bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
ead49a57
RS
50/* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
020d7251 57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
ead49a57
RS
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
83struct mips_got_entry
84{
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
f4416af6
AO
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
020d7251
RS
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
f4416af6
AO
101 struct mips_elf_link_hash_entry *h;
102 } d;
0f20cc35 103
e641e783
RS
104 /* The TLS type of this GOT entry: GOT_NORMAL, GOT_TLS_IE, GOT_TLS_GD
105 or GOT_TLS_LDM. An LDM GOT entry will be a local symbol entry with
106 r_symndx == 0. */
0f20cc35
DJ
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
c224138d
RS
115/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118struct mips_got_page_range
119{
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123};
124
125/* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127struct mips_got_page_entry
128{
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137};
138
f0abc2a1 139/* This structure is used to hold .got information when linking. */
b49e97c9
TS
140
141struct mips_got_info
142{
b49e97c9
TS
143 /* The number of global .got entries. */
144 unsigned int global_gotno;
23cc69b6
RS
145 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
146 unsigned int reloc_only_gotno;
0f20cc35
DJ
147 /* The number of .got slots used for TLS. */
148 unsigned int tls_gotno;
149 /* The first unused TLS .got entry. Used only during
150 mips_elf_initialize_tls_index. */
151 unsigned int tls_assigned_gotno;
c224138d 152 /* The number of local .got entries, eventually including page entries. */
b49e97c9 153 unsigned int local_gotno;
c224138d
RS
154 /* The maximum number of page entries needed. */
155 unsigned int page_gotno;
ab361d49
RS
156 /* The number of relocations needed for the GOT entries. */
157 unsigned int relocs;
b49e97c9
TS
158 /* The number of local .got entries we have used. */
159 unsigned int assigned_gotno;
b15e6682
AO
160 /* A hash table holding members of the got. */
161 struct htab *got_entries;
c224138d
RS
162 /* A hash table of mips_got_page_entry structures. */
163 struct htab *got_page_entries;
f4416af6
AO
164 /* A hash table mapping input bfds to other mips_got_info. NULL
165 unless multi-got was necessary. */
166 struct htab *bfd2got;
167 /* In multi-got links, a pointer to the next got (err, rather, most
168 of the time, it points to the previous got). */
169 struct mips_got_info *next;
0f20cc35
DJ
170 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
171 for none, or MINUS_TWO for not yet assigned. This is needed
172 because a single-GOT link may have multiple hash table entries
173 for the LDM. It does not get initialized in multi-GOT mode. */
174 bfd_vma tls_ldm_offset;
f4416af6
AO
175};
176
177/* Map an input bfd to a got in a multi-got link. */
178
91d6fa6a
NC
179struct mips_elf_bfd2got_hash
180{
f4416af6
AO
181 bfd *bfd;
182 struct mips_got_info *g;
183};
184
185/* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188struct mips_elf_got_per_bfd_arg
189{
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
ab361d49
RS
215/* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
f4416af6 217
ab361d49 218struct mips_elf_traverse_got_arg
f4416af6 219{
ab361d49 220 struct bfd_link_info *info;
f4416af6
AO
221 struct mips_got_info *g;
222 int value;
0f20cc35
DJ
223};
224
f0abc2a1
AM
225struct _mips_elf_section_data
226{
227 struct bfd_elf_section_data elf;
228 union
229 {
f0abc2a1
AM
230 bfd_byte *tdata;
231 } u;
232};
233
234#define mips_elf_section_data(sec) \
68bfbfcc 235 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 236
d5eaccd7
RS
237#define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
4dfe6ac6 240 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 241
634835ae
RS
242/* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259#define GGA_NORMAL 0
260#define GGA_RELOC_ONLY 1
261#define GGA_NONE 2
262
861fb55a
DJ
263/* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290};
291
292/* Macros for populating a mips_elf_la25_stub. */
293
294#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
297#define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299#define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301#define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 303
b49e97c9
TS
304/* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307struct mips_elf_hash_sort_data
308{
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
0f20cc35
DJ
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
b49e97c9 314 long min_got_dynindx;
f4416af6
AO
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 317 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 318 long max_unref_got_dynindx;
b49e97c9
TS
319 /* The greatest dynamic symbol table index not corresponding to a
320 symbol without a GOT entry. */
321 long max_non_got_dynindx;
322};
323
324/* The MIPS ELF linker needs additional information for each symbol in
325 the global hash table. */
326
327struct mips_elf_link_hash_entry
328{
329 struct elf_link_hash_entry root;
330
331 /* External symbol information. */
332 EXTR esym;
333
861fb55a
DJ
334 /* The la25 stub we have created for ths symbol, if any. */
335 struct mips_elf_la25_stub *la25_stub;
336
b49e97c9
TS
337 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
338 this symbol. */
339 unsigned int possibly_dynamic_relocs;
340
b49e97c9
TS
341 /* If there is a stub that 32 bit functions should use to call this
342 16 bit function, this points to the section containing the stub. */
343 asection *fn_stub;
344
b49e97c9
TS
345 /* If there is a stub that 16 bit functions should use to call this
346 32 bit function, this points to the section containing the stub. */
347 asection *call_stub;
348
349 /* This is like the call_stub field, but it is used if the function
350 being called returns a floating point value. */
351 asection *call_fp_stub;
7c5fcef7 352
0f20cc35
DJ
353#define GOT_NORMAL 0
354#define GOT_TLS_GD 1
355#define GOT_TLS_LDM 2
356#define GOT_TLS_IE 4
e641e783 357#define GOT_TLS_TYPE 7
0f20cc35
DJ
358#define GOT_TLS_OFFSET_DONE 0x40
359#define GOT_TLS_DONE 0x80
e641e783
RS
360 unsigned char tls_ie_type;
361 unsigned char tls_gd_type;
71782a75 362
e641e783 363 /* These fields are only used in single-GOT mode; in multi-GOT mode there
0f20cc35
DJ
364 is one mips_got_entry per GOT entry, so the offset is stored
365 there. In single-GOT mode there may be many mips_got_entry
e641e783
RS
366 structures all referring to the same GOT slot. */
367 bfd_vma tls_ie_got_offset;
368 bfd_vma tls_gd_got_offset;
71782a75 369
634835ae
RS
370 /* The highest GGA_* value that satisfies all references to this symbol. */
371 unsigned int global_got_area : 2;
372
6ccf4795
RS
373 /* True if all GOT relocations against this symbol are for calls. This is
374 a looser condition than no_fn_stub below, because there may be other
375 non-call non-GOT relocations against the symbol. */
376 unsigned int got_only_for_calls : 1;
377
71782a75
RS
378 /* True if one of the relocations described by possibly_dynamic_relocs
379 is against a readonly section. */
380 unsigned int readonly_reloc : 1;
381
861fb55a
DJ
382 /* True if there is a relocation against this symbol that must be
383 resolved by the static linker (in other words, if the relocation
384 cannot possibly be made dynamic). */
385 unsigned int has_static_relocs : 1;
386
71782a75
RS
387 /* True if we must not create a .MIPS.stubs entry for this symbol.
388 This is set, for example, if there are relocations related to
389 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
390 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
391 unsigned int no_fn_stub : 1;
392
393 /* Whether we need the fn_stub; this is true if this symbol appears
394 in any relocs other than a 16 bit call. */
395 unsigned int need_fn_stub : 1;
396
861fb55a
DJ
397 /* True if this symbol is referenced by branch relocations from
398 any non-PIC input file. This is used to determine whether an
399 la25 stub is required. */
400 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
401
402 /* Does this symbol need a traditional MIPS lazy-binding stub
403 (as opposed to a PLT entry)? */
404 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
405};
406
407/* MIPS ELF linker hash table. */
408
409struct mips_elf_link_hash_table
410{
411 struct elf_link_hash_table root;
861fb55a 412
b49e97c9
TS
413 /* The number of .rtproc entries. */
414 bfd_size_type procedure_count;
861fb55a 415
b49e97c9
TS
416 /* The size of the .compact_rel section (if SGI_COMPAT). */
417 bfd_size_type compact_rel_size;
861fb55a 418
e6aea42d
MR
419 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
420 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 421 bfd_boolean use_rld_obj_head;
861fb55a 422
b4082c70
DD
423 /* The __rld_map or __rld_obj_head symbol. */
424 struct elf_link_hash_entry *rld_symbol;
861fb55a 425
b49e97c9 426 /* This is set if we see any mips16 stub sections. */
b34976b6 427 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
428
429 /* True if we can generate copy relocs and PLTs. */
430 bfd_boolean use_plts_and_copy_relocs;
431
0a44bf69
RS
432 /* True if we're generating code for VxWorks. */
433 bfd_boolean is_vxworks;
861fb55a 434
0e53d9da
AN
435 /* True if we already reported the small-data section overflow. */
436 bfd_boolean small_data_overflow_reported;
861fb55a 437
0a44bf69
RS
438 /* Shortcuts to some dynamic sections, or NULL if they are not
439 being used. */
440 asection *srelbss;
441 asection *sdynbss;
442 asection *srelplt;
443 asection *srelplt2;
444 asection *sgotplt;
445 asection *splt;
4e41d0d7 446 asection *sstubs;
a8028dd0 447 asection *sgot;
861fb55a 448
a8028dd0
RS
449 /* The master GOT information. */
450 struct mips_got_info *got_info;
861fb55a 451
d222d210
RS
452 /* The global symbol in the GOT with the lowest index in the dynamic
453 symbol table. */
454 struct elf_link_hash_entry *global_gotsym;
455
861fb55a 456 /* The size of the PLT header in bytes. */
0a44bf69 457 bfd_vma plt_header_size;
861fb55a
DJ
458
459 /* The size of a PLT entry in bytes. */
0a44bf69 460 bfd_vma plt_entry_size;
861fb55a 461
33bb52fb
RS
462 /* The number of functions that need a lazy-binding stub. */
463 bfd_vma lazy_stub_count;
861fb55a 464
5108fc1b
RS
465 /* The size of a function stub entry in bytes. */
466 bfd_vma function_stub_size;
861fb55a
DJ
467
468 /* The number of reserved entries at the beginning of the GOT. */
469 unsigned int reserved_gotno;
470
471 /* The section used for mips_elf_la25_stub trampolines.
472 See the comment above that structure for details. */
473 asection *strampoline;
474
475 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
476 pairs. */
477 htab_t la25_stubs;
478
479 /* A function FN (NAME, IS, OS) that creates a new input section
480 called NAME and links it to output section OS. If IS is nonnull,
481 the new section should go immediately before it, otherwise it
482 should go at the (current) beginning of OS.
483
484 The function returns the new section on success, otherwise it
485 returns null. */
486 asection *(*add_stub_section) (const char *, asection *, asection *);
487};
488
4dfe6ac6
NC
489/* Get the MIPS ELF linker hash table from a link_info structure. */
490
491#define mips_elf_hash_table(p) \
492 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
493 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
494
861fb55a 495/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
496struct mips_htab_traverse_info
497{
861fb55a
DJ
498 /* The usual link-wide information. */
499 struct bfd_link_info *info;
500 bfd *output_bfd;
501
502 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
503 bfd_boolean error;
b49e97c9
TS
504};
505
6ae68ba3
MR
506/* MIPS ELF private object data. */
507
508struct mips_elf_obj_tdata
509{
510 /* Generic ELF private object data. */
511 struct elf_obj_tdata root;
512
513 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
514 bfd *abi_fp_bfd;
515};
516
517/* Get MIPS ELF private object data from BFD's tdata. */
518
519#define mips_elf_tdata(bfd) \
520 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
521
0f20cc35
DJ
522#define TLS_RELOC_P(r_type) \
523 (r_type == R_MIPS_TLS_DTPMOD32 \
524 || r_type == R_MIPS_TLS_DTPMOD64 \
525 || r_type == R_MIPS_TLS_DTPREL32 \
526 || r_type == R_MIPS_TLS_DTPREL64 \
527 || r_type == R_MIPS_TLS_GD \
528 || r_type == R_MIPS_TLS_LDM \
529 || r_type == R_MIPS_TLS_DTPREL_HI16 \
530 || r_type == R_MIPS_TLS_DTPREL_LO16 \
531 || r_type == R_MIPS_TLS_GOTTPREL \
532 || r_type == R_MIPS_TLS_TPREL32 \
533 || r_type == R_MIPS_TLS_TPREL64 \
534 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 535 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
536 || r_type == R_MIPS16_TLS_GD \
537 || r_type == R_MIPS16_TLS_LDM \
538 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
539 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
540 || r_type == R_MIPS16_TLS_GOTTPREL \
541 || r_type == R_MIPS16_TLS_TPREL_HI16 \
542 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
543 || r_type == R_MICROMIPS_TLS_GD \
544 || r_type == R_MICROMIPS_TLS_LDM \
545 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
546 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
547 || r_type == R_MICROMIPS_TLS_GOTTPREL \
548 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 550
b49e97c9
TS
551/* Structure used to pass information to mips_elf_output_extsym. */
552
553struct extsym_info
554{
9e4aeb93
RS
555 bfd *abfd;
556 struct bfd_link_info *info;
b49e97c9
TS
557 struct ecoff_debug_info *debug;
558 const struct ecoff_debug_swap *swap;
b34976b6 559 bfd_boolean failed;
b49e97c9
TS
560};
561
8dc1a139 562/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
563
564static const char * const mips_elf_dynsym_rtproc_names[] =
565{
566 "_procedure_table",
567 "_procedure_string_table",
568 "_procedure_table_size",
569 NULL
570};
571
572/* These structures are used to generate the .compact_rel section on
8dc1a139 573 IRIX5. */
b49e97c9
TS
574
575typedef struct
576{
577 unsigned long id1; /* Always one? */
578 unsigned long num; /* Number of compact relocation entries. */
579 unsigned long id2; /* Always two? */
580 unsigned long offset; /* The file offset of the first relocation. */
581 unsigned long reserved0; /* Zero? */
582 unsigned long reserved1; /* Zero? */
583} Elf32_compact_rel;
584
585typedef struct
586{
587 bfd_byte id1[4];
588 bfd_byte num[4];
589 bfd_byte id2[4];
590 bfd_byte offset[4];
591 bfd_byte reserved0[4];
592 bfd_byte reserved1[4];
593} Elf32_External_compact_rel;
594
595typedef struct
596{
597 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
598 unsigned int rtype : 4; /* Relocation types. See below. */
599 unsigned int dist2to : 8;
600 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
601 unsigned long konst; /* KONST field. See below. */
602 unsigned long vaddr; /* VADDR to be relocated. */
603} Elf32_crinfo;
604
605typedef struct
606{
607 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
608 unsigned int rtype : 4; /* Relocation types. See below. */
609 unsigned int dist2to : 8;
610 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
611 unsigned long konst; /* KONST field. See below. */
612} Elf32_crinfo2;
613
614typedef struct
615{
616 bfd_byte info[4];
617 bfd_byte konst[4];
618 bfd_byte vaddr[4];
619} Elf32_External_crinfo;
620
621typedef struct
622{
623 bfd_byte info[4];
624 bfd_byte konst[4];
625} Elf32_External_crinfo2;
626
627/* These are the constants used to swap the bitfields in a crinfo. */
628
629#define CRINFO_CTYPE (0x1)
630#define CRINFO_CTYPE_SH (31)
631#define CRINFO_RTYPE (0xf)
632#define CRINFO_RTYPE_SH (27)
633#define CRINFO_DIST2TO (0xff)
634#define CRINFO_DIST2TO_SH (19)
635#define CRINFO_RELVADDR (0x7ffff)
636#define CRINFO_RELVADDR_SH (0)
637
638/* A compact relocation info has long (3 words) or short (2 words)
639 formats. A short format doesn't have VADDR field and relvaddr
640 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
641#define CRF_MIPS_LONG 1
642#define CRF_MIPS_SHORT 0
643
644/* There are 4 types of compact relocation at least. The value KONST
645 has different meaning for each type:
646
647 (type) (konst)
648 CT_MIPS_REL32 Address in data
649 CT_MIPS_WORD Address in word (XXX)
650 CT_MIPS_GPHI_LO GP - vaddr
651 CT_MIPS_JMPAD Address to jump
652 */
653
654#define CRT_MIPS_REL32 0xa
655#define CRT_MIPS_WORD 0xb
656#define CRT_MIPS_GPHI_LO 0xc
657#define CRT_MIPS_JMPAD 0xd
658
659#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
660#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
661#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
662#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
663\f
664/* The structure of the runtime procedure descriptor created by the
665 loader for use by the static exception system. */
666
667typedef struct runtime_pdr {
ae9a127f
NC
668 bfd_vma adr; /* Memory address of start of procedure. */
669 long regmask; /* Save register mask. */
670 long regoffset; /* Save register offset. */
671 long fregmask; /* Save floating point register mask. */
672 long fregoffset; /* Save floating point register offset. */
673 long frameoffset; /* Frame size. */
674 short framereg; /* Frame pointer register. */
675 short pcreg; /* Offset or reg of return pc. */
676 long irpss; /* Index into the runtime string table. */
b49e97c9 677 long reserved;
ae9a127f 678 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
679} RPDR, *pRPDR;
680#define cbRPDR sizeof (RPDR)
681#define rpdNil ((pRPDR) 0)
682\f
b15e6682 683static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
684 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
685 struct mips_elf_link_hash_entry *, int);
b34976b6 686static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 687 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
688static bfd_vma mips_elf_high
689 (bfd_vma);
b34976b6 690static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
691 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
692 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
693 bfd_vma *, asection *);
f4416af6 694static bfd_vma mips_elf_adjust_gp
9719ad41 695 (bfd *, struct mips_got_info *, bfd *);
f4416af6 696static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 697 (struct mips_got_info *, bfd *);
f4416af6 698
b49e97c9
TS
699/* This will be used when we sort the dynamic relocation records. */
700static bfd *reldyn_sorting_bfd;
701
6d30f5b2
NC
702/* True if ABFD is for CPUs with load interlocking that include
703 non-MIPS1 CPUs and R3900. */
704#define LOAD_INTERLOCKS_P(abfd) \
705 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
706 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
707
cd8d5a82
CF
708/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
709 This should be safe for all architectures. We enable this predicate
710 for RM9000 for now. */
711#define JAL_TO_BAL_P(abfd) \
712 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
713
714/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
715 This should be safe for all architectures. We enable this predicate for
716 all CPUs. */
717#define JALR_TO_BAL_P(abfd) 1
718
38a7df63
CF
719/* True if ABFD is for CPUs that are faster if JR is converted to B.
720 This should be safe for all architectures. We enable this predicate for
721 all CPUs. */
722#define JR_TO_B_P(abfd) 1
723
861fb55a
DJ
724/* True if ABFD is a PIC object. */
725#define PIC_OBJECT_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
727
b49e97c9 728/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
729#define ABI_N32_P(abfd) \
730 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
731
4a14403c 732/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 733#define ABI_64_P(abfd) \
141ff970 734 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 735
4a14403c
TS
736/* Nonzero if ABFD is using NewABI conventions. */
737#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
738
739/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
740#define IRIX_COMPAT(abfd) \
741 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
742
b49e97c9
TS
743/* Whether we are trying to be compatible with IRIX at all. */
744#define SGI_COMPAT(abfd) \
745 (IRIX_COMPAT (abfd) != ict_none)
746
747/* The name of the options section. */
748#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 749 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 750
cc2e31b9
RS
751/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
752 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
753#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
754 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
755
943284cc
DJ
756/* Whether the section is readonly. */
757#define MIPS_ELF_READONLY_SECTION(sec) \
758 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
759 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
760
b49e97c9 761/* The name of the stub section. */
ca07892d 762#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
763
764/* The size of an external REL relocation. */
765#define MIPS_ELF_REL_SIZE(abfd) \
766 (get_elf_backend_data (abfd)->s->sizeof_rel)
767
0a44bf69
RS
768/* The size of an external RELA relocation. */
769#define MIPS_ELF_RELA_SIZE(abfd) \
770 (get_elf_backend_data (abfd)->s->sizeof_rela)
771
b49e97c9
TS
772/* The size of an external dynamic table entry. */
773#define MIPS_ELF_DYN_SIZE(abfd) \
774 (get_elf_backend_data (abfd)->s->sizeof_dyn)
775
776/* The size of a GOT entry. */
777#define MIPS_ELF_GOT_SIZE(abfd) \
778 (get_elf_backend_data (abfd)->s->arch_size / 8)
779
b4082c70
DD
780/* The size of the .rld_map section. */
781#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
782 (get_elf_backend_data (abfd)->s->arch_size / 8)
783
b49e97c9
TS
784/* The size of a symbol-table entry. */
785#define MIPS_ELF_SYM_SIZE(abfd) \
786 (get_elf_backend_data (abfd)->s->sizeof_sym)
787
788/* The default alignment for sections, as a power of two. */
789#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 790 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
791
792/* Get word-sized data. */
793#define MIPS_ELF_GET_WORD(abfd, ptr) \
794 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
795
796/* Put out word-sized data. */
797#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
798 (ABI_64_P (abfd) \
799 ? bfd_put_64 (abfd, val, ptr) \
800 : bfd_put_32 (abfd, val, ptr))
801
861fb55a
DJ
802/* The opcode for word-sized loads (LW or LD). */
803#define MIPS_ELF_LOAD_WORD(abfd) \
804 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
805
b49e97c9 806/* Add a dynamic symbol table-entry. */
9719ad41 807#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 808 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
809
810#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
811 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
812
0a44bf69
RS
813/* The name of the dynamic relocation section. */
814#define MIPS_ELF_REL_DYN_NAME(INFO) \
815 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
816
b49e97c9
TS
817/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
818 from smaller values. Start with zero, widen, *then* decrement. */
819#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 820#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 821
51e38d68
RS
822/* The value to write into got[1] for SVR4 targets, to identify it is
823 a GNU object. The dynamic linker can then use got[1] to store the
824 module pointer. */
825#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
826 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
827
f4416af6 828/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
829#define ELF_MIPS_GP_OFFSET(INFO) \
830 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
831
832/* The maximum size of the GOT for it to be addressable using 16-bit
833 offsets from $gp. */
0a44bf69 834#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 835
6a691779 836/* Instructions which appear in a stub. */
3d6746ca
DD
837#define STUB_LW(abfd) \
838 ((ABI_64_P (abfd) \
839 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
840 : 0x8f998010)) /* lw t9,0x8010(gp) */
841#define STUB_MOVE(abfd) \
842 ((ABI_64_P (abfd) \
843 ? 0x03e0782d /* daddu t7,ra */ \
844 : 0x03e07821)) /* addu t7,ra */
845#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
846#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
847#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
848#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
849#define STUB_LI16S(abfd, VAL) \
850 ((ABI_64_P (abfd) \
851 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
852 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
853
5108fc1b
RS
854#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
855#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
856
857/* The name of the dynamic interpreter. This is put in the .interp
858 section. */
859
860#define ELF_DYNAMIC_INTERPRETER(abfd) \
861 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
862 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
863 : "/usr/lib/libc.so.1")
864
865#ifdef BFD64
ee6423ed
AO
866#define MNAME(bfd,pre,pos) \
867 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
868#define ELF_R_SYM(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
870#define ELF_R_TYPE(bfd, i) \
871 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
872#define ELF_R_INFO(bfd, s, t) \
873 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
874#else
ee6423ed 875#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
876#define ELF_R_SYM(bfd, i) \
877 (ELF32_R_SYM (i))
878#define ELF_R_TYPE(bfd, i) \
879 (ELF32_R_TYPE (i))
880#define ELF_R_INFO(bfd, s, t) \
881 (ELF32_R_INFO (s, t))
882#endif
883\f
884 /* The mips16 compiler uses a couple of special sections to handle
885 floating point arguments.
886
887 Section names that look like .mips16.fn.FNNAME contain stubs that
888 copy floating point arguments from the fp regs to the gp regs and
889 then jump to FNNAME. If any 32 bit function calls FNNAME, the
890 call should be redirected to the stub instead. If no 32 bit
891 function calls FNNAME, the stub should be discarded. We need to
892 consider any reference to the function, not just a call, because
893 if the address of the function is taken we will need the stub,
894 since the address might be passed to a 32 bit function.
895
896 Section names that look like .mips16.call.FNNAME contain stubs
897 that copy floating point arguments from the gp regs to the fp
898 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
899 then any 16 bit function that calls FNNAME should be redirected
900 to the stub instead. If FNNAME is not a 32 bit function, the
901 stub should be discarded.
902
903 .mips16.call.fp.FNNAME sections are similar, but contain stubs
904 which call FNNAME and then copy the return value from the fp regs
905 to the gp regs. These stubs store the return value in $18 while
906 calling FNNAME; any function which might call one of these stubs
907 must arrange to save $18 around the call. (This case is not
908 needed for 32 bit functions that call 16 bit functions, because
909 16 bit functions always return floating point values in both
910 $f0/$f1 and $2/$3.)
911
912 Note that in all cases FNNAME might be defined statically.
913 Therefore, FNNAME is not used literally. Instead, the relocation
914 information will indicate which symbol the section is for.
915
916 We record any stubs that we find in the symbol table. */
917
918#define FN_STUB ".mips16.fn."
919#define CALL_STUB ".mips16.call."
920#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
921
922#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
923#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
924#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 925\f
861fb55a 926/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
927static const bfd_vma mips_o32_exec_plt0_entry[] =
928{
861fb55a
DJ
929 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
930 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
931 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
932 0x031cc023, /* subu $24, $24, $28 */
81f5d455 933 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
934 0x0018c082, /* srl $24, $24, 2 */
935 0x0320f809, /* jalr $25 */
936 0x2718fffe /* subu $24, $24, 2 */
937};
938
939/* The format of the first PLT entry in an N32 executable. Different
940 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
941static const bfd_vma mips_n32_exec_plt0_entry[] =
942{
861fb55a
DJ
943 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
944 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
945 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
946 0x030ec023, /* subu $24, $24, $14 */
81f5d455 947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
951};
952
953/* The format of the first PLT entry in an N64 executable. Different
954 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
955static const bfd_vma mips_n64_exec_plt0_entry[] =
956{
861fb55a
DJ
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
81f5d455 961 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
962 0x0018c0c2, /* srl $24, $24, 3 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
965};
966
967/* The format of subsequent PLT entries. */
6d30f5b2
NC
968static const bfd_vma mips_exec_plt_entry[] =
969{
861fb55a
DJ
970 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
971 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
972 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
973 0x03200008 /* jr $25 */
974};
975
0a44bf69 976/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
977static const bfd_vma mips_vxworks_exec_plt0_entry[] =
978{
0a44bf69
RS
979 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
980 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
981 0x8f390008, /* lw t9, 8(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
984 0x00000000 /* nop */
985};
986
987/* The format of subsequent PLT entries. */
6d30f5b2
NC
988static const bfd_vma mips_vxworks_exec_plt_entry[] =
989{
0a44bf69
RS
990 0x10000000, /* b .PLT_resolver */
991 0x24180000, /* li t8, <pltindex> */
992 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
993 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
994 0x8f390000, /* lw t9, 0(t9) */
995 0x00000000, /* nop */
996 0x03200008, /* jr t9 */
997 0x00000000 /* nop */
998};
999
1000/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1001static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1002{
0a44bf69
RS
1003 0x8f990008, /* lw t9, 8(gp) */
1004 0x00000000, /* nop */
1005 0x03200008, /* jr t9 */
1006 0x00000000, /* nop */
1007 0x00000000, /* nop */
1008 0x00000000 /* nop */
1009};
1010
1011/* The format of subsequent PLT entries. */
6d30f5b2
NC
1012static const bfd_vma mips_vxworks_shared_plt_entry[] =
1013{
0a44bf69
RS
1014 0x10000000, /* b .PLT_resolver */
1015 0x24180000 /* li t8, <pltindex> */
1016};
1017\f
d21911ea
MR
1018/* microMIPS 32-bit opcode helper installer. */
1019
1020static void
1021bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1022{
1023 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1024 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1025}
1026
1027/* microMIPS 32-bit opcode helper retriever. */
1028
1029static bfd_vma
1030bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1031{
1032 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1033}
1034\f
b49e97c9
TS
1035/* Look up an entry in a MIPS ELF linker hash table. */
1036
1037#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1038 ((struct mips_elf_link_hash_entry *) \
1039 elf_link_hash_lookup (&(table)->root, (string), (create), \
1040 (copy), (follow)))
1041
1042/* Traverse a MIPS ELF linker hash table. */
1043
1044#define mips_elf_link_hash_traverse(table, func, info) \
1045 (elf_link_hash_traverse \
1046 (&(table)->root, \
9719ad41 1047 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1048 (info)))
1049
0f20cc35
DJ
1050/* Find the base offsets for thread-local storage in this object,
1051 for GD/LD and IE/LE respectively. */
1052
1053#define TP_OFFSET 0x7000
1054#define DTP_OFFSET 0x8000
1055
1056static bfd_vma
1057dtprel_base (struct bfd_link_info *info)
1058{
1059 /* If tls_sec is NULL, we should have signalled an error already. */
1060 if (elf_hash_table (info)->tls_sec == NULL)
1061 return 0;
1062 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1063}
1064
1065static bfd_vma
1066tprel_base (struct bfd_link_info *info)
1067{
1068 /* If tls_sec is NULL, we should have signalled an error already. */
1069 if (elf_hash_table (info)->tls_sec == NULL)
1070 return 0;
1071 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1072}
1073
b49e97c9
TS
1074/* Create an entry in a MIPS ELF linker hash table. */
1075
1076static struct bfd_hash_entry *
9719ad41
RS
1077mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1078 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1079{
1080 struct mips_elf_link_hash_entry *ret =
1081 (struct mips_elf_link_hash_entry *) entry;
1082
1083 /* Allocate the structure if it has not already been allocated by a
1084 subclass. */
9719ad41
RS
1085 if (ret == NULL)
1086 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1087 if (ret == NULL)
b49e97c9
TS
1088 return (struct bfd_hash_entry *) ret;
1089
1090 /* Call the allocation method of the superclass. */
1091 ret = ((struct mips_elf_link_hash_entry *)
1092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1093 table, string));
9719ad41 1094 if (ret != NULL)
b49e97c9
TS
1095 {
1096 /* Set local fields. */
1097 memset (&ret->esym, 0, sizeof (EXTR));
1098 /* We use -2 as a marker to indicate that the information has
1099 not been set. -1 means there is no associated ifd. */
1100 ret->esym.ifd = -2;
861fb55a 1101 ret->la25_stub = 0;
b49e97c9 1102 ret->possibly_dynamic_relocs = 0;
b49e97c9 1103 ret->fn_stub = NULL;
b49e97c9
TS
1104 ret->call_stub = NULL;
1105 ret->call_fp_stub = NULL;
e641e783
RS
1106 ret->tls_ie_type = GOT_NORMAL;
1107 ret->tls_gd_type = GOT_NORMAL;
634835ae 1108 ret->global_got_area = GGA_NONE;
6ccf4795 1109 ret->got_only_for_calls = TRUE;
71782a75 1110 ret->readonly_reloc = FALSE;
861fb55a 1111 ret->has_static_relocs = FALSE;
71782a75
RS
1112 ret->no_fn_stub = FALSE;
1113 ret->need_fn_stub = FALSE;
861fb55a 1114 ret->has_nonpic_branches = FALSE;
33bb52fb 1115 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1116 }
1117
1118 return (struct bfd_hash_entry *) ret;
1119}
f0abc2a1 1120
6ae68ba3
MR
1121/* Allocate MIPS ELF private object data. */
1122
1123bfd_boolean
1124_bfd_mips_elf_mkobject (bfd *abfd)
1125{
1126 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1127 MIPS_ELF_DATA);
1128}
1129
f0abc2a1 1130bfd_boolean
9719ad41 1131_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1132{
f592407e
AM
1133 if (!sec->used_by_bfd)
1134 {
1135 struct _mips_elf_section_data *sdata;
1136 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1137
f592407e
AM
1138 sdata = bfd_zalloc (abfd, amt);
1139 if (sdata == NULL)
1140 return FALSE;
1141 sec->used_by_bfd = sdata;
1142 }
f0abc2a1
AM
1143
1144 return _bfd_elf_new_section_hook (abfd, sec);
1145}
b49e97c9
TS
1146\f
1147/* Read ECOFF debugging information from a .mdebug section into a
1148 ecoff_debug_info structure. */
1149
b34976b6 1150bfd_boolean
9719ad41
RS
1151_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1152 struct ecoff_debug_info *debug)
b49e97c9
TS
1153{
1154 HDRR *symhdr;
1155 const struct ecoff_debug_swap *swap;
9719ad41 1156 char *ext_hdr;
b49e97c9
TS
1157
1158 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1159 memset (debug, 0, sizeof (*debug));
1160
9719ad41 1161 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1162 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1163 goto error_return;
1164
9719ad41 1165 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1166 swap->external_hdr_size))
b49e97c9
TS
1167 goto error_return;
1168
1169 symhdr = &debug->symbolic_header;
1170 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1171
1172 /* The symbolic header contains absolute file offsets and sizes to
1173 read. */
1174#define READ(ptr, offset, count, size, type) \
1175 if (symhdr->count == 0) \
1176 debug->ptr = NULL; \
1177 else \
1178 { \
1179 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1180 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1181 if (debug->ptr == NULL) \
1182 goto error_return; \
9719ad41 1183 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1184 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1185 goto error_return; \
1186 }
1187
1188 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1189 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1190 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1191 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1192 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1193 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1194 union aux_ext *);
1195 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1196 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1197 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1198 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1199 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1200#undef READ
1201
1202 debug->fdr = NULL;
b49e97c9 1203
b34976b6 1204 return TRUE;
b49e97c9
TS
1205
1206 error_return:
1207 if (ext_hdr != NULL)
1208 free (ext_hdr);
1209 if (debug->line != NULL)
1210 free (debug->line);
1211 if (debug->external_dnr != NULL)
1212 free (debug->external_dnr);
1213 if (debug->external_pdr != NULL)
1214 free (debug->external_pdr);
1215 if (debug->external_sym != NULL)
1216 free (debug->external_sym);
1217 if (debug->external_opt != NULL)
1218 free (debug->external_opt);
1219 if (debug->external_aux != NULL)
1220 free (debug->external_aux);
1221 if (debug->ss != NULL)
1222 free (debug->ss);
1223 if (debug->ssext != NULL)
1224 free (debug->ssext);
1225 if (debug->external_fdr != NULL)
1226 free (debug->external_fdr);
1227 if (debug->external_rfd != NULL)
1228 free (debug->external_rfd);
1229 if (debug->external_ext != NULL)
1230 free (debug->external_ext);
b34976b6 1231 return FALSE;
b49e97c9
TS
1232}
1233\f
1234/* Swap RPDR (runtime procedure table entry) for output. */
1235
1236static void
9719ad41 1237ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1238{
1239 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1240 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1241 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1242 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1243 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1244 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1245
1246 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1247 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1248
1249 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1250}
1251
1252/* Create a runtime procedure table from the .mdebug section. */
1253
b34976b6 1254static bfd_boolean
9719ad41
RS
1255mips_elf_create_procedure_table (void *handle, bfd *abfd,
1256 struct bfd_link_info *info, asection *s,
1257 struct ecoff_debug_info *debug)
b49e97c9
TS
1258{
1259 const struct ecoff_debug_swap *swap;
1260 HDRR *hdr = &debug->symbolic_header;
1261 RPDR *rpdr, *rp;
1262 struct rpdr_ext *erp;
9719ad41 1263 void *rtproc;
b49e97c9
TS
1264 struct pdr_ext *epdr;
1265 struct sym_ext *esym;
1266 char *ss, **sv;
1267 char *str;
1268 bfd_size_type size;
1269 bfd_size_type count;
1270 unsigned long sindex;
1271 unsigned long i;
1272 PDR pdr;
1273 SYMR sym;
1274 const char *no_name_func = _("static procedure (no name)");
1275
1276 epdr = NULL;
1277 rpdr = NULL;
1278 esym = NULL;
1279 ss = NULL;
1280 sv = NULL;
1281
1282 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1283
1284 sindex = strlen (no_name_func) + 1;
1285 count = hdr->ipdMax;
1286 if (count > 0)
1287 {
1288 size = swap->external_pdr_size;
1289
9719ad41 1290 epdr = bfd_malloc (size * count);
b49e97c9
TS
1291 if (epdr == NULL)
1292 goto error_return;
1293
9719ad41 1294 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1295 goto error_return;
1296
1297 size = sizeof (RPDR);
9719ad41 1298 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1299 if (rpdr == NULL)
1300 goto error_return;
1301
1302 size = sizeof (char *);
9719ad41 1303 sv = bfd_malloc (size * count);
b49e97c9
TS
1304 if (sv == NULL)
1305 goto error_return;
1306
1307 count = hdr->isymMax;
1308 size = swap->external_sym_size;
9719ad41 1309 esym = bfd_malloc (size * count);
b49e97c9
TS
1310 if (esym == NULL)
1311 goto error_return;
1312
9719ad41 1313 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1314 goto error_return;
1315
1316 count = hdr->issMax;
9719ad41 1317 ss = bfd_malloc (count);
b49e97c9
TS
1318 if (ss == NULL)
1319 goto error_return;
f075ee0c 1320 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1321 goto error_return;
1322
1323 count = hdr->ipdMax;
1324 for (i = 0; i < (unsigned long) count; i++, rp++)
1325 {
9719ad41
RS
1326 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1327 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1328 rp->adr = sym.value;
1329 rp->regmask = pdr.regmask;
1330 rp->regoffset = pdr.regoffset;
1331 rp->fregmask = pdr.fregmask;
1332 rp->fregoffset = pdr.fregoffset;
1333 rp->frameoffset = pdr.frameoffset;
1334 rp->framereg = pdr.framereg;
1335 rp->pcreg = pdr.pcreg;
1336 rp->irpss = sindex;
1337 sv[i] = ss + sym.iss;
1338 sindex += strlen (sv[i]) + 1;
1339 }
1340 }
1341
1342 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1343 size = BFD_ALIGN (size, 16);
9719ad41 1344 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1345 if (rtproc == NULL)
1346 {
1347 mips_elf_hash_table (info)->procedure_count = 0;
1348 goto error_return;
1349 }
1350
1351 mips_elf_hash_table (info)->procedure_count = count + 2;
1352
9719ad41 1353 erp = rtproc;
b49e97c9
TS
1354 memset (erp, 0, sizeof (struct rpdr_ext));
1355 erp++;
1356 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1357 strcpy (str, no_name_func);
1358 str += strlen (no_name_func) + 1;
1359 for (i = 0; i < count; i++)
1360 {
1361 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1362 strcpy (str, sv[i]);
1363 str += strlen (sv[i]) + 1;
1364 }
1365 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1366
1367 /* Set the size and contents of .rtproc section. */
eea6121a 1368 s->size = size;
9719ad41 1369 s->contents = rtproc;
b49e97c9
TS
1370
1371 /* Skip this section later on (I don't think this currently
1372 matters, but someday it might). */
8423293d 1373 s->map_head.link_order = NULL;
b49e97c9
TS
1374
1375 if (epdr != NULL)
1376 free (epdr);
1377 if (rpdr != NULL)
1378 free (rpdr);
1379 if (esym != NULL)
1380 free (esym);
1381 if (ss != NULL)
1382 free (ss);
1383 if (sv != NULL)
1384 free (sv);
1385
b34976b6 1386 return TRUE;
b49e97c9
TS
1387
1388 error_return:
1389 if (epdr != NULL)
1390 free (epdr);
1391 if (rpdr != NULL)
1392 free (rpdr);
1393 if (esym != NULL)
1394 free (esym);
1395 if (ss != NULL)
1396 free (ss);
1397 if (sv != NULL)
1398 free (sv);
b34976b6 1399 return FALSE;
b49e97c9 1400}
738e5348 1401\f
861fb55a
DJ
1402/* We're going to create a stub for H. Create a symbol for the stub's
1403 value and size, to help make the disassembly easier to read. */
1404
1405static bfd_boolean
1406mips_elf_create_stub_symbol (struct bfd_link_info *info,
1407 struct mips_elf_link_hash_entry *h,
1408 const char *prefix, asection *s, bfd_vma value,
1409 bfd_vma size)
1410{
1411 struct bfd_link_hash_entry *bh;
1412 struct elf_link_hash_entry *elfh;
1413 const char *name;
1414
df58fc94
RS
1415 if (ELF_ST_IS_MICROMIPS (h->root.other))
1416 value |= 1;
1417
861fb55a
DJ
1418 /* Create a new symbol. */
1419 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1420 bh = NULL;
1421 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1422 BSF_LOCAL, s, value, NULL,
1423 TRUE, FALSE, &bh))
1424 return FALSE;
1425
1426 /* Make it a local function. */
1427 elfh = (struct elf_link_hash_entry *) bh;
1428 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1429 elfh->size = size;
1430 elfh->forced_local = 1;
1431 return TRUE;
1432}
1433
738e5348
RS
1434/* We're about to redefine H. Create a symbol to represent H's
1435 current value and size, to help make the disassembly easier
1436 to read. */
1437
1438static bfd_boolean
1439mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1440 struct mips_elf_link_hash_entry *h,
1441 const char *prefix)
1442{
1443 struct bfd_link_hash_entry *bh;
1444 struct elf_link_hash_entry *elfh;
1445 const char *name;
1446 asection *s;
1447 bfd_vma value;
1448
1449 /* Read the symbol's value. */
1450 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1451 || h->root.root.type == bfd_link_hash_defweak);
1452 s = h->root.root.u.def.section;
1453 value = h->root.root.u.def.value;
1454
1455 /* Create a new symbol. */
1456 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1457 bh = NULL;
1458 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1459 BSF_LOCAL, s, value, NULL,
1460 TRUE, FALSE, &bh))
1461 return FALSE;
1462
1463 /* Make it local and copy the other attributes from H. */
1464 elfh = (struct elf_link_hash_entry *) bh;
1465 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1466 elfh->other = h->root.other;
1467 elfh->size = h->root.size;
1468 elfh->forced_local = 1;
1469 return TRUE;
1470}
1471
1472/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1473 function rather than to a hard-float stub. */
1474
1475static bfd_boolean
1476section_allows_mips16_refs_p (asection *section)
1477{
1478 const char *name;
1479
1480 name = bfd_get_section_name (section->owner, section);
1481 return (FN_STUB_P (name)
1482 || CALL_STUB_P (name)
1483 || CALL_FP_STUB_P (name)
1484 || strcmp (name, ".pdr") == 0);
1485}
1486
1487/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1488 stub section of some kind. Return the R_SYMNDX of the target
1489 function, or 0 if we can't decide which function that is. */
1490
1491static unsigned long
cb4437b8
MR
1492mips16_stub_symndx (const struct elf_backend_data *bed,
1493 asection *sec ATTRIBUTE_UNUSED,
502e814e 1494 const Elf_Internal_Rela *relocs,
738e5348
RS
1495 const Elf_Internal_Rela *relend)
1496{
cb4437b8 1497 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1498 const Elf_Internal_Rela *rel;
1499
cb4437b8
MR
1500 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1501 one in a compound relocation. */
1502 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1503 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1504 return ELF_R_SYM (sec->owner, rel->r_info);
1505
1506 /* Otherwise trust the first relocation, whatever its kind. This is
1507 the traditional behavior. */
1508 if (relocs < relend)
1509 return ELF_R_SYM (sec->owner, relocs->r_info);
1510
1511 return 0;
1512}
b49e97c9
TS
1513
1514/* Check the mips16 stubs for a particular symbol, and see if we can
1515 discard them. */
1516
861fb55a
DJ
1517static void
1518mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1519 struct mips_elf_link_hash_entry *h)
b49e97c9 1520{
738e5348
RS
1521 /* Dynamic symbols must use the standard call interface, in case other
1522 objects try to call them. */
1523 if (h->fn_stub != NULL
1524 && h->root.dynindx != -1)
1525 {
1526 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1527 h->need_fn_stub = TRUE;
1528 }
1529
b49e97c9
TS
1530 if (h->fn_stub != NULL
1531 && ! h->need_fn_stub)
1532 {
1533 /* We don't need the fn_stub; the only references to this symbol
1534 are 16 bit calls. Clobber the size to 0 to prevent it from
1535 being included in the link. */
eea6121a 1536 h->fn_stub->size = 0;
b49e97c9
TS
1537 h->fn_stub->flags &= ~SEC_RELOC;
1538 h->fn_stub->reloc_count = 0;
1539 h->fn_stub->flags |= SEC_EXCLUDE;
1540 }
1541
1542 if (h->call_stub != NULL
30c09090 1543 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1544 {
1545 /* We don't need the call_stub; this is a 16 bit function, so
1546 calls from other 16 bit functions are OK. Clobber the size
1547 to 0 to prevent it from being included in the link. */
eea6121a 1548 h->call_stub->size = 0;
b49e97c9
TS
1549 h->call_stub->flags &= ~SEC_RELOC;
1550 h->call_stub->reloc_count = 0;
1551 h->call_stub->flags |= SEC_EXCLUDE;
1552 }
1553
1554 if (h->call_fp_stub != NULL
30c09090 1555 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1556 {
1557 /* We don't need the call_stub; this is a 16 bit function, so
1558 calls from other 16 bit functions are OK. Clobber the size
1559 to 0 to prevent it from being included in the link. */
eea6121a 1560 h->call_fp_stub->size = 0;
b49e97c9
TS
1561 h->call_fp_stub->flags &= ~SEC_RELOC;
1562 h->call_fp_stub->reloc_count = 0;
1563 h->call_fp_stub->flags |= SEC_EXCLUDE;
1564 }
861fb55a
DJ
1565}
1566
1567/* Hashtable callbacks for mips_elf_la25_stubs. */
1568
1569static hashval_t
1570mips_elf_la25_stub_hash (const void *entry_)
1571{
1572 const struct mips_elf_la25_stub *entry;
1573
1574 entry = (struct mips_elf_la25_stub *) entry_;
1575 return entry->h->root.root.u.def.section->id
1576 + entry->h->root.root.u.def.value;
1577}
1578
1579static int
1580mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1581{
1582 const struct mips_elf_la25_stub *entry1, *entry2;
1583
1584 entry1 = (struct mips_elf_la25_stub *) entry1_;
1585 entry2 = (struct mips_elf_la25_stub *) entry2_;
1586 return ((entry1->h->root.root.u.def.section
1587 == entry2->h->root.root.u.def.section)
1588 && (entry1->h->root.root.u.def.value
1589 == entry2->h->root.root.u.def.value));
1590}
1591
1592/* Called by the linker to set up the la25 stub-creation code. FN is
1593 the linker's implementation of add_stub_function. Return true on
1594 success. */
1595
1596bfd_boolean
1597_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1598 asection *(*fn) (const char *, asection *,
1599 asection *))
1600{
1601 struct mips_elf_link_hash_table *htab;
1602
1603 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1604 if (htab == NULL)
1605 return FALSE;
1606
861fb55a
DJ
1607 htab->add_stub_section = fn;
1608 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1609 mips_elf_la25_stub_eq, NULL);
1610 if (htab->la25_stubs == NULL)
1611 return FALSE;
1612
1613 return TRUE;
1614}
1615
1616/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1617 that it or its fn_stub might need $25 to be valid on entry.
1618 Note that MIPS16 functions set up $gp using PC-relative instructions,
1619 so they themselves never need $25 to be valid. Only non-MIPS16
1620 entry points are of interest here. */
861fb55a
DJ
1621
1622static bfd_boolean
1623mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1624{
1625 return ((h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak)
1627 && h->root.def_regular
1628 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1629 && (!ELF_ST_IS_MIPS16 (h->root.other)
1630 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1631 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1632 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1633}
1634
8f0c309a
CLT
1635/* Set *SEC to the input section that contains the target of STUB.
1636 Return the offset of the target from the start of that section. */
1637
1638static bfd_vma
1639mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1640 asection **sec)
1641{
1642 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1643 {
1644 BFD_ASSERT (stub->h->need_fn_stub);
1645 *sec = stub->h->fn_stub;
1646 return 0;
1647 }
1648 else
1649 {
1650 *sec = stub->h->root.root.u.def.section;
1651 return stub->h->root.root.u.def.value;
1652 }
1653}
1654
861fb55a
DJ
1655/* STUB describes an la25 stub that we have decided to implement
1656 by inserting an LUI/ADDIU pair before the target function.
1657 Create the section and redirect the function symbol to it. */
1658
1659static bfd_boolean
1660mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1661 struct bfd_link_info *info)
1662{
1663 struct mips_elf_link_hash_table *htab;
1664 char *name;
1665 asection *s, *input_section;
1666 unsigned int align;
1667
1668 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1669 if (htab == NULL)
1670 return FALSE;
861fb55a
DJ
1671
1672 /* Create a unique name for the new section. */
1673 name = bfd_malloc (11 + sizeof (".text.stub."));
1674 if (name == NULL)
1675 return FALSE;
1676 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1677
1678 /* Create the section. */
8f0c309a 1679 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1680 s = htab->add_stub_section (name, input_section,
1681 input_section->output_section);
1682 if (s == NULL)
1683 return FALSE;
1684
1685 /* Make sure that any padding goes before the stub. */
1686 align = input_section->alignment_power;
1687 if (!bfd_set_section_alignment (s->owner, s, align))
1688 return FALSE;
1689 if (align > 3)
1690 s->size = (1 << align) - 8;
1691
1692 /* Create a symbol for the stub. */
1693 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1694 stub->stub_section = s;
1695 stub->offset = s->size;
1696
1697 /* Allocate room for it. */
1698 s->size += 8;
1699 return TRUE;
1700}
1701
1702/* STUB describes an la25 stub that we have decided to implement
1703 with a separate trampoline. Allocate room for it and redirect
1704 the function symbol to it. */
1705
1706static bfd_boolean
1707mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1708 struct bfd_link_info *info)
1709{
1710 struct mips_elf_link_hash_table *htab;
1711 asection *s;
1712
1713 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1714 if (htab == NULL)
1715 return FALSE;
861fb55a
DJ
1716
1717 /* Create a trampoline section, if we haven't already. */
1718 s = htab->strampoline;
1719 if (s == NULL)
1720 {
1721 asection *input_section = stub->h->root.root.u.def.section;
1722 s = htab->add_stub_section (".text", NULL,
1723 input_section->output_section);
1724 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1725 return FALSE;
1726 htab->strampoline = s;
1727 }
1728
1729 /* Create a symbol for the stub. */
1730 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1731 stub->stub_section = s;
1732 stub->offset = s->size;
1733
1734 /* Allocate room for it. */
1735 s->size += 16;
1736 return TRUE;
1737}
1738
1739/* H describes a symbol that needs an la25 stub. Make sure that an
1740 appropriate stub exists and point H at it. */
1741
1742static bfd_boolean
1743mips_elf_add_la25_stub (struct bfd_link_info *info,
1744 struct mips_elf_link_hash_entry *h)
1745{
1746 struct mips_elf_link_hash_table *htab;
1747 struct mips_elf_la25_stub search, *stub;
1748 bfd_boolean use_trampoline_p;
1749 asection *s;
1750 bfd_vma value;
1751 void **slot;
1752
861fb55a
DJ
1753 /* Describe the stub we want. */
1754 search.stub_section = NULL;
1755 search.offset = 0;
1756 search.h = h;
1757
1758 /* See if we've already created an equivalent stub. */
1759 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1760 if (htab == NULL)
1761 return FALSE;
1762
861fb55a
DJ
1763 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1764 if (slot == NULL)
1765 return FALSE;
1766
1767 stub = (struct mips_elf_la25_stub *) *slot;
1768 if (stub != NULL)
1769 {
1770 /* We can reuse the existing stub. */
1771 h->la25_stub = stub;
1772 return TRUE;
1773 }
1774
1775 /* Create a permanent copy of ENTRY and add it to the hash table. */
1776 stub = bfd_malloc (sizeof (search));
1777 if (stub == NULL)
1778 return FALSE;
1779 *stub = search;
1780 *slot = stub;
1781
8f0c309a
CLT
1782 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1783 of the section and if we would need no more than 2 nops. */
1784 value = mips_elf_get_la25_target (stub, &s);
1785 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1786
861fb55a
DJ
1787 h->la25_stub = stub;
1788 return (use_trampoline_p
1789 ? mips_elf_add_la25_trampoline (stub, info)
1790 : mips_elf_add_la25_intro (stub, info));
1791}
1792
1793/* A mips_elf_link_hash_traverse callback that is called before sizing
1794 sections. DATA points to a mips_htab_traverse_info structure. */
1795
1796static bfd_boolean
1797mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1798{
1799 struct mips_htab_traverse_info *hti;
1800
1801 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1802 if (!hti->info->relocatable)
1803 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1804
861fb55a
DJ
1805 if (mips_elf_local_pic_function_p (h))
1806 {
ba85c43e
NC
1807 /* PR 12845: If H is in a section that has been garbage
1808 collected it will have its output section set to *ABS*. */
1809 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1810 return TRUE;
1811
861fb55a
DJ
1812 /* H is a function that might need $25 to be valid on entry.
1813 If we're creating a non-PIC relocatable object, mark H as
1814 being PIC. If we're creating a non-relocatable object with
1815 non-PIC branches and jumps to H, make sure that H has an la25
1816 stub. */
1817 if (hti->info->relocatable)
1818 {
1819 if (!PIC_OBJECT_P (hti->output_bfd))
1820 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1821 }
1822 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1823 {
1824 hti->error = TRUE;
1825 return FALSE;
1826 }
1827 }
b34976b6 1828 return TRUE;
b49e97c9
TS
1829}
1830\f
d6f16593
MR
1831/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1832 Most mips16 instructions are 16 bits, but these instructions
1833 are 32 bits.
1834
1835 The format of these instructions is:
1836
1837 +--------------+--------------------------------+
1838 | JALX | X| Imm 20:16 | Imm 25:21 |
1839 +--------------+--------------------------------+
1840 | Immediate 15:0 |
1841 +-----------------------------------------------+
1842
1843 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1844 Note that the immediate value in the first word is swapped.
1845
1846 When producing a relocatable object file, R_MIPS16_26 is
1847 handled mostly like R_MIPS_26. In particular, the addend is
1848 stored as a straight 26-bit value in a 32-bit instruction.
1849 (gas makes life simpler for itself by never adjusting a
1850 R_MIPS16_26 reloc to be against a section, so the addend is
1851 always zero). However, the 32 bit instruction is stored as 2
1852 16-bit values, rather than a single 32-bit value. In a
1853 big-endian file, the result is the same; in a little-endian
1854 file, the two 16-bit halves of the 32 bit value are swapped.
1855 This is so that a disassembler can recognize the jal
1856 instruction.
1857
1858 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1859 instruction stored as two 16-bit values. The addend A is the
1860 contents of the targ26 field. The calculation is the same as
1861 R_MIPS_26. When storing the calculated value, reorder the
1862 immediate value as shown above, and don't forget to store the
1863 value as two 16-bit values.
1864
1865 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1866 defined as
1867
1868 big-endian:
1869 +--------+----------------------+
1870 | | |
1871 | | targ26-16 |
1872 |31 26|25 0|
1873 +--------+----------------------+
1874
1875 little-endian:
1876 +----------+------+-------------+
1877 | | | |
1878 | sub1 | | sub2 |
1879 |0 9|10 15|16 31|
1880 +----------+--------------------+
1881 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1882 ((sub1 << 16) | sub2)).
1883
1884 When producing a relocatable object file, the calculation is
1885 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1886 When producing a fully linked file, the calculation is
1887 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1888 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1889
738e5348
RS
1890 The table below lists the other MIPS16 instruction relocations.
1891 Each one is calculated in the same way as the non-MIPS16 relocation
1892 given on the right, but using the extended MIPS16 layout of 16-bit
1893 immediate fields:
1894
1895 R_MIPS16_GPREL R_MIPS_GPREL16
1896 R_MIPS16_GOT16 R_MIPS_GOT16
1897 R_MIPS16_CALL16 R_MIPS_CALL16
1898 R_MIPS16_HI16 R_MIPS_HI16
1899 R_MIPS16_LO16 R_MIPS_LO16
1900
1901 A typical instruction will have a format like this:
d6f16593
MR
1902
1903 +--------------+--------------------------------+
1904 | EXTEND | Imm 10:5 | Imm 15:11 |
1905 +--------------+--------------------------------+
1906 | Major | rx | ry | Imm 4:0 |
1907 +--------------+--------------------------------+
1908
1909 EXTEND is the five bit value 11110. Major is the instruction
1910 opcode.
1911
738e5348
RS
1912 All we need to do here is shuffle the bits appropriately.
1913 As above, the two 16-bit halves must be swapped on a
1914 little-endian system. */
1915
1916static inline bfd_boolean
1917mips16_reloc_p (int r_type)
1918{
1919 switch (r_type)
1920 {
1921 case R_MIPS16_26:
1922 case R_MIPS16_GPREL:
1923 case R_MIPS16_GOT16:
1924 case R_MIPS16_CALL16:
1925 case R_MIPS16_HI16:
1926 case R_MIPS16_LO16:
d0f13682
CLT
1927 case R_MIPS16_TLS_GD:
1928 case R_MIPS16_TLS_LDM:
1929 case R_MIPS16_TLS_DTPREL_HI16:
1930 case R_MIPS16_TLS_DTPREL_LO16:
1931 case R_MIPS16_TLS_GOTTPREL:
1932 case R_MIPS16_TLS_TPREL_HI16:
1933 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1934 return TRUE;
1935
1936 default:
1937 return FALSE;
1938 }
1939}
1940
df58fc94
RS
1941/* Check if a microMIPS reloc. */
1942
1943static inline bfd_boolean
1944micromips_reloc_p (unsigned int r_type)
1945{
1946 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1947}
1948
1949/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1950 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1951 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1952
1953static inline bfd_boolean
1954micromips_reloc_shuffle_p (unsigned int r_type)
1955{
1956 return (micromips_reloc_p (r_type)
1957 && r_type != R_MICROMIPS_PC7_S1
1958 && r_type != R_MICROMIPS_PC10_S1);
1959}
1960
738e5348
RS
1961static inline bfd_boolean
1962got16_reloc_p (int r_type)
1963{
df58fc94
RS
1964 return (r_type == R_MIPS_GOT16
1965 || r_type == R_MIPS16_GOT16
1966 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1967}
1968
1969static inline bfd_boolean
1970call16_reloc_p (int r_type)
1971{
df58fc94
RS
1972 return (r_type == R_MIPS_CALL16
1973 || r_type == R_MIPS16_CALL16
1974 || r_type == R_MICROMIPS_CALL16);
1975}
1976
1977static inline bfd_boolean
1978got_disp_reloc_p (unsigned int r_type)
1979{
1980 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1981}
1982
1983static inline bfd_boolean
1984got_page_reloc_p (unsigned int r_type)
1985{
1986 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1987}
1988
1989static inline bfd_boolean
1990got_ofst_reloc_p (unsigned int r_type)
1991{
1992 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1993}
1994
1995static inline bfd_boolean
1996got_hi16_reloc_p (unsigned int r_type)
1997{
1998 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1999}
2000
2001static inline bfd_boolean
2002got_lo16_reloc_p (unsigned int r_type)
2003{
2004 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2005}
2006
2007static inline bfd_boolean
2008call_hi16_reloc_p (unsigned int r_type)
2009{
2010 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2011}
2012
2013static inline bfd_boolean
2014call_lo16_reloc_p (unsigned int r_type)
2015{
2016 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2017}
2018
2019static inline bfd_boolean
2020hi16_reloc_p (int r_type)
2021{
df58fc94
RS
2022 return (r_type == R_MIPS_HI16
2023 || r_type == R_MIPS16_HI16
2024 || r_type == R_MICROMIPS_HI16);
738e5348 2025}
d6f16593 2026
738e5348
RS
2027static inline bfd_boolean
2028lo16_reloc_p (int r_type)
2029{
df58fc94
RS
2030 return (r_type == R_MIPS_LO16
2031 || r_type == R_MIPS16_LO16
2032 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2033}
2034
2035static inline bfd_boolean
2036mips16_call_reloc_p (int r_type)
2037{
2038 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2039}
d6f16593 2040
38a7df63
CF
2041static inline bfd_boolean
2042jal_reloc_p (int r_type)
2043{
df58fc94
RS
2044 return (r_type == R_MIPS_26
2045 || r_type == R_MIPS16_26
2046 || r_type == R_MICROMIPS_26_S1);
2047}
2048
2049static inline bfd_boolean
2050micromips_branch_reloc_p (int r_type)
2051{
2052 return (r_type == R_MICROMIPS_26_S1
2053 || r_type == R_MICROMIPS_PC16_S1
2054 || r_type == R_MICROMIPS_PC10_S1
2055 || r_type == R_MICROMIPS_PC7_S1);
2056}
2057
2058static inline bfd_boolean
2059tls_gd_reloc_p (unsigned int r_type)
2060{
d0f13682
CLT
2061 return (r_type == R_MIPS_TLS_GD
2062 || r_type == R_MIPS16_TLS_GD
2063 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2064}
2065
2066static inline bfd_boolean
2067tls_ldm_reloc_p (unsigned int r_type)
2068{
d0f13682
CLT
2069 return (r_type == R_MIPS_TLS_LDM
2070 || r_type == R_MIPS16_TLS_LDM
2071 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2072}
2073
2074static inline bfd_boolean
2075tls_gottprel_reloc_p (unsigned int r_type)
2076{
d0f13682
CLT
2077 return (r_type == R_MIPS_TLS_GOTTPREL
2078 || r_type == R_MIPS16_TLS_GOTTPREL
2079 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2080}
2081
d6f16593 2082void
df58fc94
RS
2083_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2084 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2085{
df58fc94 2086 bfd_vma first, second, val;
d6f16593 2087
df58fc94 2088 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2089 return;
2090
df58fc94
RS
2091 /* Pick up the first and second halfwords of the instruction. */
2092 first = bfd_get_16 (abfd, data);
2093 second = bfd_get_16 (abfd, data + 2);
2094 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2095 val = first << 16 | second;
2096 else if (r_type != R_MIPS16_26)
2097 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2098 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2099 else
df58fc94
RS
2100 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2101 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2102 bfd_put_32 (abfd, val, data);
2103}
2104
2105void
df58fc94
RS
2106_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2107 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2108{
df58fc94 2109 bfd_vma first, second, val;
d6f16593 2110
df58fc94 2111 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2112 return;
2113
2114 val = bfd_get_32 (abfd, data);
df58fc94 2115 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2116 {
df58fc94
RS
2117 second = val & 0xffff;
2118 first = val >> 16;
2119 }
2120 else if (r_type != R_MIPS16_26)
2121 {
2122 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2123 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2124 }
2125 else
2126 {
df58fc94
RS
2127 second = val & 0xffff;
2128 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2129 | ((val >> 21) & 0x1f);
d6f16593 2130 }
df58fc94
RS
2131 bfd_put_16 (abfd, second, data + 2);
2132 bfd_put_16 (abfd, first, data);
d6f16593
MR
2133}
2134
b49e97c9 2135bfd_reloc_status_type
9719ad41
RS
2136_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2137 arelent *reloc_entry, asection *input_section,
2138 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2139{
2140 bfd_vma relocation;
a7ebbfdf 2141 bfd_signed_vma val;
30ac9238 2142 bfd_reloc_status_type status;
b49e97c9
TS
2143
2144 if (bfd_is_com_section (symbol->section))
2145 relocation = 0;
2146 else
2147 relocation = symbol->value;
2148
2149 relocation += symbol->section->output_section->vma;
2150 relocation += symbol->section->output_offset;
2151
07515404 2152 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2153 return bfd_reloc_outofrange;
2154
b49e97c9 2155 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2156 val = reloc_entry->addend;
2157
30ac9238 2158 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2159
b49e97c9 2160 /* Adjust val for the final section location and GP value. If we
1049f94e 2161 are producing relocatable output, we don't want to do this for
b49e97c9 2162 an external symbol. */
1049f94e 2163 if (! relocatable
b49e97c9
TS
2164 || (symbol->flags & BSF_SECTION_SYM) != 0)
2165 val += relocation - gp;
2166
a7ebbfdf
TS
2167 if (reloc_entry->howto->partial_inplace)
2168 {
30ac9238
RS
2169 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2170 (bfd_byte *) data
2171 + reloc_entry->address);
2172 if (status != bfd_reloc_ok)
2173 return status;
a7ebbfdf
TS
2174 }
2175 else
2176 reloc_entry->addend = val;
b49e97c9 2177
1049f94e 2178 if (relocatable)
b49e97c9 2179 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2180
2181 return bfd_reloc_ok;
2182}
2183
2184/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2185 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2186 that contains the relocation field and DATA points to the start of
2187 INPUT_SECTION. */
2188
2189struct mips_hi16
2190{
2191 struct mips_hi16 *next;
2192 bfd_byte *data;
2193 asection *input_section;
2194 arelent rel;
2195};
2196
2197/* FIXME: This should not be a static variable. */
2198
2199static struct mips_hi16 *mips_hi16_list;
2200
2201/* A howto special_function for REL *HI16 relocations. We can only
2202 calculate the correct value once we've seen the partnering
2203 *LO16 relocation, so just save the information for later.
2204
2205 The ABI requires that the *LO16 immediately follow the *HI16.
2206 However, as a GNU extension, we permit an arbitrary number of
2207 *HI16s to be associated with a single *LO16. This significantly
2208 simplies the relocation handling in gcc. */
2209
2210bfd_reloc_status_type
2211_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2212 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2213 asection *input_section, bfd *output_bfd,
2214 char **error_message ATTRIBUTE_UNUSED)
2215{
2216 struct mips_hi16 *n;
2217
07515404 2218 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2219 return bfd_reloc_outofrange;
2220
2221 n = bfd_malloc (sizeof *n);
2222 if (n == NULL)
2223 return bfd_reloc_outofrange;
2224
2225 n->next = mips_hi16_list;
2226 n->data = data;
2227 n->input_section = input_section;
2228 n->rel = *reloc_entry;
2229 mips_hi16_list = n;
2230
2231 if (output_bfd != NULL)
2232 reloc_entry->address += input_section->output_offset;
2233
2234 return bfd_reloc_ok;
2235}
2236
738e5348 2237/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2238 like any other 16-bit relocation when applied to global symbols, but is
2239 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2240
2241bfd_reloc_status_type
2242_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2243 void *data, asection *input_section,
2244 bfd *output_bfd, char **error_message)
2245{
2246 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2247 || bfd_is_und_section (bfd_get_section (symbol))
2248 || bfd_is_com_section (bfd_get_section (symbol)))
2249 /* The relocation is against a global symbol. */
2250 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2251 input_section, output_bfd,
2252 error_message);
2253
2254 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2255 input_section, output_bfd, error_message);
2256}
2257
2258/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2259 is a straightforward 16 bit inplace relocation, but we must deal with
2260 any partnering high-part relocations as well. */
2261
2262bfd_reloc_status_type
2263_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2264 void *data, asection *input_section,
2265 bfd *output_bfd, char **error_message)
2266{
2267 bfd_vma vallo;
d6f16593 2268 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2269
07515404 2270 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2271 return bfd_reloc_outofrange;
2272
df58fc94 2273 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2274 location);
df58fc94
RS
2275 vallo = bfd_get_32 (abfd, location);
2276 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2277 location);
d6f16593 2278
30ac9238
RS
2279 while (mips_hi16_list != NULL)
2280 {
2281 bfd_reloc_status_type ret;
2282 struct mips_hi16 *hi;
2283
2284 hi = mips_hi16_list;
2285
738e5348
RS
2286 /* R_MIPS*_GOT16 relocations are something of a special case. We
2287 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2288 relocation (with a rightshift of 16). However, since GOT16
2289 relocations can also be used with global symbols, their howto
2290 has a rightshift of 0. */
2291 if (hi->rel.howto->type == R_MIPS_GOT16)
2292 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2293 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2294 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2295 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2296 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2297
2298 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2299 carry or borrow will induce a change of +1 or -1 in the high part. */
2300 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2301
30ac9238
RS
2302 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2303 hi->input_section, output_bfd,
2304 error_message);
2305 if (ret != bfd_reloc_ok)
2306 return ret;
2307
2308 mips_hi16_list = hi->next;
2309 free (hi);
2310 }
2311
2312 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2313 input_section, output_bfd,
2314 error_message);
2315}
2316
2317/* A generic howto special_function. This calculates and installs the
2318 relocation itself, thus avoiding the oft-discussed problems in
2319 bfd_perform_relocation and bfd_install_relocation. */
2320
2321bfd_reloc_status_type
2322_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2323 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2324 asection *input_section, bfd *output_bfd,
2325 char **error_message ATTRIBUTE_UNUSED)
2326{
2327 bfd_signed_vma val;
2328 bfd_reloc_status_type status;
2329 bfd_boolean relocatable;
2330
2331 relocatable = (output_bfd != NULL);
2332
07515404 2333 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2334 return bfd_reloc_outofrange;
2335
2336 /* Build up the field adjustment in VAL. */
2337 val = 0;
2338 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2339 {
2340 /* Either we're calculating the final field value or we have a
2341 relocation against a section symbol. Add in the section's
2342 offset or address. */
2343 val += symbol->section->output_section->vma;
2344 val += symbol->section->output_offset;
2345 }
2346
2347 if (!relocatable)
2348 {
2349 /* We're calculating the final field value. Add in the symbol's value
2350 and, if pc-relative, subtract the address of the field itself. */
2351 val += symbol->value;
2352 if (reloc_entry->howto->pc_relative)
2353 {
2354 val -= input_section->output_section->vma;
2355 val -= input_section->output_offset;
2356 val -= reloc_entry->address;
2357 }
2358 }
2359
2360 /* VAL is now the final adjustment. If we're keeping this relocation
2361 in the output file, and if the relocation uses a separate addend,
2362 we just need to add VAL to that addend. Otherwise we need to add
2363 VAL to the relocation field itself. */
2364 if (relocatable && !reloc_entry->howto->partial_inplace)
2365 reloc_entry->addend += val;
2366 else
2367 {
d6f16593
MR
2368 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2369
30ac9238
RS
2370 /* Add in the separate addend, if any. */
2371 val += reloc_entry->addend;
2372
2373 /* Add VAL to the relocation field. */
df58fc94
RS
2374 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2375 location);
30ac9238 2376 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2377 location);
df58fc94
RS
2378 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2379 location);
d6f16593 2380
30ac9238
RS
2381 if (status != bfd_reloc_ok)
2382 return status;
2383 }
2384
2385 if (relocatable)
2386 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2387
2388 return bfd_reloc_ok;
2389}
2390\f
2391/* Swap an entry in a .gptab section. Note that these routines rely
2392 on the equivalence of the two elements of the union. */
2393
2394static void
9719ad41
RS
2395bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2396 Elf32_gptab *in)
b49e97c9
TS
2397{
2398 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2399 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2400}
2401
2402static void
9719ad41
RS
2403bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2404 Elf32_External_gptab *ex)
b49e97c9
TS
2405{
2406 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2407 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2408}
2409
2410static void
9719ad41
RS
2411bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2412 Elf32_External_compact_rel *ex)
b49e97c9
TS
2413{
2414 H_PUT_32 (abfd, in->id1, ex->id1);
2415 H_PUT_32 (abfd, in->num, ex->num);
2416 H_PUT_32 (abfd, in->id2, ex->id2);
2417 H_PUT_32 (abfd, in->offset, ex->offset);
2418 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2419 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2420}
2421
2422static void
9719ad41
RS
2423bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2424 Elf32_External_crinfo *ex)
b49e97c9
TS
2425{
2426 unsigned long l;
2427
2428 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2429 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2430 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2431 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2432 H_PUT_32 (abfd, l, ex->info);
2433 H_PUT_32 (abfd, in->konst, ex->konst);
2434 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2435}
b49e97c9
TS
2436\f
2437/* A .reginfo section holds a single Elf32_RegInfo structure. These
2438 routines swap this structure in and out. They are used outside of
2439 BFD, so they are globally visible. */
2440
2441void
9719ad41
RS
2442bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2443 Elf32_RegInfo *in)
b49e97c9
TS
2444{
2445 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2446 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2447 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2448 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2449 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2450 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2451}
2452
2453void
9719ad41
RS
2454bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2455 Elf32_External_RegInfo *ex)
b49e97c9
TS
2456{
2457 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2458 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2459 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2460 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2461 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2462 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2463}
2464
2465/* In the 64 bit ABI, the .MIPS.options section holds register
2466 information in an Elf64_Reginfo structure. These routines swap
2467 them in and out. They are globally visible because they are used
2468 outside of BFD. These routines are here so that gas can call them
2469 without worrying about whether the 64 bit ABI has been included. */
2470
2471void
9719ad41
RS
2472bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2473 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2474{
2475 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2476 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2477 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2478 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2479 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2480 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2481 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2482}
2483
2484void
9719ad41
RS
2485bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2486 Elf64_External_RegInfo *ex)
b49e97c9
TS
2487{
2488 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2489 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2490 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2491 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2492 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2493 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2494 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2495}
2496
2497/* Swap in an options header. */
2498
2499void
9719ad41
RS
2500bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2501 Elf_Internal_Options *in)
b49e97c9
TS
2502{
2503 in->kind = H_GET_8 (abfd, ex->kind);
2504 in->size = H_GET_8 (abfd, ex->size);
2505 in->section = H_GET_16 (abfd, ex->section);
2506 in->info = H_GET_32 (abfd, ex->info);
2507}
2508
2509/* Swap out an options header. */
2510
2511void
9719ad41
RS
2512bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2513 Elf_External_Options *ex)
b49e97c9
TS
2514{
2515 H_PUT_8 (abfd, in->kind, ex->kind);
2516 H_PUT_8 (abfd, in->size, ex->size);
2517 H_PUT_16 (abfd, in->section, ex->section);
2518 H_PUT_32 (abfd, in->info, ex->info);
2519}
2520\f
2521/* This function is called via qsort() to sort the dynamic relocation
2522 entries by increasing r_symndx value. */
2523
2524static int
9719ad41 2525sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2526{
947216bf
AM
2527 Elf_Internal_Rela int_reloc1;
2528 Elf_Internal_Rela int_reloc2;
6870500c 2529 int diff;
b49e97c9 2530
947216bf
AM
2531 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2532 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2533
6870500c
RS
2534 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2535 if (diff != 0)
2536 return diff;
2537
2538 if (int_reloc1.r_offset < int_reloc2.r_offset)
2539 return -1;
2540 if (int_reloc1.r_offset > int_reloc2.r_offset)
2541 return 1;
2542 return 0;
b49e97c9
TS
2543}
2544
f4416af6
AO
2545/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2546
2547static int
7e3102a7
AM
2548sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2549 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2550{
7e3102a7 2551#ifdef BFD64
f4416af6
AO
2552 Elf_Internal_Rela int_reloc1[3];
2553 Elf_Internal_Rela int_reloc2[3];
2554
2555 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2556 (reldyn_sorting_bfd, arg1, int_reloc1);
2557 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2558 (reldyn_sorting_bfd, arg2, int_reloc2);
2559
6870500c
RS
2560 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2561 return -1;
2562 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2563 return 1;
2564
2565 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2566 return -1;
2567 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2568 return 1;
2569 return 0;
7e3102a7
AM
2570#else
2571 abort ();
2572#endif
f4416af6
AO
2573}
2574
2575
b49e97c9
TS
2576/* This routine is used to write out ECOFF debugging external symbol
2577 information. It is called via mips_elf_link_hash_traverse. The
2578 ECOFF external symbol information must match the ELF external
2579 symbol information. Unfortunately, at this point we don't know
2580 whether a symbol is required by reloc information, so the two
2581 tables may wind up being different. We must sort out the external
2582 symbol information before we can set the final size of the .mdebug
2583 section, and we must set the size of the .mdebug section before we
2584 can relocate any sections, and we can't know which symbols are
2585 required by relocation until we relocate the sections.
2586 Fortunately, it is relatively unlikely that any symbol will be
2587 stripped but required by a reloc. In particular, it can not happen
2588 when generating a final executable. */
2589
b34976b6 2590static bfd_boolean
9719ad41 2591mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2592{
9719ad41 2593 struct extsym_info *einfo = data;
b34976b6 2594 bfd_boolean strip;
b49e97c9
TS
2595 asection *sec, *output_section;
2596
b49e97c9 2597 if (h->root.indx == -2)
b34976b6 2598 strip = FALSE;
f5385ebf 2599 else if ((h->root.def_dynamic
77cfaee6
AM
2600 || h->root.ref_dynamic
2601 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2602 && !h->root.def_regular
2603 && !h->root.ref_regular)
b34976b6 2604 strip = TRUE;
b49e97c9
TS
2605 else if (einfo->info->strip == strip_all
2606 || (einfo->info->strip == strip_some
2607 && bfd_hash_lookup (einfo->info->keep_hash,
2608 h->root.root.root.string,
b34976b6
AM
2609 FALSE, FALSE) == NULL))
2610 strip = TRUE;
b49e97c9 2611 else
b34976b6 2612 strip = FALSE;
b49e97c9
TS
2613
2614 if (strip)
b34976b6 2615 return TRUE;
b49e97c9
TS
2616
2617 if (h->esym.ifd == -2)
2618 {
2619 h->esym.jmptbl = 0;
2620 h->esym.cobol_main = 0;
2621 h->esym.weakext = 0;
2622 h->esym.reserved = 0;
2623 h->esym.ifd = ifdNil;
2624 h->esym.asym.value = 0;
2625 h->esym.asym.st = stGlobal;
2626
2627 if (h->root.root.type == bfd_link_hash_undefined
2628 || h->root.root.type == bfd_link_hash_undefweak)
2629 {
2630 const char *name;
2631
2632 /* Use undefined class. Also, set class and type for some
2633 special symbols. */
2634 name = h->root.root.root.string;
2635 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2636 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2637 {
2638 h->esym.asym.sc = scData;
2639 h->esym.asym.st = stLabel;
2640 h->esym.asym.value = 0;
2641 }
2642 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2643 {
2644 h->esym.asym.sc = scAbs;
2645 h->esym.asym.st = stLabel;
2646 h->esym.asym.value =
2647 mips_elf_hash_table (einfo->info)->procedure_count;
2648 }
4a14403c 2649 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2650 {
2651 h->esym.asym.sc = scAbs;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = elf_gp (einfo->abfd);
2654 }
2655 else
2656 h->esym.asym.sc = scUndefined;
2657 }
2658 else if (h->root.root.type != bfd_link_hash_defined
2659 && h->root.root.type != bfd_link_hash_defweak)
2660 h->esym.asym.sc = scAbs;
2661 else
2662 {
2663 const char *name;
2664
2665 sec = h->root.root.u.def.section;
2666 output_section = sec->output_section;
2667
2668 /* When making a shared library and symbol h is the one from
2669 the another shared library, OUTPUT_SECTION may be null. */
2670 if (output_section == NULL)
2671 h->esym.asym.sc = scUndefined;
2672 else
2673 {
2674 name = bfd_section_name (output_section->owner, output_section);
2675
2676 if (strcmp (name, ".text") == 0)
2677 h->esym.asym.sc = scText;
2678 else if (strcmp (name, ".data") == 0)
2679 h->esym.asym.sc = scData;
2680 else if (strcmp (name, ".sdata") == 0)
2681 h->esym.asym.sc = scSData;
2682 else if (strcmp (name, ".rodata") == 0
2683 || strcmp (name, ".rdata") == 0)
2684 h->esym.asym.sc = scRData;
2685 else if (strcmp (name, ".bss") == 0)
2686 h->esym.asym.sc = scBss;
2687 else if (strcmp (name, ".sbss") == 0)
2688 h->esym.asym.sc = scSBss;
2689 else if (strcmp (name, ".init") == 0)
2690 h->esym.asym.sc = scInit;
2691 else if (strcmp (name, ".fini") == 0)
2692 h->esym.asym.sc = scFini;
2693 else
2694 h->esym.asym.sc = scAbs;
2695 }
2696 }
2697
2698 h->esym.asym.reserved = 0;
2699 h->esym.asym.index = indexNil;
2700 }
2701
2702 if (h->root.root.type == bfd_link_hash_common)
2703 h->esym.asym.value = h->root.root.u.c.size;
2704 else if (h->root.root.type == bfd_link_hash_defined
2705 || h->root.root.type == bfd_link_hash_defweak)
2706 {
2707 if (h->esym.asym.sc == scCommon)
2708 h->esym.asym.sc = scBss;
2709 else if (h->esym.asym.sc == scSCommon)
2710 h->esym.asym.sc = scSBss;
2711
2712 sec = h->root.root.u.def.section;
2713 output_section = sec->output_section;
2714 if (output_section != NULL)
2715 h->esym.asym.value = (h->root.root.u.def.value
2716 + sec->output_offset
2717 + output_section->vma);
2718 else
2719 h->esym.asym.value = 0;
2720 }
33bb52fb 2721 else
b49e97c9
TS
2722 {
2723 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2724
2725 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2726 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2727
33bb52fb 2728 if (hd->needs_lazy_stub)
b49e97c9
TS
2729 {
2730 /* Set type and value for a symbol with a function stub. */
2731 h->esym.asym.st = stProc;
2732 sec = hd->root.root.u.def.section;
2733 if (sec == NULL)
2734 h->esym.asym.value = 0;
2735 else
2736 {
2737 output_section = sec->output_section;
2738 if (output_section != NULL)
2739 h->esym.asym.value = (hd->root.plt.offset
2740 + sec->output_offset
2741 + output_section->vma);
2742 else
2743 h->esym.asym.value = 0;
2744 }
b49e97c9
TS
2745 }
2746 }
2747
2748 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2749 h->root.root.root.string,
2750 &h->esym))
2751 {
b34976b6
AM
2752 einfo->failed = TRUE;
2753 return FALSE;
b49e97c9
TS
2754 }
2755
b34976b6 2756 return TRUE;
b49e97c9
TS
2757}
2758
2759/* A comparison routine used to sort .gptab entries. */
2760
2761static int
9719ad41 2762gptab_compare (const void *p1, const void *p2)
b49e97c9 2763{
9719ad41
RS
2764 const Elf32_gptab *a1 = p1;
2765 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2766
2767 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2768}
2769\f
b15e6682 2770/* Functions to manage the got entry hash table. */
f4416af6
AO
2771
2772/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2773 hash number. */
2774
2775static INLINE hashval_t
9719ad41 2776mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2777{
2778#ifdef BFD64
2779 return addr + (addr >> 32);
2780#else
2781 return addr;
2782#endif
2783}
2784
2785/* got_entries only match if they're identical, except for gotidx, so
2786 use all fields to compute the hash, and compare the appropriate
2787 union members. */
2788
b15e6682 2789static int
9719ad41 2790mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
2791{
2792 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2793 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2794
e641e783
RS
2795 return (e1->abfd == e2->abfd
2796 && e1->symndx == e2->symndx
2797 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2798 && (!e1->abfd ? e1->d.address == e2->d.address
2799 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2800 : e1->d.h == e2->d.h));
f4416af6
AO
2801}
2802
2803/* multi_got_entries are still a match in the case of global objects,
2804 even if the input bfd in which they're referenced differs, so the
2805 hash computation and compare functions are adjusted
2806 accordingly. */
2807
2808static hashval_t
d9bf376d 2809mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2810{
2811 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2812
e641e783
RS
2813 return (entry->symndx
2814 + (((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM) << 18)
2815 + ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? 0
2816 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2817 : entry->symndx >= 0 ? (entry->abfd->id
2818 + mips_elf_hash_bfd_vma (entry->d.addend))
2819 : entry->d.h->root.root.root.hash));
f4416af6
AO
2820}
2821
2822static int
9719ad41 2823mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2824{
2825 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2826 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2827
e641e783
RS
2828 return (e1->symndx == e2->symndx
2829 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2830 && ((e1->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? TRUE
2831 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2832 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2833 && e1->d.addend == e2->d.addend)
2834 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 2835}
c224138d
RS
2836
2837static hashval_t
2838mips_got_page_entry_hash (const void *entry_)
2839{
2840 const struct mips_got_page_entry *entry;
2841
2842 entry = (const struct mips_got_page_entry *) entry_;
2843 return entry->abfd->id + entry->symndx;
2844}
2845
2846static int
2847mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2848{
2849 const struct mips_got_page_entry *entry1, *entry2;
2850
2851 entry1 = (const struct mips_got_page_entry *) entry1_;
2852 entry2 = (const struct mips_got_page_entry *) entry2_;
2853 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2854}
b15e6682 2855\f
5334aa52
RS
2856/* Create and return a new mips_got_info structure. MASTER_GOT_P
2857 is true if this is the master GOT rather than a multigot. */
2858
2859static struct mips_got_info *
2860mips_elf_create_got_info (bfd *abfd, bfd_boolean master_got_p)
2861{
2862 struct mips_got_info *g;
2863
2864 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2865 if (g == NULL)
2866 return NULL;
2867
2868 g->tls_ldm_offset = MINUS_ONE;
2869 if (master_got_p)
2870 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2871 mips_elf_got_entry_eq, NULL);
2872 else
d9bf376d 2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
5334aa52
RS
2874 mips_elf_multi_got_entry_eq, NULL);
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
2878 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2879 mips_got_page_entry_eq, NULL);
2880 if (g->got_page_entries == NULL)
2881 return NULL;
2882
2883 return g;
2884}
2885
0a44bf69
RS
2886/* Return the dynamic relocation section. If it doesn't exist, try to
2887 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2888 if creation fails. */
f4416af6
AO
2889
2890static asection *
0a44bf69 2891mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2892{
0a44bf69 2893 const char *dname;
f4416af6 2894 asection *sreloc;
0a44bf69 2895 bfd *dynobj;
f4416af6 2896
0a44bf69
RS
2897 dname = MIPS_ELF_REL_DYN_NAME (info);
2898 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2899 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2900 if (sreloc == NULL && create_p)
2901 {
3d4d4302
AM
2902 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2903 (SEC_ALLOC
2904 | SEC_LOAD
2905 | SEC_HAS_CONTENTS
2906 | SEC_IN_MEMORY
2907 | SEC_LINKER_CREATED
2908 | SEC_READONLY));
f4416af6 2909 if (sreloc == NULL
f4416af6 2910 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2911 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2912 return NULL;
2913 }
2914 return sreloc;
2915}
2916
e641e783
RS
2917/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2918
2919static int
2920mips_elf_reloc_tls_type (unsigned int r_type)
2921{
2922 if (tls_gd_reloc_p (r_type))
2923 return GOT_TLS_GD;
2924
2925 if (tls_ldm_reloc_p (r_type))
2926 return GOT_TLS_LDM;
2927
2928 if (tls_gottprel_reloc_p (r_type))
2929 return GOT_TLS_IE;
2930
2931 return GOT_NORMAL;
2932}
2933
2934/* Return the number of GOT slots needed for GOT TLS type TYPE. */
2935
2936static int
2937mips_tls_got_entries (unsigned int type)
2938{
2939 switch (type)
2940 {
2941 case GOT_TLS_GD:
2942 case GOT_TLS_LDM:
2943 return 2;
2944
2945 case GOT_TLS_IE:
2946 return 1;
2947
2948 case GOT_NORMAL:
2949 return 0;
2950 }
2951 abort ();
2952}
2953
0f20cc35
DJ
2954/* Count the number of relocations needed for a TLS GOT entry, with
2955 access types from TLS_TYPE, and symbol H (or a local symbol if H
2956 is NULL). */
2957
2958static int
2959mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2960 struct elf_link_hash_entry *h)
2961{
2962 int indx = 0;
0f20cc35
DJ
2963 bfd_boolean need_relocs = FALSE;
2964 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2965
2966 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2967 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2968 indx = h->dynindx;
2969
2970 if ((info->shared || indx != 0)
2971 && (h == NULL
2972 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2973 || h->root.type != bfd_link_hash_undefweak))
2974 need_relocs = TRUE;
2975
2976 if (!need_relocs)
e641e783 2977 return 0;
0f20cc35 2978
e641e783 2979 switch (tls_type & GOT_TLS_TYPE)
0f20cc35 2980 {
e641e783
RS
2981 case GOT_TLS_GD:
2982 return indx != 0 ? 2 : 1;
0f20cc35 2983
e641e783
RS
2984 case GOT_TLS_IE:
2985 return 1;
0f20cc35 2986
e641e783
RS
2987 case GOT_TLS_LDM:
2988 return info->shared ? 1 : 0;
0f20cc35 2989
e641e783
RS
2990 default:
2991 return 0;
2992 }
0f20cc35
DJ
2993}
2994
ab361d49
RS
2995/* Add the number of GOT entries and TLS relocations required by ENTRY
2996 to G. */
0f20cc35 2997
ab361d49
RS
2998static void
2999mips_elf_count_got_entry (struct bfd_link_info *info,
3000 struct mips_got_info *g,
3001 struct mips_got_entry *entry)
0f20cc35 3002{
ab361d49 3003 unsigned char tls_type;
0f20cc35 3004
ab361d49
RS
3005 tls_type = entry->tls_type & GOT_TLS_TYPE;
3006 if (tls_type)
3007 {
3008 g->tls_gotno += mips_tls_got_entries (tls_type);
3009 g->relocs += mips_tls_got_relocs (info, tls_type,
3010 entry->symndx < 0
3011 ? &entry->d.h->root : NULL);
3012 }
3013 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3014 g->local_gotno += 1;
3015 else
3016 g->global_gotno += 1;
0f20cc35
DJ
3017}
3018
ab361d49
RS
3019/* A htab_traverse callback. If *SLOT describes a GOT entry for a local
3020 symbol, count the number of GOT entries and TLS relocations that it
3021 requires. DATA points to a mips_elf_traverse_got_arg structure. */
0f20cc35
DJ
3022
3023static int
ab361d49 3024mips_elf_count_local_got_entries (void **entryp, void *data)
0f20cc35 3025{
ab361d49
RS
3026 struct mips_got_entry *entry;
3027 struct mips_elf_traverse_got_arg *arg;
1fd20d70 3028
ab361d49
RS
3029 entry = (struct mips_got_entry *) *entryp;
3030 arg = (struct mips_elf_traverse_got_arg *) data;
3031 if (entry->abfd != NULL && entry->symndx != -1)
3032 {
3033 if ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM)
3034 {
3035 if (arg->g->tls_ldm_offset == MINUS_TWO)
3036 return 1;
3037 arg->g->tls_ldm_offset = MINUS_TWO;
3038 }
3039 mips_elf_count_got_entry (arg->info, arg->g, entry);
3040 }
0f20cc35
DJ
3041
3042 return 1;
3043}
3044
ab361d49
RS
3045/* Count the number of TLS GOT entries and relocationss required for the
3046 global (or forced-local) symbol in ARG1. */
0f20cc35
DJ
3047
3048static int
ab361d49 3049mips_elf_count_global_tls_entries (void *entry, void *data)
0f20cc35 3050{
ab361d49
RS
3051 struct mips_elf_link_hash_entry *hm;
3052 struct mips_elf_traverse_got_arg *arg;
0f20cc35 3053
ab361d49 3054 hm = (struct mips_elf_link_hash_entry *) entry;
1fd20d70
RS
3055 if (hm->root.root.type == bfd_link_hash_indirect
3056 || hm->root.root.type == bfd_link_hash_warning)
3057 return 1;
3058
ab361d49
RS
3059 arg = (struct mips_elf_traverse_got_arg *) data;
3060 if (hm->tls_gd_type)
3061 {
3062 arg->g->tls_gotno += 2;
3063 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_gd_type,
3064 &hm->root);
3065 }
3066 if (hm->tls_ie_type)
3067 {
3068 arg->g->tls_gotno += 1;
3069 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_ie_type,
3070 &hm->root);
3071 }
0f20cc35
DJ
3072
3073 return 1;
3074}
3075
3076/* Output a simple dynamic relocation into SRELOC. */
3077
3078static void
3079mips_elf_output_dynamic_relocation (bfd *output_bfd,
3080 asection *sreloc,
861fb55a 3081 unsigned long reloc_index,
0f20cc35
DJ
3082 unsigned long indx,
3083 int r_type,
3084 bfd_vma offset)
3085{
3086 Elf_Internal_Rela rel[3];
3087
3088 memset (rel, 0, sizeof (rel));
3089
3090 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3091 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3092
3093 if (ABI_64_P (output_bfd))
3094 {
3095 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3096 (output_bfd, &rel[0],
3097 (sreloc->contents
861fb55a 3098 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3099 }
3100 else
3101 bfd_elf32_swap_reloc_out
3102 (output_bfd, &rel[0],
3103 (sreloc->contents
861fb55a 3104 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3105}
3106
3107/* Initialize a set of TLS GOT entries for one symbol. */
3108
3109static void
3110mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3111 unsigned char *tls_type_p,
3112 struct bfd_link_info *info,
3113 struct mips_elf_link_hash_entry *h,
3114 bfd_vma value)
3115{
23cc69b6 3116 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3117 int indx;
3118 asection *sreloc, *sgot;
e641e783 3119 bfd_vma got_offset2;
0f20cc35
DJ
3120 bfd_boolean need_relocs = FALSE;
3121
23cc69b6 3122 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3123 if (htab == NULL)
3124 return;
3125
23cc69b6 3126 sgot = htab->sgot;
0f20cc35
DJ
3127
3128 indx = 0;
3129 if (h != NULL)
3130 {
3131 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3132
3133 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3134 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3135 indx = h->root.dynindx;
3136 }
3137
3138 if (*tls_type_p & GOT_TLS_DONE)
3139 return;
3140
3141 if ((info->shared || indx != 0)
3142 && (h == NULL
3143 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3144 || h->root.type != bfd_link_hash_undefweak))
3145 need_relocs = TRUE;
3146
3147 /* MINUS_ONE means the symbol is not defined in this object. It may not
3148 be defined at all; assume that the value doesn't matter in that
3149 case. Otherwise complain if we would use the value. */
3150 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3151 || h->root.root.type == bfd_link_hash_undefweak);
3152
3153 /* Emit necessary relocations. */
0a44bf69 3154 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35 3155
e641e783 3156 switch (*tls_type_p & GOT_TLS_TYPE)
0f20cc35 3157 {
e641e783
RS
3158 case GOT_TLS_GD:
3159 /* General Dynamic. */
3160 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3161
3162 if (need_relocs)
3163 {
3164 mips_elf_output_dynamic_relocation
861fb55a 3165 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3166 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3167 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3168
3169 if (indx)
3170 mips_elf_output_dynamic_relocation
861fb55a 3171 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3172 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3173 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3174 else
3175 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3176 sgot->contents + got_offset2);
0f20cc35
DJ
3177 }
3178 else
3179 {
3180 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3181 sgot->contents + got_offset);
0f20cc35 3182 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3183 sgot->contents + got_offset2);
0f20cc35 3184 }
e641e783 3185 break;
0f20cc35 3186
e641e783
RS
3187 case GOT_TLS_IE:
3188 /* Initial Exec model. */
0f20cc35
DJ
3189 if (need_relocs)
3190 {
3191 if (indx == 0)
3192 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3193 sgot->contents + got_offset);
0f20cc35
DJ
3194 else
3195 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3196 sgot->contents + got_offset);
0f20cc35
DJ
3197
3198 mips_elf_output_dynamic_relocation
861fb55a 3199 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3200 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3201 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3202 }
3203 else
3204 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3205 sgot->contents + got_offset);
3206 break;
0f20cc35 3207
e641e783 3208 case GOT_TLS_LDM:
0f20cc35
DJ
3209 /* The initial offset is zero, and the LD offsets will include the
3210 bias by DTP_OFFSET. */
3211 MIPS_ELF_PUT_WORD (abfd, 0,
3212 sgot->contents + got_offset
3213 + MIPS_ELF_GOT_SIZE (abfd));
3214
3215 if (!info->shared)
3216 MIPS_ELF_PUT_WORD (abfd, 1,
3217 sgot->contents + got_offset);
3218 else
3219 mips_elf_output_dynamic_relocation
861fb55a 3220 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3221 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3222 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3223 break;
3224
3225 default:
3226 abort ();
0f20cc35
DJ
3227 }
3228
3229 *tls_type_p |= GOT_TLS_DONE;
3230}
3231
e641e783
RS
3232/* Return the GOT index to use for a relocation against H using the
3233 TLS model in *TLS_TYPE. The GOT entries for this symbol/model
3234 combination start at GOT_INDEX into ABFD's GOT. This function
3235 initializes the GOT entries and corresponding relocations. */
0f20cc35
DJ
3236
3237static bfd_vma
3238mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
e641e783 3239 struct bfd_link_info *info,
0f20cc35
DJ
3240 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3241{
0f20cc35 3242 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
e641e783
RS
3243 return got_index;
3244}
0f20cc35 3245
e641e783
RS
3246/* Return the GOT index to use for a relocation of type R_TYPE against H
3247 in ABFD. */
0f20cc35 3248
e641e783
RS
3249static bfd_vma
3250mips_tls_single_got_index (bfd *abfd, int r_type, struct bfd_link_info *info,
3251 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3252{
3253 if (tls_gottprel_reloc_p (r_type))
3254 return mips_tls_got_index (abfd, h->tls_ie_got_offset, &h->tls_ie_type,
3255 info, h, symbol);
df58fc94 3256 if (tls_gd_reloc_p (r_type))
e641e783
RS
3257 return mips_tls_got_index (abfd, h->tls_gd_got_offset, &h->tls_gd_type,
3258 info, h, symbol);
3259 abort ();
0f20cc35
DJ
3260}
3261
0a44bf69
RS
3262/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3263 for global symbol H. .got.plt comes before the GOT, so the offset
3264 will be negative. */
3265
3266static bfd_vma
3267mips_elf_gotplt_index (struct bfd_link_info *info,
3268 struct elf_link_hash_entry *h)
3269{
3270 bfd_vma plt_index, got_address, got_value;
3271 struct mips_elf_link_hash_table *htab;
3272
3273 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3274 BFD_ASSERT (htab != NULL);
3275
0a44bf69
RS
3276 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3277
861fb55a
DJ
3278 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3279 section starts with reserved entries. */
3280 BFD_ASSERT (htab->is_vxworks);
3281
0a44bf69
RS
3282 /* Calculate the index of the symbol's PLT entry. */
3283 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3284
3285 /* Calculate the address of the associated .got.plt entry. */
3286 got_address = (htab->sgotplt->output_section->vma
3287 + htab->sgotplt->output_offset
3288 + plt_index * 4);
3289
3290 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3291 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3292 + htab->root.hgot->root.u.def.section->output_offset
3293 + htab->root.hgot->root.u.def.value);
3294
3295 return got_address - got_value;
3296}
3297
5c18022e 3298/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3299 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3300 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3301 offset can be found. */
b49e97c9
TS
3302
3303static bfd_vma
9719ad41 3304mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3305 bfd_vma value, unsigned long r_symndx,
0f20cc35 3306 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3307{
a8028dd0 3308 struct mips_elf_link_hash_table *htab;
b15e6682 3309 struct mips_got_entry *entry;
b49e97c9 3310
a8028dd0 3311 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3312 BFD_ASSERT (htab != NULL);
3313
a8028dd0
RS
3314 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3315 r_symndx, h, r_type);
0f20cc35 3316 if (!entry)
b15e6682 3317 return MINUS_ONE;
0f20cc35 3318
e641e783 3319 if (entry->tls_type)
ead49a57 3320 {
a8028dd0 3321 if (entry->symndx == -1 && htab->got_info->next == NULL)
ead49a57
RS
3322 /* A type (3) entry in the single-GOT case. We use the symbol's
3323 hash table entry to track the index. */
e641e783 3324 return mips_tls_single_got_index (abfd, r_type, info, h, value);
ead49a57
RS
3325 else
3326 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
e641e783 3327 info, h, value);
ead49a57 3328 }
0f20cc35
DJ
3329 else
3330 return entry->gotidx;
b49e97c9
TS
3331}
3332
3333/* Returns the GOT index for the global symbol indicated by H. */
3334
3335static bfd_vma
0f20cc35
DJ
3336mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3337 int r_type, struct bfd_link_info *info)
b49e97c9 3338{
a8028dd0 3339 struct mips_elf_link_hash_table *htab;
91d6fa6a 3340 bfd_vma got_index;
f4416af6 3341 struct mips_got_info *g, *gg;
d0c7ff07 3342 long global_got_dynindx = 0;
b49e97c9 3343
a8028dd0 3344 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3345 BFD_ASSERT (htab != NULL);
3346
a8028dd0 3347 gg = g = htab->got_info;
f4416af6
AO
3348 if (g->bfd2got && ibfd)
3349 {
3350 struct mips_got_entry e, *p;
143d77c5 3351
f4416af6
AO
3352 BFD_ASSERT (h->dynindx >= 0);
3353
3354 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 3355 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
3356 {
3357 e.abfd = ibfd;
3358 e.symndx = -1;
3359 e.d.h = (struct mips_elf_link_hash_entry *)h;
e641e783 3360 e.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6 3361
9719ad41 3362 p = htab_find (g->got_entries, &e);
f4416af6 3363
e641e783 3364 BFD_ASSERT (p && p->gotidx > 0);
0f20cc35 3365
e641e783 3366 if (p->tls_type)
0f20cc35
DJ
3367 {
3368 bfd_vma value = MINUS_ONE;
3369 if ((h->root.type == bfd_link_hash_defined
3370 || h->root.type == bfd_link_hash_defweak)
3371 && h->root.u.def.section->output_section)
3372 value = (h->root.u.def.value
3373 + h->root.u.def.section->output_offset
3374 + h->root.u.def.section->output_section->vma);
3375
e641e783 3376 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type,
0f20cc35
DJ
3377 info, e.d.h, value);
3378 }
3379 else
3380 return p->gotidx;
f4416af6
AO
3381 }
3382 }
3383
d222d210
RS
3384 if (htab->global_gotsym != NULL)
3385 global_got_dynindx = htab->global_gotsym->dynindx;
b49e97c9 3386
0f20cc35
DJ
3387 if (TLS_RELOC_P (r_type))
3388 {
3389 struct mips_elf_link_hash_entry *hm
3390 = (struct mips_elf_link_hash_entry *) h;
3391 bfd_vma value = MINUS_ONE;
3392
3393 if ((h->root.type == bfd_link_hash_defined
3394 || h->root.type == bfd_link_hash_defweak)
3395 && h->root.u.def.section->output_section)
3396 value = (h->root.u.def.value
3397 + h->root.u.def.section->output_offset
3398 + h->root.u.def.section->output_section->vma);
3399
e641e783 3400 got_index = mips_tls_single_got_index (abfd, r_type, info, hm, value);
0f20cc35
DJ
3401 }
3402 else
3403 {
3404 /* Once we determine the global GOT entry with the lowest dynamic
3405 symbol table index, we must put all dynamic symbols with greater
3406 indices into the GOT. That makes it easy to calculate the GOT
3407 offset. */
3408 BFD_ASSERT (h->dynindx >= global_got_dynindx);
91d6fa6a
NC
3409 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3410 * MIPS_ELF_GOT_SIZE (abfd));
0f20cc35 3411 }
91d6fa6a 3412 BFD_ASSERT (got_index < htab->sgot->size);
b49e97c9 3413
91d6fa6a 3414 return got_index;
b49e97c9
TS
3415}
3416
5c18022e
RS
3417/* Find a GOT page entry that points to within 32KB of VALUE. These
3418 entries are supposed to be placed at small offsets in the GOT, i.e.,
3419 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3420 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3421 offset of the GOT entry from VALUE. */
b49e97c9
TS
3422
3423static bfd_vma
9719ad41 3424mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3425 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3426{
91d6fa6a 3427 bfd_vma page, got_index;
b15e6682 3428 struct mips_got_entry *entry;
b49e97c9 3429
0a44bf69 3430 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3431 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3432 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3433
b15e6682
AO
3434 if (!entry)
3435 return MINUS_ONE;
143d77c5 3436
91d6fa6a 3437 got_index = entry->gotidx;
b49e97c9
TS
3438
3439 if (offsetp)
f4416af6 3440 *offsetp = value - entry->d.address;
b49e97c9 3441
91d6fa6a 3442 return got_index;
b49e97c9
TS
3443}
3444
738e5348 3445/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3446 EXTERNAL is true if the relocation was originally against a global
3447 symbol that binds locally. */
b49e97c9
TS
3448
3449static bfd_vma
9719ad41 3450mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3451 bfd_vma value, bfd_boolean external)
b49e97c9 3452{
b15e6682 3453 struct mips_got_entry *entry;
b49e97c9 3454
0a44bf69
RS
3455 /* GOT16 relocations against local symbols are followed by a LO16
3456 relocation; those against global symbols are not. Thus if the
3457 symbol was originally local, the GOT16 relocation should load the
3458 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3459 if (! external)
0a44bf69 3460 value = mips_elf_high (value) << 16;
b49e97c9 3461
738e5348
RS
3462 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3463 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3464 same in all cases. */
a8028dd0
RS
3465 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3466 NULL, R_MIPS_GOT16);
b15e6682
AO
3467 if (entry)
3468 return entry->gotidx;
3469 else
3470 return MINUS_ONE;
b49e97c9
TS
3471}
3472
3473/* Returns the offset for the entry at the INDEXth position
3474 in the GOT. */
3475
3476static bfd_vma
a8028dd0 3477mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3478 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3479{
a8028dd0 3480 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3481 asection *sgot;
3482 bfd_vma gp;
3483
a8028dd0 3484 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3485 BFD_ASSERT (htab != NULL);
3486
a8028dd0 3487 sgot = htab->sgot;
f4416af6 3488 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3489 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3490
91d6fa6a 3491 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3492}
3493
0a44bf69
RS
3494/* Create and return a local GOT entry for VALUE, which was calculated
3495 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3496 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3497 instead. */
b49e97c9 3498
b15e6682 3499static struct mips_got_entry *
0a44bf69 3500mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3501 bfd *ibfd, bfd_vma value,
5c18022e 3502 unsigned long r_symndx,
0f20cc35
DJ
3503 struct mips_elf_link_hash_entry *h,
3504 int r_type)
b49e97c9 3505{
b15e6682 3506 struct mips_got_entry entry, **loc;
f4416af6 3507 struct mips_got_info *g;
0a44bf69
RS
3508 struct mips_elf_link_hash_table *htab;
3509
3510 htab = mips_elf_hash_table (info);
4dfe6ac6 3511 BFD_ASSERT (htab != NULL);
b15e6682 3512
f4416af6
AO
3513 entry.abfd = NULL;
3514 entry.symndx = -1;
3515 entry.d.address = value;
e641e783 3516 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6 3517
a8028dd0 3518 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
f4416af6
AO
3519 if (g == NULL)
3520 {
a8028dd0 3521 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
f4416af6
AO
3522 BFD_ASSERT (g != NULL);
3523 }
b15e6682 3524
020d7251
RS
3525 /* This function shouldn't be called for symbols that live in the global
3526 area of the GOT. */
3527 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
e641e783 3528 if (entry.tls_type)
0f20cc35
DJ
3529 {
3530 struct mips_got_entry *p;
3531
3532 entry.abfd = ibfd;
df58fc94 3533 if (tls_ldm_reloc_p (r_type))
0f20cc35 3534 {
0f20cc35
DJ
3535 entry.symndx = 0;
3536 entry.d.addend = 0;
3537 }
3538 else if (h == NULL)
3539 {
3540 entry.symndx = r_symndx;
3541 entry.d.addend = 0;
3542 }
3543 else
3544 entry.d.h = h;
3545
3546 p = (struct mips_got_entry *)
3547 htab_find (g->got_entries, &entry);
3548
3549 BFD_ASSERT (p);
3550 return p;
3551 }
3552
b15e6682
AO
3553 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3554 INSERT);
3555 if (*loc)
3556 return *loc;
143d77c5 3557
b15e6682
AO
3558 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3559
3560 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3561
3562 if (! *loc)
3563 return NULL;
143d77c5 3564
b15e6682
AO
3565 memcpy (*loc, &entry, sizeof entry);
3566
8275b357 3567 if (g->assigned_gotno > g->local_gotno)
b49e97c9 3568 {
f4416af6 3569 (*loc)->gotidx = -1;
b49e97c9
TS
3570 /* We didn't allocate enough space in the GOT. */
3571 (*_bfd_error_handler)
3572 (_("not enough GOT space for local GOT entries"));
3573 bfd_set_error (bfd_error_bad_value);
b15e6682 3574 return NULL;
b49e97c9
TS
3575 }
3576
3577 MIPS_ELF_PUT_WORD (abfd, value,
a8028dd0 3578 (htab->sgot->contents + entry.gotidx));
b15e6682 3579
5c18022e 3580 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3581 if (htab->is_vxworks)
3582 {
3583 Elf_Internal_Rela outrel;
5c18022e 3584 asection *s;
91d6fa6a 3585 bfd_byte *rloc;
0a44bf69 3586 bfd_vma got_address;
0a44bf69
RS
3587
3588 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3589 got_address = (htab->sgot->output_section->vma
3590 + htab->sgot->output_offset
0a44bf69
RS
3591 + entry.gotidx);
3592
91d6fa6a 3593 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3594 outrel.r_offset = got_address;
5c18022e
RS
3595 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3596 outrel.r_addend = value;
91d6fa6a 3597 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3598 }
3599
b15e6682 3600 return *loc;
b49e97c9
TS
3601}
3602
d4596a51
RS
3603/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3604 The number might be exact or a worst-case estimate, depending on how
3605 much information is available to elf_backend_omit_section_dynsym at
3606 the current linking stage. */
3607
3608static bfd_size_type
3609count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3610{
3611 bfd_size_type count;
3612
3613 count = 0;
3614 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3615 {
3616 asection *p;
3617 const struct elf_backend_data *bed;
3618
3619 bed = get_elf_backend_data (output_bfd);
3620 for (p = output_bfd->sections; p ; p = p->next)
3621 if ((p->flags & SEC_EXCLUDE) == 0
3622 && (p->flags & SEC_ALLOC) != 0
3623 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3624 ++count;
3625 }
3626 return count;
3627}
3628
b49e97c9 3629/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3630 appear towards the end. */
b49e97c9 3631
b34976b6 3632static bfd_boolean
d4596a51 3633mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3634{
a8028dd0 3635 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3636 struct mips_elf_hash_sort_data hsd;
3637 struct mips_got_info *g;
b49e97c9 3638
d4596a51
RS
3639 if (elf_hash_table (info)->dynsymcount == 0)
3640 return TRUE;
3641
a8028dd0 3642 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3643 BFD_ASSERT (htab != NULL);
3644
a8028dd0 3645 g = htab->got_info;
d4596a51
RS
3646 if (g == NULL)
3647 return TRUE;
f4416af6 3648
b49e97c9 3649 hsd.low = NULL;
23cc69b6
RS
3650 hsd.max_unref_got_dynindx
3651 = hsd.min_got_dynindx
3652 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3653 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3654 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3655 elf_hash_table (info)),
3656 mips_elf_sort_hash_table_f,
3657 &hsd);
3658
3659 /* There should have been enough room in the symbol table to
44c410de 3660 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3661 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3662 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3663 == elf_hash_table (info)->dynsymcount);
3664 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3665 == g->global_gotno);
b49e97c9
TS
3666
3667 /* Now we know which dynamic symbol has the lowest dynamic symbol
3668 table index in the GOT. */
d222d210 3669 htab->global_gotsym = hsd.low;
b49e97c9 3670
b34976b6 3671 return TRUE;
b49e97c9
TS
3672}
3673
3674/* If H needs a GOT entry, assign it the highest available dynamic
3675 index. Otherwise, assign it the lowest available dynamic
3676 index. */
3677
b34976b6 3678static bfd_boolean
9719ad41 3679mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3680{
9719ad41 3681 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3682
b49e97c9
TS
3683 /* Symbols without dynamic symbol table entries aren't interesting
3684 at all. */
3685 if (h->root.dynindx == -1)
b34976b6 3686 return TRUE;
b49e97c9 3687
634835ae 3688 switch (h->global_got_area)
f4416af6 3689 {
634835ae
RS
3690 case GGA_NONE:
3691 h->root.dynindx = hsd->max_non_got_dynindx++;
3692 break;
0f20cc35 3693
634835ae 3694 case GGA_NORMAL:
b49e97c9
TS
3695 h->root.dynindx = --hsd->min_got_dynindx;
3696 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3697 break;
3698
3699 case GGA_RELOC_ONLY:
634835ae
RS
3700 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3701 hsd->low = (struct elf_link_hash_entry *) h;
3702 h->root.dynindx = hsd->max_unref_got_dynindx++;
3703 break;
b49e97c9
TS
3704 }
3705
b34976b6 3706 return TRUE;
b49e97c9
TS
3707}
3708
e641e783
RS
3709/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3710 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3711 using the GOT entry for calls. */
b49e97c9 3712
b34976b6 3713static bfd_boolean
9719ad41
RS
3714mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3715 bfd *abfd, struct bfd_link_info *info,
e641e783 3716 bfd_boolean for_call, int r_type)
b49e97c9 3717{
a8028dd0 3718 struct mips_elf_link_hash_table *htab;
634835ae 3719 struct mips_elf_link_hash_entry *hmips;
f4416af6 3720 struct mips_got_entry entry, **loc;
a8028dd0
RS
3721 struct mips_got_info *g;
3722
3723 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3724 BFD_ASSERT (htab != NULL);
3725
634835ae 3726 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3727 if (!for_call)
3728 hmips->got_only_for_calls = FALSE;
f4416af6 3729
b49e97c9
TS
3730 /* A global symbol in the GOT must also be in the dynamic symbol
3731 table. */
7c5fcef7
L
3732 if (h->dynindx == -1)
3733 {
3734 switch (ELF_ST_VISIBILITY (h->other))
3735 {
3736 case STV_INTERNAL:
3737 case STV_HIDDEN:
33bb52fb 3738 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3739 break;
3740 }
c152c796 3741 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3742 return FALSE;
7c5fcef7 3743 }
b49e97c9 3744
86324f90 3745 /* Make sure we have a GOT to put this entry into. */
a8028dd0 3746 g = htab->got_info;
86324f90
EC
3747 BFD_ASSERT (g != NULL);
3748
f4416af6
AO
3749 entry.abfd = abfd;
3750 entry.symndx = -1;
3751 entry.d.h = (struct mips_elf_link_hash_entry *) h;
e641e783 3752 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6
AO
3753
3754 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3755 INSERT);
3756
b49e97c9
TS
3757 /* If we've already marked this entry as needing GOT space, we don't
3758 need to do it again. */
f4416af6 3759 if (*loc)
e641e783 3760 return TRUE;
f4416af6
AO
3761
3762 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3763
3764 if (! *loc)
3765 return FALSE;
143d77c5 3766
f4416af6 3767 entry.gotidx = -1;
0f20cc35 3768
f4416af6
AO
3769 memcpy (*loc, &entry, sizeof entry);
3770
e641e783 3771 if (entry.tls_type == GOT_NORMAL)
634835ae 3772 hmips->global_got_area = GGA_NORMAL;
e641e783
RS
3773 else if (entry.tls_type == GOT_TLS_IE)
3774 hmips->tls_ie_type = entry.tls_type;
3775 else if (entry.tls_type == GOT_TLS_GD)
3776 hmips->tls_gd_type = entry.tls_type;
b49e97c9 3777
b34976b6 3778 return TRUE;
b49e97c9 3779}
f4416af6 3780
e641e783
RS
3781/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3782 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3783
3784static bfd_boolean
9719ad41 3785mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3786 struct bfd_link_info *info, int r_type)
f4416af6 3787{
a8028dd0
RS
3788 struct mips_elf_link_hash_table *htab;
3789 struct mips_got_info *g;
f4416af6
AO
3790 struct mips_got_entry entry, **loc;
3791
a8028dd0 3792 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3793 BFD_ASSERT (htab != NULL);
3794
a8028dd0
RS
3795 g = htab->got_info;
3796 BFD_ASSERT (g != NULL);
3797
f4416af6
AO
3798 entry.abfd = abfd;
3799 entry.symndx = symndx;
3800 entry.d.addend = addend;
e641e783 3801 entry.tls_type = mips_elf_reloc_tls_type (r_type);
f4416af6
AO
3802 loc = (struct mips_got_entry **)
3803 htab_find_slot (g->got_entries, &entry, INSERT);
3804
3805 if (*loc)
e641e783 3806 return TRUE;
f4416af6 3807
946c668d 3808 entry.gotidx = -1;
f4416af6
AO
3809
3810 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3811
3812 if (! *loc)
3813 return FALSE;
143d77c5 3814
f4416af6
AO
3815 memcpy (*loc, &entry, sizeof entry);
3816
3817 return TRUE;
3818}
c224138d
RS
3819
3820/* Return the maximum number of GOT page entries required for RANGE. */
3821
3822static bfd_vma
3823mips_elf_pages_for_range (const struct mips_got_page_range *range)
3824{
3825 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3826}
3827
3a3b6725 3828/* Record that ABFD has a page relocation against symbol SYMNDX and
a8028dd0
RS
3829 that ADDEND is the addend for that relocation.
3830
3831 This function creates an upper bound on the number of GOT slots
3832 required; no attempt is made to combine references to non-overridable
3833 global symbols across multiple input files. */
c224138d
RS
3834
3835static bfd_boolean
a8028dd0
RS
3836mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3837 long symndx, bfd_signed_vma addend)
c224138d 3838{
a8028dd0
RS
3839 struct mips_elf_link_hash_table *htab;
3840 struct mips_got_info *g;
c224138d
RS
3841 struct mips_got_page_entry lookup, *entry;
3842 struct mips_got_page_range **range_ptr, *range;
3843 bfd_vma old_pages, new_pages;
3844 void **loc;
3845
a8028dd0 3846 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3847 BFD_ASSERT (htab != NULL);
3848
a8028dd0
RS
3849 g = htab->got_info;
3850 BFD_ASSERT (g != NULL);
3851
c224138d
RS
3852 /* Find the mips_got_page_entry hash table entry for this symbol. */
3853 lookup.abfd = abfd;
3854 lookup.symndx = symndx;
3855 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3856 if (loc == NULL)
3857 return FALSE;
3858
3859 /* Create a mips_got_page_entry if this is the first time we've
3860 seen the symbol. */
3861 entry = (struct mips_got_page_entry *) *loc;
3862 if (!entry)
3863 {
3864 entry = bfd_alloc (abfd, sizeof (*entry));
3865 if (!entry)
3866 return FALSE;
3867
3868 entry->abfd = abfd;
3869 entry->symndx = symndx;
3870 entry->ranges = NULL;
3871 entry->num_pages = 0;
3872 *loc = entry;
3873 }
3874
3875 /* Skip over ranges whose maximum extent cannot share a page entry
3876 with ADDEND. */
3877 range_ptr = &entry->ranges;
3878 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3879 range_ptr = &(*range_ptr)->next;
3880
3881 /* If we scanned to the end of the list, or found a range whose
3882 minimum extent cannot share a page entry with ADDEND, create
3883 a new singleton range. */
3884 range = *range_ptr;
3885 if (!range || addend < range->min_addend - 0xffff)
3886 {
3887 range = bfd_alloc (abfd, sizeof (*range));
3888 if (!range)
3889 return FALSE;
3890
3891 range->next = *range_ptr;
3892 range->min_addend = addend;
3893 range->max_addend = addend;
3894
3895 *range_ptr = range;
3896 entry->num_pages++;
3897 g->page_gotno++;
3898 return TRUE;
3899 }
3900
3901 /* Remember how many pages the old range contributed. */
3902 old_pages = mips_elf_pages_for_range (range);
3903
3904 /* Update the ranges. */
3905 if (addend < range->min_addend)
3906 range->min_addend = addend;
3907 else if (addend > range->max_addend)
3908 {
3909 if (range->next && addend >= range->next->min_addend - 0xffff)
3910 {
3911 old_pages += mips_elf_pages_for_range (range->next);
3912 range->max_addend = range->next->max_addend;
3913 range->next = range->next->next;
3914 }
3915 else
3916 range->max_addend = addend;
3917 }
3918
3919 /* Record any change in the total estimate. */
3920 new_pages = mips_elf_pages_for_range (range);
3921 if (old_pages != new_pages)
3922 {
3923 entry->num_pages += new_pages - old_pages;
3924 g->page_gotno += new_pages - old_pages;
3925 }
3926
3927 return TRUE;
3928}
33bb52fb
RS
3929
3930/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3931
3932static void
3933mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3934 unsigned int n)
3935{
3936 asection *s;
3937 struct mips_elf_link_hash_table *htab;
3938
3939 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3940 BFD_ASSERT (htab != NULL);
3941
33bb52fb
RS
3942 s = mips_elf_rel_dyn_section (info, FALSE);
3943 BFD_ASSERT (s != NULL);
3944
3945 if (htab->is_vxworks)
3946 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3947 else
3948 {
3949 if (s->size == 0)
3950 {
3951 /* Make room for a null element. */
3952 s->size += MIPS_ELF_REL_SIZE (abfd);
3953 ++s->reloc_count;
3954 }
3955 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3956 }
3957}
3958\f
3959/* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3960 if the GOT entry is for an indirect or warning symbol. */
3961
3962static int
3963mips_elf_check_recreate_got (void **entryp, void *data)
3964{
3965 struct mips_got_entry *entry;
3966 bfd_boolean *must_recreate;
3967
3968 entry = (struct mips_got_entry *) *entryp;
3969 must_recreate = (bfd_boolean *) data;
3970 if (entry->abfd != NULL && entry->symndx == -1)
3971 {
3972 struct mips_elf_link_hash_entry *h;
3973
3974 h = entry->d.h;
3975 if (h->root.root.type == bfd_link_hash_indirect
3976 || h->root.root.type == bfd_link_hash_warning)
3977 {
3978 *must_recreate = TRUE;
3979 return 0;
3980 }
3981 }
3982 return 1;
3983}
3984
3985/* A htab_traverse callback for GOT entries. Add all entries to
3986 hash table *DATA, converting entries for indirect and warning
3987 symbols into entries for the target symbol. Set *DATA to null
3988 on error. */
3989
3990static int
3991mips_elf_recreate_got (void **entryp, void *data)
3992{
3993 htab_t *new_got;
3994 struct mips_got_entry *entry;
3995 void **slot;
3996
3997 new_got = (htab_t *) data;
3998 entry = (struct mips_got_entry *) *entryp;
3999 if (entry->abfd != NULL && entry->symndx == -1)
4000 {
4001 struct mips_elf_link_hash_entry *h;
4002
4003 h = entry->d.h;
4004 while (h->root.root.type == bfd_link_hash_indirect
4005 || h->root.root.type == bfd_link_hash_warning)
634835ae
RS
4006 {
4007 BFD_ASSERT (h->global_got_area == GGA_NONE);
4008 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4009 }
33bb52fb
RS
4010 entry->d.h = h;
4011 }
4012 slot = htab_find_slot (*new_got, entry, INSERT);
4013 if (slot == NULL)
4014 {
4015 *new_got = NULL;
4016 return 0;
4017 }
4018 if (*slot == NULL)
4019 *slot = entry;
33bb52fb
RS
4020 return 1;
4021}
4022
4023/* If any entries in G->got_entries are for indirect or warning symbols,
4024 replace them with entries for the target symbol. */
4025
4026static bfd_boolean
4027mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4028{
4029 bfd_boolean must_recreate;
4030 htab_t new_got;
4031
4032 must_recreate = FALSE;
4033 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4034 if (must_recreate)
4035 {
4036 new_got = htab_create (htab_size (g->got_entries),
4037 mips_elf_got_entry_hash,
4038 mips_elf_got_entry_eq, NULL);
4039 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4040 if (new_got == NULL)
4041 return FALSE;
4042
33bb52fb
RS
4043 htab_delete (g->got_entries);
4044 g->got_entries = new_got;
4045 }
4046 return TRUE;
4047}
4048
634835ae 4049/* A mips_elf_link_hash_traverse callback for which DATA points
020d7251
RS
4050 to the link_info structure. Count the number of type (3) entries
4051 in the master GOT. */
33bb52fb
RS
4052
4053static int
d4596a51 4054mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4055{
020d7251 4056 struct bfd_link_info *info;
6ccf4795 4057 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4058 struct mips_got_info *g;
4059
020d7251 4060 info = (struct bfd_link_info *) data;
6ccf4795
RS
4061 htab = mips_elf_hash_table (info);
4062 g = htab->got_info;
d4596a51 4063 if (h->global_got_area != GGA_NONE)
33bb52fb 4064 {
020d7251
RS
4065 /* Make a final decision about whether the symbol belongs in the
4066 local or global GOT. Symbols that bind locally can (and in the
4067 case of forced-local symbols, must) live in the local GOT.
4068 Those that are aren't in the dynamic symbol table must also
4069 live in the local GOT.
4070
4071 Note that the former condition does not always imply the
4072 latter: symbols do not bind locally if they are completely
4073 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4074 if (h->root.dynindx == -1
4075 || (h->got_only_for_calls
4076 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4077 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
d4596a51 4078 {
020d7251
RS
4079 /* The symbol belongs in the local GOT. We no longer need this
4080 entry if it was only used for relocations; those relocations
4081 will be against the null or section symbol instead of H. */
d4596a51
RS
4082 if (h->global_got_area != GGA_RELOC_ONLY)
4083 g->local_gotno++;
4084 h->global_got_area = GGA_NONE;
4085 }
6ccf4795
RS
4086 else if (htab->is_vxworks
4087 && h->got_only_for_calls
4088 && h->root.plt.offset != MINUS_ONE)
4089 /* On VxWorks, calls can refer directly to the .got.plt entry;
4090 they don't need entries in the regular GOT. .got.plt entries
4091 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4092 h->global_got_area = GGA_NONE;
d4596a51 4093 else
23cc69b6
RS
4094 {
4095 g->global_gotno++;
4096 if (h->global_got_area == GGA_RELOC_ONLY)
4097 g->reloc_only_gotno++;
4098 }
33bb52fb
RS
4099 }
4100 return 1;
4101}
f4416af6
AO
4102\f
4103/* Compute the hash value of the bfd in a bfd2got hash entry. */
4104
4105static hashval_t
9719ad41 4106mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
4107{
4108 const struct mips_elf_bfd2got_hash *entry
4109 = (struct mips_elf_bfd2got_hash *)entry_;
4110
4111 return entry->bfd->id;
4112}
4113
4114/* Check whether two hash entries have the same bfd. */
4115
4116static int
9719ad41 4117mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
4118{
4119 const struct mips_elf_bfd2got_hash *e1
4120 = (const struct mips_elf_bfd2got_hash *)entry1;
4121 const struct mips_elf_bfd2got_hash *e2
4122 = (const struct mips_elf_bfd2got_hash *)entry2;
4123
4124 return e1->bfd == e2->bfd;
4125}
4126
bad36eac 4127/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
4128 be the master GOT data. */
4129
4130static struct mips_got_info *
9719ad41 4131mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4132{
4133 struct mips_elf_bfd2got_hash e, *p;
4134
4135 if (! g->bfd2got)
4136 return g;
4137
4138 e.bfd = ibfd;
9719ad41 4139 p = htab_find (g->bfd2got, &e);
f4416af6
AO
4140 return p ? p->g : NULL;
4141}
4142
c224138d
RS
4143/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4144 Return NULL if an error occured. */
f4416af6 4145
c224138d
RS
4146static struct mips_got_info *
4147mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4148 bfd *input_bfd)
f4416af6 4149{
f4416af6
AO
4150 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4151 void **bfdgotp;
143d77c5 4152
c224138d 4153 bfdgot_entry.bfd = input_bfd;
f4416af6 4154 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
c224138d 4155 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
f4416af6 4156
c224138d 4157 if (bfdgot == NULL)
f4416af6 4158 {
c224138d
RS
4159 bfdgot = ((struct mips_elf_bfd2got_hash *)
4160 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
f4416af6 4161 if (bfdgot == NULL)
c224138d 4162 return NULL;
f4416af6
AO
4163
4164 *bfdgotp = bfdgot;
4165
c224138d 4166 bfdgot->bfd = input_bfd;
5334aa52
RS
4167 bfdgot->g = mips_elf_create_got_info (input_bfd, FALSE);
4168 if (bfdgot->g == NULL)
c224138d 4169 return NULL;
f4416af6
AO
4170 }
4171
c224138d
RS
4172 return bfdgot->g;
4173}
4174
4175/* A htab_traverse callback for the entries in the master got.
4176 Create one separate got for each bfd that has entries in the global
4177 got, such that we can tell how many local and global entries each
4178 bfd requires. */
4179
4180static int
4181mips_elf_make_got_per_bfd (void **entryp, void *p)
4182{
4183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4185 struct mips_got_info *g;
4186
4187 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4188 if (g == NULL)
4189 {
4190 arg->obfd = NULL;
4191 return 0;
4192 }
4193
f4416af6
AO
4194 /* Insert the GOT entry in the bfd's got entry hash table. */
4195 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4196 if (*entryp != NULL)
4197 return 1;
143d77c5 4198
f4416af6 4199 *entryp = entry;
ab361d49 4200 mips_elf_count_got_entry (arg->info, g, entry);
f4416af6
AO
4201
4202 return 1;
4203}
4204
c224138d
RS
4205/* A htab_traverse callback for the page entries in the master got.
4206 Associate each page entry with the bfd's got. */
4207
4208static int
4209mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4210{
4211 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4212 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4213 struct mips_got_info *g;
4214
4215 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4216 if (g == NULL)
4217 {
4218 arg->obfd = NULL;
4219 return 0;
4220 }
4221
4222 /* Insert the GOT entry in the bfd's got entry hash table. */
4223 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4224 if (*entryp != NULL)
4225 return 1;
4226
4227 *entryp = entry;
4228 g->page_gotno += entry->num_pages;
4229 return 1;
4230}
4231
4232/* Consider merging the got described by BFD2GOT with TO, using the
4233 information given by ARG. Return -1 if this would lead to overflow,
4234 1 if they were merged successfully, and 0 if a merge failed due to
4235 lack of memory. (These values are chosen so that nonnegative return
4236 values can be returned by a htab_traverse callback.) */
4237
4238static int
4239mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4240 struct mips_got_info *to,
4241 struct mips_elf_got_per_bfd_arg *arg)
4242{
4243 struct mips_got_info *from = bfd2got->g;
4244 unsigned int estimate;
4245
4246 /* Work out how many page entries we would need for the combined GOT. */
4247 estimate = arg->max_pages;
4248 if (estimate >= from->page_gotno + to->page_gotno)
4249 estimate = from->page_gotno + to->page_gotno;
4250
e2ece73c 4251 /* And conservatively estimate how many local and TLS entries
c224138d 4252 would be needed. */
e2ece73c
RS
4253 estimate += from->local_gotno + to->local_gotno;
4254 estimate += from->tls_gotno + to->tls_gotno;
4255
17214937
RS
4256 /* If we're merging with the primary got, any TLS relocations will
4257 come after the full set of global entries. Otherwise estimate those
e2ece73c 4258 conservatively as well. */
17214937 4259 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4260 estimate += arg->global_count;
4261 else
4262 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4263
4264 /* Bail out if the combined GOT might be too big. */
4265 if (estimate > arg->max_count)
4266 return -1;
4267
4268 /* Commit to the merge. Record that TO is now the bfd for this got. */
4269 bfd2got->g = to;
4270
4271 /* Transfer the bfd's got information from FROM to TO. */
4272 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4273 if (arg->obfd == NULL)
4274 return 0;
4275
4276 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4277 if (arg->obfd == NULL)
4278 return 0;
4279
4280 /* We don't have to worry about releasing memory of the actual
4281 got entries, since they're all in the master got_entries hash
4282 table anyway. */
4283 htab_delete (from->got_entries);
4284 htab_delete (from->got_page_entries);
4285 return 1;
4286}
4287
f4416af6
AO
4288/* Attempt to merge gots of different input bfds. Try to use as much
4289 as possible of the primary got, since it doesn't require explicit
4290 dynamic relocations, but don't use bfds that would reference global
4291 symbols out of the addressable range. Failing the primary got,
4292 attempt to merge with the current got, or finish the current got
4293 and then make make the new got current. */
4294
4295static int
9719ad41 4296mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
4297{
4298 struct mips_elf_bfd2got_hash *bfd2got
4299 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4300 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
c224138d
RS
4301 struct mips_got_info *g;
4302 unsigned int estimate;
4303 int result;
4304
4305 g = bfd2got->g;
4306
4307 /* Work out the number of page, local and TLS entries. */
4308 estimate = arg->max_pages;
4309 if (estimate > g->page_gotno)
4310 estimate = g->page_gotno;
4311 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4312
4313 /* We place TLS GOT entries after both locals and globals. The globals
4314 for the primary GOT may overflow the normal GOT size limit, so be
4315 sure not to merge a GOT which requires TLS with the primary GOT in that
4316 case. This doesn't affect non-primary GOTs. */
c224138d 4317 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4318
c224138d 4319 if (estimate <= arg->max_count)
f4416af6 4320 {
c224138d
RS
4321 /* If we don't have a primary GOT, use it as
4322 a starting point for the primary GOT. */
4323 if (!arg->primary)
4324 {
4325 arg->primary = bfd2got->g;
4326 return 1;
4327 }
f4416af6 4328
c224138d
RS
4329 /* Try merging with the primary GOT. */
4330 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4331 if (result >= 0)
4332 return result;
f4416af6 4333 }
c224138d 4334
f4416af6 4335 /* If we can merge with the last-created got, do it. */
c224138d 4336 if (arg->current)
f4416af6 4337 {
c224138d
RS
4338 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4339 if (result >= 0)
4340 return result;
f4416af6 4341 }
c224138d 4342
f4416af6
AO
4343 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4344 fits; if it turns out that it doesn't, we'll get relocation
4345 overflows anyway. */
c224138d
RS
4346 g->next = arg->current;
4347 arg->current = g;
0f20cc35
DJ
4348
4349 return 1;
4350}
4351
ead49a57
RS
4352/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4353 is null iff there is just a single GOT. */
0f20cc35
DJ
4354
4355static int
4356mips_elf_initialize_tls_index (void **entryp, void *p)
4357{
4358 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4359 struct mips_got_info *g = p;
ead49a57 4360 bfd_vma next_index;
cbf2cba4 4361 unsigned char tls_type;
0f20cc35
DJ
4362
4363 /* We're only interested in TLS symbols. */
e641e783
RS
4364 tls_type = (entry->tls_type & GOT_TLS_TYPE);
4365 if (tls_type == 0)
0f20cc35
DJ
4366 return 1;
4367
ead49a57
RS
4368 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4369
4370 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 4371 {
ead49a57
RS
4372 /* A type (3) got entry in the single-GOT case. We use the symbol's
4373 hash table entry to track its index. */
e641e783
RS
4374 if (tls_type == GOT_TLS_IE)
4375 {
4376 if (entry->d.h->tls_ie_type & GOT_TLS_OFFSET_DONE)
4377 return 1;
4378 entry->d.h->tls_ie_type |= GOT_TLS_OFFSET_DONE;
4379 entry->d.h->tls_ie_got_offset = next_index;
4380 }
4381 else
4382 {
4383 BFD_ASSERT (tls_type == GOT_TLS_GD);
4384 if (entry->d.h->tls_gd_type & GOT_TLS_OFFSET_DONE)
4385 return 1;
4386 entry->d.h->tls_gd_type |= GOT_TLS_OFFSET_DONE;
4387 entry->d.h->tls_gd_got_offset = next_index;
4388 }
ead49a57
RS
4389 }
4390 else
4391 {
e641e783 4392 if (tls_type == GOT_TLS_LDM)
0f20cc35 4393 {
ead49a57
RS
4394 /* There are separate mips_got_entry objects for each input bfd
4395 that requires an LDM entry. Make sure that all LDM entries in
4396 a GOT resolve to the same index. */
4397 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 4398 {
ead49a57 4399 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
4400 return 1;
4401 }
ead49a57 4402 g->tls_ldm_offset = next_index;
0f20cc35 4403 }
ead49a57 4404 entry->gotidx = next_index;
f4416af6
AO
4405 }
4406
ead49a57 4407 /* Account for the entries we've just allocated. */
e641e783 4408 g->tls_assigned_gotno += mips_tls_got_entries (tls_type);
f4416af6
AO
4409 return 1;
4410}
4411
ab361d49
RS
4412/* A htab_traverse callback for GOT entries, where DATA points to a
4413 mips_elf_traverse_got_arg. Set the global_got_area of each global
4414 symbol to DATA->value. */
f4416af6 4415
f4416af6 4416static int
ab361d49 4417mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4418{
ab361d49
RS
4419 struct mips_got_entry *entry;
4420 struct mips_elf_traverse_got_arg *arg;
f4416af6 4421
ab361d49
RS
4422 entry = (struct mips_got_entry *) *entryp;
4423 arg = (struct mips_elf_traverse_got_arg *) data;
4424 if (entry->abfd != NULL
4425 && entry->symndx == -1
4426 && entry->d.h->global_got_area != GGA_NONE)
4427 entry->d.h->global_got_area = arg->value;
4428 return 1;
4429}
4430
4431/* A htab_traverse callback for secondary GOT entries, where DATA points
4432 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4433 and record the number of relocations they require. DATA->value is
4434 the size of one GOT entry. */
4435
4436static int
4437mips_elf_set_global_gotidx (void **entryp, void *data)
4438{
4439 struct mips_got_entry *entry;
4440 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4441
ab361d49
RS
4442 entry = (struct mips_got_entry *) *entryp;
4443 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4444 if (entry->abfd != NULL
4445 && entry->symndx == -1
4446 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4447 {
ab361d49
RS
4448 entry->gotidx = arg->value * (long) arg->g->assigned_gotno++;
4449 if (arg->info->shared
4450 || (elf_hash_table (arg->info)->dynamic_sections_created
4451 && entry->d.h->root.def_dynamic
4452 && !entry->d.h->root.def_regular))
4453 arg->g->relocs += 1;
f4416af6
AO
4454 }
4455
4456 return 1;
4457}
4458
33bb52fb
RS
4459/* A htab_traverse callback for GOT entries for which DATA is the
4460 bfd_link_info. Forbid any global symbols from having traditional
4461 lazy-binding stubs. */
4462
0626d451 4463static int
33bb52fb 4464mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4465{
33bb52fb
RS
4466 struct bfd_link_info *info;
4467 struct mips_elf_link_hash_table *htab;
4468 struct mips_got_entry *entry;
0626d451 4469
33bb52fb
RS
4470 entry = (struct mips_got_entry *) *entryp;
4471 info = (struct bfd_link_info *) data;
4472 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4473 BFD_ASSERT (htab != NULL);
4474
0626d451
RS
4475 if (entry->abfd != NULL
4476 && entry->symndx == -1
33bb52fb 4477 && entry->d.h->needs_lazy_stub)
f4416af6 4478 {
33bb52fb
RS
4479 entry->d.h->needs_lazy_stub = FALSE;
4480 htab->lazy_stub_count--;
f4416af6 4481 }
143d77c5 4482
f4416af6
AO
4483 return 1;
4484}
4485
f4416af6
AO
4486/* Return the offset of an input bfd IBFD's GOT from the beginning of
4487 the primary GOT. */
4488static bfd_vma
9719ad41 4489mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
4490{
4491 if (g->bfd2got == NULL)
4492 return 0;
4493
4494 g = mips_elf_got_for_ibfd (g, ibfd);
4495 if (! g)
4496 return 0;
4497
4498 BFD_ASSERT (g->next);
4499
4500 g = g->next;
143d77c5 4501
0f20cc35
DJ
4502 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4503 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4504}
4505
4506/* Turn a single GOT that is too big for 16-bit addressing into
4507 a sequence of GOTs, each one 16-bit addressable. */
4508
4509static bfd_boolean
9719ad41 4510mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4511 asection *got, bfd_size_type pages)
f4416af6 4512{
a8028dd0 4513 struct mips_elf_link_hash_table *htab;
f4416af6 4514 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4515 struct mips_elf_traverse_got_arg tga;
a8028dd0 4516 struct mips_got_info *g, *gg;
33bb52fb
RS
4517 unsigned int assign, needed_relocs;
4518 bfd *dynobj;
f4416af6 4519
33bb52fb 4520 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4521 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4522 BFD_ASSERT (htab != NULL);
4523
a8028dd0 4524 g = htab->got_info;
f4416af6 4525 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 4526 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
4527 if (g->bfd2got == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.bfd2got = g->bfd2got;
4531 got_per_bfd_arg.obfd = abfd;
4532 got_per_bfd_arg.info = info;
4533
4534 /* Count how many GOT entries each input bfd requires, creating a
4535 map from bfd to got info while at that. */
f4416af6
AO
4536 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4537 if (got_per_bfd_arg.obfd == NULL)
4538 return FALSE;
4539
c224138d
RS
4540 /* Also count how many page entries each input bfd requires. */
4541 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4542 &got_per_bfd_arg);
4543 if (got_per_bfd_arg.obfd == NULL)
4544 return FALSE;
4545
f4416af6
AO
4546 got_per_bfd_arg.current = NULL;
4547 got_per_bfd_arg.primary = NULL;
0a44bf69 4548 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4549 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4550 - htab->reserved_gotno);
c224138d 4551 got_per_bfd_arg.max_pages = pages;
0f20cc35 4552 /* The number of globals that will be included in the primary GOT.
ab361d49 4553 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4554 information. */
4555 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4556
4557 /* Try to merge the GOTs of input bfds together, as long as they
4558 don't seem to exceed the maximum GOT size, choosing one of them
4559 to be the primary GOT. */
4560 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4561 if (got_per_bfd_arg.obfd == NULL)
4562 return FALSE;
4563
0f20cc35 4564 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4565 if (got_per_bfd_arg.primary == NULL)
5334aa52 4566 g->next = mips_elf_create_got_info (abfd, FALSE);
f4416af6
AO
4567 else
4568 g->next = got_per_bfd_arg.primary;
4569 g->next->next = got_per_bfd_arg.current;
4570
4571 /* GG is now the master GOT, and G is the primary GOT. */
4572 gg = g;
4573 g = g->next;
4574
4575 /* Map the output bfd to the primary got. That's what we're going
4576 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4577 didn't mark in check_relocs, and we want a quick way to find it.
4578 We can't just use gg->next because we're going to reverse the
4579 list. */
4580 {
4581 struct mips_elf_bfd2got_hash *bfdgot;
4582 void **bfdgotp;
143d77c5 4583
f4416af6
AO
4584 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4585 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4586
4587 if (bfdgot == NULL)
4588 return FALSE;
4589
4590 bfdgot->bfd = abfd;
4591 bfdgot->g = g;
4592 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4593
4594 BFD_ASSERT (*bfdgotp == NULL);
4595 *bfdgotp = bfdgot;
4596 }
4597
634835ae
RS
4598 /* Every symbol that is referenced in a dynamic relocation must be
4599 present in the primary GOT, so arrange for them to appear after
4600 those that are actually referenced. */
23cc69b6 4601 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4602 g->global_gotno = gg->global_gotno;
f4416af6 4603
ab361d49
RS
4604 tga.info = info;
4605 tga.value = GGA_RELOC_ONLY;
4606 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4607 tga.value = GGA_NORMAL;
4608 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4609
4610 /* Now go through the GOTs assigning them offset ranges.
4611 [assigned_gotno, local_gotno[ will be set to the range of local
4612 entries in each GOT. We can then compute the end of a GOT by
4613 adding local_gotno to global_gotno. We reverse the list and make
4614 it circular since then we'll be able to quickly compute the
4615 beginning of a GOT, by computing the end of its predecessor. To
4616 avoid special cases for the primary GOT, while still preserving
4617 assertions that are valid for both single- and multi-got links,
4618 we arrange for the main got struct to have the right number of
4619 global entries, but set its local_gotno such that the initial
4620 offset of the primary GOT is zero. Remember that the primary GOT
4621 will become the last item in the circular linked list, so it
4622 points back to the master GOT. */
4623 gg->local_gotno = -g->global_gotno;
4624 gg->global_gotno = g->global_gotno;
0f20cc35 4625 gg->tls_gotno = 0;
f4416af6
AO
4626 assign = 0;
4627 gg->next = gg;
4628
4629 do
4630 {
4631 struct mips_got_info *gn;
4632
861fb55a 4633 assign += htab->reserved_gotno;
f4416af6 4634 g->assigned_gotno = assign;
c224138d
RS
4635 g->local_gotno += assign;
4636 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4637 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4638
ead49a57
RS
4639 /* Take g out of the direct list, and push it onto the reversed
4640 list that gg points to. g->next is guaranteed to be nonnull after
4641 this operation, as required by mips_elf_initialize_tls_index. */
4642 gn = g->next;
4643 g->next = gg->next;
4644 gg->next = g;
4645
0f20cc35
DJ
4646 /* Set up any TLS entries. We always place the TLS entries after
4647 all non-TLS entries. */
4648 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4649 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70 4650 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4651
ead49a57 4652 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4653 g = gn;
0626d451 4654
33bb52fb
RS
4655 /* Forbid global symbols in every non-primary GOT from having
4656 lazy-binding stubs. */
0626d451 4657 if (g)
33bb52fb 4658 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4659 }
4660 while (g);
4661
59b08994 4662 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4663
4664 needed_relocs = 0;
33bb52fb
RS
4665 for (g = gg->next; g && g->next != gg; g = g->next)
4666 {
4667 unsigned int save_assign;
4668
ab361d49
RS
4669 /* Assign offsets to global GOT entries and count how many
4670 relocations they need. */
33bb52fb
RS
4671 save_assign = g->assigned_gotno;
4672 g->assigned_gotno = g->local_gotno;
ab361d49
RS
4673 tga.info = info;
4674 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4675 tga.g = g;
4676 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
33bb52fb
RS
4677 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4678
4679 g->assigned_gotno = save_assign;
4680 if (info->shared)
4681 {
ab361d49 4682 g->relocs += g->local_gotno - g->assigned_gotno;
33bb52fb
RS
4683 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4684 + g->next->global_gotno
4685 + g->next->tls_gotno
861fb55a 4686 + htab->reserved_gotno);
33bb52fb 4687 }
ab361d49 4688 needed_relocs += g->relocs;
33bb52fb 4689 }
ab361d49 4690 needed_relocs += g->relocs;
33bb52fb
RS
4691
4692 if (needed_relocs)
4693 mips_elf_allocate_dynamic_relocations (dynobj, info,
4694 needed_relocs);
143d77c5 4695
f4416af6
AO
4696 return TRUE;
4697}
143d77c5 4698
b49e97c9
TS
4699\f
4700/* Returns the first relocation of type r_type found, beginning with
4701 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4702
4703static const Elf_Internal_Rela *
9719ad41
RS
4704mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4705 const Elf_Internal_Rela *relocation,
4706 const Elf_Internal_Rela *relend)
b49e97c9 4707{
c000e262
TS
4708 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4709
b49e97c9
TS
4710 while (relocation < relend)
4711 {
c000e262
TS
4712 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4713 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4714 return relocation;
4715
4716 ++relocation;
4717 }
4718
4719 /* We didn't find it. */
b49e97c9
TS
4720 return NULL;
4721}
4722
020d7251 4723/* Return whether an input relocation is against a local symbol. */
b49e97c9 4724
b34976b6 4725static bfd_boolean
9719ad41
RS
4726mips_elf_local_relocation_p (bfd *input_bfd,
4727 const Elf_Internal_Rela *relocation,
020d7251 4728 asection **local_sections)
b49e97c9
TS
4729{
4730 unsigned long r_symndx;
4731 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4732 size_t extsymoff;
4733
4734 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4736 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4737
4738 if (r_symndx < extsymoff)
b34976b6 4739 return TRUE;
b49e97c9 4740 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4741 return TRUE;
b49e97c9 4742
b34976b6 4743 return FALSE;
b49e97c9
TS
4744}
4745\f
4746/* Sign-extend VALUE, which has the indicated number of BITS. */
4747
a7ebbfdf 4748bfd_vma
9719ad41 4749_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4750{
4751 if (value & ((bfd_vma) 1 << (bits - 1)))
4752 /* VALUE is negative. */
4753 value |= ((bfd_vma) - 1) << bits;
4754
4755 return value;
4756}
4757
4758/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4759 range expressible by a signed number with the indicated number of
b49e97c9
TS
4760 BITS. */
4761
b34976b6 4762static bfd_boolean
9719ad41 4763mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4764{
4765 bfd_signed_vma svalue = (bfd_signed_vma) value;
4766
4767 if (svalue > (1 << (bits - 1)) - 1)
4768 /* The value is too big. */
b34976b6 4769 return TRUE;
b49e97c9
TS
4770 else if (svalue < -(1 << (bits - 1)))
4771 /* The value is too small. */
b34976b6 4772 return TRUE;
b49e97c9
TS
4773
4774 /* All is well. */
b34976b6 4775 return FALSE;
b49e97c9
TS
4776}
4777
4778/* Calculate the %high function. */
4779
4780static bfd_vma
9719ad41 4781mips_elf_high (bfd_vma value)
b49e97c9
TS
4782{
4783 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4784}
4785
4786/* Calculate the %higher function. */
4787
4788static bfd_vma
9719ad41 4789mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4790{
4791#ifdef BFD64
4792 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4793#else
4794 abort ();
c5ae1840 4795 return MINUS_ONE;
b49e97c9
TS
4796#endif
4797}
4798
4799/* Calculate the %highest function. */
4800
4801static bfd_vma
9719ad41 4802mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4803{
4804#ifdef BFD64
b15e6682 4805 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4806#else
4807 abort ();
c5ae1840 4808 return MINUS_ONE;
b49e97c9
TS
4809#endif
4810}
4811\f
4812/* Create the .compact_rel section. */
4813
b34976b6 4814static bfd_boolean
9719ad41
RS
4815mips_elf_create_compact_rel_section
4816 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4817{
4818 flagword flags;
4819 register asection *s;
4820
3d4d4302 4821 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4822 {
4823 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4824 | SEC_READONLY);
4825
3d4d4302 4826 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4827 if (s == NULL
b49e97c9
TS
4828 || ! bfd_set_section_alignment (abfd, s,
4829 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4830 return FALSE;
b49e97c9 4831
eea6121a 4832 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4833 }
4834
b34976b6 4835 return TRUE;
b49e97c9
TS
4836}
4837
4838/* Create the .got section to hold the global offset table. */
4839
b34976b6 4840static bfd_boolean
23cc69b6 4841mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4842{
4843 flagword flags;
4844 register asection *s;
4845 struct elf_link_hash_entry *h;
14a793b2 4846 struct bfd_link_hash_entry *bh;
0a44bf69
RS
4847 struct mips_elf_link_hash_table *htab;
4848
4849 htab = mips_elf_hash_table (info);
4dfe6ac6 4850 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4851
4852 /* This function may be called more than once. */
23cc69b6
RS
4853 if (htab->sgot)
4854 return TRUE;
b49e97c9
TS
4855
4856 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4857 | SEC_LINKER_CREATED);
4858
72b4917c
TS
4859 /* We have to use an alignment of 2**4 here because this is hardcoded
4860 in the function stub generation and in the linker script. */
87e0a731 4861 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4862 if (s == NULL
72b4917c 4863 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4864 return FALSE;
a8028dd0 4865 htab->sgot = s;
b49e97c9
TS
4866
4867 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4868 linker script because we don't want to define the symbol if we
4869 are not creating a global offset table. */
14a793b2 4870 bh = NULL;
b49e97c9
TS
4871 if (! (_bfd_generic_link_add_one_symbol
4872 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4873 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4874 return FALSE;
14a793b2
AM
4875
4876 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4877 h->non_elf = 0;
4878 h->def_regular = 1;
b49e97c9 4879 h->type = STT_OBJECT;
d329bcd1 4880 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4881
4882 if (info->shared
c152c796 4883 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4884 return FALSE;
b49e97c9 4885
5334aa52 4886 htab->got_info = mips_elf_create_got_info (abfd, TRUE);
f0abc2a1 4887 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4888 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4889
861fb55a 4890 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4891 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4892 SEC_ALLOC | SEC_LOAD
4893 | SEC_HAS_CONTENTS
4894 | SEC_IN_MEMORY
4895 | SEC_LINKER_CREATED);
861fb55a
DJ
4896 if (s == NULL)
4897 return FALSE;
4898 htab->sgotplt = s;
0a44bf69 4899
b34976b6 4900 return TRUE;
b49e97c9 4901}
b49e97c9 4902\f
0a44bf69
RS
4903/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4904 __GOTT_INDEX__ symbols. These symbols are only special for
4905 shared objects; they are not used in executables. */
4906
4907static bfd_boolean
4908is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4909{
4910 return (mips_elf_hash_table (info)->is_vxworks
4911 && info->shared
4912 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4913 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4914}
861fb55a
DJ
4915
4916/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4917 require an la25 stub. See also mips_elf_local_pic_function_p,
4918 which determines whether the destination function ever requires a
4919 stub. */
4920
4921static bfd_boolean
8f0c309a
CLT
4922mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4923 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4924{
4925 /* We specifically ignore branches and jumps from EF_PIC objects,
4926 where the onus is on the compiler or programmer to perform any
4927 necessary initialization of $25. Sometimes such initialization
4928 is unnecessary; for example, -mno-shared functions do not use
4929 the incoming value of $25, and may therefore be called directly. */
4930 if (PIC_OBJECT_P (input_bfd))
4931 return FALSE;
4932
4933 switch (r_type)
4934 {
4935 case R_MIPS_26:
4936 case R_MIPS_PC16:
df58fc94
RS
4937 case R_MICROMIPS_26_S1:
4938 case R_MICROMIPS_PC7_S1:
4939 case R_MICROMIPS_PC10_S1:
4940 case R_MICROMIPS_PC16_S1:
4941 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4942 return TRUE;
4943
8f0c309a
CLT
4944 case R_MIPS16_26:
4945 return !target_is_16_bit_code_p;
4946
861fb55a
DJ
4947 default:
4948 return FALSE;
4949 }
4950}
0a44bf69 4951\f
b49e97c9
TS
4952/* Calculate the value produced by the RELOCATION (which comes from
4953 the INPUT_BFD). The ADDEND is the addend to use for this
4954 RELOCATION; RELOCATION->R_ADDEND is ignored.
4955
4956 The result of the relocation calculation is stored in VALUEP.
38a7df63 4957 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4958 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4959
4960 This function returns bfd_reloc_continue if the caller need take no
4961 further action regarding this relocation, bfd_reloc_notsupported if
4962 something goes dramatically wrong, bfd_reloc_overflow if an
4963 overflow occurs, and bfd_reloc_ok to indicate success. */
4964
4965static bfd_reloc_status_type
9719ad41
RS
4966mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4967 asection *input_section,
4968 struct bfd_link_info *info,
4969 const Elf_Internal_Rela *relocation,
4970 bfd_vma addend, reloc_howto_type *howto,
4971 Elf_Internal_Sym *local_syms,
4972 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4973 const char **namep,
4974 bfd_boolean *cross_mode_jump_p,
9719ad41 4975 bfd_boolean save_addend)
b49e97c9
TS
4976{
4977 /* The eventual value we will return. */
4978 bfd_vma value;
4979 /* The address of the symbol against which the relocation is
4980 occurring. */
4981 bfd_vma symbol = 0;
4982 /* The final GP value to be used for the relocatable, executable, or
4983 shared object file being produced. */
0a61c8c2 4984 bfd_vma gp;
b49e97c9
TS
4985 /* The place (section offset or address) of the storage unit being
4986 relocated. */
4987 bfd_vma p;
4988 /* The value of GP used to create the relocatable object. */
0a61c8c2 4989 bfd_vma gp0;
b49e97c9
TS
4990 /* The offset into the global offset table at which the address of
4991 the relocation entry symbol, adjusted by the addend, resides
4992 during execution. */
4993 bfd_vma g = MINUS_ONE;
4994 /* The section in which the symbol referenced by the relocation is
4995 located. */
4996 asection *sec = NULL;
4997 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4998 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4999 symbol. */
b34976b6
AM
5000 bfd_boolean local_p, was_local_p;
5001 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5002 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5003 /* TRUE if the symbol referred to by this relocation is
5004 "__gnu_local_gp". */
5005 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5006 Elf_Internal_Shdr *symtab_hdr;
5007 size_t extsymoff;
5008 unsigned long r_symndx;
5009 int r_type;
b34976b6 5010 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5011 relocation value. */
b34976b6
AM
5012 bfd_boolean overflowed_p;
5013 /* TRUE if this relocation refers to a MIPS16 function. */
5014 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5015 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5016 struct mips_elf_link_hash_table *htab;
5017 bfd *dynobj;
5018
5019 dynobj = elf_hash_table (info)->dynobj;
5020 htab = mips_elf_hash_table (info);
4dfe6ac6 5021 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5022
5023 /* Parse the relocation. */
5024 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5025 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5026 p = (input_section->output_section->vma
5027 + input_section->output_offset
5028 + relocation->r_offset);
5029
5030 /* Assume that there will be no overflow. */
b34976b6 5031 overflowed_p = FALSE;
b49e97c9
TS
5032
5033 /* Figure out whether or not the symbol is local, and get the offset
5034 used in the array of hash table entries. */
5035 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5036 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5037 local_sections);
bce03d3d 5038 was_local_p = local_p;
b49e97c9
TS
5039 if (! elf_bad_symtab (input_bfd))
5040 extsymoff = symtab_hdr->sh_info;
5041 else
5042 {
5043 /* The symbol table does not follow the rule that local symbols
5044 must come before globals. */
5045 extsymoff = 0;
5046 }
5047
5048 /* Figure out the value of the symbol. */
5049 if (local_p)
5050 {
5051 Elf_Internal_Sym *sym;
5052
5053 sym = local_syms + r_symndx;
5054 sec = local_sections[r_symndx];
5055
5056 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5057 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5058 || (sec->flags & SEC_MERGE))
b49e97c9 5059 symbol += sym->st_value;
d4df96e6
L
5060 if ((sec->flags & SEC_MERGE)
5061 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5062 {
5063 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5064 addend -= symbol;
5065 addend += sec->output_section->vma + sec->output_offset;
5066 }
b49e97c9 5067
df58fc94
RS
5068 /* MIPS16/microMIPS text labels should be treated as odd. */
5069 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5070 ++symbol;
5071
5072 /* Record the name of this symbol, for our caller. */
5073 *namep = bfd_elf_string_from_elf_section (input_bfd,
5074 symtab_hdr->sh_link,
5075 sym->st_name);
5076 if (*namep == '\0')
5077 *namep = bfd_section_name (input_bfd, sec);
5078
30c09090 5079 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5080 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5081 }
5082 else
5083 {
560e09e9
NC
5084 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5085
b49e97c9
TS
5086 /* For global symbols we look up the symbol in the hash-table. */
5087 h = ((struct mips_elf_link_hash_entry *)
5088 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5089 /* Find the real hash-table entry for this symbol. */
5090 while (h->root.root.type == bfd_link_hash_indirect
5091 || h->root.root.type == bfd_link_hash_warning)
5092 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5093
5094 /* Record the name of this symbol, for our caller. */
5095 *namep = h->root.root.root.string;
5096
5097 /* See if this is the special _gp_disp symbol. Note that such a
5098 symbol must always be a global symbol. */
560e09e9 5099 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5100 && ! NEWABI_P (input_bfd))
5101 {
5102 /* Relocations against _gp_disp are permitted only with
5103 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5104 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5105 return bfd_reloc_notsupported;
5106
b34976b6 5107 gp_disp_p = TRUE;
b49e97c9 5108 }
bbe506e8
TS
5109 /* See if this is the special _gp symbol. Note that such a
5110 symbol must always be a global symbol. */
5111 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5112 gnu_local_gp_p = TRUE;
5113
5114
b49e97c9
TS
5115 /* If this symbol is defined, calculate its address. Note that
5116 _gp_disp is a magic symbol, always implicitly defined by the
5117 linker, so it's inappropriate to check to see whether or not
5118 its defined. */
5119 else if ((h->root.root.type == bfd_link_hash_defined
5120 || h->root.root.type == bfd_link_hash_defweak)
5121 && h->root.root.u.def.section)
5122 {
5123 sec = h->root.root.u.def.section;
5124 if (sec->output_section)
5125 symbol = (h->root.root.u.def.value
5126 + sec->output_section->vma
5127 + sec->output_offset);
5128 else
5129 symbol = h->root.root.u.def.value;
5130 }
5131 else if (h->root.root.type == bfd_link_hash_undefweak)
5132 /* We allow relocations against undefined weak symbols, giving
5133 it the value zero, so that you can undefined weak functions
5134 and check to see if they exist by looking at their
5135 addresses. */
5136 symbol = 0;
59c2e50f 5137 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5138 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5139 symbol = 0;
a4d0f181
TS
5140 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5141 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5142 {
5143 /* If this is a dynamic link, we should have created a
5144 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5145 in in _bfd_mips_elf_create_dynamic_sections.
5146 Otherwise, we should define the symbol with a value of 0.
5147 FIXME: It should probably get into the symbol table
5148 somehow as well. */
5149 BFD_ASSERT (! info->shared);
5150 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5151 symbol = 0;
5152 }
5e2b0d47
NC
5153 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5154 {
5155 /* This is an optional symbol - an Irix specific extension to the
5156 ELF spec. Ignore it for now.
5157 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5158 than simply ignoring them, but we do not handle this for now.
5159 For information see the "64-bit ELF Object File Specification"
5160 which is available from here:
5161 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5162 symbol = 0;
5163 }
e7e2196d
MR
5164 else if ((*info->callbacks->undefined_symbol)
5165 (info, h->root.root.root.string, input_bfd,
5166 input_section, relocation->r_offset,
5167 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5168 || ELF_ST_VISIBILITY (h->root.other)))
5169 {
5170 return bfd_reloc_undefined;
5171 }
b49e97c9
TS
5172 else
5173 {
e7e2196d 5174 return bfd_reloc_notsupported;
b49e97c9
TS
5175 }
5176
30c09090 5177 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5178 /* If the output section is the PLT section,
5179 then the target is not microMIPS. */
5180 target_is_micromips_code_p = (htab->splt != sec
5181 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5182 }
5183
738e5348
RS
5184 /* If this is a reference to a 16-bit function with a stub, we need
5185 to redirect the relocation to the stub unless:
5186
5187 (a) the relocation is for a MIPS16 JAL;
5188
5189 (b) the relocation is for a MIPS16 PIC call, and there are no
5190 non-MIPS16 uses of the GOT slot; or
5191
5192 (c) the section allows direct references to MIPS16 functions. */
5193 if (r_type != R_MIPS16_26
5194 && !info->relocatable
5195 && ((h != NULL
5196 && h->fn_stub != NULL
5197 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71
TS
5198 || (local_p
5199 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 5200 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5201 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5202 {
5203 /* This is a 32- or 64-bit call to a 16-bit function. We should
5204 have already noticed that we were going to need the
5205 stub. */
5206 if (local_p)
8f0c309a
CLT
5207 {
5208 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5209 value = 0;
5210 }
b49e97c9
TS
5211 else
5212 {
5213 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5214 if (h->la25_stub)
5215 {
5216 /* If a LA25 header for the stub itself exists, point to the
5217 prepended LUI/ADDIU sequence. */
5218 sec = h->la25_stub->stub_section;
5219 value = h->la25_stub->offset;
5220 }
5221 else
5222 {
5223 sec = h->fn_stub;
5224 value = 0;
5225 }
b49e97c9
TS
5226 }
5227
8f0c309a 5228 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5229 /* The target is 16-bit, but the stub isn't. */
5230 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5231 }
5232 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5233 need to redirect the call to the stub. Note that we specifically
5234 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5235 use an indirect stub instead. */
1049f94e 5236 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5237 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
5238 || (local_p
5239 && elf_tdata (input_bfd)->local_call_stubs != NULL
5240 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5241 && !target_is_16_bit_code_p)
5242 {
b9d58d71
TS
5243 if (local_p)
5244 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5245 else
b49e97c9 5246 {
b9d58d71
TS
5247 /* If both call_stub and call_fp_stub are defined, we can figure
5248 out which one to use by checking which one appears in the input
5249 file. */
5250 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5251 {
b9d58d71 5252 asection *o;
68ffbac6 5253
b9d58d71
TS
5254 sec = NULL;
5255 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5256 {
b9d58d71
TS
5257 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5258 {
5259 sec = h->call_fp_stub;
5260 break;
5261 }
b49e97c9 5262 }
b9d58d71
TS
5263 if (sec == NULL)
5264 sec = h->call_stub;
b49e97c9 5265 }
b9d58d71 5266 else if (h->call_stub != NULL)
b49e97c9 5267 sec = h->call_stub;
b9d58d71
TS
5268 else
5269 sec = h->call_fp_stub;
5270 }
b49e97c9 5271
eea6121a 5272 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5273 symbol = sec->output_section->vma + sec->output_offset;
5274 }
861fb55a
DJ
5275 /* If this is a direct call to a PIC function, redirect to the
5276 non-PIC stub. */
5277 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5278 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5279 target_is_16_bit_code_p))
861fb55a
DJ
5280 symbol = (h->la25_stub->stub_section->output_section->vma
5281 + h->la25_stub->stub_section->output_offset
5282 + h->la25_stub->offset);
b49e97c9 5283
df58fc94
RS
5284 /* Make sure MIPS16 and microMIPS are not used together. */
5285 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5286 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5287 {
5288 (*_bfd_error_handler)
5289 (_("MIPS16 and microMIPS functions cannot call each other"));
5290 return bfd_reloc_notsupported;
5291 }
5292
b49e97c9 5293 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5294 mode change. However, we can ignore calls to undefined weak symbols,
5295 which should never be executed at runtime. This exception is important
5296 because the assembly writer may have "known" that any definition of the
5297 symbol would be 16-bit code, and that direct jumps were therefore
5298 acceptable. */
5299 *cross_mode_jump_p = (!info->relocatable
5300 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5301 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5302 || (r_type == R_MICROMIPS_26_S1
5303 && !target_is_micromips_code_p)
5304 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5305 && (target_is_16_bit_code_p
5306 || target_is_micromips_code_p))));
b49e97c9 5307
9f1a453e
MR
5308 local_p = (h == NULL
5309 || (h->got_only_for_calls
5310 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5311 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5312
0a61c8c2
RS
5313 gp0 = _bfd_get_gp_value (input_bfd);
5314 gp = _bfd_get_gp_value (abfd);
23cc69b6 5315 if (htab->got_info)
a8028dd0 5316 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5317
5318 if (gnu_local_gp_p)
5319 symbol = gp;
5320
df58fc94
RS
5321 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5322 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5323 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5324 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5325 {
df58fc94
RS
5326 r_type = (micromips_reloc_p (r_type)
5327 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5328 addend = 0;
5329 }
5330
e77760d2 5331 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5332 to need it, get it now. */
b49e97c9
TS
5333 switch (r_type)
5334 {
738e5348
RS
5335 case R_MIPS16_CALL16:
5336 case R_MIPS16_GOT16:
b49e97c9
TS
5337 case R_MIPS_CALL16:
5338 case R_MIPS_GOT16:
5339 case R_MIPS_GOT_DISP:
5340 case R_MIPS_GOT_HI16:
5341 case R_MIPS_CALL_HI16:
5342 case R_MIPS_GOT_LO16:
5343 case R_MIPS_CALL_LO16:
df58fc94
RS
5344 case R_MICROMIPS_CALL16:
5345 case R_MICROMIPS_GOT16:
5346 case R_MICROMIPS_GOT_DISP:
5347 case R_MICROMIPS_GOT_HI16:
5348 case R_MICROMIPS_CALL_HI16:
5349 case R_MICROMIPS_GOT_LO16:
5350 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5351 case R_MIPS_TLS_GD:
5352 case R_MIPS_TLS_GOTTPREL:
5353 case R_MIPS_TLS_LDM:
d0f13682
CLT
5354 case R_MIPS16_TLS_GD:
5355 case R_MIPS16_TLS_GOTTPREL:
5356 case R_MIPS16_TLS_LDM:
df58fc94
RS
5357 case R_MICROMIPS_TLS_GD:
5358 case R_MICROMIPS_TLS_GOTTPREL:
5359 case R_MICROMIPS_TLS_LDM:
b49e97c9 5360 /* Find the index into the GOT where this value is located. */
df58fc94 5361 if (tls_ldm_reloc_p (r_type))
0f20cc35 5362 {
0a44bf69 5363 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5364 0, 0, NULL, r_type);
0f20cc35
DJ
5365 if (g == MINUS_ONE)
5366 return bfd_reloc_outofrange;
5367 }
5368 else if (!local_p)
b49e97c9 5369 {
0a44bf69
RS
5370 /* On VxWorks, CALL relocations should refer to the .got.plt
5371 entry, which is initialized to point at the PLT stub. */
5372 if (htab->is_vxworks
df58fc94
RS
5373 && (call_hi16_reloc_p (r_type)
5374 || call_lo16_reloc_p (r_type)
738e5348 5375 || call16_reloc_p (r_type)))
0a44bf69
RS
5376 {
5377 BFD_ASSERT (addend == 0);
5378 BFD_ASSERT (h->root.needs_plt);
5379 g = mips_elf_gotplt_index (info, &h->root);
5380 }
5381 else
b49e97c9 5382 {
020d7251 5383 BFD_ASSERT (addend == 0);
0a44bf69
RS
5384 g = mips_elf_global_got_index (dynobj, input_bfd,
5385 &h->root, r_type, info);
e641e783 5386 if (!TLS_RELOC_P (r_type)
020d7251
RS
5387 && !elf_hash_table (info)->dynamic_sections_created)
5388 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5389 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5390 }
5391 }
0a44bf69 5392 else if (!htab->is_vxworks
738e5348 5393 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5394 /* The calculation below does not involve "g". */
b49e97c9
TS
5395 break;
5396 else
5397 {
5c18022e 5398 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5399 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5400 if (g == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 }
5403
5404 /* Convert GOT indices to actual offsets. */
a8028dd0 5405 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5406 break;
b49e97c9
TS
5407 }
5408
0a44bf69
RS
5409 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5410 symbols are resolved by the loader. Add them to .rela.dyn. */
5411 if (h != NULL && is_gott_symbol (info, &h->root))
5412 {
5413 Elf_Internal_Rela outrel;
5414 bfd_byte *loc;
5415 asection *s;
5416
5417 s = mips_elf_rel_dyn_section (info, FALSE);
5418 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5419
5420 outrel.r_offset = (input_section->output_section->vma
5421 + input_section->output_offset
5422 + relocation->r_offset);
5423 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5424 outrel.r_addend = addend;
5425 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5426
5427 /* If we've written this relocation for a readonly section,
5428 we need to set DF_TEXTREL again, so that we do not delete the
5429 DT_TEXTREL tag. */
5430 if (MIPS_ELF_READONLY_SECTION (input_section))
5431 info->flags |= DF_TEXTREL;
5432
0a44bf69
RS
5433 *valuep = 0;
5434 return bfd_reloc_ok;
5435 }
5436
b49e97c9
TS
5437 /* Figure out what kind of relocation is being performed. */
5438 switch (r_type)
5439 {
5440 case R_MIPS_NONE:
5441 return bfd_reloc_continue;
5442
5443 case R_MIPS_16:
a7ebbfdf 5444 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447
5448 case R_MIPS_32:
5449 case R_MIPS_REL32:
5450 case R_MIPS_64:
5451 if ((info->shared
861fb55a 5452 || (htab->root.dynamic_sections_created
b49e97c9 5453 && h != NULL
f5385ebf 5454 && h->root.def_dynamic
861fb55a
DJ
5455 && !h->root.def_regular
5456 && !h->has_static_relocs))
cf35638d 5457 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5458 && (h == NULL
5459 || h->root.root.type != bfd_link_hash_undefweak
5460 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5461 && (input_section->flags & SEC_ALLOC) != 0)
5462 {
861fb55a 5463 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5464 where the symbol will end up. So, we create a relocation
5465 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5466 linker. We must do the same for executable references to
5467 shared library symbols, unless we've decided to use copy
5468 relocs or PLTs instead. */
b49e97c9
TS
5469 value = addend;
5470 if (!mips_elf_create_dynamic_relocation (abfd,
5471 info,
5472 relocation,
5473 h,
5474 sec,
5475 symbol,
5476 &value,
5477 input_section))
5478 return bfd_reloc_undefined;
5479 }
5480 else
5481 {
5482 if (r_type != R_MIPS_REL32)
5483 value = symbol + addend;
5484 else
5485 value = addend;
5486 }
5487 value &= howto->dst_mask;
092dcd75
CD
5488 break;
5489
5490 case R_MIPS_PC32:
5491 value = symbol + addend - p;
5492 value &= howto->dst_mask;
b49e97c9
TS
5493 break;
5494
b49e97c9
TS
5495 case R_MIPS16_26:
5496 /* The calculation for R_MIPS16_26 is just the same as for an
5497 R_MIPS_26. It's only the storage of the relocated field into
5498 the output file that's different. That's handled in
5499 mips_elf_perform_relocation. So, we just fall through to the
5500 R_MIPS_26 case here. */
5501 case R_MIPS_26:
df58fc94
RS
5502 case R_MICROMIPS_26_S1:
5503 {
5504 unsigned int shift;
5505
5506 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5507 the correct ISA mode selector and bit 1 must be 0. */
5508 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5509 return bfd_reloc_outofrange;
5510
5511 /* Shift is 2, unusually, for microMIPS JALX. */
5512 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5513
5514 if (was_local_p)
5515 value = addend | ((p + 4) & (0xfc000000 << shift));
5516 else
5517 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5518 value = (value + symbol) >> shift;
5519 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5520 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5521 value &= howto->dst_mask;
5522 }
b49e97c9
TS
5523 break;
5524
0f20cc35 5525 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5526 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5527 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5528 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5529 & howto->dst_mask);
5530 break;
5531
5532 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5533 case R_MIPS_TLS_DTPREL32:
5534 case R_MIPS_TLS_DTPREL64:
d0f13682 5535 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5536 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5537 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5538 break;
5539
5540 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5541 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5542 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5543 value = (mips_elf_high (addend + symbol - tprel_base (info))
5544 & howto->dst_mask);
5545 break;
5546
5547 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5548 case R_MIPS_TLS_TPREL32:
5549 case R_MIPS_TLS_TPREL64:
5550 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5551 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5552 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5553 break;
5554
b49e97c9 5555 case R_MIPS_HI16:
d6f16593 5556 case R_MIPS16_HI16:
df58fc94 5557 case R_MICROMIPS_HI16:
b49e97c9
TS
5558 if (!gp_disp_p)
5559 {
5560 value = mips_elf_high (addend + symbol);
5561 value &= howto->dst_mask;
5562 }
5563 else
5564 {
d6f16593
MR
5565 /* For MIPS16 ABI code we generate this sequence
5566 0: li $v0,%hi(_gp_disp)
5567 4: addiupc $v1,%lo(_gp_disp)
5568 8: sll $v0,16
5569 12: addu $v0,$v1
5570 14: move $gp,$v0
5571 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5572 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5573 ADDIUPC clears the low two bits of the instruction address,
5574 so the base is ($t9 + 4) & ~3. */
d6f16593 5575 if (r_type == R_MIPS16_HI16)
888b9c01 5576 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5577 /* The microMIPS .cpload sequence uses the same assembly
5578 instructions as the traditional psABI version, but the
5579 incoming $t9 has the low bit set. */
5580 else if (r_type == R_MICROMIPS_HI16)
5581 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5582 else
5583 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5584 overflowed_p = mips_elf_overflow_p (value, 16);
5585 }
5586 break;
5587
5588 case R_MIPS_LO16:
d6f16593 5589 case R_MIPS16_LO16:
df58fc94
RS
5590 case R_MICROMIPS_LO16:
5591 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5592 if (!gp_disp_p)
5593 value = (symbol + addend) & howto->dst_mask;
5594 else
5595 {
d6f16593
MR
5596 /* See the comment for R_MIPS16_HI16 above for the reason
5597 for this conditional. */
5598 if (r_type == R_MIPS16_LO16)
888b9c01 5599 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5600 else if (r_type == R_MICROMIPS_LO16
5601 || r_type == R_MICROMIPS_HI0_LO16)
5602 value = addend + gp - p + 3;
d6f16593
MR
5603 else
5604 value = addend + gp - p + 4;
b49e97c9 5605 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5606 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5607 _gp_disp are normally generated from the .cpload
5608 pseudo-op. It generates code that normally looks like
5609 this:
5610
5611 lui $gp,%hi(_gp_disp)
5612 addiu $gp,$gp,%lo(_gp_disp)
5613 addu $gp,$gp,$t9
5614
5615 Here $t9 holds the address of the function being called,
5616 as required by the MIPS ELF ABI. The R_MIPS_LO16
5617 relocation can easily overflow in this situation, but the
5618 R_MIPS_HI16 relocation will handle the overflow.
5619 Therefore, we consider this a bug in the MIPS ABI, and do
5620 not check for overflow here. */
5621 }
5622 break;
5623
5624 case R_MIPS_LITERAL:
df58fc94 5625 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5626 /* Because we don't merge literal sections, we can handle this
5627 just like R_MIPS_GPREL16. In the long run, we should merge
5628 shared literals, and then we will need to additional work
5629 here. */
5630
5631 /* Fall through. */
5632
5633 case R_MIPS16_GPREL:
5634 /* The R_MIPS16_GPREL performs the same calculation as
5635 R_MIPS_GPREL16, but stores the relocated bits in a different
5636 order. We don't need to do anything special here; the
5637 differences are handled in mips_elf_perform_relocation. */
5638 case R_MIPS_GPREL16:
df58fc94
RS
5639 case R_MICROMIPS_GPREL7_S2:
5640 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5641 /* Only sign-extend the addend if it was extracted from the
5642 instruction. If the addend was separate, leave it alone,
5643 otherwise we may lose significant bits. */
5644 if (howto->partial_inplace)
a7ebbfdf 5645 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5646 value = symbol + addend - gp;
5647 /* If the symbol was local, any earlier relocatable links will
5648 have adjusted its addend with the gp offset, so compensate
5649 for that now. Don't do it for symbols forced local in this
5650 link, though, since they won't have had the gp offset applied
5651 to them before. */
5652 if (was_local_p)
5653 value += gp0;
b49e97c9
TS
5654 overflowed_p = mips_elf_overflow_p (value, 16);
5655 break;
5656
738e5348
RS
5657 case R_MIPS16_GOT16:
5658 case R_MIPS16_CALL16:
b49e97c9
TS
5659 case R_MIPS_GOT16:
5660 case R_MIPS_CALL16:
df58fc94
RS
5661 case R_MICROMIPS_GOT16:
5662 case R_MICROMIPS_CALL16:
0a44bf69 5663 /* VxWorks does not have separate local and global semantics for
738e5348 5664 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5665 if (!htab->is_vxworks && local_p)
b49e97c9 5666 {
5c18022e 5667 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5668 symbol + addend, !was_local_p);
b49e97c9
TS
5669 if (value == MINUS_ONE)
5670 return bfd_reloc_outofrange;
5671 value
a8028dd0 5672 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5673 overflowed_p = mips_elf_overflow_p (value, 16);
5674 break;
5675 }
5676
5677 /* Fall through. */
5678
0f20cc35
DJ
5679 case R_MIPS_TLS_GD:
5680 case R_MIPS_TLS_GOTTPREL:
5681 case R_MIPS_TLS_LDM:
b49e97c9 5682 case R_MIPS_GOT_DISP:
d0f13682
CLT
5683 case R_MIPS16_TLS_GD:
5684 case R_MIPS16_TLS_GOTTPREL:
5685 case R_MIPS16_TLS_LDM:
df58fc94
RS
5686 case R_MICROMIPS_TLS_GD:
5687 case R_MICROMIPS_TLS_GOTTPREL:
5688 case R_MICROMIPS_TLS_LDM:
5689 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5690 value = g;
5691 overflowed_p = mips_elf_overflow_p (value, 16);
5692 break;
5693
5694 case R_MIPS_GPREL32:
bce03d3d
AO
5695 value = (addend + symbol + gp0 - gp);
5696 if (!save_addend)
5697 value &= howto->dst_mask;
b49e97c9
TS
5698 break;
5699
5700 case R_MIPS_PC16:
bad36eac
DJ
5701 case R_MIPS_GNU_REL16_S2:
5702 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5703 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5704 value >>= howto->rightshift;
5705 value &= howto->dst_mask;
b49e97c9
TS
5706 break;
5707
df58fc94
RS
5708 case R_MICROMIPS_PC7_S1:
5709 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5710 overflowed_p = mips_elf_overflow_p (value, 8);
5711 value >>= howto->rightshift;
5712 value &= howto->dst_mask;
5713 break;
5714
5715 case R_MICROMIPS_PC10_S1:
5716 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5717 overflowed_p = mips_elf_overflow_p (value, 11);
5718 value >>= howto->rightshift;
5719 value &= howto->dst_mask;
5720 break;
5721
5722 case R_MICROMIPS_PC16_S1:
5723 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5724 overflowed_p = mips_elf_overflow_p (value, 17);
5725 value >>= howto->rightshift;
5726 value &= howto->dst_mask;
5727 break;
5728
5729 case R_MICROMIPS_PC23_S2:
5730 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5731 overflowed_p = mips_elf_overflow_p (value, 25);
5732 value >>= howto->rightshift;
5733 value &= howto->dst_mask;
5734 break;
5735
b49e97c9
TS
5736 case R_MIPS_GOT_HI16:
5737 case R_MIPS_CALL_HI16:
df58fc94
RS
5738 case R_MICROMIPS_GOT_HI16:
5739 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5740 /* We're allowed to handle these two relocations identically.
5741 The dynamic linker is allowed to handle the CALL relocations
5742 differently by creating a lazy evaluation stub. */
5743 value = g;
5744 value = mips_elf_high (value);
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MIPS_GOT_LO16:
5749 case R_MIPS_CALL_LO16:
df58fc94
RS
5750 case R_MICROMIPS_GOT_LO16:
5751 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5752 value = g & howto->dst_mask;
5753 break;
5754
5755 case R_MIPS_GOT_PAGE:
df58fc94 5756 case R_MICROMIPS_GOT_PAGE:
5c18022e 5757 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5758 if (value == MINUS_ONE)
5759 return bfd_reloc_outofrange;
a8028dd0 5760 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5761 overflowed_p = mips_elf_overflow_p (value, 16);
5762 break;
5763
5764 case R_MIPS_GOT_OFST:
df58fc94 5765 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5766 if (local_p)
5c18022e 5767 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5768 else
5769 value = addend;
b49e97c9
TS
5770 overflowed_p = mips_elf_overflow_p (value, 16);
5771 break;
5772
5773 case R_MIPS_SUB:
df58fc94 5774 case R_MICROMIPS_SUB:
b49e97c9
TS
5775 value = symbol - addend;
5776 value &= howto->dst_mask;
5777 break;
5778
5779 case R_MIPS_HIGHER:
df58fc94 5780 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5781 value = mips_elf_higher (addend + symbol);
5782 value &= howto->dst_mask;
5783 break;
5784
5785 case R_MIPS_HIGHEST:
df58fc94 5786 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5787 value = mips_elf_highest (addend + symbol);
5788 value &= howto->dst_mask;
5789 break;
5790
5791 case R_MIPS_SCN_DISP:
df58fc94 5792 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5793 value = symbol + addend - sec->output_offset;
5794 value &= howto->dst_mask;
5795 break;
5796
b49e97c9 5797 case R_MIPS_JALR:
df58fc94 5798 case R_MICROMIPS_JALR:
1367d393
ILT
5799 /* This relocation is only a hint. In some cases, we optimize
5800 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5801 when the symbol does not resolve locally. */
5802 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5803 return bfd_reloc_continue;
5804 value = symbol + addend;
5805 break;
b49e97c9 5806
1367d393 5807 case R_MIPS_PJUMP:
b49e97c9
TS
5808 case R_MIPS_GNU_VTINHERIT:
5809 case R_MIPS_GNU_VTENTRY:
5810 /* We don't do anything with these at present. */
5811 return bfd_reloc_continue;
5812
5813 default:
5814 /* An unrecognized relocation type. */
5815 return bfd_reloc_notsupported;
5816 }
5817
5818 /* Store the VALUE for our caller. */
5819 *valuep = value;
5820 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5821}
5822
5823/* Obtain the field relocated by RELOCATION. */
5824
5825static bfd_vma
9719ad41
RS
5826mips_elf_obtain_contents (reloc_howto_type *howto,
5827 const Elf_Internal_Rela *relocation,
5828 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5829{
5830 bfd_vma x;
5831 bfd_byte *location = contents + relocation->r_offset;
5832
5833 /* Obtain the bytes. */
5834 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5835
b49e97c9
TS
5836 return x;
5837}
5838
5839/* It has been determined that the result of the RELOCATION is the
5840 VALUE. Use HOWTO to place VALUE into the output file at the
5841 appropriate position. The SECTION is the section to which the
68ffbac6 5842 relocation applies.
38a7df63 5843 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5844 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5845
b34976b6 5846 Returns FALSE if anything goes wrong. */
b49e97c9 5847
b34976b6 5848static bfd_boolean
9719ad41
RS
5849mips_elf_perform_relocation (struct bfd_link_info *info,
5850 reloc_howto_type *howto,
5851 const Elf_Internal_Rela *relocation,
5852 bfd_vma value, bfd *input_bfd,
5853 asection *input_section, bfd_byte *contents,
38a7df63 5854 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5855{
5856 bfd_vma x;
5857 bfd_byte *location;
5858 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5859
5860 /* Figure out where the relocation is occurring. */
5861 location = contents + relocation->r_offset;
5862
df58fc94 5863 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5864
b49e97c9
TS
5865 /* Obtain the current value. */
5866 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5867
5868 /* Clear the field we are setting. */
5869 x &= ~howto->dst_mask;
5870
b49e97c9
TS
5871 /* Set the field. */
5872 x |= (value & howto->dst_mask);
5873
5874 /* If required, turn JAL into JALX. */
38a7df63 5875 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5876 {
b34976b6 5877 bfd_boolean ok;
b49e97c9
TS
5878 bfd_vma opcode = x >> 26;
5879 bfd_vma jalx_opcode;
5880
5881 /* Check to see if the opcode is already JAL or JALX. */
5882 if (r_type == R_MIPS16_26)
5883 {
5884 ok = ((opcode == 0x6) || (opcode == 0x7));
5885 jalx_opcode = 0x7;
5886 }
df58fc94
RS
5887 else if (r_type == R_MICROMIPS_26_S1)
5888 {
5889 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5890 jalx_opcode = 0x3c;
5891 }
b49e97c9
TS
5892 else
5893 {
5894 ok = ((opcode == 0x3) || (opcode == 0x1d));
5895 jalx_opcode = 0x1d;
5896 }
5897
3bdf9505
MR
5898 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5899 convert J or JALS to JALX. */
b49e97c9
TS
5900 if (!ok)
5901 {
5902 (*_bfd_error_handler)
3bdf9505 5903 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5904 input_bfd,
5905 input_section,
b49e97c9
TS
5906 (unsigned long) relocation->r_offset);
5907 bfd_set_error (bfd_error_bad_value);
b34976b6 5908 return FALSE;
b49e97c9
TS
5909 }
5910
5911 /* Make this the JALX opcode. */
5912 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5913 }
5914
38a7df63
CF
5915 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5916 range. */
cd8d5a82 5917 if (!info->relocatable
38a7df63 5918 && !cross_mode_jump_p
cd8d5a82
CF
5919 && ((JAL_TO_BAL_P (input_bfd)
5920 && r_type == R_MIPS_26
5921 && (x >> 26) == 0x3) /* jal addr */
5922 || (JALR_TO_BAL_P (input_bfd)
5923 && r_type == R_MIPS_JALR
38a7df63
CF
5924 && x == 0x0320f809) /* jalr t9 */
5925 || (JR_TO_B_P (input_bfd)
5926 && r_type == R_MIPS_JALR
5927 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5928 {
5929 bfd_vma addr;
5930 bfd_vma dest;
5931 bfd_signed_vma off;
5932
5933 addr = (input_section->output_section->vma
5934 + input_section->output_offset
5935 + relocation->r_offset
5936 + 4);
5937 if (r_type == R_MIPS_26)
5938 dest = (value << 2) | ((addr >> 28) << 28);
5939 else
5940 dest = value;
5941 off = dest - addr;
5942 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5943 {
5944 if (x == 0x03200008) /* jr t9 */
5945 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5946 else
5947 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5948 }
1367d393
ILT
5949 }
5950
b49e97c9
TS
5951 /* Put the value into the output. */
5952 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5953
df58fc94
RS
5954 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5955 location);
d6f16593 5956
b34976b6 5957 return TRUE;
b49e97c9 5958}
b49e97c9 5959\f
b49e97c9
TS
5960/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5961 is the original relocation, which is now being transformed into a
5962 dynamic relocation. The ADDENDP is adjusted if necessary; the
5963 caller should store the result in place of the original addend. */
5964
b34976b6 5965static bfd_boolean
9719ad41
RS
5966mips_elf_create_dynamic_relocation (bfd *output_bfd,
5967 struct bfd_link_info *info,
5968 const Elf_Internal_Rela *rel,
5969 struct mips_elf_link_hash_entry *h,
5970 asection *sec, bfd_vma symbol,
5971 bfd_vma *addendp, asection *input_section)
b49e97c9 5972{
947216bf 5973 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5974 asection *sreloc;
5975 bfd *dynobj;
5976 int r_type;
5d41f0b6
RS
5977 long indx;
5978 bfd_boolean defined_p;
0a44bf69 5979 struct mips_elf_link_hash_table *htab;
b49e97c9 5980
0a44bf69 5981 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5982 BFD_ASSERT (htab != NULL);
5983
b49e97c9
TS
5984 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5985 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5986 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5987 BFD_ASSERT (sreloc != NULL);
5988 BFD_ASSERT (sreloc->contents != NULL);
5989 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5990 < sreloc->size);
b49e97c9 5991
b49e97c9
TS
5992 outrel[0].r_offset =
5993 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5994 if (ABI_64_P (output_bfd))
5995 {
5996 outrel[1].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5998 outrel[2].r_offset =
5999 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6000 }
b49e97c9 6001
c5ae1840 6002 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6003 /* The relocation field has been deleted. */
5d41f0b6
RS
6004 return TRUE;
6005
6006 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6007 {
6008 /* The relocation field has been converted into a relative value of
6009 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6010 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6011 *addendp += symbol;
5d41f0b6 6012 return TRUE;
0d591ff7 6013 }
b49e97c9 6014
5d41f0b6
RS
6015 /* We must now calculate the dynamic symbol table index to use
6016 in the relocation. */
d4a77f3f 6017 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6018 {
020d7251 6019 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6020 indx = h->root.dynindx;
6021 if (SGI_COMPAT (output_bfd))
6022 defined_p = h->root.def_regular;
6023 else
6024 /* ??? glibc's ld.so just adds the final GOT entry to the
6025 relocation field. It therefore treats relocs against
6026 defined symbols in the same way as relocs against
6027 undefined symbols. */
6028 defined_p = FALSE;
6029 }
b49e97c9
TS
6030 else
6031 {
5d41f0b6
RS
6032 if (sec != NULL && bfd_is_abs_section (sec))
6033 indx = 0;
6034 else if (sec == NULL || sec->owner == NULL)
fdd07405 6035 {
5d41f0b6
RS
6036 bfd_set_error (bfd_error_bad_value);
6037 return FALSE;
b49e97c9
TS
6038 }
6039 else
6040 {
5d41f0b6 6041 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6042 if (indx == 0)
6043 {
6044 asection *osec = htab->root.text_index_section;
6045 indx = elf_section_data (osec)->dynindx;
6046 }
5d41f0b6
RS
6047 if (indx == 0)
6048 abort ();
b49e97c9
TS
6049 }
6050
5d41f0b6
RS
6051 /* Instead of generating a relocation using the section
6052 symbol, we may as well make it a fully relative
6053 relocation. We want to avoid generating relocations to
6054 local symbols because we used to generate them
6055 incorrectly, without adding the original symbol value,
6056 which is mandated by the ABI for section symbols. In
6057 order to give dynamic loaders and applications time to
6058 phase out the incorrect use, we refrain from emitting
6059 section-relative relocations. It's not like they're
6060 useful, after all. This should be a bit more efficient
6061 as well. */
6062 /* ??? Although this behavior is compatible with glibc's ld.so,
6063 the ABI says that relocations against STN_UNDEF should have
6064 a symbol value of 0. Irix rld honors this, so relocations
6065 against STN_UNDEF have no effect. */
6066 if (!SGI_COMPAT (output_bfd))
6067 indx = 0;
6068 defined_p = TRUE;
b49e97c9
TS
6069 }
6070
5d41f0b6
RS
6071 /* If the relocation was previously an absolute relocation and
6072 this symbol will not be referred to by the relocation, we must
6073 adjust it by the value we give it in the dynamic symbol table.
6074 Otherwise leave the job up to the dynamic linker. */
6075 if (defined_p && r_type != R_MIPS_REL32)
6076 *addendp += symbol;
6077
0a44bf69
RS
6078 if (htab->is_vxworks)
6079 /* VxWorks uses non-relative relocations for this. */
6080 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6081 else
6082 /* The relocation is always an REL32 relocation because we don't
6083 know where the shared library will wind up at load-time. */
6084 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6085 R_MIPS_REL32);
6086
5d41f0b6
RS
6087 /* For strict adherence to the ABI specification, we should
6088 generate a R_MIPS_64 relocation record by itself before the
6089 _REL32/_64 record as well, such that the addend is read in as
6090 a 64-bit value (REL32 is a 32-bit relocation, after all).
6091 However, since none of the existing ELF64 MIPS dynamic
6092 loaders seems to care, we don't waste space with these
6093 artificial relocations. If this turns out to not be true,
6094 mips_elf_allocate_dynamic_relocation() should be tweaked so
6095 as to make room for a pair of dynamic relocations per
6096 invocation if ABI_64_P, and here we should generate an
6097 additional relocation record with R_MIPS_64 by itself for a
6098 NULL symbol before this relocation record. */
6099 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6100 ABI_64_P (output_bfd)
6101 ? R_MIPS_64
6102 : R_MIPS_NONE);
6103 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6104
6105 /* Adjust the output offset of the relocation to reference the
6106 correct location in the output file. */
6107 outrel[0].r_offset += (input_section->output_section->vma
6108 + input_section->output_offset);
6109 outrel[1].r_offset += (input_section->output_section->vma
6110 + input_section->output_offset);
6111 outrel[2].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113
b49e97c9
TS
6114 /* Put the relocation back out. We have to use the special
6115 relocation outputter in the 64-bit case since the 64-bit
6116 relocation format is non-standard. */
6117 if (ABI_64_P (output_bfd))
6118 {
6119 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6120 (output_bfd, &outrel[0],
6121 (sreloc->contents
6122 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6123 }
0a44bf69
RS
6124 else if (htab->is_vxworks)
6125 {
6126 /* VxWorks uses RELA rather than REL dynamic relocations. */
6127 outrel[0].r_addend = *addendp;
6128 bfd_elf32_swap_reloca_out
6129 (output_bfd, &outrel[0],
6130 (sreloc->contents
6131 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6132 }
b49e97c9 6133 else
947216bf
AM
6134 bfd_elf32_swap_reloc_out
6135 (output_bfd, &outrel[0],
6136 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6137
b49e97c9
TS
6138 /* We've now added another relocation. */
6139 ++sreloc->reloc_count;
6140
6141 /* Make sure the output section is writable. The dynamic linker
6142 will be writing to it. */
6143 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6144 |= SHF_WRITE;
6145
6146 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6147 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6148 {
3d4d4302 6149 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6150 bfd_byte *cr;
6151
6152 if (scpt)
6153 {
6154 Elf32_crinfo cptrel;
6155
6156 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6157 cptrel.vaddr = (rel->r_offset
6158 + input_section->output_section->vma
6159 + input_section->output_offset);
6160 if (r_type == R_MIPS_REL32)
6161 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6162 else
6163 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6164 mips_elf_set_cr_dist2to (cptrel, 0);
6165 cptrel.konst = *addendp;
6166
6167 cr = (scpt->contents
6168 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6169 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6170 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6171 ((Elf32_External_crinfo *) cr
6172 + scpt->reloc_count));
6173 ++scpt->reloc_count;
6174 }
6175 }
6176
943284cc
DJ
6177 /* If we've written this relocation for a readonly section,
6178 we need to set DF_TEXTREL again, so that we do not delete the
6179 DT_TEXTREL tag. */
6180 if (MIPS_ELF_READONLY_SECTION (input_section))
6181 info->flags |= DF_TEXTREL;
6182
b34976b6 6183 return TRUE;
b49e97c9
TS
6184}
6185\f
b49e97c9
TS
6186/* Return the MACH for a MIPS e_flags value. */
6187
6188unsigned long
9719ad41 6189_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6190{
6191 switch (flags & EF_MIPS_MACH)
6192 {
6193 case E_MIPS_MACH_3900:
6194 return bfd_mach_mips3900;
6195
6196 case E_MIPS_MACH_4010:
6197 return bfd_mach_mips4010;
6198
6199 case E_MIPS_MACH_4100:
6200 return bfd_mach_mips4100;
6201
6202 case E_MIPS_MACH_4111:
6203 return bfd_mach_mips4111;
6204
00707a0e
RS
6205 case E_MIPS_MACH_4120:
6206 return bfd_mach_mips4120;
6207
b49e97c9
TS
6208 case E_MIPS_MACH_4650:
6209 return bfd_mach_mips4650;
6210
00707a0e
RS
6211 case E_MIPS_MACH_5400:
6212 return bfd_mach_mips5400;
6213
6214 case E_MIPS_MACH_5500:
6215 return bfd_mach_mips5500;
6216
e407c74b
NC
6217 case E_MIPS_MACH_5900:
6218 return bfd_mach_mips5900;
6219
0d2e43ed
ILT
6220 case E_MIPS_MACH_9000:
6221 return bfd_mach_mips9000;
6222
b49e97c9
TS
6223 case E_MIPS_MACH_SB1:
6224 return bfd_mach_mips_sb1;
6225
350cc38d
MS
6226 case E_MIPS_MACH_LS2E:
6227 return bfd_mach_mips_loongson_2e;
6228
6229 case E_MIPS_MACH_LS2F:
6230 return bfd_mach_mips_loongson_2f;
6231
fd503541
NC
6232 case E_MIPS_MACH_LS3A:
6233 return bfd_mach_mips_loongson_3a;
6234
432233b3
AP
6235 case E_MIPS_MACH_OCTEON2:
6236 return bfd_mach_mips_octeon2;
6237
6f179bd0
AN
6238 case E_MIPS_MACH_OCTEON:
6239 return bfd_mach_mips_octeon;
6240
52b6b6b9
JM
6241 case E_MIPS_MACH_XLR:
6242 return bfd_mach_mips_xlr;
6243
b49e97c9
TS
6244 default:
6245 switch (flags & EF_MIPS_ARCH)
6246 {
6247 default:
6248 case E_MIPS_ARCH_1:
6249 return bfd_mach_mips3000;
b49e97c9
TS
6250
6251 case E_MIPS_ARCH_2:
6252 return bfd_mach_mips6000;
b49e97c9
TS
6253
6254 case E_MIPS_ARCH_3:
6255 return bfd_mach_mips4000;
b49e97c9
TS
6256
6257 case E_MIPS_ARCH_4:
6258 return bfd_mach_mips8000;
b49e97c9
TS
6259
6260 case E_MIPS_ARCH_5:
6261 return bfd_mach_mips5;
b49e97c9
TS
6262
6263 case E_MIPS_ARCH_32:
6264 return bfd_mach_mipsisa32;
b49e97c9
TS
6265
6266 case E_MIPS_ARCH_64:
6267 return bfd_mach_mipsisa64;
af7ee8bf
CD
6268
6269 case E_MIPS_ARCH_32R2:
6270 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6271
6272 case E_MIPS_ARCH_64R2:
6273 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6274 }
6275 }
6276
6277 return 0;
6278}
6279
6280/* Return printable name for ABI. */
6281
6282static INLINE char *
9719ad41 6283elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6284{
6285 flagword flags;
6286
6287 flags = elf_elfheader (abfd)->e_flags;
6288 switch (flags & EF_MIPS_ABI)
6289 {
6290 case 0:
6291 if (ABI_N32_P (abfd))
6292 return "N32";
6293 else if (ABI_64_P (abfd))
6294 return "64";
6295 else
6296 return "none";
6297 case E_MIPS_ABI_O32:
6298 return "O32";
6299 case E_MIPS_ABI_O64:
6300 return "O64";
6301 case E_MIPS_ABI_EABI32:
6302 return "EABI32";
6303 case E_MIPS_ABI_EABI64:
6304 return "EABI64";
6305 default:
6306 return "unknown abi";
6307 }
6308}
6309\f
6310/* MIPS ELF uses two common sections. One is the usual one, and the
6311 other is for small objects. All the small objects are kept
6312 together, and then referenced via the gp pointer, which yields
6313 faster assembler code. This is what we use for the small common
6314 section. This approach is copied from ecoff.c. */
6315static asection mips_elf_scom_section;
6316static asymbol mips_elf_scom_symbol;
6317static asymbol *mips_elf_scom_symbol_ptr;
6318
6319/* MIPS ELF also uses an acommon section, which represents an
6320 allocated common symbol which may be overridden by a
6321 definition in a shared library. */
6322static asection mips_elf_acom_section;
6323static asymbol mips_elf_acom_symbol;
6324static asymbol *mips_elf_acom_symbol_ptr;
6325
738e5348 6326/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6327
6328void
9719ad41 6329_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6330{
6331 elf_symbol_type *elfsym;
6332
738e5348 6333 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6334 elfsym = (elf_symbol_type *) asym;
6335 switch (elfsym->internal_elf_sym.st_shndx)
6336 {
6337 case SHN_MIPS_ACOMMON:
6338 /* This section is used in a dynamically linked executable file.
6339 It is an allocated common section. The dynamic linker can
6340 either resolve these symbols to something in a shared
6341 library, or it can just leave them here. For our purposes,
6342 we can consider these symbols to be in a new section. */
6343 if (mips_elf_acom_section.name == NULL)
6344 {
6345 /* Initialize the acommon section. */
6346 mips_elf_acom_section.name = ".acommon";
6347 mips_elf_acom_section.flags = SEC_ALLOC;
6348 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6349 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6350 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6351 mips_elf_acom_symbol.name = ".acommon";
6352 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6353 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6354 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6355 }
6356 asym->section = &mips_elf_acom_section;
6357 break;
6358
6359 case SHN_COMMON:
6360 /* Common symbols less than the GP size are automatically
6361 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6362 if (asym->value > elf_gp_size (abfd)
b59eed79 6363 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6364 || IRIX_COMPAT (abfd) == ict_irix6)
6365 break;
6366 /* Fall through. */
6367 case SHN_MIPS_SCOMMON:
6368 if (mips_elf_scom_section.name == NULL)
6369 {
6370 /* Initialize the small common section. */
6371 mips_elf_scom_section.name = ".scommon";
6372 mips_elf_scom_section.flags = SEC_IS_COMMON;
6373 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6374 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6375 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6376 mips_elf_scom_symbol.name = ".scommon";
6377 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6378 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6379 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6380 }
6381 asym->section = &mips_elf_scom_section;
6382 asym->value = elfsym->internal_elf_sym.st_size;
6383 break;
6384
6385 case SHN_MIPS_SUNDEFINED:
6386 asym->section = bfd_und_section_ptr;
6387 break;
6388
b49e97c9 6389 case SHN_MIPS_TEXT:
00b4930b
TS
6390 {
6391 asection *section = bfd_get_section_by_name (abfd, ".text");
6392
00b4930b
TS
6393 if (section != NULL)
6394 {
6395 asym->section = section;
6396 /* MIPS_TEXT is a bit special, the address is not an offset
6397 to the base of the .text section. So substract the section
6398 base address to make it an offset. */
6399 asym->value -= section->vma;
6400 }
6401 }
b49e97c9
TS
6402 break;
6403
6404 case SHN_MIPS_DATA:
00b4930b
TS
6405 {
6406 asection *section = bfd_get_section_by_name (abfd, ".data");
6407
00b4930b
TS
6408 if (section != NULL)
6409 {
6410 asym->section = section;
6411 /* MIPS_DATA is a bit special, the address is not an offset
6412 to the base of the .data section. So substract the section
6413 base address to make it an offset. */
6414 asym->value -= section->vma;
6415 }
6416 }
b49e97c9 6417 break;
b49e97c9 6418 }
738e5348 6419
df58fc94
RS
6420 /* If this is an odd-valued function symbol, assume it's a MIPS16
6421 or microMIPS one. */
738e5348
RS
6422 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6423 && (asym->value & 1) != 0)
6424 {
6425 asym->value--;
df58fc94
RS
6426 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6427 elfsym->internal_elf_sym.st_other
6428 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6429 else
6430 elfsym->internal_elf_sym.st_other
6431 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6432 }
b49e97c9
TS
6433}
6434\f
8c946ed5
RS
6435/* Implement elf_backend_eh_frame_address_size. This differs from
6436 the default in the way it handles EABI64.
6437
6438 EABI64 was originally specified as an LP64 ABI, and that is what
6439 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6440 historically accepted the combination of -mabi=eabi and -mlong32,
6441 and this ILP32 variation has become semi-official over time.
6442 Both forms use elf32 and have pointer-sized FDE addresses.
6443
6444 If an EABI object was generated by GCC 4.0 or above, it will have
6445 an empty .gcc_compiled_longXX section, where XX is the size of longs
6446 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6447 have no special marking to distinguish them from LP64 objects.
6448
6449 We don't want users of the official LP64 ABI to be punished for the
6450 existence of the ILP32 variant, but at the same time, we don't want
6451 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6452 We therefore take the following approach:
6453
6454 - If ABFD contains a .gcc_compiled_longXX section, use it to
6455 determine the pointer size.
6456
6457 - Otherwise check the type of the first relocation. Assume that
6458 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6459
6460 - Otherwise punt.
6461
6462 The second check is enough to detect LP64 objects generated by pre-4.0
6463 compilers because, in the kind of output generated by those compilers,
6464 the first relocation will be associated with either a CIE personality
6465 routine or an FDE start address. Furthermore, the compilers never
6466 used a special (non-pointer) encoding for this ABI.
6467
6468 Checking the relocation type should also be safe because there is no
6469 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6470 did so. */
6471
6472unsigned int
6473_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6474{
6475 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6476 return 8;
6477 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6478 {
6479 bfd_boolean long32_p, long64_p;
6480
6481 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6482 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6483 if (long32_p && long64_p)
6484 return 0;
6485 if (long32_p)
6486 return 4;
6487 if (long64_p)
6488 return 8;
6489
6490 if (sec->reloc_count > 0
6491 && elf_section_data (sec)->relocs != NULL
6492 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6493 == R_MIPS_64))
6494 return 8;
6495
6496 return 0;
6497 }
6498 return 4;
6499}
6500\f
174fd7f9
RS
6501/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6502 relocations against two unnamed section symbols to resolve to the
6503 same address. For example, if we have code like:
6504
6505 lw $4,%got_disp(.data)($gp)
6506 lw $25,%got_disp(.text)($gp)
6507 jalr $25
6508
6509 then the linker will resolve both relocations to .data and the program
6510 will jump there rather than to .text.
6511
6512 We can work around this problem by giving names to local section symbols.
6513 This is also what the MIPSpro tools do. */
6514
6515bfd_boolean
6516_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6517{
6518 return SGI_COMPAT (abfd);
6519}
6520\f
b49e97c9
TS
6521/* Work over a section just before writing it out. This routine is
6522 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6523 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6524 a better way. */
6525
b34976b6 6526bfd_boolean
9719ad41 6527_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6528{
6529 if (hdr->sh_type == SHT_MIPS_REGINFO
6530 && hdr->sh_size > 0)
6531 {
6532 bfd_byte buf[4];
6533
6534 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6535 BFD_ASSERT (hdr->contents == NULL);
6536
6537 if (bfd_seek (abfd,
6538 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6539 SEEK_SET) != 0)
b34976b6 6540 return FALSE;
b49e97c9 6541 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6542 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6543 return FALSE;
b49e97c9
TS
6544 }
6545
6546 if (hdr->sh_type == SHT_MIPS_OPTIONS
6547 && hdr->bfd_section != NULL
f0abc2a1
AM
6548 && mips_elf_section_data (hdr->bfd_section) != NULL
6549 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6550 {
6551 bfd_byte *contents, *l, *lend;
6552
f0abc2a1
AM
6553 /* We stored the section contents in the tdata field in the
6554 set_section_contents routine. We save the section contents
6555 so that we don't have to read them again.
b49e97c9
TS
6556 At this point we know that elf_gp is set, so we can look
6557 through the section contents to see if there is an
6558 ODK_REGINFO structure. */
6559
f0abc2a1 6560 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6561 l = contents;
6562 lend = contents + hdr->sh_size;
6563 while (l + sizeof (Elf_External_Options) <= lend)
6564 {
6565 Elf_Internal_Options intopt;
6566
6567 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6568 &intopt);
1bc8074d
MR
6569 if (intopt.size < sizeof (Elf_External_Options))
6570 {
6571 (*_bfd_error_handler)
6572 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6573 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6574 break;
6575 }
b49e97c9
TS
6576 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6577 {
6578 bfd_byte buf[8];
6579
6580 if (bfd_seek (abfd,
6581 (hdr->sh_offset
6582 + (l - contents)
6583 + sizeof (Elf_External_Options)
6584 + (sizeof (Elf64_External_RegInfo) - 8)),
6585 SEEK_SET) != 0)
b34976b6 6586 return FALSE;
b49e97c9 6587 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6588 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6589 return FALSE;
b49e97c9
TS
6590 }
6591 else if (intopt.kind == ODK_REGINFO)
6592 {
6593 bfd_byte buf[4];
6594
6595 if (bfd_seek (abfd,
6596 (hdr->sh_offset
6597 + (l - contents)
6598 + sizeof (Elf_External_Options)
6599 + (sizeof (Elf32_External_RegInfo) - 4)),
6600 SEEK_SET) != 0)
b34976b6 6601 return FALSE;
b49e97c9 6602 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6603 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6604 return FALSE;
b49e97c9
TS
6605 }
6606 l += intopt.size;
6607 }
6608 }
6609
6610 if (hdr->bfd_section != NULL)
6611 {
6612 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6613
2d0f9ad9
JM
6614 /* .sbss is not handled specially here because the GNU/Linux
6615 prelinker can convert .sbss from NOBITS to PROGBITS and
6616 changing it back to NOBITS breaks the binary. The entry in
6617 _bfd_mips_elf_special_sections will ensure the correct flags
6618 are set on .sbss if BFD creates it without reading it from an
6619 input file, and without special handling here the flags set
6620 on it in an input file will be followed. */
b49e97c9
TS
6621 if (strcmp (name, ".sdata") == 0
6622 || strcmp (name, ".lit8") == 0
6623 || strcmp (name, ".lit4") == 0)
6624 {
6625 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6626 hdr->sh_type = SHT_PROGBITS;
6627 }
b49e97c9
TS
6628 else if (strcmp (name, ".srdata") == 0)
6629 {
6630 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6631 hdr->sh_type = SHT_PROGBITS;
6632 }
6633 else if (strcmp (name, ".compact_rel") == 0)
6634 {
6635 hdr->sh_flags = 0;
6636 hdr->sh_type = SHT_PROGBITS;
6637 }
6638 else if (strcmp (name, ".rtproc") == 0)
6639 {
6640 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6641 {
6642 unsigned int adjust;
6643
6644 adjust = hdr->sh_size % hdr->sh_addralign;
6645 if (adjust != 0)
6646 hdr->sh_size += hdr->sh_addralign - adjust;
6647 }
6648 }
6649 }
6650
b34976b6 6651 return TRUE;
b49e97c9
TS
6652}
6653
6654/* Handle a MIPS specific section when reading an object file. This
6655 is called when elfcode.h finds a section with an unknown type.
6656 This routine supports both the 32-bit and 64-bit ELF ABI.
6657
6658 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6659 how to. */
6660
b34976b6 6661bfd_boolean
6dc132d9
L
6662_bfd_mips_elf_section_from_shdr (bfd *abfd,
6663 Elf_Internal_Shdr *hdr,
6664 const char *name,
6665 int shindex)
b49e97c9
TS
6666{
6667 flagword flags = 0;
6668
6669 /* There ought to be a place to keep ELF backend specific flags, but
6670 at the moment there isn't one. We just keep track of the
6671 sections by their name, instead. Fortunately, the ABI gives
6672 suggested names for all the MIPS specific sections, so we will
6673 probably get away with this. */
6674 switch (hdr->sh_type)
6675 {
6676 case SHT_MIPS_LIBLIST:
6677 if (strcmp (name, ".liblist") != 0)
b34976b6 6678 return FALSE;
b49e97c9
TS
6679 break;
6680 case SHT_MIPS_MSYM:
6681 if (strcmp (name, ".msym") != 0)
b34976b6 6682 return FALSE;
b49e97c9
TS
6683 break;
6684 case SHT_MIPS_CONFLICT:
6685 if (strcmp (name, ".conflict") != 0)
b34976b6 6686 return FALSE;
b49e97c9
TS
6687 break;
6688 case SHT_MIPS_GPTAB:
0112cd26 6689 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6690 return FALSE;
b49e97c9
TS
6691 break;
6692 case SHT_MIPS_UCODE:
6693 if (strcmp (name, ".ucode") != 0)
b34976b6 6694 return FALSE;
b49e97c9
TS
6695 break;
6696 case SHT_MIPS_DEBUG:
6697 if (strcmp (name, ".mdebug") != 0)
b34976b6 6698 return FALSE;
b49e97c9
TS
6699 flags = SEC_DEBUGGING;
6700 break;
6701 case SHT_MIPS_REGINFO:
6702 if (strcmp (name, ".reginfo") != 0
6703 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6704 return FALSE;
b49e97c9
TS
6705 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6706 break;
6707 case SHT_MIPS_IFACE:
6708 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6709 return FALSE;
b49e97c9
TS
6710 break;
6711 case SHT_MIPS_CONTENT:
0112cd26 6712 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6713 return FALSE;
b49e97c9
TS
6714 break;
6715 case SHT_MIPS_OPTIONS:
cc2e31b9 6716 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6717 return FALSE;
b49e97c9
TS
6718 break;
6719 case SHT_MIPS_DWARF:
1b315056 6720 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6721 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6722 return FALSE;
b49e97c9
TS
6723 break;
6724 case SHT_MIPS_SYMBOL_LIB:
6725 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6726 return FALSE;
b49e97c9
TS
6727 break;
6728 case SHT_MIPS_EVENTS:
0112cd26
NC
6729 if (! CONST_STRNEQ (name, ".MIPS.events")
6730 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6731 return FALSE;
b49e97c9
TS
6732 break;
6733 default:
cc2e31b9 6734 break;
b49e97c9
TS
6735 }
6736
6dc132d9 6737 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6738 return FALSE;
b49e97c9
TS
6739
6740 if (flags)
6741 {
6742 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6743 (bfd_get_section_flags (abfd,
6744 hdr->bfd_section)
6745 | flags)))
b34976b6 6746 return FALSE;
b49e97c9
TS
6747 }
6748
6749 /* FIXME: We should record sh_info for a .gptab section. */
6750
6751 /* For a .reginfo section, set the gp value in the tdata information
6752 from the contents of this section. We need the gp value while
6753 processing relocs, so we just get it now. The .reginfo section
6754 is not used in the 64-bit MIPS ELF ABI. */
6755 if (hdr->sh_type == SHT_MIPS_REGINFO)
6756 {
6757 Elf32_External_RegInfo ext;
6758 Elf32_RegInfo s;
6759
9719ad41
RS
6760 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6761 &ext, 0, sizeof ext))
b34976b6 6762 return FALSE;
b49e97c9
TS
6763 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6764 elf_gp (abfd) = s.ri_gp_value;
6765 }
6766
6767 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6768 set the gp value based on what we find. We may see both
6769 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6770 they should agree. */
6771 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6772 {
6773 bfd_byte *contents, *l, *lend;
6774
9719ad41 6775 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6776 if (contents == NULL)
b34976b6 6777 return FALSE;
b49e97c9 6778 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6779 0, hdr->sh_size))
b49e97c9
TS
6780 {
6781 free (contents);
b34976b6 6782 return FALSE;
b49e97c9
TS
6783 }
6784 l = contents;
6785 lend = contents + hdr->sh_size;
6786 while (l + sizeof (Elf_External_Options) <= lend)
6787 {
6788 Elf_Internal_Options intopt;
6789
6790 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6791 &intopt);
1bc8074d
MR
6792 if (intopt.size < sizeof (Elf_External_Options))
6793 {
6794 (*_bfd_error_handler)
6795 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6796 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6797 break;
6798 }
b49e97c9
TS
6799 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6800 {
6801 Elf64_Internal_RegInfo intreg;
6802
6803 bfd_mips_elf64_swap_reginfo_in
6804 (abfd,
6805 ((Elf64_External_RegInfo *)
6806 (l + sizeof (Elf_External_Options))),
6807 &intreg);
6808 elf_gp (abfd) = intreg.ri_gp_value;
6809 }
6810 else if (intopt.kind == ODK_REGINFO)
6811 {
6812 Elf32_RegInfo intreg;
6813
6814 bfd_mips_elf32_swap_reginfo_in
6815 (abfd,
6816 ((Elf32_External_RegInfo *)
6817 (l + sizeof (Elf_External_Options))),
6818 &intreg);
6819 elf_gp (abfd) = intreg.ri_gp_value;
6820 }
6821 l += intopt.size;
6822 }
6823 free (contents);
6824 }
6825
b34976b6 6826 return TRUE;
b49e97c9
TS
6827}
6828
6829/* Set the correct type for a MIPS ELF section. We do this by the
6830 section name, which is a hack, but ought to work. This routine is
6831 used by both the 32-bit and the 64-bit ABI. */
6832
b34976b6 6833bfd_boolean
9719ad41 6834_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6835{
0414f35b 6836 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6837
6838 if (strcmp (name, ".liblist") == 0)
6839 {
6840 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6841 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6842 /* The sh_link field is set in final_write_processing. */
6843 }
6844 else if (strcmp (name, ".conflict") == 0)
6845 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6846 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6847 {
6848 hdr->sh_type = SHT_MIPS_GPTAB;
6849 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6850 /* The sh_info field is set in final_write_processing. */
6851 }
6852 else if (strcmp (name, ".ucode") == 0)
6853 hdr->sh_type = SHT_MIPS_UCODE;
6854 else if (strcmp (name, ".mdebug") == 0)
6855 {
6856 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6857 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6858 entsize of 0. FIXME: Does this matter? */
6859 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6860 hdr->sh_entsize = 0;
6861 else
6862 hdr->sh_entsize = 1;
6863 }
6864 else if (strcmp (name, ".reginfo") == 0)
6865 {
6866 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6867 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6868 entsize of 0x18. FIXME: Does this matter? */
6869 if (SGI_COMPAT (abfd))
6870 {
6871 if ((abfd->flags & DYNAMIC) != 0)
6872 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6873 else
6874 hdr->sh_entsize = 1;
6875 }
6876 else
6877 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6878 }
6879 else if (SGI_COMPAT (abfd)
6880 && (strcmp (name, ".hash") == 0
6881 || strcmp (name, ".dynamic") == 0
6882 || strcmp (name, ".dynstr") == 0))
6883 {
6884 if (SGI_COMPAT (abfd))
6885 hdr->sh_entsize = 0;
6886#if 0
8dc1a139 6887 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6888 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6889#endif
6890 }
6891 else if (strcmp (name, ".got") == 0
6892 || strcmp (name, ".srdata") == 0
6893 || strcmp (name, ".sdata") == 0
6894 || strcmp (name, ".sbss") == 0
6895 || strcmp (name, ".lit4") == 0
6896 || strcmp (name, ".lit8") == 0)
6897 hdr->sh_flags |= SHF_MIPS_GPREL;
6898 else if (strcmp (name, ".MIPS.interfaces") == 0)
6899 {
6900 hdr->sh_type = SHT_MIPS_IFACE;
6901 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6902 }
0112cd26 6903 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6904 {
6905 hdr->sh_type = SHT_MIPS_CONTENT;
6906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6907 /* The sh_info field is set in final_write_processing. */
6908 }
cc2e31b9 6909 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6910 {
6911 hdr->sh_type = SHT_MIPS_OPTIONS;
6912 hdr->sh_entsize = 1;
6913 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6914 }
1b315056
CS
6915 else if (CONST_STRNEQ (name, ".debug_")
6916 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6917 {
6918 hdr->sh_type = SHT_MIPS_DWARF;
6919
6920 /* Irix facilities such as libexc expect a single .debug_frame
6921 per executable, the system ones have NOSTRIP set and the linker
6922 doesn't merge sections with different flags so ... */
6923 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6924 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6925 }
b49e97c9
TS
6926 else if (strcmp (name, ".MIPS.symlib") == 0)
6927 {
6928 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6929 /* The sh_link and sh_info fields are set in
6930 final_write_processing. */
6931 }
0112cd26
NC
6932 else if (CONST_STRNEQ (name, ".MIPS.events")
6933 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6934 {
6935 hdr->sh_type = SHT_MIPS_EVENTS;
6936 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6937 /* The sh_link field is set in final_write_processing. */
6938 }
6939 else if (strcmp (name, ".msym") == 0)
6940 {
6941 hdr->sh_type = SHT_MIPS_MSYM;
6942 hdr->sh_flags |= SHF_ALLOC;
6943 hdr->sh_entsize = 8;
6944 }
6945
7a79a000
TS
6946 /* The generic elf_fake_sections will set up REL_HDR using the default
6947 kind of relocations. We used to set up a second header for the
6948 non-default kind of relocations here, but only NewABI would use
6949 these, and the IRIX ld doesn't like resulting empty RELA sections.
6950 Thus we create those header only on demand now. */
b49e97c9 6951
b34976b6 6952 return TRUE;
b49e97c9
TS
6953}
6954
6955/* Given a BFD section, try to locate the corresponding ELF section
6956 index. This is used by both the 32-bit and the 64-bit ABI.
6957 Actually, it's not clear to me that the 64-bit ABI supports these,
6958 but for non-PIC objects we will certainly want support for at least
6959 the .scommon section. */
6960
b34976b6 6961bfd_boolean
9719ad41
RS
6962_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6963 asection *sec, int *retval)
b49e97c9
TS
6964{
6965 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6966 {
6967 *retval = SHN_MIPS_SCOMMON;
b34976b6 6968 return TRUE;
b49e97c9
TS
6969 }
6970 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6971 {
6972 *retval = SHN_MIPS_ACOMMON;
b34976b6 6973 return TRUE;
b49e97c9 6974 }
b34976b6 6975 return FALSE;
b49e97c9
TS
6976}
6977\f
6978/* Hook called by the linker routine which adds symbols from an object
6979 file. We must handle the special MIPS section numbers here. */
6980
b34976b6 6981bfd_boolean
9719ad41 6982_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6983 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6984 flagword *flagsp ATTRIBUTE_UNUSED,
6985 asection **secp, bfd_vma *valp)
b49e97c9
TS
6986{
6987 if (SGI_COMPAT (abfd)
6988 && (abfd->flags & DYNAMIC) != 0
6989 && strcmp (*namep, "_rld_new_interface") == 0)
6990 {
8dc1a139 6991 /* Skip IRIX5 rld entry name. */
b49e97c9 6992 *namep = NULL;
b34976b6 6993 return TRUE;
b49e97c9
TS
6994 }
6995
eedecc07
DD
6996 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6997 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6998 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6999 a magic symbol resolved by the linker, we ignore this bogus definition
7000 of _gp_disp. New ABI objects do not suffer from this problem so this
7001 is not done for them. */
7002 if (!NEWABI_P(abfd)
7003 && (sym->st_shndx == SHN_ABS)
7004 && (strcmp (*namep, "_gp_disp") == 0))
7005 {
7006 *namep = NULL;
7007 return TRUE;
7008 }
7009
b49e97c9
TS
7010 switch (sym->st_shndx)
7011 {
7012 case SHN_COMMON:
7013 /* Common symbols less than the GP size are automatically
7014 treated as SHN_MIPS_SCOMMON symbols. */
7015 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7016 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7017 || IRIX_COMPAT (abfd) == ict_irix6)
7018 break;
7019 /* Fall through. */
7020 case SHN_MIPS_SCOMMON:
7021 *secp = bfd_make_section_old_way (abfd, ".scommon");
7022 (*secp)->flags |= SEC_IS_COMMON;
7023 *valp = sym->st_size;
7024 break;
7025
7026 case SHN_MIPS_TEXT:
7027 /* This section is used in a shared object. */
7028 if (elf_tdata (abfd)->elf_text_section == NULL)
7029 {
7030 asymbol *elf_text_symbol;
7031 asection *elf_text_section;
7032 bfd_size_type amt = sizeof (asection);
7033
7034 elf_text_section = bfd_zalloc (abfd, amt);
7035 if (elf_text_section == NULL)
b34976b6 7036 return FALSE;
b49e97c9
TS
7037
7038 amt = sizeof (asymbol);
7039 elf_text_symbol = bfd_zalloc (abfd, amt);
7040 if (elf_text_symbol == NULL)
b34976b6 7041 return FALSE;
b49e97c9
TS
7042
7043 /* Initialize the section. */
7044
7045 elf_tdata (abfd)->elf_text_section = elf_text_section;
7046 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7047
7048 elf_text_section->symbol = elf_text_symbol;
7049 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7050
7051 elf_text_section->name = ".text";
7052 elf_text_section->flags = SEC_NO_FLAGS;
7053 elf_text_section->output_section = NULL;
7054 elf_text_section->owner = abfd;
7055 elf_text_symbol->name = ".text";
7056 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7057 elf_text_symbol->section = elf_text_section;
7058 }
7059 /* This code used to do *secp = bfd_und_section_ptr if
7060 info->shared. I don't know why, and that doesn't make sense,
7061 so I took it out. */
7062 *secp = elf_tdata (abfd)->elf_text_section;
7063 break;
7064
7065 case SHN_MIPS_ACOMMON:
7066 /* Fall through. XXX Can we treat this as allocated data? */
7067 case SHN_MIPS_DATA:
7068 /* This section is used in a shared object. */
7069 if (elf_tdata (abfd)->elf_data_section == NULL)
7070 {
7071 asymbol *elf_data_symbol;
7072 asection *elf_data_section;
7073 bfd_size_type amt = sizeof (asection);
7074
7075 elf_data_section = bfd_zalloc (abfd, amt);
7076 if (elf_data_section == NULL)
b34976b6 7077 return FALSE;
b49e97c9
TS
7078
7079 amt = sizeof (asymbol);
7080 elf_data_symbol = bfd_zalloc (abfd, amt);
7081 if (elf_data_symbol == NULL)
b34976b6 7082 return FALSE;
b49e97c9
TS
7083
7084 /* Initialize the section. */
7085
7086 elf_tdata (abfd)->elf_data_section = elf_data_section;
7087 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7088
7089 elf_data_section->symbol = elf_data_symbol;
7090 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7091
7092 elf_data_section->name = ".data";
7093 elf_data_section->flags = SEC_NO_FLAGS;
7094 elf_data_section->output_section = NULL;
7095 elf_data_section->owner = abfd;
7096 elf_data_symbol->name = ".data";
7097 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7098 elf_data_symbol->section = elf_data_section;
7099 }
7100 /* This code used to do *secp = bfd_und_section_ptr if
7101 info->shared. I don't know why, and that doesn't make sense,
7102 so I took it out. */
7103 *secp = elf_tdata (abfd)->elf_data_section;
7104 break;
7105
7106 case SHN_MIPS_SUNDEFINED:
7107 *secp = bfd_und_section_ptr;
7108 break;
7109 }
7110
7111 if (SGI_COMPAT (abfd)
7112 && ! info->shared
f13a99db 7113 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7114 && strcmp (*namep, "__rld_obj_head") == 0)
7115 {
7116 struct elf_link_hash_entry *h;
14a793b2 7117 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7118
7119 /* Mark __rld_obj_head as dynamic. */
14a793b2 7120 bh = NULL;
b49e97c9 7121 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7122 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7123 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7124 return FALSE;
14a793b2
AM
7125
7126 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7127 h->non_elf = 0;
7128 h->def_regular = 1;
b49e97c9
TS
7129 h->type = STT_OBJECT;
7130
c152c796 7131 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7132 return FALSE;
b49e97c9 7133
b34976b6 7134 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7135 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7136 }
7137
7138 /* If this is a mips16 text symbol, add 1 to the value to make it
7139 odd. This will cause something like .word SYM to come up with
7140 the right value when it is loaded into the PC. */
df58fc94 7141 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7142 ++*valp;
7143
b34976b6 7144 return TRUE;
b49e97c9
TS
7145}
7146
7147/* This hook function is called before the linker writes out a global
7148 symbol. We mark symbols as small common if appropriate. This is
7149 also where we undo the increment of the value for a mips16 symbol. */
7150
6e0b88f1 7151int
9719ad41
RS
7152_bfd_mips_elf_link_output_symbol_hook
7153 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7154 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7155 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7156{
7157 /* If we see a common symbol, which implies a relocatable link, then
7158 if a symbol was small common in an input file, mark it as small
7159 common in the output file. */
7160 if (sym->st_shndx == SHN_COMMON
7161 && strcmp (input_sec->name, ".scommon") == 0)
7162 sym->st_shndx = SHN_MIPS_SCOMMON;
7163
df58fc94 7164 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7165 sym->st_value &= ~1;
b49e97c9 7166
6e0b88f1 7167 return 1;
b49e97c9
TS
7168}
7169\f
7170/* Functions for the dynamic linker. */
7171
7172/* Create dynamic sections when linking against a dynamic object. */
7173
b34976b6 7174bfd_boolean
9719ad41 7175_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7176{
7177 struct elf_link_hash_entry *h;
14a793b2 7178 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7179 flagword flags;
7180 register asection *s;
7181 const char * const *namep;
0a44bf69 7182 struct mips_elf_link_hash_table *htab;
b49e97c9 7183
0a44bf69 7184 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7185 BFD_ASSERT (htab != NULL);
7186
b49e97c9
TS
7187 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7188 | SEC_LINKER_CREATED | SEC_READONLY);
7189
0a44bf69
RS
7190 /* The psABI requires a read-only .dynamic section, but the VxWorks
7191 EABI doesn't. */
7192 if (!htab->is_vxworks)
b49e97c9 7193 {
3d4d4302 7194 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7195 if (s != NULL)
7196 {
7197 if (! bfd_set_section_flags (abfd, s, flags))
7198 return FALSE;
7199 }
b49e97c9
TS
7200 }
7201
7202 /* We need to create .got section. */
23cc69b6 7203 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7204 return FALSE;
7205
0a44bf69 7206 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7207 return FALSE;
b49e97c9 7208
b49e97c9 7209 /* Create .stub section. */
3d4d4302
AM
7210 s = bfd_make_section_anyway_with_flags (abfd,
7211 MIPS_ELF_STUB_SECTION_NAME (abfd),
7212 flags | SEC_CODE);
4e41d0d7
RS
7213 if (s == NULL
7214 || ! bfd_set_section_alignment (abfd, s,
7215 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7216 return FALSE;
7217 htab->sstubs = s;
b49e97c9 7218
e6aea42d 7219 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7220 && !info->shared
3d4d4302 7221 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7222 {
3d4d4302
AM
7223 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7224 flags &~ (flagword) SEC_READONLY);
b49e97c9 7225 if (s == NULL
b49e97c9
TS
7226 || ! bfd_set_section_alignment (abfd, s,
7227 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7228 return FALSE;
b49e97c9
TS
7229 }
7230
7231 /* On IRIX5, we adjust add some additional symbols and change the
7232 alignments of several sections. There is no ABI documentation
7233 indicating that this is necessary on IRIX6, nor any evidence that
7234 the linker takes such action. */
7235 if (IRIX_COMPAT (abfd) == ict_irix5)
7236 {
7237 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7238 {
14a793b2 7239 bh = NULL;
b49e97c9 7240 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7241 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7242 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7243 return FALSE;
14a793b2
AM
7244
7245 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7246 h->non_elf = 0;
7247 h->def_regular = 1;
b49e97c9
TS
7248 h->type = STT_SECTION;
7249
c152c796 7250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7251 return FALSE;
b49e97c9
TS
7252 }
7253
7254 /* We need to create a .compact_rel section. */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7258 return FALSE;
b49e97c9
TS
7259 }
7260
44c410de 7261 /* Change alignments of some sections. */
3d4d4302 7262 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7263 if (s != NULL)
d80dcc6a 7264 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7265 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7266 if (s != NULL)
d80dcc6a 7267 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7268 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7269 if (s != NULL)
d80dcc6a 7270 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7271 /* ??? */
b49e97c9
TS
7272 s = bfd_get_section_by_name (abfd, ".reginfo");
7273 if (s != NULL)
d80dcc6a 7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7275 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7276 if (s != NULL)
d80dcc6a 7277 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7278 }
7279
7280 if (!info->shared)
7281 {
14a793b2
AM
7282 const char *name;
7283
7284 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7285 bh = NULL;
7286 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7287 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7288 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7289 return FALSE;
14a793b2
AM
7290
7291 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7292 h->non_elf = 0;
7293 h->def_regular = 1;
b49e97c9
TS
7294 h->type = STT_SECTION;
7295
c152c796 7296 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7297 return FALSE;
b49e97c9
TS
7298
7299 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7300 {
7301 /* __rld_map is a four byte word located in the .data section
7302 and is filled in by the rtld to contain a pointer to
7303 the _r_debug structure. Its symbol value will be set in
7304 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7305 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7306 BFD_ASSERT (s != NULL);
14a793b2 7307
0abfb97a
L
7308 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7309 bh = NULL;
7310 if (!(_bfd_generic_link_add_one_symbol
7311 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7312 get_elf_backend_data (abfd)->collect, &bh)))
7313 return FALSE;
b49e97c9 7314
0abfb97a
L
7315 h = (struct elf_link_hash_entry *) bh;
7316 h->non_elf = 0;
7317 h->def_regular = 1;
7318 h->type = STT_OBJECT;
7319
7320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7321 return FALSE;
b4082c70 7322 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7323 }
7324 }
7325
861fb55a
DJ
7326 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7327 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7328 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7329 return FALSE;
7330
7331 /* Cache the sections created above. */
3d4d4302
AM
7332 htab->splt = bfd_get_linker_section (abfd, ".plt");
7333 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7334 if (htab->is_vxworks)
7335 {
3d4d4302
AM
7336 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7337 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7338 }
7339 else
3d4d4302 7340 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7341 if (!htab->sdynbss
7342 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7343 || !htab->srelplt
7344 || !htab->splt)
7345 abort ();
0a44bf69 7346
861fb55a
DJ
7347 if (htab->is_vxworks)
7348 {
0a44bf69
RS
7349 /* Do the usual VxWorks handling. */
7350 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7351 return FALSE;
7352
7353 /* Work out the PLT sizes. */
7354 if (info->shared)
7355 {
7356 htab->plt_header_size
7357 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7358 htab->plt_entry_size
7359 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7360 }
7361 else
7362 {
7363 htab->plt_header_size
7364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7365 htab->plt_entry_size
7366 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7367 }
7368 }
861fb55a
DJ
7369 else if (!info->shared)
7370 {
7371 /* All variants of the plt0 entry are the same size. */
7372 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7373 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7374 }
0a44bf69 7375
b34976b6 7376 return TRUE;
b49e97c9
TS
7377}
7378\f
c224138d
RS
7379/* Return true if relocation REL against section SEC is a REL rather than
7380 RELA relocation. RELOCS is the first relocation in the section and
7381 ABFD is the bfd that contains SEC. */
7382
7383static bfd_boolean
7384mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7385 const Elf_Internal_Rela *relocs,
7386 const Elf_Internal_Rela *rel)
7387{
7388 Elf_Internal_Shdr *rel_hdr;
7389 const struct elf_backend_data *bed;
7390
d4730f92
BS
7391 /* To determine which flavor of relocation this is, we depend on the
7392 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7393 rel_hdr = elf_section_data (sec)->rel.hdr;
7394 if (rel_hdr == NULL)
7395 return FALSE;
c224138d 7396 bed = get_elf_backend_data (abfd);
d4730f92
BS
7397 return ((size_t) (rel - relocs)
7398 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7399}
7400
7401/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7402 HOWTO is the relocation's howto and CONTENTS points to the contents
7403 of the section that REL is against. */
7404
7405static bfd_vma
7406mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7407 reloc_howto_type *howto, bfd_byte *contents)
7408{
7409 bfd_byte *location;
7410 unsigned int r_type;
7411 bfd_vma addend;
7412
7413 r_type = ELF_R_TYPE (abfd, rel->r_info);
7414 location = contents + rel->r_offset;
7415
7416 /* Get the addend, which is stored in the input file. */
df58fc94 7417 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7418 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7419 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7420
7421 return addend & howto->src_mask;
7422}
7423
7424/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7425 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7426 and update *ADDEND with the final addend. Return true on success
7427 or false if the LO16 could not be found. RELEND is the exclusive
7428 upper bound on the relocations for REL's section. */
7429
7430static bfd_boolean
7431mips_elf_add_lo16_rel_addend (bfd *abfd,
7432 const Elf_Internal_Rela *rel,
7433 const Elf_Internal_Rela *relend,
7434 bfd_byte *contents, bfd_vma *addend)
7435{
7436 unsigned int r_type, lo16_type;
7437 const Elf_Internal_Rela *lo16_relocation;
7438 reloc_howto_type *lo16_howto;
7439 bfd_vma l;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7442 if (mips16_reloc_p (r_type))
c224138d 7443 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7444 else if (micromips_reloc_p (r_type))
7445 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7446 else
7447 lo16_type = R_MIPS_LO16;
7448
7449 /* The combined value is the sum of the HI16 addend, left-shifted by
7450 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7451 code does a `lui' of the HI16 value, and then an `addiu' of the
7452 LO16 value.)
7453
7454 Scan ahead to find a matching LO16 relocation.
7455
7456 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7457 be immediately following. However, for the IRIX6 ABI, the next
7458 relocation may be a composed relocation consisting of several
7459 relocations for the same address. In that case, the R_MIPS_LO16
7460 relocation may occur as one of these. We permit a similar
7461 extension in general, as that is useful for GCC.
7462
7463 In some cases GCC dead code elimination removes the LO16 but keeps
7464 the corresponding HI16. This is strictly speaking a violation of
7465 the ABI but not immediately harmful. */
7466 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7467 if (lo16_relocation == NULL)
7468 return FALSE;
7469
7470 /* Obtain the addend kept there. */
7471 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7472 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7473
7474 l <<= lo16_howto->rightshift;
7475 l = _bfd_mips_elf_sign_extend (l, 16);
7476
7477 *addend <<= 16;
7478 *addend += l;
7479 return TRUE;
7480}
7481
7482/* Try to read the contents of section SEC in bfd ABFD. Return true and
7483 store the contents in *CONTENTS on success. Assume that *CONTENTS
7484 already holds the contents if it is nonull on entry. */
7485
7486static bfd_boolean
7487mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7488{
7489 if (*contents)
7490 return TRUE;
7491
7492 /* Get cached copy if it exists. */
7493 if (elf_section_data (sec)->this_hdr.contents != NULL)
7494 {
7495 *contents = elf_section_data (sec)->this_hdr.contents;
7496 return TRUE;
7497 }
7498
7499 return bfd_malloc_and_get_section (abfd, sec, contents);
7500}
7501
b49e97c9
TS
7502/* Look through the relocs for a section during the first phase, and
7503 allocate space in the global offset table. */
7504
b34976b6 7505bfd_boolean
9719ad41
RS
7506_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7507 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7508{
7509 const char *name;
7510 bfd *dynobj;
7511 Elf_Internal_Shdr *symtab_hdr;
7512 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7513 size_t extsymoff;
7514 const Elf_Internal_Rela *rel;
7515 const Elf_Internal_Rela *rel_end;
b49e97c9 7516 asection *sreloc;
9c5bfbb7 7517 const struct elf_backend_data *bed;
0a44bf69 7518 struct mips_elf_link_hash_table *htab;
c224138d
RS
7519 bfd_byte *contents;
7520 bfd_vma addend;
7521 reloc_howto_type *howto;
b49e97c9 7522
1049f94e 7523 if (info->relocatable)
b34976b6 7524 return TRUE;
b49e97c9 7525
0a44bf69 7526 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7527 BFD_ASSERT (htab != NULL);
7528
b49e97c9
TS
7529 dynobj = elf_hash_table (info)->dynobj;
7530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7531 sym_hashes = elf_sym_hashes (abfd);
7532 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7533
738e5348
RS
7534 bed = get_elf_backend_data (abfd);
7535 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7536
b49e97c9
TS
7537 /* Check for the mips16 stub sections. */
7538
7539 name = bfd_get_section_name (abfd, sec);
b9d58d71 7540 if (FN_STUB_P (name))
b49e97c9
TS
7541 {
7542 unsigned long r_symndx;
7543
7544 /* Look at the relocation information to figure out which symbol
7545 this is for. */
7546
cb4437b8 7547 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7548 if (r_symndx == 0)
7549 {
7550 (*_bfd_error_handler)
7551 (_("%B: Warning: cannot determine the target function for"
7552 " stub section `%s'"),
7553 abfd, name);
7554 bfd_set_error (bfd_error_bad_value);
7555 return FALSE;
7556 }
b49e97c9
TS
7557
7558 if (r_symndx < extsymoff
7559 || sym_hashes[r_symndx - extsymoff] == NULL)
7560 {
7561 asection *o;
7562
7563 /* This stub is for a local symbol. This stub will only be
7564 needed if there is some relocation in this BFD, other
7565 than a 16 bit function call, which refers to this symbol. */
7566 for (o = abfd->sections; o != NULL; o = o->next)
7567 {
7568 Elf_Internal_Rela *sec_relocs;
7569 const Elf_Internal_Rela *r, *rend;
7570
7571 /* We can ignore stub sections when looking for relocs. */
7572 if ((o->flags & SEC_RELOC) == 0
7573 || o->reloc_count == 0
738e5348 7574 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7575 continue;
7576
45d6a902 7577 sec_relocs
9719ad41 7578 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7579 info->keep_memory);
b49e97c9 7580 if (sec_relocs == NULL)
b34976b6 7581 return FALSE;
b49e97c9
TS
7582
7583 rend = sec_relocs + o->reloc_count;
7584 for (r = sec_relocs; r < rend; r++)
7585 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7586 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7587 break;
7588
6cdc0ccc 7589 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7590 free (sec_relocs);
7591
7592 if (r < rend)
7593 break;
7594 }
7595
7596 if (o == NULL)
7597 {
7598 /* There is no non-call reloc for this stub, so we do
7599 not need it. Since this function is called before
7600 the linker maps input sections to output sections, we
7601 can easily discard it by setting the SEC_EXCLUDE
7602 flag. */
7603 sec->flags |= SEC_EXCLUDE;
b34976b6 7604 return TRUE;
b49e97c9
TS
7605 }
7606
7607 /* Record this stub in an array of local symbol stubs for
7608 this BFD. */
7609 if (elf_tdata (abfd)->local_stubs == NULL)
7610 {
7611 unsigned long symcount;
7612 asection **n;
7613 bfd_size_type amt;
7614
7615 if (elf_bad_symtab (abfd))
7616 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7617 else
7618 symcount = symtab_hdr->sh_info;
7619 amt = symcount * sizeof (asection *);
9719ad41 7620 n = bfd_zalloc (abfd, amt);
b49e97c9 7621 if (n == NULL)
b34976b6 7622 return FALSE;
b49e97c9
TS
7623 elf_tdata (abfd)->local_stubs = n;
7624 }
7625
b9d58d71 7626 sec->flags |= SEC_KEEP;
b49e97c9
TS
7627 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7628
7629 /* We don't need to set mips16_stubs_seen in this case.
7630 That flag is used to see whether we need to look through
7631 the global symbol table for stubs. We don't need to set
7632 it here, because we just have a local stub. */
7633 }
7634 else
7635 {
7636 struct mips_elf_link_hash_entry *h;
7637
7638 h = ((struct mips_elf_link_hash_entry *)
7639 sym_hashes[r_symndx - extsymoff]);
7640
973a3492
L
7641 while (h->root.root.type == bfd_link_hash_indirect
7642 || h->root.root.type == bfd_link_hash_warning)
7643 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7644
b49e97c9
TS
7645 /* H is the symbol this stub is for. */
7646
b9d58d71
TS
7647 /* If we already have an appropriate stub for this function, we
7648 don't need another one, so we can discard this one. Since
7649 this function is called before the linker maps input sections
7650 to output sections, we can easily discard it by setting the
7651 SEC_EXCLUDE flag. */
7652 if (h->fn_stub != NULL)
7653 {
7654 sec->flags |= SEC_EXCLUDE;
7655 return TRUE;
7656 }
7657
7658 sec->flags |= SEC_KEEP;
b49e97c9 7659 h->fn_stub = sec;
b34976b6 7660 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7661 }
7662 }
b9d58d71 7663 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7664 {
7665 unsigned long r_symndx;
7666 struct mips_elf_link_hash_entry *h;
7667 asection **loc;
7668
7669 /* Look at the relocation information to figure out which symbol
7670 this is for. */
7671
cb4437b8 7672 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7673 if (r_symndx == 0)
7674 {
7675 (*_bfd_error_handler)
7676 (_("%B: Warning: cannot determine the target function for"
7677 " stub section `%s'"),
7678 abfd, name);
7679 bfd_set_error (bfd_error_bad_value);
7680 return FALSE;
7681 }
b49e97c9
TS
7682
7683 if (r_symndx < extsymoff
7684 || sym_hashes[r_symndx - extsymoff] == NULL)
7685 {
b9d58d71 7686 asection *o;
b49e97c9 7687
b9d58d71
TS
7688 /* This stub is for a local symbol. This stub will only be
7689 needed if there is some relocation (R_MIPS16_26) in this BFD
7690 that refers to this symbol. */
7691 for (o = abfd->sections; o != NULL; o = o->next)
7692 {
7693 Elf_Internal_Rela *sec_relocs;
7694 const Elf_Internal_Rela *r, *rend;
7695
7696 /* We can ignore stub sections when looking for relocs. */
7697 if ((o->flags & SEC_RELOC) == 0
7698 || o->reloc_count == 0
738e5348 7699 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7700 continue;
7701
7702 sec_relocs
7703 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7704 info->keep_memory);
7705 if (sec_relocs == NULL)
7706 return FALSE;
7707
7708 rend = sec_relocs + o->reloc_count;
7709 for (r = sec_relocs; r < rend; r++)
7710 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7711 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7712 break;
7713
7714 if (elf_section_data (o)->relocs != sec_relocs)
7715 free (sec_relocs);
7716
7717 if (r < rend)
7718 break;
7719 }
7720
7721 if (o == NULL)
7722 {
7723 /* There is no non-call reloc for this stub, so we do
7724 not need it. Since this function is called before
7725 the linker maps input sections to output sections, we
7726 can easily discard it by setting the SEC_EXCLUDE
7727 flag. */
7728 sec->flags |= SEC_EXCLUDE;
7729 return TRUE;
7730 }
7731
7732 /* Record this stub in an array of local symbol call_stubs for
7733 this BFD. */
7734 if (elf_tdata (abfd)->local_call_stubs == NULL)
7735 {
7736 unsigned long symcount;
7737 asection **n;
7738 bfd_size_type amt;
7739
7740 if (elf_bad_symtab (abfd))
7741 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7742 else
7743 symcount = symtab_hdr->sh_info;
7744 amt = symcount * sizeof (asection *);
7745 n = bfd_zalloc (abfd, amt);
7746 if (n == NULL)
7747 return FALSE;
7748 elf_tdata (abfd)->local_call_stubs = n;
7749 }
b49e97c9 7750
b9d58d71
TS
7751 sec->flags |= SEC_KEEP;
7752 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7753
b9d58d71
TS
7754 /* We don't need to set mips16_stubs_seen in this case.
7755 That flag is used to see whether we need to look through
7756 the global symbol table for stubs. We don't need to set
7757 it here, because we just have a local stub. */
7758 }
b49e97c9 7759 else
b49e97c9 7760 {
b9d58d71
TS
7761 h = ((struct mips_elf_link_hash_entry *)
7762 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7763
b9d58d71 7764 /* H is the symbol this stub is for. */
68ffbac6 7765
b9d58d71
TS
7766 if (CALL_FP_STUB_P (name))
7767 loc = &h->call_fp_stub;
7768 else
7769 loc = &h->call_stub;
68ffbac6 7770
b9d58d71
TS
7771 /* If we already have an appropriate stub for this function, we
7772 don't need another one, so we can discard this one. Since
7773 this function is called before the linker maps input sections
7774 to output sections, we can easily discard it by setting the
7775 SEC_EXCLUDE flag. */
7776 if (*loc != NULL)
7777 {
7778 sec->flags |= SEC_EXCLUDE;
7779 return TRUE;
7780 }
b49e97c9 7781
b9d58d71
TS
7782 sec->flags |= SEC_KEEP;
7783 *loc = sec;
7784 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7785 }
b49e97c9
TS
7786 }
7787
b49e97c9 7788 sreloc = NULL;
c224138d 7789 contents = NULL;
b49e97c9
TS
7790 for (rel = relocs; rel < rel_end; ++rel)
7791 {
7792 unsigned long r_symndx;
7793 unsigned int r_type;
7794 struct elf_link_hash_entry *h;
861fb55a 7795 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7796
7797 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7798 r_type = ELF_R_TYPE (abfd, rel->r_info);
7799
7800 if (r_symndx < extsymoff)
7801 h = NULL;
7802 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7803 {
7804 (*_bfd_error_handler)
d003868e
AM
7805 (_("%B: Malformed reloc detected for section %s"),
7806 abfd, name);
b49e97c9 7807 bfd_set_error (bfd_error_bad_value);
b34976b6 7808 return FALSE;
b49e97c9
TS
7809 }
7810 else
7811 {
7812 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7813 while (h != NULL
7814 && (h->root.type == bfd_link_hash_indirect
7815 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7817 }
b49e97c9 7818
861fb55a
DJ
7819 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7820 relocation into a dynamic one. */
7821 can_make_dynamic_p = FALSE;
7822 switch (r_type)
7823 {
861fb55a
DJ
7824 case R_MIPS_GOT16:
7825 case R_MIPS_CALL16:
7826 case R_MIPS_CALL_HI16:
7827 case R_MIPS_CALL_LO16:
7828 case R_MIPS_GOT_HI16:
7829 case R_MIPS_GOT_LO16:
7830 case R_MIPS_GOT_PAGE:
7831 case R_MIPS_GOT_OFST:
7832 case R_MIPS_GOT_DISP:
7833 case R_MIPS_TLS_GOTTPREL:
7834 case R_MIPS_TLS_GD:
7835 case R_MIPS_TLS_LDM:
d0f13682
CLT
7836 case R_MIPS16_GOT16:
7837 case R_MIPS16_CALL16:
7838 case R_MIPS16_TLS_GOTTPREL:
7839 case R_MIPS16_TLS_GD:
7840 case R_MIPS16_TLS_LDM:
df58fc94
RS
7841 case R_MICROMIPS_GOT16:
7842 case R_MICROMIPS_CALL16:
7843 case R_MICROMIPS_CALL_HI16:
7844 case R_MICROMIPS_CALL_LO16:
7845 case R_MICROMIPS_GOT_HI16:
7846 case R_MICROMIPS_GOT_LO16:
7847 case R_MICROMIPS_GOT_PAGE:
7848 case R_MICROMIPS_GOT_OFST:
7849 case R_MICROMIPS_GOT_DISP:
7850 case R_MICROMIPS_TLS_GOTTPREL:
7851 case R_MICROMIPS_TLS_GD:
7852 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7853 if (dynobj == NULL)
7854 elf_hash_table (info)->dynobj = dynobj = abfd;
7855 if (!mips_elf_create_got_section (dynobj, info))
7856 return FALSE;
7857 if (htab->is_vxworks && !info->shared)
b49e97c9 7858 {
861fb55a
DJ
7859 (*_bfd_error_handler)
7860 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7861 abfd, (unsigned long) rel->r_offset);
7862 bfd_set_error (bfd_error_bad_value);
7863 return FALSE;
b49e97c9 7864 }
861fb55a 7865 break;
b49e97c9 7866
99da6b5f
AN
7867 /* This is just a hint; it can safely be ignored. Don't set
7868 has_static_relocs for the corresponding symbol. */
7869 case R_MIPS_JALR:
df58fc94 7870 case R_MICROMIPS_JALR:
99da6b5f
AN
7871 break;
7872
861fb55a
DJ
7873 case R_MIPS_32:
7874 case R_MIPS_REL32:
7875 case R_MIPS_64:
7876 /* In VxWorks executables, references to external symbols
7877 must be handled using copy relocs or PLT entries; it is not
7878 possible to convert this relocation into a dynamic one.
7879
7880 For executables that use PLTs and copy-relocs, we have a
7881 choice between converting the relocation into a dynamic
7882 one or using copy relocations or PLT entries. It is
7883 usually better to do the former, unless the relocation is
7884 against a read-only section. */
7885 if ((info->shared
7886 || (h != NULL
7887 && !htab->is_vxworks
7888 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7889 && !(!info->nocopyreloc
7890 && !PIC_OBJECT_P (abfd)
7891 && MIPS_ELF_READONLY_SECTION (sec))))
7892 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7893 {
861fb55a 7894 can_make_dynamic_p = TRUE;
b49e97c9
TS
7895 if (dynobj == NULL)
7896 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7897 break;
861fb55a 7898 }
21d790b9
MR
7899 /* For sections that are not SEC_ALLOC a copy reloc would be
7900 output if possible (implying questionable semantics for
7901 read-only data objects) or otherwise the final link would
7902 fail as ld.so will not process them and could not therefore
7903 handle any outstanding dynamic relocations.
7904
7905 For such sections that are also SEC_DEBUGGING, we can avoid
7906 these problems by simply ignoring any relocs as these
7907 sections have a predefined use and we know it is safe to do
7908 so.
7909
7910 This is needed in cases such as a global symbol definition
7911 in a shared library causing a common symbol from an object
7912 file to be converted to an undefined reference. If that
7913 happens, then all the relocations against this symbol from
7914 SEC_DEBUGGING sections in the object file will resolve to
7915 nil. */
7916 if ((sec->flags & SEC_DEBUGGING) != 0)
7917 break;
861fb55a 7918 /* Fall through. */
b49e97c9 7919
861fb55a
DJ
7920 default:
7921 /* Most static relocations require pointer equality, except
7922 for branches. */
7923 if (h)
7924 h->pointer_equality_needed = TRUE;
7925 /* Fall through. */
b49e97c9 7926
861fb55a
DJ
7927 case R_MIPS_26:
7928 case R_MIPS_PC16:
7929 case R_MIPS16_26:
df58fc94
RS
7930 case R_MICROMIPS_26_S1:
7931 case R_MICROMIPS_PC7_S1:
7932 case R_MICROMIPS_PC10_S1:
7933 case R_MICROMIPS_PC16_S1:
7934 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7935 if (h)
7936 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7937 break;
b49e97c9
TS
7938 }
7939
0a44bf69
RS
7940 if (h)
7941 {
0a44bf69
RS
7942 /* Relocations against the special VxWorks __GOTT_BASE__ and
7943 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7944 room for them in .rela.dyn. */
7945 if (is_gott_symbol (info, h))
7946 {
7947 if (sreloc == NULL)
7948 {
7949 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7950 if (sreloc == NULL)
7951 return FALSE;
7952 }
7953 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7954 if (MIPS_ELF_READONLY_SECTION (sec))
7955 /* We tell the dynamic linker that there are
7956 relocations against the text segment. */
7957 info->flags |= DF_TEXTREL;
0a44bf69
RS
7958 }
7959 }
df58fc94
RS
7960 else if (call_lo16_reloc_p (r_type)
7961 || got_lo16_reloc_p (r_type)
7962 || got_disp_reloc_p (r_type)
738e5348 7963 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7964 {
7965 /* We may need a local GOT entry for this relocation. We
7966 don't count R_MIPS_GOT_PAGE because we can estimate the
7967 maximum number of pages needed by looking at the size of
738e5348
RS
7968 the segment. Similar comments apply to R_MIPS*_GOT16 and
7969 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7970 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7971 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7972 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 7973 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 7974 rel->r_addend, info, r_type))
f4416af6 7975 return FALSE;
b49e97c9
TS
7976 }
7977
8f0c309a
CLT
7978 if (h != NULL
7979 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7980 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
7981 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7982
b49e97c9
TS
7983 switch (r_type)
7984 {
7985 case R_MIPS_CALL16:
738e5348 7986 case R_MIPS16_CALL16:
df58fc94 7987 case R_MICROMIPS_CALL16:
b49e97c9
TS
7988 if (h == NULL)
7989 {
7990 (*_bfd_error_handler)
d003868e
AM
7991 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7992 abfd, (unsigned long) rel->r_offset);
b49e97c9 7993 bfd_set_error (bfd_error_bad_value);
b34976b6 7994 return FALSE;
b49e97c9
TS
7995 }
7996 /* Fall through. */
7997
7998 case R_MIPS_CALL_HI16:
7999 case R_MIPS_CALL_LO16:
df58fc94
RS
8000 case R_MICROMIPS_CALL_HI16:
8001 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8002 if (h != NULL)
8003 {
6ccf4795
RS
8004 /* Make sure there is room in the regular GOT to hold the
8005 function's address. We may eliminate it in favour of
8006 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8007 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8008 r_type))
b34976b6 8009 return FALSE;
b49e97c9
TS
8010
8011 /* We need a stub, not a plt entry for the undefined
8012 function. But we record it as if it needs plt. See
c152c796 8013 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8014 h->needs_plt = 1;
b49e97c9
TS
8015 h->type = STT_FUNC;
8016 }
8017 break;
8018
0fdc1bf1 8019 case R_MIPS_GOT_PAGE:
df58fc94 8020 case R_MICROMIPS_GOT_PAGE:
0fdc1bf1
AO
8021 /* If this is a global, overridable symbol, GOT_PAGE will
8022 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d 8023 if (h)
0fdc1bf1
AO
8024 {
8025 struct mips_elf_link_hash_entry *hmips =
8026 (struct mips_elf_link_hash_entry *) h;
143d77c5 8027
3a3b6725 8028 /* This symbol is definitely not overridable. */
f5385ebf 8029 if (hmips->root.def_regular
0fdc1bf1 8030 && ! (info->shared && ! info->symbolic
f5385ebf 8031 && ! hmips->root.forced_local))
c224138d 8032 h = NULL;
0fdc1bf1
AO
8033 }
8034 /* Fall through. */
8035
738e5348 8036 case R_MIPS16_GOT16:
b49e97c9
TS
8037 case R_MIPS_GOT16:
8038 case R_MIPS_GOT_HI16:
8039 case R_MIPS_GOT_LO16:
df58fc94
RS
8040 case R_MICROMIPS_GOT16:
8041 case R_MICROMIPS_GOT_HI16:
8042 case R_MICROMIPS_GOT_LO16:
8043 if (!h || got_page_reloc_p (r_type))
c224138d 8044 {
3a3b6725
DJ
8045 /* This relocation needs (or may need, if h != NULL) a
8046 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8047 know for sure until we know whether the symbol is
8048 preemptible. */
c224138d
RS
8049 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8050 {
8051 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8052 return FALSE;
8053 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8054 addend = mips_elf_read_rel_addend (abfd, rel,
8055 howto, contents);
9684f078 8056 if (got16_reloc_p (r_type))
c224138d
RS
8057 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8058 contents, &addend);
8059 else
8060 addend <<= howto->rightshift;
8061 }
8062 else
8063 addend = rel->r_addend;
a8028dd0
RS
8064 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8065 addend))
c224138d 8066 return FALSE;
c224138d
RS
8067 }
8068 /* Fall through. */
8069
b49e97c9 8070 case R_MIPS_GOT_DISP:
df58fc94 8071 case R_MICROMIPS_GOT_DISP:
6ccf4795 8072 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8073 FALSE, r_type))
b34976b6 8074 return FALSE;
b49e97c9
TS
8075 break;
8076
0f20cc35 8077 case R_MIPS_TLS_GOTTPREL:
d0f13682 8078 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8079 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8080 if (info->shared)
8081 info->flags |= DF_STATIC_TLS;
8082 /* Fall through */
8083
8084 case R_MIPS_TLS_LDM:
d0f13682 8085 case R_MIPS16_TLS_LDM:
df58fc94
RS
8086 case R_MICROMIPS_TLS_LDM:
8087 if (tls_ldm_reloc_p (r_type))
0f20cc35 8088 {
cf35638d 8089 r_symndx = STN_UNDEF;
0f20cc35
DJ
8090 h = NULL;
8091 }
8092 /* Fall through */
8093
8094 case R_MIPS_TLS_GD:
d0f13682 8095 case R_MIPS16_TLS_GD:
df58fc94 8096 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8097 /* This symbol requires a global offset table entry, or two
8098 for TLS GD relocations. */
e641e783
RS
8099 if (h != NULL)
8100 {
8101 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8102 FALSE, r_type))
8103 return FALSE;
8104 }
8105 else
8106 {
8107 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8108 rel->r_addend,
8109 info, r_type))
8110 return FALSE;
8111 }
0f20cc35
DJ
8112 break;
8113
b49e97c9
TS
8114 case R_MIPS_32:
8115 case R_MIPS_REL32:
8116 case R_MIPS_64:
0a44bf69
RS
8117 /* In VxWorks executables, references to external symbols
8118 are handled using copy relocs or PLT stubs, so there's
8119 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8120 if (can_make_dynamic_p)
b49e97c9
TS
8121 {
8122 if (sreloc == NULL)
8123 {
0a44bf69 8124 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8125 if (sreloc == NULL)
f4416af6 8126 return FALSE;
b49e97c9 8127 }
9a59ad6b 8128 if (info->shared && h == NULL)
82f0cfbd
EC
8129 {
8130 /* When creating a shared object, we must copy these
8131 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8132 relocs. Make room for this reloc in .rel(a).dyn. */
8133 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8134 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8135 /* We tell the dynamic linker that there are
8136 relocations against the text segment. */
8137 info->flags |= DF_TEXTREL;
8138 }
b49e97c9
TS
8139 else
8140 {
8141 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8142
9a59ad6b
DJ
8143 /* For a shared object, we must copy this relocation
8144 unless the symbol turns out to be undefined and
8145 weak with non-default visibility, in which case
8146 it will be left as zero.
8147
8148 We could elide R_MIPS_REL32 for locally binding symbols
8149 in shared libraries, but do not yet do so.
8150
8151 For an executable, we only need to copy this
8152 reloc if the symbol is defined in a dynamic
8153 object. */
b49e97c9
TS
8154 hmips = (struct mips_elf_link_hash_entry *) h;
8155 ++hmips->possibly_dynamic_relocs;
943284cc 8156 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8157 /* We need it to tell the dynamic linker if there
8158 are relocations against the text segment. */
8159 hmips->readonly_reloc = TRUE;
b49e97c9 8160 }
b49e97c9
TS
8161 }
8162
8163 if (SGI_COMPAT (abfd))
8164 mips_elf_hash_table (info)->compact_rel_size +=
8165 sizeof (Elf32_External_crinfo);
8166 break;
8167
8168 case R_MIPS_26:
8169 case R_MIPS_GPREL16:
8170 case R_MIPS_LITERAL:
8171 case R_MIPS_GPREL32:
df58fc94
RS
8172 case R_MICROMIPS_26_S1:
8173 case R_MICROMIPS_GPREL16:
8174 case R_MICROMIPS_LITERAL:
8175 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8176 if (SGI_COMPAT (abfd))
8177 mips_elf_hash_table (info)->compact_rel_size +=
8178 sizeof (Elf32_External_crinfo);
8179 break;
8180
8181 /* This relocation describes the C++ object vtable hierarchy.
8182 Reconstruct it for later use during GC. */
8183 case R_MIPS_GNU_VTINHERIT:
c152c796 8184 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8185 return FALSE;
b49e97c9
TS
8186 break;
8187
8188 /* This relocation describes which C++ vtable entries are actually
8189 used. Record for later use during GC. */
8190 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8191 BFD_ASSERT (h != NULL);
8192 if (h != NULL
8193 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8194 return FALSE;
b49e97c9
TS
8195 break;
8196
8197 default:
8198 break;
8199 }
8200
8201 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8202 related to taking the function's address. This doesn't apply to
8203 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8204 a normal .got entry. */
8205 if (!htab->is_vxworks && h != NULL)
8206 switch (r_type)
8207 {
8208 default:
8209 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8210 break;
738e5348 8211 case R_MIPS16_CALL16:
0a44bf69
RS
8212 case R_MIPS_CALL16:
8213 case R_MIPS_CALL_HI16:
8214 case R_MIPS_CALL_LO16:
8215 case R_MIPS_JALR:
df58fc94
RS
8216 case R_MICROMIPS_CALL16:
8217 case R_MICROMIPS_CALL_HI16:
8218 case R_MICROMIPS_CALL_LO16:
8219 case R_MICROMIPS_JALR:
0a44bf69
RS
8220 break;
8221 }
b49e97c9 8222
738e5348
RS
8223 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8224 if there is one. We only need to handle global symbols here;
8225 we decide whether to keep or delete stubs for local symbols
8226 when processing the stub's relocations. */
b49e97c9 8227 if (h != NULL
738e5348
RS
8228 && !mips16_call_reloc_p (r_type)
8229 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8230 {
8231 struct mips_elf_link_hash_entry *mh;
8232
8233 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8234 mh->need_fn_stub = TRUE;
b49e97c9 8235 }
861fb55a
DJ
8236
8237 /* Refuse some position-dependent relocations when creating a
8238 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8239 not PIC, but we can create dynamic relocations and the result
8240 will be fine. Also do not refuse R_MIPS_LO16, which can be
8241 combined with R_MIPS_GOT16. */
8242 if (info->shared)
8243 {
8244 switch (r_type)
8245 {
8246 case R_MIPS16_HI16:
8247 case R_MIPS_HI16:
8248 case R_MIPS_HIGHER:
8249 case R_MIPS_HIGHEST:
df58fc94
RS
8250 case R_MICROMIPS_HI16:
8251 case R_MICROMIPS_HIGHER:
8252 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8253 /* Don't refuse a high part relocation if it's against
8254 no symbol (e.g. part of a compound relocation). */
cf35638d 8255 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8256 break;
8257
8258 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8259 and has a special meaning. */
8260 if (!NEWABI_P (abfd) && h != NULL
8261 && strcmp (h->root.root.string, "_gp_disp") == 0)
8262 break;
8263
0fc1eb3c
RS
8264 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8265 if (is_gott_symbol (info, h))
8266 break;
8267
861fb55a
DJ
8268 /* FALLTHROUGH */
8269
8270 case R_MIPS16_26:
8271 case R_MIPS_26:
df58fc94 8272 case R_MICROMIPS_26_S1:
861fb55a
DJ
8273 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8274 (*_bfd_error_handler)
8275 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8276 abfd, howto->name,
8277 (h) ? h->root.root.string : "a local symbol");
8278 bfd_set_error (bfd_error_bad_value);
8279 return FALSE;
8280 default:
8281 break;
8282 }
8283 }
b49e97c9
TS
8284 }
8285
b34976b6 8286 return TRUE;
b49e97c9
TS
8287}
8288\f
d0647110 8289bfd_boolean
9719ad41
RS
8290_bfd_mips_relax_section (bfd *abfd, asection *sec,
8291 struct bfd_link_info *link_info,
8292 bfd_boolean *again)
d0647110
AO
8293{
8294 Elf_Internal_Rela *internal_relocs;
8295 Elf_Internal_Rela *irel, *irelend;
8296 Elf_Internal_Shdr *symtab_hdr;
8297 bfd_byte *contents = NULL;
d0647110
AO
8298 size_t extsymoff;
8299 bfd_boolean changed_contents = FALSE;
8300 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8301 Elf_Internal_Sym *isymbuf = NULL;
8302
8303 /* We are not currently changing any sizes, so only one pass. */
8304 *again = FALSE;
8305
1049f94e 8306 if (link_info->relocatable)
d0647110
AO
8307 return TRUE;
8308
9719ad41 8309 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8310 link_info->keep_memory);
d0647110
AO
8311 if (internal_relocs == NULL)
8312 return TRUE;
8313
8314 irelend = internal_relocs + sec->reloc_count
8315 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8316 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8317 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8318
8319 for (irel = internal_relocs; irel < irelend; irel++)
8320 {
8321 bfd_vma symval;
8322 bfd_signed_vma sym_offset;
8323 unsigned int r_type;
8324 unsigned long r_symndx;
8325 asection *sym_sec;
8326 unsigned long instruction;
8327
8328 /* Turn jalr into bgezal, and jr into beq, if they're marked
8329 with a JALR relocation, that indicate where they jump to.
8330 This saves some pipeline bubbles. */
8331 r_type = ELF_R_TYPE (abfd, irel->r_info);
8332 if (r_type != R_MIPS_JALR)
8333 continue;
8334
8335 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8336 /* Compute the address of the jump target. */
8337 if (r_symndx >= extsymoff)
8338 {
8339 struct mips_elf_link_hash_entry *h
8340 = ((struct mips_elf_link_hash_entry *)
8341 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8342
8343 while (h->root.root.type == bfd_link_hash_indirect
8344 || h->root.root.type == bfd_link_hash_warning)
8345 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8346
d0647110
AO
8347 /* If a symbol is undefined, or if it may be overridden,
8348 skip it. */
8349 if (! ((h->root.root.type == bfd_link_hash_defined
8350 || h->root.root.type == bfd_link_hash_defweak)
8351 && h->root.root.u.def.section)
8352 || (link_info->shared && ! link_info->symbolic
f5385ebf 8353 && !h->root.forced_local))
d0647110
AO
8354 continue;
8355
8356 sym_sec = h->root.root.u.def.section;
8357 if (sym_sec->output_section)
8358 symval = (h->root.root.u.def.value
8359 + sym_sec->output_section->vma
8360 + sym_sec->output_offset);
8361 else
8362 symval = h->root.root.u.def.value;
8363 }
8364 else
8365 {
8366 Elf_Internal_Sym *isym;
8367
8368 /* Read this BFD's symbols if we haven't done so already. */
8369 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8370 {
8371 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8372 if (isymbuf == NULL)
8373 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8374 symtab_hdr->sh_info, 0,
8375 NULL, NULL, NULL);
8376 if (isymbuf == NULL)
8377 goto relax_return;
8378 }
8379
8380 isym = isymbuf + r_symndx;
8381 if (isym->st_shndx == SHN_UNDEF)
8382 continue;
8383 else if (isym->st_shndx == SHN_ABS)
8384 sym_sec = bfd_abs_section_ptr;
8385 else if (isym->st_shndx == SHN_COMMON)
8386 sym_sec = bfd_com_section_ptr;
8387 else
8388 sym_sec
8389 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8390 symval = isym->st_value
8391 + sym_sec->output_section->vma
8392 + sym_sec->output_offset;
8393 }
8394
8395 /* Compute branch offset, from delay slot of the jump to the
8396 branch target. */
8397 sym_offset = (symval + irel->r_addend)
8398 - (sec_start + irel->r_offset + 4);
8399
8400 /* Branch offset must be properly aligned. */
8401 if ((sym_offset & 3) != 0)
8402 continue;
8403
8404 sym_offset >>= 2;
8405
8406 /* Check that it's in range. */
8407 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8408 continue;
143d77c5 8409
d0647110 8410 /* Get the section contents if we haven't done so already. */
c224138d
RS
8411 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8412 goto relax_return;
d0647110
AO
8413
8414 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8415
8416 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8417 if ((instruction & 0xfc1fffff) == 0x0000f809)
8418 instruction = 0x04110000;
8419 /* If it was jr <reg>, turn it into b <target>. */
8420 else if ((instruction & 0xfc1fffff) == 0x00000008)
8421 instruction = 0x10000000;
8422 else
8423 continue;
8424
8425 instruction |= (sym_offset & 0xffff);
8426 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8427 changed_contents = TRUE;
8428 }
8429
8430 if (contents != NULL
8431 && elf_section_data (sec)->this_hdr.contents != contents)
8432 {
8433 if (!changed_contents && !link_info->keep_memory)
8434 free (contents);
8435 else
8436 {
8437 /* Cache the section contents for elf_link_input_bfd. */
8438 elf_section_data (sec)->this_hdr.contents = contents;
8439 }
8440 }
8441 return TRUE;
8442
143d77c5 8443 relax_return:
eea6121a
AM
8444 if (contents != NULL
8445 && elf_section_data (sec)->this_hdr.contents != contents)
8446 free (contents);
d0647110
AO
8447 return FALSE;
8448}
8449\f
9a59ad6b
DJ
8450/* Allocate space for global sym dynamic relocs. */
8451
8452static bfd_boolean
8453allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8454{
8455 struct bfd_link_info *info = inf;
8456 bfd *dynobj;
8457 struct mips_elf_link_hash_entry *hmips;
8458 struct mips_elf_link_hash_table *htab;
8459
8460 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8461 BFD_ASSERT (htab != NULL);
8462
9a59ad6b
DJ
8463 dynobj = elf_hash_table (info)->dynobj;
8464 hmips = (struct mips_elf_link_hash_entry *) h;
8465
8466 /* VxWorks executables are handled elsewhere; we only need to
8467 allocate relocations in shared objects. */
8468 if (htab->is_vxworks && !info->shared)
8469 return TRUE;
8470
7686d77d
AM
8471 /* Ignore indirect symbols. All relocations against such symbols
8472 will be redirected to the target symbol. */
8473 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8474 return TRUE;
8475
9a59ad6b
DJ
8476 /* If this symbol is defined in a dynamic object, or we are creating
8477 a shared library, we will need to copy any R_MIPS_32 or
8478 R_MIPS_REL32 relocs against it into the output file. */
8479 if (! info->relocatable
8480 && hmips->possibly_dynamic_relocs != 0
8481 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8482 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8483 || info->shared))
8484 {
8485 bfd_boolean do_copy = TRUE;
8486
8487 if (h->root.type == bfd_link_hash_undefweak)
8488 {
8489 /* Do not copy relocations for undefined weak symbols with
8490 non-default visibility. */
8491 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8492 do_copy = FALSE;
8493
8494 /* Make sure undefined weak symbols are output as a dynamic
8495 symbol in PIEs. */
8496 else if (h->dynindx == -1 && !h->forced_local)
8497 {
8498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8499 return FALSE;
8500 }
8501 }
8502
8503 if (do_copy)
8504 {
aff469fa 8505 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8506 the SVR4 psABI requires it to have a dynamic symbol table
8507 index greater that DT_MIPS_GOTSYM if there are dynamic
8508 relocations against it.
8509
8510 VxWorks does not enforce the same mapping between the GOT
8511 and the symbol table, so the same requirement does not
8512 apply there. */
6ccf4795
RS
8513 if (!htab->is_vxworks)
8514 {
8515 if (hmips->global_got_area > GGA_RELOC_ONLY)
8516 hmips->global_got_area = GGA_RELOC_ONLY;
8517 hmips->got_only_for_calls = FALSE;
8518 }
aff469fa 8519
9a59ad6b
DJ
8520 mips_elf_allocate_dynamic_relocations
8521 (dynobj, info, hmips->possibly_dynamic_relocs);
8522 if (hmips->readonly_reloc)
8523 /* We tell the dynamic linker that there are relocations
8524 against the text segment. */
8525 info->flags |= DF_TEXTREL;
8526 }
8527 }
8528
8529 return TRUE;
8530}
8531
b49e97c9
TS
8532/* Adjust a symbol defined by a dynamic object and referenced by a
8533 regular object. The current definition is in some section of the
8534 dynamic object, but we're not including those sections. We have to
8535 change the definition to something the rest of the link can
8536 understand. */
8537
b34976b6 8538bfd_boolean
9719ad41
RS
8539_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8540 struct elf_link_hash_entry *h)
b49e97c9
TS
8541{
8542 bfd *dynobj;
8543 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8544 struct mips_elf_link_hash_table *htab;
b49e97c9 8545
5108fc1b 8546 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8547 BFD_ASSERT (htab != NULL);
8548
b49e97c9 8549 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8550 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8551
8552 /* Make sure we know what is going on here. */
8553 BFD_ASSERT (dynobj != NULL
f5385ebf 8554 && (h->needs_plt
f6e332e6 8555 || h->u.weakdef != NULL
f5385ebf
AM
8556 || (h->def_dynamic
8557 && h->ref_regular
8558 && !h->def_regular)));
b49e97c9 8559
b49e97c9 8560 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8561
861fb55a
DJ
8562 /* If there are call relocations against an externally-defined symbol,
8563 see whether we can create a MIPS lazy-binding stub for it. We can
8564 only do this if all references to the function are through call
8565 relocations, and in that case, the traditional lazy-binding stubs
8566 are much more efficient than PLT entries.
8567
8568 Traditional stubs are only available on SVR4 psABI-based systems;
8569 VxWorks always uses PLTs instead. */
8570 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8571 {
8572 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8573 return TRUE;
b49e97c9
TS
8574
8575 /* If this symbol is not defined in a regular file, then set
8576 the symbol to the stub location. This is required to make
8577 function pointers compare as equal between the normal
8578 executable and the shared library. */
f5385ebf 8579 if (!h->def_regular)
b49e97c9 8580 {
33bb52fb
RS
8581 hmips->needs_lazy_stub = TRUE;
8582 htab->lazy_stub_count++;
b34976b6 8583 return TRUE;
b49e97c9
TS
8584 }
8585 }
861fb55a
DJ
8586 /* As above, VxWorks requires PLT entries for externally-defined
8587 functions that are only accessed through call relocations.
b49e97c9 8588
861fb55a
DJ
8589 Both VxWorks and non-VxWorks targets also need PLT entries if there
8590 are static-only relocations against an externally-defined function.
8591 This can technically occur for shared libraries if there are
8592 branches to the symbol, although it is unlikely that this will be
8593 used in practice due to the short ranges involved. It can occur
8594 for any relative or absolute relocation in executables; in that
8595 case, the PLT entry becomes the function's canonical address. */
8596 else if (((h->needs_plt && !hmips->no_fn_stub)
8597 || (h->type == STT_FUNC && hmips->has_static_relocs))
8598 && htab->use_plts_and_copy_relocs
8599 && !SYMBOL_CALLS_LOCAL (info, h)
8600 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8601 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8602 {
861fb55a
DJ
8603 /* If this is the first symbol to need a PLT entry, allocate room
8604 for the header. */
8605 if (htab->splt->size == 0)
8606 {
8607 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8608
861fb55a
DJ
8609 /* If we're using the PLT additions to the psABI, each PLT
8610 entry is 16 bytes and the PLT0 entry is 32 bytes.
8611 Encourage better cache usage by aligning. We do this
8612 lazily to avoid pessimizing traditional objects. */
8613 if (!htab->is_vxworks
8614 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8615 return FALSE;
0a44bf69 8616
861fb55a
DJ
8617 /* Make sure that .got.plt is word-aligned. We do this lazily
8618 for the same reason as above. */
8619 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8620 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8621 return FALSE;
0a44bf69 8622
861fb55a 8623 htab->splt->size += htab->plt_header_size;
0a44bf69 8624
861fb55a
DJ
8625 /* On non-VxWorks targets, the first two entries in .got.plt
8626 are reserved. */
8627 if (!htab->is_vxworks)
a44acb1e
MR
8628 htab->sgotplt->size
8629 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8630
861fb55a
DJ
8631 /* On VxWorks, also allocate room for the header's
8632 .rela.plt.unloaded entries. */
8633 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8634 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8635 }
8636
8637 /* Assign the next .plt entry to this symbol. */
8638 h->plt.offset = htab->splt->size;
8639 htab->splt->size += htab->plt_entry_size;
8640
8641 /* If the output file has no definition of the symbol, set the
861fb55a 8642 symbol's value to the address of the stub. */
131eb6b7 8643 if (!info->shared && !h->def_regular)
0a44bf69
RS
8644 {
8645 h->root.u.def.section = htab->splt;
8646 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8647 /* For VxWorks, point at the PLT load stub rather than the
8648 lazy resolution stub; this stub will become the canonical
8649 function address. */
8650 if (htab->is_vxworks)
8651 h->root.u.def.value += 8;
0a44bf69
RS
8652 }
8653
861fb55a
DJ
8654 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8655 relocation. */
8656 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8657 htab->srelplt->size += (htab->is_vxworks
8658 ? MIPS_ELF_RELA_SIZE (dynobj)
8659 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8660
8661 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8662 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8663 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8664
861fb55a
DJ
8665 /* All relocations against this symbol that could have been made
8666 dynamic will now refer to the PLT entry instead. */
8667 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8668
0a44bf69
RS
8669 return TRUE;
8670 }
8671
8672 /* If this is a weak symbol, and there is a real definition, the
8673 processor independent code will have arranged for us to see the
8674 real definition first, and we can just use the same value. */
8675 if (h->u.weakdef != NULL)
8676 {
8677 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8678 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8679 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8680 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8681 return TRUE;
8682 }
8683
861fb55a
DJ
8684 /* Otherwise, there is nothing further to do for symbols defined
8685 in regular objects. */
8686 if (h->def_regular)
0a44bf69
RS
8687 return TRUE;
8688
861fb55a
DJ
8689 /* There's also nothing more to do if we'll convert all relocations
8690 against this symbol into dynamic relocations. */
8691 if (!hmips->has_static_relocs)
8692 return TRUE;
8693
8694 /* We're now relying on copy relocations. Complain if we have
8695 some that we can't convert. */
8696 if (!htab->use_plts_and_copy_relocs || info->shared)
8697 {
8698 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8699 "dynamic symbol %s"),
8700 h->root.root.string);
8701 bfd_set_error (bfd_error_bad_value);
8702 return FALSE;
8703 }
8704
0a44bf69
RS
8705 /* We must allocate the symbol in our .dynbss section, which will
8706 become part of the .bss section of the executable. There will be
8707 an entry for this symbol in the .dynsym section. The dynamic
8708 object will contain position independent code, so all references
8709 from the dynamic object to this symbol will go through the global
8710 offset table. The dynamic linker will use the .dynsym entry to
8711 determine the address it must put in the global offset table, so
8712 both the dynamic object and the regular object will refer to the
8713 same memory location for the variable. */
8714
8715 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8716 {
861fb55a
DJ
8717 if (htab->is_vxworks)
8718 htab->srelbss->size += sizeof (Elf32_External_Rela);
8719 else
8720 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8721 h->needs_copy = 1;
8722 }
8723
861fb55a
DJ
8724 /* All relocations against this symbol that could have been made
8725 dynamic will now refer to the local copy instead. */
8726 hmips->possibly_dynamic_relocs = 0;
8727
027297b7 8728 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8729}
b49e97c9
TS
8730\f
8731/* This function is called after all the input files have been read,
8732 and the input sections have been assigned to output sections. We
8733 check for any mips16 stub sections that we can discard. */
8734
b34976b6 8735bfd_boolean
9719ad41
RS
8736_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8737 struct bfd_link_info *info)
b49e97c9
TS
8738{
8739 asection *ri;
0a44bf69 8740 struct mips_elf_link_hash_table *htab;
861fb55a 8741 struct mips_htab_traverse_info hti;
0a44bf69
RS
8742
8743 htab = mips_elf_hash_table (info);
4dfe6ac6 8744 BFD_ASSERT (htab != NULL);
f4416af6 8745
b49e97c9
TS
8746 /* The .reginfo section has a fixed size. */
8747 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8748 if (ri != NULL)
9719ad41 8749 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8750
861fb55a
DJ
8751 hti.info = info;
8752 hti.output_bfd = output_bfd;
8753 hti.error = FALSE;
8754 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8755 mips_elf_check_symbols, &hti);
8756 if (hti.error)
8757 return FALSE;
f4416af6 8758
33bb52fb
RS
8759 return TRUE;
8760}
8761
8762/* If the link uses a GOT, lay it out and work out its size. */
8763
8764static bfd_boolean
8765mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8766{
8767 bfd *dynobj;
8768 asection *s;
8769 struct mips_got_info *g;
33bb52fb
RS
8770 bfd_size_type loadable_size = 0;
8771 bfd_size_type page_gotno;
8772 bfd *sub;
ab361d49 8773 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
8774 struct mips_elf_link_hash_table *htab;
8775
8776 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8777 BFD_ASSERT (htab != NULL);
8778
a8028dd0 8779 s = htab->sgot;
f4416af6 8780 if (s == NULL)
b34976b6 8781 return TRUE;
b49e97c9 8782
33bb52fb 8783 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8784 g = htab->got_info;
8785
861fb55a
DJ
8786 /* Allocate room for the reserved entries. VxWorks always reserves
8787 3 entries; other objects only reserve 2 entries. */
8788 BFD_ASSERT (g->assigned_gotno == 0);
8789 if (htab->is_vxworks)
8790 htab->reserved_gotno = 3;
8791 else
8792 htab->reserved_gotno = 2;
8793 g->local_gotno += htab->reserved_gotno;
8794 g->assigned_gotno = htab->reserved_gotno;
8795
33bb52fb
RS
8796 /* Replace entries for indirect and warning symbols with entries for
8797 the target symbol. */
8798 if (!mips_elf_resolve_final_got_entries (g))
8799 return FALSE;
f4416af6 8800
d4596a51 8801 /* Count the number of GOT symbols. */
020d7251 8802 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8803
33bb52fb
RS
8804 /* Calculate the total loadable size of the output. That
8805 will give us the maximum number of GOT_PAGE entries
8806 required. */
8807 for (sub = info->input_bfds; sub; sub = sub->link_next)
8808 {
8809 asection *subsection;
5108fc1b 8810
33bb52fb
RS
8811 for (subsection = sub->sections;
8812 subsection;
8813 subsection = subsection->next)
8814 {
8815 if ((subsection->flags & SEC_ALLOC) == 0)
8816 continue;
8817 loadable_size += ((subsection->size + 0xf)
8818 &~ (bfd_size_type) 0xf);
8819 }
8820 }
f4416af6 8821
0a44bf69 8822 if (htab->is_vxworks)
738e5348 8823 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8824 relocations against local symbols evaluate to "G", and the EABI does
8825 not include R_MIPS_GOT_PAGE. */
c224138d 8826 page_gotno = 0;
0a44bf69
RS
8827 else
8828 /* Assume there are two loadable segments consisting of contiguous
8829 sections. Is 5 enough? */
c224138d
RS
8830 page_gotno = (loadable_size >> 16) + 5;
8831
8832 /* Choose the smaller of the two estimates; both are intended to be
8833 conservative. */
8834 if (page_gotno > g->page_gotno)
8835 page_gotno = g->page_gotno;
f4416af6 8836
c224138d 8837 g->local_gotno += page_gotno;
ab361d49
RS
8838
8839 /* Count the number of local GOT entries and TLS relocs. */
8840 tga.info = info;
8841 tga.g = g;
8842 htab_traverse (g->got_entries, mips_elf_count_local_got_entries, &tga);
f4416af6 8843
0f20cc35
DJ
8844 /* We need to calculate tls_gotno for global symbols at this point
8845 instead of building it up earlier, to avoid doublecounting
8846 entries for one global symbol from multiple input files. */
0f20cc35
DJ
8847 elf_link_hash_traverse (elf_hash_table (info),
8848 mips_elf_count_global_tls_entries,
ab361d49
RS
8849 &tga);
8850
8851 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8852 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
8853 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8854
0a44bf69
RS
8855 /* VxWorks does not support multiple GOTs. It initializes $gp to
8856 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8857 dynamic loader. */
33bb52fb
RS
8858 if (htab->is_vxworks)
8859 {
8860 /* VxWorks executables do not need a GOT. */
8861 if (info->shared)
8862 {
8863 /* Each VxWorks GOT entry needs an explicit relocation. */
8864 unsigned int count;
8865
861fb55a 8866 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
33bb52fb
RS
8867 if (count)
8868 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8869 }
8870 }
8871 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8872 {
a8028dd0 8873 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8874 return FALSE;
8875 }
8876 else
8877 {
33bb52fb 8878 /* Set up TLS entries. */
0f20cc35
DJ
8879 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8880 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
1fd20d70
RS
8881 BFD_ASSERT (g->tls_assigned_gotno
8882 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb
RS
8883
8884 /* Allocate room for the TLS relocations. */
ab361d49
RS
8885 if (g->relocs)
8886 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 8887 }
b49e97c9 8888
b34976b6 8889 return TRUE;
b49e97c9
TS
8890}
8891
33bb52fb
RS
8892/* Estimate the size of the .MIPS.stubs section. */
8893
8894static void
8895mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8896{
8897 struct mips_elf_link_hash_table *htab;
8898 bfd_size_type dynsymcount;
8899
8900 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8901 BFD_ASSERT (htab != NULL);
8902
33bb52fb
RS
8903 if (htab->lazy_stub_count == 0)
8904 return;
8905
8906 /* IRIX rld assumes that a function stub isn't at the end of the .text
8907 section, so add a dummy entry to the end. */
8908 htab->lazy_stub_count++;
8909
8910 /* Get a worst-case estimate of the number of dynamic symbols needed.
8911 At this point, dynsymcount does not account for section symbols
8912 and count_section_dynsyms may overestimate the number that will
8913 be needed. */
8914 dynsymcount = (elf_hash_table (info)->dynsymcount
8915 + count_section_dynsyms (output_bfd, info));
8916
8917 /* Determine the size of one stub entry. */
8918 htab->function_stub_size = (dynsymcount > 0x10000
8919 ? MIPS_FUNCTION_STUB_BIG_SIZE
8920 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8921
8922 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8923}
8924
8925/* A mips_elf_link_hash_traverse callback for which DATA points to the
8926 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8927 allocate an entry in the stubs section. */
8928
8929static bfd_boolean
8930mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8931{
8932 struct mips_elf_link_hash_table *htab;
8933
8934 htab = (struct mips_elf_link_hash_table *) data;
8935 if (h->needs_lazy_stub)
8936 {
8937 h->root.root.u.def.section = htab->sstubs;
8938 h->root.root.u.def.value = htab->sstubs->size;
8939 h->root.plt.offset = htab->sstubs->size;
8940 htab->sstubs->size += htab->function_stub_size;
8941 }
8942 return TRUE;
8943}
8944
8945/* Allocate offsets in the stubs section to each symbol that needs one.
8946 Set the final size of the .MIPS.stub section. */
8947
8948static void
8949mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8950{
8951 struct mips_elf_link_hash_table *htab;
8952
8953 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8954 BFD_ASSERT (htab != NULL);
8955
33bb52fb
RS
8956 if (htab->lazy_stub_count == 0)
8957 return;
8958
8959 htab->sstubs->size = 0;
4dfe6ac6 8960 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8961 htab->sstubs->size += htab->function_stub_size;
8962 BFD_ASSERT (htab->sstubs->size
8963 == htab->lazy_stub_count * htab->function_stub_size);
8964}
8965
b49e97c9
TS
8966/* Set the sizes of the dynamic sections. */
8967
b34976b6 8968bfd_boolean
9719ad41
RS
8969_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8970 struct bfd_link_info *info)
b49e97c9
TS
8971{
8972 bfd *dynobj;
861fb55a 8973 asection *s, *sreldyn;
b34976b6 8974 bfd_boolean reltext;
0a44bf69 8975 struct mips_elf_link_hash_table *htab;
b49e97c9 8976
0a44bf69 8977 htab = mips_elf_hash_table (info);
4dfe6ac6 8978 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8979 dynobj = elf_hash_table (info)->dynobj;
8980 BFD_ASSERT (dynobj != NULL);
8981
8982 if (elf_hash_table (info)->dynamic_sections_created)
8983 {
8984 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8985 if (info->executable)
b49e97c9 8986 {
3d4d4302 8987 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 8988 BFD_ASSERT (s != NULL);
eea6121a 8989 s->size
b49e97c9
TS
8990 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8991 s->contents
8992 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8993 }
861fb55a
DJ
8994
8995 /* Create a symbol for the PLT, if we know that we are using it. */
8996 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8997 {
8998 struct elf_link_hash_entry *h;
8999
9000 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9001
9002 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9003 "_PROCEDURE_LINKAGE_TABLE_");
9004 htab->root.hplt = h;
9005 if (h == NULL)
9006 return FALSE;
9007 h->type = STT_FUNC;
9008 }
9009 }
4e41d0d7 9010
9a59ad6b 9011 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9012 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9013
33bb52fb
RS
9014 mips_elf_estimate_stub_size (output_bfd, info);
9015
9016 if (!mips_elf_lay_out_got (output_bfd, info))
9017 return FALSE;
9018
9019 mips_elf_lay_out_lazy_stubs (info);
9020
b49e97c9
TS
9021 /* The check_relocs and adjust_dynamic_symbol entry points have
9022 determined the sizes of the various dynamic sections. Allocate
9023 memory for them. */
b34976b6 9024 reltext = FALSE;
b49e97c9
TS
9025 for (s = dynobj->sections; s != NULL; s = s->next)
9026 {
9027 const char *name;
b49e97c9
TS
9028
9029 /* It's OK to base decisions on the section name, because none
9030 of the dynobj section names depend upon the input files. */
9031 name = bfd_get_section_name (dynobj, s);
9032
9033 if ((s->flags & SEC_LINKER_CREATED) == 0)
9034 continue;
9035
0112cd26 9036 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9037 {
c456f082 9038 if (s->size != 0)
b49e97c9
TS
9039 {
9040 const char *outname;
9041 asection *target;
9042
9043 /* If this relocation section applies to a read only
9044 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9045 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9046 assert a DT_TEXTREL entry rather than testing whether
9047 there exists a relocation to a read only section or
9048 not. */
9049 outname = bfd_get_section_name (output_bfd,
9050 s->output_section);
9051 target = bfd_get_section_by_name (output_bfd, outname + 4);
9052 if ((target != NULL
9053 && (target->flags & SEC_READONLY) != 0
9054 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9055 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9056 reltext = TRUE;
b49e97c9
TS
9057
9058 /* We use the reloc_count field as a counter if we need
9059 to copy relocs into the output file. */
0a44bf69 9060 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9061 s->reloc_count = 0;
f4416af6
AO
9062
9063 /* If combreloc is enabled, elf_link_sort_relocs() will
9064 sort relocations, but in a different way than we do,
9065 and before we're done creating relocations. Also, it
9066 will move them around between input sections'
9067 relocation's contents, so our sorting would be
9068 broken, so don't let it run. */
9069 info->combreloc = 0;
b49e97c9
TS
9070 }
9071 }
b49e97c9
TS
9072 else if (! info->shared
9073 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9074 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9075 {
5108fc1b 9076 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9077 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9078 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9079 }
9080 else if (SGI_COMPAT (output_bfd)
0112cd26 9081 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9082 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9083 else if (s == htab->splt)
9084 {
9085 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9086 room for an extra nop to fill the delay slot. This is
9087 for CPUs without load interlocking. */
9088 if (! LOAD_INTERLOCKS_P (output_bfd)
9089 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9090 s->size += 4;
9091 }
0112cd26 9092 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9093 && s != htab->sgot
0a44bf69 9094 && s != htab->sgotplt
861fb55a
DJ
9095 && s != htab->sstubs
9096 && s != htab->sdynbss)
b49e97c9
TS
9097 {
9098 /* It's not one of our sections, so don't allocate space. */
9099 continue;
9100 }
9101
c456f082 9102 if (s->size == 0)
b49e97c9 9103 {
8423293d 9104 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9105 continue;
9106 }
9107
c456f082
AM
9108 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9109 continue;
9110
b49e97c9 9111 /* Allocate memory for the section contents. */
eea6121a 9112 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9113 if (s->contents == NULL)
b49e97c9
TS
9114 {
9115 bfd_set_error (bfd_error_no_memory);
b34976b6 9116 return FALSE;
b49e97c9
TS
9117 }
9118 }
9119
9120 if (elf_hash_table (info)->dynamic_sections_created)
9121 {
9122 /* Add some entries to the .dynamic section. We fill in the
9123 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9124 must add the entries now so that we get the correct size for
5750dcec 9125 the .dynamic section. */
af5978fb
RS
9126
9127 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9128 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9129 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9130 may only look at the first one they see. */
af5978fb
RS
9131 if (!info->shared
9132 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9133 return FALSE;
b49e97c9 9134
5750dcec
DJ
9135 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9136 used by the debugger. */
9137 if (info->executable
9138 && !SGI_COMPAT (output_bfd)
9139 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9140 return FALSE;
9141
0a44bf69 9142 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9143 info->flags |= DF_TEXTREL;
9144
9145 if ((info->flags & DF_TEXTREL) != 0)
9146 {
9147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9148 return FALSE;
943284cc
DJ
9149
9150 /* Clear the DF_TEXTREL flag. It will be set again if we
9151 write out an actual text relocation; we may not, because
9152 at this point we do not know whether e.g. any .eh_frame
9153 absolute relocations have been converted to PC-relative. */
9154 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9155 }
9156
9157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9158 return FALSE;
b49e97c9 9159
861fb55a 9160 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9161 if (htab->is_vxworks)
b49e97c9 9162 {
0a44bf69
RS
9163 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9164 use any of the DT_MIPS_* tags. */
861fb55a 9165 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9166 {
9167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9168 return FALSE;
b49e97c9 9169
0a44bf69
RS
9170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9171 return FALSE;
b49e97c9 9172
0a44bf69
RS
9173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9174 return FALSE;
9175 }
b49e97c9 9176 }
0a44bf69
RS
9177 else
9178 {
861fb55a 9179 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9180 {
9181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9182 return FALSE;
b49e97c9 9183
0a44bf69
RS
9184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9185 return FALSE;
b49e97c9 9186
0a44bf69
RS
9187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9188 return FALSE;
9189 }
b49e97c9 9190
0a44bf69
RS
9191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9192 return FALSE;
b49e97c9 9193
0a44bf69
RS
9194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9195 return FALSE;
b49e97c9 9196
0a44bf69
RS
9197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9198 return FALSE;
b49e97c9 9199
0a44bf69
RS
9200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9201 return FALSE;
b49e97c9 9202
0a44bf69
RS
9203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9204 return FALSE;
b49e97c9 9205
0a44bf69
RS
9206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9207 return FALSE;
b49e97c9 9208
0a44bf69
RS
9209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9210 return FALSE;
9211
9212 if (IRIX_COMPAT (dynobj) == ict_irix5
9213 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9214 return FALSE;
9215
9216 if (IRIX_COMPAT (dynobj) == ict_irix6
9217 && (bfd_get_section_by_name
af0edeb8 9218 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9219 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9220 return FALSE;
9221 }
861fb55a
DJ
9222 if (htab->splt->size > 0)
9223 {
9224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9225 return FALSE;
9226
9227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9228 return FALSE;
9229
9230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9231 return FALSE;
9232
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9234 return FALSE;
9235 }
7a2b07ff
NS
9236 if (htab->is_vxworks
9237 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9238 return FALSE;
b49e97c9
TS
9239 }
9240
b34976b6 9241 return TRUE;
b49e97c9
TS
9242}
9243\f
81d43bff
RS
9244/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9245 Adjust its R_ADDEND field so that it is correct for the output file.
9246 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9247 and sections respectively; both use symbol indexes. */
9248
9249static void
9250mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9251 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9252 asection **local_sections, Elf_Internal_Rela *rel)
9253{
9254 unsigned int r_type, r_symndx;
9255 Elf_Internal_Sym *sym;
9256 asection *sec;
9257
020d7251 9258 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9259 {
9260 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9261 if (gprel16_reloc_p (r_type)
81d43bff 9262 || r_type == R_MIPS_GPREL32
df58fc94 9263 || literal_reloc_p (r_type))
81d43bff
RS
9264 {
9265 rel->r_addend += _bfd_get_gp_value (input_bfd);
9266 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9267 }
9268
9269 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9270 sym = local_syms + r_symndx;
9271
9272 /* Adjust REL's addend to account for section merging. */
9273 if (!info->relocatable)
9274 {
9275 sec = local_sections[r_symndx];
9276 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9277 }
9278
9279 /* This would normally be done by the rela_normal code in elflink.c. */
9280 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9281 rel->r_addend += local_sections[r_symndx]->output_offset;
9282 }
9283}
9284
545fd46b
MR
9285/* Handle relocations against symbols from removed linkonce sections,
9286 or sections discarded by a linker script. We use this wrapper around
9287 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9288 on 64-bit ELF targets. In this case for any relocation handled, which
9289 always be the first in a triplet, the remaining two have to be processed
9290 together with the first, even if they are R_MIPS_NONE. It is the symbol
9291 index referred by the first reloc that applies to all the three and the
9292 remaining two never refer to an object symbol. And it is the final
9293 relocation (the last non-null one) that determines the output field of
9294 the whole relocation so retrieve the corresponding howto structure for
9295 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9296
9297 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9298 and therefore requires to be pasted in a loop. It also defines a block
9299 and does not protect any of its arguments, hence the extra brackets. */
9300
9301static void
9302mips_reloc_against_discarded_section (bfd *output_bfd,
9303 struct bfd_link_info *info,
9304 bfd *input_bfd, asection *input_section,
9305 Elf_Internal_Rela **rel,
9306 const Elf_Internal_Rela **relend,
9307 bfd_boolean rel_reloc,
9308 reloc_howto_type *howto,
9309 bfd_byte *contents)
9310{
9311 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9312 int count = bed->s->int_rels_per_ext_rel;
9313 unsigned int r_type;
9314 int i;
9315
9316 for (i = count - 1; i > 0; i--)
9317 {
9318 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9319 if (r_type != R_MIPS_NONE)
9320 {
9321 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9322 break;
9323 }
9324 }
9325 do
9326 {
9327 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9328 (*rel), count, (*relend),
9329 howto, i, contents);
9330 }
9331 while (0);
9332}
9333
b49e97c9
TS
9334/* Relocate a MIPS ELF section. */
9335
b34976b6 9336bfd_boolean
9719ad41
RS
9337_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9338 bfd *input_bfd, asection *input_section,
9339 bfd_byte *contents, Elf_Internal_Rela *relocs,
9340 Elf_Internal_Sym *local_syms,
9341 asection **local_sections)
b49e97c9
TS
9342{
9343 Elf_Internal_Rela *rel;
9344 const Elf_Internal_Rela *relend;
9345 bfd_vma addend = 0;
b34976b6 9346 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9347 const struct elf_backend_data *bed;
b49e97c9
TS
9348
9349 bed = get_elf_backend_data (output_bfd);
9350 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9351 for (rel = relocs; rel < relend; ++rel)
9352 {
9353 const char *name;
c9adbffe 9354 bfd_vma value = 0;
b49e97c9 9355 reloc_howto_type *howto;
38a7df63 9356 bfd_boolean cross_mode_jump_p;
b34976b6 9357 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9358 REL relocation. */
b34976b6 9359 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9360 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9361 const char *msg;
ab96bf03
AM
9362 unsigned long r_symndx;
9363 asection *sec;
749b8d9d
L
9364 Elf_Internal_Shdr *symtab_hdr;
9365 struct elf_link_hash_entry *h;
d4730f92 9366 bfd_boolean rel_reloc;
b49e97c9 9367
d4730f92
BS
9368 rel_reloc = (NEWABI_P (input_bfd)
9369 && mips_elf_rel_relocation_p (input_bfd, input_section,
9370 relocs, rel));
b49e97c9 9371 /* Find the relocation howto for this relocation. */
d4730f92 9372 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9373
9374 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9375 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9376 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9377 {
9378 sec = local_sections[r_symndx];
9379 h = NULL;
9380 }
ab96bf03
AM
9381 else
9382 {
ab96bf03 9383 unsigned long extsymoff;
ab96bf03 9384
ab96bf03
AM
9385 extsymoff = 0;
9386 if (!elf_bad_symtab (input_bfd))
9387 extsymoff = symtab_hdr->sh_info;
9388 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9389 while (h->root.type == bfd_link_hash_indirect
9390 || h->root.type == bfd_link_hash_warning)
9391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9392
9393 sec = NULL;
9394 if (h->root.type == bfd_link_hash_defined
9395 || h->root.type == bfd_link_hash_defweak)
9396 sec = h->root.u.def.section;
9397 }
9398
dbaa2011 9399 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9400 {
9401 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9402 input_section, &rel, &relend,
9403 rel_reloc, howto, contents);
9404 continue;
9405 }
ab96bf03 9406
4a14403c 9407 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9408 {
9409 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9410 64-bit code, but make sure all their addresses are in the
9411 lowermost or uppermost 32-bit section of the 64-bit address
9412 space. Thus, when they use an R_MIPS_64 they mean what is
9413 usually meant by R_MIPS_32, with the exception that the
9414 stored value is sign-extended to 64 bits. */
b34976b6 9415 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9416
9417 /* On big-endian systems, we need to lie about the position
9418 of the reloc. */
9419 if (bfd_big_endian (input_bfd))
9420 rel->r_offset += 4;
9421 }
b49e97c9
TS
9422
9423 if (!use_saved_addend_p)
9424 {
b49e97c9
TS
9425 /* If these relocations were originally of the REL variety,
9426 we must pull the addend out of the field that will be
9427 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9428 RELA relocation. */
9429 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9430 relocs, rel))
b49e97c9 9431 {
b34976b6 9432 rela_relocation_p = FALSE;
c224138d
RS
9433 addend = mips_elf_read_rel_addend (input_bfd, rel,
9434 howto, contents);
738e5348
RS
9435 if (hi16_reloc_p (r_type)
9436 || (got16_reloc_p (r_type)
b49e97c9 9437 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9438 local_sections)))
b49e97c9 9439 {
c224138d
RS
9440 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9441 contents, &addend))
749b8d9d 9442 {
749b8d9d
L
9443 if (h)
9444 name = h->root.root.string;
9445 else
9446 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9447 local_syms + r_symndx,
9448 sec);
9449 (*_bfd_error_handler)
9450 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9451 input_bfd, input_section, name, howto->name,
9452 rel->r_offset);
749b8d9d 9453 }
b49e97c9 9454 }
30ac9238
RS
9455 else
9456 addend <<= howto->rightshift;
b49e97c9
TS
9457 }
9458 else
9459 addend = rel->r_addend;
81d43bff
RS
9460 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9461 local_syms, local_sections, rel);
b49e97c9
TS
9462 }
9463
1049f94e 9464 if (info->relocatable)
b49e97c9 9465 {
4a14403c 9466 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9467 && bfd_big_endian (input_bfd))
9468 rel->r_offset -= 4;
9469
81d43bff 9470 if (!rela_relocation_p && rel->r_addend)
5a659663 9471 {
81d43bff 9472 addend += rel->r_addend;
738e5348 9473 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9474 addend = mips_elf_high (addend);
9475 else if (r_type == R_MIPS_HIGHER)
9476 addend = mips_elf_higher (addend);
9477 else if (r_type == R_MIPS_HIGHEST)
9478 addend = mips_elf_highest (addend);
30ac9238
RS
9479 else
9480 addend >>= howto->rightshift;
b49e97c9 9481
30ac9238
RS
9482 /* We use the source mask, rather than the destination
9483 mask because the place to which we are writing will be
9484 source of the addend in the final link. */
b49e97c9
TS
9485 addend &= howto->src_mask;
9486
5a659663 9487 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9488 /* See the comment above about using R_MIPS_64 in the 32-bit
9489 ABI. Here, we need to update the addend. It would be
9490 possible to get away with just using the R_MIPS_32 reloc
9491 but for endianness. */
9492 {
9493 bfd_vma sign_bits;
9494 bfd_vma low_bits;
9495 bfd_vma high_bits;
9496
9497 if (addend & ((bfd_vma) 1 << 31))
9498#ifdef BFD64
9499 sign_bits = ((bfd_vma) 1 << 32) - 1;
9500#else
9501 sign_bits = -1;
9502#endif
9503 else
9504 sign_bits = 0;
9505
9506 /* If we don't know that we have a 64-bit type,
9507 do two separate stores. */
9508 if (bfd_big_endian (input_bfd))
9509 {
9510 /* Store the sign-bits (which are most significant)
9511 first. */
9512 low_bits = sign_bits;
9513 high_bits = addend;
9514 }
9515 else
9516 {
9517 low_bits = addend;
9518 high_bits = sign_bits;
9519 }
9520 bfd_put_32 (input_bfd, low_bits,
9521 contents + rel->r_offset);
9522 bfd_put_32 (input_bfd, high_bits,
9523 contents + rel->r_offset + 4);
9524 continue;
9525 }
9526
9527 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9528 input_bfd, input_section,
b34976b6
AM
9529 contents, FALSE))
9530 return FALSE;
b49e97c9
TS
9531 }
9532
9533 /* Go on to the next relocation. */
9534 continue;
9535 }
9536
9537 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9538 relocations for the same offset. In that case we are
9539 supposed to treat the output of each relocation as the addend
9540 for the next. */
9541 if (rel + 1 < relend
9542 && rel->r_offset == rel[1].r_offset
9543 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9544 use_saved_addend_p = TRUE;
b49e97c9 9545 else
b34976b6 9546 use_saved_addend_p = FALSE;
b49e97c9
TS
9547
9548 /* Figure out what value we are supposed to relocate. */
9549 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9550 input_section, info, rel,
9551 addend, howto, local_syms,
9552 local_sections, &value,
38a7df63 9553 &name, &cross_mode_jump_p,
bce03d3d 9554 use_saved_addend_p))
b49e97c9
TS
9555 {
9556 case bfd_reloc_continue:
9557 /* There's nothing to do. */
9558 continue;
9559
9560 case bfd_reloc_undefined:
9561 /* mips_elf_calculate_relocation already called the
9562 undefined_symbol callback. There's no real point in
9563 trying to perform the relocation at this point, so we
9564 just skip ahead to the next relocation. */
9565 continue;
9566
9567 case bfd_reloc_notsupported:
9568 msg = _("internal error: unsupported relocation error");
9569 info->callbacks->warning
9570 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9571 return FALSE;
b49e97c9
TS
9572
9573 case bfd_reloc_overflow:
9574 if (use_saved_addend_p)
9575 /* Ignore overflow until we reach the last relocation for
9576 a given location. */
9577 ;
9578 else
9579 {
0e53d9da
AN
9580 struct mips_elf_link_hash_table *htab;
9581
9582 htab = mips_elf_hash_table (info);
4dfe6ac6 9583 BFD_ASSERT (htab != NULL);
b49e97c9 9584 BFD_ASSERT (name != NULL);
0e53d9da 9585 if (!htab->small_data_overflow_reported
9684f078 9586 && (gprel16_reloc_p (howto->type)
df58fc94 9587 || literal_reloc_p (howto->type)))
0e53d9da 9588 {
91d6fa6a
NC
9589 msg = _("small-data section exceeds 64KB;"
9590 " lower small-data size limit (see option -G)");
0e53d9da
AN
9591
9592 htab->small_data_overflow_reported = TRUE;
9593 (*info->callbacks->einfo) ("%P: %s\n", msg);
9594 }
b49e97c9 9595 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9596 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9597 input_bfd, input_section, rel->r_offset)))
b34976b6 9598 return FALSE;
b49e97c9
TS
9599 }
9600 break;
9601
9602 case bfd_reloc_ok:
9603 break;
9604
df58fc94
RS
9605 case bfd_reloc_outofrange:
9606 if (jal_reloc_p (howto->type))
9607 {
9608 msg = _("JALX to a non-word-aligned address");
9609 info->callbacks->warning
9610 (info, msg, name, input_bfd, input_section, rel->r_offset);
9611 return FALSE;
9612 }
9613 /* Fall through. */
9614
b49e97c9
TS
9615 default:
9616 abort ();
9617 break;
9618 }
9619
9620 /* If we've got another relocation for the address, keep going
9621 until we reach the last one. */
9622 if (use_saved_addend_p)
9623 {
9624 addend = value;
9625 continue;
9626 }
9627
4a14403c 9628 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9629 /* See the comment above about using R_MIPS_64 in the 32-bit
9630 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9631 that calculated the right value. Now, however, we
9632 sign-extend the 32-bit result to 64-bits, and store it as a
9633 64-bit value. We are especially generous here in that we
9634 go to extreme lengths to support this usage on systems with
9635 only a 32-bit VMA. */
9636 {
9637 bfd_vma sign_bits;
9638 bfd_vma low_bits;
9639 bfd_vma high_bits;
9640
9641 if (value & ((bfd_vma) 1 << 31))
9642#ifdef BFD64
9643 sign_bits = ((bfd_vma) 1 << 32) - 1;
9644#else
9645 sign_bits = -1;
9646#endif
9647 else
9648 sign_bits = 0;
9649
9650 /* If we don't know that we have a 64-bit type,
9651 do two separate stores. */
9652 if (bfd_big_endian (input_bfd))
9653 {
9654 /* Undo what we did above. */
9655 rel->r_offset -= 4;
9656 /* Store the sign-bits (which are most significant)
9657 first. */
9658 low_bits = sign_bits;
9659 high_bits = value;
9660 }
9661 else
9662 {
9663 low_bits = value;
9664 high_bits = sign_bits;
9665 }
9666 bfd_put_32 (input_bfd, low_bits,
9667 contents + rel->r_offset);
9668 bfd_put_32 (input_bfd, high_bits,
9669 contents + rel->r_offset + 4);
9670 continue;
9671 }
9672
9673 /* Actually perform the relocation. */
9674 if (! mips_elf_perform_relocation (info, howto, rel, value,
9675 input_bfd, input_section,
38a7df63 9676 contents, cross_mode_jump_p))
b34976b6 9677 return FALSE;
b49e97c9
TS
9678 }
9679
b34976b6 9680 return TRUE;
b49e97c9
TS
9681}
9682\f
861fb55a
DJ
9683/* A function that iterates over each entry in la25_stubs and fills
9684 in the code for each one. DATA points to a mips_htab_traverse_info. */
9685
9686static int
9687mips_elf_create_la25_stub (void **slot, void *data)
9688{
9689 struct mips_htab_traverse_info *hti;
9690 struct mips_elf_link_hash_table *htab;
9691 struct mips_elf_la25_stub *stub;
9692 asection *s;
9693 bfd_byte *loc;
9694 bfd_vma offset, target, target_high, target_low;
9695
9696 stub = (struct mips_elf_la25_stub *) *slot;
9697 hti = (struct mips_htab_traverse_info *) data;
9698 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9699 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9700
9701 /* Create the section contents, if we haven't already. */
9702 s = stub->stub_section;
9703 loc = s->contents;
9704 if (loc == NULL)
9705 {
9706 loc = bfd_malloc (s->size);
9707 if (loc == NULL)
9708 {
9709 hti->error = TRUE;
9710 return FALSE;
9711 }
9712 s->contents = loc;
9713 }
9714
9715 /* Work out where in the section this stub should go. */
9716 offset = stub->offset;
9717
9718 /* Work out the target address. */
8f0c309a
CLT
9719 target = mips_elf_get_la25_target (stub, &s);
9720 target += s->output_section->vma + s->output_offset;
9721
861fb55a
DJ
9722 target_high = ((target + 0x8000) >> 16) & 0xffff;
9723 target_low = (target & 0xffff);
9724
9725 if (stub->stub_section != htab->strampoline)
9726 {
df58fc94 9727 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9728 of the section and write the two instructions at the end. */
9729 memset (loc, 0, offset);
9730 loc += offset;
df58fc94
RS
9731 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9732 {
d21911ea
MR
9733 bfd_put_micromips_32 (hti->output_bfd,
9734 LA25_LUI_MICROMIPS (target_high),
9735 loc);
9736 bfd_put_micromips_32 (hti->output_bfd,
9737 LA25_ADDIU_MICROMIPS (target_low),
9738 loc + 4);
df58fc94
RS
9739 }
9740 else
9741 {
9742 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9743 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9744 }
861fb55a
DJ
9745 }
9746 else
9747 {
9748 /* This is trampoline. */
9749 loc += offset;
df58fc94
RS
9750 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9751 {
d21911ea
MR
9752 bfd_put_micromips_32 (hti->output_bfd,
9753 LA25_LUI_MICROMIPS (target_high), loc);
9754 bfd_put_micromips_32 (hti->output_bfd,
9755 LA25_J_MICROMIPS (target), loc + 4);
9756 bfd_put_micromips_32 (hti->output_bfd,
9757 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9758 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9759 }
9760 else
9761 {
9762 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9763 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9764 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9765 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9766 }
861fb55a
DJ
9767 }
9768 return TRUE;
9769}
9770
b49e97c9
TS
9771/* If NAME is one of the special IRIX6 symbols defined by the linker,
9772 adjust it appropriately now. */
9773
9774static void
9719ad41
RS
9775mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9776 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9777{
9778 /* The linker script takes care of providing names and values for
9779 these, but we must place them into the right sections. */
9780 static const char* const text_section_symbols[] = {
9781 "_ftext",
9782 "_etext",
9783 "__dso_displacement",
9784 "__elf_header",
9785 "__program_header_table",
9786 NULL
9787 };
9788
9789 static const char* const data_section_symbols[] = {
9790 "_fdata",
9791 "_edata",
9792 "_end",
9793 "_fbss",
9794 NULL
9795 };
9796
9797 const char* const *p;
9798 int i;
9799
9800 for (i = 0; i < 2; ++i)
9801 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9802 *p;
9803 ++p)
9804 if (strcmp (*p, name) == 0)
9805 {
9806 /* All of these symbols are given type STT_SECTION by the
9807 IRIX6 linker. */
9808 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9809 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9810
9811 /* The IRIX linker puts these symbols in special sections. */
9812 if (i == 0)
9813 sym->st_shndx = SHN_MIPS_TEXT;
9814 else
9815 sym->st_shndx = SHN_MIPS_DATA;
9816
9817 break;
9818 }
9819}
9820
9821/* Finish up dynamic symbol handling. We set the contents of various
9822 dynamic sections here. */
9823
b34976b6 9824bfd_boolean
9719ad41
RS
9825_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9826 struct bfd_link_info *info,
9827 struct elf_link_hash_entry *h,
9828 Elf_Internal_Sym *sym)
b49e97c9
TS
9829{
9830 bfd *dynobj;
b49e97c9 9831 asection *sgot;
f4416af6 9832 struct mips_got_info *g, *gg;
b49e97c9 9833 const char *name;
3d6746ca 9834 int idx;
5108fc1b 9835 struct mips_elf_link_hash_table *htab;
738e5348 9836 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9837
5108fc1b 9838 htab = mips_elf_hash_table (info);
4dfe6ac6 9839 BFD_ASSERT (htab != NULL);
b49e97c9 9840 dynobj = elf_hash_table (info)->dynobj;
738e5348 9841 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9842
861fb55a
DJ
9843 BFD_ASSERT (!htab->is_vxworks);
9844
9845 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9846 {
9847 /* We've decided to create a PLT entry for this symbol. */
9848 bfd_byte *loc;
9849 bfd_vma header_address, plt_index, got_address;
9850 bfd_vma got_address_high, got_address_low, load;
9851 const bfd_vma *plt_entry;
9852
9853 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9854 BFD_ASSERT (h->dynindx != -1);
9855 BFD_ASSERT (htab->splt != NULL);
9856 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9857 BFD_ASSERT (!h->def_regular);
9858
9859 /* Calculate the address of the PLT header. */
9860 header_address = (htab->splt->output_section->vma
9861 + htab->splt->output_offset);
9862
9863 /* Calculate the index of the entry. */
9864 plt_index = ((h->plt.offset - htab->plt_header_size)
9865 / htab->plt_entry_size);
9866
9867 /* Calculate the address of the .got.plt entry. */
9868 got_address = (htab->sgotplt->output_section->vma
9869 + htab->sgotplt->output_offset
9870 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9871 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9872 got_address_low = got_address & 0xffff;
9873
9874 /* Initially point the .got.plt entry at the PLT header. */
9875 loc = (htab->sgotplt->contents
9876 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9877 if (ABI_64_P (output_bfd))
9878 bfd_put_64 (output_bfd, header_address, loc);
9879 else
9880 bfd_put_32 (output_bfd, header_address, loc);
9881
9882 /* Find out where the .plt entry should go. */
9883 loc = htab->splt->contents + h->plt.offset;
9884
9885 /* Pick the load opcode. */
9886 load = MIPS_ELF_LOAD_WORD (output_bfd);
9887
9888 /* Fill in the PLT entry itself. */
9889 plt_entry = mips_exec_plt_entry;
9890 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9891 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9892
9893 if (! LOAD_INTERLOCKS_P (output_bfd))
9894 {
9895 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9896 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9897 }
9898 else
9899 {
9900 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9901 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9902 }
861fb55a
DJ
9903
9904 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9905 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9906 plt_index, h->dynindx,
9907 R_MIPS_JUMP_SLOT, got_address);
9908
9909 /* We distinguish between PLT entries and lazy-binding stubs by
9910 giving the former an st_other value of STO_MIPS_PLT. Set the
9911 flag and leave the value if there are any relocations in the
9912 binary where pointer equality matters. */
9913 sym->st_shndx = SHN_UNDEF;
9914 if (h->pointer_equality_needed)
9915 sym->st_other = STO_MIPS_PLT;
9916 else
9917 sym->st_value = 0;
9918 }
9919 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9920 {
861fb55a 9921 /* We've decided to create a lazy-binding stub. */
5108fc1b 9922 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9923
9924 /* This symbol has a stub. Set it up. */
9925
9926 BFD_ASSERT (h->dynindx != -1);
9927
5108fc1b
RS
9928 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9929 || (h->dynindx <= 0xffff));
3d6746ca
DD
9930
9931 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9932 sign extension at runtime in the stub, resulting in a negative
9933 index value. */
9934 if (h->dynindx & ~0x7fffffff)
b34976b6 9935 return FALSE;
b49e97c9
TS
9936
9937 /* Fill the stub. */
3d6746ca
DD
9938 idx = 0;
9939 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9940 idx += 4;
9941 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9942 idx += 4;
5108fc1b 9943 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9944 {
5108fc1b 9945 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9946 stub + idx);
9947 idx += 4;
9948 }
9949 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9950 idx += 4;
b49e97c9 9951
3d6746ca
DD
9952 /* If a large stub is not required and sign extension is not a
9953 problem, then use legacy code in the stub. */
5108fc1b
RS
9954 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9955 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9956 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9957 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9958 else
5108fc1b
RS
9959 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9960 stub + idx);
9961
4e41d0d7
RS
9962 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9963 memcpy (htab->sstubs->contents + h->plt.offset,
9964 stub, htab->function_stub_size);
b49e97c9
TS
9965
9966 /* Mark the symbol as undefined. plt.offset != -1 occurs
9967 only for the referenced symbol. */
9968 sym->st_shndx = SHN_UNDEF;
9969
9970 /* The run-time linker uses the st_value field of the symbol
9971 to reset the global offset table entry for this external
9972 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9973 sym->st_value = (htab->sstubs->output_section->vma
9974 + htab->sstubs->output_offset
c5ae1840 9975 + h->plt.offset);
b49e97c9
TS
9976 }
9977
738e5348
RS
9978 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9979 refer to the stub, since only the stub uses the standard calling
9980 conventions. */
9981 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9982 {
9983 BFD_ASSERT (hmips->need_fn_stub);
9984 sym->st_value = (hmips->fn_stub->output_section->vma
9985 + hmips->fn_stub->output_offset);
9986 sym->st_size = hmips->fn_stub->size;
9987 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9988 }
9989
b49e97c9 9990 BFD_ASSERT (h->dynindx != -1
f5385ebf 9991 || h->forced_local);
b49e97c9 9992
23cc69b6 9993 sgot = htab->sgot;
a8028dd0 9994 g = htab->got_info;
b49e97c9
TS
9995 BFD_ASSERT (g != NULL);
9996
9997 /* Run through the global symbol table, creating GOT entries for all
9998 the symbols that need them. */
020d7251 9999 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10000 {
10001 bfd_vma offset;
10002 bfd_vma value;
10003
6eaa6adc 10004 value = sym->st_value;
738e5348
RS
10005 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10006 R_MIPS_GOT16, info);
b49e97c9
TS
10007 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10008 }
10009
e641e783 10010 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10011 {
10012 struct mips_got_entry e, *p;
0626d451 10013 bfd_vma entry;
f4416af6 10014 bfd_vma offset;
f4416af6
AO
10015
10016 gg = g;
10017
10018 e.abfd = output_bfd;
10019 e.symndx = -1;
738e5348 10020 e.d.h = hmips;
0f20cc35 10021 e.tls_type = 0;
143d77c5 10022
f4416af6
AO
10023 for (g = g->next; g->next != gg; g = g->next)
10024 {
10025 if (g->got_entries
10026 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10027 &e)))
10028 {
10029 offset = p->gotidx;
0626d451
RS
10030 if (info->shared
10031 || (elf_hash_table (info)->dynamic_sections_created
10032 && p->d.h != NULL
f5385ebf
AM
10033 && p->d.h->root.def_dynamic
10034 && !p->d.h->root.def_regular))
0626d451
RS
10035 {
10036 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10037 the various compatibility problems, it's easier to mock
10038 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10039 mips_elf_create_dynamic_relocation to calculate the
10040 appropriate addend. */
10041 Elf_Internal_Rela rel[3];
10042
10043 memset (rel, 0, sizeof (rel));
10044 if (ABI_64_P (output_bfd))
10045 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10046 else
10047 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10048 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10049
10050 entry = 0;
10051 if (! (mips_elf_create_dynamic_relocation
10052 (output_bfd, info, rel,
10053 e.d.h, NULL, sym->st_value, &entry, sgot)))
10054 return FALSE;
10055 }
10056 else
10057 entry = sym->st_value;
10058 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10059 }
10060 }
10061 }
10062
b49e97c9
TS
10063 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10064 name = h->root.root.string;
9637f6ef 10065 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10066 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10067 sym->st_shndx = SHN_ABS;
10068 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10069 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10070 {
10071 sym->st_shndx = SHN_ABS;
10072 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10073 sym->st_value = 1;
10074 }
4a14403c 10075 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10076 {
10077 sym->st_shndx = SHN_ABS;
10078 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10079 sym->st_value = elf_gp (output_bfd);
10080 }
10081 else if (SGI_COMPAT (output_bfd))
10082 {
10083 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10084 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10085 {
10086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10087 sym->st_other = STO_PROTECTED;
10088 sym->st_value = 0;
10089 sym->st_shndx = SHN_MIPS_DATA;
10090 }
10091 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10092 {
10093 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10094 sym->st_other = STO_PROTECTED;
10095 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10096 sym->st_shndx = SHN_ABS;
10097 }
10098 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10099 {
10100 if (h->type == STT_FUNC)
10101 sym->st_shndx = SHN_MIPS_TEXT;
10102 else if (h->type == STT_OBJECT)
10103 sym->st_shndx = SHN_MIPS_DATA;
10104 }
10105 }
10106
861fb55a
DJ
10107 /* Emit a copy reloc, if needed. */
10108 if (h->needs_copy)
10109 {
10110 asection *s;
10111 bfd_vma symval;
10112
10113 BFD_ASSERT (h->dynindx != -1);
10114 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10115
10116 s = mips_elf_rel_dyn_section (info, FALSE);
10117 symval = (h->root.u.def.section->output_section->vma
10118 + h->root.u.def.section->output_offset
10119 + h->root.u.def.value);
10120 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10121 h->dynindx, R_MIPS_COPY, symval);
10122 }
10123
b49e97c9
TS
10124 /* Handle the IRIX6-specific symbols. */
10125 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10126 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10127
738e5348
RS
10128 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10129 treat MIPS16 symbols like any other. */
30c09090 10130 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10131 {
10132 BFD_ASSERT (sym->st_value & 1);
10133 sym->st_other -= STO_MIPS16;
10134 }
b49e97c9 10135
b34976b6 10136 return TRUE;
b49e97c9
TS
10137}
10138
0a44bf69
RS
10139/* Likewise, for VxWorks. */
10140
10141bfd_boolean
10142_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10143 struct bfd_link_info *info,
10144 struct elf_link_hash_entry *h,
10145 Elf_Internal_Sym *sym)
10146{
10147 bfd *dynobj;
10148 asection *sgot;
10149 struct mips_got_info *g;
10150 struct mips_elf_link_hash_table *htab;
020d7251 10151 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10152
10153 htab = mips_elf_hash_table (info);
4dfe6ac6 10154 BFD_ASSERT (htab != NULL);
0a44bf69 10155 dynobj = elf_hash_table (info)->dynobj;
020d7251 10156 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10157
10158 if (h->plt.offset != (bfd_vma) -1)
10159 {
6d79d2ed 10160 bfd_byte *loc;
0a44bf69
RS
10161 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10162 Elf_Internal_Rela rel;
10163 static const bfd_vma *plt_entry;
10164
10165 BFD_ASSERT (h->dynindx != -1);
10166 BFD_ASSERT (htab->splt != NULL);
10167 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10168
10169 /* Calculate the address of the .plt entry. */
10170 plt_address = (htab->splt->output_section->vma
10171 + htab->splt->output_offset
10172 + h->plt.offset);
10173
10174 /* Calculate the index of the entry. */
10175 plt_index = ((h->plt.offset - htab->plt_header_size)
10176 / htab->plt_entry_size);
10177
10178 /* Calculate the address of the .got.plt entry. */
10179 got_address = (htab->sgotplt->output_section->vma
10180 + htab->sgotplt->output_offset
10181 + plt_index * 4);
10182
10183 /* Calculate the offset of the .got.plt entry from
10184 _GLOBAL_OFFSET_TABLE_. */
10185 got_offset = mips_elf_gotplt_index (info, h);
10186
10187 /* Calculate the offset for the branch at the start of the PLT
10188 entry. The branch jumps to the beginning of .plt. */
10189 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10190
10191 /* Fill in the initial value of the .got.plt entry. */
10192 bfd_put_32 (output_bfd, plt_address,
10193 htab->sgotplt->contents + plt_index * 4);
10194
10195 /* Find out where the .plt entry should go. */
10196 loc = htab->splt->contents + h->plt.offset;
10197
10198 if (info->shared)
10199 {
10200 plt_entry = mips_vxworks_shared_plt_entry;
10201 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10202 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10203 }
10204 else
10205 {
10206 bfd_vma got_address_high, got_address_low;
10207
10208 plt_entry = mips_vxworks_exec_plt_entry;
10209 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10210 got_address_low = got_address & 0xffff;
10211
10212 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10213 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10214 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10215 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10216 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10217 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10218 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10219 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10220
10221 loc = (htab->srelplt2->contents
10222 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10223
10224 /* Emit a relocation for the .got.plt entry. */
10225 rel.r_offset = got_address;
10226 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10227 rel.r_addend = h->plt.offset;
10228 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10229
10230 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10231 loc += sizeof (Elf32_External_Rela);
10232 rel.r_offset = plt_address + 8;
10233 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10234 rel.r_addend = got_offset;
10235 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10236
10237 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10238 loc += sizeof (Elf32_External_Rela);
10239 rel.r_offset += 4;
10240 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10242 }
10243
10244 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10245 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10246 rel.r_offset = got_address;
10247 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10248 rel.r_addend = 0;
10249 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10250
10251 if (!h->def_regular)
10252 sym->st_shndx = SHN_UNDEF;
10253 }
10254
10255 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10256
23cc69b6 10257 sgot = htab->sgot;
a8028dd0 10258 g = htab->got_info;
0a44bf69
RS
10259 BFD_ASSERT (g != NULL);
10260
10261 /* See if this symbol has an entry in the GOT. */
020d7251 10262 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10263 {
10264 bfd_vma offset;
10265 Elf_Internal_Rela outrel;
10266 bfd_byte *loc;
10267 asection *s;
10268
10269 /* Install the symbol value in the GOT. */
10270 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10271 R_MIPS_GOT16, info);
10272 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10273
10274 /* Add a dynamic relocation for it. */
10275 s = mips_elf_rel_dyn_section (info, FALSE);
10276 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10277 outrel.r_offset = (sgot->output_section->vma
10278 + sgot->output_offset
10279 + offset);
10280 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10281 outrel.r_addend = 0;
10282 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10283 }
10284
10285 /* Emit a copy reloc, if needed. */
10286 if (h->needs_copy)
10287 {
10288 Elf_Internal_Rela rel;
10289
10290 BFD_ASSERT (h->dynindx != -1);
10291
10292 rel.r_offset = (h->root.u.def.section->output_section->vma
10293 + h->root.u.def.section->output_offset
10294 + h->root.u.def.value);
10295 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10296 rel.r_addend = 0;
10297 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10298 htab->srelbss->contents
10299 + (htab->srelbss->reloc_count
10300 * sizeof (Elf32_External_Rela)));
10301 ++htab->srelbss->reloc_count;
10302 }
10303
df58fc94
RS
10304 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10305 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10306 sym->st_value &= ~1;
10307
10308 return TRUE;
10309}
10310
861fb55a
DJ
10311/* Write out a plt0 entry to the beginning of .plt. */
10312
10313static void
10314mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10315{
10316 bfd_byte *loc;
10317 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10318 static const bfd_vma *plt_entry;
10319 struct mips_elf_link_hash_table *htab;
10320
10321 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10322 BFD_ASSERT (htab != NULL);
10323
861fb55a
DJ
10324 if (ABI_64_P (output_bfd))
10325 plt_entry = mips_n64_exec_plt0_entry;
10326 else if (ABI_N32_P (output_bfd))
10327 plt_entry = mips_n32_exec_plt0_entry;
10328 else
10329 plt_entry = mips_o32_exec_plt0_entry;
10330
10331 /* Calculate the value of .got.plt. */
10332 gotplt_value = (htab->sgotplt->output_section->vma
10333 + htab->sgotplt->output_offset);
10334 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10335 gotplt_value_low = gotplt_value & 0xffff;
10336
10337 /* The PLT sequence is not safe for N64 if .got.plt's address can
10338 not be loaded in two instructions. */
10339 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10340 || ~(gotplt_value | 0x7fffffff) == 0);
10341
10342 /* Install the PLT header. */
10343 loc = htab->splt->contents;
10344 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10345 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10346 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10347 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10348 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10349 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10350 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10351 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10352}
10353
0a44bf69
RS
10354/* Install the PLT header for a VxWorks executable and finalize the
10355 contents of .rela.plt.unloaded. */
10356
10357static void
10358mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10359{
10360 Elf_Internal_Rela rela;
10361 bfd_byte *loc;
10362 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10363 static const bfd_vma *plt_entry;
10364 struct mips_elf_link_hash_table *htab;
10365
10366 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10367 BFD_ASSERT (htab != NULL);
10368
0a44bf69
RS
10369 plt_entry = mips_vxworks_exec_plt0_entry;
10370
10371 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10372 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10373 + htab->root.hgot->root.u.def.section->output_offset
10374 + htab->root.hgot->root.u.def.value);
10375
10376 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10377 got_value_low = got_value & 0xffff;
10378
10379 /* Calculate the address of the PLT header. */
10380 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10381
10382 /* Install the PLT header. */
10383 loc = htab->splt->contents;
10384 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10385 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10386 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10387 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10388 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10389 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10390
10391 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10392 loc = htab->srelplt2->contents;
10393 rela.r_offset = plt_address;
10394 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10395 rela.r_addend = 0;
10396 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10397 loc += sizeof (Elf32_External_Rela);
10398
10399 /* Output the relocation for the following addiu of
10400 %lo(_GLOBAL_OFFSET_TABLE_). */
10401 rela.r_offset += 4;
10402 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10403 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10404 loc += sizeof (Elf32_External_Rela);
10405
10406 /* Fix up the remaining relocations. They may have the wrong
10407 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10408 in which symbols were output. */
10409 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10410 {
10411 Elf_Internal_Rela rel;
10412
10413 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10414 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10415 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10416 loc += sizeof (Elf32_External_Rela);
10417
10418 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10419 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10420 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10421 loc += sizeof (Elf32_External_Rela);
10422
10423 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10424 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10425 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10426 loc += sizeof (Elf32_External_Rela);
10427 }
10428}
10429
10430/* Install the PLT header for a VxWorks shared library. */
10431
10432static void
10433mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10434{
10435 unsigned int i;
10436 struct mips_elf_link_hash_table *htab;
10437
10438 htab = mips_elf_hash_table (info);
4dfe6ac6 10439 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10440
10441 /* We just need to copy the entry byte-by-byte. */
10442 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10443 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10444 htab->splt->contents + i * 4);
10445}
10446
b49e97c9
TS
10447/* Finish up the dynamic sections. */
10448
b34976b6 10449bfd_boolean
9719ad41
RS
10450_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10451 struct bfd_link_info *info)
b49e97c9
TS
10452{
10453 bfd *dynobj;
10454 asection *sdyn;
10455 asection *sgot;
f4416af6 10456 struct mips_got_info *gg, *g;
0a44bf69 10457 struct mips_elf_link_hash_table *htab;
b49e97c9 10458
0a44bf69 10459 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10460 BFD_ASSERT (htab != NULL);
10461
b49e97c9
TS
10462 dynobj = elf_hash_table (info)->dynobj;
10463
3d4d4302 10464 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10465
23cc69b6
RS
10466 sgot = htab->sgot;
10467 gg = htab->got_info;
b49e97c9
TS
10468
10469 if (elf_hash_table (info)->dynamic_sections_created)
10470 {
10471 bfd_byte *b;
943284cc 10472 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10473
10474 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10475 BFD_ASSERT (gg != NULL);
10476
10477 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
10478 BFD_ASSERT (g != NULL);
10479
10480 for (b = sdyn->contents;
eea6121a 10481 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10482 b += MIPS_ELF_DYN_SIZE (dynobj))
10483 {
10484 Elf_Internal_Dyn dyn;
10485 const char *name;
10486 size_t elemsize;
10487 asection *s;
b34976b6 10488 bfd_boolean swap_out_p;
b49e97c9
TS
10489
10490 /* Read in the current dynamic entry. */
10491 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10492
10493 /* Assume that we're going to modify it and write it out. */
b34976b6 10494 swap_out_p = TRUE;
b49e97c9
TS
10495
10496 switch (dyn.d_tag)
10497 {
10498 case DT_RELENT:
b49e97c9
TS
10499 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10500 break;
10501
0a44bf69
RS
10502 case DT_RELAENT:
10503 BFD_ASSERT (htab->is_vxworks);
10504 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10505 break;
10506
b49e97c9
TS
10507 case DT_STRSZ:
10508 /* Rewrite DT_STRSZ. */
10509 dyn.d_un.d_val =
10510 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10511 break;
10512
10513 case DT_PLTGOT:
861fb55a
DJ
10514 s = htab->sgot;
10515 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10516 break;
10517
10518 case DT_MIPS_PLTGOT:
10519 s = htab->sgotplt;
10520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10521 break;
10522
10523 case DT_MIPS_RLD_VERSION:
10524 dyn.d_un.d_val = 1; /* XXX */
10525 break;
10526
10527 case DT_MIPS_FLAGS:
10528 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10529 break;
10530
b49e97c9 10531 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10532 {
10533 time_t t;
10534 time (&t);
10535 dyn.d_un.d_val = t;
10536 }
b49e97c9
TS
10537 break;
10538
10539 case DT_MIPS_ICHECKSUM:
10540 /* XXX FIXME: */
b34976b6 10541 swap_out_p = FALSE;
b49e97c9
TS
10542 break;
10543
10544 case DT_MIPS_IVERSION:
10545 /* XXX FIXME: */
b34976b6 10546 swap_out_p = FALSE;
b49e97c9
TS
10547 break;
10548
10549 case DT_MIPS_BASE_ADDRESS:
10550 s = output_bfd->sections;
10551 BFD_ASSERT (s != NULL);
10552 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10553 break;
10554
10555 case DT_MIPS_LOCAL_GOTNO:
10556 dyn.d_un.d_val = g->local_gotno;
10557 break;
10558
10559 case DT_MIPS_UNREFEXTNO:
10560 /* The index into the dynamic symbol table which is the
10561 entry of the first external symbol that is not
10562 referenced within the same object. */
10563 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10564 break;
10565
10566 case DT_MIPS_GOTSYM:
d222d210 10567 if (htab->global_gotsym)
b49e97c9 10568 {
d222d210 10569 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10570 break;
10571 }
10572 /* In case if we don't have global got symbols we default
10573 to setting DT_MIPS_GOTSYM to the same value as
10574 DT_MIPS_SYMTABNO, so we just fall through. */
10575
10576 case DT_MIPS_SYMTABNO:
10577 name = ".dynsym";
10578 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10579 s = bfd_get_section_by_name (output_bfd, name);
10580 BFD_ASSERT (s != NULL);
10581
eea6121a 10582 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10583 break;
10584
10585 case DT_MIPS_HIPAGENO:
861fb55a 10586 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10587 break;
10588
10589 case DT_MIPS_RLD_MAP:
b4082c70
DD
10590 {
10591 struct elf_link_hash_entry *h;
10592 h = mips_elf_hash_table (info)->rld_symbol;
10593 if (!h)
10594 {
10595 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10596 swap_out_p = FALSE;
10597 break;
10598 }
10599 s = h->root.u.def.section;
10600 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10601 + h->root.u.def.value);
10602 }
b49e97c9
TS
10603 break;
10604
10605 case DT_MIPS_OPTIONS:
10606 s = (bfd_get_section_by_name
10607 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10608 dyn.d_un.d_ptr = s->vma;
10609 break;
10610
0a44bf69
RS
10611 case DT_RELASZ:
10612 BFD_ASSERT (htab->is_vxworks);
10613 /* The count does not include the JUMP_SLOT relocations. */
10614 if (htab->srelplt)
10615 dyn.d_un.d_val -= htab->srelplt->size;
10616 break;
10617
10618 case DT_PLTREL:
861fb55a
DJ
10619 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10620 if (htab->is_vxworks)
10621 dyn.d_un.d_val = DT_RELA;
10622 else
10623 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10624 break;
10625
10626 case DT_PLTRELSZ:
861fb55a 10627 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10628 dyn.d_un.d_val = htab->srelplt->size;
10629 break;
10630
10631 case DT_JMPREL:
861fb55a
DJ
10632 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10633 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10634 + htab->srelplt->output_offset);
10635 break;
10636
943284cc
DJ
10637 case DT_TEXTREL:
10638 /* If we didn't need any text relocations after all, delete
10639 the dynamic tag. */
10640 if (!(info->flags & DF_TEXTREL))
10641 {
10642 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10643 swap_out_p = FALSE;
10644 }
10645 break;
10646
10647 case DT_FLAGS:
10648 /* If we didn't need any text relocations after all, clear
10649 DF_TEXTREL from DT_FLAGS. */
10650 if (!(info->flags & DF_TEXTREL))
10651 dyn.d_un.d_val &= ~DF_TEXTREL;
10652 else
10653 swap_out_p = FALSE;
10654 break;
10655
b49e97c9 10656 default:
b34976b6 10657 swap_out_p = FALSE;
7a2b07ff
NS
10658 if (htab->is_vxworks
10659 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10660 swap_out_p = TRUE;
b49e97c9
TS
10661 break;
10662 }
10663
943284cc 10664 if (swap_out_p || dyn_skipped)
b49e97c9 10665 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10666 (dynobj, &dyn, b - dyn_skipped);
10667
10668 if (dyn_to_skip)
10669 {
10670 dyn_skipped += dyn_to_skip;
10671 dyn_to_skip = 0;
10672 }
b49e97c9 10673 }
943284cc
DJ
10674
10675 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10676 if (dyn_skipped > 0)
10677 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10678 }
10679
b55fd4d4
DJ
10680 if (sgot != NULL && sgot->size > 0
10681 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10682 {
0a44bf69
RS
10683 if (htab->is_vxworks)
10684 {
10685 /* The first entry of the global offset table points to the
10686 ".dynamic" section. The second is initialized by the
10687 loader and contains the shared library identifier.
10688 The third is also initialized by the loader and points
10689 to the lazy resolution stub. */
10690 MIPS_ELF_PUT_WORD (output_bfd,
10691 sdyn->output_offset + sdyn->output_section->vma,
10692 sgot->contents);
10693 MIPS_ELF_PUT_WORD (output_bfd, 0,
10694 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10695 MIPS_ELF_PUT_WORD (output_bfd, 0,
10696 sgot->contents
10697 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10698 }
10699 else
10700 {
10701 /* The first entry of the global offset table will be filled at
10702 runtime. The second entry will be used by some runtime loaders.
10703 This isn't the case of IRIX rld. */
10704 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10705 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10706 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10707 }
b49e97c9 10708
54938e2a
TS
10709 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10710 = MIPS_ELF_GOT_SIZE (output_bfd);
10711 }
b49e97c9 10712
f4416af6
AO
10713 /* Generate dynamic relocations for the non-primary gots. */
10714 if (gg != NULL && gg->next)
10715 {
10716 Elf_Internal_Rela rel[3];
10717 bfd_vma addend = 0;
10718
10719 memset (rel, 0, sizeof (rel));
10720 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10721
10722 for (g = gg->next; g->next != gg; g = g->next)
10723 {
91d6fa6a 10724 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10725 + g->next->tls_gotno;
f4416af6 10726
9719ad41 10727 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10728 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10729 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10730 sgot->contents
91d6fa6a 10731 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10732
10733 if (! info->shared)
10734 continue;
10735
91d6fa6a 10736 while (got_index < g->assigned_gotno)
f4416af6
AO
10737 {
10738 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10739 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10740 if (!(mips_elf_create_dynamic_relocation
10741 (output_bfd, info, rel, NULL,
10742 bfd_abs_section_ptr,
10743 0, &addend, sgot)))
10744 return FALSE;
10745 BFD_ASSERT (addend == 0);
10746 }
10747 }
10748 }
10749
3133ddbf
DJ
10750 /* The generation of dynamic relocations for the non-primary gots
10751 adds more dynamic relocations. We cannot count them until
10752 here. */
10753
10754 if (elf_hash_table (info)->dynamic_sections_created)
10755 {
10756 bfd_byte *b;
10757 bfd_boolean swap_out_p;
10758
10759 BFD_ASSERT (sdyn != NULL);
10760
10761 for (b = sdyn->contents;
10762 b < sdyn->contents + sdyn->size;
10763 b += MIPS_ELF_DYN_SIZE (dynobj))
10764 {
10765 Elf_Internal_Dyn dyn;
10766 asection *s;
10767
10768 /* Read in the current dynamic entry. */
10769 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10770
10771 /* Assume that we're going to modify it and write it out. */
10772 swap_out_p = TRUE;
10773
10774 switch (dyn.d_tag)
10775 {
10776 case DT_RELSZ:
10777 /* Reduce DT_RELSZ to account for any relocations we
10778 decided not to make. This is for the n64 irix rld,
10779 which doesn't seem to apply any relocations if there
10780 are trailing null entries. */
0a44bf69 10781 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10782 dyn.d_un.d_val = (s->reloc_count
10783 * (ABI_64_P (output_bfd)
10784 ? sizeof (Elf64_Mips_External_Rel)
10785 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10786 /* Adjust the section size too. Tools like the prelinker
10787 can reasonably expect the values to the same. */
10788 elf_section_data (s->output_section)->this_hdr.sh_size
10789 = dyn.d_un.d_val;
3133ddbf
DJ
10790 break;
10791
10792 default:
10793 swap_out_p = FALSE;
10794 break;
10795 }
10796
10797 if (swap_out_p)
10798 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10799 (dynobj, &dyn, b);
10800 }
10801 }
10802
b49e97c9 10803 {
b49e97c9
TS
10804 asection *s;
10805 Elf32_compact_rel cpt;
10806
b49e97c9
TS
10807 if (SGI_COMPAT (output_bfd))
10808 {
10809 /* Write .compact_rel section out. */
3d4d4302 10810 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10811 if (s != NULL)
10812 {
10813 cpt.id1 = 1;
10814 cpt.num = s->reloc_count;
10815 cpt.id2 = 2;
10816 cpt.offset = (s->output_section->filepos
10817 + sizeof (Elf32_External_compact_rel));
10818 cpt.reserved0 = 0;
10819 cpt.reserved1 = 0;
10820 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10821 ((Elf32_External_compact_rel *)
10822 s->contents));
10823
10824 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10825 if (htab->sstubs != NULL)
b49e97c9
TS
10826 {
10827 file_ptr dummy_offset;
10828
4e41d0d7
RS
10829 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10830 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10831 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10832 htab->function_stub_size);
b49e97c9
TS
10833 }
10834 }
10835 }
10836
0a44bf69
RS
10837 /* The psABI says that the dynamic relocations must be sorted in
10838 increasing order of r_symndx. The VxWorks EABI doesn't require
10839 this, and because the code below handles REL rather than RELA
10840 relocations, using it for VxWorks would be outright harmful. */
10841 if (!htab->is_vxworks)
b49e97c9 10842 {
0a44bf69
RS
10843 s = mips_elf_rel_dyn_section (info, FALSE);
10844 if (s != NULL
10845 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10846 {
10847 reldyn_sorting_bfd = output_bfd;
b49e97c9 10848
0a44bf69
RS
10849 if (ABI_64_P (output_bfd))
10850 qsort ((Elf64_External_Rel *) s->contents + 1,
10851 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10852 sort_dynamic_relocs_64);
10853 else
10854 qsort ((Elf32_External_Rel *) s->contents + 1,
10855 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10856 sort_dynamic_relocs);
10857 }
b49e97c9 10858 }
b49e97c9
TS
10859 }
10860
861fb55a 10861 if (htab->splt && htab->splt->size > 0)
0a44bf69 10862 {
861fb55a
DJ
10863 if (htab->is_vxworks)
10864 {
10865 if (info->shared)
10866 mips_vxworks_finish_shared_plt (output_bfd, info);
10867 else
10868 mips_vxworks_finish_exec_plt (output_bfd, info);
10869 }
0a44bf69 10870 else
861fb55a
DJ
10871 {
10872 BFD_ASSERT (!info->shared);
10873 mips_finish_exec_plt (output_bfd, info);
10874 }
0a44bf69 10875 }
b34976b6 10876 return TRUE;
b49e97c9
TS
10877}
10878
b49e97c9 10879
64543e1a
RS
10880/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10881
10882static void
9719ad41 10883mips_set_isa_flags (bfd *abfd)
b49e97c9 10884{
64543e1a 10885 flagword val;
b49e97c9
TS
10886
10887 switch (bfd_get_mach (abfd))
10888 {
10889 default:
10890 case bfd_mach_mips3000:
10891 val = E_MIPS_ARCH_1;
10892 break;
10893
10894 case bfd_mach_mips3900:
10895 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10896 break;
10897
10898 case bfd_mach_mips6000:
10899 val = E_MIPS_ARCH_2;
10900 break;
10901
10902 case bfd_mach_mips4000:
10903 case bfd_mach_mips4300:
10904 case bfd_mach_mips4400:
10905 case bfd_mach_mips4600:
10906 val = E_MIPS_ARCH_3;
10907 break;
10908
10909 case bfd_mach_mips4010:
10910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10911 break;
10912
10913 case bfd_mach_mips4100:
10914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10915 break;
10916
10917 case bfd_mach_mips4111:
10918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10919 break;
10920
00707a0e
RS
10921 case bfd_mach_mips4120:
10922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10923 break;
10924
b49e97c9
TS
10925 case bfd_mach_mips4650:
10926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10927 break;
10928
00707a0e
RS
10929 case bfd_mach_mips5400:
10930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10931 break;
10932
10933 case bfd_mach_mips5500:
10934 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10935 break;
10936
e407c74b
NC
10937 case bfd_mach_mips5900:
10938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10939 break;
10940
0d2e43ed
ILT
10941 case bfd_mach_mips9000:
10942 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10943 break;
10944
b49e97c9 10945 case bfd_mach_mips5000:
5a7ea749 10946 case bfd_mach_mips7000:
b49e97c9
TS
10947 case bfd_mach_mips8000:
10948 case bfd_mach_mips10000:
10949 case bfd_mach_mips12000:
3aa3176b
TS
10950 case bfd_mach_mips14000:
10951 case bfd_mach_mips16000:
b49e97c9
TS
10952 val = E_MIPS_ARCH_4;
10953 break;
10954
10955 case bfd_mach_mips5:
10956 val = E_MIPS_ARCH_5;
10957 break;
10958
350cc38d
MS
10959 case bfd_mach_mips_loongson_2e:
10960 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10961 break;
10962
10963 case bfd_mach_mips_loongson_2f:
10964 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10965 break;
10966
b49e97c9
TS
10967 case bfd_mach_mips_sb1:
10968 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10969 break;
10970
d051516a
NC
10971 case bfd_mach_mips_loongson_3a:
10972 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10973 break;
10974
6f179bd0 10975 case bfd_mach_mips_octeon:
dd6a37e7 10976 case bfd_mach_mips_octeonp:
6f179bd0
AN
10977 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10978 break;
10979
52b6b6b9
JM
10980 case bfd_mach_mips_xlr:
10981 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10982 break;
10983
432233b3
AP
10984 case bfd_mach_mips_octeon2:
10985 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10986 break;
10987
b49e97c9
TS
10988 case bfd_mach_mipsisa32:
10989 val = E_MIPS_ARCH_32;
10990 break;
10991
10992 case bfd_mach_mipsisa64:
10993 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10994 break;
10995
10996 case bfd_mach_mipsisa32r2:
10997 val = E_MIPS_ARCH_32R2;
10998 break;
5f74bc13
CD
10999
11000 case bfd_mach_mipsisa64r2:
11001 val = E_MIPS_ARCH_64R2;
11002 break;
b49e97c9 11003 }
b49e97c9
TS
11004 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11005 elf_elfheader (abfd)->e_flags |= val;
11006
64543e1a
RS
11007}
11008
11009
11010/* The final processing done just before writing out a MIPS ELF object
11011 file. This gets the MIPS architecture right based on the machine
11012 number. This is used by both the 32-bit and the 64-bit ABI. */
11013
11014void
9719ad41
RS
11015_bfd_mips_elf_final_write_processing (bfd *abfd,
11016 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11017{
11018 unsigned int i;
11019 Elf_Internal_Shdr **hdrpp;
11020 const char *name;
11021 asection *sec;
11022
11023 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11024 is nonzero. This is for compatibility with old objects, which used
11025 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11026 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11027 mips_set_isa_flags (abfd);
11028
b49e97c9
TS
11029 /* Set the sh_info field for .gptab sections and other appropriate
11030 info for each special section. */
11031 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11032 i < elf_numsections (abfd);
11033 i++, hdrpp++)
11034 {
11035 switch ((*hdrpp)->sh_type)
11036 {
11037 case SHT_MIPS_MSYM:
11038 case SHT_MIPS_LIBLIST:
11039 sec = bfd_get_section_by_name (abfd, ".dynstr");
11040 if (sec != NULL)
11041 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11042 break;
11043
11044 case SHT_MIPS_GPTAB:
11045 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11046 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11047 BFD_ASSERT (name != NULL
0112cd26 11048 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11049 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11050 BFD_ASSERT (sec != NULL);
11051 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11052 break;
11053
11054 case SHT_MIPS_CONTENT:
11055 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11056 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11057 BFD_ASSERT (name != NULL
0112cd26 11058 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11059 sec = bfd_get_section_by_name (abfd,
11060 name + sizeof ".MIPS.content" - 1);
11061 BFD_ASSERT (sec != NULL);
11062 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11063 break;
11064
11065 case SHT_MIPS_SYMBOL_LIB:
11066 sec = bfd_get_section_by_name (abfd, ".dynsym");
11067 if (sec != NULL)
11068 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11069 sec = bfd_get_section_by_name (abfd, ".liblist");
11070 if (sec != NULL)
11071 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11072 break;
11073
11074 case SHT_MIPS_EVENTS:
11075 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11076 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11077 BFD_ASSERT (name != NULL);
0112cd26 11078 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11079 sec = bfd_get_section_by_name (abfd,
11080 name + sizeof ".MIPS.events" - 1);
11081 else
11082 {
0112cd26 11083 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11084 sec = bfd_get_section_by_name (abfd,
11085 (name
11086 + sizeof ".MIPS.post_rel" - 1));
11087 }
11088 BFD_ASSERT (sec != NULL);
11089 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11090 break;
11091
11092 }
11093 }
11094}
11095\f
8dc1a139 11096/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11097 segments. */
11098
11099int
a6b96beb
AM
11100_bfd_mips_elf_additional_program_headers (bfd *abfd,
11101 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11102{
11103 asection *s;
11104 int ret = 0;
11105
11106 /* See if we need a PT_MIPS_REGINFO segment. */
11107 s = bfd_get_section_by_name (abfd, ".reginfo");
11108 if (s && (s->flags & SEC_LOAD))
11109 ++ret;
11110
11111 /* See if we need a PT_MIPS_OPTIONS segment. */
11112 if (IRIX_COMPAT (abfd) == ict_irix6
11113 && bfd_get_section_by_name (abfd,
11114 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11115 ++ret;
11116
11117 /* See if we need a PT_MIPS_RTPROC segment. */
11118 if (IRIX_COMPAT (abfd) == ict_irix5
11119 && bfd_get_section_by_name (abfd, ".dynamic")
11120 && bfd_get_section_by_name (abfd, ".mdebug"))
11121 ++ret;
11122
98c904a8
RS
11123 /* Allocate a PT_NULL header in dynamic objects. See
11124 _bfd_mips_elf_modify_segment_map for details. */
11125 if (!SGI_COMPAT (abfd)
11126 && bfd_get_section_by_name (abfd, ".dynamic"))
11127 ++ret;
11128
b49e97c9
TS
11129 return ret;
11130}
11131
8dc1a139 11132/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11133
b34976b6 11134bfd_boolean
9719ad41 11135_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11136 struct bfd_link_info *info)
b49e97c9
TS
11137{
11138 asection *s;
11139 struct elf_segment_map *m, **pm;
11140 bfd_size_type amt;
11141
11142 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11143 segment. */
11144 s = bfd_get_section_by_name (abfd, ".reginfo");
11145 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11146 {
11147 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11148 if (m->p_type == PT_MIPS_REGINFO)
11149 break;
11150 if (m == NULL)
11151 {
11152 amt = sizeof *m;
9719ad41 11153 m = bfd_zalloc (abfd, amt);
b49e97c9 11154 if (m == NULL)
b34976b6 11155 return FALSE;
b49e97c9
TS
11156
11157 m->p_type = PT_MIPS_REGINFO;
11158 m->count = 1;
11159 m->sections[0] = s;
11160
11161 /* We want to put it after the PHDR and INTERP segments. */
11162 pm = &elf_tdata (abfd)->segment_map;
11163 while (*pm != NULL
11164 && ((*pm)->p_type == PT_PHDR
11165 || (*pm)->p_type == PT_INTERP))
11166 pm = &(*pm)->next;
11167
11168 m->next = *pm;
11169 *pm = m;
11170 }
11171 }
11172
11173 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11174 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11175 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11176 table. */
c1fd6598
AO
11177 if (NEWABI_P (abfd)
11178 /* On non-IRIX6 new abi, we'll have already created a segment
11179 for this section, so don't create another. I'm not sure this
11180 is not also the case for IRIX 6, but I can't test it right
11181 now. */
11182 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11183 {
11184 for (s = abfd->sections; s; s = s->next)
11185 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11186 break;
11187
11188 if (s)
11189 {
11190 struct elf_segment_map *options_segment;
11191
98a8deaf
RS
11192 pm = &elf_tdata (abfd)->segment_map;
11193 while (*pm != NULL
11194 && ((*pm)->p_type == PT_PHDR
11195 || (*pm)->p_type == PT_INTERP))
11196 pm = &(*pm)->next;
b49e97c9 11197
8ded5a0f
AM
11198 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11199 {
11200 amt = sizeof (struct elf_segment_map);
11201 options_segment = bfd_zalloc (abfd, amt);
11202 options_segment->next = *pm;
11203 options_segment->p_type = PT_MIPS_OPTIONS;
11204 options_segment->p_flags = PF_R;
11205 options_segment->p_flags_valid = TRUE;
11206 options_segment->count = 1;
11207 options_segment->sections[0] = s;
11208 *pm = options_segment;
11209 }
b49e97c9
TS
11210 }
11211 }
11212 else
11213 {
11214 if (IRIX_COMPAT (abfd) == ict_irix5)
11215 {
11216 /* If there are .dynamic and .mdebug sections, we make a room
11217 for the RTPROC header. FIXME: Rewrite without section names. */
11218 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11219 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11220 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11221 {
11222 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11223 if (m->p_type == PT_MIPS_RTPROC)
11224 break;
11225 if (m == NULL)
11226 {
11227 amt = sizeof *m;
9719ad41 11228 m = bfd_zalloc (abfd, amt);
b49e97c9 11229 if (m == NULL)
b34976b6 11230 return FALSE;
b49e97c9
TS
11231
11232 m->p_type = PT_MIPS_RTPROC;
11233
11234 s = bfd_get_section_by_name (abfd, ".rtproc");
11235 if (s == NULL)
11236 {
11237 m->count = 0;
11238 m->p_flags = 0;
11239 m->p_flags_valid = 1;
11240 }
11241 else
11242 {
11243 m->count = 1;
11244 m->sections[0] = s;
11245 }
11246
11247 /* We want to put it after the DYNAMIC segment. */
11248 pm = &elf_tdata (abfd)->segment_map;
11249 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11250 pm = &(*pm)->next;
11251 if (*pm != NULL)
11252 pm = &(*pm)->next;
11253
11254 m->next = *pm;
11255 *pm = m;
11256 }
11257 }
11258 }
8dc1a139 11259 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11260 .dynstr, .dynsym, and .hash sections, and everything in
11261 between. */
11262 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11263 pm = &(*pm)->next)
11264 if ((*pm)->p_type == PT_DYNAMIC)
11265 break;
11266 m = *pm;
11267 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11268 {
11269 /* For a normal mips executable the permissions for the PT_DYNAMIC
11270 segment are read, write and execute. We do that here since
11271 the code in elf.c sets only the read permission. This matters
11272 sometimes for the dynamic linker. */
11273 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11274 {
11275 m->p_flags = PF_R | PF_W | PF_X;
11276 m->p_flags_valid = 1;
11277 }
11278 }
f6f62d6f
RS
11279 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11280 glibc's dynamic linker has traditionally derived the number of
11281 tags from the p_filesz field, and sometimes allocates stack
11282 arrays of that size. An overly-big PT_DYNAMIC segment can
11283 be actively harmful in such cases. Making PT_DYNAMIC contain
11284 other sections can also make life hard for the prelinker,
11285 which might move one of the other sections to a different
11286 PT_LOAD segment. */
11287 if (SGI_COMPAT (abfd)
11288 && m != NULL
11289 && m->count == 1
11290 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11291 {
11292 static const char *sec_names[] =
11293 {
11294 ".dynamic", ".dynstr", ".dynsym", ".hash"
11295 };
11296 bfd_vma low, high;
11297 unsigned int i, c;
11298 struct elf_segment_map *n;
11299
792b4a53 11300 low = ~(bfd_vma) 0;
b49e97c9
TS
11301 high = 0;
11302 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11303 {
11304 s = bfd_get_section_by_name (abfd, sec_names[i]);
11305 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11306 {
11307 bfd_size_type sz;
11308
11309 if (low > s->vma)
11310 low = s->vma;
eea6121a 11311 sz = s->size;
b49e97c9
TS
11312 if (high < s->vma + sz)
11313 high = s->vma + sz;
11314 }
11315 }
11316
11317 c = 0;
11318 for (s = abfd->sections; s != NULL; s = s->next)
11319 if ((s->flags & SEC_LOAD) != 0
11320 && s->vma >= low
eea6121a 11321 && s->vma + s->size <= high)
b49e97c9
TS
11322 ++c;
11323
11324 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11325 n = bfd_zalloc (abfd, amt);
b49e97c9 11326 if (n == NULL)
b34976b6 11327 return FALSE;
b49e97c9
TS
11328 *n = *m;
11329 n->count = c;
11330
11331 i = 0;
11332 for (s = abfd->sections; s != NULL; s = s->next)
11333 {
11334 if ((s->flags & SEC_LOAD) != 0
11335 && s->vma >= low
eea6121a 11336 && s->vma + s->size <= high)
b49e97c9
TS
11337 {
11338 n->sections[i] = s;
11339 ++i;
11340 }
11341 }
11342
11343 *pm = n;
11344 }
11345 }
11346
98c904a8
RS
11347 /* Allocate a spare program header in dynamic objects so that tools
11348 like the prelinker can add an extra PT_LOAD entry.
11349
11350 If the prelinker needs to make room for a new PT_LOAD entry, its
11351 standard procedure is to move the first (read-only) sections into
11352 the new (writable) segment. However, the MIPS ABI requires
11353 .dynamic to be in a read-only segment, and the section will often
11354 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11355
11356 Although the prelinker could in principle move .dynamic to a
11357 writable segment, it seems better to allocate a spare program
11358 header instead, and avoid the need to move any sections.
11359 There is a long tradition of allocating spare dynamic tags,
11360 so allocating a spare program header seems like a natural
7c8b76cc
JM
11361 extension.
11362
11363 If INFO is NULL, we may be copying an already prelinked binary
11364 with objcopy or strip, so do not add this header. */
11365 if (info != NULL
11366 && !SGI_COMPAT (abfd)
98c904a8
RS
11367 && bfd_get_section_by_name (abfd, ".dynamic"))
11368 {
11369 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11370 if ((*pm)->p_type == PT_NULL)
11371 break;
11372 if (*pm == NULL)
11373 {
11374 m = bfd_zalloc (abfd, sizeof (*m));
11375 if (m == NULL)
11376 return FALSE;
11377
11378 m->p_type = PT_NULL;
11379 *pm = m;
11380 }
11381 }
11382
b34976b6 11383 return TRUE;
b49e97c9
TS
11384}
11385\f
11386/* Return the section that should be marked against GC for a given
11387 relocation. */
11388
11389asection *
9719ad41 11390_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11391 struct bfd_link_info *info,
9719ad41
RS
11392 Elf_Internal_Rela *rel,
11393 struct elf_link_hash_entry *h,
11394 Elf_Internal_Sym *sym)
b49e97c9
TS
11395{
11396 /* ??? Do mips16 stub sections need to be handled special? */
11397
11398 if (h != NULL)
07adf181
AM
11399 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11400 {
11401 case R_MIPS_GNU_VTINHERIT:
11402 case R_MIPS_GNU_VTENTRY:
11403 return NULL;
11404 }
b49e97c9 11405
07adf181 11406 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11407}
11408
11409/* Update the got entry reference counts for the section being removed. */
11410
b34976b6 11411bfd_boolean
9719ad41
RS
11412_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11413 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11414 asection *sec ATTRIBUTE_UNUSED,
11415 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11416{
11417#if 0
11418 Elf_Internal_Shdr *symtab_hdr;
11419 struct elf_link_hash_entry **sym_hashes;
11420 bfd_signed_vma *local_got_refcounts;
11421 const Elf_Internal_Rela *rel, *relend;
11422 unsigned long r_symndx;
11423 struct elf_link_hash_entry *h;
11424
7dda2462
TG
11425 if (info->relocatable)
11426 return TRUE;
11427
b49e97c9
TS
11428 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11429 sym_hashes = elf_sym_hashes (abfd);
11430 local_got_refcounts = elf_local_got_refcounts (abfd);
11431
11432 relend = relocs + sec->reloc_count;
11433 for (rel = relocs; rel < relend; rel++)
11434 switch (ELF_R_TYPE (abfd, rel->r_info))
11435 {
738e5348
RS
11436 case R_MIPS16_GOT16:
11437 case R_MIPS16_CALL16:
b49e97c9
TS
11438 case R_MIPS_GOT16:
11439 case R_MIPS_CALL16:
11440 case R_MIPS_CALL_HI16:
11441 case R_MIPS_CALL_LO16:
11442 case R_MIPS_GOT_HI16:
11443 case R_MIPS_GOT_LO16:
4a14403c
TS
11444 case R_MIPS_GOT_DISP:
11445 case R_MIPS_GOT_PAGE:
11446 case R_MIPS_GOT_OFST:
df58fc94
RS
11447 case R_MICROMIPS_GOT16:
11448 case R_MICROMIPS_CALL16:
11449 case R_MICROMIPS_CALL_HI16:
11450 case R_MICROMIPS_CALL_LO16:
11451 case R_MICROMIPS_GOT_HI16:
11452 case R_MICROMIPS_GOT_LO16:
11453 case R_MICROMIPS_GOT_DISP:
11454 case R_MICROMIPS_GOT_PAGE:
11455 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11456 /* ??? It would seem that the existing MIPS code does no sort
11457 of reference counting or whatnot on its GOT and PLT entries,
11458 so it is not possible to garbage collect them at this time. */
11459 break;
11460
11461 default:
11462 break;
11463 }
11464#endif
11465
b34976b6 11466 return TRUE;
b49e97c9
TS
11467}
11468\f
11469/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11470 hiding the old indirect symbol. Process additional relocation
11471 information. Also called for weakdefs, in which case we just let
11472 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11473
11474void
fcfa13d2 11475_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11476 struct elf_link_hash_entry *dir,
11477 struct elf_link_hash_entry *ind)
b49e97c9
TS
11478{
11479 struct mips_elf_link_hash_entry *dirmips, *indmips;
11480
fcfa13d2 11481 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11482
861fb55a
DJ
11483 dirmips = (struct mips_elf_link_hash_entry *) dir;
11484 indmips = (struct mips_elf_link_hash_entry *) ind;
11485 /* Any absolute non-dynamic relocations against an indirect or weak
11486 definition will be against the target symbol. */
11487 if (indmips->has_static_relocs)
11488 dirmips->has_static_relocs = TRUE;
11489
b49e97c9
TS
11490 if (ind->root.type != bfd_link_hash_indirect)
11491 return;
11492
b49e97c9
TS
11493 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11494 if (indmips->readonly_reloc)
b34976b6 11495 dirmips->readonly_reloc = TRUE;
b49e97c9 11496 if (indmips->no_fn_stub)
b34976b6 11497 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11498 if (indmips->fn_stub)
11499 {
11500 dirmips->fn_stub = indmips->fn_stub;
11501 indmips->fn_stub = NULL;
11502 }
11503 if (indmips->need_fn_stub)
11504 {
11505 dirmips->need_fn_stub = TRUE;
11506 indmips->need_fn_stub = FALSE;
11507 }
11508 if (indmips->call_stub)
11509 {
11510 dirmips->call_stub = indmips->call_stub;
11511 indmips->call_stub = NULL;
11512 }
11513 if (indmips->call_fp_stub)
11514 {
11515 dirmips->call_fp_stub = indmips->call_fp_stub;
11516 indmips->call_fp_stub = NULL;
11517 }
634835ae
RS
11518 if (indmips->global_got_area < dirmips->global_got_area)
11519 dirmips->global_got_area = indmips->global_got_area;
11520 if (indmips->global_got_area < GGA_NONE)
11521 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11522 if (indmips->has_nonpic_branches)
11523 dirmips->has_nonpic_branches = TRUE;
0f20cc35 11524
e641e783
RS
11525 if (dirmips->tls_ie_type == 0)
11526 dirmips->tls_ie_type = indmips->tls_ie_type;
11527 if (dirmips->tls_gd_type == 0)
11528 dirmips->tls_gd_type = indmips->tls_gd_type;
b49e97c9 11529}
b49e97c9 11530\f
d01414a5
TS
11531#define PDR_SIZE 32
11532
b34976b6 11533bfd_boolean
9719ad41
RS
11534_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11535 struct bfd_link_info *info)
d01414a5
TS
11536{
11537 asection *o;
b34976b6 11538 bfd_boolean ret = FALSE;
d01414a5
TS
11539 unsigned char *tdata;
11540 size_t i, skip;
11541
11542 o = bfd_get_section_by_name (abfd, ".pdr");
11543 if (! o)
b34976b6 11544 return FALSE;
eea6121a 11545 if (o->size == 0)
b34976b6 11546 return FALSE;
eea6121a 11547 if (o->size % PDR_SIZE != 0)
b34976b6 11548 return FALSE;
d01414a5
TS
11549 if (o->output_section != NULL
11550 && bfd_is_abs_section (o->output_section))
b34976b6 11551 return FALSE;
d01414a5 11552
eea6121a 11553 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11554 if (! tdata)
b34976b6 11555 return FALSE;
d01414a5 11556
9719ad41 11557 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11558 info->keep_memory);
d01414a5
TS
11559 if (!cookie->rels)
11560 {
11561 free (tdata);
b34976b6 11562 return FALSE;
d01414a5
TS
11563 }
11564
11565 cookie->rel = cookie->rels;
11566 cookie->relend = cookie->rels + o->reloc_count;
11567
eea6121a 11568 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11569 {
c152c796 11570 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11571 {
11572 tdata[i] = 1;
11573 skip ++;
11574 }
11575 }
11576
11577 if (skip != 0)
11578 {
f0abc2a1 11579 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11580 o->size -= skip * PDR_SIZE;
b34976b6 11581 ret = TRUE;
d01414a5
TS
11582 }
11583 else
11584 free (tdata);
11585
11586 if (! info->keep_memory)
11587 free (cookie->rels);
11588
11589 return ret;
11590}
11591
b34976b6 11592bfd_boolean
9719ad41 11593_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11594{
11595 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11596 return TRUE;
11597 return FALSE;
53bfd6b4 11598}
d01414a5 11599
b34976b6 11600bfd_boolean
c7b8f16e
JB
11601_bfd_mips_elf_write_section (bfd *output_bfd,
11602 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11603 asection *sec, bfd_byte *contents)
d01414a5
TS
11604{
11605 bfd_byte *to, *from, *end;
11606 int i;
11607
11608 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11609 return FALSE;
d01414a5 11610
f0abc2a1 11611 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11612 return FALSE;
d01414a5
TS
11613
11614 to = contents;
eea6121a 11615 end = contents + sec->size;
d01414a5
TS
11616 for (from = contents, i = 0;
11617 from < end;
11618 from += PDR_SIZE, i++)
11619 {
f0abc2a1 11620 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11621 continue;
11622 if (to != from)
11623 memcpy (to, from, PDR_SIZE);
11624 to += PDR_SIZE;
11625 }
11626 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11627 sec->output_offset, sec->size);
b34976b6 11628 return TRUE;
d01414a5 11629}
53bfd6b4 11630\f
df58fc94
RS
11631/* microMIPS code retains local labels for linker relaxation. Omit them
11632 from output by default for clarity. */
11633
11634bfd_boolean
11635_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11636{
11637 return _bfd_elf_is_local_label_name (abfd, sym->name);
11638}
11639
b49e97c9
TS
11640/* MIPS ELF uses a special find_nearest_line routine in order the
11641 handle the ECOFF debugging information. */
11642
11643struct mips_elf_find_line
11644{
11645 struct ecoff_debug_info d;
11646 struct ecoff_find_line i;
11647};
11648
b34976b6 11649bfd_boolean
9719ad41
RS
11650_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11651 asymbol **symbols, bfd_vma offset,
11652 const char **filename_ptr,
11653 const char **functionname_ptr,
11654 unsigned int *line_ptr)
b49e97c9
TS
11655{
11656 asection *msec;
11657
11658 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11659 filename_ptr, functionname_ptr,
11660 line_ptr))
b34976b6 11661 return TRUE;
b49e97c9 11662
fc28f9aa
TG
11663 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11664 section, symbols, offset,
b49e97c9 11665 filename_ptr, functionname_ptr,
9b8d1a36 11666 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11667 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11668 return TRUE;
b49e97c9
TS
11669
11670 msec = bfd_get_section_by_name (abfd, ".mdebug");
11671 if (msec != NULL)
11672 {
11673 flagword origflags;
11674 struct mips_elf_find_line *fi;
11675 const struct ecoff_debug_swap * const swap =
11676 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11677
11678 /* If we are called during a link, mips_elf_final_link may have
11679 cleared the SEC_HAS_CONTENTS field. We force it back on here
11680 if appropriate (which it normally will be). */
11681 origflags = msec->flags;
11682 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11683 msec->flags |= SEC_HAS_CONTENTS;
11684
11685 fi = elf_tdata (abfd)->find_line_info;
11686 if (fi == NULL)
11687 {
11688 bfd_size_type external_fdr_size;
11689 char *fraw_src;
11690 char *fraw_end;
11691 struct fdr *fdr_ptr;
11692 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11693
9719ad41 11694 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11695 if (fi == NULL)
11696 {
11697 msec->flags = origflags;
b34976b6 11698 return FALSE;
b49e97c9
TS
11699 }
11700
11701 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11702 {
11703 msec->flags = origflags;
b34976b6 11704 return FALSE;
b49e97c9
TS
11705 }
11706
11707 /* Swap in the FDR information. */
11708 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11709 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11710 if (fi->d.fdr == NULL)
11711 {
11712 msec->flags = origflags;
b34976b6 11713 return FALSE;
b49e97c9
TS
11714 }
11715 external_fdr_size = swap->external_fdr_size;
11716 fdr_ptr = fi->d.fdr;
11717 fraw_src = (char *) fi->d.external_fdr;
11718 fraw_end = (fraw_src
11719 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11720 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11721 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
11722
11723 elf_tdata (abfd)->find_line_info = fi;
11724
11725 /* Note that we don't bother to ever free this information.
11726 find_nearest_line is either called all the time, as in
11727 objdump -l, so the information should be saved, or it is
11728 rarely called, as in ld error messages, so the memory
11729 wasted is unimportant. Still, it would probably be a
11730 good idea for free_cached_info to throw it away. */
11731 }
11732
11733 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11734 &fi->i, filename_ptr, functionname_ptr,
11735 line_ptr))
11736 {
11737 msec->flags = origflags;
b34976b6 11738 return TRUE;
b49e97c9
TS
11739 }
11740
11741 msec->flags = origflags;
11742 }
11743
11744 /* Fall back on the generic ELF find_nearest_line routine. */
11745
11746 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11747 filename_ptr, functionname_ptr,
11748 line_ptr);
11749}
4ab527b0
FF
11750
11751bfd_boolean
11752_bfd_mips_elf_find_inliner_info (bfd *abfd,
11753 const char **filename_ptr,
11754 const char **functionname_ptr,
11755 unsigned int *line_ptr)
11756{
11757 bfd_boolean found;
11758 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11759 functionname_ptr, line_ptr,
11760 & elf_tdata (abfd)->dwarf2_find_line_info);
11761 return found;
11762}
11763
b49e97c9
TS
11764\f
11765/* When are writing out the .options or .MIPS.options section,
11766 remember the bytes we are writing out, so that we can install the
11767 GP value in the section_processing routine. */
11768
b34976b6 11769bfd_boolean
9719ad41
RS
11770_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11771 const void *location,
11772 file_ptr offset, bfd_size_type count)
b49e97c9 11773{
cc2e31b9 11774 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11775 {
11776 bfd_byte *c;
11777
11778 if (elf_section_data (section) == NULL)
11779 {
11780 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11781 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11782 if (elf_section_data (section) == NULL)
b34976b6 11783 return FALSE;
b49e97c9 11784 }
f0abc2a1 11785 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11786 if (c == NULL)
11787 {
eea6121a 11788 c = bfd_zalloc (abfd, section->size);
b49e97c9 11789 if (c == NULL)
b34976b6 11790 return FALSE;
f0abc2a1 11791 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11792 }
11793
9719ad41 11794 memcpy (c + offset, location, count);
b49e97c9
TS
11795 }
11796
11797 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11798 count);
11799}
11800
11801/* This is almost identical to bfd_generic_get_... except that some
11802 MIPS relocations need to be handled specially. Sigh. */
11803
11804bfd_byte *
9719ad41
RS
11805_bfd_elf_mips_get_relocated_section_contents
11806 (bfd *abfd,
11807 struct bfd_link_info *link_info,
11808 struct bfd_link_order *link_order,
11809 bfd_byte *data,
11810 bfd_boolean relocatable,
11811 asymbol **symbols)
b49e97c9
TS
11812{
11813 /* Get enough memory to hold the stuff */
11814 bfd *input_bfd = link_order->u.indirect.section->owner;
11815 asection *input_section = link_order->u.indirect.section;
eea6121a 11816 bfd_size_type sz;
b49e97c9
TS
11817
11818 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11819 arelent **reloc_vector = NULL;
11820 long reloc_count;
11821
11822 if (reloc_size < 0)
11823 goto error_return;
11824
9719ad41 11825 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11826 if (reloc_vector == NULL && reloc_size != 0)
11827 goto error_return;
11828
11829 /* read in the section */
eea6121a
AM
11830 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11831 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11832 goto error_return;
11833
b49e97c9
TS
11834 reloc_count = bfd_canonicalize_reloc (input_bfd,
11835 input_section,
11836 reloc_vector,
11837 symbols);
11838 if (reloc_count < 0)
11839 goto error_return;
11840
11841 if (reloc_count > 0)
11842 {
11843 arelent **parent;
11844 /* for mips */
11845 int gp_found;
11846 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11847
11848 {
11849 struct bfd_hash_entry *h;
11850 struct bfd_link_hash_entry *lh;
11851 /* Skip all this stuff if we aren't mixing formats. */
11852 if (abfd && input_bfd
11853 && abfd->xvec == input_bfd->xvec)
11854 lh = 0;
11855 else
11856 {
b34976b6 11857 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11858 lh = (struct bfd_link_hash_entry *) h;
11859 }
11860 lookup:
11861 if (lh)
11862 {
11863 switch (lh->type)
11864 {
11865 case bfd_link_hash_undefined:
11866 case bfd_link_hash_undefweak:
11867 case bfd_link_hash_common:
11868 gp_found = 0;
11869 break;
11870 case bfd_link_hash_defined:
11871 case bfd_link_hash_defweak:
11872 gp_found = 1;
11873 gp = lh->u.def.value;
11874 break;
11875 case bfd_link_hash_indirect:
11876 case bfd_link_hash_warning:
11877 lh = lh->u.i.link;
11878 /* @@FIXME ignoring warning for now */
11879 goto lookup;
11880 case bfd_link_hash_new:
11881 default:
11882 abort ();
11883 }
11884 }
11885 else
11886 gp_found = 0;
11887 }
11888 /* end mips */
9719ad41 11889 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11890 {
9719ad41 11891 char *error_message = NULL;
b49e97c9
TS
11892 bfd_reloc_status_type r;
11893
11894 /* Specific to MIPS: Deal with relocation types that require
11895 knowing the gp of the output bfd. */
11896 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11897
8236346f
EC
11898 /* If we've managed to find the gp and have a special
11899 function for the relocation then go ahead, else default
11900 to the generic handling. */
11901 if (gp_found
11902 && (*parent)->howto->special_function
11903 == _bfd_mips_elf32_gprel16_reloc)
11904 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11905 input_section, relocatable,
11906 data, gp);
11907 else
86324f90 11908 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11909 input_section,
11910 relocatable ? abfd : NULL,
11911 &error_message);
b49e97c9 11912
1049f94e 11913 if (relocatable)
b49e97c9
TS
11914 {
11915 asection *os = input_section->output_section;
11916
11917 /* A partial link, so keep the relocs */
11918 os->orelocation[os->reloc_count] = *parent;
11919 os->reloc_count++;
11920 }
11921
11922 if (r != bfd_reloc_ok)
11923 {
11924 switch (r)
11925 {
11926 case bfd_reloc_undefined:
11927 if (!((*link_info->callbacks->undefined_symbol)
11928 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11929 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11930 goto error_return;
11931 break;
11932 case bfd_reloc_dangerous:
9719ad41 11933 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11934 if (!((*link_info->callbacks->reloc_dangerous)
11935 (link_info, error_message, input_bfd, input_section,
11936 (*parent)->address)))
11937 goto error_return;
11938 break;
11939 case bfd_reloc_overflow:
11940 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11941 (link_info, NULL,
11942 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11943 (*parent)->howto->name, (*parent)->addend,
11944 input_bfd, input_section, (*parent)->address)))
11945 goto error_return;
11946 break;
11947 case bfd_reloc_outofrange:
11948 default:
11949 abort ();
11950 break;
11951 }
11952
11953 }
11954 }
11955 }
11956 if (reloc_vector != NULL)
11957 free (reloc_vector);
11958 return data;
11959
11960error_return:
11961 if (reloc_vector != NULL)
11962 free (reloc_vector);
11963 return NULL;
11964}
11965\f
df58fc94
RS
11966static bfd_boolean
11967mips_elf_relax_delete_bytes (bfd *abfd,
11968 asection *sec, bfd_vma addr, int count)
11969{
11970 Elf_Internal_Shdr *symtab_hdr;
11971 unsigned int sec_shndx;
11972 bfd_byte *contents;
11973 Elf_Internal_Rela *irel, *irelend;
11974 Elf_Internal_Sym *isym;
11975 Elf_Internal_Sym *isymend;
11976 struct elf_link_hash_entry **sym_hashes;
11977 struct elf_link_hash_entry **end_hashes;
11978 struct elf_link_hash_entry **start_hashes;
11979 unsigned int symcount;
11980
11981 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11982 contents = elf_section_data (sec)->this_hdr.contents;
11983
11984 irel = elf_section_data (sec)->relocs;
11985 irelend = irel + sec->reloc_count;
11986
11987 /* Actually delete the bytes. */
11988 memmove (contents + addr, contents + addr + count,
11989 (size_t) (sec->size - addr - count));
11990 sec->size -= count;
11991
11992 /* Adjust all the relocs. */
11993 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11994 {
11995 /* Get the new reloc address. */
11996 if (irel->r_offset > addr)
11997 irel->r_offset -= count;
11998 }
11999
12000 BFD_ASSERT (addr % 2 == 0);
12001 BFD_ASSERT (count % 2 == 0);
12002
12003 /* Adjust the local symbols defined in this section. */
12004 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12005 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12006 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 12007 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12008 isym->st_value -= count;
12009
12010 /* Now adjust the global symbols defined in this section. */
12011 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12012 - symtab_hdr->sh_info);
12013 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12014 end_hashes = sym_hashes + symcount;
12015
12016 for (; sym_hashes < end_hashes; sym_hashes++)
12017 {
12018 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12019
12020 if ((sym_hash->root.type == bfd_link_hash_defined
12021 || sym_hash->root.type == bfd_link_hash_defweak)
12022 && sym_hash->root.u.def.section == sec)
12023 {
2309ddf2 12024 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12025
df58fc94
RS
12026 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12027 value &= MINUS_TWO;
12028 if (value > addr)
12029 sym_hash->root.u.def.value -= count;
12030 }
12031 }
12032
12033 return TRUE;
12034}
12035
12036
12037/* Opcodes needed for microMIPS relaxation as found in
12038 opcodes/micromips-opc.c. */
12039
12040struct opcode_descriptor {
12041 unsigned long match;
12042 unsigned long mask;
12043};
12044
12045/* The $ra register aka $31. */
12046
12047#define RA 31
12048
12049/* 32-bit instruction format register fields. */
12050
12051#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12052#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12053
12054/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12055
12056#define OP16_VALID_REG(r) \
12057 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12058
12059
12060/* 32-bit and 16-bit branches. */
12061
12062static const struct opcode_descriptor b_insns_32[] = {
12063 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12064 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12065 { 0, 0 } /* End marker for find_match(). */
12066};
12067
12068static const struct opcode_descriptor bc_insn_32 =
12069 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12070
12071static const struct opcode_descriptor bz_insn_32 =
12072 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12073
12074static const struct opcode_descriptor bzal_insn_32 =
12075 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12076
12077static const struct opcode_descriptor beq_insn_32 =
12078 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12079
12080static const struct opcode_descriptor b_insn_16 =
12081 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12082
12083static const struct opcode_descriptor bz_insn_16 =
c088dedf 12084 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12085
12086
12087/* 32-bit and 16-bit branch EQ and NE zero. */
12088
12089/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12090 eq and second the ne. This convention is used when replacing a
12091 32-bit BEQ/BNE with the 16-bit version. */
12092
12093#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12094
12095static const struct opcode_descriptor bz_rs_insns_32[] = {
12096 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12097 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12098 { 0, 0 } /* End marker for find_match(). */
12099};
12100
12101static const struct opcode_descriptor bz_rt_insns_32[] = {
12102 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12103 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12104 { 0, 0 } /* End marker for find_match(). */
12105};
12106
12107static const struct opcode_descriptor bzc_insns_32[] = {
12108 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12109 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12110 { 0, 0 } /* End marker for find_match(). */
12111};
12112
12113static const struct opcode_descriptor bz_insns_16[] = {
12114 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12115 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12116 { 0, 0 } /* End marker for find_match(). */
12117};
12118
12119/* Switch between a 5-bit register index and its 3-bit shorthand. */
12120
12121#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12122#define BZ16_REG_FIELD(r) \
12123 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12124
12125
12126/* 32-bit instructions with a delay slot. */
12127
12128static const struct opcode_descriptor jal_insn_32_bd16 =
12129 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12130
12131static const struct opcode_descriptor jal_insn_32_bd32 =
12132 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12133
12134static const struct opcode_descriptor jal_x_insn_32_bd32 =
12135 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12136
12137static const struct opcode_descriptor j_insn_32 =
12138 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12139
12140static const struct opcode_descriptor jalr_insn_32 =
12141 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12142
12143/* This table can be compacted, because no opcode replacement is made. */
12144
12145static const struct opcode_descriptor ds_insns_32_bd16[] = {
12146 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12147
12148 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12149 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12150
12151 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12152 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12153 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12154 { 0, 0 } /* End marker for find_match(). */
12155};
12156
12157/* This table can be compacted, because no opcode replacement is made. */
12158
12159static const struct opcode_descriptor ds_insns_32_bd32[] = {
12160 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12161
12162 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12163 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12164 { 0, 0 } /* End marker for find_match(). */
12165};
12166
12167
12168/* 16-bit instructions with a delay slot. */
12169
12170static const struct opcode_descriptor jalr_insn_16_bd16 =
12171 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12172
12173static const struct opcode_descriptor jalr_insn_16_bd32 =
12174 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12175
12176static const struct opcode_descriptor jr_insn_16 =
12177 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12178
12179#define JR16_REG(opcode) ((opcode) & 0x1f)
12180
12181/* This table can be compacted, because no opcode replacement is made. */
12182
12183static const struct opcode_descriptor ds_insns_16_bd16[] = {
12184 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12185
12186 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12187 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12188 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12189 { 0, 0 } /* End marker for find_match(). */
12190};
12191
12192
12193/* LUI instruction. */
12194
12195static const struct opcode_descriptor lui_insn =
12196 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12197
12198
12199/* ADDIU instruction. */
12200
12201static const struct opcode_descriptor addiu_insn =
12202 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12203
12204static const struct opcode_descriptor addiupc_insn =
12205 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12206
12207#define ADDIUPC_REG_FIELD(r) \
12208 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12209
12210
12211/* Relaxable instructions in a JAL delay slot: MOVE. */
12212
12213/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12214 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12215#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12216#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12217
12218#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12219#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12220
12221static const struct opcode_descriptor move_insns_32[] = {
12222 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12223 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12224 { 0, 0 } /* End marker for find_match(). */
12225};
12226
12227static const struct opcode_descriptor move_insn_16 =
12228 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12229
12230
12231/* NOP instructions. */
12232
12233static const struct opcode_descriptor nop_insn_32 =
12234 { /* "nop", "", */ 0x00000000, 0xffffffff };
12235
12236static const struct opcode_descriptor nop_insn_16 =
12237 { /* "nop", "", */ 0x0c00, 0xffff };
12238
12239
12240/* Instruction match support. */
12241
12242#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12243
12244static int
12245find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12246{
12247 unsigned long indx;
12248
12249 for (indx = 0; insn[indx].mask != 0; indx++)
12250 if (MATCH (opcode, insn[indx]))
12251 return indx;
12252
12253 return -1;
12254}
12255
12256
12257/* Branch and delay slot decoding support. */
12258
12259/* If PTR points to what *might* be a 16-bit branch or jump, then
12260 return the minimum length of its delay slot, otherwise return 0.
12261 Non-zero results are not definitive as we might be checking against
12262 the second half of another instruction. */
12263
12264static int
12265check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12266{
12267 unsigned long opcode;
12268 int bdsize;
12269
12270 opcode = bfd_get_16 (abfd, ptr);
12271 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12272 /* 16-bit branch/jump with a 32-bit delay slot. */
12273 bdsize = 4;
12274 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12275 || find_match (opcode, ds_insns_16_bd16) >= 0)
12276 /* 16-bit branch/jump with a 16-bit delay slot. */
12277 bdsize = 2;
12278 else
12279 /* No delay slot. */
12280 bdsize = 0;
12281
12282 return bdsize;
12283}
12284
12285/* If PTR points to what *might* be a 32-bit branch or jump, then
12286 return the minimum length of its delay slot, otherwise return 0.
12287 Non-zero results are not definitive as we might be checking against
12288 the second half of another instruction. */
12289
12290static int
12291check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12292{
12293 unsigned long opcode;
12294 int bdsize;
12295
d21911ea 12296 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12297 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12298 /* 32-bit branch/jump with a 32-bit delay slot. */
12299 bdsize = 4;
12300 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12301 /* 32-bit branch/jump with a 16-bit delay slot. */
12302 bdsize = 2;
12303 else
12304 /* No delay slot. */
12305 bdsize = 0;
12306
12307 return bdsize;
12308}
12309
12310/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12311 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12312
12313static bfd_boolean
12314check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12315{
12316 unsigned long opcode;
12317
12318 opcode = bfd_get_16 (abfd, ptr);
12319 if (MATCH (opcode, b_insn_16)
12320 /* B16 */
12321 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12322 /* JR16 */
12323 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12324 /* BEQZ16, BNEZ16 */
12325 || (MATCH (opcode, jalr_insn_16_bd32)
12326 /* JALR16 */
12327 && reg != JR16_REG (opcode) && reg != RA))
12328 return TRUE;
12329
12330 return FALSE;
12331}
12332
12333/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12334 then return TRUE, otherwise FALSE. */
12335
f41e5fcc 12336static bfd_boolean
df58fc94
RS
12337check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12338{
12339 unsigned long opcode;
12340
d21911ea 12341 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12342 if (MATCH (opcode, j_insn_32)
12343 /* J */
12344 || MATCH (opcode, bc_insn_32)
12345 /* BC1F, BC1T, BC2F, BC2T */
12346 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12347 /* JAL, JALX */
12348 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12349 /* BGEZ, BGTZ, BLEZ, BLTZ */
12350 || (MATCH (opcode, bzal_insn_32)
12351 /* BGEZAL, BLTZAL */
12352 && reg != OP32_SREG (opcode) && reg != RA)
12353 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12354 /* JALR, JALR.HB, BEQ, BNE */
12355 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12356 return TRUE;
12357
12358 return FALSE;
12359}
12360
80cab405
MR
12361/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12362 IRELEND) at OFFSET indicate that there must be a compact branch there,
12363 then return TRUE, otherwise FALSE. */
df58fc94
RS
12364
12365static bfd_boolean
80cab405
MR
12366check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12367 const Elf_Internal_Rela *internal_relocs,
12368 const Elf_Internal_Rela *irelend)
df58fc94 12369{
80cab405
MR
12370 const Elf_Internal_Rela *irel;
12371 unsigned long opcode;
12372
d21911ea 12373 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12374 if (find_match (opcode, bzc_insns_32) < 0)
12375 return FALSE;
df58fc94
RS
12376
12377 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12378 if (irel->r_offset == offset
12379 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12380 return TRUE;
12381
df58fc94
RS
12382 return FALSE;
12383}
80cab405
MR
12384
12385/* Bitsize checking. */
12386#define IS_BITSIZE(val, N) \
12387 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12388 - (1ULL << ((N) - 1))) == (val))
12389
df58fc94
RS
12390\f
12391bfd_boolean
12392_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12393 struct bfd_link_info *link_info,
12394 bfd_boolean *again)
12395{
12396 Elf_Internal_Shdr *symtab_hdr;
12397 Elf_Internal_Rela *internal_relocs;
12398 Elf_Internal_Rela *irel, *irelend;
12399 bfd_byte *contents = NULL;
12400 Elf_Internal_Sym *isymbuf = NULL;
12401
12402 /* Assume nothing changes. */
12403 *again = FALSE;
12404
12405 /* We don't have to do anything for a relocatable link, if
12406 this section does not have relocs, or if this is not a
12407 code section. */
12408
12409 if (link_info->relocatable
12410 || (sec->flags & SEC_RELOC) == 0
12411 || sec->reloc_count == 0
12412 || (sec->flags & SEC_CODE) == 0)
12413 return TRUE;
12414
12415 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12416
12417 /* Get a copy of the native relocations. */
12418 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12419 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12420 link_info->keep_memory));
12421 if (internal_relocs == NULL)
12422 goto error_return;
12423
12424 /* Walk through them looking for relaxing opportunities. */
12425 irelend = internal_relocs + sec->reloc_count;
12426 for (irel = internal_relocs; irel < irelend; irel++)
12427 {
12428 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12429 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12430 bfd_boolean target_is_micromips_code_p;
12431 unsigned long opcode;
12432 bfd_vma symval;
12433 bfd_vma pcrval;
2309ddf2 12434 bfd_byte *ptr;
df58fc94
RS
12435 int fndopc;
12436
12437 /* The number of bytes to delete for relaxation and from where
12438 to delete these bytes starting at irel->r_offset. */
12439 int delcnt = 0;
12440 int deloff = 0;
12441
12442 /* If this isn't something that can be relaxed, then ignore
12443 this reloc. */
12444 if (r_type != R_MICROMIPS_HI16
12445 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12446 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12447 continue;
12448
12449 /* Get the section contents if we haven't done so already. */
12450 if (contents == NULL)
12451 {
12452 /* Get cached copy if it exists. */
12453 if (elf_section_data (sec)->this_hdr.contents != NULL)
12454 contents = elf_section_data (sec)->this_hdr.contents;
12455 /* Go get them off disk. */
12456 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12457 goto error_return;
12458 }
2309ddf2 12459 ptr = contents + irel->r_offset;
df58fc94
RS
12460
12461 /* Read this BFD's local symbols if we haven't done so already. */
12462 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12463 {
12464 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12465 if (isymbuf == NULL)
12466 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12467 symtab_hdr->sh_info, 0,
12468 NULL, NULL, NULL);
12469 if (isymbuf == NULL)
12470 goto error_return;
12471 }
12472
12473 /* Get the value of the symbol referred to by the reloc. */
12474 if (r_symndx < symtab_hdr->sh_info)
12475 {
12476 /* A local symbol. */
12477 Elf_Internal_Sym *isym;
12478 asection *sym_sec;
12479
12480 isym = isymbuf + r_symndx;
12481 if (isym->st_shndx == SHN_UNDEF)
12482 sym_sec = bfd_und_section_ptr;
12483 else if (isym->st_shndx == SHN_ABS)
12484 sym_sec = bfd_abs_section_ptr;
12485 else if (isym->st_shndx == SHN_COMMON)
12486 sym_sec = bfd_com_section_ptr;
12487 else
12488 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12489 symval = (isym->st_value
12490 + sym_sec->output_section->vma
12491 + sym_sec->output_offset);
12492 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12493 }
12494 else
12495 {
12496 unsigned long indx;
12497 struct elf_link_hash_entry *h;
12498
12499 /* An external symbol. */
12500 indx = r_symndx - symtab_hdr->sh_info;
12501 h = elf_sym_hashes (abfd)[indx];
12502 BFD_ASSERT (h != NULL);
12503
12504 if (h->root.type != bfd_link_hash_defined
12505 && h->root.type != bfd_link_hash_defweak)
12506 /* This appears to be a reference to an undefined
12507 symbol. Just ignore it -- it will be caught by the
12508 regular reloc processing. */
12509 continue;
12510
12511 symval = (h->root.u.def.value
12512 + h->root.u.def.section->output_section->vma
12513 + h->root.u.def.section->output_offset);
12514 target_is_micromips_code_p = (!h->needs_plt
12515 && ELF_ST_IS_MICROMIPS (h->other));
12516 }
12517
12518
12519 /* For simplicity of coding, we are going to modify the
12520 section contents, the section relocs, and the BFD symbol
12521 table. We must tell the rest of the code not to free up this
12522 information. It would be possible to instead create a table
12523 of changes which have to be made, as is done in coff-mips.c;
12524 that would be more work, but would require less memory when
12525 the linker is run. */
12526
12527 /* Only 32-bit instructions relaxed. */
12528 if (irel->r_offset + 4 > sec->size)
12529 continue;
12530
d21911ea 12531 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12532
12533 /* This is the pc-relative distance from the instruction the
12534 relocation is applied to, to the symbol referred. */
12535 pcrval = (symval
12536 - (sec->output_section->vma + sec->output_offset)
12537 - irel->r_offset);
12538
12539 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12540 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12541 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12542
12543 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12544
12545 where pcrval has first to be adjusted to apply against the LO16
12546 location (we make the adjustment later on, when we have figured
12547 out the offset). */
12548 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12549 {
80cab405 12550 bfd_boolean bzc = FALSE;
df58fc94
RS
12551 unsigned long nextopc;
12552 unsigned long reg;
12553 bfd_vma offset;
12554
12555 /* Give up if the previous reloc was a HI16 against this symbol
12556 too. */
12557 if (irel > internal_relocs
12558 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12559 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12560 continue;
12561
12562 /* Or if the next reloc is not a LO16 against this symbol. */
12563 if (irel + 1 >= irelend
12564 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12565 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12566 continue;
12567
12568 /* Or if the second next reloc is a LO16 against this symbol too. */
12569 if (irel + 2 >= irelend
12570 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12571 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12572 continue;
12573
80cab405
MR
12574 /* See if the LUI instruction *might* be in a branch delay slot.
12575 We check whether what looks like a 16-bit branch or jump is
12576 actually an immediate argument to a compact branch, and let
12577 it through if so. */
df58fc94 12578 if (irel->r_offset >= 2
2309ddf2 12579 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12580 && !(irel->r_offset >= 4
80cab405
MR
12581 && (bzc = check_relocated_bzc (abfd,
12582 ptr - 4, irel->r_offset - 4,
12583 internal_relocs, irelend))))
df58fc94
RS
12584 continue;
12585 if (irel->r_offset >= 4
80cab405 12586 && !bzc
2309ddf2 12587 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12588 continue;
12589
12590 reg = OP32_SREG (opcode);
12591
12592 /* We only relax adjacent instructions or ones separated with
12593 a branch or jump that has a delay slot. The branch or jump
12594 must not fiddle with the register used to hold the address.
12595 Subtract 4 for the LUI itself. */
12596 offset = irel[1].r_offset - irel[0].r_offset;
12597 switch (offset - 4)
12598 {
12599 case 0:
12600 break;
12601 case 2:
2309ddf2 12602 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12603 break;
12604 continue;
12605 case 4:
2309ddf2 12606 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12607 break;
12608 continue;
12609 default:
12610 continue;
12611 }
12612
d21911ea 12613 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12614
12615 /* Give up unless the same register is used with both
12616 relocations. */
12617 if (OP32_SREG (nextopc) != reg)
12618 continue;
12619
12620 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12621 and rounding up to take masking of the two LSBs into account. */
12622 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12623
12624 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12625 if (IS_BITSIZE (symval, 16))
12626 {
12627 /* Fix the relocation's type. */
12628 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12629
12630 /* Instructions using R_MICROMIPS_LO16 have the base or
12631 source register in bits 20:16. This register becomes $0
12632 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12633 nextopc &= ~0x001f0000;
12634 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12635 contents + irel[1].r_offset);
12636 }
12637
12638 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12639 We add 4 to take LUI deletion into account while checking
12640 the PC-relative distance. */
12641 else if (symval % 4 == 0
12642 && IS_BITSIZE (pcrval + 4, 25)
12643 && MATCH (nextopc, addiu_insn)
12644 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12645 && OP16_VALID_REG (OP32_TREG (nextopc)))
12646 {
12647 /* Fix the relocation's type. */
12648 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12649
12650 /* Replace ADDIU with the ADDIUPC version. */
12651 nextopc = (addiupc_insn.match
12652 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12653
d21911ea
MR
12654 bfd_put_micromips_32 (abfd, nextopc,
12655 contents + irel[1].r_offset);
df58fc94
RS
12656 }
12657
12658 /* Can't do anything, give up, sigh... */
12659 else
12660 continue;
12661
12662 /* Fix the relocation's type. */
12663 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12664
12665 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12666 delcnt = 4;
12667 deloff = 0;
12668 }
12669
12670 /* Compact branch relaxation -- due to the multitude of macros
12671 employed by the compiler/assembler, compact branches are not
12672 always generated. Obviously, this can/will be fixed elsewhere,
12673 but there is no drawback in double checking it here. */
12674 else if (r_type == R_MICROMIPS_PC16_S1
12675 && irel->r_offset + 5 < sec->size
12676 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12677 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12678 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12679 {
12680 unsigned long reg;
12681
12682 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12683
12684 /* Replace BEQZ/BNEZ with the compact version. */
12685 opcode = (bzc_insns_32[fndopc].match
12686 | BZC32_REG_FIELD (reg)
12687 | (opcode & 0xffff)); /* Addend value. */
12688
d21911ea 12689 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12690
12691 /* Delete the 16-bit delay slot NOP: two bytes from
12692 irel->offset + 4. */
12693 delcnt = 2;
12694 deloff = 4;
12695 }
12696
12697 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12698 to check the distance from the next instruction, so subtract 2. */
12699 else if (r_type == R_MICROMIPS_PC16_S1
12700 && IS_BITSIZE (pcrval - 2, 11)
12701 && find_match (opcode, b_insns_32) >= 0)
12702 {
12703 /* Fix the relocation's type. */
12704 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12705
a8685210 12706 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12707 bfd_put_16 (abfd,
12708 (b_insn_16.match
12709 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12710 ptr);
df58fc94
RS
12711
12712 /* Delete 2 bytes from irel->r_offset + 2. */
12713 delcnt = 2;
12714 deloff = 2;
12715 }
12716
12717 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12718 to check the distance from the next instruction, so subtract 2. */
12719 else if (r_type == R_MICROMIPS_PC16_S1
12720 && IS_BITSIZE (pcrval - 2, 8)
12721 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12722 && OP16_VALID_REG (OP32_SREG (opcode)))
12723 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12724 && OP16_VALID_REG (OP32_TREG (opcode)))))
12725 {
12726 unsigned long reg;
12727
12728 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12729
12730 /* Fix the relocation's type. */
12731 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12732
a8685210 12733 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12734 bfd_put_16 (abfd,
12735 (bz_insns_16[fndopc].match
12736 | BZ16_REG_FIELD (reg)
12737 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12738 ptr);
df58fc94
RS
12739
12740 /* Delete 2 bytes from irel->r_offset + 2. */
12741 delcnt = 2;
12742 deloff = 2;
12743 }
12744
12745 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12746 else if (r_type == R_MICROMIPS_26_S1
12747 && target_is_micromips_code_p
12748 && irel->r_offset + 7 < sec->size
12749 && MATCH (opcode, jal_insn_32_bd32))
12750 {
12751 unsigned long n32opc;
12752 bfd_boolean relaxed = FALSE;
12753
d21911ea 12754 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12755
12756 if (MATCH (n32opc, nop_insn_32))
12757 {
12758 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12759 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12760
12761 relaxed = TRUE;
12762 }
12763 else if (find_match (n32opc, move_insns_32) >= 0)
12764 {
12765 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12766 bfd_put_16 (abfd,
12767 (move_insn_16.match
12768 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12769 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12770 ptr + 4);
df58fc94
RS
12771
12772 relaxed = TRUE;
12773 }
12774 /* Other 32-bit instructions relaxable to 16-bit
12775 instructions will be handled here later. */
12776
12777 if (relaxed)
12778 {
12779 /* JAL with 32-bit delay slot that is changed to a JALS
12780 with 16-bit delay slot. */
d21911ea 12781 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12782
12783 /* Delete 2 bytes from irel->r_offset + 6. */
12784 delcnt = 2;
12785 deloff = 6;
12786 }
12787 }
12788
12789 if (delcnt != 0)
12790 {
12791 /* Note that we've changed the relocs, section contents, etc. */
12792 elf_section_data (sec)->relocs = internal_relocs;
12793 elf_section_data (sec)->this_hdr.contents = contents;
12794 symtab_hdr->contents = (unsigned char *) isymbuf;
12795
12796 /* Delete bytes depending on the delcnt and deloff. */
12797 if (!mips_elf_relax_delete_bytes (abfd, sec,
12798 irel->r_offset + deloff, delcnt))
12799 goto error_return;
12800
12801 /* That will change things, so we should relax again.
12802 Note that this is not required, and it may be slow. */
12803 *again = TRUE;
12804 }
12805 }
12806
12807 if (isymbuf != NULL
12808 && symtab_hdr->contents != (unsigned char *) isymbuf)
12809 {
12810 if (! link_info->keep_memory)
12811 free (isymbuf);
12812 else
12813 {
12814 /* Cache the symbols for elf_link_input_bfd. */
12815 symtab_hdr->contents = (unsigned char *) isymbuf;
12816 }
12817 }
12818
12819 if (contents != NULL
12820 && elf_section_data (sec)->this_hdr.contents != contents)
12821 {
12822 if (! link_info->keep_memory)
12823 free (contents);
12824 else
12825 {
12826 /* Cache the section contents for elf_link_input_bfd. */
12827 elf_section_data (sec)->this_hdr.contents = contents;
12828 }
12829 }
12830
12831 if (internal_relocs != NULL
12832 && elf_section_data (sec)->relocs != internal_relocs)
12833 free (internal_relocs);
12834
12835 return TRUE;
12836
12837 error_return:
12838 if (isymbuf != NULL
12839 && symtab_hdr->contents != (unsigned char *) isymbuf)
12840 free (isymbuf);
12841 if (contents != NULL
12842 && elf_section_data (sec)->this_hdr.contents != contents)
12843 free (contents);
12844 if (internal_relocs != NULL
12845 && elf_section_data (sec)->relocs != internal_relocs)
12846 free (internal_relocs);
12847
12848 return FALSE;
12849}
12850\f
b49e97c9
TS
12851/* Create a MIPS ELF linker hash table. */
12852
12853struct bfd_link_hash_table *
9719ad41 12854_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12855{
12856 struct mips_elf_link_hash_table *ret;
12857 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12858
7bf52ea2 12859 ret = bfd_zmalloc (amt);
9719ad41 12860 if (ret == NULL)
b49e97c9
TS
12861 return NULL;
12862
66eb6687
AM
12863 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12864 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12865 sizeof (struct mips_elf_link_hash_entry),
12866 MIPS_ELF_DATA))
b49e97c9 12867 {
e2d34d7d 12868 free (ret);
b49e97c9
TS
12869 return NULL;
12870 }
12871
b49e97c9
TS
12872 return &ret->root.root;
12873}
0a44bf69
RS
12874
12875/* Likewise, but indicate that the target is VxWorks. */
12876
12877struct bfd_link_hash_table *
12878_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12879{
12880 struct bfd_link_hash_table *ret;
12881
12882 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12883 if (ret)
12884 {
12885 struct mips_elf_link_hash_table *htab;
12886
12887 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12888 htab->use_plts_and_copy_relocs = TRUE;
12889 htab->is_vxworks = TRUE;
0a44bf69
RS
12890 }
12891 return ret;
12892}
861fb55a
DJ
12893
12894/* A function that the linker calls if we are allowed to use PLTs
12895 and copy relocs. */
12896
12897void
12898_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12899{
12900 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12901}
b49e97c9
TS
12902\f
12903/* We need to use a special link routine to handle the .reginfo and
12904 the .mdebug sections. We need to merge all instances of these
12905 sections together, not write them all out sequentially. */
12906
b34976b6 12907bfd_boolean
9719ad41 12908_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12909{
b49e97c9
TS
12910 asection *o;
12911 struct bfd_link_order *p;
12912 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12913 asection *rtproc_sec;
12914 Elf32_RegInfo reginfo;
12915 struct ecoff_debug_info debug;
861fb55a 12916 struct mips_htab_traverse_info hti;
7a2a6943
NC
12917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12918 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 12919 HDRR *symhdr = &debug.symbolic_header;
9719ad41 12920 void *mdebug_handle = NULL;
b49e97c9
TS
12921 asection *s;
12922 EXTR esym;
12923 unsigned int i;
12924 bfd_size_type amt;
0a44bf69 12925 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
12926
12927 static const char * const secname[] =
12928 {
12929 ".text", ".init", ".fini", ".data",
12930 ".rodata", ".sdata", ".sbss", ".bss"
12931 };
12932 static const int sc[] =
12933 {
12934 scText, scInit, scFini, scData,
12935 scRData, scSData, scSBss, scBss
12936 };
12937
d4596a51
RS
12938 /* Sort the dynamic symbols so that those with GOT entries come after
12939 those without. */
0a44bf69 12940 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
12941 BFD_ASSERT (htab != NULL);
12942
d4596a51
RS
12943 if (!mips_elf_sort_hash_table (abfd, info))
12944 return FALSE;
b49e97c9 12945
861fb55a
DJ
12946 /* Create any scheduled LA25 stubs. */
12947 hti.info = info;
12948 hti.output_bfd = abfd;
12949 hti.error = FALSE;
12950 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12951 if (hti.error)
12952 return FALSE;
12953
b49e97c9
TS
12954 /* Get a value for the GP register. */
12955 if (elf_gp (abfd) == 0)
12956 {
12957 struct bfd_link_hash_entry *h;
12958
b34976b6 12959 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 12960 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
12961 elf_gp (abfd) = (h->u.def.value
12962 + h->u.def.section->output_section->vma
12963 + h->u.def.section->output_offset);
0a44bf69
RS
12964 else if (htab->is_vxworks
12965 && (h = bfd_link_hash_lookup (info->hash,
12966 "_GLOBAL_OFFSET_TABLE_",
12967 FALSE, FALSE, TRUE))
12968 && h->type == bfd_link_hash_defined)
12969 elf_gp (abfd) = (h->u.def.section->output_section->vma
12970 + h->u.def.section->output_offset
12971 + h->u.def.value);
1049f94e 12972 else if (info->relocatable)
b49e97c9
TS
12973 {
12974 bfd_vma lo = MINUS_ONE;
12975
12976 /* Find the GP-relative section with the lowest offset. */
9719ad41 12977 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12978 if (o->vma < lo
12979 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12980 lo = o->vma;
12981
12982 /* And calculate GP relative to that. */
0a44bf69 12983 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
12984 }
12985 else
12986 {
12987 /* If the relocate_section function needs to do a reloc
12988 involving the GP value, it should make a reloc_dangerous
12989 callback to warn that GP is not defined. */
12990 }
12991 }
12992
12993 /* Go through the sections and collect the .reginfo and .mdebug
12994 information. */
12995 reginfo_sec = NULL;
12996 mdebug_sec = NULL;
12997 gptab_data_sec = NULL;
12998 gptab_bss_sec = NULL;
9719ad41 12999 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
13000 {
13001 if (strcmp (o->name, ".reginfo") == 0)
13002 {
13003 memset (&reginfo, 0, sizeof reginfo);
13004
13005 /* We have found the .reginfo section in the output file.
13006 Look through all the link_orders comprising it and merge
13007 the information together. */
8423293d 13008 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13009 {
13010 asection *input_section;
13011 bfd *input_bfd;
13012 Elf32_External_RegInfo ext;
13013 Elf32_RegInfo sub;
13014
13015 if (p->type != bfd_indirect_link_order)
13016 {
13017 if (p->type == bfd_data_link_order)
13018 continue;
13019 abort ();
13020 }
13021
13022 input_section = p->u.indirect.section;
13023 input_bfd = input_section->owner;
13024
b49e97c9 13025 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13026 &ext, 0, sizeof ext))
b34976b6 13027 return FALSE;
b49e97c9
TS
13028
13029 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13030
13031 reginfo.ri_gprmask |= sub.ri_gprmask;
13032 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13033 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13034 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13035 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13036
13037 /* ri_gp_value is set by the function
13038 mips_elf32_section_processing when the section is
13039 finally written out. */
13040
13041 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13042 elf_link_input_bfd ignores this section. */
13043 input_section->flags &= ~SEC_HAS_CONTENTS;
13044 }
13045
13046 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13047 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13048
13049 /* Skip this section later on (I don't think this currently
13050 matters, but someday it might). */
8423293d 13051 o->map_head.link_order = NULL;
b49e97c9
TS
13052
13053 reginfo_sec = o;
13054 }
13055
13056 if (strcmp (o->name, ".mdebug") == 0)
13057 {
13058 struct extsym_info einfo;
13059 bfd_vma last;
13060
13061 /* We have found the .mdebug section in the output file.
13062 Look through all the link_orders comprising it and merge
13063 the information together. */
13064 symhdr->magic = swap->sym_magic;
13065 /* FIXME: What should the version stamp be? */
13066 symhdr->vstamp = 0;
13067 symhdr->ilineMax = 0;
13068 symhdr->cbLine = 0;
13069 symhdr->idnMax = 0;
13070 symhdr->ipdMax = 0;
13071 symhdr->isymMax = 0;
13072 symhdr->ioptMax = 0;
13073 symhdr->iauxMax = 0;
13074 symhdr->issMax = 0;
13075 symhdr->issExtMax = 0;
13076 symhdr->ifdMax = 0;
13077 symhdr->crfd = 0;
13078 symhdr->iextMax = 0;
13079
13080 /* We accumulate the debugging information itself in the
13081 debug_info structure. */
13082 debug.line = NULL;
13083 debug.external_dnr = NULL;
13084 debug.external_pdr = NULL;
13085 debug.external_sym = NULL;
13086 debug.external_opt = NULL;
13087 debug.external_aux = NULL;
13088 debug.ss = NULL;
13089 debug.ssext = debug.ssext_end = NULL;
13090 debug.external_fdr = NULL;
13091 debug.external_rfd = NULL;
13092 debug.external_ext = debug.external_ext_end = NULL;
13093
13094 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13095 if (mdebug_handle == NULL)
b34976b6 13096 return FALSE;
b49e97c9
TS
13097
13098 esym.jmptbl = 0;
13099 esym.cobol_main = 0;
13100 esym.weakext = 0;
13101 esym.reserved = 0;
13102 esym.ifd = ifdNil;
13103 esym.asym.iss = issNil;
13104 esym.asym.st = stLocal;
13105 esym.asym.reserved = 0;
13106 esym.asym.index = indexNil;
13107 last = 0;
13108 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13109 {
13110 esym.asym.sc = sc[i];
13111 s = bfd_get_section_by_name (abfd, secname[i]);
13112 if (s != NULL)
13113 {
13114 esym.asym.value = s->vma;
eea6121a 13115 last = s->vma + s->size;
b49e97c9
TS
13116 }
13117 else
13118 esym.asym.value = last;
13119 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13120 secname[i], &esym))
b34976b6 13121 return FALSE;
b49e97c9
TS
13122 }
13123
8423293d 13124 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13125 {
13126 asection *input_section;
13127 bfd *input_bfd;
13128 const struct ecoff_debug_swap *input_swap;
13129 struct ecoff_debug_info input_debug;
13130 char *eraw_src;
13131 char *eraw_end;
13132
13133 if (p->type != bfd_indirect_link_order)
13134 {
13135 if (p->type == bfd_data_link_order)
13136 continue;
13137 abort ();
13138 }
13139
13140 input_section = p->u.indirect.section;
13141 input_bfd = input_section->owner;
13142
d5eaccd7 13143 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13144 {
13145 /* I don't know what a non MIPS ELF bfd would be
13146 doing with a .mdebug section, but I don't really
13147 want to deal with it. */
13148 continue;
13149 }
13150
13151 input_swap = (get_elf_backend_data (input_bfd)
13152 ->elf_backend_ecoff_debug_swap);
13153
eea6121a 13154 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13155
13156 /* The ECOFF linking code expects that we have already
13157 read in the debugging information and set up an
13158 ecoff_debug_info structure, so we do that now. */
13159 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13160 &input_debug))
b34976b6 13161 return FALSE;
b49e97c9
TS
13162
13163 if (! (bfd_ecoff_debug_accumulate
13164 (mdebug_handle, abfd, &debug, swap, input_bfd,
13165 &input_debug, input_swap, info)))
b34976b6 13166 return FALSE;
b49e97c9
TS
13167
13168 /* Loop through the external symbols. For each one with
13169 interesting information, try to find the symbol in
13170 the linker global hash table and save the information
13171 for the output external symbols. */
13172 eraw_src = input_debug.external_ext;
13173 eraw_end = (eraw_src
13174 + (input_debug.symbolic_header.iextMax
13175 * input_swap->external_ext_size));
13176 for (;
13177 eraw_src < eraw_end;
13178 eraw_src += input_swap->external_ext_size)
13179 {
13180 EXTR ext;
13181 const char *name;
13182 struct mips_elf_link_hash_entry *h;
13183
9719ad41 13184 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13185 if (ext.asym.sc == scNil
13186 || ext.asym.sc == scUndefined
13187 || ext.asym.sc == scSUndefined)
13188 continue;
13189
13190 name = input_debug.ssext + ext.asym.iss;
13191 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13192 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13193 if (h == NULL || h->esym.ifd != -2)
13194 continue;
13195
13196 if (ext.ifd != -1)
13197 {
13198 BFD_ASSERT (ext.ifd
13199 < input_debug.symbolic_header.ifdMax);
13200 ext.ifd = input_debug.ifdmap[ext.ifd];
13201 }
13202
13203 h->esym = ext;
13204 }
13205
13206 /* Free up the information we just read. */
13207 free (input_debug.line);
13208 free (input_debug.external_dnr);
13209 free (input_debug.external_pdr);
13210 free (input_debug.external_sym);
13211 free (input_debug.external_opt);
13212 free (input_debug.external_aux);
13213 free (input_debug.ss);
13214 free (input_debug.ssext);
13215 free (input_debug.external_fdr);
13216 free (input_debug.external_rfd);
13217 free (input_debug.external_ext);
13218
13219 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13220 elf_link_input_bfd ignores this section. */
13221 input_section->flags &= ~SEC_HAS_CONTENTS;
13222 }
13223
13224 if (SGI_COMPAT (abfd) && info->shared)
13225 {
13226 /* Create .rtproc section. */
87e0a731 13227 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13228 if (rtproc_sec == NULL)
13229 {
13230 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13231 | SEC_LINKER_CREATED | SEC_READONLY);
13232
87e0a731
AM
13233 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13234 ".rtproc",
13235 flags);
b49e97c9 13236 if (rtproc_sec == NULL
b49e97c9 13237 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13238 return FALSE;
b49e97c9
TS
13239 }
13240
13241 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13242 info, rtproc_sec,
13243 &debug))
b34976b6 13244 return FALSE;
b49e97c9
TS
13245 }
13246
13247 /* Build the external symbol information. */
13248 einfo.abfd = abfd;
13249 einfo.info = info;
13250 einfo.debug = &debug;
13251 einfo.swap = swap;
b34976b6 13252 einfo.failed = FALSE;
b49e97c9 13253 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13254 mips_elf_output_extsym, &einfo);
b49e97c9 13255 if (einfo.failed)
b34976b6 13256 return FALSE;
b49e97c9
TS
13257
13258 /* Set the size of the .mdebug section. */
eea6121a 13259 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13260
13261 /* Skip this section later on (I don't think this currently
13262 matters, but someday it might). */
8423293d 13263 o->map_head.link_order = NULL;
b49e97c9
TS
13264
13265 mdebug_sec = o;
13266 }
13267
0112cd26 13268 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13269 {
13270 const char *subname;
13271 unsigned int c;
13272 Elf32_gptab *tab;
13273 Elf32_External_gptab *ext_tab;
13274 unsigned int j;
13275
13276 /* The .gptab.sdata and .gptab.sbss sections hold
13277 information describing how the small data area would
13278 change depending upon the -G switch. These sections
13279 not used in executables files. */
1049f94e 13280 if (! info->relocatable)
b49e97c9 13281 {
8423293d 13282 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13283 {
13284 asection *input_section;
13285
13286 if (p->type != bfd_indirect_link_order)
13287 {
13288 if (p->type == bfd_data_link_order)
13289 continue;
13290 abort ();
13291 }
13292
13293 input_section = p->u.indirect.section;
13294
13295 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13296 elf_link_input_bfd ignores this section. */
13297 input_section->flags &= ~SEC_HAS_CONTENTS;
13298 }
13299
13300 /* Skip this section later on (I don't think this
13301 currently matters, but someday it might). */
8423293d 13302 o->map_head.link_order = NULL;
b49e97c9
TS
13303
13304 /* Really remove the section. */
5daa8fe7 13305 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13306 --abfd->section_count;
13307
13308 continue;
13309 }
13310
13311 /* There is one gptab for initialized data, and one for
13312 uninitialized data. */
13313 if (strcmp (o->name, ".gptab.sdata") == 0)
13314 gptab_data_sec = o;
13315 else if (strcmp (o->name, ".gptab.sbss") == 0)
13316 gptab_bss_sec = o;
13317 else
13318 {
13319 (*_bfd_error_handler)
13320 (_("%s: illegal section name `%s'"),
13321 bfd_get_filename (abfd), o->name);
13322 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13323 return FALSE;
b49e97c9
TS
13324 }
13325
13326 /* The linker script always combines .gptab.data and
13327 .gptab.sdata into .gptab.sdata, and likewise for
13328 .gptab.bss and .gptab.sbss. It is possible that there is
13329 no .sdata or .sbss section in the output file, in which
13330 case we must change the name of the output section. */
13331 subname = o->name + sizeof ".gptab" - 1;
13332 if (bfd_get_section_by_name (abfd, subname) == NULL)
13333 {
13334 if (o == gptab_data_sec)
13335 o->name = ".gptab.data";
13336 else
13337 o->name = ".gptab.bss";
13338 subname = o->name + sizeof ".gptab" - 1;
13339 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13340 }
13341
13342 /* Set up the first entry. */
13343 c = 1;
13344 amt = c * sizeof (Elf32_gptab);
9719ad41 13345 tab = bfd_malloc (amt);
b49e97c9 13346 if (tab == NULL)
b34976b6 13347 return FALSE;
b49e97c9
TS
13348 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13349 tab[0].gt_header.gt_unused = 0;
13350
13351 /* Combine the input sections. */
8423293d 13352 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13353 {
13354 asection *input_section;
13355 bfd *input_bfd;
13356 bfd_size_type size;
13357 unsigned long last;
13358 bfd_size_type gpentry;
13359
13360 if (p->type != bfd_indirect_link_order)
13361 {
13362 if (p->type == bfd_data_link_order)
13363 continue;
13364 abort ();
13365 }
13366
13367 input_section = p->u.indirect.section;
13368 input_bfd = input_section->owner;
13369
13370 /* Combine the gptab entries for this input section one
13371 by one. We know that the input gptab entries are
13372 sorted by ascending -G value. */
eea6121a 13373 size = input_section->size;
b49e97c9
TS
13374 last = 0;
13375 for (gpentry = sizeof (Elf32_External_gptab);
13376 gpentry < size;
13377 gpentry += sizeof (Elf32_External_gptab))
13378 {
13379 Elf32_External_gptab ext_gptab;
13380 Elf32_gptab int_gptab;
13381 unsigned long val;
13382 unsigned long add;
b34976b6 13383 bfd_boolean exact;
b49e97c9
TS
13384 unsigned int look;
13385
13386 if (! (bfd_get_section_contents
9719ad41
RS
13387 (input_bfd, input_section, &ext_gptab, gpentry,
13388 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13389 {
13390 free (tab);
b34976b6 13391 return FALSE;
b49e97c9
TS
13392 }
13393
13394 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13395 &int_gptab);
13396 val = int_gptab.gt_entry.gt_g_value;
13397 add = int_gptab.gt_entry.gt_bytes - last;
13398
b34976b6 13399 exact = FALSE;
b49e97c9
TS
13400 for (look = 1; look < c; look++)
13401 {
13402 if (tab[look].gt_entry.gt_g_value >= val)
13403 tab[look].gt_entry.gt_bytes += add;
13404
13405 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13406 exact = TRUE;
b49e97c9
TS
13407 }
13408
13409 if (! exact)
13410 {
13411 Elf32_gptab *new_tab;
13412 unsigned int max;
13413
13414 /* We need a new table entry. */
13415 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13416 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13417 if (new_tab == NULL)
13418 {
13419 free (tab);
b34976b6 13420 return FALSE;
b49e97c9
TS
13421 }
13422 tab = new_tab;
13423 tab[c].gt_entry.gt_g_value = val;
13424 tab[c].gt_entry.gt_bytes = add;
13425
13426 /* Merge in the size for the next smallest -G
13427 value, since that will be implied by this new
13428 value. */
13429 max = 0;
13430 for (look = 1; look < c; look++)
13431 {
13432 if (tab[look].gt_entry.gt_g_value < val
13433 && (max == 0
13434 || (tab[look].gt_entry.gt_g_value
13435 > tab[max].gt_entry.gt_g_value)))
13436 max = look;
13437 }
13438 if (max != 0)
13439 tab[c].gt_entry.gt_bytes +=
13440 tab[max].gt_entry.gt_bytes;
13441
13442 ++c;
13443 }
13444
13445 last = int_gptab.gt_entry.gt_bytes;
13446 }
13447
13448 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13449 elf_link_input_bfd ignores this section. */
13450 input_section->flags &= ~SEC_HAS_CONTENTS;
13451 }
13452
13453 /* The table must be sorted by -G value. */
13454 if (c > 2)
13455 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13456
13457 /* Swap out the table. */
13458 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13459 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13460 if (ext_tab == NULL)
13461 {
13462 free (tab);
b34976b6 13463 return FALSE;
b49e97c9
TS
13464 }
13465
13466 for (j = 0; j < c; j++)
13467 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13468 free (tab);
13469
eea6121a 13470 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13471 o->contents = (bfd_byte *) ext_tab;
13472
13473 /* Skip this section later on (I don't think this currently
13474 matters, but someday it might). */
8423293d 13475 o->map_head.link_order = NULL;
b49e97c9
TS
13476 }
13477 }
13478
13479 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13480 if (!bfd_elf_final_link (abfd, info))
b34976b6 13481 return FALSE;
b49e97c9
TS
13482
13483 /* Now write out the computed sections. */
13484
9719ad41 13485 if (reginfo_sec != NULL)
b49e97c9
TS
13486 {
13487 Elf32_External_RegInfo ext;
13488
13489 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13490 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13491 return FALSE;
b49e97c9
TS
13492 }
13493
9719ad41 13494 if (mdebug_sec != NULL)
b49e97c9
TS
13495 {
13496 BFD_ASSERT (abfd->output_has_begun);
13497 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13498 swap, info,
13499 mdebug_sec->filepos))
b34976b6 13500 return FALSE;
b49e97c9
TS
13501
13502 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13503 }
13504
9719ad41 13505 if (gptab_data_sec != NULL)
b49e97c9
TS
13506 {
13507 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13508 gptab_data_sec->contents,
eea6121a 13509 0, gptab_data_sec->size))
b34976b6 13510 return FALSE;
b49e97c9
TS
13511 }
13512
9719ad41 13513 if (gptab_bss_sec != NULL)
b49e97c9
TS
13514 {
13515 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13516 gptab_bss_sec->contents,
eea6121a 13517 0, gptab_bss_sec->size))
b34976b6 13518 return FALSE;
b49e97c9
TS
13519 }
13520
13521 if (SGI_COMPAT (abfd))
13522 {
13523 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13524 if (rtproc_sec != NULL)
13525 {
13526 if (! bfd_set_section_contents (abfd, rtproc_sec,
13527 rtproc_sec->contents,
eea6121a 13528 0, rtproc_sec->size))
b34976b6 13529 return FALSE;
b49e97c9
TS
13530 }
13531 }
13532
b34976b6 13533 return TRUE;
b49e97c9
TS
13534}
13535\f
64543e1a
RS
13536/* Structure for saying that BFD machine EXTENSION extends BASE. */
13537
13538struct mips_mach_extension {
13539 unsigned long extension, base;
13540};
13541
13542
13543/* An array describing how BFD machines relate to one another. The entries
13544 are ordered topologically with MIPS I extensions listed last. */
13545
13546static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13547 /* MIPS64r2 extensions. */
432233b3 13548 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13549 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13550 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13551
64543e1a 13552 /* MIPS64 extensions. */
5f74bc13 13553 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13554 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13555 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13556 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13557
13558 /* MIPS V extensions. */
13559 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13560
13561 /* R10000 extensions. */
13562 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13563 { bfd_mach_mips14000, bfd_mach_mips10000 },
13564 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13565
13566 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13567 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13568 better to allow vr5400 and vr5500 code to be merged anyway, since
13569 many libraries will just use the core ISA. Perhaps we could add
13570 some sort of ASE flag if this ever proves a problem. */
13571 { bfd_mach_mips5500, bfd_mach_mips5400 },
13572 { bfd_mach_mips5400, bfd_mach_mips5000 },
13573
13574 /* MIPS IV extensions. */
13575 { bfd_mach_mips5, bfd_mach_mips8000 },
13576 { bfd_mach_mips10000, bfd_mach_mips8000 },
13577 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13578 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13579 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13580
13581 /* VR4100 extensions. */
13582 { bfd_mach_mips4120, bfd_mach_mips4100 },
13583 { bfd_mach_mips4111, bfd_mach_mips4100 },
13584
13585 /* MIPS III extensions. */
350cc38d
MS
13586 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13587 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13588 { bfd_mach_mips8000, bfd_mach_mips4000 },
13589 { bfd_mach_mips4650, bfd_mach_mips4000 },
13590 { bfd_mach_mips4600, bfd_mach_mips4000 },
13591 { bfd_mach_mips4400, bfd_mach_mips4000 },
13592 { bfd_mach_mips4300, bfd_mach_mips4000 },
13593 { bfd_mach_mips4100, bfd_mach_mips4000 },
13594 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13595 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13596
13597 /* MIPS32 extensions. */
13598 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13599
13600 /* MIPS II extensions. */
13601 { bfd_mach_mips4000, bfd_mach_mips6000 },
13602 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13603
13604 /* MIPS I extensions. */
13605 { bfd_mach_mips6000, bfd_mach_mips3000 },
13606 { bfd_mach_mips3900, bfd_mach_mips3000 }
13607};
13608
13609
13610/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13611
13612static bfd_boolean
9719ad41 13613mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13614{
13615 size_t i;
13616
c5211a54
RS
13617 if (extension == base)
13618 return TRUE;
13619
13620 if (base == bfd_mach_mipsisa32
13621 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13622 return TRUE;
13623
13624 if (base == bfd_mach_mipsisa32r2
13625 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13626 return TRUE;
13627
13628 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13629 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13630 {
13631 extension = mips_mach_extensions[i].base;
13632 if (extension == base)
13633 return TRUE;
13634 }
64543e1a 13635
c5211a54 13636 return FALSE;
64543e1a
RS
13637}
13638
13639
13640/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13641
b34976b6 13642static bfd_boolean
9719ad41 13643mips_32bit_flags_p (flagword flags)
00707a0e 13644{
64543e1a
RS
13645 return ((flags & EF_MIPS_32BITMODE) != 0
13646 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13647 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13648 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13649 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13650 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13651 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13652}
13653
64543e1a 13654
2cf19d5c
JM
13655/* Merge object attributes from IBFD into OBFD. Raise an error if
13656 there are conflicting attributes. */
13657static bfd_boolean
13658mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13659{
13660 obj_attribute *in_attr;
13661 obj_attribute *out_attr;
6ae68ba3
MR
13662 bfd *abi_fp_bfd;
13663
13664 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13665 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13666 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13667 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13668
13669 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13670 {
13671 /* This is the first object. Copy the attributes. */
13672 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13673
13674 /* Use the Tag_null value to indicate the attributes have been
13675 initialized. */
13676 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13677
13678 return TRUE;
13679 }
13680
13681 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13682 non-conflicting ones. */
2cf19d5c
JM
13683 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13684 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13685 {
13686 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13687 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13688 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13689 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13690 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13691 {
13692 case 1:
13693 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13694 {
13695 case 2:
13696 _bfd_error_handler
6ae68ba3
MR
13697 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13698 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13699 break;
2cf19d5c
JM
13700
13701 case 3:
13702 _bfd_error_handler
6ae68ba3
MR
13703 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13704 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13705 break;
13706
42554f6a
TS
13707 case 4:
13708 _bfd_error_handler
6ae68ba3
MR
13709 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13710 obfd, abi_fp_bfd, ibfd,
13711 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13712 break;
13713
2cf19d5c 13714 default:
6ae68ba3
MR
13715 _bfd_error_handler
13716 (_("Warning: %B uses %s (set by %B), "
13717 "%B uses unknown floating point ABI %d"),
13718 obfd, abi_fp_bfd, ibfd,
13719 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13720 break;
2cf19d5c
JM
13721 }
13722 break;
13723
13724 case 2:
13725 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13726 {
13727 case 1:
13728 _bfd_error_handler
6ae68ba3
MR
13729 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13730 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13731 break;
2cf19d5c
JM
13732
13733 case 3:
13734 _bfd_error_handler
6ae68ba3
MR
13735 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13736 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13737 break;
13738
42554f6a
TS
13739 case 4:
13740 _bfd_error_handler
6ae68ba3
MR
13741 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13742 obfd, abi_fp_bfd, ibfd,
13743 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13744 break;
13745
2cf19d5c 13746 default:
6ae68ba3
MR
13747 _bfd_error_handler
13748 (_("Warning: %B uses %s (set by %B), "
13749 "%B uses unknown floating point ABI %d"),
13750 obfd, abi_fp_bfd, ibfd,
13751 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13752 break;
2cf19d5c
JM
13753 }
13754 break;
13755
13756 case 3:
13757 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13758 {
13759 case 1:
13760 case 2:
42554f6a 13761 case 4:
2cf19d5c 13762 _bfd_error_handler
6ae68ba3
MR
13763 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13764 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13765 break;
13766
13767 default:
6ae68ba3
MR
13768 _bfd_error_handler
13769 (_("Warning: %B uses %s (set by %B), "
13770 "%B uses unknown floating point ABI %d"),
13771 obfd, abi_fp_bfd, ibfd,
13772 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13773 break;
2cf19d5c
JM
13774 }
13775 break;
13776
42554f6a
TS
13777 case 4:
13778 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13779 {
13780 case 1:
13781 _bfd_error_handler
6ae68ba3
MR
13782 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13783 obfd, abi_fp_bfd, ibfd,
13784 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13785 break;
13786
13787 case 2:
13788 _bfd_error_handler
6ae68ba3
MR
13789 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13790 obfd, abi_fp_bfd, ibfd,
13791 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13792 break;
13793
13794 case 3:
13795 _bfd_error_handler
6ae68ba3
MR
13796 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13797 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13798 break;
13799
13800 default:
6ae68ba3
MR
13801 _bfd_error_handler
13802 (_("Warning: %B uses %s (set by %B), "
13803 "%B uses unknown floating point ABI %d"),
13804 obfd, abi_fp_bfd, ibfd,
13805 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13806 break;
42554f6a
TS
13807 }
13808 break;
13809
2cf19d5c 13810 default:
6ae68ba3
MR
13811 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13812 {
13813 case 1:
13814 _bfd_error_handler
13815 (_("Warning: %B uses unknown floating point ABI %d "
13816 "(set by %B), %B uses %s"),
13817 obfd, abi_fp_bfd, ibfd,
13818 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13819 break;
13820
13821 case 2:
13822 _bfd_error_handler
13823 (_("Warning: %B uses unknown floating point ABI %d "
13824 "(set by %B), %B uses %s"),
13825 obfd, abi_fp_bfd, ibfd,
13826 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13827 break;
13828
13829 case 3:
13830 _bfd_error_handler
13831 (_("Warning: %B uses unknown floating point ABI %d "
13832 "(set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13835 break;
13836
13837 case 4:
13838 _bfd_error_handler
13839 (_("Warning: %B uses unknown floating point ABI %d "
13840 "(set by %B), %B uses %s"),
13841 obfd, abi_fp_bfd, ibfd,
13842 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13843 break;
13844
13845 default:
13846 _bfd_error_handler
13847 (_("Warning: %B uses unknown floating point ABI %d "
13848 "(set by %B), %B uses unknown floating point ABI %d"),
13849 obfd, abi_fp_bfd, ibfd,
13850 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13851 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13852 break;
13853 }
13854 break;
2cf19d5c
JM
13855 }
13856 }
13857
13858 /* Merge Tag_compatibility attributes and any common GNU ones. */
13859 _bfd_elf_merge_object_attributes (ibfd, obfd);
13860
13861 return TRUE;
13862}
13863
b49e97c9
TS
13864/* Merge backend specific data from an object file to the output
13865 object file when linking. */
13866
b34976b6 13867bfd_boolean
9719ad41 13868_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13869{
13870 flagword old_flags;
13871 flagword new_flags;
b34976b6
AM
13872 bfd_boolean ok;
13873 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13874 asection *sec;
13875
58238693 13876 /* Check if we have the same endianness. */
82e51918 13877 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13878 {
13879 (*_bfd_error_handler)
d003868e
AM
13880 (_("%B: endianness incompatible with that of the selected emulation"),
13881 ibfd);
aa701218
AO
13882 return FALSE;
13883 }
b49e97c9 13884
d5eaccd7 13885 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13886 return TRUE;
b49e97c9 13887
aa701218
AO
13888 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13889 {
13890 (*_bfd_error_handler)
d003868e
AM
13891 (_("%B: ABI is incompatible with that of the selected emulation"),
13892 ibfd);
aa701218
AO
13893 return FALSE;
13894 }
13895
2cf19d5c
JM
13896 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13897 return FALSE;
13898
b49e97c9
TS
13899 new_flags = elf_elfheader (ibfd)->e_flags;
13900 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13901 old_flags = elf_elfheader (obfd)->e_flags;
13902
13903 if (! elf_flags_init (obfd))
13904 {
b34976b6 13905 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13906 elf_elfheader (obfd)->e_flags = new_flags;
13907 elf_elfheader (obfd)->e_ident[EI_CLASS]
13908 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13909
13910 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13911 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13912 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13913 bfd_get_mach (ibfd))))
b49e97c9
TS
13914 {
13915 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13916 bfd_get_mach (ibfd)))
b34976b6 13917 return FALSE;
b49e97c9
TS
13918 }
13919
b34976b6 13920 return TRUE;
b49e97c9
TS
13921 }
13922
13923 /* Check flag compatibility. */
13924
13925 new_flags &= ~EF_MIPS_NOREORDER;
13926 old_flags &= ~EF_MIPS_NOREORDER;
13927
f4416af6
AO
13928 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13929 doesn't seem to matter. */
13930 new_flags &= ~EF_MIPS_XGOT;
13931 old_flags &= ~EF_MIPS_XGOT;
13932
98a8deaf
RS
13933 /* MIPSpro generates ucode info in n64 objects. Again, we should
13934 just be able to ignore this. */
13935 new_flags &= ~EF_MIPS_UCODE;
13936 old_flags &= ~EF_MIPS_UCODE;
13937
861fb55a
DJ
13938 /* DSOs should only be linked with CPIC code. */
13939 if ((ibfd->flags & DYNAMIC) != 0)
13940 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13941
b49e97c9 13942 if (new_flags == old_flags)
b34976b6 13943 return TRUE;
b49e97c9
TS
13944
13945 /* Check to see if the input BFD actually contains any sections.
13946 If not, its flags may not have been initialised either, but it cannot
13947 actually cause any incompatibility. */
13948 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13949 {
13950 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13951 which are automatically generated by gas. Also ignore fake
13952 (s)common sections, since merely defining a common symbol does
13953 not affect compatibility. */
13954 if ((sec->flags & SEC_IS_COMMON) == 0
13955 && strcmp (sec->name, ".reginfo")
b49e97c9 13956 && strcmp (sec->name, ".mdebug")
eea6121a 13957 && (sec->size != 0
d13d89fa
NS
13958 || (strcmp (sec->name, ".text")
13959 && strcmp (sec->name, ".data")
13960 && strcmp (sec->name, ".bss"))))
b49e97c9 13961 {
b34976b6 13962 null_input_bfd = FALSE;
b49e97c9
TS
13963 break;
13964 }
13965 }
13966 if (null_input_bfd)
b34976b6 13967 return TRUE;
b49e97c9 13968
b34976b6 13969 ok = TRUE;
b49e97c9 13970
143d77c5
EC
13971 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13972 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13973 {
b49e97c9 13974 (*_bfd_error_handler)
861fb55a 13975 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13976 ibfd);
143d77c5 13977 ok = TRUE;
b49e97c9
TS
13978 }
13979
143d77c5
EC
13980 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13981 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13982 if (! (new_flags & EF_MIPS_PIC))
13983 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13984
13985 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13986 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 13987
64543e1a
RS
13988 /* Compare the ISAs. */
13989 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 13990 {
64543e1a 13991 (*_bfd_error_handler)
d003868e
AM
13992 (_("%B: linking 32-bit code with 64-bit code"),
13993 ibfd);
64543e1a
RS
13994 ok = FALSE;
13995 }
13996 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13997 {
13998 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13999 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 14000 {
64543e1a
RS
14001 /* Copy the architecture info from IBFD to OBFD. Also copy
14002 the 32-bit flag (if set) so that we continue to recognise
14003 OBFD as a 32-bit binary. */
14004 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14005 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14006 elf_elfheader (obfd)->e_flags
14007 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14008
14009 /* Copy across the ABI flags if OBFD doesn't use them
14010 and if that was what caused us to treat IBFD as 32-bit. */
14011 if ((old_flags & EF_MIPS_ABI) == 0
14012 && mips_32bit_flags_p (new_flags)
14013 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14014 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14015 }
14016 else
14017 {
64543e1a 14018 /* The ISAs aren't compatible. */
b49e97c9 14019 (*_bfd_error_handler)
d003868e
AM
14020 (_("%B: linking %s module with previous %s modules"),
14021 ibfd,
64543e1a
RS
14022 bfd_printable_name (ibfd),
14023 bfd_printable_name (obfd));
b34976b6 14024 ok = FALSE;
b49e97c9 14025 }
b49e97c9
TS
14026 }
14027
64543e1a
RS
14028 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14029 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14030
14031 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14032 does set EI_CLASS differently from any 32-bit ABI. */
14033 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14034 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14035 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14036 {
14037 /* Only error if both are set (to different values). */
14038 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14039 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14040 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14041 {
14042 (*_bfd_error_handler)
d003868e
AM
14043 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14044 ibfd,
b49e97c9
TS
14045 elf_mips_abi_name (ibfd),
14046 elf_mips_abi_name (obfd));
b34976b6 14047 ok = FALSE;
b49e97c9
TS
14048 }
14049 new_flags &= ~EF_MIPS_ABI;
14050 old_flags &= ~EF_MIPS_ABI;
14051 }
14052
df58fc94
RS
14053 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14054 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14055 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14056 {
df58fc94
RS
14057 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14058 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14059 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14060 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14061 int micro_mis = old_m16 && new_micro;
14062 int m16_mis = old_micro && new_m16;
14063
14064 if (m16_mis || micro_mis)
14065 {
14066 (*_bfd_error_handler)
14067 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14068 ibfd,
14069 m16_mis ? "MIPS16" : "microMIPS",
14070 m16_mis ? "microMIPS" : "MIPS16");
14071 ok = FALSE;
14072 }
14073
fb39dac1
RS
14074 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14075
14076 new_flags &= ~ EF_MIPS_ARCH_ASE;
14077 old_flags &= ~ EF_MIPS_ARCH_ASE;
14078 }
14079
b49e97c9
TS
14080 /* Warn about any other mismatches */
14081 if (new_flags != old_flags)
14082 {
14083 (*_bfd_error_handler)
d003868e
AM
14084 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14085 ibfd, (unsigned long) new_flags,
b49e97c9 14086 (unsigned long) old_flags);
b34976b6 14087 ok = FALSE;
b49e97c9
TS
14088 }
14089
14090 if (! ok)
14091 {
14092 bfd_set_error (bfd_error_bad_value);
b34976b6 14093 return FALSE;
b49e97c9
TS
14094 }
14095
b34976b6 14096 return TRUE;
b49e97c9
TS
14097}
14098
14099/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14100
b34976b6 14101bfd_boolean
9719ad41 14102_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14103{
14104 BFD_ASSERT (!elf_flags_init (abfd)
14105 || elf_elfheader (abfd)->e_flags == flags);
14106
14107 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14108 elf_flags_init (abfd) = TRUE;
14109 return TRUE;
b49e97c9
TS
14110}
14111
ad9563d6
CM
14112char *
14113_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14114{
14115 switch (dtag)
14116 {
14117 default: return "";
14118 case DT_MIPS_RLD_VERSION:
14119 return "MIPS_RLD_VERSION";
14120 case DT_MIPS_TIME_STAMP:
14121 return "MIPS_TIME_STAMP";
14122 case DT_MIPS_ICHECKSUM:
14123 return "MIPS_ICHECKSUM";
14124 case DT_MIPS_IVERSION:
14125 return "MIPS_IVERSION";
14126 case DT_MIPS_FLAGS:
14127 return "MIPS_FLAGS";
14128 case DT_MIPS_BASE_ADDRESS:
14129 return "MIPS_BASE_ADDRESS";
14130 case DT_MIPS_MSYM:
14131 return "MIPS_MSYM";
14132 case DT_MIPS_CONFLICT:
14133 return "MIPS_CONFLICT";
14134 case DT_MIPS_LIBLIST:
14135 return "MIPS_LIBLIST";
14136 case DT_MIPS_LOCAL_GOTNO:
14137 return "MIPS_LOCAL_GOTNO";
14138 case DT_MIPS_CONFLICTNO:
14139 return "MIPS_CONFLICTNO";
14140 case DT_MIPS_LIBLISTNO:
14141 return "MIPS_LIBLISTNO";
14142 case DT_MIPS_SYMTABNO:
14143 return "MIPS_SYMTABNO";
14144 case DT_MIPS_UNREFEXTNO:
14145 return "MIPS_UNREFEXTNO";
14146 case DT_MIPS_GOTSYM:
14147 return "MIPS_GOTSYM";
14148 case DT_MIPS_HIPAGENO:
14149 return "MIPS_HIPAGENO";
14150 case DT_MIPS_RLD_MAP:
14151 return "MIPS_RLD_MAP";
14152 case DT_MIPS_DELTA_CLASS:
14153 return "MIPS_DELTA_CLASS";
14154 case DT_MIPS_DELTA_CLASS_NO:
14155 return "MIPS_DELTA_CLASS_NO";
14156 case DT_MIPS_DELTA_INSTANCE:
14157 return "MIPS_DELTA_INSTANCE";
14158 case DT_MIPS_DELTA_INSTANCE_NO:
14159 return "MIPS_DELTA_INSTANCE_NO";
14160 case DT_MIPS_DELTA_RELOC:
14161 return "MIPS_DELTA_RELOC";
14162 case DT_MIPS_DELTA_RELOC_NO:
14163 return "MIPS_DELTA_RELOC_NO";
14164 case DT_MIPS_DELTA_SYM:
14165 return "MIPS_DELTA_SYM";
14166 case DT_MIPS_DELTA_SYM_NO:
14167 return "MIPS_DELTA_SYM_NO";
14168 case DT_MIPS_DELTA_CLASSSYM:
14169 return "MIPS_DELTA_CLASSSYM";
14170 case DT_MIPS_DELTA_CLASSSYM_NO:
14171 return "MIPS_DELTA_CLASSSYM_NO";
14172 case DT_MIPS_CXX_FLAGS:
14173 return "MIPS_CXX_FLAGS";
14174 case DT_MIPS_PIXIE_INIT:
14175 return "MIPS_PIXIE_INIT";
14176 case DT_MIPS_SYMBOL_LIB:
14177 return "MIPS_SYMBOL_LIB";
14178 case DT_MIPS_LOCALPAGE_GOTIDX:
14179 return "MIPS_LOCALPAGE_GOTIDX";
14180 case DT_MIPS_LOCAL_GOTIDX:
14181 return "MIPS_LOCAL_GOTIDX";
14182 case DT_MIPS_HIDDEN_GOTIDX:
14183 return "MIPS_HIDDEN_GOTIDX";
14184 case DT_MIPS_PROTECTED_GOTIDX:
14185 return "MIPS_PROTECTED_GOT_IDX";
14186 case DT_MIPS_OPTIONS:
14187 return "MIPS_OPTIONS";
14188 case DT_MIPS_INTERFACE:
14189 return "MIPS_INTERFACE";
14190 case DT_MIPS_DYNSTR_ALIGN:
14191 return "DT_MIPS_DYNSTR_ALIGN";
14192 case DT_MIPS_INTERFACE_SIZE:
14193 return "DT_MIPS_INTERFACE_SIZE";
14194 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14195 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14196 case DT_MIPS_PERF_SUFFIX:
14197 return "DT_MIPS_PERF_SUFFIX";
14198 case DT_MIPS_COMPACT_SIZE:
14199 return "DT_MIPS_COMPACT_SIZE";
14200 case DT_MIPS_GP_VALUE:
14201 return "DT_MIPS_GP_VALUE";
14202 case DT_MIPS_AUX_DYNAMIC:
14203 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14204 case DT_MIPS_PLTGOT:
14205 return "DT_MIPS_PLTGOT";
14206 case DT_MIPS_RWPLT:
14207 return "DT_MIPS_RWPLT";
ad9563d6
CM
14208 }
14209}
14210
b34976b6 14211bfd_boolean
9719ad41 14212_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14213{
9719ad41 14214 FILE *file = ptr;
b49e97c9
TS
14215
14216 BFD_ASSERT (abfd != NULL && ptr != NULL);
14217
14218 /* Print normal ELF private data. */
14219 _bfd_elf_print_private_bfd_data (abfd, ptr);
14220
14221 /* xgettext:c-format */
14222 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14223
14224 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14225 fprintf (file, _(" [abi=O32]"));
14226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14227 fprintf (file, _(" [abi=O64]"));
14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14229 fprintf (file, _(" [abi=EABI32]"));
14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14231 fprintf (file, _(" [abi=EABI64]"));
14232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14233 fprintf (file, _(" [abi unknown]"));
14234 else if (ABI_N32_P (abfd))
14235 fprintf (file, _(" [abi=N32]"));
14236 else if (ABI_64_P (abfd))
14237 fprintf (file, _(" [abi=64]"));
14238 else
14239 fprintf (file, _(" [no abi set]"));
14240
14241 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14242 fprintf (file, " [mips1]");
b49e97c9 14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14244 fprintf (file, " [mips2]");
b49e97c9 14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14246 fprintf (file, " [mips3]");
b49e97c9 14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14248 fprintf (file, " [mips4]");
b49e97c9 14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14250 fprintf (file, " [mips5]");
b49e97c9 14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14252 fprintf (file, " [mips32]");
b49e97c9 14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14254 fprintf (file, " [mips64]");
af7ee8bf 14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14256 fprintf (file, " [mips32r2]");
5f74bc13 14257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14258 fprintf (file, " [mips64r2]");
b49e97c9
TS
14259 else
14260 fprintf (file, _(" [unknown ISA]"));
14261
40d32fc6 14262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14263 fprintf (file, " [mdmx]");
40d32fc6
CD
14264
14265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14266 fprintf (file, " [mips16]");
40d32fc6 14267
df58fc94
RS
14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14269 fprintf (file, " [micromips]");
14270
b49e97c9 14271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14272 fprintf (file, " [32bitmode]");
b49e97c9
TS
14273 else
14274 fprintf (file, _(" [not 32bitmode]"));
14275
c0e3f241 14276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14277 fprintf (file, " [noreorder]");
c0e3f241
CD
14278
14279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14280 fprintf (file, " [PIC]");
c0e3f241
CD
14281
14282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14283 fprintf (file, " [CPIC]");
c0e3f241
CD
14284
14285 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14286 fprintf (file, " [XGOT]");
c0e3f241
CD
14287
14288 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14289 fprintf (file, " [UCODE]");
c0e3f241 14290
b49e97c9
TS
14291 fputc ('\n', file);
14292
b34976b6 14293 return TRUE;
b49e97c9 14294}
2f89ff8d 14295
b35d266b 14296const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14297{
0112cd26
NC
14298 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14299 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14300 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14301 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14302 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14303 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14304 { NULL, 0, 0, 0, 0 }
2f89ff8d 14305};
5e2b0d47 14306
8992f0d7
TS
14307/* Merge non visibility st_other attributes. Ensure that the
14308 STO_OPTIONAL flag is copied into h->other, even if this is not a
14309 definiton of the symbol. */
5e2b0d47
NC
14310void
14311_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14312 const Elf_Internal_Sym *isym,
14313 bfd_boolean definition,
14314 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14315{
8992f0d7
TS
14316 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14317 {
14318 unsigned char other;
14319
14320 other = (definition ? isym->st_other : h->other);
14321 other &= ~ELF_ST_VISIBILITY (-1);
14322 h->other = other | ELF_ST_VISIBILITY (h->other);
14323 }
14324
14325 if (!definition
5e2b0d47
NC
14326 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14327 h->other |= STO_OPTIONAL;
14328}
12ac1cf5
NC
14329
14330/* Decide whether an undefined symbol is special and can be ignored.
14331 This is the case for OPTIONAL symbols on IRIX. */
14332bfd_boolean
14333_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14334{
14335 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14336}
e0764319
NC
14337
14338bfd_boolean
14339_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14340{
14341 return (sym->st_shndx == SHN_COMMON
14342 || sym->st_shndx == SHN_MIPS_ACOMMON
14343 || sym->st_shndx == SHN_MIPS_SCOMMON);
14344}
861fb55a
DJ
14345
14346/* Return address for Ith PLT stub in section PLT, for relocation REL
14347 or (bfd_vma) -1 if it should not be included. */
14348
14349bfd_vma
14350_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14351 const arelent *rel ATTRIBUTE_UNUSED)
14352{
14353 return (plt->vma
14354 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14355 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14356}
14357
14358void
14359_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14360{
14361 struct mips_elf_link_hash_table *htab;
14362 Elf_Internal_Ehdr *i_ehdrp;
14363
14364 i_ehdrp = elf_elfheader (abfd);
14365 if (link_info)
14366 {
14367 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14368 BFD_ASSERT (htab != NULL);
14369
861fb55a
DJ
14370 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14371 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14372 }
14373}
This page took 1.672795 seconds and 4 git commands to generate.