS
7539 else
7540 {
7541 if (mips_elf_rel_dyn_section (info, FALSE))
7542 {
7543 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7544 return FALSE;
b49e97c9 7545
0a44bf69
RS
7546 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7547 return FALSE;
b49e97c9 7548
0a44bf69
RS
7549 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7550 return FALSE;
7551 }
b49e97c9 7552
0a44bf69
RS
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7554 return FALSE;
b49e97c9 7555
0a44bf69
RS
7556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7557 return FALSE;
b49e97c9 7558
0a44bf69
RS
7559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7560 return FALSE;
b49e97c9 7561
0a44bf69
RS
7562 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7563 return FALSE;
b49e97c9 7564
0a44bf69
RS
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7566 return FALSE;
b49e97c9 7567
0a44bf69
RS
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7569 return FALSE;
b49e97c9 7570
0a44bf69
RS
7571 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7572 return FALSE;
7573
7574 if (IRIX_COMPAT (dynobj) == ict_irix5
7575 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7576 return FALSE;
7577
7578 if (IRIX_COMPAT (dynobj) == ict_irix6
7579 && (bfd_get_section_by_name
7580 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7581 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7582 return FALSE;
7583 }
b49e97c9
TS
7584 }
7585
b34976b6 7586 return TRUE;
b49e97c9
TS
7587}
7588\f
81d43bff
RS
7589/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7590 Adjust its R_ADDEND field so that it is correct for the output file.
7591 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7592 and sections respectively; both use symbol indexes. */
7593
7594static void
7595mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7596 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7597 asection **local_sections, Elf_Internal_Rela *rel)
7598{
7599 unsigned int r_type, r_symndx;
7600 Elf_Internal_Sym *sym;
7601 asection *sec;
7602
7603 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7604 {
7605 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7606 if (r_type == R_MIPS16_GPREL
7607 || r_type == R_MIPS_GPREL16
7608 || r_type == R_MIPS_GPREL32
7609 || r_type == R_MIPS_LITERAL)
7610 {
7611 rel->r_addend += _bfd_get_gp_value (input_bfd);
7612 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7613 }
7614
7615 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7616 sym = local_syms + r_symndx;
7617
7618 /* Adjust REL's addend to account for section merging. */
7619 if (!info->relocatable)
7620 {
7621 sec = local_sections[r_symndx];
7622 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7623 }
7624
7625 /* This would normally be done by the rela_normal code in elflink.c. */
7626 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7627 rel->r_addend += local_sections[r_symndx]->output_offset;
7628 }
7629}
7630
b49e97c9
TS
7631/* Relocate a MIPS ELF section. */
7632
b34976b6 7633bfd_boolean
9719ad41
RS
7634_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7635 bfd *input_bfd, asection *input_section,
7636 bfd_byte *contents, Elf_Internal_Rela *relocs,
7637 Elf_Internal_Sym *local_syms,
7638 asection **local_sections)
b49e97c9
TS
7639{
7640 Elf_Internal_Rela *rel;
7641 const Elf_Internal_Rela *relend;
7642 bfd_vma addend = 0;
b34976b6 7643 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7644 const struct elf_backend_data *bed;
b49e97c9
TS
7645
7646 bed = get_elf_backend_data (output_bfd);
7647 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7648 for (rel = relocs; rel < relend; ++rel)
7649 {
7650 const char *name;
c9adbffe 7651 bfd_vma value = 0;
b49e97c9 7652 reloc_howto_type *howto;
b34976b6
AM
7653 bfd_boolean require_jalx;
7654 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7655 REL relocation. */
b34976b6 7656 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7657 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7658 const char *msg;
b49e97c9
TS
7659
7660 /* Find the relocation howto for this relocation. */
4a14403c 7661 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7662 {
7663 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7664 64-bit code, but make sure all their addresses are in the
7665 lowermost or uppermost 32-bit section of the 64-bit address
7666 space. Thus, when they use an R_MIPS_64 they mean what is
7667 usually meant by R_MIPS_32, with the exception that the
7668 stored value is sign-extended to 64 bits. */
b34976b6 7669 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7670
7671 /* On big-endian systems, we need to lie about the position
7672 of the reloc. */
7673 if (bfd_big_endian (input_bfd))
7674 rel->r_offset += 4;
7675 }
7676 else
7677 /* NewABI defaults to RELA relocations. */
7678 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
7679 NEWABI_P (input_bfd)
7680 && (MIPS_RELOC_RELA_P
7681 (input_bfd, input_section,
7682 rel - relocs)));
b49e97c9
TS
7683
7684 if (!use_saved_addend_p)
7685 {
7686 Elf_Internal_Shdr *rel_hdr;
7687
7688 /* If these relocations were originally of the REL variety,
7689 we must pull the addend out of the field that will be
7690 relocated. Otherwise, we simply use the contents of the
7691 RELA relocation. To determine which flavor or relocation
7692 this is, we depend on the fact that the INPUT_SECTION's
7693 REL_HDR is read before its REL_HDR2. */
7694 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7695 if ((size_t) (rel - relocs)
7696 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7697 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7698 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7699 {
d6f16593
MR
7700 bfd_byte *location = contents + rel->r_offset;
7701
b49e97c9 7702 /* Note that this is a REL relocation. */
b34976b6 7703 rela_relocation_p = FALSE;
b49e97c9
TS
7704
7705 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7706 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7707 location);
b49e97c9
TS
7708 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7709 contents);
d6f16593
MR
7710 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7711 location);
7712
b49e97c9
TS
7713 addend &= howto->src_mask;
7714
7715 /* For some kinds of relocations, the ADDEND is a
7716 combination of the addend stored in two different
7717 relocations. */
d6f16593 7718 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7719 || (r_type == R_MIPS_GOT16
7720 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7721 local_sections, FALSE)))
b49e97c9
TS
7722 {
7723 bfd_vma l;
7724 const Elf_Internal_Rela *lo16_relocation;
7725 reloc_howto_type *lo16_howto;
d6f16593
MR
7726 bfd_byte *lo16_location;
7727 int lo16_type;
7728
7729 if (r_type == R_MIPS16_HI16)
7730 lo16_type = R_MIPS16_LO16;
7731 else
7732 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7733
7734 /* The combined value is the sum of the HI16 addend,
7735 left-shifted by sixteen bits, and the LO16
7736 addend, sign extended. (Usually, the code does
7737 a `lui' of the HI16 value, and then an `addiu' of
7738 the LO16 value.)
7739
4030e8f6
CD
7740 Scan ahead to find a matching LO16 relocation.
7741
7742 According to the MIPS ELF ABI, the R_MIPS_LO16
7743 relocation must be immediately following.
7744 However, for the IRIX6 ABI, the next relocation
7745 may be a composed relocation consisting of
7746 several relocations for the same address. In
7747 that case, the R_MIPS_LO16 relocation may occur
7748 as one of these. We permit a similar extension
7749 in general, as that is useful for GCC. */
7750 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7751 lo16_type,
b49e97c9
TS
7752 rel, relend);
7753 if (lo16_relocation == NULL)
b34976b6 7754 return FALSE;
b49e97c9 7755
d6f16593
MR
7756 lo16_location = contents + lo16_relocation->r_offset;
7757
b49e97c9 7758 /* Obtain the addend kept there. */
4030e8f6 7759 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7760 lo16_type, FALSE);
7761 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7762 lo16_location);
b49e97c9
TS
7763 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7764 input_bfd, contents);
d6f16593
MR
7765 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7766 lo16_location);
b49e97c9 7767 l &= lo16_howto->src_mask;
5a659663 7768 l <<= lo16_howto->rightshift;
a7ebbfdf 7769 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7770
7771 addend <<= 16;
7772
7773 /* Compute the combined addend. */
7774 addend += l;
b49e97c9 7775 }
30ac9238
RS
7776 else
7777 addend <<= howto->rightshift;
b49e97c9
TS
7778 }
7779 else
7780 addend = rel->r_addend;
81d43bff
RS
7781 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7782 local_syms, local_sections, rel);
b49e97c9
TS
7783 }
7784
1049f94e 7785 if (info->relocatable)
b49e97c9 7786 {
4a14403c 7787 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7788 && bfd_big_endian (input_bfd))
7789 rel->r_offset -= 4;
7790
81d43bff 7791 if (!rela_relocation_p && rel->r_addend)
5a659663 7792 {
81d43bff 7793 addend += rel->r_addend;
30ac9238 7794 if (r_type == R_MIPS_HI16
4030e8f6 7795 || r_type == R_MIPS_GOT16)
5a659663
TS
7796 addend = mips_elf_high (addend);
7797 else if (r_type == R_MIPS_HIGHER)
7798 addend = mips_elf_higher (addend);
7799 else if (r_type == R_MIPS_HIGHEST)
7800 addend = mips_elf_highest (addend);
30ac9238
RS
7801 else
7802 addend >>= howto->rightshift;
b49e97c9 7803
30ac9238
RS
7804 /* We use the source mask, rather than the destination
7805 mask because the place to which we are writing will be
7806 source of the addend in the final link. */
b49e97c9
TS
7807 addend &= howto->src_mask;
7808
5a659663 7809 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7810 /* See the comment above about using R_MIPS_64 in the 32-bit
7811 ABI. Here, we need to update the addend. It would be
7812 possible to get away with just using the R_MIPS_32 reloc
7813 but for endianness. */
7814 {
7815 bfd_vma sign_bits;
7816 bfd_vma low_bits;
7817 bfd_vma high_bits;
7818
7819 if (addend & ((bfd_vma) 1 << 31))
7820#ifdef BFD64
7821 sign_bits = ((bfd_vma) 1 << 32) - 1;
7822#else
7823 sign_bits = -1;
7824#endif
7825 else
7826 sign_bits = 0;
7827
7828 /* If we don't know that we have a 64-bit type,
7829 do two separate stores. */
7830 if (bfd_big_endian (input_bfd))
7831 {
7832 /* Store the sign-bits (which are most significant)
7833 first. */
7834 low_bits = sign_bits;
7835 high_bits = addend;
7836 }
7837 else
7838 {
7839 low_bits = addend;
7840 high_bits = sign_bits;
7841 }
7842 bfd_put_32 (input_bfd, low_bits,
7843 contents + rel->r_offset);
7844 bfd_put_32 (input_bfd, high_bits,
7845 contents + rel->r_offset + 4);
7846 continue;
7847 }
7848
7849 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7850 input_bfd, input_section,
b34976b6
AM
7851 contents, FALSE))
7852 return FALSE;
b49e97c9
TS
7853 }
7854
7855 /* Go on to the next relocation. */
7856 continue;
7857 }
7858
7859 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7860 relocations for the same offset. In that case we are
7861 supposed to treat the output of each relocation as the addend
7862 for the next. */
7863 if (rel + 1 < relend
7864 && rel->r_offset == rel[1].r_offset
7865 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7866 use_saved_addend_p = TRUE;
b49e97c9 7867 else
b34976b6 7868 use_saved_addend_p = FALSE;
b49e97c9
TS
7869
7870 /* Figure out what value we are supposed to relocate. */
7871 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7872 input_section, info, rel,
7873 addend, howto, local_syms,
7874 local_sections, &value,
bce03d3d
AO
7875 &name, &require_jalx,
7876 use_saved_addend_p))
b49e97c9
TS
7877 {
7878 case bfd_reloc_continue:
7879 /* There's nothing to do. */
7880 continue;
7881
7882 case bfd_reloc_undefined:
7883 /* mips_elf_calculate_relocation already called the
7884 undefined_symbol callback. There's no real point in
7885 trying to perform the relocation at this point, so we
7886 just skip ahead to the next relocation. */
7887 continue;
7888
7889 case bfd_reloc_notsupported:
7890 msg = _("internal error: unsupported relocation error");
7891 info->callbacks->warning
7892 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7893 return FALSE;
b49e97c9
TS
7894
7895 case bfd_reloc_overflow:
7896 if (use_saved_addend_p)
7897 /* Ignore overflow until we reach the last relocation for
7898 a given location. */
7899 ;
7900 else
7901 {
7902 BFD_ASSERT (name != NULL);
7903 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7904 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7905 input_bfd, input_section, rel->r_offset)))
b34976b6 7906 return FALSE;
b49e97c9
TS
7907 }
7908 break;
7909
7910 case bfd_reloc_ok:
7911 break;
7912
7913 default:
7914 abort ();
7915 break;
7916 }
7917
7918 /* If we've got another relocation for the address, keep going
7919 until we reach the last one. */
7920 if (use_saved_addend_p)
7921 {
7922 addend = value;
7923 continue;
7924 }
7925
4a14403c 7926 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7927 /* See the comment above about using R_MIPS_64 in the 32-bit
7928 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7929 that calculated the right value. Now, however, we
7930 sign-extend the 32-bit result to 64-bits, and store it as a
7931 64-bit value. We are especially generous here in that we
7932 go to extreme lengths to support this usage on systems with
7933 only a 32-bit VMA. */
7934 {
7935 bfd_vma sign_bits;
7936 bfd_vma low_bits;
7937 bfd_vma high_bits;
7938
7939 if (value & ((bfd_vma) 1 << 31))
7940#ifdef BFD64
7941 sign_bits = ((bfd_vma) 1 << 32) - 1;
7942#else
7943 sign_bits = -1;
7944#endif
7945 else
7946 sign_bits = 0;
7947
7948 /* If we don't know that we have a 64-bit type,
7949 do two separate stores. */
7950 if (bfd_big_endian (input_bfd))
7951 {
7952 /* Undo what we did above. */
7953 rel->r_offset -= 4;
7954 /* Store the sign-bits (which are most significant)
7955 first. */
7956 low_bits = sign_bits;
7957 high_bits = value;
7958 }
7959 else
7960 {
7961 low_bits = value;
7962 high_bits = sign_bits;
7963 }
7964 bfd_put_32 (input_bfd, low_bits,
7965 contents + rel->r_offset);
7966 bfd_put_32 (input_bfd, high_bits,
7967 contents + rel->r_offset + 4);
7968 continue;
7969 }
7970
7971 /* Actually perform the relocation. */
7972 if (! mips_elf_perform_relocation (info, howto, rel, value,
7973 input_bfd, input_section,
7974 contents, require_jalx))
b34976b6 7975 return FALSE;
b49e97c9
TS
7976 }
7977
b34976b6 7978 return TRUE;
b49e97c9
TS
7979}
7980\f
7981/* If NAME is one of the special IRIX6 symbols defined by the linker,
7982 adjust it appropriately now. */
7983
7984static void
9719ad41
RS
7985mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7986 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7987{
7988 /* The linker script takes care of providing names and values for
7989 these, but we must place them into the right sections. */
7990 static const char* const text_section_symbols[] = {
7991 "_ftext",
7992 "_etext",
7993 "__dso_displacement",
7994 "__elf_header",
7995 "__program_header_table",
7996 NULL
7997 };
7998
7999 static const char* const data_section_symbols[] = {
8000 "_fdata",
8001 "_edata",
8002 "_end",
8003 "_fbss",
8004 NULL
8005 };
8006
8007 const char* const *p;
8008 int i;
8009
8010 for (i = 0; i < 2; ++i)
8011 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8012 *p;
8013 ++p)
8014 if (strcmp (*p, name) == 0)
8015 {
8016 /* All of these symbols are given type STT_SECTION by the
8017 IRIX6 linker. */
8018 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8019 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8020
8021 /* The IRIX linker puts these symbols in special sections. */
8022 if (i == 0)
8023 sym->st_shndx = SHN_MIPS_TEXT;
8024 else
8025 sym->st_shndx = SHN_MIPS_DATA;
8026
8027 break;
8028 }
8029}
8030
8031/* Finish up dynamic symbol handling. We set the contents of various
8032 dynamic sections here. */
8033
b34976b6 8034bfd_boolean
9719ad41
RS
8035_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8036 struct bfd_link_info *info,
8037 struct elf_link_hash_entry *h,
8038 Elf_Internal_Sym *sym)
b49e97c9
TS
8039{
8040 bfd *dynobj;
b49e97c9 8041 asection *sgot;
f4416af6 8042 struct mips_got_info *g, *gg;
b49e97c9 8043 const char *name;
3d6746ca 8044 int idx;
5108fc1b 8045 struct mips_elf_link_hash_table *htab;
b49e97c9 8046
5108fc1b 8047 htab = mips_elf_hash_table (info);
b49e97c9 8048 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8049
c5ae1840 8050 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8051 {
8052 asection *s;
5108fc1b 8053 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8054
8055 /* This symbol has a stub. Set it up. */
8056
8057 BFD_ASSERT (h->dynindx != -1);
8058
8059 s = bfd_get_section_by_name (dynobj,
8060 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8061 BFD_ASSERT (s != NULL);
8062
5108fc1b
RS
8063 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8064 || (h->dynindx <= 0xffff));
3d6746ca
DD
8065
8066 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8067 sign extension at runtime in the stub, resulting in a negative
8068 index value. */
8069 if (h->dynindx & ~0x7fffffff)
b34976b6 8070 return FALSE;
b49e97c9
TS
8071
8072 /* Fill the stub. */
3d6746ca
DD
8073 idx = 0;
8074 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8075 idx += 4;
8076 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8077 idx += 4;
5108fc1b 8078 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8079 {
5108fc1b 8080 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8081 stub + idx);
8082 idx += 4;
8083 }
8084 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8085 idx += 4;
b49e97c9 8086
3d6746ca
DD
8087 /* If a large stub is not required and sign extension is not a
8088 problem, then use legacy code in the stub. */
5108fc1b
RS
8089 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8090 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8091 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8092 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8093 else
5108fc1b
RS
8094 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8095 stub + idx);
8096
eea6121a 8097 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8098 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8099
8100 /* Mark the symbol as undefined. plt.offset != -1 occurs
8101 only for the referenced symbol. */
8102 sym->st_shndx = SHN_UNDEF;
8103
8104 /* The run-time linker uses the st_value field of the symbol
8105 to reset the global offset table entry for this external
8106 to its stub address when unlinking a shared object. */
c5ae1840
TS
8107 sym->st_value = (s->output_section->vma + s->output_offset
8108 + h->plt.offset);
b49e97c9
TS
8109 }
8110
8111 BFD_ASSERT (h->dynindx != -1
f5385ebf 8112 || h->forced_local);
b49e97c9 8113
f4416af6 8114 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8115 BFD_ASSERT (sgot != NULL);
f4416af6 8116 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8117 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8118 BFD_ASSERT (g != NULL);
8119
8120 /* Run through the global symbol table, creating GOT entries for all
8121 the symbols that need them. */
8122 if (g->global_gotsym != NULL
8123 && h->dynindx >= g->global_gotsym->dynindx)
8124 {
8125 bfd_vma offset;
8126 bfd_vma value;
8127
6eaa6adc 8128 value = sym->st_value;
0f20cc35 8129 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8130 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8131 }
8132
0f20cc35 8133 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8134 {
8135 struct mips_got_entry e, *p;
0626d451 8136 bfd_vma entry;
f4416af6 8137 bfd_vma offset;
f4416af6
AO
8138
8139 gg = g;
8140
8141 e.abfd = output_bfd;
8142 e.symndx = -1;
8143 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8144 e.tls_type = 0;
143d77c5 8145
f4416af6
AO
8146 for (g = g->next; g->next != gg; g = g->next)
8147 {
8148 if (g->got_entries
8149 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8150 &e)))
8151 {
8152 offset = p->gotidx;
0626d451
RS
8153 if (info->shared
8154 || (elf_hash_table (info)->dynamic_sections_created
8155 && p->d.h != NULL
f5385ebf
AM
8156 && p->d.h->root.def_dynamic
8157 && !p->d.h->root.def_regular))
0626d451
RS
8158 {
8159 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8160 the various compatibility problems, it's easier to mock
8161 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8162 mips_elf_create_dynamic_relocation to calculate the
8163 appropriate addend. */
8164 Elf_Internal_Rela rel[3];
8165
8166 memset (rel, 0, sizeof (rel));
8167 if (ABI_64_P (output_bfd))
8168 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8169 else
8170 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8171 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8172
8173 entry = 0;
8174 if (! (mips_elf_create_dynamic_relocation
8175 (output_bfd, info, rel,
8176 e.d.h, NULL, sym->st_value, &entry, sgot)))
8177 return FALSE;
8178 }
8179 else
8180 entry = sym->st_value;
8181 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8182 }
8183 }
8184 }
8185
b49e97c9
TS
8186 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8187 name = h->root.root.string;
8188 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8189 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8190 sym->st_shndx = SHN_ABS;
8191 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8192 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8193 {
8194 sym->st_shndx = SHN_ABS;
8195 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8196 sym->st_value = 1;
8197 }
4a14403c 8198 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8199 {
8200 sym->st_shndx = SHN_ABS;
8201 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8202 sym->st_value = elf_gp (output_bfd);
8203 }
8204 else if (SGI_COMPAT (output_bfd))
8205 {
8206 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8207 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8208 {
8209 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8210 sym->st_other = STO_PROTECTED;
8211 sym->st_value = 0;
8212 sym->st_shndx = SHN_MIPS_DATA;
8213 }
8214 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8215 {
8216 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8217 sym->st_other = STO_PROTECTED;
8218 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8219 sym->st_shndx = SHN_ABS;
8220 }
8221 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8222 {
8223 if (h->type == STT_FUNC)
8224 sym->st_shndx = SHN_MIPS_TEXT;
8225 else if (h->type == STT_OBJECT)
8226 sym->st_shndx = SHN_MIPS_DATA;
8227 }
8228 }
8229
8230 /* Handle the IRIX6-specific symbols. */
8231 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8232 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8233
8234 if (! info->shared)
8235 {
8236 if (! mips_elf_hash_table (info)->use_rld_obj_head
8237 && (strcmp (name, "__rld_map") == 0
8238 || strcmp (name, "__RLD_MAP") == 0))
8239 {
8240 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8241 BFD_ASSERT (s != NULL);
8242 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8243 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8244 if (mips_elf_hash_table (info)->rld_value == 0)
8245 mips_elf_hash_table (info)->rld_value = sym->st_value;
8246 }
8247 else if (mips_elf_hash_table (info)->use_rld_obj_head
8248 && strcmp (name, "__rld_obj_head") == 0)
8249 {
8250 /* IRIX6 does not use a .rld_map section. */
8251 if (IRIX_COMPAT (output_bfd) == ict_irix5
8252 || IRIX_COMPAT (output_bfd) == ict_none)
8253 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8254 != NULL);
8255 mips_elf_hash_table (info)->rld_value = sym->st_value;
8256 }
8257 }
8258
8259 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8260 if (sym->st_other == STO_MIPS16)
8261 sym->st_value &= ~1;
b49e97c9 8262
b34976b6 8263 return TRUE;
b49e97c9
TS
8264}
8265
0a44bf69
RS
8266/* Likewise, for VxWorks. */
8267
8268bfd_boolean
8269_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8270 struct bfd_link_info *info,
8271 struct elf_link_hash_entry *h,
8272 Elf_Internal_Sym *sym)
8273{
8274 bfd *dynobj;
8275 asection *sgot;
8276 struct mips_got_info *g;
8277 struct mips_elf_link_hash_table *htab;
8278
8279 htab = mips_elf_hash_table (info);
8280 dynobj = elf_hash_table (info)->dynobj;
8281
8282 if (h->plt.offset != (bfd_vma) -1)
8283 {
6d79d2ed 8284 bfd_byte *loc;
0a44bf69
RS
8285 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8286 Elf_Internal_Rela rel;
8287 static const bfd_vma *plt_entry;
8288
8289 BFD_ASSERT (h->dynindx != -1);
8290 BFD_ASSERT (htab->splt != NULL);
8291 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8292
8293 /* Calculate the address of the .plt entry. */
8294 plt_address = (htab->splt->output_section->vma
8295 + htab->splt->output_offset
8296 + h->plt.offset);
8297
8298 /* Calculate the index of the entry. */
8299 plt_index = ((h->plt.offset - htab->plt_header_size)
8300 / htab->plt_entry_size);
8301
8302 /* Calculate the address of the .got.plt entry. */
8303 got_address = (htab->sgotplt->output_section->vma
8304 + htab->sgotplt->output_offset
8305 + plt_index * 4);
8306
8307 /* Calculate the offset of the .got.plt entry from
8308 _GLOBAL_OFFSET_TABLE_. */
8309 got_offset = mips_elf_gotplt_index (info, h);
8310
8311 /* Calculate the offset for the branch at the start of the PLT
8312 entry. The branch jumps to the beginning of .plt. */
8313 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8314
8315 /* Fill in the initial value of the .got.plt entry. */
8316 bfd_put_32 (output_bfd, plt_address,
8317 htab->sgotplt->contents + plt_index * 4);
8318
8319 /* Find out where the .plt entry should go. */
8320 loc = htab->splt->contents + h->plt.offset;
8321
8322 if (info->shared)
8323 {
8324 plt_entry = mips_vxworks_shared_plt_entry;
8325 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8326 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8327 }
8328 else
8329 {
8330 bfd_vma got_address_high, got_address_low;
8331
8332 plt_entry = mips_vxworks_exec_plt_entry;
8333 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8334 got_address_low = got_address & 0xffff;
8335
8336 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8337 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8338 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8339 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8340 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8341 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8342 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8343 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8344
8345 loc = (htab->srelplt2->contents
8346 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8347
8348 /* Emit a relocation for the .got.plt entry. */
8349 rel.r_offset = got_address;
8350 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8351 rel.r_addend = h->plt.offset;
8352 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8353
8354 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8355 loc += sizeof (Elf32_External_Rela);
8356 rel.r_offset = plt_address + 8;
8357 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8358 rel.r_addend = got_offset;
8359 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8360
8361 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8362 loc += sizeof (Elf32_External_Rela);
8363 rel.r_offset += 4;
8364 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8365 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8366 }
8367
8368 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8369 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8370 rel.r_offset = got_address;
8371 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8372 rel.r_addend = 0;
8373 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8374
8375 if (!h->def_regular)
8376 sym->st_shndx = SHN_UNDEF;
8377 }
8378
8379 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8380
8381 sgot = mips_elf_got_section (dynobj, FALSE);
8382 BFD_ASSERT (sgot != NULL);
8383 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8384 g = mips_elf_section_data (sgot)->u.got_info;
8385 BFD_ASSERT (g != NULL);
8386
8387 /* See if this symbol has an entry in the GOT. */
8388 if (g->global_gotsym != NULL
8389 && h->dynindx >= g->global_gotsym->dynindx)
8390 {
8391 bfd_vma offset;
8392 Elf_Internal_Rela outrel;
8393 bfd_byte *loc;
8394 asection *s;
8395
8396 /* Install the symbol value in the GOT. */
8397 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8398 R_MIPS_GOT16, info);
8399 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8400
8401 /* Add a dynamic relocation for it. */
8402 s = mips_elf_rel_dyn_section (info, FALSE);
8403 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8404 outrel.r_offset = (sgot->output_section->vma
8405 + sgot->output_offset
8406 + offset);
8407 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8408 outrel.r_addend = 0;
8409 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8410 }
8411
8412 /* Emit a copy reloc, if needed. */
8413 if (h->needs_copy)
8414 {
8415 Elf_Internal_Rela rel;
8416
8417 BFD_ASSERT (h->dynindx != -1);
8418
8419 rel.r_offset = (h->root.u.def.section->output_section->vma
8420 + h->root.u.def.section->output_offset
8421 + h->root.u.def.value);
8422 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8423 rel.r_addend = 0;
8424 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8425 htab->srelbss->contents
8426 + (htab->srelbss->reloc_count
8427 * sizeof (Elf32_External_Rela)));
8428 ++htab->srelbss->reloc_count;
8429 }
8430
8431 /* If this is a mips16 symbol, force the value to be even. */
8432 if (sym->st_other == STO_MIPS16)
8433 sym->st_value &= ~1;
8434
8435 return TRUE;
8436}
8437
8438/* Install the PLT header for a VxWorks executable and finalize the
8439 contents of .rela.plt.unloaded. */
8440
8441static void
8442mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8443{
8444 Elf_Internal_Rela rela;
8445 bfd_byte *loc;
8446 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8447 static const bfd_vma *plt_entry;
8448 struct mips_elf_link_hash_table *htab;
8449
8450 htab = mips_elf_hash_table (info);
8451 plt_entry = mips_vxworks_exec_plt0_entry;
8452
8453 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8454 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8455 + htab->root.hgot->root.u.def.section->output_offset
8456 + htab->root.hgot->root.u.def.value);
8457
8458 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8459 got_value_low = got_value & 0xffff;
8460
8461 /* Calculate the address of the PLT header. */
8462 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8463
8464 /* Install the PLT header. */
8465 loc = htab->splt->contents;
8466 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8467 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8468 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8469 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8472
8473 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8474 loc = htab->srelplt2->contents;
8475 rela.r_offset = plt_address;
8476 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8477 rela.r_addend = 0;
8478 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8479 loc += sizeof (Elf32_External_Rela);
8480
8481 /* Output the relocation for the following addiu of
8482 %lo(_GLOBAL_OFFSET_TABLE_). */
8483 rela.r_offset += 4;
8484 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8485 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8486 loc += sizeof (Elf32_External_Rela);
8487
8488 /* Fix up the remaining relocations. They may have the wrong
8489 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8490 in which symbols were output. */
8491 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8492 {
8493 Elf_Internal_Rela rel;
8494
8495 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8496 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8497 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8498 loc += sizeof (Elf32_External_Rela);
8499
8500 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8501 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8503 loc += sizeof (Elf32_External_Rela);
8504
8505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8506 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8508 loc += sizeof (Elf32_External_Rela);
8509 }
8510}
8511
8512/* Install the PLT header for a VxWorks shared library. */
8513
8514static void
8515mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8516{
8517 unsigned int i;
8518 struct mips_elf_link_hash_table *htab;
8519
8520 htab = mips_elf_hash_table (info);
8521
8522 /* We just need to copy the entry byte-by-byte. */
8523 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8524 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8525 htab->splt->contents + i * 4);
8526}
8527
b49e97c9
TS
8528/* Finish up the dynamic sections. */
8529
b34976b6 8530bfd_boolean
9719ad41
RS
8531_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8532 struct bfd_link_info *info)
b49e97c9
TS
8533{
8534 bfd *dynobj;
8535 asection *sdyn;
8536 asection *sgot;
f4416af6 8537 struct mips_got_info *gg, *g;
0a44bf69 8538 struct mips_elf_link_hash_table *htab;
b49e97c9 8539
0a44bf69 8540 htab = mips_elf_hash_table (info);
b49e97c9
TS
8541 dynobj = elf_hash_table (info)->dynobj;
8542
8543 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8544
f4416af6 8545 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8546 if (sgot == NULL)
f4416af6 8547 gg = g = NULL;
b49e97c9
TS
8548 else
8549 {
f4416af6
AO
8550 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8551 gg = mips_elf_section_data (sgot)->u.got_info;
8552 BFD_ASSERT (gg != NULL);
8553 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8554 BFD_ASSERT (g != NULL);
8555 }
8556
8557 if (elf_hash_table (info)->dynamic_sections_created)
8558 {
8559 bfd_byte *b;
943284cc 8560 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8561
8562 BFD_ASSERT (sdyn != NULL);
8563 BFD_ASSERT (g != NULL);
8564
8565 for (b = sdyn->contents;
eea6121a 8566 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8567 b += MIPS_ELF_DYN_SIZE (dynobj))
8568 {
8569 Elf_Internal_Dyn dyn;
8570 const char *name;
8571 size_t elemsize;
8572 asection *s;
b34976b6 8573 bfd_boolean swap_out_p;
b49e97c9
TS
8574
8575 /* Read in the current dynamic entry. */
8576 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8577
8578 /* Assume that we're going to modify it and write it out. */
b34976b6 8579 swap_out_p = TRUE;
b49e97c9
TS
8580
8581 switch (dyn.d_tag)
8582 {
8583 case DT_RELENT:
b49e97c9
TS
8584 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8585 break;
8586
0a44bf69
RS
8587 case DT_RELAENT:
8588 BFD_ASSERT (htab->is_vxworks);
8589 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8590 break;
8591
b49e97c9
TS
8592 case DT_STRSZ:
8593 /* Rewrite DT_STRSZ. */
8594 dyn.d_un.d_val =
8595 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8596 break;
8597
8598 case DT_PLTGOT:
8599 name = ".got";
0a44bf69
RS
8600 if (htab->is_vxworks)
8601 {
8602 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8603 of the ".got" section in DYNOBJ. */
8604 s = bfd_get_section_by_name (dynobj, name);
8605 BFD_ASSERT (s != NULL);
8606 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8607 }
8608 else
8609 {
8610 s = bfd_get_section_by_name (output_bfd, name);
8611 BFD_ASSERT (s != NULL);
8612 dyn.d_un.d_ptr = s->vma;
8613 }
b49e97c9
TS
8614 break;
8615
8616 case DT_MIPS_RLD_VERSION:
8617 dyn.d_un.d_val = 1; /* XXX */
8618 break;
8619
8620 case DT_MIPS_FLAGS:
8621 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8622 break;
8623
b49e97c9 8624 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8625 {
8626 time_t t;
8627 time (&t);
8628 dyn.d_un.d_val = t;
8629 }
b49e97c9
TS
8630 break;
8631
8632 case DT_MIPS_ICHECKSUM:
8633 /* XXX FIXME: */
b34976b6 8634 swap_out_p = FALSE;
b49e97c9
TS
8635 break;
8636
8637 case DT_MIPS_IVERSION:
8638 /* XXX FIXME: */
b34976b6 8639 swap_out_p = FALSE;
b49e97c9
TS
8640 break;
8641
8642 case DT_MIPS_BASE_ADDRESS:
8643 s = output_bfd->sections;
8644 BFD_ASSERT (s != NULL);
8645 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8646 break;
8647
8648 case DT_MIPS_LOCAL_GOTNO:
8649 dyn.d_un.d_val = g->local_gotno;
8650 break;
8651
8652 case DT_MIPS_UNREFEXTNO:
8653 /* The index into the dynamic symbol table which is the
8654 entry of the first external symbol that is not
8655 referenced within the same object. */
8656 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8657 break;
8658
8659 case DT_MIPS_GOTSYM:
f4416af6 8660 if (gg->global_gotsym)
b49e97c9 8661 {
f4416af6 8662 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8663 break;
8664 }
8665 /* In case if we don't have global got symbols we default
8666 to setting DT_MIPS_GOTSYM to the same value as
8667 DT_MIPS_SYMTABNO, so we just fall through. */
8668
8669 case DT_MIPS_SYMTABNO:
8670 name = ".dynsym";
8671 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8672 s = bfd_get_section_by_name (output_bfd, name);
8673 BFD_ASSERT (s != NULL);
8674
eea6121a 8675 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8676 break;
8677
8678 case DT_MIPS_HIPAGENO:
0a44bf69 8679 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8680 break;
8681
8682 case DT_MIPS_RLD_MAP:
8683 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8684 break;
8685
8686 case DT_MIPS_OPTIONS:
8687 s = (bfd_get_section_by_name
8688 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8689 dyn.d_un.d_ptr = s->vma;
8690 break;
8691
0a44bf69
RS
8692 case DT_RELASZ:
8693 BFD_ASSERT (htab->is_vxworks);
8694 /* The count does not include the JUMP_SLOT relocations. */
8695 if (htab->srelplt)
8696 dyn.d_un.d_val -= htab->srelplt->size;
8697 break;
8698
8699 case DT_PLTREL:
8700 BFD_ASSERT (htab->is_vxworks);
8701 dyn.d_un.d_val = DT_RELA;
8702 break;
8703
8704 case DT_PLTRELSZ:
8705 BFD_ASSERT (htab->is_vxworks);
8706 dyn.d_un.d_val = htab->srelplt->size;
8707 break;
8708
8709 case DT_JMPREL:
8710 BFD_ASSERT (htab->is_vxworks);
8711 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8712 + htab->srelplt->output_offset);
8713 break;
8714
943284cc
DJ
8715 case DT_TEXTREL:
8716 /* If we didn't need any text relocations after all, delete
8717 the dynamic tag. */
8718 if (!(info->flags & DF_TEXTREL))
8719 {
8720 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8721 swap_out_p = FALSE;
8722 }
8723 break;
8724
8725 case DT_FLAGS:
8726 /* If we didn't need any text relocations after all, clear
8727 DF_TEXTREL from DT_FLAGS. */
8728 if (!(info->flags & DF_TEXTREL))
8729 dyn.d_un.d_val &= ~DF_TEXTREL;
8730 else
8731 swap_out_p = FALSE;
8732 break;
8733
b49e97c9 8734 default:
b34976b6 8735 swap_out_p = FALSE;
b49e97c9
TS
8736 break;
8737 }
8738
943284cc 8739 if (swap_out_p || dyn_skipped)
b49e97c9 8740 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8741 (dynobj, &dyn, b - dyn_skipped);
8742
8743 if (dyn_to_skip)
8744 {
8745 dyn_skipped += dyn_to_skip;
8746 dyn_to_skip = 0;
8747 }
b49e97c9 8748 }
943284cc
DJ
8749
8750 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8751 if (dyn_skipped > 0)
8752 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8753 }
8754
eea6121a 8755 if (sgot != NULL && sgot->size > 0)
b49e97c9 8756 {
0a44bf69
RS
8757 if (htab->is_vxworks)
8758 {
8759 /* The first entry of the global offset table points to the
8760 ".dynamic" section. The second is initialized by the
8761 loader and contains the shared library identifier.
8762 The third is also initialized by the loader and points
8763 to the lazy resolution stub. */
8764 MIPS_ELF_PUT_WORD (output_bfd,
8765 sdyn->output_offset + sdyn->output_section->vma,
8766 sgot->contents);
8767 MIPS_ELF_PUT_WORD (output_bfd, 0,
8768 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8769 MIPS_ELF_PUT_WORD (output_bfd, 0,
8770 sgot->contents
8771 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8772 }
8773 else
8774 {
8775 /* The first entry of the global offset table will be filled at
8776 runtime. The second entry will be used by some runtime loaders.
8777 This isn't the case of IRIX rld. */
8778 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8779 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8780 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8781 }
b49e97c9 8782
54938e2a
TS
8783 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8784 = MIPS_ELF_GOT_SIZE (output_bfd);
8785 }
b49e97c9 8786
f4416af6
AO
8787 /* Generate dynamic relocations for the non-primary gots. */
8788 if (gg != NULL && gg->next)
8789 {
8790 Elf_Internal_Rela rel[3];
8791 bfd_vma addend = 0;
8792
8793 memset (rel, 0, sizeof (rel));
8794 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8795
8796 for (g = gg->next; g->next != gg; g = g->next)
8797 {
0f20cc35
DJ
8798 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8799 + g->next->tls_gotno;
f4416af6 8800
9719ad41 8801 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8802 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8803 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8804 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8805
8806 if (! info->shared)
8807 continue;
8808
8809 while (index < g->assigned_gotno)
8810 {
8811 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8812 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8813 if (!(mips_elf_create_dynamic_relocation
8814 (output_bfd, info, rel, NULL,
8815 bfd_abs_section_ptr,
8816 0, &addend, sgot)))
8817 return FALSE;
8818 BFD_ASSERT (addend == 0);
8819 }
8820 }
8821 }
8822
3133ddbf
DJ
8823 /* The generation of dynamic relocations for the non-primary gots
8824 adds more dynamic relocations. We cannot count them until
8825 here. */
8826
8827 if (elf_hash_table (info)->dynamic_sections_created)
8828 {
8829 bfd_byte *b;
8830 bfd_boolean swap_out_p;
8831
8832 BFD_ASSERT (sdyn != NULL);
8833
8834 for (b = sdyn->contents;
8835 b < sdyn->contents + sdyn->size;
8836 b += MIPS_ELF_DYN_SIZE (dynobj))
8837 {
8838 Elf_Internal_Dyn dyn;
8839 asection *s;
8840
8841 /* Read in the current dynamic entry. */
8842 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8843
8844 /* Assume that we're going to modify it and write it out. */
8845 swap_out_p = TRUE;
8846
8847 switch (dyn.d_tag)
8848 {
8849 case DT_RELSZ:
8850 /* Reduce DT_RELSZ to account for any relocations we
8851 decided not to make. This is for the n64 irix rld,
8852 which doesn't seem to apply any relocations if there
8853 are trailing null entries. */
0a44bf69 8854 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8855 dyn.d_un.d_val = (s->reloc_count
8856 * (ABI_64_P (output_bfd)
8857 ? sizeof (Elf64_Mips_External_Rel)
8858 : sizeof (Elf32_External_Rel)));
8859 break;
8860
8861 default:
8862 swap_out_p = FALSE;
8863 break;
8864 }
8865
8866 if (swap_out_p)
8867 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8868 (dynobj, &dyn, b);
8869 }
8870 }
8871
b49e97c9 8872 {
b49e97c9
TS
8873 asection *s;
8874 Elf32_compact_rel cpt;
8875
b49e97c9
TS
8876 if (SGI_COMPAT (output_bfd))
8877 {
8878 /* Write .compact_rel section out. */
8879 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8880 if (s != NULL)
8881 {
8882 cpt.id1 = 1;
8883 cpt.num = s->reloc_count;
8884 cpt.id2 = 2;
8885 cpt.offset = (s->output_section->filepos
8886 + sizeof (Elf32_External_compact_rel));
8887 cpt.reserved0 = 0;
8888 cpt.reserved1 = 0;
8889 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8890 ((Elf32_External_compact_rel *)
8891 s->contents));
8892
8893 /* Clean up a dummy stub function entry in .text. */
8894 s = bfd_get_section_by_name (dynobj,
8895 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8896 if (s != NULL)
8897 {
8898 file_ptr dummy_offset;
8899
5108fc1b
RS
8900 BFD_ASSERT (s->size >= htab->function_stub_size);
8901 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 8902 memset (s->contents + dummy_offset, 0,
5108fc1b 8903 htab->function_stub_size);
b49e97c9
TS
8904 }
8905 }
8906 }
8907
0a44bf69
RS
8908 /* The psABI says that the dynamic relocations must be sorted in
8909 increasing order of r_symndx. The VxWorks EABI doesn't require
8910 this, and because the code below handles REL rather than RELA
8911 relocations, using it for VxWorks would be outright harmful. */
8912 if (!htab->is_vxworks)
b49e97c9 8913 {
0a44bf69
RS
8914 s = mips_elf_rel_dyn_section (info, FALSE);
8915 if (s != NULL
8916 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8917 {
8918 reldyn_sorting_bfd = output_bfd;
b49e97c9 8919
0a44bf69
RS
8920 if (ABI_64_P (output_bfd))
8921 qsort ((Elf64_External_Rel *) s->contents + 1,
8922 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8923 sort_dynamic_relocs_64);
8924 else
8925 qsort ((Elf32_External_Rel *) s->contents + 1,
8926 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8927 sort_dynamic_relocs);
8928 }
b49e97c9 8929 }
b49e97c9
TS
8930 }
8931
0a44bf69
RS
8932 if (htab->is_vxworks && htab->splt->size > 0)
8933 {
8934 if (info->shared)
8935 mips_vxworks_finish_shared_plt (output_bfd, info);
8936 else
8937 mips_vxworks_finish_exec_plt (output_bfd, info);
8938 }
b34976b6 8939 return TRUE;
b49e97c9
TS
8940}
8941
b49e97c9 8942
64543e1a
RS
8943/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8944
8945static void
9719ad41 8946mips_set_isa_flags (bfd *abfd)
b49e97c9 8947{
64543e1a 8948 flagword val;
b49e97c9
TS
8949
8950 switch (bfd_get_mach (abfd))
8951 {
8952 default:
8953 case bfd_mach_mips3000:
8954 val = E_MIPS_ARCH_1;
8955 break;
8956
8957 case bfd_mach_mips3900:
8958 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8959 break;
8960
8961 case bfd_mach_mips6000:
8962 val = E_MIPS_ARCH_2;
8963 break;
8964
8965 case bfd_mach_mips4000:
8966 case bfd_mach_mips4300:
8967 case bfd_mach_mips4400:
8968 case bfd_mach_mips4600:
8969 val = E_MIPS_ARCH_3;
8970 break;
8971
8972 case bfd_mach_mips4010:
8973 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8974 break;
8975
8976 case bfd_mach_mips4100:
8977 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8978 break;
8979
8980 case bfd_mach_mips4111:
8981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8982 break;
8983
00707a0e
RS
8984 case bfd_mach_mips4120:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8986 break;
8987
b49e97c9
TS
8988 case bfd_mach_mips4650:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8990 break;
8991
00707a0e
RS
8992 case bfd_mach_mips5400:
8993 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8994 break;
8995
8996 case bfd_mach_mips5500:
8997 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
8998 break;
8999
0d2e43ed
ILT
9000 case bfd_mach_mips9000:
9001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9002 break;
9003
b49e97c9 9004 case bfd_mach_mips5000:
5a7ea749 9005 case bfd_mach_mips7000:
b49e97c9
TS
9006 case bfd_mach_mips8000:
9007 case bfd_mach_mips10000:
9008 case bfd_mach_mips12000:
9009 val = E_MIPS_ARCH_4;
9010 break;
9011
9012 case bfd_mach_mips5:
9013 val = E_MIPS_ARCH_5;
9014 break;
9015
9016 case bfd_mach_mips_sb1:
9017 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9018 break;
9019
9020 case bfd_mach_mipsisa32:
9021 val = E_MIPS_ARCH_32;
9022 break;
9023
9024 case bfd_mach_mipsisa64:
9025 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9026 break;
9027
9028 case bfd_mach_mipsisa32r2:
9029 val = E_MIPS_ARCH_32R2;
9030 break;
5f74bc13
CD
9031
9032 case bfd_mach_mipsisa64r2:
9033 val = E_MIPS_ARCH_64R2;
9034 break;
b49e97c9 9035 }
b49e97c9
TS
9036 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9037 elf_elfheader (abfd)->e_flags |= val;
9038
64543e1a
RS
9039}
9040
9041
9042/* The final processing done just before writing out a MIPS ELF object
9043 file. This gets the MIPS architecture right based on the machine
9044 number. This is used by both the 32-bit and the 64-bit ABI. */
9045
9046void
9719ad41
RS
9047_bfd_mips_elf_final_write_processing (bfd *abfd,
9048 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9049{
9050 unsigned int i;
9051 Elf_Internal_Shdr **hdrpp;
9052 const char *name;
9053 asection *sec;
9054
9055 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9056 is nonzero. This is for compatibility with old objects, which used
9057 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9058 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9059 mips_set_isa_flags (abfd);
9060
b49e97c9
TS
9061 /* Set the sh_info field for .gptab sections and other appropriate
9062 info for each special section. */
9063 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9064 i < elf_numsections (abfd);
9065 i++, hdrpp++)
9066 {
9067 switch ((*hdrpp)->sh_type)
9068 {
9069 case SHT_MIPS_MSYM:
9070 case SHT_MIPS_LIBLIST:
9071 sec = bfd_get_section_by_name (abfd, ".dynstr");
9072 if (sec != NULL)
9073 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9074 break;
9075
9076 case SHT_MIPS_GPTAB:
9077 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9078 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9079 BFD_ASSERT (name != NULL
0112cd26 9080 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9081 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9082 BFD_ASSERT (sec != NULL);
9083 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9084 break;
9085
9086 case SHT_MIPS_CONTENT:
9087 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9088 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9089 BFD_ASSERT (name != NULL
0112cd26 9090 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9091 sec = bfd_get_section_by_name (abfd,
9092 name + sizeof ".MIPS.content" - 1);
9093 BFD_ASSERT (sec != NULL);
9094 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9095 break;
9096
9097 case SHT_MIPS_SYMBOL_LIB:
9098 sec = bfd_get_section_by_name (abfd, ".dynsym");
9099 if (sec != NULL)
9100 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9101 sec = bfd_get_section_by_name (abfd, ".liblist");
9102 if (sec != NULL)
9103 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9104 break;
9105
9106 case SHT_MIPS_EVENTS:
9107 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9108 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9109 BFD_ASSERT (name != NULL);
0112cd26 9110 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9111 sec = bfd_get_section_by_name (abfd,
9112 name + sizeof ".MIPS.events" - 1);
9113 else
9114 {
0112cd26 9115 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9116 sec = bfd_get_section_by_name (abfd,
9117 (name
9118 + sizeof ".MIPS.post_rel" - 1));
9119 }
9120 BFD_ASSERT (sec != NULL);
9121 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9122 break;
9123
9124 }
9125 }
9126}
9127\f
8dc1a139 9128/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9129 segments. */
9130
9131int
a6b96beb
AM
9132_bfd_mips_elf_additional_program_headers (bfd *abfd,
9133 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9134{
9135 asection *s;
9136 int ret = 0;
9137
9138 /* See if we need a PT_MIPS_REGINFO segment. */
9139 s = bfd_get_section_by_name (abfd, ".reginfo");
9140 if (s && (s->flags & SEC_LOAD))
9141 ++ret;
9142
9143 /* See if we need a PT_MIPS_OPTIONS segment. */
9144 if (IRIX_COMPAT (abfd) == ict_irix6
9145 && bfd_get_section_by_name (abfd,
9146 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9147 ++ret;
9148
9149 /* See if we need a PT_MIPS_RTPROC segment. */
9150 if (IRIX_COMPAT (abfd) == ict_irix5
9151 && bfd_get_section_by_name (abfd, ".dynamic")
9152 && bfd_get_section_by_name (abfd, ".mdebug"))
9153 ++ret;
9154
9155 return ret;
9156}
9157
8dc1a139 9158/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9159
b34976b6 9160bfd_boolean
9719ad41
RS
9161_bfd_mips_elf_modify_segment_map (bfd *abfd,
9162 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9163{
9164 asection *s;
9165 struct elf_segment_map *m, **pm;
9166 bfd_size_type amt;
9167
9168 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9169 segment. */
9170 s = bfd_get_section_by_name (abfd, ".reginfo");
9171 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9172 {
9173 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9174 if (m->p_type == PT_MIPS_REGINFO)
9175 break;
9176 if (m == NULL)
9177 {
9178 amt = sizeof *m;
9719ad41 9179 m = bfd_zalloc (abfd, amt);
b49e97c9 9180 if (m == NULL)
b34976b6 9181 return FALSE;
b49e97c9
TS
9182
9183 m->p_type = PT_MIPS_REGINFO;
9184 m->count = 1;
9185 m->sections[0] = s;
9186
9187 /* We want to put it after the PHDR and INTERP segments. */
9188 pm = &elf_tdata (abfd)->segment_map;
9189 while (*pm != NULL
9190 && ((*pm)->p_type == PT_PHDR
9191 || (*pm)->p_type == PT_INTERP))
9192 pm = &(*pm)->next;
9193
9194 m->next = *pm;
9195 *pm = m;
9196 }
9197 }
9198
9199 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9200 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9201 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9202 table. */
c1fd6598
AO
9203 if (NEWABI_P (abfd)
9204 /* On non-IRIX6 new abi, we'll have already created a segment
9205 for this section, so don't create another. I'm not sure this
9206 is not also the case for IRIX 6, but I can't test it right
9207 now. */
9208 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9209 {
9210 for (s = abfd->sections; s; s = s->next)
9211 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9212 break;
9213
9214 if (s)
9215 {
9216 struct elf_segment_map *options_segment;
9217
98a8deaf
RS
9218 pm = &elf_tdata (abfd)->segment_map;
9219 while (*pm != NULL
9220 && ((*pm)->p_type == PT_PHDR
9221 || (*pm)->p_type == PT_INTERP))
9222 pm = &(*pm)->next;
b49e97c9 9223
8ded5a0f
AM
9224 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9225 {
9226 amt = sizeof (struct elf_segment_map);
9227 options_segment = bfd_zalloc (abfd, amt);
9228 options_segment->next = *pm;
9229 options_segment->p_type = PT_MIPS_OPTIONS;
9230 options_segment->p_flags = PF_R;
9231 options_segment->p_flags_valid = TRUE;
9232 options_segment->count = 1;
9233 options_segment->sections[0] = s;
9234 *pm = options_segment;
9235 }
b49e97c9
TS
9236 }
9237 }
9238 else
9239 {
9240 if (IRIX_COMPAT (abfd) == ict_irix5)
9241 {
9242 /* If there are .dynamic and .mdebug sections, we make a room
9243 for the RTPROC header. FIXME: Rewrite without section names. */
9244 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9245 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9246 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9247 {
9248 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9249 if (m->p_type == PT_MIPS_RTPROC)
9250 break;
9251 if (m == NULL)
9252 {
9253 amt = sizeof *m;
9719ad41 9254 m = bfd_zalloc (abfd, amt);
b49e97c9 9255 if (m == NULL)
b34976b6 9256 return FALSE;
b49e97c9
TS
9257
9258 m->p_type = PT_MIPS_RTPROC;
9259
9260 s = bfd_get_section_by_name (abfd, ".rtproc");
9261 if (s == NULL)
9262 {
9263 m->count = 0;
9264 m->p_flags = 0;
9265 m->p_flags_valid = 1;
9266 }
9267 else
9268 {
9269 m->count = 1;
9270 m->sections[0] = s;
9271 }
9272
9273 /* We want to put it after the DYNAMIC segment. */
9274 pm = &elf_tdata (abfd)->segment_map;
9275 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9276 pm = &(*pm)->next;
9277 if (*pm != NULL)
9278 pm = &(*pm)->next;
9279
9280 m->next = *pm;
9281 *pm = m;
9282 }
9283 }
9284 }
8dc1a139 9285 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9286 .dynstr, .dynsym, and .hash sections, and everything in
9287 between. */
9288 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9289 pm = &(*pm)->next)
9290 if ((*pm)->p_type == PT_DYNAMIC)
9291 break;
9292 m = *pm;
9293 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9294 {
9295 /* For a normal mips executable the permissions for the PT_DYNAMIC
9296 segment are read, write and execute. We do that here since
9297 the code in elf.c sets only the read permission. This matters
9298 sometimes for the dynamic linker. */
9299 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9300 {
9301 m->p_flags = PF_R | PF_W | PF_X;
9302 m->p_flags_valid = 1;
9303 }
9304 }
9305 if (m != NULL
9306 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9307 {
9308 static const char *sec_names[] =
9309 {
9310 ".dynamic", ".dynstr", ".dynsym", ".hash"
9311 };
9312 bfd_vma low, high;
9313 unsigned int i, c;
9314 struct elf_segment_map *n;
9315
792b4a53 9316 low = ~(bfd_vma) 0;
b49e97c9
TS
9317 high = 0;
9318 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9319 {
9320 s = bfd_get_section_by_name (abfd, sec_names[i]);
9321 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9322 {
9323 bfd_size_type sz;
9324
9325 if (low > s->vma)
9326 low = s->vma;
eea6121a 9327 sz = s->size;
b49e97c9
TS
9328 if (high < s->vma + sz)
9329 high = s->vma + sz;
9330 }
9331 }
9332
9333 c = 0;
9334 for (s = abfd->sections; s != NULL; s = s->next)
9335 if ((s->flags & SEC_LOAD) != 0
9336 && s->vma >= low
eea6121a 9337 && s->vma + s->size <= high)
b49e97c9
TS
9338 ++c;
9339
9340 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9341 n = bfd_zalloc (abfd, amt);
b49e97c9 9342 if (n == NULL)
b34976b6 9343 return FALSE;
b49e97c9
TS
9344 *n = *m;
9345 n->count = c;
9346
9347 i = 0;
9348 for (s = abfd->sections; s != NULL; s = s->next)
9349 {
9350 if ((s->flags & SEC_LOAD) != 0
9351 && s->vma >= low
eea6121a 9352 && s->vma + s->size <= high)
b49e97c9
TS
9353 {
9354 n->sections[i] = s;
9355 ++i;
9356 }
9357 }
9358
9359 *pm = n;
9360 }
9361 }
9362
b34976b6 9363 return TRUE;
b49e97c9
TS
9364}
9365\f
9366/* Return the section that should be marked against GC for a given
9367 relocation. */
9368
9369asection *
9719ad41 9370_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9371 struct bfd_link_info *info,
9719ad41
RS
9372 Elf_Internal_Rela *rel,
9373 struct elf_link_hash_entry *h,
9374 Elf_Internal_Sym *sym)
b49e97c9
TS
9375{
9376 /* ??? Do mips16 stub sections need to be handled special? */
9377
9378 if (h != NULL)
07adf181
AM
9379 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9380 {
9381 case R_MIPS_GNU_VTINHERIT:
9382 case R_MIPS_GNU_VTENTRY:
9383 return NULL;
9384 }
b49e97c9 9385
07adf181 9386 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9387}
9388
9389/* Update the got entry reference counts for the section being removed. */
9390
b34976b6 9391bfd_boolean
9719ad41
RS
9392_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9393 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9394 asection *sec ATTRIBUTE_UNUSED,
9395 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9396{
9397#if 0
9398 Elf_Internal_Shdr *symtab_hdr;
9399 struct elf_link_hash_entry **sym_hashes;
9400 bfd_signed_vma *local_got_refcounts;
9401 const Elf_Internal_Rela *rel, *relend;
9402 unsigned long r_symndx;
9403 struct elf_link_hash_entry *h;
9404
9405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9406 sym_hashes = elf_sym_hashes (abfd);
9407 local_got_refcounts = elf_local_got_refcounts (abfd);
9408
9409 relend = relocs + sec->reloc_count;
9410 for (rel = relocs; rel < relend; rel++)
9411 switch (ELF_R_TYPE (abfd, rel->r_info))
9412 {
9413 case R_MIPS_GOT16:
9414 case R_MIPS_CALL16:
9415 case R_MIPS_CALL_HI16:
9416 case R_MIPS_CALL_LO16:
9417 case R_MIPS_GOT_HI16:
9418 case R_MIPS_GOT_LO16:
4a14403c
TS
9419 case R_MIPS_GOT_DISP:
9420 case R_MIPS_GOT_PAGE:
9421 case R_MIPS_GOT_OFST:
b49e97c9
TS
9422 /* ??? It would seem that the existing MIPS code does no sort
9423 of reference counting or whatnot on its GOT and PLT entries,
9424 so it is not possible to garbage collect them at this time. */
9425 break;
9426
9427 default:
9428 break;
9429 }
9430#endif
9431
b34976b6 9432 return TRUE;
b49e97c9
TS
9433}
9434\f
9435/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9436 hiding the old indirect symbol. Process additional relocation
9437 information. Also called for weakdefs, in which case we just let
9438 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9439
9440void
fcfa13d2 9441_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9442 struct elf_link_hash_entry *dir,
9443 struct elf_link_hash_entry *ind)
b49e97c9
TS
9444{
9445 struct mips_elf_link_hash_entry *dirmips, *indmips;
9446
fcfa13d2 9447 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9448
9449 if (ind->root.type != bfd_link_hash_indirect)
9450 return;
9451
9452 dirmips = (struct mips_elf_link_hash_entry *) dir;
9453 indmips = (struct mips_elf_link_hash_entry *) ind;
9454 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9455 if (indmips->readonly_reloc)
b34976b6 9456 dirmips->readonly_reloc = TRUE;
b49e97c9 9457 if (indmips->no_fn_stub)
b34976b6 9458 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9459
9460 if (dirmips->tls_type == 0)
9461 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9462}
9463
9464void
9719ad41
RS
9465_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9466 struct elf_link_hash_entry *entry,
9467 bfd_boolean force_local)
b49e97c9
TS
9468{
9469 bfd *dynobj;
9470 asection *got;
9471 struct mips_got_info *g;
9472 struct mips_elf_link_hash_entry *h;
7c5fcef7 9473
b49e97c9 9474 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9475 if (h->forced_local)
9476 return;
4b555070 9477 h->forced_local = force_local;
7c5fcef7 9478
b49e97c9 9479 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9480 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9481 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9482 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9483 {
c45a316a
AM
9484 if (g->next)
9485 {
9486 struct mips_got_entry e;
9487 struct mips_got_info *gg = g;
9488
9489 /* Since we're turning what used to be a global symbol into a
9490 local one, bump up the number of local entries of each GOT
9491 that had an entry for it. This will automatically decrease
9492 the number of global entries, since global_gotno is actually
9493 the upper limit of global entries. */
9494 e.abfd = dynobj;
9495 e.symndx = -1;
9496 e.d.h = h;
0f20cc35 9497 e.tls_type = 0;
c45a316a
AM
9498
9499 for (g = g->next; g != gg; g = g->next)
9500 if (htab_find (g->got_entries, &e))
9501 {
9502 BFD_ASSERT (g->global_gotno > 0);
9503 g->local_gotno++;
9504 g->global_gotno--;
9505 }
b49e97c9 9506
c45a316a
AM
9507 /* If this was a global symbol forced into the primary GOT, we
9508 no longer need an entry for it. We can't release the entry
9509 at this point, but we must at least stop counting it as one
9510 of the symbols that required a forced got entry. */
9511 if (h->root.got.offset == 2)
9512 {
9513 BFD_ASSERT (gg->assigned_gotno > 0);
9514 gg->assigned_gotno--;
9515 }
9516 }
9517 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9518 /* If we haven't got through GOT allocation yet, just bump up the
9519 number of local entries, as this symbol won't be counted as
9520 global. */
9521 g->local_gotno++;
9522 else if (h->root.got.offset == 1)
f4416af6 9523 {
c45a316a
AM
9524 /* If we're past non-multi-GOT allocation and this symbol had
9525 been marked for a global got entry, give it a local entry
9526 instead. */
9527 BFD_ASSERT (g->global_gotno > 0);
9528 g->local_gotno++;
9529 g->global_gotno--;
f4416af6
AO
9530 }
9531 }
f4416af6
AO
9532
9533 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9534}
9535\f
d01414a5
TS
9536#define PDR_SIZE 32
9537
b34976b6 9538bfd_boolean
9719ad41
RS
9539_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9540 struct bfd_link_info *info)
d01414a5
TS
9541{
9542 asection *o;
b34976b6 9543 bfd_boolean ret = FALSE;
d01414a5
TS
9544 unsigned char *tdata;
9545 size_t i, skip;
9546
9547 o = bfd_get_section_by_name (abfd, ".pdr");
9548 if (! o)
b34976b6 9549 return FALSE;
eea6121a 9550 if (o->size == 0)
b34976b6 9551 return FALSE;
eea6121a 9552 if (o->size % PDR_SIZE != 0)
b34976b6 9553 return FALSE;
d01414a5
TS
9554 if (o->output_section != NULL
9555 && bfd_is_abs_section (o->output_section))
b34976b6 9556 return FALSE;
d01414a5 9557
eea6121a 9558 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9559 if (! tdata)
b34976b6 9560 return FALSE;
d01414a5 9561
9719ad41 9562 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9563 info->keep_memory);
d01414a5
TS
9564 if (!cookie->rels)
9565 {
9566 free (tdata);
b34976b6 9567 return FALSE;
d01414a5
TS
9568 }
9569
9570 cookie->rel = cookie->rels;
9571 cookie->relend = cookie->rels + o->reloc_count;
9572
eea6121a 9573 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9574 {
c152c796 9575 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9576 {
9577 tdata[i] = 1;
9578 skip ++;
9579 }
9580 }
9581
9582 if (skip != 0)
9583 {
f0abc2a1 9584 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9585 o->size -= skip * PDR_SIZE;
b34976b6 9586 ret = TRUE;
d01414a5
TS
9587 }
9588 else
9589 free (tdata);
9590
9591 if (! info->keep_memory)
9592 free (cookie->rels);
9593
9594 return ret;
9595}
9596
b34976b6 9597bfd_boolean
9719ad41 9598_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9599{
9600 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9601 return TRUE;
9602 return FALSE;
53bfd6b4 9603}
d01414a5 9604
b34976b6 9605bfd_boolean
9719ad41
RS
9606_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9607 bfd_byte *contents)
d01414a5
TS
9608{
9609 bfd_byte *to, *from, *end;
9610 int i;
9611
9612 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9613 return FALSE;
d01414a5 9614
f0abc2a1 9615 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9616 return FALSE;
d01414a5
TS
9617
9618 to = contents;
eea6121a 9619 end = contents + sec->size;
d01414a5
TS
9620 for (from = contents, i = 0;
9621 from < end;
9622 from += PDR_SIZE, i++)
9623 {
f0abc2a1 9624 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9625 continue;
9626 if (to != from)
9627 memcpy (to, from, PDR_SIZE);
9628 to += PDR_SIZE;
9629 }
9630 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9631 sec->output_offset, sec->size);
b34976b6 9632 return TRUE;
d01414a5 9633}
53bfd6b4 9634\f
b49e97c9
TS
9635/* MIPS ELF uses a special find_nearest_line routine in order the
9636 handle the ECOFF debugging information. */
9637
9638struct mips_elf_find_line
9639{
9640 struct ecoff_debug_info d;
9641 struct ecoff_find_line i;
9642};
9643
b34976b6 9644bfd_boolean
9719ad41
RS
9645_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9646 asymbol **symbols, bfd_vma offset,
9647 const char **filename_ptr,
9648 const char **functionname_ptr,
9649 unsigned int *line_ptr)
b49e97c9
TS
9650{
9651 asection *msec;
9652
9653 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9654 filename_ptr, functionname_ptr,
9655 line_ptr))
b34976b6 9656 return TRUE;
b49e97c9
TS
9657
9658 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9659 filename_ptr, functionname_ptr,
9719ad41 9660 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9661 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9662 return TRUE;
b49e97c9
TS
9663
9664 msec = bfd_get_section_by_name (abfd, ".mdebug");
9665 if (msec != NULL)
9666 {
9667 flagword origflags;
9668 struct mips_elf_find_line *fi;
9669 const struct ecoff_debug_swap * const swap =
9670 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9671
9672 /* If we are called during a link, mips_elf_final_link may have
9673 cleared the SEC_HAS_CONTENTS field. We force it back on here
9674 if appropriate (which it normally will be). */
9675 origflags = msec->flags;
9676 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9677 msec->flags |= SEC_HAS_CONTENTS;
9678
9679 fi = elf_tdata (abfd)->find_line_info;
9680 if (fi == NULL)
9681 {
9682 bfd_size_type external_fdr_size;
9683 char *fraw_src;
9684 char *fraw_end;
9685 struct fdr *fdr_ptr;
9686 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9687
9719ad41 9688 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9689 if (fi == NULL)
9690 {
9691 msec->flags = origflags;
b34976b6 9692 return FALSE;
b49e97c9
TS
9693 }
9694
9695 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9696 {
9697 msec->flags = origflags;
b34976b6 9698 return FALSE;
b49e97c9
TS
9699 }
9700
9701 /* Swap in the FDR information. */
9702 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9703 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9704 if (fi->d.fdr == NULL)
9705 {
9706 msec->flags = origflags;
b34976b6 9707 return FALSE;
b49e97c9
TS
9708 }
9709 external_fdr_size = swap->external_fdr_size;
9710 fdr_ptr = fi->d.fdr;
9711 fraw_src = (char *) fi->d.external_fdr;
9712 fraw_end = (fraw_src
9713 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9714 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9715 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9716
9717 elf_tdata (abfd)->find_line_info = fi;
9718
9719 /* Note that we don't bother to ever free this information.
9720 find_nearest_line is either called all the time, as in
9721 objdump -l, so the information should be saved, or it is
9722 rarely called, as in ld error messages, so the memory
9723 wasted is unimportant. Still, it would probably be a
9724 good idea for free_cached_info to throw it away. */
9725 }
9726
9727 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9728 &fi->i, filename_ptr, functionname_ptr,
9729 line_ptr))
9730 {
9731 msec->flags = origflags;
b34976b6 9732 return TRUE;
b49e97c9
TS
9733 }
9734
9735 msec->flags = origflags;
9736 }
9737
9738 /* Fall back on the generic ELF find_nearest_line routine. */
9739
9740 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9741 filename_ptr, functionname_ptr,
9742 line_ptr);
9743}
4ab527b0
FF
9744
9745bfd_boolean
9746_bfd_mips_elf_find_inliner_info (bfd *abfd,
9747 const char **filename_ptr,
9748 const char **functionname_ptr,
9749 unsigned int *line_ptr)
9750{
9751 bfd_boolean found;
9752 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9753 functionname_ptr, line_ptr,
9754 & elf_tdata (abfd)->dwarf2_find_line_info);
9755 return found;
9756}
9757
b49e97c9
TS
9758\f
9759/* When are writing out the .options or .MIPS.options section,
9760 remember the bytes we are writing out, so that we can install the
9761 GP value in the section_processing routine. */
9762
b34976b6 9763bfd_boolean
9719ad41
RS
9764_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9765 const void *location,
9766 file_ptr offset, bfd_size_type count)
b49e97c9 9767{
cc2e31b9 9768 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9769 {
9770 bfd_byte *c;
9771
9772 if (elf_section_data (section) == NULL)
9773 {
9774 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9775 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9776 if (elf_section_data (section) == NULL)
b34976b6 9777 return FALSE;
b49e97c9 9778 }
f0abc2a1 9779 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9780 if (c == NULL)
9781 {
eea6121a 9782 c = bfd_zalloc (abfd, section->size);
b49e97c9 9783 if (c == NULL)
b34976b6 9784 return FALSE;
f0abc2a1 9785 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9786 }
9787
9719ad41 9788 memcpy (c + offset, location, count);
b49e97c9
TS
9789 }
9790
9791 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9792 count);
9793}
9794
9795/* This is almost identical to bfd_generic_get_... except that some
9796 MIPS relocations need to be handled specially. Sigh. */
9797
9798bfd_byte *
9719ad41
RS
9799_bfd_elf_mips_get_relocated_section_contents
9800 (bfd *abfd,
9801 struct bfd_link_info *link_info,
9802 struct bfd_link_order *link_order,
9803 bfd_byte *data,
9804 bfd_boolean relocatable,
9805 asymbol **symbols)
b49e97c9
TS
9806{
9807 /* Get enough memory to hold the stuff */
9808 bfd *input_bfd = link_order->u.indirect.section->owner;
9809 asection *input_section = link_order->u.indirect.section;
eea6121a 9810 bfd_size_type sz;
b49e97c9
TS
9811
9812 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9813 arelent **reloc_vector = NULL;
9814 long reloc_count;
9815
9816 if (reloc_size < 0)
9817 goto error_return;
9818
9719ad41 9819 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
9820 if (reloc_vector == NULL && reloc_size != 0)
9821 goto error_return;
9822
9823 /* read in the section */
eea6121a
AM
9824 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9825 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
9826 goto error_return;
9827
b49e97c9
TS
9828 reloc_count = bfd_canonicalize_reloc (input_bfd,
9829 input_section,
9830 reloc_vector,
9831 symbols);
9832 if (reloc_count < 0)
9833 goto error_return;
9834
9835 if (reloc_count > 0)
9836 {
9837 arelent **parent;
9838 /* for mips */
9839 int gp_found;
9840 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9841
9842 {
9843 struct bfd_hash_entry *h;
9844 struct bfd_link_hash_entry *lh;
9845 /* Skip all this stuff if we aren't mixing formats. */
9846 if (abfd && input_bfd
9847 && abfd->xvec == input_bfd->xvec)
9848 lh = 0;
9849 else
9850 {
b34976b6 9851 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
9852 lh = (struct bfd_link_hash_entry *) h;
9853 }
9854 lookup:
9855 if (lh)
9856 {
9857 switch (lh->type)
9858 {
9859 case bfd_link_hash_undefined:
9860 case bfd_link_hash_undefweak:
9861 case bfd_link_hash_common:
9862 gp_found = 0;
9863 break;
9864 case bfd_link_hash_defined:
9865 case bfd_link_hash_defweak:
9866 gp_found = 1;
9867 gp = lh->u.def.value;
9868 break;
9869 case bfd_link_hash_indirect:
9870 case bfd_link_hash_warning:
9871 lh = lh->u.i.link;
9872 /* @@FIXME ignoring warning for now */
9873 goto lookup;
9874 case bfd_link_hash_new:
9875 default:
9876 abort ();
9877 }
9878 }
9879 else
9880 gp_found = 0;
9881 }
9882 /* end mips */
9719ad41 9883 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 9884 {
9719ad41 9885 char *error_message = NULL;
b49e97c9
TS
9886 bfd_reloc_status_type r;
9887
9888 /* Specific to MIPS: Deal with relocation types that require
9889 knowing the gp of the output bfd. */
9890 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 9891
8236346f
EC
9892 /* If we've managed to find the gp and have a special
9893 function for the relocation then go ahead, else default
9894 to the generic handling. */
9895 if (gp_found
9896 && (*parent)->howto->special_function
9897 == _bfd_mips_elf32_gprel16_reloc)
9898 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9899 input_section, relocatable,
9900 data, gp);
9901 else
86324f90 9902 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
9903 input_section,
9904 relocatable ? abfd : NULL,
9905 &error_message);
b49e97c9 9906
1049f94e 9907 if (relocatable)
b49e97c9
TS
9908 {
9909 asection *os = input_section->output_section;
9910
9911 /* A partial link, so keep the relocs */
9912 os->orelocation[os->reloc_count] = *parent;
9913 os->reloc_count++;
9914 }
9915
9916 if (r != bfd_reloc_ok)
9917 {
9918 switch (r)
9919 {
9920 case bfd_reloc_undefined:
9921 if (!((*link_info->callbacks->undefined_symbol)
9922 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 9923 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
9924 goto error_return;
9925 break;
9926 case bfd_reloc_dangerous:
9719ad41 9927 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
9928 if (!((*link_info->callbacks->reloc_dangerous)
9929 (link_info, error_message, input_bfd, input_section,
9930 (*parent)->address)))
9931 goto error_return;
9932 break;
9933 case bfd_reloc_overflow:
9934 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
9935 (link_info, NULL,
9936 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
9937 (*parent)->howto->name, (*parent)->addend,
9938 input_bfd, input_section, (*parent)->address)))
9939 goto error_return;
9940 break;
9941 case bfd_reloc_outofrange:
9942 default:
9943 abort ();
9944 break;
9945 }
9946
9947 }
9948 }
9949 }
9950 if (reloc_vector != NULL)
9951 free (reloc_vector);
9952 return data;
9953
9954error_return:
9955 if (reloc_vector != NULL)
9956 free (reloc_vector);
9957 return NULL;
9958}
9959\f
9960/* Create a MIPS ELF linker hash table. */
9961
9962struct bfd_link_hash_table *
9719ad41 9963_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
9964{
9965 struct mips_elf_link_hash_table *ret;
9966 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9967
9719ad41
RS
9968 ret = bfd_malloc (amt);
9969 if (ret == NULL)
b49e97c9
TS
9970 return NULL;
9971
66eb6687
AM
9972 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9973 mips_elf_link_hash_newfunc,
9974 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 9975 {
e2d34d7d 9976 free (ret);
b49e97c9
TS
9977 return NULL;
9978 }
9979
9980#if 0
9981 /* We no longer use this. */
9982 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9983 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9984#endif
9985 ret->procedure_count = 0;
9986 ret->compact_rel_size = 0;
b34976b6 9987 ret->use_rld_obj_head = FALSE;
b49e97c9 9988 ret->rld_value = 0;
b34976b6 9989 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
9990 ret->is_vxworks = FALSE;
9991 ret->srelbss = NULL;
9992 ret->sdynbss = NULL;
9993 ret->srelplt = NULL;
9994 ret->srelplt2 = NULL;
9995 ret->sgotplt = NULL;
9996 ret->splt = NULL;
9997 ret->plt_header_size = 0;
9998 ret->plt_entry_size = 0;
5108fc1b 9999 ret->function_stub_size = 0;
b49e97c9
TS
10000
10001 return &ret->root.root;
10002}
0a44bf69
RS
10003
10004/* Likewise, but indicate that the target is VxWorks. */
10005
10006struct bfd_link_hash_table *
10007_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10008{
10009 struct bfd_link_hash_table *ret;
10010
10011 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10012 if (ret)
10013 {
10014 struct mips_elf_link_hash_table *htab;
10015
10016 htab = (struct mips_elf_link_hash_table *) ret;
10017 htab->is_vxworks = 1;
10018 }
10019 return ret;
10020}
b49e97c9
TS
10021\f
10022/* We need to use a special link routine to handle the .reginfo and
10023 the .mdebug sections. We need to merge all instances of these
10024 sections together, not write them all out sequentially. */
10025
b34976b6 10026bfd_boolean
9719ad41 10027_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10028{
b49e97c9
TS
10029 asection *o;
10030 struct bfd_link_order *p;
10031 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10032 asection *rtproc_sec;
10033 Elf32_RegInfo reginfo;
10034 struct ecoff_debug_info debug;
7a2a6943
NC
10035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10036 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10037 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10038 void *mdebug_handle = NULL;
b49e97c9
TS
10039 asection *s;
10040 EXTR esym;
10041 unsigned int i;
10042 bfd_size_type amt;
0a44bf69 10043 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10044
10045 static const char * const secname[] =
10046 {
10047 ".text", ".init", ".fini", ".data",
10048 ".rodata", ".sdata", ".sbss", ".bss"
10049 };
10050 static const int sc[] =
10051 {
10052 scText, scInit, scFini, scData,
10053 scRData, scSData, scSBss, scBss
10054 };
10055
b49e97c9
TS
10056 /* We'd carefully arranged the dynamic symbol indices, and then the
10057 generic size_dynamic_sections renumbered them out from under us.
10058 Rather than trying somehow to prevent the renumbering, just do
10059 the sort again. */
0a44bf69 10060 htab = mips_elf_hash_table (info);
b49e97c9
TS
10061 if (elf_hash_table (info)->dynamic_sections_created)
10062 {
10063 bfd *dynobj;
10064 asection *got;
10065 struct mips_got_info *g;
7a2a6943 10066 bfd_size_type dynsecsymcount;
b49e97c9
TS
10067
10068 /* When we resort, we must tell mips_elf_sort_hash_table what
10069 the lowest index it may use is. That's the number of section
10070 symbols we're going to add. The generic ELF linker only
10071 adds these symbols when building a shared object. Note that
10072 we count the sections after (possibly) removing the .options
10073 section above. */
7a2a6943 10074
5108fc1b 10075 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10076 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10077 return FALSE;
b49e97c9
TS
10078
10079 /* Make sure we didn't grow the global .got region. */
10080 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10081 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10082 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10083
10084 if (g->global_gotsym != NULL)
10085 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10086 - g->global_gotsym->dynindx)
10087 <= g->global_gotno);
10088 }
10089
b49e97c9
TS
10090 /* Get a value for the GP register. */
10091 if (elf_gp (abfd) == 0)
10092 {
10093 struct bfd_link_hash_entry *h;
10094
b34976b6 10095 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10096 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10097 elf_gp (abfd) = (h->u.def.value
10098 + h->u.def.section->output_section->vma
10099 + h->u.def.section->output_offset);
0a44bf69
RS
10100 else if (htab->is_vxworks
10101 && (h = bfd_link_hash_lookup (info->hash,
10102 "_GLOBAL_OFFSET_TABLE_",
10103 FALSE, FALSE, TRUE))
10104 && h->type == bfd_link_hash_defined)
10105 elf_gp (abfd) = (h->u.def.section->output_section->vma
10106 + h->u.def.section->output_offset
10107 + h->u.def.value);
1049f94e 10108 else if (info->relocatable)
b49e97c9
TS
10109 {
10110 bfd_vma lo = MINUS_ONE;
10111
10112 /* Find the GP-relative section with the lowest offset. */
9719ad41 10113 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10114 if (o->vma < lo
10115 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10116 lo = o->vma;
10117
10118 /* And calculate GP relative to that. */
0a44bf69 10119 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10120 }
10121 else
10122 {
10123 /* If the relocate_section function needs to do a reloc
10124 involving the GP value, it should make a reloc_dangerous
10125 callback to warn that GP is not defined. */
10126 }
10127 }
10128
10129 /* Go through the sections and collect the .reginfo and .mdebug
10130 information. */
10131 reginfo_sec = NULL;
10132 mdebug_sec = NULL;
10133 gptab_data_sec = NULL;
10134 gptab_bss_sec = NULL;
9719ad41 10135 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10136 {
10137 if (strcmp (o->name, ".reginfo") == 0)
10138 {
10139 memset (&reginfo, 0, sizeof reginfo);
10140
10141 /* We have found the .reginfo section in the output file.
10142 Look through all the link_orders comprising it and merge
10143 the information together. */
8423293d 10144 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10145 {
10146 asection *input_section;
10147 bfd *input_bfd;
10148 Elf32_External_RegInfo ext;
10149 Elf32_RegInfo sub;
10150
10151 if (p->type != bfd_indirect_link_order)
10152 {
10153 if (p->type == bfd_data_link_order)
10154 continue;
10155 abort ();
10156 }
10157
10158 input_section = p->u.indirect.section;
10159 input_bfd = input_section->owner;
10160
b49e97c9 10161 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10162 &ext, 0, sizeof ext))
b34976b6 10163 return FALSE;
b49e97c9
TS
10164
10165 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10166
10167 reginfo.ri_gprmask |= sub.ri_gprmask;
10168 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10169 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10170 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10171 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10172
10173 /* ri_gp_value is set by the function
10174 mips_elf32_section_processing when the section is
10175 finally written out. */
10176
10177 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10178 elf_link_input_bfd ignores this section. */
10179 input_section->flags &= ~SEC_HAS_CONTENTS;
10180 }
10181
10182 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10183 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10184
10185 /* Skip this section later on (I don't think this currently
10186 matters, but someday it might). */
8423293d 10187 o->map_head.link_order = NULL;
b49e97c9
TS
10188
10189 reginfo_sec = o;
10190 }
10191
10192 if (strcmp (o->name, ".mdebug") == 0)
10193 {
10194 struct extsym_info einfo;
10195 bfd_vma last;
10196
10197 /* We have found the .mdebug section in the output file.
10198 Look through all the link_orders comprising it and merge
10199 the information together. */
10200 symhdr->magic = swap->sym_magic;
10201 /* FIXME: What should the version stamp be? */
10202 symhdr->vstamp = 0;
10203 symhdr->ilineMax = 0;
10204 symhdr->cbLine = 0;
10205 symhdr->idnMax = 0;
10206 symhdr->ipdMax = 0;
10207 symhdr->isymMax = 0;
10208 symhdr->ioptMax = 0;
10209 symhdr->iauxMax = 0;
10210 symhdr->issMax = 0;
10211 symhdr->issExtMax = 0;
10212 symhdr->ifdMax = 0;
10213 symhdr->crfd = 0;
10214 symhdr->iextMax = 0;
10215
10216 /* We accumulate the debugging information itself in the
10217 debug_info structure. */
10218 debug.line = NULL;
10219 debug.external_dnr = NULL;
10220 debug.external_pdr = NULL;
10221 debug.external_sym = NULL;
10222 debug.external_opt = NULL;
10223 debug.external_aux = NULL;
10224 debug.ss = NULL;
10225 debug.ssext = debug.ssext_end = NULL;
10226 debug.external_fdr = NULL;
10227 debug.external_rfd = NULL;
10228 debug.external_ext = debug.external_ext_end = NULL;
10229
10230 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10231 if (mdebug_handle == NULL)
b34976b6 10232 return FALSE;
b49e97c9
TS
10233
10234 esym.jmptbl = 0;
10235 esym.cobol_main = 0;
10236 esym.weakext = 0;
10237 esym.reserved = 0;
10238 esym.ifd = ifdNil;
10239 esym.asym.iss = issNil;
10240 esym.asym.st = stLocal;
10241 esym.asym.reserved = 0;
10242 esym.asym.index = indexNil;
10243 last = 0;
10244 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10245 {
10246 esym.asym.sc = sc[i];
10247 s = bfd_get_section_by_name (abfd, secname[i]);
10248 if (s != NULL)
10249 {
10250 esym.asym.value = s->vma;
eea6121a 10251 last = s->vma + s->size;
b49e97c9
TS
10252 }
10253 else
10254 esym.asym.value = last;
10255 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10256 secname[i], &esym))
b34976b6 10257 return FALSE;
b49e97c9
TS
10258 }
10259
8423293d 10260 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10261 {
10262 asection *input_section;
10263 bfd *input_bfd;
10264 const struct ecoff_debug_swap *input_swap;
10265 struct ecoff_debug_info input_debug;
10266 char *eraw_src;
10267 char *eraw_end;
10268
10269 if (p->type != bfd_indirect_link_order)
10270 {
10271 if (p->type == bfd_data_link_order)
10272 continue;
10273 abort ();
10274 }
10275
10276 input_section = p->u.indirect.section;
10277 input_bfd = input_section->owner;
10278
10279 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10280 || (get_elf_backend_data (input_bfd)
10281 ->elf_backend_ecoff_debug_swap) == NULL)
10282 {
10283 /* I don't know what a non MIPS ELF bfd would be
10284 doing with a .mdebug section, but I don't really
10285 want to deal with it. */
10286 continue;
10287 }
10288
10289 input_swap = (get_elf_backend_data (input_bfd)
10290 ->elf_backend_ecoff_debug_swap);
10291
eea6121a 10292 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10293
10294 /* The ECOFF linking code expects that we have already
10295 read in the debugging information and set up an
10296 ecoff_debug_info structure, so we do that now. */
10297 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10298 &input_debug))
b34976b6 10299 return FALSE;
b49e97c9
TS
10300
10301 if (! (bfd_ecoff_debug_accumulate
10302 (mdebug_handle, abfd, &debug, swap, input_bfd,
10303 &input_debug, input_swap, info)))
b34976b6 10304 return FALSE;
b49e97c9
TS
10305
10306 /* Loop through the external symbols. For each one with
10307 interesting information, try to find the symbol in
10308 the linker global hash table and save the information
10309 for the output external symbols. */
10310 eraw_src = input_debug.external_ext;
10311 eraw_end = (eraw_src
10312 + (input_debug.symbolic_header.iextMax
10313 * input_swap->external_ext_size));
10314 for (;
10315 eraw_src < eraw_end;
10316 eraw_src += input_swap->external_ext_size)
10317 {
10318 EXTR ext;
10319 const char *name;
10320 struct mips_elf_link_hash_entry *h;
10321
9719ad41 10322 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10323 if (ext.asym.sc == scNil
10324 || ext.asym.sc == scUndefined
10325 || ext.asym.sc == scSUndefined)
10326 continue;
10327
10328 name = input_debug.ssext + ext.asym.iss;
10329 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10330 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10331 if (h == NULL || h->esym.ifd != -2)
10332 continue;
10333
10334 if (ext.ifd != -1)
10335 {
10336 BFD_ASSERT (ext.ifd
10337 < input_debug.symbolic_header.ifdMax);
10338 ext.ifd = input_debug.ifdmap[ext.ifd];
10339 }
10340
10341 h->esym = ext;
10342 }
10343
10344 /* Free up the information we just read. */
10345 free (input_debug.line);
10346 free (input_debug.external_dnr);
10347 free (input_debug.external_pdr);
10348 free (input_debug.external_sym);
10349 free (input_debug.external_opt);
10350 free (input_debug.external_aux);
10351 free (input_debug.ss);
10352 free (input_debug.ssext);
10353 free (input_debug.external_fdr);
10354 free (input_debug.external_rfd);
10355 free (input_debug.external_ext);
10356
10357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10358 elf_link_input_bfd ignores this section. */
10359 input_section->flags &= ~SEC_HAS_CONTENTS;
10360 }
10361
10362 if (SGI_COMPAT (abfd) && info->shared)
10363 {
10364 /* Create .rtproc section. */
10365 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10366 if (rtproc_sec == NULL)
10367 {
10368 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10369 | SEC_LINKER_CREATED | SEC_READONLY);
10370
3496cb2a
L
10371 rtproc_sec = bfd_make_section_with_flags (abfd,
10372 ".rtproc",
10373 flags);
b49e97c9 10374 if (rtproc_sec == NULL
b49e97c9 10375 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10376 return FALSE;
b49e97c9
TS
10377 }
10378
10379 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10380 info, rtproc_sec,
10381 &debug))
b34976b6 10382 return FALSE;
b49e97c9
TS
10383 }
10384
10385 /* Build the external symbol information. */
10386 einfo.abfd = abfd;
10387 einfo.info = info;
10388 einfo.debug = &debug;
10389 einfo.swap = swap;
b34976b6 10390 einfo.failed = FALSE;
b49e97c9 10391 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10392 mips_elf_output_extsym, &einfo);
b49e97c9 10393 if (einfo.failed)
b34976b6 10394 return FALSE;
b49e97c9
TS
10395
10396 /* Set the size of the .mdebug section. */
eea6121a 10397 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10398
10399 /* Skip this section later on (I don't think this currently
10400 matters, but someday it might). */
8423293d 10401 o->map_head.link_order = NULL;
b49e97c9
TS
10402
10403 mdebug_sec = o;
10404 }
10405
0112cd26 10406 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10407 {
10408 const char *subname;
10409 unsigned int c;
10410 Elf32_gptab *tab;
10411 Elf32_External_gptab *ext_tab;
10412 unsigned int j;
10413
10414 /* The .gptab.sdata and .gptab.sbss sections hold
10415 information describing how the small data area would
10416 change depending upon the -G switch. These sections
10417 not used in executables files. */
1049f94e 10418 if (! info->relocatable)
b49e97c9 10419 {
8423293d 10420 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10421 {
10422 asection *input_section;
10423
10424 if (p->type != bfd_indirect_link_order)
10425 {
10426 if (p->type == bfd_data_link_order)
10427 continue;
10428 abort ();
10429 }
10430
10431 input_section = p->u.indirect.section;
10432
10433 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10434 elf_link_input_bfd ignores this section. */
10435 input_section->flags &= ~SEC_HAS_CONTENTS;
10436 }
10437
10438 /* Skip this section later on (I don't think this
10439 currently matters, but someday it might). */
8423293d 10440 o->map_head.link_order = NULL;
b49e97c9
TS
10441
10442 /* Really remove the section. */
5daa8fe7 10443 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10444 --abfd->section_count;
10445
10446 continue;
10447 }
10448
10449 /* There is one gptab for initialized data, and one for
10450 uninitialized data. */
10451 if (strcmp (o->name, ".gptab.sdata") == 0)
10452 gptab_data_sec = o;
10453 else if (strcmp (o->name, ".gptab.sbss") == 0)
10454 gptab_bss_sec = o;
10455 else
10456 {
10457 (*_bfd_error_handler)
10458 (_("%s: illegal section name `%s'"),
10459 bfd_get_filename (abfd), o->name);
10460 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10461 return FALSE;
b49e97c9
TS
10462 }
10463
10464 /* The linker script always combines .gptab.data and
10465 .gptab.sdata into .gptab.sdata, and likewise for
10466 .gptab.bss and .gptab.sbss. It is possible that there is
10467 no .sdata or .sbss section in the output file, in which
10468 case we must change the name of the output section. */
10469 subname = o->name + sizeof ".gptab" - 1;
10470 if (bfd_get_section_by_name (abfd, subname) == NULL)
10471 {
10472 if (o == gptab_data_sec)
10473 o->name = ".gptab.data";
10474 else
10475 o->name = ".gptab.bss";
10476 subname = o->name + sizeof ".gptab" - 1;
10477 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10478 }
10479
10480 /* Set up the first entry. */
10481 c = 1;
10482 amt = c * sizeof (Elf32_gptab);
9719ad41 10483 tab = bfd_malloc (amt);
b49e97c9 10484 if (tab == NULL)
b34976b6 10485 return FALSE;
b49e97c9
TS
10486 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10487 tab[0].gt_header.gt_unused = 0;
10488
10489 /* Combine the input sections. */
8423293d 10490 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10491 {
10492 asection *input_section;
10493 bfd *input_bfd;
10494 bfd_size_type size;
10495 unsigned long last;
10496 bfd_size_type gpentry;
10497
10498 if (p->type != bfd_indirect_link_order)
10499 {
10500 if (p->type == bfd_data_link_order)
10501 continue;
10502 abort ();
10503 }
10504
10505 input_section = p->u.indirect.section;
10506 input_bfd = input_section->owner;
10507
10508 /* Combine the gptab entries for this input section one
10509 by one. We know that the input gptab entries are
10510 sorted by ascending -G value. */
eea6121a 10511 size = input_section->size;
b49e97c9
TS
10512 last = 0;
10513 for (gpentry = sizeof (Elf32_External_gptab);
10514 gpentry < size;
10515 gpentry += sizeof (Elf32_External_gptab))
10516 {
10517 Elf32_External_gptab ext_gptab;
10518 Elf32_gptab int_gptab;
10519 unsigned long val;
10520 unsigned long add;
b34976b6 10521 bfd_boolean exact;
b49e97c9
TS
10522 unsigned int look;
10523
10524 if (! (bfd_get_section_contents
9719ad41
RS
10525 (input_bfd, input_section, &ext_gptab, gpentry,
10526 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10527 {
10528 free (tab);
b34976b6 10529 return FALSE;
b49e97c9
TS
10530 }
10531
10532 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10533 &int_gptab);
10534 val = int_gptab.gt_entry.gt_g_value;
10535 add = int_gptab.gt_entry.gt_bytes - last;
10536
b34976b6 10537 exact = FALSE;
b49e97c9
TS
10538 for (look = 1; look < c; look++)
10539 {
10540 if (tab[look].gt_entry.gt_g_value >= val)
10541 tab[look].gt_entry.gt_bytes += add;
10542
10543 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10544 exact = TRUE;
b49e97c9
TS
10545 }
10546
10547 if (! exact)
10548 {
10549 Elf32_gptab *new_tab;
10550 unsigned int max;
10551
10552 /* We need a new table entry. */
10553 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10554 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10555 if (new_tab == NULL)
10556 {
10557 free (tab);
b34976b6 10558 return FALSE;
b49e97c9
TS
10559 }
10560 tab = new_tab;
10561 tab[c].gt_entry.gt_g_value = val;
10562 tab[c].gt_entry.gt_bytes = add;
10563
10564 /* Merge in the size for the next smallest -G
10565 value, since that will be implied by this new
10566 value. */
10567 max = 0;
10568 for (look = 1; look < c; look++)
10569 {
10570 if (tab[look].gt_entry.gt_g_value < val
10571 && (max == 0
10572 || (tab[look].gt_entry.gt_g_value
10573 > tab[max].gt_entry.gt_g_value)))
10574 max = look;
10575 }
10576 if (max != 0)
10577 tab[c].gt_entry.gt_bytes +=
10578 tab[max].gt_entry.gt_bytes;
10579
10580 ++c;
10581 }
10582
10583 last = int_gptab.gt_entry.gt_bytes;
10584 }
10585
10586 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10587 elf_link_input_bfd ignores this section. */
10588 input_section->flags &= ~SEC_HAS_CONTENTS;
10589 }
10590
10591 /* The table must be sorted by -G value. */
10592 if (c > 2)
10593 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10594
10595 /* Swap out the table. */
10596 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10597 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10598 if (ext_tab == NULL)
10599 {
10600 free (tab);
b34976b6 10601 return FALSE;
b49e97c9
TS
10602 }
10603
10604 for (j = 0; j < c; j++)
10605 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10606 free (tab);
10607
eea6121a 10608 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10609 o->contents = (bfd_byte *) ext_tab;
10610
10611 /* Skip this section later on (I don't think this currently
10612 matters, but someday it might). */
8423293d 10613 o->map_head.link_order = NULL;
b49e97c9
TS
10614 }
10615 }
10616
10617 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10618 if (!bfd_elf_final_link (abfd, info))
b34976b6 10619 return FALSE;
b49e97c9
TS
10620
10621 /* Now write out the computed sections. */
10622
9719ad41 10623 if (reginfo_sec != NULL)
b49e97c9
TS
10624 {
10625 Elf32_External_RegInfo ext;
10626
10627 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10628 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10629 return FALSE;
b49e97c9
TS
10630 }
10631
9719ad41 10632 if (mdebug_sec != NULL)
b49e97c9
TS
10633 {
10634 BFD_ASSERT (abfd->output_has_begun);
10635 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10636 swap, info,
10637 mdebug_sec->filepos))
b34976b6 10638 return FALSE;
b49e97c9
TS
10639
10640 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10641 }
10642
9719ad41 10643 if (gptab_data_sec != NULL)
b49e97c9
TS
10644 {
10645 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10646 gptab_data_sec->contents,
eea6121a 10647 0, gptab_data_sec->size))
b34976b6 10648 return FALSE;
b49e97c9
TS
10649 }
10650
9719ad41 10651 if (gptab_bss_sec != NULL)
b49e97c9
TS
10652 {
10653 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10654 gptab_bss_sec->contents,
eea6121a 10655 0, gptab_bss_sec->size))
b34976b6 10656 return FALSE;
b49e97c9
TS
10657 }
10658
10659 if (SGI_COMPAT (abfd))
10660 {
10661 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10662 if (rtproc_sec != NULL)
10663 {
10664 if (! bfd_set_section_contents (abfd, rtproc_sec,
10665 rtproc_sec->contents,
eea6121a 10666 0, rtproc_sec->size))
b34976b6 10667 return FALSE;
b49e97c9
TS
10668 }
10669 }
10670
b34976b6 10671 return TRUE;
b49e97c9
TS
10672}
10673\f
64543e1a
RS
10674/* Structure for saying that BFD machine EXTENSION extends BASE. */
10675
10676struct mips_mach_extension {
10677 unsigned long extension, base;
10678};
10679
10680
10681/* An array describing how BFD machines relate to one another. The entries
10682 are ordered topologically with MIPS I extensions listed last. */
10683
10684static const struct mips_mach_extension mips_mach_extensions[] = {
10685 /* MIPS64 extensions. */
5f74bc13 10686 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10687 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10688
10689 /* MIPS V extensions. */
10690 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10691
10692 /* R10000 extensions. */
10693 { bfd_mach_mips12000, bfd_mach_mips10000 },
10694
10695 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10696 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10697 better to allow vr5400 and vr5500 code to be merged anyway, since
10698 many libraries will just use the core ISA. Perhaps we could add
10699 some sort of ASE flag if this ever proves a problem. */
10700 { bfd_mach_mips5500, bfd_mach_mips5400 },
10701 { bfd_mach_mips5400, bfd_mach_mips5000 },
10702
10703 /* MIPS IV extensions. */
10704 { bfd_mach_mips5, bfd_mach_mips8000 },
10705 { bfd_mach_mips10000, bfd_mach_mips8000 },
10706 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10707 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10708 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10709
10710 /* VR4100 extensions. */
10711 { bfd_mach_mips4120, bfd_mach_mips4100 },
10712 { bfd_mach_mips4111, bfd_mach_mips4100 },
10713
10714 /* MIPS III extensions. */
10715 { bfd_mach_mips8000, bfd_mach_mips4000 },
10716 { bfd_mach_mips4650, bfd_mach_mips4000 },
10717 { bfd_mach_mips4600, bfd_mach_mips4000 },
10718 { bfd_mach_mips4400, bfd_mach_mips4000 },
10719 { bfd_mach_mips4300, bfd_mach_mips4000 },
10720 { bfd_mach_mips4100, bfd_mach_mips4000 },
10721 { bfd_mach_mips4010, bfd_mach_mips4000 },
10722
10723 /* MIPS32 extensions. */
10724 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10725
10726 /* MIPS II extensions. */
10727 { bfd_mach_mips4000, bfd_mach_mips6000 },
10728 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10729
10730 /* MIPS I extensions. */
10731 { bfd_mach_mips6000, bfd_mach_mips3000 },
10732 { bfd_mach_mips3900, bfd_mach_mips3000 }
10733};
10734
10735
10736/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10737
10738static bfd_boolean
9719ad41 10739mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10740{
10741 size_t i;
10742
c5211a54
RS
10743 if (extension == base)
10744 return TRUE;
10745
10746 if (base == bfd_mach_mipsisa32
10747 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10748 return TRUE;
10749
10750 if (base == bfd_mach_mipsisa32r2
10751 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10752 return TRUE;
10753
10754 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10755 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10756 {
10757 extension = mips_mach_extensions[i].base;
10758 if (extension == base)
10759 return TRUE;
10760 }
64543e1a 10761
c5211a54 10762 return FALSE;
64543e1a
RS
10763}
10764
10765
10766/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10767
b34976b6 10768static bfd_boolean
9719ad41 10769mips_32bit_flags_p (flagword flags)
00707a0e 10770{
64543e1a
RS
10771 return ((flags & EF_MIPS_32BITMODE) != 0
10772 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10773 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10774 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10775 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10776 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10777 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10778}
10779
64543e1a 10780
b49e97c9
TS
10781/* Merge backend specific data from an object file to the output
10782 object file when linking. */
10783
b34976b6 10784bfd_boolean
9719ad41 10785_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10786{
10787 flagword old_flags;
10788 flagword new_flags;
b34976b6
AM
10789 bfd_boolean ok;
10790 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10791 asection *sec;
10792
10793 /* Check if we have the same endianess */
82e51918 10794 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10795 {
10796 (*_bfd_error_handler)
d003868e
AM
10797 (_("%B: endianness incompatible with that of the selected emulation"),
10798 ibfd);
aa701218
AO
10799 return FALSE;
10800 }
b49e97c9
TS
10801
10802 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10803 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10804 return TRUE;
b49e97c9 10805
aa701218
AO
10806 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10807 {
10808 (*_bfd_error_handler)
d003868e
AM
10809 (_("%B: ABI is incompatible with that of the selected emulation"),
10810 ibfd);
aa701218
AO
10811 return FALSE;
10812 }
10813
b49e97c9
TS
10814 new_flags = elf_elfheader (ibfd)->e_flags;
10815 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10816 old_flags = elf_elfheader (obfd)->e_flags;
10817
10818 if (! elf_flags_init (obfd))
10819 {
b34976b6 10820 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
10821 elf_elfheader (obfd)->e_flags = new_flags;
10822 elf_elfheader (obfd)->e_ident[EI_CLASS]
10823 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10824
10825 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
10826 && (bfd_get_arch_info (obfd)->the_default
10827 || mips_mach_extends_p (bfd_get_mach (obfd),
10828 bfd_get_mach (ibfd))))
b49e97c9
TS
10829 {
10830 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10831 bfd_get_mach (ibfd)))
b34976b6 10832 return FALSE;
b49e97c9
TS
10833 }
10834
b34976b6 10835 return TRUE;
b49e97c9
TS
10836 }
10837
10838 /* Check flag compatibility. */
10839
10840 new_flags &= ~EF_MIPS_NOREORDER;
10841 old_flags &= ~EF_MIPS_NOREORDER;
10842
f4416af6
AO
10843 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10844 doesn't seem to matter. */
10845 new_flags &= ~EF_MIPS_XGOT;
10846 old_flags &= ~EF_MIPS_XGOT;
10847
98a8deaf
RS
10848 /* MIPSpro generates ucode info in n64 objects. Again, we should
10849 just be able to ignore this. */
10850 new_flags &= ~EF_MIPS_UCODE;
10851 old_flags &= ~EF_MIPS_UCODE;
10852
0a44bf69
RS
10853 /* Don't care about the PIC flags from dynamic objects; they are
10854 PIC by design. */
10855 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10856 && (ibfd->flags & DYNAMIC) != 0)
10857 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10858
b49e97c9 10859 if (new_flags == old_flags)
b34976b6 10860 return TRUE;
b49e97c9
TS
10861
10862 /* Check to see if the input BFD actually contains any sections.
10863 If not, its flags may not have been initialised either, but it cannot
10864 actually cause any incompatibility. */
10865 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10866 {
10867 /* Ignore synthetic sections and empty .text, .data and .bss sections
10868 which are automatically generated by gas. */
10869 if (strcmp (sec->name, ".reginfo")
10870 && strcmp (sec->name, ".mdebug")
eea6121a 10871 && (sec->size != 0
d13d89fa
NS
10872 || (strcmp (sec->name, ".text")
10873 && strcmp (sec->name, ".data")
10874 && strcmp (sec->name, ".bss"))))
b49e97c9 10875 {
b34976b6 10876 null_input_bfd = FALSE;
b49e97c9
TS
10877 break;
10878 }
10879 }
10880 if (null_input_bfd)
b34976b6 10881 return TRUE;
b49e97c9 10882
b34976b6 10883 ok = TRUE;
b49e97c9 10884
143d77c5
EC
10885 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10886 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 10887 {
b49e97c9 10888 (*_bfd_error_handler)
d003868e
AM
10889 (_("%B: warning: linking PIC files with non-PIC files"),
10890 ibfd);
143d77c5 10891 ok = TRUE;
b49e97c9
TS
10892 }
10893
143d77c5
EC
10894 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10895 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10896 if (! (new_flags & EF_MIPS_PIC))
10897 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10898
10899 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10900 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 10901
64543e1a
RS
10902 /* Compare the ISAs. */
10903 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 10904 {
64543e1a 10905 (*_bfd_error_handler)
d003868e
AM
10906 (_("%B: linking 32-bit code with 64-bit code"),
10907 ibfd);
64543e1a
RS
10908 ok = FALSE;
10909 }
10910 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10911 {
10912 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10913 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 10914 {
64543e1a
RS
10915 /* Copy the architecture info from IBFD to OBFD. Also copy
10916 the 32-bit flag (if set) so that we continue to recognise
10917 OBFD as a 32-bit binary. */
10918 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10919 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10920 elf_elfheader (obfd)->e_flags
10921 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10922
10923 /* Copy across the ABI flags if OBFD doesn't use them
10924 and if that was what caused us to treat IBFD as 32-bit. */
10925 if ((old_flags & EF_MIPS_ABI) == 0
10926 && mips_32bit_flags_p (new_flags)
10927 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10928 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
10929 }
10930 else
10931 {
64543e1a 10932 /* The ISAs aren't compatible. */
b49e97c9 10933 (*_bfd_error_handler)
d003868e
AM
10934 (_("%B: linking %s module with previous %s modules"),
10935 ibfd,
64543e1a
RS
10936 bfd_printable_name (ibfd),
10937 bfd_printable_name (obfd));
b34976b6 10938 ok = FALSE;
b49e97c9 10939 }
b49e97c9
TS
10940 }
10941
64543e1a
RS
10942 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10943 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10944
10945 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
10946 does set EI_CLASS differently from any 32-bit ABI. */
10947 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10948 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10949 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10950 {
10951 /* Only error if both are set (to different values). */
10952 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10953 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10954 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10955 {
10956 (*_bfd_error_handler)
d003868e
AM
10957 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10958 ibfd,
b49e97c9
TS
10959 elf_mips_abi_name (ibfd),
10960 elf_mips_abi_name (obfd));
b34976b6 10961 ok = FALSE;
b49e97c9
TS
10962 }
10963 new_flags &= ~EF_MIPS_ABI;
10964 old_flags &= ~EF_MIPS_ABI;
10965 }
10966
fb39dac1
RS
10967 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10968 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10969 {
10970 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10971
10972 new_flags &= ~ EF_MIPS_ARCH_ASE;
10973 old_flags &= ~ EF_MIPS_ARCH_ASE;
10974 }
10975
b49e97c9
TS
10976 /* Warn about any other mismatches */
10977 if (new_flags != old_flags)
10978 {
10979 (*_bfd_error_handler)
d003868e
AM
10980 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10981 ibfd, (unsigned long) new_flags,
b49e97c9 10982 (unsigned long) old_flags);
b34976b6 10983 ok = FALSE;
b49e97c9
TS
10984 }
10985
10986 if (! ok)
10987 {
10988 bfd_set_error (bfd_error_bad_value);
b34976b6 10989 return FALSE;
b49e97c9
TS
10990 }
10991
b34976b6 10992 return TRUE;
b49e97c9
TS
10993}
10994
10995/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10996
b34976b6 10997bfd_boolean
9719ad41 10998_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
10999{
11000 BFD_ASSERT (!elf_flags_init (abfd)
11001 || elf_elfheader (abfd)->e_flags == flags);
11002
11003 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11004 elf_flags_init (abfd) = TRUE;
11005 return TRUE;
b49e97c9
TS
11006}
11007
b34976b6 11008bfd_boolean
9719ad41 11009_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11010{
9719ad41 11011 FILE *file = ptr;
b49e97c9
TS
11012
11013 BFD_ASSERT (abfd != NULL && ptr != NULL);
11014
11015 /* Print normal ELF private data. */
11016 _bfd_elf_print_private_bfd_data (abfd, ptr);
11017
11018 /* xgettext:c-format */
11019 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11020
11021 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11022 fprintf (file, _(" [abi=O32]"));
11023 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11024 fprintf (file, _(" [abi=O64]"));
11025 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11026 fprintf (file, _(" [abi=EABI32]"));
11027 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11028 fprintf (file, _(" [abi=EABI64]"));
11029 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11030 fprintf (file, _(" [abi unknown]"));
11031 else if (ABI_N32_P (abfd))
11032 fprintf (file, _(" [abi=N32]"));
11033 else if (ABI_64_P (abfd))
11034 fprintf (file, _(" [abi=64]"));
11035 else
11036 fprintf (file, _(" [no abi set]"));
11037
11038 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11039 fprintf (file, _(" [mips1]"));
11040 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11041 fprintf (file, _(" [mips2]"));
11042 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11043 fprintf (file, _(" [mips3]"));
11044 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11045 fprintf (file, _(" [mips4]"));
11046 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11047 fprintf (file, _(" [mips5]"));
11048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11049 fprintf (file, _(" [mips32]"));
11050 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11051 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11053 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11055 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
11056 else
11057 fprintf (file, _(" [unknown ISA]"));
11058
40d32fc6
CD
11059 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11060 fprintf (file, _(" [mdmx]"));
11061
11062 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11063 fprintf (file, _(" [mips16]"));
11064
b49e97c9
TS
11065 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11066 fprintf (file, _(" [32bitmode]"));
11067 else
11068 fprintf (file, _(" [not 32bitmode]"));
11069
11070 fputc ('\n', file);
11071
b34976b6 11072 return TRUE;
b49e97c9 11073}
2f89ff8d 11074
b35d266b 11075const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11076{
0112cd26
NC
11077 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11078 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11079 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11080 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11081 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11082 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11083 { NULL, 0, 0, 0, 0 }
2f89ff8d 11084};
5e2b0d47 11085
8992f0d7
TS
11086/* Merge non visibility st_other attributes. Ensure that the
11087 STO_OPTIONAL flag is copied into h->other, even if this is not a
11088 definiton of the symbol. */
5e2b0d47
NC
11089void
11090_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11091 const Elf_Internal_Sym *isym,
11092 bfd_boolean definition,
11093 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11094{
8992f0d7
TS
11095 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11096 {
11097 unsigned char other;
11098
11099 other = (definition ? isym->st_other : h->other);
11100 other &= ~ELF_ST_VISIBILITY (-1);
11101 h->other = other | ELF_ST_VISIBILITY (h->other);
11102 }
11103
11104 if (!definition
5e2b0d47
NC
11105 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11106 h->other |= STO_OPTIONAL;
11107}
12ac1cf5
NC
11108
11109/* Decide whether an undefined symbol is special and can be ignored.
11110 This is the case for OPTIONAL symbols on IRIX. */
11111bfd_boolean
11112_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11113{
11114 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11115}
e0764319
NC
11116
11117bfd_boolean
11118_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11119{
11120 return (sym->st_shndx == SHN_COMMON
11121 || sym->st_shndx == SHN_MIPS_ACOMMON
11122 || sym->st_shndx == SHN_MIPS_SCOMMON);
11123}
This page took 1.04215 seconds and 4 git commands to generate.