* elf-bfd.h (elf_backend_data): Add elf_backend_eh_frame_address_size.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
728b2f21
ILT
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
3355 if (h->root.root.type != bfd_link_hash_undefweak)
3356 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 3357 }
b49e97c9
TS
3358 value &= howto->dst_mask;
3359 break;
3360
3361 case R_MIPS_HI16:
3362 if (!gp_disp_p)
3363 {
3364 value = mips_elf_high (addend + symbol);
3365 value &= howto->dst_mask;
3366 }
3367 else
3368 {
3369 value = mips_elf_high (addend + gp - p);
3370 overflowed_p = mips_elf_overflow_p (value, 16);
3371 }
3372 break;
3373
3374 case R_MIPS_LO16:
3375 if (!gp_disp_p)
3376 value = (symbol + addend) & howto->dst_mask;
3377 else
3378 {
3379 value = addend + gp - p + 4;
3380 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3381 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3382 _gp_disp are normally generated from the .cpload
3383 pseudo-op. It generates code that normally looks like
3384 this:
3385
3386 lui $gp,%hi(_gp_disp)
3387 addiu $gp,$gp,%lo(_gp_disp)
3388 addu $gp,$gp,$t9
3389
3390 Here $t9 holds the address of the function being called,
3391 as required by the MIPS ELF ABI. The R_MIPS_LO16
3392 relocation can easily overflow in this situation, but the
3393 R_MIPS_HI16 relocation will handle the overflow.
3394 Therefore, we consider this a bug in the MIPS ABI, and do
3395 not check for overflow here. */
3396 }
3397 break;
3398
3399 case R_MIPS_LITERAL:
3400 /* Because we don't merge literal sections, we can handle this
3401 just like R_MIPS_GPREL16. In the long run, we should merge
3402 shared literals, and then we will need to additional work
3403 here. */
3404
3405 /* Fall through. */
3406
3407 case R_MIPS16_GPREL:
3408 /* The R_MIPS16_GPREL performs the same calculation as
3409 R_MIPS_GPREL16, but stores the relocated bits in a different
3410 order. We don't need to do anything special here; the
3411 differences are handled in mips_elf_perform_relocation. */
3412 case R_MIPS_GPREL16:
bce03d3d
AO
3413 /* Only sign-extend the addend if it was extracted from the
3414 instruction. If the addend was separate, leave it alone,
3415 otherwise we may lose significant bits. */
3416 if (howto->partial_inplace)
a7ebbfdf 3417 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3418 value = symbol + addend - gp;
3419 /* If the symbol was local, any earlier relocatable links will
3420 have adjusted its addend with the gp offset, so compensate
3421 for that now. Don't do it for symbols forced local in this
3422 link, though, since they won't have had the gp offset applied
3423 to them before. */
3424 if (was_local_p)
3425 value += gp0;
b49e97c9
TS
3426 overflowed_p = mips_elf_overflow_p (value, 16);
3427 break;
3428
3429 case R_MIPS_GOT16:
3430 case R_MIPS_CALL16:
3431 if (local_p)
3432 {
b34976b6 3433 bfd_boolean forced;
b49e97c9
TS
3434
3435 /* The special case is when the symbol is forced to be local. We
3436 need the full address in the GOT since no R_MIPS_LO16 relocation
3437 follows. */
3438 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3439 local_sections, FALSE);
f4416af6
AO
3440 value = mips_elf_got16_entry (abfd, input_bfd, info,
3441 symbol + addend, forced);
b49e97c9
TS
3442 if (value == MINUS_ONE)
3443 return bfd_reloc_outofrange;
3444 value
3445 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3446 abfd, input_bfd, value);
b49e97c9
TS
3447 overflowed_p = mips_elf_overflow_p (value, 16);
3448 break;
3449 }
3450
3451 /* Fall through. */
3452
3453 case R_MIPS_GOT_DISP:
0fdc1bf1 3454 got_disp:
b49e97c9
TS
3455 value = g;
3456 overflowed_p = mips_elf_overflow_p (value, 16);
3457 break;
3458
3459 case R_MIPS_GPREL32:
bce03d3d
AO
3460 value = (addend + symbol + gp0 - gp);
3461 if (!save_addend)
3462 value &= howto->dst_mask;
b49e97c9
TS
3463 break;
3464
3465 case R_MIPS_PC16:
a7ebbfdf 3466 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3467 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3468 break;
3469
3470 case R_MIPS_GOT_HI16:
3471 case R_MIPS_CALL_HI16:
3472 /* We're allowed to handle these two relocations identically.
3473 The dynamic linker is allowed to handle the CALL relocations
3474 differently by creating a lazy evaluation stub. */
3475 value = g;
3476 value = mips_elf_high (value);
3477 value &= howto->dst_mask;
3478 break;
3479
3480 case R_MIPS_GOT_LO16:
3481 case R_MIPS_CALL_LO16:
3482 value = g & howto->dst_mask;
3483 break;
3484
3485 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3486 /* GOT_PAGE relocations that reference non-local symbols decay
3487 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3488 0. */
93a2b7ae 3489 if (! local_p)
0fdc1bf1 3490 goto got_disp;
f4416af6 3491 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3492 if (value == MINUS_ONE)
3493 return bfd_reloc_outofrange;
3494 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3495 abfd, input_bfd, value);
b49e97c9
TS
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_OFST:
93a2b7ae 3500 if (local_p)
0fdc1bf1
AO
3501 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3502 else
3503 value = addend;
b49e97c9
TS
3504 overflowed_p = mips_elf_overflow_p (value, 16);
3505 break;
3506
3507 case R_MIPS_SUB:
3508 value = symbol - addend;
3509 value &= howto->dst_mask;
3510 break;
3511
3512 case R_MIPS_HIGHER:
3513 value = mips_elf_higher (addend + symbol);
3514 value &= howto->dst_mask;
3515 break;
3516
3517 case R_MIPS_HIGHEST:
3518 value = mips_elf_highest (addend + symbol);
3519 value &= howto->dst_mask;
3520 break;
3521
3522 case R_MIPS_SCN_DISP:
3523 value = symbol + addend - sec->output_offset;
3524 value &= howto->dst_mask;
3525 break;
3526
b49e97c9 3527 case R_MIPS_JALR:
1367d393
ILT
3528 /* This relocation is only a hint. In some cases, we optimize
3529 it into a bal instruction. But we don't try to optimize
3530 branches to the PLT; that will wind up wasting time. */
3531 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3532 return bfd_reloc_continue;
3533 value = symbol + addend;
3534 break;
b49e97c9 3535
1367d393 3536 case R_MIPS_PJUMP:
b49e97c9
TS
3537 case R_MIPS_GNU_VTINHERIT:
3538 case R_MIPS_GNU_VTENTRY:
3539 /* We don't do anything with these at present. */
3540 return bfd_reloc_continue;
3541
3542 default:
3543 /* An unrecognized relocation type. */
3544 return bfd_reloc_notsupported;
3545 }
3546
3547 /* Store the VALUE for our caller. */
3548 *valuep = value;
3549 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3550}
3551
3552/* Obtain the field relocated by RELOCATION. */
3553
3554static bfd_vma
9719ad41
RS
3555mips_elf_obtain_contents (reloc_howto_type *howto,
3556 const Elf_Internal_Rela *relocation,
3557 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3558{
3559 bfd_vma x;
3560 bfd_byte *location = contents + relocation->r_offset;
3561
3562 /* Obtain the bytes. */
3563 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3564
3565 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3566 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3567 && bfd_little_endian (input_bfd))
3568 /* The two 16-bit words will be reversed on a little-endian system.
3569 See mips_elf_perform_relocation for more details. */
3570 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3571
3572 return x;
3573}
3574
3575/* It has been determined that the result of the RELOCATION is the
3576 VALUE. Use HOWTO to place VALUE into the output file at the
3577 appropriate position. The SECTION is the section to which the
b34976b6 3578 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3579 for the relocation must be either JAL or JALX, and it is
3580 unconditionally converted to JALX.
3581
b34976b6 3582 Returns FALSE if anything goes wrong. */
b49e97c9 3583
b34976b6 3584static bfd_boolean
9719ad41
RS
3585mips_elf_perform_relocation (struct bfd_link_info *info,
3586 reloc_howto_type *howto,
3587 const Elf_Internal_Rela *relocation,
3588 bfd_vma value, bfd *input_bfd,
3589 asection *input_section, bfd_byte *contents,
3590 bfd_boolean require_jalx)
b49e97c9
TS
3591{
3592 bfd_vma x;
3593 bfd_byte *location;
3594 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3595
3596 /* Figure out where the relocation is occurring. */
3597 location = contents + relocation->r_offset;
3598
3599 /* Obtain the current value. */
3600 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3601
3602 /* Clear the field we are setting. */
3603 x &= ~howto->dst_mask;
3604
3605 /* If this is the R_MIPS16_26 relocation, we must store the
3606 value in a funny way. */
3607 if (r_type == R_MIPS16_26)
3608 {
3609 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3610 Most mips16 instructions are 16 bits, but these instructions
3611 are 32 bits.
3612
3613 The format of these instructions is:
3614
3615 +--------------+--------------------------------+
3616 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3617 +--------------+--------------------------------+
3618 ! Immediate 15:0 !
3619 +-----------------------------------------------+
3620
3621 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3622 Note that the immediate value in the first word is swapped.
3623
1049f94e 3624 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3625 handled mostly like R_MIPS_26. In particular, the addend is
3626 stored as a straight 26-bit value in a 32-bit instruction.
3627 (gas makes life simpler for itself by never adjusting a
3628 R_MIPS16_26 reloc to be against a section, so the addend is
3629 always zero). However, the 32 bit instruction is stored as 2
3630 16-bit values, rather than a single 32-bit value. In a
3631 big-endian file, the result is the same; in a little-endian
3632 file, the two 16-bit halves of the 32 bit value are swapped.
3633 This is so that a disassembler can recognize the jal
3634 instruction.
3635
3636 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3637 instruction stored as two 16-bit values. The addend A is the
3638 contents of the targ26 field. The calculation is the same as
3639 R_MIPS_26. When storing the calculated value, reorder the
3640 immediate value as shown above, and don't forget to store the
3641 value as two 16-bit values.
3642
3643 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3644 defined as
3645
3646 big-endian:
3647 +--------+----------------------+
3648 | | |
3649 | | targ26-16 |
3650 |31 26|25 0|
3651 +--------+----------------------+
3652
3653 little-endian:
3654 +----------+------+-------------+
3655 | | | |
3656 | sub1 | | sub2 |
3657 |0 9|10 15|16 31|
3658 +----------+--------------------+
3659 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3660 ((sub1 << 16) | sub2)).
3661
1049f94e 3662 When producing a relocatable object file, the calculation is
b49e97c9
TS
3663 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3664 When producing a fully linked file, the calculation is
3665 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3666 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3667
1049f94e 3668 if (!info->relocatable)
b49e97c9
TS
3669 /* Shuffle the bits according to the formula above. */
3670 value = (((value & 0x1f0000) << 5)
3671 | ((value & 0x3e00000) >> 5)
3672 | (value & 0xffff));
3673 }
3674 else if (r_type == R_MIPS16_GPREL)
3675 {
3676 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3677 mode. A typical instruction will have a format like this:
3678
3679 +--------------+--------------------------------+
3680 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3681 +--------------+--------------------------------+
3682 ! Major ! rx ! ry ! Imm 4:0 !
3683 +--------------+--------------------------------+
3684
3685 EXTEND is the five bit value 11110. Major is the instruction
3686 opcode.
3687
3688 This is handled exactly like R_MIPS_GPREL16, except that the
3689 addend is retrieved and stored as shown in this diagram; that
3690 is, the Imm fields above replace the V-rel16 field.
3691
3692 All we need to do here is shuffle the bits appropriately. As
3693 above, the two 16-bit halves must be swapped on a
3694 little-endian system. */
3695 value = (((value & 0x7e0) << 16)
3696 | ((value & 0xf800) << 5)
3697 | (value & 0x1f));
3698 }
3699
3700 /* Set the field. */
3701 x |= (value & howto->dst_mask);
3702
3703 /* If required, turn JAL into JALX. */
3704 if (require_jalx)
3705 {
b34976b6 3706 bfd_boolean ok;
b49e97c9
TS
3707 bfd_vma opcode = x >> 26;
3708 bfd_vma jalx_opcode;
3709
3710 /* Check to see if the opcode is already JAL or JALX. */
3711 if (r_type == R_MIPS16_26)
3712 {
3713 ok = ((opcode == 0x6) || (opcode == 0x7));
3714 jalx_opcode = 0x7;
3715 }
3716 else
3717 {
3718 ok = ((opcode == 0x3) || (opcode == 0x1d));
3719 jalx_opcode = 0x1d;
3720 }
3721
3722 /* If the opcode is not JAL or JALX, there's a problem. */
3723 if (!ok)
3724 {
3725 (*_bfd_error_handler)
d003868e
AM
3726 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3727 input_bfd,
3728 input_section,
b49e97c9
TS
3729 (unsigned long) relocation->r_offset);
3730 bfd_set_error (bfd_error_bad_value);
b34976b6 3731 return FALSE;
b49e97c9
TS
3732 }
3733
3734 /* Make this the JALX opcode. */
3735 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3736 }
3737
1367d393
ILT
3738 /* On the RM9000, bal is faster than jal, because bal uses branch
3739 prediction hardware. If we are linking for the RM9000, and we
3740 see jal, and bal fits, use it instead. Note that this
3741 transformation should be safe for all architectures. */
3742 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3743 && !info->relocatable
3744 && !require_jalx
3745 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3746 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3747 {
3748 bfd_vma addr;
3749 bfd_vma dest;
3750 bfd_signed_vma off;
3751
3752 addr = (input_section->output_section->vma
3753 + input_section->output_offset
3754 + relocation->r_offset
3755 + 4);
3756 if (r_type == R_MIPS_26)
3757 dest = (value << 2) | ((addr >> 28) << 28);
3758 else
3759 dest = value;
3760 off = dest - addr;
3761 if (off <= 0x1ffff && off >= -0x20000)
3762 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3763 }
3764
b49e97c9
TS
3765 /* Swap the high- and low-order 16 bits on little-endian systems
3766 when doing a MIPS16 relocation. */
3767 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3768 && bfd_little_endian (input_bfd))
3769 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3770
3771 /* Put the value into the output. */
3772 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3773 return TRUE;
b49e97c9
TS
3774}
3775
b34976b6 3776/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3777
b34976b6 3778static bfd_boolean
9719ad41 3779mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3780{
3781 const char *name = bfd_get_section_name (abfd, section);
3782
3783 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3784 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3785 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3786}
3787\f
3788/* Add room for N relocations to the .rel.dyn section in ABFD. */
3789
3790static void
9719ad41 3791mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3792{
3793 asection *s;
3794
f4416af6 3795 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3796 BFD_ASSERT (s != NULL);
3797
eea6121a 3798 if (s->size == 0)
b49e97c9
TS
3799 {
3800 /* Make room for a null element. */
eea6121a 3801 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3802 ++s->reloc_count;
3803 }
eea6121a 3804 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3805}
3806
3807/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3808 is the original relocation, which is now being transformed into a
3809 dynamic relocation. The ADDENDP is adjusted if necessary; the
3810 caller should store the result in place of the original addend. */
3811
b34976b6 3812static bfd_boolean
9719ad41
RS
3813mips_elf_create_dynamic_relocation (bfd *output_bfd,
3814 struct bfd_link_info *info,
3815 const Elf_Internal_Rela *rel,
3816 struct mips_elf_link_hash_entry *h,
3817 asection *sec, bfd_vma symbol,
3818 bfd_vma *addendp, asection *input_section)
b49e97c9 3819{
947216bf 3820 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3821 asection *sreloc;
3822 bfd *dynobj;
3823 int r_type;
5d41f0b6
RS
3824 long indx;
3825 bfd_boolean defined_p;
b49e97c9
TS
3826
3827 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3828 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3829 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3830 BFD_ASSERT (sreloc != NULL);
3831 BFD_ASSERT (sreloc->contents != NULL);
3832 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3833 < sreloc->size);
b49e97c9 3834
b49e97c9
TS
3835 outrel[0].r_offset =
3836 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3837 outrel[1].r_offset =
3838 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3839 outrel[2].r_offset =
3840 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3841
3842#if 0
3843 /* We begin by assuming that the offset for the dynamic relocation
3844 is the same as for the original relocation. We'll adjust this
3845 later to reflect the correct output offsets. */
a7ebbfdf 3846 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3847 {
3848 outrel[1].r_offset = rel[1].r_offset;
3849 outrel[2].r_offset = rel[2].r_offset;
3850 }
3851 else
3852 {
3853 /* Except that in a stab section things are more complex.
3854 Because we compress stab information, the offset given in the
3855 relocation may not be the one we want; we must let the stabs
3856 machinery tell us the offset. */
3857 outrel[1].r_offset = outrel[0].r_offset;
3858 outrel[2].r_offset = outrel[0].r_offset;
3859 /* If we didn't need the relocation at all, this value will be
3860 -1. */
c5ae1840 3861 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3862 skip = TRUE;
b49e97c9
TS
3863 }
3864#endif
3865
c5ae1840 3866 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3867 /* The relocation field has been deleted. */
5d41f0b6
RS
3868 return TRUE;
3869
3870 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3871 {
3872 /* The relocation field has been converted into a relative value of
3873 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3874 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3875 *addendp += symbol;
5d41f0b6 3876 return TRUE;
0d591ff7 3877 }
b49e97c9 3878
5d41f0b6
RS
3879 /* We must now calculate the dynamic symbol table index to use
3880 in the relocation. */
3881 if (h != NULL
3882 && (! info->symbolic || !h->root.def_regular)
3883 /* h->root.dynindx may be -1 if this symbol was marked to
3884 become local. */
3885 && h->root.dynindx != -1)
3886 {
3887 indx = h->root.dynindx;
3888 if (SGI_COMPAT (output_bfd))
3889 defined_p = h->root.def_regular;
3890 else
3891 /* ??? glibc's ld.so just adds the final GOT entry to the
3892 relocation field. It therefore treats relocs against
3893 defined symbols in the same way as relocs against
3894 undefined symbols. */
3895 defined_p = FALSE;
3896 }
b49e97c9
TS
3897 else
3898 {
5d41f0b6
RS
3899 if (sec != NULL && bfd_is_abs_section (sec))
3900 indx = 0;
3901 else if (sec == NULL || sec->owner == NULL)
fdd07405 3902 {
5d41f0b6
RS
3903 bfd_set_error (bfd_error_bad_value);
3904 return FALSE;
b49e97c9
TS
3905 }
3906 else
3907 {
5d41f0b6
RS
3908 indx = elf_section_data (sec->output_section)->dynindx;
3909 if (indx == 0)
3910 abort ();
b49e97c9
TS
3911 }
3912
5d41f0b6
RS
3913 /* Instead of generating a relocation using the section
3914 symbol, we may as well make it a fully relative
3915 relocation. We want to avoid generating relocations to
3916 local symbols because we used to generate them
3917 incorrectly, without adding the original symbol value,
3918 which is mandated by the ABI for section symbols. In
3919 order to give dynamic loaders and applications time to
3920 phase out the incorrect use, we refrain from emitting
3921 section-relative relocations. It's not like they're
3922 useful, after all. This should be a bit more efficient
3923 as well. */
3924 /* ??? Although this behavior is compatible with glibc's ld.so,
3925 the ABI says that relocations against STN_UNDEF should have
3926 a symbol value of 0. Irix rld honors this, so relocations
3927 against STN_UNDEF have no effect. */
3928 if (!SGI_COMPAT (output_bfd))
3929 indx = 0;
3930 defined_p = TRUE;
b49e97c9
TS
3931 }
3932
5d41f0b6
RS
3933 /* If the relocation was previously an absolute relocation and
3934 this symbol will not be referred to by the relocation, we must
3935 adjust it by the value we give it in the dynamic symbol table.
3936 Otherwise leave the job up to the dynamic linker. */
3937 if (defined_p && r_type != R_MIPS_REL32)
3938 *addendp += symbol;
3939
3940 /* The relocation is always an REL32 relocation because we don't
3941 know where the shared library will wind up at load-time. */
3942 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3943 R_MIPS_REL32);
3944 /* For strict adherence to the ABI specification, we should
3945 generate a R_MIPS_64 relocation record by itself before the
3946 _REL32/_64 record as well, such that the addend is read in as
3947 a 64-bit value (REL32 is a 32-bit relocation, after all).
3948 However, since none of the existing ELF64 MIPS dynamic
3949 loaders seems to care, we don't waste space with these
3950 artificial relocations. If this turns out to not be true,
3951 mips_elf_allocate_dynamic_relocation() should be tweaked so
3952 as to make room for a pair of dynamic relocations per
3953 invocation if ABI_64_P, and here we should generate an
3954 additional relocation record with R_MIPS_64 by itself for a
3955 NULL symbol before this relocation record. */
3956 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3957 ABI_64_P (output_bfd)
3958 ? R_MIPS_64
3959 : R_MIPS_NONE);
3960 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3961
3962 /* Adjust the output offset of the relocation to reference the
3963 correct location in the output file. */
3964 outrel[0].r_offset += (input_section->output_section->vma
3965 + input_section->output_offset);
3966 outrel[1].r_offset += (input_section->output_section->vma
3967 + input_section->output_offset);
3968 outrel[2].r_offset += (input_section->output_section->vma
3969 + input_section->output_offset);
3970
b49e97c9
TS
3971 /* Put the relocation back out. We have to use the special
3972 relocation outputter in the 64-bit case since the 64-bit
3973 relocation format is non-standard. */
3974 if (ABI_64_P (output_bfd))
3975 {
3976 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3977 (output_bfd, &outrel[0],
3978 (sreloc->contents
3979 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3980 }
3981 else
947216bf
AM
3982 bfd_elf32_swap_reloc_out
3983 (output_bfd, &outrel[0],
3984 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3985
b49e97c9
TS
3986 /* We've now added another relocation. */
3987 ++sreloc->reloc_count;
3988
3989 /* Make sure the output section is writable. The dynamic linker
3990 will be writing to it. */
3991 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3992 |= SHF_WRITE;
3993
3994 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3995 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3996 {
3997 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3998 bfd_byte *cr;
3999
4000 if (scpt)
4001 {
4002 Elf32_crinfo cptrel;
4003
4004 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4005 cptrel.vaddr = (rel->r_offset
4006 + input_section->output_section->vma
4007 + input_section->output_offset);
4008 if (r_type == R_MIPS_REL32)
4009 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4010 else
4011 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4012 mips_elf_set_cr_dist2to (cptrel, 0);
4013 cptrel.konst = *addendp;
4014
4015 cr = (scpt->contents
4016 + sizeof (Elf32_External_compact_rel));
4017 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4018 ((Elf32_External_crinfo *) cr
4019 + scpt->reloc_count));
4020 ++scpt->reloc_count;
4021 }
4022 }
4023
b34976b6 4024 return TRUE;
b49e97c9
TS
4025}
4026\f
b49e97c9
TS
4027/* Return the MACH for a MIPS e_flags value. */
4028
4029unsigned long
9719ad41 4030_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4031{
4032 switch (flags & EF_MIPS_MACH)
4033 {
4034 case E_MIPS_MACH_3900:
4035 return bfd_mach_mips3900;
4036
4037 case E_MIPS_MACH_4010:
4038 return bfd_mach_mips4010;
4039
4040 case E_MIPS_MACH_4100:
4041 return bfd_mach_mips4100;
4042
4043 case E_MIPS_MACH_4111:
4044 return bfd_mach_mips4111;
4045
00707a0e
RS
4046 case E_MIPS_MACH_4120:
4047 return bfd_mach_mips4120;
4048
b49e97c9
TS
4049 case E_MIPS_MACH_4650:
4050 return bfd_mach_mips4650;
4051
00707a0e
RS
4052 case E_MIPS_MACH_5400:
4053 return bfd_mach_mips5400;
4054
4055 case E_MIPS_MACH_5500:
4056 return bfd_mach_mips5500;
4057
0d2e43ed
ILT
4058 case E_MIPS_MACH_9000:
4059 return bfd_mach_mips9000;
4060
b49e97c9
TS
4061 case E_MIPS_MACH_SB1:
4062 return bfd_mach_mips_sb1;
4063
4064 default:
4065 switch (flags & EF_MIPS_ARCH)
4066 {
4067 default:
4068 case E_MIPS_ARCH_1:
4069 return bfd_mach_mips3000;
4070 break;
4071
4072 case E_MIPS_ARCH_2:
4073 return bfd_mach_mips6000;
4074 break;
4075
4076 case E_MIPS_ARCH_3:
4077 return bfd_mach_mips4000;
4078 break;
4079
4080 case E_MIPS_ARCH_4:
4081 return bfd_mach_mips8000;
4082 break;
4083
4084 case E_MIPS_ARCH_5:
4085 return bfd_mach_mips5;
4086 break;
4087
4088 case E_MIPS_ARCH_32:
4089 return bfd_mach_mipsisa32;
4090 break;
4091
4092 case E_MIPS_ARCH_64:
4093 return bfd_mach_mipsisa64;
4094 break;
af7ee8bf
CD
4095
4096 case E_MIPS_ARCH_32R2:
4097 return bfd_mach_mipsisa32r2;
4098 break;
5f74bc13
CD
4099
4100 case E_MIPS_ARCH_64R2:
4101 return bfd_mach_mipsisa64r2;
4102 break;
b49e97c9
TS
4103 }
4104 }
4105
4106 return 0;
4107}
4108
4109/* Return printable name for ABI. */
4110
4111static INLINE char *
9719ad41 4112elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4113{
4114 flagword flags;
4115
4116 flags = elf_elfheader (abfd)->e_flags;
4117 switch (flags & EF_MIPS_ABI)
4118 {
4119 case 0:
4120 if (ABI_N32_P (abfd))
4121 return "N32";
4122 else if (ABI_64_P (abfd))
4123 return "64";
4124 else
4125 return "none";
4126 case E_MIPS_ABI_O32:
4127 return "O32";
4128 case E_MIPS_ABI_O64:
4129 return "O64";
4130 case E_MIPS_ABI_EABI32:
4131 return "EABI32";
4132 case E_MIPS_ABI_EABI64:
4133 return "EABI64";
4134 default:
4135 return "unknown abi";
4136 }
4137}
4138\f
4139/* MIPS ELF uses two common sections. One is the usual one, and the
4140 other is for small objects. All the small objects are kept
4141 together, and then referenced via the gp pointer, which yields
4142 faster assembler code. This is what we use for the small common
4143 section. This approach is copied from ecoff.c. */
4144static asection mips_elf_scom_section;
4145static asymbol mips_elf_scom_symbol;
4146static asymbol *mips_elf_scom_symbol_ptr;
4147
4148/* MIPS ELF also uses an acommon section, which represents an
4149 allocated common symbol which may be overridden by a
4150 definition in a shared library. */
4151static asection mips_elf_acom_section;
4152static asymbol mips_elf_acom_symbol;
4153static asymbol *mips_elf_acom_symbol_ptr;
4154
4155/* Handle the special MIPS section numbers that a symbol may use.
4156 This is used for both the 32-bit and the 64-bit ABI. */
4157
4158void
9719ad41 4159_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4160{
4161 elf_symbol_type *elfsym;
4162
4163 elfsym = (elf_symbol_type *) asym;
4164 switch (elfsym->internal_elf_sym.st_shndx)
4165 {
4166 case SHN_MIPS_ACOMMON:
4167 /* This section is used in a dynamically linked executable file.
4168 It is an allocated common section. The dynamic linker can
4169 either resolve these symbols to something in a shared
4170 library, or it can just leave them here. For our purposes,
4171 we can consider these symbols to be in a new section. */
4172 if (mips_elf_acom_section.name == NULL)
4173 {
4174 /* Initialize the acommon section. */
4175 mips_elf_acom_section.name = ".acommon";
4176 mips_elf_acom_section.flags = SEC_ALLOC;
4177 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4178 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4179 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4180 mips_elf_acom_symbol.name = ".acommon";
4181 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4182 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4183 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4184 }
4185 asym->section = &mips_elf_acom_section;
4186 break;
4187
4188 case SHN_COMMON:
4189 /* Common symbols less than the GP size are automatically
4190 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4191 if (asym->value > elf_gp_size (abfd)
4192 || IRIX_COMPAT (abfd) == ict_irix6)
4193 break;
4194 /* Fall through. */
4195 case SHN_MIPS_SCOMMON:
4196 if (mips_elf_scom_section.name == NULL)
4197 {
4198 /* Initialize the small common section. */
4199 mips_elf_scom_section.name = ".scommon";
4200 mips_elf_scom_section.flags = SEC_IS_COMMON;
4201 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4202 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4203 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4204 mips_elf_scom_symbol.name = ".scommon";
4205 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4206 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4207 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4208 }
4209 asym->section = &mips_elf_scom_section;
4210 asym->value = elfsym->internal_elf_sym.st_size;
4211 break;
4212
4213 case SHN_MIPS_SUNDEFINED:
4214 asym->section = bfd_und_section_ptr;
4215 break;
4216
b49e97c9 4217 case SHN_MIPS_TEXT:
00b4930b
TS
4218 {
4219 asection *section = bfd_get_section_by_name (abfd, ".text");
4220
4221 BFD_ASSERT (SGI_COMPAT (abfd));
4222 if (section != NULL)
4223 {
4224 asym->section = section;
4225 /* MIPS_TEXT is a bit special, the address is not an offset
4226 to the base of the .text section. So substract the section
4227 base address to make it an offset. */
4228 asym->value -= section->vma;
4229 }
4230 }
b49e97c9
TS
4231 break;
4232
4233 case SHN_MIPS_DATA:
00b4930b
TS
4234 {
4235 asection *section = bfd_get_section_by_name (abfd, ".data");
4236
4237 BFD_ASSERT (SGI_COMPAT (abfd));
4238 if (section != NULL)
4239 {
4240 asym->section = section;
4241 /* MIPS_DATA is a bit special, the address is not an offset
4242 to the base of the .data section. So substract the section
4243 base address to make it an offset. */
4244 asym->value -= section->vma;
4245 }
4246 }
b49e97c9 4247 break;
b49e97c9
TS
4248 }
4249}
4250\f
8c946ed5
RS
4251/* Implement elf_backend_eh_frame_address_size. This differs from
4252 the default in the way it handles EABI64.
4253
4254 EABI64 was originally specified as an LP64 ABI, and that is what
4255 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4256 historically accepted the combination of -mabi=eabi and -mlong32,
4257 and this ILP32 variation has become semi-official over time.
4258 Both forms use elf32 and have pointer-sized FDE addresses.
4259
4260 If an EABI object was generated by GCC 4.0 or above, it will have
4261 an empty .gcc_compiled_longXX section, where XX is the size of longs
4262 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4263 have no special marking to distinguish them from LP64 objects.
4264
4265 We don't want users of the official LP64 ABI to be punished for the
4266 existence of the ILP32 variant, but at the same time, we don't want
4267 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4268 We therefore take the following approach:
4269
4270 - If ABFD contains a .gcc_compiled_longXX section, use it to
4271 determine the pointer size.
4272
4273 - Otherwise check the type of the first relocation. Assume that
4274 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4275
4276 - Otherwise punt.
4277
4278 The second check is enough to detect LP64 objects generated by pre-4.0
4279 compilers because, in the kind of output generated by those compilers,
4280 the first relocation will be associated with either a CIE personality
4281 routine or an FDE start address. Furthermore, the compilers never
4282 used a special (non-pointer) encoding for this ABI.
4283
4284 Checking the relocation type should also be safe because there is no
4285 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4286 did so. */
4287
4288unsigned int
4289_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4290{
4291 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4292 return 8;
4293 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4294 {
4295 bfd_boolean long32_p, long64_p;
4296
4297 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4298 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4299 if (long32_p && long64_p)
4300 return 0;
4301 if (long32_p)
4302 return 4;
4303 if (long64_p)
4304 return 8;
4305
4306 if (sec->reloc_count > 0
4307 && elf_section_data (sec)->relocs != NULL
4308 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4309 == R_MIPS_64))
4310 return 8;
4311
4312 return 0;
4313 }
4314 return 4;
4315}
4316\f
174fd7f9
RS
4317/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4318 relocations against two unnamed section symbols to resolve to the
4319 same address. For example, if we have code like:
4320
4321 lw $4,%got_disp(.data)($gp)
4322 lw $25,%got_disp(.text)($gp)
4323 jalr $25
4324
4325 then the linker will resolve both relocations to .data and the program
4326 will jump there rather than to .text.
4327
4328 We can work around this problem by giving names to local section symbols.
4329 This is also what the MIPSpro tools do. */
4330
4331bfd_boolean
4332_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4333{
4334 return SGI_COMPAT (abfd);
4335}
4336\f
b49e97c9
TS
4337/* Work over a section just before writing it out. This routine is
4338 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4339 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4340 a better way. */
4341
b34976b6 4342bfd_boolean
9719ad41 4343_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4344{
4345 if (hdr->sh_type == SHT_MIPS_REGINFO
4346 && hdr->sh_size > 0)
4347 {
4348 bfd_byte buf[4];
4349
4350 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4351 BFD_ASSERT (hdr->contents == NULL);
4352
4353 if (bfd_seek (abfd,
4354 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4355 SEEK_SET) != 0)
b34976b6 4356 return FALSE;
b49e97c9 4357 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4358 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4359 return FALSE;
b49e97c9
TS
4360 }
4361
4362 if (hdr->sh_type == SHT_MIPS_OPTIONS
4363 && hdr->bfd_section != NULL
f0abc2a1
AM
4364 && mips_elf_section_data (hdr->bfd_section) != NULL
4365 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4366 {
4367 bfd_byte *contents, *l, *lend;
4368
f0abc2a1
AM
4369 /* We stored the section contents in the tdata field in the
4370 set_section_contents routine. We save the section contents
4371 so that we don't have to read them again.
b49e97c9
TS
4372 At this point we know that elf_gp is set, so we can look
4373 through the section contents to see if there is an
4374 ODK_REGINFO structure. */
4375
f0abc2a1 4376 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4377 l = contents;
4378 lend = contents + hdr->sh_size;
4379 while (l + sizeof (Elf_External_Options) <= lend)
4380 {
4381 Elf_Internal_Options intopt;
4382
4383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4384 &intopt);
4385 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4386 {
4387 bfd_byte buf[8];
4388
4389 if (bfd_seek (abfd,
4390 (hdr->sh_offset
4391 + (l - contents)
4392 + sizeof (Elf_External_Options)
4393 + (sizeof (Elf64_External_RegInfo) - 8)),
4394 SEEK_SET) != 0)
b34976b6 4395 return FALSE;
b49e97c9 4396 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4397 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4398 return FALSE;
b49e97c9
TS
4399 }
4400 else if (intopt.kind == ODK_REGINFO)
4401 {
4402 bfd_byte buf[4];
4403
4404 if (bfd_seek (abfd,
4405 (hdr->sh_offset
4406 + (l - contents)
4407 + sizeof (Elf_External_Options)
4408 + (sizeof (Elf32_External_RegInfo) - 4)),
4409 SEEK_SET) != 0)
b34976b6 4410 return FALSE;
b49e97c9 4411 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4412 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4413 return FALSE;
b49e97c9
TS
4414 }
4415 l += intopt.size;
4416 }
4417 }
4418
4419 if (hdr->bfd_section != NULL)
4420 {
4421 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4422
4423 if (strcmp (name, ".sdata") == 0
4424 || strcmp (name, ".lit8") == 0
4425 || strcmp (name, ".lit4") == 0)
4426 {
4427 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4428 hdr->sh_type = SHT_PROGBITS;
4429 }
4430 else if (strcmp (name, ".sbss") == 0)
4431 {
4432 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4433 hdr->sh_type = SHT_NOBITS;
4434 }
4435 else if (strcmp (name, ".srdata") == 0)
4436 {
4437 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4438 hdr->sh_type = SHT_PROGBITS;
4439 }
4440 else if (strcmp (name, ".compact_rel") == 0)
4441 {
4442 hdr->sh_flags = 0;
4443 hdr->sh_type = SHT_PROGBITS;
4444 }
4445 else if (strcmp (name, ".rtproc") == 0)
4446 {
4447 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4448 {
4449 unsigned int adjust;
4450
4451 adjust = hdr->sh_size % hdr->sh_addralign;
4452 if (adjust != 0)
4453 hdr->sh_size += hdr->sh_addralign - adjust;
4454 }
4455 }
4456 }
4457
b34976b6 4458 return TRUE;
b49e97c9
TS
4459}
4460
4461/* Handle a MIPS specific section when reading an object file. This
4462 is called when elfcode.h finds a section with an unknown type.
4463 This routine supports both the 32-bit and 64-bit ELF ABI.
4464
4465 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4466 how to. */
4467
b34976b6 4468bfd_boolean
9719ad41
RS
4469_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4470 const char *name)
b49e97c9
TS
4471{
4472 flagword flags = 0;
4473
4474 /* There ought to be a place to keep ELF backend specific flags, but
4475 at the moment there isn't one. We just keep track of the
4476 sections by their name, instead. Fortunately, the ABI gives
4477 suggested names for all the MIPS specific sections, so we will
4478 probably get away with this. */
4479 switch (hdr->sh_type)
4480 {
4481 case SHT_MIPS_LIBLIST:
4482 if (strcmp (name, ".liblist") != 0)
b34976b6 4483 return FALSE;
b49e97c9
TS
4484 break;
4485 case SHT_MIPS_MSYM:
4486 if (strcmp (name, ".msym") != 0)
b34976b6 4487 return FALSE;
b49e97c9
TS
4488 break;
4489 case SHT_MIPS_CONFLICT:
4490 if (strcmp (name, ".conflict") != 0)
b34976b6 4491 return FALSE;
b49e97c9
TS
4492 break;
4493 case SHT_MIPS_GPTAB:
4494 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4495 return FALSE;
b49e97c9
TS
4496 break;
4497 case SHT_MIPS_UCODE:
4498 if (strcmp (name, ".ucode") != 0)
b34976b6 4499 return FALSE;
b49e97c9
TS
4500 break;
4501 case SHT_MIPS_DEBUG:
4502 if (strcmp (name, ".mdebug") != 0)
b34976b6 4503 return FALSE;
b49e97c9
TS
4504 flags = SEC_DEBUGGING;
4505 break;
4506 case SHT_MIPS_REGINFO:
4507 if (strcmp (name, ".reginfo") != 0
4508 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4509 return FALSE;
b49e97c9
TS
4510 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4511 break;
4512 case SHT_MIPS_IFACE:
4513 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4514 return FALSE;
b49e97c9
TS
4515 break;
4516 case SHT_MIPS_CONTENT:
4517 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4518 return FALSE;
b49e97c9
TS
4519 break;
4520 case SHT_MIPS_OPTIONS:
4521 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4522 return FALSE;
b49e97c9
TS
4523 break;
4524 case SHT_MIPS_DWARF:
4525 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4526 return FALSE;
b49e97c9
TS
4527 break;
4528 case SHT_MIPS_SYMBOL_LIB:
4529 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4530 return FALSE;
b49e97c9
TS
4531 break;
4532 case SHT_MIPS_EVENTS:
4533 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4534 && strncmp (name, ".MIPS.post_rel",
4535 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4536 return FALSE;
b49e97c9
TS
4537 break;
4538 default:
b34976b6 4539 return FALSE;
b49e97c9
TS
4540 }
4541
4542 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4543 return FALSE;
b49e97c9
TS
4544
4545 if (flags)
4546 {
4547 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4548 (bfd_get_section_flags (abfd,
4549 hdr->bfd_section)
4550 | flags)))
b34976b6 4551 return FALSE;
b49e97c9
TS
4552 }
4553
4554 /* FIXME: We should record sh_info for a .gptab section. */
4555
4556 /* For a .reginfo section, set the gp value in the tdata information
4557 from the contents of this section. We need the gp value while
4558 processing relocs, so we just get it now. The .reginfo section
4559 is not used in the 64-bit MIPS ELF ABI. */
4560 if (hdr->sh_type == SHT_MIPS_REGINFO)
4561 {
4562 Elf32_External_RegInfo ext;
4563 Elf32_RegInfo s;
4564
9719ad41
RS
4565 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4566 &ext, 0, sizeof ext))
b34976b6 4567 return FALSE;
b49e97c9
TS
4568 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4569 elf_gp (abfd) = s.ri_gp_value;
4570 }
4571
4572 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4573 set the gp value based on what we find. We may see both
4574 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4575 they should agree. */
4576 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4577 {
4578 bfd_byte *contents, *l, *lend;
4579
9719ad41 4580 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4581 if (contents == NULL)
b34976b6 4582 return FALSE;
b49e97c9 4583 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4584 0, hdr->sh_size))
b49e97c9
TS
4585 {
4586 free (contents);
b34976b6 4587 return FALSE;
b49e97c9
TS
4588 }
4589 l = contents;
4590 lend = contents + hdr->sh_size;
4591 while (l + sizeof (Elf_External_Options) <= lend)
4592 {
4593 Elf_Internal_Options intopt;
4594
4595 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4596 &intopt);
4597 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4598 {
4599 Elf64_Internal_RegInfo intreg;
4600
4601 bfd_mips_elf64_swap_reginfo_in
4602 (abfd,
4603 ((Elf64_External_RegInfo *)
4604 (l + sizeof (Elf_External_Options))),
4605 &intreg);
4606 elf_gp (abfd) = intreg.ri_gp_value;
4607 }
4608 else if (intopt.kind == ODK_REGINFO)
4609 {
4610 Elf32_RegInfo intreg;
4611
4612 bfd_mips_elf32_swap_reginfo_in
4613 (abfd,
4614 ((Elf32_External_RegInfo *)
4615 (l + sizeof (Elf_External_Options))),
4616 &intreg);
4617 elf_gp (abfd) = intreg.ri_gp_value;
4618 }
4619 l += intopt.size;
4620 }
4621 free (contents);
4622 }
4623
b34976b6 4624 return TRUE;
b49e97c9
TS
4625}
4626
4627/* Set the correct type for a MIPS ELF section. We do this by the
4628 section name, which is a hack, but ought to work. This routine is
4629 used by both the 32-bit and the 64-bit ABI. */
4630
b34976b6 4631bfd_boolean
9719ad41 4632_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4633{
4634 register const char *name;
4635
4636 name = bfd_get_section_name (abfd, sec);
4637
4638 if (strcmp (name, ".liblist") == 0)
4639 {
4640 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4641 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4642 /* The sh_link field is set in final_write_processing. */
4643 }
4644 else if (strcmp (name, ".conflict") == 0)
4645 hdr->sh_type = SHT_MIPS_CONFLICT;
4646 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4647 {
4648 hdr->sh_type = SHT_MIPS_GPTAB;
4649 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4650 /* The sh_info field is set in final_write_processing. */
4651 }
4652 else if (strcmp (name, ".ucode") == 0)
4653 hdr->sh_type = SHT_MIPS_UCODE;
4654 else if (strcmp (name, ".mdebug") == 0)
4655 {
4656 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4657 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4658 entsize of 0. FIXME: Does this matter? */
4659 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4660 hdr->sh_entsize = 0;
4661 else
4662 hdr->sh_entsize = 1;
4663 }
4664 else if (strcmp (name, ".reginfo") == 0)
4665 {
4666 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4667 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4668 entsize of 0x18. FIXME: Does this matter? */
4669 if (SGI_COMPAT (abfd))
4670 {
4671 if ((abfd->flags & DYNAMIC) != 0)
4672 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4673 else
4674 hdr->sh_entsize = 1;
4675 }
4676 else
4677 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4678 }
4679 else if (SGI_COMPAT (abfd)
4680 && (strcmp (name, ".hash") == 0
4681 || strcmp (name, ".dynamic") == 0
4682 || strcmp (name, ".dynstr") == 0))
4683 {
4684 if (SGI_COMPAT (abfd))
4685 hdr->sh_entsize = 0;
4686#if 0
8dc1a139 4687 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4688 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4689#endif
4690 }
4691 else if (strcmp (name, ".got") == 0
4692 || strcmp (name, ".srdata") == 0
4693 || strcmp (name, ".sdata") == 0
4694 || strcmp (name, ".sbss") == 0
4695 || strcmp (name, ".lit4") == 0
4696 || strcmp (name, ".lit8") == 0)
4697 hdr->sh_flags |= SHF_MIPS_GPREL;
4698 else if (strcmp (name, ".MIPS.interfaces") == 0)
4699 {
4700 hdr->sh_type = SHT_MIPS_IFACE;
4701 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4702 }
4703 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4704 {
4705 hdr->sh_type = SHT_MIPS_CONTENT;
4706 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4707 /* The sh_info field is set in final_write_processing. */
4708 }
4709 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4710 {
4711 hdr->sh_type = SHT_MIPS_OPTIONS;
4712 hdr->sh_entsize = 1;
4713 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4714 }
4715 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4716 hdr->sh_type = SHT_MIPS_DWARF;
4717 else if (strcmp (name, ".MIPS.symlib") == 0)
4718 {
4719 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4720 /* The sh_link and sh_info fields are set in
4721 final_write_processing. */
4722 }
4723 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4724 || strncmp (name, ".MIPS.post_rel",
4725 sizeof ".MIPS.post_rel" - 1) == 0)
4726 {
4727 hdr->sh_type = SHT_MIPS_EVENTS;
4728 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4729 /* The sh_link field is set in final_write_processing. */
4730 }
4731 else if (strcmp (name, ".msym") == 0)
4732 {
4733 hdr->sh_type = SHT_MIPS_MSYM;
4734 hdr->sh_flags |= SHF_ALLOC;
4735 hdr->sh_entsize = 8;
4736 }
4737
7a79a000
TS
4738 /* The generic elf_fake_sections will set up REL_HDR using the default
4739 kind of relocations. We used to set up a second header for the
4740 non-default kind of relocations here, but only NewABI would use
4741 these, and the IRIX ld doesn't like resulting empty RELA sections.
4742 Thus we create those header only on demand now. */
b49e97c9 4743
b34976b6 4744 return TRUE;
b49e97c9
TS
4745}
4746
4747/* Given a BFD section, try to locate the corresponding ELF section
4748 index. This is used by both the 32-bit and the 64-bit ABI.
4749 Actually, it's not clear to me that the 64-bit ABI supports these,
4750 but for non-PIC objects we will certainly want support for at least
4751 the .scommon section. */
4752
b34976b6 4753bfd_boolean
9719ad41
RS
4754_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4755 asection *sec, int *retval)
b49e97c9
TS
4756{
4757 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4758 {
4759 *retval = SHN_MIPS_SCOMMON;
b34976b6 4760 return TRUE;
b49e97c9
TS
4761 }
4762 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4763 {
4764 *retval = SHN_MIPS_ACOMMON;
b34976b6 4765 return TRUE;
b49e97c9 4766 }
b34976b6 4767 return FALSE;
b49e97c9
TS
4768}
4769\f
4770/* Hook called by the linker routine which adds symbols from an object
4771 file. We must handle the special MIPS section numbers here. */
4772
b34976b6 4773bfd_boolean
9719ad41 4774_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4775 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4776 flagword *flagsp ATTRIBUTE_UNUSED,
4777 asection **secp, bfd_vma *valp)
b49e97c9
TS
4778{
4779 if (SGI_COMPAT (abfd)
4780 && (abfd->flags & DYNAMIC) != 0
4781 && strcmp (*namep, "_rld_new_interface") == 0)
4782 {
8dc1a139 4783 /* Skip IRIX5 rld entry name. */
b49e97c9 4784 *namep = NULL;
b34976b6 4785 return TRUE;
b49e97c9
TS
4786 }
4787
4788 switch (sym->st_shndx)
4789 {
4790 case SHN_COMMON:
4791 /* Common symbols less than the GP size are automatically
4792 treated as SHN_MIPS_SCOMMON symbols. */
4793 if (sym->st_size > elf_gp_size (abfd)
4794 || IRIX_COMPAT (abfd) == ict_irix6)
4795 break;
4796 /* Fall through. */
4797 case SHN_MIPS_SCOMMON:
4798 *secp = bfd_make_section_old_way (abfd, ".scommon");
4799 (*secp)->flags |= SEC_IS_COMMON;
4800 *valp = sym->st_size;
4801 break;
4802
4803 case SHN_MIPS_TEXT:
4804 /* This section is used in a shared object. */
4805 if (elf_tdata (abfd)->elf_text_section == NULL)
4806 {
4807 asymbol *elf_text_symbol;
4808 asection *elf_text_section;
4809 bfd_size_type amt = sizeof (asection);
4810
4811 elf_text_section = bfd_zalloc (abfd, amt);
4812 if (elf_text_section == NULL)
b34976b6 4813 return FALSE;
b49e97c9
TS
4814
4815 amt = sizeof (asymbol);
4816 elf_text_symbol = bfd_zalloc (abfd, amt);
4817 if (elf_text_symbol == NULL)
b34976b6 4818 return FALSE;
b49e97c9
TS
4819
4820 /* Initialize the section. */
4821
4822 elf_tdata (abfd)->elf_text_section = elf_text_section;
4823 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4824
4825 elf_text_section->symbol = elf_text_symbol;
4826 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4827
4828 elf_text_section->name = ".text";
4829 elf_text_section->flags = SEC_NO_FLAGS;
4830 elf_text_section->output_section = NULL;
4831 elf_text_section->owner = abfd;
4832 elf_text_symbol->name = ".text";
4833 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4834 elf_text_symbol->section = elf_text_section;
4835 }
4836 /* This code used to do *secp = bfd_und_section_ptr if
4837 info->shared. I don't know why, and that doesn't make sense,
4838 so I took it out. */
4839 *secp = elf_tdata (abfd)->elf_text_section;
4840 break;
4841
4842 case SHN_MIPS_ACOMMON:
4843 /* Fall through. XXX Can we treat this as allocated data? */
4844 case SHN_MIPS_DATA:
4845 /* This section is used in a shared object. */
4846 if (elf_tdata (abfd)->elf_data_section == NULL)
4847 {
4848 asymbol *elf_data_symbol;
4849 asection *elf_data_section;
4850 bfd_size_type amt = sizeof (asection);
4851
4852 elf_data_section = bfd_zalloc (abfd, amt);
4853 if (elf_data_section == NULL)
b34976b6 4854 return FALSE;
b49e97c9
TS
4855
4856 amt = sizeof (asymbol);
4857 elf_data_symbol = bfd_zalloc (abfd, amt);
4858 if (elf_data_symbol == NULL)
b34976b6 4859 return FALSE;
b49e97c9
TS
4860
4861 /* Initialize the section. */
4862
4863 elf_tdata (abfd)->elf_data_section = elf_data_section;
4864 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4865
4866 elf_data_section->symbol = elf_data_symbol;
4867 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4868
4869 elf_data_section->name = ".data";
4870 elf_data_section->flags = SEC_NO_FLAGS;
4871 elf_data_section->output_section = NULL;
4872 elf_data_section->owner = abfd;
4873 elf_data_symbol->name = ".data";
4874 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4875 elf_data_symbol->section = elf_data_section;
4876 }
4877 /* This code used to do *secp = bfd_und_section_ptr if
4878 info->shared. I don't know why, and that doesn't make sense,
4879 so I took it out. */
4880 *secp = elf_tdata (abfd)->elf_data_section;
4881 break;
4882
4883 case SHN_MIPS_SUNDEFINED:
4884 *secp = bfd_und_section_ptr;
4885 break;
4886 }
4887
4888 if (SGI_COMPAT (abfd)
4889 && ! info->shared
4890 && info->hash->creator == abfd->xvec
4891 && strcmp (*namep, "__rld_obj_head") == 0)
4892 {
4893 struct elf_link_hash_entry *h;
14a793b2 4894 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4895
4896 /* Mark __rld_obj_head as dynamic. */
14a793b2 4897 bh = NULL;
b49e97c9 4898 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4899 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4900 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4901 return FALSE;
14a793b2
AM
4902
4903 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4904 h->non_elf = 0;
4905 h->def_regular = 1;
b49e97c9
TS
4906 h->type = STT_OBJECT;
4907
c152c796 4908 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4909 return FALSE;
b49e97c9 4910
b34976b6 4911 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4912 }
4913
4914 /* If this is a mips16 text symbol, add 1 to the value to make it
4915 odd. This will cause something like .word SYM to come up with
4916 the right value when it is loaded into the PC. */
4917 if (sym->st_other == STO_MIPS16)
4918 ++*valp;
4919
b34976b6 4920 return TRUE;
b49e97c9
TS
4921}
4922
4923/* This hook function is called before the linker writes out a global
4924 symbol. We mark symbols as small common if appropriate. This is
4925 also where we undo the increment of the value for a mips16 symbol. */
4926
b34976b6 4927bfd_boolean
9719ad41
RS
4928_bfd_mips_elf_link_output_symbol_hook
4929 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4930 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4931 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4932{
4933 /* If we see a common symbol, which implies a relocatable link, then
4934 if a symbol was small common in an input file, mark it as small
4935 common in the output file. */
4936 if (sym->st_shndx == SHN_COMMON
4937 && strcmp (input_sec->name, ".scommon") == 0)
4938 sym->st_shndx = SHN_MIPS_SCOMMON;
4939
79cda7cf
FF
4940 if (sym->st_other == STO_MIPS16)
4941 sym->st_value &= ~1;
b49e97c9 4942
b34976b6 4943 return TRUE;
b49e97c9
TS
4944}
4945\f
4946/* Functions for the dynamic linker. */
4947
4948/* Create dynamic sections when linking against a dynamic object. */
4949
b34976b6 4950bfd_boolean
9719ad41 4951_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4952{
4953 struct elf_link_hash_entry *h;
14a793b2 4954 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4955 flagword flags;
4956 register asection *s;
4957 const char * const *namep;
4958
4959 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4960 | SEC_LINKER_CREATED | SEC_READONLY);
4961
4962 /* Mips ABI requests the .dynamic section to be read only. */
4963 s = bfd_get_section_by_name (abfd, ".dynamic");
4964 if (s != NULL)
4965 {
4966 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4967 return FALSE;
b49e97c9
TS
4968 }
4969
4970 /* We need to create .got section. */
f4416af6
AO
4971 if (! mips_elf_create_got_section (abfd, info, FALSE))
4972 return FALSE;
4973
4974 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4975 return FALSE;
b49e97c9 4976
b49e97c9
TS
4977 /* Create .stub section. */
4978 if (bfd_get_section_by_name (abfd,
4979 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4980 {
4981 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4982 if (s == NULL
4983 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4984 || ! bfd_set_section_alignment (abfd, s,
4985 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4986 return FALSE;
b49e97c9
TS
4987 }
4988
4989 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4990 && !info->shared
4991 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4992 {
4993 s = bfd_make_section (abfd, ".rld_map");
4994 if (s == NULL
4995 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4996 || ! bfd_set_section_alignment (abfd, s,
4997 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4998 return FALSE;
b49e97c9
TS
4999 }
5000
5001 /* On IRIX5, we adjust add some additional symbols and change the
5002 alignments of several sections. There is no ABI documentation
5003 indicating that this is necessary on IRIX6, nor any evidence that
5004 the linker takes such action. */
5005 if (IRIX_COMPAT (abfd) == ict_irix5)
5006 {
5007 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5008 {
14a793b2 5009 bh = NULL;
b49e97c9 5010 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5011 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5012 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5013 return FALSE;
14a793b2
AM
5014
5015 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5016 h->non_elf = 0;
5017 h->def_regular = 1;
b49e97c9
TS
5018 h->type = STT_SECTION;
5019
c152c796 5020 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5021 return FALSE;
b49e97c9
TS
5022 }
5023
5024 /* We need to create a .compact_rel section. */
5025 if (SGI_COMPAT (abfd))
5026 {
5027 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5028 return FALSE;
b49e97c9
TS
5029 }
5030
44c410de 5031 /* Change alignments of some sections. */
b49e97c9
TS
5032 s = bfd_get_section_by_name (abfd, ".hash");
5033 if (s != NULL)
d80dcc6a 5034 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5035 s = bfd_get_section_by_name (abfd, ".dynsym");
5036 if (s != NULL)
d80dcc6a 5037 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5038 s = bfd_get_section_by_name (abfd, ".dynstr");
5039 if (s != NULL)
d80dcc6a 5040 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5041 s = bfd_get_section_by_name (abfd, ".reginfo");
5042 if (s != NULL)
d80dcc6a 5043 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5044 s = bfd_get_section_by_name (abfd, ".dynamic");
5045 if (s != NULL)
d80dcc6a 5046 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5047 }
5048
5049 if (!info->shared)
5050 {
14a793b2
AM
5051 const char *name;
5052
5053 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5054 bh = NULL;
5055 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5056 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5057 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5058 return FALSE;
14a793b2
AM
5059
5060 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5061 h->non_elf = 0;
5062 h->def_regular = 1;
b49e97c9
TS
5063 h->type = STT_SECTION;
5064
c152c796 5065 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5066 return FALSE;
b49e97c9
TS
5067
5068 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5069 {
5070 /* __rld_map is a four byte word located in the .data section
5071 and is filled in by the rtld to contain a pointer to
5072 the _r_debug structure. Its symbol value will be set in
5073 _bfd_mips_elf_finish_dynamic_symbol. */
5074 s = bfd_get_section_by_name (abfd, ".rld_map");
5075 BFD_ASSERT (s != NULL);
5076
14a793b2
AM
5077 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5078 bh = NULL;
5079 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5080 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5081 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5082 return FALSE;
14a793b2
AM
5083
5084 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5085 h->non_elf = 0;
5086 h->def_regular = 1;
b49e97c9
TS
5087 h->type = STT_OBJECT;
5088
c152c796 5089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5090 return FALSE;
b49e97c9
TS
5091 }
5092 }
5093
b34976b6 5094 return TRUE;
b49e97c9
TS
5095}
5096\f
5097/* Look through the relocs for a section during the first phase, and
5098 allocate space in the global offset table. */
5099
b34976b6 5100bfd_boolean
9719ad41
RS
5101_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5102 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5103{
5104 const char *name;
5105 bfd *dynobj;
5106 Elf_Internal_Shdr *symtab_hdr;
5107 struct elf_link_hash_entry **sym_hashes;
5108 struct mips_got_info *g;
5109 size_t extsymoff;
5110 const Elf_Internal_Rela *rel;
5111 const Elf_Internal_Rela *rel_end;
5112 asection *sgot;
5113 asection *sreloc;
9c5bfbb7 5114 const struct elf_backend_data *bed;
b49e97c9 5115
1049f94e 5116 if (info->relocatable)
b34976b6 5117 return TRUE;
b49e97c9
TS
5118
5119 dynobj = elf_hash_table (info)->dynobj;
5120 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5121 sym_hashes = elf_sym_hashes (abfd);
5122 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5123
5124 /* Check for the mips16 stub sections. */
5125
5126 name = bfd_get_section_name (abfd, sec);
5127 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5128 {
5129 unsigned long r_symndx;
5130
5131 /* Look at the relocation information to figure out which symbol
5132 this is for. */
5133
5134 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5135
5136 if (r_symndx < extsymoff
5137 || sym_hashes[r_symndx - extsymoff] == NULL)
5138 {
5139 asection *o;
5140
5141 /* This stub is for a local symbol. This stub will only be
5142 needed if there is some relocation in this BFD, other
5143 than a 16 bit function call, which refers to this symbol. */
5144 for (o = abfd->sections; o != NULL; o = o->next)
5145 {
5146 Elf_Internal_Rela *sec_relocs;
5147 const Elf_Internal_Rela *r, *rend;
5148
5149 /* We can ignore stub sections when looking for relocs. */
5150 if ((o->flags & SEC_RELOC) == 0
5151 || o->reloc_count == 0
5152 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5153 sizeof FN_STUB - 1) == 0
5154 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5155 sizeof CALL_STUB - 1) == 0
5156 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5157 sizeof CALL_FP_STUB - 1) == 0)
5158 continue;
5159
45d6a902 5160 sec_relocs
9719ad41 5161 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5162 info->keep_memory);
b49e97c9 5163 if (sec_relocs == NULL)
b34976b6 5164 return FALSE;
b49e97c9
TS
5165
5166 rend = sec_relocs + o->reloc_count;
5167 for (r = sec_relocs; r < rend; r++)
5168 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5169 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5170 break;
5171
6cdc0ccc 5172 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5173 free (sec_relocs);
5174
5175 if (r < rend)
5176 break;
5177 }
5178
5179 if (o == NULL)
5180 {
5181 /* There is no non-call reloc for this stub, so we do
5182 not need it. Since this function is called before
5183 the linker maps input sections to output sections, we
5184 can easily discard it by setting the SEC_EXCLUDE
5185 flag. */
5186 sec->flags |= SEC_EXCLUDE;
b34976b6 5187 return TRUE;
b49e97c9
TS
5188 }
5189
5190 /* Record this stub in an array of local symbol stubs for
5191 this BFD. */
5192 if (elf_tdata (abfd)->local_stubs == NULL)
5193 {
5194 unsigned long symcount;
5195 asection **n;
5196 bfd_size_type amt;
5197
5198 if (elf_bad_symtab (abfd))
5199 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5200 else
5201 symcount = symtab_hdr->sh_info;
5202 amt = symcount * sizeof (asection *);
9719ad41 5203 n = bfd_zalloc (abfd, amt);
b49e97c9 5204 if (n == NULL)
b34976b6 5205 return FALSE;
b49e97c9
TS
5206 elf_tdata (abfd)->local_stubs = n;
5207 }
5208
5209 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5210
5211 /* We don't need to set mips16_stubs_seen in this case.
5212 That flag is used to see whether we need to look through
5213 the global symbol table for stubs. We don't need to set
5214 it here, because we just have a local stub. */
5215 }
5216 else
5217 {
5218 struct mips_elf_link_hash_entry *h;
5219
5220 h = ((struct mips_elf_link_hash_entry *)
5221 sym_hashes[r_symndx - extsymoff]);
5222
5223 /* H is the symbol this stub is for. */
5224
5225 h->fn_stub = sec;
b34976b6 5226 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5227 }
5228 }
5229 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5230 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5231 {
5232 unsigned long r_symndx;
5233 struct mips_elf_link_hash_entry *h;
5234 asection **loc;
5235
5236 /* Look at the relocation information to figure out which symbol
5237 this is for. */
5238
5239 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5240
5241 if (r_symndx < extsymoff
5242 || sym_hashes[r_symndx - extsymoff] == NULL)
5243 {
5244 /* This stub was actually built for a static symbol defined
5245 in the same file. We assume that all static symbols in
5246 mips16 code are themselves mips16, so we can simply
5247 discard this stub. Since this function is called before
5248 the linker maps input sections to output sections, we can
5249 easily discard it by setting the SEC_EXCLUDE flag. */
5250 sec->flags |= SEC_EXCLUDE;
b34976b6 5251 return TRUE;
b49e97c9
TS
5252 }
5253
5254 h = ((struct mips_elf_link_hash_entry *)
5255 sym_hashes[r_symndx - extsymoff]);
5256
5257 /* H is the symbol this stub is for. */
5258
5259 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5260 loc = &h->call_fp_stub;
5261 else
5262 loc = &h->call_stub;
5263
5264 /* If we already have an appropriate stub for this function, we
5265 don't need another one, so we can discard this one. Since
5266 this function is called before the linker maps input sections
5267 to output sections, we can easily discard it by setting the
5268 SEC_EXCLUDE flag. We can also discard this section if we
5269 happen to already know that this is a mips16 function; it is
5270 not necessary to check this here, as it is checked later, but
5271 it is slightly faster to check now. */
5272 if (*loc != NULL || h->root.other == STO_MIPS16)
5273 {
5274 sec->flags |= SEC_EXCLUDE;
b34976b6 5275 return TRUE;
b49e97c9
TS
5276 }
5277
5278 *loc = sec;
b34976b6 5279 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5280 }
5281
5282 if (dynobj == NULL)
5283 {
5284 sgot = NULL;
5285 g = NULL;
5286 }
5287 else
5288 {
f4416af6 5289 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5290 if (sgot == NULL)
5291 g = NULL;
5292 else
5293 {
f0abc2a1
AM
5294 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5295 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5296 BFD_ASSERT (g != NULL);
5297 }
5298 }
5299
5300 sreloc = NULL;
5301 bed = get_elf_backend_data (abfd);
5302 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5303 for (rel = relocs; rel < rel_end; ++rel)
5304 {
5305 unsigned long r_symndx;
5306 unsigned int r_type;
5307 struct elf_link_hash_entry *h;
5308
5309 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5310 r_type = ELF_R_TYPE (abfd, rel->r_info);
5311
5312 if (r_symndx < extsymoff)
5313 h = NULL;
5314 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5315 {
5316 (*_bfd_error_handler)
d003868e
AM
5317 (_("%B: Malformed reloc detected for section %s"),
5318 abfd, name);
b49e97c9 5319 bfd_set_error (bfd_error_bad_value);
b34976b6 5320 return FALSE;
b49e97c9
TS
5321 }
5322 else
5323 {
5324 h = sym_hashes[r_symndx - extsymoff];
5325
5326 /* This may be an indirect symbol created because of a version. */
5327 if (h != NULL)
5328 {
5329 while (h->root.type == bfd_link_hash_indirect)
5330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5331 }
5332 }
5333
5334 /* Some relocs require a global offset table. */
5335 if (dynobj == NULL || sgot == NULL)
5336 {
5337 switch (r_type)
5338 {
5339 case R_MIPS_GOT16:
5340 case R_MIPS_CALL16:
5341 case R_MIPS_CALL_HI16:
5342 case R_MIPS_CALL_LO16:
5343 case R_MIPS_GOT_HI16:
5344 case R_MIPS_GOT_LO16:
5345 case R_MIPS_GOT_PAGE:
5346 case R_MIPS_GOT_OFST:
5347 case R_MIPS_GOT_DISP:
5348 if (dynobj == NULL)
5349 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5350 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5351 return FALSE;
b49e97c9
TS
5352 g = mips_elf_got_info (dynobj, &sgot);
5353 break;
5354
5355 case R_MIPS_32:
5356 case R_MIPS_REL32:
5357 case R_MIPS_64:
5358 if (dynobj == NULL
5359 && (info->shared || h != NULL)
5360 && (sec->flags & SEC_ALLOC) != 0)
5361 elf_hash_table (info)->dynobj = dynobj = abfd;
5362 break;
5363
5364 default:
5365 break;
5366 }
5367 }
5368
5369 if (!h && (r_type == R_MIPS_CALL_LO16
5370 || r_type == R_MIPS_GOT_LO16
5371 || r_type == R_MIPS_GOT_DISP))
5372 {
5373 /* We may need a local GOT entry for this relocation. We
5374 don't count R_MIPS_GOT_PAGE because we can estimate the
5375 maximum number of pages needed by looking at the size of
5376 the segment. Similar comments apply to R_MIPS_GOT16 and
5377 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5378 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5379 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5380 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5381 rel->r_addend, g))
5382 return FALSE;
b49e97c9
TS
5383 }
5384
5385 switch (r_type)
5386 {
5387 case R_MIPS_CALL16:
5388 if (h == NULL)
5389 {
5390 (*_bfd_error_handler)
d003868e
AM
5391 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5392 abfd, (unsigned long) rel->r_offset);
b49e97c9 5393 bfd_set_error (bfd_error_bad_value);
b34976b6 5394 return FALSE;
b49e97c9
TS
5395 }
5396 /* Fall through. */
5397
5398 case R_MIPS_CALL_HI16:
5399 case R_MIPS_CALL_LO16:
5400 if (h != NULL)
5401 {
5402 /* This symbol requires a global offset table entry. */
f4416af6 5403 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5404 return FALSE;
b49e97c9
TS
5405
5406 /* We need a stub, not a plt entry for the undefined
5407 function. But we record it as if it needs plt. See
c152c796 5408 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5409 h->needs_plt = 1;
b49e97c9
TS
5410 h->type = STT_FUNC;
5411 }
5412 break;
5413
0fdc1bf1
AO
5414 case R_MIPS_GOT_PAGE:
5415 /* If this is a global, overridable symbol, GOT_PAGE will
5416 decay to GOT_DISP, so we'll need a GOT entry for it. */
5417 if (h == NULL)
5418 break;
5419 else
5420 {
5421 struct mips_elf_link_hash_entry *hmips =
5422 (struct mips_elf_link_hash_entry *) h;
143d77c5 5423
0fdc1bf1
AO
5424 while (hmips->root.root.type == bfd_link_hash_indirect
5425 || hmips->root.root.type == bfd_link_hash_warning)
5426 hmips = (struct mips_elf_link_hash_entry *)
5427 hmips->root.root.u.i.link;
143d77c5 5428
f5385ebf 5429 if (hmips->root.def_regular
0fdc1bf1 5430 && ! (info->shared && ! info->symbolic
f5385ebf 5431 && ! hmips->root.forced_local))
0fdc1bf1
AO
5432 break;
5433 }
5434 /* Fall through. */
5435
b49e97c9
TS
5436 case R_MIPS_GOT16:
5437 case R_MIPS_GOT_HI16:
5438 case R_MIPS_GOT_LO16:
5439 case R_MIPS_GOT_DISP:
5440 /* This symbol requires a global offset table entry. */
f4416af6 5441 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444
5445 case R_MIPS_32:
5446 case R_MIPS_REL32:
5447 case R_MIPS_64:
5448 if ((info->shared || h != NULL)
5449 && (sec->flags & SEC_ALLOC) != 0)
5450 {
5451 if (sreloc == NULL)
5452 {
f4416af6 5453 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5454 if (sreloc == NULL)
f4416af6 5455 return FALSE;
b49e97c9
TS
5456 }
5457#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5458 if (info->shared)
5459 {
5460 /* When creating a shared object, we must copy these
5461 reloc types into the output file as R_MIPS_REL32
5462 relocs. We make room for this reloc in the
5463 .rel.dyn reloc section. */
5464 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5465 if ((sec->flags & MIPS_READONLY_SECTION)
5466 == MIPS_READONLY_SECTION)
5467 /* We tell the dynamic linker that there are
5468 relocations against the text segment. */
5469 info->flags |= DF_TEXTREL;
5470 }
5471 else
5472 {
5473 struct mips_elf_link_hash_entry *hmips;
5474
5475 /* We only need to copy this reloc if the symbol is
5476 defined in a dynamic object. */
5477 hmips = (struct mips_elf_link_hash_entry *) h;
5478 ++hmips->possibly_dynamic_relocs;
5479 if ((sec->flags & MIPS_READONLY_SECTION)
5480 == MIPS_READONLY_SECTION)
5481 /* We need it to tell the dynamic linker if there
5482 are relocations against the text segment. */
b34976b6 5483 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5484 }
5485
5486 /* Even though we don't directly need a GOT entry for
5487 this symbol, a symbol must have a dynamic symbol
5488 table index greater that DT_MIPS_GOTSYM if there are
5489 dynamic relocations against it. */
f4416af6
AO
5490 if (h != NULL)
5491 {
5492 if (dynobj == NULL)
5493 elf_hash_table (info)->dynobj = dynobj = abfd;
5494 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5495 return FALSE;
5496 g = mips_elf_got_info (dynobj, &sgot);
5497 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5498 return FALSE;
5499 }
b49e97c9
TS
5500 }
5501
5502 if (SGI_COMPAT (abfd))
5503 mips_elf_hash_table (info)->compact_rel_size +=
5504 sizeof (Elf32_External_crinfo);
5505 break;
5506
5507 case R_MIPS_26:
5508 case R_MIPS_GPREL16:
5509 case R_MIPS_LITERAL:
5510 case R_MIPS_GPREL32:
5511 if (SGI_COMPAT (abfd))
5512 mips_elf_hash_table (info)->compact_rel_size +=
5513 sizeof (Elf32_External_crinfo);
5514 break;
5515
5516 /* This relocation describes the C++ object vtable hierarchy.
5517 Reconstruct it for later use during GC. */
5518 case R_MIPS_GNU_VTINHERIT:
c152c796 5519 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5520 return FALSE;
b49e97c9
TS
5521 break;
5522
5523 /* This relocation describes which C++ vtable entries are actually
5524 used. Record for later use during GC. */
5525 case R_MIPS_GNU_VTENTRY:
c152c796 5526 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5527 return FALSE;
b49e97c9
TS
5528 break;
5529
5530 default:
5531 break;
5532 }
5533
5534 /* We must not create a stub for a symbol that has relocations
5535 related to taking the function's address. */
5536 switch (r_type)
5537 {
5538 default:
5539 if (h != NULL)
5540 {
5541 struct mips_elf_link_hash_entry *mh;
5542
5543 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5544 mh->no_fn_stub = TRUE;
b49e97c9
TS
5545 }
5546 break;
5547 case R_MIPS_CALL16:
5548 case R_MIPS_CALL_HI16:
5549 case R_MIPS_CALL_LO16:
2b86c02e 5550 case R_MIPS_JALR:
b49e97c9
TS
5551 break;
5552 }
5553
5554 /* If this reloc is not a 16 bit call, and it has a global
5555 symbol, then we will need the fn_stub if there is one.
5556 References from a stub section do not count. */
5557 if (h != NULL
5558 && r_type != R_MIPS16_26
5559 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5560 sizeof FN_STUB - 1) != 0
5561 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5562 sizeof CALL_STUB - 1) != 0
5563 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5564 sizeof CALL_FP_STUB - 1) != 0)
5565 {
5566 struct mips_elf_link_hash_entry *mh;
5567
5568 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5569 mh->need_fn_stub = TRUE;
b49e97c9
TS
5570 }
5571 }
5572
b34976b6 5573 return TRUE;
b49e97c9
TS
5574}
5575\f
d0647110 5576bfd_boolean
9719ad41
RS
5577_bfd_mips_relax_section (bfd *abfd, asection *sec,
5578 struct bfd_link_info *link_info,
5579 bfd_boolean *again)
d0647110
AO
5580{
5581 Elf_Internal_Rela *internal_relocs;
5582 Elf_Internal_Rela *irel, *irelend;
5583 Elf_Internal_Shdr *symtab_hdr;
5584 bfd_byte *contents = NULL;
d0647110
AO
5585 size_t extsymoff;
5586 bfd_boolean changed_contents = FALSE;
5587 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5588 Elf_Internal_Sym *isymbuf = NULL;
5589
5590 /* We are not currently changing any sizes, so only one pass. */
5591 *again = FALSE;
5592
1049f94e 5593 if (link_info->relocatable)
d0647110
AO
5594 return TRUE;
5595
9719ad41 5596 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5597 link_info->keep_memory);
d0647110
AO
5598 if (internal_relocs == NULL)
5599 return TRUE;
5600
5601 irelend = internal_relocs + sec->reloc_count
5602 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5603 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5604 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5605
5606 for (irel = internal_relocs; irel < irelend; irel++)
5607 {
5608 bfd_vma symval;
5609 bfd_signed_vma sym_offset;
5610 unsigned int r_type;
5611 unsigned long r_symndx;
5612 asection *sym_sec;
5613 unsigned long instruction;
5614
5615 /* Turn jalr into bgezal, and jr into beq, if they're marked
5616 with a JALR relocation, that indicate where they jump to.
5617 This saves some pipeline bubbles. */
5618 r_type = ELF_R_TYPE (abfd, irel->r_info);
5619 if (r_type != R_MIPS_JALR)
5620 continue;
5621
5622 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5623 /* Compute the address of the jump target. */
5624 if (r_symndx >= extsymoff)
5625 {
5626 struct mips_elf_link_hash_entry *h
5627 = ((struct mips_elf_link_hash_entry *)
5628 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5629
5630 while (h->root.root.type == bfd_link_hash_indirect
5631 || h->root.root.type == bfd_link_hash_warning)
5632 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5633
d0647110
AO
5634 /* If a symbol is undefined, or if it may be overridden,
5635 skip it. */
5636 if (! ((h->root.root.type == bfd_link_hash_defined
5637 || h->root.root.type == bfd_link_hash_defweak)
5638 && h->root.root.u.def.section)
5639 || (link_info->shared && ! link_info->symbolic
f5385ebf 5640 && !h->root.forced_local))
d0647110
AO
5641 continue;
5642
5643 sym_sec = h->root.root.u.def.section;
5644 if (sym_sec->output_section)
5645 symval = (h->root.root.u.def.value
5646 + sym_sec->output_section->vma
5647 + sym_sec->output_offset);
5648 else
5649 symval = h->root.root.u.def.value;
5650 }
5651 else
5652 {
5653 Elf_Internal_Sym *isym;
5654
5655 /* Read this BFD's symbols if we haven't done so already. */
5656 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5657 {
5658 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5659 if (isymbuf == NULL)
5660 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5661 symtab_hdr->sh_info, 0,
5662 NULL, NULL, NULL);
5663 if (isymbuf == NULL)
5664 goto relax_return;
5665 }
5666
5667 isym = isymbuf + r_symndx;
5668 if (isym->st_shndx == SHN_UNDEF)
5669 continue;
5670 else if (isym->st_shndx == SHN_ABS)
5671 sym_sec = bfd_abs_section_ptr;
5672 else if (isym->st_shndx == SHN_COMMON)
5673 sym_sec = bfd_com_section_ptr;
5674 else
5675 sym_sec
5676 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5677 symval = isym->st_value
5678 + sym_sec->output_section->vma
5679 + sym_sec->output_offset;
5680 }
5681
5682 /* Compute branch offset, from delay slot of the jump to the
5683 branch target. */
5684 sym_offset = (symval + irel->r_addend)
5685 - (sec_start + irel->r_offset + 4);
5686
5687 /* Branch offset must be properly aligned. */
5688 if ((sym_offset & 3) != 0)
5689 continue;
5690
5691 sym_offset >>= 2;
5692
5693 /* Check that it's in range. */
5694 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5695 continue;
143d77c5 5696
d0647110
AO
5697 /* Get the section contents if we haven't done so already. */
5698 if (contents == NULL)
5699 {
5700 /* Get cached copy if it exists. */
5701 if (elf_section_data (sec)->this_hdr.contents != NULL)
5702 contents = elf_section_data (sec)->this_hdr.contents;
5703 else
5704 {
eea6121a 5705 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5706 goto relax_return;
5707 }
5708 }
5709
5710 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5711
5712 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5713 if ((instruction & 0xfc1fffff) == 0x0000f809)
5714 instruction = 0x04110000;
5715 /* If it was jr <reg>, turn it into b <target>. */
5716 else if ((instruction & 0xfc1fffff) == 0x00000008)
5717 instruction = 0x10000000;
5718 else
5719 continue;
5720
5721 instruction |= (sym_offset & 0xffff);
5722 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5723 changed_contents = TRUE;
5724 }
5725
5726 if (contents != NULL
5727 && elf_section_data (sec)->this_hdr.contents != contents)
5728 {
5729 if (!changed_contents && !link_info->keep_memory)
5730 free (contents);
5731 else
5732 {
5733 /* Cache the section contents for elf_link_input_bfd. */
5734 elf_section_data (sec)->this_hdr.contents = contents;
5735 }
5736 }
5737 return TRUE;
5738
143d77c5 5739 relax_return:
eea6121a
AM
5740 if (contents != NULL
5741 && elf_section_data (sec)->this_hdr.contents != contents)
5742 free (contents);
d0647110
AO
5743 return FALSE;
5744}
5745\f
b49e97c9
TS
5746/* Adjust a symbol defined by a dynamic object and referenced by a
5747 regular object. The current definition is in some section of the
5748 dynamic object, but we're not including those sections. We have to
5749 change the definition to something the rest of the link can
5750 understand. */
5751
b34976b6 5752bfd_boolean
9719ad41
RS
5753_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5754 struct elf_link_hash_entry *h)
b49e97c9
TS
5755{
5756 bfd *dynobj;
5757 struct mips_elf_link_hash_entry *hmips;
5758 asection *s;
5759
5760 dynobj = elf_hash_table (info)->dynobj;
5761
5762 /* Make sure we know what is going on here. */
5763 BFD_ASSERT (dynobj != NULL
f5385ebf 5764 && (h->needs_plt
f6e332e6 5765 || h->u.weakdef != NULL
f5385ebf
AM
5766 || (h->def_dynamic
5767 && h->ref_regular
5768 && !h->def_regular)));
b49e97c9
TS
5769
5770 /* If this symbol is defined in a dynamic object, we need to copy
5771 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5772 file. */
5773 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5774 if (! info->relocatable
b49e97c9
TS
5775 && hmips->possibly_dynamic_relocs != 0
5776 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5777 || !h->def_regular))
b49e97c9
TS
5778 {
5779 mips_elf_allocate_dynamic_relocations (dynobj,
5780 hmips->possibly_dynamic_relocs);
5781 if (hmips->readonly_reloc)
5782 /* We tell the dynamic linker that there are relocations
5783 against the text segment. */
5784 info->flags |= DF_TEXTREL;
5785 }
5786
5787 /* For a function, create a stub, if allowed. */
5788 if (! hmips->no_fn_stub
f5385ebf 5789 && h->needs_plt)
b49e97c9
TS
5790 {
5791 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5792 return TRUE;
b49e97c9
TS
5793
5794 /* If this symbol is not defined in a regular file, then set
5795 the symbol to the stub location. This is required to make
5796 function pointers compare as equal between the normal
5797 executable and the shared library. */
f5385ebf 5798 if (!h->def_regular)
b49e97c9
TS
5799 {
5800 /* We need .stub section. */
5801 s = bfd_get_section_by_name (dynobj,
5802 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5803 BFD_ASSERT (s != NULL);
5804
5805 h->root.u.def.section = s;
eea6121a 5806 h->root.u.def.value = s->size;
b49e97c9
TS
5807
5808 /* XXX Write this stub address somewhere. */
eea6121a 5809 h->plt.offset = s->size;
b49e97c9
TS
5810
5811 /* Make room for this stub code. */
eea6121a 5812 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5813
5814 /* The last half word of the stub will be filled with the index
5815 of this symbol in .dynsym section. */
b34976b6 5816 return TRUE;
b49e97c9
TS
5817 }
5818 }
5819 else if ((h->type == STT_FUNC)
f5385ebf 5820 && !h->needs_plt)
b49e97c9
TS
5821 {
5822 /* This will set the entry for this symbol in the GOT to 0, and
5823 the dynamic linker will take care of this. */
5824 h->root.u.def.value = 0;
b34976b6 5825 return TRUE;
b49e97c9
TS
5826 }
5827
5828 /* If this is a weak symbol, and there is a real definition, the
5829 processor independent code will have arranged for us to see the
5830 real definition first, and we can just use the same value. */
f6e332e6 5831 if (h->u.weakdef != NULL)
b49e97c9 5832 {
f6e332e6
AM
5833 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5834 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5835 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5836 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5837 return TRUE;
b49e97c9
TS
5838 }
5839
5840 /* This is a reference to a symbol defined by a dynamic object which
5841 is not a function. */
5842
b34976b6 5843 return TRUE;
b49e97c9
TS
5844}
5845\f
5846/* This function is called after all the input files have been read,
5847 and the input sections have been assigned to output sections. We
5848 check for any mips16 stub sections that we can discard. */
5849
b34976b6 5850bfd_boolean
9719ad41
RS
5851_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5852 struct bfd_link_info *info)
b49e97c9
TS
5853{
5854 asection *ri;
5855
f4416af6
AO
5856 bfd *dynobj;
5857 asection *s;
5858 struct mips_got_info *g;
5859 int i;
5860 bfd_size_type loadable_size = 0;
5861 bfd_size_type local_gotno;
5862 bfd *sub;
5863
b49e97c9
TS
5864 /* The .reginfo section has a fixed size. */
5865 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5866 if (ri != NULL)
9719ad41 5867 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5868
1049f94e 5869 if (! (info->relocatable
f4416af6
AO
5870 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5871 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5872 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5873
5874 dynobj = elf_hash_table (info)->dynobj;
5875 if (dynobj == NULL)
5876 /* Relocatable links don't have it. */
5877 return TRUE;
143d77c5 5878
f4416af6
AO
5879 g = mips_elf_got_info (dynobj, &s);
5880 if (s == NULL)
b34976b6 5881 return TRUE;
b49e97c9 5882
f4416af6
AO
5883 /* Calculate the total loadable size of the output. That
5884 will give us the maximum number of GOT_PAGE entries
5885 required. */
5886 for (sub = info->input_bfds; sub; sub = sub->link_next)
5887 {
5888 asection *subsection;
5889
5890 for (subsection = sub->sections;
5891 subsection;
5892 subsection = subsection->next)
5893 {
5894 if ((subsection->flags & SEC_ALLOC) == 0)
5895 continue;
eea6121a 5896 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5897 &~ (bfd_size_type) 0xf);
5898 }
5899 }
5900
5901 /* There has to be a global GOT entry for every symbol with
5902 a dynamic symbol table index of DT_MIPS_GOTSYM or
5903 higher. Therefore, it make sense to put those symbols
5904 that need GOT entries at the end of the symbol table. We
5905 do that here. */
5906 if (! mips_elf_sort_hash_table (info, 1))
5907 return FALSE;
5908
5909 if (g->global_gotsym != NULL)
5910 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5911 else
5912 /* If there are no global symbols, or none requiring
5913 relocations, then GLOBAL_GOTSYM will be NULL. */
5914 i = 0;
5915
5916 /* In the worst case, we'll get one stub per dynamic symbol, plus
5917 one to account for the dummy entry at the end required by IRIX
5918 rld. */
5919 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5920
5921 /* Assume there are two loadable segments consisting of
5922 contiguous sections. Is 5 enough? */
5923 local_gotno = (loadable_size >> 16) + 5;
5924
5925 g->local_gotno += local_gotno;
eea6121a 5926 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5927
5928 g->global_gotno = i;
eea6121a 5929 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5930
eea6121a 5931 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5932 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5933 return FALSE;
b49e97c9 5934
b34976b6 5935 return TRUE;
b49e97c9
TS
5936}
5937
5938/* Set the sizes of the dynamic sections. */
5939
b34976b6 5940bfd_boolean
9719ad41
RS
5941_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5942 struct bfd_link_info *info)
b49e97c9
TS
5943{
5944 bfd *dynobj;
5945 asection *s;
b34976b6 5946 bfd_boolean reltext;
b49e97c9
TS
5947
5948 dynobj = elf_hash_table (info)->dynobj;
5949 BFD_ASSERT (dynobj != NULL);
5950
5951 if (elf_hash_table (info)->dynamic_sections_created)
5952 {
5953 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5954 if (info->executable)
b49e97c9
TS
5955 {
5956 s = bfd_get_section_by_name (dynobj, ".interp");
5957 BFD_ASSERT (s != NULL);
eea6121a 5958 s->size
b49e97c9
TS
5959 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5960 s->contents
5961 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5962 }
5963 }
5964
5965 /* The check_relocs and adjust_dynamic_symbol entry points have
5966 determined the sizes of the various dynamic sections. Allocate
5967 memory for them. */
b34976b6 5968 reltext = FALSE;
b49e97c9
TS
5969 for (s = dynobj->sections; s != NULL; s = s->next)
5970 {
5971 const char *name;
b34976b6 5972 bfd_boolean strip;
b49e97c9
TS
5973
5974 /* It's OK to base decisions on the section name, because none
5975 of the dynobj section names depend upon the input files. */
5976 name = bfd_get_section_name (dynobj, s);
5977
5978 if ((s->flags & SEC_LINKER_CREATED) == 0)
5979 continue;
5980
b34976b6 5981 strip = FALSE;
b49e97c9
TS
5982
5983 if (strncmp (name, ".rel", 4) == 0)
5984 {
eea6121a 5985 if (s->size == 0)
b49e97c9
TS
5986 {
5987 /* We only strip the section if the output section name
5988 has the same name. Otherwise, there might be several
5989 input sections for this output section. FIXME: This
5990 code is probably not needed these days anyhow, since
5991 the linker now does not create empty output sections. */
5992 if (s->output_section != NULL
5993 && strcmp (name,
5994 bfd_get_section_name (s->output_section->owner,
5995 s->output_section)) == 0)
b34976b6 5996 strip = TRUE;
b49e97c9
TS
5997 }
5998 else
5999 {
6000 const char *outname;
6001 asection *target;
6002
6003 /* If this relocation section applies to a read only
6004 section, then we probably need a DT_TEXTREL entry.
6005 If the relocation section is .rel.dyn, we always
6006 assert a DT_TEXTREL entry rather than testing whether
6007 there exists a relocation to a read only section or
6008 not. */
6009 outname = bfd_get_section_name (output_bfd,
6010 s->output_section);
6011 target = bfd_get_section_by_name (output_bfd, outname + 4);
6012 if ((target != NULL
6013 && (target->flags & SEC_READONLY) != 0
6014 && (target->flags & SEC_ALLOC) != 0)
6015 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6016 reltext = TRUE;
b49e97c9
TS
6017
6018 /* We use the reloc_count field as a counter if we need
6019 to copy relocs into the output file. */
6020 if (strcmp (name, ".rel.dyn") != 0)
6021 s->reloc_count = 0;
f4416af6
AO
6022
6023 /* If combreloc is enabled, elf_link_sort_relocs() will
6024 sort relocations, but in a different way than we do,
6025 and before we're done creating relocations. Also, it
6026 will move them around between input sections'
6027 relocation's contents, so our sorting would be
6028 broken, so don't let it run. */
6029 info->combreloc = 0;
b49e97c9
TS
6030 }
6031 }
6032 else if (strncmp (name, ".got", 4) == 0)
6033 {
f4416af6
AO
6034 /* _bfd_mips_elf_always_size_sections() has already done
6035 most of the work, but some symbols may have been mapped
6036 to versions that we must now resolve in the got_entries
6037 hash tables. */
6038 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6039 struct mips_got_info *g = gg;
6040 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6041 unsigned int needed_relocs = 0;
143d77c5 6042
f4416af6 6043 if (gg->next)
b49e97c9 6044 {
f4416af6
AO
6045 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6046 set_got_offset_arg.info = info;
b49e97c9 6047
f4416af6
AO
6048 mips_elf_resolve_final_got_entries (gg);
6049 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6050 {
f4416af6
AO
6051 unsigned int save_assign;
6052
6053 mips_elf_resolve_final_got_entries (g);
6054
6055 /* Assign offsets to global GOT entries. */
6056 save_assign = g->assigned_gotno;
6057 g->assigned_gotno = g->local_gotno;
6058 set_got_offset_arg.g = g;
6059 set_got_offset_arg.needed_relocs = 0;
6060 htab_traverse (g->got_entries,
6061 mips_elf_set_global_got_offset,
6062 &set_got_offset_arg);
6063 needed_relocs += set_got_offset_arg.needed_relocs;
6064 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6065 <= g->global_gotno);
6066
6067 g->assigned_gotno = save_assign;
6068 if (info->shared)
6069 {
6070 needed_relocs += g->local_gotno - g->assigned_gotno;
6071 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6072 + g->next->global_gotno
6073 + MIPS_RESERVED_GOTNO);
6074 }
b49e97c9 6075 }
b49e97c9 6076
f4416af6
AO
6077 if (needed_relocs)
6078 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6079 }
b49e97c9
TS
6080 }
6081 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6082 {
8dc1a139 6083 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6084 of .text section. So put a dummy. XXX */
eea6121a 6085 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6086 }
6087 else if (! info->shared
6088 && ! mips_elf_hash_table (info)->use_rld_obj_head
6089 && strncmp (name, ".rld_map", 8) == 0)
6090 {
6091 /* We add a room for __rld_map. It will be filled in by the
6092 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6093 s->size += 4;
b49e97c9
TS
6094 }
6095 else if (SGI_COMPAT (output_bfd)
6096 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6097 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6098 else if (strncmp (name, ".init", 5) != 0)
6099 {
6100 /* It's not one of our sections, so don't allocate space. */
6101 continue;
6102 }
6103
6104 if (strip)
6105 {
6106 _bfd_strip_section_from_output (info, s);
6107 continue;
6108 }
6109
6110 /* Allocate memory for the section contents. */
eea6121a
AM
6111 s->contents = bfd_zalloc (dynobj, s->size);
6112 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6113 {
6114 bfd_set_error (bfd_error_no_memory);
b34976b6 6115 return FALSE;
b49e97c9
TS
6116 }
6117 }
6118
6119 if (elf_hash_table (info)->dynamic_sections_created)
6120 {
6121 /* Add some entries to the .dynamic section. We fill in the
6122 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6123 must add the entries now so that we get the correct size for
6124 the .dynamic section. The DT_DEBUG entry is filled in by the
6125 dynamic linker and used by the debugger. */
6126 if (! info->shared)
6127 {
6128 /* SGI object has the equivalence of DT_DEBUG in the
6129 DT_MIPS_RLD_MAP entry. */
6130 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6131 return FALSE;
b49e97c9
TS
6132 if (!SGI_COMPAT (output_bfd))
6133 {
6134 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6135 return FALSE;
b49e97c9
TS
6136 }
6137 }
6138 else
6139 {
6140 /* Shared libraries on traditional mips have DT_DEBUG. */
6141 if (!SGI_COMPAT (output_bfd))
6142 {
6143 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6144 return FALSE;
b49e97c9
TS
6145 }
6146 }
6147
6148 if (reltext && SGI_COMPAT (output_bfd))
6149 info->flags |= DF_TEXTREL;
6150
6151 if ((info->flags & DF_TEXTREL) != 0)
6152 {
6153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6154 return FALSE;
b49e97c9
TS
6155 }
6156
6157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6158 return FALSE;
b49e97c9 6159
f4416af6 6160 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6161 {
6162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6163 return FALSE;
b49e97c9
TS
6164
6165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6166 return FALSE;
b49e97c9
TS
6167
6168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6169 return FALSE;
b49e97c9
TS
6170 }
6171
b49e97c9 6172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6173 return FALSE;
b49e97c9
TS
6174
6175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6176 return FALSE;
b49e97c9
TS
6177
6178#if 0
6179 /* Time stamps in executable files are a bad idea. */
6180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6181 return FALSE;
b49e97c9
TS
6182#endif
6183
6184#if 0 /* FIXME */
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6186 return FALSE;
b49e97c9
TS
6187#endif
6188
6189#if 0 /* FIXME */
6190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6191 return FALSE;
b49e97c9
TS
6192#endif
6193
6194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6195 return FALSE;
b49e97c9
TS
6196
6197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6198 return FALSE;
b49e97c9
TS
6199
6200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6201 return FALSE;
b49e97c9
TS
6202
6203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6204 return FALSE;
b49e97c9
TS
6205
6206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6207 return FALSE;
b49e97c9
TS
6208
6209 if (IRIX_COMPAT (dynobj) == ict_irix5
6210 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6211 return FALSE;
b49e97c9
TS
6212
6213 if (IRIX_COMPAT (dynobj) == ict_irix6
6214 && (bfd_get_section_by_name
6215 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6216 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6217 return FALSE;
b49e97c9
TS
6218 }
6219
b34976b6 6220 return TRUE;
b49e97c9
TS
6221}
6222\f
6223/* Relocate a MIPS ELF section. */
6224
b34976b6 6225bfd_boolean
9719ad41
RS
6226_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6227 bfd *input_bfd, asection *input_section,
6228 bfd_byte *contents, Elf_Internal_Rela *relocs,
6229 Elf_Internal_Sym *local_syms,
6230 asection **local_sections)
b49e97c9
TS
6231{
6232 Elf_Internal_Rela *rel;
6233 const Elf_Internal_Rela *relend;
6234 bfd_vma addend = 0;
b34976b6 6235 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6236 const struct elf_backend_data *bed;
b49e97c9
TS
6237
6238 bed = get_elf_backend_data (output_bfd);
6239 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6240 for (rel = relocs; rel < relend; ++rel)
6241 {
6242 const char *name;
6243 bfd_vma value;
6244 reloc_howto_type *howto;
b34976b6
AM
6245 bfd_boolean require_jalx;
6246 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6247 REL relocation. */
b34976b6 6248 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6249 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6250 const char *msg;
b49e97c9
TS
6251
6252 /* Find the relocation howto for this relocation. */
4a14403c 6253 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6254 {
6255 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6256 64-bit code, but make sure all their addresses are in the
6257 lowermost or uppermost 32-bit section of the 64-bit address
6258 space. Thus, when they use an R_MIPS_64 they mean what is
6259 usually meant by R_MIPS_32, with the exception that the
6260 stored value is sign-extended to 64 bits. */
b34976b6 6261 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6262
6263 /* On big-endian systems, we need to lie about the position
6264 of the reloc. */
6265 if (bfd_big_endian (input_bfd))
6266 rel->r_offset += 4;
6267 }
6268 else
6269 /* NewABI defaults to RELA relocations. */
6270 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6271 NEWABI_P (input_bfd)
6272 && (MIPS_RELOC_RELA_P
6273 (input_bfd, input_section,
6274 rel - relocs)));
b49e97c9
TS
6275
6276 if (!use_saved_addend_p)
6277 {
6278 Elf_Internal_Shdr *rel_hdr;
6279
6280 /* If these relocations were originally of the REL variety,
6281 we must pull the addend out of the field that will be
6282 relocated. Otherwise, we simply use the contents of the
6283 RELA relocation. To determine which flavor or relocation
6284 this is, we depend on the fact that the INPUT_SECTION's
6285 REL_HDR is read before its REL_HDR2. */
6286 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6287 if ((size_t) (rel - relocs)
6288 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6289 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6290 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6291 {
6292 /* Note that this is a REL relocation. */
b34976b6 6293 rela_relocation_p = FALSE;
b49e97c9
TS
6294
6295 /* Get the addend, which is stored in the input file. */
6296 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6297 contents);
6298 addend &= howto->src_mask;
6299
6300 /* For some kinds of relocations, the ADDEND is a
6301 combination of the addend stored in two different
6302 relocations. */
6303 if (r_type == R_MIPS_HI16
b49e97c9
TS
6304 || (r_type == R_MIPS_GOT16
6305 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6306 local_sections, FALSE)))
b49e97c9
TS
6307 {
6308 bfd_vma l;
6309 const Elf_Internal_Rela *lo16_relocation;
6310 reloc_howto_type *lo16_howto;
b49e97c9
TS
6311
6312 /* The combined value is the sum of the HI16 addend,
6313 left-shifted by sixteen bits, and the LO16
6314 addend, sign extended. (Usually, the code does
6315 a `lui' of the HI16 value, and then an `addiu' of
6316 the LO16 value.)
6317
4030e8f6
CD
6318 Scan ahead to find a matching LO16 relocation.
6319
6320 According to the MIPS ELF ABI, the R_MIPS_LO16
6321 relocation must be immediately following.
6322 However, for the IRIX6 ABI, the next relocation
6323 may be a composed relocation consisting of
6324 several relocations for the same address. In
6325 that case, the R_MIPS_LO16 relocation may occur
6326 as one of these. We permit a similar extension
6327 in general, as that is useful for GCC. */
6328 lo16_relocation = mips_elf_next_relocation (input_bfd,
6329 R_MIPS_LO16,
b49e97c9
TS
6330 rel, relend);
6331 if (lo16_relocation == NULL)
b34976b6 6332 return FALSE;
b49e97c9
TS
6333
6334 /* Obtain the addend kept there. */
4030e8f6
CD
6335 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6336 R_MIPS_LO16, FALSE);
b49e97c9
TS
6337 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6338 input_bfd, contents);
6339 l &= lo16_howto->src_mask;
5a659663 6340 l <<= lo16_howto->rightshift;
a7ebbfdf 6341 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6342
6343 addend <<= 16;
6344
6345 /* Compute the combined addend. */
6346 addend += l;
b49e97c9
TS
6347 }
6348 else if (r_type == R_MIPS16_GPREL)
6349 {
6350 /* The addend is scrambled in the object file. See
6351 mips_elf_perform_relocation for details on the
6352 format. */
6353 addend = (((addend & 0x1f0000) >> 5)
6354 | ((addend & 0x7e00000) >> 16)
6355 | (addend & 0x1f));
6356 }
30ac9238
RS
6357 else
6358 addend <<= howto->rightshift;
b49e97c9
TS
6359 }
6360 else
6361 addend = rel->r_addend;
6362 }
6363
1049f94e 6364 if (info->relocatable)
b49e97c9
TS
6365 {
6366 Elf_Internal_Sym *sym;
6367 unsigned long r_symndx;
6368
4a14403c 6369 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6370 && bfd_big_endian (input_bfd))
6371 rel->r_offset -= 4;
6372
6373 /* Since we're just relocating, all we need to do is copy
6374 the relocations back out to the object file, unless
6375 they're against a section symbol, in which case we need
6376 to adjust by the section offset, or unless they're GP
6377 relative in which case we need to adjust by the amount
1049f94e 6378 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6379
6380 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6381 FALSE))
b49e97c9
TS
6382 /* There's nothing to do for non-local relocations. */
6383 continue;
6384
6385 if (r_type == R_MIPS16_GPREL
6386 || r_type == R_MIPS_GPREL16
6387 || r_type == R_MIPS_GPREL32
6388 || r_type == R_MIPS_LITERAL)
6389 addend -= (_bfd_get_gp_value (output_bfd)
6390 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6391
6392 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6393 sym = local_syms + r_symndx;
6394 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6395 /* Adjust the addend appropriately. */
6396 addend += local_sections[r_symndx]->output_offset;
6397
30ac9238
RS
6398 if (rela_relocation_p)
6399 /* If this is a RELA relocation, just update the addend. */
6400 rel->r_addend = addend;
6401 else
5a659663 6402 {
30ac9238 6403 if (r_type == R_MIPS_HI16
4030e8f6 6404 || r_type == R_MIPS_GOT16)
5a659663
TS
6405 addend = mips_elf_high (addend);
6406 else if (r_type == R_MIPS_HIGHER)
6407 addend = mips_elf_higher (addend);
6408 else if (r_type == R_MIPS_HIGHEST)
6409 addend = mips_elf_highest (addend);
30ac9238
RS
6410 else
6411 addend >>= howto->rightshift;
b49e97c9 6412
30ac9238
RS
6413 /* We use the source mask, rather than the destination
6414 mask because the place to which we are writing will be
6415 source of the addend in the final link. */
b49e97c9
TS
6416 addend &= howto->src_mask;
6417
5a659663 6418 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6419 /* See the comment above about using R_MIPS_64 in the 32-bit
6420 ABI. Here, we need to update the addend. It would be
6421 possible to get away with just using the R_MIPS_32 reloc
6422 but for endianness. */
6423 {
6424 bfd_vma sign_bits;
6425 bfd_vma low_bits;
6426 bfd_vma high_bits;
6427
6428 if (addend & ((bfd_vma) 1 << 31))
6429#ifdef BFD64
6430 sign_bits = ((bfd_vma) 1 << 32) - 1;
6431#else
6432 sign_bits = -1;
6433#endif
6434 else
6435 sign_bits = 0;
6436
6437 /* If we don't know that we have a 64-bit type,
6438 do two separate stores. */
6439 if (bfd_big_endian (input_bfd))
6440 {
6441 /* Store the sign-bits (which are most significant)
6442 first. */
6443 low_bits = sign_bits;
6444 high_bits = addend;
6445 }
6446 else
6447 {
6448 low_bits = addend;
6449 high_bits = sign_bits;
6450 }
6451 bfd_put_32 (input_bfd, low_bits,
6452 contents + rel->r_offset);
6453 bfd_put_32 (input_bfd, high_bits,
6454 contents + rel->r_offset + 4);
6455 continue;
6456 }
6457
6458 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6459 input_bfd, input_section,
b34976b6
AM
6460 contents, FALSE))
6461 return FALSE;
b49e97c9
TS
6462 }
6463
6464 /* Go on to the next relocation. */
6465 continue;
6466 }
6467
6468 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6469 relocations for the same offset. In that case we are
6470 supposed to treat the output of each relocation as the addend
6471 for the next. */
6472 if (rel + 1 < relend
6473 && rel->r_offset == rel[1].r_offset
6474 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6475 use_saved_addend_p = TRUE;
b49e97c9 6476 else
b34976b6 6477 use_saved_addend_p = FALSE;
b49e97c9
TS
6478
6479 /* Figure out what value we are supposed to relocate. */
6480 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6481 input_section, info, rel,
6482 addend, howto, local_syms,
6483 local_sections, &value,
bce03d3d
AO
6484 &name, &require_jalx,
6485 use_saved_addend_p))
b49e97c9
TS
6486 {
6487 case bfd_reloc_continue:
6488 /* There's nothing to do. */
6489 continue;
6490
6491 case bfd_reloc_undefined:
6492 /* mips_elf_calculate_relocation already called the
6493 undefined_symbol callback. There's no real point in
6494 trying to perform the relocation at this point, so we
6495 just skip ahead to the next relocation. */
6496 continue;
6497
6498 case bfd_reloc_notsupported:
6499 msg = _("internal error: unsupported relocation error");
6500 info->callbacks->warning
6501 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6502 return FALSE;
b49e97c9
TS
6503
6504 case bfd_reloc_overflow:
6505 if (use_saved_addend_p)
6506 /* Ignore overflow until we reach the last relocation for
6507 a given location. */
6508 ;
6509 else
6510 {
6511 BFD_ASSERT (name != NULL);
6512 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6513 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6514 input_bfd, input_section, rel->r_offset)))
b34976b6 6515 return FALSE;
b49e97c9
TS
6516 }
6517 break;
6518
6519 case bfd_reloc_ok:
6520 break;
6521
6522 default:
6523 abort ();
6524 break;
6525 }
6526
6527 /* If we've got another relocation for the address, keep going
6528 until we reach the last one. */
6529 if (use_saved_addend_p)
6530 {
6531 addend = value;
6532 continue;
6533 }
6534
4a14403c 6535 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6536 /* See the comment above about using R_MIPS_64 in the 32-bit
6537 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6538 that calculated the right value. Now, however, we
6539 sign-extend the 32-bit result to 64-bits, and store it as a
6540 64-bit value. We are especially generous here in that we
6541 go to extreme lengths to support this usage on systems with
6542 only a 32-bit VMA. */
6543 {
6544 bfd_vma sign_bits;
6545 bfd_vma low_bits;
6546 bfd_vma high_bits;
6547
6548 if (value & ((bfd_vma) 1 << 31))
6549#ifdef BFD64
6550 sign_bits = ((bfd_vma) 1 << 32) - 1;
6551#else
6552 sign_bits = -1;
6553#endif
6554 else
6555 sign_bits = 0;
6556
6557 /* If we don't know that we have a 64-bit type,
6558 do two separate stores. */
6559 if (bfd_big_endian (input_bfd))
6560 {
6561 /* Undo what we did above. */
6562 rel->r_offset -= 4;
6563 /* Store the sign-bits (which are most significant)
6564 first. */
6565 low_bits = sign_bits;
6566 high_bits = value;
6567 }
6568 else
6569 {
6570 low_bits = value;
6571 high_bits = sign_bits;
6572 }
6573 bfd_put_32 (input_bfd, low_bits,
6574 contents + rel->r_offset);
6575 bfd_put_32 (input_bfd, high_bits,
6576 contents + rel->r_offset + 4);
6577 continue;
6578 }
6579
6580 /* Actually perform the relocation. */
6581 if (! mips_elf_perform_relocation (info, howto, rel, value,
6582 input_bfd, input_section,
6583 contents, require_jalx))
b34976b6 6584 return FALSE;
b49e97c9
TS
6585 }
6586
b34976b6 6587 return TRUE;
b49e97c9
TS
6588}
6589\f
6590/* If NAME is one of the special IRIX6 symbols defined by the linker,
6591 adjust it appropriately now. */
6592
6593static void
9719ad41
RS
6594mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6595 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6596{
6597 /* The linker script takes care of providing names and values for
6598 these, but we must place them into the right sections. */
6599 static const char* const text_section_symbols[] = {
6600 "_ftext",
6601 "_etext",
6602 "__dso_displacement",
6603 "__elf_header",
6604 "__program_header_table",
6605 NULL
6606 };
6607
6608 static const char* const data_section_symbols[] = {
6609 "_fdata",
6610 "_edata",
6611 "_end",
6612 "_fbss",
6613 NULL
6614 };
6615
6616 const char* const *p;
6617 int i;
6618
6619 for (i = 0; i < 2; ++i)
6620 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6621 *p;
6622 ++p)
6623 if (strcmp (*p, name) == 0)
6624 {
6625 /* All of these symbols are given type STT_SECTION by the
6626 IRIX6 linker. */
6627 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6628 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6629
6630 /* The IRIX linker puts these symbols in special sections. */
6631 if (i == 0)
6632 sym->st_shndx = SHN_MIPS_TEXT;
6633 else
6634 sym->st_shndx = SHN_MIPS_DATA;
6635
6636 break;
6637 }
6638}
6639
6640/* Finish up dynamic symbol handling. We set the contents of various
6641 dynamic sections here. */
6642
b34976b6 6643bfd_boolean
9719ad41
RS
6644_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6645 struct bfd_link_info *info,
6646 struct elf_link_hash_entry *h,
6647 Elf_Internal_Sym *sym)
b49e97c9
TS
6648{
6649 bfd *dynobj;
b49e97c9 6650 asection *sgot;
f4416af6 6651 struct mips_got_info *g, *gg;
b49e97c9 6652 const char *name;
b49e97c9
TS
6653
6654 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6655
c5ae1840 6656 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6657 {
6658 asection *s;
6659 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6660
6661 /* This symbol has a stub. Set it up. */
6662
6663 BFD_ASSERT (h->dynindx != -1);
6664
6665 s = bfd_get_section_by_name (dynobj,
6666 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6667 BFD_ASSERT (s != NULL);
6668
6669 /* FIXME: Can h->dynindex be more than 64K? */
6670 if (h->dynindx & 0xffff0000)
b34976b6 6671 return FALSE;
b49e97c9
TS
6672
6673 /* Fill the stub. */
6674 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6675 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6676 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6677 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6678
eea6121a 6679 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6680 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6681
6682 /* Mark the symbol as undefined. plt.offset != -1 occurs
6683 only for the referenced symbol. */
6684 sym->st_shndx = SHN_UNDEF;
6685
6686 /* The run-time linker uses the st_value field of the symbol
6687 to reset the global offset table entry for this external
6688 to its stub address when unlinking a shared object. */
c5ae1840
TS
6689 sym->st_value = (s->output_section->vma + s->output_offset
6690 + h->plt.offset);
b49e97c9
TS
6691 }
6692
6693 BFD_ASSERT (h->dynindx != -1
f5385ebf 6694 || h->forced_local);
b49e97c9 6695
f4416af6 6696 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6697 BFD_ASSERT (sgot != NULL);
f4416af6 6698 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6699 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6700 BFD_ASSERT (g != NULL);
6701
6702 /* Run through the global symbol table, creating GOT entries for all
6703 the symbols that need them. */
6704 if (g->global_gotsym != NULL
6705 && h->dynindx >= g->global_gotsym->dynindx)
6706 {
6707 bfd_vma offset;
6708 bfd_vma value;
6709
6eaa6adc 6710 value = sym->st_value;
f4416af6 6711 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6712 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6713 }
6714
f4416af6
AO
6715 if (g->next && h->dynindx != -1)
6716 {
6717 struct mips_got_entry e, *p;
0626d451 6718 bfd_vma entry;
f4416af6 6719 bfd_vma offset;
f4416af6
AO
6720
6721 gg = g;
6722
6723 e.abfd = output_bfd;
6724 e.symndx = -1;
6725 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6726
f4416af6
AO
6727 for (g = g->next; g->next != gg; g = g->next)
6728 {
6729 if (g->got_entries
6730 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6731 &e)))
6732 {
6733 offset = p->gotidx;
0626d451
RS
6734 if (info->shared
6735 || (elf_hash_table (info)->dynamic_sections_created
6736 && p->d.h != NULL
f5385ebf
AM
6737 && p->d.h->root.def_dynamic
6738 && !p->d.h->root.def_regular))
0626d451
RS
6739 {
6740 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6741 the various compatibility problems, it's easier to mock
6742 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6743 mips_elf_create_dynamic_relocation to calculate the
6744 appropriate addend. */
6745 Elf_Internal_Rela rel[3];
6746
6747 memset (rel, 0, sizeof (rel));
6748 if (ABI_64_P (output_bfd))
6749 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6750 else
6751 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6752 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6753
6754 entry = 0;
6755 if (! (mips_elf_create_dynamic_relocation
6756 (output_bfd, info, rel,
6757 e.d.h, NULL, sym->st_value, &entry, sgot)))
6758 return FALSE;
6759 }
6760 else
6761 entry = sym->st_value;
6762 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6763 }
6764 }
6765 }
6766
b49e97c9
TS
6767 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6768 name = h->root.root.string;
6769 if (strcmp (name, "_DYNAMIC") == 0
6770 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6771 sym->st_shndx = SHN_ABS;
6772 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6773 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6774 {
6775 sym->st_shndx = SHN_ABS;
6776 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6777 sym->st_value = 1;
6778 }
4a14403c 6779 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6780 {
6781 sym->st_shndx = SHN_ABS;
6782 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6783 sym->st_value = elf_gp (output_bfd);
6784 }
6785 else if (SGI_COMPAT (output_bfd))
6786 {
6787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6789 {
6790 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6791 sym->st_other = STO_PROTECTED;
6792 sym->st_value = 0;
6793 sym->st_shndx = SHN_MIPS_DATA;
6794 }
6795 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6796 {
6797 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6798 sym->st_other = STO_PROTECTED;
6799 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6800 sym->st_shndx = SHN_ABS;
6801 }
6802 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6803 {
6804 if (h->type == STT_FUNC)
6805 sym->st_shndx = SHN_MIPS_TEXT;
6806 else if (h->type == STT_OBJECT)
6807 sym->st_shndx = SHN_MIPS_DATA;
6808 }
6809 }
6810
6811 /* Handle the IRIX6-specific symbols. */
6812 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6813 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6814
6815 if (! info->shared)
6816 {
6817 if (! mips_elf_hash_table (info)->use_rld_obj_head
6818 && (strcmp (name, "__rld_map") == 0
6819 || strcmp (name, "__RLD_MAP") == 0))
6820 {
6821 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6822 BFD_ASSERT (s != NULL);
6823 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6824 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6825 if (mips_elf_hash_table (info)->rld_value == 0)
6826 mips_elf_hash_table (info)->rld_value = sym->st_value;
6827 }
6828 else if (mips_elf_hash_table (info)->use_rld_obj_head
6829 && strcmp (name, "__rld_obj_head") == 0)
6830 {
6831 /* IRIX6 does not use a .rld_map section. */
6832 if (IRIX_COMPAT (output_bfd) == ict_irix5
6833 || IRIX_COMPAT (output_bfd) == ict_none)
6834 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6835 != NULL);
6836 mips_elf_hash_table (info)->rld_value = sym->st_value;
6837 }
6838 }
6839
6840 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6841 if (sym->st_other == STO_MIPS16)
6842 sym->st_value &= ~1;
b49e97c9 6843
b34976b6 6844 return TRUE;
b49e97c9
TS
6845}
6846
6847/* Finish up the dynamic sections. */
6848
b34976b6 6849bfd_boolean
9719ad41
RS
6850_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6851 struct bfd_link_info *info)
b49e97c9
TS
6852{
6853 bfd *dynobj;
6854 asection *sdyn;
6855 asection *sgot;
f4416af6 6856 struct mips_got_info *gg, *g;
b49e97c9
TS
6857
6858 dynobj = elf_hash_table (info)->dynobj;
6859
6860 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6861
f4416af6 6862 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6863 if (sgot == NULL)
f4416af6 6864 gg = g = NULL;
b49e97c9
TS
6865 else
6866 {
f4416af6
AO
6867 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6868 gg = mips_elf_section_data (sgot)->u.got_info;
6869 BFD_ASSERT (gg != NULL);
6870 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6871 BFD_ASSERT (g != NULL);
6872 }
6873
6874 if (elf_hash_table (info)->dynamic_sections_created)
6875 {
6876 bfd_byte *b;
6877
6878 BFD_ASSERT (sdyn != NULL);
6879 BFD_ASSERT (g != NULL);
6880
6881 for (b = sdyn->contents;
eea6121a 6882 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6883 b += MIPS_ELF_DYN_SIZE (dynobj))
6884 {
6885 Elf_Internal_Dyn dyn;
6886 const char *name;
6887 size_t elemsize;
6888 asection *s;
b34976b6 6889 bfd_boolean swap_out_p;
b49e97c9
TS
6890
6891 /* Read in the current dynamic entry. */
6892 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6893
6894 /* Assume that we're going to modify it and write it out. */
b34976b6 6895 swap_out_p = TRUE;
b49e97c9
TS
6896
6897 switch (dyn.d_tag)
6898 {
6899 case DT_RELENT:
f4416af6 6900 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6901 BFD_ASSERT (s != NULL);
6902 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6903 break;
6904
6905 case DT_STRSZ:
6906 /* Rewrite DT_STRSZ. */
6907 dyn.d_un.d_val =
6908 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6909 break;
6910
6911 case DT_PLTGOT:
6912 name = ".got";
b49e97c9
TS
6913 s = bfd_get_section_by_name (output_bfd, name);
6914 BFD_ASSERT (s != NULL);
6915 dyn.d_un.d_ptr = s->vma;
6916 break;
6917
6918 case DT_MIPS_RLD_VERSION:
6919 dyn.d_un.d_val = 1; /* XXX */
6920 break;
6921
6922 case DT_MIPS_FLAGS:
6923 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6924 break;
6925
b49e97c9
TS
6926 case DT_MIPS_TIME_STAMP:
6927 time ((time_t *) &dyn.d_un.d_val);
6928 break;
6929
6930 case DT_MIPS_ICHECKSUM:
6931 /* XXX FIXME: */
b34976b6 6932 swap_out_p = FALSE;
b49e97c9
TS
6933 break;
6934
6935 case DT_MIPS_IVERSION:
6936 /* XXX FIXME: */
b34976b6 6937 swap_out_p = FALSE;
b49e97c9
TS
6938 break;
6939
6940 case DT_MIPS_BASE_ADDRESS:
6941 s = output_bfd->sections;
6942 BFD_ASSERT (s != NULL);
6943 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6944 break;
6945
6946 case DT_MIPS_LOCAL_GOTNO:
6947 dyn.d_un.d_val = g->local_gotno;
6948 break;
6949
6950 case DT_MIPS_UNREFEXTNO:
6951 /* The index into the dynamic symbol table which is the
6952 entry of the first external symbol that is not
6953 referenced within the same object. */
6954 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6955 break;
6956
6957 case DT_MIPS_GOTSYM:
f4416af6 6958 if (gg->global_gotsym)
b49e97c9 6959 {
f4416af6 6960 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6961 break;
6962 }
6963 /* In case if we don't have global got symbols we default
6964 to setting DT_MIPS_GOTSYM to the same value as
6965 DT_MIPS_SYMTABNO, so we just fall through. */
6966
6967 case DT_MIPS_SYMTABNO:
6968 name = ".dynsym";
6969 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6970 s = bfd_get_section_by_name (output_bfd, name);
6971 BFD_ASSERT (s != NULL);
6972
eea6121a 6973 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6974 break;
6975
6976 case DT_MIPS_HIPAGENO:
6977 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6978 break;
6979
6980 case DT_MIPS_RLD_MAP:
6981 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6982 break;
6983
6984 case DT_MIPS_OPTIONS:
6985 s = (bfd_get_section_by_name
6986 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6987 dyn.d_un.d_ptr = s->vma;
6988 break;
6989
98a8deaf
RS
6990 case DT_RELSZ:
6991 /* Reduce DT_RELSZ to account for any relocations we
6992 decided not to make. This is for the n64 irix rld,
6993 which doesn't seem to apply any relocations if there
6994 are trailing null entries. */
6995 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6996 dyn.d_un.d_val = (s->reloc_count
6997 * (ABI_64_P (output_bfd)
6998 ? sizeof (Elf64_Mips_External_Rel)
6999 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
7000 break;
7001
7002 default:
b34976b6 7003 swap_out_p = FALSE;
b49e97c9
TS
7004 break;
7005 }
7006
7007 if (swap_out_p)
7008 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7009 (dynobj, &dyn, b);
7010 }
7011 }
7012
7013 /* The first entry of the global offset table will be filled at
7014 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7015 This isn't the case of IRIX rld. */
eea6121a 7016 if (sgot != NULL && sgot->size > 0)
b49e97c9 7017 {
9719ad41
RS
7018 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7019 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7020 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7021 }
7022
7023 if (sgot != NULL)
7024 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7025 = MIPS_ELF_GOT_SIZE (output_bfd);
7026
f4416af6
AO
7027 /* Generate dynamic relocations for the non-primary gots. */
7028 if (gg != NULL && gg->next)
7029 {
7030 Elf_Internal_Rela rel[3];
7031 bfd_vma addend = 0;
7032
7033 memset (rel, 0, sizeof (rel));
7034 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7035
7036 for (g = gg->next; g->next != gg; g = g->next)
7037 {
7038 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7039
9719ad41 7040 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7041 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7042 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7043 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7044
7045 if (! info->shared)
7046 continue;
7047
7048 while (index < g->assigned_gotno)
7049 {
7050 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7051 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7052 if (!(mips_elf_create_dynamic_relocation
7053 (output_bfd, info, rel, NULL,
7054 bfd_abs_section_ptr,
7055 0, &addend, sgot)))
7056 return FALSE;
7057 BFD_ASSERT (addend == 0);
7058 }
7059 }
7060 }
7061
b49e97c9 7062 {
b49e97c9
TS
7063 asection *s;
7064 Elf32_compact_rel cpt;
7065
b49e97c9
TS
7066 if (SGI_COMPAT (output_bfd))
7067 {
7068 /* Write .compact_rel section out. */
7069 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7070 if (s != NULL)
7071 {
7072 cpt.id1 = 1;
7073 cpt.num = s->reloc_count;
7074 cpt.id2 = 2;
7075 cpt.offset = (s->output_section->filepos
7076 + sizeof (Elf32_External_compact_rel));
7077 cpt.reserved0 = 0;
7078 cpt.reserved1 = 0;
7079 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7080 ((Elf32_External_compact_rel *)
7081 s->contents));
7082
7083 /* Clean up a dummy stub function entry in .text. */
7084 s = bfd_get_section_by_name (dynobj,
7085 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7086 if (s != NULL)
7087 {
7088 file_ptr dummy_offset;
7089
eea6121a
AM
7090 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7091 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7092 memset (s->contents + dummy_offset, 0,
7093 MIPS_FUNCTION_STUB_SIZE);
7094 }
7095 }
7096 }
7097
7098 /* We need to sort the entries of the dynamic relocation section. */
7099
f4416af6
AO
7100 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7101
7102 if (s != NULL
eea6121a 7103 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7104 {
f4416af6 7105 reldyn_sorting_bfd = output_bfd;
b49e97c9 7106
f4416af6 7107 if (ABI_64_P (output_bfd))
9719ad41 7108 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7109 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7110 else
9719ad41 7111 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7112 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7113 }
b49e97c9
TS
7114 }
7115
b34976b6 7116 return TRUE;
b49e97c9
TS
7117}
7118
b49e97c9 7119
64543e1a
RS
7120/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7121
7122static void
9719ad41 7123mips_set_isa_flags (bfd *abfd)
b49e97c9 7124{
64543e1a 7125 flagword val;
b49e97c9
TS
7126
7127 switch (bfd_get_mach (abfd))
7128 {
7129 default:
7130 case bfd_mach_mips3000:
7131 val = E_MIPS_ARCH_1;
7132 break;
7133
7134 case bfd_mach_mips3900:
7135 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7136 break;
7137
7138 case bfd_mach_mips6000:
7139 val = E_MIPS_ARCH_2;
7140 break;
7141
7142 case bfd_mach_mips4000:
7143 case bfd_mach_mips4300:
7144 case bfd_mach_mips4400:
7145 case bfd_mach_mips4600:
7146 val = E_MIPS_ARCH_3;
7147 break;
7148
7149 case bfd_mach_mips4010:
7150 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7151 break;
7152
7153 case bfd_mach_mips4100:
7154 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7155 break;
7156
7157 case bfd_mach_mips4111:
7158 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7159 break;
7160
00707a0e
RS
7161 case bfd_mach_mips4120:
7162 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7163 break;
7164
b49e97c9
TS
7165 case bfd_mach_mips4650:
7166 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7167 break;
7168
00707a0e
RS
7169 case bfd_mach_mips5400:
7170 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7171 break;
7172
7173 case bfd_mach_mips5500:
7174 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7175 break;
7176
0d2e43ed
ILT
7177 case bfd_mach_mips9000:
7178 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7179 break;
7180
b49e97c9 7181 case bfd_mach_mips5000:
5a7ea749 7182 case bfd_mach_mips7000:
b49e97c9
TS
7183 case bfd_mach_mips8000:
7184 case bfd_mach_mips10000:
7185 case bfd_mach_mips12000:
7186 val = E_MIPS_ARCH_4;
7187 break;
7188
7189 case bfd_mach_mips5:
7190 val = E_MIPS_ARCH_5;
7191 break;
7192
7193 case bfd_mach_mips_sb1:
7194 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7195 break;
7196
7197 case bfd_mach_mipsisa32:
7198 val = E_MIPS_ARCH_32;
7199 break;
7200
7201 case bfd_mach_mipsisa64:
7202 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7203 break;
7204
7205 case bfd_mach_mipsisa32r2:
7206 val = E_MIPS_ARCH_32R2;
7207 break;
5f74bc13
CD
7208
7209 case bfd_mach_mipsisa64r2:
7210 val = E_MIPS_ARCH_64R2;
7211 break;
b49e97c9 7212 }
b49e97c9
TS
7213 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7214 elf_elfheader (abfd)->e_flags |= val;
7215
64543e1a
RS
7216}
7217
7218
7219/* The final processing done just before writing out a MIPS ELF object
7220 file. This gets the MIPS architecture right based on the machine
7221 number. This is used by both the 32-bit and the 64-bit ABI. */
7222
7223void
9719ad41
RS
7224_bfd_mips_elf_final_write_processing (bfd *abfd,
7225 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7226{
7227 unsigned int i;
7228 Elf_Internal_Shdr **hdrpp;
7229 const char *name;
7230 asection *sec;
7231
7232 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7233 is nonzero. This is for compatibility with old objects, which used
7234 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7235 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7236 mips_set_isa_flags (abfd);
7237
b49e97c9
TS
7238 /* Set the sh_info field for .gptab sections and other appropriate
7239 info for each special section. */
7240 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7241 i < elf_numsections (abfd);
7242 i++, hdrpp++)
7243 {
7244 switch ((*hdrpp)->sh_type)
7245 {
7246 case SHT_MIPS_MSYM:
7247 case SHT_MIPS_LIBLIST:
7248 sec = bfd_get_section_by_name (abfd, ".dynstr");
7249 if (sec != NULL)
7250 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7251 break;
7252
7253 case SHT_MIPS_GPTAB:
7254 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7255 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7256 BFD_ASSERT (name != NULL
7257 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7258 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7259 BFD_ASSERT (sec != NULL);
7260 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7261 break;
7262
7263 case SHT_MIPS_CONTENT:
7264 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7265 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7266 BFD_ASSERT (name != NULL
7267 && strncmp (name, ".MIPS.content",
7268 sizeof ".MIPS.content" - 1) == 0);
7269 sec = bfd_get_section_by_name (abfd,
7270 name + sizeof ".MIPS.content" - 1);
7271 BFD_ASSERT (sec != NULL);
7272 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7273 break;
7274
7275 case SHT_MIPS_SYMBOL_LIB:
7276 sec = bfd_get_section_by_name (abfd, ".dynsym");
7277 if (sec != NULL)
7278 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7279 sec = bfd_get_section_by_name (abfd, ".liblist");
7280 if (sec != NULL)
7281 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7282 break;
7283
7284 case SHT_MIPS_EVENTS:
7285 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7286 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7287 BFD_ASSERT (name != NULL);
7288 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7289 sec = bfd_get_section_by_name (abfd,
7290 name + sizeof ".MIPS.events" - 1);
7291 else
7292 {
7293 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7294 sizeof ".MIPS.post_rel" - 1) == 0);
7295 sec = bfd_get_section_by_name (abfd,
7296 (name
7297 + sizeof ".MIPS.post_rel" - 1));
7298 }
7299 BFD_ASSERT (sec != NULL);
7300 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7301 break;
7302
7303 }
7304 }
7305}
7306\f
8dc1a139 7307/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7308 segments. */
7309
7310int
9719ad41 7311_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7312{
7313 asection *s;
7314 int ret = 0;
7315
7316 /* See if we need a PT_MIPS_REGINFO segment. */
7317 s = bfd_get_section_by_name (abfd, ".reginfo");
7318 if (s && (s->flags & SEC_LOAD))
7319 ++ret;
7320
7321 /* See if we need a PT_MIPS_OPTIONS segment. */
7322 if (IRIX_COMPAT (abfd) == ict_irix6
7323 && bfd_get_section_by_name (abfd,
7324 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7325 ++ret;
7326
7327 /* See if we need a PT_MIPS_RTPROC segment. */
7328 if (IRIX_COMPAT (abfd) == ict_irix5
7329 && bfd_get_section_by_name (abfd, ".dynamic")
7330 && bfd_get_section_by_name (abfd, ".mdebug"))
7331 ++ret;
7332
7333 return ret;
7334}
7335
8dc1a139 7336/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7337
b34976b6 7338bfd_boolean
9719ad41
RS
7339_bfd_mips_elf_modify_segment_map (bfd *abfd,
7340 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7341{
7342 asection *s;
7343 struct elf_segment_map *m, **pm;
7344 bfd_size_type amt;
7345
7346 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7347 segment. */
7348 s = bfd_get_section_by_name (abfd, ".reginfo");
7349 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7350 {
7351 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7352 if (m->p_type == PT_MIPS_REGINFO)
7353 break;
7354 if (m == NULL)
7355 {
7356 amt = sizeof *m;
9719ad41 7357 m = bfd_zalloc (abfd, amt);
b49e97c9 7358 if (m == NULL)
b34976b6 7359 return FALSE;
b49e97c9
TS
7360
7361 m->p_type = PT_MIPS_REGINFO;
7362 m->count = 1;
7363 m->sections[0] = s;
7364
7365 /* We want to put it after the PHDR and INTERP segments. */
7366 pm = &elf_tdata (abfd)->segment_map;
7367 while (*pm != NULL
7368 && ((*pm)->p_type == PT_PHDR
7369 || (*pm)->p_type == PT_INTERP))
7370 pm = &(*pm)->next;
7371
7372 m->next = *pm;
7373 *pm = m;
7374 }
7375 }
7376
7377 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7378 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7379 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7380 table. */
c1fd6598
AO
7381 if (NEWABI_P (abfd)
7382 /* On non-IRIX6 new abi, we'll have already created a segment
7383 for this section, so don't create another. I'm not sure this
7384 is not also the case for IRIX 6, but I can't test it right
7385 now. */
7386 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7387 {
7388 for (s = abfd->sections; s; s = s->next)
7389 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7390 break;
7391
7392 if (s)
7393 {
7394 struct elf_segment_map *options_segment;
7395
98a8deaf
RS
7396 pm = &elf_tdata (abfd)->segment_map;
7397 while (*pm != NULL
7398 && ((*pm)->p_type == PT_PHDR
7399 || (*pm)->p_type == PT_INTERP))
7400 pm = &(*pm)->next;
b49e97c9
TS
7401
7402 amt = sizeof (struct elf_segment_map);
7403 options_segment = bfd_zalloc (abfd, amt);
7404 options_segment->next = *pm;
7405 options_segment->p_type = PT_MIPS_OPTIONS;
7406 options_segment->p_flags = PF_R;
b34976b6 7407 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7408 options_segment->count = 1;
7409 options_segment->sections[0] = s;
7410 *pm = options_segment;
7411 }
7412 }
7413 else
7414 {
7415 if (IRIX_COMPAT (abfd) == ict_irix5)
7416 {
7417 /* If there are .dynamic and .mdebug sections, we make a room
7418 for the RTPROC header. FIXME: Rewrite without section names. */
7419 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7420 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7421 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7422 {
7423 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7424 if (m->p_type == PT_MIPS_RTPROC)
7425 break;
7426 if (m == NULL)
7427 {
7428 amt = sizeof *m;
9719ad41 7429 m = bfd_zalloc (abfd, amt);
b49e97c9 7430 if (m == NULL)
b34976b6 7431 return FALSE;
b49e97c9
TS
7432
7433 m->p_type = PT_MIPS_RTPROC;
7434
7435 s = bfd_get_section_by_name (abfd, ".rtproc");
7436 if (s == NULL)
7437 {
7438 m->count = 0;
7439 m->p_flags = 0;
7440 m->p_flags_valid = 1;
7441 }
7442 else
7443 {
7444 m->count = 1;
7445 m->sections[0] = s;
7446 }
7447
7448 /* We want to put it after the DYNAMIC segment. */
7449 pm = &elf_tdata (abfd)->segment_map;
7450 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7451 pm = &(*pm)->next;
7452 if (*pm != NULL)
7453 pm = &(*pm)->next;
7454
7455 m->next = *pm;
7456 *pm = m;
7457 }
7458 }
7459 }
8dc1a139 7460 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7461 .dynstr, .dynsym, and .hash sections, and everything in
7462 between. */
7463 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7464 pm = &(*pm)->next)
7465 if ((*pm)->p_type == PT_DYNAMIC)
7466 break;
7467 m = *pm;
7468 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7469 {
7470 /* For a normal mips executable the permissions for the PT_DYNAMIC
7471 segment are read, write and execute. We do that here since
7472 the code in elf.c sets only the read permission. This matters
7473 sometimes for the dynamic linker. */
7474 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7475 {
7476 m->p_flags = PF_R | PF_W | PF_X;
7477 m->p_flags_valid = 1;
7478 }
7479 }
7480 if (m != NULL
7481 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7482 {
7483 static const char *sec_names[] =
7484 {
7485 ".dynamic", ".dynstr", ".dynsym", ".hash"
7486 };
7487 bfd_vma low, high;
7488 unsigned int i, c;
7489 struct elf_segment_map *n;
7490
792b4a53 7491 low = ~(bfd_vma) 0;
b49e97c9
TS
7492 high = 0;
7493 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7494 {
7495 s = bfd_get_section_by_name (abfd, sec_names[i]);
7496 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7497 {
7498 bfd_size_type sz;
7499
7500 if (low > s->vma)
7501 low = s->vma;
eea6121a 7502 sz = s->size;
b49e97c9
TS
7503 if (high < s->vma + sz)
7504 high = s->vma + sz;
7505 }
7506 }
7507
7508 c = 0;
7509 for (s = abfd->sections; s != NULL; s = s->next)
7510 if ((s->flags & SEC_LOAD) != 0
7511 && s->vma >= low
eea6121a 7512 && s->vma + s->size <= high)
b49e97c9
TS
7513 ++c;
7514
7515 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7516 n = bfd_zalloc (abfd, amt);
b49e97c9 7517 if (n == NULL)
b34976b6 7518 return FALSE;
b49e97c9
TS
7519 *n = *m;
7520 n->count = c;
7521
7522 i = 0;
7523 for (s = abfd->sections; s != NULL; s = s->next)
7524 {
7525 if ((s->flags & SEC_LOAD) != 0
7526 && s->vma >= low
eea6121a 7527 && s->vma + s->size <= high)
b49e97c9
TS
7528 {
7529 n->sections[i] = s;
7530 ++i;
7531 }
7532 }
7533
7534 *pm = n;
7535 }
7536 }
7537
b34976b6 7538 return TRUE;
b49e97c9
TS
7539}
7540\f
7541/* Return the section that should be marked against GC for a given
7542 relocation. */
7543
7544asection *
9719ad41
RS
7545_bfd_mips_elf_gc_mark_hook (asection *sec,
7546 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7547 Elf_Internal_Rela *rel,
7548 struct elf_link_hash_entry *h,
7549 Elf_Internal_Sym *sym)
b49e97c9
TS
7550{
7551 /* ??? Do mips16 stub sections need to be handled special? */
7552
7553 if (h != NULL)
7554 {
1e2f5b6e 7555 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7556 {
7557 case R_MIPS_GNU_VTINHERIT:
7558 case R_MIPS_GNU_VTENTRY:
7559 break;
7560
7561 default:
7562 switch (h->root.type)
7563 {
7564 case bfd_link_hash_defined:
7565 case bfd_link_hash_defweak:
7566 return h->root.u.def.section;
7567
7568 case bfd_link_hash_common:
7569 return h->root.u.c.p->section;
7570
7571 default:
7572 break;
7573 }
7574 }
7575 }
7576 else
1e2f5b6e 7577 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7578
7579 return NULL;
7580}
7581
7582/* Update the got entry reference counts for the section being removed. */
7583
b34976b6 7584bfd_boolean
9719ad41
RS
7585_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7586 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7587 asection *sec ATTRIBUTE_UNUSED,
7588 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7589{
7590#if 0
7591 Elf_Internal_Shdr *symtab_hdr;
7592 struct elf_link_hash_entry **sym_hashes;
7593 bfd_signed_vma *local_got_refcounts;
7594 const Elf_Internal_Rela *rel, *relend;
7595 unsigned long r_symndx;
7596 struct elf_link_hash_entry *h;
7597
7598 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7599 sym_hashes = elf_sym_hashes (abfd);
7600 local_got_refcounts = elf_local_got_refcounts (abfd);
7601
7602 relend = relocs + sec->reloc_count;
7603 for (rel = relocs; rel < relend; rel++)
7604 switch (ELF_R_TYPE (abfd, rel->r_info))
7605 {
7606 case R_MIPS_GOT16:
7607 case R_MIPS_CALL16:
7608 case R_MIPS_CALL_HI16:
7609 case R_MIPS_CALL_LO16:
7610 case R_MIPS_GOT_HI16:
7611 case R_MIPS_GOT_LO16:
4a14403c
TS
7612 case R_MIPS_GOT_DISP:
7613 case R_MIPS_GOT_PAGE:
7614 case R_MIPS_GOT_OFST:
b49e97c9
TS
7615 /* ??? It would seem that the existing MIPS code does no sort
7616 of reference counting or whatnot on its GOT and PLT entries,
7617 so it is not possible to garbage collect them at this time. */
7618 break;
7619
7620 default:
7621 break;
7622 }
7623#endif
7624
b34976b6 7625 return TRUE;
b49e97c9
TS
7626}
7627\f
7628/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7629 hiding the old indirect symbol. Process additional relocation
7630 information. Also called for weakdefs, in which case we just let
7631 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7632
7633void
9719ad41
RS
7634_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7635 struct elf_link_hash_entry *dir,
7636 struct elf_link_hash_entry *ind)
b49e97c9
TS
7637{
7638 struct mips_elf_link_hash_entry *dirmips, *indmips;
7639
b48fa14c 7640 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7641
7642 if (ind->root.type != bfd_link_hash_indirect)
7643 return;
7644
7645 dirmips = (struct mips_elf_link_hash_entry *) dir;
7646 indmips = (struct mips_elf_link_hash_entry *) ind;
7647 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7648 if (indmips->readonly_reloc)
b34976b6 7649 dirmips->readonly_reloc = TRUE;
b49e97c9 7650 if (indmips->no_fn_stub)
b34976b6 7651 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7652}
7653
7654void
9719ad41
RS
7655_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7656 struct elf_link_hash_entry *entry,
7657 bfd_boolean force_local)
b49e97c9
TS
7658{
7659 bfd *dynobj;
7660 asection *got;
7661 struct mips_got_info *g;
7662 struct mips_elf_link_hash_entry *h;
7c5fcef7 7663
b49e97c9 7664 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7665 if (h->forced_local)
7666 return;
4b555070 7667 h->forced_local = force_local;
7c5fcef7 7668
b49e97c9 7669 dynobj = elf_hash_table (info)->dynobj;
4b555070 7670 if (dynobj != NULL && force_local)
f4416af6 7671 {
c45a316a
AM
7672 got = mips_elf_got_section (dynobj, FALSE);
7673 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7674
c45a316a
AM
7675 if (g->next)
7676 {
7677 struct mips_got_entry e;
7678 struct mips_got_info *gg = g;
7679
7680 /* Since we're turning what used to be a global symbol into a
7681 local one, bump up the number of local entries of each GOT
7682 that had an entry for it. This will automatically decrease
7683 the number of global entries, since global_gotno is actually
7684 the upper limit of global entries. */
7685 e.abfd = dynobj;
7686 e.symndx = -1;
7687 e.d.h = h;
7688
7689 for (g = g->next; g != gg; g = g->next)
7690 if (htab_find (g->got_entries, &e))
7691 {
7692 BFD_ASSERT (g->global_gotno > 0);
7693 g->local_gotno++;
7694 g->global_gotno--;
7695 }
b49e97c9 7696
c45a316a
AM
7697 /* If this was a global symbol forced into the primary GOT, we
7698 no longer need an entry for it. We can't release the entry
7699 at this point, but we must at least stop counting it as one
7700 of the symbols that required a forced got entry. */
7701 if (h->root.got.offset == 2)
7702 {
7703 BFD_ASSERT (gg->assigned_gotno > 0);
7704 gg->assigned_gotno--;
7705 }
7706 }
7707 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7708 /* If we haven't got through GOT allocation yet, just bump up the
7709 number of local entries, as this symbol won't be counted as
7710 global. */
7711 g->local_gotno++;
7712 else if (h->root.got.offset == 1)
f4416af6 7713 {
c45a316a
AM
7714 /* If we're past non-multi-GOT allocation and this symbol had
7715 been marked for a global got entry, give it a local entry
7716 instead. */
7717 BFD_ASSERT (g->global_gotno > 0);
7718 g->local_gotno++;
7719 g->global_gotno--;
f4416af6
AO
7720 }
7721 }
f4416af6
AO
7722
7723 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7724}
7725\f
d01414a5
TS
7726#define PDR_SIZE 32
7727
b34976b6 7728bfd_boolean
9719ad41
RS
7729_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7730 struct bfd_link_info *info)
d01414a5
TS
7731{
7732 asection *o;
b34976b6 7733 bfd_boolean ret = FALSE;
d01414a5
TS
7734 unsigned char *tdata;
7735 size_t i, skip;
7736
7737 o = bfd_get_section_by_name (abfd, ".pdr");
7738 if (! o)
b34976b6 7739 return FALSE;
eea6121a 7740 if (o->size == 0)
b34976b6 7741 return FALSE;
eea6121a 7742 if (o->size % PDR_SIZE != 0)
b34976b6 7743 return FALSE;
d01414a5
TS
7744 if (o->output_section != NULL
7745 && bfd_is_abs_section (o->output_section))
b34976b6 7746 return FALSE;
d01414a5 7747
eea6121a 7748 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7749 if (! tdata)
b34976b6 7750 return FALSE;
d01414a5 7751
9719ad41 7752 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7753 info->keep_memory);
d01414a5
TS
7754 if (!cookie->rels)
7755 {
7756 free (tdata);
b34976b6 7757 return FALSE;
d01414a5
TS
7758 }
7759
7760 cookie->rel = cookie->rels;
7761 cookie->relend = cookie->rels + o->reloc_count;
7762
eea6121a 7763 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7764 {
c152c796 7765 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7766 {
7767 tdata[i] = 1;
7768 skip ++;
7769 }
7770 }
7771
7772 if (skip != 0)
7773 {
f0abc2a1 7774 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7775 o->size -= skip * PDR_SIZE;
b34976b6 7776 ret = TRUE;
d01414a5
TS
7777 }
7778 else
7779 free (tdata);
7780
7781 if (! info->keep_memory)
7782 free (cookie->rels);
7783
7784 return ret;
7785}
7786
b34976b6 7787bfd_boolean
9719ad41 7788_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7789{
7790 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7791 return TRUE;
7792 return FALSE;
53bfd6b4 7793}
d01414a5 7794
b34976b6 7795bfd_boolean
9719ad41
RS
7796_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7797 bfd_byte *contents)
d01414a5
TS
7798{
7799 bfd_byte *to, *from, *end;
7800 int i;
7801
7802 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7803 return FALSE;
d01414a5 7804
f0abc2a1 7805 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7806 return FALSE;
d01414a5
TS
7807
7808 to = contents;
eea6121a 7809 end = contents + sec->size;
d01414a5
TS
7810 for (from = contents, i = 0;
7811 from < end;
7812 from += PDR_SIZE, i++)
7813 {
f0abc2a1 7814 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7815 continue;
7816 if (to != from)
7817 memcpy (to, from, PDR_SIZE);
7818 to += PDR_SIZE;
7819 }
7820 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7821 sec->output_offset, sec->size);
b34976b6 7822 return TRUE;
d01414a5 7823}
53bfd6b4 7824\f
b49e97c9
TS
7825/* MIPS ELF uses a special find_nearest_line routine in order the
7826 handle the ECOFF debugging information. */
7827
7828struct mips_elf_find_line
7829{
7830 struct ecoff_debug_info d;
7831 struct ecoff_find_line i;
7832};
7833
b34976b6 7834bfd_boolean
9719ad41
RS
7835_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7836 asymbol **symbols, bfd_vma offset,
7837 const char **filename_ptr,
7838 const char **functionname_ptr,
7839 unsigned int *line_ptr)
b49e97c9
TS
7840{
7841 asection *msec;
7842
7843 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7844 filename_ptr, functionname_ptr,
7845 line_ptr))
b34976b6 7846 return TRUE;
b49e97c9
TS
7847
7848 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7849 filename_ptr, functionname_ptr,
9719ad41 7850 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7851 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7852 return TRUE;
b49e97c9
TS
7853
7854 msec = bfd_get_section_by_name (abfd, ".mdebug");
7855 if (msec != NULL)
7856 {
7857 flagword origflags;
7858 struct mips_elf_find_line *fi;
7859 const struct ecoff_debug_swap * const swap =
7860 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7861
7862 /* If we are called during a link, mips_elf_final_link may have
7863 cleared the SEC_HAS_CONTENTS field. We force it back on here
7864 if appropriate (which it normally will be). */
7865 origflags = msec->flags;
7866 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7867 msec->flags |= SEC_HAS_CONTENTS;
7868
7869 fi = elf_tdata (abfd)->find_line_info;
7870 if (fi == NULL)
7871 {
7872 bfd_size_type external_fdr_size;
7873 char *fraw_src;
7874 char *fraw_end;
7875 struct fdr *fdr_ptr;
7876 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7877
9719ad41 7878 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7879 if (fi == NULL)
7880 {
7881 msec->flags = origflags;
b34976b6 7882 return FALSE;
b49e97c9
TS
7883 }
7884
7885 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7886 {
7887 msec->flags = origflags;
b34976b6 7888 return FALSE;
b49e97c9
TS
7889 }
7890
7891 /* Swap in the FDR information. */
7892 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7893 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7894 if (fi->d.fdr == NULL)
7895 {
7896 msec->flags = origflags;
b34976b6 7897 return FALSE;
b49e97c9
TS
7898 }
7899 external_fdr_size = swap->external_fdr_size;
7900 fdr_ptr = fi->d.fdr;
7901 fraw_src = (char *) fi->d.external_fdr;
7902 fraw_end = (fraw_src
7903 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7904 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7905 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7906
7907 elf_tdata (abfd)->find_line_info = fi;
7908
7909 /* Note that we don't bother to ever free this information.
7910 find_nearest_line is either called all the time, as in
7911 objdump -l, so the information should be saved, or it is
7912 rarely called, as in ld error messages, so the memory
7913 wasted is unimportant. Still, it would probably be a
7914 good idea for free_cached_info to throw it away. */
7915 }
7916
7917 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7918 &fi->i, filename_ptr, functionname_ptr,
7919 line_ptr))
7920 {
7921 msec->flags = origflags;
b34976b6 7922 return TRUE;
b49e97c9
TS
7923 }
7924
7925 msec->flags = origflags;
7926 }
7927
7928 /* Fall back on the generic ELF find_nearest_line routine. */
7929
7930 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7931 filename_ptr, functionname_ptr,
7932 line_ptr);
7933}
7934\f
7935/* When are writing out the .options or .MIPS.options section,
7936 remember the bytes we are writing out, so that we can install the
7937 GP value in the section_processing routine. */
7938
b34976b6 7939bfd_boolean
9719ad41
RS
7940_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7941 const void *location,
7942 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7943{
7944 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7945 {
7946 bfd_byte *c;
7947
7948 if (elf_section_data (section) == NULL)
7949 {
7950 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7951 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7952 if (elf_section_data (section) == NULL)
b34976b6 7953 return FALSE;
b49e97c9 7954 }
f0abc2a1 7955 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7956 if (c == NULL)
7957 {
eea6121a 7958 c = bfd_zalloc (abfd, section->size);
b49e97c9 7959 if (c == NULL)
b34976b6 7960 return FALSE;
f0abc2a1 7961 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7962 }
7963
9719ad41 7964 memcpy (c + offset, location, count);
b49e97c9
TS
7965 }
7966
7967 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7968 count);
7969}
7970
7971/* This is almost identical to bfd_generic_get_... except that some
7972 MIPS relocations need to be handled specially. Sigh. */
7973
7974bfd_byte *
9719ad41
RS
7975_bfd_elf_mips_get_relocated_section_contents
7976 (bfd *abfd,
7977 struct bfd_link_info *link_info,
7978 struct bfd_link_order *link_order,
7979 bfd_byte *data,
7980 bfd_boolean relocatable,
7981 asymbol **symbols)
b49e97c9
TS
7982{
7983 /* Get enough memory to hold the stuff */
7984 bfd *input_bfd = link_order->u.indirect.section->owner;
7985 asection *input_section = link_order->u.indirect.section;
eea6121a 7986 bfd_size_type sz;
b49e97c9
TS
7987
7988 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7989 arelent **reloc_vector = NULL;
7990 long reloc_count;
7991
7992 if (reloc_size < 0)
7993 goto error_return;
7994
9719ad41 7995 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7996 if (reloc_vector == NULL && reloc_size != 0)
7997 goto error_return;
7998
7999 /* read in the section */
eea6121a
AM
8000 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8001 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8002 goto error_return;
8003
b49e97c9
TS
8004 reloc_count = bfd_canonicalize_reloc (input_bfd,
8005 input_section,
8006 reloc_vector,
8007 symbols);
8008 if (reloc_count < 0)
8009 goto error_return;
8010
8011 if (reloc_count > 0)
8012 {
8013 arelent **parent;
8014 /* for mips */
8015 int gp_found;
8016 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8017
8018 {
8019 struct bfd_hash_entry *h;
8020 struct bfd_link_hash_entry *lh;
8021 /* Skip all this stuff if we aren't mixing formats. */
8022 if (abfd && input_bfd
8023 && abfd->xvec == input_bfd->xvec)
8024 lh = 0;
8025 else
8026 {
b34976b6 8027 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8028 lh = (struct bfd_link_hash_entry *) h;
8029 }
8030 lookup:
8031 if (lh)
8032 {
8033 switch (lh->type)
8034 {
8035 case bfd_link_hash_undefined:
8036 case bfd_link_hash_undefweak:
8037 case bfd_link_hash_common:
8038 gp_found = 0;
8039 break;
8040 case bfd_link_hash_defined:
8041 case bfd_link_hash_defweak:
8042 gp_found = 1;
8043 gp = lh->u.def.value;
8044 break;
8045 case bfd_link_hash_indirect:
8046 case bfd_link_hash_warning:
8047 lh = lh->u.i.link;
8048 /* @@FIXME ignoring warning for now */
8049 goto lookup;
8050 case bfd_link_hash_new:
8051 default:
8052 abort ();
8053 }
8054 }
8055 else
8056 gp_found = 0;
8057 }
8058 /* end mips */
9719ad41 8059 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8060 {
9719ad41 8061 char *error_message = NULL;
b49e97c9
TS
8062 bfd_reloc_status_type r;
8063
8064 /* Specific to MIPS: Deal with relocation types that require
8065 knowing the gp of the output bfd. */
8066 asymbol *sym = *(*parent)->sym_ptr_ptr;
8067 if (bfd_is_abs_section (sym->section) && abfd)
8068 {
44c410de 8069 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8070 }
8071 else if (!gp_found)
8072 {
8073 /* The gp isn't there; let the special function code
8074 fall over on its own. */
8075 }
8076 else if ((*parent)->howto->special_function
8077 == _bfd_mips_elf32_gprel16_reloc)
8078 {
8079 /* bypass special_function call */
8080 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8081 input_section, relocatable,
9719ad41 8082 data, gp);
b49e97c9
TS
8083 goto skip_bfd_perform_relocation;
8084 }
8085 /* end mips specific stuff */
8086
9719ad41
RS
8087 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8088 relocatable ? abfd : NULL,
b49e97c9
TS
8089 &error_message);
8090 skip_bfd_perform_relocation:
8091
1049f94e 8092 if (relocatable)
b49e97c9
TS
8093 {
8094 asection *os = input_section->output_section;
8095
8096 /* A partial link, so keep the relocs */
8097 os->orelocation[os->reloc_count] = *parent;
8098 os->reloc_count++;
8099 }
8100
8101 if (r != bfd_reloc_ok)
8102 {
8103 switch (r)
8104 {
8105 case bfd_reloc_undefined:
8106 if (!((*link_info->callbacks->undefined_symbol)
8107 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8108 input_bfd, input_section, (*parent)->address,
b34976b6 8109 TRUE)))
b49e97c9
TS
8110 goto error_return;
8111 break;
8112 case bfd_reloc_dangerous:
9719ad41 8113 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8114 if (!((*link_info->callbacks->reloc_dangerous)
8115 (link_info, error_message, input_bfd, input_section,
8116 (*parent)->address)))
8117 goto error_return;
8118 break;
8119 case bfd_reloc_overflow:
8120 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8121 (link_info, NULL,
8122 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8123 (*parent)->howto->name, (*parent)->addend,
8124 input_bfd, input_section, (*parent)->address)))
8125 goto error_return;
8126 break;
8127 case bfd_reloc_outofrange:
8128 default:
8129 abort ();
8130 break;
8131 }
8132
8133 }
8134 }
8135 }
8136 if (reloc_vector != NULL)
8137 free (reloc_vector);
8138 return data;
8139
8140error_return:
8141 if (reloc_vector != NULL)
8142 free (reloc_vector);
8143 return NULL;
8144}
8145\f
8146/* Create a MIPS ELF linker hash table. */
8147
8148struct bfd_link_hash_table *
9719ad41 8149_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8150{
8151 struct mips_elf_link_hash_table *ret;
8152 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8153
9719ad41
RS
8154 ret = bfd_malloc (amt);
8155 if (ret == NULL)
b49e97c9
TS
8156 return NULL;
8157
8158 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8159 mips_elf_link_hash_newfunc))
8160 {
e2d34d7d 8161 free (ret);
b49e97c9
TS
8162 return NULL;
8163 }
8164
8165#if 0
8166 /* We no longer use this. */
8167 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8168 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8169#endif
8170 ret->procedure_count = 0;
8171 ret->compact_rel_size = 0;
b34976b6 8172 ret->use_rld_obj_head = FALSE;
b49e97c9 8173 ret->rld_value = 0;
b34976b6 8174 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8175
8176 return &ret->root.root;
8177}
8178\f
8179/* We need to use a special link routine to handle the .reginfo and
8180 the .mdebug sections. We need to merge all instances of these
8181 sections together, not write them all out sequentially. */
8182
b34976b6 8183bfd_boolean
9719ad41 8184_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8185{
8186 asection **secpp;
8187 asection *o;
8188 struct bfd_link_order *p;
8189 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8190 asection *rtproc_sec;
8191 Elf32_RegInfo reginfo;
8192 struct ecoff_debug_info debug;
7a2a6943
NC
8193 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8194 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8195 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8196 void *mdebug_handle = NULL;
b49e97c9
TS
8197 asection *s;
8198 EXTR esym;
8199 unsigned int i;
8200 bfd_size_type amt;
8201
8202 static const char * const secname[] =
8203 {
8204 ".text", ".init", ".fini", ".data",
8205 ".rodata", ".sdata", ".sbss", ".bss"
8206 };
8207 static const int sc[] =
8208 {
8209 scText, scInit, scFini, scData,
8210 scRData, scSData, scSBss, scBss
8211 };
8212
b49e97c9
TS
8213 /* We'd carefully arranged the dynamic symbol indices, and then the
8214 generic size_dynamic_sections renumbered them out from under us.
8215 Rather than trying somehow to prevent the renumbering, just do
8216 the sort again. */
8217 if (elf_hash_table (info)->dynamic_sections_created)
8218 {
8219 bfd *dynobj;
8220 asection *got;
8221 struct mips_got_info *g;
7a2a6943 8222 bfd_size_type dynsecsymcount;
b49e97c9
TS
8223
8224 /* When we resort, we must tell mips_elf_sort_hash_table what
8225 the lowest index it may use is. That's the number of section
8226 symbols we're going to add. The generic ELF linker only
8227 adds these symbols when building a shared object. Note that
8228 we count the sections after (possibly) removing the .options
8229 section above. */
7a2a6943
NC
8230
8231 dynsecsymcount = 0;
8232 if (info->shared)
8233 {
8234 asection * p;
8235
8236 for (p = abfd->sections; p ; p = p->next)
8237 if ((p->flags & SEC_EXCLUDE) == 0
8238 && (p->flags & SEC_ALLOC) != 0
8239 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8240 ++ dynsecsymcount;
8241 }
8242
8243 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8244 return FALSE;
b49e97c9
TS
8245
8246 /* Make sure we didn't grow the global .got region. */
8247 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8248 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8249 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8250
8251 if (g->global_gotsym != NULL)
8252 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8253 - g->global_gotsym->dynindx)
8254 <= g->global_gotno);
8255 }
8256
a902ee94
SC
8257#if 0
8258 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8259 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8260 include it, even though we don't process it quite right. (Some
8261 entries are supposed to be merged.) Empirically, we seem to be
8262 better off including it then not. */
8263 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8264 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8265 {
8266 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8267 {
8268 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8269 if (p->type == bfd_indirect_link_order)
8270 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8271 (*secpp)->link_order_head = NULL;
8272 bfd_section_list_remove (abfd, secpp);
8273 --abfd->section_count;
8274
8275 break;
8276 }
8277 }
8278
8279 /* We include .MIPS.options, even though we don't process it quite right.
8280 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8281 to be better off including it than not. */
8282 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8283 {
8284 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8285 {
8286 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8287 if (p->type == bfd_indirect_link_order)
8288 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8289 (*secpp)->link_order_head = NULL;
8290 bfd_section_list_remove (abfd, secpp);
8291 --abfd->section_count;
b34976b6 8292
b49e97c9
TS
8293 break;
8294 }
8295 }
a902ee94 8296#endif
b49e97c9
TS
8297
8298 /* Get a value for the GP register. */
8299 if (elf_gp (abfd) == 0)
8300 {
8301 struct bfd_link_hash_entry *h;
8302
b34976b6 8303 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8304 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8305 elf_gp (abfd) = (h->u.def.value
8306 + h->u.def.section->output_section->vma
8307 + h->u.def.section->output_offset);
1049f94e 8308 else if (info->relocatable)
b49e97c9
TS
8309 {
8310 bfd_vma lo = MINUS_ONE;
8311
8312 /* Find the GP-relative section with the lowest offset. */
9719ad41 8313 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8314 if (o->vma < lo
8315 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8316 lo = o->vma;
8317
8318 /* And calculate GP relative to that. */
8319 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8320 }
8321 else
8322 {
8323 /* If the relocate_section function needs to do a reloc
8324 involving the GP value, it should make a reloc_dangerous
8325 callback to warn that GP is not defined. */
8326 }
8327 }
8328
8329 /* Go through the sections and collect the .reginfo and .mdebug
8330 information. */
8331 reginfo_sec = NULL;
8332 mdebug_sec = NULL;
8333 gptab_data_sec = NULL;
8334 gptab_bss_sec = NULL;
9719ad41 8335 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8336 {
8337 if (strcmp (o->name, ".reginfo") == 0)
8338 {
8339 memset (&reginfo, 0, sizeof reginfo);
8340
8341 /* We have found the .reginfo section in the output file.
8342 Look through all the link_orders comprising it and merge
8343 the information together. */
9719ad41 8344 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8345 {
8346 asection *input_section;
8347 bfd *input_bfd;
8348 Elf32_External_RegInfo ext;
8349 Elf32_RegInfo sub;
8350
8351 if (p->type != bfd_indirect_link_order)
8352 {
8353 if (p->type == bfd_data_link_order)
8354 continue;
8355 abort ();
8356 }
8357
8358 input_section = p->u.indirect.section;
8359 input_bfd = input_section->owner;
8360
b49e97c9 8361 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8362 &ext, 0, sizeof ext))
b34976b6 8363 return FALSE;
b49e97c9
TS
8364
8365 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8366
8367 reginfo.ri_gprmask |= sub.ri_gprmask;
8368 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8369 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8370 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8371 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8372
8373 /* ri_gp_value is set by the function
8374 mips_elf32_section_processing when the section is
8375 finally written out. */
8376
8377 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8378 elf_link_input_bfd ignores this section. */
8379 input_section->flags &= ~SEC_HAS_CONTENTS;
8380 }
8381
8382 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8383 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8384
8385 /* Skip this section later on (I don't think this currently
8386 matters, but someday it might). */
9719ad41 8387 o->link_order_head = NULL;
b49e97c9
TS
8388
8389 reginfo_sec = o;
8390 }
8391
8392 if (strcmp (o->name, ".mdebug") == 0)
8393 {
8394 struct extsym_info einfo;
8395 bfd_vma last;
8396
8397 /* We have found the .mdebug section in the output file.
8398 Look through all the link_orders comprising it and merge
8399 the information together. */
8400 symhdr->magic = swap->sym_magic;
8401 /* FIXME: What should the version stamp be? */
8402 symhdr->vstamp = 0;
8403 symhdr->ilineMax = 0;
8404 symhdr->cbLine = 0;
8405 symhdr->idnMax = 0;
8406 symhdr->ipdMax = 0;
8407 symhdr->isymMax = 0;
8408 symhdr->ioptMax = 0;
8409 symhdr->iauxMax = 0;
8410 symhdr->issMax = 0;
8411 symhdr->issExtMax = 0;
8412 symhdr->ifdMax = 0;
8413 symhdr->crfd = 0;
8414 symhdr->iextMax = 0;
8415
8416 /* We accumulate the debugging information itself in the
8417 debug_info structure. */
8418 debug.line = NULL;
8419 debug.external_dnr = NULL;
8420 debug.external_pdr = NULL;
8421 debug.external_sym = NULL;
8422 debug.external_opt = NULL;
8423 debug.external_aux = NULL;
8424 debug.ss = NULL;
8425 debug.ssext = debug.ssext_end = NULL;
8426 debug.external_fdr = NULL;
8427 debug.external_rfd = NULL;
8428 debug.external_ext = debug.external_ext_end = NULL;
8429
8430 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8431 if (mdebug_handle == NULL)
b34976b6 8432 return FALSE;
b49e97c9
TS
8433
8434 esym.jmptbl = 0;
8435 esym.cobol_main = 0;
8436 esym.weakext = 0;
8437 esym.reserved = 0;
8438 esym.ifd = ifdNil;
8439 esym.asym.iss = issNil;
8440 esym.asym.st = stLocal;
8441 esym.asym.reserved = 0;
8442 esym.asym.index = indexNil;
8443 last = 0;
8444 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8445 {
8446 esym.asym.sc = sc[i];
8447 s = bfd_get_section_by_name (abfd, secname[i]);
8448 if (s != NULL)
8449 {
8450 esym.asym.value = s->vma;
eea6121a 8451 last = s->vma + s->size;
b49e97c9
TS
8452 }
8453 else
8454 esym.asym.value = last;
8455 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8456 secname[i], &esym))
b34976b6 8457 return FALSE;
b49e97c9
TS
8458 }
8459
9719ad41 8460 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8461 {
8462 asection *input_section;
8463 bfd *input_bfd;
8464 const struct ecoff_debug_swap *input_swap;
8465 struct ecoff_debug_info input_debug;
8466 char *eraw_src;
8467 char *eraw_end;
8468
8469 if (p->type != bfd_indirect_link_order)
8470 {
8471 if (p->type == bfd_data_link_order)
8472 continue;
8473 abort ();
8474 }
8475
8476 input_section = p->u.indirect.section;
8477 input_bfd = input_section->owner;
8478
8479 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8480 || (get_elf_backend_data (input_bfd)
8481 ->elf_backend_ecoff_debug_swap) == NULL)
8482 {
8483 /* I don't know what a non MIPS ELF bfd would be
8484 doing with a .mdebug section, but I don't really
8485 want to deal with it. */
8486 continue;
8487 }
8488
8489 input_swap = (get_elf_backend_data (input_bfd)
8490 ->elf_backend_ecoff_debug_swap);
8491
eea6121a 8492 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8493
8494 /* The ECOFF linking code expects that we have already
8495 read in the debugging information and set up an
8496 ecoff_debug_info structure, so we do that now. */
8497 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8498 &input_debug))
b34976b6 8499 return FALSE;
b49e97c9
TS
8500
8501 if (! (bfd_ecoff_debug_accumulate
8502 (mdebug_handle, abfd, &debug, swap, input_bfd,
8503 &input_debug, input_swap, info)))
b34976b6 8504 return FALSE;
b49e97c9
TS
8505
8506 /* Loop through the external symbols. For each one with
8507 interesting information, try to find the symbol in
8508 the linker global hash table and save the information
8509 for the output external symbols. */
8510 eraw_src = input_debug.external_ext;
8511 eraw_end = (eraw_src
8512 + (input_debug.symbolic_header.iextMax
8513 * input_swap->external_ext_size));
8514 for (;
8515 eraw_src < eraw_end;
8516 eraw_src += input_swap->external_ext_size)
8517 {
8518 EXTR ext;
8519 const char *name;
8520 struct mips_elf_link_hash_entry *h;
8521
9719ad41 8522 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8523 if (ext.asym.sc == scNil
8524 || ext.asym.sc == scUndefined
8525 || ext.asym.sc == scSUndefined)
8526 continue;
8527
8528 name = input_debug.ssext + ext.asym.iss;
8529 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8530 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8531 if (h == NULL || h->esym.ifd != -2)
8532 continue;
8533
8534 if (ext.ifd != -1)
8535 {
8536 BFD_ASSERT (ext.ifd
8537 < input_debug.symbolic_header.ifdMax);
8538 ext.ifd = input_debug.ifdmap[ext.ifd];
8539 }
8540
8541 h->esym = ext;
8542 }
8543
8544 /* Free up the information we just read. */
8545 free (input_debug.line);
8546 free (input_debug.external_dnr);
8547 free (input_debug.external_pdr);
8548 free (input_debug.external_sym);
8549 free (input_debug.external_opt);
8550 free (input_debug.external_aux);
8551 free (input_debug.ss);
8552 free (input_debug.ssext);
8553 free (input_debug.external_fdr);
8554 free (input_debug.external_rfd);
8555 free (input_debug.external_ext);
8556
8557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8558 elf_link_input_bfd ignores this section. */
8559 input_section->flags &= ~SEC_HAS_CONTENTS;
8560 }
8561
8562 if (SGI_COMPAT (abfd) && info->shared)
8563 {
8564 /* Create .rtproc section. */
8565 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8566 if (rtproc_sec == NULL)
8567 {
8568 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8569 | SEC_LINKER_CREATED | SEC_READONLY);
8570
8571 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8572 if (rtproc_sec == NULL
8573 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8574 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8575 return FALSE;
b49e97c9
TS
8576 }
8577
8578 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8579 info, rtproc_sec,
8580 &debug))
b34976b6 8581 return FALSE;
b49e97c9
TS
8582 }
8583
8584 /* Build the external symbol information. */
8585 einfo.abfd = abfd;
8586 einfo.info = info;
8587 einfo.debug = &debug;
8588 einfo.swap = swap;
b34976b6 8589 einfo.failed = FALSE;
b49e97c9 8590 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8591 mips_elf_output_extsym, &einfo);
b49e97c9 8592 if (einfo.failed)
b34976b6 8593 return FALSE;
b49e97c9
TS
8594
8595 /* Set the size of the .mdebug section. */
eea6121a 8596 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8597
8598 /* Skip this section later on (I don't think this currently
8599 matters, but someday it might). */
9719ad41 8600 o->link_order_head = NULL;
b49e97c9
TS
8601
8602 mdebug_sec = o;
8603 }
8604
8605 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8606 {
8607 const char *subname;
8608 unsigned int c;
8609 Elf32_gptab *tab;
8610 Elf32_External_gptab *ext_tab;
8611 unsigned int j;
8612
8613 /* The .gptab.sdata and .gptab.sbss sections hold
8614 information describing how the small data area would
8615 change depending upon the -G switch. These sections
8616 not used in executables files. */
1049f94e 8617 if (! info->relocatable)
b49e97c9 8618 {
9719ad41 8619 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8620 {
8621 asection *input_section;
8622
8623 if (p->type != bfd_indirect_link_order)
8624 {
8625 if (p->type == bfd_data_link_order)
8626 continue;
8627 abort ();
8628 }
8629
8630 input_section = p->u.indirect.section;
8631
8632 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8633 elf_link_input_bfd ignores this section. */
8634 input_section->flags &= ~SEC_HAS_CONTENTS;
8635 }
8636
8637 /* Skip this section later on (I don't think this
8638 currently matters, but someday it might). */
9719ad41 8639 o->link_order_head = NULL;
b49e97c9
TS
8640
8641 /* Really remove the section. */
8642 for (secpp = &abfd->sections;
8643 *secpp != o;
8644 secpp = &(*secpp)->next)
8645 ;
8646 bfd_section_list_remove (abfd, secpp);
8647 --abfd->section_count;
8648
8649 continue;
8650 }
8651
8652 /* There is one gptab for initialized data, and one for
8653 uninitialized data. */
8654 if (strcmp (o->name, ".gptab.sdata") == 0)
8655 gptab_data_sec = o;
8656 else if (strcmp (o->name, ".gptab.sbss") == 0)
8657 gptab_bss_sec = o;
8658 else
8659 {
8660 (*_bfd_error_handler)
8661 (_("%s: illegal section name `%s'"),
8662 bfd_get_filename (abfd), o->name);
8663 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8664 return FALSE;
b49e97c9
TS
8665 }
8666
8667 /* The linker script always combines .gptab.data and
8668 .gptab.sdata into .gptab.sdata, and likewise for
8669 .gptab.bss and .gptab.sbss. It is possible that there is
8670 no .sdata or .sbss section in the output file, in which
8671 case we must change the name of the output section. */
8672 subname = o->name + sizeof ".gptab" - 1;
8673 if (bfd_get_section_by_name (abfd, subname) == NULL)
8674 {
8675 if (o == gptab_data_sec)
8676 o->name = ".gptab.data";
8677 else
8678 o->name = ".gptab.bss";
8679 subname = o->name + sizeof ".gptab" - 1;
8680 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8681 }
8682
8683 /* Set up the first entry. */
8684 c = 1;
8685 amt = c * sizeof (Elf32_gptab);
9719ad41 8686 tab = bfd_malloc (amt);
b49e97c9 8687 if (tab == NULL)
b34976b6 8688 return FALSE;
b49e97c9
TS
8689 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8690 tab[0].gt_header.gt_unused = 0;
8691
8692 /* Combine the input sections. */
9719ad41 8693 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8694 {
8695 asection *input_section;
8696 bfd *input_bfd;
8697 bfd_size_type size;
8698 unsigned long last;
8699 bfd_size_type gpentry;
8700
8701 if (p->type != bfd_indirect_link_order)
8702 {
8703 if (p->type == bfd_data_link_order)
8704 continue;
8705 abort ();
8706 }
8707
8708 input_section = p->u.indirect.section;
8709 input_bfd = input_section->owner;
8710
8711 /* Combine the gptab entries for this input section one
8712 by one. We know that the input gptab entries are
8713 sorted by ascending -G value. */
eea6121a 8714 size = input_section->size;
b49e97c9
TS
8715 last = 0;
8716 for (gpentry = sizeof (Elf32_External_gptab);
8717 gpentry < size;
8718 gpentry += sizeof (Elf32_External_gptab))
8719 {
8720 Elf32_External_gptab ext_gptab;
8721 Elf32_gptab int_gptab;
8722 unsigned long val;
8723 unsigned long add;
b34976b6 8724 bfd_boolean exact;
b49e97c9
TS
8725 unsigned int look;
8726
8727 if (! (bfd_get_section_contents
9719ad41
RS
8728 (input_bfd, input_section, &ext_gptab, gpentry,
8729 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8730 {
8731 free (tab);
b34976b6 8732 return FALSE;
b49e97c9
TS
8733 }
8734
8735 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8736 &int_gptab);
8737 val = int_gptab.gt_entry.gt_g_value;
8738 add = int_gptab.gt_entry.gt_bytes - last;
8739
b34976b6 8740 exact = FALSE;
b49e97c9
TS
8741 for (look = 1; look < c; look++)
8742 {
8743 if (tab[look].gt_entry.gt_g_value >= val)
8744 tab[look].gt_entry.gt_bytes += add;
8745
8746 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8747 exact = TRUE;
b49e97c9
TS
8748 }
8749
8750 if (! exact)
8751 {
8752 Elf32_gptab *new_tab;
8753 unsigned int max;
8754
8755 /* We need a new table entry. */
8756 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8757 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8758 if (new_tab == NULL)
8759 {
8760 free (tab);
b34976b6 8761 return FALSE;
b49e97c9
TS
8762 }
8763 tab = new_tab;
8764 tab[c].gt_entry.gt_g_value = val;
8765 tab[c].gt_entry.gt_bytes = add;
8766
8767 /* Merge in the size for the next smallest -G
8768 value, since that will be implied by this new
8769 value. */
8770 max = 0;
8771 for (look = 1; look < c; look++)
8772 {
8773 if (tab[look].gt_entry.gt_g_value < val
8774 && (max == 0
8775 || (tab[look].gt_entry.gt_g_value
8776 > tab[max].gt_entry.gt_g_value)))
8777 max = look;
8778 }
8779 if (max != 0)
8780 tab[c].gt_entry.gt_bytes +=
8781 tab[max].gt_entry.gt_bytes;
8782
8783 ++c;
8784 }
8785
8786 last = int_gptab.gt_entry.gt_bytes;
8787 }
8788
8789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8790 elf_link_input_bfd ignores this section. */
8791 input_section->flags &= ~SEC_HAS_CONTENTS;
8792 }
8793
8794 /* The table must be sorted by -G value. */
8795 if (c > 2)
8796 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8797
8798 /* Swap out the table. */
8799 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8800 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8801 if (ext_tab == NULL)
8802 {
8803 free (tab);
b34976b6 8804 return FALSE;
b49e97c9
TS
8805 }
8806
8807 for (j = 0; j < c; j++)
8808 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8809 free (tab);
8810
eea6121a 8811 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8812 o->contents = (bfd_byte *) ext_tab;
8813
8814 /* Skip this section later on (I don't think this currently
8815 matters, but someday it might). */
9719ad41 8816 o->link_order_head = NULL;
b49e97c9
TS
8817 }
8818 }
8819
8820 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8821 if (!bfd_elf_final_link (abfd, info))
b34976b6 8822 return FALSE;
b49e97c9
TS
8823
8824 /* Now write out the computed sections. */
8825
9719ad41 8826 if (reginfo_sec != NULL)
b49e97c9
TS
8827 {
8828 Elf32_External_RegInfo ext;
8829
8830 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8831 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8832 return FALSE;
b49e97c9
TS
8833 }
8834
9719ad41 8835 if (mdebug_sec != NULL)
b49e97c9
TS
8836 {
8837 BFD_ASSERT (abfd->output_has_begun);
8838 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8839 swap, info,
8840 mdebug_sec->filepos))
b34976b6 8841 return FALSE;
b49e97c9
TS
8842
8843 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8844 }
8845
9719ad41 8846 if (gptab_data_sec != NULL)
b49e97c9
TS
8847 {
8848 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8849 gptab_data_sec->contents,
eea6121a 8850 0, gptab_data_sec->size))
b34976b6 8851 return FALSE;
b49e97c9
TS
8852 }
8853
9719ad41 8854 if (gptab_bss_sec != NULL)
b49e97c9
TS
8855 {
8856 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8857 gptab_bss_sec->contents,
eea6121a 8858 0, gptab_bss_sec->size))
b34976b6 8859 return FALSE;
b49e97c9
TS
8860 }
8861
8862 if (SGI_COMPAT (abfd))
8863 {
8864 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8865 if (rtproc_sec != NULL)
8866 {
8867 if (! bfd_set_section_contents (abfd, rtproc_sec,
8868 rtproc_sec->contents,
eea6121a 8869 0, rtproc_sec->size))
b34976b6 8870 return FALSE;
b49e97c9
TS
8871 }
8872 }
8873
b34976b6 8874 return TRUE;
b49e97c9
TS
8875}
8876\f
64543e1a
RS
8877/* Structure for saying that BFD machine EXTENSION extends BASE. */
8878
8879struct mips_mach_extension {
8880 unsigned long extension, base;
8881};
8882
8883
8884/* An array describing how BFD machines relate to one another. The entries
8885 are ordered topologically with MIPS I extensions listed last. */
8886
8887static const struct mips_mach_extension mips_mach_extensions[] = {
8888 /* MIPS64 extensions. */
5f74bc13 8889 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8890 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8891
8892 /* MIPS V extensions. */
8893 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8894
8895 /* R10000 extensions. */
8896 { bfd_mach_mips12000, bfd_mach_mips10000 },
8897
8898 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8899 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8900 better to allow vr5400 and vr5500 code to be merged anyway, since
8901 many libraries will just use the core ISA. Perhaps we could add
8902 some sort of ASE flag if this ever proves a problem. */
8903 { bfd_mach_mips5500, bfd_mach_mips5400 },
8904 { bfd_mach_mips5400, bfd_mach_mips5000 },
8905
8906 /* MIPS IV extensions. */
8907 { bfd_mach_mips5, bfd_mach_mips8000 },
8908 { bfd_mach_mips10000, bfd_mach_mips8000 },
8909 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8910 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 8911 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
8912
8913 /* VR4100 extensions. */
8914 { bfd_mach_mips4120, bfd_mach_mips4100 },
8915 { bfd_mach_mips4111, bfd_mach_mips4100 },
8916
8917 /* MIPS III extensions. */
8918 { bfd_mach_mips8000, bfd_mach_mips4000 },
8919 { bfd_mach_mips4650, bfd_mach_mips4000 },
8920 { bfd_mach_mips4600, bfd_mach_mips4000 },
8921 { bfd_mach_mips4400, bfd_mach_mips4000 },
8922 { bfd_mach_mips4300, bfd_mach_mips4000 },
8923 { bfd_mach_mips4100, bfd_mach_mips4000 },
8924 { bfd_mach_mips4010, bfd_mach_mips4000 },
8925
8926 /* MIPS32 extensions. */
8927 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8928
8929 /* MIPS II extensions. */
8930 { bfd_mach_mips4000, bfd_mach_mips6000 },
8931 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8932
8933 /* MIPS I extensions. */
8934 { bfd_mach_mips6000, bfd_mach_mips3000 },
8935 { bfd_mach_mips3900, bfd_mach_mips3000 }
8936};
8937
8938
8939/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8940
8941static bfd_boolean
9719ad41 8942mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8943{
8944 size_t i;
8945
8946 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8947 if (extension == mips_mach_extensions[i].extension)
8948 extension = mips_mach_extensions[i].base;
8949
8950 return extension == base;
8951}
8952
8953
8954/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8955
b34976b6 8956static bfd_boolean
9719ad41 8957mips_32bit_flags_p (flagword flags)
00707a0e 8958{
64543e1a
RS
8959 return ((flags & EF_MIPS_32BITMODE) != 0
8960 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8961 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8962 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8963 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8964 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8965 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8966}
8967
64543e1a 8968
b49e97c9
TS
8969/* Merge backend specific data from an object file to the output
8970 object file when linking. */
8971
b34976b6 8972bfd_boolean
9719ad41 8973_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8974{
8975 flagword old_flags;
8976 flagword new_flags;
b34976b6
AM
8977 bfd_boolean ok;
8978 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8979 asection *sec;
8980
8981 /* Check if we have the same endianess */
82e51918 8982 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8983 {
8984 (*_bfd_error_handler)
d003868e
AM
8985 (_("%B: endianness incompatible with that of the selected emulation"),
8986 ibfd);
aa701218
AO
8987 return FALSE;
8988 }
b49e97c9
TS
8989
8990 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8991 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8992 return TRUE;
b49e97c9 8993
aa701218
AO
8994 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8995 {
8996 (*_bfd_error_handler)
d003868e
AM
8997 (_("%B: ABI is incompatible with that of the selected emulation"),
8998 ibfd);
aa701218
AO
8999 return FALSE;
9000 }
9001
b49e97c9
TS
9002 new_flags = elf_elfheader (ibfd)->e_flags;
9003 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9004 old_flags = elf_elfheader (obfd)->e_flags;
9005
9006 if (! elf_flags_init (obfd))
9007 {
b34976b6 9008 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9009 elf_elfheader (obfd)->e_flags = new_flags;
9010 elf_elfheader (obfd)->e_ident[EI_CLASS]
9011 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9012
9013 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9014 && bfd_get_arch_info (obfd)->the_default)
9015 {
9016 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9017 bfd_get_mach (ibfd)))
b34976b6 9018 return FALSE;
b49e97c9
TS
9019 }
9020
b34976b6 9021 return TRUE;
b49e97c9
TS
9022 }
9023
9024 /* Check flag compatibility. */
9025
9026 new_flags &= ~EF_MIPS_NOREORDER;
9027 old_flags &= ~EF_MIPS_NOREORDER;
9028
f4416af6
AO
9029 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9030 doesn't seem to matter. */
9031 new_flags &= ~EF_MIPS_XGOT;
9032 old_flags &= ~EF_MIPS_XGOT;
9033
98a8deaf
RS
9034 /* MIPSpro generates ucode info in n64 objects. Again, we should
9035 just be able to ignore this. */
9036 new_flags &= ~EF_MIPS_UCODE;
9037 old_flags &= ~EF_MIPS_UCODE;
9038
b49e97c9 9039 if (new_flags == old_flags)
b34976b6 9040 return TRUE;
b49e97c9
TS
9041
9042 /* Check to see if the input BFD actually contains any sections.
9043 If not, its flags may not have been initialised either, but it cannot
9044 actually cause any incompatibility. */
9045 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9046 {
9047 /* Ignore synthetic sections and empty .text, .data and .bss sections
9048 which are automatically generated by gas. */
9049 if (strcmp (sec->name, ".reginfo")
9050 && strcmp (sec->name, ".mdebug")
eea6121a 9051 && (sec->size != 0
d13d89fa
NS
9052 || (strcmp (sec->name, ".text")
9053 && strcmp (sec->name, ".data")
9054 && strcmp (sec->name, ".bss"))))
b49e97c9 9055 {
b34976b6 9056 null_input_bfd = FALSE;
b49e97c9
TS
9057 break;
9058 }
9059 }
9060 if (null_input_bfd)
b34976b6 9061 return TRUE;
b49e97c9 9062
b34976b6 9063 ok = TRUE;
b49e97c9 9064
143d77c5
EC
9065 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9066 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9067 {
b49e97c9 9068 (*_bfd_error_handler)
d003868e
AM
9069 (_("%B: warning: linking PIC files with non-PIC files"),
9070 ibfd);
143d77c5 9071 ok = TRUE;
b49e97c9
TS
9072 }
9073
143d77c5
EC
9074 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9075 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9076 if (! (new_flags & EF_MIPS_PIC))
9077 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9078
9079 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9080 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9081
64543e1a
RS
9082 /* Compare the ISAs. */
9083 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9084 {
64543e1a 9085 (*_bfd_error_handler)
d003868e
AM
9086 (_("%B: linking 32-bit code with 64-bit code"),
9087 ibfd);
64543e1a
RS
9088 ok = FALSE;
9089 }
9090 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9091 {
9092 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9093 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9094 {
64543e1a
RS
9095 /* Copy the architecture info from IBFD to OBFD. Also copy
9096 the 32-bit flag (if set) so that we continue to recognise
9097 OBFD as a 32-bit binary. */
9098 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9099 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9100 elf_elfheader (obfd)->e_flags
9101 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9102
9103 /* Copy across the ABI flags if OBFD doesn't use them
9104 and if that was what caused us to treat IBFD as 32-bit. */
9105 if ((old_flags & EF_MIPS_ABI) == 0
9106 && mips_32bit_flags_p (new_flags)
9107 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9108 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9109 }
9110 else
9111 {
64543e1a 9112 /* The ISAs aren't compatible. */
b49e97c9 9113 (*_bfd_error_handler)
d003868e
AM
9114 (_("%B: linking %s module with previous %s modules"),
9115 ibfd,
64543e1a
RS
9116 bfd_printable_name (ibfd),
9117 bfd_printable_name (obfd));
b34976b6 9118 ok = FALSE;
b49e97c9 9119 }
b49e97c9
TS
9120 }
9121
64543e1a
RS
9122 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9123 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9124
9125 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9126 does set EI_CLASS differently from any 32-bit ABI. */
9127 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9128 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9129 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9130 {
9131 /* Only error if both are set (to different values). */
9132 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9133 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9134 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9135 {
9136 (*_bfd_error_handler)
d003868e
AM
9137 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9138 ibfd,
b49e97c9
TS
9139 elf_mips_abi_name (ibfd),
9140 elf_mips_abi_name (obfd));
b34976b6 9141 ok = FALSE;
b49e97c9
TS
9142 }
9143 new_flags &= ~EF_MIPS_ABI;
9144 old_flags &= ~EF_MIPS_ABI;
9145 }
9146
fb39dac1
RS
9147 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9148 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9149 {
9150 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9151
9152 new_flags &= ~ EF_MIPS_ARCH_ASE;
9153 old_flags &= ~ EF_MIPS_ARCH_ASE;
9154 }
9155
b49e97c9
TS
9156 /* Warn about any other mismatches */
9157 if (new_flags != old_flags)
9158 {
9159 (*_bfd_error_handler)
d003868e
AM
9160 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9161 ibfd, (unsigned long) new_flags,
b49e97c9 9162 (unsigned long) old_flags);
b34976b6 9163 ok = FALSE;
b49e97c9
TS
9164 }
9165
9166 if (! ok)
9167 {
9168 bfd_set_error (bfd_error_bad_value);
b34976b6 9169 return FALSE;
b49e97c9
TS
9170 }
9171
b34976b6 9172 return TRUE;
b49e97c9
TS
9173}
9174
9175/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9176
b34976b6 9177bfd_boolean
9719ad41 9178_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9179{
9180 BFD_ASSERT (!elf_flags_init (abfd)
9181 || elf_elfheader (abfd)->e_flags == flags);
9182
9183 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9184 elf_flags_init (abfd) = TRUE;
9185 return TRUE;
b49e97c9
TS
9186}
9187
b34976b6 9188bfd_boolean
9719ad41 9189_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9190{
9719ad41 9191 FILE *file = ptr;
b49e97c9
TS
9192
9193 BFD_ASSERT (abfd != NULL && ptr != NULL);
9194
9195 /* Print normal ELF private data. */
9196 _bfd_elf_print_private_bfd_data (abfd, ptr);
9197
9198 /* xgettext:c-format */
9199 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9200
9201 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9202 fprintf (file, _(" [abi=O32]"));
9203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9204 fprintf (file, _(" [abi=O64]"));
9205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9206 fprintf (file, _(" [abi=EABI32]"));
9207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9208 fprintf (file, _(" [abi=EABI64]"));
9209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9210 fprintf (file, _(" [abi unknown]"));
9211 else if (ABI_N32_P (abfd))
9212 fprintf (file, _(" [abi=N32]"));
9213 else if (ABI_64_P (abfd))
9214 fprintf (file, _(" [abi=64]"));
9215 else
9216 fprintf (file, _(" [no abi set]"));
9217
9218 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9219 fprintf (file, _(" [mips1]"));
9220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9221 fprintf (file, _(" [mips2]"));
9222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9223 fprintf (file, _(" [mips3]"));
9224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9225 fprintf (file, _(" [mips4]"));
9226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9227 fprintf (file, _(" [mips5]"));
9228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9229 fprintf (file, _(" [mips32]"));
9230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9231 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9233 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9235 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9236 else
9237 fprintf (file, _(" [unknown ISA]"));
9238
40d32fc6
CD
9239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9240 fprintf (file, _(" [mdmx]"));
9241
9242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9243 fprintf (file, _(" [mips16]"));
9244
b49e97c9
TS
9245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9246 fprintf (file, _(" [32bitmode]"));
9247 else
9248 fprintf (file, _(" [not 32bitmode]"));
9249
9250 fputc ('\n', file);
9251
b34976b6 9252 return TRUE;
b49e97c9 9253}
2f89ff8d
L
9254
9255struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9256{
7dcb9820
AM
9257 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9258 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9259 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9260 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9261 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9262 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9263 { NULL, 0, 0, 0, 0 }
2f89ff8d 9264};
This page took 0.697486 seconds and 4 git commands to generate.