* elfxx-mips.c (_bfd_mips_elf_finish_dynamic_symbol): Always
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a
RS
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9
TS
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
b34976b6 199 bfd_boolean no_fn_stub;
b49e97c9
TS
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
b34976b6 207 bfd_boolean need_fn_stub;
b49e97c9
TS
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
7c5fcef7
L
216
217 /* Are we forced local? .*/
b34976b6 218 bfd_boolean forced_local;
b49e97c9
TS
219};
220
221/* MIPS ELF linker hash table. */
222
223struct mips_elf_link_hash_table
224{
225 struct elf_link_hash_table root;
226#if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230#endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 236 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 237 bfd_boolean use_rld_obj_head;
b49e97c9
TS
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
b34976b6 241 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
242};
243
244/* Structure used to pass information to mips_elf_output_extsym. */
245
246struct extsym_info
247{
9e4aeb93
RS
248 bfd *abfd;
249 struct bfd_link_info *info;
b49e97c9
TS
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
b34976b6 252 bfd_boolean failed;
b49e97c9
TS
253};
254
8dc1a139 255/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
256
257static const char * const mips_elf_dynsym_rtproc_names[] =
258{
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263};
264
265/* These structures are used to generate the .compact_rel section on
8dc1a139 266 IRIX5. */
b49e97c9
TS
267
268typedef struct
269{
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276} Elf32_compact_rel;
277
278typedef struct
279{
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286} Elf32_External_compact_rel;
287
288typedef struct
289{
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296} Elf32_crinfo;
297
298typedef struct
299{
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305} Elf32_crinfo2;
306
307typedef struct
308{
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312} Elf32_External_crinfo;
313
314typedef struct
315{
316 bfd_byte info[4];
317 bfd_byte konst[4];
318} Elf32_External_crinfo2;
319
320/* These are the constants used to swap the bitfields in a crinfo. */
321
322#define CRINFO_CTYPE (0x1)
323#define CRINFO_CTYPE_SH (31)
324#define CRINFO_RTYPE (0xf)
325#define CRINFO_RTYPE_SH (27)
326#define CRINFO_DIST2TO (0xff)
327#define CRINFO_DIST2TO_SH (19)
328#define CRINFO_RELVADDR (0x7ffff)
329#define CRINFO_RELVADDR_SH (0)
330
331/* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334#define CRF_MIPS_LONG 1
335#define CRF_MIPS_SHORT 0
336
337/* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347#define CRT_MIPS_REL32 0xa
348#define CRT_MIPS_WORD 0xb
349#define CRT_MIPS_GPHI_LO 0xc
350#define CRT_MIPS_JMPAD 0xd
351
352#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356\f
357/* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360typedef struct runtime_pdr {
ae9a127f
NC
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
b49e97c9 370 long reserved;
ae9a127f 371 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
372} RPDR, *pRPDR;
373#define cbRPDR sizeof (RPDR)
374#define rpdNil ((pRPDR) 0)
375\f
376static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
b34976b6 380static bfd_boolean mips_elf_create_procedure_table
b49e97c9
TS
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
b34976b6 383static bfd_boolean mips_elf_check_mips16_stubs
b49e97c9
TS
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393#if 0
394static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396#endif
397static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
f4416af6
AO
401static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
b34976b6 403static bfd_boolean mips_elf_output_extsym
b49e97c9
TS
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405static int gptab_compare PARAMS ((const void *, const void *));
f4416af6
AO
406static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
b49e97c9
TS
408static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
0176c794 410static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
b49e97c9 411static bfd_vma mips_elf_local_got_index
f4416af6 412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
b49e97c9 413static bfd_vma mips_elf_global_got_index
f4416af6 414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
b49e97c9 415static bfd_vma mips_elf_got_page
f4416af6 416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
b49e97c9 417static bfd_vma mips_elf_got16_entry
f4416af6 418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
b49e97c9 419static bfd_vma mips_elf_got_offset_from_index
f4416af6 420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
b15e6682 421static struct mips_got_entry *mips_elf_create_local_got_entry
f4416af6 422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
b34976b6 423static bfd_boolean mips_elf_sort_hash_table
b49e97c9 424 PARAMS ((struct bfd_link_info *, unsigned long));
b34976b6 425static bfd_boolean mips_elf_sort_hash_table_f
b49e97c9 426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
f4416af6
AO
427static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
b34976b6 429static bfd_boolean mips_elf_record_global_got_symbol
f4416af6 430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
b49e97c9
TS
431 struct mips_got_info *));
432static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
b34976b6
AM
435static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
b34976b6 437static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
b49e97c9
TS
438static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
b34976b6 441static bfd_boolean mips_elf_create_compact_rel_section
b49e97c9 442 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 443static bfd_boolean mips_elf_create_got_section
f4416af6 444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
b49e97c9
TS
445static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
b34976b6 451 bfd_boolean *, bfd_boolean));
b49e97c9
TS
452static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
b34976b6 454static bfd_boolean mips_elf_perform_relocation
b49e97c9
TS
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
b34976b6
AM
457 bfd_boolean));
458static bfd_boolean mips_elf_stub_section_p
b49e97c9
TS
459 PARAMS ((bfd *, asection *));
460static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
b34976b6 462static bfd_boolean mips_elf_create_dynamic_relocation
b49e97c9
TS
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
64543e1a 466static void mips_set_isa_flags PARAMS ((bfd *));
b49e97c9
TS
467static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
64543e1a
RS
470static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
f4416af6 472static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
b15e6682
AO
473static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
b49e97c9 475
f4416af6
AO
476static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484static int mips_elf_merge_gots PARAMS ((void **, void *));
485static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
b49e97c9
TS
494/* This will be used when we sort the dynamic relocation records. */
495static bfd *reldyn_sorting_bfd;
496
497/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 498
b49e97c9
TS
499#define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
4a14403c 502/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 503#define ABI_64_P(abfd) \
141ff970 504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 505
4a14403c
TS
506/* Nonzero if ABFD is using NewABI conventions. */
507#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
510#define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
b49e97c9
TS
513/* Whether we are trying to be compatible with IRIX at all. */
514#define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517/* The name of the options section. */
518#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
520
521/* The name of the stub section. */
522#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
d80dcc6a 523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
b49e97c9
TS
524
525/* The size of an external REL relocation. */
526#define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529/* The size of an external dynamic table entry. */
530#define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533/* The size of a GOT entry. */
534#define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537/* The size of a symbol-table entry. */
538#define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541/* The default alignment for sections, as a power of two. */
542#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 543 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
544
545/* Get word-sized data. */
546#define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549/* Put out word-sized data. */
550#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555/* Add a dynamic symbol table-entry. */
556#ifdef BFD64
557#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561#else
562#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
b34976b6 564 ? (abort (), FALSE) \
b49e97c9
TS
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566#endif
567
568#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
4ffba85c
AO
571/* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
b49e97c9
TS
588/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590#define MINUS_ONE (((bfd_vma)0) - 1)
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
b49e97c9
TS
602/* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
b49e97c9 604#define STUB_LW(abfd) \
f4416af6
AO
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9
TS
608#define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610#define STUB_JALR 0x0320f809 /* jal t9 */
611#define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613#define MIPS_FUNCTION_STUB_SIZE (16)
614
615/* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618#define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623#ifdef BFD64
ee6423ed
AO
624#define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
626#define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628#define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630#define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632#else
ee6423ed 633#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
634#define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636#define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638#define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640#endif
641\f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676#define FN_STUB ".mips16.fn."
677#define CALL_STUB ".mips16.call."
678#define CALL_FP_STUB ".mips16.call.fp."
679\f
680/* Look up an entry in a MIPS ELF linker hash table. */
681
682#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687/* Traverse a MIPS ELF linker hash table. */
688
689#define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
b34976b6 692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
b49e97c9
TS
693 (info)))
694
695/* Get the MIPS ELF linker hash table from a link_info structure. */
696
697#define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700/* Create an entry in a MIPS ELF linker hash table. */
701
702static struct bfd_hash_entry *
703mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707{
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
b34976b6 732 ret->readonly_reloc = FALSE;
b49e97c9 733 ret->min_dyn_reloc_index = 0;
b34976b6 734 ret->no_fn_stub = FALSE;
b49e97c9 735 ret->fn_stub = NULL;
b34976b6 736 ret->need_fn_stub = FALSE;
b49e97c9
TS
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
b34976b6 739 ret->forced_local = FALSE;
b49e97c9
TS
740 }
741
742 return (struct bfd_hash_entry *) ret;
743}
f0abc2a1
AM
744
745bfd_boolean
746_bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749{
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759}
b49e97c9
TS
760\f
761/* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
b34976b6 764bfd_boolean
b49e97c9
TS
765_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769{
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
82e51918
AM
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
b49e97c9
TS
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790#define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816#undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
b34976b6 821 return TRUE;
b49e97c9
TS
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
b34976b6 848 return FALSE;
b49e97c9
TS
849}
850\f
851/* Swap RPDR (runtime procedure table entry) for output. */
852
853static void
854ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858{
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870#if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872#endif
873}
874
875/* Create a runtime procedure table from the .mdebug section. */
876
b34976b6 877static bfd_boolean
b49e97c9
TS
878mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884{
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
b34976b6 1012 return TRUE;
b49e97c9
TS
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
b34976b6 1025 return FALSE;
b49e97c9
TS
1026}
1027
1028/* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
b34976b6 1031static bfd_boolean
b49e97c9
TS
1032mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035{
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
b34976b6 1078 return TRUE;
b49e97c9
TS
1079}
1080\f
1081bfd_reloc_status_type
1082_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1049f94e 1083 relocatable, data, gp)
b49e97c9
TS
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1049f94e 1088 bfd_boolean relocatable;
b49e97c9
TS
1089 PTR data;
1090 bfd_vma gp;
1091{
1092 bfd_vma relocation;
a7ebbfdf
TS
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
b49e97c9
TS
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
b49e97c9 1107 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
b49e97c9 1111 {
a7ebbfdf
TS
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
b49e97c9
TS
1114 }
1115
a7ebbfdf
TS
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
b49e97c9 1118 /* Adjust val for the final section location and GP value. If we
1049f94e 1119 are producing relocatable output, we don't want to do this for
b49e97c9 1120 an external symbol. */
1049f94e 1121 if (! relocatable
b49e97c9
TS
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
a7ebbfdf
TS
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
b49e97c9 1133
1049f94e 1134 if (relocatable)
b49e97c9 1135 reloc_entry->address += input_section->output_offset;
a7ebbfdf 1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
b49e97c9
TS
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140}
1141\f
1142/* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145static void
1146bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150{
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153}
1154
1155static void
1156bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160{
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163}
1164
1165static void
1166bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170{
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177}
1178
1179static void
1180bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184{
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194}
1195
1196#if 0
1197/* Swap in an MSYM entry. */
1198
1199static void
1200bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204{
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207}
1208#endif
1209/* Swap out an MSYM entry. */
1210
1211static void
1212bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216{
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219}
1220\f
1221/* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225void
1226bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230{
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237}
1238
1239void
1240bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244{
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251}
1252
1253/* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259void
1260bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264{
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272}
1273
1274void
1275bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279{
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287}
1288
1289/* Swap in an options header. */
1290
1291void
1292bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296{
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301}
1302
1303/* Swap out an options header. */
1304
1305void
1306bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310{
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315}
1316\f
1317/* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320static int
1321sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324{
947216bf
AM
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
b49e97c9 1327
947216bf
AM
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1330
947216bf 1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1332}
1333
f4416af6
AO
1334/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336static int
1337sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340{
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351}
1352
1353
b49e97c9
TS
1354/* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
b34976b6 1368static bfd_boolean
b49e97c9
TS
1369mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372{
1373 struct extsym_info *einfo = (struct extsym_info *) data;
b34976b6 1374 bfd_boolean strip;
b49e97c9
TS
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
b34976b6 1381 strip = FALSE;
b49e97c9
TS
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
b34976b6 1386 strip = TRUE;
b49e97c9
TS
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
b34976b6
AM
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
b49e97c9 1393 else
b34976b6 1394 strip = FALSE;
b49e97c9
TS
1395
1396 if (strip)
b34976b6 1397 return TRUE;
b49e97c9
TS
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
4a14403c 1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1506 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531#if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533#endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
b34976b6
AM
1541 einfo->failed = TRUE;
1542 return FALSE;
b49e97c9
TS
1543 }
1544
b34976b6 1545 return TRUE;
b49e97c9
TS
1546}
1547
1548/* A comparison routine used to sort .gptab entries. */
1549
1550static int
1551gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554{
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559}
1560\f
b15e6682 1561/* Functions to manage the got entry hash table. */
f4416af6
AO
1562
1563/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566static INLINE hashval_t
1567mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569{
1570#ifdef BFD64
1571 return addr + (addr >> 32);
1572#else
1573 return addr;
1574#endif
1575}
1576
1577/* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
b15e6682
AO
1581static hashval_t
1582mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584{
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
38985a1c 1587 return entry->symndx
f4416af6 1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
b15e6682
AO
1592}
1593
1594static int
1595mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598{
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606}
1607
1608/* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613static hashval_t
1614mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616{
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626}
1627
1628static int
1629mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632{
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
b15e6682
AO
1641}
1642\f
f4416af6
AO
1643/* Returns the dynamic relocation section for DYNOBJ. */
1644
1645static asection *
1646mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649{
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1667 return NULL;
1668 }
1669 return sreloc;
1670}
1671
b49e97c9
TS
1672/* Returns the GOT section for ABFD. */
1673
1674static asection *
f4416af6 1675mips_elf_got_section (abfd, maybe_excluded)
b49e97c9 1676 bfd *abfd;
f4416af6 1677 bfd_boolean maybe_excluded;
b49e97c9 1678{
f4416af6
AO
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
b49e97c9
TS
1684}
1685
1686/* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690static struct mips_got_info *
1691mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694{
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
f4416af6 1698 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1699 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
f4416af6
AO
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
b49e97c9
TS
1707 return g;
1708}
1709
0176c794
AO
1710/* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712static long
1713mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715{
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
143d77c5 1721
0176c794
AO
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
143d77c5 1725
0176c794
AO
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
143d77c5 1729
0176c794
AO
1730 return g->global_gotsym->dynindx;
1731}
1732
b49e97c9
TS
1733/* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737static bfd_vma
f4416af6
AO
1738mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
b49e97c9
TS
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742{
1743 asection *sgot;
1744 struct mips_got_info *g;
b15e6682 1745 struct mips_got_entry *entry;
b49e97c9
TS
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
f4416af6 1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
b49e97c9
TS
1754}
1755
1756/* Returns the GOT index for the global symbol indicated by H. */
1757
1758static bfd_vma
f4416af6
AO
1759mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
b49e97c9
TS
1761 struct elf_link_hash_entry *h;
1762{
1763 bfd_vma index;
1764 asection *sgot;
f4416af6 1765 struct mips_got_info *g, *gg;
d0c7ff07 1766 long global_got_dynindx = 0;
b49e97c9 1767
f4416af6
AO
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
143d77c5 1772
f4416af6
AO
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
d0c7ff07
TS
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9
TS
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802}
1803
1804/* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810static bfd_vma
f4416af6
AO
1811mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
b49e97c9
TS
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816{
1817 asection *sgot;
1818 struct mips_got_info *g;
b15e6682
AO
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
b49e97c9
TS
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
f4416af6 1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
b49e97c9 1827
b15e6682
AO
1828 if (!entry)
1829 return MINUS_ONE;
143d77c5 1830
b15e6682 1831 index = entry->gotidx;
b49e97c9
TS
1832
1833 if (offsetp)
f4416af6 1834 *offsetp = value - entry->d.address;
b49e97c9
TS
1835
1836 return index;
1837}
1838
1839/* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842static bfd_vma
f4416af6
AO
1843mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
b49e97c9
TS
1845 struct bfd_link_info *info;
1846 bfd_vma value;
b34976b6 1847 bfd_boolean external;
b49e97c9
TS
1848{
1849 asection *sgot;
1850 struct mips_got_info *g;
b15e6682 1851 struct mips_got_entry *entry;
b49e97c9
TS
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
f4416af6 1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
b49e97c9
TS
1869}
1870
1871/* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874static bfd_vma
f4416af6 1875mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
b49e97c9
TS
1876 bfd *dynobj;
1877 bfd *output_bfd;
f4416af6 1878 bfd *input_bfd;
b49e97c9
TS
1879 bfd_vma index;
1880{
1881 asection *sgot;
1882 bfd_vma gp;
f4416af6 1883 struct mips_got_info *g;
b49e97c9 1884
f4416af6
AO
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1888
f4416af6 1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1890}
1891
1892/* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
b15e6682 1895static struct mips_got_entry *
f4416af6
AO
1896mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
b49e97c9
TS
1899 asection *sgot;
1900 bfd_vma value;
1901{
b15e6682 1902 struct mips_got_entry entry, **loc;
f4416af6 1903 struct mips_got_info *g;
b15e6682 1904
f4416af6
AO
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
b15e6682
AO
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
143d77c5 1920
b15e6682
AO
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
143d77c5 1927
b15e6682
AO
1928 memcpy (*loc, &entry, sizeof entry);
1929
b49e97c9
TS
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
f4416af6 1932 (*loc)->gotidx = -1;
b49e97c9
TS
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
b15e6682 1937 return NULL;
b49e97c9
TS
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
b49e97c9
TS
1944}
1945
1946/* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
b34976b6 1953static bfd_boolean
b49e97c9
TS
1954mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957{
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
f4416af6
AO
1964 g = mips_elf_got_info (dynobj, NULL);
1965
b49e97c9 1966 hsd.low = NULL;
143d77c5 1967 hsd.max_unref_got_dynindx =
f4416af6
AO
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
44c410de 1984 accommodate both the GOT and non-GOT symbols. */
b49e97c9 1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
b49e97c9
TS
1991 g->global_gotsym = hsd.low;
1992
b34976b6 1993 return TRUE;
b49e97c9
TS
1994}
1995
1996/* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
b34976b6 2000static bfd_boolean
b49e97c9
TS
2001mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004{
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
b34976b6 2014 return TRUE;
b49e97c9 2015
f4416af6
AO
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
b49e97c9
TS
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
b34976b6 2034 return TRUE;
b49e97c9
TS
2035}
2036
2037/* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
b34976b6 2041static bfd_boolean
f4416af6 2042mips_elf_record_global_got_symbol (h, abfd, info, g)
b49e97c9 2043 struct elf_link_hash_entry *h;
f4416af6 2044 bfd *abfd;
b49e97c9 2045 struct bfd_link_info *info;
f4416af6 2046 struct mips_got_info *g;
b49e97c9 2047{
f4416af6
AO
2048 struct mips_got_entry entry, **loc;
2049
b49e97c9
TS
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
7c5fcef7
L
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
b34976b6 2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2062 return FALSE;
7c5fcef7 2063 }
b49e97c9 2064
f4416af6
AO
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
b49e97c9
TS
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
f4416af6
AO
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
143d77c5 2081
f4416af6
AO
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
b49e97c9 2085 if (h->got.offset != MINUS_ONE)
b34976b6 2086 return TRUE;
b49e97c9
TS
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
b34976b6 2093 return TRUE;
b49e97c9 2094}
f4416af6
AO
2095
2096/* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099static bfd_boolean
2100mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105{
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
143d77c5 2123
f4416af6
AO
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127}
2128\f
2129/* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131static hashval_t
2132mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134{
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139}
2140
2141/* Check whether two hash entries have the same bfd. */
2142
2143static int
2144mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147{
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154}
2155
0b25d3e6 2156/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2157 be the master GOT data. */
2158
2159static struct mips_got_info *
2160mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163{
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172}
2173
2174/* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178static int
2179mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182{
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
143d77c5 2189
f4416af6
AO
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
143d77c5 2241
f4416af6
AO
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250}
2251
2252/* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259static int
2260mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263{
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
143d77c5 2270
f4416af6
AO
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
143d77c5 2338
f4416af6
AO
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343}
2344
2345/* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358static int
2359mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362{
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393}
2394
2395/* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401static int
2402mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405{
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
143d77c5 2419
f4416af6
AO
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
143d77c5 2439
f4416af6
AO
2440 return 1;
2441}
2442
2443/* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445static void
2446mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448{
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460}
2461
2462/* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464static bfd_vma
2465mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469{
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
143d77c5 2480
f4416af6
AO
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482}
2483
2484/* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487static bfd_boolean
2488mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494{
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
143d77c5 2568
f4416af6
AO
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
143d77c5 2594
f4416af6
AO
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2667
f4416af6
AO
2668 return TRUE;
2669}
143d77c5 2670
b49e97c9
TS
2671\f
2672/* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675static const Elf_Internal_Rela *
2676mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681{
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699}
2700
2701/* Return whether a relocation is against a local symbol. */
2702
b34976b6 2703static bfd_boolean
b49e97c9
TS
2704mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
b34976b6 2709 bfd_boolean check_forced;
b49e97c9
TS
2710{
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
b34976b6 2721 return TRUE;
b49e97c9 2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2723 return TRUE;
b49e97c9
TS
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
b34976b6 2736 return TRUE;
b49e97c9
TS
2737 }
2738
b34976b6 2739 return FALSE;
b49e97c9
TS
2740}
2741\f
2742/* Sign-extend VALUE, which has the indicated number of BITS. */
2743
a7ebbfdf
TS
2744bfd_vma
2745_bfd_mips_elf_sign_extend (value, bits)
b49e97c9
TS
2746 bfd_vma value;
2747 int bits;
2748{
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754}
2755
2756/* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
b34976b6 2760static bfd_boolean
b49e97c9
TS
2761mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764{
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
b34976b6 2769 return TRUE;
b49e97c9
TS
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
b34976b6 2772 return TRUE;
b49e97c9
TS
2773
2774 /* All is well. */
b34976b6 2775 return FALSE;
b49e97c9
TS
2776}
2777
2778/* Calculate the %high function. */
2779
2780static bfd_vma
2781mips_elf_high (value)
2782 bfd_vma value;
2783{
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785}
2786
2787/* Calculate the %higher function. */
2788
2789static bfd_vma
2790mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792{
2793#ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795#else
2796 abort ();
2797 return (bfd_vma) -1;
2798#endif
2799}
2800
2801/* Calculate the %highest function. */
2802
2803static bfd_vma
2804mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806{
2807#ifdef BFD64
b15e6682 2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2809#else
2810 abort ();
2811 return (bfd_vma) -1;
2812#endif
2813}
2814\f
2815/* Create the .compact_rel section. */
2816
b34976b6 2817static bfd_boolean
b49e97c9
TS
2818mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821{
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2835 return FALSE;
b49e97c9
TS
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
b34976b6 2840 return TRUE;
b49e97c9
TS
2841}
2842
2843/* Create the .got section to hold the global offset table. */
2844
b34976b6 2845static bfd_boolean
f4416af6 2846mips_elf_create_got_section (abfd, info, maybe_exclude)
b49e97c9
TS
2847 bfd *abfd;
2848 struct bfd_link_info *info;
f4416af6 2849 bfd_boolean maybe_exclude;
b49e97c9
TS
2850{
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
14a793b2 2854 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
f4416af6
AO
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
b49e97c9
TS
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
f4416af6
AO
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
72b4917c
TS
2873 /* We have to use an alignment of 2**4 here because this is hardcoded
2874 in the function stub generation and in the linker script. */
b49e97c9
TS
2875 s = bfd_make_section (abfd, ".got");
2876 if (s == NULL
2877 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2878 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2879 return FALSE;
b49e97c9
TS
2880
2881 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2882 linker script because we don't want to define the symbol if we
2883 are not creating a global offset table. */
14a793b2 2884 bh = NULL;
b49e97c9
TS
2885 if (! (_bfd_generic_link_add_one_symbol
2886 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
b34976b6 2887 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 2888 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2889 return FALSE;
14a793b2
AM
2890
2891 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
2892 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2894 h->type = STT_OBJECT;
2895
2896 if (info->shared
2897 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 2898 return FALSE;
b49e97c9 2899
b49e97c9
TS
2900 amt = sizeof (struct mips_got_info);
2901 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 if (g == NULL)
b34976b6 2903 return FALSE;
b49e97c9
TS
2904 g->global_gotsym = NULL;
2905 g->local_gotno = MIPS_RESERVED_GOTNO;
2906 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2907 g->bfd2got = NULL;
2908 g->next = NULL;
b15e6682
AO
2909 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2910 mips_elf_got_entry_eq,
2911 (htab_del) NULL);
2912 if (g->got_entries == NULL)
2913 return FALSE;
f0abc2a1
AM
2914 mips_elf_section_data (s)->u.got_info = g;
2915 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2916 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2917
b34976b6 2918 return TRUE;
b49e97c9
TS
2919}
2920
2921/* Returns the .msym section for ABFD, creating it if it does not
2922 already exist. Returns NULL to indicate error. */
2923
2924static asection *
2925mips_elf_create_msym_section (abfd)
2926 bfd *abfd;
2927{
2928 asection *s;
2929
2930 s = bfd_get_section_by_name (abfd, ".msym");
2931 if (!s)
2932 {
2933 s = bfd_make_section (abfd, ".msym");
2934 if (!s
2935 || !bfd_set_section_flags (abfd, s,
2936 SEC_ALLOC
2937 | SEC_LOAD
2938 | SEC_HAS_CONTENTS
2939 | SEC_LINKER_CREATED
2940 | SEC_READONLY)
2941 || !bfd_set_section_alignment (abfd, s,
2942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2943 return NULL;
2944 }
2945
2946 return s;
2947}
2948\f
2949/* Calculate the value produced by the RELOCATION (which comes from
2950 the INPUT_BFD). The ADDEND is the addend to use for this
2951 RELOCATION; RELOCATION->R_ADDEND is ignored.
2952
2953 The result of the relocation calculation is stored in VALUEP.
2954 REQUIRE_JALXP indicates whether or not the opcode used with this
2955 relocation must be JALX.
2956
2957 This function returns bfd_reloc_continue if the caller need take no
2958 further action regarding this relocation, bfd_reloc_notsupported if
2959 something goes dramatically wrong, bfd_reloc_overflow if an
2960 overflow occurs, and bfd_reloc_ok to indicate success. */
2961
2962static bfd_reloc_status_type
2963mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2964 relocation, addend, howto, local_syms,
2965 local_sections, valuep, namep,
bce03d3d 2966 require_jalxp, save_addend)
b49e97c9
TS
2967 bfd *abfd;
2968 bfd *input_bfd;
2969 asection *input_section;
2970 struct bfd_link_info *info;
2971 const Elf_Internal_Rela *relocation;
2972 bfd_vma addend;
2973 reloc_howto_type *howto;
2974 Elf_Internal_Sym *local_syms;
2975 asection **local_sections;
2976 bfd_vma *valuep;
2977 const char **namep;
b34976b6
AM
2978 bfd_boolean *require_jalxp;
2979 bfd_boolean save_addend;
b49e97c9
TS
2980{
2981 /* The eventual value we will return. */
2982 bfd_vma value;
2983 /* The address of the symbol against which the relocation is
2984 occurring. */
2985 bfd_vma symbol = 0;
2986 /* The final GP value to be used for the relocatable, executable, or
2987 shared object file being produced. */
2988 bfd_vma gp = MINUS_ONE;
2989 /* The place (section offset or address) of the storage unit being
2990 relocated. */
2991 bfd_vma p;
2992 /* The value of GP used to create the relocatable object. */
2993 bfd_vma gp0 = MINUS_ONE;
2994 /* The offset into the global offset table at which the address of
2995 the relocation entry symbol, adjusted by the addend, resides
2996 during execution. */
2997 bfd_vma g = MINUS_ONE;
2998 /* The section in which the symbol referenced by the relocation is
2999 located. */
3000 asection *sec = NULL;
3001 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3002 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3003 symbol. */
b34976b6
AM
3004 bfd_boolean local_p, was_local_p;
3005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3006 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
3007 Elf_Internal_Shdr *symtab_hdr;
3008 size_t extsymoff;
3009 unsigned long r_symndx;
3010 int r_type;
b34976b6 3011 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3012 relocation value. */
b34976b6
AM
3013 bfd_boolean overflowed_p;
3014 /* TRUE if this relocation refers to a MIPS16 function. */
3015 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3016
3017 /* Parse the relocation. */
3018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3019 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3020 p = (input_section->output_section->vma
3021 + input_section->output_offset
3022 + relocation->r_offset);
3023
3024 /* Assume that there will be no overflow. */
b34976b6 3025 overflowed_p = FALSE;
b49e97c9
TS
3026
3027 /* Figure out whether or not the symbol is local, and get the offset
3028 used in the array of hash table entries. */
3029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3030 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3031 local_sections, FALSE);
bce03d3d 3032 was_local_p = local_p;
b49e97c9
TS
3033 if (! elf_bad_symtab (input_bfd))
3034 extsymoff = symtab_hdr->sh_info;
3035 else
3036 {
3037 /* The symbol table does not follow the rule that local symbols
3038 must come before globals. */
3039 extsymoff = 0;
3040 }
3041
3042 /* Figure out the value of the symbol. */
3043 if (local_p)
3044 {
3045 Elf_Internal_Sym *sym;
3046
3047 sym = local_syms + r_symndx;
3048 sec = local_sections[r_symndx];
3049
3050 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3051 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3052 || (sec->flags & SEC_MERGE))
b49e97c9 3053 symbol += sym->st_value;
d4df96e6
L
3054 if ((sec->flags & SEC_MERGE)
3055 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3056 {
3057 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3058 addend -= symbol;
3059 addend += sec->output_section->vma + sec->output_offset;
3060 }
b49e97c9
TS
3061
3062 /* MIPS16 text labels should be treated as odd. */
3063 if (sym->st_other == STO_MIPS16)
3064 ++symbol;
3065
3066 /* Record the name of this symbol, for our caller. */
3067 *namep = bfd_elf_string_from_elf_section (input_bfd,
3068 symtab_hdr->sh_link,
3069 sym->st_name);
3070 if (*namep == '\0')
3071 *namep = bfd_section_name (input_bfd, sec);
3072
3073 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3074 }
3075 else
3076 {
3077 /* For global symbols we look up the symbol in the hash-table. */
3078 h = ((struct mips_elf_link_hash_entry *)
3079 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3080 /* Find the real hash-table entry for this symbol. */
3081 while (h->root.root.type == bfd_link_hash_indirect
3082 || h->root.root.type == bfd_link_hash_warning)
3083 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3084
3085 /* Record the name of this symbol, for our caller. */
3086 *namep = h->root.root.root.string;
3087
3088 /* See if this is the special _gp_disp symbol. Note that such a
3089 symbol must always be a global symbol. */
3090 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3091 && ! NEWABI_P (input_bfd))
3092 {
3093 /* Relocations against _gp_disp are permitted only with
3094 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3095 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3096 return bfd_reloc_notsupported;
3097
b34976b6 3098 gp_disp_p = TRUE;
b49e97c9
TS
3099 }
3100 /* If this symbol is defined, calculate its address. Note that
3101 _gp_disp is a magic symbol, always implicitly defined by the
3102 linker, so it's inappropriate to check to see whether or not
3103 its defined. */
3104 else if ((h->root.root.type == bfd_link_hash_defined
3105 || h->root.root.type == bfd_link_hash_defweak)
3106 && h->root.root.u.def.section)
3107 {
3108 sec = h->root.root.u.def.section;
3109 if (sec->output_section)
3110 symbol = (h->root.root.u.def.value
3111 + sec->output_section->vma
3112 + sec->output_offset);
3113 else
3114 symbol = h->root.root.u.def.value;
3115 }
3116 else if (h->root.root.type == bfd_link_hash_undefweak)
3117 /* We allow relocations against undefined weak symbols, giving
3118 it the value zero, so that you can undefined weak functions
3119 and check to see if they exist by looking at their
3120 addresses. */
3121 symbol = 0;
3122 else if (info->shared
b49e97c9
TS
3123 && !info->no_undefined
3124 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3125 symbol = 0;
3126 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3127 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3128 {
3129 /* If this is a dynamic link, we should have created a
3130 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3131 in in _bfd_mips_elf_create_dynamic_sections.
3132 Otherwise, we should define the symbol with a value of 0.
3133 FIXME: It should probably get into the symbol table
3134 somehow as well. */
3135 BFD_ASSERT (! info->shared);
3136 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3137 symbol = 0;
3138 }
3139 else
3140 {
3141 if (! ((*info->callbacks->undefined_symbol)
3142 (info, h->root.root.root.string, input_bfd,
3143 input_section, relocation->r_offset,
3144 (!info->shared || info->no_undefined
3145 || ELF_ST_VISIBILITY (h->root.other)))))
3146 return bfd_reloc_undefined;
3147 symbol = 0;
3148 }
3149
3150 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 }
3152
3153 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3154 need to redirect the call to the stub, unless we're already *in*
3155 a stub. */
1049f94e 3156 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3157 && ((h != NULL && h->fn_stub != NULL)
3158 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3159 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3160 && !mips_elf_stub_section_p (input_bfd, input_section))
3161 {
3162 /* This is a 32- or 64-bit call to a 16-bit function. We should
3163 have already noticed that we were going to need the
3164 stub. */
3165 if (local_p)
3166 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 else
3168 {
3169 BFD_ASSERT (h->need_fn_stub);
3170 sec = h->fn_stub;
3171 }
3172
3173 symbol = sec->output_section->vma + sec->output_offset;
3174 }
3175 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3176 need to redirect the call to the stub. */
1049f94e 3177 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3178 && h != NULL
3179 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3180 && !target_is_16_bit_code_p)
3181 {
3182 /* If both call_stub and call_fp_stub are defined, we can figure
3183 out which one to use by seeing which one appears in the input
3184 file. */
3185 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3186 {
3187 asection *o;
3188
3189 sec = NULL;
3190 for (o = input_bfd->sections; o != NULL; o = o->next)
3191 {
3192 if (strncmp (bfd_get_section_name (input_bfd, o),
3193 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3194 {
3195 sec = h->call_fp_stub;
3196 break;
3197 }
3198 }
3199 if (sec == NULL)
3200 sec = h->call_stub;
3201 }
3202 else if (h->call_stub != NULL)
3203 sec = h->call_stub;
3204 else
3205 sec = h->call_fp_stub;
3206
3207 BFD_ASSERT (sec->_raw_size > 0);
3208 symbol = sec->output_section->vma + sec->output_offset;
3209 }
3210
3211 /* Calls from 16-bit code to 32-bit code and vice versa require the
3212 special jalx instruction. */
1049f94e 3213 *require_jalxp = (!info->relocatable
b49e97c9
TS
3214 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3215 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3216
3217 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3218 local_sections, TRUE);
b49e97c9
TS
3219
3220 /* If we haven't already determined the GOT offset, or the GP value,
3221 and we're going to need it, get it now. */
3222 switch (r_type)
3223 {
0fdc1bf1 3224 case R_MIPS_GOT_PAGE:
93a2b7ae 3225 case R_MIPS_GOT_OFST:
0176c794
AO
3226 /* If this symbol got a global GOT entry, we have to decay
3227 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
93a2b7ae
AO
3228 local_p = local_p || ! h
3229 || (h->root.dynindx
3230 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3231 ->dynobj));
3232 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3233 break;
3234 /* Fall through. */
3235
b49e97c9
TS
3236 case R_MIPS_CALL16:
3237 case R_MIPS_GOT16:
3238 case R_MIPS_GOT_DISP:
3239 case R_MIPS_GOT_HI16:
3240 case R_MIPS_CALL_HI16:
3241 case R_MIPS_GOT_LO16:
3242 case R_MIPS_CALL_LO16:
3243 /* Find the index into the GOT where this value is located. */
3244 if (!local_p)
3245 {
0fdc1bf1
AO
3246 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3247 GOT_PAGE relocation that decays to GOT_DISP because the
3248 symbol turns out to be global. The addend is then added
3249 as GOT_OFST. */
3250 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3251 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3252 input_bfd,
b49e97c9
TS
3253 (struct elf_link_hash_entry *) h);
3254 if (! elf_hash_table(info)->dynamic_sections_created
3255 || (info->shared
3256 && (info->symbolic || h->root.dynindx == -1)
3257 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3258 {
3259 /* This is a static link or a -Bsymbolic link. The
3260 symbol is defined locally, or was forced to be local.
3261 We must initialize this entry in the GOT. */
3262 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3263 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3264 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3265 }
3266 }
3267 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3268 /* There's no need to create a local GOT entry here; the
3269 calculation for a local GOT16 entry does not involve G. */
3270 break;
3271 else
3272 {
f4416af6
AO
3273 g = mips_elf_local_got_index (abfd, input_bfd,
3274 info, symbol + addend);
b49e97c9
TS
3275 if (g == MINUS_ONE)
3276 return bfd_reloc_outofrange;
3277 }
3278
3279 /* Convert GOT indices to actual offsets. */
3280 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3281 abfd, input_bfd, g);
b49e97c9
TS
3282 break;
3283
3284 case R_MIPS_HI16:
3285 case R_MIPS_LO16:
3286 case R_MIPS16_GPREL:
3287 case R_MIPS_GPREL16:
3288 case R_MIPS_GPREL32:
3289 case R_MIPS_LITERAL:
3290 gp0 = _bfd_get_gp_value (input_bfd);
3291 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3292 if (elf_hash_table (info)->dynobj)
3293 gp += mips_elf_adjust_gp (abfd,
3294 mips_elf_got_info
3295 (elf_hash_table (info)->dynobj, NULL),
3296 input_bfd);
b49e97c9
TS
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 /* Figure out what kind of relocation is being performed. */
3304 switch (r_type)
3305 {
3306 case R_MIPS_NONE:
3307 return bfd_reloc_continue;
3308
3309 case R_MIPS_16:
a7ebbfdf 3310 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3311 overflowed_p = mips_elf_overflow_p (value, 16);
3312 break;
3313
3314 case R_MIPS_32:
3315 case R_MIPS_REL32:
3316 case R_MIPS_64:
3317 if ((info->shared
3318 || (elf_hash_table (info)->dynamic_sections_created
3319 && h != NULL
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3322 && ((h->root.elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3324 && r_symndx != 0
3325 && (input_section->flags & SEC_ALLOC) != 0)
3326 {
3327 /* If we're creating a shared library, or this relocation is
3328 against a symbol in a shared library, then we can't know
3329 where the symbol will end up. So, we create a relocation
3330 record in the output, and leave the job up to the dynamic
3331 linker. */
3332 value = addend;
3333 if (!mips_elf_create_dynamic_relocation (abfd,
3334 info,
3335 relocation,
3336 h,
3337 sec,
3338 symbol,
3339 &value,
3340 input_section))
3341 return bfd_reloc_undefined;
3342 }
3343 else
3344 {
3345 if (r_type != R_MIPS_REL32)
3346 value = symbol + addend;
3347 else
3348 value = addend;
3349 }
3350 value &= howto->dst_mask;
3351 break;
3352
3353 case R_MIPS_PC32:
3354 case R_MIPS_PC64:
3355 case R_MIPS_GNU_REL_LO16:
3356 value = symbol + addend - p;
3357 value &= howto->dst_mask;
3358 break;
3359
0b25d3e6 3360 case R_MIPS_GNU_REL16_S2:
a7ebbfdf 3361 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
0b25d3e6
AO
3362 overflowed_p = mips_elf_overflow_p (value, 18);
3363 value = (value >> 2) & howto->dst_mask;
3364 break;
3365
b49e97c9
TS
3366 case R_MIPS_GNU_REL_HI16:
3367 /* Instead of subtracting 'p' here, we should be subtracting the
3368 equivalent value for the LO part of the reloc, since the value
3369 here is relative to that address. Because that's not easy to do,
3370 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3371 the comment there for more information. */
3372 value = mips_elf_high (addend + symbol - p);
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS16_26:
3377 /* The calculation for R_MIPS16_26 is just the same as for an
3378 R_MIPS_26. It's only the storage of the relocated field into
3379 the output file that's different. That's handled in
3380 mips_elf_perform_relocation. So, we just fall through to the
3381 R_MIPS_26 case here. */
3382 case R_MIPS_26:
3383 if (local_p)
3384 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3385 else
a7ebbfdf 3386 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
b49e97c9
TS
3387 value &= howto->dst_mask;
3388 break;
3389
3390 case R_MIPS_HI16:
3391 if (!gp_disp_p)
3392 {
3393 value = mips_elf_high (addend + symbol);
3394 value &= howto->dst_mask;
3395 }
3396 else
3397 {
3398 value = mips_elf_high (addend + gp - p);
3399 overflowed_p = mips_elf_overflow_p (value, 16);
3400 }
3401 break;
3402
3403 case R_MIPS_LO16:
3404 if (!gp_disp_p)
3405 value = (symbol + addend) & howto->dst_mask;
3406 else
3407 {
3408 value = addend + gp - p + 4;
3409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3410 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3411 _gp_disp are normally generated from the .cpload
3412 pseudo-op. It generates code that normally looks like
3413 this:
3414
3415 lui $gp,%hi(_gp_disp)
3416 addiu $gp,$gp,%lo(_gp_disp)
3417 addu $gp,$gp,$t9
3418
3419 Here $t9 holds the address of the function being called,
3420 as required by the MIPS ELF ABI. The R_MIPS_LO16
3421 relocation can easily overflow in this situation, but the
3422 R_MIPS_HI16 relocation will handle the overflow.
3423 Therefore, we consider this a bug in the MIPS ABI, and do
3424 not check for overflow here. */
3425 }
3426 break;
3427
3428 case R_MIPS_LITERAL:
3429 /* Because we don't merge literal sections, we can handle this
3430 just like R_MIPS_GPREL16. In the long run, we should merge
3431 shared literals, and then we will need to additional work
3432 here. */
3433
3434 /* Fall through. */
3435
3436 case R_MIPS16_GPREL:
3437 /* The R_MIPS16_GPREL performs the same calculation as
3438 R_MIPS_GPREL16, but stores the relocated bits in a different
3439 order. We don't need to do anything special here; the
3440 differences are handled in mips_elf_perform_relocation. */
3441 case R_MIPS_GPREL16:
bce03d3d
AO
3442 /* Only sign-extend the addend if it was extracted from the
3443 instruction. If the addend was separate, leave it alone,
3444 otherwise we may lose significant bits. */
3445 if (howto->partial_inplace)
a7ebbfdf 3446 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3447 value = symbol + addend - gp;
3448 /* If the symbol was local, any earlier relocatable links will
3449 have adjusted its addend with the gp offset, so compensate
3450 for that now. Don't do it for symbols forced local in this
3451 link, though, since they won't have had the gp offset applied
3452 to them before. */
3453 if (was_local_p)
3454 value += gp0;
b49e97c9
TS
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT16:
3459 case R_MIPS_CALL16:
3460 if (local_p)
3461 {
b34976b6 3462 bfd_boolean forced;
b49e97c9
TS
3463
3464 /* The special case is when the symbol is forced to be local. We
3465 need the full address in the GOT since no R_MIPS_LO16 relocation
3466 follows. */
3467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3468 local_sections, FALSE);
f4416af6
AO
3469 value = mips_elf_got16_entry (abfd, input_bfd, info,
3470 symbol + addend, forced);
b49e97c9
TS
3471 if (value == MINUS_ONE)
3472 return bfd_reloc_outofrange;
3473 value
3474 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3475 abfd, input_bfd, value);
b49e97c9
TS
3476 overflowed_p = mips_elf_overflow_p (value, 16);
3477 break;
3478 }
3479
3480 /* Fall through. */
3481
3482 case R_MIPS_GOT_DISP:
0fdc1bf1 3483 got_disp:
b49e97c9
TS
3484 value = g;
3485 overflowed_p = mips_elf_overflow_p (value, 16);
3486 break;
3487
3488 case R_MIPS_GPREL32:
bce03d3d
AO
3489 value = (addend + symbol + gp0 - gp);
3490 if (!save_addend)
3491 value &= howto->dst_mask;
b49e97c9
TS
3492 break;
3493
3494 case R_MIPS_PC16:
a7ebbfdf 3495 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3496 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3497 break;
3498
3499 case R_MIPS_GOT_HI16:
3500 case R_MIPS_CALL_HI16:
3501 /* We're allowed to handle these two relocations identically.
3502 The dynamic linker is allowed to handle the CALL relocations
3503 differently by creating a lazy evaluation stub. */
3504 value = g;
3505 value = mips_elf_high (value);
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_GOT_LO16:
3510 case R_MIPS_CALL_LO16:
3511 value = g & howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3515 /* GOT_PAGE relocations that reference non-local symbols decay
3516 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3517 0. */
93a2b7ae 3518 if (! local_p)
0fdc1bf1 3519 goto got_disp;
f4416af6 3520 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3521 if (value == MINUS_ONE)
3522 return bfd_reloc_outofrange;
3523 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3524 abfd, input_bfd, value);
b49e97c9
TS
3525 overflowed_p = mips_elf_overflow_p (value, 16);
3526 break;
3527
3528 case R_MIPS_GOT_OFST:
93a2b7ae 3529 if (local_p)
0fdc1bf1
AO
3530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 else
3532 value = addend;
b49e97c9
TS
3533 overflowed_p = mips_elf_overflow_p (value, 16);
3534 break;
3535
3536 case R_MIPS_SUB:
3537 value = symbol - addend;
3538 value &= howto->dst_mask;
3539 break;
3540
3541 case R_MIPS_HIGHER:
3542 value = mips_elf_higher (addend + symbol);
3543 value &= howto->dst_mask;
3544 break;
3545
3546 case R_MIPS_HIGHEST:
3547 value = mips_elf_highest (addend + symbol);
3548 value &= howto->dst_mask;
3549 break;
3550
3551 case R_MIPS_SCN_DISP:
3552 value = symbol + addend - sec->output_offset;
3553 value &= howto->dst_mask;
3554 break;
3555
3556 case R_MIPS_PJUMP:
3557 case R_MIPS_JALR:
3558 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3559 hint; we could improve performance by honoring that hint. */
3560 return bfd_reloc_continue;
3561
3562 case R_MIPS_GNU_VTINHERIT:
3563 case R_MIPS_GNU_VTENTRY:
3564 /* We don't do anything with these at present. */
3565 return bfd_reloc_continue;
3566
3567 default:
3568 /* An unrecognized relocation type. */
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Store the VALUE for our caller. */
3573 *valuep = value;
3574 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575}
3576
3577/* Obtain the field relocated by RELOCATION. */
3578
3579static bfd_vma
3580mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3581 reloc_howto_type *howto;
3582 const Elf_Internal_Rela *relocation;
3583 bfd *input_bfd;
3584 bfd_byte *contents;
3585{
3586 bfd_vma x;
3587 bfd_byte *location = contents + relocation->r_offset;
3588
3589 /* Obtain the bytes. */
3590 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3591
3592 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3593 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3594 && bfd_little_endian (input_bfd))
3595 /* The two 16-bit words will be reversed on a little-endian system.
3596 See mips_elf_perform_relocation for more details. */
3597 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3598
3599 return x;
3600}
3601
3602/* It has been determined that the result of the RELOCATION is the
3603 VALUE. Use HOWTO to place VALUE into the output file at the
3604 appropriate position. The SECTION is the section to which the
b34976b6 3605 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3606 for the relocation must be either JAL or JALX, and it is
3607 unconditionally converted to JALX.
3608
b34976b6 3609 Returns FALSE if anything goes wrong. */
b49e97c9 3610
b34976b6 3611static bfd_boolean
b49e97c9
TS
3612mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3613 input_section, contents, require_jalx)
3614 struct bfd_link_info *info;
3615 reloc_howto_type *howto;
3616 const Elf_Internal_Rela *relocation;
3617 bfd_vma value;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
b34976b6 3621 bfd_boolean require_jalx;
b49e97c9
TS
3622{
3623 bfd_vma x;
3624 bfd_byte *location;
3625 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3626
3627 /* Figure out where the relocation is occurring. */
3628 location = contents + relocation->r_offset;
3629
3630 /* Obtain the current value. */
3631 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3632
3633 /* Clear the field we are setting. */
3634 x &= ~howto->dst_mask;
3635
3636 /* If this is the R_MIPS16_26 relocation, we must store the
3637 value in a funny way. */
3638 if (r_type == R_MIPS16_26)
3639 {
3640 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3641 Most mips16 instructions are 16 bits, but these instructions
3642 are 32 bits.
3643
3644 The format of these instructions is:
3645
3646 +--------------+--------------------------------+
3647 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3648 +--------------+--------------------------------+
3649 ! Immediate 15:0 !
3650 +-----------------------------------------------+
3651
3652 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3653 Note that the immediate value in the first word is swapped.
3654
1049f94e 3655 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3656 handled mostly like R_MIPS_26. In particular, the addend is
3657 stored as a straight 26-bit value in a 32-bit instruction.
3658 (gas makes life simpler for itself by never adjusting a
3659 R_MIPS16_26 reloc to be against a section, so the addend is
3660 always zero). However, the 32 bit instruction is stored as 2
3661 16-bit values, rather than a single 32-bit value. In a
3662 big-endian file, the result is the same; in a little-endian
3663 file, the two 16-bit halves of the 32 bit value are swapped.
3664 This is so that a disassembler can recognize the jal
3665 instruction.
3666
3667 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3668 instruction stored as two 16-bit values. The addend A is the
3669 contents of the targ26 field. The calculation is the same as
3670 R_MIPS_26. When storing the calculated value, reorder the
3671 immediate value as shown above, and don't forget to store the
3672 value as two 16-bit values.
3673
3674 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3675 defined as
3676
3677 big-endian:
3678 +--------+----------------------+
3679 | | |
3680 | | targ26-16 |
3681 |31 26|25 0|
3682 +--------+----------------------+
3683
3684 little-endian:
3685 +----------+------+-------------+
3686 | | | |
3687 | sub1 | | sub2 |
3688 |0 9|10 15|16 31|
3689 +----------+--------------------+
3690 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3691 ((sub1 << 16) | sub2)).
3692
1049f94e 3693 When producing a relocatable object file, the calculation is
b49e97c9
TS
3694 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 When producing a fully linked file, the calculation is
3696 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3697 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3698
1049f94e 3699 if (!info->relocatable)
b49e97c9
TS
3700 /* Shuffle the bits according to the formula above. */
3701 value = (((value & 0x1f0000) << 5)
3702 | ((value & 0x3e00000) >> 5)
3703 | (value & 0xffff));
3704 }
3705 else if (r_type == R_MIPS16_GPREL)
3706 {
3707 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3708 mode. A typical instruction will have a format like this:
3709
3710 +--------------+--------------------------------+
3711 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3712 +--------------+--------------------------------+
3713 ! Major ! rx ! ry ! Imm 4:0 !
3714 +--------------+--------------------------------+
3715
3716 EXTEND is the five bit value 11110. Major is the instruction
3717 opcode.
3718
3719 This is handled exactly like R_MIPS_GPREL16, except that the
3720 addend is retrieved and stored as shown in this diagram; that
3721 is, the Imm fields above replace the V-rel16 field.
3722
3723 All we need to do here is shuffle the bits appropriately. As
3724 above, the two 16-bit halves must be swapped on a
3725 little-endian system. */
3726 value = (((value & 0x7e0) << 16)
3727 | ((value & 0xf800) << 5)
3728 | (value & 0x1f));
3729 }
3730
3731 /* Set the field. */
3732 x |= (value & howto->dst_mask);
3733
3734 /* If required, turn JAL into JALX. */
3735 if (require_jalx)
3736 {
b34976b6 3737 bfd_boolean ok;
b49e97c9
TS
3738 bfd_vma opcode = x >> 26;
3739 bfd_vma jalx_opcode;
3740
3741 /* Check to see if the opcode is already JAL or JALX. */
3742 if (r_type == R_MIPS16_26)
3743 {
3744 ok = ((opcode == 0x6) || (opcode == 0x7));
3745 jalx_opcode = 0x7;
3746 }
3747 else
3748 {
3749 ok = ((opcode == 0x3) || (opcode == 0x1d));
3750 jalx_opcode = 0x1d;
3751 }
3752
3753 /* If the opcode is not JAL or JALX, there's a problem. */
3754 if (!ok)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3758 bfd_archive_filename (input_bfd),
3759 input_section->name,
3760 (unsigned long) relocation->r_offset);
3761 bfd_set_error (bfd_error_bad_value);
b34976b6 3762 return FALSE;
b49e97c9
TS
3763 }
3764
3765 /* Make this the JALX opcode. */
3766 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 }
3768
3769 /* Swap the high- and low-order 16 bits on little-endian systems
3770 when doing a MIPS16 relocation. */
3771 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3772 && bfd_little_endian (input_bfd))
3773 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3774
3775 /* Put the value into the output. */
3776 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3777 return TRUE;
b49e97c9
TS
3778}
3779
b34976b6 3780/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3781
b34976b6 3782static bfd_boolean
b49e97c9
TS
3783mips_elf_stub_section_p (abfd, section)
3784 bfd *abfd ATTRIBUTE_UNUSED;
3785 asection *section;
3786{
3787 const char *name = bfd_get_section_name (abfd, section);
3788
3789 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3790 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3791 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792}
3793\f
3794/* Add room for N relocations to the .rel.dyn section in ABFD. */
3795
3796static void
3797mips_elf_allocate_dynamic_relocations (abfd, n)
3798 bfd *abfd;
3799 unsigned int n;
3800{
3801 asection *s;
3802
f4416af6 3803 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3804 BFD_ASSERT (s != NULL);
3805
3806 if (s->_raw_size == 0)
3807 {
3808 /* Make room for a null element. */
3809 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 ++s->reloc_count;
3811 }
3812 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813}
3814
3815/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3816 is the original relocation, which is now being transformed into a
3817 dynamic relocation. The ADDENDP is adjusted if necessary; the
3818 caller should store the result in place of the original addend. */
3819
b34976b6 3820static bfd_boolean
b49e97c9
TS
3821mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3822 symbol, addendp, input_section)
3823 bfd *output_bfd;
3824 struct bfd_link_info *info;
3825 const Elf_Internal_Rela *rel;
3826 struct mips_elf_link_hash_entry *h;
3827 asection *sec;
3828 bfd_vma symbol;
3829 bfd_vma *addendp;
3830 asection *input_section;
3831{
947216bf 3832 Elf_Internal_Rela outrel[3];
b34976b6 3833 bfd_boolean skip;
b49e97c9
TS
3834 asection *sreloc;
3835 bfd *dynobj;
3836 int r_type;
3837
3838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3839 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3840 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3841 BFD_ASSERT (sreloc != NULL);
3842 BFD_ASSERT (sreloc->contents != NULL);
3843 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3844 < sreloc->_raw_size);
3845
b34976b6 3846 skip = FALSE;
b49e97c9
TS
3847 outrel[0].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3849 outrel[1].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3851 outrel[2].r_offset =
3852 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853
3854#if 0
3855 /* We begin by assuming that the offset for the dynamic relocation
3856 is the same as for the original relocation. We'll adjust this
3857 later to reflect the correct output offsets. */
a7ebbfdf 3858 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3859 {
3860 outrel[1].r_offset = rel[1].r_offset;
3861 outrel[2].r_offset = rel[2].r_offset;
3862 }
3863 else
3864 {
3865 /* Except that in a stab section things are more complex.
3866 Because we compress stab information, the offset given in the
3867 relocation may not be the one we want; we must let the stabs
3868 machinery tell us the offset. */
3869 outrel[1].r_offset = outrel[0].r_offset;
3870 outrel[2].r_offset = outrel[0].r_offset;
3871 /* If we didn't need the relocation at all, this value will be
3872 -1. */
3873 if (outrel[0].r_offset == (bfd_vma) -1)
b34976b6 3874 skip = TRUE;
b49e97c9
TS
3875 }
3876#endif
3877
4bb9a95f
AO
3878 if (outrel[0].r_offset == (bfd_vma) -1
3879 || outrel[0].r_offset == (bfd_vma) -2)
b34976b6 3880 skip = TRUE;
b49e97c9
TS
3881
3882 /* If we've decided to skip this relocation, just output an empty
3883 record. Note that R_MIPS_NONE == 0, so that this call to memset
3884 is a way of setting R_TYPE to R_MIPS_NONE. */
3885 if (skip)
947216bf 3886 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
b49e97c9
TS
3887 else
3888 {
3889 long indx;
b49e97c9
TS
3890
3891 /* We must now calculate the dynamic symbol table index to use
3892 in the relocation. */
3893 if (h != NULL
3894 && (! info->symbolic || (h->root.elf_link_hash_flags
3895 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3896 {
3897 indx = h->root.dynindx;
3898 /* h->root.dynindx may be -1 if this symbol was marked to
3899 become local. */
3900 if (indx == -1)
3901 indx = 0;
3902 }
3903 else
3904 {
3905 if (sec != NULL && bfd_is_abs_section (sec))
3906 indx = 0;
3907 else if (sec == NULL || sec->owner == NULL)
3908 {
3909 bfd_set_error (bfd_error_bad_value);
b34976b6 3910 return FALSE;
b49e97c9
TS
3911 }
3912 else
3913 {
3914 indx = elf_section_data (sec->output_section)->dynindx;
3915 if (indx == 0)
3916 abort ();
3917 }
3918
908488f1
AO
3919 /* Instead of generating a relocation using the section
3920 symbol, we may as well make it a fully relative
3921 relocation. We want to avoid generating relocations to
3922 local symbols because we used to generate them
3923 incorrectly, without adding the original symbol value,
3924 which is mandated by the ABI for section symbols. In
3925 order to give dynamic loaders and applications time to
3926 phase out the incorrect use, we refrain from emitting
3927 section-relative relocations. It's not like they're
3928 useful, after all. This should be a bit more efficient
3929 as well. */
3930 indx = 0;
b49e97c9
TS
3931 }
3932
3933 /* If the relocation was previously an absolute relocation and
3934 this symbol will not be referred to by the relocation, we must
3935 adjust it by the value we give it in the dynamic symbol table.
3936 Otherwise leave the job up to the dynamic linker. */
3937 if (!indx && r_type != R_MIPS_REL32)
3938 *addendp += symbol;
3939
3940 /* The relocation is always an REL32 relocation because we don't
3941 know where the shared library will wind up at load-time. */
34ea4a36
TS
3942 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3943 R_MIPS_REL32);
908488f1
AO
3944 /* For strict adherence to the ABI specification, we should
3945 generate a R_MIPS_64 relocation record by itself before the
3946 _REL32/_64 record as well, such that the addend is read in as
3947 a 64-bit value (REL32 is a 32-bit relocation, after all).
3948 However, since none of the existing ELF64 MIPS dynamic
3949 loaders seems to care, we don't waste space with these
3950 artificial relocations. If this turns out to not be true,
3951 mips_elf_allocate_dynamic_relocation() should be tweaked so
3952 as to make room for a pair of dynamic relocations per
3953 invocation if ABI_64_P, and here we should generate an
3954 additional relocation record with R_MIPS_64 by itself for a
3955 NULL symbol before this relocation record. */
7c4ca42d 3956 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
033fd5f9
AO
3957 ABI_64_P (output_bfd)
3958 ? R_MIPS_64
3959 : R_MIPS_NONE);
7c4ca42d
AO
3960 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3961 R_MIPS_NONE);
b49e97c9
TS
3962
3963 /* Adjust the output offset of the relocation to reference the
3964 correct location in the output file. */
3965 outrel[0].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[1].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3969 outrel[2].r_offset += (input_section->output_section->vma
3970 + input_section->output_offset);
3971 }
3972
3973 /* Put the relocation back out. We have to use the special
3974 relocation outputter in the 64-bit case since the 64-bit
3975 relocation format is non-standard. */
3976 if (ABI_64_P (output_bfd))
3977 {
3978 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3979 (output_bfd, &outrel[0],
3980 (sreloc->contents
3981 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3982 }
3983 else
947216bf
AM
3984 bfd_elf32_swap_reloc_out
3985 (output_bfd, &outrel[0],
3986 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9
TS
3987
3988 /* Record the index of the first relocation referencing H. This
3989 information is later emitted in the .msym section. */
3990 if (h != NULL
3991 && (h->min_dyn_reloc_index == 0
3992 || sreloc->reloc_count < h->min_dyn_reloc_index))
3993 h->min_dyn_reloc_index = sreloc->reloc_count;
3994
3995 /* We've now added another relocation. */
3996 ++sreloc->reloc_count;
3997
3998 /* Make sure the output section is writable. The dynamic linker
3999 will be writing to it. */
4000 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4001 |= SHF_WRITE;
4002
4003 /* On IRIX5, make an entry of compact relocation info. */
4004 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4005 {
4006 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4007 bfd_byte *cr;
4008
4009 if (scpt)
4010 {
4011 Elf32_crinfo cptrel;
4012
4013 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4014 cptrel.vaddr = (rel->r_offset
4015 + input_section->output_section->vma
4016 + input_section->output_offset);
4017 if (r_type == R_MIPS_REL32)
4018 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4019 else
4020 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4021 mips_elf_set_cr_dist2to (cptrel, 0);
4022 cptrel.konst = *addendp;
4023
4024 cr = (scpt->contents
4025 + sizeof (Elf32_External_compact_rel));
4026 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4027 ((Elf32_External_crinfo *) cr
4028 + scpt->reloc_count));
4029 ++scpt->reloc_count;
4030 }
4031 }
4032
b34976b6 4033 return TRUE;
b49e97c9
TS
4034}
4035\f
b49e97c9
TS
4036/* Return the MACH for a MIPS e_flags value. */
4037
4038unsigned long
4039_bfd_elf_mips_mach (flags)
4040 flagword flags;
4041{
4042 switch (flags & EF_MIPS_MACH)
4043 {
4044 case E_MIPS_MACH_3900:
4045 return bfd_mach_mips3900;
4046
4047 case E_MIPS_MACH_4010:
4048 return bfd_mach_mips4010;
4049
4050 case E_MIPS_MACH_4100:
4051 return bfd_mach_mips4100;
4052
4053 case E_MIPS_MACH_4111:
4054 return bfd_mach_mips4111;
4055
00707a0e
RS
4056 case E_MIPS_MACH_4120:
4057 return bfd_mach_mips4120;
4058
b49e97c9
TS
4059 case E_MIPS_MACH_4650:
4060 return bfd_mach_mips4650;
4061
00707a0e
RS
4062 case E_MIPS_MACH_5400:
4063 return bfd_mach_mips5400;
4064
4065 case E_MIPS_MACH_5500:
4066 return bfd_mach_mips5500;
4067
b49e97c9
TS
4068 case E_MIPS_MACH_SB1:
4069 return bfd_mach_mips_sb1;
4070
4071 default:
4072 switch (flags & EF_MIPS_ARCH)
4073 {
4074 default:
4075 case E_MIPS_ARCH_1:
4076 return bfd_mach_mips3000;
4077 break;
4078
4079 case E_MIPS_ARCH_2:
4080 return bfd_mach_mips6000;
4081 break;
4082
4083 case E_MIPS_ARCH_3:
4084 return bfd_mach_mips4000;
4085 break;
4086
4087 case E_MIPS_ARCH_4:
4088 return bfd_mach_mips8000;
4089 break;
4090
4091 case E_MIPS_ARCH_5:
4092 return bfd_mach_mips5;
4093 break;
4094
4095 case E_MIPS_ARCH_32:
4096 return bfd_mach_mipsisa32;
4097 break;
4098
4099 case E_MIPS_ARCH_64:
4100 return bfd_mach_mipsisa64;
4101 break;
af7ee8bf
CD
4102
4103 case E_MIPS_ARCH_32R2:
4104 return bfd_mach_mipsisa32r2;
4105 break;
b49e97c9
TS
4106 }
4107 }
4108
4109 return 0;
4110}
4111
4112/* Return printable name for ABI. */
4113
4114static INLINE char *
4115elf_mips_abi_name (abfd)
4116 bfd *abfd;
4117{
4118 flagword flags;
4119
4120 flags = elf_elfheader (abfd)->e_flags;
4121 switch (flags & EF_MIPS_ABI)
4122 {
4123 case 0:
4124 if (ABI_N32_P (abfd))
4125 return "N32";
4126 else if (ABI_64_P (abfd))
4127 return "64";
4128 else
4129 return "none";
4130 case E_MIPS_ABI_O32:
4131 return "O32";
4132 case E_MIPS_ABI_O64:
4133 return "O64";
4134 case E_MIPS_ABI_EABI32:
4135 return "EABI32";
4136 case E_MIPS_ABI_EABI64:
4137 return "EABI64";
4138 default:
4139 return "unknown abi";
4140 }
4141}
4142\f
4143/* MIPS ELF uses two common sections. One is the usual one, and the
4144 other is for small objects. All the small objects are kept
4145 together, and then referenced via the gp pointer, which yields
4146 faster assembler code. This is what we use for the small common
4147 section. This approach is copied from ecoff.c. */
4148static asection mips_elf_scom_section;
4149static asymbol mips_elf_scom_symbol;
4150static asymbol *mips_elf_scom_symbol_ptr;
4151
4152/* MIPS ELF also uses an acommon section, which represents an
4153 allocated common symbol which may be overridden by a
4154 definition in a shared library. */
4155static asection mips_elf_acom_section;
4156static asymbol mips_elf_acom_symbol;
4157static asymbol *mips_elf_acom_symbol_ptr;
4158
4159/* Handle the special MIPS section numbers that a symbol may use.
4160 This is used for both the 32-bit and the 64-bit ABI. */
4161
4162void
4163_bfd_mips_elf_symbol_processing (abfd, asym)
4164 bfd *abfd;
4165 asymbol *asym;
4166{
4167 elf_symbol_type *elfsym;
4168
4169 elfsym = (elf_symbol_type *) asym;
4170 switch (elfsym->internal_elf_sym.st_shndx)
4171 {
4172 case SHN_MIPS_ACOMMON:
4173 /* This section is used in a dynamically linked executable file.
4174 It is an allocated common section. The dynamic linker can
4175 either resolve these symbols to something in a shared
4176 library, or it can just leave them here. For our purposes,
4177 we can consider these symbols to be in a new section. */
4178 if (mips_elf_acom_section.name == NULL)
4179 {
4180 /* Initialize the acommon section. */
4181 mips_elf_acom_section.name = ".acommon";
4182 mips_elf_acom_section.flags = SEC_ALLOC;
4183 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4184 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4185 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4186 mips_elf_acom_symbol.name = ".acommon";
4187 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4188 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4189 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4190 }
4191 asym->section = &mips_elf_acom_section;
4192 break;
4193
4194 case SHN_COMMON:
4195 /* Common symbols less than the GP size are automatically
4196 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4197 if (asym->value > elf_gp_size (abfd)
4198 || IRIX_COMPAT (abfd) == ict_irix6)
4199 break;
4200 /* Fall through. */
4201 case SHN_MIPS_SCOMMON:
4202 if (mips_elf_scom_section.name == NULL)
4203 {
4204 /* Initialize the small common section. */
4205 mips_elf_scom_section.name = ".scommon";
4206 mips_elf_scom_section.flags = SEC_IS_COMMON;
4207 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4208 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4209 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4210 mips_elf_scom_symbol.name = ".scommon";
4211 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4212 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4213 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4214 }
4215 asym->section = &mips_elf_scom_section;
4216 asym->value = elfsym->internal_elf_sym.st_size;
4217 break;
4218
4219 case SHN_MIPS_SUNDEFINED:
4220 asym->section = bfd_und_section_ptr;
4221 break;
4222
4223#if 0 /* for SGI_COMPAT */
4224 case SHN_MIPS_TEXT:
4225 asym->section = mips_elf_text_section_ptr;
4226 break;
4227
4228 case SHN_MIPS_DATA:
4229 asym->section = mips_elf_data_section_ptr;
4230 break;
4231#endif
4232 }
4233}
4234\f
4235/* Work over a section just before writing it out. This routine is
4236 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4237 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4238 a better way. */
4239
b34976b6 4240bfd_boolean
b49e97c9
TS
4241_bfd_mips_elf_section_processing (abfd, hdr)
4242 bfd *abfd;
4243 Elf_Internal_Shdr *hdr;
4244{
4245 if (hdr->sh_type == SHT_MIPS_REGINFO
4246 && hdr->sh_size > 0)
4247 {
4248 bfd_byte buf[4];
4249
4250 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4251 BFD_ASSERT (hdr->contents == NULL);
4252
4253 if (bfd_seek (abfd,
4254 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4255 SEEK_SET) != 0)
b34976b6 4256 return FALSE;
b49e97c9
TS
4257 H_PUT_32 (abfd, elf_gp (abfd), buf);
4258 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4259 return FALSE;
b49e97c9
TS
4260 }
4261
4262 if (hdr->sh_type == SHT_MIPS_OPTIONS
4263 && hdr->bfd_section != NULL
f0abc2a1
AM
4264 && mips_elf_section_data (hdr->bfd_section) != NULL
4265 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4266 {
4267 bfd_byte *contents, *l, *lend;
4268
f0abc2a1
AM
4269 /* We stored the section contents in the tdata field in the
4270 set_section_contents routine. We save the section contents
4271 so that we don't have to read them again.
b49e97c9
TS
4272 At this point we know that elf_gp is set, so we can look
4273 through the section contents to see if there is an
4274 ODK_REGINFO structure. */
4275
f0abc2a1 4276 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4277 l = contents;
4278 lend = contents + hdr->sh_size;
4279 while (l + sizeof (Elf_External_Options) <= lend)
4280 {
4281 Elf_Internal_Options intopt;
4282
4283 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4284 &intopt);
4285 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4286 {
4287 bfd_byte buf[8];
4288
4289 if (bfd_seek (abfd,
4290 (hdr->sh_offset
4291 + (l - contents)
4292 + sizeof (Elf_External_Options)
4293 + (sizeof (Elf64_External_RegInfo) - 8)),
4294 SEEK_SET) != 0)
b34976b6 4295 return FALSE;
b49e97c9
TS
4296 H_PUT_64 (abfd, elf_gp (abfd), buf);
4297 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
b34976b6 4298 return FALSE;
b49e97c9
TS
4299 }
4300 else if (intopt.kind == ODK_REGINFO)
4301 {
4302 bfd_byte buf[4];
4303
4304 if (bfd_seek (abfd,
4305 (hdr->sh_offset
4306 + (l - contents)
4307 + sizeof (Elf_External_Options)
4308 + (sizeof (Elf32_External_RegInfo) - 4)),
4309 SEEK_SET) != 0)
b34976b6 4310 return FALSE;
b49e97c9
TS
4311 H_PUT_32 (abfd, elf_gp (abfd), buf);
4312 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
b34976b6 4313 return FALSE;
b49e97c9
TS
4314 }
4315 l += intopt.size;
4316 }
4317 }
4318
4319 if (hdr->bfd_section != NULL)
4320 {
4321 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4322
4323 if (strcmp (name, ".sdata") == 0
4324 || strcmp (name, ".lit8") == 0
4325 || strcmp (name, ".lit4") == 0)
4326 {
4327 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4328 hdr->sh_type = SHT_PROGBITS;
4329 }
4330 else if (strcmp (name, ".sbss") == 0)
4331 {
4332 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4333 hdr->sh_type = SHT_NOBITS;
4334 }
4335 else if (strcmp (name, ".srdata") == 0)
4336 {
4337 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4338 hdr->sh_type = SHT_PROGBITS;
4339 }
4340 else if (strcmp (name, ".compact_rel") == 0)
4341 {
4342 hdr->sh_flags = 0;
4343 hdr->sh_type = SHT_PROGBITS;
4344 }
4345 else if (strcmp (name, ".rtproc") == 0)
4346 {
4347 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4348 {
4349 unsigned int adjust;
4350
4351 adjust = hdr->sh_size % hdr->sh_addralign;
4352 if (adjust != 0)
4353 hdr->sh_size += hdr->sh_addralign - adjust;
4354 }
4355 }
4356 }
4357
b34976b6 4358 return TRUE;
b49e97c9
TS
4359}
4360
4361/* Handle a MIPS specific section when reading an object file. This
4362 is called when elfcode.h finds a section with an unknown type.
4363 This routine supports both the 32-bit and 64-bit ELF ABI.
4364
4365 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4366 how to. */
4367
b34976b6 4368bfd_boolean
b49e97c9
TS
4369_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4370 bfd *abfd;
4371 Elf_Internal_Shdr *hdr;
90937f86 4372 const char *name;
b49e97c9
TS
4373{
4374 flagword flags = 0;
4375
4376 /* There ought to be a place to keep ELF backend specific flags, but
4377 at the moment there isn't one. We just keep track of the
4378 sections by their name, instead. Fortunately, the ABI gives
4379 suggested names for all the MIPS specific sections, so we will
4380 probably get away with this. */
4381 switch (hdr->sh_type)
4382 {
4383 case SHT_MIPS_LIBLIST:
4384 if (strcmp (name, ".liblist") != 0)
b34976b6 4385 return FALSE;
b49e97c9
TS
4386 break;
4387 case SHT_MIPS_MSYM:
4388 if (strcmp (name, ".msym") != 0)
b34976b6 4389 return FALSE;
b49e97c9
TS
4390 break;
4391 case SHT_MIPS_CONFLICT:
4392 if (strcmp (name, ".conflict") != 0)
b34976b6 4393 return FALSE;
b49e97c9
TS
4394 break;
4395 case SHT_MIPS_GPTAB:
4396 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4397 return FALSE;
b49e97c9
TS
4398 break;
4399 case SHT_MIPS_UCODE:
4400 if (strcmp (name, ".ucode") != 0)
b34976b6 4401 return FALSE;
b49e97c9
TS
4402 break;
4403 case SHT_MIPS_DEBUG:
4404 if (strcmp (name, ".mdebug") != 0)
b34976b6 4405 return FALSE;
b49e97c9
TS
4406 flags = SEC_DEBUGGING;
4407 break;
4408 case SHT_MIPS_REGINFO:
4409 if (strcmp (name, ".reginfo") != 0
4410 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4411 return FALSE;
b49e97c9
TS
4412 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4413 break;
4414 case SHT_MIPS_IFACE:
4415 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4416 return FALSE;
b49e97c9
TS
4417 break;
4418 case SHT_MIPS_CONTENT:
4419 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4420 return FALSE;
b49e97c9
TS
4421 break;
4422 case SHT_MIPS_OPTIONS:
4423 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4424 return FALSE;
b49e97c9
TS
4425 break;
4426 case SHT_MIPS_DWARF:
4427 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4428 return FALSE;
b49e97c9
TS
4429 break;
4430 case SHT_MIPS_SYMBOL_LIB:
4431 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4432 return FALSE;
b49e97c9
TS
4433 break;
4434 case SHT_MIPS_EVENTS:
4435 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4436 && strncmp (name, ".MIPS.post_rel",
4437 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4438 return FALSE;
b49e97c9
TS
4439 break;
4440 default:
b34976b6 4441 return FALSE;
b49e97c9
TS
4442 }
4443
4444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4445 return FALSE;
b49e97c9
TS
4446
4447 if (flags)
4448 {
4449 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4450 (bfd_get_section_flags (abfd,
4451 hdr->bfd_section)
4452 | flags)))
b34976b6 4453 return FALSE;
b49e97c9
TS
4454 }
4455
4456 /* FIXME: We should record sh_info for a .gptab section. */
4457
4458 /* For a .reginfo section, set the gp value in the tdata information
4459 from the contents of this section. We need the gp value while
4460 processing relocs, so we just get it now. The .reginfo section
4461 is not used in the 64-bit MIPS ELF ABI. */
4462 if (hdr->sh_type == SHT_MIPS_REGINFO)
4463 {
4464 Elf32_External_RegInfo ext;
4465 Elf32_RegInfo s;
4466
4467 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4468 (file_ptr) 0,
4469 (bfd_size_type) sizeof ext))
b34976b6 4470 return FALSE;
b49e97c9
TS
4471 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4472 elf_gp (abfd) = s.ri_gp_value;
4473 }
4474
4475 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4476 set the gp value based on what we find. We may see both
4477 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4478 they should agree. */
4479 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4480 {
4481 bfd_byte *contents, *l, *lend;
4482
4483 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4484 if (contents == NULL)
b34976b6 4485 return FALSE;
b49e97c9
TS
4486 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4487 (file_ptr) 0, hdr->sh_size))
4488 {
4489 free (contents);
b34976b6 4490 return FALSE;
b49e97c9
TS
4491 }
4492 l = contents;
4493 lend = contents + hdr->sh_size;
4494 while (l + sizeof (Elf_External_Options) <= lend)
4495 {
4496 Elf_Internal_Options intopt;
4497
4498 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4499 &intopt);
4500 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4501 {
4502 Elf64_Internal_RegInfo intreg;
4503
4504 bfd_mips_elf64_swap_reginfo_in
4505 (abfd,
4506 ((Elf64_External_RegInfo *)
4507 (l + sizeof (Elf_External_Options))),
4508 &intreg);
4509 elf_gp (abfd) = intreg.ri_gp_value;
4510 }
4511 else if (intopt.kind == ODK_REGINFO)
4512 {
4513 Elf32_RegInfo intreg;
4514
4515 bfd_mips_elf32_swap_reginfo_in
4516 (abfd,
4517 ((Elf32_External_RegInfo *)
4518 (l + sizeof (Elf_External_Options))),
4519 &intreg);
4520 elf_gp (abfd) = intreg.ri_gp_value;
4521 }
4522 l += intopt.size;
4523 }
4524 free (contents);
4525 }
4526
b34976b6 4527 return TRUE;
b49e97c9
TS
4528}
4529
4530/* Set the correct type for a MIPS ELF section. We do this by the
4531 section name, which is a hack, but ought to work. This routine is
4532 used by both the 32-bit and the 64-bit ABI. */
4533
b34976b6 4534bfd_boolean
b49e97c9
TS
4535_bfd_mips_elf_fake_sections (abfd, hdr, sec)
4536 bfd *abfd;
947216bf 4537 Elf_Internal_Shdr *hdr;
b49e97c9
TS
4538 asection *sec;
4539{
4540 register const char *name;
4541
4542 name = bfd_get_section_name (abfd, sec);
4543
4544 if (strcmp (name, ".liblist") == 0)
4545 {
4546 hdr->sh_type = SHT_MIPS_LIBLIST;
4547 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4548 /* The sh_link field is set in final_write_processing. */
4549 }
4550 else if (strcmp (name, ".conflict") == 0)
4551 hdr->sh_type = SHT_MIPS_CONFLICT;
4552 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_GPTAB;
4555 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4556 /* The sh_info field is set in final_write_processing. */
4557 }
4558 else if (strcmp (name, ".ucode") == 0)
4559 hdr->sh_type = SHT_MIPS_UCODE;
4560 else if (strcmp (name, ".mdebug") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4563 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4564 entsize of 0. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4566 hdr->sh_entsize = 0;
4567 else
4568 hdr->sh_entsize = 1;
4569 }
4570 else if (strcmp (name, ".reginfo") == 0)
4571 {
4572 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4573 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4574 entsize of 0x18. FIXME: Does this matter? */
4575 if (SGI_COMPAT (abfd))
4576 {
4577 if ((abfd->flags & DYNAMIC) != 0)
4578 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4579 else
4580 hdr->sh_entsize = 1;
4581 }
4582 else
4583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4584 }
4585 else if (SGI_COMPAT (abfd)
4586 && (strcmp (name, ".hash") == 0
4587 || strcmp (name, ".dynamic") == 0
4588 || strcmp (name, ".dynstr") == 0))
4589 {
4590 if (SGI_COMPAT (abfd))
4591 hdr->sh_entsize = 0;
4592#if 0
8dc1a139 4593 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4594 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4595#endif
4596 }
4597 else if (strcmp (name, ".got") == 0
4598 || strcmp (name, ".srdata") == 0
4599 || strcmp (name, ".sdata") == 0
4600 || strcmp (name, ".sbss") == 0
4601 || strcmp (name, ".lit4") == 0
4602 || strcmp (name, ".lit8") == 0)
4603 hdr->sh_flags |= SHF_MIPS_GPREL;
4604 else if (strcmp (name, ".MIPS.interfaces") == 0)
4605 {
4606 hdr->sh_type = SHT_MIPS_IFACE;
4607 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4608 }
4609 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4610 {
4611 hdr->sh_type = SHT_MIPS_CONTENT;
4612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4613 /* The sh_info field is set in final_write_processing. */
4614 }
4615 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_OPTIONS;
4618 hdr->sh_entsize = 1;
4619 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4620 }
4621 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4622 hdr->sh_type = SHT_MIPS_DWARF;
4623 else if (strcmp (name, ".MIPS.symlib") == 0)
4624 {
4625 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4626 /* The sh_link and sh_info fields are set in
4627 final_write_processing. */
4628 }
4629 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4630 || strncmp (name, ".MIPS.post_rel",
4631 sizeof ".MIPS.post_rel" - 1) == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_EVENTS;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 /* The sh_link field is set in final_write_processing. */
4636 }
4637 else if (strcmp (name, ".msym") == 0)
4638 {
4639 hdr->sh_type = SHT_MIPS_MSYM;
4640 hdr->sh_flags |= SHF_ALLOC;
4641 hdr->sh_entsize = 8;
4642 }
4643
7a79a000
TS
4644 /* The generic elf_fake_sections will set up REL_HDR using the default
4645 kind of relocations. We used to set up a second header for the
4646 non-default kind of relocations here, but only NewABI would use
4647 these, and the IRIX ld doesn't like resulting empty RELA sections.
4648 Thus we create those header only on demand now. */
b49e97c9 4649
b34976b6 4650 return TRUE;
b49e97c9
TS
4651}
4652
4653/* Given a BFD section, try to locate the corresponding ELF section
4654 index. This is used by both the 32-bit and the 64-bit ABI.
4655 Actually, it's not clear to me that the 64-bit ABI supports these,
4656 but for non-PIC objects we will certainly want support for at least
4657 the .scommon section. */
4658
b34976b6 4659bfd_boolean
b49e97c9
TS
4660_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4661 bfd *abfd ATTRIBUTE_UNUSED;
4662 asection *sec;
4663 int *retval;
4664{
4665 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4666 {
4667 *retval = SHN_MIPS_SCOMMON;
b34976b6 4668 return TRUE;
b49e97c9
TS
4669 }
4670 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4671 {
4672 *retval = SHN_MIPS_ACOMMON;
b34976b6 4673 return TRUE;
b49e97c9 4674 }
b34976b6 4675 return FALSE;
b49e97c9
TS
4676}
4677\f
4678/* Hook called by the linker routine which adds symbols from an object
4679 file. We must handle the special MIPS section numbers here. */
4680
b34976b6 4681bfd_boolean
b49e97c9
TS
4682_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4683 bfd *abfd;
4684 struct bfd_link_info *info;
4685 const Elf_Internal_Sym *sym;
4686 const char **namep;
4687 flagword *flagsp ATTRIBUTE_UNUSED;
4688 asection **secp;
4689 bfd_vma *valp;
4690{
4691 if (SGI_COMPAT (abfd)
4692 && (abfd->flags & DYNAMIC) != 0
4693 && strcmp (*namep, "_rld_new_interface") == 0)
4694 {
8dc1a139 4695 /* Skip IRIX5 rld entry name. */
b49e97c9 4696 *namep = NULL;
b34976b6 4697 return TRUE;
b49e97c9
TS
4698 }
4699
4700 switch (sym->st_shndx)
4701 {
4702 case SHN_COMMON:
4703 /* Common symbols less than the GP size are automatically
4704 treated as SHN_MIPS_SCOMMON symbols. */
4705 if (sym->st_size > elf_gp_size (abfd)
4706 || IRIX_COMPAT (abfd) == ict_irix6)
4707 break;
4708 /* Fall through. */
4709 case SHN_MIPS_SCOMMON:
4710 *secp = bfd_make_section_old_way (abfd, ".scommon");
4711 (*secp)->flags |= SEC_IS_COMMON;
4712 *valp = sym->st_size;
4713 break;
4714
4715 case SHN_MIPS_TEXT:
4716 /* This section is used in a shared object. */
4717 if (elf_tdata (abfd)->elf_text_section == NULL)
4718 {
4719 asymbol *elf_text_symbol;
4720 asection *elf_text_section;
4721 bfd_size_type amt = sizeof (asection);
4722
4723 elf_text_section = bfd_zalloc (abfd, amt);
4724 if (elf_text_section == NULL)
b34976b6 4725 return FALSE;
b49e97c9
TS
4726
4727 amt = sizeof (asymbol);
4728 elf_text_symbol = bfd_zalloc (abfd, amt);
4729 if (elf_text_symbol == NULL)
b34976b6 4730 return FALSE;
b49e97c9
TS
4731
4732 /* Initialize the section. */
4733
4734 elf_tdata (abfd)->elf_text_section = elf_text_section;
4735 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4736
4737 elf_text_section->symbol = elf_text_symbol;
4738 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4739
4740 elf_text_section->name = ".text";
4741 elf_text_section->flags = SEC_NO_FLAGS;
4742 elf_text_section->output_section = NULL;
4743 elf_text_section->owner = abfd;
4744 elf_text_symbol->name = ".text";
4745 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4746 elf_text_symbol->section = elf_text_section;
4747 }
4748 /* This code used to do *secp = bfd_und_section_ptr if
4749 info->shared. I don't know why, and that doesn't make sense,
4750 so I took it out. */
4751 *secp = elf_tdata (abfd)->elf_text_section;
4752 break;
4753
4754 case SHN_MIPS_ACOMMON:
4755 /* Fall through. XXX Can we treat this as allocated data? */
4756 case SHN_MIPS_DATA:
4757 /* This section is used in a shared object. */
4758 if (elf_tdata (abfd)->elf_data_section == NULL)
4759 {
4760 asymbol *elf_data_symbol;
4761 asection *elf_data_section;
4762 bfd_size_type amt = sizeof (asection);
4763
4764 elf_data_section = bfd_zalloc (abfd, amt);
4765 if (elf_data_section == NULL)
b34976b6 4766 return FALSE;
b49e97c9
TS
4767
4768 amt = sizeof (asymbol);
4769 elf_data_symbol = bfd_zalloc (abfd, amt);
4770 if (elf_data_symbol == NULL)
b34976b6 4771 return FALSE;
b49e97c9
TS
4772
4773 /* Initialize the section. */
4774
4775 elf_tdata (abfd)->elf_data_section = elf_data_section;
4776 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4777
4778 elf_data_section->symbol = elf_data_symbol;
4779 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4780
4781 elf_data_section->name = ".data";
4782 elf_data_section->flags = SEC_NO_FLAGS;
4783 elf_data_section->output_section = NULL;
4784 elf_data_section->owner = abfd;
4785 elf_data_symbol->name = ".data";
4786 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4787 elf_data_symbol->section = elf_data_section;
4788 }
4789 /* This code used to do *secp = bfd_und_section_ptr if
4790 info->shared. I don't know why, and that doesn't make sense,
4791 so I took it out. */
4792 *secp = elf_tdata (abfd)->elf_data_section;
4793 break;
4794
4795 case SHN_MIPS_SUNDEFINED:
4796 *secp = bfd_und_section_ptr;
4797 break;
4798 }
4799
4800 if (SGI_COMPAT (abfd)
4801 && ! info->shared
4802 && info->hash->creator == abfd->xvec
4803 && strcmp (*namep, "__rld_obj_head") == 0)
4804 {
4805 struct elf_link_hash_entry *h;
14a793b2 4806 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4807
4808 /* Mark __rld_obj_head as dynamic. */
14a793b2 4809 bh = NULL;
b49e97c9
TS
4810 if (! (_bfd_generic_link_add_one_symbol
4811 (info, abfd, *namep, BSF_GLOBAL, *secp,
b34976b6 4812 (bfd_vma) *valp, (const char *) NULL, FALSE,
14a793b2 4813 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4814 return FALSE;
14a793b2
AM
4815
4816 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4817 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4818 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4819 h->type = STT_OBJECT;
4820
4821 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4822 return FALSE;
b49e97c9 4823
b34976b6 4824 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4825 }
4826
4827 /* If this is a mips16 text symbol, add 1 to the value to make it
4828 odd. This will cause something like .word SYM to come up with
4829 the right value when it is loaded into the PC. */
4830 if (sym->st_other == STO_MIPS16)
4831 ++*valp;
4832
b34976b6 4833 return TRUE;
b49e97c9
TS
4834}
4835
4836/* This hook function is called before the linker writes out a global
4837 symbol. We mark symbols as small common if appropriate. This is
4838 also where we undo the increment of the value for a mips16 symbol. */
4839
b34976b6 4840bfd_boolean
b49e97c9
TS
4841_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4842 bfd *abfd ATTRIBUTE_UNUSED;
4843 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4844 const char *name ATTRIBUTE_UNUSED;
4845 Elf_Internal_Sym *sym;
4846 asection *input_sec;
4847{
4848 /* If we see a common symbol, which implies a relocatable link, then
4849 if a symbol was small common in an input file, mark it as small
4850 common in the output file. */
4851 if (sym->st_shndx == SHN_COMMON
4852 && strcmp (input_sec->name, ".scommon") == 0)
4853 sym->st_shndx = SHN_MIPS_SCOMMON;
4854
4855 if (sym->st_other == STO_MIPS16
4856 && (sym->st_value & 1) != 0)
4857 --sym->st_value;
4858
b34976b6 4859 return TRUE;
b49e97c9
TS
4860}
4861\f
4862/* Functions for the dynamic linker. */
4863
4864/* Create dynamic sections when linking against a dynamic object. */
4865
b34976b6 4866bfd_boolean
b49e97c9
TS
4867_bfd_mips_elf_create_dynamic_sections (abfd, info)
4868 bfd *abfd;
4869 struct bfd_link_info *info;
4870{
4871 struct elf_link_hash_entry *h;
14a793b2 4872 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4873 flagword flags;
4874 register asection *s;
4875 const char * const *namep;
4876
4877 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4878 | SEC_LINKER_CREATED | SEC_READONLY);
4879
4880 /* Mips ABI requests the .dynamic section to be read only. */
4881 s = bfd_get_section_by_name (abfd, ".dynamic");
4882 if (s != NULL)
4883 {
4884 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4885 return FALSE;
b49e97c9
TS
4886 }
4887
4888 /* We need to create .got section. */
f4416af6
AO
4889 if (! mips_elf_create_got_section (abfd, info, FALSE))
4890 return FALSE;
4891
4892 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4893 return FALSE;
b49e97c9
TS
4894
4895 /* Create the .msym section on IRIX6. It is used by the dynamic
4896 linker to speed up dynamic relocations, and to avoid computing
4897 the ELF hash for symbols. */
4898 if (IRIX_COMPAT (abfd) == ict_irix6
4899 && !mips_elf_create_msym_section (abfd))
b34976b6 4900 return FALSE;
b49e97c9
TS
4901
4902 /* Create .stub section. */
4903 if (bfd_get_section_by_name (abfd,
4904 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4905 {
4906 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4907 if (s == NULL
4908 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4909 || ! bfd_set_section_alignment (abfd, s,
4910 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4911 return FALSE;
b49e97c9
TS
4912 }
4913
4914 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4915 && !info->shared
4916 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4917 {
4918 s = bfd_make_section (abfd, ".rld_map");
4919 if (s == NULL
4920 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4921 || ! bfd_set_section_alignment (abfd, s,
4922 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4923 return FALSE;
b49e97c9
TS
4924 }
4925
4926 /* On IRIX5, we adjust add some additional symbols and change the
4927 alignments of several sections. There is no ABI documentation
4928 indicating that this is necessary on IRIX6, nor any evidence that
4929 the linker takes such action. */
4930 if (IRIX_COMPAT (abfd) == ict_irix5)
4931 {
4932 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4933 {
14a793b2 4934 bh = NULL;
b49e97c9
TS
4935 if (! (_bfd_generic_link_add_one_symbol
4936 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
b34976b6 4937 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4938 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4939 return FALSE;
14a793b2
AM
4940
4941 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4942 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4943 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4944 h->type = STT_SECTION;
4945
4946 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4947 return FALSE;
b49e97c9
TS
4948 }
4949
4950 /* We need to create a .compact_rel section. */
4951 if (SGI_COMPAT (abfd))
4952 {
4953 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4954 return FALSE;
b49e97c9
TS
4955 }
4956
44c410de 4957 /* Change alignments of some sections. */
b49e97c9
TS
4958 s = bfd_get_section_by_name (abfd, ".hash");
4959 if (s != NULL)
d80dcc6a 4960 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4961 s = bfd_get_section_by_name (abfd, ".dynsym");
4962 if (s != NULL)
d80dcc6a 4963 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4964 s = bfd_get_section_by_name (abfd, ".dynstr");
4965 if (s != NULL)
d80dcc6a 4966 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4967 s = bfd_get_section_by_name (abfd, ".reginfo");
4968 if (s != NULL)
d80dcc6a 4969 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4970 s = bfd_get_section_by_name (abfd, ".dynamic");
4971 if (s != NULL)
d80dcc6a 4972 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4973 }
4974
4975 if (!info->shared)
4976 {
14a793b2
AM
4977 const char *name;
4978
4979 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4980 bh = NULL;
4981 if (!(_bfd_generic_link_add_one_symbol
4982 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
b34976b6 4983 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 4984 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4985 return FALSE;
14a793b2
AM
4986
4987 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
4988 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4989 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4990 h->type = STT_SECTION;
4991
4992 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 4993 return FALSE;
b49e97c9
TS
4994
4995 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4996 {
4997 /* __rld_map is a four byte word located in the .data section
4998 and is filled in by the rtld to contain a pointer to
4999 the _r_debug structure. Its symbol value will be set in
5000 _bfd_mips_elf_finish_dynamic_symbol. */
5001 s = bfd_get_section_by_name (abfd, ".rld_map");
5002 BFD_ASSERT (s != NULL);
5003
14a793b2
AM
5004 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5005 bh = NULL;
5006 if (!(_bfd_generic_link_add_one_symbol
5007 (info, abfd, name, BSF_GLOBAL, s,
b34976b6 5008 (bfd_vma) 0, (const char *) NULL, FALSE,
14a793b2 5009 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5010 return FALSE;
14a793b2
AM
5011
5012 h = (struct elf_link_hash_entry *) bh;
b49e97c9
TS
5013 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5014 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5015 h->type = STT_OBJECT;
5016
5017 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 5018 return FALSE;
b49e97c9
TS
5019 }
5020 }
5021
b34976b6 5022 return TRUE;
b49e97c9
TS
5023}
5024\f
5025/* Look through the relocs for a section during the first phase, and
5026 allocate space in the global offset table. */
5027
b34976b6 5028bfd_boolean
b49e97c9
TS
5029_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5030 bfd *abfd;
5031 struct bfd_link_info *info;
5032 asection *sec;
5033 const Elf_Internal_Rela *relocs;
5034{
5035 const char *name;
5036 bfd *dynobj;
5037 Elf_Internal_Shdr *symtab_hdr;
5038 struct elf_link_hash_entry **sym_hashes;
5039 struct mips_got_info *g;
5040 size_t extsymoff;
5041 const Elf_Internal_Rela *rel;
5042 const Elf_Internal_Rela *rel_end;
5043 asection *sgot;
5044 asection *sreloc;
5045 struct elf_backend_data *bed;
5046
1049f94e 5047 if (info->relocatable)
b34976b6 5048 return TRUE;
b49e97c9
TS
5049
5050 dynobj = elf_hash_table (info)->dynobj;
5051 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5052 sym_hashes = elf_sym_hashes (abfd);
5053 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5054
5055 /* Check for the mips16 stub sections. */
5056
5057 name = bfd_get_section_name (abfd, sec);
5058 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5059 {
5060 unsigned long r_symndx;
5061
5062 /* Look at the relocation information to figure out which symbol
5063 this is for. */
5064
5065 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5066
5067 if (r_symndx < extsymoff
5068 || sym_hashes[r_symndx - extsymoff] == NULL)
5069 {
5070 asection *o;
5071
5072 /* This stub is for a local symbol. This stub will only be
5073 needed if there is some relocation in this BFD, other
5074 than a 16 bit function call, which refers to this symbol. */
5075 for (o = abfd->sections; o != NULL; o = o->next)
5076 {
5077 Elf_Internal_Rela *sec_relocs;
5078 const Elf_Internal_Rela *r, *rend;
5079
5080 /* We can ignore stub sections when looking for relocs. */
5081 if ((o->flags & SEC_RELOC) == 0
5082 || o->reloc_count == 0
5083 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5084 sizeof FN_STUB - 1) == 0
5085 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5086 sizeof CALL_STUB - 1) == 0
5087 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5088 sizeof CALL_FP_STUB - 1) == 0)
5089 continue;
5090
45d6a902
AM
5091 sec_relocs
5092 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5093 (Elf_Internal_Rela *) NULL,
5094 info->keep_memory);
b49e97c9 5095 if (sec_relocs == NULL)
b34976b6 5096 return FALSE;
b49e97c9
TS
5097
5098 rend = sec_relocs + o->reloc_count;
5099 for (r = sec_relocs; r < rend; r++)
5100 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5101 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5102 break;
5103
6cdc0ccc 5104 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5105 free (sec_relocs);
5106
5107 if (r < rend)
5108 break;
5109 }
5110
5111 if (o == NULL)
5112 {
5113 /* There is no non-call reloc for this stub, so we do
5114 not need it. Since this function is called before
5115 the linker maps input sections to output sections, we
5116 can easily discard it by setting the SEC_EXCLUDE
5117 flag. */
5118 sec->flags |= SEC_EXCLUDE;
b34976b6 5119 return TRUE;
b49e97c9
TS
5120 }
5121
5122 /* Record this stub in an array of local symbol stubs for
5123 this BFD. */
5124 if (elf_tdata (abfd)->local_stubs == NULL)
5125 {
5126 unsigned long symcount;
5127 asection **n;
5128 bfd_size_type amt;
5129
5130 if (elf_bad_symtab (abfd))
5131 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5132 else
5133 symcount = symtab_hdr->sh_info;
5134 amt = symcount * sizeof (asection *);
5135 n = (asection **) bfd_zalloc (abfd, amt);
5136 if (n == NULL)
b34976b6 5137 return FALSE;
b49e97c9
TS
5138 elf_tdata (abfd)->local_stubs = n;
5139 }
5140
5141 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5142
5143 /* We don't need to set mips16_stubs_seen in this case.
5144 That flag is used to see whether we need to look through
5145 the global symbol table for stubs. We don't need to set
5146 it here, because we just have a local stub. */
5147 }
5148 else
5149 {
5150 struct mips_elf_link_hash_entry *h;
5151
5152 h = ((struct mips_elf_link_hash_entry *)
5153 sym_hashes[r_symndx - extsymoff]);
5154
5155 /* H is the symbol this stub is for. */
5156
5157 h->fn_stub = sec;
b34976b6 5158 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5159 }
5160 }
5161 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5162 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5163 {
5164 unsigned long r_symndx;
5165 struct mips_elf_link_hash_entry *h;
5166 asection **loc;
5167
5168 /* Look at the relocation information to figure out which symbol
5169 this is for. */
5170
5171 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5172
5173 if (r_symndx < extsymoff
5174 || sym_hashes[r_symndx - extsymoff] == NULL)
5175 {
5176 /* This stub was actually built for a static symbol defined
5177 in the same file. We assume that all static symbols in
5178 mips16 code are themselves mips16, so we can simply
5179 discard this stub. Since this function is called before
5180 the linker maps input sections to output sections, we can
5181 easily discard it by setting the SEC_EXCLUDE flag. */
5182 sec->flags |= SEC_EXCLUDE;
b34976b6 5183 return TRUE;
b49e97c9
TS
5184 }
5185
5186 h = ((struct mips_elf_link_hash_entry *)
5187 sym_hashes[r_symndx - extsymoff]);
5188
5189 /* H is the symbol this stub is for. */
5190
5191 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5192 loc = &h->call_fp_stub;
5193 else
5194 loc = &h->call_stub;
5195
5196 /* If we already have an appropriate stub for this function, we
5197 don't need another one, so we can discard this one. Since
5198 this function is called before the linker maps input sections
5199 to output sections, we can easily discard it by setting the
5200 SEC_EXCLUDE flag. We can also discard this section if we
5201 happen to already know that this is a mips16 function; it is
5202 not necessary to check this here, as it is checked later, but
5203 it is slightly faster to check now. */
5204 if (*loc != NULL || h->root.other == STO_MIPS16)
5205 {
5206 sec->flags |= SEC_EXCLUDE;
b34976b6 5207 return TRUE;
b49e97c9
TS
5208 }
5209
5210 *loc = sec;
b34976b6 5211 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5212 }
5213
5214 if (dynobj == NULL)
5215 {
5216 sgot = NULL;
5217 g = NULL;
5218 }
5219 else
5220 {
f4416af6 5221 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5222 if (sgot == NULL)
5223 g = NULL;
5224 else
5225 {
f0abc2a1
AM
5226 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5227 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5228 BFD_ASSERT (g != NULL);
5229 }
5230 }
5231
5232 sreloc = NULL;
5233 bed = get_elf_backend_data (abfd);
5234 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5235 for (rel = relocs; rel < rel_end; ++rel)
5236 {
5237 unsigned long r_symndx;
5238 unsigned int r_type;
5239 struct elf_link_hash_entry *h;
5240
5241 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5242 r_type = ELF_R_TYPE (abfd, rel->r_info);
5243
5244 if (r_symndx < extsymoff)
5245 h = NULL;
5246 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5247 {
5248 (*_bfd_error_handler)
5249 (_("%s: Malformed reloc detected for section %s"),
5250 bfd_archive_filename (abfd), name);
5251 bfd_set_error (bfd_error_bad_value);
b34976b6 5252 return FALSE;
b49e97c9
TS
5253 }
5254 else
5255 {
5256 h = sym_hashes[r_symndx - extsymoff];
5257
5258 /* This may be an indirect symbol created because of a version. */
5259 if (h != NULL)
5260 {
5261 while (h->root.type == bfd_link_hash_indirect)
5262 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5263 }
5264 }
5265
5266 /* Some relocs require a global offset table. */
5267 if (dynobj == NULL || sgot == NULL)
5268 {
5269 switch (r_type)
5270 {
5271 case R_MIPS_GOT16:
5272 case R_MIPS_CALL16:
5273 case R_MIPS_CALL_HI16:
5274 case R_MIPS_CALL_LO16:
5275 case R_MIPS_GOT_HI16:
5276 case R_MIPS_GOT_LO16:
5277 case R_MIPS_GOT_PAGE:
5278 case R_MIPS_GOT_OFST:
5279 case R_MIPS_GOT_DISP:
5280 if (dynobj == NULL)
5281 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5282 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5283 return FALSE;
b49e97c9
TS
5284 g = mips_elf_got_info (dynobj, &sgot);
5285 break;
5286
5287 case R_MIPS_32:
5288 case R_MIPS_REL32:
5289 case R_MIPS_64:
5290 if (dynobj == NULL
5291 && (info->shared || h != NULL)
5292 && (sec->flags & SEC_ALLOC) != 0)
5293 elf_hash_table (info)->dynobj = dynobj = abfd;
5294 break;
5295
5296 default:
5297 break;
5298 }
5299 }
5300
5301 if (!h && (r_type == R_MIPS_CALL_LO16
5302 || r_type == R_MIPS_GOT_LO16
5303 || r_type == R_MIPS_GOT_DISP))
5304 {
5305 /* We may need a local GOT entry for this relocation. We
5306 don't count R_MIPS_GOT_PAGE because we can estimate the
5307 maximum number of pages needed by looking at the size of
5308 the segment. Similar comments apply to R_MIPS_GOT16 and
5309 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5310 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5311 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5312 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5313 rel->r_addend, g))
5314 return FALSE;
b49e97c9
TS
5315 }
5316
5317 switch (r_type)
5318 {
5319 case R_MIPS_CALL16:
5320 if (h == NULL)
5321 {
5322 (*_bfd_error_handler)
5323 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5324 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5325 bfd_set_error (bfd_error_bad_value);
b34976b6 5326 return FALSE;
b49e97c9
TS
5327 }
5328 /* Fall through. */
5329
5330 case R_MIPS_CALL_HI16:
5331 case R_MIPS_CALL_LO16:
5332 if (h != NULL)
5333 {
5334 /* This symbol requires a global offset table entry. */
f4416af6 5335 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5336 return FALSE;
b49e97c9
TS
5337
5338 /* We need a stub, not a plt entry for the undefined
5339 function. But we record it as if it needs plt. See
5340 elf_adjust_dynamic_symbol in elflink.h. */
5341 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5342 h->type = STT_FUNC;
5343 }
5344 break;
5345
0fdc1bf1
AO
5346 case R_MIPS_GOT_PAGE:
5347 /* If this is a global, overridable symbol, GOT_PAGE will
5348 decay to GOT_DISP, so we'll need a GOT entry for it. */
5349 if (h == NULL)
5350 break;
5351 else
5352 {
5353 struct mips_elf_link_hash_entry *hmips =
5354 (struct mips_elf_link_hash_entry *) h;
143d77c5 5355
0fdc1bf1
AO
5356 while (hmips->root.root.type == bfd_link_hash_indirect
5357 || hmips->root.root.type == bfd_link_hash_warning)
5358 hmips = (struct mips_elf_link_hash_entry *)
5359 hmips->root.root.u.i.link;
143d77c5 5360
0fdc1bf1
AO
5361 if ((hmips->root.root.type == bfd_link_hash_defined
5362 || hmips->root.root.type == bfd_link_hash_defweak)
5363 && hmips->root.root.u.def.section
5364 && ! (info->shared && ! info->symbolic
5365 && ! (hmips->root.elf_link_hash_flags
5366 & ELF_LINK_FORCED_LOCAL))
5367 /* If we've encountered any other relocation
5368 referencing the symbol, we'll have marked it as
5369 dynamic, and, even though we might be able to get
5370 rid of the GOT entry should we know for sure all
5371 previous relocations were GOT_PAGE ones, at this
5372 point we can't tell, so just keep using the
5373 symbol as dynamic. This is very important in the
5374 multi-got case, since we don't decide whether to
5375 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5376 the symbol is dynamic, we'll need a GOT entry for
5377 every GOT in which the symbol is referenced with
5378 a GOT_PAGE relocation. */
5379 && hmips->root.dynindx == -1)
5380 break;
5381 }
5382 /* Fall through. */
5383
b49e97c9
TS
5384 case R_MIPS_GOT16:
5385 case R_MIPS_GOT_HI16:
5386 case R_MIPS_GOT_LO16:
5387 case R_MIPS_GOT_DISP:
5388 /* This symbol requires a global offset table entry. */
f4416af6 5389 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5390 return FALSE;
b49e97c9
TS
5391 break;
5392
5393 case R_MIPS_32:
5394 case R_MIPS_REL32:
5395 case R_MIPS_64:
5396 if ((info->shared || h != NULL)
5397 && (sec->flags & SEC_ALLOC) != 0)
5398 {
5399 if (sreloc == NULL)
5400 {
f4416af6 5401 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5402 if (sreloc == NULL)
f4416af6 5403 return FALSE;
b49e97c9
TS
5404 }
5405#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5406 if (info->shared)
5407 {
5408 /* When creating a shared object, we must copy these
5409 reloc types into the output file as R_MIPS_REL32
5410 relocs. We make room for this reloc in the
5411 .rel.dyn reloc section. */
5412 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5413 if ((sec->flags & MIPS_READONLY_SECTION)
5414 == MIPS_READONLY_SECTION)
5415 /* We tell the dynamic linker that there are
5416 relocations against the text segment. */
5417 info->flags |= DF_TEXTREL;
5418 }
5419 else
5420 {
5421 struct mips_elf_link_hash_entry *hmips;
5422
5423 /* We only need to copy this reloc if the symbol is
5424 defined in a dynamic object. */
5425 hmips = (struct mips_elf_link_hash_entry *) h;
5426 ++hmips->possibly_dynamic_relocs;
5427 if ((sec->flags & MIPS_READONLY_SECTION)
5428 == MIPS_READONLY_SECTION)
5429 /* We need it to tell the dynamic linker if there
5430 are relocations against the text segment. */
b34976b6 5431 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5432 }
5433
5434 /* Even though we don't directly need a GOT entry for
5435 this symbol, a symbol must have a dynamic symbol
5436 table index greater that DT_MIPS_GOTSYM if there are
5437 dynamic relocations against it. */
f4416af6
AO
5438 if (h != NULL)
5439 {
5440 if (dynobj == NULL)
5441 elf_hash_table (info)->dynobj = dynobj = abfd;
5442 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5443 return FALSE;
5444 g = mips_elf_got_info (dynobj, &sgot);
5445 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5446 return FALSE;
5447 }
b49e97c9
TS
5448 }
5449
5450 if (SGI_COMPAT (abfd))
5451 mips_elf_hash_table (info)->compact_rel_size +=
5452 sizeof (Elf32_External_crinfo);
5453 break;
5454
5455 case R_MIPS_26:
5456 case R_MIPS_GPREL16:
5457 case R_MIPS_LITERAL:
5458 case R_MIPS_GPREL32:
5459 if (SGI_COMPAT (abfd))
5460 mips_elf_hash_table (info)->compact_rel_size +=
5461 sizeof (Elf32_External_crinfo);
5462 break;
5463
5464 /* This relocation describes the C++ object vtable hierarchy.
5465 Reconstruct it for later use during GC. */
5466 case R_MIPS_GNU_VTINHERIT:
5467 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5468 return FALSE;
b49e97c9
TS
5469 break;
5470
5471 /* This relocation describes which C++ vtable entries are actually
5472 used. Record for later use during GC. */
5473 case R_MIPS_GNU_VTENTRY:
5474 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5475 return FALSE;
b49e97c9
TS
5476 break;
5477
5478 default:
5479 break;
5480 }
5481
5482 /* We must not create a stub for a symbol that has relocations
5483 related to taking the function's address. */
5484 switch (r_type)
5485 {
5486 default:
5487 if (h != NULL)
5488 {
5489 struct mips_elf_link_hash_entry *mh;
5490
5491 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5492 mh->no_fn_stub = TRUE;
b49e97c9
TS
5493 }
5494 break;
5495 case R_MIPS_CALL16:
5496 case R_MIPS_CALL_HI16:
5497 case R_MIPS_CALL_LO16:
2b86c02e 5498 case R_MIPS_JALR:
b49e97c9
TS
5499 break;
5500 }
5501
5502 /* If this reloc is not a 16 bit call, and it has a global
5503 symbol, then we will need the fn_stub if there is one.
5504 References from a stub section do not count. */
5505 if (h != NULL
5506 && r_type != R_MIPS16_26
5507 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5508 sizeof FN_STUB - 1) != 0
5509 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5510 sizeof CALL_STUB - 1) != 0
5511 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5512 sizeof CALL_FP_STUB - 1) != 0)
5513 {
5514 struct mips_elf_link_hash_entry *mh;
5515
5516 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5517 mh->need_fn_stub = TRUE;
b49e97c9
TS
5518 }
5519 }
5520
b34976b6 5521 return TRUE;
b49e97c9
TS
5522}
5523\f
d0647110
AO
5524bfd_boolean
5525_bfd_mips_relax_section (abfd, sec, link_info, again)
5526 bfd *abfd;
5527 asection *sec;
5528 struct bfd_link_info *link_info;
5529 bfd_boolean *again;
5530{
5531 Elf_Internal_Rela *internal_relocs;
5532 Elf_Internal_Rela *irel, *irelend;
5533 Elf_Internal_Shdr *symtab_hdr;
5534 bfd_byte *contents = NULL;
5535 bfd_byte *free_contents = NULL;
5536 size_t extsymoff;
5537 bfd_boolean changed_contents = FALSE;
5538 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5539 Elf_Internal_Sym *isymbuf = NULL;
5540
5541 /* We are not currently changing any sizes, so only one pass. */
5542 *again = FALSE;
5543
1049f94e 5544 if (link_info->relocatable)
d0647110
AO
5545 return TRUE;
5546
45d6a902
AM
5547 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5548 (Elf_Internal_Rela *) NULL,
5549 link_info->keep_memory);
d0647110
AO
5550 if (internal_relocs == NULL)
5551 return TRUE;
5552
5553 irelend = internal_relocs + sec->reloc_count
5554 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5556 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5557
5558 for (irel = internal_relocs; irel < irelend; irel++)
5559 {
5560 bfd_vma symval;
5561 bfd_signed_vma sym_offset;
5562 unsigned int r_type;
5563 unsigned long r_symndx;
5564 asection *sym_sec;
5565 unsigned long instruction;
5566
5567 /* Turn jalr into bgezal, and jr into beq, if they're marked
5568 with a JALR relocation, that indicate where they jump to.
5569 This saves some pipeline bubbles. */
5570 r_type = ELF_R_TYPE (abfd, irel->r_info);
5571 if (r_type != R_MIPS_JALR)
5572 continue;
5573
5574 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5575 /* Compute the address of the jump target. */
5576 if (r_symndx >= extsymoff)
5577 {
5578 struct mips_elf_link_hash_entry *h
5579 = ((struct mips_elf_link_hash_entry *)
5580 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5581
5582 while (h->root.root.type == bfd_link_hash_indirect
5583 || h->root.root.type == bfd_link_hash_warning)
5584 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5585
d0647110
AO
5586 /* If a symbol is undefined, or if it may be overridden,
5587 skip it. */
5588 if (! ((h->root.root.type == bfd_link_hash_defined
5589 || h->root.root.type == bfd_link_hash_defweak)
5590 && h->root.root.u.def.section)
5591 || (link_info->shared && ! link_info->symbolic
5592 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5593 continue;
5594
5595 sym_sec = h->root.root.u.def.section;
5596 if (sym_sec->output_section)
5597 symval = (h->root.root.u.def.value
5598 + sym_sec->output_section->vma
5599 + sym_sec->output_offset);
5600 else
5601 symval = h->root.root.u.def.value;
5602 }
5603 else
5604 {
5605 Elf_Internal_Sym *isym;
5606
5607 /* Read this BFD's symbols if we haven't done so already. */
5608 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5609 {
5610 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5611 if (isymbuf == NULL)
5612 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5613 symtab_hdr->sh_info, 0,
5614 NULL, NULL, NULL);
5615 if (isymbuf == NULL)
5616 goto relax_return;
5617 }
5618
5619 isym = isymbuf + r_symndx;
5620 if (isym->st_shndx == SHN_UNDEF)
5621 continue;
5622 else if (isym->st_shndx == SHN_ABS)
5623 sym_sec = bfd_abs_section_ptr;
5624 else if (isym->st_shndx == SHN_COMMON)
5625 sym_sec = bfd_com_section_ptr;
5626 else
5627 sym_sec
5628 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5629 symval = isym->st_value
5630 + sym_sec->output_section->vma
5631 + sym_sec->output_offset;
5632 }
5633
5634 /* Compute branch offset, from delay slot of the jump to the
5635 branch target. */
5636 sym_offset = (symval + irel->r_addend)
5637 - (sec_start + irel->r_offset + 4);
5638
5639 /* Branch offset must be properly aligned. */
5640 if ((sym_offset & 3) != 0)
5641 continue;
5642
5643 sym_offset >>= 2;
5644
5645 /* Check that it's in range. */
5646 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5647 continue;
143d77c5 5648
d0647110
AO
5649 /* Get the section contents if we haven't done so already. */
5650 if (contents == NULL)
5651 {
5652 /* Get cached copy if it exists. */
5653 if (elf_section_data (sec)->this_hdr.contents != NULL)
5654 contents = elf_section_data (sec)->this_hdr.contents;
5655 else
5656 {
5657 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5658 if (contents == NULL)
5659 goto relax_return;
5660
5661 free_contents = contents;
5662 if (! bfd_get_section_contents (abfd, sec, contents,
5663 (file_ptr) 0, sec->_raw_size))
5664 goto relax_return;
5665 }
5666 }
5667
5668 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5669
5670 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5671 if ((instruction & 0xfc1fffff) == 0x0000f809)
5672 instruction = 0x04110000;
5673 /* If it was jr <reg>, turn it into b <target>. */
5674 else if ((instruction & 0xfc1fffff) == 0x00000008)
5675 instruction = 0x10000000;
5676 else
5677 continue;
5678
5679 instruction |= (sym_offset & 0xffff);
5680 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5681 changed_contents = TRUE;
5682 }
5683
5684 if (contents != NULL
5685 && elf_section_data (sec)->this_hdr.contents != contents)
5686 {
5687 if (!changed_contents && !link_info->keep_memory)
5688 free (contents);
5689 else
5690 {
5691 /* Cache the section contents for elf_link_input_bfd. */
5692 elf_section_data (sec)->this_hdr.contents = contents;
5693 }
5694 }
5695 return TRUE;
5696
143d77c5 5697 relax_return:
d0647110
AO
5698 if (free_contents != NULL)
5699 free (free_contents);
5700 return FALSE;
5701}
5702\f
b49e97c9
TS
5703/* Adjust a symbol defined by a dynamic object and referenced by a
5704 regular object. The current definition is in some section of the
5705 dynamic object, but we're not including those sections. We have to
5706 change the definition to something the rest of the link can
5707 understand. */
5708
b34976b6 5709bfd_boolean
b49e97c9
TS
5710_bfd_mips_elf_adjust_dynamic_symbol (info, h)
5711 struct bfd_link_info *info;
5712 struct elf_link_hash_entry *h;
5713{
5714 bfd *dynobj;
5715 struct mips_elf_link_hash_entry *hmips;
5716 asection *s;
5717
5718 dynobj = elf_hash_table (info)->dynobj;
5719
5720 /* Make sure we know what is going on here. */
5721 BFD_ASSERT (dynobj != NULL
5722 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5723 || h->weakdef != NULL
5724 || ((h->elf_link_hash_flags
5725 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5726 && (h->elf_link_hash_flags
5727 & ELF_LINK_HASH_REF_REGULAR) != 0
5728 && (h->elf_link_hash_flags
5729 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5730
5731 /* If this symbol is defined in a dynamic object, we need to copy
5732 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5733 file. */
5734 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5735 if (! info->relocatable
b49e97c9
TS
5736 && hmips->possibly_dynamic_relocs != 0
5737 && (h->root.type == bfd_link_hash_defweak
5738 || (h->elf_link_hash_flags
5739 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5740 {
5741 mips_elf_allocate_dynamic_relocations (dynobj,
5742 hmips->possibly_dynamic_relocs);
5743 if (hmips->readonly_reloc)
5744 /* We tell the dynamic linker that there are relocations
5745 against the text segment. */
5746 info->flags |= DF_TEXTREL;
5747 }
5748
5749 /* For a function, create a stub, if allowed. */
5750 if (! hmips->no_fn_stub
5751 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5752 {
5753 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5754 return TRUE;
b49e97c9
TS
5755
5756 /* If this symbol is not defined in a regular file, then set
5757 the symbol to the stub location. This is required to make
5758 function pointers compare as equal between the normal
5759 executable and the shared library. */
5760 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5761 {
5762 /* We need .stub section. */
5763 s = bfd_get_section_by_name (dynobj,
5764 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5765 BFD_ASSERT (s != NULL);
5766
5767 h->root.u.def.section = s;
5768 h->root.u.def.value = s->_raw_size;
5769
5770 /* XXX Write this stub address somewhere. */
5771 h->plt.offset = s->_raw_size;
5772
5773 /* Make room for this stub code. */
5774 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5775
5776 /* The last half word of the stub will be filled with the index
5777 of this symbol in .dynsym section. */
b34976b6 5778 return TRUE;
b49e97c9
TS
5779 }
5780 }
5781 else if ((h->type == STT_FUNC)
5782 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5783 {
5784 /* This will set the entry for this symbol in the GOT to 0, and
5785 the dynamic linker will take care of this. */
5786 h->root.u.def.value = 0;
b34976b6 5787 return TRUE;
b49e97c9
TS
5788 }
5789
5790 /* If this is a weak symbol, and there is a real definition, the
5791 processor independent code will have arranged for us to see the
5792 real definition first, and we can just use the same value. */
5793 if (h->weakdef != NULL)
5794 {
5795 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5796 || h->weakdef->root.type == bfd_link_hash_defweak);
5797 h->root.u.def.section = h->weakdef->root.u.def.section;
5798 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 5799 return TRUE;
b49e97c9
TS
5800 }
5801
5802 /* This is a reference to a symbol defined by a dynamic object which
5803 is not a function. */
5804
b34976b6 5805 return TRUE;
b49e97c9
TS
5806}
5807\f
5808/* This function is called after all the input files have been read,
5809 and the input sections have been assigned to output sections. We
5810 check for any mips16 stub sections that we can discard. */
5811
b34976b6 5812bfd_boolean
b49e97c9
TS
5813_bfd_mips_elf_always_size_sections (output_bfd, info)
5814 bfd *output_bfd;
5815 struct bfd_link_info *info;
5816{
5817 asection *ri;
5818
f4416af6
AO
5819 bfd *dynobj;
5820 asection *s;
5821 struct mips_got_info *g;
5822 int i;
5823 bfd_size_type loadable_size = 0;
5824 bfd_size_type local_gotno;
5825 bfd *sub;
5826
b49e97c9
TS
5827 /* The .reginfo section has a fixed size. */
5828 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5829 if (ri != NULL)
5830 bfd_set_section_size (output_bfd, ri,
5831 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5832
1049f94e 5833 if (! (info->relocatable
f4416af6
AO
5834 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5835 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5836 mips_elf_check_mips16_stubs,
5837 (PTR) NULL);
5838
5839 dynobj = elf_hash_table (info)->dynobj;
5840 if (dynobj == NULL)
5841 /* Relocatable links don't have it. */
5842 return TRUE;
143d77c5 5843
f4416af6
AO
5844 g = mips_elf_got_info (dynobj, &s);
5845 if (s == NULL)
b34976b6 5846 return TRUE;
b49e97c9 5847
f4416af6
AO
5848 /* Calculate the total loadable size of the output. That
5849 will give us the maximum number of GOT_PAGE entries
5850 required. */
5851 for (sub = info->input_bfds; sub; sub = sub->link_next)
5852 {
5853 asection *subsection;
5854
5855 for (subsection = sub->sections;
5856 subsection;
5857 subsection = subsection->next)
5858 {
5859 if ((subsection->flags & SEC_ALLOC) == 0)
5860 continue;
5861 loadable_size += ((subsection->_raw_size + 0xf)
5862 &~ (bfd_size_type) 0xf);
5863 }
5864 }
5865
5866 /* There has to be a global GOT entry for every symbol with
5867 a dynamic symbol table index of DT_MIPS_GOTSYM or
5868 higher. Therefore, it make sense to put those symbols
5869 that need GOT entries at the end of the symbol table. We
5870 do that here. */
5871 if (! mips_elf_sort_hash_table (info, 1))
5872 return FALSE;
5873
5874 if (g->global_gotsym != NULL)
5875 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5876 else
5877 /* If there are no global symbols, or none requiring
5878 relocations, then GLOBAL_GOTSYM will be NULL. */
5879 i = 0;
5880
5881 /* In the worst case, we'll get one stub per dynamic symbol, plus
5882 one to account for the dummy entry at the end required by IRIX
5883 rld. */
5884 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5885
5886 /* Assume there are two loadable segments consisting of
5887 contiguous sections. Is 5 enough? */
5888 local_gotno = (loadable_size >> 16) + 5;
5889
5890 g->local_gotno += local_gotno;
5891 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5892
5893 g->global_gotno = i;
5894 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5895
5896 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5897 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5898 return FALSE;
b49e97c9 5899
b34976b6 5900 return TRUE;
b49e97c9
TS
5901}
5902
5903/* Set the sizes of the dynamic sections. */
5904
b34976b6 5905bfd_boolean
b49e97c9
TS
5906_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5907 bfd *output_bfd;
5908 struct bfd_link_info *info;
5909{
5910 bfd *dynobj;
5911 asection *s;
b34976b6 5912 bfd_boolean reltext;
b49e97c9
TS
5913
5914 dynobj = elf_hash_table (info)->dynobj;
5915 BFD_ASSERT (dynobj != NULL);
5916
5917 if (elf_hash_table (info)->dynamic_sections_created)
5918 {
5919 /* Set the contents of the .interp section to the interpreter. */
5920 if (! info->shared)
5921 {
5922 s = bfd_get_section_by_name (dynobj, ".interp");
5923 BFD_ASSERT (s != NULL);
5924 s->_raw_size
5925 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5926 s->contents
5927 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5928 }
5929 }
5930
5931 /* The check_relocs and adjust_dynamic_symbol entry points have
5932 determined the sizes of the various dynamic sections. Allocate
5933 memory for them. */
b34976b6 5934 reltext = FALSE;
b49e97c9
TS
5935 for (s = dynobj->sections; s != NULL; s = s->next)
5936 {
5937 const char *name;
b34976b6 5938 bfd_boolean strip;
b49e97c9
TS
5939
5940 /* It's OK to base decisions on the section name, because none
5941 of the dynobj section names depend upon the input files. */
5942 name = bfd_get_section_name (dynobj, s);
5943
5944 if ((s->flags & SEC_LINKER_CREATED) == 0)
5945 continue;
5946
b34976b6 5947 strip = FALSE;
b49e97c9
TS
5948
5949 if (strncmp (name, ".rel", 4) == 0)
5950 {
5951 if (s->_raw_size == 0)
5952 {
5953 /* We only strip the section if the output section name
5954 has the same name. Otherwise, there might be several
5955 input sections for this output section. FIXME: This
5956 code is probably not needed these days anyhow, since
5957 the linker now does not create empty output sections. */
5958 if (s->output_section != NULL
5959 && strcmp (name,
5960 bfd_get_section_name (s->output_section->owner,
5961 s->output_section)) == 0)
b34976b6 5962 strip = TRUE;
b49e97c9
TS
5963 }
5964 else
5965 {
5966 const char *outname;
5967 asection *target;
5968
5969 /* If this relocation section applies to a read only
5970 section, then we probably need a DT_TEXTREL entry.
5971 If the relocation section is .rel.dyn, we always
5972 assert a DT_TEXTREL entry rather than testing whether
5973 there exists a relocation to a read only section or
5974 not. */
5975 outname = bfd_get_section_name (output_bfd,
5976 s->output_section);
5977 target = bfd_get_section_by_name (output_bfd, outname + 4);
5978 if ((target != NULL
5979 && (target->flags & SEC_READONLY) != 0
5980 && (target->flags & SEC_ALLOC) != 0)
5981 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5982 reltext = TRUE;
b49e97c9
TS
5983
5984 /* We use the reloc_count field as a counter if we need
5985 to copy relocs into the output file. */
5986 if (strcmp (name, ".rel.dyn") != 0)
5987 s->reloc_count = 0;
f4416af6
AO
5988
5989 /* If combreloc is enabled, elf_link_sort_relocs() will
5990 sort relocations, but in a different way than we do,
5991 and before we're done creating relocations. Also, it
5992 will move them around between input sections'
5993 relocation's contents, so our sorting would be
5994 broken, so don't let it run. */
5995 info->combreloc = 0;
b49e97c9
TS
5996 }
5997 }
5998 else if (strncmp (name, ".got", 4) == 0)
5999 {
f4416af6
AO
6000 /* _bfd_mips_elf_always_size_sections() has already done
6001 most of the work, but some symbols may have been mapped
6002 to versions that we must now resolve in the got_entries
6003 hash tables. */
6004 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6005 struct mips_got_info *g = gg;
6006 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6007 unsigned int needed_relocs = 0;
143d77c5 6008
f4416af6 6009 if (gg->next)
b49e97c9 6010 {
f4416af6
AO
6011 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6012 set_got_offset_arg.info = info;
b49e97c9 6013
f4416af6
AO
6014 mips_elf_resolve_final_got_entries (gg);
6015 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6016 {
f4416af6
AO
6017 unsigned int save_assign;
6018
6019 mips_elf_resolve_final_got_entries (g);
6020
6021 /* Assign offsets to global GOT entries. */
6022 save_assign = g->assigned_gotno;
6023 g->assigned_gotno = g->local_gotno;
6024 set_got_offset_arg.g = g;
6025 set_got_offset_arg.needed_relocs = 0;
6026 htab_traverse (g->got_entries,
6027 mips_elf_set_global_got_offset,
6028 &set_got_offset_arg);
6029 needed_relocs += set_got_offset_arg.needed_relocs;
6030 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6031 <= g->global_gotno);
6032
6033 g->assigned_gotno = save_assign;
6034 if (info->shared)
6035 {
6036 needed_relocs += g->local_gotno - g->assigned_gotno;
6037 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6038 + g->next->global_gotno
6039 + MIPS_RESERVED_GOTNO);
6040 }
b49e97c9 6041 }
b49e97c9 6042
f4416af6
AO
6043 if (needed_relocs)
6044 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6045 }
b49e97c9
TS
6046 }
6047 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6048 {
8dc1a139 6049 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9
TS
6050 of .text section. So put a dummy. XXX */
6051 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6052 }
6053 else if (! info->shared
6054 && ! mips_elf_hash_table (info)->use_rld_obj_head
6055 && strncmp (name, ".rld_map", 8) == 0)
6056 {
6057 /* We add a room for __rld_map. It will be filled in by the
6058 rtld to contain a pointer to the _r_debug structure. */
6059 s->_raw_size += 4;
6060 }
6061 else if (SGI_COMPAT (output_bfd)
6062 && strncmp (name, ".compact_rel", 12) == 0)
6063 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6064 else if (strcmp (name, ".msym") == 0)
6065 s->_raw_size = (sizeof (Elf32_External_Msym)
6066 * (elf_hash_table (info)->dynsymcount
6067 + bfd_count_sections (output_bfd)));
6068 else if (strncmp (name, ".init", 5) != 0)
6069 {
6070 /* It's not one of our sections, so don't allocate space. */
6071 continue;
6072 }
6073
6074 if (strip)
6075 {
6076 _bfd_strip_section_from_output (info, s);
6077 continue;
6078 }
6079
6080 /* Allocate memory for the section contents. */
6081 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6082 if (s->contents == NULL && s->_raw_size != 0)
6083 {
6084 bfd_set_error (bfd_error_no_memory);
b34976b6 6085 return FALSE;
b49e97c9
TS
6086 }
6087 }
6088
6089 if (elf_hash_table (info)->dynamic_sections_created)
6090 {
6091 /* Add some entries to the .dynamic section. We fill in the
6092 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6093 must add the entries now so that we get the correct size for
6094 the .dynamic section. The DT_DEBUG entry is filled in by the
6095 dynamic linker and used by the debugger. */
6096 if (! info->shared)
6097 {
6098 /* SGI object has the equivalence of DT_DEBUG in the
6099 DT_MIPS_RLD_MAP entry. */
6100 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6101 return FALSE;
b49e97c9
TS
6102 if (!SGI_COMPAT (output_bfd))
6103 {
6104 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6105 return FALSE;
b49e97c9
TS
6106 }
6107 }
6108 else
6109 {
6110 /* Shared libraries on traditional mips have DT_DEBUG. */
6111 if (!SGI_COMPAT (output_bfd))
6112 {
6113 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6114 return FALSE;
b49e97c9
TS
6115 }
6116 }
6117
6118 if (reltext && SGI_COMPAT (output_bfd))
6119 info->flags |= DF_TEXTREL;
6120
6121 if ((info->flags & DF_TEXTREL) != 0)
6122 {
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6124 return FALSE;
b49e97c9
TS
6125 }
6126
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6128 return FALSE;
b49e97c9 6129
f4416af6 6130 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6131 {
6132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6133 return FALSE;
b49e97c9
TS
6134
6135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6136 return FALSE;
b49e97c9
TS
6137
6138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6139 return FALSE;
b49e97c9
TS
6140 }
6141
6142 if (SGI_COMPAT (output_bfd))
6143 {
6144 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
b34976b6 6145 return FALSE;
b49e97c9
TS
6146 }
6147
6148 if (SGI_COMPAT (output_bfd))
6149 {
6150 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
b34976b6 6151 return FALSE;
b49e97c9
TS
6152 }
6153
6154 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6155 {
6156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
b34976b6 6157 return FALSE;
b49e97c9
TS
6158
6159 s = bfd_get_section_by_name (dynobj, ".liblist");
6160 BFD_ASSERT (s != NULL);
6161
6162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
b34976b6 6163 return FALSE;
b49e97c9
TS
6164 }
6165
6166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6167 return FALSE;
b49e97c9
TS
6168
6169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6170 return FALSE;
b49e97c9
TS
6171
6172#if 0
6173 /* Time stamps in executable files are a bad idea. */
6174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6175 return FALSE;
b49e97c9
TS
6176#endif
6177
6178#if 0 /* FIXME */
6179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6180 return FALSE;
b49e97c9
TS
6181#endif
6182
6183#if 0 /* FIXME */
6184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6185 return FALSE;
b49e97c9
TS
6186#endif
6187
6188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6189 return FALSE;
b49e97c9
TS
6190
6191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6192 return FALSE;
b49e97c9
TS
6193
6194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6195 return FALSE;
b49e97c9
TS
6196
6197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6198 return FALSE;
b49e97c9
TS
6199
6200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6201 return FALSE;
b49e97c9
TS
6202
6203 if (IRIX_COMPAT (dynobj) == ict_irix5
6204 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6205 return FALSE;
b49e97c9
TS
6206
6207 if (IRIX_COMPAT (dynobj) == ict_irix6
6208 && (bfd_get_section_by_name
6209 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6210 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6211 return FALSE;
b49e97c9
TS
6212
6213 if (bfd_get_section_by_name (dynobj, ".msym")
6214 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
b34976b6 6215 return FALSE;
b49e97c9
TS
6216 }
6217
b34976b6 6218 return TRUE;
b49e97c9
TS
6219}
6220\f
6221/* Relocate a MIPS ELF section. */
6222
b34976b6 6223bfd_boolean
b49e97c9
TS
6224_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6225 contents, relocs, local_syms, local_sections)
6226 bfd *output_bfd;
6227 struct bfd_link_info *info;
6228 bfd *input_bfd;
6229 asection *input_section;
6230 bfd_byte *contents;
6231 Elf_Internal_Rela *relocs;
6232 Elf_Internal_Sym *local_syms;
6233 asection **local_sections;
6234{
6235 Elf_Internal_Rela *rel;
6236 const Elf_Internal_Rela *relend;
6237 bfd_vma addend = 0;
b34976b6 6238 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9
TS
6239 struct elf_backend_data *bed;
6240
6241 bed = get_elf_backend_data (output_bfd);
6242 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6243 for (rel = relocs; rel < relend; ++rel)
6244 {
6245 const char *name;
6246 bfd_vma value;
6247 reloc_howto_type *howto;
b34976b6
AM
6248 bfd_boolean require_jalx;
6249 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6250 REL relocation. */
b34976b6 6251 bfd_boolean rela_relocation_p = TRUE;
b49e97c9
TS
6252 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6253 const char * msg = (const char *) NULL;
6254
6255 /* Find the relocation howto for this relocation. */
4a14403c 6256 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6257 {
6258 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6259 64-bit code, but make sure all their addresses are in the
6260 lowermost or uppermost 32-bit section of the 64-bit address
6261 space. Thus, when they use an R_MIPS_64 they mean what is
6262 usually meant by R_MIPS_32, with the exception that the
6263 stored value is sign-extended to 64 bits. */
b34976b6 6264 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6265
6266 /* On big-endian systems, we need to lie about the position
6267 of the reloc. */
6268 if (bfd_big_endian (input_bfd))
6269 rel->r_offset += 4;
6270 }
6271 else
6272 /* NewABI defaults to RELA relocations. */
6273 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6274 NEWABI_P (input_bfd)
6275 && (MIPS_RELOC_RELA_P
6276 (input_bfd, input_section,
6277 rel - relocs)));
b49e97c9
TS
6278
6279 if (!use_saved_addend_p)
6280 {
6281 Elf_Internal_Shdr *rel_hdr;
6282
6283 /* If these relocations were originally of the REL variety,
6284 we must pull the addend out of the field that will be
6285 relocated. Otherwise, we simply use the contents of the
6286 RELA relocation. To determine which flavor or relocation
6287 this is, we depend on the fact that the INPUT_SECTION's
6288 REL_HDR is read before its REL_HDR2. */
6289 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6290 if ((size_t) (rel - relocs)
6291 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6292 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6293 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6294 {
6295 /* Note that this is a REL relocation. */
b34976b6 6296 rela_relocation_p = FALSE;
b49e97c9
TS
6297
6298 /* Get the addend, which is stored in the input file. */
6299 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6300 contents);
6301 addend &= howto->src_mask;
5a659663 6302 addend <<= howto->rightshift;
b49e97c9
TS
6303
6304 /* For some kinds of relocations, the ADDEND is a
6305 combination of the addend stored in two different
6306 relocations. */
6307 if (r_type == R_MIPS_HI16
6308 || r_type == R_MIPS_GNU_REL_HI16
6309 || (r_type == R_MIPS_GOT16
6310 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6311 local_sections, FALSE)))
b49e97c9
TS
6312 {
6313 bfd_vma l;
6314 const Elf_Internal_Rela *lo16_relocation;
6315 reloc_howto_type *lo16_howto;
6316 unsigned int lo;
6317
6318 /* The combined value is the sum of the HI16 addend,
6319 left-shifted by sixteen bits, and the LO16
6320 addend, sign extended. (Usually, the code does
6321 a `lui' of the HI16 value, and then an `addiu' of
6322 the LO16 value.)
6323
6324 Scan ahead to find a matching LO16 relocation. */
6325 if (r_type == R_MIPS_GNU_REL_HI16)
6326 lo = R_MIPS_GNU_REL_LO16;
6327 else
6328 lo = R_MIPS_LO16;
6329 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6330 rel, relend);
6331 if (lo16_relocation == NULL)
b34976b6 6332 return FALSE;
b49e97c9
TS
6333
6334 /* Obtain the addend kept there. */
b34976b6 6335 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
b49e97c9
TS
6336 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6337 input_bfd, contents);
6338 l &= lo16_howto->src_mask;
5a659663 6339 l <<= lo16_howto->rightshift;
a7ebbfdf 6340 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6341
6342 addend <<= 16;
6343
6344 /* Compute the combined addend. */
6345 addend += l;
6346
6347 /* If PC-relative, subtract the difference between the
6348 address of the LO part of the reloc and the address of
6349 the HI part. The relocation is relative to the LO
6350 part, but mips_elf_calculate_relocation() doesn't
6351 know its address or the difference from the HI part, so
6352 we subtract that difference here. See also the
6353 comment in mips_elf_calculate_relocation(). */
6354 if (r_type == R_MIPS_GNU_REL_HI16)
6355 addend -= (lo16_relocation->r_offset - rel->r_offset);
6356 }
6357 else if (r_type == R_MIPS16_GPREL)
6358 {
6359 /* The addend is scrambled in the object file. See
6360 mips_elf_perform_relocation for details on the
6361 format. */
6362 addend = (((addend & 0x1f0000) >> 5)
6363 | ((addend & 0x7e00000) >> 16)
6364 | (addend & 0x1f));
6365 }
6366 }
6367 else
6368 addend = rel->r_addend;
6369 }
6370
1049f94e 6371 if (info->relocatable)
b49e97c9
TS
6372 {
6373 Elf_Internal_Sym *sym;
6374 unsigned long r_symndx;
6375
4a14403c 6376 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6377 && bfd_big_endian (input_bfd))
6378 rel->r_offset -= 4;
6379
6380 /* Since we're just relocating, all we need to do is copy
6381 the relocations back out to the object file, unless
6382 they're against a section symbol, in which case we need
6383 to adjust by the section offset, or unless they're GP
6384 relative in which case we need to adjust by the amount
1049f94e 6385 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6386
6387 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6388 FALSE))
b49e97c9
TS
6389 /* There's nothing to do for non-local relocations. */
6390 continue;
6391
6392 if (r_type == R_MIPS16_GPREL
6393 || r_type == R_MIPS_GPREL16
6394 || r_type == R_MIPS_GPREL32
6395 || r_type == R_MIPS_LITERAL)
6396 addend -= (_bfd_get_gp_value (output_bfd)
6397 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6398
6399 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6400 sym = local_syms + r_symndx;
6401 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6402 /* Adjust the addend appropriately. */
6403 addend += local_sections[r_symndx]->output_offset;
6404
5a659663
TS
6405 if (howto->partial_inplace)
6406 {
6407 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6408 then we only want to write out the high-order 16 bits.
6409 The subsequent R_MIPS_LO16 will handle the low-order bits.
6410 */
6411 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6412 || r_type == R_MIPS_GNU_REL_HI16)
6413 addend = mips_elf_high (addend);
6414 else if (r_type == R_MIPS_HIGHER)
6415 addend = mips_elf_higher (addend);
6416 else if (r_type == R_MIPS_HIGHEST)
6417 addend = mips_elf_highest (addend);
6418 }
b49e97c9
TS
6419
6420 if (rela_relocation_p)
6421 /* If this is a RELA relocation, just update the addend.
6422 We have to cast away constness for REL. */
6423 rel->r_addend = addend;
6424 else
6425 {
6426 /* Otherwise, we have to write the value back out. Note
6427 that we use the source mask, rather than the
6428 destination mask because the place to which we are
6429 writing will be source of the addend in the final
6430 link. */
5a659663 6431 addend >>= howto->rightshift;
b49e97c9
TS
6432 addend &= howto->src_mask;
6433
5a659663 6434 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6435 /* See the comment above about using R_MIPS_64 in the 32-bit
6436 ABI. Here, we need to update the addend. It would be
6437 possible to get away with just using the R_MIPS_32 reloc
6438 but for endianness. */
6439 {
6440 bfd_vma sign_bits;
6441 bfd_vma low_bits;
6442 bfd_vma high_bits;
6443
6444 if (addend & ((bfd_vma) 1 << 31))
6445#ifdef BFD64
6446 sign_bits = ((bfd_vma) 1 << 32) - 1;
6447#else
6448 sign_bits = -1;
6449#endif
6450 else
6451 sign_bits = 0;
6452
6453 /* If we don't know that we have a 64-bit type,
6454 do two separate stores. */
6455 if (bfd_big_endian (input_bfd))
6456 {
6457 /* Store the sign-bits (which are most significant)
6458 first. */
6459 low_bits = sign_bits;
6460 high_bits = addend;
6461 }
6462 else
6463 {
6464 low_bits = addend;
6465 high_bits = sign_bits;
6466 }
6467 bfd_put_32 (input_bfd, low_bits,
6468 contents + rel->r_offset);
6469 bfd_put_32 (input_bfd, high_bits,
6470 contents + rel->r_offset + 4);
6471 continue;
6472 }
6473
6474 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6475 input_bfd, input_section,
b34976b6
AM
6476 contents, FALSE))
6477 return FALSE;
b49e97c9
TS
6478 }
6479
6480 /* Go on to the next relocation. */
6481 continue;
6482 }
6483
6484 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6485 relocations for the same offset. In that case we are
6486 supposed to treat the output of each relocation as the addend
6487 for the next. */
6488 if (rel + 1 < relend
6489 && rel->r_offset == rel[1].r_offset
6490 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6491 use_saved_addend_p = TRUE;
b49e97c9 6492 else
b34976b6 6493 use_saved_addend_p = FALSE;
b49e97c9 6494
5a659663
TS
6495 addend >>= howto->rightshift;
6496
b49e97c9
TS
6497 /* Figure out what value we are supposed to relocate. */
6498 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6499 input_section, info, rel,
6500 addend, howto, local_syms,
6501 local_sections, &value,
bce03d3d
AO
6502 &name, &require_jalx,
6503 use_saved_addend_p))
b49e97c9
TS
6504 {
6505 case bfd_reloc_continue:
6506 /* There's nothing to do. */
6507 continue;
6508
6509 case bfd_reloc_undefined:
6510 /* mips_elf_calculate_relocation already called the
6511 undefined_symbol callback. There's no real point in
6512 trying to perform the relocation at this point, so we
6513 just skip ahead to the next relocation. */
6514 continue;
6515
6516 case bfd_reloc_notsupported:
6517 msg = _("internal error: unsupported relocation error");
6518 info->callbacks->warning
6519 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6520 return FALSE;
b49e97c9
TS
6521
6522 case bfd_reloc_overflow:
6523 if (use_saved_addend_p)
6524 /* Ignore overflow until we reach the last relocation for
6525 a given location. */
6526 ;
6527 else
6528 {
6529 BFD_ASSERT (name != NULL);
6530 if (! ((*info->callbacks->reloc_overflow)
6531 (info, name, howto->name, (bfd_vma) 0,
6532 input_bfd, input_section, rel->r_offset)))
b34976b6 6533 return FALSE;
b49e97c9
TS
6534 }
6535 break;
6536
6537 case bfd_reloc_ok:
6538 break;
6539
6540 default:
6541 abort ();
6542 break;
6543 }
6544
6545 /* If we've got another relocation for the address, keep going
6546 until we reach the last one. */
6547 if (use_saved_addend_p)
6548 {
6549 addend = value;
6550 continue;
6551 }
6552
4a14403c 6553 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6554 /* See the comment above about using R_MIPS_64 in the 32-bit
6555 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6556 that calculated the right value. Now, however, we
6557 sign-extend the 32-bit result to 64-bits, and store it as a
6558 64-bit value. We are especially generous here in that we
6559 go to extreme lengths to support this usage on systems with
6560 only a 32-bit VMA. */
6561 {
6562 bfd_vma sign_bits;
6563 bfd_vma low_bits;
6564 bfd_vma high_bits;
6565
6566 if (value & ((bfd_vma) 1 << 31))
6567#ifdef BFD64
6568 sign_bits = ((bfd_vma) 1 << 32) - 1;
6569#else
6570 sign_bits = -1;
6571#endif
6572 else
6573 sign_bits = 0;
6574
6575 /* If we don't know that we have a 64-bit type,
6576 do two separate stores. */
6577 if (bfd_big_endian (input_bfd))
6578 {
6579 /* Undo what we did above. */
6580 rel->r_offset -= 4;
6581 /* Store the sign-bits (which are most significant)
6582 first. */
6583 low_bits = sign_bits;
6584 high_bits = value;
6585 }
6586 else
6587 {
6588 low_bits = value;
6589 high_bits = sign_bits;
6590 }
6591 bfd_put_32 (input_bfd, low_bits,
6592 contents + rel->r_offset);
6593 bfd_put_32 (input_bfd, high_bits,
6594 contents + rel->r_offset + 4);
6595 continue;
6596 }
6597
6598 /* Actually perform the relocation. */
6599 if (! mips_elf_perform_relocation (info, howto, rel, value,
6600 input_bfd, input_section,
6601 contents, require_jalx))
b34976b6 6602 return FALSE;
b49e97c9
TS
6603 }
6604
b34976b6 6605 return TRUE;
b49e97c9
TS
6606}
6607\f
6608/* If NAME is one of the special IRIX6 symbols defined by the linker,
6609 adjust it appropriately now. */
6610
6611static void
6612mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6613 bfd *abfd ATTRIBUTE_UNUSED;
6614 const char *name;
6615 Elf_Internal_Sym *sym;
6616{
6617 /* The linker script takes care of providing names and values for
6618 these, but we must place them into the right sections. */
6619 static const char* const text_section_symbols[] = {
6620 "_ftext",
6621 "_etext",
6622 "__dso_displacement",
6623 "__elf_header",
6624 "__program_header_table",
6625 NULL
6626 };
6627
6628 static const char* const data_section_symbols[] = {
6629 "_fdata",
6630 "_edata",
6631 "_end",
6632 "_fbss",
6633 NULL
6634 };
6635
6636 const char* const *p;
6637 int i;
6638
6639 for (i = 0; i < 2; ++i)
6640 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6641 *p;
6642 ++p)
6643 if (strcmp (*p, name) == 0)
6644 {
6645 /* All of these symbols are given type STT_SECTION by the
6646 IRIX6 linker. */
6647 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6648
6649 /* The IRIX linker puts these symbols in special sections. */
6650 if (i == 0)
6651 sym->st_shndx = SHN_MIPS_TEXT;
6652 else
6653 sym->st_shndx = SHN_MIPS_DATA;
6654
6655 break;
6656 }
6657}
6658
6659/* Finish up dynamic symbol handling. We set the contents of various
6660 dynamic sections here. */
6661
b34976b6 6662bfd_boolean
b49e97c9
TS
6663_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6664 bfd *output_bfd;
6665 struct bfd_link_info *info;
6666 struct elf_link_hash_entry *h;
6667 Elf_Internal_Sym *sym;
6668{
6669 bfd *dynobj;
6670 bfd_vma gval;
6671 asection *sgot;
6672 asection *smsym;
f4416af6 6673 struct mips_got_info *g, *gg;
b49e97c9
TS
6674 const char *name;
6675 struct mips_elf_link_hash_entry *mh;
6676
6677 dynobj = elf_hash_table (info)->dynobj;
6678 gval = sym->st_value;
6679 mh = (struct mips_elf_link_hash_entry *) h;
6680
6681 if (h->plt.offset != (bfd_vma) -1)
6682 {
6683 asection *s;
6684 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6685
6686 /* This symbol has a stub. Set it up. */
6687
6688 BFD_ASSERT (h->dynindx != -1);
6689
6690 s = bfd_get_section_by_name (dynobj,
6691 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6692 BFD_ASSERT (s != NULL);
6693
6694 /* FIXME: Can h->dynindex be more than 64K? */
6695 if (h->dynindx & 0xffff0000)
b34976b6 6696 return FALSE;
b49e97c9
TS
6697
6698 /* Fill the stub. */
6699 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6700 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6701 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6702 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6703
6704 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6705 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6706
6707 /* Mark the symbol as undefined. plt.offset != -1 occurs
6708 only for the referenced symbol. */
6709 sym->st_shndx = SHN_UNDEF;
6710
6711 /* The run-time linker uses the st_value field of the symbol
6712 to reset the global offset table entry for this external
6713 to its stub address when unlinking a shared object. */
6714 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6715 sym->st_value = gval;
6716 }
6717
6718 BFD_ASSERT (h->dynindx != -1
6719 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6720
f4416af6 6721 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6722 BFD_ASSERT (sgot != NULL);
f4416af6 6723 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6724 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6725 BFD_ASSERT (g != NULL);
6726
6727 /* Run through the global symbol table, creating GOT entries for all
6728 the symbols that need them. */
6729 if (g->global_gotsym != NULL
6730 && h->dynindx >= g->global_gotsym->dynindx)
6731 {
6732 bfd_vma offset;
6733 bfd_vma value;
6734
6eaa6adc 6735 value = sym->st_value;
f4416af6 6736 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6737 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6738 }
6739
f4416af6
AO
6740 if (g->next && h->dynindx != -1)
6741 {
6742 struct mips_got_entry e, *p;
6743 bfd_vma offset;
6744 bfd_vma value;
6745 Elf_Internal_Rela rel[3];
6746 bfd_vma addend = 0;
6747
6748 gg = g;
6749
6750 e.abfd = output_bfd;
6751 e.symndx = -1;
6752 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6753
f4416af6
AO
6754 if (info->shared
6755 || h->root.type == bfd_link_hash_undefined
6756 || h->root.type == bfd_link_hash_undefweak)
6757 value = 0;
6758 else if (sym->st_value)
6759 value = sym->st_value;
6760 else
6761 value = h->root.u.def.value;
6762
6763 memset (rel, 0, sizeof (rel));
6764 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6765
6766 for (g = g->next; g->next != gg; g = g->next)
6767 {
6768 if (g->got_entries
6769 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6770 &e)))
6771 {
6772 offset = p->gotidx;
6773 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6774
6775 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6776
6777 if ((info->shared
6778 || (elf_hash_table (info)->dynamic_sections_created
6779 && p->d.h != NULL
6780 && ((p->d.h->root.elf_link_hash_flags
6781 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6782 && ((p->d.h->root.elf_link_hash_flags
6783 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6784 && ! (mips_elf_create_dynamic_relocation
6785 (output_bfd, info, rel,
6786 e.d.h, NULL, value, &addend, sgot)))
6787 return FALSE;
6788 BFD_ASSERT (addend == 0);
6789 }
6790 }
6791 }
6792
b49e97c9
TS
6793 /* Create a .msym entry, if appropriate. */
6794 smsym = bfd_get_section_by_name (dynobj, ".msym");
6795 if (smsym)
6796 {
6797 Elf32_Internal_Msym msym;
6798
6799 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6800 /* It is undocumented what the `1' indicates, but IRIX6 uses
6801 this value. */
6802 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6803 bfd_mips_elf_swap_msym_out
6804 (dynobj, &msym,
6805 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6806 }
6807
6808 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6809 name = h->root.root.string;
6810 if (strcmp (name, "_DYNAMIC") == 0
6811 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6812 sym->st_shndx = SHN_ABS;
6813 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6814 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6815 {
6816 sym->st_shndx = SHN_ABS;
6817 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6818 sym->st_value = 1;
6819 }
4a14403c 6820 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6821 {
6822 sym->st_shndx = SHN_ABS;
6823 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6824 sym->st_value = elf_gp (output_bfd);
6825 }
6826 else if (SGI_COMPAT (output_bfd))
6827 {
6828 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6829 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6830 {
6831 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6832 sym->st_other = STO_PROTECTED;
6833 sym->st_value = 0;
6834 sym->st_shndx = SHN_MIPS_DATA;
6835 }
6836 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6837 {
6838 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6839 sym->st_other = STO_PROTECTED;
6840 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6841 sym->st_shndx = SHN_ABS;
6842 }
6843 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6844 {
6845 if (h->type == STT_FUNC)
6846 sym->st_shndx = SHN_MIPS_TEXT;
6847 else if (h->type == STT_OBJECT)
6848 sym->st_shndx = SHN_MIPS_DATA;
6849 }
6850 }
6851
6852 /* Handle the IRIX6-specific symbols. */
6853 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6854 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6855
6856 if (! info->shared)
6857 {
6858 if (! mips_elf_hash_table (info)->use_rld_obj_head
6859 && (strcmp (name, "__rld_map") == 0
6860 || strcmp (name, "__RLD_MAP") == 0))
6861 {
6862 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6863 BFD_ASSERT (s != NULL);
6864 sym->st_value = s->output_section->vma + s->output_offset;
6865 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6866 if (mips_elf_hash_table (info)->rld_value == 0)
6867 mips_elf_hash_table (info)->rld_value = sym->st_value;
6868 }
6869 else if (mips_elf_hash_table (info)->use_rld_obj_head
6870 && strcmp (name, "__rld_obj_head") == 0)
6871 {
6872 /* IRIX6 does not use a .rld_map section. */
6873 if (IRIX_COMPAT (output_bfd) == ict_irix5
6874 || IRIX_COMPAT (output_bfd) == ict_none)
6875 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6876 != NULL);
6877 mips_elf_hash_table (info)->rld_value = sym->st_value;
6878 }
6879 }
6880
6881 /* If this is a mips16 symbol, force the value to be even. */
6882 if (sym->st_other == STO_MIPS16
6883 && (sym->st_value & 1) != 0)
6884 --sym->st_value;
6885
b34976b6 6886 return TRUE;
b49e97c9
TS
6887}
6888
6889/* Finish up the dynamic sections. */
6890
b34976b6 6891bfd_boolean
b49e97c9
TS
6892_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6893 bfd *output_bfd;
6894 struct bfd_link_info *info;
6895{
6896 bfd *dynobj;
6897 asection *sdyn;
6898 asection *sgot;
f4416af6 6899 struct mips_got_info *gg, *g;
b49e97c9
TS
6900
6901 dynobj = elf_hash_table (info)->dynobj;
6902
6903 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6904
f4416af6 6905 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6906 if (sgot == NULL)
f4416af6 6907 gg = g = NULL;
b49e97c9
TS
6908 else
6909 {
f4416af6
AO
6910 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6911 gg = mips_elf_section_data (sgot)->u.got_info;
6912 BFD_ASSERT (gg != NULL);
6913 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6914 BFD_ASSERT (g != NULL);
6915 }
6916
6917 if (elf_hash_table (info)->dynamic_sections_created)
6918 {
6919 bfd_byte *b;
6920
6921 BFD_ASSERT (sdyn != NULL);
6922 BFD_ASSERT (g != NULL);
6923
6924 for (b = sdyn->contents;
6925 b < sdyn->contents + sdyn->_raw_size;
6926 b += MIPS_ELF_DYN_SIZE (dynobj))
6927 {
6928 Elf_Internal_Dyn dyn;
6929 const char *name;
6930 size_t elemsize;
6931 asection *s;
b34976b6 6932 bfd_boolean swap_out_p;
b49e97c9
TS
6933
6934 /* Read in the current dynamic entry. */
6935 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6936
6937 /* Assume that we're going to modify it and write it out. */
b34976b6 6938 swap_out_p = TRUE;
b49e97c9
TS
6939
6940 switch (dyn.d_tag)
6941 {
6942 case DT_RELENT:
f4416af6 6943 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6944 BFD_ASSERT (s != NULL);
6945 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6946 break;
6947
6948 case DT_STRSZ:
6949 /* Rewrite DT_STRSZ. */
6950 dyn.d_un.d_val =
6951 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6952 break;
6953
6954 case DT_PLTGOT:
6955 name = ".got";
6956 goto get_vma;
6957 case DT_MIPS_CONFLICT:
6958 name = ".conflict";
6959 goto get_vma;
6960 case DT_MIPS_LIBLIST:
6961 name = ".liblist";
6962 get_vma:
6963 s = bfd_get_section_by_name (output_bfd, name);
6964 BFD_ASSERT (s != NULL);
6965 dyn.d_un.d_ptr = s->vma;
6966 break;
6967
6968 case DT_MIPS_RLD_VERSION:
6969 dyn.d_un.d_val = 1; /* XXX */
6970 break;
6971
6972 case DT_MIPS_FLAGS:
6973 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6974 break;
6975
6976 case DT_MIPS_CONFLICTNO:
6977 name = ".conflict";
6978 elemsize = sizeof (Elf32_Conflict);
6979 goto set_elemno;
6980
6981 case DT_MIPS_LIBLISTNO:
6982 name = ".liblist";
6983 elemsize = sizeof (Elf32_Lib);
6984 set_elemno:
6985 s = bfd_get_section_by_name (output_bfd, name);
6986 if (s != NULL)
6987 {
6988 if (s->_cooked_size != 0)
6989 dyn.d_un.d_val = s->_cooked_size / elemsize;
6990 else
6991 dyn.d_un.d_val = s->_raw_size / elemsize;
6992 }
6993 else
6994 dyn.d_un.d_val = 0;
6995 break;
6996
6997 case DT_MIPS_TIME_STAMP:
6998 time ((time_t *) &dyn.d_un.d_val);
6999 break;
7000
7001 case DT_MIPS_ICHECKSUM:
7002 /* XXX FIXME: */
b34976b6 7003 swap_out_p = FALSE;
b49e97c9
TS
7004 break;
7005
7006 case DT_MIPS_IVERSION:
7007 /* XXX FIXME: */
b34976b6 7008 swap_out_p = FALSE;
b49e97c9
TS
7009 break;
7010
7011 case DT_MIPS_BASE_ADDRESS:
7012 s = output_bfd->sections;
7013 BFD_ASSERT (s != NULL);
7014 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7015 break;
7016
7017 case DT_MIPS_LOCAL_GOTNO:
7018 dyn.d_un.d_val = g->local_gotno;
7019 break;
7020
7021 case DT_MIPS_UNREFEXTNO:
7022 /* The index into the dynamic symbol table which is the
7023 entry of the first external symbol that is not
7024 referenced within the same object. */
7025 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7026 break;
7027
7028 case DT_MIPS_GOTSYM:
f4416af6 7029 if (gg->global_gotsym)
b49e97c9 7030 {
f4416af6 7031 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7032 break;
7033 }
7034 /* In case if we don't have global got symbols we default
7035 to setting DT_MIPS_GOTSYM to the same value as
7036 DT_MIPS_SYMTABNO, so we just fall through. */
7037
7038 case DT_MIPS_SYMTABNO:
7039 name = ".dynsym";
7040 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7041 s = bfd_get_section_by_name (output_bfd, name);
7042 BFD_ASSERT (s != NULL);
7043
7044 if (s->_cooked_size != 0)
7045 dyn.d_un.d_val = s->_cooked_size / elemsize;
7046 else
7047 dyn.d_un.d_val = s->_raw_size / elemsize;
7048 break;
7049
7050 case DT_MIPS_HIPAGENO:
7051 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7052 break;
7053
7054 case DT_MIPS_RLD_MAP:
7055 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7056 break;
7057
7058 case DT_MIPS_OPTIONS:
7059 s = (bfd_get_section_by_name
7060 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7061 dyn.d_un.d_ptr = s->vma;
7062 break;
7063
7064 case DT_MIPS_MSYM:
7065 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7066 dyn.d_un.d_ptr = s->vma;
7067 break;
7068
7069 default:
b34976b6 7070 swap_out_p = FALSE;
b49e97c9
TS
7071 break;
7072 }
7073
7074 if (swap_out_p)
7075 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7076 (dynobj, &dyn, b);
7077 }
7078 }
7079
7080 /* The first entry of the global offset table will be filled at
7081 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7082 This isn't the case of IRIX rld. */
b49e97c9
TS
7083 if (sgot != NULL && sgot->_raw_size > 0)
7084 {
7085 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7086 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7087 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7088 }
7089
7090 if (sgot != NULL)
7091 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7092 = MIPS_ELF_GOT_SIZE (output_bfd);
7093
f4416af6
AO
7094 /* Generate dynamic relocations for the non-primary gots. */
7095 if (gg != NULL && gg->next)
7096 {
7097 Elf_Internal_Rela rel[3];
7098 bfd_vma addend = 0;
7099
7100 memset (rel, 0, sizeof (rel));
7101 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7102
7103 for (g = gg->next; g->next != gg; g = g->next)
7104 {
7105 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7106
7107 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7108 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7109 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7110 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7111
7112 if (! info->shared)
7113 continue;
7114
7115 while (index < g->assigned_gotno)
7116 {
7117 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7118 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7119 if (!(mips_elf_create_dynamic_relocation
7120 (output_bfd, info, rel, NULL,
7121 bfd_abs_section_ptr,
7122 0, &addend, sgot)))
7123 return FALSE;
7124 BFD_ASSERT (addend == 0);
7125 }
7126 }
7127 }
7128
b49e97c9
TS
7129 {
7130 asection *smsym;
7131 asection *s;
7132 Elf32_compact_rel cpt;
7133
7134 /* ??? The section symbols for the output sections were set up in
7135 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7136 symbols. Should we do so? */
7137
7138 smsym = bfd_get_section_by_name (dynobj, ".msym");
7139 if (smsym != NULL)
7140 {
7141 Elf32_Internal_Msym msym;
7142
7143 msym.ms_hash_value = 0;
7144 msym.ms_info = ELF32_MS_INFO (0, 1);
7145
7146 for (s = output_bfd->sections; s != NULL; s = s->next)
7147 {
7148 long dynindx = elf_section_data (s)->dynindx;
7149
7150 bfd_mips_elf_swap_msym_out
7151 (output_bfd, &msym,
7152 (((Elf32_External_Msym *) smsym->contents)
7153 + dynindx));
7154 }
7155 }
7156
7157 if (SGI_COMPAT (output_bfd))
7158 {
7159 /* Write .compact_rel section out. */
7160 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7161 if (s != NULL)
7162 {
7163 cpt.id1 = 1;
7164 cpt.num = s->reloc_count;
7165 cpt.id2 = 2;
7166 cpt.offset = (s->output_section->filepos
7167 + sizeof (Elf32_External_compact_rel));
7168 cpt.reserved0 = 0;
7169 cpt.reserved1 = 0;
7170 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7171 ((Elf32_External_compact_rel *)
7172 s->contents));
7173
7174 /* Clean up a dummy stub function entry in .text. */
7175 s = bfd_get_section_by_name (dynobj,
7176 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7177 if (s != NULL)
7178 {
7179 file_ptr dummy_offset;
7180
7181 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7182 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7183 memset (s->contents + dummy_offset, 0,
7184 MIPS_FUNCTION_STUB_SIZE);
7185 }
7186 }
7187 }
7188
7189 /* We need to sort the entries of the dynamic relocation section. */
7190
f4416af6
AO
7191 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7192
7193 if (s != NULL
7194 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7195 {
f4416af6 7196 reldyn_sorting_bfd = output_bfd;
b49e97c9 7197
f4416af6
AO
7198 if (ABI_64_P (output_bfd))
7199 qsort ((Elf64_External_Rel *) s->contents + 1,
7200 (size_t) s->reloc_count - 1,
7201 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7202 else
7203 qsort ((Elf32_External_Rel *) s->contents + 1,
7204 (size_t) s->reloc_count - 1,
7205 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7206 }
b49e97c9
TS
7207 }
7208
b34976b6 7209 return TRUE;
b49e97c9
TS
7210}
7211
b49e97c9 7212
64543e1a
RS
7213/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7214
7215static void
7216mips_set_isa_flags (abfd)
b49e97c9 7217 bfd *abfd;
b49e97c9 7218{
64543e1a 7219 flagword val;
b49e97c9
TS
7220
7221 switch (bfd_get_mach (abfd))
7222 {
7223 default:
7224 case bfd_mach_mips3000:
7225 val = E_MIPS_ARCH_1;
7226 break;
7227
7228 case bfd_mach_mips3900:
7229 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7230 break;
7231
7232 case bfd_mach_mips6000:
7233 val = E_MIPS_ARCH_2;
7234 break;
7235
7236 case bfd_mach_mips4000:
7237 case bfd_mach_mips4300:
7238 case bfd_mach_mips4400:
7239 case bfd_mach_mips4600:
7240 val = E_MIPS_ARCH_3;
7241 break;
7242
7243 case bfd_mach_mips4010:
7244 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7245 break;
7246
7247 case bfd_mach_mips4100:
7248 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7249 break;
7250
7251 case bfd_mach_mips4111:
7252 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7253 break;
7254
00707a0e
RS
7255 case bfd_mach_mips4120:
7256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7257 break;
7258
b49e97c9
TS
7259 case bfd_mach_mips4650:
7260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7261 break;
7262
00707a0e
RS
7263 case bfd_mach_mips5400:
7264 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7265 break;
7266
7267 case bfd_mach_mips5500:
7268 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7269 break;
7270
b49e97c9
TS
7271 case bfd_mach_mips5000:
7272 case bfd_mach_mips8000:
7273 case bfd_mach_mips10000:
7274 case bfd_mach_mips12000:
7275 val = E_MIPS_ARCH_4;
7276 break;
7277
7278 case bfd_mach_mips5:
7279 val = E_MIPS_ARCH_5;
7280 break;
7281
7282 case bfd_mach_mips_sb1:
7283 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7284 break;
7285
7286 case bfd_mach_mipsisa32:
7287 val = E_MIPS_ARCH_32;
7288 break;
7289
7290 case bfd_mach_mipsisa64:
7291 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7292 break;
7293
7294 case bfd_mach_mipsisa32r2:
7295 val = E_MIPS_ARCH_32R2;
7296 break;
b49e97c9 7297 }
b49e97c9
TS
7298 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7299 elf_elfheader (abfd)->e_flags |= val;
7300
64543e1a
RS
7301}
7302
7303
7304/* The final processing done just before writing out a MIPS ELF object
7305 file. This gets the MIPS architecture right based on the machine
7306 number. This is used by both the 32-bit and the 64-bit ABI. */
7307
7308void
7309_bfd_mips_elf_final_write_processing (abfd, linker)
7310 bfd *abfd;
7311 bfd_boolean linker ATTRIBUTE_UNUSED;
7312{
7313 unsigned int i;
7314 Elf_Internal_Shdr **hdrpp;
7315 const char *name;
7316 asection *sec;
7317
7318 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7319 is nonzero. This is for compatibility with old objects, which used
7320 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7321 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7322 mips_set_isa_flags (abfd);
7323
b49e97c9
TS
7324 /* Set the sh_info field for .gptab sections and other appropriate
7325 info for each special section. */
7326 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7327 i < elf_numsections (abfd);
7328 i++, hdrpp++)
7329 {
7330 switch ((*hdrpp)->sh_type)
7331 {
7332 case SHT_MIPS_MSYM:
7333 case SHT_MIPS_LIBLIST:
7334 sec = bfd_get_section_by_name (abfd, ".dynstr");
7335 if (sec != NULL)
7336 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7337 break;
7338
7339 case SHT_MIPS_GPTAB:
7340 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7341 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7342 BFD_ASSERT (name != NULL
7343 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7344 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7345 BFD_ASSERT (sec != NULL);
7346 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7347 break;
7348
7349 case SHT_MIPS_CONTENT:
7350 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7351 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7352 BFD_ASSERT (name != NULL
7353 && strncmp (name, ".MIPS.content",
7354 sizeof ".MIPS.content" - 1) == 0);
7355 sec = bfd_get_section_by_name (abfd,
7356 name + sizeof ".MIPS.content" - 1);
7357 BFD_ASSERT (sec != NULL);
7358 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7359 break;
7360
7361 case SHT_MIPS_SYMBOL_LIB:
7362 sec = bfd_get_section_by_name (abfd, ".dynsym");
7363 if (sec != NULL)
7364 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7365 sec = bfd_get_section_by_name (abfd, ".liblist");
7366 if (sec != NULL)
7367 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7368 break;
7369
7370 case SHT_MIPS_EVENTS:
7371 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7372 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7373 BFD_ASSERT (name != NULL);
7374 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7375 sec = bfd_get_section_by_name (abfd,
7376 name + sizeof ".MIPS.events" - 1);
7377 else
7378 {
7379 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7380 sizeof ".MIPS.post_rel" - 1) == 0);
7381 sec = bfd_get_section_by_name (abfd,
7382 (name
7383 + sizeof ".MIPS.post_rel" - 1));
7384 }
7385 BFD_ASSERT (sec != NULL);
7386 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7387 break;
7388
7389 }
7390 }
7391}
7392\f
8dc1a139 7393/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7394 segments. */
7395
7396int
7397_bfd_mips_elf_additional_program_headers (abfd)
7398 bfd *abfd;
7399{
7400 asection *s;
7401 int ret = 0;
7402
7403 /* See if we need a PT_MIPS_REGINFO segment. */
7404 s = bfd_get_section_by_name (abfd, ".reginfo");
7405 if (s && (s->flags & SEC_LOAD))
7406 ++ret;
7407
7408 /* See if we need a PT_MIPS_OPTIONS segment. */
7409 if (IRIX_COMPAT (abfd) == ict_irix6
7410 && bfd_get_section_by_name (abfd,
7411 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7412 ++ret;
7413
7414 /* See if we need a PT_MIPS_RTPROC segment. */
7415 if (IRIX_COMPAT (abfd) == ict_irix5
7416 && bfd_get_section_by_name (abfd, ".dynamic")
7417 && bfd_get_section_by_name (abfd, ".mdebug"))
7418 ++ret;
7419
7420 return ret;
7421}
7422
8dc1a139 7423/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7424
b34976b6 7425bfd_boolean
b49e97c9
TS
7426_bfd_mips_elf_modify_segment_map (abfd)
7427 bfd *abfd;
7428{
7429 asection *s;
7430 struct elf_segment_map *m, **pm;
7431 bfd_size_type amt;
7432
7433 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7434 segment. */
7435 s = bfd_get_section_by_name (abfd, ".reginfo");
7436 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7437 {
7438 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7439 if (m->p_type == PT_MIPS_REGINFO)
7440 break;
7441 if (m == NULL)
7442 {
7443 amt = sizeof *m;
7444 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7445 if (m == NULL)
b34976b6 7446 return FALSE;
b49e97c9
TS
7447
7448 m->p_type = PT_MIPS_REGINFO;
7449 m->count = 1;
7450 m->sections[0] = s;
7451
7452 /* We want to put it after the PHDR and INTERP segments. */
7453 pm = &elf_tdata (abfd)->segment_map;
7454 while (*pm != NULL
7455 && ((*pm)->p_type == PT_PHDR
7456 || (*pm)->p_type == PT_INTERP))
7457 pm = &(*pm)->next;
7458
7459 m->next = *pm;
7460 *pm = m;
7461 }
7462 }
7463
7464 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7465 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
44c410de 7466 PT_OPTIONS segment immediately following the program header
b49e97c9 7467 table. */
c1fd6598
AO
7468 if (NEWABI_P (abfd)
7469 /* On non-IRIX6 new abi, we'll have already created a segment
7470 for this section, so don't create another. I'm not sure this
7471 is not also the case for IRIX 6, but I can't test it right
7472 now. */
7473 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7474 {
7475 for (s = abfd->sections; s; s = s->next)
7476 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7477 break;
7478
7479 if (s)
7480 {
7481 struct elf_segment_map *options_segment;
7482
7483 /* Usually, there's a program header table. But, sometimes
7484 there's not (like when running the `ld' testsuite). So,
7485 if there's no program header table, we just put the
44c410de 7486 options segment at the end. */
b49e97c9
TS
7487 for (pm = &elf_tdata (abfd)->segment_map;
7488 *pm != NULL;
7489 pm = &(*pm)->next)
7490 if ((*pm)->p_type == PT_PHDR)
7491 break;
7492
7493 amt = sizeof (struct elf_segment_map);
7494 options_segment = bfd_zalloc (abfd, amt);
7495 options_segment->next = *pm;
7496 options_segment->p_type = PT_MIPS_OPTIONS;
7497 options_segment->p_flags = PF_R;
b34976b6 7498 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7499 options_segment->count = 1;
7500 options_segment->sections[0] = s;
7501 *pm = options_segment;
7502 }
7503 }
7504 else
7505 {
7506 if (IRIX_COMPAT (abfd) == ict_irix5)
7507 {
7508 /* If there are .dynamic and .mdebug sections, we make a room
7509 for the RTPROC header. FIXME: Rewrite without section names. */
7510 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7511 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7512 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7513 {
7514 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7515 if (m->p_type == PT_MIPS_RTPROC)
7516 break;
7517 if (m == NULL)
7518 {
7519 amt = sizeof *m;
7520 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7521 if (m == NULL)
b34976b6 7522 return FALSE;
b49e97c9
TS
7523
7524 m->p_type = PT_MIPS_RTPROC;
7525
7526 s = bfd_get_section_by_name (abfd, ".rtproc");
7527 if (s == NULL)
7528 {
7529 m->count = 0;
7530 m->p_flags = 0;
7531 m->p_flags_valid = 1;
7532 }
7533 else
7534 {
7535 m->count = 1;
7536 m->sections[0] = s;
7537 }
7538
7539 /* We want to put it after the DYNAMIC segment. */
7540 pm = &elf_tdata (abfd)->segment_map;
7541 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7542 pm = &(*pm)->next;
7543 if (*pm != NULL)
7544 pm = &(*pm)->next;
7545
7546 m->next = *pm;
7547 *pm = m;
7548 }
7549 }
7550 }
8dc1a139 7551 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7552 .dynstr, .dynsym, and .hash sections, and everything in
7553 between. */
7554 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7555 pm = &(*pm)->next)
7556 if ((*pm)->p_type == PT_DYNAMIC)
7557 break;
7558 m = *pm;
7559 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7560 {
7561 /* For a normal mips executable the permissions for the PT_DYNAMIC
7562 segment are read, write and execute. We do that here since
7563 the code in elf.c sets only the read permission. This matters
7564 sometimes for the dynamic linker. */
7565 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7566 {
7567 m->p_flags = PF_R | PF_W | PF_X;
7568 m->p_flags_valid = 1;
7569 }
7570 }
7571 if (m != NULL
7572 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7573 {
7574 static const char *sec_names[] =
7575 {
7576 ".dynamic", ".dynstr", ".dynsym", ".hash"
7577 };
7578 bfd_vma low, high;
7579 unsigned int i, c;
7580 struct elf_segment_map *n;
7581
7582 low = 0xffffffff;
7583 high = 0;
7584 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7585 {
7586 s = bfd_get_section_by_name (abfd, sec_names[i]);
7587 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7588 {
7589 bfd_size_type sz;
7590
7591 if (low > s->vma)
7592 low = s->vma;
7593 sz = s->_cooked_size;
7594 if (sz == 0)
7595 sz = s->_raw_size;
7596 if (high < s->vma + sz)
7597 high = s->vma + sz;
7598 }
7599 }
7600
7601 c = 0;
7602 for (s = abfd->sections; s != NULL; s = s->next)
7603 if ((s->flags & SEC_LOAD) != 0
7604 && s->vma >= low
7605 && ((s->vma
7606 + (s->_cooked_size !=
7607 0 ? s->_cooked_size : s->_raw_size)) <= high))
7608 ++c;
7609
7610 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7611 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7612 if (n == NULL)
b34976b6 7613 return FALSE;
b49e97c9
TS
7614 *n = *m;
7615 n->count = c;
7616
7617 i = 0;
7618 for (s = abfd->sections; s != NULL; s = s->next)
7619 {
7620 if ((s->flags & SEC_LOAD) != 0
7621 && s->vma >= low
7622 && ((s->vma
7623 + (s->_cooked_size != 0 ?
7624 s->_cooked_size : s->_raw_size)) <= high))
7625 {
7626 n->sections[i] = s;
7627 ++i;
7628 }
7629 }
7630
7631 *pm = n;
7632 }
7633 }
7634
b34976b6 7635 return TRUE;
b49e97c9
TS
7636}
7637\f
7638/* Return the section that should be marked against GC for a given
7639 relocation. */
7640
7641asection *
1e2f5b6e
AM
7642_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7643 asection *sec;
b49e97c9
TS
7644 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7645 Elf_Internal_Rela *rel;
7646 struct elf_link_hash_entry *h;
7647 Elf_Internal_Sym *sym;
7648{
7649 /* ??? Do mips16 stub sections need to be handled special? */
7650
7651 if (h != NULL)
7652 {
1e2f5b6e 7653 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7654 {
7655 case R_MIPS_GNU_VTINHERIT:
7656 case R_MIPS_GNU_VTENTRY:
7657 break;
7658
7659 default:
7660 switch (h->root.type)
7661 {
7662 case bfd_link_hash_defined:
7663 case bfd_link_hash_defweak:
7664 return h->root.u.def.section;
7665
7666 case bfd_link_hash_common:
7667 return h->root.u.c.p->section;
7668
7669 default:
7670 break;
7671 }
7672 }
7673 }
7674 else
1e2f5b6e 7675 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7676
7677 return NULL;
7678}
7679
7680/* Update the got entry reference counts for the section being removed. */
7681
b34976b6 7682bfd_boolean
b49e97c9
TS
7683_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7684 bfd *abfd ATTRIBUTE_UNUSED;
7685 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7686 asection *sec ATTRIBUTE_UNUSED;
7687 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7688{
7689#if 0
7690 Elf_Internal_Shdr *symtab_hdr;
7691 struct elf_link_hash_entry **sym_hashes;
7692 bfd_signed_vma *local_got_refcounts;
7693 const Elf_Internal_Rela *rel, *relend;
7694 unsigned long r_symndx;
7695 struct elf_link_hash_entry *h;
7696
7697 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7698 sym_hashes = elf_sym_hashes (abfd);
7699 local_got_refcounts = elf_local_got_refcounts (abfd);
7700
7701 relend = relocs + sec->reloc_count;
7702 for (rel = relocs; rel < relend; rel++)
7703 switch (ELF_R_TYPE (abfd, rel->r_info))
7704 {
7705 case R_MIPS_GOT16:
7706 case R_MIPS_CALL16:
7707 case R_MIPS_CALL_HI16:
7708 case R_MIPS_CALL_LO16:
7709 case R_MIPS_GOT_HI16:
7710 case R_MIPS_GOT_LO16:
4a14403c
TS
7711 case R_MIPS_GOT_DISP:
7712 case R_MIPS_GOT_PAGE:
7713 case R_MIPS_GOT_OFST:
b49e97c9
TS
7714 /* ??? It would seem that the existing MIPS code does no sort
7715 of reference counting or whatnot on its GOT and PLT entries,
7716 so it is not possible to garbage collect them at this time. */
7717 break;
7718
7719 default:
7720 break;
7721 }
7722#endif
7723
b34976b6 7724 return TRUE;
b49e97c9
TS
7725}
7726\f
7727/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7728 hiding the old indirect symbol. Process additional relocation
7729 information. Also called for weakdefs, in which case we just let
7730 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7731
7732void
b48fa14c
AM
7733_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7734 struct elf_backend_data *bed;
b49e97c9
TS
7735 struct elf_link_hash_entry *dir, *ind;
7736{
7737 struct mips_elf_link_hash_entry *dirmips, *indmips;
7738
b48fa14c 7739 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7740
7741 if (ind->root.type != bfd_link_hash_indirect)
7742 return;
7743
7744 dirmips = (struct mips_elf_link_hash_entry *) dir;
7745 indmips = (struct mips_elf_link_hash_entry *) ind;
7746 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7747 if (indmips->readonly_reloc)
b34976b6 7748 dirmips->readonly_reloc = TRUE;
b49e97c9
TS
7749 if (dirmips->min_dyn_reloc_index == 0
7750 || (indmips->min_dyn_reloc_index != 0
7751 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7752 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7753 if (indmips->no_fn_stub)
b34976b6 7754 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7755}
7756
7757void
7758_bfd_mips_elf_hide_symbol (info, entry, force_local)
7759 struct bfd_link_info *info;
7760 struct elf_link_hash_entry *entry;
b34976b6 7761 bfd_boolean force_local;
b49e97c9
TS
7762{
7763 bfd *dynobj;
7764 asection *got;
7765 struct mips_got_info *g;
7766 struct mips_elf_link_hash_entry *h;
7c5fcef7 7767
b49e97c9 7768 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7769 if (h->forced_local)
7770 return;
4b555070 7771 h->forced_local = force_local;
7c5fcef7 7772
b49e97c9 7773 dynobj = elf_hash_table (info)->dynobj;
4b555070 7774 if (dynobj != NULL && force_local)
f4416af6 7775 {
c45a316a
AM
7776 got = mips_elf_got_section (dynobj, FALSE);
7777 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7778
c45a316a
AM
7779 if (g->next)
7780 {
7781 struct mips_got_entry e;
7782 struct mips_got_info *gg = g;
7783
7784 /* Since we're turning what used to be a global symbol into a
7785 local one, bump up the number of local entries of each GOT
7786 that had an entry for it. This will automatically decrease
7787 the number of global entries, since global_gotno is actually
7788 the upper limit of global entries. */
7789 e.abfd = dynobj;
7790 e.symndx = -1;
7791 e.d.h = h;
7792
7793 for (g = g->next; g != gg; g = g->next)
7794 if (htab_find (g->got_entries, &e))
7795 {
7796 BFD_ASSERT (g->global_gotno > 0);
7797 g->local_gotno++;
7798 g->global_gotno--;
7799 }
b49e97c9 7800
c45a316a
AM
7801 /* If this was a global symbol forced into the primary GOT, we
7802 no longer need an entry for it. We can't release the entry
7803 at this point, but we must at least stop counting it as one
7804 of the symbols that required a forced got entry. */
7805 if (h->root.got.offset == 2)
7806 {
7807 BFD_ASSERT (gg->assigned_gotno > 0);
7808 gg->assigned_gotno--;
7809 }
7810 }
7811 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7812 /* If we haven't got through GOT allocation yet, just bump up the
7813 number of local entries, as this symbol won't be counted as
7814 global. */
7815 g->local_gotno++;
7816 else if (h->root.got.offset == 1)
f4416af6 7817 {
c45a316a
AM
7818 /* If we're past non-multi-GOT allocation and this symbol had
7819 been marked for a global got entry, give it a local entry
7820 instead. */
7821 BFD_ASSERT (g->global_gotno > 0);
7822 g->local_gotno++;
7823 g->global_gotno--;
f4416af6
AO
7824 }
7825 }
f4416af6
AO
7826
7827 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7828}
7829\f
d01414a5
TS
7830#define PDR_SIZE 32
7831
b34976b6 7832bfd_boolean
d01414a5
TS
7833_bfd_mips_elf_discard_info (abfd, cookie, info)
7834 bfd *abfd;
7835 struct elf_reloc_cookie *cookie;
7836 struct bfd_link_info *info;
7837{
7838 asection *o;
b34976b6 7839 bfd_boolean ret = FALSE;
d01414a5
TS
7840 unsigned char *tdata;
7841 size_t i, skip;
7842
7843 o = bfd_get_section_by_name (abfd, ".pdr");
7844 if (! o)
b34976b6 7845 return FALSE;
d01414a5 7846 if (o->_raw_size == 0)
b34976b6 7847 return FALSE;
d01414a5 7848 if (o->_raw_size % PDR_SIZE != 0)
b34976b6 7849 return FALSE;
d01414a5
TS
7850 if (o->output_section != NULL
7851 && bfd_is_abs_section (o->output_section))
b34976b6 7852 return FALSE;
d01414a5
TS
7853
7854 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7855 if (! tdata)
b34976b6 7856 return FALSE;
d01414a5 7857
45d6a902
AM
7858 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7859 (Elf_Internal_Rela *) NULL,
7860 info->keep_memory);
d01414a5
TS
7861 if (!cookie->rels)
7862 {
7863 free (tdata);
b34976b6 7864 return FALSE;
d01414a5
TS
7865 }
7866
7867 cookie->rel = cookie->rels;
7868 cookie->relend = cookie->rels + o->reloc_count;
7869
c9c27aad 7870 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
d01414a5 7871 {
ee6423ed 7872 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
d01414a5
TS
7873 {
7874 tdata[i] = 1;
7875 skip ++;
7876 }
7877 }
7878
7879 if (skip != 0)
7880 {
f0abc2a1 7881 mips_elf_section_data (o)->u.tdata = tdata;
d01414a5 7882 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
b34976b6 7883 ret = TRUE;
d01414a5
TS
7884 }
7885 else
7886 free (tdata);
7887
7888 if (! info->keep_memory)
7889 free (cookie->rels);
7890
7891 return ret;
7892}
7893
b34976b6 7894bfd_boolean
53bfd6b4
MR
7895_bfd_mips_elf_ignore_discarded_relocs (sec)
7896 asection *sec;
7897{
7898 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7899 return TRUE;
7900 return FALSE;
53bfd6b4 7901}
d01414a5 7902
b34976b6 7903bfd_boolean
d01414a5
TS
7904_bfd_mips_elf_write_section (output_bfd, sec, contents)
7905 bfd *output_bfd;
7906 asection *sec;
7907 bfd_byte *contents;
7908{
7909 bfd_byte *to, *from, *end;
7910 int i;
7911
7912 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7913 return FALSE;
d01414a5 7914
f0abc2a1 7915 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7916 return FALSE;
d01414a5
TS
7917
7918 to = contents;
7919 end = contents + sec->_raw_size;
7920 for (from = contents, i = 0;
7921 from < end;
7922 from += PDR_SIZE, i++)
7923 {
f0abc2a1 7924 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7925 continue;
7926 if (to != from)
7927 memcpy (to, from, PDR_SIZE);
7928 to += PDR_SIZE;
7929 }
7930 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7931 (file_ptr) sec->output_offset,
7932 sec->_cooked_size);
b34976b6 7933 return TRUE;
d01414a5 7934}
53bfd6b4 7935\f
b49e97c9
TS
7936/* MIPS ELF uses a special find_nearest_line routine in order the
7937 handle the ECOFF debugging information. */
7938
7939struct mips_elf_find_line
7940{
7941 struct ecoff_debug_info d;
7942 struct ecoff_find_line i;
7943};
7944
b34976b6 7945bfd_boolean
b49e97c9
TS
7946_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7947 functionname_ptr, line_ptr)
7948 bfd *abfd;
7949 asection *section;
7950 asymbol **symbols;
7951 bfd_vma offset;
7952 const char **filename_ptr;
7953 const char **functionname_ptr;
7954 unsigned int *line_ptr;
7955{
7956 asection *msec;
7957
7958 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7959 filename_ptr, functionname_ptr,
7960 line_ptr))
b34976b6 7961 return TRUE;
b49e97c9
TS
7962
7963 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7964 filename_ptr, functionname_ptr,
7965 line_ptr,
7966 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7967 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7968 return TRUE;
b49e97c9
TS
7969
7970 msec = bfd_get_section_by_name (abfd, ".mdebug");
7971 if (msec != NULL)
7972 {
7973 flagword origflags;
7974 struct mips_elf_find_line *fi;
7975 const struct ecoff_debug_swap * const swap =
7976 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7977
7978 /* If we are called during a link, mips_elf_final_link may have
7979 cleared the SEC_HAS_CONTENTS field. We force it back on here
7980 if appropriate (which it normally will be). */
7981 origflags = msec->flags;
7982 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7983 msec->flags |= SEC_HAS_CONTENTS;
7984
7985 fi = elf_tdata (abfd)->find_line_info;
7986 if (fi == NULL)
7987 {
7988 bfd_size_type external_fdr_size;
7989 char *fraw_src;
7990 char *fraw_end;
7991 struct fdr *fdr_ptr;
7992 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7993
7994 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7995 if (fi == NULL)
7996 {
7997 msec->flags = origflags;
b34976b6 7998 return FALSE;
b49e97c9
TS
7999 }
8000
8001 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8002 {
8003 msec->flags = origflags;
b34976b6 8004 return FALSE;
b49e97c9
TS
8005 }
8006
8007 /* Swap in the FDR information. */
8008 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8009 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8010 if (fi->d.fdr == NULL)
8011 {
8012 msec->flags = origflags;
b34976b6 8013 return FALSE;
b49e97c9
TS
8014 }
8015 external_fdr_size = swap->external_fdr_size;
8016 fdr_ptr = fi->d.fdr;
8017 fraw_src = (char *) fi->d.external_fdr;
8018 fraw_end = (fraw_src
8019 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8020 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8021 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8022
8023 elf_tdata (abfd)->find_line_info = fi;
8024
8025 /* Note that we don't bother to ever free this information.
8026 find_nearest_line is either called all the time, as in
8027 objdump -l, so the information should be saved, or it is
8028 rarely called, as in ld error messages, so the memory
8029 wasted is unimportant. Still, it would probably be a
8030 good idea for free_cached_info to throw it away. */
8031 }
8032
8033 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8034 &fi->i, filename_ptr, functionname_ptr,
8035 line_ptr))
8036 {
8037 msec->flags = origflags;
b34976b6 8038 return TRUE;
b49e97c9
TS
8039 }
8040
8041 msec->flags = origflags;
8042 }
8043
8044 /* Fall back on the generic ELF find_nearest_line routine. */
8045
8046 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8047 filename_ptr, functionname_ptr,
8048 line_ptr);
8049}
8050\f
8051/* When are writing out the .options or .MIPS.options section,
8052 remember the bytes we are writing out, so that we can install the
8053 GP value in the section_processing routine. */
8054
b34976b6 8055bfd_boolean
b49e97c9
TS
8056_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8057 bfd *abfd;
8058 sec_ptr section;
8059 PTR location;
8060 file_ptr offset;
8061 bfd_size_type count;
8062{
8063 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8064 {
8065 bfd_byte *c;
8066
8067 if (elf_section_data (section) == NULL)
8068 {
8069 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8070 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8071 if (elf_section_data (section) == NULL)
b34976b6 8072 return FALSE;
b49e97c9 8073 }
f0abc2a1 8074 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8075 if (c == NULL)
8076 {
8077 bfd_size_type size;
8078
8079 if (section->_cooked_size != 0)
8080 size = section->_cooked_size;
8081 else
8082 size = section->_raw_size;
8083 c = (bfd_byte *) bfd_zalloc (abfd, size);
8084 if (c == NULL)
b34976b6 8085 return FALSE;
f0abc2a1 8086 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8087 }
8088
8089 memcpy (c + offset, location, (size_t) count);
8090 }
8091
8092 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8093 count);
8094}
8095
8096/* This is almost identical to bfd_generic_get_... except that some
8097 MIPS relocations need to be handled specially. Sigh. */
8098
8099bfd_byte *
8100_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
1049f94e 8101 data, relocatable, symbols)
b49e97c9
TS
8102 bfd *abfd;
8103 struct bfd_link_info *link_info;
8104 struct bfd_link_order *link_order;
8105 bfd_byte *data;
1049f94e 8106 bfd_boolean relocatable;
b49e97c9
TS
8107 asymbol **symbols;
8108{
8109 /* Get enough memory to hold the stuff */
8110 bfd *input_bfd = link_order->u.indirect.section->owner;
8111 asection *input_section = link_order->u.indirect.section;
8112
8113 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8114 arelent **reloc_vector = NULL;
8115 long reloc_count;
8116
8117 if (reloc_size < 0)
8118 goto error_return;
8119
8120 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8121 if (reloc_vector == NULL && reloc_size != 0)
8122 goto error_return;
8123
8124 /* read in the section */
8125 if (!bfd_get_section_contents (input_bfd,
8126 input_section,
8127 (PTR) data,
8128 (file_ptr) 0,
8129 input_section->_raw_size))
8130 goto error_return;
8131
8132 /* We're not relaxing the section, so just copy the size info */
8133 input_section->_cooked_size = input_section->_raw_size;
b34976b6 8134 input_section->reloc_done = TRUE;
b49e97c9
TS
8135
8136 reloc_count = bfd_canonicalize_reloc (input_bfd,
8137 input_section,
8138 reloc_vector,
8139 symbols);
8140 if (reloc_count < 0)
8141 goto error_return;
8142
8143 if (reloc_count > 0)
8144 {
8145 arelent **parent;
8146 /* for mips */
8147 int gp_found;
8148 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8149
8150 {
8151 struct bfd_hash_entry *h;
8152 struct bfd_link_hash_entry *lh;
8153 /* Skip all this stuff if we aren't mixing formats. */
8154 if (abfd && input_bfd
8155 && abfd->xvec == input_bfd->xvec)
8156 lh = 0;
8157 else
8158 {
b34976b6 8159 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8160 lh = (struct bfd_link_hash_entry *) h;
8161 }
8162 lookup:
8163 if (lh)
8164 {
8165 switch (lh->type)
8166 {
8167 case bfd_link_hash_undefined:
8168 case bfd_link_hash_undefweak:
8169 case bfd_link_hash_common:
8170 gp_found = 0;
8171 break;
8172 case bfd_link_hash_defined:
8173 case bfd_link_hash_defweak:
8174 gp_found = 1;
8175 gp = lh->u.def.value;
8176 break;
8177 case bfd_link_hash_indirect:
8178 case bfd_link_hash_warning:
8179 lh = lh->u.i.link;
8180 /* @@FIXME ignoring warning for now */
8181 goto lookup;
8182 case bfd_link_hash_new:
8183 default:
8184 abort ();
8185 }
8186 }
8187 else
8188 gp_found = 0;
8189 }
8190 /* end mips */
8191 for (parent = reloc_vector; *parent != (arelent *) NULL;
8192 parent++)
8193 {
8194 char *error_message = (char *) NULL;
8195 bfd_reloc_status_type r;
8196
8197 /* Specific to MIPS: Deal with relocation types that require
8198 knowing the gp of the output bfd. */
8199 asymbol *sym = *(*parent)->sym_ptr_ptr;
8200 if (bfd_is_abs_section (sym->section) && abfd)
8201 {
44c410de 8202 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8203 }
8204 else if (!gp_found)
8205 {
8206 /* The gp isn't there; let the special function code
8207 fall over on its own. */
8208 }
8209 else if ((*parent)->howto->special_function
8210 == _bfd_mips_elf32_gprel16_reloc)
8211 {
8212 /* bypass special_function call */
8213 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8214 input_section, relocatable,
b49e97c9
TS
8215 (PTR) data, gp);
8216 goto skip_bfd_perform_relocation;
8217 }
8218 /* end mips specific stuff */
8219
8220 r = bfd_perform_relocation (input_bfd,
8221 *parent,
8222 (PTR) data,
8223 input_section,
1049f94e 8224 relocatable ? abfd : (bfd *) NULL,
b49e97c9
TS
8225 &error_message);
8226 skip_bfd_perform_relocation:
8227
1049f94e 8228 if (relocatable)
b49e97c9
TS
8229 {
8230 asection *os = input_section->output_section;
8231
8232 /* A partial link, so keep the relocs */
8233 os->orelocation[os->reloc_count] = *parent;
8234 os->reloc_count++;
8235 }
8236
8237 if (r != bfd_reloc_ok)
8238 {
8239 switch (r)
8240 {
8241 case bfd_reloc_undefined:
8242 if (!((*link_info->callbacks->undefined_symbol)
8243 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8244 input_bfd, input_section, (*parent)->address,
b34976b6 8245 TRUE)))
b49e97c9
TS
8246 goto error_return;
8247 break;
8248 case bfd_reloc_dangerous:
8249 BFD_ASSERT (error_message != (char *) NULL);
8250 if (!((*link_info->callbacks->reloc_dangerous)
8251 (link_info, error_message, input_bfd, input_section,
8252 (*parent)->address)))
8253 goto error_return;
8254 break;
8255 case bfd_reloc_overflow:
8256 if (!((*link_info->callbacks->reloc_overflow)
8257 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8258 (*parent)->howto->name, (*parent)->addend,
8259 input_bfd, input_section, (*parent)->address)))
8260 goto error_return;
8261 break;
8262 case bfd_reloc_outofrange:
8263 default:
8264 abort ();
8265 break;
8266 }
8267
8268 }
8269 }
8270 }
8271 if (reloc_vector != NULL)
8272 free (reloc_vector);
8273 return data;
8274
8275error_return:
8276 if (reloc_vector != NULL)
8277 free (reloc_vector);
8278 return NULL;
8279}
8280\f
8281/* Create a MIPS ELF linker hash table. */
8282
8283struct bfd_link_hash_table *
8284_bfd_mips_elf_link_hash_table_create (abfd)
8285 bfd *abfd;
8286{
8287 struct mips_elf_link_hash_table *ret;
8288 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8289
e2d34d7d 8290 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
b49e97c9
TS
8291 if (ret == (struct mips_elf_link_hash_table *) NULL)
8292 return NULL;
8293
8294 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8295 mips_elf_link_hash_newfunc))
8296 {
e2d34d7d 8297 free (ret);
b49e97c9
TS
8298 return NULL;
8299 }
8300
8301#if 0
8302 /* We no longer use this. */
8303 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8304 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8305#endif
8306 ret->procedure_count = 0;
8307 ret->compact_rel_size = 0;
b34976b6 8308 ret->use_rld_obj_head = FALSE;
b49e97c9 8309 ret->rld_value = 0;
b34976b6 8310 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8311
8312 return &ret->root.root;
8313}
8314\f
8315/* We need to use a special link routine to handle the .reginfo and
8316 the .mdebug sections. We need to merge all instances of these
8317 sections together, not write them all out sequentially. */
8318
b34976b6 8319bfd_boolean
b49e97c9
TS
8320_bfd_mips_elf_final_link (abfd, info)
8321 bfd *abfd;
8322 struct bfd_link_info *info;
8323{
8324 asection **secpp;
8325 asection *o;
8326 struct bfd_link_order *p;
8327 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8328 asection *rtproc_sec;
8329 Elf32_RegInfo reginfo;
8330 struct ecoff_debug_info debug;
8331 const struct ecoff_debug_swap *swap
8332 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8333 HDRR *symhdr = &debug.symbolic_header;
8334 PTR mdebug_handle = NULL;
8335 asection *s;
8336 EXTR esym;
8337 unsigned int i;
8338 bfd_size_type amt;
8339
8340 static const char * const secname[] =
8341 {
8342 ".text", ".init", ".fini", ".data",
8343 ".rodata", ".sdata", ".sbss", ".bss"
8344 };
8345 static const int sc[] =
8346 {
8347 scText, scInit, scFini, scData,
8348 scRData, scSData, scSBss, scBss
8349 };
8350
b49e97c9
TS
8351 /* We'd carefully arranged the dynamic symbol indices, and then the
8352 generic size_dynamic_sections renumbered them out from under us.
8353 Rather than trying somehow to prevent the renumbering, just do
8354 the sort again. */
8355 if (elf_hash_table (info)->dynamic_sections_created)
8356 {
8357 bfd *dynobj;
8358 asection *got;
8359 struct mips_got_info *g;
8360
8361 /* When we resort, we must tell mips_elf_sort_hash_table what
8362 the lowest index it may use is. That's the number of section
8363 symbols we're going to add. The generic ELF linker only
8364 adds these symbols when building a shared object. Note that
8365 we count the sections after (possibly) removing the .options
8366 section above. */
8367 if (! mips_elf_sort_hash_table (info, (info->shared
8368 ? bfd_count_sections (abfd) + 1
8369 : 1)))
b34976b6 8370 return FALSE;
b49e97c9
TS
8371
8372 /* Make sure we didn't grow the global .got region. */
8373 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8374 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8375 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8376
8377 if (g->global_gotsym != NULL)
8378 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8379 - g->global_gotsym->dynindx)
8380 <= g->global_gotno);
8381 }
8382
a902ee94
SC
8383#if 0
8384 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8385 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8386 include it, even though we don't process it quite right. (Some
8387 entries are supposed to be merged.) Empirically, we seem to be
8388 better off including it then not. */
8389 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8390 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8391 {
8392 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8393 {
8394 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8395 if (p->type == bfd_indirect_link_order)
8396 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8397 (*secpp)->link_order_head = NULL;
8398 bfd_section_list_remove (abfd, secpp);
8399 --abfd->section_count;
8400
8401 break;
8402 }
8403 }
8404
8405 /* We include .MIPS.options, even though we don't process it quite right.
8406 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8407 to be better off including it than not. */
8408 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8409 {
8410 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8411 {
8412 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8413 if (p->type == bfd_indirect_link_order)
8414 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8415 (*secpp)->link_order_head = NULL;
8416 bfd_section_list_remove (abfd, secpp);
8417 --abfd->section_count;
b34976b6 8418
b49e97c9
TS
8419 break;
8420 }
8421 }
a902ee94 8422#endif
b49e97c9
TS
8423
8424 /* Get a value for the GP register. */
8425 if (elf_gp (abfd) == 0)
8426 {
8427 struct bfd_link_hash_entry *h;
8428
b34976b6 8429 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
b49e97c9
TS
8430 if (h != (struct bfd_link_hash_entry *) NULL
8431 && h->type == bfd_link_hash_defined)
8432 elf_gp (abfd) = (h->u.def.value
8433 + h->u.def.section->output_section->vma
8434 + h->u.def.section->output_offset);
1049f94e 8435 else if (info->relocatable)
b49e97c9
TS
8436 {
8437 bfd_vma lo = MINUS_ONE;
8438
8439 /* Find the GP-relative section with the lowest offset. */
8440 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8441 if (o->vma < lo
8442 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8443 lo = o->vma;
8444
8445 /* And calculate GP relative to that. */
8446 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8447 }
8448 else
8449 {
8450 /* If the relocate_section function needs to do a reloc
8451 involving the GP value, it should make a reloc_dangerous
8452 callback to warn that GP is not defined. */
8453 }
8454 }
8455
8456 /* Go through the sections and collect the .reginfo and .mdebug
8457 information. */
8458 reginfo_sec = NULL;
8459 mdebug_sec = NULL;
8460 gptab_data_sec = NULL;
8461 gptab_bss_sec = NULL;
8462 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8463 {
8464 if (strcmp (o->name, ".reginfo") == 0)
8465 {
8466 memset (&reginfo, 0, sizeof reginfo);
8467
8468 /* We have found the .reginfo section in the output file.
8469 Look through all the link_orders comprising it and merge
8470 the information together. */
8471 for (p = o->link_order_head;
8472 p != (struct bfd_link_order *) NULL;
8473 p = p->next)
8474 {
8475 asection *input_section;
8476 bfd *input_bfd;
8477 Elf32_External_RegInfo ext;
8478 Elf32_RegInfo sub;
8479
8480 if (p->type != bfd_indirect_link_order)
8481 {
8482 if (p->type == bfd_data_link_order)
8483 continue;
8484 abort ();
8485 }
8486
8487 input_section = p->u.indirect.section;
8488 input_bfd = input_section->owner;
8489
8490 /* The linker emulation code has probably clobbered the
8491 size to be zero bytes. */
8492 if (input_section->_raw_size == 0)
8493 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8494
8495 if (! bfd_get_section_contents (input_bfd, input_section,
8496 (PTR) &ext,
8497 (file_ptr) 0,
8498 (bfd_size_type) sizeof ext))
b34976b6 8499 return FALSE;
b49e97c9
TS
8500
8501 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8502
8503 reginfo.ri_gprmask |= sub.ri_gprmask;
8504 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8505 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8506 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8507 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8508
8509 /* ri_gp_value is set by the function
8510 mips_elf32_section_processing when the section is
8511 finally written out. */
8512
8513 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8514 elf_link_input_bfd ignores this section. */
8515 input_section->flags &= ~SEC_HAS_CONTENTS;
8516 }
8517
8518 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8519 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8520
8521 /* Skip this section later on (I don't think this currently
8522 matters, but someday it might). */
8523 o->link_order_head = (struct bfd_link_order *) NULL;
8524
8525 reginfo_sec = o;
8526 }
8527
8528 if (strcmp (o->name, ".mdebug") == 0)
8529 {
8530 struct extsym_info einfo;
8531 bfd_vma last;
8532
8533 /* We have found the .mdebug section in the output file.
8534 Look through all the link_orders comprising it and merge
8535 the information together. */
8536 symhdr->magic = swap->sym_magic;
8537 /* FIXME: What should the version stamp be? */
8538 symhdr->vstamp = 0;
8539 symhdr->ilineMax = 0;
8540 symhdr->cbLine = 0;
8541 symhdr->idnMax = 0;
8542 symhdr->ipdMax = 0;
8543 symhdr->isymMax = 0;
8544 symhdr->ioptMax = 0;
8545 symhdr->iauxMax = 0;
8546 symhdr->issMax = 0;
8547 symhdr->issExtMax = 0;
8548 symhdr->ifdMax = 0;
8549 symhdr->crfd = 0;
8550 symhdr->iextMax = 0;
8551
8552 /* We accumulate the debugging information itself in the
8553 debug_info structure. */
8554 debug.line = NULL;
8555 debug.external_dnr = NULL;
8556 debug.external_pdr = NULL;
8557 debug.external_sym = NULL;
8558 debug.external_opt = NULL;
8559 debug.external_aux = NULL;
8560 debug.ss = NULL;
8561 debug.ssext = debug.ssext_end = NULL;
8562 debug.external_fdr = NULL;
8563 debug.external_rfd = NULL;
8564 debug.external_ext = debug.external_ext_end = NULL;
8565
8566 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8567 if (mdebug_handle == (PTR) NULL)
b34976b6 8568 return FALSE;
b49e97c9
TS
8569
8570 esym.jmptbl = 0;
8571 esym.cobol_main = 0;
8572 esym.weakext = 0;
8573 esym.reserved = 0;
8574 esym.ifd = ifdNil;
8575 esym.asym.iss = issNil;
8576 esym.asym.st = stLocal;
8577 esym.asym.reserved = 0;
8578 esym.asym.index = indexNil;
8579 last = 0;
8580 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8581 {
8582 esym.asym.sc = sc[i];
8583 s = bfd_get_section_by_name (abfd, secname[i]);
8584 if (s != NULL)
8585 {
8586 esym.asym.value = s->vma;
8587 last = s->vma + s->_raw_size;
8588 }
8589 else
8590 esym.asym.value = last;
8591 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8592 secname[i], &esym))
b34976b6 8593 return FALSE;
b49e97c9
TS
8594 }
8595
8596 for (p = o->link_order_head;
8597 p != (struct bfd_link_order *) NULL;
8598 p = p->next)
8599 {
8600 asection *input_section;
8601 bfd *input_bfd;
8602 const struct ecoff_debug_swap *input_swap;
8603 struct ecoff_debug_info input_debug;
8604 char *eraw_src;
8605 char *eraw_end;
8606
8607 if (p->type != bfd_indirect_link_order)
8608 {
8609 if (p->type == bfd_data_link_order)
8610 continue;
8611 abort ();
8612 }
8613
8614 input_section = p->u.indirect.section;
8615 input_bfd = input_section->owner;
8616
8617 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8618 || (get_elf_backend_data (input_bfd)
8619 ->elf_backend_ecoff_debug_swap) == NULL)
8620 {
8621 /* I don't know what a non MIPS ELF bfd would be
8622 doing with a .mdebug section, but I don't really
8623 want to deal with it. */
8624 continue;
8625 }
8626
8627 input_swap = (get_elf_backend_data (input_bfd)
8628 ->elf_backend_ecoff_debug_swap);
8629
8630 BFD_ASSERT (p->size == input_section->_raw_size);
8631
8632 /* The ECOFF linking code expects that we have already
8633 read in the debugging information and set up an
8634 ecoff_debug_info structure, so we do that now. */
8635 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8636 &input_debug))
b34976b6 8637 return FALSE;
b49e97c9
TS
8638
8639 if (! (bfd_ecoff_debug_accumulate
8640 (mdebug_handle, abfd, &debug, swap, input_bfd,
8641 &input_debug, input_swap, info)))
b34976b6 8642 return FALSE;
b49e97c9
TS
8643
8644 /* Loop through the external symbols. For each one with
8645 interesting information, try to find the symbol in
8646 the linker global hash table and save the information
8647 for the output external symbols. */
8648 eraw_src = input_debug.external_ext;
8649 eraw_end = (eraw_src
8650 + (input_debug.symbolic_header.iextMax
8651 * input_swap->external_ext_size));
8652 for (;
8653 eraw_src < eraw_end;
8654 eraw_src += input_swap->external_ext_size)
8655 {
8656 EXTR ext;
8657 const char *name;
8658 struct mips_elf_link_hash_entry *h;
8659
8660 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8661 if (ext.asym.sc == scNil
8662 || ext.asym.sc == scUndefined
8663 || ext.asym.sc == scSUndefined)
8664 continue;
8665
8666 name = input_debug.ssext + ext.asym.iss;
8667 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8668 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8669 if (h == NULL || h->esym.ifd != -2)
8670 continue;
8671
8672 if (ext.ifd != -1)
8673 {
8674 BFD_ASSERT (ext.ifd
8675 < input_debug.symbolic_header.ifdMax);
8676 ext.ifd = input_debug.ifdmap[ext.ifd];
8677 }
8678
8679 h->esym = ext;
8680 }
8681
8682 /* Free up the information we just read. */
8683 free (input_debug.line);
8684 free (input_debug.external_dnr);
8685 free (input_debug.external_pdr);
8686 free (input_debug.external_sym);
8687 free (input_debug.external_opt);
8688 free (input_debug.external_aux);
8689 free (input_debug.ss);
8690 free (input_debug.ssext);
8691 free (input_debug.external_fdr);
8692 free (input_debug.external_rfd);
8693 free (input_debug.external_ext);
8694
8695 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8696 elf_link_input_bfd ignores this section. */
8697 input_section->flags &= ~SEC_HAS_CONTENTS;
8698 }
8699
8700 if (SGI_COMPAT (abfd) && info->shared)
8701 {
8702 /* Create .rtproc section. */
8703 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8704 if (rtproc_sec == NULL)
8705 {
8706 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8707 | SEC_LINKER_CREATED | SEC_READONLY);
8708
8709 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8710 if (rtproc_sec == NULL
8711 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8712 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8713 return FALSE;
b49e97c9
TS
8714 }
8715
8716 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8717 info, rtproc_sec,
8718 &debug))
b34976b6 8719 return FALSE;
b49e97c9
TS
8720 }
8721
8722 /* Build the external symbol information. */
8723 einfo.abfd = abfd;
8724 einfo.info = info;
8725 einfo.debug = &debug;
8726 einfo.swap = swap;
b34976b6 8727 einfo.failed = FALSE;
b49e97c9
TS
8728 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8729 mips_elf_output_extsym,
8730 (PTR) &einfo);
8731 if (einfo.failed)
b34976b6 8732 return FALSE;
b49e97c9
TS
8733
8734 /* Set the size of the .mdebug section. */
8735 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8736
8737 /* Skip this section later on (I don't think this currently
8738 matters, but someday it might). */
8739 o->link_order_head = (struct bfd_link_order *) NULL;
8740
8741 mdebug_sec = o;
8742 }
8743
8744 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8745 {
8746 const char *subname;
8747 unsigned int c;
8748 Elf32_gptab *tab;
8749 Elf32_External_gptab *ext_tab;
8750 unsigned int j;
8751
8752 /* The .gptab.sdata and .gptab.sbss sections hold
8753 information describing how the small data area would
8754 change depending upon the -G switch. These sections
8755 not used in executables files. */
1049f94e 8756 if (! info->relocatable)
b49e97c9
TS
8757 {
8758 for (p = o->link_order_head;
8759 p != (struct bfd_link_order *) NULL;
8760 p = p->next)
8761 {
8762 asection *input_section;
8763
8764 if (p->type != bfd_indirect_link_order)
8765 {
8766 if (p->type == bfd_data_link_order)
8767 continue;
8768 abort ();
8769 }
8770
8771 input_section = p->u.indirect.section;
8772
8773 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8774 elf_link_input_bfd ignores this section. */
8775 input_section->flags &= ~SEC_HAS_CONTENTS;
8776 }
8777
8778 /* Skip this section later on (I don't think this
8779 currently matters, but someday it might). */
8780 o->link_order_head = (struct bfd_link_order *) NULL;
8781
8782 /* Really remove the section. */
8783 for (secpp = &abfd->sections;
8784 *secpp != o;
8785 secpp = &(*secpp)->next)
8786 ;
8787 bfd_section_list_remove (abfd, secpp);
8788 --abfd->section_count;
8789
8790 continue;
8791 }
8792
8793 /* There is one gptab for initialized data, and one for
8794 uninitialized data. */
8795 if (strcmp (o->name, ".gptab.sdata") == 0)
8796 gptab_data_sec = o;
8797 else if (strcmp (o->name, ".gptab.sbss") == 0)
8798 gptab_bss_sec = o;
8799 else
8800 {
8801 (*_bfd_error_handler)
8802 (_("%s: illegal section name `%s'"),
8803 bfd_get_filename (abfd), o->name);
8804 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8805 return FALSE;
b49e97c9
TS
8806 }
8807
8808 /* The linker script always combines .gptab.data and
8809 .gptab.sdata into .gptab.sdata, and likewise for
8810 .gptab.bss and .gptab.sbss. It is possible that there is
8811 no .sdata or .sbss section in the output file, in which
8812 case we must change the name of the output section. */
8813 subname = o->name + sizeof ".gptab" - 1;
8814 if (bfd_get_section_by_name (abfd, subname) == NULL)
8815 {
8816 if (o == gptab_data_sec)
8817 o->name = ".gptab.data";
8818 else
8819 o->name = ".gptab.bss";
8820 subname = o->name + sizeof ".gptab" - 1;
8821 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8822 }
8823
8824 /* Set up the first entry. */
8825 c = 1;
8826 amt = c * sizeof (Elf32_gptab);
8827 tab = (Elf32_gptab *) bfd_malloc (amt);
8828 if (tab == NULL)
b34976b6 8829 return FALSE;
b49e97c9
TS
8830 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8831 tab[0].gt_header.gt_unused = 0;
8832
8833 /* Combine the input sections. */
8834 for (p = o->link_order_head;
8835 p != (struct bfd_link_order *) NULL;
8836 p = p->next)
8837 {
8838 asection *input_section;
8839 bfd *input_bfd;
8840 bfd_size_type size;
8841 unsigned long last;
8842 bfd_size_type gpentry;
8843
8844 if (p->type != bfd_indirect_link_order)
8845 {
8846 if (p->type == bfd_data_link_order)
8847 continue;
8848 abort ();
8849 }
8850
8851 input_section = p->u.indirect.section;
8852 input_bfd = input_section->owner;
8853
8854 /* Combine the gptab entries for this input section one
8855 by one. We know that the input gptab entries are
8856 sorted by ascending -G value. */
8857 size = bfd_section_size (input_bfd, input_section);
8858 last = 0;
8859 for (gpentry = sizeof (Elf32_External_gptab);
8860 gpentry < size;
8861 gpentry += sizeof (Elf32_External_gptab))
8862 {
8863 Elf32_External_gptab ext_gptab;
8864 Elf32_gptab int_gptab;
8865 unsigned long val;
8866 unsigned long add;
b34976b6 8867 bfd_boolean exact;
b49e97c9
TS
8868 unsigned int look;
8869
8870 if (! (bfd_get_section_contents
8871 (input_bfd, input_section, (PTR) &ext_gptab,
8872 (file_ptr) gpentry,
8873 (bfd_size_type) sizeof (Elf32_External_gptab))))
8874 {
8875 free (tab);
b34976b6 8876 return FALSE;
b49e97c9
TS
8877 }
8878
8879 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8880 &int_gptab);
8881 val = int_gptab.gt_entry.gt_g_value;
8882 add = int_gptab.gt_entry.gt_bytes - last;
8883
b34976b6 8884 exact = FALSE;
b49e97c9
TS
8885 for (look = 1; look < c; look++)
8886 {
8887 if (tab[look].gt_entry.gt_g_value >= val)
8888 tab[look].gt_entry.gt_bytes += add;
8889
8890 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8891 exact = TRUE;
b49e97c9
TS
8892 }
8893
8894 if (! exact)
8895 {
8896 Elf32_gptab *new_tab;
8897 unsigned int max;
8898
8899 /* We need a new table entry. */
8900 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8901 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8902 if (new_tab == NULL)
8903 {
8904 free (tab);
b34976b6 8905 return FALSE;
b49e97c9
TS
8906 }
8907 tab = new_tab;
8908 tab[c].gt_entry.gt_g_value = val;
8909 tab[c].gt_entry.gt_bytes = add;
8910
8911 /* Merge in the size for the next smallest -G
8912 value, since that will be implied by this new
8913 value. */
8914 max = 0;
8915 for (look = 1; look < c; look++)
8916 {
8917 if (tab[look].gt_entry.gt_g_value < val
8918 && (max == 0
8919 || (tab[look].gt_entry.gt_g_value
8920 > tab[max].gt_entry.gt_g_value)))
8921 max = look;
8922 }
8923 if (max != 0)
8924 tab[c].gt_entry.gt_bytes +=
8925 tab[max].gt_entry.gt_bytes;
8926
8927 ++c;
8928 }
8929
8930 last = int_gptab.gt_entry.gt_bytes;
8931 }
8932
8933 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8934 elf_link_input_bfd ignores this section. */
8935 input_section->flags &= ~SEC_HAS_CONTENTS;
8936 }
8937
8938 /* The table must be sorted by -G value. */
8939 if (c > 2)
8940 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8941
8942 /* Swap out the table. */
8943 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8944 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8945 if (ext_tab == NULL)
8946 {
8947 free (tab);
b34976b6 8948 return FALSE;
b49e97c9
TS
8949 }
8950
8951 for (j = 0; j < c; j++)
8952 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8953 free (tab);
8954
8955 o->_raw_size = c * sizeof (Elf32_External_gptab);
8956 o->contents = (bfd_byte *) ext_tab;
8957
8958 /* Skip this section later on (I don't think this currently
8959 matters, but someday it might). */
8960 o->link_order_head = (struct bfd_link_order *) NULL;
8961 }
8962 }
8963
8964 /* Invoke the regular ELF backend linker to do all the work. */
ee6423ed 8965 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
b34976b6 8966 return FALSE;
b49e97c9
TS
8967
8968 /* Now write out the computed sections. */
8969
8970 if (reginfo_sec != (asection *) NULL)
8971 {
8972 Elf32_External_RegInfo ext;
8973
8974 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8975 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8976 (file_ptr) 0,
8977 (bfd_size_type) sizeof ext))
b34976b6 8978 return FALSE;
b49e97c9
TS
8979 }
8980
8981 if (mdebug_sec != (asection *) NULL)
8982 {
8983 BFD_ASSERT (abfd->output_has_begun);
8984 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8985 swap, info,
8986 mdebug_sec->filepos))
b34976b6 8987 return FALSE;
b49e97c9
TS
8988
8989 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8990 }
8991
8992 if (gptab_data_sec != (asection *) NULL)
8993 {
8994 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8995 gptab_data_sec->contents,
8996 (file_ptr) 0,
8997 gptab_data_sec->_raw_size))
b34976b6 8998 return FALSE;
b49e97c9
TS
8999 }
9000
9001 if (gptab_bss_sec != (asection *) NULL)
9002 {
9003 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9004 gptab_bss_sec->contents,
9005 (file_ptr) 0,
9006 gptab_bss_sec->_raw_size))
b34976b6 9007 return FALSE;
b49e97c9
TS
9008 }
9009
9010 if (SGI_COMPAT (abfd))
9011 {
9012 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9013 if (rtproc_sec != NULL)
9014 {
9015 if (! bfd_set_section_contents (abfd, rtproc_sec,
9016 rtproc_sec->contents,
9017 (file_ptr) 0,
9018 rtproc_sec->_raw_size))
b34976b6 9019 return FALSE;
b49e97c9
TS
9020 }
9021 }
9022
b34976b6 9023 return TRUE;
b49e97c9
TS
9024}
9025\f
64543e1a
RS
9026/* Structure for saying that BFD machine EXTENSION extends BASE. */
9027
9028struct mips_mach_extension {
9029 unsigned long extension, base;
9030};
9031
9032
9033/* An array describing how BFD machines relate to one another. The entries
9034 are ordered topologically with MIPS I extensions listed last. */
9035
9036static const struct mips_mach_extension mips_mach_extensions[] = {
9037 /* MIPS64 extensions. */
9038 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9039
9040 /* MIPS V extensions. */
9041 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9042
9043 /* R10000 extensions. */
9044 { bfd_mach_mips12000, bfd_mach_mips10000 },
9045
9046 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9047 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9048 better to allow vr5400 and vr5500 code to be merged anyway, since
9049 many libraries will just use the core ISA. Perhaps we could add
9050 some sort of ASE flag if this ever proves a problem. */
9051 { bfd_mach_mips5500, bfd_mach_mips5400 },
9052 { bfd_mach_mips5400, bfd_mach_mips5000 },
9053
9054 /* MIPS IV extensions. */
9055 { bfd_mach_mips5, bfd_mach_mips8000 },
9056 { bfd_mach_mips10000, bfd_mach_mips8000 },
9057 { bfd_mach_mips5000, bfd_mach_mips8000 },
9058
9059 /* VR4100 extensions. */
9060 { bfd_mach_mips4120, bfd_mach_mips4100 },
9061 { bfd_mach_mips4111, bfd_mach_mips4100 },
9062
9063 /* MIPS III extensions. */
9064 { bfd_mach_mips8000, bfd_mach_mips4000 },
9065 { bfd_mach_mips4650, bfd_mach_mips4000 },
9066 { bfd_mach_mips4600, bfd_mach_mips4000 },
9067 { bfd_mach_mips4400, bfd_mach_mips4000 },
9068 { bfd_mach_mips4300, bfd_mach_mips4000 },
9069 { bfd_mach_mips4100, bfd_mach_mips4000 },
9070 { bfd_mach_mips4010, bfd_mach_mips4000 },
9071
9072 /* MIPS32 extensions. */
9073 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9074
9075 /* MIPS II extensions. */
9076 { bfd_mach_mips4000, bfd_mach_mips6000 },
9077 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9078
9079 /* MIPS I extensions. */
9080 { bfd_mach_mips6000, bfd_mach_mips3000 },
9081 { bfd_mach_mips3900, bfd_mach_mips3000 }
9082};
9083
9084
9085/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9086
9087static bfd_boolean
9088mips_mach_extends_p (base, extension)
9089 unsigned long base, extension;
9090{
9091 size_t i;
9092
9093 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9094 if (extension == mips_mach_extensions[i].extension)
9095 extension = mips_mach_extensions[i].base;
9096
9097 return extension == base;
9098}
9099
9100
9101/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9102
b34976b6 9103static bfd_boolean
64543e1a
RS
9104mips_32bit_flags_p (flags)
9105 flagword flags;
00707a0e 9106{
64543e1a
RS
9107 return ((flags & EF_MIPS_32BITMODE) != 0
9108 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9109 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9110 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9111 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9112 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9113 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9114}
9115
64543e1a 9116
b49e97c9
TS
9117/* Merge backend specific data from an object file to the output
9118 object file when linking. */
9119
b34976b6 9120bfd_boolean
b49e97c9
TS
9121_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9122 bfd *ibfd;
9123 bfd *obfd;
9124{
9125 flagword old_flags;
9126 flagword new_flags;
b34976b6
AM
9127 bfd_boolean ok;
9128 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9129 asection *sec;
9130
9131 /* Check if we have the same endianess */
82e51918 9132 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9133 {
9134 (*_bfd_error_handler)
9135 (_("%s: endianness incompatible with that of the selected emulation"),
9136 bfd_archive_filename (ibfd));
9137 return FALSE;
9138 }
b49e97c9
TS
9139
9140 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9141 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9142 return TRUE;
b49e97c9 9143
aa701218
AO
9144 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9145 {
9146 (*_bfd_error_handler)
9147 (_("%s: ABI is incompatible with that of the selected emulation"),
9148 bfd_archive_filename (ibfd));
9149 return FALSE;
9150 }
9151
b49e97c9
TS
9152 new_flags = elf_elfheader (ibfd)->e_flags;
9153 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9154 old_flags = elf_elfheader (obfd)->e_flags;
9155
9156 if (! elf_flags_init (obfd))
9157 {
b34976b6 9158 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9159 elf_elfheader (obfd)->e_flags = new_flags;
9160 elf_elfheader (obfd)->e_ident[EI_CLASS]
9161 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9162
9163 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9164 && bfd_get_arch_info (obfd)->the_default)
9165 {
9166 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9167 bfd_get_mach (ibfd)))
b34976b6 9168 return FALSE;
b49e97c9
TS
9169 }
9170
b34976b6 9171 return TRUE;
b49e97c9
TS
9172 }
9173
9174 /* Check flag compatibility. */
9175
9176 new_flags &= ~EF_MIPS_NOREORDER;
9177 old_flags &= ~EF_MIPS_NOREORDER;
9178
f4416af6
AO
9179 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9180 doesn't seem to matter. */
9181 new_flags &= ~EF_MIPS_XGOT;
9182 old_flags &= ~EF_MIPS_XGOT;
9183
b49e97c9 9184 if (new_flags == old_flags)
b34976b6 9185 return TRUE;
b49e97c9
TS
9186
9187 /* Check to see if the input BFD actually contains any sections.
9188 If not, its flags may not have been initialised either, but it cannot
9189 actually cause any incompatibility. */
9190 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9191 {
9192 /* Ignore synthetic sections and empty .text, .data and .bss sections
9193 which are automatically generated by gas. */
9194 if (strcmp (sec->name, ".reginfo")
9195 && strcmp (sec->name, ".mdebug")
9196 && ((!strcmp (sec->name, ".text")
9197 || !strcmp (sec->name, ".data")
9198 || !strcmp (sec->name, ".bss"))
9199 && sec->_raw_size != 0))
9200 {
b34976b6 9201 null_input_bfd = FALSE;
b49e97c9
TS
9202 break;
9203 }
9204 }
9205 if (null_input_bfd)
b34976b6 9206 return TRUE;
b49e97c9 9207
b34976b6 9208 ok = TRUE;
b49e97c9 9209
143d77c5
EC
9210 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9211 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9212 {
b49e97c9 9213 (*_bfd_error_handler)
143d77c5 9214 (_("%s: warning: linking PIC files with non-PIC files"),
b49e97c9 9215 bfd_archive_filename (ibfd));
143d77c5 9216 ok = TRUE;
b49e97c9
TS
9217 }
9218
143d77c5
EC
9219 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9220 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9221 if (! (new_flags & EF_MIPS_PIC))
9222 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9223
9224 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9225 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9226
64543e1a
RS
9227 /* Compare the ISAs. */
9228 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9229 {
64543e1a
RS
9230 (*_bfd_error_handler)
9231 (_("%s: linking 32-bit code with 64-bit code"),
9232 bfd_archive_filename (ibfd));
9233 ok = FALSE;
9234 }
9235 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9236 {
9237 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9238 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9239 {
64543e1a
RS
9240 /* Copy the architecture info from IBFD to OBFD. Also copy
9241 the 32-bit flag (if set) so that we continue to recognise
9242 OBFD as a 32-bit binary. */
9243 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9244 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9245 elf_elfheader (obfd)->e_flags
9246 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9247
9248 /* Copy across the ABI flags if OBFD doesn't use them
9249 and if that was what caused us to treat IBFD as 32-bit. */
9250 if ((old_flags & EF_MIPS_ABI) == 0
9251 && mips_32bit_flags_p (new_flags)
9252 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9253 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9254 }
9255 else
9256 {
64543e1a 9257 /* The ISAs aren't compatible. */
b49e97c9 9258 (*_bfd_error_handler)
64543e1a 9259 (_("%s: linking %s module with previous %s modules"),
b49e97c9 9260 bfd_archive_filename (ibfd),
64543e1a
RS
9261 bfd_printable_name (ibfd),
9262 bfd_printable_name (obfd));
b34976b6 9263 ok = FALSE;
b49e97c9 9264 }
b49e97c9
TS
9265 }
9266
64543e1a
RS
9267 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9268 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9269
9270 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9271 does set EI_CLASS differently from any 32-bit ABI. */
9272 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9273 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9274 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9275 {
9276 /* Only error if both are set (to different values). */
9277 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9278 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9279 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9280 {
9281 (*_bfd_error_handler)
9282 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9283 bfd_archive_filename (ibfd),
9284 elf_mips_abi_name (ibfd),
9285 elf_mips_abi_name (obfd));
b34976b6 9286 ok = FALSE;
b49e97c9
TS
9287 }
9288 new_flags &= ~EF_MIPS_ABI;
9289 old_flags &= ~EF_MIPS_ABI;
9290 }
9291
fb39dac1
RS
9292 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9293 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9294 {
9295 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9296
9297 new_flags &= ~ EF_MIPS_ARCH_ASE;
9298 old_flags &= ~ EF_MIPS_ARCH_ASE;
9299 }
9300
b49e97c9
TS
9301 /* Warn about any other mismatches */
9302 if (new_flags != old_flags)
9303 {
9304 (*_bfd_error_handler)
9305 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9306 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9307 (unsigned long) old_flags);
b34976b6 9308 ok = FALSE;
b49e97c9
TS
9309 }
9310
9311 if (! ok)
9312 {
9313 bfd_set_error (bfd_error_bad_value);
b34976b6 9314 return FALSE;
b49e97c9
TS
9315 }
9316
b34976b6 9317 return TRUE;
b49e97c9
TS
9318}
9319
9320/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9321
b34976b6 9322bfd_boolean
b49e97c9
TS
9323_bfd_mips_elf_set_private_flags (abfd, flags)
9324 bfd *abfd;
9325 flagword flags;
9326{
9327 BFD_ASSERT (!elf_flags_init (abfd)
9328 || elf_elfheader (abfd)->e_flags == flags);
9329
9330 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9331 elf_flags_init (abfd) = TRUE;
9332 return TRUE;
b49e97c9
TS
9333}
9334
b34976b6 9335bfd_boolean
b49e97c9
TS
9336_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9337 bfd *abfd;
9338 PTR ptr;
9339{
9340 FILE *file = (FILE *) ptr;
9341
9342 BFD_ASSERT (abfd != NULL && ptr != NULL);
9343
9344 /* Print normal ELF private data. */
9345 _bfd_elf_print_private_bfd_data (abfd, ptr);
9346
9347 /* xgettext:c-format */
9348 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9349
9350 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9351 fprintf (file, _(" [abi=O32]"));
9352 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9353 fprintf (file, _(" [abi=O64]"));
9354 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9355 fprintf (file, _(" [abi=EABI32]"));
9356 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9357 fprintf (file, _(" [abi=EABI64]"));
9358 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9359 fprintf (file, _(" [abi unknown]"));
9360 else if (ABI_N32_P (abfd))
9361 fprintf (file, _(" [abi=N32]"));
9362 else if (ABI_64_P (abfd))
9363 fprintf (file, _(" [abi=64]"));
9364 else
9365 fprintf (file, _(" [no abi set]"));
9366
9367 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9368 fprintf (file, _(" [mips1]"));
9369 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9370 fprintf (file, _(" [mips2]"));
9371 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9372 fprintf (file, _(" [mips3]"));
9373 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9374 fprintf (file, _(" [mips4]"));
9375 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9376 fprintf (file, _(" [mips5]"));
9377 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9378 fprintf (file, _(" [mips32]"));
9379 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9380 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9382 fprintf (file, _(" [mips32r2]"));
b49e97c9
TS
9383 else
9384 fprintf (file, _(" [unknown ISA]"));
9385
40d32fc6
CD
9386 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9387 fprintf (file, _(" [mdmx]"));
9388
9389 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9390 fprintf (file, _(" [mips16]"));
9391
b49e97c9
TS
9392 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9393 fprintf (file, _(" [32bitmode]"));
9394 else
9395 fprintf (file, _(" [not 32bitmode]"));
9396
9397 fputc ('\n', file);
9398
b34976b6 9399 return TRUE;
b49e97c9 9400}
This page took 0.677734 seconds and 4 git commands to generate.