PR ld/15323
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
b49e97c9
TS
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
b15e6682
AO
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
13db6b44
RS
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
c224138d
RS
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
f4416af6
AO
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184};
185
d7206569 186/* Structure passed when merging bfds' gots. */
f4416af6
AO
187
188struct mips_elf_got_per_bfd_arg
189{
f4416af6
AO
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
ab361d49
RS
213/* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
f4416af6 215
ab361d49 216struct mips_elf_traverse_got_arg
f4416af6 217{
ab361d49 218 struct bfd_link_info *info;
f4416af6
AO
219 struct mips_got_info *g;
220 int value;
0f20cc35
DJ
221};
222
f0abc2a1
AM
223struct _mips_elf_section_data
224{
225 struct bfd_elf_section_data elf;
226 union
227 {
f0abc2a1
AM
228 bfd_byte *tdata;
229 } u;
230};
231
232#define mips_elf_section_data(sec) \
68bfbfcc 233 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 234
d5eaccd7
RS
235#define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
4dfe6ac6 238 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 239
634835ae
RS
240/* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257#define GGA_NORMAL 0
258#define GGA_RELOC_ONLY 1
259#define GGA_NONE 2
260
861fb55a
DJ
261/* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288};
289
290/* Macros for populating a mips_elf_la25_stub. */
291
292#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
295#define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297#define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299#define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 301
b49e97c9
TS
302/* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305struct mips_elf_hash_sort_data
306{
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
0f20cc35
DJ
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
b49e97c9 312 long min_got_dynindx;
f4416af6
AO
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 315 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 316 long max_unref_got_dynindx;
b49e97c9
TS
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320};
321
322/* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325struct mips_elf_link_hash_entry
326{
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
861fb55a
DJ
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
b49e97c9
TS
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
b49e97c9
TS
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
b49e97c9
TS
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
7c5fcef7 350
634835ae
RS
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
6ccf4795
RS
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
71782a75
RS
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
861fb55a
DJ
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
71782a75
RS
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
861fb55a
DJ
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
386};
387
388/* MIPS ELF linker hash table. */
389
390struct mips_elf_link_hash_table
391{
392 struct elf_link_hash_table root;
861fb55a 393
b49e97c9
TS
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
861fb55a 396
b49e97c9
TS
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
861fb55a 399
e6aea42d
MR
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 402 bfd_boolean use_rld_obj_head;
861fb55a 403
b4082c70
DD
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
861fb55a 406
b49e97c9 407 /* This is set if we see any mips16 stub sections. */
b34976b6 408 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
0a44bf69
RS
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
861fb55a 415
0e53d9da
AN
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
861fb55a 418
0a44bf69
RS
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
4e41d0d7 427 asection *sstubs;
a8028dd0 428 asection *sgot;
861fb55a 429
a8028dd0
RS
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
861fb55a 432
d222d210
RS
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
861fb55a 437 /* The size of the PLT header in bytes. */
0a44bf69 438 bfd_vma plt_header_size;
861fb55a
DJ
439
440 /* The size of a PLT entry in bytes. */
0a44bf69 441 bfd_vma plt_entry_size;
861fb55a 442
33bb52fb
RS
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
861fb55a 445
5108fc1b
RS
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
861fb55a
DJ
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
861fb55a
DJ
471};
472
4dfe6ac6
NC
473/* Get the MIPS ELF linker hash table from a link_info structure. */
474
475#define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
861fb55a 479/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
480struct mips_htab_traverse_info
481{
861fb55a
DJ
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
b49e97c9
TS
488};
489
6ae68ba3
MR
490/* MIPS ELF private object data. */
491
492struct mips_elf_obj_tdata
493{
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
ee227692
RS
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
698600e4
AM
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
6ae68ba3
MR
518};
519
520/* Get MIPS ELF private object data from BFD's tdata. */
521
522#define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
0f20cc35
DJ
525#define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 538 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 553
b49e97c9
TS
554/* Structure used to pass information to mips_elf_output_extsym. */
555
556struct extsym_info
557{
9e4aeb93
RS
558 bfd *abfd;
559 struct bfd_link_info *info;
b49e97c9
TS
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
b34976b6 562 bfd_boolean failed;
b49e97c9
TS
563};
564
8dc1a139 565/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
566
567static const char * const mips_elf_dynsym_rtproc_names[] =
568{
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573};
574
575/* These structures are used to generate the .compact_rel section on
8dc1a139 576 IRIX5. */
b49e97c9
TS
577
578typedef struct
579{
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586} Elf32_compact_rel;
587
588typedef struct
589{
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596} Elf32_External_compact_rel;
597
598typedef struct
599{
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606} Elf32_crinfo;
607
608typedef struct
609{
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615} Elf32_crinfo2;
616
617typedef struct
618{
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622} Elf32_External_crinfo;
623
624typedef struct
625{
626 bfd_byte info[4];
627 bfd_byte konst[4];
628} Elf32_External_crinfo2;
629
630/* These are the constants used to swap the bitfields in a crinfo. */
631
632#define CRINFO_CTYPE (0x1)
633#define CRINFO_CTYPE_SH (31)
634#define CRINFO_RTYPE (0xf)
635#define CRINFO_RTYPE_SH (27)
636#define CRINFO_DIST2TO (0xff)
637#define CRINFO_DIST2TO_SH (19)
638#define CRINFO_RELVADDR (0x7ffff)
639#define CRINFO_RELVADDR_SH (0)
640
641/* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644#define CRF_MIPS_LONG 1
645#define CRF_MIPS_SHORT 0
646
647/* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657#define CRT_MIPS_REL32 0xa
658#define CRT_MIPS_WORD 0xb
659#define CRT_MIPS_GPHI_LO 0xc
660#define CRT_MIPS_JMPAD 0xd
661
662#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666\f
667/* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670typedef struct runtime_pdr {
ae9a127f
NC
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
b49e97c9 680 long reserved;
ae9a127f 681 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
682} RPDR, *pRPDR;
683#define cbRPDR sizeof (RPDR)
684#define rpdNil ((pRPDR) 0)
685\f
b15e6682 686static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
b34976b6 689static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 690 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
691static bfd_vma mips_elf_high
692 (bfd_vma);
b34976b6 693static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
f4416af6 697static bfd_vma mips_elf_adjust_gp
9719ad41 698 (bfd *, struct mips_got_info *, bfd *);
f4416af6 699
b49e97c9
TS
700/* This will be used when we sort the dynamic relocation records. */
701static bfd *reldyn_sorting_bfd;
702
6d30f5b2
NC
703/* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705#define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
cd8d5a82
CF
709/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712#define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718#define JALR_TO_BAL_P(abfd) 1
719
38a7df63
CF
720/* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723#define JR_TO_B_P(abfd) 1
724
861fb55a
DJ
725/* True if ABFD is a PIC object. */
726#define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
b49e97c9 729/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
730#define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
4a14403c 733/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 734#define ABI_64_P(abfd) \
141ff970 735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 736
4a14403c
TS
737/* Nonzero if ABFD is using NewABI conventions. */
738#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
e8faf7d1
MR
740/* Nonzero if ABFD has microMIPS code. */
741#define MICROMIPS_P(abfd) \
742 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
743
4a14403c 744/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
745#define IRIX_COMPAT(abfd) \
746 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
747
b49e97c9
TS
748/* Whether we are trying to be compatible with IRIX at all. */
749#define SGI_COMPAT(abfd) \
750 (IRIX_COMPAT (abfd) != ict_none)
751
752/* The name of the options section. */
753#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 754 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 755
cc2e31b9
RS
756/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
757 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
758#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
759 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
760
943284cc
DJ
761/* Whether the section is readonly. */
762#define MIPS_ELF_READONLY_SECTION(sec) \
763 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
764 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
765
b49e97c9 766/* The name of the stub section. */
ca07892d 767#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
768
769/* The size of an external REL relocation. */
770#define MIPS_ELF_REL_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rel)
772
0a44bf69
RS
773/* The size of an external RELA relocation. */
774#define MIPS_ELF_RELA_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_rela)
776
b49e97c9
TS
777/* The size of an external dynamic table entry. */
778#define MIPS_ELF_DYN_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->sizeof_dyn)
780
781/* The size of a GOT entry. */
782#define MIPS_ELF_GOT_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
b4082c70
DD
785/* The size of the .rld_map section. */
786#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->arch_size / 8)
788
b49e97c9
TS
789/* The size of a symbol-table entry. */
790#define MIPS_ELF_SYM_SIZE(abfd) \
791 (get_elf_backend_data (abfd)->s->sizeof_sym)
792
793/* The default alignment for sections, as a power of two. */
794#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 795 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
796
797/* Get word-sized data. */
798#define MIPS_ELF_GET_WORD(abfd, ptr) \
799 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
800
801/* Put out word-sized data. */
802#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
803 (ABI_64_P (abfd) \
804 ? bfd_put_64 (abfd, val, ptr) \
805 : bfd_put_32 (abfd, val, ptr))
806
861fb55a
DJ
807/* The opcode for word-sized loads (LW or LD). */
808#define MIPS_ELF_LOAD_WORD(abfd) \
809 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
810
b49e97c9 811/* Add a dynamic symbol table-entry. */
9719ad41 812#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 813 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
814
815#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
817
0a44bf69
RS
818/* The name of the dynamic relocation section. */
819#define MIPS_ELF_REL_DYN_NAME(INFO) \
820 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
821
b49e97c9
TS
822/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
823 from smaller values. Start with zero, widen, *then* decrement. */
824#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 825#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 826
51e38d68
RS
827/* The value to write into got[1] for SVR4 targets, to identify it is
828 a GNU object. The dynamic linker can then use got[1] to store the
829 module pointer. */
830#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
831 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
832
f4416af6 833/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
834#define ELF_MIPS_GP_OFFSET(INFO) \
835 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
836
837/* The maximum size of the GOT for it to be addressable using 16-bit
838 offsets from $gp. */
0a44bf69 839#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 840
6a691779 841/* Instructions which appear in a stub. */
3d6746ca
DD
842#define STUB_LW(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
845 : 0x8f998010)) /* lw t9,0x8010(gp) */
846#define STUB_MOVE(abfd) \
847 ((ABI_64_P (abfd) \
848 ? 0x03e0782d /* daddu t7,ra */ \
849 : 0x03e07821)) /* addu t7,ra */
850#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
851#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
852#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
853#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
854#define STUB_LI16S(abfd, VAL) \
855 ((ABI_64_P (abfd) \
856 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
857 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
858
5108fc1b
RS
859#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
860#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
861
862/* The name of the dynamic interpreter. This is put in the .interp
863 section. */
864
865#define ELF_DYNAMIC_INTERPRETER(abfd) \
866 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
867 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
868 : "/usr/lib/libc.so.1")
869
870#ifdef BFD64
ee6423ed
AO
871#define MNAME(bfd,pre,pos) \
872 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
873#define ELF_R_SYM(bfd, i) \
874 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
875#define ELF_R_TYPE(bfd, i) \
876 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
877#define ELF_R_INFO(bfd, s, t) \
878 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
879#else
ee6423ed 880#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
881#define ELF_R_SYM(bfd, i) \
882 (ELF32_R_SYM (i))
883#define ELF_R_TYPE(bfd, i) \
884 (ELF32_R_TYPE (i))
885#define ELF_R_INFO(bfd, s, t) \
886 (ELF32_R_INFO (s, t))
887#endif
888\f
889 /* The mips16 compiler uses a couple of special sections to handle
890 floating point arguments.
891
892 Section names that look like .mips16.fn.FNNAME contain stubs that
893 copy floating point arguments from the fp regs to the gp regs and
894 then jump to FNNAME. If any 32 bit function calls FNNAME, the
895 call should be redirected to the stub instead. If no 32 bit
896 function calls FNNAME, the stub should be discarded. We need to
897 consider any reference to the function, not just a call, because
898 if the address of the function is taken we will need the stub,
899 since the address might be passed to a 32 bit function.
900
901 Section names that look like .mips16.call.FNNAME contain stubs
902 that copy floating point arguments from the gp regs to the fp
903 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
904 then any 16 bit function that calls FNNAME should be redirected
905 to the stub instead. If FNNAME is not a 32 bit function, the
906 stub should be discarded.
907
908 .mips16.call.fp.FNNAME sections are similar, but contain stubs
909 which call FNNAME and then copy the return value from the fp regs
910 to the gp regs. These stubs store the return value in $18 while
911 calling FNNAME; any function which might call one of these stubs
912 must arrange to save $18 around the call. (This case is not
913 needed for 32 bit functions that call 16 bit functions, because
914 16 bit functions always return floating point values in both
915 $f0/$f1 and $2/$3.)
916
917 Note that in all cases FNNAME might be defined statically.
918 Therefore, FNNAME is not used literally. Instead, the relocation
919 information will indicate which symbol the section is for.
920
921 We record any stubs that we find in the symbol table. */
922
923#define FN_STUB ".mips16.fn."
924#define CALL_STUB ".mips16.call."
925#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
926
927#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
928#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
929#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 930\f
861fb55a 931/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
932static const bfd_vma mips_o32_exec_plt0_entry[] =
933{
861fb55a
DJ
934 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
935 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
936 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
937 0x031cc023, /* subu $24, $24, $28 */
81f5d455 938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942};
943
944/* The format of the first PLT entry in an N32 executable. Different
945 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
946static const bfd_vma mips_n32_exec_plt0_entry[] =
947{
861fb55a
DJ
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
81f5d455 952 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
953 0x0018c082, /* srl $24, $24, 2 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956};
957
958/* The format of the first PLT entry in an N64 executable. Different
959 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
960static const bfd_vma mips_n64_exec_plt0_entry[] =
961{
861fb55a
DJ
962 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
963 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
964 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
965 0x030ec023, /* subu $24, $24, $14 */
81f5d455 966 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
967 0x0018c0c2, /* srl $24, $24, 3 */
968 0x0320f809, /* jalr $25 */
969 0x2718fffe /* subu $24, $24, 2 */
970};
971
972/* The format of subsequent PLT entries. */
6d30f5b2
NC
973static const bfd_vma mips_exec_plt_entry[] =
974{
861fb55a
DJ
975 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
976 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
977 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
978 0x03200008 /* jr $25 */
979};
980
0a44bf69 981/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
982static const bfd_vma mips_vxworks_exec_plt0_entry[] =
983{
0a44bf69
RS
984 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
985 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
986 0x8f390008, /* lw t9, 8(t9) */
987 0x00000000, /* nop */
988 0x03200008, /* jr t9 */
989 0x00000000 /* nop */
990};
991
992/* The format of subsequent PLT entries. */
6d30f5b2
NC
993static const bfd_vma mips_vxworks_exec_plt_entry[] =
994{
0a44bf69
RS
995 0x10000000, /* b .PLT_resolver */
996 0x24180000, /* li t8, <pltindex> */
997 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
998 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
999 0x8f390000, /* lw t9, 0(t9) */
1000 0x00000000, /* nop */
1001 0x03200008, /* jr t9 */
1002 0x00000000 /* nop */
1003};
1004
1005/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1006static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1007{
0a44bf69
RS
1008 0x8f990008, /* lw t9, 8(gp) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000, /* nop */
1012 0x00000000, /* nop */
1013 0x00000000 /* nop */
1014};
1015
1016/* The format of subsequent PLT entries. */
6d30f5b2
NC
1017static const bfd_vma mips_vxworks_shared_plt_entry[] =
1018{
0a44bf69
RS
1019 0x10000000, /* b .PLT_resolver */
1020 0x24180000 /* li t8, <pltindex> */
1021};
1022\f
d21911ea
MR
1023/* microMIPS 32-bit opcode helper installer. */
1024
1025static void
1026bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1027{
1028 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1029 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1030}
1031
1032/* microMIPS 32-bit opcode helper retriever. */
1033
1034static bfd_vma
1035bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1036{
1037 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1038}
1039\f
b49e97c9
TS
1040/* Look up an entry in a MIPS ELF linker hash table. */
1041
1042#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1043 ((struct mips_elf_link_hash_entry *) \
1044 elf_link_hash_lookup (&(table)->root, (string), (create), \
1045 (copy), (follow)))
1046
1047/* Traverse a MIPS ELF linker hash table. */
1048
1049#define mips_elf_link_hash_traverse(table, func, info) \
1050 (elf_link_hash_traverse \
1051 (&(table)->root, \
9719ad41 1052 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1053 (info)))
1054
0f20cc35
DJ
1055/* Find the base offsets for thread-local storage in this object,
1056 for GD/LD and IE/LE respectively. */
1057
1058#define TP_OFFSET 0x7000
1059#define DTP_OFFSET 0x8000
1060
1061static bfd_vma
1062dtprel_base (struct bfd_link_info *info)
1063{
1064 /* If tls_sec is NULL, we should have signalled an error already. */
1065 if (elf_hash_table (info)->tls_sec == NULL)
1066 return 0;
1067 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1068}
1069
1070static bfd_vma
1071tprel_base (struct bfd_link_info *info)
1072{
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1077}
1078
b49e97c9
TS
1079/* Create an entry in a MIPS ELF linker hash table. */
1080
1081static struct bfd_hash_entry *
9719ad41
RS
1082mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1083 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1084{
1085 struct mips_elf_link_hash_entry *ret =
1086 (struct mips_elf_link_hash_entry *) entry;
1087
1088 /* Allocate the structure if it has not already been allocated by a
1089 subclass. */
9719ad41
RS
1090 if (ret == NULL)
1091 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1092 if (ret == NULL)
b49e97c9
TS
1093 return (struct bfd_hash_entry *) ret;
1094
1095 /* Call the allocation method of the superclass. */
1096 ret = ((struct mips_elf_link_hash_entry *)
1097 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1098 table, string));
9719ad41 1099 if (ret != NULL)
b49e97c9
TS
1100 {
1101 /* Set local fields. */
1102 memset (&ret->esym, 0, sizeof (EXTR));
1103 /* We use -2 as a marker to indicate that the information has
1104 not been set. -1 means there is no associated ifd. */
1105 ret->esym.ifd = -2;
861fb55a 1106 ret->la25_stub = 0;
b49e97c9 1107 ret->possibly_dynamic_relocs = 0;
b49e97c9 1108 ret->fn_stub = NULL;
b49e97c9
TS
1109 ret->call_stub = NULL;
1110 ret->call_fp_stub = NULL;
634835ae 1111 ret->global_got_area = GGA_NONE;
6ccf4795 1112 ret->got_only_for_calls = TRUE;
71782a75 1113 ret->readonly_reloc = FALSE;
861fb55a 1114 ret->has_static_relocs = FALSE;
71782a75
RS
1115 ret->no_fn_stub = FALSE;
1116 ret->need_fn_stub = FALSE;
861fb55a 1117 ret->has_nonpic_branches = FALSE;
33bb52fb 1118 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1119 }
1120
1121 return (struct bfd_hash_entry *) ret;
1122}
f0abc2a1 1123
6ae68ba3
MR
1124/* Allocate MIPS ELF private object data. */
1125
1126bfd_boolean
1127_bfd_mips_elf_mkobject (bfd *abfd)
1128{
1129 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1130 MIPS_ELF_DATA);
1131}
1132
f0abc2a1 1133bfd_boolean
9719ad41 1134_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1135{
f592407e
AM
1136 if (!sec->used_by_bfd)
1137 {
1138 struct _mips_elf_section_data *sdata;
1139 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1140
f592407e
AM
1141 sdata = bfd_zalloc (abfd, amt);
1142 if (sdata == NULL)
1143 return FALSE;
1144 sec->used_by_bfd = sdata;
1145 }
f0abc2a1
AM
1146
1147 return _bfd_elf_new_section_hook (abfd, sec);
1148}
b49e97c9
TS
1149\f
1150/* Read ECOFF debugging information from a .mdebug section into a
1151 ecoff_debug_info structure. */
1152
b34976b6 1153bfd_boolean
9719ad41
RS
1154_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1155 struct ecoff_debug_info *debug)
b49e97c9
TS
1156{
1157 HDRR *symhdr;
1158 const struct ecoff_debug_swap *swap;
9719ad41 1159 char *ext_hdr;
b49e97c9
TS
1160
1161 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1162 memset (debug, 0, sizeof (*debug));
1163
9719ad41 1164 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1165 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1166 goto error_return;
1167
9719ad41 1168 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1169 swap->external_hdr_size))
b49e97c9
TS
1170 goto error_return;
1171
1172 symhdr = &debug->symbolic_header;
1173 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1174
1175 /* The symbolic header contains absolute file offsets and sizes to
1176 read. */
1177#define READ(ptr, offset, count, size, type) \
1178 if (symhdr->count == 0) \
1179 debug->ptr = NULL; \
1180 else \
1181 { \
1182 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1183 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1184 if (debug->ptr == NULL) \
1185 goto error_return; \
9719ad41 1186 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1187 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1188 goto error_return; \
1189 }
1190
1191 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1192 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1193 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1194 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1195 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1196 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1197 union aux_ext *);
1198 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1199 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1200 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1201 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1202 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1203#undef READ
1204
1205 debug->fdr = NULL;
b49e97c9 1206
b34976b6 1207 return TRUE;
b49e97c9
TS
1208
1209 error_return:
1210 if (ext_hdr != NULL)
1211 free (ext_hdr);
1212 if (debug->line != NULL)
1213 free (debug->line);
1214 if (debug->external_dnr != NULL)
1215 free (debug->external_dnr);
1216 if (debug->external_pdr != NULL)
1217 free (debug->external_pdr);
1218 if (debug->external_sym != NULL)
1219 free (debug->external_sym);
1220 if (debug->external_opt != NULL)
1221 free (debug->external_opt);
1222 if (debug->external_aux != NULL)
1223 free (debug->external_aux);
1224 if (debug->ss != NULL)
1225 free (debug->ss);
1226 if (debug->ssext != NULL)
1227 free (debug->ssext);
1228 if (debug->external_fdr != NULL)
1229 free (debug->external_fdr);
1230 if (debug->external_rfd != NULL)
1231 free (debug->external_rfd);
1232 if (debug->external_ext != NULL)
1233 free (debug->external_ext);
b34976b6 1234 return FALSE;
b49e97c9
TS
1235}
1236\f
1237/* Swap RPDR (runtime procedure table entry) for output. */
1238
1239static void
9719ad41 1240ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1241{
1242 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1243 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1244 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1245 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1246 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1247 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1248
1249 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1250 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1251
1252 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1253}
1254
1255/* Create a runtime procedure table from the .mdebug section. */
1256
b34976b6 1257static bfd_boolean
9719ad41
RS
1258mips_elf_create_procedure_table (void *handle, bfd *abfd,
1259 struct bfd_link_info *info, asection *s,
1260 struct ecoff_debug_info *debug)
b49e97c9
TS
1261{
1262 const struct ecoff_debug_swap *swap;
1263 HDRR *hdr = &debug->symbolic_header;
1264 RPDR *rpdr, *rp;
1265 struct rpdr_ext *erp;
9719ad41 1266 void *rtproc;
b49e97c9
TS
1267 struct pdr_ext *epdr;
1268 struct sym_ext *esym;
1269 char *ss, **sv;
1270 char *str;
1271 bfd_size_type size;
1272 bfd_size_type count;
1273 unsigned long sindex;
1274 unsigned long i;
1275 PDR pdr;
1276 SYMR sym;
1277 const char *no_name_func = _("static procedure (no name)");
1278
1279 epdr = NULL;
1280 rpdr = NULL;
1281 esym = NULL;
1282 ss = NULL;
1283 sv = NULL;
1284
1285 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1286
1287 sindex = strlen (no_name_func) + 1;
1288 count = hdr->ipdMax;
1289 if (count > 0)
1290 {
1291 size = swap->external_pdr_size;
1292
9719ad41 1293 epdr = bfd_malloc (size * count);
b49e97c9
TS
1294 if (epdr == NULL)
1295 goto error_return;
1296
9719ad41 1297 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1298 goto error_return;
1299
1300 size = sizeof (RPDR);
9719ad41 1301 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1302 if (rpdr == NULL)
1303 goto error_return;
1304
1305 size = sizeof (char *);
9719ad41 1306 sv = bfd_malloc (size * count);
b49e97c9
TS
1307 if (sv == NULL)
1308 goto error_return;
1309
1310 count = hdr->isymMax;
1311 size = swap->external_sym_size;
9719ad41 1312 esym = bfd_malloc (size * count);
b49e97c9
TS
1313 if (esym == NULL)
1314 goto error_return;
1315
9719ad41 1316 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1317 goto error_return;
1318
1319 count = hdr->issMax;
9719ad41 1320 ss = bfd_malloc (count);
b49e97c9
TS
1321 if (ss == NULL)
1322 goto error_return;
f075ee0c 1323 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1324 goto error_return;
1325
1326 count = hdr->ipdMax;
1327 for (i = 0; i < (unsigned long) count; i++, rp++)
1328 {
9719ad41
RS
1329 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1330 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1331 rp->adr = sym.value;
1332 rp->regmask = pdr.regmask;
1333 rp->regoffset = pdr.regoffset;
1334 rp->fregmask = pdr.fregmask;
1335 rp->fregoffset = pdr.fregoffset;
1336 rp->frameoffset = pdr.frameoffset;
1337 rp->framereg = pdr.framereg;
1338 rp->pcreg = pdr.pcreg;
1339 rp->irpss = sindex;
1340 sv[i] = ss + sym.iss;
1341 sindex += strlen (sv[i]) + 1;
1342 }
1343 }
1344
1345 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1346 size = BFD_ALIGN (size, 16);
9719ad41 1347 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1348 if (rtproc == NULL)
1349 {
1350 mips_elf_hash_table (info)->procedure_count = 0;
1351 goto error_return;
1352 }
1353
1354 mips_elf_hash_table (info)->procedure_count = count + 2;
1355
9719ad41 1356 erp = rtproc;
b49e97c9
TS
1357 memset (erp, 0, sizeof (struct rpdr_ext));
1358 erp++;
1359 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1360 strcpy (str, no_name_func);
1361 str += strlen (no_name_func) + 1;
1362 for (i = 0; i < count; i++)
1363 {
1364 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1365 strcpy (str, sv[i]);
1366 str += strlen (sv[i]) + 1;
1367 }
1368 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1369
1370 /* Set the size and contents of .rtproc section. */
eea6121a 1371 s->size = size;
9719ad41 1372 s->contents = rtproc;
b49e97c9
TS
1373
1374 /* Skip this section later on (I don't think this currently
1375 matters, but someday it might). */
8423293d 1376 s->map_head.link_order = NULL;
b49e97c9
TS
1377
1378 if (epdr != NULL)
1379 free (epdr);
1380 if (rpdr != NULL)
1381 free (rpdr);
1382 if (esym != NULL)
1383 free (esym);
1384 if (ss != NULL)
1385 free (ss);
1386 if (sv != NULL)
1387 free (sv);
1388
b34976b6 1389 return TRUE;
b49e97c9
TS
1390
1391 error_return:
1392 if (epdr != NULL)
1393 free (epdr);
1394 if (rpdr != NULL)
1395 free (rpdr);
1396 if (esym != NULL)
1397 free (esym);
1398 if (ss != NULL)
1399 free (ss);
1400 if (sv != NULL)
1401 free (sv);
b34976b6 1402 return FALSE;
b49e97c9 1403}
738e5348 1404\f
861fb55a
DJ
1405/* We're going to create a stub for H. Create a symbol for the stub's
1406 value and size, to help make the disassembly easier to read. */
1407
1408static bfd_boolean
1409mips_elf_create_stub_symbol (struct bfd_link_info *info,
1410 struct mips_elf_link_hash_entry *h,
1411 const char *prefix, asection *s, bfd_vma value,
1412 bfd_vma size)
1413{
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417
df58fc94
RS
1418 if (ELF_ST_IS_MICROMIPS (h->root.other))
1419 value |= 1;
1420
861fb55a
DJ
1421 /* Create a new symbol. */
1422 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1423 bh = NULL;
1424 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1425 BSF_LOCAL, s, value, NULL,
1426 TRUE, FALSE, &bh))
1427 return FALSE;
1428
1429 /* Make it a local function. */
1430 elfh = (struct elf_link_hash_entry *) bh;
1431 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1432 elfh->size = size;
1433 elfh->forced_local = 1;
1434 return TRUE;
1435}
1436
738e5348
RS
1437/* We're about to redefine H. Create a symbol to represent H's
1438 current value and size, to help make the disassembly easier
1439 to read. */
1440
1441static bfd_boolean
1442mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1443 struct mips_elf_link_hash_entry *h,
1444 const char *prefix)
1445{
1446 struct bfd_link_hash_entry *bh;
1447 struct elf_link_hash_entry *elfh;
1448 const char *name;
1449 asection *s;
1450 bfd_vma value;
1451
1452 /* Read the symbol's value. */
1453 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1454 || h->root.root.type == bfd_link_hash_defweak);
1455 s = h->root.root.u.def.section;
1456 value = h->root.root.u.def.value;
1457
1458 /* Create a new symbol. */
1459 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1460 bh = NULL;
1461 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1462 BSF_LOCAL, s, value, NULL,
1463 TRUE, FALSE, &bh))
1464 return FALSE;
1465
1466 /* Make it local and copy the other attributes from H. */
1467 elfh = (struct elf_link_hash_entry *) bh;
1468 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1469 elfh->other = h->root.other;
1470 elfh->size = h->root.size;
1471 elfh->forced_local = 1;
1472 return TRUE;
1473}
1474
1475/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1476 function rather than to a hard-float stub. */
1477
1478static bfd_boolean
1479section_allows_mips16_refs_p (asection *section)
1480{
1481 const char *name;
1482
1483 name = bfd_get_section_name (section->owner, section);
1484 return (FN_STUB_P (name)
1485 || CALL_STUB_P (name)
1486 || CALL_FP_STUB_P (name)
1487 || strcmp (name, ".pdr") == 0);
1488}
1489
1490/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1491 stub section of some kind. Return the R_SYMNDX of the target
1492 function, or 0 if we can't decide which function that is. */
1493
1494static unsigned long
cb4437b8
MR
1495mips16_stub_symndx (const struct elf_backend_data *bed,
1496 asection *sec ATTRIBUTE_UNUSED,
502e814e 1497 const Elf_Internal_Rela *relocs,
738e5348
RS
1498 const Elf_Internal_Rela *relend)
1499{
cb4437b8 1500 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1501 const Elf_Internal_Rela *rel;
1502
cb4437b8
MR
1503 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1504 one in a compound relocation. */
1505 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1506 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1507 return ELF_R_SYM (sec->owner, rel->r_info);
1508
1509 /* Otherwise trust the first relocation, whatever its kind. This is
1510 the traditional behavior. */
1511 if (relocs < relend)
1512 return ELF_R_SYM (sec->owner, relocs->r_info);
1513
1514 return 0;
1515}
b49e97c9
TS
1516
1517/* Check the mips16 stubs for a particular symbol, and see if we can
1518 discard them. */
1519
861fb55a
DJ
1520static void
1521mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1522 struct mips_elf_link_hash_entry *h)
b49e97c9 1523{
738e5348
RS
1524 /* Dynamic symbols must use the standard call interface, in case other
1525 objects try to call them. */
1526 if (h->fn_stub != NULL
1527 && h->root.dynindx != -1)
1528 {
1529 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1530 h->need_fn_stub = TRUE;
1531 }
1532
b49e97c9
TS
1533 if (h->fn_stub != NULL
1534 && ! h->need_fn_stub)
1535 {
1536 /* We don't need the fn_stub; the only references to this symbol
1537 are 16 bit calls. Clobber the size to 0 to prevent it from
1538 being included in the link. */
eea6121a 1539 h->fn_stub->size = 0;
b49e97c9
TS
1540 h->fn_stub->flags &= ~SEC_RELOC;
1541 h->fn_stub->reloc_count = 0;
1542 h->fn_stub->flags |= SEC_EXCLUDE;
1543 }
1544
1545 if (h->call_stub != NULL
30c09090 1546 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1547 {
1548 /* We don't need the call_stub; this is a 16 bit function, so
1549 calls from other 16 bit functions are OK. Clobber the size
1550 to 0 to prevent it from being included in the link. */
eea6121a 1551 h->call_stub->size = 0;
b49e97c9
TS
1552 h->call_stub->flags &= ~SEC_RELOC;
1553 h->call_stub->reloc_count = 0;
1554 h->call_stub->flags |= SEC_EXCLUDE;
1555 }
1556
1557 if (h->call_fp_stub != NULL
30c09090 1558 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1559 {
1560 /* We don't need the call_stub; this is a 16 bit function, so
1561 calls from other 16 bit functions are OK. Clobber the size
1562 to 0 to prevent it from being included in the link. */
eea6121a 1563 h->call_fp_stub->size = 0;
b49e97c9
TS
1564 h->call_fp_stub->flags &= ~SEC_RELOC;
1565 h->call_fp_stub->reloc_count = 0;
1566 h->call_fp_stub->flags |= SEC_EXCLUDE;
1567 }
861fb55a
DJ
1568}
1569
1570/* Hashtable callbacks for mips_elf_la25_stubs. */
1571
1572static hashval_t
1573mips_elf_la25_stub_hash (const void *entry_)
1574{
1575 const struct mips_elf_la25_stub *entry;
1576
1577 entry = (struct mips_elf_la25_stub *) entry_;
1578 return entry->h->root.root.u.def.section->id
1579 + entry->h->root.root.u.def.value;
1580}
1581
1582static int
1583mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1584{
1585 const struct mips_elf_la25_stub *entry1, *entry2;
1586
1587 entry1 = (struct mips_elf_la25_stub *) entry1_;
1588 entry2 = (struct mips_elf_la25_stub *) entry2_;
1589 return ((entry1->h->root.root.u.def.section
1590 == entry2->h->root.root.u.def.section)
1591 && (entry1->h->root.root.u.def.value
1592 == entry2->h->root.root.u.def.value));
1593}
1594
1595/* Called by the linker to set up the la25 stub-creation code. FN is
1596 the linker's implementation of add_stub_function. Return true on
1597 success. */
1598
1599bfd_boolean
1600_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1601 asection *(*fn) (const char *, asection *,
1602 asection *))
1603{
1604 struct mips_elf_link_hash_table *htab;
1605
1606 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1607 if (htab == NULL)
1608 return FALSE;
1609
861fb55a
DJ
1610 htab->add_stub_section = fn;
1611 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1612 mips_elf_la25_stub_eq, NULL);
1613 if (htab->la25_stubs == NULL)
1614 return FALSE;
1615
1616 return TRUE;
1617}
1618
1619/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1620 that it or its fn_stub might need $25 to be valid on entry.
1621 Note that MIPS16 functions set up $gp using PC-relative instructions,
1622 so they themselves never need $25 to be valid. Only non-MIPS16
1623 entry points are of interest here. */
861fb55a
DJ
1624
1625static bfd_boolean
1626mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1627{
1628 return ((h->root.root.type == bfd_link_hash_defined
1629 || h->root.root.type == bfd_link_hash_defweak)
1630 && h->root.def_regular
1631 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1632 && (!ELF_ST_IS_MIPS16 (h->root.other)
1633 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1634 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1635 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1636}
1637
8f0c309a
CLT
1638/* Set *SEC to the input section that contains the target of STUB.
1639 Return the offset of the target from the start of that section. */
1640
1641static bfd_vma
1642mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1643 asection **sec)
1644{
1645 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1646 {
1647 BFD_ASSERT (stub->h->need_fn_stub);
1648 *sec = stub->h->fn_stub;
1649 return 0;
1650 }
1651 else
1652 {
1653 *sec = stub->h->root.root.u.def.section;
1654 return stub->h->root.root.u.def.value;
1655 }
1656}
1657
861fb55a
DJ
1658/* STUB describes an la25 stub that we have decided to implement
1659 by inserting an LUI/ADDIU pair before the target function.
1660 Create the section and redirect the function symbol to it. */
1661
1662static bfd_boolean
1663mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1664 struct bfd_link_info *info)
1665{
1666 struct mips_elf_link_hash_table *htab;
1667 char *name;
1668 asection *s, *input_section;
1669 unsigned int align;
1670
1671 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1672 if (htab == NULL)
1673 return FALSE;
861fb55a
DJ
1674
1675 /* Create a unique name for the new section. */
1676 name = bfd_malloc (11 + sizeof (".text.stub."));
1677 if (name == NULL)
1678 return FALSE;
1679 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1680
1681 /* Create the section. */
8f0c309a 1682 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1683 s = htab->add_stub_section (name, input_section,
1684 input_section->output_section);
1685 if (s == NULL)
1686 return FALSE;
1687
1688 /* Make sure that any padding goes before the stub. */
1689 align = input_section->alignment_power;
1690 if (!bfd_set_section_alignment (s->owner, s, align))
1691 return FALSE;
1692 if (align > 3)
1693 s->size = (1 << align) - 8;
1694
1695 /* Create a symbol for the stub. */
1696 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1697 stub->stub_section = s;
1698 stub->offset = s->size;
1699
1700 /* Allocate room for it. */
1701 s->size += 8;
1702 return TRUE;
1703}
1704
1705/* STUB describes an la25 stub that we have decided to implement
1706 with a separate trampoline. Allocate room for it and redirect
1707 the function symbol to it. */
1708
1709static bfd_boolean
1710mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1711 struct bfd_link_info *info)
1712{
1713 struct mips_elf_link_hash_table *htab;
1714 asection *s;
1715
1716 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1717 if (htab == NULL)
1718 return FALSE;
861fb55a
DJ
1719
1720 /* Create a trampoline section, if we haven't already. */
1721 s = htab->strampoline;
1722 if (s == NULL)
1723 {
1724 asection *input_section = stub->h->root.root.u.def.section;
1725 s = htab->add_stub_section (".text", NULL,
1726 input_section->output_section);
1727 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1728 return FALSE;
1729 htab->strampoline = s;
1730 }
1731
1732 /* Create a symbol for the stub. */
1733 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1734 stub->stub_section = s;
1735 stub->offset = s->size;
1736
1737 /* Allocate room for it. */
1738 s->size += 16;
1739 return TRUE;
1740}
1741
1742/* H describes a symbol that needs an la25 stub. Make sure that an
1743 appropriate stub exists and point H at it. */
1744
1745static bfd_boolean
1746mips_elf_add_la25_stub (struct bfd_link_info *info,
1747 struct mips_elf_link_hash_entry *h)
1748{
1749 struct mips_elf_link_hash_table *htab;
1750 struct mips_elf_la25_stub search, *stub;
1751 bfd_boolean use_trampoline_p;
1752 asection *s;
1753 bfd_vma value;
1754 void **slot;
1755
861fb55a
DJ
1756 /* Describe the stub we want. */
1757 search.stub_section = NULL;
1758 search.offset = 0;
1759 search.h = h;
1760
1761 /* See if we've already created an equivalent stub. */
1762 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1763 if (htab == NULL)
1764 return FALSE;
1765
861fb55a
DJ
1766 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1767 if (slot == NULL)
1768 return FALSE;
1769
1770 stub = (struct mips_elf_la25_stub *) *slot;
1771 if (stub != NULL)
1772 {
1773 /* We can reuse the existing stub. */
1774 h->la25_stub = stub;
1775 return TRUE;
1776 }
1777
1778 /* Create a permanent copy of ENTRY and add it to the hash table. */
1779 stub = bfd_malloc (sizeof (search));
1780 if (stub == NULL)
1781 return FALSE;
1782 *stub = search;
1783 *slot = stub;
1784
8f0c309a
CLT
1785 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1786 of the section and if we would need no more than 2 nops. */
1787 value = mips_elf_get_la25_target (stub, &s);
1788 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1789
861fb55a
DJ
1790 h->la25_stub = stub;
1791 return (use_trampoline_p
1792 ? mips_elf_add_la25_trampoline (stub, info)
1793 : mips_elf_add_la25_intro (stub, info));
1794}
1795
1796/* A mips_elf_link_hash_traverse callback that is called before sizing
1797 sections. DATA points to a mips_htab_traverse_info structure. */
1798
1799static bfd_boolean
1800mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1801{
1802 struct mips_htab_traverse_info *hti;
1803
1804 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1805 if (!hti->info->relocatable)
1806 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1807
861fb55a
DJ
1808 if (mips_elf_local_pic_function_p (h))
1809 {
ba85c43e
NC
1810 /* PR 12845: If H is in a section that has been garbage
1811 collected it will have its output section set to *ABS*. */
1812 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1813 return TRUE;
1814
861fb55a
DJ
1815 /* H is a function that might need $25 to be valid on entry.
1816 If we're creating a non-PIC relocatable object, mark H as
1817 being PIC. If we're creating a non-relocatable object with
1818 non-PIC branches and jumps to H, make sure that H has an la25
1819 stub. */
1820 if (hti->info->relocatable)
1821 {
1822 if (!PIC_OBJECT_P (hti->output_bfd))
1823 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1824 }
1825 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1826 {
1827 hti->error = TRUE;
1828 return FALSE;
1829 }
1830 }
b34976b6 1831 return TRUE;
b49e97c9
TS
1832}
1833\f
d6f16593
MR
1834/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1835 Most mips16 instructions are 16 bits, but these instructions
1836 are 32 bits.
1837
1838 The format of these instructions is:
1839
1840 +--------------+--------------------------------+
1841 | JALX | X| Imm 20:16 | Imm 25:21 |
1842 +--------------+--------------------------------+
1843 | Immediate 15:0 |
1844 +-----------------------------------------------+
1845
1846 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1847 Note that the immediate value in the first word is swapped.
1848
1849 When producing a relocatable object file, R_MIPS16_26 is
1850 handled mostly like R_MIPS_26. In particular, the addend is
1851 stored as a straight 26-bit value in a 32-bit instruction.
1852 (gas makes life simpler for itself by never adjusting a
1853 R_MIPS16_26 reloc to be against a section, so the addend is
1854 always zero). However, the 32 bit instruction is stored as 2
1855 16-bit values, rather than a single 32-bit value. In a
1856 big-endian file, the result is the same; in a little-endian
1857 file, the two 16-bit halves of the 32 bit value are swapped.
1858 This is so that a disassembler can recognize the jal
1859 instruction.
1860
1861 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1862 instruction stored as two 16-bit values. The addend A is the
1863 contents of the targ26 field. The calculation is the same as
1864 R_MIPS_26. When storing the calculated value, reorder the
1865 immediate value as shown above, and don't forget to store the
1866 value as two 16-bit values.
1867
1868 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1869 defined as
1870
1871 big-endian:
1872 +--------+----------------------+
1873 | | |
1874 | | targ26-16 |
1875 |31 26|25 0|
1876 +--------+----------------------+
1877
1878 little-endian:
1879 +----------+------+-------------+
1880 | | | |
1881 | sub1 | | sub2 |
1882 |0 9|10 15|16 31|
1883 +----------+--------------------+
1884 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1885 ((sub1 << 16) | sub2)).
1886
1887 When producing a relocatable object file, the calculation is
1888 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1889 When producing a fully linked file, the calculation is
1890 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1891 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1892
738e5348
RS
1893 The table below lists the other MIPS16 instruction relocations.
1894 Each one is calculated in the same way as the non-MIPS16 relocation
1895 given on the right, but using the extended MIPS16 layout of 16-bit
1896 immediate fields:
1897
1898 R_MIPS16_GPREL R_MIPS_GPREL16
1899 R_MIPS16_GOT16 R_MIPS_GOT16
1900 R_MIPS16_CALL16 R_MIPS_CALL16
1901 R_MIPS16_HI16 R_MIPS_HI16
1902 R_MIPS16_LO16 R_MIPS_LO16
1903
1904 A typical instruction will have a format like this:
d6f16593
MR
1905
1906 +--------------+--------------------------------+
1907 | EXTEND | Imm 10:5 | Imm 15:11 |
1908 +--------------+--------------------------------+
1909 | Major | rx | ry | Imm 4:0 |
1910 +--------------+--------------------------------+
1911
1912 EXTEND is the five bit value 11110. Major is the instruction
1913 opcode.
1914
738e5348
RS
1915 All we need to do here is shuffle the bits appropriately.
1916 As above, the two 16-bit halves must be swapped on a
1917 little-endian system. */
1918
1919static inline bfd_boolean
1920mips16_reloc_p (int r_type)
1921{
1922 switch (r_type)
1923 {
1924 case R_MIPS16_26:
1925 case R_MIPS16_GPREL:
1926 case R_MIPS16_GOT16:
1927 case R_MIPS16_CALL16:
1928 case R_MIPS16_HI16:
1929 case R_MIPS16_LO16:
d0f13682
CLT
1930 case R_MIPS16_TLS_GD:
1931 case R_MIPS16_TLS_LDM:
1932 case R_MIPS16_TLS_DTPREL_HI16:
1933 case R_MIPS16_TLS_DTPREL_LO16:
1934 case R_MIPS16_TLS_GOTTPREL:
1935 case R_MIPS16_TLS_TPREL_HI16:
1936 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1937 return TRUE;
1938
1939 default:
1940 return FALSE;
1941 }
1942}
1943
df58fc94
RS
1944/* Check if a microMIPS reloc. */
1945
1946static inline bfd_boolean
1947micromips_reloc_p (unsigned int r_type)
1948{
1949 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1950}
1951
1952/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1953 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1954 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1955
1956static inline bfd_boolean
1957micromips_reloc_shuffle_p (unsigned int r_type)
1958{
1959 return (micromips_reloc_p (r_type)
1960 && r_type != R_MICROMIPS_PC7_S1
1961 && r_type != R_MICROMIPS_PC10_S1);
1962}
1963
738e5348
RS
1964static inline bfd_boolean
1965got16_reloc_p (int r_type)
1966{
df58fc94
RS
1967 return (r_type == R_MIPS_GOT16
1968 || r_type == R_MIPS16_GOT16
1969 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1970}
1971
1972static inline bfd_boolean
1973call16_reloc_p (int r_type)
1974{
df58fc94
RS
1975 return (r_type == R_MIPS_CALL16
1976 || r_type == R_MIPS16_CALL16
1977 || r_type == R_MICROMIPS_CALL16);
1978}
1979
1980static inline bfd_boolean
1981got_disp_reloc_p (unsigned int r_type)
1982{
1983 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1984}
1985
1986static inline bfd_boolean
1987got_page_reloc_p (unsigned int r_type)
1988{
1989 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1990}
1991
1992static inline bfd_boolean
1993got_ofst_reloc_p (unsigned int r_type)
1994{
1995 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1996}
1997
1998static inline bfd_boolean
1999got_hi16_reloc_p (unsigned int r_type)
2000{
2001 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2002}
2003
2004static inline bfd_boolean
2005got_lo16_reloc_p (unsigned int r_type)
2006{
2007 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2008}
2009
2010static inline bfd_boolean
2011call_hi16_reloc_p (unsigned int r_type)
2012{
2013 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2014}
2015
2016static inline bfd_boolean
2017call_lo16_reloc_p (unsigned int r_type)
2018{
2019 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2020}
2021
2022static inline bfd_boolean
2023hi16_reloc_p (int r_type)
2024{
df58fc94
RS
2025 return (r_type == R_MIPS_HI16
2026 || r_type == R_MIPS16_HI16
2027 || r_type == R_MICROMIPS_HI16);
738e5348 2028}
d6f16593 2029
738e5348
RS
2030static inline bfd_boolean
2031lo16_reloc_p (int r_type)
2032{
df58fc94
RS
2033 return (r_type == R_MIPS_LO16
2034 || r_type == R_MIPS16_LO16
2035 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2036}
2037
2038static inline bfd_boolean
2039mips16_call_reloc_p (int r_type)
2040{
2041 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2042}
d6f16593 2043
38a7df63
CF
2044static inline bfd_boolean
2045jal_reloc_p (int r_type)
2046{
df58fc94
RS
2047 return (r_type == R_MIPS_26
2048 || r_type == R_MIPS16_26
2049 || r_type == R_MICROMIPS_26_S1);
2050}
2051
2052static inline bfd_boolean
2053micromips_branch_reloc_p (int r_type)
2054{
2055 return (r_type == R_MICROMIPS_26_S1
2056 || r_type == R_MICROMIPS_PC16_S1
2057 || r_type == R_MICROMIPS_PC10_S1
2058 || r_type == R_MICROMIPS_PC7_S1);
2059}
2060
2061static inline bfd_boolean
2062tls_gd_reloc_p (unsigned int r_type)
2063{
d0f13682
CLT
2064 return (r_type == R_MIPS_TLS_GD
2065 || r_type == R_MIPS16_TLS_GD
2066 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2067}
2068
2069static inline bfd_boolean
2070tls_ldm_reloc_p (unsigned int r_type)
2071{
d0f13682
CLT
2072 return (r_type == R_MIPS_TLS_LDM
2073 || r_type == R_MIPS16_TLS_LDM
2074 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2075}
2076
2077static inline bfd_boolean
2078tls_gottprel_reloc_p (unsigned int r_type)
2079{
d0f13682
CLT
2080 return (r_type == R_MIPS_TLS_GOTTPREL
2081 || r_type == R_MIPS16_TLS_GOTTPREL
2082 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2083}
2084
d6f16593 2085void
df58fc94
RS
2086_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2087 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2088{
df58fc94 2089 bfd_vma first, second, val;
d6f16593 2090
df58fc94 2091 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2092 return;
2093
df58fc94
RS
2094 /* Pick up the first and second halfwords of the instruction. */
2095 first = bfd_get_16 (abfd, data);
2096 second = bfd_get_16 (abfd, data + 2);
2097 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2098 val = first << 16 | second;
2099 else if (r_type != R_MIPS16_26)
2100 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2101 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2102 else
df58fc94
RS
2103 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2104 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2105 bfd_put_32 (abfd, val, data);
2106}
2107
2108void
df58fc94
RS
2109_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2110 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2111{
df58fc94 2112 bfd_vma first, second, val;
d6f16593 2113
df58fc94 2114 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2115 return;
2116
2117 val = bfd_get_32 (abfd, data);
df58fc94 2118 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2119 {
df58fc94
RS
2120 second = val & 0xffff;
2121 first = val >> 16;
2122 }
2123 else if (r_type != R_MIPS16_26)
2124 {
2125 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2126 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2127 }
2128 else
2129 {
df58fc94
RS
2130 second = val & 0xffff;
2131 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2132 | ((val >> 21) & 0x1f);
d6f16593 2133 }
df58fc94
RS
2134 bfd_put_16 (abfd, second, data + 2);
2135 bfd_put_16 (abfd, first, data);
d6f16593
MR
2136}
2137
b49e97c9 2138bfd_reloc_status_type
9719ad41
RS
2139_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2140 arelent *reloc_entry, asection *input_section,
2141 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2142{
2143 bfd_vma relocation;
a7ebbfdf 2144 bfd_signed_vma val;
30ac9238 2145 bfd_reloc_status_type status;
b49e97c9
TS
2146
2147 if (bfd_is_com_section (symbol->section))
2148 relocation = 0;
2149 else
2150 relocation = symbol->value;
2151
2152 relocation += symbol->section->output_section->vma;
2153 relocation += symbol->section->output_offset;
2154
07515404 2155 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2156 return bfd_reloc_outofrange;
2157
b49e97c9 2158 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2159 val = reloc_entry->addend;
2160
30ac9238 2161 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2162
b49e97c9 2163 /* Adjust val for the final section location and GP value. If we
1049f94e 2164 are producing relocatable output, we don't want to do this for
b49e97c9 2165 an external symbol. */
1049f94e 2166 if (! relocatable
b49e97c9
TS
2167 || (symbol->flags & BSF_SECTION_SYM) != 0)
2168 val += relocation - gp;
2169
a7ebbfdf
TS
2170 if (reloc_entry->howto->partial_inplace)
2171 {
30ac9238
RS
2172 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2173 (bfd_byte *) data
2174 + reloc_entry->address);
2175 if (status != bfd_reloc_ok)
2176 return status;
a7ebbfdf
TS
2177 }
2178 else
2179 reloc_entry->addend = val;
b49e97c9 2180
1049f94e 2181 if (relocatable)
b49e97c9 2182 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2183
2184 return bfd_reloc_ok;
2185}
2186
2187/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2188 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2189 that contains the relocation field and DATA points to the start of
2190 INPUT_SECTION. */
2191
2192struct mips_hi16
2193{
2194 struct mips_hi16 *next;
2195 bfd_byte *data;
2196 asection *input_section;
2197 arelent rel;
2198};
2199
2200/* FIXME: This should not be a static variable. */
2201
2202static struct mips_hi16 *mips_hi16_list;
2203
2204/* A howto special_function for REL *HI16 relocations. We can only
2205 calculate the correct value once we've seen the partnering
2206 *LO16 relocation, so just save the information for later.
2207
2208 The ABI requires that the *LO16 immediately follow the *HI16.
2209 However, as a GNU extension, we permit an arbitrary number of
2210 *HI16s to be associated with a single *LO16. This significantly
2211 simplies the relocation handling in gcc. */
2212
2213bfd_reloc_status_type
2214_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2215 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2216 asection *input_section, bfd *output_bfd,
2217 char **error_message ATTRIBUTE_UNUSED)
2218{
2219 struct mips_hi16 *n;
2220
07515404 2221 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2222 return bfd_reloc_outofrange;
2223
2224 n = bfd_malloc (sizeof *n);
2225 if (n == NULL)
2226 return bfd_reloc_outofrange;
2227
2228 n->next = mips_hi16_list;
2229 n->data = data;
2230 n->input_section = input_section;
2231 n->rel = *reloc_entry;
2232 mips_hi16_list = n;
2233
2234 if (output_bfd != NULL)
2235 reloc_entry->address += input_section->output_offset;
2236
2237 return bfd_reloc_ok;
2238}
2239
738e5348 2240/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2241 like any other 16-bit relocation when applied to global symbols, but is
2242 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2243
2244bfd_reloc_status_type
2245_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2246 void *data, asection *input_section,
2247 bfd *output_bfd, char **error_message)
2248{
2249 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2250 || bfd_is_und_section (bfd_get_section (symbol))
2251 || bfd_is_com_section (bfd_get_section (symbol)))
2252 /* The relocation is against a global symbol. */
2253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd,
2255 error_message);
2256
2257 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2258 input_section, output_bfd, error_message);
2259}
2260
2261/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2262 is a straightforward 16 bit inplace relocation, but we must deal with
2263 any partnering high-part relocations as well. */
2264
2265bfd_reloc_status_type
2266_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2267 void *data, asection *input_section,
2268 bfd *output_bfd, char **error_message)
2269{
2270 bfd_vma vallo;
d6f16593 2271 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2272
07515404 2273 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2274 return bfd_reloc_outofrange;
2275
df58fc94 2276 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2277 location);
df58fc94
RS
2278 vallo = bfd_get_32 (abfd, location);
2279 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2280 location);
d6f16593 2281
30ac9238
RS
2282 while (mips_hi16_list != NULL)
2283 {
2284 bfd_reloc_status_type ret;
2285 struct mips_hi16 *hi;
2286
2287 hi = mips_hi16_list;
2288
738e5348
RS
2289 /* R_MIPS*_GOT16 relocations are something of a special case. We
2290 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2291 relocation (with a rightshift of 16). However, since GOT16
2292 relocations can also be used with global symbols, their howto
2293 has a rightshift of 0. */
2294 if (hi->rel.howto->type == R_MIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2296 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2297 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2298 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2299 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2300
2301 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2302 carry or borrow will induce a change of +1 or -1 in the high part. */
2303 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2304
30ac9238
RS
2305 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2306 hi->input_section, output_bfd,
2307 error_message);
2308 if (ret != bfd_reloc_ok)
2309 return ret;
2310
2311 mips_hi16_list = hi->next;
2312 free (hi);
2313 }
2314
2315 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd,
2317 error_message);
2318}
2319
2320/* A generic howto special_function. This calculates and installs the
2321 relocation itself, thus avoiding the oft-discussed problems in
2322 bfd_perform_relocation and bfd_install_relocation. */
2323
2324bfd_reloc_status_type
2325_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2326 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2327 asection *input_section, bfd *output_bfd,
2328 char **error_message ATTRIBUTE_UNUSED)
2329{
2330 bfd_signed_vma val;
2331 bfd_reloc_status_type status;
2332 bfd_boolean relocatable;
2333
2334 relocatable = (output_bfd != NULL);
2335
07515404 2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2337 return bfd_reloc_outofrange;
2338
2339 /* Build up the field adjustment in VAL. */
2340 val = 0;
2341 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2342 {
2343 /* Either we're calculating the final field value or we have a
2344 relocation against a section symbol. Add in the section's
2345 offset or address. */
2346 val += symbol->section->output_section->vma;
2347 val += symbol->section->output_offset;
2348 }
2349
2350 if (!relocatable)
2351 {
2352 /* We're calculating the final field value. Add in the symbol's value
2353 and, if pc-relative, subtract the address of the field itself. */
2354 val += symbol->value;
2355 if (reloc_entry->howto->pc_relative)
2356 {
2357 val -= input_section->output_section->vma;
2358 val -= input_section->output_offset;
2359 val -= reloc_entry->address;
2360 }
2361 }
2362
2363 /* VAL is now the final adjustment. If we're keeping this relocation
2364 in the output file, and if the relocation uses a separate addend,
2365 we just need to add VAL to that addend. Otherwise we need to add
2366 VAL to the relocation field itself. */
2367 if (relocatable && !reloc_entry->howto->partial_inplace)
2368 reloc_entry->addend += val;
2369 else
2370 {
d6f16593
MR
2371 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2372
30ac9238
RS
2373 /* Add in the separate addend, if any. */
2374 val += reloc_entry->addend;
2375
2376 /* Add VAL to the relocation field. */
df58fc94
RS
2377 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
30ac9238 2379 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2380 location);
df58fc94
RS
2381 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2382 location);
d6f16593 2383
30ac9238
RS
2384 if (status != bfd_reloc_ok)
2385 return status;
2386 }
2387
2388 if (relocatable)
2389 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2390
2391 return bfd_reloc_ok;
2392}
2393\f
2394/* Swap an entry in a .gptab section. Note that these routines rely
2395 on the equivalence of the two elements of the union. */
2396
2397static void
9719ad41
RS
2398bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2399 Elf32_gptab *in)
b49e97c9
TS
2400{
2401 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2402 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2403}
2404
2405static void
9719ad41
RS
2406bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2407 Elf32_External_gptab *ex)
b49e97c9
TS
2408{
2409 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2410 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2411}
2412
2413static void
9719ad41
RS
2414bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2415 Elf32_External_compact_rel *ex)
b49e97c9
TS
2416{
2417 H_PUT_32 (abfd, in->id1, ex->id1);
2418 H_PUT_32 (abfd, in->num, ex->num);
2419 H_PUT_32 (abfd, in->id2, ex->id2);
2420 H_PUT_32 (abfd, in->offset, ex->offset);
2421 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2422 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2423}
2424
2425static void
9719ad41
RS
2426bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2427 Elf32_External_crinfo *ex)
b49e97c9
TS
2428{
2429 unsigned long l;
2430
2431 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2432 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2433 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2434 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2435 H_PUT_32 (abfd, l, ex->info);
2436 H_PUT_32 (abfd, in->konst, ex->konst);
2437 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2438}
b49e97c9
TS
2439\f
2440/* A .reginfo section holds a single Elf32_RegInfo structure. These
2441 routines swap this structure in and out. They are used outside of
2442 BFD, so they are globally visible. */
2443
2444void
9719ad41
RS
2445bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2446 Elf32_RegInfo *in)
b49e97c9
TS
2447{
2448 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2449 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2450 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2451 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2452 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2453 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2454}
2455
2456void
9719ad41
RS
2457bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2458 Elf32_External_RegInfo *ex)
b49e97c9
TS
2459{
2460 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466}
2467
2468/* In the 64 bit ABI, the .MIPS.options section holds register
2469 information in an Elf64_Reginfo structure. These routines swap
2470 them in and out. They are globally visible because they are used
2471 outside of BFD. These routines are here so that gas can call them
2472 without worrying about whether the 64 bit ABI has been included. */
2473
2474void
9719ad41
RS
2475bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2476 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2477{
2478 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2479 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2480 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2481 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2482 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2483 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2484 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2485}
2486
2487void
9719ad41
RS
2488bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2489 Elf64_External_RegInfo *ex)
b49e97c9
TS
2490{
2491 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2492 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2493 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2494 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2495 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2496 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2497 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2498}
2499
2500/* Swap in an options header. */
2501
2502void
9719ad41
RS
2503bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2504 Elf_Internal_Options *in)
b49e97c9
TS
2505{
2506 in->kind = H_GET_8 (abfd, ex->kind);
2507 in->size = H_GET_8 (abfd, ex->size);
2508 in->section = H_GET_16 (abfd, ex->section);
2509 in->info = H_GET_32 (abfd, ex->info);
2510}
2511
2512/* Swap out an options header. */
2513
2514void
9719ad41
RS
2515bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2516 Elf_External_Options *ex)
b49e97c9
TS
2517{
2518 H_PUT_8 (abfd, in->kind, ex->kind);
2519 H_PUT_8 (abfd, in->size, ex->size);
2520 H_PUT_16 (abfd, in->section, ex->section);
2521 H_PUT_32 (abfd, in->info, ex->info);
2522}
2523\f
2524/* This function is called via qsort() to sort the dynamic relocation
2525 entries by increasing r_symndx value. */
2526
2527static int
9719ad41 2528sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2529{
947216bf
AM
2530 Elf_Internal_Rela int_reloc1;
2531 Elf_Internal_Rela int_reloc2;
6870500c 2532 int diff;
b49e97c9 2533
947216bf
AM
2534 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2535 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2536
6870500c
RS
2537 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2538 if (diff != 0)
2539 return diff;
2540
2541 if (int_reloc1.r_offset < int_reloc2.r_offset)
2542 return -1;
2543 if (int_reloc1.r_offset > int_reloc2.r_offset)
2544 return 1;
2545 return 0;
b49e97c9
TS
2546}
2547
f4416af6
AO
2548/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2549
2550static int
7e3102a7
AM
2551sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2552 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2553{
7e3102a7 2554#ifdef BFD64
f4416af6
AO
2555 Elf_Internal_Rela int_reloc1[3];
2556 Elf_Internal_Rela int_reloc2[3];
2557
2558 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2559 (reldyn_sorting_bfd, arg1, int_reloc1);
2560 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2561 (reldyn_sorting_bfd, arg2, int_reloc2);
2562
6870500c
RS
2563 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2564 return -1;
2565 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2566 return 1;
2567
2568 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2569 return -1;
2570 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2571 return 1;
2572 return 0;
7e3102a7
AM
2573#else
2574 abort ();
2575#endif
f4416af6
AO
2576}
2577
2578
b49e97c9
TS
2579/* This routine is used to write out ECOFF debugging external symbol
2580 information. It is called via mips_elf_link_hash_traverse. The
2581 ECOFF external symbol information must match the ELF external
2582 symbol information. Unfortunately, at this point we don't know
2583 whether a symbol is required by reloc information, so the two
2584 tables may wind up being different. We must sort out the external
2585 symbol information before we can set the final size of the .mdebug
2586 section, and we must set the size of the .mdebug section before we
2587 can relocate any sections, and we can't know which symbols are
2588 required by relocation until we relocate the sections.
2589 Fortunately, it is relatively unlikely that any symbol will be
2590 stripped but required by a reloc. In particular, it can not happen
2591 when generating a final executable. */
2592
b34976b6 2593static bfd_boolean
9719ad41 2594mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2595{
9719ad41 2596 struct extsym_info *einfo = data;
b34976b6 2597 bfd_boolean strip;
b49e97c9
TS
2598 asection *sec, *output_section;
2599
b49e97c9 2600 if (h->root.indx == -2)
b34976b6 2601 strip = FALSE;
f5385ebf 2602 else if ((h->root.def_dynamic
77cfaee6
AM
2603 || h->root.ref_dynamic
2604 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2605 && !h->root.def_regular
2606 && !h->root.ref_regular)
b34976b6 2607 strip = TRUE;
b49e97c9
TS
2608 else if (einfo->info->strip == strip_all
2609 || (einfo->info->strip == strip_some
2610 && bfd_hash_lookup (einfo->info->keep_hash,
2611 h->root.root.root.string,
b34976b6
AM
2612 FALSE, FALSE) == NULL))
2613 strip = TRUE;
b49e97c9 2614 else
b34976b6 2615 strip = FALSE;
b49e97c9
TS
2616
2617 if (strip)
b34976b6 2618 return TRUE;
b49e97c9
TS
2619
2620 if (h->esym.ifd == -2)
2621 {
2622 h->esym.jmptbl = 0;
2623 h->esym.cobol_main = 0;
2624 h->esym.weakext = 0;
2625 h->esym.reserved = 0;
2626 h->esym.ifd = ifdNil;
2627 h->esym.asym.value = 0;
2628 h->esym.asym.st = stGlobal;
2629
2630 if (h->root.root.type == bfd_link_hash_undefined
2631 || h->root.root.type == bfd_link_hash_undefweak)
2632 {
2633 const char *name;
2634
2635 /* Use undefined class. Also, set class and type for some
2636 special symbols. */
2637 name = h->root.root.root.string;
2638 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2639 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2640 {
2641 h->esym.asym.sc = scData;
2642 h->esym.asym.st = stLabel;
2643 h->esym.asym.value = 0;
2644 }
2645 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2646 {
2647 h->esym.asym.sc = scAbs;
2648 h->esym.asym.st = stLabel;
2649 h->esym.asym.value =
2650 mips_elf_hash_table (einfo->info)->procedure_count;
2651 }
4a14403c 2652 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2653 {
2654 h->esym.asym.sc = scAbs;
2655 h->esym.asym.st = stLabel;
2656 h->esym.asym.value = elf_gp (einfo->abfd);
2657 }
2658 else
2659 h->esym.asym.sc = scUndefined;
2660 }
2661 else if (h->root.root.type != bfd_link_hash_defined
2662 && h->root.root.type != bfd_link_hash_defweak)
2663 h->esym.asym.sc = scAbs;
2664 else
2665 {
2666 const char *name;
2667
2668 sec = h->root.root.u.def.section;
2669 output_section = sec->output_section;
2670
2671 /* When making a shared library and symbol h is the one from
2672 the another shared library, OUTPUT_SECTION may be null. */
2673 if (output_section == NULL)
2674 h->esym.asym.sc = scUndefined;
2675 else
2676 {
2677 name = bfd_section_name (output_section->owner, output_section);
2678
2679 if (strcmp (name, ".text") == 0)
2680 h->esym.asym.sc = scText;
2681 else if (strcmp (name, ".data") == 0)
2682 h->esym.asym.sc = scData;
2683 else if (strcmp (name, ".sdata") == 0)
2684 h->esym.asym.sc = scSData;
2685 else if (strcmp (name, ".rodata") == 0
2686 || strcmp (name, ".rdata") == 0)
2687 h->esym.asym.sc = scRData;
2688 else if (strcmp (name, ".bss") == 0)
2689 h->esym.asym.sc = scBss;
2690 else if (strcmp (name, ".sbss") == 0)
2691 h->esym.asym.sc = scSBss;
2692 else if (strcmp (name, ".init") == 0)
2693 h->esym.asym.sc = scInit;
2694 else if (strcmp (name, ".fini") == 0)
2695 h->esym.asym.sc = scFini;
2696 else
2697 h->esym.asym.sc = scAbs;
2698 }
2699 }
2700
2701 h->esym.asym.reserved = 0;
2702 h->esym.asym.index = indexNil;
2703 }
2704
2705 if (h->root.root.type == bfd_link_hash_common)
2706 h->esym.asym.value = h->root.root.u.c.size;
2707 else if (h->root.root.type == bfd_link_hash_defined
2708 || h->root.root.type == bfd_link_hash_defweak)
2709 {
2710 if (h->esym.asym.sc == scCommon)
2711 h->esym.asym.sc = scBss;
2712 else if (h->esym.asym.sc == scSCommon)
2713 h->esym.asym.sc = scSBss;
2714
2715 sec = h->root.root.u.def.section;
2716 output_section = sec->output_section;
2717 if (output_section != NULL)
2718 h->esym.asym.value = (h->root.root.u.def.value
2719 + sec->output_offset
2720 + output_section->vma);
2721 else
2722 h->esym.asym.value = 0;
2723 }
33bb52fb 2724 else
b49e97c9
TS
2725 {
2726 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2727
2728 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2729 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2730
33bb52fb 2731 if (hd->needs_lazy_stub)
b49e97c9
TS
2732 {
2733 /* Set type and value for a symbol with a function stub. */
2734 h->esym.asym.st = stProc;
2735 sec = hd->root.root.u.def.section;
2736 if (sec == NULL)
2737 h->esym.asym.value = 0;
2738 else
2739 {
2740 output_section = sec->output_section;
2741 if (output_section != NULL)
2742 h->esym.asym.value = (hd->root.plt.offset
2743 + sec->output_offset
2744 + output_section->vma);
2745 else
2746 h->esym.asym.value = 0;
2747 }
b49e97c9
TS
2748 }
2749 }
2750
2751 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2752 h->root.root.root.string,
2753 &h->esym))
2754 {
b34976b6
AM
2755 einfo->failed = TRUE;
2756 return FALSE;
b49e97c9
TS
2757 }
2758
b34976b6 2759 return TRUE;
b49e97c9
TS
2760}
2761
2762/* A comparison routine used to sort .gptab entries. */
2763
2764static int
9719ad41 2765gptab_compare (const void *p1, const void *p2)
b49e97c9 2766{
9719ad41
RS
2767 const Elf32_gptab *a1 = p1;
2768 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2769
2770 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2771}
2772\f
b15e6682 2773/* Functions to manage the got entry hash table. */
f4416af6
AO
2774
2775/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2776 hash number. */
2777
2778static INLINE hashval_t
9719ad41 2779mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2780{
2781#ifdef BFD64
2782 return addr + (addr >> 32);
2783#else
2784 return addr;
2785#endif
2786}
2787
f4416af6 2788static hashval_t
d9bf376d 2789mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2790{
2791 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2792
e641e783 2793 return (entry->symndx
9ab066b4
RS
2794 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2795 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
2796 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2797 : entry->symndx >= 0 ? (entry->abfd->id
2798 + mips_elf_hash_bfd_vma (entry->d.addend))
2799 : entry->d.h->root.root.root.hash));
f4416af6
AO
2800}
2801
2802static int
3dff0dd1 2803mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2804{
2805 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2806 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2807
e641e783 2808 return (e1->symndx == e2->symndx
9ab066b4
RS
2809 && e1->tls_type == e2->tls_type
2810 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
2811 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2812 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2813 && e1->d.addend == e2->d.addend)
2814 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 2815}
c224138d 2816
13db6b44
RS
2817static hashval_t
2818mips_got_page_ref_hash (const void *ref_)
2819{
2820 const struct mips_got_page_ref *ref;
2821
2822 ref = (const struct mips_got_page_ref *) ref_;
2823 return ((ref->symndx >= 0
2824 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2825 : ref->u.h->root.root.root.hash)
2826 + mips_elf_hash_bfd_vma (ref->addend));
2827}
2828
2829static int
2830mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2831{
2832 const struct mips_got_page_ref *ref1, *ref2;
2833
2834 ref1 = (const struct mips_got_page_ref *) ref1_;
2835 ref2 = (const struct mips_got_page_ref *) ref2_;
2836 return (ref1->symndx == ref2->symndx
2837 && (ref1->symndx < 0
2838 ? ref1->u.h == ref2->u.h
2839 : ref1->u.abfd == ref2->u.abfd)
2840 && ref1->addend == ref2->addend);
2841}
2842
c224138d
RS
2843static hashval_t
2844mips_got_page_entry_hash (const void *entry_)
2845{
2846 const struct mips_got_page_entry *entry;
2847
2848 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 2849 return entry->sec->id;
c224138d
RS
2850}
2851
2852static int
2853mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2854{
2855 const struct mips_got_page_entry *entry1, *entry2;
2856
2857 entry1 = (const struct mips_got_page_entry *) entry1_;
2858 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 2859 return entry1->sec == entry2->sec;
c224138d 2860}
b15e6682 2861\f
3dff0dd1 2862/* Create and return a new mips_got_info structure. */
5334aa52
RS
2863
2864static struct mips_got_info *
3dff0dd1 2865mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
2866{
2867 struct mips_got_info *g;
2868
2869 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2870 if (g == NULL)
2871 return NULL;
2872
3dff0dd1
RS
2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2874 mips_elf_got_entry_eq, NULL);
5334aa52
RS
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
13db6b44
RS
2878 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2879 mips_got_page_ref_eq, NULL);
2880 if (g->got_page_refs == NULL)
5334aa52
RS
2881 return NULL;
2882
2883 return g;
2884}
2885
ee227692
RS
2886/* Return the GOT info for input bfd ABFD, trying to create a new one if
2887 CREATE_P and if ABFD doesn't already have a GOT. */
2888
2889static struct mips_got_info *
2890mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2891{
2892 struct mips_elf_obj_tdata *tdata;
2893
2894 if (!is_mips_elf (abfd))
2895 return NULL;
2896
2897 tdata = mips_elf_tdata (abfd);
2898 if (!tdata->got && create_p)
3dff0dd1 2899 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
2900 return tdata->got;
2901}
2902
d7206569
RS
2903/* Record that ABFD should use output GOT G. */
2904
2905static void
2906mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2907{
2908 struct mips_elf_obj_tdata *tdata;
2909
2910 BFD_ASSERT (is_mips_elf (abfd));
2911 tdata = mips_elf_tdata (abfd);
2912 if (tdata->got)
2913 {
2914 /* The GOT structure itself and the hash table entries are
2915 allocated to a bfd, but the hash tables aren't. */
2916 htab_delete (tdata->got->got_entries);
13db6b44
RS
2917 htab_delete (tdata->got->got_page_refs);
2918 if (tdata->got->got_page_entries)
2919 htab_delete (tdata->got->got_page_entries);
d7206569
RS
2920 }
2921 tdata->got = g;
2922}
2923
0a44bf69
RS
2924/* Return the dynamic relocation section. If it doesn't exist, try to
2925 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2926 if creation fails. */
f4416af6
AO
2927
2928static asection *
0a44bf69 2929mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2930{
0a44bf69 2931 const char *dname;
f4416af6 2932 asection *sreloc;
0a44bf69 2933 bfd *dynobj;
f4416af6 2934
0a44bf69
RS
2935 dname = MIPS_ELF_REL_DYN_NAME (info);
2936 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2937 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2938 if (sreloc == NULL && create_p)
2939 {
3d4d4302
AM
2940 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2941 (SEC_ALLOC
2942 | SEC_LOAD
2943 | SEC_HAS_CONTENTS
2944 | SEC_IN_MEMORY
2945 | SEC_LINKER_CREATED
2946 | SEC_READONLY));
f4416af6 2947 if (sreloc == NULL
f4416af6 2948 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2949 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2950 return NULL;
2951 }
2952 return sreloc;
2953}
2954
e641e783
RS
2955/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2956
2957static int
2958mips_elf_reloc_tls_type (unsigned int r_type)
2959{
2960 if (tls_gd_reloc_p (r_type))
2961 return GOT_TLS_GD;
2962
2963 if (tls_ldm_reloc_p (r_type))
2964 return GOT_TLS_LDM;
2965
2966 if (tls_gottprel_reloc_p (r_type))
2967 return GOT_TLS_IE;
2968
9ab066b4 2969 return GOT_TLS_NONE;
e641e783
RS
2970}
2971
2972/* Return the number of GOT slots needed for GOT TLS type TYPE. */
2973
2974static int
2975mips_tls_got_entries (unsigned int type)
2976{
2977 switch (type)
2978 {
2979 case GOT_TLS_GD:
2980 case GOT_TLS_LDM:
2981 return 2;
2982
2983 case GOT_TLS_IE:
2984 return 1;
2985
9ab066b4 2986 case GOT_TLS_NONE:
e641e783
RS
2987 return 0;
2988 }
2989 abort ();
2990}
2991
0f20cc35
DJ
2992/* Count the number of relocations needed for a TLS GOT entry, with
2993 access types from TLS_TYPE, and symbol H (or a local symbol if H
2994 is NULL). */
2995
2996static int
2997mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2998 struct elf_link_hash_entry *h)
2999{
3000 int indx = 0;
0f20cc35
DJ
3001 bfd_boolean need_relocs = FALSE;
3002 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3003
3004 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3005 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3006 indx = h->dynindx;
3007
3008 if ((info->shared || indx != 0)
3009 && (h == NULL
3010 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3011 || h->root.type != bfd_link_hash_undefweak))
3012 need_relocs = TRUE;
3013
3014 if (!need_relocs)
e641e783 3015 return 0;
0f20cc35 3016
9ab066b4 3017 switch (tls_type)
0f20cc35 3018 {
e641e783
RS
3019 case GOT_TLS_GD:
3020 return indx != 0 ? 2 : 1;
0f20cc35 3021
e641e783
RS
3022 case GOT_TLS_IE:
3023 return 1;
0f20cc35 3024
e641e783
RS
3025 case GOT_TLS_LDM:
3026 return info->shared ? 1 : 0;
0f20cc35 3027
e641e783
RS
3028 default:
3029 return 0;
3030 }
0f20cc35
DJ
3031}
3032
ab361d49
RS
3033/* Add the number of GOT entries and TLS relocations required by ENTRY
3034 to G. */
0f20cc35 3035
ab361d49
RS
3036static void
3037mips_elf_count_got_entry (struct bfd_link_info *info,
3038 struct mips_got_info *g,
3039 struct mips_got_entry *entry)
0f20cc35 3040{
9ab066b4 3041 if (entry->tls_type)
ab361d49 3042 {
9ab066b4
RS
3043 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3044 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3045 entry->symndx < 0
3046 ? &entry->d.h->root : NULL);
3047 }
3048 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3049 g->local_gotno += 1;
3050 else
3051 g->global_gotno += 1;
0f20cc35
DJ
3052}
3053
0f20cc35
DJ
3054/* Output a simple dynamic relocation into SRELOC. */
3055
3056static void
3057mips_elf_output_dynamic_relocation (bfd *output_bfd,
3058 asection *sreloc,
861fb55a 3059 unsigned long reloc_index,
0f20cc35
DJ
3060 unsigned long indx,
3061 int r_type,
3062 bfd_vma offset)
3063{
3064 Elf_Internal_Rela rel[3];
3065
3066 memset (rel, 0, sizeof (rel));
3067
3068 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3069 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3070
3071 if (ABI_64_P (output_bfd))
3072 {
3073 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3074 (output_bfd, &rel[0],
3075 (sreloc->contents
861fb55a 3076 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3077 }
3078 else
3079 bfd_elf32_swap_reloc_out
3080 (output_bfd, &rel[0],
3081 (sreloc->contents
861fb55a 3082 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3083}
3084
3085/* Initialize a set of TLS GOT entries for one symbol. */
3086
3087static void
9ab066b4
RS
3088mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3089 struct mips_got_entry *entry,
0f20cc35
DJ
3090 struct mips_elf_link_hash_entry *h,
3091 bfd_vma value)
3092{
23cc69b6 3093 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3094 int indx;
3095 asection *sreloc, *sgot;
9ab066b4 3096 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3097 bfd_boolean need_relocs = FALSE;
3098
23cc69b6 3099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3100 if (htab == NULL)
3101 return;
3102
23cc69b6 3103 sgot = htab->sgot;
0f20cc35
DJ
3104
3105 indx = 0;
3106 if (h != NULL)
3107 {
3108 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3109
3110 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3111 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3112 indx = h->root.dynindx;
3113 }
3114
9ab066b4 3115 if (entry->tls_initialized)
0f20cc35
DJ
3116 return;
3117
3118 if ((info->shared || indx != 0)
3119 && (h == NULL
3120 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3121 || h->root.type != bfd_link_hash_undefweak))
3122 need_relocs = TRUE;
3123
3124 /* MINUS_ONE means the symbol is not defined in this object. It may not
3125 be defined at all; assume that the value doesn't matter in that
3126 case. Otherwise complain if we would use the value. */
3127 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3128 || h->root.root.type == bfd_link_hash_undefweak);
3129
3130 /* Emit necessary relocations. */
0a44bf69 3131 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3132 got_offset = entry->gotidx;
0f20cc35 3133
9ab066b4 3134 switch (entry->tls_type)
0f20cc35 3135 {
e641e783
RS
3136 case GOT_TLS_GD:
3137 /* General Dynamic. */
3138 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3139
3140 if (need_relocs)
3141 {
3142 mips_elf_output_dynamic_relocation
861fb55a 3143 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3144 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3145 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3146
3147 if (indx)
3148 mips_elf_output_dynamic_relocation
861fb55a 3149 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3150 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3151 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3152 else
3153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3154 sgot->contents + got_offset2);
0f20cc35
DJ
3155 }
3156 else
3157 {
3158 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3159 sgot->contents + got_offset);
0f20cc35 3160 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3161 sgot->contents + got_offset2);
0f20cc35 3162 }
e641e783 3163 break;
0f20cc35 3164
e641e783
RS
3165 case GOT_TLS_IE:
3166 /* Initial Exec model. */
0f20cc35
DJ
3167 if (need_relocs)
3168 {
3169 if (indx == 0)
3170 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3171 sgot->contents + got_offset);
0f20cc35
DJ
3172 else
3173 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3174 sgot->contents + got_offset);
0f20cc35
DJ
3175
3176 mips_elf_output_dynamic_relocation
861fb55a 3177 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3178 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3179 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3180 }
3181 else
3182 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3183 sgot->contents + got_offset);
3184 break;
0f20cc35 3185
e641e783 3186 case GOT_TLS_LDM:
0f20cc35
DJ
3187 /* The initial offset is zero, and the LD offsets will include the
3188 bias by DTP_OFFSET. */
3189 MIPS_ELF_PUT_WORD (abfd, 0,
3190 sgot->contents + got_offset
3191 + MIPS_ELF_GOT_SIZE (abfd));
3192
3193 if (!info->shared)
3194 MIPS_ELF_PUT_WORD (abfd, 1,
3195 sgot->contents + got_offset);
3196 else
3197 mips_elf_output_dynamic_relocation
861fb55a 3198 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3199 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3200 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3201 break;
3202
3203 default:
3204 abort ();
0f20cc35
DJ
3205 }
3206
9ab066b4 3207 entry->tls_initialized = TRUE;
e641e783 3208}
0f20cc35 3209
0a44bf69
RS
3210/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3211 for global symbol H. .got.plt comes before the GOT, so the offset
3212 will be negative. */
3213
3214static bfd_vma
3215mips_elf_gotplt_index (struct bfd_link_info *info,
3216 struct elf_link_hash_entry *h)
3217{
3218 bfd_vma plt_index, got_address, got_value;
3219 struct mips_elf_link_hash_table *htab;
3220
3221 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3222 BFD_ASSERT (htab != NULL);
3223
0a44bf69
RS
3224 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3225
861fb55a
DJ
3226 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3227 section starts with reserved entries. */
3228 BFD_ASSERT (htab->is_vxworks);
3229
0a44bf69
RS
3230 /* Calculate the index of the symbol's PLT entry. */
3231 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3232
3233 /* Calculate the address of the associated .got.plt entry. */
3234 got_address = (htab->sgotplt->output_section->vma
3235 + htab->sgotplt->output_offset
3236 + plt_index * 4);
3237
3238 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3239 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3240 + htab->root.hgot->root.u.def.section->output_offset
3241 + htab->root.hgot->root.u.def.value);
3242
3243 return got_address - got_value;
3244}
3245
5c18022e 3246/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3247 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3248 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3249 offset can be found. */
b49e97c9
TS
3250
3251static bfd_vma
9719ad41 3252mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3253 bfd_vma value, unsigned long r_symndx,
0f20cc35 3254 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3255{
a8028dd0 3256 struct mips_elf_link_hash_table *htab;
b15e6682 3257 struct mips_got_entry *entry;
b49e97c9 3258
a8028dd0 3259 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3260 BFD_ASSERT (htab != NULL);
3261
a8028dd0
RS
3262 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3263 r_symndx, h, r_type);
0f20cc35 3264 if (!entry)
b15e6682 3265 return MINUS_ONE;
0f20cc35 3266
e641e783 3267 if (entry->tls_type)
9ab066b4
RS
3268 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3269 return entry->gotidx;
b49e97c9
TS
3270}
3271
13fbec83 3272/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3273
3274static bfd_vma
13fbec83
RS
3275mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3276 struct elf_link_hash_entry *h)
3277{
3278 struct mips_elf_link_hash_table *htab;
3279 long global_got_dynindx;
3280 struct mips_got_info *g;
3281 bfd_vma got_index;
3282
3283 htab = mips_elf_hash_table (info);
3284 BFD_ASSERT (htab != NULL);
3285
3286 global_got_dynindx = 0;
3287 if (htab->global_gotsym != NULL)
3288 global_got_dynindx = htab->global_gotsym->dynindx;
3289
3290 /* Once we determine the global GOT entry with the lowest dynamic
3291 symbol table index, we must put all dynamic symbols with greater
3292 indices into the primary GOT. That makes it easy to calculate the
3293 GOT offset. */
3294 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3295 g = mips_elf_bfd_got (obfd, FALSE);
3296 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3297 * MIPS_ELF_GOT_SIZE (obfd));
3298 BFD_ASSERT (got_index < htab->sgot->size);
3299
3300 return got_index;
3301}
3302
3303/* Return the GOT index for the global symbol indicated by H, which is
3304 referenced by a relocation of type R_TYPE in IBFD. */
3305
3306static bfd_vma
3307mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3308 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3309{
a8028dd0 3310 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3311 struct mips_got_info *g;
3312 struct mips_got_entry lookup, *entry;
3313 bfd_vma gotidx;
b49e97c9 3314
a8028dd0 3315 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3316 BFD_ASSERT (htab != NULL);
3317
6c42ddb9
RS
3318 g = mips_elf_bfd_got (ibfd, FALSE);
3319 BFD_ASSERT (g);
f4416af6 3320
6c42ddb9
RS
3321 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3322 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3323 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3324
6c42ddb9
RS
3325 lookup.abfd = ibfd;
3326 lookup.symndx = -1;
3327 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3328 entry = htab_find (g->got_entries, &lookup);
3329 BFD_ASSERT (entry);
0f20cc35 3330
6c42ddb9
RS
3331 gotidx = entry->gotidx;
3332 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3333
6c42ddb9 3334 if (lookup.tls_type)
0f20cc35 3335 {
0f20cc35
DJ
3336 bfd_vma value = MINUS_ONE;
3337
3338 if ((h->root.type == bfd_link_hash_defined
3339 || h->root.type == bfd_link_hash_defweak)
3340 && h->root.u.def.section->output_section)
3341 value = (h->root.u.def.value
3342 + h->root.u.def.section->output_offset
3343 + h->root.u.def.section->output_section->vma);
3344
9ab066b4 3345 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3346 }
6c42ddb9 3347 return gotidx;
b49e97c9
TS
3348}
3349
5c18022e
RS
3350/* Find a GOT page entry that points to within 32KB of VALUE. These
3351 entries are supposed to be placed at small offsets in the GOT, i.e.,
3352 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3353 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3354 offset of the GOT entry from VALUE. */
b49e97c9
TS
3355
3356static bfd_vma
9719ad41 3357mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3358 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3359{
91d6fa6a 3360 bfd_vma page, got_index;
b15e6682 3361 struct mips_got_entry *entry;
b49e97c9 3362
0a44bf69 3363 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3364 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3365 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3366
b15e6682
AO
3367 if (!entry)
3368 return MINUS_ONE;
143d77c5 3369
91d6fa6a 3370 got_index = entry->gotidx;
b49e97c9
TS
3371
3372 if (offsetp)
f4416af6 3373 *offsetp = value - entry->d.address;
b49e97c9 3374
91d6fa6a 3375 return got_index;
b49e97c9
TS
3376}
3377
738e5348 3378/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3379 EXTERNAL is true if the relocation was originally against a global
3380 symbol that binds locally. */
b49e97c9
TS
3381
3382static bfd_vma
9719ad41 3383mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3384 bfd_vma value, bfd_boolean external)
b49e97c9 3385{
b15e6682 3386 struct mips_got_entry *entry;
b49e97c9 3387
0a44bf69
RS
3388 /* GOT16 relocations against local symbols are followed by a LO16
3389 relocation; those against global symbols are not. Thus if the
3390 symbol was originally local, the GOT16 relocation should load the
3391 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3392 if (! external)
0a44bf69 3393 value = mips_elf_high (value) << 16;
b49e97c9 3394
738e5348
RS
3395 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3396 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3397 same in all cases. */
a8028dd0
RS
3398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3399 NULL, R_MIPS_GOT16);
b15e6682
AO
3400 if (entry)
3401 return entry->gotidx;
3402 else
3403 return MINUS_ONE;
b49e97c9
TS
3404}
3405
3406/* Returns the offset for the entry at the INDEXth position
3407 in the GOT. */
3408
3409static bfd_vma
a8028dd0 3410mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3411 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3412{
a8028dd0 3413 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3414 asection *sgot;
3415 bfd_vma gp;
3416
a8028dd0 3417 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3418 BFD_ASSERT (htab != NULL);
3419
a8028dd0 3420 sgot = htab->sgot;
f4416af6 3421 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3422 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3423
91d6fa6a 3424 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3425}
3426
0a44bf69
RS
3427/* Create and return a local GOT entry for VALUE, which was calculated
3428 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3429 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3430 instead. */
b49e97c9 3431
b15e6682 3432static struct mips_got_entry *
0a44bf69 3433mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3434 bfd *ibfd, bfd_vma value,
5c18022e 3435 unsigned long r_symndx,
0f20cc35
DJ
3436 struct mips_elf_link_hash_entry *h,
3437 int r_type)
b49e97c9 3438{
ebc53538
RS
3439 struct mips_got_entry lookup, *entry;
3440 void **loc;
f4416af6 3441 struct mips_got_info *g;
0a44bf69 3442 struct mips_elf_link_hash_table *htab;
6c42ddb9 3443 bfd_vma gotidx;
0a44bf69
RS
3444
3445 htab = mips_elf_hash_table (info);
4dfe6ac6 3446 BFD_ASSERT (htab != NULL);
b15e6682 3447
d7206569 3448 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3449 if (g == NULL)
3450 {
d7206569 3451 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3452 BFD_ASSERT (g != NULL);
3453 }
b15e6682 3454
020d7251
RS
3455 /* This function shouldn't be called for symbols that live in the global
3456 area of the GOT. */
3457 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3458
ebc53538
RS
3459 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3460 if (lookup.tls_type)
3461 {
3462 lookup.abfd = ibfd;
df58fc94 3463 if (tls_ldm_reloc_p (r_type))
0f20cc35 3464 {
ebc53538
RS
3465 lookup.symndx = 0;
3466 lookup.d.addend = 0;
0f20cc35
DJ
3467 }
3468 else if (h == NULL)
3469 {
ebc53538
RS
3470 lookup.symndx = r_symndx;
3471 lookup.d.addend = 0;
0f20cc35
DJ
3472 }
3473 else
ebc53538
RS
3474 {
3475 lookup.symndx = -1;
3476 lookup.d.h = h;
3477 }
0f20cc35 3478
ebc53538
RS
3479 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3480 BFD_ASSERT (entry);
0f20cc35 3481
6c42ddb9
RS
3482 gotidx = entry->gotidx;
3483 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3484
ebc53538 3485 return entry;
0f20cc35
DJ
3486 }
3487
ebc53538
RS
3488 lookup.abfd = NULL;
3489 lookup.symndx = -1;
3490 lookup.d.address = value;
3491 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3492 if (!loc)
b15e6682 3493 return NULL;
143d77c5 3494
ebc53538
RS
3495 entry = (struct mips_got_entry *) *loc;
3496 if (entry)
3497 return entry;
b15e6682 3498
ebc53538 3499 if (g->assigned_gotno >= g->local_gotno)
b49e97c9
TS
3500 {
3501 /* We didn't allocate enough space in the GOT. */
3502 (*_bfd_error_handler)
3503 (_("not enough GOT space for local GOT entries"));
3504 bfd_set_error (bfd_error_bad_value);
b15e6682 3505 return NULL;
b49e97c9
TS
3506 }
3507
ebc53538
RS
3508 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3509 if (!entry)
3510 return NULL;
3511
3512 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3513 *entry = lookup;
3514 *loc = entry;
3515
3516 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3517
5c18022e 3518 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3519 if (htab->is_vxworks)
3520 {
3521 Elf_Internal_Rela outrel;
5c18022e 3522 asection *s;
91d6fa6a 3523 bfd_byte *rloc;
0a44bf69 3524 bfd_vma got_address;
0a44bf69
RS
3525
3526 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3527 got_address = (htab->sgot->output_section->vma
3528 + htab->sgot->output_offset
ebc53538 3529 + entry->gotidx);
0a44bf69 3530
91d6fa6a 3531 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3532 outrel.r_offset = got_address;
5c18022e
RS
3533 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3534 outrel.r_addend = value;
91d6fa6a 3535 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3536 }
3537
ebc53538 3538 return entry;
b49e97c9
TS
3539}
3540
d4596a51
RS
3541/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3542 The number might be exact or a worst-case estimate, depending on how
3543 much information is available to elf_backend_omit_section_dynsym at
3544 the current linking stage. */
3545
3546static bfd_size_type
3547count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3548{
3549 bfd_size_type count;
3550
3551 count = 0;
3552 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3553 {
3554 asection *p;
3555 const struct elf_backend_data *bed;
3556
3557 bed = get_elf_backend_data (output_bfd);
3558 for (p = output_bfd->sections; p ; p = p->next)
3559 if ((p->flags & SEC_EXCLUDE) == 0
3560 && (p->flags & SEC_ALLOC) != 0
3561 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3562 ++count;
3563 }
3564 return count;
3565}
3566
b49e97c9 3567/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3568 appear towards the end. */
b49e97c9 3569
b34976b6 3570static bfd_boolean
d4596a51 3571mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3572{
a8028dd0 3573 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3574 struct mips_elf_hash_sort_data hsd;
3575 struct mips_got_info *g;
b49e97c9 3576
d4596a51
RS
3577 if (elf_hash_table (info)->dynsymcount == 0)
3578 return TRUE;
3579
a8028dd0 3580 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3581 BFD_ASSERT (htab != NULL);
3582
a8028dd0 3583 g = htab->got_info;
d4596a51
RS
3584 if (g == NULL)
3585 return TRUE;
f4416af6 3586
b49e97c9 3587 hsd.low = NULL;
23cc69b6
RS
3588 hsd.max_unref_got_dynindx
3589 = hsd.min_got_dynindx
3590 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3591 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3592 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3593 elf_hash_table (info)),
3594 mips_elf_sort_hash_table_f,
3595 &hsd);
3596
3597 /* There should have been enough room in the symbol table to
44c410de 3598 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3599 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3600 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3601 == elf_hash_table (info)->dynsymcount);
3602 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3603 == g->global_gotno);
b49e97c9
TS
3604
3605 /* Now we know which dynamic symbol has the lowest dynamic symbol
3606 table index in the GOT. */
d222d210 3607 htab->global_gotsym = hsd.low;
b49e97c9 3608
b34976b6 3609 return TRUE;
b49e97c9
TS
3610}
3611
3612/* If H needs a GOT entry, assign it the highest available dynamic
3613 index. Otherwise, assign it the lowest available dynamic
3614 index. */
3615
b34976b6 3616static bfd_boolean
9719ad41 3617mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3618{
9719ad41 3619 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3620
b49e97c9
TS
3621 /* Symbols without dynamic symbol table entries aren't interesting
3622 at all. */
3623 if (h->root.dynindx == -1)
b34976b6 3624 return TRUE;
b49e97c9 3625
634835ae 3626 switch (h->global_got_area)
f4416af6 3627 {
634835ae
RS
3628 case GGA_NONE:
3629 h->root.dynindx = hsd->max_non_got_dynindx++;
3630 break;
0f20cc35 3631
634835ae 3632 case GGA_NORMAL:
b49e97c9
TS
3633 h->root.dynindx = --hsd->min_got_dynindx;
3634 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3635 break;
3636
3637 case GGA_RELOC_ONLY:
634835ae
RS
3638 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3639 hsd->low = (struct elf_link_hash_entry *) h;
3640 h->root.dynindx = hsd->max_unref_got_dynindx++;
3641 break;
b49e97c9
TS
3642 }
3643
b34976b6 3644 return TRUE;
b49e97c9
TS
3645}
3646
ee227692
RS
3647/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3648 (which is owned by the caller and shouldn't be added to the
3649 hash table directly). */
3650
3651static bfd_boolean
3652mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3653 struct mips_got_entry *lookup)
3654{
3655 struct mips_elf_link_hash_table *htab;
3656 struct mips_got_entry *entry;
3657 struct mips_got_info *g;
3658 void **loc, **bfd_loc;
3659
3660 /* Make sure there's a slot for this entry in the master GOT. */
3661 htab = mips_elf_hash_table (info);
3662 g = htab->got_info;
3663 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3664 if (!loc)
3665 return FALSE;
3666
3667 /* Populate the entry if it isn't already. */
3668 entry = (struct mips_got_entry *) *loc;
3669 if (!entry)
3670 {
3671 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3672 if (!entry)
3673 return FALSE;
3674
9ab066b4 3675 lookup->tls_initialized = FALSE;
ee227692
RS
3676 lookup->gotidx = -1;
3677 *entry = *lookup;
3678 *loc = entry;
3679 }
3680
3681 /* Reuse the same GOT entry for the BFD's GOT. */
3682 g = mips_elf_bfd_got (abfd, TRUE);
3683 if (!g)
3684 return FALSE;
3685
3686 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3687 if (!bfd_loc)
3688 return FALSE;
3689
3690 if (!*bfd_loc)
3691 *bfd_loc = entry;
3692 return TRUE;
3693}
3694
e641e783
RS
3695/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3696 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3697 using the GOT entry for calls. */
b49e97c9 3698
b34976b6 3699static bfd_boolean
9719ad41
RS
3700mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3701 bfd *abfd, struct bfd_link_info *info,
e641e783 3702 bfd_boolean for_call, int r_type)
b49e97c9 3703{
a8028dd0 3704 struct mips_elf_link_hash_table *htab;
634835ae 3705 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3706 struct mips_got_entry entry;
3707 unsigned char tls_type;
a8028dd0
RS
3708
3709 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3710 BFD_ASSERT (htab != NULL);
3711
634835ae 3712 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3713 if (!for_call)
3714 hmips->got_only_for_calls = FALSE;
f4416af6 3715
b49e97c9
TS
3716 /* A global symbol in the GOT must also be in the dynamic symbol
3717 table. */
7c5fcef7
L
3718 if (h->dynindx == -1)
3719 {
3720 switch (ELF_ST_VISIBILITY (h->other))
3721 {
3722 case STV_INTERNAL:
3723 case STV_HIDDEN:
33bb52fb 3724 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3725 break;
3726 }
c152c796 3727 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3728 return FALSE;
7c5fcef7 3729 }
b49e97c9 3730
ee227692 3731 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3732 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3733 hmips->global_got_area = GGA_NORMAL;
86324f90 3734
f4416af6
AO
3735 entry.abfd = abfd;
3736 entry.symndx = -1;
3737 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3738 entry.tls_type = tls_type;
3739 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3740}
f4416af6 3741
e641e783
RS
3742/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3743 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3744
3745static bfd_boolean
9719ad41 3746mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3747 struct bfd_link_info *info, int r_type)
f4416af6 3748{
a8028dd0
RS
3749 struct mips_elf_link_hash_table *htab;
3750 struct mips_got_info *g;
ee227692 3751 struct mips_got_entry entry;
f4416af6 3752
a8028dd0 3753 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3754 BFD_ASSERT (htab != NULL);
3755
a8028dd0
RS
3756 g = htab->got_info;
3757 BFD_ASSERT (g != NULL);
3758
f4416af6
AO
3759 entry.abfd = abfd;
3760 entry.symndx = symndx;
3761 entry.d.addend = addend;
e641e783 3762 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3763 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3764}
c224138d 3765
13db6b44
RS
3766/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3767 H is the symbol's hash table entry, or null if SYMNDX is local
3768 to ABFD. */
c224138d
RS
3769
3770static bfd_boolean
13db6b44
RS
3771mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3772 long symndx, struct elf_link_hash_entry *h,
3773 bfd_signed_vma addend)
c224138d 3774{
a8028dd0 3775 struct mips_elf_link_hash_table *htab;
ee227692 3776 struct mips_got_info *g1, *g2;
13db6b44 3777 struct mips_got_page_ref lookup, *entry;
ee227692 3778 void **loc, **bfd_loc;
c224138d 3779
a8028dd0 3780 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3781 BFD_ASSERT (htab != NULL);
3782
ee227692
RS
3783 g1 = htab->got_info;
3784 BFD_ASSERT (g1 != NULL);
a8028dd0 3785
13db6b44
RS
3786 if (h)
3787 {
3788 lookup.symndx = -1;
3789 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3790 }
3791 else
3792 {
3793 lookup.symndx = symndx;
3794 lookup.u.abfd = abfd;
3795 }
3796 lookup.addend = addend;
3797 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
3798 if (loc == NULL)
3799 return FALSE;
3800
13db6b44 3801 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
3802 if (!entry)
3803 {
3804 entry = bfd_alloc (abfd, sizeof (*entry));
3805 if (!entry)
3806 return FALSE;
3807
13db6b44 3808 *entry = lookup;
c224138d
RS
3809 *loc = entry;
3810 }
3811
ee227692
RS
3812 /* Add the same entry to the BFD's GOT. */
3813 g2 = mips_elf_bfd_got (abfd, TRUE);
3814 if (!g2)
3815 return FALSE;
3816
13db6b44 3817 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
3818 if (!bfd_loc)
3819 return FALSE;
3820
3821 if (!*bfd_loc)
3822 *bfd_loc = entry;
3823
c224138d
RS
3824 return TRUE;
3825}
33bb52fb
RS
3826
3827/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3828
3829static void
3830mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3831 unsigned int n)
3832{
3833 asection *s;
3834 struct mips_elf_link_hash_table *htab;
3835
3836 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3837 BFD_ASSERT (htab != NULL);
3838
33bb52fb
RS
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 BFD_ASSERT (s != NULL);
3841
3842 if (htab->is_vxworks)
3843 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3844 else
3845 {
3846 if (s->size == 0)
3847 {
3848 /* Make room for a null element. */
3849 s->size += MIPS_ELF_REL_SIZE (abfd);
3850 ++s->reloc_count;
3851 }
3852 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3853 }
3854}
3855\f
476366af
RS
3856/* A htab_traverse callback for GOT entries, with DATA pointing to a
3857 mips_elf_traverse_got_arg structure. Count the number of GOT
3858 entries and TLS relocs. Set DATA->value to true if we need
3859 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
3860
3861static int
3862mips_elf_check_recreate_got (void **entryp, void *data)
3863{
3864 struct mips_got_entry *entry;
476366af 3865 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3866
3867 entry = (struct mips_got_entry *) *entryp;
476366af 3868 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
3869 if (entry->abfd != NULL && entry->symndx == -1)
3870 {
3871 struct mips_elf_link_hash_entry *h;
3872
3873 h = entry->d.h;
3874 if (h->root.root.type == bfd_link_hash_indirect
3875 || h->root.root.type == bfd_link_hash_warning)
3876 {
476366af 3877 arg->value = TRUE;
33bb52fb
RS
3878 return 0;
3879 }
3880 }
476366af 3881 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
3882 return 1;
3883}
3884
476366af
RS
3885/* A htab_traverse callback for GOT entries, with DATA pointing to a
3886 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3887 converting entries for indirect and warning symbols into entries
3888 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
3889
3890static int
3891mips_elf_recreate_got (void **entryp, void *data)
3892{
72e7511a 3893 struct mips_got_entry new_entry, *entry;
476366af 3894 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3895 void **slot;
3896
33bb52fb 3897 entry = (struct mips_got_entry *) *entryp;
476366af 3898 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
3899 if (entry->abfd != NULL
3900 && entry->symndx == -1
3901 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3902 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
3903 {
3904 struct mips_elf_link_hash_entry *h;
3905
72e7511a
RS
3906 new_entry = *entry;
3907 entry = &new_entry;
33bb52fb 3908 h = entry->d.h;
72e7511a 3909 do
634835ae
RS
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
72e7511a
RS
3914 while (h->root.root.type == bfd_link_hash_indirect
3915 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
3916 entry->d.h = h;
3917 }
476366af 3918 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
3919 if (slot == NULL)
3920 {
476366af 3921 arg->g = NULL;
33bb52fb
RS
3922 return 0;
3923 }
3924 if (*slot == NULL)
72e7511a
RS
3925 {
3926 if (entry == &new_entry)
3927 {
3928 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3929 if (!entry)
3930 {
476366af 3931 arg->g = NULL;
72e7511a
RS
3932 return 0;
3933 }
3934 *entry = new_entry;
3935 }
3936 *slot = entry;
476366af 3937 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 3938 }
33bb52fb
RS
3939 return 1;
3940}
3941
13db6b44
RS
3942/* Return the maximum number of GOT page entries required for RANGE. */
3943
3944static bfd_vma
3945mips_elf_pages_for_range (const struct mips_got_page_range *range)
3946{
3947 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3948}
3949
3950/* Record that G requires a page entry that can reach SEC + ADDEND. */
3951
3952static bfd_boolean
3953mips_elf_record_got_page_entry (struct mips_got_info *g,
3954 asection *sec, bfd_signed_vma addend)
3955{
3956 struct mips_got_page_entry lookup, *entry;
3957 struct mips_got_page_range **range_ptr, *range;
3958 bfd_vma old_pages, new_pages;
3959 void **loc;
3960
3961 /* Find the mips_got_page_entry hash table entry for this section. */
3962 lookup.sec = sec;
3963 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3964 if (loc == NULL)
3965 return FALSE;
3966
3967 /* Create a mips_got_page_entry if this is the first time we've
3968 seen the section. */
3969 entry = (struct mips_got_page_entry *) *loc;
3970 if (!entry)
3971 {
3972 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3973 if (!entry)
3974 return FALSE;
3975
3976 entry->sec = sec;
3977 *loc = entry;
3978 }
3979
3980 /* Skip over ranges whose maximum extent cannot share a page entry
3981 with ADDEND. */
3982 range_ptr = &entry->ranges;
3983 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3984 range_ptr = &(*range_ptr)->next;
3985
3986 /* If we scanned to the end of the list, or found a range whose
3987 minimum extent cannot share a page entry with ADDEND, create
3988 a new singleton range. */
3989 range = *range_ptr;
3990 if (!range || addend < range->min_addend - 0xffff)
3991 {
3992 range = bfd_zalloc (sec->owner, sizeof (*range));
3993 if (!range)
3994 return FALSE;
3995
3996 range->next = *range_ptr;
3997 range->min_addend = addend;
3998 range->max_addend = addend;
3999
4000 *range_ptr = range;
4001 entry->num_pages++;
4002 g->page_gotno++;
4003 return TRUE;
4004 }
4005
4006 /* Remember how many pages the old range contributed. */
4007 old_pages = mips_elf_pages_for_range (range);
4008
4009 /* Update the ranges. */
4010 if (addend < range->min_addend)
4011 range->min_addend = addend;
4012 else if (addend > range->max_addend)
4013 {
4014 if (range->next && addend >= range->next->min_addend - 0xffff)
4015 {
4016 old_pages += mips_elf_pages_for_range (range->next);
4017 range->max_addend = range->next->max_addend;
4018 range->next = range->next->next;
4019 }
4020 else
4021 range->max_addend = addend;
4022 }
4023
4024 /* Record any change in the total estimate. */
4025 new_pages = mips_elf_pages_for_range (range);
4026 if (old_pages != new_pages)
4027 {
4028 entry->num_pages += new_pages - old_pages;
4029 g->page_gotno += new_pages - old_pages;
4030 }
4031
4032 return TRUE;
4033}
4034
4035/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4036 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4037 whether the page reference described by *REFP needs a GOT page entry,
4038 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4039
4040static bfd_boolean
4041mips_elf_resolve_got_page_ref (void **refp, void *data)
4042{
4043 struct mips_got_page_ref *ref;
4044 struct mips_elf_traverse_got_arg *arg;
4045 struct mips_elf_link_hash_table *htab;
4046 asection *sec;
4047 bfd_vma addend;
4048
4049 ref = (struct mips_got_page_ref *) *refp;
4050 arg = (struct mips_elf_traverse_got_arg *) data;
4051 htab = mips_elf_hash_table (arg->info);
4052
4053 if (ref->symndx < 0)
4054 {
4055 struct mips_elf_link_hash_entry *h;
4056
4057 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4058 h = ref->u.h;
4059 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4060 return 1;
4061
4062 /* Ignore undefined symbols; we'll issue an error later if
4063 appropriate. */
4064 if (!((h->root.root.type == bfd_link_hash_defined
4065 || h->root.root.type == bfd_link_hash_defweak)
4066 && h->root.root.u.def.section))
4067 return 1;
4068
4069 sec = h->root.root.u.def.section;
4070 addend = h->root.root.u.def.value + ref->addend;
4071 }
4072 else
4073 {
4074 Elf_Internal_Sym *isym;
4075
4076 /* Read in the symbol. */
4077 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4078 ref->symndx);
4079 if (isym == NULL)
4080 {
4081 arg->g = NULL;
4082 return 0;
4083 }
4084
4085 /* Get the associated input section. */
4086 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4087 if (sec == NULL)
4088 {
4089 arg->g = NULL;
4090 return 0;
4091 }
4092
4093 /* If this is a mergable section, work out the section and offset
4094 of the merged data. For section symbols, the addend specifies
4095 of the offset _of_ the first byte in the data, otherwise it
4096 specifies the offset _from_ the first byte. */
4097 if (sec->flags & SEC_MERGE)
4098 {
4099 void *secinfo;
4100
4101 secinfo = elf_section_data (sec)->sec_info;
4102 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4103 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4104 isym->st_value + ref->addend);
4105 else
4106 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4107 isym->st_value) + ref->addend;
4108 }
4109 else
4110 addend = isym->st_value + ref->addend;
4111 }
4112 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4113 {
4114 arg->g = NULL;
4115 return 0;
4116 }
4117 return 1;
4118}
4119
33bb52fb 4120/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4121 replace them with entries for the target symbol. Convert g->got_page_refs
4122 into got_page_entry structures and estimate the number of page entries
4123 that they require. */
33bb52fb
RS
4124
4125static bfd_boolean
476366af
RS
4126mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4127 struct mips_got_info *g)
33bb52fb 4128{
476366af
RS
4129 struct mips_elf_traverse_got_arg tga;
4130 struct mips_got_info oldg;
4131
4132 oldg = *g;
33bb52fb 4133
476366af
RS
4134 tga.info = info;
4135 tga.g = g;
4136 tga.value = FALSE;
4137 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4138 if (tga.value)
33bb52fb 4139 {
476366af
RS
4140 *g = oldg;
4141 g->got_entries = htab_create (htab_size (oldg.got_entries),
4142 mips_elf_got_entry_hash,
4143 mips_elf_got_entry_eq, NULL);
4144 if (!g->got_entries)
33bb52fb
RS
4145 return FALSE;
4146
476366af
RS
4147 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4148 if (!tga.g)
4149 return FALSE;
4150
4151 htab_delete (oldg.got_entries);
33bb52fb 4152 }
13db6b44
RS
4153
4154 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4155 mips_got_page_entry_eq, NULL);
4156 if (g->got_page_entries == NULL)
4157 return FALSE;
4158
4159 tga.info = info;
4160 tga.g = g;
4161 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4162
33bb52fb
RS
4163 return TRUE;
4164}
4165
6c42ddb9
RS
4166/* A mips_elf_link_hash_traverse callback for which DATA points to the
4167 link_info structure. Decide whether the hash entry needs an entry in
4168 the global part of the primary GOT, setting global_got_area accordingly.
4169 Count the number of global symbols that are in the primary GOT only
4170 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4171
4172static int
d4596a51 4173mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4174{
020d7251 4175 struct bfd_link_info *info;
6ccf4795 4176 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4177 struct mips_got_info *g;
4178
020d7251 4179 info = (struct bfd_link_info *) data;
6ccf4795
RS
4180 htab = mips_elf_hash_table (info);
4181 g = htab->got_info;
d4596a51 4182 if (h->global_got_area != GGA_NONE)
33bb52fb 4183 {
020d7251
RS
4184 /* Make a final decision about whether the symbol belongs in the
4185 local or global GOT. Symbols that bind locally can (and in the
4186 case of forced-local symbols, must) live in the local GOT.
4187 Those that are aren't in the dynamic symbol table must also
4188 live in the local GOT.
4189
4190 Note that the former condition does not always imply the
4191 latter: symbols do not bind locally if they are completely
4192 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4193 if (h->root.dynindx == -1
4194 || (h->got_only_for_calls
4195 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4196 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
6c42ddb9
RS
4197 /* The symbol belongs in the local GOT. We no longer need this
4198 entry if it was only used for relocations; those relocations
4199 will be against the null or section symbol instead of H. */
4200 h->global_got_area = GGA_NONE;
6ccf4795
RS
4201 else if (htab->is_vxworks
4202 && h->got_only_for_calls
4203 && h->root.plt.offset != MINUS_ONE)
4204 /* On VxWorks, calls can refer directly to the .got.plt entry;
4205 they don't need entries in the regular GOT. .got.plt entries
4206 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4207 h->global_got_area = GGA_NONE;
6c42ddb9 4208 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4209 {
6c42ddb9 4210 g->reloc_only_gotno++;
23cc69b6 4211 g->global_gotno++;
23cc69b6 4212 }
33bb52fb
RS
4213 }
4214 return 1;
4215}
f4416af6 4216\f
d7206569
RS
4217/* A htab_traverse callback for GOT entries. Add each one to the GOT
4218 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4219
4220static int
d7206569 4221mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4222{
d7206569
RS
4223 struct mips_got_entry *entry;
4224 struct mips_elf_traverse_got_arg *arg;
4225 void **slot;
f4416af6 4226
d7206569
RS
4227 entry = (struct mips_got_entry *) *entryp;
4228 arg = (struct mips_elf_traverse_got_arg *) data;
4229 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4230 if (!slot)
f4416af6 4231 {
d7206569
RS
4232 arg->g = NULL;
4233 return 0;
f4416af6 4234 }
d7206569 4235 if (!*slot)
c224138d 4236 {
d7206569
RS
4237 *slot = entry;
4238 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4239 }
f4416af6
AO
4240 return 1;
4241}
4242
d7206569
RS
4243/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4244 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4245
4246static int
d7206569 4247mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4248{
d7206569
RS
4249 struct mips_got_page_entry *entry;
4250 struct mips_elf_traverse_got_arg *arg;
4251 void **slot;
c224138d 4252
d7206569
RS
4253 entry = (struct mips_got_page_entry *) *entryp;
4254 arg = (struct mips_elf_traverse_got_arg *) data;
4255 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4256 if (!slot)
c224138d 4257 {
d7206569 4258 arg->g = NULL;
c224138d
RS
4259 return 0;
4260 }
d7206569
RS
4261 if (!*slot)
4262 {
4263 *slot = entry;
4264 arg->g->page_gotno += entry->num_pages;
4265 }
c224138d
RS
4266 return 1;
4267}
4268
d7206569
RS
4269/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4270 this would lead to overflow, 1 if they were merged successfully,
4271 and 0 if a merge failed due to lack of memory. (These values are chosen
4272 so that nonnegative return values can be returned by a htab_traverse
4273 callback.) */
c224138d
RS
4274
4275static int
d7206569 4276mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4277 struct mips_got_info *to,
4278 struct mips_elf_got_per_bfd_arg *arg)
4279{
d7206569 4280 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4281 unsigned int estimate;
4282
4283 /* Work out how many page entries we would need for the combined GOT. */
4284 estimate = arg->max_pages;
4285 if (estimate >= from->page_gotno + to->page_gotno)
4286 estimate = from->page_gotno + to->page_gotno;
4287
e2ece73c 4288 /* And conservatively estimate how many local and TLS entries
c224138d 4289 would be needed. */
e2ece73c
RS
4290 estimate += from->local_gotno + to->local_gotno;
4291 estimate += from->tls_gotno + to->tls_gotno;
4292
17214937
RS
4293 /* If we're merging with the primary got, any TLS relocations will
4294 come after the full set of global entries. Otherwise estimate those
e2ece73c 4295 conservatively as well. */
17214937 4296 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4297 estimate += arg->global_count;
4298 else
4299 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4300
4301 /* Bail out if the combined GOT might be too big. */
4302 if (estimate > arg->max_count)
4303 return -1;
4304
c224138d 4305 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4306 tga.info = arg->info;
4307 tga.g = to;
4308 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4309 if (!tga.g)
c224138d
RS
4310 return 0;
4311
d7206569
RS
4312 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4313 if (!tga.g)
c224138d
RS
4314 return 0;
4315
d7206569 4316 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4317 return 1;
4318}
4319
d7206569 4320/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4321 as possible of the primary got, since it doesn't require explicit
4322 dynamic relocations, but don't use bfds that would reference global
4323 symbols out of the addressable range. Failing the primary got,
4324 attempt to merge with the current got, or finish the current got
4325 and then make make the new got current. */
4326
d7206569
RS
4327static bfd_boolean
4328mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4329 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4330{
c224138d
RS
4331 unsigned int estimate;
4332 int result;
4333
476366af 4334 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4335 return FALSE;
4336
c224138d
RS
4337 /* Work out the number of page, local and TLS entries. */
4338 estimate = arg->max_pages;
4339 if (estimate > g->page_gotno)
4340 estimate = g->page_gotno;
4341 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4342
4343 /* We place TLS GOT entries after both locals and globals. The globals
4344 for the primary GOT may overflow the normal GOT size limit, so be
4345 sure not to merge a GOT which requires TLS with the primary GOT in that
4346 case. This doesn't affect non-primary GOTs. */
c224138d 4347 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4348
c224138d 4349 if (estimate <= arg->max_count)
f4416af6 4350 {
c224138d
RS
4351 /* If we don't have a primary GOT, use it as
4352 a starting point for the primary GOT. */
4353 if (!arg->primary)
4354 {
d7206569
RS
4355 arg->primary = g;
4356 return TRUE;
c224138d 4357 }
f4416af6 4358
c224138d 4359 /* Try merging with the primary GOT. */
d7206569 4360 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4361 if (result >= 0)
4362 return result;
f4416af6 4363 }
c224138d 4364
f4416af6 4365 /* If we can merge with the last-created got, do it. */
c224138d 4366 if (arg->current)
f4416af6 4367 {
d7206569 4368 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4369 if (result >= 0)
4370 return result;
f4416af6 4371 }
c224138d 4372
f4416af6
AO
4373 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4374 fits; if it turns out that it doesn't, we'll get relocation
4375 overflows anyway. */
c224138d
RS
4376 g->next = arg->current;
4377 arg->current = g;
0f20cc35 4378
d7206569 4379 return TRUE;
0f20cc35
DJ
4380}
4381
72e7511a
RS
4382/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4383 to GOTIDX, duplicating the entry if it has already been assigned
4384 an index in a different GOT. */
4385
4386static bfd_boolean
4387mips_elf_set_gotidx (void **entryp, long gotidx)
4388{
4389 struct mips_got_entry *entry;
4390
4391 entry = (struct mips_got_entry *) *entryp;
4392 if (entry->gotidx > 0)
4393 {
4394 struct mips_got_entry *new_entry;
4395
4396 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4397 if (!new_entry)
4398 return FALSE;
4399
4400 *new_entry = *entry;
4401 *entryp = new_entry;
4402 entry = new_entry;
4403 }
4404 entry->gotidx = gotidx;
4405 return TRUE;
4406}
4407
4408/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4409 mips_elf_traverse_got_arg in which DATA->value is the size of one
4410 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4411
4412static int
72e7511a 4413mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4414{
72e7511a
RS
4415 struct mips_got_entry *entry;
4416 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4417
4418 /* We're only interested in TLS symbols. */
72e7511a 4419 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4420 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4421 return 1;
4422
72e7511a 4423 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4424 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4425 {
6c42ddb9
RS
4426 arg->g = NULL;
4427 return 0;
f4416af6
AO
4428 }
4429
ead49a57 4430 /* Account for the entries we've just allocated. */
9ab066b4 4431 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4432 return 1;
4433}
4434
ab361d49
RS
4435/* A htab_traverse callback for GOT entries, where DATA points to a
4436 mips_elf_traverse_got_arg. Set the global_got_area of each global
4437 symbol to DATA->value. */
f4416af6 4438
f4416af6 4439static int
ab361d49 4440mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4441{
ab361d49
RS
4442 struct mips_got_entry *entry;
4443 struct mips_elf_traverse_got_arg *arg;
f4416af6 4444
ab361d49
RS
4445 entry = (struct mips_got_entry *) *entryp;
4446 arg = (struct mips_elf_traverse_got_arg *) data;
4447 if (entry->abfd != NULL
4448 && entry->symndx == -1
4449 && entry->d.h->global_got_area != GGA_NONE)
4450 entry->d.h->global_got_area = arg->value;
4451 return 1;
4452}
4453
4454/* A htab_traverse callback for secondary GOT entries, where DATA points
4455 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4456 and record the number of relocations they require. DATA->value is
72e7511a 4457 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4458
4459static int
4460mips_elf_set_global_gotidx (void **entryp, void *data)
4461{
4462 struct mips_got_entry *entry;
4463 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4464
ab361d49
RS
4465 entry = (struct mips_got_entry *) *entryp;
4466 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4467 if (entry->abfd != NULL
4468 && entry->symndx == -1
4469 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4470 {
72e7511a
RS
4471 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 arg->g->assigned_gotno += 1;
4477
ab361d49
RS
4478 if (arg->info->shared
4479 || (elf_hash_table (arg->info)->dynamic_sections_created
4480 && entry->d.h->root.def_dynamic
4481 && !entry->d.h->root.def_regular))
4482 arg->g->relocs += 1;
f4416af6
AO
4483 }
4484
4485 return 1;
4486}
4487
33bb52fb
RS
4488/* A htab_traverse callback for GOT entries for which DATA is the
4489 bfd_link_info. Forbid any global symbols from having traditional
4490 lazy-binding stubs. */
4491
0626d451 4492static int
33bb52fb 4493mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4494{
33bb52fb
RS
4495 struct bfd_link_info *info;
4496 struct mips_elf_link_hash_table *htab;
4497 struct mips_got_entry *entry;
0626d451 4498
33bb52fb
RS
4499 entry = (struct mips_got_entry *) *entryp;
4500 info = (struct bfd_link_info *) data;
4501 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4502 BFD_ASSERT (htab != NULL);
4503
0626d451
RS
4504 if (entry->abfd != NULL
4505 && entry->symndx == -1
33bb52fb 4506 && entry->d.h->needs_lazy_stub)
f4416af6 4507 {
33bb52fb
RS
4508 entry->d.h->needs_lazy_stub = FALSE;
4509 htab->lazy_stub_count--;
f4416af6 4510 }
143d77c5 4511
f4416af6
AO
4512 return 1;
4513}
4514
f4416af6
AO
4515/* Return the offset of an input bfd IBFD's GOT from the beginning of
4516 the primary GOT. */
4517static bfd_vma
9719ad41 4518mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4519{
d7206569 4520 if (!g->next)
f4416af6
AO
4521 return 0;
4522
d7206569 4523 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4524 if (! g)
4525 return 0;
4526
4527 BFD_ASSERT (g->next);
4528
4529 g = g->next;
143d77c5 4530
0f20cc35
DJ
4531 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4532 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4533}
4534
4535/* Turn a single GOT that is too big for 16-bit addressing into
4536 a sequence of GOTs, each one 16-bit addressable. */
4537
4538static bfd_boolean
9719ad41 4539mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4540 asection *got, bfd_size_type pages)
f4416af6 4541{
a8028dd0 4542 struct mips_elf_link_hash_table *htab;
f4416af6 4543 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4544 struct mips_elf_traverse_got_arg tga;
a8028dd0 4545 struct mips_got_info *g, *gg;
33bb52fb 4546 unsigned int assign, needed_relocs;
d7206569 4547 bfd *dynobj, *ibfd;
f4416af6 4548
33bb52fb 4549 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4550 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4551 BFD_ASSERT (htab != NULL);
4552
a8028dd0 4553 g = htab->got_info;
f4416af6 4554
f4416af6
AO
4555 got_per_bfd_arg.obfd = abfd;
4556 got_per_bfd_arg.info = info;
f4416af6
AO
4557 got_per_bfd_arg.current = NULL;
4558 got_per_bfd_arg.primary = NULL;
0a44bf69 4559 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4560 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4561 - htab->reserved_gotno);
c224138d 4562 got_per_bfd_arg.max_pages = pages;
0f20cc35 4563 /* The number of globals that will be included in the primary GOT.
ab361d49 4564 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4565 information. */
4566 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4567
4568 /* Try to merge the GOTs of input bfds together, as long as they
4569 don't seem to exceed the maximum GOT size, choosing one of them
4570 to be the primary GOT. */
d7206569
RS
4571 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4572 {
4573 gg = mips_elf_bfd_got (ibfd, FALSE);
4574 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4575 return FALSE;
4576 }
f4416af6 4577
0f20cc35 4578 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4579 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4580 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4581 else
4582 g->next = got_per_bfd_arg.primary;
4583 g->next->next = got_per_bfd_arg.current;
4584
4585 /* GG is now the master GOT, and G is the primary GOT. */
4586 gg = g;
4587 g = g->next;
4588
4589 /* Map the output bfd to the primary got. That's what we're going
4590 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4591 didn't mark in check_relocs, and we want a quick way to find it.
4592 We can't just use gg->next because we're going to reverse the
4593 list. */
d7206569 4594 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4595
634835ae
RS
4596 /* Every symbol that is referenced in a dynamic relocation must be
4597 present in the primary GOT, so arrange for them to appear after
4598 those that are actually referenced. */
23cc69b6 4599 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4600 g->global_gotno = gg->global_gotno;
f4416af6 4601
ab361d49
RS
4602 tga.info = info;
4603 tga.value = GGA_RELOC_ONLY;
4604 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4605 tga.value = GGA_NORMAL;
4606 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4607
4608 /* Now go through the GOTs assigning them offset ranges.
4609 [assigned_gotno, local_gotno[ will be set to the range of local
4610 entries in each GOT. We can then compute the end of a GOT by
4611 adding local_gotno to global_gotno. We reverse the list and make
4612 it circular since then we'll be able to quickly compute the
4613 beginning of a GOT, by computing the end of its predecessor. To
4614 avoid special cases for the primary GOT, while still preserving
4615 assertions that are valid for both single- and multi-got links,
4616 we arrange for the main got struct to have the right number of
4617 global entries, but set its local_gotno such that the initial
4618 offset of the primary GOT is zero. Remember that the primary GOT
4619 will become the last item in the circular linked list, so it
4620 points back to the master GOT. */
4621 gg->local_gotno = -g->global_gotno;
4622 gg->global_gotno = g->global_gotno;
0f20cc35 4623 gg->tls_gotno = 0;
f4416af6
AO
4624 assign = 0;
4625 gg->next = gg;
4626
4627 do
4628 {
4629 struct mips_got_info *gn;
4630
861fb55a 4631 assign += htab->reserved_gotno;
f4416af6 4632 g->assigned_gotno = assign;
c224138d
RS
4633 g->local_gotno += assign;
4634 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4635 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4636
ead49a57
RS
4637 /* Take g out of the direct list, and push it onto the reversed
4638 list that gg points to. g->next is guaranteed to be nonnull after
4639 this operation, as required by mips_elf_initialize_tls_index. */
4640 gn = g->next;
4641 g->next = gg->next;
4642 gg->next = g;
4643
0f20cc35
DJ
4644 /* Set up any TLS entries. We always place the TLS entries after
4645 all non-TLS entries. */
4646 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4647 tga.g = g;
4648 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4649 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4650 if (!tga.g)
4651 return FALSE;
1fd20d70 4652 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4653
ead49a57 4654 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4655 g = gn;
0626d451 4656
33bb52fb
RS
4657 /* Forbid global symbols in every non-primary GOT from having
4658 lazy-binding stubs. */
0626d451 4659 if (g)
33bb52fb 4660 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4661 }
4662 while (g);
4663
59b08994 4664 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4665
4666 needed_relocs = 0;
33bb52fb
RS
4667 for (g = gg->next; g && g->next != gg; g = g->next)
4668 {
4669 unsigned int save_assign;
4670
ab361d49
RS
4671 /* Assign offsets to global GOT entries and count how many
4672 relocations they need. */
33bb52fb
RS
4673 save_assign = g->assigned_gotno;
4674 g->assigned_gotno = g->local_gotno;
ab361d49
RS
4675 tga.info = info;
4676 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4677 tga.g = g;
4678 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4679 if (!tga.g)
4680 return FALSE;
4681 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
33bb52fb 4682 g->assigned_gotno = save_assign;
72e7511a 4683
33bb52fb
RS
4684 if (info->shared)
4685 {
ab361d49 4686 g->relocs += g->local_gotno - g->assigned_gotno;
33bb52fb
RS
4687 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4688 + g->next->global_gotno
4689 + g->next->tls_gotno
861fb55a 4690 + htab->reserved_gotno);
33bb52fb 4691 }
ab361d49 4692 needed_relocs += g->relocs;
33bb52fb 4693 }
ab361d49 4694 needed_relocs += g->relocs;
33bb52fb
RS
4695
4696 if (needed_relocs)
4697 mips_elf_allocate_dynamic_relocations (dynobj, info,
4698 needed_relocs);
143d77c5 4699
f4416af6
AO
4700 return TRUE;
4701}
143d77c5 4702
b49e97c9
TS
4703\f
4704/* Returns the first relocation of type r_type found, beginning with
4705 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4706
4707static const Elf_Internal_Rela *
9719ad41
RS
4708mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4709 const Elf_Internal_Rela *relocation,
4710 const Elf_Internal_Rela *relend)
b49e97c9 4711{
c000e262
TS
4712 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4713
b49e97c9
TS
4714 while (relocation < relend)
4715 {
c000e262
TS
4716 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4717 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4718 return relocation;
4719
4720 ++relocation;
4721 }
4722
4723 /* We didn't find it. */
b49e97c9
TS
4724 return NULL;
4725}
4726
020d7251 4727/* Return whether an input relocation is against a local symbol. */
b49e97c9 4728
b34976b6 4729static bfd_boolean
9719ad41
RS
4730mips_elf_local_relocation_p (bfd *input_bfd,
4731 const Elf_Internal_Rela *relocation,
020d7251 4732 asection **local_sections)
b49e97c9
TS
4733{
4734 unsigned long r_symndx;
4735 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4736 size_t extsymoff;
4737
4738 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4739 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4740 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4741
4742 if (r_symndx < extsymoff)
b34976b6 4743 return TRUE;
b49e97c9 4744 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4745 return TRUE;
b49e97c9 4746
b34976b6 4747 return FALSE;
b49e97c9
TS
4748}
4749\f
4750/* Sign-extend VALUE, which has the indicated number of BITS. */
4751
a7ebbfdf 4752bfd_vma
9719ad41 4753_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4754{
4755 if (value & ((bfd_vma) 1 << (bits - 1)))
4756 /* VALUE is negative. */
4757 value |= ((bfd_vma) - 1) << bits;
4758
4759 return value;
4760}
4761
4762/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4763 range expressible by a signed number with the indicated number of
b49e97c9
TS
4764 BITS. */
4765
b34976b6 4766static bfd_boolean
9719ad41 4767mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4768{
4769 bfd_signed_vma svalue = (bfd_signed_vma) value;
4770
4771 if (svalue > (1 << (bits - 1)) - 1)
4772 /* The value is too big. */
b34976b6 4773 return TRUE;
b49e97c9
TS
4774 else if (svalue < -(1 << (bits - 1)))
4775 /* The value is too small. */
b34976b6 4776 return TRUE;
b49e97c9
TS
4777
4778 /* All is well. */
b34976b6 4779 return FALSE;
b49e97c9
TS
4780}
4781
4782/* Calculate the %high function. */
4783
4784static bfd_vma
9719ad41 4785mips_elf_high (bfd_vma value)
b49e97c9
TS
4786{
4787 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4788}
4789
4790/* Calculate the %higher function. */
4791
4792static bfd_vma
9719ad41 4793mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4794{
4795#ifdef BFD64
4796 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4797#else
4798 abort ();
c5ae1840 4799 return MINUS_ONE;
b49e97c9
TS
4800#endif
4801}
4802
4803/* Calculate the %highest function. */
4804
4805static bfd_vma
9719ad41 4806mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4807{
4808#ifdef BFD64
b15e6682 4809 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4810#else
4811 abort ();
c5ae1840 4812 return MINUS_ONE;
b49e97c9
TS
4813#endif
4814}
4815\f
4816/* Create the .compact_rel section. */
4817
b34976b6 4818static bfd_boolean
9719ad41
RS
4819mips_elf_create_compact_rel_section
4820 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4821{
4822 flagword flags;
4823 register asection *s;
4824
3d4d4302 4825 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4826 {
4827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4828 | SEC_READONLY);
4829
3d4d4302 4830 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4831 if (s == NULL
b49e97c9
TS
4832 || ! bfd_set_section_alignment (abfd, s,
4833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4834 return FALSE;
b49e97c9 4835
eea6121a 4836 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4837 }
4838
b34976b6 4839 return TRUE;
b49e97c9
TS
4840}
4841
4842/* Create the .got section to hold the global offset table. */
4843
b34976b6 4844static bfd_boolean
23cc69b6 4845mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4846{
4847 flagword flags;
4848 register asection *s;
4849 struct elf_link_hash_entry *h;
14a793b2 4850 struct bfd_link_hash_entry *bh;
0a44bf69
RS
4851 struct mips_elf_link_hash_table *htab;
4852
4853 htab = mips_elf_hash_table (info);
4dfe6ac6 4854 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4855
4856 /* This function may be called more than once. */
23cc69b6
RS
4857 if (htab->sgot)
4858 return TRUE;
b49e97c9
TS
4859
4860 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4861 | SEC_LINKER_CREATED);
4862
72b4917c
TS
4863 /* We have to use an alignment of 2**4 here because this is hardcoded
4864 in the function stub generation and in the linker script. */
87e0a731 4865 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4866 if (s == NULL
72b4917c 4867 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4868 return FALSE;
a8028dd0 4869 htab->sgot = s;
b49e97c9
TS
4870
4871 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4872 linker script because we don't want to define the symbol if we
4873 are not creating a global offset table. */
14a793b2 4874 bh = NULL;
b49e97c9
TS
4875 if (! (_bfd_generic_link_add_one_symbol
4876 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4877 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4878 return FALSE;
14a793b2
AM
4879
4880 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4881 h->non_elf = 0;
4882 h->def_regular = 1;
b49e97c9 4883 h->type = STT_OBJECT;
d329bcd1 4884 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4885
4886 if (info->shared
c152c796 4887 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4888 return FALSE;
b49e97c9 4889
3dff0dd1 4890 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 4891 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4892 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4893
861fb55a 4894 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4895 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4896 SEC_ALLOC | SEC_LOAD
4897 | SEC_HAS_CONTENTS
4898 | SEC_IN_MEMORY
4899 | SEC_LINKER_CREATED);
861fb55a
DJ
4900 if (s == NULL)
4901 return FALSE;
4902 htab->sgotplt = s;
0a44bf69 4903
b34976b6 4904 return TRUE;
b49e97c9 4905}
b49e97c9 4906\f
0a44bf69
RS
4907/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4908 __GOTT_INDEX__ symbols. These symbols are only special for
4909 shared objects; they are not used in executables. */
4910
4911static bfd_boolean
4912is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4913{
4914 return (mips_elf_hash_table (info)->is_vxworks
4915 && info->shared
4916 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4917 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4918}
861fb55a
DJ
4919
4920/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4921 require an la25 stub. See also mips_elf_local_pic_function_p,
4922 which determines whether the destination function ever requires a
4923 stub. */
4924
4925static bfd_boolean
8f0c309a
CLT
4926mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4927 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4928{
4929 /* We specifically ignore branches and jumps from EF_PIC objects,
4930 where the onus is on the compiler or programmer to perform any
4931 necessary initialization of $25. Sometimes such initialization
4932 is unnecessary; for example, -mno-shared functions do not use
4933 the incoming value of $25, and may therefore be called directly. */
4934 if (PIC_OBJECT_P (input_bfd))
4935 return FALSE;
4936
4937 switch (r_type)
4938 {
4939 case R_MIPS_26:
4940 case R_MIPS_PC16:
df58fc94
RS
4941 case R_MICROMIPS_26_S1:
4942 case R_MICROMIPS_PC7_S1:
4943 case R_MICROMIPS_PC10_S1:
4944 case R_MICROMIPS_PC16_S1:
4945 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4946 return TRUE;
4947
8f0c309a
CLT
4948 case R_MIPS16_26:
4949 return !target_is_16_bit_code_p;
4950
861fb55a
DJ
4951 default:
4952 return FALSE;
4953 }
4954}
0a44bf69 4955\f
b49e97c9
TS
4956/* Calculate the value produced by the RELOCATION (which comes from
4957 the INPUT_BFD). The ADDEND is the addend to use for this
4958 RELOCATION; RELOCATION->R_ADDEND is ignored.
4959
4960 The result of the relocation calculation is stored in VALUEP.
38a7df63 4961 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4962 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4963
4964 This function returns bfd_reloc_continue if the caller need take no
4965 further action regarding this relocation, bfd_reloc_notsupported if
4966 something goes dramatically wrong, bfd_reloc_overflow if an
4967 overflow occurs, and bfd_reloc_ok to indicate success. */
4968
4969static bfd_reloc_status_type
9719ad41
RS
4970mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4971 asection *input_section,
4972 struct bfd_link_info *info,
4973 const Elf_Internal_Rela *relocation,
4974 bfd_vma addend, reloc_howto_type *howto,
4975 Elf_Internal_Sym *local_syms,
4976 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4977 const char **namep,
4978 bfd_boolean *cross_mode_jump_p,
9719ad41 4979 bfd_boolean save_addend)
b49e97c9
TS
4980{
4981 /* The eventual value we will return. */
4982 bfd_vma value;
4983 /* The address of the symbol against which the relocation is
4984 occurring. */
4985 bfd_vma symbol = 0;
4986 /* The final GP value to be used for the relocatable, executable, or
4987 shared object file being produced. */
0a61c8c2 4988 bfd_vma gp;
b49e97c9
TS
4989 /* The place (section offset or address) of the storage unit being
4990 relocated. */
4991 bfd_vma p;
4992 /* The value of GP used to create the relocatable object. */
0a61c8c2 4993 bfd_vma gp0;
b49e97c9
TS
4994 /* The offset into the global offset table at which the address of
4995 the relocation entry symbol, adjusted by the addend, resides
4996 during execution. */
4997 bfd_vma g = MINUS_ONE;
4998 /* The section in which the symbol referenced by the relocation is
4999 located. */
5000 asection *sec = NULL;
5001 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5002 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5003 symbol. */
b34976b6
AM
5004 bfd_boolean local_p, was_local_p;
5005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5006 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5007 /* TRUE if the symbol referred to by this relocation is
5008 "__gnu_local_gp". */
5009 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5010 Elf_Internal_Shdr *symtab_hdr;
5011 size_t extsymoff;
5012 unsigned long r_symndx;
5013 int r_type;
b34976b6 5014 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5015 relocation value. */
b34976b6
AM
5016 bfd_boolean overflowed_p;
5017 /* TRUE if this relocation refers to a MIPS16 function. */
5018 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5019 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5020 struct mips_elf_link_hash_table *htab;
5021 bfd *dynobj;
5022
5023 dynobj = elf_hash_table (info)->dynobj;
5024 htab = mips_elf_hash_table (info);
4dfe6ac6 5025 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5026
5027 /* Parse the relocation. */
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5030 p = (input_section->output_section->vma
5031 + input_section->output_offset
5032 + relocation->r_offset);
5033
5034 /* Assume that there will be no overflow. */
b34976b6 5035 overflowed_p = FALSE;
b49e97c9
TS
5036
5037 /* Figure out whether or not the symbol is local, and get the offset
5038 used in the array of hash table entries. */
5039 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5040 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5041 local_sections);
bce03d3d 5042 was_local_p = local_p;
b49e97c9
TS
5043 if (! elf_bad_symtab (input_bfd))
5044 extsymoff = symtab_hdr->sh_info;
5045 else
5046 {
5047 /* The symbol table does not follow the rule that local symbols
5048 must come before globals. */
5049 extsymoff = 0;
5050 }
5051
5052 /* Figure out the value of the symbol. */
5053 if (local_p)
5054 {
5055 Elf_Internal_Sym *sym;
5056
5057 sym = local_syms + r_symndx;
5058 sec = local_sections[r_symndx];
5059
5060 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5062 || (sec->flags & SEC_MERGE))
b49e97c9 5063 symbol += sym->st_value;
d4df96e6
L
5064 if ((sec->flags & SEC_MERGE)
5065 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5066 {
5067 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5068 addend -= symbol;
5069 addend += sec->output_section->vma + sec->output_offset;
5070 }
b49e97c9 5071
df58fc94
RS
5072 /* MIPS16/microMIPS text labels should be treated as odd. */
5073 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5074 ++symbol;
5075
5076 /* Record the name of this symbol, for our caller. */
5077 *namep = bfd_elf_string_from_elf_section (input_bfd,
5078 symtab_hdr->sh_link,
5079 sym->st_name);
5080 if (*namep == '\0')
5081 *namep = bfd_section_name (input_bfd, sec);
5082
30c09090 5083 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5084 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5085 }
5086 else
5087 {
560e09e9
NC
5088 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5089
b49e97c9
TS
5090 /* For global symbols we look up the symbol in the hash-table. */
5091 h = ((struct mips_elf_link_hash_entry *)
5092 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5093 /* Find the real hash-table entry for this symbol. */
5094 while (h->root.root.type == bfd_link_hash_indirect
5095 || h->root.root.type == bfd_link_hash_warning)
5096 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5097
5098 /* Record the name of this symbol, for our caller. */
5099 *namep = h->root.root.root.string;
5100
5101 /* See if this is the special _gp_disp symbol. Note that such a
5102 symbol must always be a global symbol. */
560e09e9 5103 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5104 && ! NEWABI_P (input_bfd))
5105 {
5106 /* Relocations against _gp_disp are permitted only with
5107 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5108 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5109 return bfd_reloc_notsupported;
5110
b34976b6 5111 gp_disp_p = TRUE;
b49e97c9 5112 }
bbe506e8
TS
5113 /* See if this is the special _gp symbol. Note that such a
5114 symbol must always be a global symbol. */
5115 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5116 gnu_local_gp_p = TRUE;
5117
5118
b49e97c9
TS
5119 /* If this symbol is defined, calculate its address. Note that
5120 _gp_disp is a magic symbol, always implicitly defined by the
5121 linker, so it's inappropriate to check to see whether or not
5122 its defined. */
5123 else if ((h->root.root.type == bfd_link_hash_defined
5124 || h->root.root.type == bfd_link_hash_defweak)
5125 && h->root.root.u.def.section)
5126 {
5127 sec = h->root.root.u.def.section;
5128 if (sec->output_section)
5129 symbol = (h->root.root.u.def.value
5130 + sec->output_section->vma
5131 + sec->output_offset);
5132 else
5133 symbol = h->root.root.u.def.value;
5134 }
5135 else if (h->root.root.type == bfd_link_hash_undefweak)
5136 /* We allow relocations against undefined weak symbols, giving
5137 it the value zero, so that you can undefined weak functions
5138 and check to see if they exist by looking at their
5139 addresses. */
5140 symbol = 0;
59c2e50f 5141 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5142 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5143 symbol = 0;
a4d0f181
TS
5144 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5145 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5146 {
5147 /* If this is a dynamic link, we should have created a
5148 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5149 in in _bfd_mips_elf_create_dynamic_sections.
5150 Otherwise, we should define the symbol with a value of 0.
5151 FIXME: It should probably get into the symbol table
5152 somehow as well. */
5153 BFD_ASSERT (! info->shared);
5154 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5155 symbol = 0;
5156 }
5e2b0d47
NC
5157 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5158 {
5159 /* This is an optional symbol - an Irix specific extension to the
5160 ELF spec. Ignore it for now.
5161 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5162 than simply ignoring them, but we do not handle this for now.
5163 For information see the "64-bit ELF Object File Specification"
5164 which is available from here:
5165 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5166 symbol = 0;
5167 }
e7e2196d
MR
5168 else if ((*info->callbacks->undefined_symbol)
5169 (info, h->root.root.root.string, input_bfd,
5170 input_section, relocation->r_offset,
5171 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5172 || ELF_ST_VISIBILITY (h->root.other)))
5173 {
5174 return bfd_reloc_undefined;
5175 }
b49e97c9
TS
5176 else
5177 {
e7e2196d 5178 return bfd_reloc_notsupported;
b49e97c9
TS
5179 }
5180
30c09090 5181 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5182 /* If the output section is the PLT section,
5183 then the target is not microMIPS. */
5184 target_is_micromips_code_p = (htab->splt != sec
5185 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5186 }
5187
738e5348
RS
5188 /* If this is a reference to a 16-bit function with a stub, we need
5189 to redirect the relocation to the stub unless:
5190
5191 (a) the relocation is for a MIPS16 JAL;
5192
5193 (b) the relocation is for a MIPS16 PIC call, and there are no
5194 non-MIPS16 uses of the GOT slot; or
5195
5196 (c) the section allows direct references to MIPS16 functions. */
5197 if (r_type != R_MIPS16_26
5198 && !info->relocatable
5199 && ((h != NULL
5200 && h->fn_stub != NULL
5201 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5202 || (local_p
698600e4
AM
5203 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5204 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5205 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5206 {
5207 /* This is a 32- or 64-bit call to a 16-bit function. We should
5208 have already noticed that we were going to need the
5209 stub. */
5210 if (local_p)
8f0c309a 5211 {
698600e4 5212 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5213 value = 0;
5214 }
b49e97c9
TS
5215 else
5216 {
5217 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5218 if (h->la25_stub)
5219 {
5220 /* If a LA25 header for the stub itself exists, point to the
5221 prepended LUI/ADDIU sequence. */
5222 sec = h->la25_stub->stub_section;
5223 value = h->la25_stub->offset;
5224 }
5225 else
5226 {
5227 sec = h->fn_stub;
5228 value = 0;
5229 }
b49e97c9
TS
5230 }
5231
8f0c309a 5232 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5233 /* The target is 16-bit, but the stub isn't. */
5234 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5235 }
5236 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5237 need to redirect the call to the stub. Note that we specifically
5238 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5239 use an indirect stub instead. */
1049f94e 5240 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5241 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5242 || (local_p
698600e4
AM
5243 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5244 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5245 && !target_is_16_bit_code_p)
5246 {
b9d58d71 5247 if (local_p)
698600e4 5248 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5249 else
b49e97c9 5250 {
b9d58d71
TS
5251 /* If both call_stub and call_fp_stub are defined, we can figure
5252 out which one to use by checking which one appears in the input
5253 file. */
5254 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5255 {
b9d58d71 5256 asection *o;
68ffbac6 5257
b9d58d71
TS
5258 sec = NULL;
5259 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5260 {
b9d58d71
TS
5261 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5262 {
5263 sec = h->call_fp_stub;
5264 break;
5265 }
b49e97c9 5266 }
b9d58d71
TS
5267 if (sec == NULL)
5268 sec = h->call_stub;
b49e97c9 5269 }
b9d58d71 5270 else if (h->call_stub != NULL)
b49e97c9 5271 sec = h->call_stub;
b9d58d71
TS
5272 else
5273 sec = h->call_fp_stub;
5274 }
b49e97c9 5275
eea6121a 5276 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5277 symbol = sec->output_section->vma + sec->output_offset;
5278 }
861fb55a
DJ
5279 /* If this is a direct call to a PIC function, redirect to the
5280 non-PIC stub. */
5281 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5282 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5283 target_is_16_bit_code_p))
861fb55a
DJ
5284 symbol = (h->la25_stub->stub_section->output_section->vma
5285 + h->la25_stub->stub_section->output_offset
5286 + h->la25_stub->offset);
b49e97c9 5287
df58fc94
RS
5288 /* Make sure MIPS16 and microMIPS are not used together. */
5289 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5290 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5291 {
5292 (*_bfd_error_handler)
5293 (_("MIPS16 and microMIPS functions cannot call each other"));
5294 return bfd_reloc_notsupported;
5295 }
5296
b49e97c9 5297 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5298 mode change. However, we can ignore calls to undefined weak symbols,
5299 which should never be executed at runtime. This exception is important
5300 because the assembly writer may have "known" that any definition of the
5301 symbol would be 16-bit code, and that direct jumps were therefore
5302 acceptable. */
5303 *cross_mode_jump_p = (!info->relocatable
5304 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5305 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5306 || (r_type == R_MICROMIPS_26_S1
5307 && !target_is_micromips_code_p)
5308 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5309 && (target_is_16_bit_code_p
5310 || target_is_micromips_code_p))));
b49e97c9 5311
9f1a453e
MR
5312 local_p = (h == NULL
5313 || (h->got_only_for_calls
5314 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5315 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5316
0a61c8c2
RS
5317 gp0 = _bfd_get_gp_value (input_bfd);
5318 gp = _bfd_get_gp_value (abfd);
23cc69b6 5319 if (htab->got_info)
a8028dd0 5320 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5321
5322 if (gnu_local_gp_p)
5323 symbol = gp;
5324
df58fc94
RS
5325 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5326 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5327 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5328 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5329 {
df58fc94
RS
5330 r_type = (micromips_reloc_p (r_type)
5331 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5332 addend = 0;
5333 }
5334
e77760d2 5335 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5336 to need it, get it now. */
b49e97c9
TS
5337 switch (r_type)
5338 {
738e5348
RS
5339 case R_MIPS16_CALL16:
5340 case R_MIPS16_GOT16:
b49e97c9
TS
5341 case R_MIPS_CALL16:
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_DISP:
5344 case R_MIPS_GOT_HI16:
5345 case R_MIPS_CALL_HI16:
5346 case R_MIPS_GOT_LO16:
5347 case R_MIPS_CALL_LO16:
df58fc94
RS
5348 case R_MICROMIPS_CALL16:
5349 case R_MICROMIPS_GOT16:
5350 case R_MICROMIPS_GOT_DISP:
5351 case R_MICROMIPS_GOT_HI16:
5352 case R_MICROMIPS_CALL_HI16:
5353 case R_MICROMIPS_GOT_LO16:
5354 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5355 case R_MIPS_TLS_GD:
5356 case R_MIPS_TLS_GOTTPREL:
5357 case R_MIPS_TLS_LDM:
d0f13682
CLT
5358 case R_MIPS16_TLS_GD:
5359 case R_MIPS16_TLS_GOTTPREL:
5360 case R_MIPS16_TLS_LDM:
df58fc94
RS
5361 case R_MICROMIPS_TLS_GD:
5362 case R_MICROMIPS_TLS_GOTTPREL:
5363 case R_MICROMIPS_TLS_LDM:
b49e97c9 5364 /* Find the index into the GOT where this value is located. */
df58fc94 5365 if (tls_ldm_reloc_p (r_type))
0f20cc35 5366 {
0a44bf69 5367 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5368 0, 0, NULL, r_type);
0f20cc35
DJ
5369 if (g == MINUS_ONE)
5370 return bfd_reloc_outofrange;
5371 }
5372 else if (!local_p)
b49e97c9 5373 {
0a44bf69
RS
5374 /* On VxWorks, CALL relocations should refer to the .got.plt
5375 entry, which is initialized to point at the PLT stub. */
5376 if (htab->is_vxworks
df58fc94
RS
5377 && (call_hi16_reloc_p (r_type)
5378 || call_lo16_reloc_p (r_type)
738e5348 5379 || call16_reloc_p (r_type)))
0a44bf69
RS
5380 {
5381 BFD_ASSERT (addend == 0);
5382 BFD_ASSERT (h->root.needs_plt);
5383 g = mips_elf_gotplt_index (info, &h->root);
5384 }
5385 else
b49e97c9 5386 {
020d7251 5387 BFD_ASSERT (addend == 0);
13fbec83
RS
5388 g = mips_elf_global_got_index (abfd, info, input_bfd,
5389 &h->root, r_type);
e641e783 5390 if (!TLS_RELOC_P (r_type)
020d7251
RS
5391 && !elf_hash_table (info)->dynamic_sections_created)
5392 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5393 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5394 }
5395 }
0a44bf69 5396 else if (!htab->is_vxworks
738e5348 5397 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5398 /* The calculation below does not involve "g". */
b49e97c9
TS
5399 break;
5400 else
5401 {
5c18022e 5402 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5403 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5404 if (g == MINUS_ONE)
5405 return bfd_reloc_outofrange;
5406 }
5407
5408 /* Convert GOT indices to actual offsets. */
a8028dd0 5409 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5410 break;
b49e97c9
TS
5411 }
5412
0a44bf69
RS
5413 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5414 symbols are resolved by the loader. Add them to .rela.dyn. */
5415 if (h != NULL && is_gott_symbol (info, &h->root))
5416 {
5417 Elf_Internal_Rela outrel;
5418 bfd_byte *loc;
5419 asection *s;
5420
5421 s = mips_elf_rel_dyn_section (info, FALSE);
5422 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5423
5424 outrel.r_offset = (input_section->output_section->vma
5425 + input_section->output_offset
5426 + relocation->r_offset);
5427 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5428 outrel.r_addend = addend;
5429 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5430
5431 /* If we've written this relocation for a readonly section,
5432 we need to set DF_TEXTREL again, so that we do not delete the
5433 DT_TEXTREL tag. */
5434 if (MIPS_ELF_READONLY_SECTION (input_section))
5435 info->flags |= DF_TEXTREL;
5436
0a44bf69
RS
5437 *valuep = 0;
5438 return bfd_reloc_ok;
5439 }
5440
b49e97c9
TS
5441 /* Figure out what kind of relocation is being performed. */
5442 switch (r_type)
5443 {
5444 case R_MIPS_NONE:
5445 return bfd_reloc_continue;
5446
5447 case R_MIPS_16:
a7ebbfdf 5448 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5449 overflowed_p = mips_elf_overflow_p (value, 16);
5450 break;
5451
5452 case R_MIPS_32:
5453 case R_MIPS_REL32:
5454 case R_MIPS_64:
5455 if ((info->shared
861fb55a 5456 || (htab->root.dynamic_sections_created
b49e97c9 5457 && h != NULL
f5385ebf 5458 && h->root.def_dynamic
861fb55a
DJ
5459 && !h->root.def_regular
5460 && !h->has_static_relocs))
cf35638d 5461 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5462 && (h == NULL
5463 || h->root.root.type != bfd_link_hash_undefweak
5464 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5465 && (input_section->flags & SEC_ALLOC) != 0)
5466 {
861fb55a 5467 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5468 where the symbol will end up. So, we create a relocation
5469 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5470 linker. We must do the same for executable references to
5471 shared library symbols, unless we've decided to use copy
5472 relocs or PLTs instead. */
b49e97c9
TS
5473 value = addend;
5474 if (!mips_elf_create_dynamic_relocation (abfd,
5475 info,
5476 relocation,
5477 h,
5478 sec,
5479 symbol,
5480 &value,
5481 input_section))
5482 return bfd_reloc_undefined;
5483 }
5484 else
5485 {
5486 if (r_type != R_MIPS_REL32)
5487 value = symbol + addend;
5488 else
5489 value = addend;
5490 }
5491 value &= howto->dst_mask;
092dcd75
CD
5492 break;
5493
5494 case R_MIPS_PC32:
5495 value = symbol + addend - p;
5496 value &= howto->dst_mask;
b49e97c9
TS
5497 break;
5498
b49e97c9
TS
5499 case R_MIPS16_26:
5500 /* The calculation for R_MIPS16_26 is just the same as for an
5501 R_MIPS_26. It's only the storage of the relocated field into
5502 the output file that's different. That's handled in
5503 mips_elf_perform_relocation. So, we just fall through to the
5504 R_MIPS_26 case here. */
5505 case R_MIPS_26:
df58fc94
RS
5506 case R_MICROMIPS_26_S1:
5507 {
5508 unsigned int shift;
5509
5510 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5511 the correct ISA mode selector and bit 1 must be 0. */
5512 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5513 return bfd_reloc_outofrange;
5514
5515 /* Shift is 2, unusually, for microMIPS JALX. */
5516 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5517
5518 if (was_local_p)
5519 value = addend | ((p + 4) & (0xfc000000 << shift));
5520 else
5521 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5522 value = (value + symbol) >> shift;
5523 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5524 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5525 value &= howto->dst_mask;
5526 }
b49e97c9
TS
5527 break;
5528
0f20cc35 5529 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5530 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5531 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5532 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5533 & howto->dst_mask);
5534 break;
5535
5536 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5537 case R_MIPS_TLS_DTPREL32:
5538 case R_MIPS_TLS_DTPREL64:
d0f13682 5539 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5540 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5541 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5542 break;
5543
5544 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5545 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5546 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5547 value = (mips_elf_high (addend + symbol - tprel_base (info))
5548 & howto->dst_mask);
5549 break;
5550
5551 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5552 case R_MIPS_TLS_TPREL32:
5553 case R_MIPS_TLS_TPREL64:
5554 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5555 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5556 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5557 break;
5558
b49e97c9 5559 case R_MIPS_HI16:
d6f16593 5560 case R_MIPS16_HI16:
df58fc94 5561 case R_MICROMIPS_HI16:
b49e97c9
TS
5562 if (!gp_disp_p)
5563 {
5564 value = mips_elf_high (addend + symbol);
5565 value &= howto->dst_mask;
5566 }
5567 else
5568 {
d6f16593
MR
5569 /* For MIPS16 ABI code we generate this sequence
5570 0: li $v0,%hi(_gp_disp)
5571 4: addiupc $v1,%lo(_gp_disp)
5572 8: sll $v0,16
5573 12: addu $v0,$v1
5574 14: move $gp,$v0
5575 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5576 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5577 ADDIUPC clears the low two bits of the instruction address,
5578 so the base is ($t9 + 4) & ~3. */
d6f16593 5579 if (r_type == R_MIPS16_HI16)
888b9c01 5580 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5581 /* The microMIPS .cpload sequence uses the same assembly
5582 instructions as the traditional psABI version, but the
5583 incoming $t9 has the low bit set. */
5584 else if (r_type == R_MICROMIPS_HI16)
5585 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5586 else
5587 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5588 overflowed_p = mips_elf_overflow_p (value, 16);
5589 }
5590 break;
5591
5592 case R_MIPS_LO16:
d6f16593 5593 case R_MIPS16_LO16:
df58fc94
RS
5594 case R_MICROMIPS_LO16:
5595 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5596 if (!gp_disp_p)
5597 value = (symbol + addend) & howto->dst_mask;
5598 else
5599 {
d6f16593
MR
5600 /* See the comment for R_MIPS16_HI16 above for the reason
5601 for this conditional. */
5602 if (r_type == R_MIPS16_LO16)
888b9c01 5603 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5604 else if (r_type == R_MICROMIPS_LO16
5605 || r_type == R_MICROMIPS_HI0_LO16)
5606 value = addend + gp - p + 3;
d6f16593
MR
5607 else
5608 value = addend + gp - p + 4;
b49e97c9 5609 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5610 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5611 _gp_disp are normally generated from the .cpload
5612 pseudo-op. It generates code that normally looks like
5613 this:
5614
5615 lui $gp,%hi(_gp_disp)
5616 addiu $gp,$gp,%lo(_gp_disp)
5617 addu $gp,$gp,$t9
5618
5619 Here $t9 holds the address of the function being called,
5620 as required by the MIPS ELF ABI. The R_MIPS_LO16
5621 relocation can easily overflow in this situation, but the
5622 R_MIPS_HI16 relocation will handle the overflow.
5623 Therefore, we consider this a bug in the MIPS ABI, and do
5624 not check for overflow here. */
5625 }
5626 break;
5627
5628 case R_MIPS_LITERAL:
df58fc94 5629 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5630 /* Because we don't merge literal sections, we can handle this
5631 just like R_MIPS_GPREL16. In the long run, we should merge
5632 shared literals, and then we will need to additional work
5633 here. */
5634
5635 /* Fall through. */
5636
5637 case R_MIPS16_GPREL:
5638 /* The R_MIPS16_GPREL performs the same calculation as
5639 R_MIPS_GPREL16, but stores the relocated bits in a different
5640 order. We don't need to do anything special here; the
5641 differences are handled in mips_elf_perform_relocation. */
5642 case R_MIPS_GPREL16:
df58fc94
RS
5643 case R_MICROMIPS_GPREL7_S2:
5644 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5645 /* Only sign-extend the addend if it was extracted from the
5646 instruction. If the addend was separate, leave it alone,
5647 otherwise we may lose significant bits. */
5648 if (howto->partial_inplace)
a7ebbfdf 5649 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5650 value = symbol + addend - gp;
5651 /* If the symbol was local, any earlier relocatable links will
5652 have adjusted its addend with the gp offset, so compensate
5653 for that now. Don't do it for symbols forced local in this
5654 link, though, since they won't have had the gp offset applied
5655 to them before. */
5656 if (was_local_p)
5657 value += gp0;
b49e97c9
TS
5658 overflowed_p = mips_elf_overflow_p (value, 16);
5659 break;
5660
738e5348
RS
5661 case R_MIPS16_GOT16:
5662 case R_MIPS16_CALL16:
b49e97c9
TS
5663 case R_MIPS_GOT16:
5664 case R_MIPS_CALL16:
df58fc94
RS
5665 case R_MICROMIPS_GOT16:
5666 case R_MICROMIPS_CALL16:
0a44bf69 5667 /* VxWorks does not have separate local and global semantics for
738e5348 5668 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5669 if (!htab->is_vxworks && local_p)
b49e97c9 5670 {
5c18022e 5671 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5672 symbol + addend, !was_local_p);
b49e97c9
TS
5673 if (value == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 value
a8028dd0 5676 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5677 overflowed_p = mips_elf_overflow_p (value, 16);
5678 break;
5679 }
5680
5681 /* Fall through. */
5682
0f20cc35
DJ
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
b49e97c9 5686 case R_MIPS_GOT_DISP:
d0f13682
CLT
5687 case R_MIPS16_TLS_GD:
5688 case R_MIPS16_TLS_GOTTPREL:
5689 case R_MIPS16_TLS_LDM:
df58fc94
RS
5690 case R_MICROMIPS_TLS_GD:
5691 case R_MICROMIPS_TLS_GOTTPREL:
5692 case R_MICROMIPS_TLS_LDM:
5693 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5694 value = g;
5695 overflowed_p = mips_elf_overflow_p (value, 16);
5696 break;
5697
5698 case R_MIPS_GPREL32:
bce03d3d
AO
5699 value = (addend + symbol + gp0 - gp);
5700 if (!save_addend)
5701 value &= howto->dst_mask;
b49e97c9
TS
5702 break;
5703
5704 case R_MIPS_PC16:
bad36eac
DJ
5705 case R_MIPS_GNU_REL16_S2:
5706 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5707 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5708 value >>= howto->rightshift;
5709 value &= howto->dst_mask;
b49e97c9
TS
5710 break;
5711
df58fc94
RS
5712 case R_MICROMIPS_PC7_S1:
5713 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5714 overflowed_p = mips_elf_overflow_p (value, 8);
5715 value >>= howto->rightshift;
5716 value &= howto->dst_mask;
5717 break;
5718
5719 case R_MICROMIPS_PC10_S1:
5720 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5721 overflowed_p = mips_elf_overflow_p (value, 11);
5722 value >>= howto->rightshift;
5723 value &= howto->dst_mask;
5724 break;
5725
5726 case R_MICROMIPS_PC16_S1:
5727 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5728 overflowed_p = mips_elf_overflow_p (value, 17);
5729 value >>= howto->rightshift;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MICROMIPS_PC23_S2:
5734 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5735 overflowed_p = mips_elf_overflow_p (value, 25);
5736 value >>= howto->rightshift;
5737 value &= howto->dst_mask;
5738 break;
5739
b49e97c9
TS
5740 case R_MIPS_GOT_HI16:
5741 case R_MIPS_CALL_HI16:
df58fc94
RS
5742 case R_MICROMIPS_GOT_HI16:
5743 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5744 /* We're allowed to handle these two relocations identically.
5745 The dynamic linker is allowed to handle the CALL relocations
5746 differently by creating a lazy evaluation stub. */
5747 value = g;
5748 value = mips_elf_high (value);
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MIPS_GOT_LO16:
5753 case R_MIPS_CALL_LO16:
df58fc94
RS
5754 case R_MICROMIPS_GOT_LO16:
5755 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5756 value = g & howto->dst_mask;
5757 break;
5758
5759 case R_MIPS_GOT_PAGE:
df58fc94 5760 case R_MICROMIPS_GOT_PAGE:
5c18022e 5761 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5762 if (value == MINUS_ONE)
5763 return bfd_reloc_outofrange;
a8028dd0 5764 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5765 overflowed_p = mips_elf_overflow_p (value, 16);
5766 break;
5767
5768 case R_MIPS_GOT_OFST:
df58fc94 5769 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5770 if (local_p)
5c18022e 5771 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5772 else
5773 value = addend;
b49e97c9
TS
5774 overflowed_p = mips_elf_overflow_p (value, 16);
5775 break;
5776
5777 case R_MIPS_SUB:
df58fc94 5778 case R_MICROMIPS_SUB:
b49e97c9
TS
5779 value = symbol - addend;
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_HIGHER:
df58fc94 5784 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5785 value = mips_elf_higher (addend + symbol);
5786 value &= howto->dst_mask;
5787 break;
5788
5789 case R_MIPS_HIGHEST:
df58fc94 5790 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5791 value = mips_elf_highest (addend + symbol);
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MIPS_SCN_DISP:
df58fc94 5796 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5797 value = symbol + addend - sec->output_offset;
5798 value &= howto->dst_mask;
5799 break;
5800
b49e97c9 5801 case R_MIPS_JALR:
df58fc94 5802 case R_MICROMIPS_JALR:
1367d393
ILT
5803 /* This relocation is only a hint. In some cases, we optimize
5804 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5805 when the symbol does not resolve locally. */
5806 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5807 return bfd_reloc_continue;
5808 value = symbol + addend;
5809 break;
b49e97c9 5810
1367d393 5811 case R_MIPS_PJUMP:
b49e97c9
TS
5812 case R_MIPS_GNU_VTINHERIT:
5813 case R_MIPS_GNU_VTENTRY:
5814 /* We don't do anything with these at present. */
5815 return bfd_reloc_continue;
5816
5817 default:
5818 /* An unrecognized relocation type. */
5819 return bfd_reloc_notsupported;
5820 }
5821
5822 /* Store the VALUE for our caller. */
5823 *valuep = value;
5824 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5825}
5826
5827/* Obtain the field relocated by RELOCATION. */
5828
5829static bfd_vma
9719ad41
RS
5830mips_elf_obtain_contents (reloc_howto_type *howto,
5831 const Elf_Internal_Rela *relocation,
5832 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5833{
5834 bfd_vma x;
5835 bfd_byte *location = contents + relocation->r_offset;
5836
5837 /* Obtain the bytes. */
5838 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5839
b49e97c9
TS
5840 return x;
5841}
5842
5843/* It has been determined that the result of the RELOCATION is the
5844 VALUE. Use HOWTO to place VALUE into the output file at the
5845 appropriate position. The SECTION is the section to which the
68ffbac6 5846 relocation applies.
38a7df63 5847 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5848 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5849
b34976b6 5850 Returns FALSE if anything goes wrong. */
b49e97c9 5851
b34976b6 5852static bfd_boolean
9719ad41
RS
5853mips_elf_perform_relocation (struct bfd_link_info *info,
5854 reloc_howto_type *howto,
5855 const Elf_Internal_Rela *relocation,
5856 bfd_vma value, bfd *input_bfd,
5857 asection *input_section, bfd_byte *contents,
38a7df63 5858 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5859{
5860 bfd_vma x;
5861 bfd_byte *location;
5862 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5863
5864 /* Figure out where the relocation is occurring. */
5865 location = contents + relocation->r_offset;
5866
df58fc94 5867 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5868
b49e97c9
TS
5869 /* Obtain the current value. */
5870 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5871
5872 /* Clear the field we are setting. */
5873 x &= ~howto->dst_mask;
5874
b49e97c9
TS
5875 /* Set the field. */
5876 x |= (value & howto->dst_mask);
5877
5878 /* If required, turn JAL into JALX. */
38a7df63 5879 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5880 {
b34976b6 5881 bfd_boolean ok;
b49e97c9
TS
5882 bfd_vma opcode = x >> 26;
5883 bfd_vma jalx_opcode;
5884
5885 /* Check to see if the opcode is already JAL or JALX. */
5886 if (r_type == R_MIPS16_26)
5887 {
5888 ok = ((opcode == 0x6) || (opcode == 0x7));
5889 jalx_opcode = 0x7;
5890 }
df58fc94
RS
5891 else if (r_type == R_MICROMIPS_26_S1)
5892 {
5893 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5894 jalx_opcode = 0x3c;
5895 }
b49e97c9
TS
5896 else
5897 {
5898 ok = ((opcode == 0x3) || (opcode == 0x1d));
5899 jalx_opcode = 0x1d;
5900 }
5901
3bdf9505
MR
5902 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5903 convert J or JALS to JALX. */
b49e97c9
TS
5904 if (!ok)
5905 {
5906 (*_bfd_error_handler)
3bdf9505 5907 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5908 input_bfd,
5909 input_section,
b49e97c9
TS
5910 (unsigned long) relocation->r_offset);
5911 bfd_set_error (bfd_error_bad_value);
b34976b6 5912 return FALSE;
b49e97c9
TS
5913 }
5914
5915 /* Make this the JALX opcode. */
5916 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5917 }
5918
38a7df63
CF
5919 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5920 range. */
cd8d5a82 5921 if (!info->relocatable
38a7df63 5922 && !cross_mode_jump_p
cd8d5a82
CF
5923 && ((JAL_TO_BAL_P (input_bfd)
5924 && r_type == R_MIPS_26
5925 && (x >> 26) == 0x3) /* jal addr */
5926 || (JALR_TO_BAL_P (input_bfd)
5927 && r_type == R_MIPS_JALR
38a7df63
CF
5928 && x == 0x0320f809) /* jalr t9 */
5929 || (JR_TO_B_P (input_bfd)
5930 && r_type == R_MIPS_JALR
5931 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5932 {
5933 bfd_vma addr;
5934 bfd_vma dest;
5935 bfd_signed_vma off;
5936
5937 addr = (input_section->output_section->vma
5938 + input_section->output_offset
5939 + relocation->r_offset
5940 + 4);
5941 if (r_type == R_MIPS_26)
5942 dest = (value << 2) | ((addr >> 28) << 28);
5943 else
5944 dest = value;
5945 off = dest - addr;
5946 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5947 {
5948 if (x == 0x03200008) /* jr t9 */
5949 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5950 else
5951 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5952 }
1367d393
ILT
5953 }
5954
b49e97c9
TS
5955 /* Put the value into the output. */
5956 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5957
df58fc94
RS
5958 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5959 location);
d6f16593 5960
b34976b6 5961 return TRUE;
b49e97c9 5962}
b49e97c9 5963\f
b49e97c9
TS
5964/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5965 is the original relocation, which is now being transformed into a
5966 dynamic relocation. The ADDENDP is adjusted if necessary; the
5967 caller should store the result in place of the original addend. */
5968
b34976b6 5969static bfd_boolean
9719ad41
RS
5970mips_elf_create_dynamic_relocation (bfd *output_bfd,
5971 struct bfd_link_info *info,
5972 const Elf_Internal_Rela *rel,
5973 struct mips_elf_link_hash_entry *h,
5974 asection *sec, bfd_vma symbol,
5975 bfd_vma *addendp, asection *input_section)
b49e97c9 5976{
947216bf 5977 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5978 asection *sreloc;
5979 bfd *dynobj;
5980 int r_type;
5d41f0b6
RS
5981 long indx;
5982 bfd_boolean defined_p;
0a44bf69 5983 struct mips_elf_link_hash_table *htab;
b49e97c9 5984
0a44bf69 5985 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5986 BFD_ASSERT (htab != NULL);
5987
b49e97c9
TS
5988 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5989 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5990 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5991 BFD_ASSERT (sreloc != NULL);
5992 BFD_ASSERT (sreloc->contents != NULL);
5993 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5994 < sreloc->size);
b49e97c9 5995
b49e97c9
TS
5996 outrel[0].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5998 if (ABI_64_P (output_bfd))
5999 {
6000 outrel[1].r_offset =
6001 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6002 outrel[2].r_offset =
6003 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6004 }
b49e97c9 6005
c5ae1840 6006 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6007 /* The relocation field has been deleted. */
5d41f0b6
RS
6008 return TRUE;
6009
6010 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6011 {
6012 /* The relocation field has been converted into a relative value of
6013 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6014 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6015 *addendp += symbol;
5d41f0b6 6016 return TRUE;
0d591ff7 6017 }
b49e97c9 6018
5d41f0b6
RS
6019 /* We must now calculate the dynamic symbol table index to use
6020 in the relocation. */
d4a77f3f 6021 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6022 {
020d7251 6023 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6024 indx = h->root.dynindx;
6025 if (SGI_COMPAT (output_bfd))
6026 defined_p = h->root.def_regular;
6027 else
6028 /* ??? glibc's ld.so just adds the final GOT entry to the
6029 relocation field. It therefore treats relocs against
6030 defined symbols in the same way as relocs against
6031 undefined symbols. */
6032 defined_p = FALSE;
6033 }
b49e97c9
TS
6034 else
6035 {
5d41f0b6
RS
6036 if (sec != NULL && bfd_is_abs_section (sec))
6037 indx = 0;
6038 else if (sec == NULL || sec->owner == NULL)
fdd07405 6039 {
5d41f0b6
RS
6040 bfd_set_error (bfd_error_bad_value);
6041 return FALSE;
b49e97c9
TS
6042 }
6043 else
6044 {
5d41f0b6 6045 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6046 if (indx == 0)
6047 {
6048 asection *osec = htab->root.text_index_section;
6049 indx = elf_section_data (osec)->dynindx;
6050 }
5d41f0b6
RS
6051 if (indx == 0)
6052 abort ();
b49e97c9
TS
6053 }
6054
5d41f0b6
RS
6055 /* Instead of generating a relocation using the section
6056 symbol, we may as well make it a fully relative
6057 relocation. We want to avoid generating relocations to
6058 local symbols because we used to generate them
6059 incorrectly, without adding the original symbol value,
6060 which is mandated by the ABI for section symbols. In
6061 order to give dynamic loaders and applications time to
6062 phase out the incorrect use, we refrain from emitting
6063 section-relative relocations. It's not like they're
6064 useful, after all. This should be a bit more efficient
6065 as well. */
6066 /* ??? Although this behavior is compatible with glibc's ld.so,
6067 the ABI says that relocations against STN_UNDEF should have
6068 a symbol value of 0. Irix rld honors this, so relocations
6069 against STN_UNDEF have no effect. */
6070 if (!SGI_COMPAT (output_bfd))
6071 indx = 0;
6072 defined_p = TRUE;
b49e97c9
TS
6073 }
6074
5d41f0b6
RS
6075 /* If the relocation was previously an absolute relocation and
6076 this symbol will not be referred to by the relocation, we must
6077 adjust it by the value we give it in the dynamic symbol table.
6078 Otherwise leave the job up to the dynamic linker. */
6079 if (defined_p && r_type != R_MIPS_REL32)
6080 *addendp += symbol;
6081
0a44bf69
RS
6082 if (htab->is_vxworks)
6083 /* VxWorks uses non-relative relocations for this. */
6084 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6085 else
6086 /* The relocation is always an REL32 relocation because we don't
6087 know where the shared library will wind up at load-time. */
6088 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6089 R_MIPS_REL32);
6090
5d41f0b6
RS
6091 /* For strict adherence to the ABI specification, we should
6092 generate a R_MIPS_64 relocation record by itself before the
6093 _REL32/_64 record as well, such that the addend is read in as
6094 a 64-bit value (REL32 is a 32-bit relocation, after all).
6095 However, since none of the existing ELF64 MIPS dynamic
6096 loaders seems to care, we don't waste space with these
6097 artificial relocations. If this turns out to not be true,
6098 mips_elf_allocate_dynamic_relocation() should be tweaked so
6099 as to make room for a pair of dynamic relocations per
6100 invocation if ABI_64_P, and here we should generate an
6101 additional relocation record with R_MIPS_64 by itself for a
6102 NULL symbol before this relocation record. */
6103 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6104 ABI_64_P (output_bfd)
6105 ? R_MIPS_64
6106 : R_MIPS_NONE);
6107 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6108
6109 /* Adjust the output offset of the relocation to reference the
6110 correct location in the output file. */
6111 outrel[0].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113 outrel[1].r_offset += (input_section->output_section->vma
6114 + input_section->output_offset);
6115 outrel[2].r_offset += (input_section->output_section->vma
6116 + input_section->output_offset);
6117
b49e97c9
TS
6118 /* Put the relocation back out. We have to use the special
6119 relocation outputter in the 64-bit case since the 64-bit
6120 relocation format is non-standard. */
6121 if (ABI_64_P (output_bfd))
6122 {
6123 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6124 (output_bfd, &outrel[0],
6125 (sreloc->contents
6126 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6127 }
0a44bf69
RS
6128 else if (htab->is_vxworks)
6129 {
6130 /* VxWorks uses RELA rather than REL dynamic relocations. */
6131 outrel[0].r_addend = *addendp;
6132 bfd_elf32_swap_reloca_out
6133 (output_bfd, &outrel[0],
6134 (sreloc->contents
6135 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6136 }
b49e97c9 6137 else
947216bf
AM
6138 bfd_elf32_swap_reloc_out
6139 (output_bfd, &outrel[0],
6140 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6141
b49e97c9
TS
6142 /* We've now added another relocation. */
6143 ++sreloc->reloc_count;
6144
6145 /* Make sure the output section is writable. The dynamic linker
6146 will be writing to it. */
6147 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6148 |= SHF_WRITE;
6149
6150 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6151 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6152 {
3d4d4302 6153 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6154 bfd_byte *cr;
6155
6156 if (scpt)
6157 {
6158 Elf32_crinfo cptrel;
6159
6160 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6161 cptrel.vaddr = (rel->r_offset
6162 + input_section->output_section->vma
6163 + input_section->output_offset);
6164 if (r_type == R_MIPS_REL32)
6165 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6166 else
6167 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6168 mips_elf_set_cr_dist2to (cptrel, 0);
6169 cptrel.konst = *addendp;
6170
6171 cr = (scpt->contents
6172 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6173 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6174 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6175 ((Elf32_External_crinfo *) cr
6176 + scpt->reloc_count));
6177 ++scpt->reloc_count;
6178 }
6179 }
6180
943284cc
DJ
6181 /* If we've written this relocation for a readonly section,
6182 we need to set DF_TEXTREL again, so that we do not delete the
6183 DT_TEXTREL tag. */
6184 if (MIPS_ELF_READONLY_SECTION (input_section))
6185 info->flags |= DF_TEXTREL;
6186
b34976b6 6187 return TRUE;
b49e97c9
TS
6188}
6189\f
b49e97c9
TS
6190/* Return the MACH for a MIPS e_flags value. */
6191
6192unsigned long
9719ad41 6193_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6194{
6195 switch (flags & EF_MIPS_MACH)
6196 {
6197 case E_MIPS_MACH_3900:
6198 return bfd_mach_mips3900;
6199
6200 case E_MIPS_MACH_4010:
6201 return bfd_mach_mips4010;
6202
6203 case E_MIPS_MACH_4100:
6204 return bfd_mach_mips4100;
6205
6206 case E_MIPS_MACH_4111:
6207 return bfd_mach_mips4111;
6208
00707a0e
RS
6209 case E_MIPS_MACH_4120:
6210 return bfd_mach_mips4120;
6211
b49e97c9
TS
6212 case E_MIPS_MACH_4650:
6213 return bfd_mach_mips4650;
6214
00707a0e
RS
6215 case E_MIPS_MACH_5400:
6216 return bfd_mach_mips5400;
6217
6218 case E_MIPS_MACH_5500:
6219 return bfd_mach_mips5500;
6220
e407c74b
NC
6221 case E_MIPS_MACH_5900:
6222 return bfd_mach_mips5900;
6223
0d2e43ed
ILT
6224 case E_MIPS_MACH_9000:
6225 return bfd_mach_mips9000;
6226
b49e97c9
TS
6227 case E_MIPS_MACH_SB1:
6228 return bfd_mach_mips_sb1;
6229
350cc38d
MS
6230 case E_MIPS_MACH_LS2E:
6231 return bfd_mach_mips_loongson_2e;
6232
6233 case E_MIPS_MACH_LS2F:
6234 return bfd_mach_mips_loongson_2f;
6235
fd503541
NC
6236 case E_MIPS_MACH_LS3A:
6237 return bfd_mach_mips_loongson_3a;
6238
432233b3
AP
6239 case E_MIPS_MACH_OCTEON2:
6240 return bfd_mach_mips_octeon2;
6241
6f179bd0
AN
6242 case E_MIPS_MACH_OCTEON:
6243 return bfd_mach_mips_octeon;
6244
52b6b6b9
JM
6245 case E_MIPS_MACH_XLR:
6246 return bfd_mach_mips_xlr;
6247
b49e97c9
TS
6248 default:
6249 switch (flags & EF_MIPS_ARCH)
6250 {
6251 default:
6252 case E_MIPS_ARCH_1:
6253 return bfd_mach_mips3000;
b49e97c9
TS
6254
6255 case E_MIPS_ARCH_2:
6256 return bfd_mach_mips6000;
b49e97c9
TS
6257
6258 case E_MIPS_ARCH_3:
6259 return bfd_mach_mips4000;
b49e97c9
TS
6260
6261 case E_MIPS_ARCH_4:
6262 return bfd_mach_mips8000;
b49e97c9
TS
6263
6264 case E_MIPS_ARCH_5:
6265 return bfd_mach_mips5;
b49e97c9
TS
6266
6267 case E_MIPS_ARCH_32:
6268 return bfd_mach_mipsisa32;
b49e97c9
TS
6269
6270 case E_MIPS_ARCH_64:
6271 return bfd_mach_mipsisa64;
af7ee8bf
CD
6272
6273 case E_MIPS_ARCH_32R2:
6274 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6275
6276 case E_MIPS_ARCH_64R2:
6277 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6278 }
6279 }
6280
6281 return 0;
6282}
6283
6284/* Return printable name for ABI. */
6285
6286static INLINE char *
9719ad41 6287elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6288{
6289 flagword flags;
6290
6291 flags = elf_elfheader (abfd)->e_flags;
6292 switch (flags & EF_MIPS_ABI)
6293 {
6294 case 0:
6295 if (ABI_N32_P (abfd))
6296 return "N32";
6297 else if (ABI_64_P (abfd))
6298 return "64";
6299 else
6300 return "none";
6301 case E_MIPS_ABI_O32:
6302 return "O32";
6303 case E_MIPS_ABI_O64:
6304 return "O64";
6305 case E_MIPS_ABI_EABI32:
6306 return "EABI32";
6307 case E_MIPS_ABI_EABI64:
6308 return "EABI64";
6309 default:
6310 return "unknown abi";
6311 }
6312}
6313\f
6314/* MIPS ELF uses two common sections. One is the usual one, and the
6315 other is for small objects. All the small objects are kept
6316 together, and then referenced via the gp pointer, which yields
6317 faster assembler code. This is what we use for the small common
6318 section. This approach is copied from ecoff.c. */
6319static asection mips_elf_scom_section;
6320static asymbol mips_elf_scom_symbol;
6321static asymbol *mips_elf_scom_symbol_ptr;
6322
6323/* MIPS ELF also uses an acommon section, which represents an
6324 allocated common symbol which may be overridden by a
6325 definition in a shared library. */
6326static asection mips_elf_acom_section;
6327static asymbol mips_elf_acom_symbol;
6328static asymbol *mips_elf_acom_symbol_ptr;
6329
738e5348 6330/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6331
6332void
9719ad41 6333_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6334{
6335 elf_symbol_type *elfsym;
6336
738e5348 6337 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6338 elfsym = (elf_symbol_type *) asym;
6339 switch (elfsym->internal_elf_sym.st_shndx)
6340 {
6341 case SHN_MIPS_ACOMMON:
6342 /* This section is used in a dynamically linked executable file.
6343 It is an allocated common section. The dynamic linker can
6344 either resolve these symbols to something in a shared
6345 library, or it can just leave them here. For our purposes,
6346 we can consider these symbols to be in a new section. */
6347 if (mips_elf_acom_section.name == NULL)
6348 {
6349 /* Initialize the acommon section. */
6350 mips_elf_acom_section.name = ".acommon";
6351 mips_elf_acom_section.flags = SEC_ALLOC;
6352 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6353 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6354 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6355 mips_elf_acom_symbol.name = ".acommon";
6356 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6357 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6358 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6359 }
6360 asym->section = &mips_elf_acom_section;
6361 break;
6362
6363 case SHN_COMMON:
6364 /* Common symbols less than the GP size are automatically
6365 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6366 if (asym->value > elf_gp_size (abfd)
b59eed79 6367 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6368 || IRIX_COMPAT (abfd) == ict_irix6)
6369 break;
6370 /* Fall through. */
6371 case SHN_MIPS_SCOMMON:
6372 if (mips_elf_scom_section.name == NULL)
6373 {
6374 /* Initialize the small common section. */
6375 mips_elf_scom_section.name = ".scommon";
6376 mips_elf_scom_section.flags = SEC_IS_COMMON;
6377 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6378 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6379 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6380 mips_elf_scom_symbol.name = ".scommon";
6381 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6383 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6384 }
6385 asym->section = &mips_elf_scom_section;
6386 asym->value = elfsym->internal_elf_sym.st_size;
6387 break;
6388
6389 case SHN_MIPS_SUNDEFINED:
6390 asym->section = bfd_und_section_ptr;
6391 break;
6392
b49e97c9 6393 case SHN_MIPS_TEXT:
00b4930b
TS
6394 {
6395 asection *section = bfd_get_section_by_name (abfd, ".text");
6396
00b4930b
TS
6397 if (section != NULL)
6398 {
6399 asym->section = section;
6400 /* MIPS_TEXT is a bit special, the address is not an offset
6401 to the base of the .text section. So substract the section
6402 base address to make it an offset. */
6403 asym->value -= section->vma;
6404 }
6405 }
b49e97c9
TS
6406 break;
6407
6408 case SHN_MIPS_DATA:
00b4930b
TS
6409 {
6410 asection *section = bfd_get_section_by_name (abfd, ".data");
6411
00b4930b
TS
6412 if (section != NULL)
6413 {
6414 asym->section = section;
6415 /* MIPS_DATA is a bit special, the address is not an offset
6416 to the base of the .data section. So substract the section
6417 base address to make it an offset. */
6418 asym->value -= section->vma;
6419 }
6420 }
b49e97c9 6421 break;
b49e97c9 6422 }
738e5348 6423
df58fc94
RS
6424 /* If this is an odd-valued function symbol, assume it's a MIPS16
6425 or microMIPS one. */
738e5348
RS
6426 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6427 && (asym->value & 1) != 0)
6428 {
6429 asym->value--;
e8faf7d1 6430 if (MICROMIPS_P (abfd))
df58fc94
RS
6431 elfsym->internal_elf_sym.st_other
6432 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6433 else
6434 elfsym->internal_elf_sym.st_other
6435 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6436 }
b49e97c9
TS
6437}
6438\f
8c946ed5
RS
6439/* Implement elf_backend_eh_frame_address_size. This differs from
6440 the default in the way it handles EABI64.
6441
6442 EABI64 was originally specified as an LP64 ABI, and that is what
6443 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6444 historically accepted the combination of -mabi=eabi and -mlong32,
6445 and this ILP32 variation has become semi-official over time.
6446 Both forms use elf32 and have pointer-sized FDE addresses.
6447
6448 If an EABI object was generated by GCC 4.0 or above, it will have
6449 an empty .gcc_compiled_longXX section, where XX is the size of longs
6450 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6451 have no special marking to distinguish them from LP64 objects.
6452
6453 We don't want users of the official LP64 ABI to be punished for the
6454 existence of the ILP32 variant, but at the same time, we don't want
6455 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6456 We therefore take the following approach:
6457
6458 - If ABFD contains a .gcc_compiled_longXX section, use it to
6459 determine the pointer size.
6460
6461 - Otherwise check the type of the first relocation. Assume that
6462 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6463
6464 - Otherwise punt.
6465
6466 The second check is enough to detect LP64 objects generated by pre-4.0
6467 compilers because, in the kind of output generated by those compilers,
6468 the first relocation will be associated with either a CIE personality
6469 routine or an FDE start address. Furthermore, the compilers never
6470 used a special (non-pointer) encoding for this ABI.
6471
6472 Checking the relocation type should also be safe because there is no
6473 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6474 did so. */
6475
6476unsigned int
6477_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6478{
6479 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6480 return 8;
6481 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6482 {
6483 bfd_boolean long32_p, long64_p;
6484
6485 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6486 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6487 if (long32_p && long64_p)
6488 return 0;
6489 if (long32_p)
6490 return 4;
6491 if (long64_p)
6492 return 8;
6493
6494 if (sec->reloc_count > 0
6495 && elf_section_data (sec)->relocs != NULL
6496 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6497 == R_MIPS_64))
6498 return 8;
6499
6500 return 0;
6501 }
6502 return 4;
6503}
6504\f
174fd7f9
RS
6505/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6506 relocations against two unnamed section symbols to resolve to the
6507 same address. For example, if we have code like:
6508
6509 lw $4,%got_disp(.data)($gp)
6510 lw $25,%got_disp(.text)($gp)
6511 jalr $25
6512
6513 then the linker will resolve both relocations to .data and the program
6514 will jump there rather than to .text.
6515
6516 We can work around this problem by giving names to local section symbols.
6517 This is also what the MIPSpro tools do. */
6518
6519bfd_boolean
6520_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6521{
6522 return SGI_COMPAT (abfd);
6523}
6524\f
b49e97c9
TS
6525/* Work over a section just before writing it out. This routine is
6526 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6527 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6528 a better way. */
6529
b34976b6 6530bfd_boolean
9719ad41 6531_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6532{
6533 if (hdr->sh_type == SHT_MIPS_REGINFO
6534 && hdr->sh_size > 0)
6535 {
6536 bfd_byte buf[4];
6537
6538 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6539 BFD_ASSERT (hdr->contents == NULL);
6540
6541 if (bfd_seek (abfd,
6542 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6543 SEEK_SET) != 0)
b34976b6 6544 return FALSE;
b49e97c9 6545 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6546 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6547 return FALSE;
b49e97c9
TS
6548 }
6549
6550 if (hdr->sh_type == SHT_MIPS_OPTIONS
6551 && hdr->bfd_section != NULL
f0abc2a1
AM
6552 && mips_elf_section_data (hdr->bfd_section) != NULL
6553 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6554 {
6555 bfd_byte *contents, *l, *lend;
6556
f0abc2a1
AM
6557 /* We stored the section contents in the tdata field in the
6558 set_section_contents routine. We save the section contents
6559 so that we don't have to read them again.
b49e97c9
TS
6560 At this point we know that elf_gp is set, so we can look
6561 through the section contents to see if there is an
6562 ODK_REGINFO structure. */
6563
f0abc2a1 6564 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6565 l = contents;
6566 lend = contents + hdr->sh_size;
6567 while (l + sizeof (Elf_External_Options) <= lend)
6568 {
6569 Elf_Internal_Options intopt;
6570
6571 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6572 &intopt);
1bc8074d
MR
6573 if (intopt.size < sizeof (Elf_External_Options))
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6577 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6578 break;
6579 }
b49e97c9
TS
6580 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6581 {
6582 bfd_byte buf[8];
6583
6584 if (bfd_seek (abfd,
6585 (hdr->sh_offset
6586 + (l - contents)
6587 + sizeof (Elf_External_Options)
6588 + (sizeof (Elf64_External_RegInfo) - 8)),
6589 SEEK_SET) != 0)
b34976b6 6590 return FALSE;
b49e97c9 6591 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6592 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6593 return FALSE;
b49e97c9
TS
6594 }
6595 else if (intopt.kind == ODK_REGINFO)
6596 {
6597 bfd_byte buf[4];
6598
6599 if (bfd_seek (abfd,
6600 (hdr->sh_offset
6601 + (l - contents)
6602 + sizeof (Elf_External_Options)
6603 + (sizeof (Elf32_External_RegInfo) - 4)),
6604 SEEK_SET) != 0)
b34976b6 6605 return FALSE;
b49e97c9 6606 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6607 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6608 return FALSE;
b49e97c9
TS
6609 }
6610 l += intopt.size;
6611 }
6612 }
6613
6614 if (hdr->bfd_section != NULL)
6615 {
6616 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6617
2d0f9ad9
JM
6618 /* .sbss is not handled specially here because the GNU/Linux
6619 prelinker can convert .sbss from NOBITS to PROGBITS and
6620 changing it back to NOBITS breaks the binary. The entry in
6621 _bfd_mips_elf_special_sections will ensure the correct flags
6622 are set on .sbss if BFD creates it without reading it from an
6623 input file, and without special handling here the flags set
6624 on it in an input file will be followed. */
b49e97c9
TS
6625 if (strcmp (name, ".sdata") == 0
6626 || strcmp (name, ".lit8") == 0
6627 || strcmp (name, ".lit4") == 0)
6628 {
6629 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6630 hdr->sh_type = SHT_PROGBITS;
6631 }
b49e97c9
TS
6632 else if (strcmp (name, ".srdata") == 0)
6633 {
6634 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6635 hdr->sh_type = SHT_PROGBITS;
6636 }
6637 else if (strcmp (name, ".compact_rel") == 0)
6638 {
6639 hdr->sh_flags = 0;
6640 hdr->sh_type = SHT_PROGBITS;
6641 }
6642 else if (strcmp (name, ".rtproc") == 0)
6643 {
6644 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6645 {
6646 unsigned int adjust;
6647
6648 adjust = hdr->sh_size % hdr->sh_addralign;
6649 if (adjust != 0)
6650 hdr->sh_size += hdr->sh_addralign - adjust;
6651 }
6652 }
6653 }
6654
b34976b6 6655 return TRUE;
b49e97c9
TS
6656}
6657
6658/* Handle a MIPS specific section when reading an object file. This
6659 is called when elfcode.h finds a section with an unknown type.
6660 This routine supports both the 32-bit and 64-bit ELF ABI.
6661
6662 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6663 how to. */
6664
b34976b6 6665bfd_boolean
6dc132d9
L
6666_bfd_mips_elf_section_from_shdr (bfd *abfd,
6667 Elf_Internal_Shdr *hdr,
6668 const char *name,
6669 int shindex)
b49e97c9
TS
6670{
6671 flagword flags = 0;
6672
6673 /* There ought to be a place to keep ELF backend specific flags, but
6674 at the moment there isn't one. We just keep track of the
6675 sections by their name, instead. Fortunately, the ABI gives
6676 suggested names for all the MIPS specific sections, so we will
6677 probably get away with this. */
6678 switch (hdr->sh_type)
6679 {
6680 case SHT_MIPS_LIBLIST:
6681 if (strcmp (name, ".liblist") != 0)
b34976b6 6682 return FALSE;
b49e97c9
TS
6683 break;
6684 case SHT_MIPS_MSYM:
6685 if (strcmp (name, ".msym") != 0)
b34976b6 6686 return FALSE;
b49e97c9
TS
6687 break;
6688 case SHT_MIPS_CONFLICT:
6689 if (strcmp (name, ".conflict") != 0)
b34976b6 6690 return FALSE;
b49e97c9
TS
6691 break;
6692 case SHT_MIPS_GPTAB:
0112cd26 6693 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6694 return FALSE;
b49e97c9
TS
6695 break;
6696 case SHT_MIPS_UCODE:
6697 if (strcmp (name, ".ucode") != 0)
b34976b6 6698 return FALSE;
b49e97c9
TS
6699 break;
6700 case SHT_MIPS_DEBUG:
6701 if (strcmp (name, ".mdebug") != 0)
b34976b6 6702 return FALSE;
b49e97c9
TS
6703 flags = SEC_DEBUGGING;
6704 break;
6705 case SHT_MIPS_REGINFO:
6706 if (strcmp (name, ".reginfo") != 0
6707 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6708 return FALSE;
b49e97c9
TS
6709 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6710 break;
6711 case SHT_MIPS_IFACE:
6712 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6713 return FALSE;
b49e97c9
TS
6714 break;
6715 case SHT_MIPS_CONTENT:
0112cd26 6716 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6717 return FALSE;
b49e97c9
TS
6718 break;
6719 case SHT_MIPS_OPTIONS:
cc2e31b9 6720 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6721 return FALSE;
b49e97c9
TS
6722 break;
6723 case SHT_MIPS_DWARF:
1b315056 6724 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6725 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6726 return FALSE;
b49e97c9
TS
6727 break;
6728 case SHT_MIPS_SYMBOL_LIB:
6729 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6730 return FALSE;
b49e97c9
TS
6731 break;
6732 case SHT_MIPS_EVENTS:
0112cd26
NC
6733 if (! CONST_STRNEQ (name, ".MIPS.events")
6734 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6735 return FALSE;
b49e97c9
TS
6736 break;
6737 default:
cc2e31b9 6738 break;
b49e97c9
TS
6739 }
6740
6dc132d9 6741 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6742 return FALSE;
b49e97c9
TS
6743
6744 if (flags)
6745 {
6746 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6747 (bfd_get_section_flags (abfd,
6748 hdr->bfd_section)
6749 | flags)))
b34976b6 6750 return FALSE;
b49e97c9
TS
6751 }
6752
6753 /* FIXME: We should record sh_info for a .gptab section. */
6754
6755 /* For a .reginfo section, set the gp value in the tdata information
6756 from the contents of this section. We need the gp value while
6757 processing relocs, so we just get it now. The .reginfo section
6758 is not used in the 64-bit MIPS ELF ABI. */
6759 if (hdr->sh_type == SHT_MIPS_REGINFO)
6760 {
6761 Elf32_External_RegInfo ext;
6762 Elf32_RegInfo s;
6763
9719ad41
RS
6764 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6765 &ext, 0, sizeof ext))
b34976b6 6766 return FALSE;
b49e97c9
TS
6767 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6768 elf_gp (abfd) = s.ri_gp_value;
6769 }
6770
6771 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6772 set the gp value based on what we find. We may see both
6773 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6774 they should agree. */
6775 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6776 {
6777 bfd_byte *contents, *l, *lend;
6778
9719ad41 6779 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6780 if (contents == NULL)
b34976b6 6781 return FALSE;
b49e97c9 6782 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6783 0, hdr->sh_size))
b49e97c9
TS
6784 {
6785 free (contents);
b34976b6 6786 return FALSE;
b49e97c9
TS
6787 }
6788 l = contents;
6789 lend = contents + hdr->sh_size;
6790 while (l + sizeof (Elf_External_Options) <= lend)
6791 {
6792 Elf_Internal_Options intopt;
6793
6794 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6795 &intopt);
1bc8074d
MR
6796 if (intopt.size < sizeof (Elf_External_Options))
6797 {
6798 (*_bfd_error_handler)
6799 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6800 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6801 break;
6802 }
b49e97c9
TS
6803 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6804 {
6805 Elf64_Internal_RegInfo intreg;
6806
6807 bfd_mips_elf64_swap_reginfo_in
6808 (abfd,
6809 ((Elf64_External_RegInfo *)
6810 (l + sizeof (Elf_External_Options))),
6811 &intreg);
6812 elf_gp (abfd) = intreg.ri_gp_value;
6813 }
6814 else if (intopt.kind == ODK_REGINFO)
6815 {
6816 Elf32_RegInfo intreg;
6817
6818 bfd_mips_elf32_swap_reginfo_in
6819 (abfd,
6820 ((Elf32_External_RegInfo *)
6821 (l + sizeof (Elf_External_Options))),
6822 &intreg);
6823 elf_gp (abfd) = intreg.ri_gp_value;
6824 }
6825 l += intopt.size;
6826 }
6827 free (contents);
6828 }
6829
b34976b6 6830 return TRUE;
b49e97c9
TS
6831}
6832
6833/* Set the correct type for a MIPS ELF section. We do this by the
6834 section name, which is a hack, but ought to work. This routine is
6835 used by both the 32-bit and the 64-bit ABI. */
6836
b34976b6 6837bfd_boolean
9719ad41 6838_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6839{
0414f35b 6840 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6841
6842 if (strcmp (name, ".liblist") == 0)
6843 {
6844 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6845 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6846 /* The sh_link field is set in final_write_processing. */
6847 }
6848 else if (strcmp (name, ".conflict") == 0)
6849 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6850 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6851 {
6852 hdr->sh_type = SHT_MIPS_GPTAB;
6853 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6854 /* The sh_info field is set in final_write_processing. */
6855 }
6856 else if (strcmp (name, ".ucode") == 0)
6857 hdr->sh_type = SHT_MIPS_UCODE;
6858 else if (strcmp (name, ".mdebug") == 0)
6859 {
6860 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6861 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6862 entsize of 0. FIXME: Does this matter? */
6863 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6864 hdr->sh_entsize = 0;
6865 else
6866 hdr->sh_entsize = 1;
6867 }
6868 else if (strcmp (name, ".reginfo") == 0)
6869 {
6870 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6871 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6872 entsize of 0x18. FIXME: Does this matter? */
6873 if (SGI_COMPAT (abfd))
6874 {
6875 if ((abfd->flags & DYNAMIC) != 0)
6876 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6877 else
6878 hdr->sh_entsize = 1;
6879 }
6880 else
6881 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6882 }
6883 else if (SGI_COMPAT (abfd)
6884 && (strcmp (name, ".hash") == 0
6885 || strcmp (name, ".dynamic") == 0
6886 || strcmp (name, ".dynstr") == 0))
6887 {
6888 if (SGI_COMPAT (abfd))
6889 hdr->sh_entsize = 0;
6890#if 0
8dc1a139 6891 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6892 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6893#endif
6894 }
6895 else if (strcmp (name, ".got") == 0
6896 || strcmp (name, ".srdata") == 0
6897 || strcmp (name, ".sdata") == 0
6898 || strcmp (name, ".sbss") == 0
6899 || strcmp (name, ".lit4") == 0
6900 || strcmp (name, ".lit8") == 0)
6901 hdr->sh_flags |= SHF_MIPS_GPREL;
6902 else if (strcmp (name, ".MIPS.interfaces") == 0)
6903 {
6904 hdr->sh_type = SHT_MIPS_IFACE;
6905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6906 }
0112cd26 6907 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6908 {
6909 hdr->sh_type = SHT_MIPS_CONTENT;
6910 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6911 /* The sh_info field is set in final_write_processing. */
6912 }
cc2e31b9 6913 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6914 {
6915 hdr->sh_type = SHT_MIPS_OPTIONS;
6916 hdr->sh_entsize = 1;
6917 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6918 }
1b315056
CS
6919 else if (CONST_STRNEQ (name, ".debug_")
6920 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6921 {
6922 hdr->sh_type = SHT_MIPS_DWARF;
6923
6924 /* Irix facilities such as libexc expect a single .debug_frame
6925 per executable, the system ones have NOSTRIP set and the linker
6926 doesn't merge sections with different flags so ... */
6927 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6928 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6929 }
b49e97c9
TS
6930 else if (strcmp (name, ".MIPS.symlib") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6933 /* The sh_link and sh_info fields are set in
6934 final_write_processing. */
6935 }
0112cd26
NC
6936 else if (CONST_STRNEQ (name, ".MIPS.events")
6937 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6938 {
6939 hdr->sh_type = SHT_MIPS_EVENTS;
6940 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6941 /* The sh_link field is set in final_write_processing. */
6942 }
6943 else if (strcmp (name, ".msym") == 0)
6944 {
6945 hdr->sh_type = SHT_MIPS_MSYM;
6946 hdr->sh_flags |= SHF_ALLOC;
6947 hdr->sh_entsize = 8;
6948 }
6949
7a79a000
TS
6950 /* The generic elf_fake_sections will set up REL_HDR using the default
6951 kind of relocations. We used to set up a second header for the
6952 non-default kind of relocations here, but only NewABI would use
6953 these, and the IRIX ld doesn't like resulting empty RELA sections.
6954 Thus we create those header only on demand now. */
b49e97c9 6955
b34976b6 6956 return TRUE;
b49e97c9
TS
6957}
6958
6959/* Given a BFD section, try to locate the corresponding ELF section
6960 index. This is used by both the 32-bit and the 64-bit ABI.
6961 Actually, it's not clear to me that the 64-bit ABI supports these,
6962 but for non-PIC objects we will certainly want support for at least
6963 the .scommon section. */
6964
b34976b6 6965bfd_boolean
9719ad41
RS
6966_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6967 asection *sec, int *retval)
b49e97c9
TS
6968{
6969 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6970 {
6971 *retval = SHN_MIPS_SCOMMON;
b34976b6 6972 return TRUE;
b49e97c9
TS
6973 }
6974 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6975 {
6976 *retval = SHN_MIPS_ACOMMON;
b34976b6 6977 return TRUE;
b49e97c9 6978 }
b34976b6 6979 return FALSE;
b49e97c9
TS
6980}
6981\f
6982/* Hook called by the linker routine which adds symbols from an object
6983 file. We must handle the special MIPS section numbers here. */
6984
b34976b6 6985bfd_boolean
9719ad41 6986_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6987 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6988 flagword *flagsp ATTRIBUTE_UNUSED,
6989 asection **secp, bfd_vma *valp)
b49e97c9
TS
6990{
6991 if (SGI_COMPAT (abfd)
6992 && (abfd->flags & DYNAMIC) != 0
6993 && strcmp (*namep, "_rld_new_interface") == 0)
6994 {
8dc1a139 6995 /* Skip IRIX5 rld entry name. */
b49e97c9 6996 *namep = NULL;
b34976b6 6997 return TRUE;
b49e97c9
TS
6998 }
6999
eedecc07
DD
7000 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7001 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7002 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7003 a magic symbol resolved by the linker, we ignore this bogus definition
7004 of _gp_disp. New ABI objects do not suffer from this problem so this
7005 is not done for them. */
7006 if (!NEWABI_P(abfd)
7007 && (sym->st_shndx == SHN_ABS)
7008 && (strcmp (*namep, "_gp_disp") == 0))
7009 {
7010 *namep = NULL;
7011 return TRUE;
7012 }
7013
b49e97c9
TS
7014 switch (sym->st_shndx)
7015 {
7016 case SHN_COMMON:
7017 /* Common symbols less than the GP size are automatically
7018 treated as SHN_MIPS_SCOMMON symbols. */
7019 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7020 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7021 || IRIX_COMPAT (abfd) == ict_irix6)
7022 break;
7023 /* Fall through. */
7024 case SHN_MIPS_SCOMMON:
7025 *secp = bfd_make_section_old_way (abfd, ".scommon");
7026 (*secp)->flags |= SEC_IS_COMMON;
7027 *valp = sym->st_size;
7028 break;
7029
7030 case SHN_MIPS_TEXT:
7031 /* This section is used in a shared object. */
698600e4 7032 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7033 {
7034 asymbol *elf_text_symbol;
7035 asection *elf_text_section;
7036 bfd_size_type amt = sizeof (asection);
7037
7038 elf_text_section = bfd_zalloc (abfd, amt);
7039 if (elf_text_section == NULL)
b34976b6 7040 return FALSE;
b49e97c9
TS
7041
7042 amt = sizeof (asymbol);
7043 elf_text_symbol = bfd_zalloc (abfd, amt);
7044 if (elf_text_symbol == NULL)
b34976b6 7045 return FALSE;
b49e97c9
TS
7046
7047 /* Initialize the section. */
7048
698600e4
AM
7049 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7050 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7051
7052 elf_text_section->symbol = elf_text_symbol;
698600e4 7053 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7054
7055 elf_text_section->name = ".text";
7056 elf_text_section->flags = SEC_NO_FLAGS;
7057 elf_text_section->output_section = NULL;
7058 elf_text_section->owner = abfd;
7059 elf_text_symbol->name = ".text";
7060 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7061 elf_text_symbol->section = elf_text_section;
7062 }
7063 /* This code used to do *secp = bfd_und_section_ptr if
7064 info->shared. I don't know why, and that doesn't make sense,
7065 so I took it out. */
698600e4 7066 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7067 break;
7068
7069 case SHN_MIPS_ACOMMON:
7070 /* Fall through. XXX Can we treat this as allocated data? */
7071 case SHN_MIPS_DATA:
7072 /* This section is used in a shared object. */
698600e4 7073 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7074 {
7075 asymbol *elf_data_symbol;
7076 asection *elf_data_section;
7077 bfd_size_type amt = sizeof (asection);
7078
7079 elf_data_section = bfd_zalloc (abfd, amt);
7080 if (elf_data_section == NULL)
b34976b6 7081 return FALSE;
b49e97c9
TS
7082
7083 amt = sizeof (asymbol);
7084 elf_data_symbol = bfd_zalloc (abfd, amt);
7085 if (elf_data_symbol == NULL)
b34976b6 7086 return FALSE;
b49e97c9
TS
7087
7088 /* Initialize the section. */
7089
698600e4
AM
7090 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7091 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7092
7093 elf_data_section->symbol = elf_data_symbol;
698600e4 7094 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7095
7096 elf_data_section->name = ".data";
7097 elf_data_section->flags = SEC_NO_FLAGS;
7098 elf_data_section->output_section = NULL;
7099 elf_data_section->owner = abfd;
7100 elf_data_symbol->name = ".data";
7101 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7102 elf_data_symbol->section = elf_data_section;
7103 }
7104 /* This code used to do *secp = bfd_und_section_ptr if
7105 info->shared. I don't know why, and that doesn't make sense,
7106 so I took it out. */
698600e4 7107 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 *secp = bfd_und_section_ptr;
7112 break;
7113 }
7114
7115 if (SGI_COMPAT (abfd)
7116 && ! info->shared
f13a99db 7117 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7118 && strcmp (*namep, "__rld_obj_head") == 0)
7119 {
7120 struct elf_link_hash_entry *h;
14a793b2 7121 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7122
7123 /* Mark __rld_obj_head as dynamic. */
14a793b2 7124 bh = NULL;
b49e97c9 7125 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7126 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7127 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7128 return FALSE;
14a793b2
AM
7129
7130 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7131 h->non_elf = 0;
7132 h->def_regular = 1;
b49e97c9
TS
7133 h->type = STT_OBJECT;
7134
c152c796 7135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7136 return FALSE;
b49e97c9 7137
b34976b6 7138 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7139 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7140 }
7141
7142 /* If this is a mips16 text symbol, add 1 to the value to make it
7143 odd. This will cause something like .word SYM to come up with
7144 the right value when it is loaded into the PC. */
df58fc94 7145 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7146 ++*valp;
7147
b34976b6 7148 return TRUE;
b49e97c9
TS
7149}
7150
7151/* This hook function is called before the linker writes out a global
7152 symbol. We mark symbols as small common if appropriate. This is
7153 also where we undo the increment of the value for a mips16 symbol. */
7154
6e0b88f1 7155int
9719ad41
RS
7156_bfd_mips_elf_link_output_symbol_hook
7157 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7158 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7159 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7160{
7161 /* If we see a common symbol, which implies a relocatable link, then
7162 if a symbol was small common in an input file, mark it as small
7163 common in the output file. */
7164 if (sym->st_shndx == SHN_COMMON
7165 && strcmp (input_sec->name, ".scommon") == 0)
7166 sym->st_shndx = SHN_MIPS_SCOMMON;
7167
df58fc94 7168 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7169 sym->st_value &= ~1;
b49e97c9 7170
6e0b88f1 7171 return 1;
b49e97c9
TS
7172}
7173\f
7174/* Functions for the dynamic linker. */
7175
7176/* Create dynamic sections when linking against a dynamic object. */
7177
b34976b6 7178bfd_boolean
9719ad41 7179_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7180{
7181 struct elf_link_hash_entry *h;
14a793b2 7182 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7183 flagword flags;
7184 register asection *s;
7185 const char * const *namep;
0a44bf69 7186 struct mips_elf_link_hash_table *htab;
b49e97c9 7187
0a44bf69 7188 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7189 BFD_ASSERT (htab != NULL);
7190
b49e97c9
TS
7191 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7192 | SEC_LINKER_CREATED | SEC_READONLY);
7193
0a44bf69
RS
7194 /* The psABI requires a read-only .dynamic section, but the VxWorks
7195 EABI doesn't. */
7196 if (!htab->is_vxworks)
b49e97c9 7197 {
3d4d4302 7198 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7199 if (s != NULL)
7200 {
7201 if (! bfd_set_section_flags (abfd, s, flags))
7202 return FALSE;
7203 }
b49e97c9
TS
7204 }
7205
7206 /* We need to create .got section. */
23cc69b6 7207 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7208 return FALSE;
7209
0a44bf69 7210 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7211 return FALSE;
b49e97c9 7212
b49e97c9 7213 /* Create .stub section. */
3d4d4302
AM
7214 s = bfd_make_section_anyway_with_flags (abfd,
7215 MIPS_ELF_STUB_SECTION_NAME (abfd),
7216 flags | SEC_CODE);
4e41d0d7
RS
7217 if (s == NULL
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7220 return FALSE;
7221 htab->sstubs = s;
b49e97c9 7222
e6aea42d 7223 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7224 && !info->shared
3d4d4302 7225 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7226 {
3d4d4302
AM
7227 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7228 flags &~ (flagword) SEC_READONLY);
b49e97c9 7229 if (s == NULL
b49e97c9
TS
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7232 return FALSE;
b49e97c9
TS
7233 }
7234
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
7240 {
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7242 {
14a793b2 7243 bh = NULL;
b49e97c9 7244 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7246 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7247 return FALSE;
14a793b2
AM
7248
7249 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7250 h->non_elf = 0;
7251 h->def_regular = 1;
b49e97c9
TS
7252 h->type = STT_SECTION;
7253
c152c796 7254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7255 return FALSE;
b49e97c9
TS
7256 }
7257
7258 /* We need to create a .compact_rel section. */
7259 if (SGI_COMPAT (abfd))
7260 {
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7262 return FALSE;
b49e97c9
TS
7263 }
7264
44c410de 7265 /* Change alignments of some sections. */
3d4d4302 7266 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7267 if (s != NULL)
d80dcc6a 7268 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7269 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7270 if (s != NULL)
d80dcc6a 7271 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7272 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7273 if (s != NULL)
d80dcc6a 7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7275 /* ??? */
b49e97c9
TS
7276 s = bfd_get_section_by_name (abfd, ".reginfo");
7277 if (s != NULL)
d80dcc6a 7278 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7279 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7280 if (s != NULL)
d80dcc6a 7281 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7282 }
7283
7284 if (!info->shared)
7285 {
14a793b2
AM
7286 const char *name;
7287
7288 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7289 bh = NULL;
7290 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7291 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7292 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7293 return FALSE;
14a793b2
AM
7294
7295 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7296 h->non_elf = 0;
7297 h->def_regular = 1;
b49e97c9
TS
7298 h->type = STT_SECTION;
7299
c152c796 7300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7301 return FALSE;
b49e97c9
TS
7302
7303 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7304 {
7305 /* __rld_map is a four byte word located in the .data section
7306 and is filled in by the rtld to contain a pointer to
7307 the _r_debug structure. Its symbol value will be set in
7308 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7309 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7310 BFD_ASSERT (s != NULL);
14a793b2 7311
0abfb97a
L
7312 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7316 get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
b49e97c9 7318
0abfb97a
L
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_OBJECT;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
b4082c70 7326 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7327 }
7328 }
7329
861fb55a 7330 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7331 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7332 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7333 return FALSE;
7334
7335 /* Cache the sections created above. */
3d4d4302
AM
7336 htab->splt = bfd_get_linker_section (abfd, ".plt");
7337 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7338 if (htab->is_vxworks)
7339 {
3d4d4302
AM
7340 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7341 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7342 }
7343 else
3d4d4302 7344 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7345 if (!htab->sdynbss
7346 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7347 || !htab->srelplt
7348 || !htab->splt)
7349 abort ();
0a44bf69 7350
861fb55a
DJ
7351 if (htab->is_vxworks)
7352 {
0a44bf69
RS
7353 /* Do the usual VxWorks handling. */
7354 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7355 return FALSE;
7356
7357 /* Work out the PLT sizes. */
7358 if (info->shared)
7359 {
7360 htab->plt_header_size
7361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7362 htab->plt_entry_size
7363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7364 }
7365 else
7366 {
7367 htab->plt_header_size
7368 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7369 htab->plt_entry_size
7370 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7371 }
7372 }
861fb55a
DJ
7373 else if (!info->shared)
7374 {
7375 /* All variants of the plt0 entry are the same size. */
7376 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7377 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7378 }
0a44bf69 7379
b34976b6 7380 return TRUE;
b49e97c9
TS
7381}
7382\f
c224138d
RS
7383/* Return true if relocation REL against section SEC is a REL rather than
7384 RELA relocation. RELOCS is the first relocation in the section and
7385 ABFD is the bfd that contains SEC. */
7386
7387static bfd_boolean
7388mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7389 const Elf_Internal_Rela *relocs,
7390 const Elf_Internal_Rela *rel)
7391{
7392 Elf_Internal_Shdr *rel_hdr;
7393 const struct elf_backend_data *bed;
7394
d4730f92
BS
7395 /* To determine which flavor of relocation this is, we depend on the
7396 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7397 rel_hdr = elf_section_data (sec)->rel.hdr;
7398 if (rel_hdr == NULL)
7399 return FALSE;
c224138d 7400 bed = get_elf_backend_data (abfd);
d4730f92
BS
7401 return ((size_t) (rel - relocs)
7402 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7403}
7404
7405/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7406 HOWTO is the relocation's howto and CONTENTS points to the contents
7407 of the section that REL is against. */
7408
7409static bfd_vma
7410mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7411 reloc_howto_type *howto, bfd_byte *contents)
7412{
7413 bfd_byte *location;
7414 unsigned int r_type;
7415 bfd_vma addend;
7416
7417 r_type = ELF_R_TYPE (abfd, rel->r_info);
7418 location = contents + rel->r_offset;
7419
7420 /* Get the addend, which is stored in the input file. */
df58fc94 7421 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7422 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7423 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7424
7425 return addend & howto->src_mask;
7426}
7427
7428/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7429 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7430 and update *ADDEND with the final addend. Return true on success
7431 or false if the LO16 could not be found. RELEND is the exclusive
7432 upper bound on the relocations for REL's section. */
7433
7434static bfd_boolean
7435mips_elf_add_lo16_rel_addend (bfd *abfd,
7436 const Elf_Internal_Rela *rel,
7437 const Elf_Internal_Rela *relend,
7438 bfd_byte *contents, bfd_vma *addend)
7439{
7440 unsigned int r_type, lo16_type;
7441 const Elf_Internal_Rela *lo16_relocation;
7442 reloc_howto_type *lo16_howto;
7443 bfd_vma l;
7444
7445 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7446 if (mips16_reloc_p (r_type))
c224138d 7447 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7448 else if (micromips_reloc_p (r_type))
7449 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7450 else
7451 lo16_type = R_MIPS_LO16;
7452
7453 /* The combined value is the sum of the HI16 addend, left-shifted by
7454 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7455 code does a `lui' of the HI16 value, and then an `addiu' of the
7456 LO16 value.)
7457
7458 Scan ahead to find a matching LO16 relocation.
7459
7460 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7461 be immediately following. However, for the IRIX6 ABI, the next
7462 relocation may be a composed relocation consisting of several
7463 relocations for the same address. In that case, the R_MIPS_LO16
7464 relocation may occur as one of these. We permit a similar
7465 extension in general, as that is useful for GCC.
7466
7467 In some cases GCC dead code elimination removes the LO16 but keeps
7468 the corresponding HI16. This is strictly speaking a violation of
7469 the ABI but not immediately harmful. */
7470 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7471 if (lo16_relocation == NULL)
7472 return FALSE;
7473
7474 /* Obtain the addend kept there. */
7475 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7476 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7477
7478 l <<= lo16_howto->rightshift;
7479 l = _bfd_mips_elf_sign_extend (l, 16);
7480
7481 *addend <<= 16;
7482 *addend += l;
7483 return TRUE;
7484}
7485
7486/* Try to read the contents of section SEC in bfd ABFD. Return true and
7487 store the contents in *CONTENTS on success. Assume that *CONTENTS
7488 already holds the contents if it is nonull on entry. */
7489
7490static bfd_boolean
7491mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7492{
7493 if (*contents)
7494 return TRUE;
7495
7496 /* Get cached copy if it exists. */
7497 if (elf_section_data (sec)->this_hdr.contents != NULL)
7498 {
7499 *contents = elf_section_data (sec)->this_hdr.contents;
7500 return TRUE;
7501 }
7502
7503 return bfd_malloc_and_get_section (abfd, sec, contents);
7504}
7505
b49e97c9
TS
7506/* Look through the relocs for a section during the first phase, and
7507 allocate space in the global offset table. */
7508
b34976b6 7509bfd_boolean
9719ad41
RS
7510_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7511 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7512{
7513 const char *name;
7514 bfd *dynobj;
7515 Elf_Internal_Shdr *symtab_hdr;
7516 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7517 size_t extsymoff;
7518 const Elf_Internal_Rela *rel;
7519 const Elf_Internal_Rela *rel_end;
b49e97c9 7520 asection *sreloc;
9c5bfbb7 7521 const struct elf_backend_data *bed;
0a44bf69 7522 struct mips_elf_link_hash_table *htab;
c224138d
RS
7523 bfd_byte *contents;
7524 bfd_vma addend;
7525 reloc_howto_type *howto;
b49e97c9 7526
1049f94e 7527 if (info->relocatable)
b34976b6 7528 return TRUE;
b49e97c9 7529
0a44bf69 7530 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7531 BFD_ASSERT (htab != NULL);
7532
b49e97c9
TS
7533 dynobj = elf_hash_table (info)->dynobj;
7534 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7535 sym_hashes = elf_sym_hashes (abfd);
7536 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7537
738e5348
RS
7538 bed = get_elf_backend_data (abfd);
7539 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7540
b49e97c9
TS
7541 /* Check for the mips16 stub sections. */
7542
7543 name = bfd_get_section_name (abfd, sec);
b9d58d71 7544 if (FN_STUB_P (name))
b49e97c9
TS
7545 {
7546 unsigned long r_symndx;
7547
7548 /* Look at the relocation information to figure out which symbol
7549 this is for. */
7550
cb4437b8 7551 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7552 if (r_symndx == 0)
7553 {
7554 (*_bfd_error_handler)
7555 (_("%B: Warning: cannot determine the target function for"
7556 " stub section `%s'"),
7557 abfd, name);
7558 bfd_set_error (bfd_error_bad_value);
7559 return FALSE;
7560 }
b49e97c9
TS
7561
7562 if (r_symndx < extsymoff
7563 || sym_hashes[r_symndx - extsymoff] == NULL)
7564 {
7565 asection *o;
7566
7567 /* This stub is for a local symbol. This stub will only be
7568 needed if there is some relocation in this BFD, other
7569 than a 16 bit function call, which refers to this symbol. */
7570 for (o = abfd->sections; o != NULL; o = o->next)
7571 {
7572 Elf_Internal_Rela *sec_relocs;
7573 const Elf_Internal_Rela *r, *rend;
7574
7575 /* We can ignore stub sections when looking for relocs. */
7576 if ((o->flags & SEC_RELOC) == 0
7577 || o->reloc_count == 0
738e5348 7578 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7579 continue;
7580
45d6a902 7581 sec_relocs
9719ad41 7582 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7583 info->keep_memory);
b49e97c9 7584 if (sec_relocs == NULL)
b34976b6 7585 return FALSE;
b49e97c9
TS
7586
7587 rend = sec_relocs + o->reloc_count;
7588 for (r = sec_relocs; r < rend; r++)
7589 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7590 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7591 break;
7592
6cdc0ccc 7593 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7594 free (sec_relocs);
7595
7596 if (r < rend)
7597 break;
7598 }
7599
7600 if (o == NULL)
7601 {
7602 /* There is no non-call reloc for this stub, so we do
7603 not need it. Since this function is called before
7604 the linker maps input sections to output sections, we
7605 can easily discard it by setting the SEC_EXCLUDE
7606 flag. */
7607 sec->flags |= SEC_EXCLUDE;
b34976b6 7608 return TRUE;
b49e97c9
TS
7609 }
7610
7611 /* Record this stub in an array of local symbol stubs for
7612 this BFD. */
698600e4 7613 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
7614 {
7615 unsigned long symcount;
7616 asection **n;
7617 bfd_size_type amt;
7618
7619 if (elf_bad_symtab (abfd))
7620 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7621 else
7622 symcount = symtab_hdr->sh_info;
7623 amt = symcount * sizeof (asection *);
9719ad41 7624 n = bfd_zalloc (abfd, amt);
b49e97c9 7625 if (n == NULL)
b34976b6 7626 return FALSE;
698600e4 7627 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
7628 }
7629
b9d58d71 7630 sec->flags |= SEC_KEEP;
698600e4 7631 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
7632
7633 /* We don't need to set mips16_stubs_seen in this case.
7634 That flag is used to see whether we need to look through
7635 the global symbol table for stubs. We don't need to set
7636 it here, because we just have a local stub. */
7637 }
7638 else
7639 {
7640 struct mips_elf_link_hash_entry *h;
7641
7642 h = ((struct mips_elf_link_hash_entry *)
7643 sym_hashes[r_symndx - extsymoff]);
7644
973a3492
L
7645 while (h->root.root.type == bfd_link_hash_indirect
7646 || h->root.root.type == bfd_link_hash_warning)
7647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7648
b49e97c9
TS
7649 /* H is the symbol this stub is for. */
7650
b9d58d71
TS
7651 /* If we already have an appropriate stub for this function, we
7652 don't need another one, so we can discard this one. Since
7653 this function is called before the linker maps input sections
7654 to output sections, we can easily discard it by setting the
7655 SEC_EXCLUDE flag. */
7656 if (h->fn_stub != NULL)
7657 {
7658 sec->flags |= SEC_EXCLUDE;
7659 return TRUE;
7660 }
7661
7662 sec->flags |= SEC_KEEP;
b49e97c9 7663 h->fn_stub = sec;
b34976b6 7664 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7665 }
7666 }
b9d58d71 7667 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7668 {
7669 unsigned long r_symndx;
7670 struct mips_elf_link_hash_entry *h;
7671 asection **loc;
7672
7673 /* Look at the relocation information to figure out which symbol
7674 this is for. */
7675
cb4437b8 7676 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7677 if (r_symndx == 0)
7678 {
7679 (*_bfd_error_handler)
7680 (_("%B: Warning: cannot determine the target function for"
7681 " stub section `%s'"),
7682 abfd, name);
7683 bfd_set_error (bfd_error_bad_value);
7684 return FALSE;
7685 }
b49e97c9
TS
7686
7687 if (r_symndx < extsymoff
7688 || sym_hashes[r_symndx - extsymoff] == NULL)
7689 {
b9d58d71 7690 asection *o;
b49e97c9 7691
b9d58d71
TS
7692 /* This stub is for a local symbol. This stub will only be
7693 needed if there is some relocation (R_MIPS16_26) in this BFD
7694 that refers to this symbol. */
7695 for (o = abfd->sections; o != NULL; o = o->next)
7696 {
7697 Elf_Internal_Rela *sec_relocs;
7698 const Elf_Internal_Rela *r, *rend;
7699
7700 /* We can ignore stub sections when looking for relocs. */
7701 if ((o->flags & SEC_RELOC) == 0
7702 || o->reloc_count == 0
738e5348 7703 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7704 continue;
7705
7706 sec_relocs
7707 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7708 info->keep_memory);
7709 if (sec_relocs == NULL)
7710 return FALSE;
7711
7712 rend = sec_relocs + o->reloc_count;
7713 for (r = sec_relocs; r < rend; r++)
7714 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7715 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7716 break;
7717
7718 if (elf_section_data (o)->relocs != sec_relocs)
7719 free (sec_relocs);
7720
7721 if (r < rend)
7722 break;
7723 }
7724
7725 if (o == NULL)
7726 {
7727 /* There is no non-call reloc for this stub, so we do
7728 not need it. Since this function is called before
7729 the linker maps input sections to output sections, we
7730 can easily discard it by setting the SEC_EXCLUDE
7731 flag. */
7732 sec->flags |= SEC_EXCLUDE;
7733 return TRUE;
7734 }
7735
7736 /* Record this stub in an array of local symbol call_stubs for
7737 this BFD. */
698600e4 7738 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
7739 {
7740 unsigned long symcount;
7741 asection **n;
7742 bfd_size_type amt;
7743
7744 if (elf_bad_symtab (abfd))
7745 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7746 else
7747 symcount = symtab_hdr->sh_info;
7748 amt = symcount * sizeof (asection *);
7749 n = bfd_zalloc (abfd, amt);
7750 if (n == NULL)
7751 return FALSE;
698600e4 7752 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 7753 }
b49e97c9 7754
b9d58d71 7755 sec->flags |= SEC_KEEP;
698600e4 7756 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7757
b9d58d71
TS
7758 /* We don't need to set mips16_stubs_seen in this case.
7759 That flag is used to see whether we need to look through
7760 the global symbol table for stubs. We don't need to set
7761 it here, because we just have a local stub. */
7762 }
b49e97c9 7763 else
b49e97c9 7764 {
b9d58d71
TS
7765 h = ((struct mips_elf_link_hash_entry *)
7766 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7767
b9d58d71 7768 /* H is the symbol this stub is for. */
68ffbac6 7769
b9d58d71
TS
7770 if (CALL_FP_STUB_P (name))
7771 loc = &h->call_fp_stub;
7772 else
7773 loc = &h->call_stub;
68ffbac6 7774
b9d58d71
TS
7775 /* If we already have an appropriate stub for this function, we
7776 don't need another one, so we can discard this one. Since
7777 this function is called before the linker maps input sections
7778 to output sections, we can easily discard it by setting the
7779 SEC_EXCLUDE flag. */
7780 if (*loc != NULL)
7781 {
7782 sec->flags |= SEC_EXCLUDE;
7783 return TRUE;
7784 }
b49e97c9 7785
b9d58d71
TS
7786 sec->flags |= SEC_KEEP;
7787 *loc = sec;
7788 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7789 }
b49e97c9
TS
7790 }
7791
b49e97c9 7792 sreloc = NULL;
c224138d 7793 contents = NULL;
b49e97c9
TS
7794 for (rel = relocs; rel < rel_end; ++rel)
7795 {
7796 unsigned long r_symndx;
7797 unsigned int r_type;
7798 struct elf_link_hash_entry *h;
861fb55a 7799 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7800
7801 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7802 r_type = ELF_R_TYPE (abfd, rel->r_info);
7803
7804 if (r_symndx < extsymoff)
7805 h = NULL;
7806 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7807 {
7808 (*_bfd_error_handler)
d003868e
AM
7809 (_("%B: Malformed reloc detected for section %s"),
7810 abfd, name);
b49e97c9 7811 bfd_set_error (bfd_error_bad_value);
b34976b6 7812 return FALSE;
b49e97c9
TS
7813 }
7814 else
7815 {
7816 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
7817 if (h != NULL)
7818 {
7819 while (h->root.type == bfd_link_hash_indirect
7820 || h->root.type == bfd_link_hash_warning)
7821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7822
7823 /* PR15323, ref flags aren't set for references in the
7824 same object. */
7825 h->root.non_ir_ref = 1;
7826 }
861fb55a 7827 }
b49e97c9 7828
861fb55a
DJ
7829 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7830 relocation into a dynamic one. */
7831 can_make_dynamic_p = FALSE;
7832 switch (r_type)
7833 {
861fb55a
DJ
7834 case R_MIPS_GOT16:
7835 case R_MIPS_CALL16:
7836 case R_MIPS_CALL_HI16:
7837 case R_MIPS_CALL_LO16:
7838 case R_MIPS_GOT_HI16:
7839 case R_MIPS_GOT_LO16:
7840 case R_MIPS_GOT_PAGE:
7841 case R_MIPS_GOT_OFST:
7842 case R_MIPS_GOT_DISP:
7843 case R_MIPS_TLS_GOTTPREL:
7844 case R_MIPS_TLS_GD:
7845 case R_MIPS_TLS_LDM:
d0f13682
CLT
7846 case R_MIPS16_GOT16:
7847 case R_MIPS16_CALL16:
7848 case R_MIPS16_TLS_GOTTPREL:
7849 case R_MIPS16_TLS_GD:
7850 case R_MIPS16_TLS_LDM:
df58fc94
RS
7851 case R_MICROMIPS_GOT16:
7852 case R_MICROMIPS_CALL16:
7853 case R_MICROMIPS_CALL_HI16:
7854 case R_MICROMIPS_CALL_LO16:
7855 case R_MICROMIPS_GOT_HI16:
7856 case R_MICROMIPS_GOT_LO16:
7857 case R_MICROMIPS_GOT_PAGE:
7858 case R_MICROMIPS_GOT_OFST:
7859 case R_MICROMIPS_GOT_DISP:
7860 case R_MICROMIPS_TLS_GOTTPREL:
7861 case R_MICROMIPS_TLS_GD:
7862 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7863 if (dynobj == NULL)
7864 elf_hash_table (info)->dynobj = dynobj = abfd;
7865 if (!mips_elf_create_got_section (dynobj, info))
7866 return FALSE;
7867 if (htab->is_vxworks && !info->shared)
b49e97c9 7868 {
861fb55a
DJ
7869 (*_bfd_error_handler)
7870 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7871 abfd, (unsigned long) rel->r_offset);
7872 bfd_set_error (bfd_error_bad_value);
7873 return FALSE;
b49e97c9 7874 }
861fb55a 7875 break;
b49e97c9 7876
99da6b5f
AN
7877 /* This is just a hint; it can safely be ignored. Don't set
7878 has_static_relocs for the corresponding symbol. */
7879 case R_MIPS_JALR:
df58fc94 7880 case R_MICROMIPS_JALR:
99da6b5f
AN
7881 break;
7882
861fb55a
DJ
7883 case R_MIPS_32:
7884 case R_MIPS_REL32:
7885 case R_MIPS_64:
7886 /* In VxWorks executables, references to external symbols
7887 must be handled using copy relocs or PLT entries; it is not
7888 possible to convert this relocation into a dynamic one.
7889
7890 For executables that use PLTs and copy-relocs, we have a
7891 choice between converting the relocation into a dynamic
7892 one or using copy relocations or PLT entries. It is
7893 usually better to do the former, unless the relocation is
7894 against a read-only section. */
7895 if ((info->shared
7896 || (h != NULL
7897 && !htab->is_vxworks
7898 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7899 && !(!info->nocopyreloc
7900 && !PIC_OBJECT_P (abfd)
7901 && MIPS_ELF_READONLY_SECTION (sec))))
7902 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7903 {
861fb55a 7904 can_make_dynamic_p = TRUE;
b49e97c9
TS
7905 if (dynobj == NULL)
7906 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7907 break;
861fb55a 7908 }
21d790b9
MR
7909 /* For sections that are not SEC_ALLOC a copy reloc would be
7910 output if possible (implying questionable semantics for
7911 read-only data objects) or otherwise the final link would
7912 fail as ld.so will not process them and could not therefore
7913 handle any outstanding dynamic relocations.
7914
7915 For such sections that are also SEC_DEBUGGING, we can avoid
7916 these problems by simply ignoring any relocs as these
7917 sections have a predefined use and we know it is safe to do
7918 so.
7919
7920 This is needed in cases such as a global symbol definition
7921 in a shared library causing a common symbol from an object
7922 file to be converted to an undefined reference. If that
7923 happens, then all the relocations against this symbol from
7924 SEC_DEBUGGING sections in the object file will resolve to
7925 nil. */
7926 if ((sec->flags & SEC_DEBUGGING) != 0)
7927 break;
861fb55a 7928 /* Fall through. */
b49e97c9 7929
861fb55a
DJ
7930 default:
7931 /* Most static relocations require pointer equality, except
7932 for branches. */
7933 if (h)
7934 h->pointer_equality_needed = TRUE;
7935 /* Fall through. */
b49e97c9 7936
861fb55a
DJ
7937 case R_MIPS_26:
7938 case R_MIPS_PC16:
7939 case R_MIPS16_26:
df58fc94
RS
7940 case R_MICROMIPS_26_S1:
7941 case R_MICROMIPS_PC7_S1:
7942 case R_MICROMIPS_PC10_S1:
7943 case R_MICROMIPS_PC16_S1:
7944 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7945 if (h)
7946 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7947 break;
b49e97c9
TS
7948 }
7949
0a44bf69
RS
7950 if (h)
7951 {
0a44bf69
RS
7952 /* Relocations against the special VxWorks __GOTT_BASE__ and
7953 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7954 room for them in .rela.dyn. */
7955 if (is_gott_symbol (info, h))
7956 {
7957 if (sreloc == NULL)
7958 {
7959 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7960 if (sreloc == NULL)
7961 return FALSE;
7962 }
7963 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7964 if (MIPS_ELF_READONLY_SECTION (sec))
7965 /* We tell the dynamic linker that there are
7966 relocations against the text segment. */
7967 info->flags |= DF_TEXTREL;
0a44bf69
RS
7968 }
7969 }
df58fc94
RS
7970 else if (call_lo16_reloc_p (r_type)
7971 || got_lo16_reloc_p (r_type)
7972 || got_disp_reloc_p (r_type)
738e5348 7973 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7974 {
7975 /* We may need a local GOT entry for this relocation. We
7976 don't count R_MIPS_GOT_PAGE because we can estimate the
7977 maximum number of pages needed by looking at the size of
738e5348
RS
7978 the segment. Similar comments apply to R_MIPS*_GOT16 and
7979 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7980 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7981 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7982 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 7983 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 7984 rel->r_addend, info, r_type))
f4416af6 7985 return FALSE;
b49e97c9
TS
7986 }
7987
8f0c309a
CLT
7988 if (h != NULL
7989 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7990 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
7991 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7992
b49e97c9
TS
7993 switch (r_type)
7994 {
7995 case R_MIPS_CALL16:
738e5348 7996 case R_MIPS16_CALL16:
df58fc94 7997 case R_MICROMIPS_CALL16:
b49e97c9
TS
7998 if (h == NULL)
7999 {
8000 (*_bfd_error_handler)
d003868e
AM
8001 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8002 abfd, (unsigned long) rel->r_offset);
b49e97c9 8003 bfd_set_error (bfd_error_bad_value);
b34976b6 8004 return FALSE;
b49e97c9
TS
8005 }
8006 /* Fall through. */
8007
8008 case R_MIPS_CALL_HI16:
8009 case R_MIPS_CALL_LO16:
df58fc94
RS
8010 case R_MICROMIPS_CALL_HI16:
8011 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8012 if (h != NULL)
8013 {
6ccf4795
RS
8014 /* Make sure there is room in the regular GOT to hold the
8015 function's address. We may eliminate it in favour of
8016 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8017 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8018 r_type))
b34976b6 8019 return FALSE;
b49e97c9
TS
8020
8021 /* We need a stub, not a plt entry for the undefined
8022 function. But we record it as if it needs plt. See
c152c796 8023 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8024 h->needs_plt = 1;
b49e97c9
TS
8025 h->type = STT_FUNC;
8026 }
8027 break;
8028
0fdc1bf1 8029 case R_MIPS_GOT_PAGE:
df58fc94 8030 case R_MICROMIPS_GOT_PAGE:
738e5348 8031 case R_MIPS16_GOT16:
b49e97c9
TS
8032 case R_MIPS_GOT16:
8033 case R_MIPS_GOT_HI16:
8034 case R_MIPS_GOT_LO16:
df58fc94
RS
8035 case R_MICROMIPS_GOT16:
8036 case R_MICROMIPS_GOT_HI16:
8037 case R_MICROMIPS_GOT_LO16:
8038 if (!h || got_page_reloc_p (r_type))
c224138d 8039 {
3a3b6725
DJ
8040 /* This relocation needs (or may need, if h != NULL) a
8041 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8042 know for sure until we know whether the symbol is
8043 preemptible. */
c224138d
RS
8044 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8045 {
8046 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8047 return FALSE;
8048 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8049 addend = mips_elf_read_rel_addend (abfd, rel,
8050 howto, contents);
9684f078 8051 if (got16_reloc_p (r_type))
c224138d
RS
8052 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8053 contents, &addend);
8054 else
8055 addend <<= howto->rightshift;
8056 }
8057 else
8058 addend = rel->r_addend;
13db6b44
RS
8059 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8060 h, addend))
c224138d 8061 return FALSE;
13db6b44
RS
8062
8063 if (h)
8064 {
8065 struct mips_elf_link_hash_entry *hmips =
8066 (struct mips_elf_link_hash_entry *) h;
8067
8068 /* This symbol is definitely not overridable. */
8069 if (hmips->root.def_regular
8070 && ! (info->shared && ! info->symbolic
8071 && ! hmips->root.forced_local))
8072 h = NULL;
8073 }
c224138d 8074 }
13db6b44
RS
8075 /* If this is a global, overridable symbol, GOT_PAGE will
8076 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8077 /* Fall through. */
8078
b49e97c9 8079 case R_MIPS_GOT_DISP:
df58fc94 8080 case R_MICROMIPS_GOT_DISP:
6ccf4795 8081 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8082 FALSE, r_type))
b34976b6 8083 return FALSE;
b49e97c9
TS
8084 break;
8085
0f20cc35 8086 case R_MIPS_TLS_GOTTPREL:
d0f13682 8087 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8088 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8089 if (info->shared)
8090 info->flags |= DF_STATIC_TLS;
8091 /* Fall through */
8092
8093 case R_MIPS_TLS_LDM:
d0f13682 8094 case R_MIPS16_TLS_LDM:
df58fc94
RS
8095 case R_MICROMIPS_TLS_LDM:
8096 if (tls_ldm_reloc_p (r_type))
0f20cc35 8097 {
cf35638d 8098 r_symndx = STN_UNDEF;
0f20cc35
DJ
8099 h = NULL;
8100 }
8101 /* Fall through */
8102
8103 case R_MIPS_TLS_GD:
d0f13682 8104 case R_MIPS16_TLS_GD:
df58fc94 8105 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8106 /* This symbol requires a global offset table entry, or two
8107 for TLS GD relocations. */
e641e783
RS
8108 if (h != NULL)
8109 {
8110 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8111 FALSE, r_type))
8112 return FALSE;
8113 }
8114 else
8115 {
8116 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8117 rel->r_addend,
8118 info, r_type))
8119 return FALSE;
8120 }
0f20cc35
DJ
8121 break;
8122
b49e97c9
TS
8123 case R_MIPS_32:
8124 case R_MIPS_REL32:
8125 case R_MIPS_64:
0a44bf69
RS
8126 /* In VxWorks executables, references to external symbols
8127 are handled using copy relocs or PLT stubs, so there's
8128 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8129 if (can_make_dynamic_p)
b49e97c9
TS
8130 {
8131 if (sreloc == NULL)
8132 {
0a44bf69 8133 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8134 if (sreloc == NULL)
f4416af6 8135 return FALSE;
b49e97c9 8136 }
9a59ad6b 8137 if (info->shared && h == NULL)
82f0cfbd
EC
8138 {
8139 /* When creating a shared object, we must copy these
8140 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8141 relocs. Make room for this reloc in .rel(a).dyn. */
8142 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8143 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8144 /* We tell the dynamic linker that there are
8145 relocations against the text segment. */
8146 info->flags |= DF_TEXTREL;
8147 }
b49e97c9
TS
8148 else
8149 {
8150 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8151
9a59ad6b
DJ
8152 /* For a shared object, we must copy this relocation
8153 unless the symbol turns out to be undefined and
8154 weak with non-default visibility, in which case
8155 it will be left as zero.
8156
8157 We could elide R_MIPS_REL32 for locally binding symbols
8158 in shared libraries, but do not yet do so.
8159
8160 For an executable, we only need to copy this
8161 reloc if the symbol is defined in a dynamic
8162 object. */
b49e97c9
TS
8163 hmips = (struct mips_elf_link_hash_entry *) h;
8164 ++hmips->possibly_dynamic_relocs;
943284cc 8165 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8166 /* We need it to tell the dynamic linker if there
8167 are relocations against the text segment. */
8168 hmips->readonly_reloc = TRUE;
b49e97c9 8169 }
b49e97c9
TS
8170 }
8171
8172 if (SGI_COMPAT (abfd))
8173 mips_elf_hash_table (info)->compact_rel_size +=
8174 sizeof (Elf32_External_crinfo);
8175 break;
8176
8177 case R_MIPS_26:
8178 case R_MIPS_GPREL16:
8179 case R_MIPS_LITERAL:
8180 case R_MIPS_GPREL32:
df58fc94
RS
8181 case R_MICROMIPS_26_S1:
8182 case R_MICROMIPS_GPREL16:
8183 case R_MICROMIPS_LITERAL:
8184 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8185 if (SGI_COMPAT (abfd))
8186 mips_elf_hash_table (info)->compact_rel_size +=
8187 sizeof (Elf32_External_crinfo);
8188 break;
8189
8190 /* This relocation describes the C++ object vtable hierarchy.
8191 Reconstruct it for later use during GC. */
8192 case R_MIPS_GNU_VTINHERIT:
c152c796 8193 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8194 return FALSE;
b49e97c9
TS
8195 break;
8196
8197 /* This relocation describes which C++ vtable entries are actually
8198 used. Record for later use during GC. */
8199 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8200 BFD_ASSERT (h != NULL);
8201 if (h != NULL
8202 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8203 return FALSE;
b49e97c9
TS
8204 break;
8205
8206 default:
8207 break;
8208 }
8209
8210 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8211 related to taking the function's address. This doesn't apply to
8212 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8213 a normal .got entry. */
8214 if (!htab->is_vxworks && h != NULL)
8215 switch (r_type)
8216 {
8217 default:
8218 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8219 break;
738e5348 8220 case R_MIPS16_CALL16:
0a44bf69
RS
8221 case R_MIPS_CALL16:
8222 case R_MIPS_CALL_HI16:
8223 case R_MIPS_CALL_LO16:
8224 case R_MIPS_JALR:
df58fc94
RS
8225 case R_MICROMIPS_CALL16:
8226 case R_MICROMIPS_CALL_HI16:
8227 case R_MICROMIPS_CALL_LO16:
8228 case R_MICROMIPS_JALR:
0a44bf69
RS
8229 break;
8230 }
b49e97c9 8231
738e5348
RS
8232 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8233 if there is one. We only need to handle global symbols here;
8234 we decide whether to keep or delete stubs for local symbols
8235 when processing the stub's relocations. */
b49e97c9 8236 if (h != NULL
738e5348
RS
8237 && !mips16_call_reloc_p (r_type)
8238 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8239 {
8240 struct mips_elf_link_hash_entry *mh;
8241
8242 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8243 mh->need_fn_stub = TRUE;
b49e97c9 8244 }
861fb55a
DJ
8245
8246 /* Refuse some position-dependent relocations when creating a
8247 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8248 not PIC, but we can create dynamic relocations and the result
8249 will be fine. Also do not refuse R_MIPS_LO16, which can be
8250 combined with R_MIPS_GOT16. */
8251 if (info->shared)
8252 {
8253 switch (r_type)
8254 {
8255 case R_MIPS16_HI16:
8256 case R_MIPS_HI16:
8257 case R_MIPS_HIGHER:
8258 case R_MIPS_HIGHEST:
df58fc94
RS
8259 case R_MICROMIPS_HI16:
8260 case R_MICROMIPS_HIGHER:
8261 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8262 /* Don't refuse a high part relocation if it's against
8263 no symbol (e.g. part of a compound relocation). */
cf35638d 8264 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8265 break;
8266
8267 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8268 and has a special meaning. */
8269 if (!NEWABI_P (abfd) && h != NULL
8270 && strcmp (h->root.root.string, "_gp_disp") == 0)
8271 break;
8272
0fc1eb3c
RS
8273 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8274 if (is_gott_symbol (info, h))
8275 break;
8276
861fb55a
DJ
8277 /* FALLTHROUGH */
8278
8279 case R_MIPS16_26:
8280 case R_MIPS_26:
df58fc94 8281 case R_MICROMIPS_26_S1:
861fb55a
DJ
8282 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8283 (*_bfd_error_handler)
8284 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8285 abfd, howto->name,
8286 (h) ? h->root.root.string : "a local symbol");
8287 bfd_set_error (bfd_error_bad_value);
8288 return FALSE;
8289 default:
8290 break;
8291 }
8292 }
b49e97c9
TS
8293 }
8294
b34976b6 8295 return TRUE;
b49e97c9
TS
8296}
8297\f
d0647110 8298bfd_boolean
9719ad41
RS
8299_bfd_mips_relax_section (bfd *abfd, asection *sec,
8300 struct bfd_link_info *link_info,
8301 bfd_boolean *again)
d0647110
AO
8302{
8303 Elf_Internal_Rela *internal_relocs;
8304 Elf_Internal_Rela *irel, *irelend;
8305 Elf_Internal_Shdr *symtab_hdr;
8306 bfd_byte *contents = NULL;
d0647110
AO
8307 size_t extsymoff;
8308 bfd_boolean changed_contents = FALSE;
8309 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8310 Elf_Internal_Sym *isymbuf = NULL;
8311
8312 /* We are not currently changing any sizes, so only one pass. */
8313 *again = FALSE;
8314
1049f94e 8315 if (link_info->relocatable)
d0647110
AO
8316 return TRUE;
8317
9719ad41 8318 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8319 link_info->keep_memory);
d0647110
AO
8320 if (internal_relocs == NULL)
8321 return TRUE;
8322
8323 irelend = internal_relocs + sec->reloc_count
8324 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8325 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8326 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8327
8328 for (irel = internal_relocs; irel < irelend; irel++)
8329 {
8330 bfd_vma symval;
8331 bfd_signed_vma sym_offset;
8332 unsigned int r_type;
8333 unsigned long r_symndx;
8334 asection *sym_sec;
8335 unsigned long instruction;
8336
8337 /* Turn jalr into bgezal, and jr into beq, if they're marked
8338 with a JALR relocation, that indicate where they jump to.
8339 This saves some pipeline bubbles. */
8340 r_type = ELF_R_TYPE (abfd, irel->r_info);
8341 if (r_type != R_MIPS_JALR)
8342 continue;
8343
8344 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8345 /* Compute the address of the jump target. */
8346 if (r_symndx >= extsymoff)
8347 {
8348 struct mips_elf_link_hash_entry *h
8349 = ((struct mips_elf_link_hash_entry *)
8350 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8351
8352 while (h->root.root.type == bfd_link_hash_indirect
8353 || h->root.root.type == bfd_link_hash_warning)
8354 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8355
d0647110
AO
8356 /* If a symbol is undefined, or if it may be overridden,
8357 skip it. */
8358 if (! ((h->root.root.type == bfd_link_hash_defined
8359 || h->root.root.type == bfd_link_hash_defweak)
8360 && h->root.root.u.def.section)
8361 || (link_info->shared && ! link_info->symbolic
f5385ebf 8362 && !h->root.forced_local))
d0647110
AO
8363 continue;
8364
8365 sym_sec = h->root.root.u.def.section;
8366 if (sym_sec->output_section)
8367 symval = (h->root.root.u.def.value
8368 + sym_sec->output_section->vma
8369 + sym_sec->output_offset);
8370 else
8371 symval = h->root.root.u.def.value;
8372 }
8373 else
8374 {
8375 Elf_Internal_Sym *isym;
8376
8377 /* Read this BFD's symbols if we haven't done so already. */
8378 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8379 {
8380 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8381 if (isymbuf == NULL)
8382 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8383 symtab_hdr->sh_info, 0,
8384 NULL, NULL, NULL);
8385 if (isymbuf == NULL)
8386 goto relax_return;
8387 }
8388
8389 isym = isymbuf + r_symndx;
8390 if (isym->st_shndx == SHN_UNDEF)
8391 continue;
8392 else if (isym->st_shndx == SHN_ABS)
8393 sym_sec = bfd_abs_section_ptr;
8394 else if (isym->st_shndx == SHN_COMMON)
8395 sym_sec = bfd_com_section_ptr;
8396 else
8397 sym_sec
8398 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8399 symval = isym->st_value
8400 + sym_sec->output_section->vma
8401 + sym_sec->output_offset;
8402 }
8403
8404 /* Compute branch offset, from delay slot of the jump to the
8405 branch target. */
8406 sym_offset = (symval + irel->r_addend)
8407 - (sec_start + irel->r_offset + 4);
8408
8409 /* Branch offset must be properly aligned. */
8410 if ((sym_offset & 3) != 0)
8411 continue;
8412
8413 sym_offset >>= 2;
8414
8415 /* Check that it's in range. */
8416 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8417 continue;
143d77c5 8418
d0647110 8419 /* Get the section contents if we haven't done so already. */
c224138d
RS
8420 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8421 goto relax_return;
d0647110
AO
8422
8423 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8424
8425 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8426 if ((instruction & 0xfc1fffff) == 0x0000f809)
8427 instruction = 0x04110000;
8428 /* If it was jr <reg>, turn it into b <target>. */
8429 else if ((instruction & 0xfc1fffff) == 0x00000008)
8430 instruction = 0x10000000;
8431 else
8432 continue;
8433
8434 instruction |= (sym_offset & 0xffff);
8435 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8436 changed_contents = TRUE;
8437 }
8438
8439 if (contents != NULL
8440 && elf_section_data (sec)->this_hdr.contents != contents)
8441 {
8442 if (!changed_contents && !link_info->keep_memory)
8443 free (contents);
8444 else
8445 {
8446 /* Cache the section contents for elf_link_input_bfd. */
8447 elf_section_data (sec)->this_hdr.contents = contents;
8448 }
8449 }
8450 return TRUE;
8451
143d77c5 8452 relax_return:
eea6121a
AM
8453 if (contents != NULL
8454 && elf_section_data (sec)->this_hdr.contents != contents)
8455 free (contents);
d0647110
AO
8456 return FALSE;
8457}
8458\f
9a59ad6b
DJ
8459/* Allocate space for global sym dynamic relocs. */
8460
8461static bfd_boolean
8462allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8463{
8464 struct bfd_link_info *info = inf;
8465 bfd *dynobj;
8466 struct mips_elf_link_hash_entry *hmips;
8467 struct mips_elf_link_hash_table *htab;
8468
8469 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8470 BFD_ASSERT (htab != NULL);
8471
9a59ad6b
DJ
8472 dynobj = elf_hash_table (info)->dynobj;
8473 hmips = (struct mips_elf_link_hash_entry *) h;
8474
8475 /* VxWorks executables are handled elsewhere; we only need to
8476 allocate relocations in shared objects. */
8477 if (htab->is_vxworks && !info->shared)
8478 return TRUE;
8479
7686d77d
AM
8480 /* Ignore indirect symbols. All relocations against such symbols
8481 will be redirected to the target symbol. */
8482 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8483 return TRUE;
8484
9a59ad6b
DJ
8485 /* If this symbol is defined in a dynamic object, or we are creating
8486 a shared library, we will need to copy any R_MIPS_32 or
8487 R_MIPS_REL32 relocs against it into the output file. */
8488 if (! info->relocatable
8489 && hmips->possibly_dynamic_relocs != 0
8490 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8491 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8492 || info->shared))
8493 {
8494 bfd_boolean do_copy = TRUE;
8495
8496 if (h->root.type == bfd_link_hash_undefweak)
8497 {
8498 /* Do not copy relocations for undefined weak symbols with
8499 non-default visibility. */
8500 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8501 do_copy = FALSE;
8502
8503 /* Make sure undefined weak symbols are output as a dynamic
8504 symbol in PIEs. */
8505 else if (h->dynindx == -1 && !h->forced_local)
8506 {
8507 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8508 return FALSE;
8509 }
8510 }
8511
8512 if (do_copy)
8513 {
aff469fa 8514 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8515 the SVR4 psABI requires it to have a dynamic symbol table
8516 index greater that DT_MIPS_GOTSYM if there are dynamic
8517 relocations against it.
8518
8519 VxWorks does not enforce the same mapping between the GOT
8520 and the symbol table, so the same requirement does not
8521 apply there. */
6ccf4795
RS
8522 if (!htab->is_vxworks)
8523 {
8524 if (hmips->global_got_area > GGA_RELOC_ONLY)
8525 hmips->global_got_area = GGA_RELOC_ONLY;
8526 hmips->got_only_for_calls = FALSE;
8527 }
aff469fa 8528
9a59ad6b
DJ
8529 mips_elf_allocate_dynamic_relocations
8530 (dynobj, info, hmips->possibly_dynamic_relocs);
8531 if (hmips->readonly_reloc)
8532 /* We tell the dynamic linker that there are relocations
8533 against the text segment. */
8534 info->flags |= DF_TEXTREL;
8535 }
8536 }
8537
8538 return TRUE;
8539}
8540
b49e97c9
TS
8541/* Adjust a symbol defined by a dynamic object and referenced by a
8542 regular object. The current definition is in some section of the
8543 dynamic object, but we're not including those sections. We have to
8544 change the definition to something the rest of the link can
8545 understand. */
8546
b34976b6 8547bfd_boolean
9719ad41
RS
8548_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8549 struct elf_link_hash_entry *h)
b49e97c9
TS
8550{
8551 bfd *dynobj;
8552 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8553 struct mips_elf_link_hash_table *htab;
b49e97c9 8554
5108fc1b 8555 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8556 BFD_ASSERT (htab != NULL);
8557
b49e97c9 8558 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8559 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8560
8561 /* Make sure we know what is going on here. */
8562 BFD_ASSERT (dynobj != NULL
f5385ebf 8563 && (h->needs_plt
f6e332e6 8564 || h->u.weakdef != NULL
f5385ebf
AM
8565 || (h->def_dynamic
8566 && h->ref_regular
8567 && !h->def_regular)));
b49e97c9 8568
b49e97c9 8569 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8570
861fb55a
DJ
8571 /* If there are call relocations against an externally-defined symbol,
8572 see whether we can create a MIPS lazy-binding stub for it. We can
8573 only do this if all references to the function are through call
8574 relocations, and in that case, the traditional lazy-binding stubs
8575 are much more efficient than PLT entries.
8576
8577 Traditional stubs are only available on SVR4 psABI-based systems;
8578 VxWorks always uses PLTs instead. */
8579 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8580 {
8581 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8582 return TRUE;
b49e97c9
TS
8583
8584 /* If this symbol is not defined in a regular file, then set
8585 the symbol to the stub location. This is required to make
8586 function pointers compare as equal between the normal
8587 executable and the shared library. */
f5385ebf 8588 if (!h->def_regular)
b49e97c9 8589 {
33bb52fb
RS
8590 hmips->needs_lazy_stub = TRUE;
8591 htab->lazy_stub_count++;
b34976b6 8592 return TRUE;
b49e97c9
TS
8593 }
8594 }
861fb55a
DJ
8595 /* As above, VxWorks requires PLT entries for externally-defined
8596 functions that are only accessed through call relocations.
b49e97c9 8597
861fb55a
DJ
8598 Both VxWorks and non-VxWorks targets also need PLT entries if there
8599 are static-only relocations against an externally-defined function.
8600 This can technically occur for shared libraries if there are
8601 branches to the symbol, although it is unlikely that this will be
8602 used in practice due to the short ranges involved. It can occur
8603 for any relative or absolute relocation in executables; in that
8604 case, the PLT entry becomes the function's canonical address. */
8605 else if (((h->needs_plt && !hmips->no_fn_stub)
8606 || (h->type == STT_FUNC && hmips->has_static_relocs))
8607 && htab->use_plts_and_copy_relocs
8608 && !SYMBOL_CALLS_LOCAL (info, h)
8609 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8610 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8611 {
861fb55a
DJ
8612 /* If this is the first symbol to need a PLT entry, allocate room
8613 for the header. */
8614 if (htab->splt->size == 0)
8615 {
8616 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8617
861fb55a
DJ
8618 /* If we're using the PLT additions to the psABI, each PLT
8619 entry is 16 bytes and the PLT0 entry is 32 bytes.
8620 Encourage better cache usage by aligning. We do this
8621 lazily to avoid pessimizing traditional objects. */
8622 if (!htab->is_vxworks
8623 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8624 return FALSE;
0a44bf69 8625
861fb55a
DJ
8626 /* Make sure that .got.plt is word-aligned. We do this lazily
8627 for the same reason as above. */
8628 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8629 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8630 return FALSE;
0a44bf69 8631
861fb55a 8632 htab->splt->size += htab->plt_header_size;
0a44bf69 8633
861fb55a
DJ
8634 /* On non-VxWorks targets, the first two entries in .got.plt
8635 are reserved. */
8636 if (!htab->is_vxworks)
a44acb1e
MR
8637 htab->sgotplt->size
8638 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8639
861fb55a
DJ
8640 /* On VxWorks, also allocate room for the header's
8641 .rela.plt.unloaded entries. */
8642 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8643 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8644 }
8645
8646 /* Assign the next .plt entry to this symbol. */
8647 h->plt.offset = htab->splt->size;
8648 htab->splt->size += htab->plt_entry_size;
8649
8650 /* If the output file has no definition of the symbol, set the
861fb55a 8651 symbol's value to the address of the stub. */
131eb6b7 8652 if (!info->shared && !h->def_regular)
0a44bf69
RS
8653 {
8654 h->root.u.def.section = htab->splt;
8655 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8656 /* For VxWorks, point at the PLT load stub rather than the
8657 lazy resolution stub; this stub will become the canonical
8658 function address. */
8659 if (htab->is_vxworks)
8660 h->root.u.def.value += 8;
0a44bf69
RS
8661 }
8662
861fb55a
DJ
8663 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8664 relocation. */
8665 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8666 htab->srelplt->size += (htab->is_vxworks
8667 ? MIPS_ELF_RELA_SIZE (dynobj)
8668 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8669
8670 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8671 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8672 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8673
861fb55a
DJ
8674 /* All relocations against this symbol that could have been made
8675 dynamic will now refer to the PLT entry instead. */
8676 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8677
0a44bf69
RS
8678 return TRUE;
8679 }
8680
8681 /* If this is a weak symbol, and there is a real definition, the
8682 processor independent code will have arranged for us to see the
8683 real definition first, and we can just use the same value. */
8684 if (h->u.weakdef != NULL)
8685 {
8686 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8687 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8688 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8689 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8690 return TRUE;
8691 }
8692
861fb55a
DJ
8693 /* Otherwise, there is nothing further to do for symbols defined
8694 in regular objects. */
8695 if (h->def_regular)
0a44bf69
RS
8696 return TRUE;
8697
861fb55a
DJ
8698 /* There's also nothing more to do if we'll convert all relocations
8699 against this symbol into dynamic relocations. */
8700 if (!hmips->has_static_relocs)
8701 return TRUE;
8702
8703 /* We're now relying on copy relocations. Complain if we have
8704 some that we can't convert. */
8705 if (!htab->use_plts_and_copy_relocs || info->shared)
8706 {
8707 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8708 "dynamic symbol %s"),
8709 h->root.root.string);
8710 bfd_set_error (bfd_error_bad_value);
8711 return FALSE;
8712 }
8713
0a44bf69
RS
8714 /* We must allocate the symbol in our .dynbss section, which will
8715 become part of the .bss section of the executable. There will be
8716 an entry for this symbol in the .dynsym section. The dynamic
8717 object will contain position independent code, so all references
8718 from the dynamic object to this symbol will go through the global
8719 offset table. The dynamic linker will use the .dynsym entry to
8720 determine the address it must put in the global offset table, so
8721 both the dynamic object and the regular object will refer to the
8722 same memory location for the variable. */
8723
8724 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8725 {
861fb55a
DJ
8726 if (htab->is_vxworks)
8727 htab->srelbss->size += sizeof (Elf32_External_Rela);
8728 else
8729 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8730 h->needs_copy = 1;
8731 }
8732
861fb55a
DJ
8733 /* All relocations against this symbol that could have been made
8734 dynamic will now refer to the local copy instead. */
8735 hmips->possibly_dynamic_relocs = 0;
8736
027297b7 8737 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8738}
b49e97c9
TS
8739\f
8740/* This function is called after all the input files have been read,
8741 and the input sections have been assigned to output sections. We
8742 check for any mips16 stub sections that we can discard. */
8743
b34976b6 8744bfd_boolean
9719ad41
RS
8745_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8746 struct bfd_link_info *info)
b49e97c9
TS
8747{
8748 asection *ri;
0a44bf69 8749 struct mips_elf_link_hash_table *htab;
861fb55a 8750 struct mips_htab_traverse_info hti;
0a44bf69
RS
8751
8752 htab = mips_elf_hash_table (info);
4dfe6ac6 8753 BFD_ASSERT (htab != NULL);
f4416af6 8754
b49e97c9
TS
8755 /* The .reginfo section has a fixed size. */
8756 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8757 if (ri != NULL)
9719ad41 8758 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8759
861fb55a
DJ
8760 hti.info = info;
8761 hti.output_bfd = output_bfd;
8762 hti.error = FALSE;
8763 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8764 mips_elf_check_symbols, &hti);
8765 if (hti.error)
8766 return FALSE;
f4416af6 8767
33bb52fb
RS
8768 return TRUE;
8769}
8770
8771/* If the link uses a GOT, lay it out and work out its size. */
8772
8773static bfd_boolean
8774mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8775{
8776 bfd *dynobj;
8777 asection *s;
8778 struct mips_got_info *g;
33bb52fb
RS
8779 bfd_size_type loadable_size = 0;
8780 bfd_size_type page_gotno;
d7206569 8781 bfd *ibfd;
ab361d49 8782 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
8783 struct mips_elf_link_hash_table *htab;
8784
8785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8786 BFD_ASSERT (htab != NULL);
8787
a8028dd0 8788 s = htab->sgot;
f4416af6 8789 if (s == NULL)
b34976b6 8790 return TRUE;
b49e97c9 8791
33bb52fb 8792 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8793 g = htab->got_info;
8794
861fb55a
DJ
8795 /* Allocate room for the reserved entries. VxWorks always reserves
8796 3 entries; other objects only reserve 2 entries. */
8797 BFD_ASSERT (g->assigned_gotno == 0);
8798 if (htab->is_vxworks)
8799 htab->reserved_gotno = 3;
8800 else
8801 htab->reserved_gotno = 2;
8802 g->local_gotno += htab->reserved_gotno;
8803 g->assigned_gotno = htab->reserved_gotno;
8804
6c42ddb9
RS
8805 /* Decide which symbols need to go in the global part of the GOT and
8806 count the number of reloc-only GOT symbols. */
020d7251 8807 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8808
13db6b44
RS
8809 if (!mips_elf_resolve_final_got_entries (info, g))
8810 return FALSE;
8811
33bb52fb
RS
8812 /* Calculate the total loadable size of the output. That
8813 will give us the maximum number of GOT_PAGE entries
8814 required. */
d7206569 8815 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
33bb52fb
RS
8816 {
8817 asection *subsection;
5108fc1b 8818
d7206569 8819 for (subsection = ibfd->sections;
33bb52fb
RS
8820 subsection;
8821 subsection = subsection->next)
8822 {
8823 if ((subsection->flags & SEC_ALLOC) == 0)
8824 continue;
8825 loadable_size += ((subsection->size + 0xf)
8826 &~ (bfd_size_type) 0xf);
8827 }
8828 }
f4416af6 8829
0a44bf69 8830 if (htab->is_vxworks)
738e5348 8831 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8832 relocations against local symbols evaluate to "G", and the EABI does
8833 not include R_MIPS_GOT_PAGE. */
c224138d 8834 page_gotno = 0;
0a44bf69
RS
8835 else
8836 /* Assume there are two loadable segments consisting of contiguous
8837 sections. Is 5 enough? */
c224138d
RS
8838 page_gotno = (loadable_size >> 16) + 5;
8839
13db6b44 8840 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
8841 conservative. */
8842 if (page_gotno > g->page_gotno)
8843 page_gotno = g->page_gotno;
f4416af6 8844
c224138d 8845 g->local_gotno += page_gotno;
ab361d49 8846
ab361d49
RS
8847 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8848 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
8849 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8850
0a44bf69
RS
8851 /* VxWorks does not support multiple GOTs. It initializes $gp to
8852 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8853 dynamic loader. */
57093f5e 8854 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8855 {
a8028dd0 8856 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8857 return FALSE;
8858 }
8859 else
8860 {
d7206569
RS
8861 /* Record that all bfds use G. This also has the effect of freeing
8862 the per-bfd GOTs, which we no longer need. */
8863 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8864 if (mips_elf_bfd_got (ibfd, FALSE))
8865 mips_elf_replace_bfd_got (ibfd, g);
8866 mips_elf_replace_bfd_got (output_bfd, g);
8867
33bb52fb 8868 /* Set up TLS entries. */
0f20cc35 8869 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
8870 tga.info = info;
8871 tga.g = g;
8872 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8873 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8874 if (!tga.g)
8875 return FALSE;
1fd20d70
RS
8876 BFD_ASSERT (g->tls_assigned_gotno
8877 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 8878
57093f5e
RS
8879 /* Each VxWorks GOT entry needs an explicit relocation. */
8880 if (htab->is_vxworks && info->shared)
8881 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8882
33bb52fb 8883 /* Allocate room for the TLS relocations. */
ab361d49
RS
8884 if (g->relocs)
8885 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 8886 }
b49e97c9 8887
b34976b6 8888 return TRUE;
b49e97c9
TS
8889}
8890
33bb52fb
RS
8891/* Estimate the size of the .MIPS.stubs section. */
8892
8893static void
8894mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8895{
8896 struct mips_elf_link_hash_table *htab;
8897 bfd_size_type dynsymcount;
8898
8899 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8900 BFD_ASSERT (htab != NULL);
8901
33bb52fb
RS
8902 if (htab->lazy_stub_count == 0)
8903 return;
8904
8905 /* IRIX rld assumes that a function stub isn't at the end of the .text
8906 section, so add a dummy entry to the end. */
8907 htab->lazy_stub_count++;
8908
8909 /* Get a worst-case estimate of the number of dynamic symbols needed.
8910 At this point, dynsymcount does not account for section symbols
8911 and count_section_dynsyms may overestimate the number that will
8912 be needed. */
8913 dynsymcount = (elf_hash_table (info)->dynsymcount
8914 + count_section_dynsyms (output_bfd, info));
8915
8916 /* Determine the size of one stub entry. */
8917 htab->function_stub_size = (dynsymcount > 0x10000
8918 ? MIPS_FUNCTION_STUB_BIG_SIZE
8919 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8920
8921 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8922}
8923
8924/* A mips_elf_link_hash_traverse callback for which DATA points to the
8925 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8926 allocate an entry in the stubs section. */
8927
8928static bfd_boolean
af924177 8929mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb
RS
8930{
8931 struct mips_elf_link_hash_table *htab;
8932
8933 htab = (struct mips_elf_link_hash_table *) data;
8934 if (h->needs_lazy_stub)
8935 {
8936 h->root.root.u.def.section = htab->sstubs;
8937 h->root.root.u.def.value = htab->sstubs->size;
8938 h->root.plt.offset = htab->sstubs->size;
8939 htab->sstubs->size += htab->function_stub_size;
8940 }
8941 return TRUE;
8942}
8943
8944/* Allocate offsets in the stubs section to each symbol that needs one.
8945 Set the final size of the .MIPS.stub section. */
8946
8947static void
8948mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8949{
8950 struct mips_elf_link_hash_table *htab;
8951
8952 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8953 BFD_ASSERT (htab != NULL);
8954
33bb52fb
RS
8955 if (htab->lazy_stub_count == 0)
8956 return;
8957
8958 htab->sstubs->size = 0;
4dfe6ac6 8959 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8960 htab->sstubs->size += htab->function_stub_size;
8961 BFD_ASSERT (htab->sstubs->size
8962 == htab->lazy_stub_count * htab->function_stub_size);
8963}
8964
b49e97c9
TS
8965/* Set the sizes of the dynamic sections. */
8966
b34976b6 8967bfd_boolean
9719ad41
RS
8968_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8969 struct bfd_link_info *info)
b49e97c9
TS
8970{
8971 bfd *dynobj;
861fb55a 8972 asection *s, *sreldyn;
b34976b6 8973 bfd_boolean reltext;
0a44bf69 8974 struct mips_elf_link_hash_table *htab;
b49e97c9 8975
0a44bf69 8976 htab = mips_elf_hash_table (info);
4dfe6ac6 8977 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8978 dynobj = elf_hash_table (info)->dynobj;
8979 BFD_ASSERT (dynobj != NULL);
8980
8981 if (elf_hash_table (info)->dynamic_sections_created)
8982 {
8983 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8984 if (info->executable)
b49e97c9 8985 {
3d4d4302 8986 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 8987 BFD_ASSERT (s != NULL);
eea6121a 8988 s->size
b49e97c9
TS
8989 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8990 s->contents
8991 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8992 }
861fb55a
DJ
8993
8994 /* Create a symbol for the PLT, if we know that we are using it. */
8995 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8996 {
8997 struct elf_link_hash_entry *h;
8998
8999 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9000
9001 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9002 "_PROCEDURE_LINKAGE_TABLE_");
9003 htab->root.hplt = h;
9004 if (h == NULL)
9005 return FALSE;
9006 h->type = STT_FUNC;
9007 }
9008 }
4e41d0d7 9009
9a59ad6b 9010 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9011 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9012
33bb52fb
RS
9013 mips_elf_estimate_stub_size (output_bfd, info);
9014
9015 if (!mips_elf_lay_out_got (output_bfd, info))
9016 return FALSE;
9017
9018 mips_elf_lay_out_lazy_stubs (info);
9019
b49e97c9
TS
9020 /* The check_relocs and adjust_dynamic_symbol entry points have
9021 determined the sizes of the various dynamic sections. Allocate
9022 memory for them. */
b34976b6 9023 reltext = FALSE;
b49e97c9
TS
9024 for (s = dynobj->sections; s != NULL; s = s->next)
9025 {
9026 const char *name;
b49e97c9
TS
9027
9028 /* It's OK to base decisions on the section name, because none
9029 of the dynobj section names depend upon the input files. */
9030 name = bfd_get_section_name (dynobj, s);
9031
9032 if ((s->flags & SEC_LINKER_CREATED) == 0)
9033 continue;
9034
0112cd26 9035 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9036 {
c456f082 9037 if (s->size != 0)
b49e97c9
TS
9038 {
9039 const char *outname;
9040 asection *target;
9041
9042 /* If this relocation section applies to a read only
9043 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9044 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9045 assert a DT_TEXTREL entry rather than testing whether
9046 there exists a relocation to a read only section or
9047 not. */
9048 outname = bfd_get_section_name (output_bfd,
9049 s->output_section);
9050 target = bfd_get_section_by_name (output_bfd, outname + 4);
9051 if ((target != NULL
9052 && (target->flags & SEC_READONLY) != 0
9053 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9054 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9055 reltext = TRUE;
b49e97c9
TS
9056
9057 /* We use the reloc_count field as a counter if we need
9058 to copy relocs into the output file. */
0a44bf69 9059 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9060 s->reloc_count = 0;
f4416af6
AO
9061
9062 /* If combreloc is enabled, elf_link_sort_relocs() will
9063 sort relocations, but in a different way than we do,
9064 and before we're done creating relocations. Also, it
9065 will move them around between input sections'
9066 relocation's contents, so our sorting would be
9067 broken, so don't let it run. */
9068 info->combreloc = 0;
b49e97c9
TS
9069 }
9070 }
b49e97c9
TS
9071 else if (! info->shared
9072 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9073 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9074 {
5108fc1b 9075 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9076 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9077 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9078 }
9079 else if (SGI_COMPAT (output_bfd)
0112cd26 9080 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9081 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9082 else if (s == htab->splt)
9083 {
9084 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9085 room for an extra nop to fill the delay slot. This is
9086 for CPUs without load interlocking. */
9087 if (! LOAD_INTERLOCKS_P (output_bfd)
9088 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9089 s->size += 4;
9090 }
0112cd26 9091 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9092 && s != htab->sgot
0a44bf69 9093 && s != htab->sgotplt
861fb55a
DJ
9094 && s != htab->sstubs
9095 && s != htab->sdynbss)
b49e97c9
TS
9096 {
9097 /* It's not one of our sections, so don't allocate space. */
9098 continue;
9099 }
9100
c456f082 9101 if (s->size == 0)
b49e97c9 9102 {
8423293d 9103 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9104 continue;
9105 }
9106
c456f082
AM
9107 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9108 continue;
9109
b49e97c9 9110 /* Allocate memory for the section contents. */
eea6121a 9111 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9112 if (s->contents == NULL)
b49e97c9
TS
9113 {
9114 bfd_set_error (bfd_error_no_memory);
b34976b6 9115 return FALSE;
b49e97c9
TS
9116 }
9117 }
9118
9119 if (elf_hash_table (info)->dynamic_sections_created)
9120 {
9121 /* Add some entries to the .dynamic section. We fill in the
9122 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9123 must add the entries now so that we get the correct size for
5750dcec 9124 the .dynamic section. */
af5978fb
RS
9125
9126 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9127 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9128 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9129 may only look at the first one they see. */
af5978fb
RS
9130 if (!info->shared
9131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9132 return FALSE;
b49e97c9 9133
5750dcec
DJ
9134 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9135 used by the debugger. */
9136 if (info->executable
9137 && !SGI_COMPAT (output_bfd)
9138 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9139 return FALSE;
9140
0a44bf69 9141 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9142 info->flags |= DF_TEXTREL;
9143
9144 if ((info->flags & DF_TEXTREL) != 0)
9145 {
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9147 return FALSE;
943284cc
DJ
9148
9149 /* Clear the DF_TEXTREL flag. It will be set again if we
9150 write out an actual text relocation; we may not, because
9151 at this point we do not know whether e.g. any .eh_frame
9152 absolute relocations have been converted to PC-relative. */
9153 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9154 }
9155
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9157 return FALSE;
b49e97c9 9158
861fb55a 9159 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9160 if (htab->is_vxworks)
b49e97c9 9161 {
0a44bf69
RS
9162 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9163 use any of the DT_MIPS_* tags. */
861fb55a 9164 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9165 {
9166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9167 return FALSE;
b49e97c9 9168
0a44bf69
RS
9169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9170 return FALSE;
b49e97c9 9171
0a44bf69
RS
9172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9173 return FALSE;
9174 }
b49e97c9 9175 }
0a44bf69
RS
9176 else
9177 {
861fb55a 9178 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9179 {
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9181 return FALSE;
b49e97c9 9182
0a44bf69
RS
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9184 return FALSE;
b49e97c9 9185
0a44bf69
RS
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9187 return FALSE;
9188 }
b49e97c9 9189
0a44bf69
RS
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9191 return FALSE;
b49e97c9 9192
0a44bf69
RS
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9194 return FALSE;
b49e97c9 9195
0a44bf69
RS
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9197 return FALSE;
b49e97c9 9198
0a44bf69
RS
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9200 return FALSE;
b49e97c9 9201
0a44bf69
RS
9202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9203 return FALSE;
b49e97c9 9204
0a44bf69
RS
9205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9206 return FALSE;
b49e97c9 9207
0a44bf69
RS
9208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9209 return FALSE;
9210
9211 if (IRIX_COMPAT (dynobj) == ict_irix5
9212 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9213 return FALSE;
9214
9215 if (IRIX_COMPAT (dynobj) == ict_irix6
9216 && (bfd_get_section_by_name
af0edeb8 9217 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9218 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9219 return FALSE;
9220 }
861fb55a
DJ
9221 if (htab->splt->size > 0)
9222 {
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9227 return FALSE;
9228
9229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9230 return FALSE;
9231
9232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9233 return FALSE;
9234 }
7a2b07ff
NS
9235 if (htab->is_vxworks
9236 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9237 return FALSE;
b49e97c9
TS
9238 }
9239
b34976b6 9240 return TRUE;
b49e97c9
TS
9241}
9242\f
81d43bff
RS
9243/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9244 Adjust its R_ADDEND field so that it is correct for the output file.
9245 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9246 and sections respectively; both use symbol indexes. */
9247
9248static void
9249mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9250 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9251 asection **local_sections, Elf_Internal_Rela *rel)
9252{
9253 unsigned int r_type, r_symndx;
9254 Elf_Internal_Sym *sym;
9255 asection *sec;
9256
020d7251 9257 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9258 {
9259 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9260 if (gprel16_reloc_p (r_type)
81d43bff 9261 || r_type == R_MIPS_GPREL32
df58fc94 9262 || literal_reloc_p (r_type))
81d43bff
RS
9263 {
9264 rel->r_addend += _bfd_get_gp_value (input_bfd);
9265 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9266 }
9267
9268 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9269 sym = local_syms + r_symndx;
9270
9271 /* Adjust REL's addend to account for section merging. */
9272 if (!info->relocatable)
9273 {
9274 sec = local_sections[r_symndx];
9275 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9276 }
9277
9278 /* This would normally be done by the rela_normal code in elflink.c. */
9279 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9280 rel->r_addend += local_sections[r_symndx]->output_offset;
9281 }
9282}
9283
545fd46b
MR
9284/* Handle relocations against symbols from removed linkonce sections,
9285 or sections discarded by a linker script. We use this wrapper around
9286 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9287 on 64-bit ELF targets. In this case for any relocation handled, which
9288 always be the first in a triplet, the remaining two have to be processed
9289 together with the first, even if they are R_MIPS_NONE. It is the symbol
9290 index referred by the first reloc that applies to all the three and the
9291 remaining two never refer to an object symbol. And it is the final
9292 relocation (the last non-null one) that determines the output field of
9293 the whole relocation so retrieve the corresponding howto structure for
9294 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9295
9296 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9297 and therefore requires to be pasted in a loop. It also defines a block
9298 and does not protect any of its arguments, hence the extra brackets. */
9299
9300static void
9301mips_reloc_against_discarded_section (bfd *output_bfd,
9302 struct bfd_link_info *info,
9303 bfd *input_bfd, asection *input_section,
9304 Elf_Internal_Rela **rel,
9305 const Elf_Internal_Rela **relend,
9306 bfd_boolean rel_reloc,
9307 reloc_howto_type *howto,
9308 bfd_byte *contents)
9309{
9310 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9311 int count = bed->s->int_rels_per_ext_rel;
9312 unsigned int r_type;
9313 int i;
9314
9315 for (i = count - 1; i > 0; i--)
9316 {
9317 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9318 if (r_type != R_MIPS_NONE)
9319 {
9320 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9321 break;
9322 }
9323 }
9324 do
9325 {
9326 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9327 (*rel), count, (*relend),
9328 howto, i, contents);
9329 }
9330 while (0);
9331}
9332
b49e97c9
TS
9333/* Relocate a MIPS ELF section. */
9334
b34976b6 9335bfd_boolean
9719ad41
RS
9336_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9337 bfd *input_bfd, asection *input_section,
9338 bfd_byte *contents, Elf_Internal_Rela *relocs,
9339 Elf_Internal_Sym *local_syms,
9340 asection **local_sections)
b49e97c9
TS
9341{
9342 Elf_Internal_Rela *rel;
9343 const Elf_Internal_Rela *relend;
9344 bfd_vma addend = 0;
b34976b6 9345 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9346 const struct elf_backend_data *bed;
b49e97c9
TS
9347
9348 bed = get_elf_backend_data (output_bfd);
9349 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9350 for (rel = relocs; rel < relend; ++rel)
9351 {
9352 const char *name;
c9adbffe 9353 bfd_vma value = 0;
b49e97c9 9354 reloc_howto_type *howto;
38a7df63 9355 bfd_boolean cross_mode_jump_p;
b34976b6 9356 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9357 REL relocation. */
b34976b6 9358 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9359 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9360 const char *msg;
ab96bf03
AM
9361 unsigned long r_symndx;
9362 asection *sec;
749b8d9d
L
9363 Elf_Internal_Shdr *symtab_hdr;
9364 struct elf_link_hash_entry *h;
d4730f92 9365 bfd_boolean rel_reloc;
b49e97c9 9366
d4730f92
BS
9367 rel_reloc = (NEWABI_P (input_bfd)
9368 && mips_elf_rel_relocation_p (input_bfd, input_section,
9369 relocs, rel));
b49e97c9 9370 /* Find the relocation howto for this relocation. */
d4730f92 9371 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9372
9373 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9374 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9375 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9376 {
9377 sec = local_sections[r_symndx];
9378 h = NULL;
9379 }
ab96bf03
AM
9380 else
9381 {
ab96bf03 9382 unsigned long extsymoff;
ab96bf03 9383
ab96bf03
AM
9384 extsymoff = 0;
9385 if (!elf_bad_symtab (input_bfd))
9386 extsymoff = symtab_hdr->sh_info;
9387 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9388 while (h->root.type == bfd_link_hash_indirect
9389 || h->root.type == bfd_link_hash_warning)
9390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9391
9392 sec = NULL;
9393 if (h->root.type == bfd_link_hash_defined
9394 || h->root.type == bfd_link_hash_defweak)
9395 sec = h->root.u.def.section;
9396 }
9397
dbaa2011 9398 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9399 {
9400 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9401 input_section, &rel, &relend,
9402 rel_reloc, howto, contents);
9403 continue;
9404 }
ab96bf03 9405
4a14403c 9406 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9407 {
9408 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9409 64-bit code, but make sure all their addresses are in the
9410 lowermost or uppermost 32-bit section of the 64-bit address
9411 space. Thus, when they use an R_MIPS_64 they mean what is
9412 usually meant by R_MIPS_32, with the exception that the
9413 stored value is sign-extended to 64 bits. */
b34976b6 9414 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9415
9416 /* On big-endian systems, we need to lie about the position
9417 of the reloc. */
9418 if (bfd_big_endian (input_bfd))
9419 rel->r_offset += 4;
9420 }
b49e97c9
TS
9421
9422 if (!use_saved_addend_p)
9423 {
b49e97c9
TS
9424 /* If these relocations were originally of the REL variety,
9425 we must pull the addend out of the field that will be
9426 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9427 RELA relocation. */
9428 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9429 relocs, rel))
b49e97c9 9430 {
b34976b6 9431 rela_relocation_p = FALSE;
c224138d
RS
9432 addend = mips_elf_read_rel_addend (input_bfd, rel,
9433 howto, contents);
738e5348
RS
9434 if (hi16_reloc_p (r_type)
9435 || (got16_reloc_p (r_type)
b49e97c9 9436 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9437 local_sections)))
b49e97c9 9438 {
c224138d
RS
9439 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9440 contents, &addend))
749b8d9d 9441 {
749b8d9d
L
9442 if (h)
9443 name = h->root.root.string;
9444 else
9445 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9446 local_syms + r_symndx,
9447 sec);
9448 (*_bfd_error_handler)
9449 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9450 input_bfd, input_section, name, howto->name,
9451 rel->r_offset);
749b8d9d 9452 }
b49e97c9 9453 }
30ac9238
RS
9454 else
9455 addend <<= howto->rightshift;
b49e97c9
TS
9456 }
9457 else
9458 addend = rel->r_addend;
81d43bff
RS
9459 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9460 local_syms, local_sections, rel);
b49e97c9
TS
9461 }
9462
1049f94e 9463 if (info->relocatable)
b49e97c9 9464 {
4a14403c 9465 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9466 && bfd_big_endian (input_bfd))
9467 rel->r_offset -= 4;
9468
81d43bff 9469 if (!rela_relocation_p && rel->r_addend)
5a659663 9470 {
81d43bff 9471 addend += rel->r_addend;
738e5348 9472 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9473 addend = mips_elf_high (addend);
9474 else if (r_type == R_MIPS_HIGHER)
9475 addend = mips_elf_higher (addend);
9476 else if (r_type == R_MIPS_HIGHEST)
9477 addend = mips_elf_highest (addend);
30ac9238
RS
9478 else
9479 addend >>= howto->rightshift;
b49e97c9 9480
30ac9238
RS
9481 /* We use the source mask, rather than the destination
9482 mask because the place to which we are writing will be
9483 source of the addend in the final link. */
b49e97c9
TS
9484 addend &= howto->src_mask;
9485
5a659663 9486 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9487 /* See the comment above about using R_MIPS_64 in the 32-bit
9488 ABI. Here, we need to update the addend. It would be
9489 possible to get away with just using the R_MIPS_32 reloc
9490 but for endianness. */
9491 {
9492 bfd_vma sign_bits;
9493 bfd_vma low_bits;
9494 bfd_vma high_bits;
9495
9496 if (addend & ((bfd_vma) 1 << 31))
9497#ifdef BFD64
9498 sign_bits = ((bfd_vma) 1 << 32) - 1;
9499#else
9500 sign_bits = -1;
9501#endif
9502 else
9503 sign_bits = 0;
9504
9505 /* If we don't know that we have a 64-bit type,
9506 do two separate stores. */
9507 if (bfd_big_endian (input_bfd))
9508 {
9509 /* Store the sign-bits (which are most significant)
9510 first. */
9511 low_bits = sign_bits;
9512 high_bits = addend;
9513 }
9514 else
9515 {
9516 low_bits = addend;
9517 high_bits = sign_bits;
9518 }
9519 bfd_put_32 (input_bfd, low_bits,
9520 contents + rel->r_offset);
9521 bfd_put_32 (input_bfd, high_bits,
9522 contents + rel->r_offset + 4);
9523 continue;
9524 }
9525
9526 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9527 input_bfd, input_section,
b34976b6
AM
9528 contents, FALSE))
9529 return FALSE;
b49e97c9
TS
9530 }
9531
9532 /* Go on to the next relocation. */
9533 continue;
9534 }
9535
9536 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9537 relocations for the same offset. In that case we are
9538 supposed to treat the output of each relocation as the addend
9539 for the next. */
9540 if (rel + 1 < relend
9541 && rel->r_offset == rel[1].r_offset
9542 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9543 use_saved_addend_p = TRUE;
b49e97c9 9544 else
b34976b6 9545 use_saved_addend_p = FALSE;
b49e97c9
TS
9546
9547 /* Figure out what value we are supposed to relocate. */
9548 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9549 input_section, info, rel,
9550 addend, howto, local_syms,
9551 local_sections, &value,
38a7df63 9552 &name, &cross_mode_jump_p,
bce03d3d 9553 use_saved_addend_p))
b49e97c9
TS
9554 {
9555 case bfd_reloc_continue:
9556 /* There's nothing to do. */
9557 continue;
9558
9559 case bfd_reloc_undefined:
9560 /* mips_elf_calculate_relocation already called the
9561 undefined_symbol callback. There's no real point in
9562 trying to perform the relocation at this point, so we
9563 just skip ahead to the next relocation. */
9564 continue;
9565
9566 case bfd_reloc_notsupported:
9567 msg = _("internal error: unsupported relocation error");
9568 info->callbacks->warning
9569 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9570 return FALSE;
b49e97c9
TS
9571
9572 case bfd_reloc_overflow:
9573 if (use_saved_addend_p)
9574 /* Ignore overflow until we reach the last relocation for
9575 a given location. */
9576 ;
9577 else
9578 {
0e53d9da
AN
9579 struct mips_elf_link_hash_table *htab;
9580
9581 htab = mips_elf_hash_table (info);
4dfe6ac6 9582 BFD_ASSERT (htab != NULL);
b49e97c9 9583 BFD_ASSERT (name != NULL);
0e53d9da 9584 if (!htab->small_data_overflow_reported
9684f078 9585 && (gprel16_reloc_p (howto->type)
df58fc94 9586 || literal_reloc_p (howto->type)))
0e53d9da 9587 {
91d6fa6a
NC
9588 msg = _("small-data section exceeds 64KB;"
9589 " lower small-data size limit (see option -G)");
0e53d9da
AN
9590
9591 htab->small_data_overflow_reported = TRUE;
9592 (*info->callbacks->einfo) ("%P: %s\n", msg);
9593 }
b49e97c9 9594 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9595 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9596 input_bfd, input_section, rel->r_offset)))
b34976b6 9597 return FALSE;
b49e97c9
TS
9598 }
9599 break;
9600
9601 case bfd_reloc_ok:
9602 break;
9603
df58fc94
RS
9604 case bfd_reloc_outofrange:
9605 if (jal_reloc_p (howto->type))
9606 {
9607 msg = _("JALX to a non-word-aligned address");
9608 info->callbacks->warning
9609 (info, msg, name, input_bfd, input_section, rel->r_offset);
9610 return FALSE;
9611 }
9612 /* Fall through. */
9613
b49e97c9
TS
9614 default:
9615 abort ();
9616 break;
9617 }
9618
9619 /* If we've got another relocation for the address, keep going
9620 until we reach the last one. */
9621 if (use_saved_addend_p)
9622 {
9623 addend = value;
9624 continue;
9625 }
9626
4a14403c 9627 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9628 /* See the comment above about using R_MIPS_64 in the 32-bit
9629 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9630 that calculated the right value. Now, however, we
9631 sign-extend the 32-bit result to 64-bits, and store it as a
9632 64-bit value. We are especially generous here in that we
9633 go to extreme lengths to support this usage on systems with
9634 only a 32-bit VMA. */
9635 {
9636 bfd_vma sign_bits;
9637 bfd_vma low_bits;
9638 bfd_vma high_bits;
9639
9640 if (value & ((bfd_vma) 1 << 31))
9641#ifdef BFD64
9642 sign_bits = ((bfd_vma) 1 << 32) - 1;
9643#else
9644 sign_bits = -1;
9645#endif
9646 else
9647 sign_bits = 0;
9648
9649 /* If we don't know that we have a 64-bit type,
9650 do two separate stores. */
9651 if (bfd_big_endian (input_bfd))
9652 {
9653 /* Undo what we did above. */
9654 rel->r_offset -= 4;
9655 /* Store the sign-bits (which are most significant)
9656 first. */
9657 low_bits = sign_bits;
9658 high_bits = value;
9659 }
9660 else
9661 {
9662 low_bits = value;
9663 high_bits = sign_bits;
9664 }
9665 bfd_put_32 (input_bfd, low_bits,
9666 contents + rel->r_offset);
9667 bfd_put_32 (input_bfd, high_bits,
9668 contents + rel->r_offset + 4);
9669 continue;
9670 }
9671
9672 /* Actually perform the relocation. */
9673 if (! mips_elf_perform_relocation (info, howto, rel, value,
9674 input_bfd, input_section,
38a7df63 9675 contents, cross_mode_jump_p))
b34976b6 9676 return FALSE;
b49e97c9
TS
9677 }
9678
b34976b6 9679 return TRUE;
b49e97c9
TS
9680}
9681\f
861fb55a
DJ
9682/* A function that iterates over each entry in la25_stubs and fills
9683 in the code for each one. DATA points to a mips_htab_traverse_info. */
9684
9685static int
9686mips_elf_create_la25_stub (void **slot, void *data)
9687{
9688 struct mips_htab_traverse_info *hti;
9689 struct mips_elf_link_hash_table *htab;
9690 struct mips_elf_la25_stub *stub;
9691 asection *s;
9692 bfd_byte *loc;
9693 bfd_vma offset, target, target_high, target_low;
9694
9695 stub = (struct mips_elf_la25_stub *) *slot;
9696 hti = (struct mips_htab_traverse_info *) data;
9697 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9698 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9699
9700 /* Create the section contents, if we haven't already. */
9701 s = stub->stub_section;
9702 loc = s->contents;
9703 if (loc == NULL)
9704 {
9705 loc = bfd_malloc (s->size);
9706 if (loc == NULL)
9707 {
9708 hti->error = TRUE;
9709 return FALSE;
9710 }
9711 s->contents = loc;
9712 }
9713
9714 /* Work out where in the section this stub should go. */
9715 offset = stub->offset;
9716
9717 /* Work out the target address. */
8f0c309a
CLT
9718 target = mips_elf_get_la25_target (stub, &s);
9719 target += s->output_section->vma + s->output_offset;
9720
861fb55a
DJ
9721 target_high = ((target + 0x8000) >> 16) & 0xffff;
9722 target_low = (target & 0xffff);
9723
9724 if (stub->stub_section != htab->strampoline)
9725 {
df58fc94 9726 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9727 of the section and write the two instructions at the end. */
9728 memset (loc, 0, offset);
9729 loc += offset;
df58fc94
RS
9730 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9731 {
d21911ea
MR
9732 bfd_put_micromips_32 (hti->output_bfd,
9733 LA25_LUI_MICROMIPS (target_high),
9734 loc);
9735 bfd_put_micromips_32 (hti->output_bfd,
9736 LA25_ADDIU_MICROMIPS (target_low),
9737 loc + 4);
df58fc94
RS
9738 }
9739 else
9740 {
9741 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9742 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9743 }
861fb55a
DJ
9744 }
9745 else
9746 {
9747 /* This is trampoline. */
9748 loc += offset;
df58fc94
RS
9749 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9750 {
d21911ea
MR
9751 bfd_put_micromips_32 (hti->output_bfd,
9752 LA25_LUI_MICROMIPS (target_high), loc);
9753 bfd_put_micromips_32 (hti->output_bfd,
9754 LA25_J_MICROMIPS (target), loc + 4);
9755 bfd_put_micromips_32 (hti->output_bfd,
9756 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9757 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9758 }
9759 else
9760 {
9761 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9762 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9763 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9764 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9765 }
861fb55a
DJ
9766 }
9767 return TRUE;
9768}
9769
b49e97c9
TS
9770/* If NAME is one of the special IRIX6 symbols defined by the linker,
9771 adjust it appropriately now. */
9772
9773static void
9719ad41
RS
9774mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9775 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9776{
9777 /* The linker script takes care of providing names and values for
9778 these, but we must place them into the right sections. */
9779 static const char* const text_section_symbols[] = {
9780 "_ftext",
9781 "_etext",
9782 "__dso_displacement",
9783 "__elf_header",
9784 "__program_header_table",
9785 NULL
9786 };
9787
9788 static const char* const data_section_symbols[] = {
9789 "_fdata",
9790 "_edata",
9791 "_end",
9792 "_fbss",
9793 NULL
9794 };
9795
9796 const char* const *p;
9797 int i;
9798
9799 for (i = 0; i < 2; ++i)
9800 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9801 *p;
9802 ++p)
9803 if (strcmp (*p, name) == 0)
9804 {
9805 /* All of these symbols are given type STT_SECTION by the
9806 IRIX6 linker. */
9807 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9808 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9809
9810 /* The IRIX linker puts these symbols in special sections. */
9811 if (i == 0)
9812 sym->st_shndx = SHN_MIPS_TEXT;
9813 else
9814 sym->st_shndx = SHN_MIPS_DATA;
9815
9816 break;
9817 }
9818}
9819
9820/* Finish up dynamic symbol handling. We set the contents of various
9821 dynamic sections here. */
9822
b34976b6 9823bfd_boolean
9719ad41
RS
9824_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9825 struct bfd_link_info *info,
9826 struct elf_link_hash_entry *h,
9827 Elf_Internal_Sym *sym)
b49e97c9
TS
9828{
9829 bfd *dynobj;
b49e97c9 9830 asection *sgot;
f4416af6 9831 struct mips_got_info *g, *gg;
b49e97c9 9832 const char *name;
3d6746ca 9833 int idx;
5108fc1b 9834 struct mips_elf_link_hash_table *htab;
738e5348 9835 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9836
5108fc1b 9837 htab = mips_elf_hash_table (info);
4dfe6ac6 9838 BFD_ASSERT (htab != NULL);
b49e97c9 9839 dynobj = elf_hash_table (info)->dynobj;
738e5348 9840 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9841
861fb55a
DJ
9842 BFD_ASSERT (!htab->is_vxworks);
9843
9844 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9845 {
9846 /* We've decided to create a PLT entry for this symbol. */
9847 bfd_byte *loc;
9848 bfd_vma header_address, plt_index, got_address;
9849 bfd_vma got_address_high, got_address_low, load;
9850 const bfd_vma *plt_entry;
9851
9852 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9853 BFD_ASSERT (h->dynindx != -1);
9854 BFD_ASSERT (htab->splt != NULL);
9855 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9856 BFD_ASSERT (!h->def_regular);
9857
9858 /* Calculate the address of the PLT header. */
9859 header_address = (htab->splt->output_section->vma
9860 + htab->splt->output_offset);
9861
9862 /* Calculate the index of the entry. */
9863 plt_index = ((h->plt.offset - htab->plt_header_size)
9864 / htab->plt_entry_size);
9865
9866 /* Calculate the address of the .got.plt entry. */
9867 got_address = (htab->sgotplt->output_section->vma
9868 + htab->sgotplt->output_offset
9869 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9870 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9871 got_address_low = got_address & 0xffff;
9872
9873 /* Initially point the .got.plt entry at the PLT header. */
9874 loc = (htab->sgotplt->contents
9875 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9876 if (ABI_64_P (output_bfd))
9877 bfd_put_64 (output_bfd, header_address, loc);
9878 else
9879 bfd_put_32 (output_bfd, header_address, loc);
9880
9881 /* Find out where the .plt entry should go. */
9882 loc = htab->splt->contents + h->plt.offset;
9883
9884 /* Pick the load opcode. */
9885 load = MIPS_ELF_LOAD_WORD (output_bfd);
9886
9887 /* Fill in the PLT entry itself. */
9888 plt_entry = mips_exec_plt_entry;
9889 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9890 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9891
9892 if (! LOAD_INTERLOCKS_P (output_bfd))
9893 {
9894 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9895 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9896 }
9897 else
9898 {
9899 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9900 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9901 }
861fb55a
DJ
9902
9903 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9904 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9905 plt_index, h->dynindx,
9906 R_MIPS_JUMP_SLOT, got_address);
9907
9908 /* We distinguish between PLT entries and lazy-binding stubs by
9909 giving the former an st_other value of STO_MIPS_PLT. Set the
9910 flag and leave the value if there are any relocations in the
9911 binary where pointer equality matters. */
9912 sym->st_shndx = SHN_UNDEF;
9913 if (h->pointer_equality_needed)
9914 sym->st_other = STO_MIPS_PLT;
9915 else
9916 sym->st_value = 0;
9917 }
9918 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9919 {
861fb55a 9920 /* We've decided to create a lazy-binding stub. */
5108fc1b 9921 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9922
9923 /* This symbol has a stub. Set it up. */
9924
9925 BFD_ASSERT (h->dynindx != -1);
9926
5108fc1b
RS
9927 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9928 || (h->dynindx <= 0xffff));
3d6746ca
DD
9929
9930 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9931 sign extension at runtime in the stub, resulting in a negative
9932 index value. */
9933 if (h->dynindx & ~0x7fffffff)
b34976b6 9934 return FALSE;
b49e97c9
TS
9935
9936 /* Fill the stub. */
3d6746ca
DD
9937 idx = 0;
9938 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9939 idx += 4;
9940 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9941 idx += 4;
5108fc1b 9942 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9943 {
5108fc1b 9944 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9945 stub + idx);
9946 idx += 4;
9947 }
9948 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9949 idx += 4;
b49e97c9 9950
3d6746ca
DD
9951 /* If a large stub is not required and sign extension is not a
9952 problem, then use legacy code in the stub. */
5108fc1b
RS
9953 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9954 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9955 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9956 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9957 else
5108fc1b
RS
9958 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9959 stub + idx);
9960
4e41d0d7
RS
9961 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9962 memcpy (htab->sstubs->contents + h->plt.offset,
9963 stub, htab->function_stub_size);
b49e97c9
TS
9964
9965 /* Mark the symbol as undefined. plt.offset != -1 occurs
9966 only for the referenced symbol. */
9967 sym->st_shndx = SHN_UNDEF;
9968
9969 /* The run-time linker uses the st_value field of the symbol
9970 to reset the global offset table entry for this external
9971 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9972 sym->st_value = (htab->sstubs->output_section->vma
9973 + htab->sstubs->output_offset
c5ae1840 9974 + h->plt.offset);
b49e97c9
TS
9975 }
9976
738e5348
RS
9977 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9978 refer to the stub, since only the stub uses the standard calling
9979 conventions. */
9980 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9981 {
9982 BFD_ASSERT (hmips->need_fn_stub);
9983 sym->st_value = (hmips->fn_stub->output_section->vma
9984 + hmips->fn_stub->output_offset);
9985 sym->st_size = hmips->fn_stub->size;
9986 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9987 }
9988
b49e97c9 9989 BFD_ASSERT (h->dynindx != -1
f5385ebf 9990 || h->forced_local);
b49e97c9 9991
23cc69b6 9992 sgot = htab->sgot;
a8028dd0 9993 g = htab->got_info;
b49e97c9
TS
9994 BFD_ASSERT (g != NULL);
9995
9996 /* Run through the global symbol table, creating GOT entries for all
9997 the symbols that need them. */
020d7251 9998 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
9999 {
10000 bfd_vma offset;
10001 bfd_vma value;
10002
6eaa6adc 10003 value = sym->st_value;
13fbec83 10004 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10005 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10006 }
10007
e641e783 10008 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10009 {
10010 struct mips_got_entry e, *p;
0626d451 10011 bfd_vma entry;
f4416af6 10012 bfd_vma offset;
f4416af6
AO
10013
10014 gg = g;
10015
10016 e.abfd = output_bfd;
10017 e.symndx = -1;
738e5348 10018 e.d.h = hmips;
9ab066b4 10019 e.tls_type = GOT_TLS_NONE;
143d77c5 10020
f4416af6
AO
10021 for (g = g->next; g->next != gg; g = g->next)
10022 {
10023 if (g->got_entries
10024 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10025 &e)))
10026 {
10027 offset = p->gotidx;
6c42ddb9 10028 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0626d451
RS
10029 if (info->shared
10030 || (elf_hash_table (info)->dynamic_sections_created
10031 && p->d.h != NULL
f5385ebf
AM
10032 && p->d.h->root.def_dynamic
10033 && !p->d.h->root.def_regular))
0626d451
RS
10034 {
10035 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10036 the various compatibility problems, it's easier to mock
10037 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10038 mips_elf_create_dynamic_relocation to calculate the
10039 appropriate addend. */
10040 Elf_Internal_Rela rel[3];
10041
10042 memset (rel, 0, sizeof (rel));
10043 if (ABI_64_P (output_bfd))
10044 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10045 else
10046 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10047 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10048
10049 entry = 0;
10050 if (! (mips_elf_create_dynamic_relocation
10051 (output_bfd, info, rel,
10052 e.d.h, NULL, sym->st_value, &entry, sgot)))
10053 return FALSE;
10054 }
10055 else
10056 entry = sym->st_value;
10057 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10058 }
10059 }
10060 }
10061
b49e97c9
TS
10062 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10063 name = h->root.root.string;
9637f6ef 10064 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10065 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10066 sym->st_shndx = SHN_ABS;
10067 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10068 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10069 {
10070 sym->st_shndx = SHN_ABS;
10071 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10072 sym->st_value = 1;
10073 }
4a14403c 10074 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10075 {
10076 sym->st_shndx = SHN_ABS;
10077 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10078 sym->st_value = elf_gp (output_bfd);
10079 }
10080 else if (SGI_COMPAT (output_bfd))
10081 {
10082 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10083 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10084 {
10085 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10086 sym->st_other = STO_PROTECTED;
10087 sym->st_value = 0;
10088 sym->st_shndx = SHN_MIPS_DATA;
10089 }
10090 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10091 {
10092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10093 sym->st_other = STO_PROTECTED;
10094 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10095 sym->st_shndx = SHN_ABS;
10096 }
10097 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10098 {
10099 if (h->type == STT_FUNC)
10100 sym->st_shndx = SHN_MIPS_TEXT;
10101 else if (h->type == STT_OBJECT)
10102 sym->st_shndx = SHN_MIPS_DATA;
10103 }
10104 }
10105
861fb55a
DJ
10106 /* Emit a copy reloc, if needed. */
10107 if (h->needs_copy)
10108 {
10109 asection *s;
10110 bfd_vma symval;
10111
10112 BFD_ASSERT (h->dynindx != -1);
10113 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10114
10115 s = mips_elf_rel_dyn_section (info, FALSE);
10116 symval = (h->root.u.def.section->output_section->vma
10117 + h->root.u.def.section->output_offset
10118 + h->root.u.def.value);
10119 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10120 h->dynindx, R_MIPS_COPY, symval);
10121 }
10122
b49e97c9
TS
10123 /* Handle the IRIX6-specific symbols. */
10124 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10125 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10126
cbf8d970
MR
10127 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10128 to treat compressed symbols like any other. */
30c09090 10129 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10130 {
10131 BFD_ASSERT (sym->st_value & 1);
10132 sym->st_other -= STO_MIPS16;
10133 }
cbf8d970
MR
10134 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10135 {
10136 BFD_ASSERT (sym->st_value & 1);
10137 sym->st_other -= STO_MICROMIPS;
10138 }
b49e97c9 10139
b34976b6 10140 return TRUE;
b49e97c9
TS
10141}
10142
0a44bf69
RS
10143/* Likewise, for VxWorks. */
10144
10145bfd_boolean
10146_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10147 struct bfd_link_info *info,
10148 struct elf_link_hash_entry *h,
10149 Elf_Internal_Sym *sym)
10150{
10151 bfd *dynobj;
10152 asection *sgot;
10153 struct mips_got_info *g;
10154 struct mips_elf_link_hash_table *htab;
020d7251 10155 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10156
10157 htab = mips_elf_hash_table (info);
4dfe6ac6 10158 BFD_ASSERT (htab != NULL);
0a44bf69 10159 dynobj = elf_hash_table (info)->dynobj;
020d7251 10160 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10161
10162 if (h->plt.offset != (bfd_vma) -1)
10163 {
6d79d2ed 10164 bfd_byte *loc;
0a44bf69
RS
10165 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10166 Elf_Internal_Rela rel;
10167 static const bfd_vma *plt_entry;
10168
10169 BFD_ASSERT (h->dynindx != -1);
10170 BFD_ASSERT (htab->splt != NULL);
10171 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10172
10173 /* Calculate the address of the .plt entry. */
10174 plt_address = (htab->splt->output_section->vma
10175 + htab->splt->output_offset
10176 + h->plt.offset);
10177
10178 /* Calculate the index of the entry. */
10179 plt_index = ((h->plt.offset - htab->plt_header_size)
10180 / htab->plt_entry_size);
10181
10182 /* Calculate the address of the .got.plt entry. */
10183 got_address = (htab->sgotplt->output_section->vma
10184 + htab->sgotplt->output_offset
10185 + plt_index * 4);
10186
10187 /* Calculate the offset of the .got.plt entry from
10188 _GLOBAL_OFFSET_TABLE_. */
10189 got_offset = mips_elf_gotplt_index (info, h);
10190
10191 /* Calculate the offset for the branch at the start of the PLT
10192 entry. The branch jumps to the beginning of .plt. */
10193 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10194
10195 /* Fill in the initial value of the .got.plt entry. */
10196 bfd_put_32 (output_bfd, plt_address,
10197 htab->sgotplt->contents + plt_index * 4);
10198
10199 /* Find out where the .plt entry should go. */
10200 loc = htab->splt->contents + h->plt.offset;
10201
10202 if (info->shared)
10203 {
10204 plt_entry = mips_vxworks_shared_plt_entry;
10205 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10206 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10207 }
10208 else
10209 {
10210 bfd_vma got_address_high, got_address_low;
10211
10212 plt_entry = mips_vxworks_exec_plt_entry;
10213 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10214 got_address_low = got_address & 0xffff;
10215
10216 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10217 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10218 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10219 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10220 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10221 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10222 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10223 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10224
10225 loc = (htab->srelplt2->contents
10226 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10227
10228 /* Emit a relocation for the .got.plt entry. */
10229 rel.r_offset = got_address;
10230 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10231 rel.r_addend = h->plt.offset;
10232 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10233
10234 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10235 loc += sizeof (Elf32_External_Rela);
10236 rel.r_offset = plt_address + 8;
10237 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10238 rel.r_addend = got_offset;
10239 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10240
10241 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10242 loc += sizeof (Elf32_External_Rela);
10243 rel.r_offset += 4;
10244 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10246 }
10247
10248 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10249 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10250 rel.r_offset = got_address;
10251 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10252 rel.r_addend = 0;
10253 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10254
10255 if (!h->def_regular)
10256 sym->st_shndx = SHN_UNDEF;
10257 }
10258
10259 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10260
23cc69b6 10261 sgot = htab->sgot;
a8028dd0 10262 g = htab->got_info;
0a44bf69
RS
10263 BFD_ASSERT (g != NULL);
10264
10265 /* See if this symbol has an entry in the GOT. */
020d7251 10266 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10267 {
10268 bfd_vma offset;
10269 Elf_Internal_Rela outrel;
10270 bfd_byte *loc;
10271 asection *s;
10272
10273 /* Install the symbol value in the GOT. */
13fbec83 10274 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
10275 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10276
10277 /* Add a dynamic relocation for it. */
10278 s = mips_elf_rel_dyn_section (info, FALSE);
10279 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10280 outrel.r_offset = (sgot->output_section->vma
10281 + sgot->output_offset
10282 + offset);
10283 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10284 outrel.r_addend = 0;
10285 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10286 }
10287
10288 /* Emit a copy reloc, if needed. */
10289 if (h->needs_copy)
10290 {
10291 Elf_Internal_Rela rel;
10292
10293 BFD_ASSERT (h->dynindx != -1);
10294
10295 rel.r_offset = (h->root.u.def.section->output_section->vma
10296 + h->root.u.def.section->output_offset
10297 + h->root.u.def.value);
10298 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10299 rel.r_addend = 0;
10300 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10301 htab->srelbss->contents
10302 + (htab->srelbss->reloc_count
10303 * sizeof (Elf32_External_Rela)));
10304 ++htab->srelbss->reloc_count;
10305 }
10306
df58fc94
RS
10307 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10308 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10309 sym->st_value &= ~1;
10310
10311 return TRUE;
10312}
10313
861fb55a
DJ
10314/* Write out a plt0 entry to the beginning of .plt. */
10315
10316static void
10317mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10318{
10319 bfd_byte *loc;
10320 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10321 static const bfd_vma *plt_entry;
10322 struct mips_elf_link_hash_table *htab;
10323
10324 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10325 BFD_ASSERT (htab != NULL);
10326
861fb55a
DJ
10327 if (ABI_64_P (output_bfd))
10328 plt_entry = mips_n64_exec_plt0_entry;
10329 else if (ABI_N32_P (output_bfd))
10330 plt_entry = mips_n32_exec_plt0_entry;
10331 else
10332 plt_entry = mips_o32_exec_plt0_entry;
10333
10334 /* Calculate the value of .got.plt. */
10335 gotplt_value = (htab->sgotplt->output_section->vma
10336 + htab->sgotplt->output_offset);
10337 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10338 gotplt_value_low = gotplt_value & 0xffff;
10339
10340 /* The PLT sequence is not safe for N64 if .got.plt's address can
10341 not be loaded in two instructions. */
10342 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10343 || ~(gotplt_value | 0x7fffffff) == 0);
10344
10345 /* Install the PLT header. */
10346 loc = htab->splt->contents;
10347 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10348 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10349 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10350 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10351 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10352 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10353 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10354 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10355}
10356
0a44bf69
RS
10357/* Install the PLT header for a VxWorks executable and finalize the
10358 contents of .rela.plt.unloaded. */
10359
10360static void
10361mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10362{
10363 Elf_Internal_Rela rela;
10364 bfd_byte *loc;
10365 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10366 static const bfd_vma *plt_entry;
10367 struct mips_elf_link_hash_table *htab;
10368
10369 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10370 BFD_ASSERT (htab != NULL);
10371
0a44bf69
RS
10372 plt_entry = mips_vxworks_exec_plt0_entry;
10373
10374 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10375 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10376 + htab->root.hgot->root.u.def.section->output_offset
10377 + htab->root.hgot->root.u.def.value);
10378
10379 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10380 got_value_low = got_value & 0xffff;
10381
10382 /* Calculate the address of the PLT header. */
10383 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10384
10385 /* Install the PLT header. */
10386 loc = htab->splt->contents;
10387 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10388 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10389 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10390 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10391 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10392 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10393
10394 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10395 loc = htab->srelplt2->contents;
10396 rela.r_offset = plt_address;
10397 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10398 rela.r_addend = 0;
10399 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10400 loc += sizeof (Elf32_External_Rela);
10401
10402 /* Output the relocation for the following addiu of
10403 %lo(_GLOBAL_OFFSET_TABLE_). */
10404 rela.r_offset += 4;
10405 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10406 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10407 loc += sizeof (Elf32_External_Rela);
10408
10409 /* Fix up the remaining relocations. They may have the wrong
10410 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10411 in which symbols were output. */
10412 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10413 {
10414 Elf_Internal_Rela rel;
10415
10416 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10417 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10418 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10419 loc += sizeof (Elf32_External_Rela);
10420
10421 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10422 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10423 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10424 loc += sizeof (Elf32_External_Rela);
10425
10426 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10427 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10428 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10429 loc += sizeof (Elf32_External_Rela);
10430 }
10431}
10432
10433/* Install the PLT header for a VxWorks shared library. */
10434
10435static void
10436mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10437{
10438 unsigned int i;
10439 struct mips_elf_link_hash_table *htab;
10440
10441 htab = mips_elf_hash_table (info);
4dfe6ac6 10442 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10443
10444 /* We just need to copy the entry byte-by-byte. */
10445 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10446 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10447 htab->splt->contents + i * 4);
10448}
10449
b49e97c9
TS
10450/* Finish up the dynamic sections. */
10451
b34976b6 10452bfd_boolean
9719ad41
RS
10453_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10454 struct bfd_link_info *info)
b49e97c9
TS
10455{
10456 bfd *dynobj;
10457 asection *sdyn;
10458 asection *sgot;
f4416af6 10459 struct mips_got_info *gg, *g;
0a44bf69 10460 struct mips_elf_link_hash_table *htab;
b49e97c9 10461
0a44bf69 10462 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10463 BFD_ASSERT (htab != NULL);
10464
b49e97c9
TS
10465 dynobj = elf_hash_table (info)->dynobj;
10466
3d4d4302 10467 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10468
23cc69b6
RS
10469 sgot = htab->sgot;
10470 gg = htab->got_info;
b49e97c9
TS
10471
10472 if (elf_hash_table (info)->dynamic_sections_created)
10473 {
10474 bfd_byte *b;
943284cc 10475 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10476
10477 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10478 BFD_ASSERT (gg != NULL);
10479
d7206569 10480 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
10481 BFD_ASSERT (g != NULL);
10482
10483 for (b = sdyn->contents;
eea6121a 10484 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10485 b += MIPS_ELF_DYN_SIZE (dynobj))
10486 {
10487 Elf_Internal_Dyn dyn;
10488 const char *name;
10489 size_t elemsize;
10490 asection *s;
b34976b6 10491 bfd_boolean swap_out_p;
b49e97c9
TS
10492
10493 /* Read in the current dynamic entry. */
10494 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10495
10496 /* Assume that we're going to modify it and write it out. */
b34976b6 10497 swap_out_p = TRUE;
b49e97c9
TS
10498
10499 switch (dyn.d_tag)
10500 {
10501 case DT_RELENT:
b49e97c9
TS
10502 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10503 break;
10504
0a44bf69
RS
10505 case DT_RELAENT:
10506 BFD_ASSERT (htab->is_vxworks);
10507 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10508 break;
10509
b49e97c9
TS
10510 case DT_STRSZ:
10511 /* Rewrite DT_STRSZ. */
10512 dyn.d_un.d_val =
10513 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10514 break;
10515
10516 case DT_PLTGOT:
861fb55a
DJ
10517 s = htab->sgot;
10518 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10519 break;
10520
10521 case DT_MIPS_PLTGOT:
10522 s = htab->sgotplt;
10523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10524 break;
10525
10526 case DT_MIPS_RLD_VERSION:
10527 dyn.d_un.d_val = 1; /* XXX */
10528 break;
10529
10530 case DT_MIPS_FLAGS:
10531 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10532 break;
10533
b49e97c9 10534 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10535 {
10536 time_t t;
10537 time (&t);
10538 dyn.d_un.d_val = t;
10539 }
b49e97c9
TS
10540 break;
10541
10542 case DT_MIPS_ICHECKSUM:
10543 /* XXX FIXME: */
b34976b6 10544 swap_out_p = FALSE;
b49e97c9
TS
10545 break;
10546
10547 case DT_MIPS_IVERSION:
10548 /* XXX FIXME: */
b34976b6 10549 swap_out_p = FALSE;
b49e97c9
TS
10550 break;
10551
10552 case DT_MIPS_BASE_ADDRESS:
10553 s = output_bfd->sections;
10554 BFD_ASSERT (s != NULL);
10555 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10556 break;
10557
10558 case DT_MIPS_LOCAL_GOTNO:
10559 dyn.d_un.d_val = g->local_gotno;
10560 break;
10561
10562 case DT_MIPS_UNREFEXTNO:
10563 /* The index into the dynamic symbol table which is the
10564 entry of the first external symbol that is not
10565 referenced within the same object. */
10566 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10567 break;
10568
10569 case DT_MIPS_GOTSYM:
d222d210 10570 if (htab->global_gotsym)
b49e97c9 10571 {
d222d210 10572 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10573 break;
10574 }
10575 /* In case if we don't have global got symbols we default
10576 to setting DT_MIPS_GOTSYM to the same value as
10577 DT_MIPS_SYMTABNO, so we just fall through. */
10578
10579 case DT_MIPS_SYMTABNO:
10580 name = ".dynsym";
10581 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10582 s = bfd_get_section_by_name (output_bfd, name);
10583 BFD_ASSERT (s != NULL);
10584
eea6121a 10585 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10586 break;
10587
10588 case DT_MIPS_HIPAGENO:
861fb55a 10589 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10590 break;
10591
10592 case DT_MIPS_RLD_MAP:
b4082c70
DD
10593 {
10594 struct elf_link_hash_entry *h;
10595 h = mips_elf_hash_table (info)->rld_symbol;
10596 if (!h)
10597 {
10598 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10599 swap_out_p = FALSE;
10600 break;
10601 }
10602 s = h->root.u.def.section;
10603 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10604 + h->root.u.def.value);
10605 }
b49e97c9
TS
10606 break;
10607
10608 case DT_MIPS_OPTIONS:
10609 s = (bfd_get_section_by_name
10610 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10611 dyn.d_un.d_ptr = s->vma;
10612 break;
10613
0a44bf69
RS
10614 case DT_RELASZ:
10615 BFD_ASSERT (htab->is_vxworks);
10616 /* The count does not include the JUMP_SLOT relocations. */
10617 if (htab->srelplt)
10618 dyn.d_un.d_val -= htab->srelplt->size;
10619 break;
10620
10621 case DT_PLTREL:
861fb55a
DJ
10622 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10623 if (htab->is_vxworks)
10624 dyn.d_un.d_val = DT_RELA;
10625 else
10626 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10627 break;
10628
10629 case DT_PLTRELSZ:
861fb55a 10630 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10631 dyn.d_un.d_val = htab->srelplt->size;
10632 break;
10633
10634 case DT_JMPREL:
861fb55a
DJ
10635 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10636 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10637 + htab->srelplt->output_offset);
10638 break;
10639
943284cc
DJ
10640 case DT_TEXTREL:
10641 /* If we didn't need any text relocations after all, delete
10642 the dynamic tag. */
10643 if (!(info->flags & DF_TEXTREL))
10644 {
10645 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10646 swap_out_p = FALSE;
10647 }
10648 break;
10649
10650 case DT_FLAGS:
10651 /* If we didn't need any text relocations after all, clear
10652 DF_TEXTREL from DT_FLAGS. */
10653 if (!(info->flags & DF_TEXTREL))
10654 dyn.d_un.d_val &= ~DF_TEXTREL;
10655 else
10656 swap_out_p = FALSE;
10657 break;
10658
b49e97c9 10659 default:
b34976b6 10660 swap_out_p = FALSE;
7a2b07ff
NS
10661 if (htab->is_vxworks
10662 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10663 swap_out_p = TRUE;
b49e97c9
TS
10664 break;
10665 }
10666
943284cc 10667 if (swap_out_p || dyn_skipped)
b49e97c9 10668 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10669 (dynobj, &dyn, b - dyn_skipped);
10670
10671 if (dyn_to_skip)
10672 {
10673 dyn_skipped += dyn_to_skip;
10674 dyn_to_skip = 0;
10675 }
b49e97c9 10676 }
943284cc
DJ
10677
10678 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10679 if (dyn_skipped > 0)
10680 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10681 }
10682
b55fd4d4
DJ
10683 if (sgot != NULL && sgot->size > 0
10684 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10685 {
0a44bf69
RS
10686 if (htab->is_vxworks)
10687 {
10688 /* The first entry of the global offset table points to the
10689 ".dynamic" section. The second is initialized by the
10690 loader and contains the shared library identifier.
10691 The third is also initialized by the loader and points
10692 to the lazy resolution stub. */
10693 MIPS_ELF_PUT_WORD (output_bfd,
10694 sdyn->output_offset + sdyn->output_section->vma,
10695 sgot->contents);
10696 MIPS_ELF_PUT_WORD (output_bfd, 0,
10697 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10698 MIPS_ELF_PUT_WORD (output_bfd, 0,
10699 sgot->contents
10700 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10701 }
10702 else
10703 {
10704 /* The first entry of the global offset table will be filled at
10705 runtime. The second entry will be used by some runtime loaders.
10706 This isn't the case of IRIX rld. */
10707 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10708 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10709 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10710 }
b49e97c9 10711
54938e2a
TS
10712 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10713 = MIPS_ELF_GOT_SIZE (output_bfd);
10714 }
b49e97c9 10715
f4416af6
AO
10716 /* Generate dynamic relocations for the non-primary gots. */
10717 if (gg != NULL && gg->next)
10718 {
10719 Elf_Internal_Rela rel[3];
10720 bfd_vma addend = 0;
10721
10722 memset (rel, 0, sizeof (rel));
10723 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10724
10725 for (g = gg->next; g->next != gg; g = g->next)
10726 {
91d6fa6a 10727 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10728 + g->next->tls_gotno;
f4416af6 10729
9719ad41 10730 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10731 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10732 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10733 sgot->contents
91d6fa6a 10734 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10735
10736 if (! info->shared)
10737 continue;
10738
91d6fa6a 10739 while (got_index < g->assigned_gotno)
f4416af6
AO
10740 {
10741 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10742 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10743 if (!(mips_elf_create_dynamic_relocation
10744 (output_bfd, info, rel, NULL,
10745 bfd_abs_section_ptr,
10746 0, &addend, sgot)))
10747 return FALSE;
10748 BFD_ASSERT (addend == 0);
10749 }
10750 }
10751 }
10752
3133ddbf
DJ
10753 /* The generation of dynamic relocations for the non-primary gots
10754 adds more dynamic relocations. We cannot count them until
10755 here. */
10756
10757 if (elf_hash_table (info)->dynamic_sections_created)
10758 {
10759 bfd_byte *b;
10760 bfd_boolean swap_out_p;
10761
10762 BFD_ASSERT (sdyn != NULL);
10763
10764 for (b = sdyn->contents;
10765 b < sdyn->contents + sdyn->size;
10766 b += MIPS_ELF_DYN_SIZE (dynobj))
10767 {
10768 Elf_Internal_Dyn dyn;
10769 asection *s;
10770
10771 /* Read in the current dynamic entry. */
10772 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10773
10774 /* Assume that we're going to modify it and write it out. */
10775 swap_out_p = TRUE;
10776
10777 switch (dyn.d_tag)
10778 {
10779 case DT_RELSZ:
10780 /* Reduce DT_RELSZ to account for any relocations we
10781 decided not to make. This is for the n64 irix rld,
10782 which doesn't seem to apply any relocations if there
10783 are trailing null entries. */
0a44bf69 10784 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10785 dyn.d_un.d_val = (s->reloc_count
10786 * (ABI_64_P (output_bfd)
10787 ? sizeof (Elf64_Mips_External_Rel)
10788 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10789 /* Adjust the section size too. Tools like the prelinker
10790 can reasonably expect the values to the same. */
10791 elf_section_data (s->output_section)->this_hdr.sh_size
10792 = dyn.d_un.d_val;
3133ddbf
DJ
10793 break;
10794
10795 default:
10796 swap_out_p = FALSE;
10797 break;
10798 }
10799
10800 if (swap_out_p)
10801 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10802 (dynobj, &dyn, b);
10803 }
10804 }
10805
b49e97c9 10806 {
b49e97c9
TS
10807 asection *s;
10808 Elf32_compact_rel cpt;
10809
b49e97c9
TS
10810 if (SGI_COMPAT (output_bfd))
10811 {
10812 /* Write .compact_rel section out. */
3d4d4302 10813 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10814 if (s != NULL)
10815 {
10816 cpt.id1 = 1;
10817 cpt.num = s->reloc_count;
10818 cpt.id2 = 2;
10819 cpt.offset = (s->output_section->filepos
10820 + sizeof (Elf32_External_compact_rel));
10821 cpt.reserved0 = 0;
10822 cpt.reserved1 = 0;
10823 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10824 ((Elf32_External_compact_rel *)
10825 s->contents));
10826
10827 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10828 if (htab->sstubs != NULL)
b49e97c9
TS
10829 {
10830 file_ptr dummy_offset;
10831
4e41d0d7
RS
10832 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10833 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10834 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10835 htab->function_stub_size);
b49e97c9
TS
10836 }
10837 }
10838 }
10839
0a44bf69
RS
10840 /* The psABI says that the dynamic relocations must be sorted in
10841 increasing order of r_symndx. The VxWorks EABI doesn't require
10842 this, and because the code below handles REL rather than RELA
10843 relocations, using it for VxWorks would be outright harmful. */
10844 if (!htab->is_vxworks)
b49e97c9 10845 {
0a44bf69
RS
10846 s = mips_elf_rel_dyn_section (info, FALSE);
10847 if (s != NULL
10848 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10849 {
10850 reldyn_sorting_bfd = output_bfd;
b49e97c9 10851
0a44bf69
RS
10852 if (ABI_64_P (output_bfd))
10853 qsort ((Elf64_External_Rel *) s->contents + 1,
10854 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10855 sort_dynamic_relocs_64);
10856 else
10857 qsort ((Elf32_External_Rel *) s->contents + 1,
10858 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10859 sort_dynamic_relocs);
10860 }
b49e97c9 10861 }
b49e97c9
TS
10862 }
10863
861fb55a 10864 if (htab->splt && htab->splt->size > 0)
0a44bf69 10865 {
861fb55a
DJ
10866 if (htab->is_vxworks)
10867 {
10868 if (info->shared)
10869 mips_vxworks_finish_shared_plt (output_bfd, info);
10870 else
10871 mips_vxworks_finish_exec_plt (output_bfd, info);
10872 }
0a44bf69 10873 else
861fb55a
DJ
10874 {
10875 BFD_ASSERT (!info->shared);
10876 mips_finish_exec_plt (output_bfd, info);
10877 }
0a44bf69 10878 }
b34976b6 10879 return TRUE;
b49e97c9
TS
10880}
10881
b49e97c9 10882
64543e1a
RS
10883/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10884
10885static void
9719ad41 10886mips_set_isa_flags (bfd *abfd)
b49e97c9 10887{
64543e1a 10888 flagword val;
b49e97c9
TS
10889
10890 switch (bfd_get_mach (abfd))
10891 {
10892 default:
10893 case bfd_mach_mips3000:
10894 val = E_MIPS_ARCH_1;
10895 break;
10896
10897 case bfd_mach_mips3900:
10898 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10899 break;
10900
10901 case bfd_mach_mips6000:
10902 val = E_MIPS_ARCH_2;
10903 break;
10904
10905 case bfd_mach_mips4000:
10906 case bfd_mach_mips4300:
10907 case bfd_mach_mips4400:
10908 case bfd_mach_mips4600:
10909 val = E_MIPS_ARCH_3;
10910 break;
10911
10912 case bfd_mach_mips4010:
10913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10914 break;
10915
10916 case bfd_mach_mips4100:
10917 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10918 break;
10919
10920 case bfd_mach_mips4111:
10921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10922 break;
10923
00707a0e
RS
10924 case bfd_mach_mips4120:
10925 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10926 break;
10927
b49e97c9
TS
10928 case bfd_mach_mips4650:
10929 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10930 break;
10931
00707a0e
RS
10932 case bfd_mach_mips5400:
10933 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10934 break;
10935
10936 case bfd_mach_mips5500:
10937 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10938 break;
10939
e407c74b
NC
10940 case bfd_mach_mips5900:
10941 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10942 break;
10943
0d2e43ed
ILT
10944 case bfd_mach_mips9000:
10945 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10946 break;
10947
b49e97c9 10948 case bfd_mach_mips5000:
5a7ea749 10949 case bfd_mach_mips7000:
b49e97c9
TS
10950 case bfd_mach_mips8000:
10951 case bfd_mach_mips10000:
10952 case bfd_mach_mips12000:
3aa3176b
TS
10953 case bfd_mach_mips14000:
10954 case bfd_mach_mips16000:
b49e97c9
TS
10955 val = E_MIPS_ARCH_4;
10956 break;
10957
10958 case bfd_mach_mips5:
10959 val = E_MIPS_ARCH_5;
10960 break;
10961
350cc38d
MS
10962 case bfd_mach_mips_loongson_2e:
10963 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10964 break;
10965
10966 case bfd_mach_mips_loongson_2f:
10967 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10968 break;
10969
b49e97c9
TS
10970 case bfd_mach_mips_sb1:
10971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10972 break;
10973
d051516a
NC
10974 case bfd_mach_mips_loongson_3a:
10975 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10976 break;
10977
6f179bd0 10978 case bfd_mach_mips_octeon:
dd6a37e7 10979 case bfd_mach_mips_octeonp:
6f179bd0
AN
10980 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10981 break;
10982
52b6b6b9
JM
10983 case bfd_mach_mips_xlr:
10984 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10985 break;
10986
432233b3
AP
10987 case bfd_mach_mips_octeon2:
10988 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10989 break;
10990
b49e97c9
TS
10991 case bfd_mach_mipsisa32:
10992 val = E_MIPS_ARCH_32;
10993 break;
10994
10995 case bfd_mach_mipsisa64:
10996 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10997 break;
10998
10999 case bfd_mach_mipsisa32r2:
11000 val = E_MIPS_ARCH_32R2;
11001 break;
5f74bc13
CD
11002
11003 case bfd_mach_mipsisa64r2:
11004 val = E_MIPS_ARCH_64R2;
11005 break;
b49e97c9 11006 }
b49e97c9
TS
11007 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11008 elf_elfheader (abfd)->e_flags |= val;
11009
64543e1a
RS
11010}
11011
11012
11013/* The final processing done just before writing out a MIPS ELF object
11014 file. This gets the MIPS architecture right based on the machine
11015 number. This is used by both the 32-bit and the 64-bit ABI. */
11016
11017void
9719ad41
RS
11018_bfd_mips_elf_final_write_processing (bfd *abfd,
11019 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11020{
11021 unsigned int i;
11022 Elf_Internal_Shdr **hdrpp;
11023 const char *name;
11024 asection *sec;
11025
11026 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11027 is nonzero. This is for compatibility with old objects, which used
11028 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11030 mips_set_isa_flags (abfd);
11031
b49e97c9
TS
11032 /* Set the sh_info field for .gptab sections and other appropriate
11033 info for each special section. */
11034 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11035 i < elf_numsections (abfd);
11036 i++, hdrpp++)
11037 {
11038 switch ((*hdrpp)->sh_type)
11039 {
11040 case SHT_MIPS_MSYM:
11041 case SHT_MIPS_LIBLIST:
11042 sec = bfd_get_section_by_name (abfd, ".dynstr");
11043 if (sec != NULL)
11044 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11045 break;
11046
11047 case SHT_MIPS_GPTAB:
11048 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11049 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11050 BFD_ASSERT (name != NULL
0112cd26 11051 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11052 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11053 BFD_ASSERT (sec != NULL);
11054 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11055 break;
11056
11057 case SHT_MIPS_CONTENT:
11058 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11059 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11060 BFD_ASSERT (name != NULL
0112cd26 11061 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11062 sec = bfd_get_section_by_name (abfd,
11063 name + sizeof ".MIPS.content" - 1);
11064 BFD_ASSERT (sec != NULL);
11065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11066 break;
11067
11068 case SHT_MIPS_SYMBOL_LIB:
11069 sec = bfd_get_section_by_name (abfd, ".dynsym");
11070 if (sec != NULL)
11071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11072 sec = bfd_get_section_by_name (abfd, ".liblist");
11073 if (sec != NULL)
11074 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11075 break;
11076
11077 case SHT_MIPS_EVENTS:
11078 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11079 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11080 BFD_ASSERT (name != NULL);
0112cd26 11081 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11082 sec = bfd_get_section_by_name (abfd,
11083 name + sizeof ".MIPS.events" - 1);
11084 else
11085 {
0112cd26 11086 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11087 sec = bfd_get_section_by_name (abfd,
11088 (name
11089 + sizeof ".MIPS.post_rel" - 1));
11090 }
11091 BFD_ASSERT (sec != NULL);
11092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11093 break;
11094
11095 }
11096 }
11097}
11098\f
8dc1a139 11099/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11100 segments. */
11101
11102int
a6b96beb
AM
11103_bfd_mips_elf_additional_program_headers (bfd *abfd,
11104 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11105{
11106 asection *s;
11107 int ret = 0;
11108
11109 /* See if we need a PT_MIPS_REGINFO segment. */
11110 s = bfd_get_section_by_name (abfd, ".reginfo");
11111 if (s && (s->flags & SEC_LOAD))
11112 ++ret;
11113
11114 /* See if we need a PT_MIPS_OPTIONS segment. */
11115 if (IRIX_COMPAT (abfd) == ict_irix6
11116 && bfd_get_section_by_name (abfd,
11117 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11118 ++ret;
11119
11120 /* See if we need a PT_MIPS_RTPROC segment. */
11121 if (IRIX_COMPAT (abfd) == ict_irix5
11122 && bfd_get_section_by_name (abfd, ".dynamic")
11123 && bfd_get_section_by_name (abfd, ".mdebug"))
11124 ++ret;
11125
98c904a8
RS
11126 /* Allocate a PT_NULL header in dynamic objects. See
11127 _bfd_mips_elf_modify_segment_map for details. */
11128 if (!SGI_COMPAT (abfd)
11129 && bfd_get_section_by_name (abfd, ".dynamic"))
11130 ++ret;
11131
b49e97c9
TS
11132 return ret;
11133}
11134
8dc1a139 11135/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11136
b34976b6 11137bfd_boolean
9719ad41 11138_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11139 struct bfd_link_info *info)
b49e97c9
TS
11140{
11141 asection *s;
11142 struct elf_segment_map *m, **pm;
11143 bfd_size_type amt;
11144
11145 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11146 segment. */
11147 s = bfd_get_section_by_name (abfd, ".reginfo");
11148 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11149 {
12bd6957 11150 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
11151 if (m->p_type == PT_MIPS_REGINFO)
11152 break;
11153 if (m == NULL)
11154 {
11155 amt = sizeof *m;
9719ad41 11156 m = bfd_zalloc (abfd, amt);
b49e97c9 11157 if (m == NULL)
b34976b6 11158 return FALSE;
b49e97c9
TS
11159
11160 m->p_type = PT_MIPS_REGINFO;
11161 m->count = 1;
11162 m->sections[0] = s;
11163
11164 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 11165 pm = &elf_seg_map (abfd);
b49e97c9
TS
11166 while (*pm != NULL
11167 && ((*pm)->p_type == PT_PHDR
11168 || (*pm)->p_type == PT_INTERP))
11169 pm = &(*pm)->next;
11170
11171 m->next = *pm;
11172 *pm = m;
11173 }
11174 }
11175
11176 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11177 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11178 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11179 table. */
c1fd6598
AO
11180 if (NEWABI_P (abfd)
11181 /* On non-IRIX6 new abi, we'll have already created a segment
11182 for this section, so don't create another. I'm not sure this
11183 is not also the case for IRIX 6, but I can't test it right
11184 now. */
11185 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11186 {
11187 for (s = abfd->sections; s; s = s->next)
11188 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11189 break;
11190
11191 if (s)
11192 {
11193 struct elf_segment_map *options_segment;
11194
12bd6957 11195 pm = &elf_seg_map (abfd);
98a8deaf
RS
11196 while (*pm != NULL
11197 && ((*pm)->p_type == PT_PHDR
11198 || (*pm)->p_type == PT_INTERP))
11199 pm = &(*pm)->next;
b49e97c9 11200
8ded5a0f
AM
11201 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11202 {
11203 amt = sizeof (struct elf_segment_map);
11204 options_segment = bfd_zalloc (abfd, amt);
11205 options_segment->next = *pm;
11206 options_segment->p_type = PT_MIPS_OPTIONS;
11207 options_segment->p_flags = PF_R;
11208 options_segment->p_flags_valid = TRUE;
11209 options_segment->count = 1;
11210 options_segment->sections[0] = s;
11211 *pm = options_segment;
11212 }
b49e97c9
TS
11213 }
11214 }
11215 else
11216 {
11217 if (IRIX_COMPAT (abfd) == ict_irix5)
11218 {
11219 /* If there are .dynamic and .mdebug sections, we make a room
11220 for the RTPROC header. FIXME: Rewrite without section names. */
11221 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11222 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11223 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11224 {
12bd6957 11225 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
11226 if (m->p_type == PT_MIPS_RTPROC)
11227 break;
11228 if (m == NULL)
11229 {
11230 amt = sizeof *m;
9719ad41 11231 m = bfd_zalloc (abfd, amt);
b49e97c9 11232 if (m == NULL)
b34976b6 11233 return FALSE;
b49e97c9
TS
11234
11235 m->p_type = PT_MIPS_RTPROC;
11236
11237 s = bfd_get_section_by_name (abfd, ".rtproc");
11238 if (s == NULL)
11239 {
11240 m->count = 0;
11241 m->p_flags = 0;
11242 m->p_flags_valid = 1;
11243 }
11244 else
11245 {
11246 m->count = 1;
11247 m->sections[0] = s;
11248 }
11249
11250 /* We want to put it after the DYNAMIC segment. */
12bd6957 11251 pm = &elf_seg_map (abfd);
b49e97c9
TS
11252 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11253 pm = &(*pm)->next;
11254 if (*pm != NULL)
11255 pm = &(*pm)->next;
11256
11257 m->next = *pm;
11258 *pm = m;
11259 }
11260 }
11261 }
8dc1a139 11262 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11263 .dynstr, .dynsym, and .hash sections, and everything in
11264 between. */
12bd6957 11265 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
11266 pm = &(*pm)->next)
11267 if ((*pm)->p_type == PT_DYNAMIC)
11268 break;
11269 m = *pm;
11270 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11271 {
11272 /* For a normal mips executable the permissions for the PT_DYNAMIC
11273 segment are read, write and execute. We do that here since
11274 the code in elf.c sets only the read permission. This matters
11275 sometimes for the dynamic linker. */
11276 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11277 {
11278 m->p_flags = PF_R | PF_W | PF_X;
11279 m->p_flags_valid = 1;
11280 }
11281 }
f6f62d6f
RS
11282 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11283 glibc's dynamic linker has traditionally derived the number of
11284 tags from the p_filesz field, and sometimes allocates stack
11285 arrays of that size. An overly-big PT_DYNAMIC segment can
11286 be actively harmful in such cases. Making PT_DYNAMIC contain
11287 other sections can also make life hard for the prelinker,
11288 which might move one of the other sections to a different
11289 PT_LOAD segment. */
11290 if (SGI_COMPAT (abfd)
11291 && m != NULL
11292 && m->count == 1
11293 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11294 {
11295 static const char *sec_names[] =
11296 {
11297 ".dynamic", ".dynstr", ".dynsym", ".hash"
11298 };
11299 bfd_vma low, high;
11300 unsigned int i, c;
11301 struct elf_segment_map *n;
11302
792b4a53 11303 low = ~(bfd_vma) 0;
b49e97c9
TS
11304 high = 0;
11305 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11306 {
11307 s = bfd_get_section_by_name (abfd, sec_names[i]);
11308 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11309 {
11310 bfd_size_type sz;
11311
11312 if (low > s->vma)
11313 low = s->vma;
eea6121a 11314 sz = s->size;
b49e97c9
TS
11315 if (high < s->vma + sz)
11316 high = s->vma + sz;
11317 }
11318 }
11319
11320 c = 0;
11321 for (s = abfd->sections; s != NULL; s = s->next)
11322 if ((s->flags & SEC_LOAD) != 0
11323 && s->vma >= low
eea6121a 11324 && s->vma + s->size <= high)
b49e97c9
TS
11325 ++c;
11326
11327 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11328 n = bfd_zalloc (abfd, amt);
b49e97c9 11329 if (n == NULL)
b34976b6 11330 return FALSE;
b49e97c9
TS
11331 *n = *m;
11332 n->count = c;
11333
11334 i = 0;
11335 for (s = abfd->sections; s != NULL; s = s->next)
11336 {
11337 if ((s->flags & SEC_LOAD) != 0
11338 && s->vma >= low
eea6121a 11339 && s->vma + s->size <= high)
b49e97c9
TS
11340 {
11341 n->sections[i] = s;
11342 ++i;
11343 }
11344 }
11345
11346 *pm = n;
11347 }
11348 }
11349
98c904a8
RS
11350 /* Allocate a spare program header in dynamic objects so that tools
11351 like the prelinker can add an extra PT_LOAD entry.
11352
11353 If the prelinker needs to make room for a new PT_LOAD entry, its
11354 standard procedure is to move the first (read-only) sections into
11355 the new (writable) segment. However, the MIPS ABI requires
11356 .dynamic to be in a read-only segment, and the section will often
11357 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11358
11359 Although the prelinker could in principle move .dynamic to a
11360 writable segment, it seems better to allocate a spare program
11361 header instead, and avoid the need to move any sections.
11362 There is a long tradition of allocating spare dynamic tags,
11363 so allocating a spare program header seems like a natural
7c8b76cc
JM
11364 extension.
11365
11366 If INFO is NULL, we may be copying an already prelinked binary
11367 with objcopy or strip, so do not add this header. */
11368 if (info != NULL
11369 && !SGI_COMPAT (abfd)
98c904a8
RS
11370 && bfd_get_section_by_name (abfd, ".dynamic"))
11371 {
12bd6957 11372 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
11373 if ((*pm)->p_type == PT_NULL)
11374 break;
11375 if (*pm == NULL)
11376 {
11377 m = bfd_zalloc (abfd, sizeof (*m));
11378 if (m == NULL)
11379 return FALSE;
11380
11381 m->p_type = PT_NULL;
11382 *pm = m;
11383 }
11384 }
11385
b34976b6 11386 return TRUE;
b49e97c9
TS
11387}
11388\f
11389/* Return the section that should be marked against GC for a given
11390 relocation. */
11391
11392asection *
9719ad41 11393_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11394 struct bfd_link_info *info,
9719ad41
RS
11395 Elf_Internal_Rela *rel,
11396 struct elf_link_hash_entry *h,
11397 Elf_Internal_Sym *sym)
b49e97c9
TS
11398{
11399 /* ??? Do mips16 stub sections need to be handled special? */
11400
11401 if (h != NULL)
07adf181
AM
11402 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11403 {
11404 case R_MIPS_GNU_VTINHERIT:
11405 case R_MIPS_GNU_VTENTRY:
11406 return NULL;
11407 }
b49e97c9 11408
07adf181 11409 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11410}
11411
11412/* Update the got entry reference counts for the section being removed. */
11413
b34976b6 11414bfd_boolean
9719ad41
RS
11415_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11416 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11417 asection *sec ATTRIBUTE_UNUSED,
11418 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11419{
11420#if 0
11421 Elf_Internal_Shdr *symtab_hdr;
11422 struct elf_link_hash_entry **sym_hashes;
11423 bfd_signed_vma *local_got_refcounts;
11424 const Elf_Internal_Rela *rel, *relend;
11425 unsigned long r_symndx;
11426 struct elf_link_hash_entry *h;
11427
7dda2462
TG
11428 if (info->relocatable)
11429 return TRUE;
11430
b49e97c9
TS
11431 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11432 sym_hashes = elf_sym_hashes (abfd);
11433 local_got_refcounts = elf_local_got_refcounts (abfd);
11434
11435 relend = relocs + sec->reloc_count;
11436 for (rel = relocs; rel < relend; rel++)
11437 switch (ELF_R_TYPE (abfd, rel->r_info))
11438 {
738e5348
RS
11439 case R_MIPS16_GOT16:
11440 case R_MIPS16_CALL16:
b49e97c9
TS
11441 case R_MIPS_GOT16:
11442 case R_MIPS_CALL16:
11443 case R_MIPS_CALL_HI16:
11444 case R_MIPS_CALL_LO16:
11445 case R_MIPS_GOT_HI16:
11446 case R_MIPS_GOT_LO16:
4a14403c
TS
11447 case R_MIPS_GOT_DISP:
11448 case R_MIPS_GOT_PAGE:
11449 case R_MIPS_GOT_OFST:
df58fc94
RS
11450 case R_MICROMIPS_GOT16:
11451 case R_MICROMIPS_CALL16:
11452 case R_MICROMIPS_CALL_HI16:
11453 case R_MICROMIPS_CALL_LO16:
11454 case R_MICROMIPS_GOT_HI16:
11455 case R_MICROMIPS_GOT_LO16:
11456 case R_MICROMIPS_GOT_DISP:
11457 case R_MICROMIPS_GOT_PAGE:
11458 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11459 /* ??? It would seem that the existing MIPS code does no sort
11460 of reference counting or whatnot on its GOT and PLT entries,
11461 so it is not possible to garbage collect them at this time. */
11462 break;
11463
11464 default:
11465 break;
11466 }
11467#endif
11468
b34976b6 11469 return TRUE;
b49e97c9
TS
11470}
11471\f
11472/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11473 hiding the old indirect symbol. Process additional relocation
11474 information. Also called for weakdefs, in which case we just let
11475 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11476
11477void
fcfa13d2 11478_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11479 struct elf_link_hash_entry *dir,
11480 struct elf_link_hash_entry *ind)
b49e97c9
TS
11481{
11482 struct mips_elf_link_hash_entry *dirmips, *indmips;
11483
fcfa13d2 11484 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11485
861fb55a
DJ
11486 dirmips = (struct mips_elf_link_hash_entry *) dir;
11487 indmips = (struct mips_elf_link_hash_entry *) ind;
11488 /* Any absolute non-dynamic relocations against an indirect or weak
11489 definition will be against the target symbol. */
11490 if (indmips->has_static_relocs)
11491 dirmips->has_static_relocs = TRUE;
11492
b49e97c9
TS
11493 if (ind->root.type != bfd_link_hash_indirect)
11494 return;
11495
b49e97c9
TS
11496 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11497 if (indmips->readonly_reloc)
b34976b6 11498 dirmips->readonly_reloc = TRUE;
b49e97c9 11499 if (indmips->no_fn_stub)
b34976b6 11500 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11501 if (indmips->fn_stub)
11502 {
11503 dirmips->fn_stub = indmips->fn_stub;
11504 indmips->fn_stub = NULL;
11505 }
11506 if (indmips->need_fn_stub)
11507 {
11508 dirmips->need_fn_stub = TRUE;
11509 indmips->need_fn_stub = FALSE;
11510 }
11511 if (indmips->call_stub)
11512 {
11513 dirmips->call_stub = indmips->call_stub;
11514 indmips->call_stub = NULL;
11515 }
11516 if (indmips->call_fp_stub)
11517 {
11518 dirmips->call_fp_stub = indmips->call_fp_stub;
11519 indmips->call_fp_stub = NULL;
11520 }
634835ae
RS
11521 if (indmips->global_got_area < dirmips->global_got_area)
11522 dirmips->global_got_area = indmips->global_got_area;
11523 if (indmips->global_got_area < GGA_NONE)
11524 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11525 if (indmips->has_nonpic_branches)
11526 dirmips->has_nonpic_branches = TRUE;
b49e97c9 11527}
b49e97c9 11528\f
d01414a5
TS
11529#define PDR_SIZE 32
11530
b34976b6 11531bfd_boolean
9719ad41
RS
11532_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11533 struct bfd_link_info *info)
d01414a5
TS
11534{
11535 asection *o;
b34976b6 11536 bfd_boolean ret = FALSE;
d01414a5
TS
11537 unsigned char *tdata;
11538 size_t i, skip;
11539
11540 o = bfd_get_section_by_name (abfd, ".pdr");
11541 if (! o)
b34976b6 11542 return FALSE;
eea6121a 11543 if (o->size == 0)
b34976b6 11544 return FALSE;
eea6121a 11545 if (o->size % PDR_SIZE != 0)
b34976b6 11546 return FALSE;
d01414a5
TS
11547 if (o->output_section != NULL
11548 && bfd_is_abs_section (o->output_section))
b34976b6 11549 return FALSE;
d01414a5 11550
eea6121a 11551 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11552 if (! tdata)
b34976b6 11553 return FALSE;
d01414a5 11554
9719ad41 11555 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11556 info->keep_memory);
d01414a5
TS
11557 if (!cookie->rels)
11558 {
11559 free (tdata);
b34976b6 11560 return FALSE;
d01414a5
TS
11561 }
11562
11563 cookie->rel = cookie->rels;
11564 cookie->relend = cookie->rels + o->reloc_count;
11565
eea6121a 11566 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11567 {
c152c796 11568 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11569 {
11570 tdata[i] = 1;
11571 skip ++;
11572 }
11573 }
11574
11575 if (skip != 0)
11576 {
f0abc2a1 11577 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11578 o->size -= skip * PDR_SIZE;
b34976b6 11579 ret = TRUE;
d01414a5
TS
11580 }
11581 else
11582 free (tdata);
11583
11584 if (! info->keep_memory)
11585 free (cookie->rels);
11586
11587 return ret;
11588}
11589
b34976b6 11590bfd_boolean
9719ad41 11591_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11592{
11593 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11594 return TRUE;
11595 return FALSE;
53bfd6b4 11596}
d01414a5 11597
b34976b6 11598bfd_boolean
c7b8f16e
JB
11599_bfd_mips_elf_write_section (bfd *output_bfd,
11600 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11601 asection *sec, bfd_byte *contents)
d01414a5
TS
11602{
11603 bfd_byte *to, *from, *end;
11604 int i;
11605
11606 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11607 return FALSE;
d01414a5 11608
f0abc2a1 11609 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11610 return FALSE;
d01414a5
TS
11611
11612 to = contents;
eea6121a 11613 end = contents + sec->size;
d01414a5
TS
11614 for (from = contents, i = 0;
11615 from < end;
11616 from += PDR_SIZE, i++)
11617 {
f0abc2a1 11618 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11619 continue;
11620 if (to != from)
11621 memcpy (to, from, PDR_SIZE);
11622 to += PDR_SIZE;
11623 }
11624 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11625 sec->output_offset, sec->size);
b34976b6 11626 return TRUE;
d01414a5 11627}
53bfd6b4 11628\f
df58fc94
RS
11629/* microMIPS code retains local labels for linker relaxation. Omit them
11630 from output by default for clarity. */
11631
11632bfd_boolean
11633_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11634{
11635 return _bfd_elf_is_local_label_name (abfd, sym->name);
11636}
11637
b49e97c9
TS
11638/* MIPS ELF uses a special find_nearest_line routine in order the
11639 handle the ECOFF debugging information. */
11640
11641struct mips_elf_find_line
11642{
11643 struct ecoff_debug_info d;
11644 struct ecoff_find_line i;
11645};
11646
b34976b6 11647bfd_boolean
9719ad41
RS
11648_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11649 asymbol **symbols, bfd_vma offset,
11650 const char **filename_ptr,
11651 const char **functionname_ptr,
11652 unsigned int *line_ptr)
b49e97c9
TS
11653{
11654 asection *msec;
11655
11656 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11657 filename_ptr, functionname_ptr,
11658 line_ptr))
b34976b6 11659 return TRUE;
b49e97c9 11660
fc28f9aa
TG
11661 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11662 section, symbols, offset,
b49e97c9 11663 filename_ptr, functionname_ptr,
9b8d1a36 11664 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11665 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11666 return TRUE;
b49e97c9
TS
11667
11668 msec = bfd_get_section_by_name (abfd, ".mdebug");
11669 if (msec != NULL)
11670 {
11671 flagword origflags;
11672 struct mips_elf_find_line *fi;
11673 const struct ecoff_debug_swap * const swap =
11674 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11675
11676 /* If we are called during a link, mips_elf_final_link may have
11677 cleared the SEC_HAS_CONTENTS field. We force it back on here
11678 if appropriate (which it normally will be). */
11679 origflags = msec->flags;
11680 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11681 msec->flags |= SEC_HAS_CONTENTS;
11682
698600e4 11683 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
11684 if (fi == NULL)
11685 {
11686 bfd_size_type external_fdr_size;
11687 char *fraw_src;
11688 char *fraw_end;
11689 struct fdr *fdr_ptr;
11690 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11691
9719ad41 11692 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11693 if (fi == NULL)
11694 {
11695 msec->flags = origflags;
b34976b6 11696 return FALSE;
b49e97c9
TS
11697 }
11698
11699 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11700 {
11701 msec->flags = origflags;
b34976b6 11702 return FALSE;
b49e97c9
TS
11703 }
11704
11705 /* Swap in the FDR information. */
11706 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11707 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11708 if (fi->d.fdr == NULL)
11709 {
11710 msec->flags = origflags;
b34976b6 11711 return FALSE;
b49e97c9
TS
11712 }
11713 external_fdr_size = swap->external_fdr_size;
11714 fdr_ptr = fi->d.fdr;
11715 fraw_src = (char *) fi->d.external_fdr;
11716 fraw_end = (fraw_src
11717 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11718 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11719 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 11720
698600e4 11721 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
11722
11723 /* Note that we don't bother to ever free this information.
11724 find_nearest_line is either called all the time, as in
11725 objdump -l, so the information should be saved, or it is
11726 rarely called, as in ld error messages, so the memory
11727 wasted is unimportant. Still, it would probably be a
11728 good idea for free_cached_info to throw it away. */
11729 }
11730
11731 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11732 &fi->i, filename_ptr, functionname_ptr,
11733 line_ptr))
11734 {
11735 msec->flags = origflags;
b34976b6 11736 return TRUE;
b49e97c9
TS
11737 }
11738
11739 msec->flags = origflags;
11740 }
11741
11742 /* Fall back on the generic ELF find_nearest_line routine. */
11743
11744 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11745 filename_ptr, functionname_ptr,
11746 line_ptr);
11747}
4ab527b0
FF
11748
11749bfd_boolean
11750_bfd_mips_elf_find_inliner_info (bfd *abfd,
11751 const char **filename_ptr,
11752 const char **functionname_ptr,
11753 unsigned int *line_ptr)
11754{
11755 bfd_boolean found;
11756 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11757 functionname_ptr, line_ptr,
11758 & elf_tdata (abfd)->dwarf2_find_line_info);
11759 return found;
11760}
11761
b49e97c9
TS
11762\f
11763/* When are writing out the .options or .MIPS.options section,
11764 remember the bytes we are writing out, so that we can install the
11765 GP value in the section_processing routine. */
11766
b34976b6 11767bfd_boolean
9719ad41
RS
11768_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11769 const void *location,
11770 file_ptr offset, bfd_size_type count)
b49e97c9 11771{
cc2e31b9 11772 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11773 {
11774 bfd_byte *c;
11775
11776 if (elf_section_data (section) == NULL)
11777 {
11778 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11779 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11780 if (elf_section_data (section) == NULL)
b34976b6 11781 return FALSE;
b49e97c9 11782 }
f0abc2a1 11783 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11784 if (c == NULL)
11785 {
eea6121a 11786 c = bfd_zalloc (abfd, section->size);
b49e97c9 11787 if (c == NULL)
b34976b6 11788 return FALSE;
f0abc2a1 11789 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11790 }
11791
9719ad41 11792 memcpy (c + offset, location, count);
b49e97c9
TS
11793 }
11794
11795 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11796 count);
11797}
11798
11799/* This is almost identical to bfd_generic_get_... except that some
11800 MIPS relocations need to be handled specially. Sigh. */
11801
11802bfd_byte *
9719ad41
RS
11803_bfd_elf_mips_get_relocated_section_contents
11804 (bfd *abfd,
11805 struct bfd_link_info *link_info,
11806 struct bfd_link_order *link_order,
11807 bfd_byte *data,
11808 bfd_boolean relocatable,
11809 asymbol **symbols)
b49e97c9
TS
11810{
11811 /* Get enough memory to hold the stuff */
11812 bfd *input_bfd = link_order->u.indirect.section->owner;
11813 asection *input_section = link_order->u.indirect.section;
eea6121a 11814 bfd_size_type sz;
b49e97c9
TS
11815
11816 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11817 arelent **reloc_vector = NULL;
11818 long reloc_count;
11819
11820 if (reloc_size < 0)
11821 goto error_return;
11822
9719ad41 11823 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11824 if (reloc_vector == NULL && reloc_size != 0)
11825 goto error_return;
11826
11827 /* read in the section */
eea6121a
AM
11828 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11829 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11830 goto error_return;
11831
b49e97c9
TS
11832 reloc_count = bfd_canonicalize_reloc (input_bfd,
11833 input_section,
11834 reloc_vector,
11835 symbols);
11836 if (reloc_count < 0)
11837 goto error_return;
11838
11839 if (reloc_count > 0)
11840 {
11841 arelent **parent;
11842 /* for mips */
11843 int gp_found;
11844 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11845
11846 {
11847 struct bfd_hash_entry *h;
11848 struct bfd_link_hash_entry *lh;
11849 /* Skip all this stuff if we aren't mixing formats. */
11850 if (abfd && input_bfd
11851 && abfd->xvec == input_bfd->xvec)
11852 lh = 0;
11853 else
11854 {
b34976b6 11855 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11856 lh = (struct bfd_link_hash_entry *) h;
11857 }
11858 lookup:
11859 if (lh)
11860 {
11861 switch (lh->type)
11862 {
11863 case bfd_link_hash_undefined:
11864 case bfd_link_hash_undefweak:
11865 case bfd_link_hash_common:
11866 gp_found = 0;
11867 break;
11868 case bfd_link_hash_defined:
11869 case bfd_link_hash_defweak:
11870 gp_found = 1;
11871 gp = lh->u.def.value;
11872 break;
11873 case bfd_link_hash_indirect:
11874 case bfd_link_hash_warning:
11875 lh = lh->u.i.link;
11876 /* @@FIXME ignoring warning for now */
11877 goto lookup;
11878 case bfd_link_hash_new:
11879 default:
11880 abort ();
11881 }
11882 }
11883 else
11884 gp_found = 0;
11885 }
11886 /* end mips */
9719ad41 11887 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11888 {
9719ad41 11889 char *error_message = NULL;
b49e97c9
TS
11890 bfd_reloc_status_type r;
11891
11892 /* Specific to MIPS: Deal with relocation types that require
11893 knowing the gp of the output bfd. */
11894 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11895
8236346f
EC
11896 /* If we've managed to find the gp and have a special
11897 function for the relocation then go ahead, else default
11898 to the generic handling. */
11899 if (gp_found
11900 && (*parent)->howto->special_function
11901 == _bfd_mips_elf32_gprel16_reloc)
11902 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11903 input_section, relocatable,
11904 data, gp);
11905 else
86324f90 11906 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11907 input_section,
11908 relocatable ? abfd : NULL,
11909 &error_message);
b49e97c9 11910
1049f94e 11911 if (relocatable)
b49e97c9
TS
11912 {
11913 asection *os = input_section->output_section;
11914
11915 /* A partial link, so keep the relocs */
11916 os->orelocation[os->reloc_count] = *parent;
11917 os->reloc_count++;
11918 }
11919
11920 if (r != bfd_reloc_ok)
11921 {
11922 switch (r)
11923 {
11924 case bfd_reloc_undefined:
11925 if (!((*link_info->callbacks->undefined_symbol)
11926 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11927 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11928 goto error_return;
11929 break;
11930 case bfd_reloc_dangerous:
9719ad41 11931 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11932 if (!((*link_info->callbacks->reloc_dangerous)
11933 (link_info, error_message, input_bfd, input_section,
11934 (*parent)->address)))
11935 goto error_return;
11936 break;
11937 case bfd_reloc_overflow:
11938 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11939 (link_info, NULL,
11940 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11941 (*parent)->howto->name, (*parent)->addend,
11942 input_bfd, input_section, (*parent)->address)))
11943 goto error_return;
11944 break;
11945 case bfd_reloc_outofrange:
11946 default:
11947 abort ();
11948 break;
11949 }
11950
11951 }
11952 }
11953 }
11954 if (reloc_vector != NULL)
11955 free (reloc_vector);
11956 return data;
11957
11958error_return:
11959 if (reloc_vector != NULL)
11960 free (reloc_vector);
11961 return NULL;
11962}
11963\f
df58fc94
RS
11964static bfd_boolean
11965mips_elf_relax_delete_bytes (bfd *abfd,
11966 asection *sec, bfd_vma addr, int count)
11967{
11968 Elf_Internal_Shdr *symtab_hdr;
11969 unsigned int sec_shndx;
11970 bfd_byte *contents;
11971 Elf_Internal_Rela *irel, *irelend;
11972 Elf_Internal_Sym *isym;
11973 Elf_Internal_Sym *isymend;
11974 struct elf_link_hash_entry **sym_hashes;
11975 struct elf_link_hash_entry **end_hashes;
11976 struct elf_link_hash_entry **start_hashes;
11977 unsigned int symcount;
11978
11979 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11980 contents = elf_section_data (sec)->this_hdr.contents;
11981
11982 irel = elf_section_data (sec)->relocs;
11983 irelend = irel + sec->reloc_count;
11984
11985 /* Actually delete the bytes. */
11986 memmove (contents + addr, contents + addr + count,
11987 (size_t) (sec->size - addr - count));
11988 sec->size -= count;
11989
11990 /* Adjust all the relocs. */
11991 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11992 {
11993 /* Get the new reloc address. */
11994 if (irel->r_offset > addr)
11995 irel->r_offset -= count;
11996 }
11997
11998 BFD_ASSERT (addr % 2 == 0);
11999 BFD_ASSERT (count % 2 == 0);
12000
12001 /* Adjust the local symbols defined in this section. */
12002 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12003 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12004 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12005 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12006 isym->st_value -= count;
12007
12008 /* Now adjust the global symbols defined in this section. */
12009 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12010 - symtab_hdr->sh_info);
12011 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12012 end_hashes = sym_hashes + symcount;
12013
12014 for (; sym_hashes < end_hashes; sym_hashes++)
12015 {
12016 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12017
12018 if ((sym_hash->root.type == bfd_link_hash_defined
12019 || sym_hash->root.type == bfd_link_hash_defweak)
12020 && sym_hash->root.u.def.section == sec)
12021 {
2309ddf2 12022 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12023
df58fc94
RS
12024 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12025 value &= MINUS_TWO;
12026 if (value > addr)
12027 sym_hash->root.u.def.value -= count;
12028 }
12029 }
12030
12031 return TRUE;
12032}
12033
12034
12035/* Opcodes needed for microMIPS relaxation as found in
12036 opcodes/micromips-opc.c. */
12037
12038struct opcode_descriptor {
12039 unsigned long match;
12040 unsigned long mask;
12041};
12042
12043/* The $ra register aka $31. */
12044
12045#define RA 31
12046
12047/* 32-bit instruction format register fields. */
12048
12049#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12050#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12051
12052/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12053
12054#define OP16_VALID_REG(r) \
12055 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12056
12057
12058/* 32-bit and 16-bit branches. */
12059
12060static const struct opcode_descriptor b_insns_32[] = {
12061 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12062 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12063 { 0, 0 } /* End marker for find_match(). */
12064};
12065
12066static const struct opcode_descriptor bc_insn_32 =
12067 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12068
12069static const struct opcode_descriptor bz_insn_32 =
12070 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12071
12072static const struct opcode_descriptor bzal_insn_32 =
12073 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12074
12075static const struct opcode_descriptor beq_insn_32 =
12076 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12077
12078static const struct opcode_descriptor b_insn_16 =
12079 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12080
12081static const struct opcode_descriptor bz_insn_16 =
c088dedf 12082 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12083
12084
12085/* 32-bit and 16-bit branch EQ and NE zero. */
12086
12087/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12088 eq and second the ne. This convention is used when replacing a
12089 32-bit BEQ/BNE with the 16-bit version. */
12090
12091#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12092
12093static const struct opcode_descriptor bz_rs_insns_32[] = {
12094 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12095 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12096 { 0, 0 } /* End marker for find_match(). */
12097};
12098
12099static const struct opcode_descriptor bz_rt_insns_32[] = {
12100 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12101 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12102 { 0, 0 } /* End marker for find_match(). */
12103};
12104
12105static const struct opcode_descriptor bzc_insns_32[] = {
12106 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12107 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12108 { 0, 0 } /* End marker for find_match(). */
12109};
12110
12111static const struct opcode_descriptor bz_insns_16[] = {
12112 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12113 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12114 { 0, 0 } /* End marker for find_match(). */
12115};
12116
12117/* Switch between a 5-bit register index and its 3-bit shorthand. */
12118
12119#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12120#define BZ16_REG_FIELD(r) \
12121 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12122
12123
12124/* 32-bit instructions with a delay slot. */
12125
12126static const struct opcode_descriptor jal_insn_32_bd16 =
12127 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12128
12129static const struct opcode_descriptor jal_insn_32_bd32 =
12130 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12131
12132static const struct opcode_descriptor jal_x_insn_32_bd32 =
12133 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12134
12135static const struct opcode_descriptor j_insn_32 =
12136 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12137
12138static const struct opcode_descriptor jalr_insn_32 =
12139 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12140
12141/* This table can be compacted, because no opcode replacement is made. */
12142
12143static const struct opcode_descriptor ds_insns_32_bd16[] = {
12144 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12145
12146 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12147 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12148
12149 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12150 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12151 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12152 { 0, 0 } /* End marker for find_match(). */
12153};
12154
12155/* This table can be compacted, because no opcode replacement is made. */
12156
12157static const struct opcode_descriptor ds_insns_32_bd32[] = {
12158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12159
12160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12162 { 0, 0 } /* End marker for find_match(). */
12163};
12164
12165
12166/* 16-bit instructions with a delay slot. */
12167
12168static const struct opcode_descriptor jalr_insn_16_bd16 =
12169 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12170
12171static const struct opcode_descriptor jalr_insn_16_bd32 =
12172 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12173
12174static const struct opcode_descriptor jr_insn_16 =
12175 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12176
12177#define JR16_REG(opcode) ((opcode) & 0x1f)
12178
12179/* This table can be compacted, because no opcode replacement is made. */
12180
12181static const struct opcode_descriptor ds_insns_16_bd16[] = {
12182 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12183
12184 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12185 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12186 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12187 { 0, 0 } /* End marker for find_match(). */
12188};
12189
12190
12191/* LUI instruction. */
12192
12193static const struct opcode_descriptor lui_insn =
12194 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12195
12196
12197/* ADDIU instruction. */
12198
12199static const struct opcode_descriptor addiu_insn =
12200 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12201
12202static const struct opcode_descriptor addiupc_insn =
12203 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12204
12205#define ADDIUPC_REG_FIELD(r) \
12206 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12207
12208
12209/* Relaxable instructions in a JAL delay slot: MOVE. */
12210
12211/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12212 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12213#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12214#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12215
12216#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12217#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12218
12219static const struct opcode_descriptor move_insns_32[] = {
12220 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12221 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12222 { 0, 0 } /* End marker for find_match(). */
12223};
12224
12225static const struct opcode_descriptor move_insn_16 =
12226 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12227
12228
12229/* NOP instructions. */
12230
12231static const struct opcode_descriptor nop_insn_32 =
12232 { /* "nop", "", */ 0x00000000, 0xffffffff };
12233
12234static const struct opcode_descriptor nop_insn_16 =
12235 { /* "nop", "", */ 0x0c00, 0xffff };
12236
12237
12238/* Instruction match support. */
12239
12240#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12241
12242static int
12243find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12244{
12245 unsigned long indx;
12246
12247 for (indx = 0; insn[indx].mask != 0; indx++)
12248 if (MATCH (opcode, insn[indx]))
12249 return indx;
12250
12251 return -1;
12252}
12253
12254
12255/* Branch and delay slot decoding support. */
12256
12257/* If PTR points to what *might* be a 16-bit branch or jump, then
12258 return the minimum length of its delay slot, otherwise return 0.
12259 Non-zero results are not definitive as we might be checking against
12260 the second half of another instruction. */
12261
12262static int
12263check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12264{
12265 unsigned long opcode;
12266 int bdsize;
12267
12268 opcode = bfd_get_16 (abfd, ptr);
12269 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12270 /* 16-bit branch/jump with a 32-bit delay slot. */
12271 bdsize = 4;
12272 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12273 || find_match (opcode, ds_insns_16_bd16) >= 0)
12274 /* 16-bit branch/jump with a 16-bit delay slot. */
12275 bdsize = 2;
12276 else
12277 /* No delay slot. */
12278 bdsize = 0;
12279
12280 return bdsize;
12281}
12282
12283/* If PTR points to what *might* be a 32-bit branch or jump, then
12284 return the minimum length of its delay slot, otherwise return 0.
12285 Non-zero results are not definitive as we might be checking against
12286 the second half of another instruction. */
12287
12288static int
12289check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12290{
12291 unsigned long opcode;
12292 int bdsize;
12293
d21911ea 12294 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12295 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12296 /* 32-bit branch/jump with a 32-bit delay slot. */
12297 bdsize = 4;
12298 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12299 /* 32-bit branch/jump with a 16-bit delay slot. */
12300 bdsize = 2;
12301 else
12302 /* No delay slot. */
12303 bdsize = 0;
12304
12305 return bdsize;
12306}
12307
12308/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12309 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12310
12311static bfd_boolean
12312check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12313{
12314 unsigned long opcode;
12315
12316 opcode = bfd_get_16 (abfd, ptr);
12317 if (MATCH (opcode, b_insn_16)
12318 /* B16 */
12319 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12320 /* JR16 */
12321 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12322 /* BEQZ16, BNEZ16 */
12323 || (MATCH (opcode, jalr_insn_16_bd32)
12324 /* JALR16 */
12325 && reg != JR16_REG (opcode) && reg != RA))
12326 return TRUE;
12327
12328 return FALSE;
12329}
12330
12331/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12332 then return TRUE, otherwise FALSE. */
12333
f41e5fcc 12334static bfd_boolean
df58fc94
RS
12335check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12336{
12337 unsigned long opcode;
12338
d21911ea 12339 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12340 if (MATCH (opcode, j_insn_32)
12341 /* J */
12342 || MATCH (opcode, bc_insn_32)
12343 /* BC1F, BC1T, BC2F, BC2T */
12344 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12345 /* JAL, JALX */
12346 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12347 /* BGEZ, BGTZ, BLEZ, BLTZ */
12348 || (MATCH (opcode, bzal_insn_32)
12349 /* BGEZAL, BLTZAL */
12350 && reg != OP32_SREG (opcode) && reg != RA)
12351 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12352 /* JALR, JALR.HB, BEQ, BNE */
12353 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12354 return TRUE;
12355
12356 return FALSE;
12357}
12358
80cab405
MR
12359/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12360 IRELEND) at OFFSET indicate that there must be a compact branch there,
12361 then return TRUE, otherwise FALSE. */
df58fc94
RS
12362
12363static bfd_boolean
80cab405
MR
12364check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12365 const Elf_Internal_Rela *internal_relocs,
12366 const Elf_Internal_Rela *irelend)
df58fc94 12367{
80cab405
MR
12368 const Elf_Internal_Rela *irel;
12369 unsigned long opcode;
12370
d21911ea 12371 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12372 if (find_match (opcode, bzc_insns_32) < 0)
12373 return FALSE;
df58fc94
RS
12374
12375 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12376 if (irel->r_offset == offset
12377 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12378 return TRUE;
12379
df58fc94
RS
12380 return FALSE;
12381}
80cab405
MR
12382
12383/* Bitsize checking. */
12384#define IS_BITSIZE(val, N) \
12385 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12386 - (1ULL << ((N) - 1))) == (val))
12387
df58fc94
RS
12388\f
12389bfd_boolean
12390_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12391 struct bfd_link_info *link_info,
12392 bfd_boolean *again)
12393{
12394 Elf_Internal_Shdr *symtab_hdr;
12395 Elf_Internal_Rela *internal_relocs;
12396 Elf_Internal_Rela *irel, *irelend;
12397 bfd_byte *contents = NULL;
12398 Elf_Internal_Sym *isymbuf = NULL;
12399
12400 /* Assume nothing changes. */
12401 *again = FALSE;
12402
12403 /* We don't have to do anything for a relocatable link, if
12404 this section does not have relocs, or if this is not a
12405 code section. */
12406
12407 if (link_info->relocatable
12408 || (sec->flags & SEC_RELOC) == 0
12409 || sec->reloc_count == 0
12410 || (sec->flags & SEC_CODE) == 0)
12411 return TRUE;
12412
12413 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12414
12415 /* Get a copy of the native relocations. */
12416 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12417 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12418 link_info->keep_memory));
12419 if (internal_relocs == NULL)
12420 goto error_return;
12421
12422 /* Walk through them looking for relaxing opportunities. */
12423 irelend = internal_relocs + sec->reloc_count;
12424 for (irel = internal_relocs; irel < irelend; irel++)
12425 {
12426 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12427 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12428 bfd_boolean target_is_micromips_code_p;
12429 unsigned long opcode;
12430 bfd_vma symval;
12431 bfd_vma pcrval;
2309ddf2 12432 bfd_byte *ptr;
df58fc94
RS
12433 int fndopc;
12434
12435 /* The number of bytes to delete for relaxation and from where
12436 to delete these bytes starting at irel->r_offset. */
12437 int delcnt = 0;
12438 int deloff = 0;
12439
12440 /* If this isn't something that can be relaxed, then ignore
12441 this reloc. */
12442 if (r_type != R_MICROMIPS_HI16
12443 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12444 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12445 continue;
12446
12447 /* Get the section contents if we haven't done so already. */
12448 if (contents == NULL)
12449 {
12450 /* Get cached copy if it exists. */
12451 if (elf_section_data (sec)->this_hdr.contents != NULL)
12452 contents = elf_section_data (sec)->this_hdr.contents;
12453 /* Go get them off disk. */
12454 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12455 goto error_return;
12456 }
2309ddf2 12457 ptr = contents + irel->r_offset;
df58fc94
RS
12458
12459 /* Read this BFD's local symbols if we haven't done so already. */
12460 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12461 {
12462 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12463 if (isymbuf == NULL)
12464 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12465 symtab_hdr->sh_info, 0,
12466 NULL, NULL, NULL);
12467 if (isymbuf == NULL)
12468 goto error_return;
12469 }
12470
12471 /* Get the value of the symbol referred to by the reloc. */
12472 if (r_symndx < symtab_hdr->sh_info)
12473 {
12474 /* A local symbol. */
12475 Elf_Internal_Sym *isym;
12476 asection *sym_sec;
12477
12478 isym = isymbuf + r_symndx;
12479 if (isym->st_shndx == SHN_UNDEF)
12480 sym_sec = bfd_und_section_ptr;
12481 else if (isym->st_shndx == SHN_ABS)
12482 sym_sec = bfd_abs_section_ptr;
12483 else if (isym->st_shndx == SHN_COMMON)
12484 sym_sec = bfd_com_section_ptr;
12485 else
12486 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12487 symval = (isym->st_value
12488 + sym_sec->output_section->vma
12489 + sym_sec->output_offset);
12490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12491 }
12492 else
12493 {
12494 unsigned long indx;
12495 struct elf_link_hash_entry *h;
12496
12497 /* An external symbol. */
12498 indx = r_symndx - symtab_hdr->sh_info;
12499 h = elf_sym_hashes (abfd)[indx];
12500 BFD_ASSERT (h != NULL);
12501
12502 if (h->root.type != bfd_link_hash_defined
12503 && h->root.type != bfd_link_hash_defweak)
12504 /* This appears to be a reference to an undefined
12505 symbol. Just ignore it -- it will be caught by the
12506 regular reloc processing. */
12507 continue;
12508
12509 symval = (h->root.u.def.value
12510 + h->root.u.def.section->output_section->vma
12511 + h->root.u.def.section->output_offset);
12512 target_is_micromips_code_p = (!h->needs_plt
12513 && ELF_ST_IS_MICROMIPS (h->other));
12514 }
12515
12516
12517 /* For simplicity of coding, we are going to modify the
12518 section contents, the section relocs, and the BFD symbol
12519 table. We must tell the rest of the code not to free up this
12520 information. It would be possible to instead create a table
12521 of changes which have to be made, as is done in coff-mips.c;
12522 that would be more work, but would require less memory when
12523 the linker is run. */
12524
12525 /* Only 32-bit instructions relaxed. */
12526 if (irel->r_offset + 4 > sec->size)
12527 continue;
12528
d21911ea 12529 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12530
12531 /* This is the pc-relative distance from the instruction the
12532 relocation is applied to, to the symbol referred. */
12533 pcrval = (symval
12534 - (sec->output_section->vma + sec->output_offset)
12535 - irel->r_offset);
12536
12537 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12538 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12539 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12540
12541 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12542
12543 where pcrval has first to be adjusted to apply against the LO16
12544 location (we make the adjustment later on, when we have figured
12545 out the offset). */
12546 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12547 {
80cab405 12548 bfd_boolean bzc = FALSE;
df58fc94
RS
12549 unsigned long nextopc;
12550 unsigned long reg;
12551 bfd_vma offset;
12552
12553 /* Give up if the previous reloc was a HI16 against this symbol
12554 too. */
12555 if (irel > internal_relocs
12556 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12557 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12558 continue;
12559
12560 /* Or if the next reloc is not a LO16 against this symbol. */
12561 if (irel + 1 >= irelend
12562 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12563 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12564 continue;
12565
12566 /* Or if the second next reloc is a LO16 against this symbol too. */
12567 if (irel + 2 >= irelend
12568 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12569 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12570 continue;
12571
80cab405
MR
12572 /* See if the LUI instruction *might* be in a branch delay slot.
12573 We check whether what looks like a 16-bit branch or jump is
12574 actually an immediate argument to a compact branch, and let
12575 it through if so. */
df58fc94 12576 if (irel->r_offset >= 2
2309ddf2 12577 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12578 && !(irel->r_offset >= 4
80cab405
MR
12579 && (bzc = check_relocated_bzc (abfd,
12580 ptr - 4, irel->r_offset - 4,
12581 internal_relocs, irelend))))
df58fc94
RS
12582 continue;
12583 if (irel->r_offset >= 4
80cab405 12584 && !bzc
2309ddf2 12585 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12586 continue;
12587
12588 reg = OP32_SREG (opcode);
12589
12590 /* We only relax adjacent instructions or ones separated with
12591 a branch or jump that has a delay slot. The branch or jump
12592 must not fiddle with the register used to hold the address.
12593 Subtract 4 for the LUI itself. */
12594 offset = irel[1].r_offset - irel[0].r_offset;
12595 switch (offset - 4)
12596 {
12597 case 0:
12598 break;
12599 case 2:
2309ddf2 12600 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12601 break;
12602 continue;
12603 case 4:
2309ddf2 12604 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12605 break;
12606 continue;
12607 default:
12608 continue;
12609 }
12610
d21911ea 12611 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12612
12613 /* Give up unless the same register is used with both
12614 relocations. */
12615 if (OP32_SREG (nextopc) != reg)
12616 continue;
12617
12618 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12619 and rounding up to take masking of the two LSBs into account. */
12620 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12621
12622 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12623 if (IS_BITSIZE (symval, 16))
12624 {
12625 /* Fix the relocation's type. */
12626 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12627
12628 /* Instructions using R_MICROMIPS_LO16 have the base or
12629 source register in bits 20:16. This register becomes $0
12630 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12631 nextopc &= ~0x001f0000;
12632 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12633 contents + irel[1].r_offset);
12634 }
12635
12636 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12637 We add 4 to take LUI deletion into account while checking
12638 the PC-relative distance. */
12639 else if (symval % 4 == 0
12640 && IS_BITSIZE (pcrval + 4, 25)
12641 && MATCH (nextopc, addiu_insn)
12642 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12643 && OP16_VALID_REG (OP32_TREG (nextopc)))
12644 {
12645 /* Fix the relocation's type. */
12646 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12647
12648 /* Replace ADDIU with the ADDIUPC version. */
12649 nextopc = (addiupc_insn.match
12650 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12651
d21911ea
MR
12652 bfd_put_micromips_32 (abfd, nextopc,
12653 contents + irel[1].r_offset);
df58fc94
RS
12654 }
12655
12656 /* Can't do anything, give up, sigh... */
12657 else
12658 continue;
12659
12660 /* Fix the relocation's type. */
12661 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12662
12663 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12664 delcnt = 4;
12665 deloff = 0;
12666 }
12667
12668 /* Compact branch relaxation -- due to the multitude of macros
12669 employed by the compiler/assembler, compact branches are not
12670 always generated. Obviously, this can/will be fixed elsewhere,
12671 but there is no drawback in double checking it here. */
12672 else if (r_type == R_MICROMIPS_PC16_S1
12673 && irel->r_offset + 5 < sec->size
12674 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12675 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12676 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12677 {
12678 unsigned long reg;
12679
12680 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12681
12682 /* Replace BEQZ/BNEZ with the compact version. */
12683 opcode = (bzc_insns_32[fndopc].match
12684 | BZC32_REG_FIELD (reg)
12685 | (opcode & 0xffff)); /* Addend value. */
12686
d21911ea 12687 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12688
12689 /* Delete the 16-bit delay slot NOP: two bytes from
12690 irel->offset + 4. */
12691 delcnt = 2;
12692 deloff = 4;
12693 }
12694
12695 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12696 to check the distance from the next instruction, so subtract 2. */
12697 else if (r_type == R_MICROMIPS_PC16_S1
12698 && IS_BITSIZE (pcrval - 2, 11)
12699 && find_match (opcode, b_insns_32) >= 0)
12700 {
12701 /* Fix the relocation's type. */
12702 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12703
a8685210 12704 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12705 bfd_put_16 (abfd,
12706 (b_insn_16.match
12707 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12708 ptr);
df58fc94
RS
12709
12710 /* Delete 2 bytes from irel->r_offset + 2. */
12711 delcnt = 2;
12712 deloff = 2;
12713 }
12714
12715 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12716 to check the distance from the next instruction, so subtract 2. */
12717 else if (r_type == R_MICROMIPS_PC16_S1
12718 && IS_BITSIZE (pcrval - 2, 8)
12719 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12720 && OP16_VALID_REG (OP32_SREG (opcode)))
12721 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12722 && OP16_VALID_REG (OP32_TREG (opcode)))))
12723 {
12724 unsigned long reg;
12725
12726 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12727
12728 /* Fix the relocation's type. */
12729 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12730
a8685210 12731 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12732 bfd_put_16 (abfd,
12733 (bz_insns_16[fndopc].match
12734 | BZ16_REG_FIELD (reg)
12735 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12736 ptr);
df58fc94
RS
12737
12738 /* Delete 2 bytes from irel->r_offset + 2. */
12739 delcnt = 2;
12740 deloff = 2;
12741 }
12742
12743 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12744 else if (r_type == R_MICROMIPS_26_S1
12745 && target_is_micromips_code_p
12746 && irel->r_offset + 7 < sec->size
12747 && MATCH (opcode, jal_insn_32_bd32))
12748 {
12749 unsigned long n32opc;
12750 bfd_boolean relaxed = FALSE;
12751
d21911ea 12752 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12753
12754 if (MATCH (n32opc, nop_insn_32))
12755 {
12756 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12757 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12758
12759 relaxed = TRUE;
12760 }
12761 else if (find_match (n32opc, move_insns_32) >= 0)
12762 {
12763 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12764 bfd_put_16 (abfd,
12765 (move_insn_16.match
12766 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12767 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12768 ptr + 4);
df58fc94
RS
12769
12770 relaxed = TRUE;
12771 }
12772 /* Other 32-bit instructions relaxable to 16-bit
12773 instructions will be handled here later. */
12774
12775 if (relaxed)
12776 {
12777 /* JAL with 32-bit delay slot that is changed to a JALS
12778 with 16-bit delay slot. */
d21911ea 12779 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12780
12781 /* Delete 2 bytes from irel->r_offset + 6. */
12782 delcnt = 2;
12783 deloff = 6;
12784 }
12785 }
12786
12787 if (delcnt != 0)
12788 {
12789 /* Note that we've changed the relocs, section contents, etc. */
12790 elf_section_data (sec)->relocs = internal_relocs;
12791 elf_section_data (sec)->this_hdr.contents = contents;
12792 symtab_hdr->contents = (unsigned char *) isymbuf;
12793
12794 /* Delete bytes depending on the delcnt and deloff. */
12795 if (!mips_elf_relax_delete_bytes (abfd, sec,
12796 irel->r_offset + deloff, delcnt))
12797 goto error_return;
12798
12799 /* That will change things, so we should relax again.
12800 Note that this is not required, and it may be slow. */
12801 *again = TRUE;
12802 }
12803 }
12804
12805 if (isymbuf != NULL
12806 && symtab_hdr->contents != (unsigned char *) isymbuf)
12807 {
12808 if (! link_info->keep_memory)
12809 free (isymbuf);
12810 else
12811 {
12812 /* Cache the symbols for elf_link_input_bfd. */
12813 symtab_hdr->contents = (unsigned char *) isymbuf;
12814 }
12815 }
12816
12817 if (contents != NULL
12818 && elf_section_data (sec)->this_hdr.contents != contents)
12819 {
12820 if (! link_info->keep_memory)
12821 free (contents);
12822 else
12823 {
12824 /* Cache the section contents for elf_link_input_bfd. */
12825 elf_section_data (sec)->this_hdr.contents = contents;
12826 }
12827 }
12828
12829 if (internal_relocs != NULL
12830 && elf_section_data (sec)->relocs != internal_relocs)
12831 free (internal_relocs);
12832
12833 return TRUE;
12834
12835 error_return:
12836 if (isymbuf != NULL
12837 && symtab_hdr->contents != (unsigned char *) isymbuf)
12838 free (isymbuf);
12839 if (contents != NULL
12840 && elf_section_data (sec)->this_hdr.contents != contents)
12841 free (contents);
12842 if (internal_relocs != NULL
12843 && elf_section_data (sec)->relocs != internal_relocs)
12844 free (internal_relocs);
12845
12846 return FALSE;
12847}
12848\f
b49e97c9
TS
12849/* Create a MIPS ELF linker hash table. */
12850
12851struct bfd_link_hash_table *
9719ad41 12852_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12853{
12854 struct mips_elf_link_hash_table *ret;
12855 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12856
7bf52ea2 12857 ret = bfd_zmalloc (amt);
9719ad41 12858 if (ret == NULL)
b49e97c9
TS
12859 return NULL;
12860
66eb6687
AM
12861 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12862 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12863 sizeof (struct mips_elf_link_hash_entry),
12864 MIPS_ELF_DATA))
b49e97c9 12865 {
e2d34d7d 12866 free (ret);
b49e97c9
TS
12867 return NULL;
12868 }
12869
b49e97c9
TS
12870 return &ret->root.root;
12871}
0a44bf69
RS
12872
12873/* Likewise, but indicate that the target is VxWorks. */
12874
12875struct bfd_link_hash_table *
12876_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12877{
12878 struct bfd_link_hash_table *ret;
12879
12880 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12881 if (ret)
12882 {
12883 struct mips_elf_link_hash_table *htab;
12884
12885 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12886 htab->use_plts_and_copy_relocs = TRUE;
12887 htab->is_vxworks = TRUE;
0a44bf69
RS
12888 }
12889 return ret;
12890}
861fb55a
DJ
12891
12892/* A function that the linker calls if we are allowed to use PLTs
12893 and copy relocs. */
12894
12895void
12896_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12897{
12898 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12899}
b49e97c9
TS
12900\f
12901/* We need to use a special link routine to handle the .reginfo and
12902 the .mdebug sections. We need to merge all instances of these
12903 sections together, not write them all out sequentially. */
12904
b34976b6 12905bfd_boolean
9719ad41 12906_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12907{
b49e97c9
TS
12908 asection *o;
12909 struct bfd_link_order *p;
12910 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12911 asection *rtproc_sec;
12912 Elf32_RegInfo reginfo;
12913 struct ecoff_debug_info debug;
861fb55a 12914 struct mips_htab_traverse_info hti;
7a2a6943
NC
12915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12916 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 12917 HDRR *symhdr = &debug.symbolic_header;
9719ad41 12918 void *mdebug_handle = NULL;
b49e97c9
TS
12919 asection *s;
12920 EXTR esym;
12921 unsigned int i;
12922 bfd_size_type amt;
0a44bf69 12923 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
12924
12925 static const char * const secname[] =
12926 {
12927 ".text", ".init", ".fini", ".data",
12928 ".rodata", ".sdata", ".sbss", ".bss"
12929 };
12930 static const int sc[] =
12931 {
12932 scText, scInit, scFini, scData,
12933 scRData, scSData, scSBss, scBss
12934 };
12935
d4596a51
RS
12936 /* Sort the dynamic symbols so that those with GOT entries come after
12937 those without. */
0a44bf69 12938 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
12939 BFD_ASSERT (htab != NULL);
12940
d4596a51
RS
12941 if (!mips_elf_sort_hash_table (abfd, info))
12942 return FALSE;
b49e97c9 12943
861fb55a
DJ
12944 /* Create any scheduled LA25 stubs. */
12945 hti.info = info;
12946 hti.output_bfd = abfd;
12947 hti.error = FALSE;
12948 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12949 if (hti.error)
12950 return FALSE;
12951
b49e97c9
TS
12952 /* Get a value for the GP register. */
12953 if (elf_gp (abfd) == 0)
12954 {
12955 struct bfd_link_hash_entry *h;
12956
b34976b6 12957 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 12958 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
12959 elf_gp (abfd) = (h->u.def.value
12960 + h->u.def.section->output_section->vma
12961 + h->u.def.section->output_offset);
0a44bf69
RS
12962 else if (htab->is_vxworks
12963 && (h = bfd_link_hash_lookup (info->hash,
12964 "_GLOBAL_OFFSET_TABLE_",
12965 FALSE, FALSE, TRUE))
12966 && h->type == bfd_link_hash_defined)
12967 elf_gp (abfd) = (h->u.def.section->output_section->vma
12968 + h->u.def.section->output_offset
12969 + h->u.def.value);
1049f94e 12970 else if (info->relocatable)
b49e97c9
TS
12971 {
12972 bfd_vma lo = MINUS_ONE;
12973
12974 /* Find the GP-relative section with the lowest offset. */
9719ad41 12975 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12976 if (o->vma < lo
12977 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12978 lo = o->vma;
12979
12980 /* And calculate GP relative to that. */
0a44bf69 12981 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
12982 }
12983 else
12984 {
12985 /* If the relocate_section function needs to do a reloc
12986 involving the GP value, it should make a reloc_dangerous
12987 callback to warn that GP is not defined. */
12988 }
12989 }
12990
12991 /* Go through the sections and collect the .reginfo and .mdebug
12992 information. */
12993 reginfo_sec = NULL;
12994 mdebug_sec = NULL;
12995 gptab_data_sec = NULL;
12996 gptab_bss_sec = NULL;
9719ad41 12997 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12998 {
12999 if (strcmp (o->name, ".reginfo") == 0)
13000 {
13001 memset (&reginfo, 0, sizeof reginfo);
13002
13003 /* We have found the .reginfo section in the output file.
13004 Look through all the link_orders comprising it and merge
13005 the information together. */
8423293d 13006 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13007 {
13008 asection *input_section;
13009 bfd *input_bfd;
13010 Elf32_External_RegInfo ext;
13011 Elf32_RegInfo sub;
13012
13013 if (p->type != bfd_indirect_link_order)
13014 {
13015 if (p->type == bfd_data_link_order)
13016 continue;
13017 abort ();
13018 }
13019
13020 input_section = p->u.indirect.section;
13021 input_bfd = input_section->owner;
13022
b49e97c9 13023 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13024 &ext, 0, sizeof ext))
b34976b6 13025 return FALSE;
b49e97c9
TS
13026
13027 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13028
13029 reginfo.ri_gprmask |= sub.ri_gprmask;
13030 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13031 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13032 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13033 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13034
13035 /* ri_gp_value is set by the function
13036 mips_elf32_section_processing when the section is
13037 finally written out. */
13038
13039 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13040 elf_link_input_bfd ignores this section. */
13041 input_section->flags &= ~SEC_HAS_CONTENTS;
13042 }
13043
13044 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13045 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13046
13047 /* Skip this section later on (I don't think this currently
13048 matters, but someday it might). */
8423293d 13049 o->map_head.link_order = NULL;
b49e97c9
TS
13050
13051 reginfo_sec = o;
13052 }
13053
13054 if (strcmp (o->name, ".mdebug") == 0)
13055 {
13056 struct extsym_info einfo;
13057 bfd_vma last;
13058
13059 /* We have found the .mdebug section in the output file.
13060 Look through all the link_orders comprising it and merge
13061 the information together. */
13062 symhdr->magic = swap->sym_magic;
13063 /* FIXME: What should the version stamp be? */
13064 symhdr->vstamp = 0;
13065 symhdr->ilineMax = 0;
13066 symhdr->cbLine = 0;
13067 symhdr->idnMax = 0;
13068 symhdr->ipdMax = 0;
13069 symhdr->isymMax = 0;
13070 symhdr->ioptMax = 0;
13071 symhdr->iauxMax = 0;
13072 symhdr->issMax = 0;
13073 symhdr->issExtMax = 0;
13074 symhdr->ifdMax = 0;
13075 symhdr->crfd = 0;
13076 symhdr->iextMax = 0;
13077
13078 /* We accumulate the debugging information itself in the
13079 debug_info structure. */
13080 debug.line = NULL;
13081 debug.external_dnr = NULL;
13082 debug.external_pdr = NULL;
13083 debug.external_sym = NULL;
13084 debug.external_opt = NULL;
13085 debug.external_aux = NULL;
13086 debug.ss = NULL;
13087 debug.ssext = debug.ssext_end = NULL;
13088 debug.external_fdr = NULL;
13089 debug.external_rfd = NULL;
13090 debug.external_ext = debug.external_ext_end = NULL;
13091
13092 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13093 if (mdebug_handle == NULL)
b34976b6 13094 return FALSE;
b49e97c9
TS
13095
13096 esym.jmptbl = 0;
13097 esym.cobol_main = 0;
13098 esym.weakext = 0;
13099 esym.reserved = 0;
13100 esym.ifd = ifdNil;
13101 esym.asym.iss = issNil;
13102 esym.asym.st = stLocal;
13103 esym.asym.reserved = 0;
13104 esym.asym.index = indexNil;
13105 last = 0;
13106 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13107 {
13108 esym.asym.sc = sc[i];
13109 s = bfd_get_section_by_name (abfd, secname[i]);
13110 if (s != NULL)
13111 {
13112 esym.asym.value = s->vma;
eea6121a 13113 last = s->vma + s->size;
b49e97c9
TS
13114 }
13115 else
13116 esym.asym.value = last;
13117 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13118 secname[i], &esym))
b34976b6 13119 return FALSE;
b49e97c9
TS
13120 }
13121
8423293d 13122 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13123 {
13124 asection *input_section;
13125 bfd *input_bfd;
13126 const struct ecoff_debug_swap *input_swap;
13127 struct ecoff_debug_info input_debug;
13128 char *eraw_src;
13129 char *eraw_end;
13130
13131 if (p->type != bfd_indirect_link_order)
13132 {
13133 if (p->type == bfd_data_link_order)
13134 continue;
13135 abort ();
13136 }
13137
13138 input_section = p->u.indirect.section;
13139 input_bfd = input_section->owner;
13140
d5eaccd7 13141 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13142 {
13143 /* I don't know what a non MIPS ELF bfd would be
13144 doing with a .mdebug section, but I don't really
13145 want to deal with it. */
13146 continue;
13147 }
13148
13149 input_swap = (get_elf_backend_data (input_bfd)
13150 ->elf_backend_ecoff_debug_swap);
13151
eea6121a 13152 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13153
13154 /* The ECOFF linking code expects that we have already
13155 read in the debugging information and set up an
13156 ecoff_debug_info structure, so we do that now. */
13157 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13158 &input_debug))
b34976b6 13159 return FALSE;
b49e97c9
TS
13160
13161 if (! (bfd_ecoff_debug_accumulate
13162 (mdebug_handle, abfd, &debug, swap, input_bfd,
13163 &input_debug, input_swap, info)))
b34976b6 13164 return FALSE;
b49e97c9
TS
13165
13166 /* Loop through the external symbols. For each one with
13167 interesting information, try to find the symbol in
13168 the linker global hash table and save the information
13169 for the output external symbols. */
13170 eraw_src = input_debug.external_ext;
13171 eraw_end = (eraw_src
13172 + (input_debug.symbolic_header.iextMax
13173 * input_swap->external_ext_size));
13174 for (;
13175 eraw_src < eraw_end;
13176 eraw_src += input_swap->external_ext_size)
13177 {
13178 EXTR ext;
13179 const char *name;
13180 struct mips_elf_link_hash_entry *h;
13181
9719ad41 13182 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13183 if (ext.asym.sc == scNil
13184 || ext.asym.sc == scUndefined
13185 || ext.asym.sc == scSUndefined)
13186 continue;
13187
13188 name = input_debug.ssext + ext.asym.iss;
13189 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13190 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13191 if (h == NULL || h->esym.ifd != -2)
13192 continue;
13193
13194 if (ext.ifd != -1)
13195 {
13196 BFD_ASSERT (ext.ifd
13197 < input_debug.symbolic_header.ifdMax);
13198 ext.ifd = input_debug.ifdmap[ext.ifd];
13199 }
13200
13201 h->esym = ext;
13202 }
13203
13204 /* Free up the information we just read. */
13205 free (input_debug.line);
13206 free (input_debug.external_dnr);
13207 free (input_debug.external_pdr);
13208 free (input_debug.external_sym);
13209 free (input_debug.external_opt);
13210 free (input_debug.external_aux);
13211 free (input_debug.ss);
13212 free (input_debug.ssext);
13213 free (input_debug.external_fdr);
13214 free (input_debug.external_rfd);
13215 free (input_debug.external_ext);
13216
13217 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13218 elf_link_input_bfd ignores this section. */
13219 input_section->flags &= ~SEC_HAS_CONTENTS;
13220 }
13221
13222 if (SGI_COMPAT (abfd) && info->shared)
13223 {
13224 /* Create .rtproc section. */
87e0a731 13225 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13226 if (rtproc_sec == NULL)
13227 {
13228 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13229 | SEC_LINKER_CREATED | SEC_READONLY);
13230
87e0a731
AM
13231 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13232 ".rtproc",
13233 flags);
b49e97c9 13234 if (rtproc_sec == NULL
b49e97c9 13235 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13236 return FALSE;
b49e97c9
TS
13237 }
13238
13239 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13240 info, rtproc_sec,
13241 &debug))
b34976b6 13242 return FALSE;
b49e97c9
TS
13243 }
13244
13245 /* Build the external symbol information. */
13246 einfo.abfd = abfd;
13247 einfo.info = info;
13248 einfo.debug = &debug;
13249 einfo.swap = swap;
b34976b6 13250 einfo.failed = FALSE;
b49e97c9 13251 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13252 mips_elf_output_extsym, &einfo);
b49e97c9 13253 if (einfo.failed)
b34976b6 13254 return FALSE;
b49e97c9
TS
13255
13256 /* Set the size of the .mdebug section. */
eea6121a 13257 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13258
13259 /* Skip this section later on (I don't think this currently
13260 matters, but someday it might). */
8423293d 13261 o->map_head.link_order = NULL;
b49e97c9
TS
13262
13263 mdebug_sec = o;
13264 }
13265
0112cd26 13266 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13267 {
13268 const char *subname;
13269 unsigned int c;
13270 Elf32_gptab *tab;
13271 Elf32_External_gptab *ext_tab;
13272 unsigned int j;
13273
13274 /* The .gptab.sdata and .gptab.sbss sections hold
13275 information describing how the small data area would
13276 change depending upon the -G switch. These sections
13277 not used in executables files. */
1049f94e 13278 if (! info->relocatable)
b49e97c9 13279 {
8423293d 13280 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13281 {
13282 asection *input_section;
13283
13284 if (p->type != bfd_indirect_link_order)
13285 {
13286 if (p->type == bfd_data_link_order)
13287 continue;
13288 abort ();
13289 }
13290
13291 input_section = p->u.indirect.section;
13292
13293 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13294 elf_link_input_bfd ignores this section. */
13295 input_section->flags &= ~SEC_HAS_CONTENTS;
13296 }
13297
13298 /* Skip this section later on (I don't think this
13299 currently matters, but someday it might). */
8423293d 13300 o->map_head.link_order = NULL;
b49e97c9
TS
13301
13302 /* Really remove the section. */
5daa8fe7 13303 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13304 --abfd->section_count;
13305
13306 continue;
13307 }
13308
13309 /* There is one gptab for initialized data, and one for
13310 uninitialized data. */
13311 if (strcmp (o->name, ".gptab.sdata") == 0)
13312 gptab_data_sec = o;
13313 else if (strcmp (o->name, ".gptab.sbss") == 0)
13314 gptab_bss_sec = o;
13315 else
13316 {
13317 (*_bfd_error_handler)
13318 (_("%s: illegal section name `%s'"),
13319 bfd_get_filename (abfd), o->name);
13320 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13321 return FALSE;
b49e97c9
TS
13322 }
13323
13324 /* The linker script always combines .gptab.data and
13325 .gptab.sdata into .gptab.sdata, and likewise for
13326 .gptab.bss and .gptab.sbss. It is possible that there is
13327 no .sdata or .sbss section in the output file, in which
13328 case we must change the name of the output section. */
13329 subname = o->name + sizeof ".gptab" - 1;
13330 if (bfd_get_section_by_name (abfd, subname) == NULL)
13331 {
13332 if (o == gptab_data_sec)
13333 o->name = ".gptab.data";
13334 else
13335 o->name = ".gptab.bss";
13336 subname = o->name + sizeof ".gptab" - 1;
13337 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13338 }
13339
13340 /* Set up the first entry. */
13341 c = 1;
13342 amt = c * sizeof (Elf32_gptab);
9719ad41 13343 tab = bfd_malloc (amt);
b49e97c9 13344 if (tab == NULL)
b34976b6 13345 return FALSE;
b49e97c9
TS
13346 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13347 tab[0].gt_header.gt_unused = 0;
13348
13349 /* Combine the input sections. */
8423293d 13350 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13351 {
13352 asection *input_section;
13353 bfd *input_bfd;
13354 bfd_size_type size;
13355 unsigned long last;
13356 bfd_size_type gpentry;
13357
13358 if (p->type != bfd_indirect_link_order)
13359 {
13360 if (p->type == bfd_data_link_order)
13361 continue;
13362 abort ();
13363 }
13364
13365 input_section = p->u.indirect.section;
13366 input_bfd = input_section->owner;
13367
13368 /* Combine the gptab entries for this input section one
13369 by one. We know that the input gptab entries are
13370 sorted by ascending -G value. */
eea6121a 13371 size = input_section->size;
b49e97c9
TS
13372 last = 0;
13373 for (gpentry = sizeof (Elf32_External_gptab);
13374 gpentry < size;
13375 gpentry += sizeof (Elf32_External_gptab))
13376 {
13377 Elf32_External_gptab ext_gptab;
13378 Elf32_gptab int_gptab;
13379 unsigned long val;
13380 unsigned long add;
b34976b6 13381 bfd_boolean exact;
b49e97c9
TS
13382 unsigned int look;
13383
13384 if (! (bfd_get_section_contents
9719ad41
RS
13385 (input_bfd, input_section, &ext_gptab, gpentry,
13386 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13387 {
13388 free (tab);
b34976b6 13389 return FALSE;
b49e97c9
TS
13390 }
13391
13392 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13393 &int_gptab);
13394 val = int_gptab.gt_entry.gt_g_value;
13395 add = int_gptab.gt_entry.gt_bytes - last;
13396
b34976b6 13397 exact = FALSE;
b49e97c9
TS
13398 for (look = 1; look < c; look++)
13399 {
13400 if (tab[look].gt_entry.gt_g_value >= val)
13401 tab[look].gt_entry.gt_bytes += add;
13402
13403 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13404 exact = TRUE;
b49e97c9
TS
13405 }
13406
13407 if (! exact)
13408 {
13409 Elf32_gptab *new_tab;
13410 unsigned int max;
13411
13412 /* We need a new table entry. */
13413 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13414 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13415 if (new_tab == NULL)
13416 {
13417 free (tab);
b34976b6 13418 return FALSE;
b49e97c9
TS
13419 }
13420 tab = new_tab;
13421 tab[c].gt_entry.gt_g_value = val;
13422 tab[c].gt_entry.gt_bytes = add;
13423
13424 /* Merge in the size for the next smallest -G
13425 value, since that will be implied by this new
13426 value. */
13427 max = 0;
13428 for (look = 1; look < c; look++)
13429 {
13430 if (tab[look].gt_entry.gt_g_value < val
13431 && (max == 0
13432 || (tab[look].gt_entry.gt_g_value
13433 > tab[max].gt_entry.gt_g_value)))
13434 max = look;
13435 }
13436 if (max != 0)
13437 tab[c].gt_entry.gt_bytes +=
13438 tab[max].gt_entry.gt_bytes;
13439
13440 ++c;
13441 }
13442
13443 last = int_gptab.gt_entry.gt_bytes;
13444 }
13445
13446 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13447 elf_link_input_bfd ignores this section. */
13448 input_section->flags &= ~SEC_HAS_CONTENTS;
13449 }
13450
13451 /* The table must be sorted by -G value. */
13452 if (c > 2)
13453 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13454
13455 /* Swap out the table. */
13456 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13457 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13458 if (ext_tab == NULL)
13459 {
13460 free (tab);
b34976b6 13461 return FALSE;
b49e97c9
TS
13462 }
13463
13464 for (j = 0; j < c; j++)
13465 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13466 free (tab);
13467
eea6121a 13468 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13469 o->contents = (bfd_byte *) ext_tab;
13470
13471 /* Skip this section later on (I don't think this currently
13472 matters, but someday it might). */
8423293d 13473 o->map_head.link_order = NULL;
b49e97c9
TS
13474 }
13475 }
13476
13477 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13478 if (!bfd_elf_final_link (abfd, info))
b34976b6 13479 return FALSE;
b49e97c9
TS
13480
13481 /* Now write out the computed sections. */
13482
9719ad41 13483 if (reginfo_sec != NULL)
b49e97c9
TS
13484 {
13485 Elf32_External_RegInfo ext;
13486
13487 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13488 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13489 return FALSE;
b49e97c9
TS
13490 }
13491
9719ad41 13492 if (mdebug_sec != NULL)
b49e97c9
TS
13493 {
13494 BFD_ASSERT (abfd->output_has_begun);
13495 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13496 swap, info,
13497 mdebug_sec->filepos))
b34976b6 13498 return FALSE;
b49e97c9
TS
13499
13500 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13501 }
13502
9719ad41 13503 if (gptab_data_sec != NULL)
b49e97c9
TS
13504 {
13505 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13506 gptab_data_sec->contents,
eea6121a 13507 0, gptab_data_sec->size))
b34976b6 13508 return FALSE;
b49e97c9
TS
13509 }
13510
9719ad41 13511 if (gptab_bss_sec != NULL)
b49e97c9
TS
13512 {
13513 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13514 gptab_bss_sec->contents,
eea6121a 13515 0, gptab_bss_sec->size))
b34976b6 13516 return FALSE;
b49e97c9
TS
13517 }
13518
13519 if (SGI_COMPAT (abfd))
13520 {
13521 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13522 if (rtproc_sec != NULL)
13523 {
13524 if (! bfd_set_section_contents (abfd, rtproc_sec,
13525 rtproc_sec->contents,
eea6121a 13526 0, rtproc_sec->size))
b34976b6 13527 return FALSE;
b49e97c9
TS
13528 }
13529 }
13530
b34976b6 13531 return TRUE;
b49e97c9
TS
13532}
13533\f
64543e1a
RS
13534/* Structure for saying that BFD machine EXTENSION extends BASE. */
13535
13536struct mips_mach_extension {
13537 unsigned long extension, base;
13538};
13539
13540
13541/* An array describing how BFD machines relate to one another. The entries
13542 are ordered topologically with MIPS I extensions listed last. */
13543
13544static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13545 /* MIPS64r2 extensions. */
432233b3 13546 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13547 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13548 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13549
64543e1a 13550 /* MIPS64 extensions. */
5f74bc13 13551 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13552 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13553 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13554 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13555
13556 /* MIPS V extensions. */
13557 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13558
13559 /* R10000 extensions. */
13560 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13561 { bfd_mach_mips14000, bfd_mach_mips10000 },
13562 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13563
13564 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13565 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13566 better to allow vr5400 and vr5500 code to be merged anyway, since
13567 many libraries will just use the core ISA. Perhaps we could add
13568 some sort of ASE flag if this ever proves a problem. */
13569 { bfd_mach_mips5500, bfd_mach_mips5400 },
13570 { bfd_mach_mips5400, bfd_mach_mips5000 },
13571
13572 /* MIPS IV extensions. */
13573 { bfd_mach_mips5, bfd_mach_mips8000 },
13574 { bfd_mach_mips10000, bfd_mach_mips8000 },
13575 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13576 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13577 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13578
13579 /* VR4100 extensions. */
13580 { bfd_mach_mips4120, bfd_mach_mips4100 },
13581 { bfd_mach_mips4111, bfd_mach_mips4100 },
13582
13583 /* MIPS III extensions. */
350cc38d
MS
13584 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13585 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13586 { bfd_mach_mips8000, bfd_mach_mips4000 },
13587 { bfd_mach_mips4650, bfd_mach_mips4000 },
13588 { bfd_mach_mips4600, bfd_mach_mips4000 },
13589 { bfd_mach_mips4400, bfd_mach_mips4000 },
13590 { bfd_mach_mips4300, bfd_mach_mips4000 },
13591 { bfd_mach_mips4100, bfd_mach_mips4000 },
13592 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13593 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13594
13595 /* MIPS32 extensions. */
13596 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13597
13598 /* MIPS II extensions. */
13599 { bfd_mach_mips4000, bfd_mach_mips6000 },
13600 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13601
13602 /* MIPS I extensions. */
13603 { bfd_mach_mips6000, bfd_mach_mips3000 },
13604 { bfd_mach_mips3900, bfd_mach_mips3000 }
13605};
13606
13607
13608/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13609
13610static bfd_boolean
9719ad41 13611mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13612{
13613 size_t i;
13614
c5211a54
RS
13615 if (extension == base)
13616 return TRUE;
13617
13618 if (base == bfd_mach_mipsisa32
13619 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13620 return TRUE;
13621
13622 if (base == bfd_mach_mipsisa32r2
13623 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13624 return TRUE;
13625
13626 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13627 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13628 {
13629 extension = mips_mach_extensions[i].base;
13630 if (extension == base)
13631 return TRUE;
13632 }
64543e1a 13633
c5211a54 13634 return FALSE;
64543e1a
RS
13635}
13636
13637
13638/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13639
b34976b6 13640static bfd_boolean
9719ad41 13641mips_32bit_flags_p (flagword flags)
00707a0e 13642{
64543e1a
RS
13643 return ((flags & EF_MIPS_32BITMODE) != 0
13644 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13645 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13646 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13647 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13648 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13649 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13650}
13651
64543e1a 13652
2cf19d5c
JM
13653/* Merge object attributes from IBFD into OBFD. Raise an error if
13654 there are conflicting attributes. */
13655static bfd_boolean
13656mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13657{
13658 obj_attribute *in_attr;
13659 obj_attribute *out_attr;
6ae68ba3
MR
13660 bfd *abi_fp_bfd;
13661
13662 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13663 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13664 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13665 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13666
13667 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13668 {
13669 /* This is the first object. Copy the attributes. */
13670 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13671
13672 /* Use the Tag_null value to indicate the attributes have been
13673 initialized. */
13674 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13675
13676 return TRUE;
13677 }
13678
13679 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13680 non-conflicting ones. */
2cf19d5c
JM
13681 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13682 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13683 {
13684 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13685 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13686 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13687 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13688 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13689 {
13690 case 1:
13691 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13692 {
13693 case 2:
13694 _bfd_error_handler
6ae68ba3
MR
13695 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13696 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13697 break;
2cf19d5c
JM
13698
13699 case 3:
13700 _bfd_error_handler
6ae68ba3
MR
13701 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13702 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13703 break;
13704
42554f6a
TS
13705 case 4:
13706 _bfd_error_handler
6ae68ba3
MR
13707 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13708 obfd, abi_fp_bfd, ibfd,
13709 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13710 break;
13711
2cf19d5c 13712 default:
6ae68ba3
MR
13713 _bfd_error_handler
13714 (_("Warning: %B uses %s (set by %B), "
13715 "%B uses unknown floating point ABI %d"),
13716 obfd, abi_fp_bfd, ibfd,
13717 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13718 break;
2cf19d5c
JM
13719 }
13720 break;
13721
13722 case 2:
13723 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13724 {
13725 case 1:
13726 _bfd_error_handler
6ae68ba3
MR
13727 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13728 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13729 break;
2cf19d5c
JM
13730
13731 case 3:
13732 _bfd_error_handler
6ae68ba3
MR
13733 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13734 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13735 break;
13736
42554f6a
TS
13737 case 4:
13738 _bfd_error_handler
6ae68ba3
MR
13739 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13740 obfd, abi_fp_bfd, ibfd,
13741 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13742 break;
13743
2cf19d5c 13744 default:
6ae68ba3
MR
13745 _bfd_error_handler
13746 (_("Warning: %B uses %s (set by %B), "
13747 "%B uses unknown floating point ABI %d"),
13748 obfd, abi_fp_bfd, ibfd,
13749 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13750 break;
2cf19d5c
JM
13751 }
13752 break;
13753
13754 case 3:
13755 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13756 {
13757 case 1:
13758 case 2:
42554f6a 13759 case 4:
2cf19d5c 13760 _bfd_error_handler
6ae68ba3
MR
13761 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13762 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13763 break;
13764
13765 default:
6ae68ba3
MR
13766 _bfd_error_handler
13767 (_("Warning: %B uses %s (set by %B), "
13768 "%B uses unknown floating point ABI %d"),
13769 obfd, abi_fp_bfd, ibfd,
13770 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13771 break;
2cf19d5c
JM
13772 }
13773 break;
13774
42554f6a
TS
13775 case 4:
13776 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13777 {
13778 case 1:
13779 _bfd_error_handler
6ae68ba3
MR
13780 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13781 obfd, abi_fp_bfd, ibfd,
13782 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13783 break;
13784
13785 case 2:
13786 _bfd_error_handler
6ae68ba3
MR
13787 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13788 obfd, abi_fp_bfd, ibfd,
13789 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13790 break;
13791
13792 case 3:
13793 _bfd_error_handler
6ae68ba3
MR
13794 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13795 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13796 break;
13797
13798 default:
6ae68ba3
MR
13799 _bfd_error_handler
13800 (_("Warning: %B uses %s (set by %B), "
13801 "%B uses unknown floating point ABI %d"),
13802 obfd, abi_fp_bfd, ibfd,
13803 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13804 break;
42554f6a
TS
13805 }
13806 break;
13807
2cf19d5c 13808 default:
6ae68ba3
MR
13809 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13810 {
13811 case 1:
13812 _bfd_error_handler
13813 (_("Warning: %B uses unknown floating point ABI %d "
13814 "(set by %B), %B uses %s"),
13815 obfd, abi_fp_bfd, ibfd,
13816 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13817 break;
13818
13819 case 2:
13820 _bfd_error_handler
13821 (_("Warning: %B uses unknown floating point ABI %d "
13822 "(set by %B), %B uses %s"),
13823 obfd, abi_fp_bfd, ibfd,
13824 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13825 break;
13826
13827 case 3:
13828 _bfd_error_handler
13829 (_("Warning: %B uses unknown floating point ABI %d "
13830 "(set by %B), %B uses %s"),
13831 obfd, abi_fp_bfd, ibfd,
13832 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13833 break;
13834
13835 case 4:
13836 _bfd_error_handler
13837 (_("Warning: %B uses unknown floating point ABI %d "
13838 "(set by %B), %B uses %s"),
13839 obfd, abi_fp_bfd, ibfd,
13840 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13841 break;
13842
13843 default:
13844 _bfd_error_handler
13845 (_("Warning: %B uses unknown floating point ABI %d "
13846 "(set by %B), %B uses unknown floating point ABI %d"),
13847 obfd, abi_fp_bfd, ibfd,
13848 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13849 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13850 break;
13851 }
13852 break;
2cf19d5c
JM
13853 }
13854 }
13855
13856 /* Merge Tag_compatibility attributes and any common GNU ones. */
13857 _bfd_elf_merge_object_attributes (ibfd, obfd);
13858
13859 return TRUE;
13860}
13861
b49e97c9
TS
13862/* Merge backend specific data from an object file to the output
13863 object file when linking. */
13864
b34976b6 13865bfd_boolean
9719ad41 13866_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13867{
13868 flagword old_flags;
13869 flagword new_flags;
b34976b6
AM
13870 bfd_boolean ok;
13871 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13872 asection *sec;
13873
58238693 13874 /* Check if we have the same endianness. */
82e51918 13875 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13876 {
13877 (*_bfd_error_handler)
d003868e
AM
13878 (_("%B: endianness incompatible with that of the selected emulation"),
13879 ibfd);
aa701218
AO
13880 return FALSE;
13881 }
b49e97c9 13882
d5eaccd7 13883 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13884 return TRUE;
b49e97c9 13885
aa701218
AO
13886 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13887 {
13888 (*_bfd_error_handler)
d003868e
AM
13889 (_("%B: ABI is incompatible with that of the selected emulation"),
13890 ibfd);
aa701218
AO
13891 return FALSE;
13892 }
13893
2cf19d5c
JM
13894 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13895 return FALSE;
13896
b49e97c9
TS
13897 new_flags = elf_elfheader (ibfd)->e_flags;
13898 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13899 old_flags = elf_elfheader (obfd)->e_flags;
13900
13901 if (! elf_flags_init (obfd))
13902 {
b34976b6 13903 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13904 elf_elfheader (obfd)->e_flags = new_flags;
13905 elf_elfheader (obfd)->e_ident[EI_CLASS]
13906 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13907
13908 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13909 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13910 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13911 bfd_get_mach (ibfd))))
b49e97c9
TS
13912 {
13913 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13914 bfd_get_mach (ibfd)))
b34976b6 13915 return FALSE;
b49e97c9
TS
13916 }
13917
b34976b6 13918 return TRUE;
b49e97c9
TS
13919 }
13920
13921 /* Check flag compatibility. */
13922
13923 new_flags &= ~EF_MIPS_NOREORDER;
13924 old_flags &= ~EF_MIPS_NOREORDER;
13925
f4416af6
AO
13926 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13927 doesn't seem to matter. */
13928 new_flags &= ~EF_MIPS_XGOT;
13929 old_flags &= ~EF_MIPS_XGOT;
13930
98a8deaf
RS
13931 /* MIPSpro generates ucode info in n64 objects. Again, we should
13932 just be able to ignore this. */
13933 new_flags &= ~EF_MIPS_UCODE;
13934 old_flags &= ~EF_MIPS_UCODE;
13935
861fb55a
DJ
13936 /* DSOs should only be linked with CPIC code. */
13937 if ((ibfd->flags & DYNAMIC) != 0)
13938 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13939
b49e97c9 13940 if (new_flags == old_flags)
b34976b6 13941 return TRUE;
b49e97c9
TS
13942
13943 /* Check to see if the input BFD actually contains any sections.
13944 If not, its flags may not have been initialised either, but it cannot
13945 actually cause any incompatibility. */
13946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13947 {
13948 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13949 which are automatically generated by gas. Also ignore fake
13950 (s)common sections, since merely defining a common symbol does
13951 not affect compatibility. */
13952 if ((sec->flags & SEC_IS_COMMON) == 0
13953 && strcmp (sec->name, ".reginfo")
b49e97c9 13954 && strcmp (sec->name, ".mdebug")
eea6121a 13955 && (sec->size != 0
d13d89fa
NS
13956 || (strcmp (sec->name, ".text")
13957 && strcmp (sec->name, ".data")
13958 && strcmp (sec->name, ".bss"))))
b49e97c9 13959 {
b34976b6 13960 null_input_bfd = FALSE;
b49e97c9
TS
13961 break;
13962 }
13963 }
13964 if (null_input_bfd)
b34976b6 13965 return TRUE;
b49e97c9 13966
b34976b6 13967 ok = TRUE;
b49e97c9 13968
143d77c5
EC
13969 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13970 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13971 {
b49e97c9 13972 (*_bfd_error_handler)
861fb55a 13973 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13974 ibfd);
143d77c5 13975 ok = TRUE;
b49e97c9
TS
13976 }
13977
143d77c5
EC
13978 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13979 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13980 if (! (new_flags & EF_MIPS_PIC))
13981 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13982
13983 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13984 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 13985
64543e1a
RS
13986 /* Compare the ISAs. */
13987 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 13988 {
64543e1a 13989 (*_bfd_error_handler)
d003868e
AM
13990 (_("%B: linking 32-bit code with 64-bit code"),
13991 ibfd);
64543e1a
RS
13992 ok = FALSE;
13993 }
13994 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13995 {
13996 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13997 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 13998 {
64543e1a
RS
13999 /* Copy the architecture info from IBFD to OBFD. Also copy
14000 the 32-bit flag (if set) so that we continue to recognise
14001 OBFD as a 32-bit binary. */
14002 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14003 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14004 elf_elfheader (obfd)->e_flags
14005 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14006
14007 /* Copy across the ABI flags if OBFD doesn't use them
14008 and if that was what caused us to treat IBFD as 32-bit. */
14009 if ((old_flags & EF_MIPS_ABI) == 0
14010 && mips_32bit_flags_p (new_flags)
14011 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14012 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14013 }
14014 else
14015 {
64543e1a 14016 /* The ISAs aren't compatible. */
b49e97c9 14017 (*_bfd_error_handler)
d003868e
AM
14018 (_("%B: linking %s module with previous %s modules"),
14019 ibfd,
64543e1a
RS
14020 bfd_printable_name (ibfd),
14021 bfd_printable_name (obfd));
b34976b6 14022 ok = FALSE;
b49e97c9 14023 }
b49e97c9
TS
14024 }
14025
64543e1a
RS
14026 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14027 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14028
14029 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14030 does set EI_CLASS differently from any 32-bit ABI. */
14031 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14032 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14033 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14034 {
14035 /* Only error if both are set (to different values). */
14036 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14037 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14038 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14039 {
14040 (*_bfd_error_handler)
d003868e
AM
14041 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14042 ibfd,
b49e97c9
TS
14043 elf_mips_abi_name (ibfd),
14044 elf_mips_abi_name (obfd));
b34976b6 14045 ok = FALSE;
b49e97c9
TS
14046 }
14047 new_flags &= ~EF_MIPS_ABI;
14048 old_flags &= ~EF_MIPS_ABI;
14049 }
14050
df58fc94
RS
14051 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14052 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14053 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14054 {
df58fc94
RS
14055 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14056 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14057 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14058 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14059 int micro_mis = old_m16 && new_micro;
14060 int m16_mis = old_micro && new_m16;
14061
14062 if (m16_mis || micro_mis)
14063 {
14064 (*_bfd_error_handler)
14065 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14066 ibfd,
14067 m16_mis ? "MIPS16" : "microMIPS",
14068 m16_mis ? "microMIPS" : "MIPS16");
14069 ok = FALSE;
14070 }
14071
fb39dac1
RS
14072 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14073
14074 new_flags &= ~ EF_MIPS_ARCH_ASE;
14075 old_flags &= ~ EF_MIPS_ARCH_ASE;
14076 }
14077
b49e97c9
TS
14078 /* Warn about any other mismatches */
14079 if (new_flags != old_flags)
14080 {
14081 (*_bfd_error_handler)
d003868e
AM
14082 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14083 ibfd, (unsigned long) new_flags,
b49e97c9 14084 (unsigned long) old_flags);
b34976b6 14085 ok = FALSE;
b49e97c9
TS
14086 }
14087
14088 if (! ok)
14089 {
14090 bfd_set_error (bfd_error_bad_value);
b34976b6 14091 return FALSE;
b49e97c9
TS
14092 }
14093
b34976b6 14094 return TRUE;
b49e97c9
TS
14095}
14096
14097/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14098
b34976b6 14099bfd_boolean
9719ad41 14100_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14101{
14102 BFD_ASSERT (!elf_flags_init (abfd)
14103 || elf_elfheader (abfd)->e_flags == flags);
14104
14105 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14106 elf_flags_init (abfd) = TRUE;
14107 return TRUE;
b49e97c9
TS
14108}
14109
ad9563d6
CM
14110char *
14111_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14112{
14113 switch (dtag)
14114 {
14115 default: return "";
14116 case DT_MIPS_RLD_VERSION:
14117 return "MIPS_RLD_VERSION";
14118 case DT_MIPS_TIME_STAMP:
14119 return "MIPS_TIME_STAMP";
14120 case DT_MIPS_ICHECKSUM:
14121 return "MIPS_ICHECKSUM";
14122 case DT_MIPS_IVERSION:
14123 return "MIPS_IVERSION";
14124 case DT_MIPS_FLAGS:
14125 return "MIPS_FLAGS";
14126 case DT_MIPS_BASE_ADDRESS:
14127 return "MIPS_BASE_ADDRESS";
14128 case DT_MIPS_MSYM:
14129 return "MIPS_MSYM";
14130 case DT_MIPS_CONFLICT:
14131 return "MIPS_CONFLICT";
14132 case DT_MIPS_LIBLIST:
14133 return "MIPS_LIBLIST";
14134 case DT_MIPS_LOCAL_GOTNO:
14135 return "MIPS_LOCAL_GOTNO";
14136 case DT_MIPS_CONFLICTNO:
14137 return "MIPS_CONFLICTNO";
14138 case DT_MIPS_LIBLISTNO:
14139 return "MIPS_LIBLISTNO";
14140 case DT_MIPS_SYMTABNO:
14141 return "MIPS_SYMTABNO";
14142 case DT_MIPS_UNREFEXTNO:
14143 return "MIPS_UNREFEXTNO";
14144 case DT_MIPS_GOTSYM:
14145 return "MIPS_GOTSYM";
14146 case DT_MIPS_HIPAGENO:
14147 return "MIPS_HIPAGENO";
14148 case DT_MIPS_RLD_MAP:
14149 return "MIPS_RLD_MAP";
14150 case DT_MIPS_DELTA_CLASS:
14151 return "MIPS_DELTA_CLASS";
14152 case DT_MIPS_DELTA_CLASS_NO:
14153 return "MIPS_DELTA_CLASS_NO";
14154 case DT_MIPS_DELTA_INSTANCE:
14155 return "MIPS_DELTA_INSTANCE";
14156 case DT_MIPS_DELTA_INSTANCE_NO:
14157 return "MIPS_DELTA_INSTANCE_NO";
14158 case DT_MIPS_DELTA_RELOC:
14159 return "MIPS_DELTA_RELOC";
14160 case DT_MIPS_DELTA_RELOC_NO:
14161 return "MIPS_DELTA_RELOC_NO";
14162 case DT_MIPS_DELTA_SYM:
14163 return "MIPS_DELTA_SYM";
14164 case DT_MIPS_DELTA_SYM_NO:
14165 return "MIPS_DELTA_SYM_NO";
14166 case DT_MIPS_DELTA_CLASSSYM:
14167 return "MIPS_DELTA_CLASSSYM";
14168 case DT_MIPS_DELTA_CLASSSYM_NO:
14169 return "MIPS_DELTA_CLASSSYM_NO";
14170 case DT_MIPS_CXX_FLAGS:
14171 return "MIPS_CXX_FLAGS";
14172 case DT_MIPS_PIXIE_INIT:
14173 return "MIPS_PIXIE_INIT";
14174 case DT_MIPS_SYMBOL_LIB:
14175 return "MIPS_SYMBOL_LIB";
14176 case DT_MIPS_LOCALPAGE_GOTIDX:
14177 return "MIPS_LOCALPAGE_GOTIDX";
14178 case DT_MIPS_LOCAL_GOTIDX:
14179 return "MIPS_LOCAL_GOTIDX";
14180 case DT_MIPS_HIDDEN_GOTIDX:
14181 return "MIPS_HIDDEN_GOTIDX";
14182 case DT_MIPS_PROTECTED_GOTIDX:
14183 return "MIPS_PROTECTED_GOT_IDX";
14184 case DT_MIPS_OPTIONS:
14185 return "MIPS_OPTIONS";
14186 case DT_MIPS_INTERFACE:
14187 return "MIPS_INTERFACE";
14188 case DT_MIPS_DYNSTR_ALIGN:
14189 return "DT_MIPS_DYNSTR_ALIGN";
14190 case DT_MIPS_INTERFACE_SIZE:
14191 return "DT_MIPS_INTERFACE_SIZE";
14192 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14193 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14194 case DT_MIPS_PERF_SUFFIX:
14195 return "DT_MIPS_PERF_SUFFIX";
14196 case DT_MIPS_COMPACT_SIZE:
14197 return "DT_MIPS_COMPACT_SIZE";
14198 case DT_MIPS_GP_VALUE:
14199 return "DT_MIPS_GP_VALUE";
14200 case DT_MIPS_AUX_DYNAMIC:
14201 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14202 case DT_MIPS_PLTGOT:
14203 return "DT_MIPS_PLTGOT";
14204 case DT_MIPS_RWPLT:
14205 return "DT_MIPS_RWPLT";
ad9563d6
CM
14206 }
14207}
14208
b34976b6 14209bfd_boolean
9719ad41 14210_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14211{
9719ad41 14212 FILE *file = ptr;
b49e97c9
TS
14213
14214 BFD_ASSERT (abfd != NULL && ptr != NULL);
14215
14216 /* Print normal ELF private data. */
14217 _bfd_elf_print_private_bfd_data (abfd, ptr);
14218
14219 /* xgettext:c-format */
14220 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14221
14222 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14223 fprintf (file, _(" [abi=O32]"));
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14225 fprintf (file, _(" [abi=O64]"));
14226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14227 fprintf (file, _(" [abi=EABI32]"));
14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14229 fprintf (file, _(" [abi=EABI64]"));
14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14231 fprintf (file, _(" [abi unknown]"));
14232 else if (ABI_N32_P (abfd))
14233 fprintf (file, _(" [abi=N32]"));
14234 else if (ABI_64_P (abfd))
14235 fprintf (file, _(" [abi=64]"));
14236 else
14237 fprintf (file, _(" [no abi set]"));
14238
14239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14240 fprintf (file, " [mips1]");
b49e97c9 14241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14242 fprintf (file, " [mips2]");
b49e97c9 14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14244 fprintf (file, " [mips3]");
b49e97c9 14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14246 fprintf (file, " [mips4]");
b49e97c9 14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14248 fprintf (file, " [mips5]");
b49e97c9 14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14250 fprintf (file, " [mips32]");
b49e97c9 14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14252 fprintf (file, " [mips64]");
af7ee8bf 14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14254 fprintf (file, " [mips32r2]");
5f74bc13 14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14256 fprintf (file, " [mips64r2]");
b49e97c9
TS
14257 else
14258 fprintf (file, _(" [unknown ISA]"));
14259
40d32fc6 14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14261 fprintf (file, " [mdmx]");
40d32fc6
CD
14262
14263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14264 fprintf (file, " [mips16]");
40d32fc6 14265
df58fc94
RS
14266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14267 fprintf (file, " [micromips]");
14268
b49e97c9 14269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14270 fprintf (file, " [32bitmode]");
b49e97c9
TS
14271 else
14272 fprintf (file, _(" [not 32bitmode]"));
14273
c0e3f241 14274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14275 fprintf (file, " [noreorder]");
c0e3f241
CD
14276
14277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14278 fprintf (file, " [PIC]");
c0e3f241
CD
14279
14280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14281 fprintf (file, " [CPIC]");
c0e3f241
CD
14282
14283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14284 fprintf (file, " [XGOT]");
c0e3f241
CD
14285
14286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14287 fprintf (file, " [UCODE]");
c0e3f241 14288
b49e97c9
TS
14289 fputc ('\n', file);
14290
b34976b6 14291 return TRUE;
b49e97c9 14292}
2f89ff8d 14293
b35d266b 14294const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14295{
0112cd26
NC
14296 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14297 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14298 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14299 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14300 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14301 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14302 { NULL, 0, 0, 0, 0 }
2f89ff8d 14303};
5e2b0d47 14304
8992f0d7
TS
14305/* Merge non visibility st_other attributes. Ensure that the
14306 STO_OPTIONAL flag is copied into h->other, even if this is not a
14307 definiton of the symbol. */
5e2b0d47
NC
14308void
14309_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14310 const Elf_Internal_Sym *isym,
14311 bfd_boolean definition,
14312 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14313{
8992f0d7
TS
14314 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14315 {
14316 unsigned char other;
14317
14318 other = (definition ? isym->st_other : h->other);
14319 other &= ~ELF_ST_VISIBILITY (-1);
14320 h->other = other | ELF_ST_VISIBILITY (h->other);
14321 }
14322
14323 if (!definition
5e2b0d47
NC
14324 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14325 h->other |= STO_OPTIONAL;
14326}
12ac1cf5
NC
14327
14328/* Decide whether an undefined symbol is special and can be ignored.
14329 This is the case for OPTIONAL symbols on IRIX. */
14330bfd_boolean
14331_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14332{
14333 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14334}
e0764319
NC
14335
14336bfd_boolean
14337_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14338{
14339 return (sym->st_shndx == SHN_COMMON
14340 || sym->st_shndx == SHN_MIPS_ACOMMON
14341 || sym->st_shndx == SHN_MIPS_SCOMMON);
14342}
861fb55a
DJ
14343
14344/* Return address for Ith PLT stub in section PLT, for relocation REL
14345 or (bfd_vma) -1 if it should not be included. */
14346
14347bfd_vma
14348_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14349 const arelent *rel ATTRIBUTE_UNUSED)
14350{
14351 return (plt->vma
14352 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14353 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14354}
14355
14356void
14357_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14358{
14359 struct mips_elf_link_hash_table *htab;
14360 Elf_Internal_Ehdr *i_ehdrp;
14361
14362 i_ehdrp = elf_elfheader (abfd);
14363 if (link_info)
14364 {
14365 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14366 BFD_ASSERT (htab != NULL);
14367
861fb55a
DJ
14368 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14369 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14370 }
14371}
This page took 1.777199 seconds and 4 git commands to generate.