* elfxx-mips.c (_bfd_mips_elf_symbol_processing,
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
66eb6687 3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69
RS
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b34976b6 496static bfd_boolean mips_elf_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
712\f
0a44bf69
RS
713/* The format of the first PLT entry in a VxWorks executable. */
714static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721};
722
723/* The format of subsequent PLT entries. */
724static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733};
734
735/* The format of the first PLT entry in a VxWorks shared object. */
736static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743};
744
745/* The format of subsequent PLT entries. */
746static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749};
750\f
b49e97c9
TS
751/* Look up an entry in a MIPS ELF linker hash table. */
752
753#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758/* Traverse a MIPS ELF linker hash table. */
759
760#define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
9719ad41 763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
764 (info)))
765
766/* Get the MIPS ELF linker hash table from a link_info structure. */
767
768#define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
0f20cc35
DJ
771/* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774#define TP_OFFSET 0x7000
775#define DTP_OFFSET 0x8000
776
777static bfd_vma
778dtprel_base (struct bfd_link_info *info)
779{
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784}
785
786static bfd_vma
787tprel_base (struct bfd_link_info *info)
788{
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793}
794
b49e97c9
TS
795/* Create an entry in a MIPS ELF linker hash table. */
796
797static struct bfd_hash_entry *
9719ad41
RS
798mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
800{
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
9719ad41
RS
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
b49e97c9
TS
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
9719ad41 815 if (ret != NULL)
b49e97c9
TS
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
b34976b6 823 ret->readonly_reloc = FALSE;
b34976b6 824 ret->no_fn_stub = FALSE;
b49e97c9 825 ret->fn_stub = NULL;
b34976b6 826 ret->need_fn_stub = FALSE;
b49e97c9
TS
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
b34976b6 829 ret->forced_local = FALSE;
0a44bf69
RS
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
0f20cc35 832 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
833 }
834
835 return (struct bfd_hash_entry *) ret;
836}
f0abc2a1
AM
837
838bfd_boolean
9719ad41 839_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 840{
f592407e
AM
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 845
f592407e
AM
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
f0abc2a1
AM
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853}
b49e97c9
TS
854\f
855/* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
b34976b6 858bfd_boolean
9719ad41
RS
859_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
b49e97c9
TS
861{
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
9719ad41 864 char *ext_hdr;
b49e97c9
TS
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
9719ad41 869 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
9719ad41 873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 874 swap->external_hdr_size))
b49e97c9
TS
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882#define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 888 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
889 if (debug->ptr == NULL) \
890 goto error_return; \
9719ad41 891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
908#undef READ
909
910 debug->fdr = NULL;
b49e97c9 911
b34976b6 912 return TRUE;
b49e97c9
TS
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
b34976b6 939 return FALSE;
b49e97c9
TS
940}
941\f
942/* Swap RPDR (runtime procedure table entry) for output. */
943
944static void
9719ad41 945ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
946{
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
958}
959
960/* Create a runtime procedure table from the .mdebug section. */
961
b34976b6 962static bfd_boolean
9719ad41
RS
963mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
b49e97c9
TS
966{
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
9719ad41 971 void *rtproc;
b49e97c9
TS
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
9719ad41 998 epdr = bfd_malloc (size * count);
b49e97c9
TS
999 if (epdr == NULL)
1000 goto error_return;
1001
9719ad41 1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
9719ad41 1006 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
9719ad41 1011 sv = bfd_malloc (size * count);
b49e97c9
TS
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
9719ad41 1017 esym = bfd_malloc (size * count);
b49e97c9
TS
1018 if (esym == NULL)
1019 goto error_return;
1020
9719ad41 1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1022 goto error_return;
1023
1024 count = hdr->issMax;
9719ad41 1025 ss = bfd_malloc (count);
b49e97c9
TS
1026 if (ss == NULL)
1027 goto error_return;
f075ee0c 1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
9719ad41
RS
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
9719ad41 1052 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
9719ad41 1061 erp = rtproc;
b49e97c9
TS
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
eea6121a 1076 s->size = size;
9719ad41 1077 s->contents = rtproc;
b49e97c9
TS
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
8423293d 1081 s->map_head.link_order = NULL;
b49e97c9
TS
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
b34976b6 1094 return TRUE;
b49e97c9
TS
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
b34976b6 1107 return FALSE;
b49e97c9
TS
1108}
1109
1110/* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
b34976b6 1113static bfd_boolean
9719ad41
RS
1114mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1116{
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
eea6121a 1126 h->fn_stub->size = 0;
b49e97c9
TS
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
eea6121a 1138 h->call_stub->size = 0;
b49e97c9
TS
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
eea6121a 1150 h->call_fp_stub->size = 0;
b49e97c9
TS
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
b34976b6 1156 return TRUE;
b49e97c9
TS
1157}
1158\f
d6f16593
MR
1159/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244void
1245_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247{
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269}
1270
1271void
1272_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274{
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303}
1304
b49e97c9 1305bfd_reloc_status_type
9719ad41
RS
1306_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1309{
1310 bfd_vma relocation;
a7ebbfdf 1311 bfd_signed_vma val;
30ac9238 1312 bfd_reloc_status_type status;
b49e97c9
TS
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
07515404 1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1323 return bfd_reloc_outofrange;
1324
b49e97c9 1325 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1326 val = reloc_entry->addend;
1327
30ac9238 1328 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1329
b49e97c9 1330 /* Adjust val for the final section location and GP value. If we
1049f94e 1331 are producing relocatable output, we don't want to do this for
b49e97c9 1332 an external symbol. */
1049f94e 1333 if (! relocatable
b49e97c9
TS
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
a7ebbfdf
TS
1337 if (reloc_entry->howto->partial_inplace)
1338 {
30ac9238
RS
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
a7ebbfdf
TS
1344 }
1345 else
1346 reloc_entry->addend = val;
b49e97c9 1347
1049f94e 1348 if (relocatable)
b49e97c9 1349 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1350
1351 return bfd_reloc_ok;
1352}
1353
1354/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359struct mips_hi16
1360{
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365};
1366
1367/* FIXME: This should not be a static variable. */
1368
1369static struct mips_hi16 *mips_hi16_list;
1370
1371/* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380bfd_reloc_status_type
1381_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385{
1386 struct mips_hi16 *n;
1387
07515404 1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405}
1406
1407/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411bfd_reloc_status_type
1412_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415{
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426}
1427
1428/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432bfd_reloc_status_type
1433_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436{
1437 bfd_vma vallo;
d6f16593 1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1439
07515404 1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1441 return bfd_reloc_outofrange;
1442
d6f16593
MR
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
30ac9238
RS
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
30ac9238
RS
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481}
1482
1483/* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487bfd_reloc_status_type
1488_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492{
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
07515404 1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
d6f16593
MR
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
30ac9238
RS
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
d6f16593
MR
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
30ac9238 1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
30ac9238
RS
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1553
1554 return bfd_reloc_ok;
1555}
1556\f
1557/* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560static void
9719ad41
RS
1561bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
b49e97c9
TS
1563{
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566}
1567
1568static void
9719ad41
RS
1569bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
b49e97c9
TS
1571{
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574}
1575
1576static void
9719ad41
RS
1577bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
b49e97c9
TS
1579{
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586}
1587
1588static void
9719ad41
RS
1589bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
b49e97c9
TS
1591{
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601}
b49e97c9
TS
1602\f
1603/* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607void
9719ad41
RS
1608bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
b49e97c9
TS
1610{
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617}
1618
1619void
9719ad41
RS
1620bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
b49e97c9
TS
1622{
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629}
1630
1631/* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637void
9719ad41
RS
1638bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1640{
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648}
1649
1650void
9719ad41
RS
1651bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
b49e97c9
TS
1653{
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661}
1662
1663/* Swap in an options header. */
1664
1665void
9719ad41
RS
1666bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
b49e97c9
TS
1668{
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673}
1674
1675/* Swap out an options header. */
1676
1677void
9719ad41
RS
1678bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
b49e97c9
TS
1680{
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685}
1686\f
1687/* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690static int
9719ad41 1691sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1692{
947216bf
AM
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
b49e97c9 1695
947216bf
AM
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1698
947216bf 1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1700}
1701
f4416af6
AO
1702/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704static int
7e3102a7
AM
1705sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1707{
7e3102a7 1708#ifdef BFD64
f4416af6
AO
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1719#else
1720 abort ();
1721#endif
f4416af6
AO
1722}
1723
1724
b49e97c9
TS
1725/* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
b34976b6 1739static bfd_boolean
9719ad41 1740mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1741{
9719ad41 1742 struct extsym_info *einfo = data;
b34976b6 1743 bfd_boolean strip;
b49e97c9
TS
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
b34976b6 1750 strip = FALSE;
f5385ebf 1751 else if ((h->root.def_dynamic
77cfaee6
AM
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
b34976b6 1756 strip = TRUE;
b49e97c9
TS
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
b34976b6
AM
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
b49e97c9 1763 else
b34976b6 1764 strip = FALSE;
b49e97c9
TS
1765
1766 if (strip)
b34976b6 1767 return TRUE;
b49e97c9
TS
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
4a14403c 1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
f5385ebf 1873 else if (h->root.needs_plt)
b49e97c9
TS
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1876 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
b49e97c9
TS
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
b34976b6
AM
1908 einfo->failed = TRUE;
1909 return FALSE;
b49e97c9
TS
1910 }
1911
b34976b6 1912 return TRUE;
b49e97c9
TS
1913}
1914
1915/* A comparison routine used to sort .gptab entries. */
1916
1917static int
9719ad41 1918gptab_compare (const void *p1, const void *p2)
b49e97c9 1919{
9719ad41
RS
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924}
1925\f
b15e6682 1926/* Functions to manage the got entry hash table. */
f4416af6
AO
1927
1928/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931static INLINE hashval_t
9719ad41 1932mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1933{
1934#ifdef BFD64
1935 return addr + (addr >> 32);
1936#else
1937 return addr;
1938#endif
1939}
1940
1941/* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
b15e6682 1945static hashval_t
9719ad41 1946mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1947{
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
38985a1c 1950 return entry->symndx
0f20cc35 1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
b15e6682
AO
1956}
1957
1958static int
9719ad41 1959mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1960{
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
0f20cc35
DJ
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
b15e6682 1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972}
1973
1974/* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979static hashval_t
9719ad41 1980mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1981{
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
0f20cc35
DJ
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1992 : entry->d.h->root.root.root.hash);
1993}
1994
1995static int
9719ad41 1996mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1997{
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
0f20cc35
DJ
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
f4416af6
AO
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
b15e6682
AO
2014}
2015\f
0a44bf69
RS
2016/* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
f4416af6
AO
2019
2020static asection *
0a44bf69 2021mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2022{
0a44bf69 2023 const char *dname;
f4416af6 2024 asection *sreloc;
0a44bf69 2025 bfd *dynobj;
f4416af6 2026
0a44bf69
RS
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
3496cb2a
L
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
f4416af6 2039 if (sreloc == NULL
f4416af6 2040 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2042 return NULL;
2043 }
2044 return sreloc;
2045}
2046
b49e97c9
TS
2047/* Returns the GOT section for ABFD. */
2048
2049static asection *
9719ad41 2050mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2051{
f4416af6
AO
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
b49e97c9
TS
2057}
2058
2059/* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063static struct mips_got_info *
9719ad41 2064mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2065{
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
f4416af6 2069 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2070 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
f4416af6
AO
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
b49e97c9
TS
2078 return g;
2079}
2080
0f20cc35
DJ
2081/* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085static int
2086mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088{
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121}
2122
2123/* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126static int
2127mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128{
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136}
2137
2138/* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141static int
2142mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143{
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154}
2155
2156/* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159static int
2160mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161{
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169}
2170
2171/* Output a simple dynamic relocation into SRELOC. */
2172
2173static void
2174mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179{
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200}
2201
2202/* Initialize a set of TLS GOT entries for one symbol. */
2203
2204static void
2205mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210{
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
0a44bf69 2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324}
2325
2326/* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331static bfd_vma
2332mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335{
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363}
2364
0a44bf69
RS
2365/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369static bfd_vma
2370mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372{
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393}
2394
2395/* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
b49e97c9
TS
2400
2401static bfd_vma
9719ad41 2402mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
0f20cc35 2405 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2406{
2407 asection *sgot;
2408 struct mips_got_info *g;
b15e6682 2409 struct mips_got_entry *entry;
b49e97c9
TS
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
0a44bf69
RS
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
0f20cc35
DJ
2415 r_symndx, h, r_type);
2416 if (!entry)
b15e6682 2417 return MINUS_ONE;
0f20cc35
DJ
2418
2419 if (TLS_RELOC_P (r_type))
ead49a57
RS
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
0f20cc35
DJ
2430 else
2431 return entry->gotidx;
b49e97c9
TS
2432}
2433
2434/* Returns the GOT index for the global symbol indicated by H. */
2435
2436static bfd_vma
0f20cc35
DJ
2437mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2439{
2440 bfd_vma index;
2441 asection *sgot;
f4416af6 2442 struct mips_got_info *g, *gg;
d0c7ff07 2443 long global_got_dynindx = 0;
b49e97c9 2444
f4416af6
AO
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
143d77c5 2449
f4416af6
AO
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2453 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2458 e.tls_type = 0;
f4416af6 2459
9719ad41 2460 p = htab_find (g->got_entries, &e);
f4416af6
AO
2461
2462 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
f4416af6
AO
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2484
0f20cc35
DJ
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
eea6121a 2511 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2512
2513 return index;
2514}
2515
0a44bf69
RS
2516/* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
b49e97c9
TS
2522
2523static bfd_vma
9719ad41 2524mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69 2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2526{
2527 asection *sgot;
2528 struct mips_got_info *g;
0a44bf69 2529 bfd_vma page, index;
b15e6682 2530 struct mips_got_entry *entry;
b49e97c9
TS
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
0a44bf69
RS
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
0f20cc35 2537 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2538
b15e6682
AO
2539 if (!entry)
2540 return MINUS_ONE;
143d77c5 2541
b15e6682 2542 index = entry->gotidx;
b49e97c9
TS
2543
2544 if (offsetp)
f4416af6 2545 *offsetp = value - entry->d.address;
b49e97c9
TS
2546
2547 return index;
2548}
2549
0a44bf69
RS
2550/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
b49e97c9
TS
2554
2555static bfd_vma
9719ad41 2556mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0a44bf69
RS
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
b49e97c9
TS
2559{
2560 asection *sgot;
2561 struct mips_got_info *g;
b15e6682 2562 struct mips_got_entry *entry;
b49e97c9 2563
0a44bf69
RS
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2568 if (! external)
0a44bf69 2569 value = mips_elf_high (value) << 16;
b49e97c9
TS
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
0a44bf69
RS
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
b15e6682
AO
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
b49e97c9
TS
2580}
2581
2582/* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585static bfd_vma
9719ad41
RS
2586mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2588{
2589 asection *sgot;
2590 bfd_vma gp;
f4416af6 2591 struct mips_got_info *g;
b49e97c9 2592
f4416af6
AO
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2596
f4416af6 2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2598}
2599
0a44bf69
RS
2600/* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
b49e97c9 2604
b15e6682 2605static struct mips_got_entry *
0a44bf69
RS
2606mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
0f20cc35
DJ
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
b49e97c9 2612{
b15e6682 2613 struct mips_got_entry entry, **loc;
f4416af6 2614 struct mips_got_info *g;
0a44bf69
RS
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
b15e6682 2618
f4416af6
AO
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
0f20cc35 2622 entry.tls_type = 0;
f4416af6
AO
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
b15e6682 2630
0f20cc35
DJ
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
a008ac03 2635 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
b15e6682
AO
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
143d77c5 2666
b15e6682 2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2668 entry.tls_type = 0;
b15e6682
AO
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
143d77c5 2674
b15e6682
AO
2675 memcpy (*loc, &entry, sizeof entry);
2676
b49e97c9
TS
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
f4416af6 2679 (*loc)->gotidx = -1;
b49e97c9
TS
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
b15e6682 2684 return NULL;
b49e97c9
TS
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2688 (sgot->contents + entry.gotidx));
2689
0a44bf69
RS
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
b15e6682 2717 return *loc;
b49e97c9
TS
2718}
2719
2720/* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
b34976b6 2727static bfd_boolean
9719ad41 2728mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2729{
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
f4416af6
AO
2736 g = mips_elf_got_info (dynobj, NULL);
2737
b49e97c9 2738 hsd.low = NULL;
143d77c5 2739 hsd.max_unref_got_dynindx =
f4416af6
AO
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
44c410de 2756 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
b49e97c9
TS
2763 g->global_gotsym = hsd.low;
2764
b34976b6 2765 return TRUE;
b49e97c9
TS
2766}
2767
2768/* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
b34976b6 2772static bfd_boolean
9719ad41 2773mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2774{
9719ad41 2775 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
b34976b6 2783 return TRUE;
b49e97c9 2784
f4416af6
AO
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
0f20cc35
DJ
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
f4416af6
AO
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
b49e97c9
TS
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
0f20cc35
DJ
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
b49e97c9
TS
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
b34976b6 2807 return TRUE;
b49e97c9
TS
2808}
2809
2810/* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
b34976b6 2814static bfd_boolean
9719ad41
RS
2815mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
b49e97c9 2819{
f4416af6
AO
2820 struct mips_got_entry entry, **loc;
2821
b49e97c9
TS
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
7c5fcef7
L
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
b34976b6 2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2831 break;
2832 }
c152c796 2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2834 return FALSE;
7c5fcef7 2835 }
b49e97c9 2836
86324f90
EC
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
f4416af6
AO
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2843 entry.tls_type = 0;
f4416af6
AO
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
b49e97c9
TS
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
f4416af6 2850 if (*loc)
0f20cc35
DJ
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
f4416af6
AO
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
143d77c5 2860
f4416af6 2861 entry.gotidx = -1;
0f20cc35
DJ
2862 entry.tls_type = tls_flag;
2863
f4416af6
AO
2864 memcpy (*loc, &entry, sizeof entry);
2865
b49e97c9 2866 if (h->got.offset != MINUS_ONE)
b34976b6 2867 return TRUE;
b49e97c9
TS
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
b49e97c9 2874
b34976b6 2875 return TRUE;
b49e97c9 2876}
f4416af6
AO
2877
2878/* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881static bfd_boolean
9719ad41 2882mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
f4416af6
AO
2885{
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
0f20cc35 2891 entry.tls_type = tls_flag;
f4416af6
AO
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
0f20cc35
DJ
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
f4416af6 2909
0f20cc35
DJ
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
f4416af6
AO
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
143d77c5 2934
f4416af6
AO
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938}
2939\f
2940/* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942static hashval_t
9719ad41 2943mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2944{
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949}
2950
2951/* Check whether two hash entries have the same bfd. */
2952
2953static int
9719ad41 2954mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2955{
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962}
2963
bad36eac 2964/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2965 be the master GOT data. */
2966
2967static struct mips_got_info *
9719ad41 2968mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2969{
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
9719ad41 2976 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2977 return p ? p->g : NULL;
2978}
2979
2980/* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984static int
9719ad41 2985mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2986{
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
143d77c5 2993
f4416af6
AO
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
0f20cc35
DJ
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3032 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
143d77c5 3047
f4416af6
AO
3048 *entryp = entry;
3049
0f20cc35
DJ
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063}
3064
3065/* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072static int
9719ad41 3073mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3074{
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3080 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3081 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
0a44bf69 3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
0f20cc35
DJ
3093 too_many_for_tls = TRUE;
3094 }
143d77c5 3095
f4416af6
AO
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
0f20cc35
DJ
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
f4416af6
AO
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
0f20cc35
DJ
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
0f20cc35 3113 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
caec41ff 3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3131
3132 arg->primary_count = arg->primary->local_gotno
0f20cc35 3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
0f20cc35 3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
0f20cc35 3142 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
caec41ff 3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3157
3158 arg->current_count = arg->current->local_gotno
0f20cc35 3159 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
143d77c5 3168
0f20cc35
DJ
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173}
3174
ead49a57
RS
3175/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
0f20cc35
DJ
3177
3178static int
3179mips_elf_initialize_tls_index (void **entryp, void *p)
3180{
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
ead49a57 3183 bfd_vma next_index;
0f20cc35
DJ
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
ead49a57
RS
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3192 {
ead49a57
RS
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3203 {
ead49a57
RS
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3208 {
ead49a57 3209 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3210 return 1;
3211 }
ead49a57 3212 g->tls_ldm_offset = next_index;
0f20cc35 3213 }
ead49a57 3214 entry->gotidx = next_index;
f4416af6
AO
3215 }
3216
ead49a57 3217 /* Account for the entries we've just allocated. */
0f20cc35
DJ
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
f4416af6
AO
3223 return 1;
3224}
3225
3226/* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3237 marked as not eligible for lazy resolution through a function
f4416af6
AO
3238 stub. */
3239static int
9719ad41 3240mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3241{
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
0f20cc35
DJ
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
f4416af6 3252 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
f4416af6
AO
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272}
3273
0626d451
RS
3274/* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276static int
9719ad41 3277mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3278{
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287}
3288
f4416af6
AO
3289/* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295static int
9719ad41 3296mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3297{
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
143d77c5 3311
f4416af6
AO
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
143d77c5 3331
f4416af6
AO
3332 return 1;
3333}
3334
3335/* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337static void
9719ad41 3338mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3339{
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351}
3352
3353/* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355static bfd_vma
9719ad41 3356mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3357{
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
143d77c5 3368
0f20cc35
DJ
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3371}
3372
3373/* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376static bfd_boolean
9719ad41
RS
3377mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
f4416af6
AO
3380{
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3387 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
f4416af6
AO
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
0a44bf69 3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3407 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3408 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
0f20cc35 3421 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
0f20cc35 3432 g->next->tls_gotno = 0;
f4416af6 3433 g->next->assigned_gotno = 0;
0f20cc35
DJ
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
9719ad41 3438 NULL);
f4416af6
AO
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
143d77c5 3459
f4416af6
AO
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
143d77c5 3485
f4416af6
AO
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
0f20cc35 3535 gg->tls_gotno = 0;
f4416af6
AO
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
0a44bf69 3543 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
0f20cc35
DJ
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
ead49a57
RS
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
0f20cc35
DJ
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3559
ead49a57 3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3561 g = gn;
0626d451
RS
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3567 }
3568 while (g);
3569
eea6121a 3570 got->size = (gg->next->local_gotno
0f20cc35
DJ
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3573
f4416af6
AO
3574 return TRUE;
3575}
143d77c5 3576
b49e97c9
TS
3577\f
3578/* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581static const Elf_Internal_Rela *
9719ad41
RS
3582mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
b49e97c9 3585{
c000e262
TS
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3587
b49e97c9
TS
3588 while (relocation < relend)
3589 {
c000e262
TS
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600}
3601
3602/* Return whether a relocation is against a local symbol. */
3603
b34976b6 3604static bfd_boolean
9719ad41
RS
3605mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
b49e97c9
TS
3609{
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
b34976b6 3620 return TRUE;
b49e97c9 3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3622 return TRUE;
b49e97c9
TS
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3634 if (h->root.forced_local)
b34976b6 3635 return TRUE;
b49e97c9
TS
3636 }
3637
b34976b6 3638 return FALSE;
b49e97c9
TS
3639}
3640\f
3641/* Sign-extend VALUE, which has the indicated number of BITS. */
3642
a7ebbfdf 3643bfd_vma
9719ad41 3644_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3645{
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651}
3652
3653/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3654 range expressible by a signed number with the indicated number of
b49e97c9
TS
3655 BITS. */
3656
b34976b6 3657static bfd_boolean
9719ad41 3658mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3659{
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
b34976b6 3664 return TRUE;
b49e97c9
TS
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
b34976b6 3667 return TRUE;
b49e97c9
TS
3668
3669 /* All is well. */
b34976b6 3670 return FALSE;
b49e97c9
TS
3671}
3672
3673/* Calculate the %high function. */
3674
3675static bfd_vma
9719ad41 3676mips_elf_high (bfd_vma value)
b49e97c9
TS
3677{
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679}
3680
3681/* Calculate the %higher function. */
3682
3683static bfd_vma
9719ad41 3684mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3685{
3686#ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688#else
3689 abort ();
c5ae1840 3690 return MINUS_ONE;
b49e97c9
TS
3691#endif
3692}
3693
3694/* Calculate the %highest function. */
3695
3696static bfd_vma
9719ad41 3697mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3698{
3699#ifdef BFD64
b15e6682 3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3701#else
3702 abort ();
c5ae1840 3703 return MINUS_ONE;
b49e97c9
TS
3704#endif
3705}
3706\f
3707/* Create the .compact_rel section. */
3708
b34976b6 3709static bfd_boolean
9719ad41
RS
3710mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3712{
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3496cb2a 3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3722 if (s == NULL
b49e97c9
TS
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3725 return FALSE;
b49e97c9 3726
eea6121a 3727 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3728 }
3729
b34976b6 3730 return TRUE;
b49e97c9
TS
3731}
3732
3733/* Create the .got section to hold the global offset table. */
3734
b34976b6 3735static bfd_boolean
9719ad41
RS
3736mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
b49e97c9
TS
3738{
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
14a793b2 3742 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
0a44bf69
RS
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
b49e97c9
TS
3748
3749 /* This function may be called more than once. */
f4416af6
AO
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
b49e97c9
TS
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
f4416af6
AO
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
72b4917c
TS
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3496cb2a 3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3767 if (s == NULL
72b4917c 3768 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3769 return FALSE;
b49e97c9
TS
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
14a793b2 3774 bh = NULL;
b49e97c9
TS
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3778 return FALSE;
14a793b2
AM
3779
3780 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3781 h->non_elf = 0;
3782 h->def_regular = 1;
b49e97c9 3783 h->type = STT_OBJECT;
d329bcd1 3784 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3785
3786 if (info->shared
c152c796 3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3788 return FALSE;
b49e97c9 3789
b49e97c9 3790 amt = sizeof (struct mips_got_info);
9719ad41 3791 g = bfd_alloc (abfd, amt);
b49e97c9 3792 if (g == NULL)
b34976b6 3793 return FALSE;
b49e97c9 3794 g->global_gotsym = NULL;
e3d54347 3795 g->global_gotno = 0;
0f20cc35 3796 g->tls_gotno = 0;
0a44bf69
RS
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3799 g->bfd2got = NULL;
3800 g->next = NULL;
0f20cc35 3801 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3803 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3804 if (g->got_entries == NULL)
3805 return FALSE;
f0abc2a1
AM
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
0a44bf69
RS
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
b34976b6 3821 return TRUE;
b49e97c9 3822}
b49e97c9 3823\f
0a44bf69
RS
3824/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828static bfd_boolean
3829is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830{
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835}
3836\f
b49e97c9
TS
3837/* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850static bfd_reloc_status_type
9719ad41
RS
3851mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
b49e97c9
TS
3860{
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3882 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3883 symbol. */
b34976b6
AM
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
b34976b6 3894 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3895 relocation value. */
b34976b6
AM
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
b49e97c9
TS
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
b34976b6 3913 overflowed_p = FALSE;
b49e97c9
TS
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3919 local_sections, FALSE);
bce03d3d 3920 was_local_p = local_p;
b49e97c9
TS
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
b49e97c9 3941 symbol += sym->st_value;
d4df96e6
L
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
b49e97c9
TS
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
560e09e9
NC
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
b49e97c9
TS
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
560e09e9 3980 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3987 return bfd_reloc_notsupported;
3988
b34976b6 3989 gp_disp_p = TRUE;
b49e97c9 3990 }
bbe506e8
TS
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
b49e97c9
TS
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
59c2e50f 4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
a4d0f181
TS
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
5e2b0d47
NC
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
b49e97c9
TS
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
59c2e50f
L
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
1049f94e 4063 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4083 }
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
1049f94e 4086 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
4087 && h != NULL
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4090 {
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4093 file. */
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4095 {
4096 asection *o;
4097
4098 sec = NULL;
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4100 {
4101 if (strncmp (bfd_get_section_name (input_bfd, o),
4102 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4103 {
4104 sec = h->call_fp_stub;
4105 break;
4106 }
4107 }
4108 if (sec == NULL)
4109 sec = h->call_stub;
4110 }
4111 else if (h->call_stub != NULL)
4112 sec = h->call_stub;
4113 else
4114 sec = h->call_fp_stub;
4115
eea6121a 4116 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4117 symbol = sec->output_section->vma + sec->output_offset;
4118 }
4119
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
1049f94e 4122 *require_jalxp = (!info->relocatable
b49e97c9
TS
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4125
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4127 local_sections, TRUE);
b49e97c9
TS
4128
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4131 switch (r_type)
4132 {
0fdc1bf1 4133 case R_MIPS_GOT_PAGE:
93a2b7ae 4134 case R_MIPS_GOT_OFST:
d25aed71
RS
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4136 bind locally. */
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4138 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4139 break;
4140 /* Fall through. */
4141
b49e97c9
TS
4142 case R_MIPS_CALL16:
4143 case R_MIPS_GOT16:
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4149 case R_MIPS_TLS_GD:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
b49e97c9 4152 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4153 if (r_type == R_MIPS_TLS_LDM)
4154 {
0a44bf69
RS
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
0f20cc35
DJ
4157 if (g == MINUS_ONE)
4158 return bfd_reloc_outofrange;
4159 }
4160 else if (!local_p)
b49e97c9 4161 {
0a44bf69
RS
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4168 {
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4172 }
4173 else
b49e97c9 4174 {
0a44bf69
RS
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4178 as GOT_OFST. */
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4184 || (info->shared
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4187 {
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4193 }
b49e97c9
TS
4194 }
4195 }
0a44bf69
RS
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
b49e97c9
TS
4199 break;
4200 else
4201 {
0a44bf69
RS
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4204 if (g == MINUS_ONE)
4205 return bfd_reloc_outofrange;
4206 }
4207
4208 /* Convert GOT indices to actual offsets. */
0a44bf69 4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4210 break;
4211
4212 case R_MIPS_HI16:
4213 case R_MIPS_LO16:
b49e97c9
TS
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
d6f16593
MR
4217 case R_MIPS16_HI16:
4218 case R_MIPS16_LO16:
4219 case R_MIPS16_GPREL:
b49e97c9
TS
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4222 if (dynobj)
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4224 input_bfd);
b49e97c9
TS
4225 break;
4226
4227 default:
4228 break;
4229 }
4230
bbe506e8
TS
4231 if (gnu_local_gp_p)
4232 symbol = gp;
86324f90 4233
0a44bf69
RS
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4237 {
4238 Elf_Internal_Rela outrel;
4239 bfd_byte *loc;
4240 asection *s;
4241
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4244
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4251 *valuep = 0;
4252 return bfd_reloc_ok;
4253 }
4254
b49e97c9
TS
4255 /* Figure out what kind of relocation is being performed. */
4256 switch (r_type)
4257 {
4258 case R_MIPS_NONE:
4259 return bfd_reloc_continue;
4260
4261 case R_MIPS_16:
a7ebbfdf 4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4264 break;
4265
4266 case R_MIPS_32:
4267 case R_MIPS_REL32:
4268 case R_MIPS_64:
4269 if ((info->shared
0a44bf69
RS
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
b49e97c9 4272 && h != NULL
f5385ebf
AM
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
b49e97c9
TS
4275 && r_symndx != 0
4276 && (input_section->flags & SEC_ALLOC) != 0)
4277 {
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4282 linker.
4283
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
b49e97c9
TS
4287 value = addend;
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4289 info,
4290 relocation,
4291 h,
4292 sec,
4293 symbol,
4294 &value,
4295 input_section))
4296 return bfd_reloc_undefined;
4297 }
4298 else
4299 {
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4302 else
4303 value = addend;
4304 }
4305 value &= howto->dst_mask;
092dcd75
CD
4306 break;
4307
4308 case R_MIPS_PC32:
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
b49e97c9
TS
4311 break;
4312
b49e97c9
TS
4313 case R_MIPS16_26:
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4319 case R_MIPS_26:
4320 if (local_p)
30ac9238 4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4322 else
728b2f21
ILT
4323 {
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4327 }
b49e97c9
TS
4328 value &= howto->dst_mask;
4329 break;
4330
0f20cc35
DJ
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4333 & howto->dst_mask);
4334 break;
4335
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4338 break;
4339
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4342 & howto->dst_mask);
4343 break;
4344
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4347 break;
4348
b49e97c9 4349 case R_MIPS_HI16:
d6f16593 4350 case R_MIPS16_HI16:
b49e97c9
TS
4351 if (!gp_disp_p)
4352 {
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4355 }
4356 else
4357 {
d6f16593
MR
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4361 8: sll $v0,16
4362 12: addu $v0,$v1
4363 14: move $gp,$v0
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4369 else
4370 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4372 }
4373 break;
4374
4375 case R_MIPS_LO16:
d6f16593 4376 case R_MIPS16_LO16:
b49e97c9
TS
4377 if (!gp_disp_p)
4378 value = (symbol + addend) & howto->dst_mask;
4379 else
4380 {
d6f16593
MR
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4385 else
4386 value = addend + gp - p + 4;
b49e97c9 4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4388 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4391 this:
4392
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4395 addu $gp,$gp,$t9
4396
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4403 }
4404 break;
4405
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4410 here. */
4411
4412 /* Fall through. */
4413
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
bce03d3d
AO
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
a7ebbfdf 4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4430 to them before. */
4431 if (was_local_p)
4432 value += gp0;
b49e97c9
TS
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4434 break;
4435
4436 case R_MIPS_GOT16:
4437 case R_MIPS_CALL16:
0a44bf69
RS
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
b49e97c9 4441 {
b34976b6 4442 bfd_boolean forced;
b49e97c9 4443
b49e97c9 4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4445 local_sections, FALSE);
0a44bf69 4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
f4416af6 4447 symbol + addend, forced);
b49e97c9
TS
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4450 value
0a44bf69 4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454 }
4455
4456 /* Fall through. */
4457
0f20cc35
DJ
4458 case R_MIPS_TLS_GD:
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
b49e97c9 4461 case R_MIPS_GOT_DISP:
0fdc1bf1 4462 got_disp:
b49e97c9
TS
4463 value = g;
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4465 break;
4466
4467 case R_MIPS_GPREL32:
bce03d3d
AO
4468 value = (addend + symbol + gp0 - gp);
4469 if (!save_addend)
4470 value &= howto->dst_mask;
b49e97c9
TS
4471 break;
4472
4473 case R_MIPS_PC16:
bad36eac
DJ
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
b49e97c9
TS
4479 break;
4480
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4486 value = g;
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4489 break;
4490
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4499 0. */
93a2b7ae 4500 if (! local_p)
0fdc1bf1 4501 goto got_disp;
0a44bf69
RS
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
b49e97c9
TS
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
0a44bf69 4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4509
4510 case R_MIPS_GOT_OFST:
93a2b7ae 4511 if (local_p)
0a44bf69
RS
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
0fdc1bf1
AO
4514 else
4515 value = addend;
b49e97c9
TS
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4517 break;
4518
4519 case R_MIPS_SUB:
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_HIGHER:
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4532 break;
4533
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4537 break;
4538
b49e97c9 4539 case R_MIPS_JALR:
1367d393
ILT
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4546 break;
b49e97c9 4547
1367d393 4548 case R_MIPS_PJUMP:
b49e97c9
TS
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4553
4554 default:
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4557 }
4558
4559 /* Store the VALUE for our caller. */
4560 *valuep = value;
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4562}
4563
4564/* Obtain the field relocated by RELOCATION. */
4565
4566static bfd_vma
9719ad41
RS
4567mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4570{
4571 bfd_vma x;
4572 bfd_byte *location = contents + relocation->r_offset;
4573
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4576
b49e97c9
TS
4577 return x;
4578}
4579
4580/* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
b34976b6 4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4586
b34976b6 4587 Returns FALSE if anything goes wrong. */
b49e97c9 4588
b34976b6 4589static bfd_boolean
9719ad41
RS
4590mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
b49e97c9
TS
4596{
4597 bfd_vma x;
4598 bfd_byte *location;
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4600
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4603
d6f16593
MR
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4605
b49e97c9
TS
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4608
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4611
b49e97c9
TS
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4614
4615 /* If required, turn JAL into JALX. */
4616 if (require_jalx)
4617 {
b34976b6 4618 bfd_boolean ok;
b49e97c9
TS
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4621
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4624 {
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4626 jalx_opcode = 0x7;
4627 }
4628 else
4629 {
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4631 jalx_opcode = 0x1d;
4632 }
4633
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4635 if (!ok)
4636 {
4637 (*_bfd_error_handler)
d003868e
AM
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4639 input_bfd,
4640 input_section,
b49e97c9
TS
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
b34976b6 4643 return FALSE;
b49e97c9
TS
4644 }
4645
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4648 }
4649
1367d393
ILT
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4656 && !require_jalx
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4659 {
4660 bfd_vma addr;
4661 bfd_vma dest;
4662 bfd_signed_vma off;
4663
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4667 + 4);
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4670 else
4671 dest = value;
4672 off = dest - addr;
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4675 }
4676
b49e97c9
TS
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4679
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4681 location);
4682
b34976b6 4683 return TRUE;
b49e97c9
TS
4684}
4685
b34976b6 4686/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4687
b34976b6 4688static bfd_boolean
9719ad41 4689mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4690{
4691 const char *name = bfd_get_section_name (abfd, section);
4692
4693 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4694 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4695 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4696}
4697\f
0a44bf69 4698/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4699
4700static void
0a44bf69
RS
4701mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4702 unsigned int n)
b49e97c9
TS
4703{
4704 asection *s;
0a44bf69 4705 struct mips_elf_link_hash_table *htab;
b49e97c9 4706
0a44bf69
RS
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4709 BFD_ASSERT (s != NULL);
4710
0a44bf69
RS
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4713 else
b49e97c9 4714 {
0a44bf69
RS
4715 if (s->size == 0)
4716 {
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4719 ++s->reloc_count;
4720 }
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4722 }
b49e97c9
TS
4723}
4724
4725/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4729
b34976b6 4730static bfd_boolean
9719ad41
RS
4731mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
b49e97c9 4737{
947216bf 4738 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4739 asection *sreloc;
4740 bfd *dynobj;
4741 int r_type;
5d41f0b6
RS
4742 long indx;
4743 bfd_boolean defined_p;
0a44bf69 4744 struct mips_elf_link_hash_table *htab;
b49e97c9 4745
0a44bf69 4746 htab = mips_elf_hash_table (info);
b49e97c9
TS
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4753 < sreloc->size);
b49e97c9 4754
b49e97c9
TS
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4761
c5ae1840 4762 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4763 /* The relocation field has been deleted. */
5d41f0b6
RS
4764 return TRUE;
4765
4766 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4767 {
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4771 *addendp += symbol;
5d41f0b6 4772 return TRUE;
0d591ff7 4773 }
b49e97c9 4774
5d41f0b6
RS
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4777 if (h != NULL
6ece8836
TS
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4780 {
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4784 else
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4789 defined_p = FALSE;
4790 }
b49e97c9
TS
4791 else
4792 {
5d41f0b6
RS
4793 if (sec != NULL && bfd_is_abs_section (sec))
4794 indx = 0;
4795 else if (sec == NULL || sec->owner == NULL)
fdd07405 4796 {
5d41f0b6
RS
4797 bfd_set_error (bfd_error_bad_value);
4798 return FALSE;
b49e97c9
TS
4799 }
4800 else
4801 {
5d41f0b6
RS
4802 indx = elf_section_data (sec->output_section)->dynindx;
4803 if (indx == 0)
4804 abort ();
b49e97c9
TS
4805 }
4806
5d41f0b6
RS
4807 /* Instead of generating a relocation using the section
4808 symbol, we may as well make it a fully relative
4809 relocation. We want to avoid generating relocations to
4810 local symbols because we used to generate them
4811 incorrectly, without adding the original symbol value,
4812 which is mandated by the ABI for section symbols. In
4813 order to give dynamic loaders and applications time to
4814 phase out the incorrect use, we refrain from emitting
4815 section-relative relocations. It's not like they're
4816 useful, after all. This should be a bit more efficient
4817 as well. */
4818 /* ??? Although this behavior is compatible with glibc's ld.so,
4819 the ABI says that relocations against STN_UNDEF should have
4820 a symbol value of 0. Irix rld honors this, so relocations
4821 against STN_UNDEF have no effect. */
4822 if (!SGI_COMPAT (output_bfd))
4823 indx = 0;
4824 defined_p = TRUE;
b49e97c9
TS
4825 }
4826
5d41f0b6
RS
4827 /* If the relocation was previously an absolute relocation and
4828 this symbol will not be referred to by the relocation, we must
4829 adjust it by the value we give it in the dynamic symbol table.
4830 Otherwise leave the job up to the dynamic linker. */
4831 if (defined_p && r_type != R_MIPS_REL32)
4832 *addendp += symbol;
4833
0a44bf69
RS
4834 if (htab->is_vxworks)
4835 /* VxWorks uses non-relative relocations for this. */
4836 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4837 else
4838 /* The relocation is always an REL32 relocation because we don't
4839 know where the shared library will wind up at load-time. */
4840 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4841 R_MIPS_REL32);
4842
5d41f0b6
RS
4843 /* For strict adherence to the ABI specification, we should
4844 generate a R_MIPS_64 relocation record by itself before the
4845 _REL32/_64 record as well, such that the addend is read in as
4846 a 64-bit value (REL32 is a 32-bit relocation, after all).
4847 However, since none of the existing ELF64 MIPS dynamic
4848 loaders seems to care, we don't waste space with these
4849 artificial relocations. If this turns out to not be true,
4850 mips_elf_allocate_dynamic_relocation() should be tweaked so
4851 as to make room for a pair of dynamic relocations per
4852 invocation if ABI_64_P, and here we should generate an
4853 additional relocation record with R_MIPS_64 by itself for a
4854 NULL symbol before this relocation record. */
4855 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4856 ABI_64_P (output_bfd)
4857 ? R_MIPS_64
4858 : R_MIPS_NONE);
4859 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4860
4861 /* Adjust the output offset of the relocation to reference the
4862 correct location in the output file. */
4863 outrel[0].r_offset += (input_section->output_section->vma
4864 + input_section->output_offset);
4865 outrel[1].r_offset += (input_section->output_section->vma
4866 + input_section->output_offset);
4867 outrel[2].r_offset += (input_section->output_section->vma
4868 + input_section->output_offset);
4869
b49e97c9
TS
4870 /* Put the relocation back out. We have to use the special
4871 relocation outputter in the 64-bit case since the 64-bit
4872 relocation format is non-standard. */
4873 if (ABI_64_P (output_bfd))
4874 {
4875 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4876 (output_bfd, &outrel[0],
4877 (sreloc->contents
4878 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4879 }
0a44bf69
RS
4880 else if (htab->is_vxworks)
4881 {
4882 /* VxWorks uses RELA rather than REL dynamic relocations. */
4883 outrel[0].r_addend = *addendp;
4884 bfd_elf32_swap_reloca_out
4885 (output_bfd, &outrel[0],
4886 (sreloc->contents
4887 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4888 }
b49e97c9 4889 else
947216bf
AM
4890 bfd_elf32_swap_reloc_out
4891 (output_bfd, &outrel[0],
4892 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4893
b49e97c9
TS
4894 /* We've now added another relocation. */
4895 ++sreloc->reloc_count;
4896
4897 /* Make sure the output section is writable. The dynamic linker
4898 will be writing to it. */
4899 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4900 |= SHF_WRITE;
4901
4902 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4903 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4904 {
4905 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4906 bfd_byte *cr;
4907
4908 if (scpt)
4909 {
4910 Elf32_crinfo cptrel;
4911
4912 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4913 cptrel.vaddr = (rel->r_offset
4914 + input_section->output_section->vma
4915 + input_section->output_offset);
4916 if (r_type == R_MIPS_REL32)
4917 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4918 else
4919 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4920 mips_elf_set_cr_dist2to (cptrel, 0);
4921 cptrel.konst = *addendp;
4922
4923 cr = (scpt->contents
4924 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4925 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4926 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4927 ((Elf32_External_crinfo *) cr
4928 + scpt->reloc_count));
4929 ++scpt->reloc_count;
4930 }
4931 }
4932
943284cc
DJ
4933 /* If we've written this relocation for a readonly section,
4934 we need to set DF_TEXTREL again, so that we do not delete the
4935 DT_TEXTREL tag. */
4936 if (MIPS_ELF_READONLY_SECTION (input_section))
4937 info->flags |= DF_TEXTREL;
4938
b34976b6 4939 return TRUE;
b49e97c9
TS
4940}
4941\f
b49e97c9
TS
4942/* Return the MACH for a MIPS e_flags value. */
4943
4944unsigned long
9719ad41 4945_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4946{
4947 switch (flags & EF_MIPS_MACH)
4948 {
4949 case E_MIPS_MACH_3900:
4950 return bfd_mach_mips3900;
4951
4952 case E_MIPS_MACH_4010:
4953 return bfd_mach_mips4010;
4954
4955 case E_MIPS_MACH_4100:
4956 return bfd_mach_mips4100;
4957
4958 case E_MIPS_MACH_4111:
4959 return bfd_mach_mips4111;
4960
00707a0e
RS
4961 case E_MIPS_MACH_4120:
4962 return bfd_mach_mips4120;
4963
b49e97c9
TS
4964 case E_MIPS_MACH_4650:
4965 return bfd_mach_mips4650;
4966
00707a0e
RS
4967 case E_MIPS_MACH_5400:
4968 return bfd_mach_mips5400;
4969
4970 case E_MIPS_MACH_5500:
4971 return bfd_mach_mips5500;
4972
0d2e43ed
ILT
4973 case E_MIPS_MACH_9000:
4974 return bfd_mach_mips9000;
4975
b49e97c9
TS
4976 case E_MIPS_MACH_SB1:
4977 return bfd_mach_mips_sb1;
4978
4979 default:
4980 switch (flags & EF_MIPS_ARCH)
4981 {
4982 default:
4983 case E_MIPS_ARCH_1:
4984 return bfd_mach_mips3000;
b49e97c9
TS
4985
4986 case E_MIPS_ARCH_2:
4987 return bfd_mach_mips6000;
b49e97c9
TS
4988
4989 case E_MIPS_ARCH_3:
4990 return bfd_mach_mips4000;
b49e97c9
TS
4991
4992 case E_MIPS_ARCH_4:
4993 return bfd_mach_mips8000;
b49e97c9
TS
4994
4995 case E_MIPS_ARCH_5:
4996 return bfd_mach_mips5;
b49e97c9
TS
4997
4998 case E_MIPS_ARCH_32:
4999 return bfd_mach_mipsisa32;
b49e97c9
TS
5000
5001 case E_MIPS_ARCH_64:
5002 return bfd_mach_mipsisa64;
af7ee8bf
CD
5003
5004 case E_MIPS_ARCH_32R2:
5005 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5006
5007 case E_MIPS_ARCH_64R2:
5008 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5009 }
5010 }
5011
5012 return 0;
5013}
5014
5015/* Return printable name for ABI. */
5016
5017static INLINE char *
9719ad41 5018elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5019{
5020 flagword flags;
5021
5022 flags = elf_elfheader (abfd)->e_flags;
5023 switch (flags & EF_MIPS_ABI)
5024 {
5025 case 0:
5026 if (ABI_N32_P (abfd))
5027 return "N32";
5028 else if (ABI_64_P (abfd))
5029 return "64";
5030 else
5031 return "none";
5032 case E_MIPS_ABI_O32:
5033 return "O32";
5034 case E_MIPS_ABI_O64:
5035 return "O64";
5036 case E_MIPS_ABI_EABI32:
5037 return "EABI32";
5038 case E_MIPS_ABI_EABI64:
5039 return "EABI64";
5040 default:
5041 return "unknown abi";
5042 }
5043}
5044\f
5045/* MIPS ELF uses two common sections. One is the usual one, and the
5046 other is for small objects. All the small objects are kept
5047 together, and then referenced via the gp pointer, which yields
5048 faster assembler code. This is what we use for the small common
5049 section. This approach is copied from ecoff.c. */
5050static asection mips_elf_scom_section;
5051static asymbol mips_elf_scom_symbol;
5052static asymbol *mips_elf_scom_symbol_ptr;
5053
5054/* MIPS ELF also uses an acommon section, which represents an
5055 allocated common symbol which may be overridden by a
5056 definition in a shared library. */
5057static asection mips_elf_acom_section;
5058static asymbol mips_elf_acom_symbol;
5059static asymbol *mips_elf_acom_symbol_ptr;
5060
5061/* Handle the special MIPS section numbers that a symbol may use.
5062 This is used for both the 32-bit and the 64-bit ABI. */
5063
5064void
9719ad41 5065_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5066{
5067 elf_symbol_type *elfsym;
5068
5069 elfsym = (elf_symbol_type *) asym;
5070 switch (elfsym->internal_elf_sym.st_shndx)
5071 {
5072 case SHN_MIPS_ACOMMON:
5073 /* This section is used in a dynamically linked executable file.
5074 It is an allocated common section. The dynamic linker can
5075 either resolve these symbols to something in a shared
5076 library, or it can just leave them here. For our purposes,
5077 we can consider these symbols to be in a new section. */
5078 if (mips_elf_acom_section.name == NULL)
5079 {
5080 /* Initialize the acommon section. */
5081 mips_elf_acom_section.name = ".acommon";
5082 mips_elf_acom_section.flags = SEC_ALLOC;
5083 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5084 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5085 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5086 mips_elf_acom_symbol.name = ".acommon";
5087 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5089 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5090 }
5091 asym->section = &mips_elf_acom_section;
5092 break;
5093
5094 case SHN_COMMON:
5095 /* Common symbols less than the GP size are automatically
5096 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5097 if (asym->value > elf_gp_size (abfd)
b59eed79 5098 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5099 || IRIX_COMPAT (abfd) == ict_irix6)
5100 break;
5101 /* Fall through. */
5102 case SHN_MIPS_SCOMMON:
5103 if (mips_elf_scom_section.name == NULL)
5104 {
5105 /* Initialize the small common section. */
5106 mips_elf_scom_section.name = ".scommon";
5107 mips_elf_scom_section.flags = SEC_IS_COMMON;
5108 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5109 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5110 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5111 mips_elf_scom_symbol.name = ".scommon";
5112 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5113 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5114 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5115 }
5116 asym->section = &mips_elf_scom_section;
5117 asym->value = elfsym->internal_elf_sym.st_size;
5118 break;
5119
5120 case SHN_MIPS_SUNDEFINED:
5121 asym->section = bfd_und_section_ptr;
5122 break;
5123
b49e97c9 5124 case SHN_MIPS_TEXT:
00b4930b
TS
5125 {
5126 asection *section = bfd_get_section_by_name (abfd, ".text");
5127
5128 BFD_ASSERT (SGI_COMPAT (abfd));
5129 if (section != NULL)
5130 {
5131 asym->section = section;
5132 /* MIPS_TEXT is a bit special, the address is not an offset
5133 to the base of the .text section. So substract the section
5134 base address to make it an offset. */
5135 asym->value -= section->vma;
5136 }
5137 }
b49e97c9
TS
5138 break;
5139
5140 case SHN_MIPS_DATA:
00b4930b
TS
5141 {
5142 asection *section = bfd_get_section_by_name (abfd, ".data");
5143
5144 BFD_ASSERT (SGI_COMPAT (abfd));
5145 if (section != NULL)
5146 {
5147 asym->section = section;
5148 /* MIPS_DATA is a bit special, the address is not an offset
5149 to the base of the .data section. So substract the section
5150 base address to make it an offset. */
5151 asym->value -= section->vma;
5152 }
5153 }
b49e97c9 5154 break;
b49e97c9
TS
5155 }
5156}
5157\f
8c946ed5
RS
5158/* Implement elf_backend_eh_frame_address_size. This differs from
5159 the default in the way it handles EABI64.
5160
5161 EABI64 was originally specified as an LP64 ABI, and that is what
5162 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5163 historically accepted the combination of -mabi=eabi and -mlong32,
5164 and this ILP32 variation has become semi-official over time.
5165 Both forms use elf32 and have pointer-sized FDE addresses.
5166
5167 If an EABI object was generated by GCC 4.0 or above, it will have
5168 an empty .gcc_compiled_longXX section, where XX is the size of longs
5169 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5170 have no special marking to distinguish them from LP64 objects.
5171
5172 We don't want users of the official LP64 ABI to be punished for the
5173 existence of the ILP32 variant, but at the same time, we don't want
5174 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5175 We therefore take the following approach:
5176
5177 - If ABFD contains a .gcc_compiled_longXX section, use it to
5178 determine the pointer size.
5179
5180 - Otherwise check the type of the first relocation. Assume that
5181 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5182
5183 - Otherwise punt.
5184
5185 The second check is enough to detect LP64 objects generated by pre-4.0
5186 compilers because, in the kind of output generated by those compilers,
5187 the first relocation will be associated with either a CIE personality
5188 routine or an FDE start address. Furthermore, the compilers never
5189 used a special (non-pointer) encoding for this ABI.
5190
5191 Checking the relocation type should also be safe because there is no
5192 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5193 did so. */
5194
5195unsigned int
5196_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5197{
5198 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5199 return 8;
5200 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5201 {
5202 bfd_boolean long32_p, long64_p;
5203
5204 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5205 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5206 if (long32_p && long64_p)
5207 return 0;
5208 if (long32_p)
5209 return 4;
5210 if (long64_p)
5211 return 8;
5212
5213 if (sec->reloc_count > 0
5214 && elf_section_data (sec)->relocs != NULL
5215 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5216 == R_MIPS_64))
5217 return 8;
5218
5219 return 0;
5220 }
5221 return 4;
5222}
5223\f
174fd7f9
RS
5224/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5225 relocations against two unnamed section symbols to resolve to the
5226 same address. For example, if we have code like:
5227
5228 lw $4,%got_disp(.data)($gp)
5229 lw $25,%got_disp(.text)($gp)
5230 jalr $25
5231
5232 then the linker will resolve both relocations to .data and the program
5233 will jump there rather than to .text.
5234
5235 We can work around this problem by giving names to local section symbols.
5236 This is also what the MIPSpro tools do. */
5237
5238bfd_boolean
5239_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5240{
5241 return SGI_COMPAT (abfd);
5242}
5243\f
b49e97c9
TS
5244/* Work over a section just before writing it out. This routine is
5245 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5246 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5247 a better way. */
5248
b34976b6 5249bfd_boolean
9719ad41 5250_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5251{
5252 if (hdr->sh_type == SHT_MIPS_REGINFO
5253 && hdr->sh_size > 0)
5254 {
5255 bfd_byte buf[4];
5256
5257 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5258 BFD_ASSERT (hdr->contents == NULL);
5259
5260 if (bfd_seek (abfd,
5261 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5262 SEEK_SET) != 0)
b34976b6 5263 return FALSE;
b49e97c9 5264 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5265 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5266 return FALSE;
b49e97c9
TS
5267 }
5268
5269 if (hdr->sh_type == SHT_MIPS_OPTIONS
5270 && hdr->bfd_section != NULL
f0abc2a1
AM
5271 && mips_elf_section_data (hdr->bfd_section) != NULL
5272 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5273 {
5274 bfd_byte *contents, *l, *lend;
5275
f0abc2a1
AM
5276 /* We stored the section contents in the tdata field in the
5277 set_section_contents routine. We save the section contents
5278 so that we don't have to read them again.
b49e97c9
TS
5279 At this point we know that elf_gp is set, so we can look
5280 through the section contents to see if there is an
5281 ODK_REGINFO structure. */
5282
f0abc2a1 5283 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5284 l = contents;
5285 lend = contents + hdr->sh_size;
5286 while (l + sizeof (Elf_External_Options) <= lend)
5287 {
5288 Elf_Internal_Options intopt;
5289
5290 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5291 &intopt);
1bc8074d
MR
5292 if (intopt.size < sizeof (Elf_External_Options))
5293 {
5294 (*_bfd_error_handler)
5295 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5296 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5297 break;
5298 }
b49e97c9
TS
5299 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5300 {
5301 bfd_byte buf[8];
5302
5303 if (bfd_seek (abfd,
5304 (hdr->sh_offset
5305 + (l - contents)
5306 + sizeof (Elf_External_Options)
5307 + (sizeof (Elf64_External_RegInfo) - 8)),
5308 SEEK_SET) != 0)
b34976b6 5309 return FALSE;
b49e97c9 5310 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5311 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5312 return FALSE;
b49e97c9
TS
5313 }
5314 else if (intopt.kind == ODK_REGINFO)
5315 {
5316 bfd_byte buf[4];
5317
5318 if (bfd_seek (abfd,
5319 (hdr->sh_offset
5320 + (l - contents)
5321 + sizeof (Elf_External_Options)
5322 + (sizeof (Elf32_External_RegInfo) - 4)),
5323 SEEK_SET) != 0)
b34976b6 5324 return FALSE;
b49e97c9 5325 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5326 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5327 return FALSE;
b49e97c9
TS
5328 }
5329 l += intopt.size;
5330 }
5331 }
5332
5333 if (hdr->bfd_section != NULL)
5334 {
5335 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5336
5337 if (strcmp (name, ".sdata") == 0
5338 || strcmp (name, ".lit8") == 0
5339 || strcmp (name, ".lit4") == 0)
5340 {
5341 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5342 hdr->sh_type = SHT_PROGBITS;
5343 }
5344 else if (strcmp (name, ".sbss") == 0)
5345 {
5346 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_NOBITS;
5348 }
5349 else if (strcmp (name, ".srdata") == 0)
5350 {
5351 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5352 hdr->sh_type = SHT_PROGBITS;
5353 }
5354 else if (strcmp (name, ".compact_rel") == 0)
5355 {
5356 hdr->sh_flags = 0;
5357 hdr->sh_type = SHT_PROGBITS;
5358 }
5359 else if (strcmp (name, ".rtproc") == 0)
5360 {
5361 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5362 {
5363 unsigned int adjust;
5364
5365 adjust = hdr->sh_size % hdr->sh_addralign;
5366 if (adjust != 0)
5367 hdr->sh_size += hdr->sh_addralign - adjust;
5368 }
5369 }
5370 }
5371
b34976b6 5372 return TRUE;
b49e97c9
TS
5373}
5374
5375/* Handle a MIPS specific section when reading an object file. This
5376 is called when elfcode.h finds a section with an unknown type.
5377 This routine supports both the 32-bit and 64-bit ELF ABI.
5378
5379 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5380 how to. */
5381
b34976b6 5382bfd_boolean
6dc132d9
L
5383_bfd_mips_elf_section_from_shdr (bfd *abfd,
5384 Elf_Internal_Shdr *hdr,
5385 const char *name,
5386 int shindex)
b49e97c9
TS
5387{
5388 flagword flags = 0;
5389
5390 /* There ought to be a place to keep ELF backend specific flags, but
5391 at the moment there isn't one. We just keep track of the
5392 sections by their name, instead. Fortunately, the ABI gives
5393 suggested names for all the MIPS specific sections, so we will
5394 probably get away with this. */
5395 switch (hdr->sh_type)
5396 {
5397 case SHT_MIPS_LIBLIST:
5398 if (strcmp (name, ".liblist") != 0)
b34976b6 5399 return FALSE;
b49e97c9
TS
5400 break;
5401 case SHT_MIPS_MSYM:
5402 if (strcmp (name, ".msym") != 0)
b34976b6 5403 return FALSE;
b49e97c9
TS
5404 break;
5405 case SHT_MIPS_CONFLICT:
5406 if (strcmp (name, ".conflict") != 0)
b34976b6 5407 return FALSE;
b49e97c9
TS
5408 break;
5409 case SHT_MIPS_GPTAB:
5410 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5411 return FALSE;
b49e97c9
TS
5412 break;
5413 case SHT_MIPS_UCODE:
5414 if (strcmp (name, ".ucode") != 0)
b34976b6 5415 return FALSE;
b49e97c9
TS
5416 break;
5417 case SHT_MIPS_DEBUG:
5418 if (strcmp (name, ".mdebug") != 0)
b34976b6 5419 return FALSE;
b49e97c9
TS
5420 flags = SEC_DEBUGGING;
5421 break;
5422 case SHT_MIPS_REGINFO:
5423 if (strcmp (name, ".reginfo") != 0
5424 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5425 return FALSE;
b49e97c9
TS
5426 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5427 break;
5428 case SHT_MIPS_IFACE:
5429 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 break;
5432 case SHT_MIPS_CONTENT:
5433 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5434 return FALSE;
b49e97c9
TS
5435 break;
5436 case SHT_MIPS_OPTIONS:
cc2e31b9 5437 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_DWARF:
5441 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444 case SHT_MIPS_SYMBOL_LIB:
5445 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5446 return FALSE;
b49e97c9
TS
5447 break;
5448 case SHT_MIPS_EVENTS:
5449 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5450 && strncmp (name, ".MIPS.post_rel",
5451 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5452 return FALSE;
b49e97c9
TS
5453 break;
5454 default:
cc2e31b9 5455 break;
b49e97c9
TS
5456 }
5457
6dc132d9 5458 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5459 return FALSE;
b49e97c9
TS
5460
5461 if (flags)
5462 {
5463 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5464 (bfd_get_section_flags (abfd,
5465 hdr->bfd_section)
5466 | flags)))
b34976b6 5467 return FALSE;
b49e97c9
TS
5468 }
5469
5470 /* FIXME: We should record sh_info for a .gptab section. */
5471
5472 /* For a .reginfo section, set the gp value in the tdata information
5473 from the contents of this section. We need the gp value while
5474 processing relocs, so we just get it now. The .reginfo section
5475 is not used in the 64-bit MIPS ELF ABI. */
5476 if (hdr->sh_type == SHT_MIPS_REGINFO)
5477 {
5478 Elf32_External_RegInfo ext;
5479 Elf32_RegInfo s;
5480
9719ad41
RS
5481 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5482 &ext, 0, sizeof ext))
b34976b6 5483 return FALSE;
b49e97c9
TS
5484 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5485 elf_gp (abfd) = s.ri_gp_value;
5486 }
5487
5488 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5489 set the gp value based on what we find. We may see both
5490 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5491 they should agree. */
5492 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5493 {
5494 bfd_byte *contents, *l, *lend;
5495
9719ad41 5496 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5497 if (contents == NULL)
b34976b6 5498 return FALSE;
b49e97c9 5499 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5500 0, hdr->sh_size))
b49e97c9
TS
5501 {
5502 free (contents);
b34976b6 5503 return FALSE;
b49e97c9
TS
5504 }
5505 l = contents;
5506 lend = contents + hdr->sh_size;
5507 while (l + sizeof (Elf_External_Options) <= lend)
5508 {
5509 Elf_Internal_Options intopt;
5510
5511 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5512 &intopt);
1bc8074d
MR
5513 if (intopt.size < sizeof (Elf_External_Options))
5514 {
5515 (*_bfd_error_handler)
5516 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5517 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5518 break;
5519 }
b49e97c9
TS
5520 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5521 {
5522 Elf64_Internal_RegInfo intreg;
5523
5524 bfd_mips_elf64_swap_reginfo_in
5525 (abfd,
5526 ((Elf64_External_RegInfo *)
5527 (l + sizeof (Elf_External_Options))),
5528 &intreg);
5529 elf_gp (abfd) = intreg.ri_gp_value;
5530 }
5531 else if (intopt.kind == ODK_REGINFO)
5532 {
5533 Elf32_RegInfo intreg;
5534
5535 bfd_mips_elf32_swap_reginfo_in
5536 (abfd,
5537 ((Elf32_External_RegInfo *)
5538 (l + sizeof (Elf_External_Options))),
5539 &intreg);
5540 elf_gp (abfd) = intreg.ri_gp_value;
5541 }
5542 l += intopt.size;
5543 }
5544 free (contents);
5545 }
5546
b34976b6 5547 return TRUE;
b49e97c9
TS
5548}
5549
5550/* Set the correct type for a MIPS ELF section. We do this by the
5551 section name, which is a hack, but ought to work. This routine is
5552 used by both the 32-bit and the 64-bit ABI. */
5553
b34976b6 5554bfd_boolean
9719ad41 5555_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5556{
5557 register const char *name;
1bc8074d 5558 unsigned int sh_type;
b49e97c9
TS
5559
5560 name = bfd_get_section_name (abfd, sec);
1bc8074d 5561 sh_type = hdr->sh_type;
b49e97c9
TS
5562
5563 if (strcmp (name, ".liblist") == 0)
5564 {
5565 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5566 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5567 /* The sh_link field is set in final_write_processing. */
5568 }
5569 else if (strcmp (name, ".conflict") == 0)
5570 hdr->sh_type = SHT_MIPS_CONFLICT;
5571 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5572 {
5573 hdr->sh_type = SHT_MIPS_GPTAB;
5574 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5575 /* The sh_info field is set in final_write_processing. */
5576 }
5577 else if (strcmp (name, ".ucode") == 0)
5578 hdr->sh_type = SHT_MIPS_UCODE;
5579 else if (strcmp (name, ".mdebug") == 0)
5580 {
5581 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5582 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5583 entsize of 0. FIXME: Does this matter? */
5584 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5585 hdr->sh_entsize = 0;
5586 else
5587 hdr->sh_entsize = 1;
5588 }
5589 else if (strcmp (name, ".reginfo") == 0)
5590 {
5591 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5592 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5593 entsize of 0x18. FIXME: Does this matter? */
5594 if (SGI_COMPAT (abfd))
5595 {
5596 if ((abfd->flags & DYNAMIC) != 0)
5597 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5598 else
5599 hdr->sh_entsize = 1;
5600 }
5601 else
5602 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5603 }
5604 else if (SGI_COMPAT (abfd)
5605 && (strcmp (name, ".hash") == 0
5606 || strcmp (name, ".dynamic") == 0
5607 || strcmp (name, ".dynstr") == 0))
5608 {
5609 if (SGI_COMPAT (abfd))
5610 hdr->sh_entsize = 0;
5611#if 0
8dc1a139 5612 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5613 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5614#endif
5615 }
5616 else if (strcmp (name, ".got") == 0
5617 || strcmp (name, ".srdata") == 0
5618 || strcmp (name, ".sdata") == 0
5619 || strcmp (name, ".sbss") == 0
5620 || strcmp (name, ".lit4") == 0
5621 || strcmp (name, ".lit8") == 0)
5622 hdr->sh_flags |= SHF_MIPS_GPREL;
5623 else if (strcmp (name, ".MIPS.interfaces") == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_IFACE;
5626 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5627 }
5628 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5629 {
5630 hdr->sh_type = SHT_MIPS_CONTENT;
5631 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5632 /* The sh_info field is set in final_write_processing. */
5633 }
cc2e31b9 5634 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5635 {
5636 hdr->sh_type = SHT_MIPS_OPTIONS;
5637 hdr->sh_entsize = 1;
5638 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5639 }
5640 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5641 hdr->sh_type = SHT_MIPS_DWARF;
5642 else if (strcmp (name, ".MIPS.symlib") == 0)
5643 {
5644 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5645 /* The sh_link and sh_info fields are set in
5646 final_write_processing. */
5647 }
5648 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5649 || strncmp (name, ".MIPS.post_rel",
5650 sizeof ".MIPS.post_rel" - 1) == 0)
5651 {
5652 hdr->sh_type = SHT_MIPS_EVENTS;
5653 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5654 /* The sh_link field is set in final_write_processing. */
5655 }
5656 else if (strcmp (name, ".msym") == 0)
5657 {
5658 hdr->sh_type = SHT_MIPS_MSYM;
5659 hdr->sh_flags |= SHF_ALLOC;
5660 hdr->sh_entsize = 8;
5661 }
5662
1bc8074d
MR
5663 /* In the unlikely event a special section is empty it has to lose its
5664 special meaning. This may happen e.g. when using `strip' with the
5665 "--only-keep-debug" option. */
5666 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5667 hdr->sh_type = sh_type;
5668
7a79a000
TS
5669 /* The generic elf_fake_sections will set up REL_HDR using the default
5670 kind of relocations. We used to set up a second header for the
5671 non-default kind of relocations here, but only NewABI would use
5672 these, and the IRIX ld doesn't like resulting empty RELA sections.
5673 Thus we create those header only on demand now. */
b49e97c9 5674
b34976b6 5675 return TRUE;
b49e97c9
TS
5676}
5677
5678/* Given a BFD section, try to locate the corresponding ELF section
5679 index. This is used by both the 32-bit and the 64-bit ABI.
5680 Actually, it's not clear to me that the 64-bit ABI supports these,
5681 but for non-PIC objects we will certainly want support for at least
5682 the .scommon section. */
5683
b34976b6 5684bfd_boolean
9719ad41
RS
5685_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5686 asection *sec, int *retval)
b49e97c9
TS
5687{
5688 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5689 {
5690 *retval = SHN_MIPS_SCOMMON;
b34976b6 5691 return TRUE;
b49e97c9
TS
5692 }
5693 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5694 {
5695 *retval = SHN_MIPS_ACOMMON;
b34976b6 5696 return TRUE;
b49e97c9 5697 }
b34976b6 5698 return FALSE;
b49e97c9
TS
5699}
5700\f
5701/* Hook called by the linker routine which adds symbols from an object
5702 file. We must handle the special MIPS section numbers here. */
5703
b34976b6 5704bfd_boolean
9719ad41 5705_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5706 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5707 flagword *flagsp ATTRIBUTE_UNUSED,
5708 asection **secp, bfd_vma *valp)
b49e97c9
TS
5709{
5710 if (SGI_COMPAT (abfd)
5711 && (abfd->flags & DYNAMIC) != 0
5712 && strcmp (*namep, "_rld_new_interface") == 0)
5713 {
8dc1a139 5714 /* Skip IRIX5 rld entry name. */
b49e97c9 5715 *namep = NULL;
b34976b6 5716 return TRUE;
b49e97c9
TS
5717 }
5718
eedecc07
DD
5719 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5720 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5721 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5722 a magic symbol resolved by the linker, we ignore this bogus definition
5723 of _gp_disp. New ABI objects do not suffer from this problem so this
5724 is not done for them. */
5725 if (!NEWABI_P(abfd)
5726 && (sym->st_shndx == SHN_ABS)
5727 && (strcmp (*namep, "_gp_disp") == 0))
5728 {
5729 *namep = NULL;
5730 return TRUE;
5731 }
5732
b49e97c9
TS
5733 switch (sym->st_shndx)
5734 {
5735 case SHN_COMMON:
5736 /* Common symbols less than the GP size are automatically
5737 treated as SHN_MIPS_SCOMMON symbols. */
5738 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5739 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5740 || IRIX_COMPAT (abfd) == ict_irix6)
5741 break;
5742 /* Fall through. */
5743 case SHN_MIPS_SCOMMON:
5744 *secp = bfd_make_section_old_way (abfd, ".scommon");
5745 (*secp)->flags |= SEC_IS_COMMON;
5746 *valp = sym->st_size;
5747 break;
5748
5749 case SHN_MIPS_TEXT:
5750 /* This section is used in a shared object. */
5751 if (elf_tdata (abfd)->elf_text_section == NULL)
5752 {
5753 asymbol *elf_text_symbol;
5754 asection *elf_text_section;
5755 bfd_size_type amt = sizeof (asection);
5756
5757 elf_text_section = bfd_zalloc (abfd, amt);
5758 if (elf_text_section == NULL)
b34976b6 5759 return FALSE;
b49e97c9
TS
5760
5761 amt = sizeof (asymbol);
5762 elf_text_symbol = bfd_zalloc (abfd, amt);
5763 if (elf_text_symbol == NULL)
b34976b6 5764 return FALSE;
b49e97c9
TS
5765
5766 /* Initialize the section. */
5767
5768 elf_tdata (abfd)->elf_text_section = elf_text_section;
5769 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5770
5771 elf_text_section->symbol = elf_text_symbol;
5772 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5773
5774 elf_text_section->name = ".text";
5775 elf_text_section->flags = SEC_NO_FLAGS;
5776 elf_text_section->output_section = NULL;
5777 elf_text_section->owner = abfd;
5778 elf_text_symbol->name = ".text";
5779 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5780 elf_text_symbol->section = elf_text_section;
5781 }
5782 /* This code used to do *secp = bfd_und_section_ptr if
5783 info->shared. I don't know why, and that doesn't make sense,
5784 so I took it out. */
5785 *secp = elf_tdata (abfd)->elf_text_section;
5786 break;
5787
5788 case SHN_MIPS_ACOMMON:
5789 /* Fall through. XXX Can we treat this as allocated data? */
5790 case SHN_MIPS_DATA:
5791 /* This section is used in a shared object. */
5792 if (elf_tdata (abfd)->elf_data_section == NULL)
5793 {
5794 asymbol *elf_data_symbol;
5795 asection *elf_data_section;
5796 bfd_size_type amt = sizeof (asection);
5797
5798 elf_data_section = bfd_zalloc (abfd, amt);
5799 if (elf_data_section == NULL)
b34976b6 5800 return FALSE;
b49e97c9
TS
5801
5802 amt = sizeof (asymbol);
5803 elf_data_symbol = bfd_zalloc (abfd, amt);
5804 if (elf_data_symbol == NULL)
b34976b6 5805 return FALSE;
b49e97c9
TS
5806
5807 /* Initialize the section. */
5808
5809 elf_tdata (abfd)->elf_data_section = elf_data_section;
5810 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5811
5812 elf_data_section->symbol = elf_data_symbol;
5813 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5814
5815 elf_data_section->name = ".data";
5816 elf_data_section->flags = SEC_NO_FLAGS;
5817 elf_data_section->output_section = NULL;
5818 elf_data_section->owner = abfd;
5819 elf_data_symbol->name = ".data";
5820 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5821 elf_data_symbol->section = elf_data_section;
5822 }
5823 /* This code used to do *secp = bfd_und_section_ptr if
5824 info->shared. I don't know why, and that doesn't make sense,
5825 so I took it out. */
5826 *secp = elf_tdata (abfd)->elf_data_section;
5827 break;
5828
5829 case SHN_MIPS_SUNDEFINED:
5830 *secp = bfd_und_section_ptr;
5831 break;
5832 }
5833
5834 if (SGI_COMPAT (abfd)
5835 && ! info->shared
5836 && info->hash->creator == abfd->xvec
5837 && strcmp (*namep, "__rld_obj_head") == 0)
5838 {
5839 struct elf_link_hash_entry *h;
14a793b2 5840 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5841
5842 /* Mark __rld_obj_head as dynamic. */
14a793b2 5843 bh = NULL;
b49e97c9 5844 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5845 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5846 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5847 return FALSE;
14a793b2
AM
5848
5849 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5850 h->non_elf = 0;
5851 h->def_regular = 1;
b49e97c9
TS
5852 h->type = STT_OBJECT;
5853
c152c796 5854 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5855 return FALSE;
b49e97c9 5856
b34976b6 5857 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5858 }
5859
5860 /* If this is a mips16 text symbol, add 1 to the value to make it
5861 odd. This will cause something like .word SYM to come up with
5862 the right value when it is loaded into the PC. */
5863 if (sym->st_other == STO_MIPS16)
5864 ++*valp;
5865
b34976b6 5866 return TRUE;
b49e97c9
TS
5867}
5868
5869/* This hook function is called before the linker writes out a global
5870 symbol. We mark symbols as small common if appropriate. This is
5871 also where we undo the increment of the value for a mips16 symbol. */
5872
b34976b6 5873bfd_boolean
9719ad41
RS
5874_bfd_mips_elf_link_output_symbol_hook
5875 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5876 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5877 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5878{
5879 /* If we see a common symbol, which implies a relocatable link, then
5880 if a symbol was small common in an input file, mark it as small
5881 common in the output file. */
5882 if (sym->st_shndx == SHN_COMMON
5883 && strcmp (input_sec->name, ".scommon") == 0)
5884 sym->st_shndx = SHN_MIPS_SCOMMON;
5885
79cda7cf
FF
5886 if (sym->st_other == STO_MIPS16)
5887 sym->st_value &= ~1;
b49e97c9 5888
b34976b6 5889 return TRUE;
b49e97c9
TS
5890}
5891\f
5892/* Functions for the dynamic linker. */
5893
5894/* Create dynamic sections when linking against a dynamic object. */
5895
b34976b6 5896bfd_boolean
9719ad41 5897_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5898{
5899 struct elf_link_hash_entry *h;
14a793b2 5900 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5901 flagword flags;
5902 register asection *s;
5903 const char * const *namep;
0a44bf69 5904 struct mips_elf_link_hash_table *htab;
b49e97c9 5905
0a44bf69 5906 htab = mips_elf_hash_table (info);
b49e97c9
TS
5907 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5908 | SEC_LINKER_CREATED | SEC_READONLY);
5909
0a44bf69
RS
5910 /* The psABI requires a read-only .dynamic section, but the VxWorks
5911 EABI doesn't. */
5912 if (!htab->is_vxworks)
b49e97c9 5913 {
0a44bf69
RS
5914 s = bfd_get_section_by_name (abfd, ".dynamic");
5915 if (s != NULL)
5916 {
5917 if (! bfd_set_section_flags (abfd, s, flags))
5918 return FALSE;
5919 }
b49e97c9
TS
5920 }
5921
5922 /* We need to create .got section. */
f4416af6
AO
5923 if (! mips_elf_create_got_section (abfd, info, FALSE))
5924 return FALSE;
5925
0a44bf69 5926 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5927 return FALSE;
b49e97c9 5928
b49e97c9
TS
5929 /* Create .stub section. */
5930 if (bfd_get_section_by_name (abfd,
5931 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5932 {
3496cb2a
L
5933 s = bfd_make_section_with_flags (abfd,
5934 MIPS_ELF_STUB_SECTION_NAME (abfd),
5935 flags | SEC_CODE);
b49e97c9 5936 if (s == NULL
b49e97c9
TS
5937 || ! bfd_set_section_alignment (abfd, s,
5938 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5939 return FALSE;
b49e97c9
TS
5940 }
5941
5942 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5943 && !info->shared
5944 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5945 {
3496cb2a
L
5946 s = bfd_make_section_with_flags (abfd, ".rld_map",
5947 flags &~ (flagword) SEC_READONLY);
b49e97c9 5948 if (s == NULL
b49e97c9
TS
5949 || ! bfd_set_section_alignment (abfd, s,
5950 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5951 return FALSE;
b49e97c9
TS
5952 }
5953
5954 /* On IRIX5, we adjust add some additional symbols and change the
5955 alignments of several sections. There is no ABI documentation
5956 indicating that this is necessary on IRIX6, nor any evidence that
5957 the linker takes such action. */
5958 if (IRIX_COMPAT (abfd) == ict_irix5)
5959 {
5960 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5961 {
14a793b2 5962 bh = NULL;
b49e97c9 5963 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5964 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5965 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5966 return FALSE;
14a793b2
AM
5967
5968 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5969 h->non_elf = 0;
5970 h->def_regular = 1;
b49e97c9
TS
5971 h->type = STT_SECTION;
5972
c152c796 5973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5974 return FALSE;
b49e97c9
TS
5975 }
5976
5977 /* We need to create a .compact_rel section. */
5978 if (SGI_COMPAT (abfd))
5979 {
5980 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5981 return FALSE;
b49e97c9
TS
5982 }
5983
44c410de 5984 /* Change alignments of some sections. */
b49e97c9
TS
5985 s = bfd_get_section_by_name (abfd, ".hash");
5986 if (s != NULL)
d80dcc6a 5987 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5988 s = bfd_get_section_by_name (abfd, ".dynsym");
5989 if (s != NULL)
d80dcc6a 5990 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5991 s = bfd_get_section_by_name (abfd, ".dynstr");
5992 if (s != NULL)
d80dcc6a 5993 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5994 s = bfd_get_section_by_name (abfd, ".reginfo");
5995 if (s != NULL)
d80dcc6a 5996 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5997 s = bfd_get_section_by_name (abfd, ".dynamic");
5998 if (s != NULL)
d80dcc6a 5999 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6000 }
6001
6002 if (!info->shared)
6003 {
14a793b2
AM
6004 const char *name;
6005
6006 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6007 bh = NULL;
6008 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6009 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6010 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6011 return FALSE;
14a793b2
AM
6012
6013 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6014 h->non_elf = 0;
6015 h->def_regular = 1;
b49e97c9
TS
6016 h->type = STT_SECTION;
6017
c152c796 6018 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6019 return FALSE;
b49e97c9
TS
6020
6021 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6022 {
6023 /* __rld_map is a four byte word located in the .data section
6024 and is filled in by the rtld to contain a pointer to
6025 the _r_debug structure. Its symbol value will be set in
6026 _bfd_mips_elf_finish_dynamic_symbol. */
6027 s = bfd_get_section_by_name (abfd, ".rld_map");
6028 BFD_ASSERT (s != NULL);
6029
14a793b2
AM
6030 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6031 bh = NULL;
6032 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6033 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6034 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6035 return FALSE;
14a793b2
AM
6036
6037 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6038 h->non_elf = 0;
6039 h->def_regular = 1;
b49e97c9
TS
6040 h->type = STT_OBJECT;
6041
c152c796 6042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6043 return FALSE;
b49e97c9
TS
6044 }
6045 }
6046
0a44bf69
RS
6047 if (htab->is_vxworks)
6048 {
6049 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6050 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6051 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6052 return FALSE;
6053
6054 /* Cache the sections created above. */
6055 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6056 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6057 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6058 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6059 if (!htab->sdynbss
6060 || (!htab->srelbss && !info->shared)
6061 || !htab->srelplt
6062 || !htab->splt)
6063 abort ();
6064
6065 /* Do the usual VxWorks handling. */
6066 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6067 return FALSE;
6068
6069 /* Work out the PLT sizes. */
6070 if (info->shared)
6071 {
6072 htab->plt_header_size
6073 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6074 htab->plt_entry_size
6075 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6076 }
6077 else
6078 {
6079 htab->plt_header_size
6080 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6081 htab->plt_entry_size
6082 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6083 }
6084 }
6085
b34976b6 6086 return TRUE;
b49e97c9
TS
6087}
6088\f
6089/* Look through the relocs for a section during the first phase, and
6090 allocate space in the global offset table. */
6091
b34976b6 6092bfd_boolean
9719ad41
RS
6093_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6094 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6095{
6096 const char *name;
6097 bfd *dynobj;
6098 Elf_Internal_Shdr *symtab_hdr;
6099 struct elf_link_hash_entry **sym_hashes;
6100 struct mips_got_info *g;
6101 size_t extsymoff;
6102 const Elf_Internal_Rela *rel;
6103 const Elf_Internal_Rela *rel_end;
6104 asection *sgot;
6105 asection *sreloc;
9c5bfbb7 6106 const struct elf_backend_data *bed;
0a44bf69 6107 struct mips_elf_link_hash_table *htab;
b49e97c9 6108
1049f94e 6109 if (info->relocatable)
b34976b6 6110 return TRUE;
b49e97c9 6111
0a44bf69 6112 htab = mips_elf_hash_table (info);
b49e97c9
TS
6113 dynobj = elf_hash_table (info)->dynobj;
6114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6115 sym_hashes = elf_sym_hashes (abfd);
6116 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6117
6118 /* Check for the mips16 stub sections. */
6119
6120 name = bfd_get_section_name (abfd, sec);
6121 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6122 {
6123 unsigned long r_symndx;
6124
6125 /* Look at the relocation information to figure out which symbol
6126 this is for. */
6127
6128 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6129
6130 if (r_symndx < extsymoff
6131 || sym_hashes[r_symndx - extsymoff] == NULL)
6132 {
6133 asection *o;
6134
6135 /* This stub is for a local symbol. This stub will only be
6136 needed if there is some relocation in this BFD, other
6137 than a 16 bit function call, which refers to this symbol. */
6138 for (o = abfd->sections; o != NULL; o = o->next)
6139 {
6140 Elf_Internal_Rela *sec_relocs;
6141 const Elf_Internal_Rela *r, *rend;
6142
6143 /* We can ignore stub sections when looking for relocs. */
6144 if ((o->flags & SEC_RELOC) == 0
6145 || o->reloc_count == 0
6146 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6147 sizeof FN_STUB - 1) == 0
6148 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6149 sizeof CALL_STUB - 1) == 0
6150 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6151 sizeof CALL_FP_STUB - 1) == 0)
6152 continue;
6153
45d6a902 6154 sec_relocs
9719ad41 6155 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6156 info->keep_memory);
b49e97c9 6157 if (sec_relocs == NULL)
b34976b6 6158 return FALSE;
b49e97c9
TS
6159
6160 rend = sec_relocs + o->reloc_count;
6161 for (r = sec_relocs; r < rend; r++)
6162 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6163 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6164 break;
6165
6cdc0ccc 6166 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6167 free (sec_relocs);
6168
6169 if (r < rend)
6170 break;
6171 }
6172
6173 if (o == NULL)
6174 {
6175 /* There is no non-call reloc for this stub, so we do
6176 not need it. Since this function is called before
6177 the linker maps input sections to output sections, we
6178 can easily discard it by setting the SEC_EXCLUDE
6179 flag. */
6180 sec->flags |= SEC_EXCLUDE;
b34976b6 6181 return TRUE;
b49e97c9
TS
6182 }
6183
6184 /* Record this stub in an array of local symbol stubs for
6185 this BFD. */
6186 if (elf_tdata (abfd)->local_stubs == NULL)
6187 {
6188 unsigned long symcount;
6189 asection **n;
6190 bfd_size_type amt;
6191
6192 if (elf_bad_symtab (abfd))
6193 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6194 else
6195 symcount = symtab_hdr->sh_info;
6196 amt = symcount * sizeof (asection *);
9719ad41 6197 n = bfd_zalloc (abfd, amt);
b49e97c9 6198 if (n == NULL)
b34976b6 6199 return FALSE;
b49e97c9
TS
6200 elf_tdata (abfd)->local_stubs = n;
6201 }
6202
6203 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6204
6205 /* We don't need to set mips16_stubs_seen in this case.
6206 That flag is used to see whether we need to look through
6207 the global symbol table for stubs. We don't need to set
6208 it here, because we just have a local stub. */
6209 }
6210 else
6211 {
6212 struct mips_elf_link_hash_entry *h;
6213
6214 h = ((struct mips_elf_link_hash_entry *)
6215 sym_hashes[r_symndx - extsymoff]);
6216
973a3492
L
6217 while (h->root.root.type == bfd_link_hash_indirect
6218 || h->root.root.type == bfd_link_hash_warning)
6219 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6220
b49e97c9
TS
6221 /* H is the symbol this stub is for. */
6222
6223 h->fn_stub = sec;
b34976b6 6224 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6225 }
6226 }
6227 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6228 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6229 {
6230 unsigned long r_symndx;
6231 struct mips_elf_link_hash_entry *h;
6232 asection **loc;
6233
6234 /* Look at the relocation information to figure out which symbol
6235 this is for. */
6236
6237 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6238
6239 if (r_symndx < extsymoff
6240 || sym_hashes[r_symndx - extsymoff] == NULL)
6241 {
6242 /* This stub was actually built for a static symbol defined
6243 in the same file. We assume that all static symbols in
6244 mips16 code are themselves mips16, so we can simply
6245 discard this stub. Since this function is called before
6246 the linker maps input sections to output sections, we can
6247 easily discard it by setting the SEC_EXCLUDE flag. */
6248 sec->flags |= SEC_EXCLUDE;
b34976b6 6249 return TRUE;
b49e97c9
TS
6250 }
6251
6252 h = ((struct mips_elf_link_hash_entry *)
6253 sym_hashes[r_symndx - extsymoff]);
6254
6255 /* H is the symbol this stub is for. */
6256
6257 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6258 loc = &h->call_fp_stub;
6259 else
6260 loc = &h->call_stub;
6261
6262 /* If we already have an appropriate stub for this function, we
6263 don't need another one, so we can discard this one. Since
6264 this function is called before the linker maps input sections
6265 to output sections, we can easily discard it by setting the
6266 SEC_EXCLUDE flag. We can also discard this section if we
6267 happen to already know that this is a mips16 function; it is
6268 not necessary to check this here, as it is checked later, but
6269 it is slightly faster to check now. */
6270 if (*loc != NULL || h->root.other == STO_MIPS16)
6271 {
6272 sec->flags |= SEC_EXCLUDE;
b34976b6 6273 return TRUE;
b49e97c9
TS
6274 }
6275
6276 *loc = sec;
b34976b6 6277 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6278 }
6279
6280 if (dynobj == NULL)
6281 {
6282 sgot = NULL;
6283 g = NULL;
6284 }
6285 else
6286 {
f4416af6 6287 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6288 if (sgot == NULL)
6289 g = NULL;
6290 else
6291 {
f0abc2a1
AM
6292 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6293 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6294 BFD_ASSERT (g != NULL);
6295 }
6296 }
6297
6298 sreloc = NULL;
6299 bed = get_elf_backend_data (abfd);
6300 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6301 for (rel = relocs; rel < rel_end; ++rel)
6302 {
6303 unsigned long r_symndx;
6304 unsigned int r_type;
6305 struct elf_link_hash_entry *h;
6306
6307 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6308 r_type = ELF_R_TYPE (abfd, rel->r_info);
6309
6310 if (r_symndx < extsymoff)
6311 h = NULL;
6312 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6313 {
6314 (*_bfd_error_handler)
d003868e
AM
6315 (_("%B: Malformed reloc detected for section %s"),
6316 abfd, name);
b49e97c9 6317 bfd_set_error (bfd_error_bad_value);
b34976b6 6318 return FALSE;
b49e97c9
TS
6319 }
6320 else
6321 {
6322 h = sym_hashes[r_symndx - extsymoff];
6323
6324 /* This may be an indirect symbol created because of a version. */
6325 if (h != NULL)
6326 {
6327 while (h->root.type == bfd_link_hash_indirect)
6328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6329 }
6330 }
6331
6332 /* Some relocs require a global offset table. */
6333 if (dynobj == NULL || sgot == NULL)
6334 {
6335 switch (r_type)
6336 {
6337 case R_MIPS_GOT16:
6338 case R_MIPS_CALL16:
6339 case R_MIPS_CALL_HI16:
6340 case R_MIPS_CALL_LO16:
6341 case R_MIPS_GOT_HI16:
6342 case R_MIPS_GOT_LO16:
6343 case R_MIPS_GOT_PAGE:
6344 case R_MIPS_GOT_OFST:
6345 case R_MIPS_GOT_DISP:
86324f90 6346 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6347 case R_MIPS_TLS_GD:
6348 case R_MIPS_TLS_LDM:
b49e97c9
TS
6349 if (dynobj == NULL)
6350 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6351 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6352 return FALSE;
b49e97c9 6353 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6354 if (htab->is_vxworks && !info->shared)
6355 {
6356 (*_bfd_error_handler)
6357 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6358 abfd, (unsigned long) rel->r_offset);
6359 bfd_set_error (bfd_error_bad_value);
6360 return FALSE;
6361 }
b49e97c9
TS
6362 break;
6363
6364 case R_MIPS_32:
6365 case R_MIPS_REL32:
6366 case R_MIPS_64:
0a44bf69
RS
6367 /* In VxWorks executables, references to external symbols
6368 are handled using copy relocs or PLT stubs, so there's
6369 no need to add a dynamic relocation here. */
b49e97c9 6370 if (dynobj == NULL
0a44bf69 6371 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6372 && (sec->flags & SEC_ALLOC) != 0)
6373 elf_hash_table (info)->dynobj = dynobj = abfd;
6374 break;
6375
6376 default:
6377 break;
6378 }
6379 }
6380
0a44bf69
RS
6381 if (h)
6382 {
6383 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6384
6385 /* Relocations against the special VxWorks __GOTT_BASE__ and
6386 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6387 room for them in .rela.dyn. */
6388 if (is_gott_symbol (info, h))
6389 {
6390 if (sreloc == NULL)
6391 {
6392 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6393 if (sreloc == NULL)
6394 return FALSE;
6395 }
6396 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6397 }
6398 }
6399 else if (r_type == R_MIPS_CALL_LO16
6400 || r_type == R_MIPS_GOT_LO16
6401 || r_type == R_MIPS_GOT_DISP
6402 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6403 {
6404 /* We may need a local GOT entry for this relocation. We
6405 don't count R_MIPS_GOT_PAGE because we can estimate the
6406 maximum number of pages needed by looking at the size of
6407 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6408 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6409 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6410 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6411 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6412 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6413 rel->r_addend, g, 0))
f4416af6 6414 return FALSE;
b49e97c9
TS
6415 }
6416
6417 switch (r_type)
6418 {
6419 case R_MIPS_CALL16:
6420 if (h == NULL)
6421 {
6422 (*_bfd_error_handler)
d003868e
AM
6423 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6424 abfd, (unsigned long) rel->r_offset);
b49e97c9 6425 bfd_set_error (bfd_error_bad_value);
b34976b6 6426 return FALSE;
b49e97c9
TS
6427 }
6428 /* Fall through. */
6429
6430 case R_MIPS_CALL_HI16:
6431 case R_MIPS_CALL_LO16:
6432 if (h != NULL)
6433 {
0a44bf69
RS
6434 /* VxWorks call relocations point the function's .got.plt
6435 entry, which will be allocated by adjust_dynamic_symbol.
6436 Otherwise, this symbol requires a global GOT entry. */
6437 if (!htab->is_vxworks
6438 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6439 return FALSE;
b49e97c9
TS
6440
6441 /* We need a stub, not a plt entry for the undefined
6442 function. But we record it as if it needs plt. See
c152c796 6443 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6444 h->needs_plt = 1;
b49e97c9
TS
6445 h->type = STT_FUNC;
6446 }
6447 break;
6448
0fdc1bf1
AO
6449 case R_MIPS_GOT_PAGE:
6450 /* If this is a global, overridable symbol, GOT_PAGE will
6451 decay to GOT_DISP, so we'll need a GOT entry for it. */
6452 if (h == NULL)
6453 break;
6454 else
6455 {
6456 struct mips_elf_link_hash_entry *hmips =
6457 (struct mips_elf_link_hash_entry *) h;
143d77c5 6458
0fdc1bf1
AO
6459 while (hmips->root.root.type == bfd_link_hash_indirect
6460 || hmips->root.root.type == bfd_link_hash_warning)
6461 hmips = (struct mips_elf_link_hash_entry *)
6462 hmips->root.root.u.i.link;
143d77c5 6463
f5385ebf 6464 if (hmips->root.def_regular
0fdc1bf1 6465 && ! (info->shared && ! info->symbolic
f5385ebf 6466 && ! hmips->root.forced_local))
0fdc1bf1
AO
6467 break;
6468 }
6469 /* Fall through. */
6470
b49e97c9
TS
6471 case R_MIPS_GOT16:
6472 case R_MIPS_GOT_HI16:
6473 case R_MIPS_GOT_LO16:
6474 case R_MIPS_GOT_DISP:
0f20cc35 6475 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6476 return FALSE;
b49e97c9
TS
6477 break;
6478
0f20cc35
DJ
6479 case R_MIPS_TLS_GOTTPREL:
6480 if (info->shared)
6481 info->flags |= DF_STATIC_TLS;
6482 /* Fall through */
6483
6484 case R_MIPS_TLS_LDM:
6485 if (r_type == R_MIPS_TLS_LDM)
6486 {
6487 r_symndx = 0;
6488 h = NULL;
6489 }
6490 /* Fall through */
6491
6492 case R_MIPS_TLS_GD:
6493 /* This symbol requires a global offset table entry, or two
6494 for TLS GD relocations. */
6495 {
6496 unsigned char flag = (r_type == R_MIPS_TLS_GD
6497 ? GOT_TLS_GD
6498 : r_type == R_MIPS_TLS_LDM
6499 ? GOT_TLS_LDM
6500 : GOT_TLS_IE);
6501 if (h != NULL)
6502 {
6503 struct mips_elf_link_hash_entry *hmips =
6504 (struct mips_elf_link_hash_entry *) h;
6505 hmips->tls_type |= flag;
6506
6507 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6508 return FALSE;
6509 }
6510 else
6511 {
6512 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6513
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, flag))
6516 return FALSE;
6517 }
6518 }
6519 break;
6520
b49e97c9
TS
6521 case R_MIPS_32:
6522 case R_MIPS_REL32:
6523 case R_MIPS_64:
0a44bf69
RS
6524 /* In VxWorks executables, references to external symbols
6525 are handled using copy relocs or PLT stubs, so there's
6526 no need to add a .rela.dyn entry for this relocation. */
6527 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6528 && (sec->flags & SEC_ALLOC) != 0)
6529 {
6530 if (sreloc == NULL)
6531 {
0a44bf69 6532 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6533 if (sreloc == NULL)
f4416af6 6534 return FALSE;
b49e97c9 6535 }
b49e97c9 6536 if (info->shared)
82f0cfbd
EC
6537 {
6538 /* When creating a shared object, we must copy these
6539 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6540 relocs. Make room for this reloc in .rel(a).dyn. */
6541 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6542 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6543 /* We tell the dynamic linker that there are
6544 relocations against the text segment. */
6545 info->flags |= DF_TEXTREL;
6546 }
b49e97c9
TS
6547 else
6548 {
6549 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6550
b49e97c9
TS
6551 /* We only need to copy this reloc if the symbol is
6552 defined in a dynamic object. */
6553 hmips = (struct mips_elf_link_hash_entry *) h;
6554 ++hmips->possibly_dynamic_relocs;
943284cc 6555 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6556 /* We need it to tell the dynamic linker if there
6557 are relocations against the text segment. */
6558 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6559 }
6560
6561 /* Even though we don't directly need a GOT entry for
6562 this symbol, a symbol must have a dynamic symbol
6563 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6564 dynamic relocations against it. This does not apply
6565 to VxWorks, which does not have the usual coupling
6566 between global GOT entries and .dynsym entries. */
6567 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6568 {
6569 if (dynobj == NULL)
6570 elf_hash_table (info)->dynobj = dynobj = abfd;
6571 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6572 return FALSE;
6573 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6574 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6575 return FALSE;
6576 }
b49e97c9
TS
6577 }
6578
6579 if (SGI_COMPAT (abfd))
6580 mips_elf_hash_table (info)->compact_rel_size +=
6581 sizeof (Elf32_External_crinfo);
6582 break;
6583
0a44bf69
RS
6584 case R_MIPS_PC16:
6585 if (h)
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6587 break;
6588
b49e97c9 6589 case R_MIPS_26:
0a44bf69
RS
6590 if (h)
6591 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6592 /* Fall through. */
6593
b49e97c9
TS
6594 case R_MIPS_GPREL16:
6595 case R_MIPS_LITERAL:
6596 case R_MIPS_GPREL32:
6597 if (SGI_COMPAT (abfd))
6598 mips_elf_hash_table (info)->compact_rel_size +=
6599 sizeof (Elf32_External_crinfo);
6600 break;
6601
6602 /* This relocation describes the C++ object vtable hierarchy.
6603 Reconstruct it for later use during GC. */
6604 case R_MIPS_GNU_VTINHERIT:
c152c796 6605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6606 return FALSE;
b49e97c9
TS
6607 break;
6608
6609 /* This relocation describes which C++ vtable entries are actually
6610 used. Record for later use during GC. */
6611 case R_MIPS_GNU_VTENTRY:
c152c796 6612 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6613 return FALSE;
b49e97c9
TS
6614 break;
6615
6616 default:
6617 break;
6618 }
6619
6620 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6621 related to taking the function's address. This doesn't apply to
6622 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6623 a normal .got entry. */
6624 if (!htab->is_vxworks && h != NULL)
6625 switch (r_type)
6626 {
6627 default:
6628 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6629 break;
6630 case R_MIPS_CALL16:
6631 case R_MIPS_CALL_HI16:
6632 case R_MIPS_CALL_LO16:
6633 case R_MIPS_JALR:
6634 break;
6635 }
b49e97c9
TS
6636
6637 /* If this reloc is not a 16 bit call, and it has a global
6638 symbol, then we will need the fn_stub if there is one.
6639 References from a stub section do not count. */
6640 if (h != NULL
6641 && r_type != R_MIPS16_26
6642 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6643 sizeof FN_STUB - 1) != 0
6644 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6645 sizeof CALL_STUB - 1) != 0
6646 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6647 sizeof CALL_FP_STUB - 1) != 0)
6648 {
6649 struct mips_elf_link_hash_entry *mh;
6650
6651 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6652 mh->need_fn_stub = TRUE;
b49e97c9
TS
6653 }
6654 }
6655
b34976b6 6656 return TRUE;
b49e97c9
TS
6657}
6658\f
d0647110 6659bfd_boolean
9719ad41
RS
6660_bfd_mips_relax_section (bfd *abfd, asection *sec,
6661 struct bfd_link_info *link_info,
6662 bfd_boolean *again)
d0647110
AO
6663{
6664 Elf_Internal_Rela *internal_relocs;
6665 Elf_Internal_Rela *irel, *irelend;
6666 Elf_Internal_Shdr *symtab_hdr;
6667 bfd_byte *contents = NULL;
d0647110
AO
6668 size_t extsymoff;
6669 bfd_boolean changed_contents = FALSE;
6670 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6671 Elf_Internal_Sym *isymbuf = NULL;
6672
6673 /* We are not currently changing any sizes, so only one pass. */
6674 *again = FALSE;
6675
1049f94e 6676 if (link_info->relocatable)
d0647110
AO
6677 return TRUE;
6678
9719ad41 6679 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6680 link_info->keep_memory);
d0647110
AO
6681 if (internal_relocs == NULL)
6682 return TRUE;
6683
6684 irelend = internal_relocs + sec->reloc_count
6685 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6686 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6687 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6688
6689 for (irel = internal_relocs; irel < irelend; irel++)
6690 {
6691 bfd_vma symval;
6692 bfd_signed_vma sym_offset;
6693 unsigned int r_type;
6694 unsigned long r_symndx;
6695 asection *sym_sec;
6696 unsigned long instruction;
6697
6698 /* Turn jalr into bgezal, and jr into beq, if they're marked
6699 with a JALR relocation, that indicate where they jump to.
6700 This saves some pipeline bubbles. */
6701 r_type = ELF_R_TYPE (abfd, irel->r_info);
6702 if (r_type != R_MIPS_JALR)
6703 continue;
6704
6705 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6706 /* Compute the address of the jump target. */
6707 if (r_symndx >= extsymoff)
6708 {
6709 struct mips_elf_link_hash_entry *h
6710 = ((struct mips_elf_link_hash_entry *)
6711 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6712
6713 while (h->root.root.type == bfd_link_hash_indirect
6714 || h->root.root.type == bfd_link_hash_warning)
6715 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6716
d0647110
AO
6717 /* If a symbol is undefined, or if it may be overridden,
6718 skip it. */
6719 if (! ((h->root.root.type == bfd_link_hash_defined
6720 || h->root.root.type == bfd_link_hash_defweak)
6721 && h->root.root.u.def.section)
6722 || (link_info->shared && ! link_info->symbolic
f5385ebf 6723 && !h->root.forced_local))
d0647110
AO
6724 continue;
6725
6726 sym_sec = h->root.root.u.def.section;
6727 if (sym_sec->output_section)
6728 symval = (h->root.root.u.def.value
6729 + sym_sec->output_section->vma
6730 + sym_sec->output_offset);
6731 else
6732 symval = h->root.root.u.def.value;
6733 }
6734 else
6735 {
6736 Elf_Internal_Sym *isym;
6737
6738 /* Read this BFD's symbols if we haven't done so already. */
6739 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6740 {
6741 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6742 if (isymbuf == NULL)
6743 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6744 symtab_hdr->sh_info, 0,
6745 NULL, NULL, NULL);
6746 if (isymbuf == NULL)
6747 goto relax_return;
6748 }
6749
6750 isym = isymbuf + r_symndx;
6751 if (isym->st_shndx == SHN_UNDEF)
6752 continue;
6753 else if (isym->st_shndx == SHN_ABS)
6754 sym_sec = bfd_abs_section_ptr;
6755 else if (isym->st_shndx == SHN_COMMON)
6756 sym_sec = bfd_com_section_ptr;
6757 else
6758 sym_sec
6759 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6760 symval = isym->st_value
6761 + sym_sec->output_section->vma
6762 + sym_sec->output_offset;
6763 }
6764
6765 /* Compute branch offset, from delay slot of the jump to the
6766 branch target. */
6767 sym_offset = (symval + irel->r_addend)
6768 - (sec_start + irel->r_offset + 4);
6769
6770 /* Branch offset must be properly aligned. */
6771 if ((sym_offset & 3) != 0)
6772 continue;
6773
6774 sym_offset >>= 2;
6775
6776 /* Check that it's in range. */
6777 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6778 continue;
143d77c5 6779
d0647110
AO
6780 /* Get the section contents if we haven't done so already. */
6781 if (contents == NULL)
6782 {
6783 /* Get cached copy if it exists. */
6784 if (elf_section_data (sec)->this_hdr.contents != NULL)
6785 contents = elf_section_data (sec)->this_hdr.contents;
6786 else
6787 {
eea6121a 6788 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6789 goto relax_return;
6790 }
6791 }
6792
6793 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6794
6795 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6796 if ((instruction & 0xfc1fffff) == 0x0000f809)
6797 instruction = 0x04110000;
6798 /* If it was jr <reg>, turn it into b <target>. */
6799 else if ((instruction & 0xfc1fffff) == 0x00000008)
6800 instruction = 0x10000000;
6801 else
6802 continue;
6803
6804 instruction |= (sym_offset & 0xffff);
6805 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6806 changed_contents = TRUE;
6807 }
6808
6809 if (contents != NULL
6810 && elf_section_data (sec)->this_hdr.contents != contents)
6811 {
6812 if (!changed_contents && !link_info->keep_memory)
6813 free (contents);
6814 else
6815 {
6816 /* Cache the section contents for elf_link_input_bfd. */
6817 elf_section_data (sec)->this_hdr.contents = contents;
6818 }
6819 }
6820 return TRUE;
6821
143d77c5 6822 relax_return:
eea6121a
AM
6823 if (contents != NULL
6824 && elf_section_data (sec)->this_hdr.contents != contents)
6825 free (contents);
d0647110
AO
6826 return FALSE;
6827}
6828\f
b49e97c9
TS
6829/* Adjust a symbol defined by a dynamic object and referenced by a
6830 regular object. The current definition is in some section of the
6831 dynamic object, but we're not including those sections. We have to
6832 change the definition to something the rest of the link can
6833 understand. */
6834
b34976b6 6835bfd_boolean
9719ad41
RS
6836_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6837 struct elf_link_hash_entry *h)
b49e97c9
TS
6838{
6839 bfd *dynobj;
6840 struct mips_elf_link_hash_entry *hmips;
6841 asection *s;
5108fc1b 6842 struct mips_elf_link_hash_table *htab;
b49e97c9 6843
5108fc1b 6844 htab = mips_elf_hash_table (info);
b49e97c9
TS
6845 dynobj = elf_hash_table (info)->dynobj;
6846
6847 /* Make sure we know what is going on here. */
6848 BFD_ASSERT (dynobj != NULL
f5385ebf 6849 && (h->needs_plt
f6e332e6 6850 || h->u.weakdef != NULL
f5385ebf
AM
6851 || (h->def_dynamic
6852 && h->ref_regular
6853 && !h->def_regular)));
b49e97c9
TS
6854
6855 /* If this symbol is defined in a dynamic object, we need to copy
6856 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6857 file. */
6858 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6859 if (! info->relocatable
b49e97c9
TS
6860 && hmips->possibly_dynamic_relocs != 0
6861 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6862 || !h->def_regular))
b49e97c9 6863 {
0a44bf69
RS
6864 mips_elf_allocate_dynamic_relocations
6865 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6866 if (hmips->readonly_reloc)
b49e97c9
TS
6867 /* We tell the dynamic linker that there are relocations
6868 against the text segment. */
6869 info->flags |= DF_TEXTREL;
6870 }
6871
6872 /* For a function, create a stub, if allowed. */
6873 if (! hmips->no_fn_stub
f5385ebf 6874 && h->needs_plt)
b49e97c9
TS
6875 {
6876 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6877 return TRUE;
b49e97c9
TS
6878
6879 /* If this symbol is not defined in a regular file, then set
6880 the symbol to the stub location. This is required to make
6881 function pointers compare as equal between the normal
6882 executable and the shared library. */
f5385ebf 6883 if (!h->def_regular)
b49e97c9
TS
6884 {
6885 /* We need .stub section. */
6886 s = bfd_get_section_by_name (dynobj,
6887 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6888 BFD_ASSERT (s != NULL);
6889
6890 h->root.u.def.section = s;
eea6121a 6891 h->root.u.def.value = s->size;
b49e97c9
TS
6892
6893 /* XXX Write this stub address somewhere. */
eea6121a 6894 h->plt.offset = s->size;
b49e97c9
TS
6895
6896 /* Make room for this stub code. */
5108fc1b 6897 s->size += htab->function_stub_size;
b49e97c9
TS
6898
6899 /* The last half word of the stub will be filled with the index
6900 of this symbol in .dynsym section. */
b34976b6 6901 return TRUE;
b49e97c9
TS
6902 }
6903 }
6904 else if ((h->type == STT_FUNC)
f5385ebf 6905 && !h->needs_plt)
b49e97c9
TS
6906 {
6907 /* This will set the entry for this symbol in the GOT to 0, and
6908 the dynamic linker will take care of this. */
6909 h->root.u.def.value = 0;
b34976b6 6910 return TRUE;
b49e97c9
TS
6911 }
6912
6913 /* If this is a weak symbol, and there is a real definition, the
6914 processor independent code will have arranged for us to see the
6915 real definition first, and we can just use the same value. */
f6e332e6 6916 if (h->u.weakdef != NULL)
b49e97c9 6917 {
f6e332e6
AM
6918 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6919 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6920 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6921 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6922 return TRUE;
b49e97c9
TS
6923 }
6924
6925 /* This is a reference to a symbol defined by a dynamic object which
6926 is not a function. */
6927
b34976b6 6928 return TRUE;
b49e97c9 6929}
0a44bf69
RS
6930
6931/* Likewise, for VxWorks. */
6932
6933bfd_boolean
6934_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6935 struct elf_link_hash_entry *h)
6936{
6937 bfd *dynobj;
6938 struct mips_elf_link_hash_entry *hmips;
6939 struct mips_elf_link_hash_table *htab;
6940 unsigned int power_of_two;
6941
6942 htab = mips_elf_hash_table (info);
6943 dynobj = elf_hash_table (info)->dynobj;
6944 hmips = (struct mips_elf_link_hash_entry *) h;
6945
6946 /* Make sure we know what is going on here. */
6947 BFD_ASSERT (dynobj != NULL
6948 && (h->needs_plt
6949 || h->needs_copy
6950 || h->u.weakdef != NULL
6951 || (h->def_dynamic
6952 && h->ref_regular
6953 && !h->def_regular)));
6954
6955 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6956 either (a) we want to branch to the symbol or (b) we're linking an
6957 executable that needs a canonical function address. In the latter
6958 case, the canonical address will be the address of the executable's
6959 load stub. */
6960 if ((hmips->is_branch_target
6961 || (!info->shared
6962 && h->type == STT_FUNC
6963 && hmips->is_relocation_target))
6964 && h->def_dynamic
6965 && h->ref_regular
6966 && !h->def_regular
6967 && !h->forced_local)
6968 h->needs_plt = 1;
6969
6970 /* Locally-binding symbols do not need a PLT stub; we can refer to
6971 the functions directly. */
6972 else if (h->needs_plt
6973 && (SYMBOL_CALLS_LOCAL (info, h)
6974 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6975 && h->root.type == bfd_link_hash_undefweak)))
6976 {
6977 h->needs_plt = 0;
6978 return TRUE;
6979 }
6980
6981 if (h->needs_plt)
6982 {
6983 /* If this is the first symbol to need a PLT entry, allocate room
6984 for the header, and for the header's .rela.plt.unloaded entries. */
6985 if (htab->splt->size == 0)
6986 {
6987 htab->splt->size += htab->plt_header_size;
6988 if (!info->shared)
6989 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6990 }
6991
6992 /* Assign the next .plt entry to this symbol. */
6993 h->plt.offset = htab->splt->size;
6994 htab->splt->size += htab->plt_entry_size;
6995
6996 /* If the output file has no definition of the symbol, set the
6997 symbol's value to the address of the stub. For executables,
6998 point at the PLT load stub rather than the lazy resolution stub;
6999 this stub will become the canonical function address. */
7000 if (!h->def_regular)
7001 {
7002 h->root.u.def.section = htab->splt;
7003 h->root.u.def.value = h->plt.offset;
7004 if (!info->shared)
7005 h->root.u.def.value += 8;
7006 }
7007
7008 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7009 htab->sgotplt->size += 4;
7010 htab->srelplt->size += sizeof (Elf32_External_Rela);
7011
7012 /* Make room for the .rela.plt.unloaded relocations. */
7013 if (!info->shared)
7014 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7015
7016 return TRUE;
7017 }
7018
7019 /* If a function symbol is defined by a dynamic object, and we do not
7020 need a PLT stub for it, the symbol's value should be zero. */
7021 if (h->type == STT_FUNC
7022 && h->def_dynamic
7023 && h->ref_regular
7024 && !h->def_regular)
7025 {
7026 h->root.u.def.value = 0;
7027 return TRUE;
7028 }
7029
7030 /* If this is a weak symbol, and there is a real definition, the
7031 processor independent code will have arranged for us to see the
7032 real definition first, and we can just use the same value. */
7033 if (h->u.weakdef != NULL)
7034 {
7035 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7036 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7037 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7038 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7039 return TRUE;
7040 }
7041
7042 /* This is a reference to a symbol defined by a dynamic object which
7043 is not a function. */
7044 if (info->shared)
7045 return TRUE;
7046
7047 /* We must allocate the symbol in our .dynbss section, which will
7048 become part of the .bss section of the executable. There will be
7049 an entry for this symbol in the .dynsym section. The dynamic
7050 object will contain position independent code, so all references
7051 from the dynamic object to this symbol will go through the global
7052 offset table. The dynamic linker will use the .dynsym entry to
7053 determine the address it must put in the global offset table, so
7054 both the dynamic object and the regular object will refer to the
7055 same memory location for the variable. */
7056
7057 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7058 {
7059 htab->srelbss->size += sizeof (Elf32_External_Rela);
7060 h->needs_copy = 1;
7061 }
7062
7063 /* We need to figure out the alignment required for this symbol. */
7064 power_of_two = bfd_log2 (h->size);
7065 if (power_of_two > 4)
7066 power_of_two = 4;
7067
7068 /* Apply the required alignment. */
7069 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7070 (bfd_size_type) 1 << power_of_two);
7071 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7072 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7073 return FALSE;
7074
7075 /* Define the symbol as being at this point in the section. */
7076 h->root.u.def.section = htab->sdynbss;
7077 h->root.u.def.value = htab->sdynbss->size;
7078
7079 /* Increment the section size to make room for the symbol. */
7080 htab->sdynbss->size += h->size;
7081
7082 return TRUE;
7083}
b49e97c9 7084\f
5108fc1b
RS
7085/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7086 The number might be exact or a worst-case estimate, depending on how
7087 much information is available to elf_backend_omit_section_dynsym at
7088 the current linking stage. */
7089
7090static bfd_size_type
7091count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7092{
7093 bfd_size_type count;
7094
7095 count = 0;
7096 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7097 {
7098 asection *p;
7099 const struct elf_backend_data *bed;
7100
7101 bed = get_elf_backend_data (output_bfd);
7102 for (p = output_bfd->sections; p ; p = p->next)
7103 if ((p->flags & SEC_EXCLUDE) == 0
7104 && (p->flags & SEC_ALLOC) != 0
7105 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7106 ++count;
7107 }
7108 return count;
7109}
7110
b49e97c9
TS
7111/* This function is called after all the input files have been read,
7112 and the input sections have been assigned to output sections. We
7113 check for any mips16 stub sections that we can discard. */
7114
b34976b6 7115bfd_boolean
9719ad41
RS
7116_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7117 struct bfd_link_info *info)
b49e97c9
TS
7118{
7119 asection *ri;
7120
f4416af6
AO
7121 bfd *dynobj;
7122 asection *s;
7123 struct mips_got_info *g;
7124 int i;
7125 bfd_size_type loadable_size = 0;
7126 bfd_size_type local_gotno;
5108fc1b 7127 bfd_size_type dynsymcount;
f4416af6 7128 bfd *sub;
0f20cc35 7129 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7130 struct mips_elf_link_hash_table *htab;
7131
7132 htab = mips_elf_hash_table (info);
f4416af6 7133
b49e97c9
TS
7134 /* The .reginfo section has a fixed size. */
7135 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7136 if (ri != NULL)
9719ad41 7137 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7138
1049f94e 7139 if (! (info->relocatable
f4416af6
AO
7140 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7141 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7142 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7143
7144 dynobj = elf_hash_table (info)->dynobj;
7145 if (dynobj == NULL)
7146 /* Relocatable links don't have it. */
7147 return TRUE;
143d77c5 7148
f4416af6
AO
7149 g = mips_elf_got_info (dynobj, &s);
7150 if (s == NULL)
b34976b6 7151 return TRUE;
b49e97c9 7152
f4416af6
AO
7153 /* Calculate the total loadable size of the output. That
7154 will give us the maximum number of GOT_PAGE entries
7155 required. */
7156 for (sub = info->input_bfds; sub; sub = sub->link_next)
7157 {
7158 asection *subsection;
7159
7160 for (subsection = sub->sections;
7161 subsection;
7162 subsection = subsection->next)
7163 {
7164 if ((subsection->flags & SEC_ALLOC) == 0)
7165 continue;
eea6121a 7166 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7167 &~ (bfd_size_type) 0xf);
7168 }
7169 }
7170
7171 /* There has to be a global GOT entry for every symbol with
7172 a dynamic symbol table index of DT_MIPS_GOTSYM or
7173 higher. Therefore, it make sense to put those symbols
7174 that need GOT entries at the end of the symbol table. We
7175 do that here. */
7176 if (! mips_elf_sort_hash_table (info, 1))
7177 return FALSE;
7178
7179 if (g->global_gotsym != NULL)
7180 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7181 else
7182 /* If there are no global symbols, or none requiring
7183 relocations, then GLOBAL_GOTSYM will be NULL. */
7184 i = 0;
7185
5108fc1b
RS
7186 /* Get a worst-case estimate of the number of dynamic symbols needed.
7187 At this point, dynsymcount does not account for section symbols
7188 and count_section_dynsyms may overestimate the number that will
7189 be needed. */
7190 dynsymcount = (elf_hash_table (info)->dynsymcount
7191 + count_section_dynsyms (output_bfd, info));
7192
7193 /* Determine the size of one stub entry. */
7194 htab->function_stub_size = (dynsymcount > 0x10000
7195 ? MIPS_FUNCTION_STUB_BIG_SIZE
7196 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7197
f4416af6
AO
7198 /* In the worst case, we'll get one stub per dynamic symbol, plus
7199 one to account for the dummy entry at the end required by IRIX
7200 rld. */
5108fc1b 7201 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7202
0a44bf69
RS
7203 if (htab->is_vxworks)
7204 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7205 relocations against local symbols evaluate to "G", and the EABI does
7206 not include R_MIPS_GOT_PAGE. */
7207 local_gotno = 0;
7208 else
7209 /* Assume there are two loadable segments consisting of contiguous
7210 sections. Is 5 enough? */
7211 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7212
7213 g->local_gotno += local_gotno;
eea6121a 7214 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7215
7216 g->global_gotno = i;
eea6121a 7217 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7218
0f20cc35
DJ
7219 /* We need to calculate tls_gotno for global symbols at this point
7220 instead of building it up earlier, to avoid doublecounting
7221 entries for one global symbol from multiple input files. */
7222 count_tls_arg.info = info;
7223 count_tls_arg.needed = 0;
7224 elf_link_hash_traverse (elf_hash_table (info),
7225 mips_elf_count_global_tls_entries,
7226 &count_tls_arg);
7227 g->tls_gotno += count_tls_arg.needed;
7228 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7229
7230 mips_elf_resolve_final_got_entries (g);
7231
0a44bf69
RS
7232 /* VxWorks does not support multiple GOTs. It initializes $gp to
7233 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7234 dynamic loader. */
7235 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7236 {
7237 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7238 return FALSE;
7239 }
7240 else
7241 {
7242 /* Set up TLS entries for the first GOT. */
7243 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7244 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7245 }
b49e97c9 7246
b34976b6 7247 return TRUE;
b49e97c9
TS
7248}
7249
7250/* Set the sizes of the dynamic sections. */
7251
b34976b6 7252bfd_boolean
9719ad41
RS
7253_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7254 struct bfd_link_info *info)
b49e97c9
TS
7255{
7256 bfd *dynobj;
0a44bf69 7257 asection *s, *sreldyn;
b34976b6 7258 bfd_boolean reltext;
0a44bf69 7259 struct mips_elf_link_hash_table *htab;
b49e97c9 7260
0a44bf69 7261 htab = mips_elf_hash_table (info);
b49e97c9
TS
7262 dynobj = elf_hash_table (info)->dynobj;
7263 BFD_ASSERT (dynobj != NULL);
7264
7265 if (elf_hash_table (info)->dynamic_sections_created)
7266 {
7267 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7268 if (info->executable)
b49e97c9
TS
7269 {
7270 s = bfd_get_section_by_name (dynobj, ".interp");
7271 BFD_ASSERT (s != NULL);
eea6121a 7272 s->size
b49e97c9
TS
7273 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7274 s->contents
7275 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7276 }
7277 }
7278
7279 /* The check_relocs and adjust_dynamic_symbol entry points have
7280 determined the sizes of the various dynamic sections. Allocate
7281 memory for them. */
b34976b6 7282 reltext = FALSE;
0a44bf69 7283 sreldyn = NULL;
b49e97c9
TS
7284 for (s = dynobj->sections; s != NULL; s = s->next)
7285 {
7286 const char *name;
b49e97c9
TS
7287
7288 /* It's OK to base decisions on the section name, because none
7289 of the dynobj section names depend upon the input files. */
7290 name = bfd_get_section_name (dynobj, s);
7291
7292 if ((s->flags & SEC_LINKER_CREATED) == 0)
7293 continue;
7294
b49e97c9
TS
7295 if (strncmp (name, ".rel", 4) == 0)
7296 {
c456f082 7297 if (s->size != 0)
b49e97c9
TS
7298 {
7299 const char *outname;
7300 asection *target;
7301
7302 /* If this relocation section applies to a read only
7303 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7304 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7305 assert a DT_TEXTREL entry rather than testing whether
7306 there exists a relocation to a read only section or
7307 not. */
7308 outname = bfd_get_section_name (output_bfd,
7309 s->output_section);
7310 target = bfd_get_section_by_name (output_bfd, outname + 4);
7311 if ((target != NULL
7312 && (target->flags & SEC_READONLY) != 0
7313 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7314 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7315 reltext = TRUE;
b49e97c9
TS
7316
7317 /* We use the reloc_count field as a counter if we need
7318 to copy relocs into the output file. */
0a44bf69 7319 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7320 s->reloc_count = 0;
f4416af6
AO
7321
7322 /* If combreloc is enabled, elf_link_sort_relocs() will
7323 sort relocations, but in a different way than we do,
7324 and before we're done creating relocations. Also, it
7325 will move them around between input sections'
7326 relocation's contents, so our sorting would be
7327 broken, so don't let it run. */
7328 info->combreloc = 0;
b49e97c9
TS
7329 }
7330 }
0a44bf69
RS
7331 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7332 {
7333 /* Executables do not need a GOT. */
7334 if (info->shared)
7335 {
7336 /* Allocate relocations for all but the reserved entries. */
7337 struct mips_got_info *g;
7338 unsigned int count;
7339
7340 g = mips_elf_got_info (dynobj, NULL);
7341 count = (g->global_gotno
7342 + g->local_gotno
7343 - MIPS_RESERVED_GOTNO (info));
7344 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7345 }
7346 }
7347 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
b49e97c9 7348 {
f4416af6
AO
7349 /* _bfd_mips_elf_always_size_sections() has already done
7350 most of the work, but some symbols may have been mapped
7351 to versions that we must now resolve in the got_entries
7352 hash tables. */
7353 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7354 struct mips_got_info *g = gg;
7355 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7356 unsigned int needed_relocs = 0;
143d77c5 7357
f4416af6 7358 if (gg->next)
b49e97c9 7359 {
f4416af6
AO
7360 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7361 set_got_offset_arg.info = info;
b49e97c9 7362
0f20cc35
DJ
7363 /* NOTE 2005-02-03: How can this call, or the next, ever
7364 find any indirect entries to resolve? They were all
7365 resolved in mips_elf_multi_got. */
f4416af6
AO
7366 mips_elf_resolve_final_got_entries (gg);
7367 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7368 {
f4416af6
AO
7369 unsigned int save_assign;
7370
7371 mips_elf_resolve_final_got_entries (g);
7372
7373 /* Assign offsets to global GOT entries. */
7374 save_assign = g->assigned_gotno;
7375 g->assigned_gotno = g->local_gotno;
7376 set_got_offset_arg.g = g;
7377 set_got_offset_arg.needed_relocs = 0;
7378 htab_traverse (g->got_entries,
7379 mips_elf_set_global_got_offset,
7380 &set_got_offset_arg);
7381 needed_relocs += set_got_offset_arg.needed_relocs;
7382 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7383 <= g->global_gotno);
7384
7385 g->assigned_gotno = save_assign;
7386 if (info->shared)
7387 {
7388 needed_relocs += g->local_gotno - g->assigned_gotno;
7389 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7390 + g->next->global_gotno
0f20cc35 7391 + g->next->tls_gotno
0a44bf69 7392 + MIPS_RESERVED_GOTNO (info));
f4416af6 7393 }
b49e97c9 7394 }
0f20cc35
DJ
7395 }
7396 else
7397 {
7398 struct mips_elf_count_tls_arg arg;
7399 arg.info = info;
7400 arg.needed = 0;
b49e97c9 7401
0f20cc35
DJ
7402 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7403 &arg);
7404 elf_link_hash_traverse (elf_hash_table (info),
7405 mips_elf_count_global_tls_relocs,
7406 &arg);
7407
7408 needed_relocs += arg.needed;
f4416af6 7409 }
0f20cc35
DJ
7410
7411 if (needed_relocs)
0a44bf69
RS
7412 mips_elf_allocate_dynamic_relocations (dynobj, info,
7413 needed_relocs);
b49e97c9
TS
7414 }
7415 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7416 {
8dc1a139 7417 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7418 of .text section. So put a dummy. XXX */
7419 s->size += htab->function_stub_size;
b49e97c9
TS
7420 }
7421 else if (! info->shared
7422 && ! mips_elf_hash_table (info)->use_rld_obj_head
7423 && strncmp (name, ".rld_map", 8) == 0)
7424 {
5108fc1b 7425 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7426 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7427 s->size += 4;
b49e97c9
TS
7428 }
7429 else if (SGI_COMPAT (output_bfd)
7430 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 7431 s->size += mips_elf_hash_table (info)->compact_rel_size;
0a44bf69
RS
7432 else if (strncmp (name, ".init", 5) != 0
7433 && s != htab->sgotplt
7434 && s != htab->splt)
b49e97c9
TS
7435 {
7436 /* It's not one of our sections, so don't allocate space. */
7437 continue;
7438 }
7439
c456f082 7440 if (s->size == 0)
b49e97c9 7441 {
8423293d 7442 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7443 continue;
7444 }
7445
c456f082
AM
7446 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7447 continue;
7448
0a44bf69
RS
7449 /* Allocate memory for this section last, since we may increase its
7450 size above. */
7451 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7452 {
7453 sreldyn = s;
7454 continue;
7455 }
7456
b49e97c9 7457 /* Allocate memory for the section contents. */
eea6121a 7458 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7459 if (s->contents == NULL)
b49e97c9
TS
7460 {
7461 bfd_set_error (bfd_error_no_memory);
b34976b6 7462 return FALSE;
b49e97c9
TS
7463 }
7464 }
7465
0a44bf69
RS
7466 /* Allocate memory for the .rel(a).dyn section. */
7467 if (sreldyn != NULL)
7468 {
7469 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7470 if (sreldyn->contents == NULL)
7471 {
7472 bfd_set_error (bfd_error_no_memory);
7473 return FALSE;
7474 }
7475 }
7476
b49e97c9
TS
7477 if (elf_hash_table (info)->dynamic_sections_created)
7478 {
7479 /* Add some entries to the .dynamic section. We fill in the
7480 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7481 must add the entries now so that we get the correct size for
7482 the .dynamic section. The DT_DEBUG entry is filled in by the
7483 dynamic linker and used by the debugger. */
7484 if (! info->shared)
7485 {
7486 /* SGI object has the equivalence of DT_DEBUG in the
7487 DT_MIPS_RLD_MAP entry. */
7488 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 7489 return FALSE;
b49e97c9
TS
7490 if (!SGI_COMPAT (output_bfd))
7491 {
7492 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7493 return FALSE;
b49e97c9
TS
7494 }
7495 }
7496 else
7497 {
7498 /* Shared libraries on traditional mips have DT_DEBUG. */
7499 if (!SGI_COMPAT (output_bfd))
7500 {
7501 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 7502 return FALSE;
b49e97c9
TS
7503 }
7504 }
7505
0a44bf69 7506 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7507 info->flags |= DF_TEXTREL;
7508
7509 if ((info->flags & DF_TEXTREL) != 0)
7510 {
7511 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7512 return FALSE;
943284cc
DJ
7513
7514 /* Clear the DF_TEXTREL flag. It will be set again if we
7515 write out an actual text relocation; we may not, because
7516 at this point we do not know whether e.g. any .eh_frame
7517 absolute relocations have been converted to PC-relative. */
7518 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7519 }
7520
7521 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7522 return FALSE;
b49e97c9 7523
0a44bf69 7524 if (htab->is_vxworks)
b49e97c9 7525 {
0a44bf69
RS
7526 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7527 use any of the DT_MIPS_* tags. */
7528 if (mips_elf_rel_dyn_section (info, FALSE))
7529 {
7530 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7531 return FALSE;
b49e97c9 7532
0a44bf69
RS
7533 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7534 return FALSE;
b49e97c9 7535
0a44bf69
RS
7536 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7537 return FALSE;
7538 }
7539 if (htab->splt->size > 0)
7540 {
7541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7542 return FALSE;
7543
7544 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7545 return FALSE;
7546
7547 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7548 return FALSE;
7549 }
b49e97c9 7550 }
0a44bf69
RS
7551 else
7552 {
7553 if (mips_elf_rel_dyn_section (info, FALSE))
7554 {
7555 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7556 return FALSE;
b49e97c9 7557
0a44bf69
RS
7558 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7559 return FALSE;
b49e97c9 7560
0a44bf69
RS
7561 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7562 return FALSE;
7563 }
b49e97c9 7564
0a44bf69
RS
7565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7566 return FALSE;
b49e97c9 7567
0a44bf69
RS
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7569 return FALSE;
b49e97c9 7570
0a44bf69
RS
7571 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7572 return FALSE;
b49e97c9 7573
0a44bf69
RS
7574 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7575 return FALSE;
b49e97c9 7576
0a44bf69
RS
7577 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7578 return FALSE;
b49e97c9 7579
0a44bf69
RS
7580 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7581 return FALSE;
b49e97c9 7582
0a44bf69
RS
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7584 return FALSE;
7585
7586 if (IRIX_COMPAT (dynobj) == ict_irix5
7587 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7588 return FALSE;
7589
7590 if (IRIX_COMPAT (dynobj) == ict_irix6
7591 && (bfd_get_section_by_name
7592 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7593 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7594 return FALSE;
7595 }
b49e97c9
TS
7596 }
7597
b34976b6 7598 return TRUE;
b49e97c9
TS
7599}
7600\f
81d43bff
RS
7601/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7602 Adjust its R_ADDEND field so that it is correct for the output file.
7603 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7604 and sections respectively; both use symbol indexes. */
7605
7606static void
7607mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7608 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7609 asection **local_sections, Elf_Internal_Rela *rel)
7610{
7611 unsigned int r_type, r_symndx;
7612 Elf_Internal_Sym *sym;
7613 asection *sec;
7614
7615 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7616 {
7617 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7618 if (r_type == R_MIPS16_GPREL
7619 || r_type == R_MIPS_GPREL16
7620 || r_type == R_MIPS_GPREL32
7621 || r_type == R_MIPS_LITERAL)
7622 {
7623 rel->r_addend += _bfd_get_gp_value (input_bfd);
7624 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7625 }
7626
7627 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7628 sym = local_syms + r_symndx;
7629
7630 /* Adjust REL's addend to account for section merging. */
7631 if (!info->relocatable)
7632 {
7633 sec = local_sections[r_symndx];
7634 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7635 }
7636
7637 /* This would normally be done by the rela_normal code in elflink.c. */
7638 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7639 rel->r_addend += local_sections[r_symndx]->output_offset;
7640 }
7641}
7642
b49e97c9
TS
7643/* Relocate a MIPS ELF section. */
7644
b34976b6 7645bfd_boolean
9719ad41
RS
7646_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7647 bfd *input_bfd, asection *input_section,
7648 bfd_byte *contents, Elf_Internal_Rela *relocs,
7649 Elf_Internal_Sym *local_syms,
7650 asection **local_sections)
b49e97c9
TS
7651{
7652 Elf_Internal_Rela *rel;
7653 const Elf_Internal_Rela *relend;
7654 bfd_vma addend = 0;
b34976b6 7655 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7656 const struct elf_backend_data *bed;
b49e97c9
TS
7657
7658 bed = get_elf_backend_data (output_bfd);
7659 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7660 for (rel = relocs; rel < relend; ++rel)
7661 {
7662 const char *name;
c9adbffe 7663 bfd_vma value = 0;
b49e97c9 7664 reloc_howto_type *howto;
b34976b6
AM
7665 bfd_boolean require_jalx;
7666 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7667 REL relocation. */
b34976b6 7668 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7669 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7670 const char *msg;
b49e97c9
TS
7671
7672 /* Find the relocation howto for this relocation. */
4a14403c 7673 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7674 {
7675 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7676 64-bit code, but make sure all their addresses are in the
7677 lowermost or uppermost 32-bit section of the 64-bit address
7678 space. Thus, when they use an R_MIPS_64 they mean what is
7679 usually meant by R_MIPS_32, with the exception that the
7680 stored value is sign-extended to 64 bits. */
b34976b6 7681 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7682
7683 /* On big-endian systems, we need to lie about the position
7684 of the reloc. */
7685 if (bfd_big_endian (input_bfd))
7686 rel->r_offset += 4;
7687 }
7688 else
7689 /* NewABI defaults to RELA relocations. */
7690 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
7691 NEWABI_P (input_bfd)
7692 && (MIPS_RELOC_RELA_P
7693 (input_bfd, input_section,
7694 rel - relocs)));
b49e97c9
TS
7695
7696 if (!use_saved_addend_p)
7697 {
7698 Elf_Internal_Shdr *rel_hdr;
7699
7700 /* If these relocations were originally of the REL variety,
7701 we must pull the addend out of the field that will be
7702 relocated. Otherwise, we simply use the contents of the
7703 RELA relocation. To determine which flavor or relocation
7704 this is, we depend on the fact that the INPUT_SECTION's
7705 REL_HDR is read before its REL_HDR2. */
7706 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7707 if ((size_t) (rel - relocs)
7708 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7709 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7710 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7711 {
d6f16593
MR
7712 bfd_byte *location = contents + rel->r_offset;
7713
b49e97c9 7714 /* Note that this is a REL relocation. */
b34976b6 7715 rela_relocation_p = FALSE;
b49e97c9
TS
7716
7717 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7718 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7719 location);
b49e97c9
TS
7720 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7721 contents);
d6f16593
MR
7722 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7723 location);
7724
b49e97c9
TS
7725 addend &= howto->src_mask;
7726
7727 /* For some kinds of relocations, the ADDEND is a
7728 combination of the addend stored in two different
7729 relocations. */
d6f16593 7730 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7731 || (r_type == R_MIPS_GOT16
7732 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7733 local_sections, FALSE)))
b49e97c9
TS
7734 {
7735 bfd_vma l;
7736 const Elf_Internal_Rela *lo16_relocation;
7737 reloc_howto_type *lo16_howto;
d6f16593
MR
7738 bfd_byte *lo16_location;
7739 int lo16_type;
7740
7741 if (r_type == R_MIPS16_HI16)
7742 lo16_type = R_MIPS16_LO16;
7743 else
7744 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7745
7746 /* The combined value is the sum of the HI16 addend,
7747 left-shifted by sixteen bits, and the LO16
7748 addend, sign extended. (Usually, the code does
7749 a `lui' of the HI16 value, and then an `addiu' of
7750 the LO16 value.)
7751
4030e8f6
CD
7752 Scan ahead to find a matching LO16 relocation.
7753
7754 According to the MIPS ELF ABI, the R_MIPS_LO16
7755 relocation must be immediately following.
7756 However, for the IRIX6 ABI, the next relocation
7757 may be a composed relocation consisting of
7758 several relocations for the same address. In
7759 that case, the R_MIPS_LO16 relocation may occur
7760 as one of these. We permit a similar extension
7761 in general, as that is useful for GCC. */
7762 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7763 lo16_type,
b49e97c9
TS
7764 rel, relend);
7765 if (lo16_relocation == NULL)
b34976b6 7766 return FALSE;
b49e97c9 7767
d6f16593
MR
7768 lo16_location = contents + lo16_relocation->r_offset;
7769
b49e97c9 7770 /* Obtain the addend kept there. */
4030e8f6 7771 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7772 lo16_type, FALSE);
7773 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7774 lo16_location);
b49e97c9
TS
7775 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7776 input_bfd, contents);
d6f16593
MR
7777 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7778 lo16_location);
b49e97c9 7779 l &= lo16_howto->src_mask;
5a659663 7780 l <<= lo16_howto->rightshift;
a7ebbfdf 7781 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7782
7783 addend <<= 16;
7784
7785 /* Compute the combined addend. */
7786 addend += l;
b49e97c9 7787 }
30ac9238
RS
7788 else
7789 addend <<= howto->rightshift;
b49e97c9
TS
7790 }
7791 else
7792 addend = rel->r_addend;
81d43bff
RS
7793 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7794 local_syms, local_sections, rel);
b49e97c9
TS
7795 }
7796
1049f94e 7797 if (info->relocatable)
b49e97c9 7798 {
4a14403c 7799 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7800 && bfd_big_endian (input_bfd))
7801 rel->r_offset -= 4;
7802
81d43bff 7803 if (!rela_relocation_p && rel->r_addend)
5a659663 7804 {
81d43bff 7805 addend += rel->r_addend;
30ac9238 7806 if (r_type == R_MIPS_HI16
4030e8f6 7807 || r_type == R_MIPS_GOT16)
5a659663
TS
7808 addend = mips_elf_high (addend);
7809 else if (r_type == R_MIPS_HIGHER)
7810 addend = mips_elf_higher (addend);
7811 else if (r_type == R_MIPS_HIGHEST)
7812 addend = mips_elf_highest (addend);
30ac9238
RS
7813 else
7814 addend >>= howto->rightshift;
b49e97c9 7815
30ac9238
RS
7816 /* We use the source mask, rather than the destination
7817 mask because the place to which we are writing will be
7818 source of the addend in the final link. */
b49e97c9
TS
7819 addend &= howto->src_mask;
7820
5a659663 7821 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7822 /* See the comment above about using R_MIPS_64 in the 32-bit
7823 ABI. Here, we need to update the addend. It would be
7824 possible to get away with just using the R_MIPS_32 reloc
7825 but for endianness. */
7826 {
7827 bfd_vma sign_bits;
7828 bfd_vma low_bits;
7829 bfd_vma high_bits;
7830
7831 if (addend & ((bfd_vma) 1 << 31))
7832#ifdef BFD64
7833 sign_bits = ((bfd_vma) 1 << 32) - 1;
7834#else
7835 sign_bits = -1;
7836#endif
7837 else
7838 sign_bits = 0;
7839
7840 /* If we don't know that we have a 64-bit type,
7841 do two separate stores. */
7842 if (bfd_big_endian (input_bfd))
7843 {
7844 /* Store the sign-bits (which are most significant)
7845 first. */
7846 low_bits = sign_bits;
7847 high_bits = addend;
7848 }
7849 else
7850 {
7851 low_bits = addend;
7852 high_bits = sign_bits;
7853 }
7854 bfd_put_32 (input_bfd, low_bits,
7855 contents + rel->r_offset);
7856 bfd_put_32 (input_bfd, high_bits,
7857 contents + rel->r_offset + 4);
7858 continue;
7859 }
7860
7861 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7862 input_bfd, input_section,
b34976b6
AM
7863 contents, FALSE))
7864 return FALSE;
b49e97c9
TS
7865 }
7866
7867 /* Go on to the next relocation. */
7868 continue;
7869 }
7870
7871 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7872 relocations for the same offset. In that case we are
7873 supposed to treat the output of each relocation as the addend
7874 for the next. */
7875 if (rel + 1 < relend
7876 && rel->r_offset == rel[1].r_offset
7877 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7878 use_saved_addend_p = TRUE;
b49e97c9 7879 else
b34976b6 7880 use_saved_addend_p = FALSE;
b49e97c9
TS
7881
7882 /* Figure out what value we are supposed to relocate. */
7883 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7884 input_section, info, rel,
7885 addend, howto, local_syms,
7886 local_sections, &value,
bce03d3d
AO
7887 &name, &require_jalx,
7888 use_saved_addend_p))
b49e97c9
TS
7889 {
7890 case bfd_reloc_continue:
7891 /* There's nothing to do. */
7892 continue;
7893
7894 case bfd_reloc_undefined:
7895 /* mips_elf_calculate_relocation already called the
7896 undefined_symbol callback. There's no real point in
7897 trying to perform the relocation at this point, so we
7898 just skip ahead to the next relocation. */
7899 continue;
7900
7901 case bfd_reloc_notsupported:
7902 msg = _("internal error: unsupported relocation error");
7903 info->callbacks->warning
7904 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7905 return FALSE;
b49e97c9
TS
7906
7907 case bfd_reloc_overflow:
7908 if (use_saved_addend_p)
7909 /* Ignore overflow until we reach the last relocation for
7910 a given location. */
7911 ;
7912 else
7913 {
7914 BFD_ASSERT (name != NULL);
7915 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7916 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7917 input_bfd, input_section, rel->r_offset)))
b34976b6 7918 return FALSE;
b49e97c9
TS
7919 }
7920 break;
7921
7922 case bfd_reloc_ok:
7923 break;
7924
7925 default:
7926 abort ();
7927 break;
7928 }
7929
7930 /* If we've got another relocation for the address, keep going
7931 until we reach the last one. */
7932 if (use_saved_addend_p)
7933 {
7934 addend = value;
7935 continue;
7936 }
7937
4a14403c 7938 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7939 /* See the comment above about using R_MIPS_64 in the 32-bit
7940 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7941 that calculated the right value. Now, however, we
7942 sign-extend the 32-bit result to 64-bits, and store it as a
7943 64-bit value. We are especially generous here in that we
7944 go to extreme lengths to support this usage on systems with
7945 only a 32-bit VMA. */
7946 {
7947 bfd_vma sign_bits;
7948 bfd_vma low_bits;
7949 bfd_vma high_bits;
7950
7951 if (value & ((bfd_vma) 1 << 31))
7952#ifdef BFD64
7953 sign_bits = ((bfd_vma) 1 << 32) - 1;
7954#else
7955 sign_bits = -1;
7956#endif
7957 else
7958 sign_bits = 0;
7959
7960 /* If we don't know that we have a 64-bit type,
7961 do two separate stores. */
7962 if (bfd_big_endian (input_bfd))
7963 {
7964 /* Undo what we did above. */
7965 rel->r_offset -= 4;
7966 /* Store the sign-bits (which are most significant)
7967 first. */
7968 low_bits = sign_bits;
7969 high_bits = value;
7970 }
7971 else
7972 {
7973 low_bits = value;
7974 high_bits = sign_bits;
7975 }
7976 bfd_put_32 (input_bfd, low_bits,
7977 contents + rel->r_offset);
7978 bfd_put_32 (input_bfd, high_bits,
7979 contents + rel->r_offset + 4);
7980 continue;
7981 }
7982
7983 /* Actually perform the relocation. */
7984 if (! mips_elf_perform_relocation (info, howto, rel, value,
7985 input_bfd, input_section,
7986 contents, require_jalx))
b34976b6 7987 return FALSE;
b49e97c9
TS
7988 }
7989
b34976b6 7990 return TRUE;
b49e97c9
TS
7991}
7992\f
7993/* If NAME is one of the special IRIX6 symbols defined by the linker,
7994 adjust it appropriately now. */
7995
7996static void
9719ad41
RS
7997mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7998 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7999{
8000 /* The linker script takes care of providing names and values for
8001 these, but we must place them into the right sections. */
8002 static const char* const text_section_symbols[] = {
8003 "_ftext",
8004 "_etext",
8005 "__dso_displacement",
8006 "__elf_header",
8007 "__program_header_table",
8008 NULL
8009 };
8010
8011 static const char* const data_section_symbols[] = {
8012 "_fdata",
8013 "_edata",
8014 "_end",
8015 "_fbss",
8016 NULL
8017 };
8018
8019 const char* const *p;
8020 int i;
8021
8022 for (i = 0; i < 2; ++i)
8023 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8024 *p;
8025 ++p)
8026 if (strcmp (*p, name) == 0)
8027 {
8028 /* All of these symbols are given type STT_SECTION by the
8029 IRIX6 linker. */
8030 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8031 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8032
8033 /* The IRIX linker puts these symbols in special sections. */
8034 if (i == 0)
8035 sym->st_shndx = SHN_MIPS_TEXT;
8036 else
8037 sym->st_shndx = SHN_MIPS_DATA;
8038
8039 break;
8040 }
8041}
8042
8043/* Finish up dynamic symbol handling. We set the contents of various
8044 dynamic sections here. */
8045
b34976b6 8046bfd_boolean
9719ad41
RS
8047_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8048 struct bfd_link_info *info,
8049 struct elf_link_hash_entry *h,
8050 Elf_Internal_Sym *sym)
b49e97c9
TS
8051{
8052 bfd *dynobj;
b49e97c9 8053 asection *sgot;
f4416af6 8054 struct mips_got_info *g, *gg;
b49e97c9 8055 const char *name;
3d6746ca 8056 int idx;
5108fc1b 8057 struct mips_elf_link_hash_table *htab;
b49e97c9 8058
5108fc1b 8059 htab = mips_elf_hash_table (info);
b49e97c9 8060 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8061
c5ae1840 8062 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8063 {
8064 asection *s;
5108fc1b 8065 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8066
8067 /* This symbol has a stub. Set it up. */
8068
8069 BFD_ASSERT (h->dynindx != -1);
8070
8071 s = bfd_get_section_by_name (dynobj,
8072 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8073 BFD_ASSERT (s != NULL);
8074
5108fc1b
RS
8075 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8076 || (h->dynindx <= 0xffff));
3d6746ca
DD
8077
8078 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8079 sign extension at runtime in the stub, resulting in a negative
8080 index value. */
8081 if (h->dynindx & ~0x7fffffff)
b34976b6 8082 return FALSE;
b49e97c9
TS
8083
8084 /* Fill the stub. */
3d6746ca
DD
8085 idx = 0;
8086 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8087 idx += 4;
8088 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8089 idx += 4;
5108fc1b 8090 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8091 {
5108fc1b 8092 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8093 stub + idx);
8094 idx += 4;
8095 }
8096 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8097 idx += 4;
b49e97c9 8098
3d6746ca
DD
8099 /* If a large stub is not required and sign extension is not a
8100 problem, then use legacy code in the stub. */
5108fc1b
RS
8101 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8102 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8103 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8104 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8105 else
5108fc1b
RS
8106 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8107 stub + idx);
8108
eea6121a 8109 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8110 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8111
8112 /* Mark the symbol as undefined. plt.offset != -1 occurs
8113 only for the referenced symbol. */
8114 sym->st_shndx = SHN_UNDEF;
8115
8116 /* The run-time linker uses the st_value field of the symbol
8117 to reset the global offset table entry for this external
8118 to its stub address when unlinking a shared object. */
c5ae1840
TS
8119 sym->st_value = (s->output_section->vma + s->output_offset
8120 + h->plt.offset);
b49e97c9
TS
8121 }
8122
8123 BFD_ASSERT (h->dynindx != -1
f5385ebf 8124 || h->forced_local);
b49e97c9 8125
f4416af6 8126 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8127 BFD_ASSERT (sgot != NULL);
f4416af6 8128 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8129 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8130 BFD_ASSERT (g != NULL);
8131
8132 /* Run through the global symbol table, creating GOT entries for all
8133 the symbols that need them. */
8134 if (g->global_gotsym != NULL
8135 && h->dynindx >= g->global_gotsym->dynindx)
8136 {
8137 bfd_vma offset;
8138 bfd_vma value;
8139
6eaa6adc 8140 value = sym->st_value;
0f20cc35 8141 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8142 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8143 }
8144
0f20cc35 8145 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8146 {
8147 struct mips_got_entry e, *p;
0626d451 8148 bfd_vma entry;
f4416af6 8149 bfd_vma offset;
f4416af6
AO
8150
8151 gg = g;
8152
8153 e.abfd = output_bfd;
8154 e.symndx = -1;
8155 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8156 e.tls_type = 0;
143d77c5 8157
f4416af6
AO
8158 for (g = g->next; g->next != gg; g = g->next)
8159 {
8160 if (g->got_entries
8161 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8162 &e)))
8163 {
8164 offset = p->gotidx;
0626d451
RS
8165 if (info->shared
8166 || (elf_hash_table (info)->dynamic_sections_created
8167 && p->d.h != NULL
f5385ebf
AM
8168 && p->d.h->root.def_dynamic
8169 && !p->d.h->root.def_regular))
0626d451
RS
8170 {
8171 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8172 the various compatibility problems, it's easier to mock
8173 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8174 mips_elf_create_dynamic_relocation to calculate the
8175 appropriate addend. */
8176 Elf_Internal_Rela rel[3];
8177
8178 memset (rel, 0, sizeof (rel));
8179 if (ABI_64_P (output_bfd))
8180 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8181 else
8182 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8183 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8184
8185 entry = 0;
8186 if (! (mips_elf_create_dynamic_relocation
8187 (output_bfd, info, rel,
8188 e.d.h, NULL, sym->st_value, &entry, sgot)))
8189 return FALSE;
8190 }
8191 else
8192 entry = sym->st_value;
8193 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8194 }
8195 }
8196 }
8197
b49e97c9
TS
8198 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8199 name = h->root.root.string;
8200 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8201 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8202 sym->st_shndx = SHN_ABS;
8203 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8204 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8205 {
8206 sym->st_shndx = SHN_ABS;
8207 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8208 sym->st_value = 1;
8209 }
4a14403c 8210 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8211 {
8212 sym->st_shndx = SHN_ABS;
8213 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8214 sym->st_value = elf_gp (output_bfd);
8215 }
8216 else if (SGI_COMPAT (output_bfd))
8217 {
8218 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8219 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8220 {
8221 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8222 sym->st_other = STO_PROTECTED;
8223 sym->st_value = 0;
8224 sym->st_shndx = SHN_MIPS_DATA;
8225 }
8226 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8227 {
8228 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8229 sym->st_other = STO_PROTECTED;
8230 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8231 sym->st_shndx = SHN_ABS;
8232 }
8233 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8234 {
8235 if (h->type == STT_FUNC)
8236 sym->st_shndx = SHN_MIPS_TEXT;
8237 else if (h->type == STT_OBJECT)
8238 sym->st_shndx = SHN_MIPS_DATA;
8239 }
8240 }
8241
8242 /* Handle the IRIX6-specific symbols. */
8243 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8244 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8245
8246 if (! info->shared)
8247 {
8248 if (! mips_elf_hash_table (info)->use_rld_obj_head
8249 && (strcmp (name, "__rld_map") == 0
8250 || strcmp (name, "__RLD_MAP") == 0))
8251 {
8252 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8253 BFD_ASSERT (s != NULL);
8254 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8255 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8256 if (mips_elf_hash_table (info)->rld_value == 0)
8257 mips_elf_hash_table (info)->rld_value = sym->st_value;
8258 }
8259 else if (mips_elf_hash_table (info)->use_rld_obj_head
8260 && strcmp (name, "__rld_obj_head") == 0)
8261 {
8262 /* IRIX6 does not use a .rld_map section. */
8263 if (IRIX_COMPAT (output_bfd) == ict_irix5
8264 || IRIX_COMPAT (output_bfd) == ict_none)
8265 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8266 != NULL);
8267 mips_elf_hash_table (info)->rld_value = sym->st_value;
8268 }
8269 }
8270
8271 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8272 if (sym->st_other == STO_MIPS16)
8273 sym->st_value &= ~1;
b49e97c9 8274
b34976b6 8275 return TRUE;
b49e97c9
TS
8276}
8277
0a44bf69
RS
8278/* Likewise, for VxWorks. */
8279
8280bfd_boolean
8281_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8282 struct bfd_link_info *info,
8283 struct elf_link_hash_entry *h,
8284 Elf_Internal_Sym *sym)
8285{
8286 bfd *dynobj;
8287 asection *sgot;
8288 struct mips_got_info *g;
8289 struct mips_elf_link_hash_table *htab;
8290
8291 htab = mips_elf_hash_table (info);
8292 dynobj = elf_hash_table (info)->dynobj;
8293
8294 if (h->plt.offset != (bfd_vma) -1)
8295 {
6d79d2ed 8296 bfd_byte *loc;
0a44bf69
RS
8297 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8298 Elf_Internal_Rela rel;
8299 static const bfd_vma *plt_entry;
8300
8301 BFD_ASSERT (h->dynindx != -1);
8302 BFD_ASSERT (htab->splt != NULL);
8303 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8304
8305 /* Calculate the address of the .plt entry. */
8306 plt_address = (htab->splt->output_section->vma
8307 + htab->splt->output_offset
8308 + h->plt.offset);
8309
8310 /* Calculate the index of the entry. */
8311 plt_index = ((h->plt.offset - htab->plt_header_size)
8312 / htab->plt_entry_size);
8313
8314 /* Calculate the address of the .got.plt entry. */
8315 got_address = (htab->sgotplt->output_section->vma
8316 + htab->sgotplt->output_offset
8317 + plt_index * 4);
8318
8319 /* Calculate the offset of the .got.plt entry from
8320 _GLOBAL_OFFSET_TABLE_. */
8321 got_offset = mips_elf_gotplt_index (info, h);
8322
8323 /* Calculate the offset for the branch at the start of the PLT
8324 entry. The branch jumps to the beginning of .plt. */
8325 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8326
8327 /* Fill in the initial value of the .got.plt entry. */
8328 bfd_put_32 (output_bfd, plt_address,
8329 htab->sgotplt->contents + plt_index * 4);
8330
8331 /* Find out where the .plt entry should go. */
8332 loc = htab->splt->contents + h->plt.offset;
8333
8334 if (info->shared)
8335 {
8336 plt_entry = mips_vxworks_shared_plt_entry;
8337 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8338 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8339 }
8340 else
8341 {
8342 bfd_vma got_address_high, got_address_low;
8343
8344 plt_entry = mips_vxworks_exec_plt_entry;
8345 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8346 got_address_low = got_address & 0xffff;
8347
8348 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8349 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8350 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8351 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8352 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8353 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8354 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8355 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8356
8357 loc = (htab->srelplt2->contents
8358 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8359
8360 /* Emit a relocation for the .got.plt entry. */
8361 rel.r_offset = got_address;
8362 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8363 rel.r_addend = h->plt.offset;
8364 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8365
8366 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8367 loc += sizeof (Elf32_External_Rela);
8368 rel.r_offset = plt_address + 8;
8369 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8370 rel.r_addend = got_offset;
8371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8372
8373 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8374 loc += sizeof (Elf32_External_Rela);
8375 rel.r_offset += 4;
8376 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8377 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8378 }
8379
8380 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8381 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8382 rel.r_offset = got_address;
8383 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8384 rel.r_addend = 0;
8385 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8386
8387 if (!h->def_regular)
8388 sym->st_shndx = SHN_UNDEF;
8389 }
8390
8391 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8392
8393 sgot = mips_elf_got_section (dynobj, FALSE);
8394 BFD_ASSERT (sgot != NULL);
8395 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8396 g = mips_elf_section_data (sgot)->u.got_info;
8397 BFD_ASSERT (g != NULL);
8398
8399 /* See if this symbol has an entry in the GOT. */
8400 if (g->global_gotsym != NULL
8401 && h->dynindx >= g->global_gotsym->dynindx)
8402 {
8403 bfd_vma offset;
8404 Elf_Internal_Rela outrel;
8405 bfd_byte *loc;
8406 asection *s;
8407
8408 /* Install the symbol value in the GOT. */
8409 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8410 R_MIPS_GOT16, info);
8411 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8412
8413 /* Add a dynamic relocation for it. */
8414 s = mips_elf_rel_dyn_section (info, FALSE);
8415 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8416 outrel.r_offset = (sgot->output_section->vma
8417 + sgot->output_offset
8418 + offset);
8419 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8420 outrel.r_addend = 0;
8421 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8422 }
8423
8424 /* Emit a copy reloc, if needed. */
8425 if (h->needs_copy)
8426 {
8427 Elf_Internal_Rela rel;
8428
8429 BFD_ASSERT (h->dynindx != -1);
8430
8431 rel.r_offset = (h->root.u.def.section->output_section->vma
8432 + h->root.u.def.section->output_offset
8433 + h->root.u.def.value);
8434 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8435 rel.r_addend = 0;
8436 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8437 htab->srelbss->contents
8438 + (htab->srelbss->reloc_count
8439 * sizeof (Elf32_External_Rela)));
8440 ++htab->srelbss->reloc_count;
8441 }
8442
8443 /* If this is a mips16 symbol, force the value to be even. */
8444 if (sym->st_other == STO_MIPS16)
8445 sym->st_value &= ~1;
8446
8447 return TRUE;
8448}
8449
8450/* Install the PLT header for a VxWorks executable and finalize the
8451 contents of .rela.plt.unloaded. */
8452
8453static void
8454mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8455{
8456 Elf_Internal_Rela rela;
8457 bfd_byte *loc;
8458 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8459 static const bfd_vma *plt_entry;
8460 struct mips_elf_link_hash_table *htab;
8461
8462 htab = mips_elf_hash_table (info);
8463 plt_entry = mips_vxworks_exec_plt0_entry;
8464
8465 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8466 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8467 + htab->root.hgot->root.u.def.section->output_offset
8468 + htab->root.hgot->root.u.def.value);
8469
8470 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8471 got_value_low = got_value & 0xffff;
8472
8473 /* Calculate the address of the PLT header. */
8474 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8475
8476 /* Install the PLT header. */
8477 loc = htab->splt->contents;
8478 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8479 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8480 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8481 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8482 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8483 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8484
8485 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8486 loc = htab->srelplt2->contents;
8487 rela.r_offset = plt_address;
8488 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8489 rela.r_addend = 0;
8490 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8491 loc += sizeof (Elf32_External_Rela);
8492
8493 /* Output the relocation for the following addiu of
8494 %lo(_GLOBAL_OFFSET_TABLE_). */
8495 rela.r_offset += 4;
8496 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8497 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8498 loc += sizeof (Elf32_External_Rela);
8499
8500 /* Fix up the remaining relocations. They may have the wrong
8501 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8502 in which symbols were output. */
8503 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8504 {
8505 Elf_Internal_Rela rel;
8506
8507 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8508 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8509 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8510 loc += sizeof (Elf32_External_Rela);
8511
8512 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8513 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8514 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8515 loc += sizeof (Elf32_External_Rela);
8516
8517 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8518 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8519 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8520 loc += sizeof (Elf32_External_Rela);
8521 }
8522}
8523
8524/* Install the PLT header for a VxWorks shared library. */
8525
8526static void
8527mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8528{
8529 unsigned int i;
8530 struct mips_elf_link_hash_table *htab;
8531
8532 htab = mips_elf_hash_table (info);
8533
8534 /* We just need to copy the entry byte-by-byte. */
8535 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8536 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8537 htab->splt->contents + i * 4);
8538}
8539
b49e97c9
TS
8540/* Finish up the dynamic sections. */
8541
b34976b6 8542bfd_boolean
9719ad41
RS
8543_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8544 struct bfd_link_info *info)
b49e97c9
TS
8545{
8546 bfd *dynobj;
8547 asection *sdyn;
8548 asection *sgot;
f4416af6 8549 struct mips_got_info *gg, *g;
0a44bf69 8550 struct mips_elf_link_hash_table *htab;
b49e97c9 8551
0a44bf69 8552 htab = mips_elf_hash_table (info);
b49e97c9
TS
8553 dynobj = elf_hash_table (info)->dynobj;
8554
8555 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8556
f4416af6 8557 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8558 if (sgot == NULL)
f4416af6 8559 gg = g = NULL;
b49e97c9
TS
8560 else
8561 {
f4416af6
AO
8562 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8563 gg = mips_elf_section_data (sgot)->u.got_info;
8564 BFD_ASSERT (gg != NULL);
8565 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8566 BFD_ASSERT (g != NULL);
8567 }
8568
8569 if (elf_hash_table (info)->dynamic_sections_created)
8570 {
8571 bfd_byte *b;
943284cc 8572 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8573
8574 BFD_ASSERT (sdyn != NULL);
8575 BFD_ASSERT (g != NULL);
8576
8577 for (b = sdyn->contents;
eea6121a 8578 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8579 b += MIPS_ELF_DYN_SIZE (dynobj))
8580 {
8581 Elf_Internal_Dyn dyn;
8582 const char *name;
8583 size_t elemsize;
8584 asection *s;
b34976b6 8585 bfd_boolean swap_out_p;
b49e97c9
TS
8586
8587 /* Read in the current dynamic entry. */
8588 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8589
8590 /* Assume that we're going to modify it and write it out. */
b34976b6 8591 swap_out_p = TRUE;
b49e97c9
TS
8592
8593 switch (dyn.d_tag)
8594 {
8595 case DT_RELENT:
b49e97c9
TS
8596 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8597 break;
8598
0a44bf69
RS
8599 case DT_RELAENT:
8600 BFD_ASSERT (htab->is_vxworks);
8601 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8602 break;
8603
b49e97c9
TS
8604 case DT_STRSZ:
8605 /* Rewrite DT_STRSZ. */
8606 dyn.d_un.d_val =
8607 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8608 break;
8609
8610 case DT_PLTGOT:
8611 name = ".got";
0a44bf69
RS
8612 if (htab->is_vxworks)
8613 {
8614 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8615 of the ".got" section in DYNOBJ. */
8616 s = bfd_get_section_by_name (dynobj, name);
8617 BFD_ASSERT (s != NULL);
8618 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8619 }
8620 else
8621 {
8622 s = bfd_get_section_by_name (output_bfd, name);
8623 BFD_ASSERT (s != NULL);
8624 dyn.d_un.d_ptr = s->vma;
8625 }
b49e97c9
TS
8626 break;
8627
8628 case DT_MIPS_RLD_VERSION:
8629 dyn.d_un.d_val = 1; /* XXX */
8630 break;
8631
8632 case DT_MIPS_FLAGS:
8633 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8634 break;
8635
b49e97c9 8636 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8637 {
8638 time_t t;
8639 time (&t);
8640 dyn.d_un.d_val = t;
8641 }
b49e97c9
TS
8642 break;
8643
8644 case DT_MIPS_ICHECKSUM:
8645 /* XXX FIXME: */
b34976b6 8646 swap_out_p = FALSE;
b49e97c9
TS
8647 break;
8648
8649 case DT_MIPS_IVERSION:
8650 /* XXX FIXME: */
b34976b6 8651 swap_out_p = FALSE;
b49e97c9
TS
8652 break;
8653
8654 case DT_MIPS_BASE_ADDRESS:
8655 s = output_bfd->sections;
8656 BFD_ASSERT (s != NULL);
8657 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8658 break;
8659
8660 case DT_MIPS_LOCAL_GOTNO:
8661 dyn.d_un.d_val = g->local_gotno;
8662 break;
8663
8664 case DT_MIPS_UNREFEXTNO:
8665 /* The index into the dynamic symbol table which is the
8666 entry of the first external symbol that is not
8667 referenced within the same object. */
8668 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8669 break;
8670
8671 case DT_MIPS_GOTSYM:
f4416af6 8672 if (gg->global_gotsym)
b49e97c9 8673 {
f4416af6 8674 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8675 break;
8676 }
8677 /* In case if we don't have global got symbols we default
8678 to setting DT_MIPS_GOTSYM to the same value as
8679 DT_MIPS_SYMTABNO, so we just fall through. */
8680
8681 case DT_MIPS_SYMTABNO:
8682 name = ".dynsym";
8683 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8684 s = bfd_get_section_by_name (output_bfd, name);
8685 BFD_ASSERT (s != NULL);
8686
eea6121a 8687 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8688 break;
8689
8690 case DT_MIPS_HIPAGENO:
0a44bf69 8691 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8692 break;
8693
8694 case DT_MIPS_RLD_MAP:
8695 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8696 break;
8697
8698 case DT_MIPS_OPTIONS:
8699 s = (bfd_get_section_by_name
8700 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8701 dyn.d_un.d_ptr = s->vma;
8702 break;
8703
0a44bf69
RS
8704 case DT_RELASZ:
8705 BFD_ASSERT (htab->is_vxworks);
8706 /* The count does not include the JUMP_SLOT relocations. */
8707 if (htab->srelplt)
8708 dyn.d_un.d_val -= htab->srelplt->size;
8709 break;
8710
8711 case DT_PLTREL:
8712 BFD_ASSERT (htab->is_vxworks);
8713 dyn.d_un.d_val = DT_RELA;
8714 break;
8715
8716 case DT_PLTRELSZ:
8717 BFD_ASSERT (htab->is_vxworks);
8718 dyn.d_un.d_val = htab->srelplt->size;
8719 break;
8720
8721 case DT_JMPREL:
8722 BFD_ASSERT (htab->is_vxworks);
8723 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8724 + htab->srelplt->output_offset);
8725 break;
8726
943284cc
DJ
8727 case DT_TEXTREL:
8728 /* If we didn't need any text relocations after all, delete
8729 the dynamic tag. */
8730 if (!(info->flags & DF_TEXTREL))
8731 {
8732 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8733 swap_out_p = FALSE;
8734 }
8735 break;
8736
8737 case DT_FLAGS:
8738 /* If we didn't need any text relocations after all, clear
8739 DF_TEXTREL from DT_FLAGS. */
8740 if (!(info->flags & DF_TEXTREL))
8741 dyn.d_un.d_val &= ~DF_TEXTREL;
8742 else
8743 swap_out_p = FALSE;
8744 break;
8745
b49e97c9 8746 default:
b34976b6 8747 swap_out_p = FALSE;
b49e97c9
TS
8748 break;
8749 }
8750
943284cc 8751 if (swap_out_p || dyn_skipped)
b49e97c9 8752 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8753 (dynobj, &dyn, b - dyn_skipped);
8754
8755 if (dyn_to_skip)
8756 {
8757 dyn_skipped += dyn_to_skip;
8758 dyn_to_skip = 0;
8759 }
b49e97c9 8760 }
943284cc
DJ
8761
8762 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8763 if (dyn_skipped > 0)
8764 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8765 }
8766
eea6121a 8767 if (sgot != NULL && sgot->size > 0)
b49e97c9 8768 {
0a44bf69
RS
8769 if (htab->is_vxworks)
8770 {
8771 /* The first entry of the global offset table points to the
8772 ".dynamic" section. The second is initialized by the
8773 loader and contains the shared library identifier.
8774 The third is also initialized by the loader and points
8775 to the lazy resolution stub. */
8776 MIPS_ELF_PUT_WORD (output_bfd,
8777 sdyn->output_offset + sdyn->output_section->vma,
8778 sgot->contents);
8779 MIPS_ELF_PUT_WORD (output_bfd, 0,
8780 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8781 MIPS_ELF_PUT_WORD (output_bfd, 0,
8782 sgot->contents
8783 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8784 }
8785 else
8786 {
8787 /* The first entry of the global offset table will be filled at
8788 runtime. The second entry will be used by some runtime loaders.
8789 This isn't the case of IRIX rld. */
8790 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8791 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8792 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8793 }
b49e97c9 8794
54938e2a
TS
8795 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8796 = MIPS_ELF_GOT_SIZE (output_bfd);
8797 }
b49e97c9 8798
f4416af6
AO
8799 /* Generate dynamic relocations for the non-primary gots. */
8800 if (gg != NULL && gg->next)
8801 {
8802 Elf_Internal_Rela rel[3];
8803 bfd_vma addend = 0;
8804
8805 memset (rel, 0, sizeof (rel));
8806 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8807
8808 for (g = gg->next; g->next != gg; g = g->next)
8809 {
0f20cc35
DJ
8810 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8811 + g->next->tls_gotno;
f4416af6 8812
9719ad41 8813 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8814 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8815 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8816 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8817
8818 if (! info->shared)
8819 continue;
8820
8821 while (index < g->assigned_gotno)
8822 {
8823 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8824 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8825 if (!(mips_elf_create_dynamic_relocation
8826 (output_bfd, info, rel, NULL,
8827 bfd_abs_section_ptr,
8828 0, &addend, sgot)))
8829 return FALSE;
8830 BFD_ASSERT (addend == 0);
8831 }
8832 }
8833 }
8834
3133ddbf
DJ
8835 /* The generation of dynamic relocations for the non-primary gots
8836 adds more dynamic relocations. We cannot count them until
8837 here. */
8838
8839 if (elf_hash_table (info)->dynamic_sections_created)
8840 {
8841 bfd_byte *b;
8842 bfd_boolean swap_out_p;
8843
8844 BFD_ASSERT (sdyn != NULL);
8845
8846 for (b = sdyn->contents;
8847 b < sdyn->contents + sdyn->size;
8848 b += MIPS_ELF_DYN_SIZE (dynobj))
8849 {
8850 Elf_Internal_Dyn dyn;
8851 asection *s;
8852
8853 /* Read in the current dynamic entry. */
8854 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8855
8856 /* Assume that we're going to modify it and write it out. */
8857 swap_out_p = TRUE;
8858
8859 switch (dyn.d_tag)
8860 {
8861 case DT_RELSZ:
8862 /* Reduce DT_RELSZ to account for any relocations we
8863 decided not to make. This is for the n64 irix rld,
8864 which doesn't seem to apply any relocations if there
8865 are trailing null entries. */
0a44bf69 8866 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8867 dyn.d_un.d_val = (s->reloc_count
8868 * (ABI_64_P (output_bfd)
8869 ? sizeof (Elf64_Mips_External_Rel)
8870 : sizeof (Elf32_External_Rel)));
8871 break;
8872
8873 default:
8874 swap_out_p = FALSE;
8875 break;
8876 }
8877
8878 if (swap_out_p)
8879 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8880 (dynobj, &dyn, b);
8881 }
8882 }
8883
b49e97c9 8884 {
b49e97c9
TS
8885 asection *s;
8886 Elf32_compact_rel cpt;
8887
b49e97c9
TS
8888 if (SGI_COMPAT (output_bfd))
8889 {
8890 /* Write .compact_rel section out. */
8891 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8892 if (s != NULL)
8893 {
8894 cpt.id1 = 1;
8895 cpt.num = s->reloc_count;
8896 cpt.id2 = 2;
8897 cpt.offset = (s->output_section->filepos
8898 + sizeof (Elf32_External_compact_rel));
8899 cpt.reserved0 = 0;
8900 cpt.reserved1 = 0;
8901 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8902 ((Elf32_External_compact_rel *)
8903 s->contents));
8904
8905 /* Clean up a dummy stub function entry in .text. */
8906 s = bfd_get_section_by_name (dynobj,
8907 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8908 if (s != NULL)
8909 {
8910 file_ptr dummy_offset;
8911
5108fc1b
RS
8912 BFD_ASSERT (s->size >= htab->function_stub_size);
8913 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 8914 memset (s->contents + dummy_offset, 0,
5108fc1b 8915 htab->function_stub_size);
b49e97c9
TS
8916 }
8917 }
8918 }
8919
0a44bf69
RS
8920 /* The psABI says that the dynamic relocations must be sorted in
8921 increasing order of r_symndx. The VxWorks EABI doesn't require
8922 this, and because the code below handles REL rather than RELA
8923 relocations, using it for VxWorks would be outright harmful. */
8924 if (!htab->is_vxworks)
b49e97c9 8925 {
0a44bf69
RS
8926 s = mips_elf_rel_dyn_section (info, FALSE);
8927 if (s != NULL
8928 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8929 {
8930 reldyn_sorting_bfd = output_bfd;
b49e97c9 8931
0a44bf69
RS
8932 if (ABI_64_P (output_bfd))
8933 qsort ((Elf64_External_Rel *) s->contents + 1,
8934 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8935 sort_dynamic_relocs_64);
8936 else
8937 qsort ((Elf32_External_Rel *) s->contents + 1,
8938 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8939 sort_dynamic_relocs);
8940 }
b49e97c9 8941 }
b49e97c9
TS
8942 }
8943
0a44bf69
RS
8944 if (htab->is_vxworks && htab->splt->size > 0)
8945 {
8946 if (info->shared)
8947 mips_vxworks_finish_shared_plt (output_bfd, info);
8948 else
8949 mips_vxworks_finish_exec_plt (output_bfd, info);
8950 }
b34976b6 8951 return TRUE;
b49e97c9
TS
8952}
8953
b49e97c9 8954
64543e1a
RS
8955/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8956
8957static void
9719ad41 8958mips_set_isa_flags (bfd *abfd)
b49e97c9 8959{
64543e1a 8960 flagword val;
b49e97c9
TS
8961
8962 switch (bfd_get_mach (abfd))
8963 {
8964 default:
8965 case bfd_mach_mips3000:
8966 val = E_MIPS_ARCH_1;
8967 break;
8968
8969 case bfd_mach_mips3900:
8970 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8971 break;
8972
8973 case bfd_mach_mips6000:
8974 val = E_MIPS_ARCH_2;
8975 break;
8976
8977 case bfd_mach_mips4000:
8978 case bfd_mach_mips4300:
8979 case bfd_mach_mips4400:
8980 case bfd_mach_mips4600:
8981 val = E_MIPS_ARCH_3;
8982 break;
8983
8984 case bfd_mach_mips4010:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8986 break;
8987
8988 case bfd_mach_mips4100:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8990 break;
8991
8992 case bfd_mach_mips4111:
8993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8994 break;
8995
00707a0e
RS
8996 case bfd_mach_mips4120:
8997 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8998 break;
8999
b49e97c9
TS
9000 case bfd_mach_mips4650:
9001 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9002 break;
9003
00707a0e
RS
9004 case bfd_mach_mips5400:
9005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9006 break;
9007
9008 case bfd_mach_mips5500:
9009 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9010 break;
9011
0d2e43ed
ILT
9012 case bfd_mach_mips9000:
9013 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9014 break;
9015
b49e97c9 9016 case bfd_mach_mips5000:
5a7ea749 9017 case bfd_mach_mips7000:
b49e97c9
TS
9018 case bfd_mach_mips8000:
9019 case bfd_mach_mips10000:
9020 case bfd_mach_mips12000:
9021 val = E_MIPS_ARCH_4;
9022 break;
9023
9024 case bfd_mach_mips5:
9025 val = E_MIPS_ARCH_5;
9026 break;
9027
9028 case bfd_mach_mips_sb1:
9029 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9030 break;
9031
9032 case bfd_mach_mipsisa32:
9033 val = E_MIPS_ARCH_32;
9034 break;
9035
9036 case bfd_mach_mipsisa64:
9037 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9038 break;
9039
9040 case bfd_mach_mipsisa32r2:
9041 val = E_MIPS_ARCH_32R2;
9042 break;
5f74bc13
CD
9043
9044 case bfd_mach_mipsisa64r2:
9045 val = E_MIPS_ARCH_64R2;
9046 break;
b49e97c9 9047 }
b49e97c9
TS
9048 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9049 elf_elfheader (abfd)->e_flags |= val;
9050
64543e1a
RS
9051}
9052
9053
9054/* The final processing done just before writing out a MIPS ELF object
9055 file. This gets the MIPS architecture right based on the machine
9056 number. This is used by both the 32-bit and the 64-bit ABI. */
9057
9058void
9719ad41
RS
9059_bfd_mips_elf_final_write_processing (bfd *abfd,
9060 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9061{
9062 unsigned int i;
9063 Elf_Internal_Shdr **hdrpp;
9064 const char *name;
9065 asection *sec;
9066
9067 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9068 is nonzero. This is for compatibility with old objects, which used
9069 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9070 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9071 mips_set_isa_flags (abfd);
9072
b49e97c9
TS
9073 /* Set the sh_info field for .gptab sections and other appropriate
9074 info for each special section. */
9075 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9076 i < elf_numsections (abfd);
9077 i++, hdrpp++)
9078 {
9079 switch ((*hdrpp)->sh_type)
9080 {
9081 case SHT_MIPS_MSYM:
9082 case SHT_MIPS_LIBLIST:
9083 sec = bfd_get_section_by_name (abfd, ".dynstr");
9084 if (sec != NULL)
9085 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9086 break;
9087
9088 case SHT_MIPS_GPTAB:
9089 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9090 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9091 BFD_ASSERT (name != NULL
9092 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9093 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9094 BFD_ASSERT (sec != NULL);
9095 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9096 break;
9097
9098 case SHT_MIPS_CONTENT:
9099 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9100 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9101 BFD_ASSERT (name != NULL
9102 && strncmp (name, ".MIPS.content",
9103 sizeof ".MIPS.content" - 1) == 0);
9104 sec = bfd_get_section_by_name (abfd,
9105 name + sizeof ".MIPS.content" - 1);
9106 BFD_ASSERT (sec != NULL);
9107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9108 break;
9109
9110 case SHT_MIPS_SYMBOL_LIB:
9111 sec = bfd_get_section_by_name (abfd, ".dynsym");
9112 if (sec != NULL)
9113 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9114 sec = bfd_get_section_by_name (abfd, ".liblist");
9115 if (sec != NULL)
9116 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9117 break;
9118
9119 case SHT_MIPS_EVENTS:
9120 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9121 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9122 BFD_ASSERT (name != NULL);
9123 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9124 sec = bfd_get_section_by_name (abfd,
9125 name + sizeof ".MIPS.events" - 1);
9126 else
9127 {
9128 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9129 sizeof ".MIPS.post_rel" - 1) == 0);
9130 sec = bfd_get_section_by_name (abfd,
9131 (name
9132 + sizeof ".MIPS.post_rel" - 1));
9133 }
9134 BFD_ASSERT (sec != NULL);
9135 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9136 break;
9137
9138 }
9139 }
9140}
9141\f
8dc1a139 9142/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9143 segments. */
9144
9145int
a6b96beb
AM
9146_bfd_mips_elf_additional_program_headers (bfd *abfd,
9147 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9148{
9149 asection *s;
9150 int ret = 0;
9151
9152 /* See if we need a PT_MIPS_REGINFO segment. */
9153 s = bfd_get_section_by_name (abfd, ".reginfo");
9154 if (s && (s->flags & SEC_LOAD))
9155 ++ret;
9156
9157 /* See if we need a PT_MIPS_OPTIONS segment. */
9158 if (IRIX_COMPAT (abfd) == ict_irix6
9159 && bfd_get_section_by_name (abfd,
9160 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9161 ++ret;
9162
9163 /* See if we need a PT_MIPS_RTPROC segment. */
9164 if (IRIX_COMPAT (abfd) == ict_irix5
9165 && bfd_get_section_by_name (abfd, ".dynamic")
9166 && bfd_get_section_by_name (abfd, ".mdebug"))
9167 ++ret;
9168
9169 return ret;
9170}
9171
8dc1a139 9172/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9173
b34976b6 9174bfd_boolean
9719ad41
RS
9175_bfd_mips_elf_modify_segment_map (bfd *abfd,
9176 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9177{
9178 asection *s;
9179 struct elf_segment_map *m, **pm;
9180 bfd_size_type amt;
9181
9182 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9183 segment. */
9184 s = bfd_get_section_by_name (abfd, ".reginfo");
9185 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9186 {
9187 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9188 if (m->p_type == PT_MIPS_REGINFO)
9189 break;
9190 if (m == NULL)
9191 {
9192 amt = sizeof *m;
9719ad41 9193 m = bfd_zalloc (abfd, amt);
b49e97c9 9194 if (m == NULL)
b34976b6 9195 return FALSE;
b49e97c9
TS
9196
9197 m->p_type = PT_MIPS_REGINFO;
9198 m->count = 1;
9199 m->sections[0] = s;
9200
9201 /* We want to put it after the PHDR and INTERP segments. */
9202 pm = &elf_tdata (abfd)->segment_map;
9203 while (*pm != NULL
9204 && ((*pm)->p_type == PT_PHDR
9205 || (*pm)->p_type == PT_INTERP))
9206 pm = &(*pm)->next;
9207
9208 m->next = *pm;
9209 *pm = m;
9210 }
9211 }
9212
9213 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9214 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9215 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9216 table. */
c1fd6598
AO
9217 if (NEWABI_P (abfd)
9218 /* On non-IRIX6 new abi, we'll have already created a segment
9219 for this section, so don't create another. I'm not sure this
9220 is not also the case for IRIX 6, but I can't test it right
9221 now. */
9222 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9223 {
9224 for (s = abfd->sections; s; s = s->next)
9225 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9226 break;
9227
9228 if (s)
9229 {
9230 struct elf_segment_map *options_segment;
9231
98a8deaf
RS
9232 pm = &elf_tdata (abfd)->segment_map;
9233 while (*pm != NULL
9234 && ((*pm)->p_type == PT_PHDR
9235 || (*pm)->p_type == PT_INTERP))
9236 pm = &(*pm)->next;
b49e97c9 9237
8ded5a0f
AM
9238 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9239 {
9240 amt = sizeof (struct elf_segment_map);
9241 options_segment = bfd_zalloc (abfd, amt);
9242 options_segment->next = *pm;
9243 options_segment->p_type = PT_MIPS_OPTIONS;
9244 options_segment->p_flags = PF_R;
9245 options_segment->p_flags_valid = TRUE;
9246 options_segment->count = 1;
9247 options_segment->sections[0] = s;
9248 *pm = options_segment;
9249 }
b49e97c9
TS
9250 }
9251 }
9252 else
9253 {
9254 if (IRIX_COMPAT (abfd) == ict_irix5)
9255 {
9256 /* If there are .dynamic and .mdebug sections, we make a room
9257 for the RTPROC header. FIXME: Rewrite without section names. */
9258 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9259 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9260 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9261 {
9262 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9263 if (m->p_type == PT_MIPS_RTPROC)
9264 break;
9265 if (m == NULL)
9266 {
9267 amt = sizeof *m;
9719ad41 9268 m = bfd_zalloc (abfd, amt);
b49e97c9 9269 if (m == NULL)
b34976b6 9270 return FALSE;
b49e97c9
TS
9271
9272 m->p_type = PT_MIPS_RTPROC;
9273
9274 s = bfd_get_section_by_name (abfd, ".rtproc");
9275 if (s == NULL)
9276 {
9277 m->count = 0;
9278 m->p_flags = 0;
9279 m->p_flags_valid = 1;
9280 }
9281 else
9282 {
9283 m->count = 1;
9284 m->sections[0] = s;
9285 }
9286
9287 /* We want to put it after the DYNAMIC segment. */
9288 pm = &elf_tdata (abfd)->segment_map;
9289 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9290 pm = &(*pm)->next;
9291 if (*pm != NULL)
9292 pm = &(*pm)->next;
9293
9294 m->next = *pm;
9295 *pm = m;
9296 }
9297 }
9298 }
8dc1a139 9299 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9300 .dynstr, .dynsym, and .hash sections, and everything in
9301 between. */
9302 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9303 pm = &(*pm)->next)
9304 if ((*pm)->p_type == PT_DYNAMIC)
9305 break;
9306 m = *pm;
9307 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9308 {
9309 /* For a normal mips executable the permissions for the PT_DYNAMIC
9310 segment are read, write and execute. We do that here since
9311 the code in elf.c sets only the read permission. This matters
9312 sometimes for the dynamic linker. */
9313 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9314 {
9315 m->p_flags = PF_R | PF_W | PF_X;
9316 m->p_flags_valid = 1;
9317 }
9318 }
9319 if (m != NULL
9320 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9321 {
9322 static const char *sec_names[] =
9323 {
9324 ".dynamic", ".dynstr", ".dynsym", ".hash"
9325 };
9326 bfd_vma low, high;
9327 unsigned int i, c;
9328 struct elf_segment_map *n;
9329
792b4a53 9330 low = ~(bfd_vma) 0;
b49e97c9
TS
9331 high = 0;
9332 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9333 {
9334 s = bfd_get_section_by_name (abfd, sec_names[i]);
9335 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9336 {
9337 bfd_size_type sz;
9338
9339 if (low > s->vma)
9340 low = s->vma;
eea6121a 9341 sz = s->size;
b49e97c9
TS
9342 if (high < s->vma + sz)
9343 high = s->vma + sz;
9344 }
9345 }
9346
9347 c = 0;
9348 for (s = abfd->sections; s != NULL; s = s->next)
9349 if ((s->flags & SEC_LOAD) != 0
9350 && s->vma >= low
eea6121a 9351 && s->vma + s->size <= high)
b49e97c9
TS
9352 ++c;
9353
9354 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9355 n = bfd_zalloc (abfd, amt);
b49e97c9 9356 if (n == NULL)
b34976b6 9357 return FALSE;
b49e97c9
TS
9358 *n = *m;
9359 n->count = c;
9360
9361 i = 0;
9362 for (s = abfd->sections; s != NULL; s = s->next)
9363 {
9364 if ((s->flags & SEC_LOAD) != 0
9365 && s->vma >= low
eea6121a 9366 && s->vma + s->size <= high)
b49e97c9
TS
9367 {
9368 n->sections[i] = s;
9369 ++i;
9370 }
9371 }
9372
9373 *pm = n;
9374 }
9375 }
9376
b34976b6 9377 return TRUE;
b49e97c9
TS
9378}
9379\f
9380/* Return the section that should be marked against GC for a given
9381 relocation. */
9382
9383asection *
9719ad41
RS
9384_bfd_mips_elf_gc_mark_hook (asection *sec,
9385 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9386 Elf_Internal_Rela *rel,
9387 struct elf_link_hash_entry *h,
9388 Elf_Internal_Sym *sym)
b49e97c9
TS
9389{
9390 /* ??? Do mips16 stub sections need to be handled special? */
9391
9392 if (h != NULL)
9393 {
1e2f5b6e 9394 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
9395 {
9396 case R_MIPS_GNU_VTINHERIT:
9397 case R_MIPS_GNU_VTENTRY:
9398 break;
9399
9400 default:
9401 switch (h->root.type)
9402 {
9403 case bfd_link_hash_defined:
9404 case bfd_link_hash_defweak:
9405 return h->root.u.def.section;
9406
9407 case bfd_link_hash_common:
9408 return h->root.u.c.p->section;
9409
9410 default:
9411 break;
9412 }
9413 }
9414 }
9415 else
1e2f5b6e 9416 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
9417
9418 return NULL;
9419}
9420
9421/* Update the got entry reference counts for the section being removed. */
9422
b34976b6 9423bfd_boolean
9719ad41
RS
9424_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9425 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9426 asection *sec ATTRIBUTE_UNUSED,
9427 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9428{
9429#if 0
9430 Elf_Internal_Shdr *symtab_hdr;
9431 struct elf_link_hash_entry **sym_hashes;
9432 bfd_signed_vma *local_got_refcounts;
9433 const Elf_Internal_Rela *rel, *relend;
9434 unsigned long r_symndx;
9435 struct elf_link_hash_entry *h;
9436
9437 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9438 sym_hashes = elf_sym_hashes (abfd);
9439 local_got_refcounts = elf_local_got_refcounts (abfd);
9440
9441 relend = relocs + sec->reloc_count;
9442 for (rel = relocs; rel < relend; rel++)
9443 switch (ELF_R_TYPE (abfd, rel->r_info))
9444 {
9445 case R_MIPS_GOT16:
9446 case R_MIPS_CALL16:
9447 case R_MIPS_CALL_HI16:
9448 case R_MIPS_CALL_LO16:
9449 case R_MIPS_GOT_HI16:
9450 case R_MIPS_GOT_LO16:
4a14403c
TS
9451 case R_MIPS_GOT_DISP:
9452 case R_MIPS_GOT_PAGE:
9453 case R_MIPS_GOT_OFST:
b49e97c9
TS
9454 /* ??? It would seem that the existing MIPS code does no sort
9455 of reference counting or whatnot on its GOT and PLT entries,
9456 so it is not possible to garbage collect them at this time. */
9457 break;
9458
9459 default:
9460 break;
9461 }
9462#endif
9463
b34976b6 9464 return TRUE;
b49e97c9
TS
9465}
9466\f
9467/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9468 hiding the old indirect symbol. Process additional relocation
9469 information. Also called for weakdefs, in which case we just let
9470 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9471
9472void
fcfa13d2 9473_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9474 struct elf_link_hash_entry *dir,
9475 struct elf_link_hash_entry *ind)
b49e97c9
TS
9476{
9477 struct mips_elf_link_hash_entry *dirmips, *indmips;
9478
fcfa13d2 9479 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9480
9481 if (ind->root.type != bfd_link_hash_indirect)
9482 return;
9483
9484 dirmips = (struct mips_elf_link_hash_entry *) dir;
9485 indmips = (struct mips_elf_link_hash_entry *) ind;
9486 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9487 if (indmips->readonly_reloc)
b34976b6 9488 dirmips->readonly_reloc = TRUE;
b49e97c9 9489 if (indmips->no_fn_stub)
b34976b6 9490 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9491
9492 if (dirmips->tls_type == 0)
9493 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9494}
9495
9496void
9719ad41
RS
9497_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9498 struct elf_link_hash_entry *entry,
9499 bfd_boolean force_local)
b49e97c9
TS
9500{
9501 bfd *dynobj;
9502 asection *got;
9503 struct mips_got_info *g;
9504 struct mips_elf_link_hash_entry *h;
7c5fcef7 9505
b49e97c9 9506 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9507 if (h->forced_local)
9508 return;
4b555070 9509 h->forced_local = force_local;
7c5fcef7 9510
b49e97c9 9511 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9512 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9513 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9514 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9515 {
c45a316a
AM
9516 if (g->next)
9517 {
9518 struct mips_got_entry e;
9519 struct mips_got_info *gg = g;
9520
9521 /* Since we're turning what used to be a global symbol into a
9522 local one, bump up the number of local entries of each GOT
9523 that had an entry for it. This will automatically decrease
9524 the number of global entries, since global_gotno is actually
9525 the upper limit of global entries. */
9526 e.abfd = dynobj;
9527 e.symndx = -1;
9528 e.d.h = h;
0f20cc35 9529 e.tls_type = 0;
c45a316a
AM
9530
9531 for (g = g->next; g != gg; g = g->next)
9532 if (htab_find (g->got_entries, &e))
9533 {
9534 BFD_ASSERT (g->global_gotno > 0);
9535 g->local_gotno++;
9536 g->global_gotno--;
9537 }
b49e97c9 9538
c45a316a
AM
9539 /* If this was a global symbol forced into the primary GOT, we
9540 no longer need an entry for it. We can't release the entry
9541 at this point, but we must at least stop counting it as one
9542 of the symbols that required a forced got entry. */
9543 if (h->root.got.offset == 2)
9544 {
9545 BFD_ASSERT (gg->assigned_gotno > 0);
9546 gg->assigned_gotno--;
9547 }
9548 }
9549 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9550 /* If we haven't got through GOT allocation yet, just bump up the
9551 number of local entries, as this symbol won't be counted as
9552 global. */
9553 g->local_gotno++;
9554 else if (h->root.got.offset == 1)
f4416af6 9555 {
c45a316a
AM
9556 /* If we're past non-multi-GOT allocation and this symbol had
9557 been marked for a global got entry, give it a local entry
9558 instead. */
9559 BFD_ASSERT (g->global_gotno > 0);
9560 g->local_gotno++;
9561 g->global_gotno--;
f4416af6
AO
9562 }
9563 }
f4416af6
AO
9564
9565 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9566}
9567\f
d01414a5
TS
9568#define PDR_SIZE 32
9569
b34976b6 9570bfd_boolean
9719ad41
RS
9571_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9572 struct bfd_link_info *info)
d01414a5
TS
9573{
9574 asection *o;
b34976b6 9575 bfd_boolean ret = FALSE;
d01414a5
TS
9576 unsigned char *tdata;
9577 size_t i, skip;
9578
9579 o = bfd_get_section_by_name (abfd, ".pdr");
9580 if (! o)
b34976b6 9581 return FALSE;
eea6121a 9582 if (o->size == 0)
b34976b6 9583 return FALSE;
eea6121a 9584 if (o->size % PDR_SIZE != 0)
b34976b6 9585 return FALSE;
d01414a5
TS
9586 if (o->output_section != NULL
9587 && bfd_is_abs_section (o->output_section))
b34976b6 9588 return FALSE;
d01414a5 9589
eea6121a 9590 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9591 if (! tdata)
b34976b6 9592 return FALSE;
d01414a5 9593
9719ad41 9594 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9595 info->keep_memory);
d01414a5
TS
9596 if (!cookie->rels)
9597 {
9598 free (tdata);
b34976b6 9599 return FALSE;
d01414a5
TS
9600 }
9601
9602 cookie->rel = cookie->rels;
9603 cookie->relend = cookie->rels + o->reloc_count;
9604
eea6121a 9605 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9606 {
c152c796 9607 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9608 {
9609 tdata[i] = 1;
9610 skip ++;
9611 }
9612 }
9613
9614 if (skip != 0)
9615 {
f0abc2a1 9616 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9617 o->size -= skip * PDR_SIZE;
b34976b6 9618 ret = TRUE;
d01414a5
TS
9619 }
9620 else
9621 free (tdata);
9622
9623 if (! info->keep_memory)
9624 free (cookie->rels);
9625
9626 return ret;
9627}
9628
b34976b6 9629bfd_boolean
9719ad41 9630_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9631{
9632 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9633 return TRUE;
9634 return FALSE;
53bfd6b4 9635}
d01414a5 9636
b34976b6 9637bfd_boolean
9719ad41
RS
9638_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9639 bfd_byte *contents)
d01414a5
TS
9640{
9641 bfd_byte *to, *from, *end;
9642 int i;
9643
9644 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9645 return FALSE;
d01414a5 9646
f0abc2a1 9647 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9648 return FALSE;
d01414a5
TS
9649
9650 to = contents;
eea6121a 9651 end = contents + sec->size;
d01414a5
TS
9652 for (from = contents, i = 0;
9653 from < end;
9654 from += PDR_SIZE, i++)
9655 {
f0abc2a1 9656 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9657 continue;
9658 if (to != from)
9659 memcpy (to, from, PDR_SIZE);
9660 to += PDR_SIZE;
9661 }
9662 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9663 sec->output_offset, sec->size);
b34976b6 9664 return TRUE;
d01414a5 9665}
53bfd6b4 9666\f
b49e97c9
TS
9667/* MIPS ELF uses a special find_nearest_line routine in order the
9668 handle the ECOFF debugging information. */
9669
9670struct mips_elf_find_line
9671{
9672 struct ecoff_debug_info d;
9673 struct ecoff_find_line i;
9674};
9675
b34976b6 9676bfd_boolean
9719ad41
RS
9677_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9678 asymbol **symbols, bfd_vma offset,
9679 const char **filename_ptr,
9680 const char **functionname_ptr,
9681 unsigned int *line_ptr)
b49e97c9
TS
9682{
9683 asection *msec;
9684
9685 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9686 filename_ptr, functionname_ptr,
9687 line_ptr))
b34976b6 9688 return TRUE;
b49e97c9
TS
9689
9690 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9691 filename_ptr, functionname_ptr,
9719ad41 9692 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9693 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9694 return TRUE;
b49e97c9
TS
9695
9696 msec = bfd_get_section_by_name (abfd, ".mdebug");
9697 if (msec != NULL)
9698 {
9699 flagword origflags;
9700 struct mips_elf_find_line *fi;
9701 const struct ecoff_debug_swap * const swap =
9702 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9703
9704 /* If we are called during a link, mips_elf_final_link may have
9705 cleared the SEC_HAS_CONTENTS field. We force it back on here
9706 if appropriate (which it normally will be). */
9707 origflags = msec->flags;
9708 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9709 msec->flags |= SEC_HAS_CONTENTS;
9710
9711 fi = elf_tdata (abfd)->find_line_info;
9712 if (fi == NULL)
9713 {
9714 bfd_size_type external_fdr_size;
9715 char *fraw_src;
9716 char *fraw_end;
9717 struct fdr *fdr_ptr;
9718 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9719
9719ad41 9720 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9721 if (fi == NULL)
9722 {
9723 msec->flags = origflags;
b34976b6 9724 return FALSE;
b49e97c9
TS
9725 }
9726
9727 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9728 {
9729 msec->flags = origflags;
b34976b6 9730 return FALSE;
b49e97c9
TS
9731 }
9732
9733 /* Swap in the FDR information. */
9734 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9735 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9736 if (fi->d.fdr == NULL)
9737 {
9738 msec->flags = origflags;
b34976b6 9739 return FALSE;
b49e97c9
TS
9740 }
9741 external_fdr_size = swap->external_fdr_size;
9742 fdr_ptr = fi->d.fdr;
9743 fraw_src = (char *) fi->d.external_fdr;
9744 fraw_end = (fraw_src
9745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9747 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9748
9749 elf_tdata (abfd)->find_line_info = fi;
9750
9751 /* Note that we don't bother to ever free this information.
9752 find_nearest_line is either called all the time, as in
9753 objdump -l, so the information should be saved, or it is
9754 rarely called, as in ld error messages, so the memory
9755 wasted is unimportant. Still, it would probably be a
9756 good idea for free_cached_info to throw it away. */
9757 }
9758
9759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9760 &fi->i, filename_ptr, functionname_ptr,
9761 line_ptr))
9762 {
9763 msec->flags = origflags;
b34976b6 9764 return TRUE;
b49e97c9
TS
9765 }
9766
9767 msec->flags = origflags;
9768 }
9769
9770 /* Fall back on the generic ELF find_nearest_line routine. */
9771
9772 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9773 filename_ptr, functionname_ptr,
9774 line_ptr);
9775}
4ab527b0
FF
9776
9777bfd_boolean
9778_bfd_mips_elf_find_inliner_info (bfd *abfd,
9779 const char **filename_ptr,
9780 const char **functionname_ptr,
9781 unsigned int *line_ptr)
9782{
9783 bfd_boolean found;
9784 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9785 functionname_ptr, line_ptr,
9786 & elf_tdata (abfd)->dwarf2_find_line_info);
9787 return found;
9788}
9789
b49e97c9
TS
9790\f
9791/* When are writing out the .options or .MIPS.options section,
9792 remember the bytes we are writing out, so that we can install the
9793 GP value in the section_processing routine. */
9794
b34976b6 9795bfd_boolean
9719ad41
RS
9796_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9797 const void *location,
9798 file_ptr offset, bfd_size_type count)
b49e97c9 9799{
cc2e31b9 9800 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9801 {
9802 bfd_byte *c;
9803
9804 if (elf_section_data (section) == NULL)
9805 {
9806 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9807 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9808 if (elf_section_data (section) == NULL)
b34976b6 9809 return FALSE;
b49e97c9 9810 }
f0abc2a1 9811 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9812 if (c == NULL)
9813 {
eea6121a 9814 c = bfd_zalloc (abfd, section->size);
b49e97c9 9815 if (c == NULL)
b34976b6 9816 return FALSE;
f0abc2a1 9817 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9818 }
9819
9719ad41 9820 memcpy (c + offset, location, count);
b49e97c9
TS
9821 }
9822
9823 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9824 count);
9825}
9826
9827/* This is almost identical to bfd_generic_get_... except that some
9828 MIPS relocations need to be handled specially. Sigh. */
9829
9830bfd_byte *
9719ad41
RS
9831_bfd_elf_mips_get_relocated_section_contents
9832 (bfd *abfd,
9833 struct bfd_link_info *link_info,
9834 struct bfd_link_order *link_order,
9835 bfd_byte *data,
9836 bfd_boolean relocatable,
9837 asymbol **symbols)
b49e97c9
TS
9838{
9839 /* Get enough memory to hold the stuff */
9840 bfd *input_bfd = link_order->u.indirect.section->owner;
9841 asection *input_section = link_order->u.indirect.section;
eea6121a 9842 bfd_size_type sz;
b49e97c9
TS
9843
9844 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9845 arelent **reloc_vector = NULL;
9846 long reloc_count;
9847
9848 if (reloc_size < 0)
9849 goto error_return;
9850
9719ad41 9851 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
9852 if (reloc_vector == NULL && reloc_size != 0)
9853 goto error_return;
9854
9855 /* read in the section */
eea6121a
AM
9856 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9857 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
9858 goto error_return;
9859
b49e97c9
TS
9860 reloc_count = bfd_canonicalize_reloc (input_bfd,
9861 input_section,
9862 reloc_vector,
9863 symbols);
9864 if (reloc_count < 0)
9865 goto error_return;
9866
9867 if (reloc_count > 0)
9868 {
9869 arelent **parent;
9870 /* for mips */
9871 int gp_found;
9872 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9873
9874 {
9875 struct bfd_hash_entry *h;
9876 struct bfd_link_hash_entry *lh;
9877 /* Skip all this stuff if we aren't mixing formats. */
9878 if (abfd && input_bfd
9879 && abfd->xvec == input_bfd->xvec)
9880 lh = 0;
9881 else
9882 {
b34976b6 9883 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
9884 lh = (struct bfd_link_hash_entry *) h;
9885 }
9886 lookup:
9887 if (lh)
9888 {
9889 switch (lh->type)
9890 {
9891 case bfd_link_hash_undefined:
9892 case bfd_link_hash_undefweak:
9893 case bfd_link_hash_common:
9894 gp_found = 0;
9895 break;
9896 case bfd_link_hash_defined:
9897 case bfd_link_hash_defweak:
9898 gp_found = 1;
9899 gp = lh->u.def.value;
9900 break;
9901 case bfd_link_hash_indirect:
9902 case bfd_link_hash_warning:
9903 lh = lh->u.i.link;
9904 /* @@FIXME ignoring warning for now */
9905 goto lookup;
9906 case bfd_link_hash_new:
9907 default:
9908 abort ();
9909 }
9910 }
9911 else
9912 gp_found = 0;
9913 }
9914 /* end mips */
9719ad41 9915 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 9916 {
9719ad41 9917 char *error_message = NULL;
b49e97c9
TS
9918 bfd_reloc_status_type r;
9919
9920 /* Specific to MIPS: Deal with relocation types that require
9921 knowing the gp of the output bfd. */
9922 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 9923
8236346f
EC
9924 /* If we've managed to find the gp and have a special
9925 function for the relocation then go ahead, else default
9926 to the generic handling. */
9927 if (gp_found
9928 && (*parent)->howto->special_function
9929 == _bfd_mips_elf32_gprel16_reloc)
9930 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9931 input_section, relocatable,
9932 data, gp);
9933 else
86324f90 9934 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
9935 input_section,
9936 relocatable ? abfd : NULL,
9937 &error_message);
b49e97c9 9938
1049f94e 9939 if (relocatable)
b49e97c9
TS
9940 {
9941 asection *os = input_section->output_section;
9942
9943 /* A partial link, so keep the relocs */
9944 os->orelocation[os->reloc_count] = *parent;
9945 os->reloc_count++;
9946 }
9947
9948 if (r != bfd_reloc_ok)
9949 {
9950 switch (r)
9951 {
9952 case bfd_reloc_undefined:
9953 if (!((*link_info->callbacks->undefined_symbol)
9954 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 9955 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
9956 goto error_return;
9957 break;
9958 case bfd_reloc_dangerous:
9719ad41 9959 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
9960 if (!((*link_info->callbacks->reloc_dangerous)
9961 (link_info, error_message, input_bfd, input_section,
9962 (*parent)->address)))
9963 goto error_return;
9964 break;
9965 case bfd_reloc_overflow:
9966 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
9967 (link_info, NULL,
9968 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
9969 (*parent)->howto->name, (*parent)->addend,
9970 input_bfd, input_section, (*parent)->address)))
9971 goto error_return;
9972 break;
9973 case bfd_reloc_outofrange:
9974 default:
9975 abort ();
9976 break;
9977 }
9978
9979 }
9980 }
9981 }
9982 if (reloc_vector != NULL)
9983 free (reloc_vector);
9984 return data;
9985
9986error_return:
9987 if (reloc_vector != NULL)
9988 free (reloc_vector);
9989 return NULL;
9990}
9991\f
9992/* Create a MIPS ELF linker hash table. */
9993
9994struct bfd_link_hash_table *
9719ad41 9995_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
9996{
9997 struct mips_elf_link_hash_table *ret;
9998 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9999
9719ad41
RS
10000 ret = bfd_malloc (amt);
10001 if (ret == NULL)
b49e97c9
TS
10002 return NULL;
10003
66eb6687
AM
10004 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10005 mips_elf_link_hash_newfunc,
10006 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10007 {
e2d34d7d 10008 free (ret);
b49e97c9
TS
10009 return NULL;
10010 }
10011
10012#if 0
10013 /* We no longer use this. */
10014 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10015 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10016#endif
10017 ret->procedure_count = 0;
10018 ret->compact_rel_size = 0;
b34976b6 10019 ret->use_rld_obj_head = FALSE;
b49e97c9 10020 ret->rld_value = 0;
b34976b6 10021 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10022 ret->is_vxworks = FALSE;
10023 ret->srelbss = NULL;
10024 ret->sdynbss = NULL;
10025 ret->srelplt = NULL;
10026 ret->srelplt2 = NULL;
10027 ret->sgotplt = NULL;
10028 ret->splt = NULL;
10029 ret->plt_header_size = 0;
10030 ret->plt_entry_size = 0;
5108fc1b 10031 ret->function_stub_size = 0;
b49e97c9
TS
10032
10033 return &ret->root.root;
10034}
0a44bf69
RS
10035
10036/* Likewise, but indicate that the target is VxWorks. */
10037
10038struct bfd_link_hash_table *
10039_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10040{
10041 struct bfd_link_hash_table *ret;
10042
10043 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10044 if (ret)
10045 {
10046 struct mips_elf_link_hash_table *htab;
10047
10048 htab = (struct mips_elf_link_hash_table *) ret;
10049 htab->is_vxworks = 1;
10050 }
10051 return ret;
10052}
b49e97c9
TS
10053\f
10054/* We need to use a special link routine to handle the .reginfo and
10055 the .mdebug sections. We need to merge all instances of these
10056 sections together, not write them all out sequentially. */
10057
b34976b6 10058bfd_boolean
9719ad41 10059_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10060{
b49e97c9
TS
10061 asection *o;
10062 struct bfd_link_order *p;
10063 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10064 asection *rtproc_sec;
10065 Elf32_RegInfo reginfo;
10066 struct ecoff_debug_info debug;
7a2a6943
NC
10067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10068 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10069 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10070 void *mdebug_handle = NULL;
b49e97c9
TS
10071 asection *s;
10072 EXTR esym;
10073 unsigned int i;
10074 bfd_size_type amt;
0a44bf69 10075 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10076
10077 static const char * const secname[] =
10078 {
10079 ".text", ".init", ".fini", ".data",
10080 ".rodata", ".sdata", ".sbss", ".bss"
10081 };
10082 static const int sc[] =
10083 {
10084 scText, scInit, scFini, scData,
10085 scRData, scSData, scSBss, scBss
10086 };
10087
b49e97c9
TS
10088 /* We'd carefully arranged the dynamic symbol indices, and then the
10089 generic size_dynamic_sections renumbered them out from under us.
10090 Rather than trying somehow to prevent the renumbering, just do
10091 the sort again. */
0a44bf69 10092 htab = mips_elf_hash_table (info);
b49e97c9
TS
10093 if (elf_hash_table (info)->dynamic_sections_created)
10094 {
10095 bfd *dynobj;
10096 asection *got;
10097 struct mips_got_info *g;
7a2a6943 10098 bfd_size_type dynsecsymcount;
b49e97c9
TS
10099
10100 /* When we resort, we must tell mips_elf_sort_hash_table what
10101 the lowest index it may use is. That's the number of section
10102 symbols we're going to add. The generic ELF linker only
10103 adds these symbols when building a shared object. Note that
10104 we count the sections after (possibly) removing the .options
10105 section above. */
7a2a6943 10106
5108fc1b 10107 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10108 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10109 return FALSE;
b49e97c9
TS
10110
10111 /* Make sure we didn't grow the global .got region. */
10112 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10113 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10114 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10115
10116 if (g->global_gotsym != NULL)
10117 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10118 - g->global_gotsym->dynindx)
10119 <= g->global_gotno);
10120 }
10121
b49e97c9
TS
10122 /* Get a value for the GP register. */
10123 if (elf_gp (abfd) == 0)
10124 {
10125 struct bfd_link_hash_entry *h;
10126
b34976b6 10127 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10128 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10129 elf_gp (abfd) = (h->u.def.value
10130 + h->u.def.section->output_section->vma
10131 + h->u.def.section->output_offset);
0a44bf69
RS
10132 else if (htab->is_vxworks
10133 && (h = bfd_link_hash_lookup (info->hash,
10134 "_GLOBAL_OFFSET_TABLE_",
10135 FALSE, FALSE, TRUE))
10136 && h->type == bfd_link_hash_defined)
10137 elf_gp (abfd) = (h->u.def.section->output_section->vma
10138 + h->u.def.section->output_offset
10139 + h->u.def.value);
1049f94e 10140 else if (info->relocatable)
b49e97c9
TS
10141 {
10142 bfd_vma lo = MINUS_ONE;
10143
10144 /* Find the GP-relative section with the lowest offset. */
9719ad41 10145 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10146 if (o->vma < lo
10147 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10148 lo = o->vma;
10149
10150 /* And calculate GP relative to that. */
0a44bf69 10151 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10152 }
10153 else
10154 {
10155 /* If the relocate_section function needs to do a reloc
10156 involving the GP value, it should make a reloc_dangerous
10157 callback to warn that GP is not defined. */
10158 }
10159 }
10160
10161 /* Go through the sections and collect the .reginfo and .mdebug
10162 information. */
10163 reginfo_sec = NULL;
10164 mdebug_sec = NULL;
10165 gptab_data_sec = NULL;
10166 gptab_bss_sec = NULL;
9719ad41 10167 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10168 {
10169 if (strcmp (o->name, ".reginfo") == 0)
10170 {
10171 memset (&reginfo, 0, sizeof reginfo);
10172
10173 /* We have found the .reginfo section in the output file.
10174 Look through all the link_orders comprising it and merge
10175 the information together. */
8423293d 10176 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10177 {
10178 asection *input_section;
10179 bfd *input_bfd;
10180 Elf32_External_RegInfo ext;
10181 Elf32_RegInfo sub;
10182
10183 if (p->type != bfd_indirect_link_order)
10184 {
10185 if (p->type == bfd_data_link_order)
10186 continue;
10187 abort ();
10188 }
10189
10190 input_section = p->u.indirect.section;
10191 input_bfd = input_section->owner;
10192
b49e97c9 10193 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10194 &ext, 0, sizeof ext))
b34976b6 10195 return FALSE;
b49e97c9
TS
10196
10197 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10198
10199 reginfo.ri_gprmask |= sub.ri_gprmask;
10200 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10201 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10202 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10203 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10204
10205 /* ri_gp_value is set by the function
10206 mips_elf32_section_processing when the section is
10207 finally written out. */
10208
10209 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10210 elf_link_input_bfd ignores this section. */
10211 input_section->flags &= ~SEC_HAS_CONTENTS;
10212 }
10213
10214 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10215 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10216
10217 /* Skip this section later on (I don't think this currently
10218 matters, but someday it might). */
8423293d 10219 o->map_head.link_order = NULL;
b49e97c9
TS
10220
10221 reginfo_sec = o;
10222 }
10223
10224 if (strcmp (o->name, ".mdebug") == 0)
10225 {
10226 struct extsym_info einfo;
10227 bfd_vma last;
10228
10229 /* We have found the .mdebug section in the output file.
10230 Look through all the link_orders comprising it and merge
10231 the information together. */
10232 symhdr->magic = swap->sym_magic;
10233 /* FIXME: What should the version stamp be? */
10234 symhdr->vstamp = 0;
10235 symhdr->ilineMax = 0;
10236 symhdr->cbLine = 0;
10237 symhdr->idnMax = 0;
10238 symhdr->ipdMax = 0;
10239 symhdr->isymMax = 0;
10240 symhdr->ioptMax = 0;
10241 symhdr->iauxMax = 0;
10242 symhdr->issMax = 0;
10243 symhdr->issExtMax = 0;
10244 symhdr->ifdMax = 0;
10245 symhdr->crfd = 0;
10246 symhdr->iextMax = 0;
10247
10248 /* We accumulate the debugging information itself in the
10249 debug_info structure. */
10250 debug.line = NULL;
10251 debug.external_dnr = NULL;
10252 debug.external_pdr = NULL;
10253 debug.external_sym = NULL;
10254 debug.external_opt = NULL;
10255 debug.external_aux = NULL;
10256 debug.ss = NULL;
10257 debug.ssext = debug.ssext_end = NULL;
10258 debug.external_fdr = NULL;
10259 debug.external_rfd = NULL;
10260 debug.external_ext = debug.external_ext_end = NULL;
10261
10262 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10263 if (mdebug_handle == NULL)
b34976b6 10264 return FALSE;
b49e97c9
TS
10265
10266 esym.jmptbl = 0;
10267 esym.cobol_main = 0;
10268 esym.weakext = 0;
10269 esym.reserved = 0;
10270 esym.ifd = ifdNil;
10271 esym.asym.iss = issNil;
10272 esym.asym.st = stLocal;
10273 esym.asym.reserved = 0;
10274 esym.asym.index = indexNil;
10275 last = 0;
10276 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10277 {
10278 esym.asym.sc = sc[i];
10279 s = bfd_get_section_by_name (abfd, secname[i]);
10280 if (s != NULL)
10281 {
10282 esym.asym.value = s->vma;
eea6121a 10283 last = s->vma + s->size;
b49e97c9
TS
10284 }
10285 else
10286 esym.asym.value = last;
10287 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10288 secname[i], &esym))
b34976b6 10289 return FALSE;
b49e97c9
TS
10290 }
10291
8423293d 10292 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10293 {
10294 asection *input_section;
10295 bfd *input_bfd;
10296 const struct ecoff_debug_swap *input_swap;
10297 struct ecoff_debug_info input_debug;
10298 char *eraw_src;
10299 char *eraw_end;
10300
10301 if (p->type != bfd_indirect_link_order)
10302 {
10303 if (p->type == bfd_data_link_order)
10304 continue;
10305 abort ();
10306 }
10307
10308 input_section = p->u.indirect.section;
10309 input_bfd = input_section->owner;
10310
10311 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10312 || (get_elf_backend_data (input_bfd)
10313 ->elf_backend_ecoff_debug_swap) == NULL)
10314 {
10315 /* I don't know what a non MIPS ELF bfd would be
10316 doing with a .mdebug section, but I don't really
10317 want to deal with it. */
10318 continue;
10319 }
10320
10321 input_swap = (get_elf_backend_data (input_bfd)
10322 ->elf_backend_ecoff_debug_swap);
10323
eea6121a 10324 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10325
10326 /* The ECOFF linking code expects that we have already
10327 read in the debugging information and set up an
10328 ecoff_debug_info structure, so we do that now. */
10329 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10330 &input_debug))
b34976b6 10331 return FALSE;
b49e97c9
TS
10332
10333 if (! (bfd_ecoff_debug_accumulate
10334 (mdebug_handle, abfd, &debug, swap, input_bfd,
10335 &input_debug, input_swap, info)))
b34976b6 10336 return FALSE;
b49e97c9
TS
10337
10338 /* Loop through the external symbols. For each one with
10339 interesting information, try to find the symbol in
10340 the linker global hash table and save the information
10341 for the output external symbols. */
10342 eraw_src = input_debug.external_ext;
10343 eraw_end = (eraw_src
10344 + (input_debug.symbolic_header.iextMax
10345 * input_swap->external_ext_size));
10346 for (;
10347 eraw_src < eraw_end;
10348 eraw_src += input_swap->external_ext_size)
10349 {
10350 EXTR ext;
10351 const char *name;
10352 struct mips_elf_link_hash_entry *h;
10353
9719ad41 10354 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10355 if (ext.asym.sc == scNil
10356 || ext.asym.sc == scUndefined
10357 || ext.asym.sc == scSUndefined)
10358 continue;
10359
10360 name = input_debug.ssext + ext.asym.iss;
10361 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10362 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10363 if (h == NULL || h->esym.ifd != -2)
10364 continue;
10365
10366 if (ext.ifd != -1)
10367 {
10368 BFD_ASSERT (ext.ifd
10369 < input_debug.symbolic_header.ifdMax);
10370 ext.ifd = input_debug.ifdmap[ext.ifd];
10371 }
10372
10373 h->esym = ext;
10374 }
10375
10376 /* Free up the information we just read. */
10377 free (input_debug.line);
10378 free (input_debug.external_dnr);
10379 free (input_debug.external_pdr);
10380 free (input_debug.external_sym);
10381 free (input_debug.external_opt);
10382 free (input_debug.external_aux);
10383 free (input_debug.ss);
10384 free (input_debug.ssext);
10385 free (input_debug.external_fdr);
10386 free (input_debug.external_rfd);
10387 free (input_debug.external_ext);
10388
10389 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10390 elf_link_input_bfd ignores this section. */
10391 input_section->flags &= ~SEC_HAS_CONTENTS;
10392 }
10393
10394 if (SGI_COMPAT (abfd) && info->shared)
10395 {
10396 /* Create .rtproc section. */
10397 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10398 if (rtproc_sec == NULL)
10399 {
10400 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10401 | SEC_LINKER_CREATED | SEC_READONLY);
10402
3496cb2a
L
10403 rtproc_sec = bfd_make_section_with_flags (abfd,
10404 ".rtproc",
10405 flags);
b49e97c9 10406 if (rtproc_sec == NULL
b49e97c9 10407 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10408 return FALSE;
b49e97c9
TS
10409 }
10410
10411 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10412 info, rtproc_sec,
10413 &debug))
b34976b6 10414 return FALSE;
b49e97c9
TS
10415 }
10416
10417 /* Build the external symbol information. */
10418 einfo.abfd = abfd;
10419 einfo.info = info;
10420 einfo.debug = &debug;
10421 einfo.swap = swap;
b34976b6 10422 einfo.failed = FALSE;
b49e97c9 10423 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10424 mips_elf_output_extsym, &einfo);
b49e97c9 10425 if (einfo.failed)
b34976b6 10426 return FALSE;
b49e97c9
TS
10427
10428 /* Set the size of the .mdebug section. */
eea6121a 10429 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10430
10431 /* Skip this section later on (I don't think this currently
10432 matters, but someday it might). */
8423293d 10433 o->map_head.link_order = NULL;
b49e97c9
TS
10434
10435 mdebug_sec = o;
10436 }
10437
10438 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10439 {
10440 const char *subname;
10441 unsigned int c;
10442 Elf32_gptab *tab;
10443 Elf32_External_gptab *ext_tab;
10444 unsigned int j;
10445
10446 /* The .gptab.sdata and .gptab.sbss sections hold
10447 information describing how the small data area would
10448 change depending upon the -G switch. These sections
10449 not used in executables files. */
1049f94e 10450 if (! info->relocatable)
b49e97c9 10451 {
8423293d 10452 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10453 {
10454 asection *input_section;
10455
10456 if (p->type != bfd_indirect_link_order)
10457 {
10458 if (p->type == bfd_data_link_order)
10459 continue;
10460 abort ();
10461 }
10462
10463 input_section = p->u.indirect.section;
10464
10465 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10466 elf_link_input_bfd ignores this section. */
10467 input_section->flags &= ~SEC_HAS_CONTENTS;
10468 }
10469
10470 /* Skip this section later on (I don't think this
10471 currently matters, but someday it might). */
8423293d 10472 o->map_head.link_order = NULL;
b49e97c9
TS
10473
10474 /* Really remove the section. */
5daa8fe7 10475 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10476 --abfd->section_count;
10477
10478 continue;
10479 }
10480
10481 /* There is one gptab for initialized data, and one for
10482 uninitialized data. */
10483 if (strcmp (o->name, ".gptab.sdata") == 0)
10484 gptab_data_sec = o;
10485 else if (strcmp (o->name, ".gptab.sbss") == 0)
10486 gptab_bss_sec = o;
10487 else
10488 {
10489 (*_bfd_error_handler)
10490 (_("%s: illegal section name `%s'"),
10491 bfd_get_filename (abfd), o->name);
10492 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10493 return FALSE;
b49e97c9
TS
10494 }
10495
10496 /* The linker script always combines .gptab.data and
10497 .gptab.sdata into .gptab.sdata, and likewise for
10498 .gptab.bss and .gptab.sbss. It is possible that there is
10499 no .sdata or .sbss section in the output file, in which
10500 case we must change the name of the output section. */
10501 subname = o->name + sizeof ".gptab" - 1;
10502 if (bfd_get_section_by_name (abfd, subname) == NULL)
10503 {
10504 if (o == gptab_data_sec)
10505 o->name = ".gptab.data";
10506 else
10507 o->name = ".gptab.bss";
10508 subname = o->name + sizeof ".gptab" - 1;
10509 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10510 }
10511
10512 /* Set up the first entry. */
10513 c = 1;
10514 amt = c * sizeof (Elf32_gptab);
9719ad41 10515 tab = bfd_malloc (amt);
b49e97c9 10516 if (tab == NULL)
b34976b6 10517 return FALSE;
b49e97c9
TS
10518 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10519 tab[0].gt_header.gt_unused = 0;
10520
10521 /* Combine the input sections. */
8423293d 10522 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10523 {
10524 asection *input_section;
10525 bfd *input_bfd;
10526 bfd_size_type size;
10527 unsigned long last;
10528 bfd_size_type gpentry;
10529
10530 if (p->type != bfd_indirect_link_order)
10531 {
10532 if (p->type == bfd_data_link_order)
10533 continue;
10534 abort ();
10535 }
10536
10537 input_section = p->u.indirect.section;
10538 input_bfd = input_section->owner;
10539
10540 /* Combine the gptab entries for this input section one
10541 by one. We know that the input gptab entries are
10542 sorted by ascending -G value. */
eea6121a 10543 size = input_section->size;
b49e97c9
TS
10544 last = 0;
10545 for (gpentry = sizeof (Elf32_External_gptab);
10546 gpentry < size;
10547 gpentry += sizeof (Elf32_External_gptab))
10548 {
10549 Elf32_External_gptab ext_gptab;
10550 Elf32_gptab int_gptab;
10551 unsigned long val;
10552 unsigned long add;
b34976b6 10553 bfd_boolean exact;
b49e97c9
TS
10554 unsigned int look;
10555
10556 if (! (bfd_get_section_contents
9719ad41
RS
10557 (input_bfd, input_section, &ext_gptab, gpentry,
10558 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10559 {
10560 free (tab);
b34976b6 10561 return FALSE;
b49e97c9
TS
10562 }
10563
10564 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10565 &int_gptab);
10566 val = int_gptab.gt_entry.gt_g_value;
10567 add = int_gptab.gt_entry.gt_bytes - last;
10568
b34976b6 10569 exact = FALSE;
b49e97c9
TS
10570 for (look = 1; look < c; look++)
10571 {
10572 if (tab[look].gt_entry.gt_g_value >= val)
10573 tab[look].gt_entry.gt_bytes += add;
10574
10575 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10576 exact = TRUE;
b49e97c9
TS
10577 }
10578
10579 if (! exact)
10580 {
10581 Elf32_gptab *new_tab;
10582 unsigned int max;
10583
10584 /* We need a new table entry. */
10585 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10586 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10587 if (new_tab == NULL)
10588 {
10589 free (tab);
b34976b6 10590 return FALSE;
b49e97c9
TS
10591 }
10592 tab = new_tab;
10593 tab[c].gt_entry.gt_g_value = val;
10594 tab[c].gt_entry.gt_bytes = add;
10595
10596 /* Merge in the size for the next smallest -G
10597 value, since that will be implied by this new
10598 value. */
10599 max = 0;
10600 for (look = 1; look < c; look++)
10601 {
10602 if (tab[look].gt_entry.gt_g_value < val
10603 && (max == 0
10604 || (tab[look].gt_entry.gt_g_value
10605 > tab[max].gt_entry.gt_g_value)))
10606 max = look;
10607 }
10608 if (max != 0)
10609 tab[c].gt_entry.gt_bytes +=
10610 tab[max].gt_entry.gt_bytes;
10611
10612 ++c;
10613 }
10614
10615 last = int_gptab.gt_entry.gt_bytes;
10616 }
10617
10618 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10619 elf_link_input_bfd ignores this section. */
10620 input_section->flags &= ~SEC_HAS_CONTENTS;
10621 }
10622
10623 /* The table must be sorted by -G value. */
10624 if (c > 2)
10625 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10626
10627 /* Swap out the table. */
10628 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10629 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10630 if (ext_tab == NULL)
10631 {
10632 free (tab);
b34976b6 10633 return FALSE;
b49e97c9
TS
10634 }
10635
10636 for (j = 0; j < c; j++)
10637 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10638 free (tab);
10639
eea6121a 10640 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10641 o->contents = (bfd_byte *) ext_tab;
10642
10643 /* Skip this section later on (I don't think this currently
10644 matters, but someday it might). */
8423293d 10645 o->map_head.link_order = NULL;
b49e97c9
TS
10646 }
10647 }
10648
10649 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10650 if (!bfd_elf_final_link (abfd, info))
b34976b6 10651 return FALSE;
b49e97c9
TS
10652
10653 /* Now write out the computed sections. */
10654
9719ad41 10655 if (reginfo_sec != NULL)
b49e97c9
TS
10656 {
10657 Elf32_External_RegInfo ext;
10658
10659 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10660 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10661 return FALSE;
b49e97c9
TS
10662 }
10663
9719ad41 10664 if (mdebug_sec != NULL)
b49e97c9
TS
10665 {
10666 BFD_ASSERT (abfd->output_has_begun);
10667 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10668 swap, info,
10669 mdebug_sec->filepos))
b34976b6 10670 return FALSE;
b49e97c9
TS
10671
10672 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10673 }
10674
9719ad41 10675 if (gptab_data_sec != NULL)
b49e97c9
TS
10676 {
10677 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10678 gptab_data_sec->contents,
eea6121a 10679 0, gptab_data_sec->size))
b34976b6 10680 return FALSE;
b49e97c9
TS
10681 }
10682
9719ad41 10683 if (gptab_bss_sec != NULL)
b49e97c9
TS
10684 {
10685 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10686 gptab_bss_sec->contents,
eea6121a 10687 0, gptab_bss_sec->size))
b34976b6 10688 return FALSE;
b49e97c9
TS
10689 }
10690
10691 if (SGI_COMPAT (abfd))
10692 {
10693 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10694 if (rtproc_sec != NULL)
10695 {
10696 if (! bfd_set_section_contents (abfd, rtproc_sec,
10697 rtproc_sec->contents,
eea6121a 10698 0, rtproc_sec->size))
b34976b6 10699 return FALSE;
b49e97c9
TS
10700 }
10701 }
10702
b34976b6 10703 return TRUE;
b49e97c9
TS
10704}
10705\f
64543e1a
RS
10706/* Structure for saying that BFD machine EXTENSION extends BASE. */
10707
10708struct mips_mach_extension {
10709 unsigned long extension, base;
10710};
10711
10712
10713/* An array describing how BFD machines relate to one another. The entries
10714 are ordered topologically with MIPS I extensions listed last. */
10715
10716static const struct mips_mach_extension mips_mach_extensions[] = {
10717 /* MIPS64 extensions. */
5f74bc13 10718 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10719 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10720
10721 /* MIPS V extensions. */
10722 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10723
10724 /* R10000 extensions. */
10725 { bfd_mach_mips12000, bfd_mach_mips10000 },
10726
10727 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10728 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10729 better to allow vr5400 and vr5500 code to be merged anyway, since
10730 many libraries will just use the core ISA. Perhaps we could add
10731 some sort of ASE flag if this ever proves a problem. */
10732 { bfd_mach_mips5500, bfd_mach_mips5400 },
10733 { bfd_mach_mips5400, bfd_mach_mips5000 },
10734
10735 /* MIPS IV extensions. */
10736 { bfd_mach_mips5, bfd_mach_mips8000 },
10737 { bfd_mach_mips10000, bfd_mach_mips8000 },
10738 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10739 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10740 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10741
10742 /* VR4100 extensions. */
10743 { bfd_mach_mips4120, bfd_mach_mips4100 },
10744 { bfd_mach_mips4111, bfd_mach_mips4100 },
10745
10746 /* MIPS III extensions. */
10747 { bfd_mach_mips8000, bfd_mach_mips4000 },
10748 { bfd_mach_mips4650, bfd_mach_mips4000 },
10749 { bfd_mach_mips4600, bfd_mach_mips4000 },
10750 { bfd_mach_mips4400, bfd_mach_mips4000 },
10751 { bfd_mach_mips4300, bfd_mach_mips4000 },
10752 { bfd_mach_mips4100, bfd_mach_mips4000 },
10753 { bfd_mach_mips4010, bfd_mach_mips4000 },
10754
10755 /* MIPS32 extensions. */
10756 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10757
10758 /* MIPS II extensions. */
10759 { bfd_mach_mips4000, bfd_mach_mips6000 },
10760 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10761
10762 /* MIPS I extensions. */
10763 { bfd_mach_mips6000, bfd_mach_mips3000 },
10764 { bfd_mach_mips3900, bfd_mach_mips3000 }
10765};
10766
10767
10768/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10769
10770static bfd_boolean
9719ad41 10771mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10772{
10773 size_t i;
10774
c5211a54
RS
10775 if (extension == base)
10776 return TRUE;
10777
10778 if (base == bfd_mach_mipsisa32
10779 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10780 return TRUE;
10781
10782 if (base == bfd_mach_mipsisa32r2
10783 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10784 return TRUE;
10785
10786 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10787 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10788 {
10789 extension = mips_mach_extensions[i].base;
10790 if (extension == base)
10791 return TRUE;
10792 }
64543e1a 10793
c5211a54 10794 return FALSE;
64543e1a
RS
10795}
10796
10797
10798/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10799
b34976b6 10800static bfd_boolean
9719ad41 10801mips_32bit_flags_p (flagword flags)
00707a0e 10802{
64543e1a
RS
10803 return ((flags & EF_MIPS_32BITMODE) != 0
10804 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10805 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10806 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10807 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10808 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10809 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10810}
10811
64543e1a 10812
b49e97c9
TS
10813/* Merge backend specific data from an object file to the output
10814 object file when linking. */
10815
b34976b6 10816bfd_boolean
9719ad41 10817_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10818{
10819 flagword old_flags;
10820 flagword new_flags;
b34976b6
AM
10821 bfd_boolean ok;
10822 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10823 asection *sec;
10824
10825 /* Check if we have the same endianess */
82e51918 10826 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10827 {
10828 (*_bfd_error_handler)
d003868e
AM
10829 (_("%B: endianness incompatible with that of the selected emulation"),
10830 ibfd);
aa701218
AO
10831 return FALSE;
10832 }
b49e97c9
TS
10833
10834 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10835 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10836 return TRUE;
b49e97c9 10837
aa701218
AO
10838 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10839 {
10840 (*_bfd_error_handler)
d003868e
AM
10841 (_("%B: ABI is incompatible with that of the selected emulation"),
10842 ibfd);
aa701218
AO
10843 return FALSE;
10844 }
10845
b49e97c9
TS
10846 new_flags = elf_elfheader (ibfd)->e_flags;
10847 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10848 old_flags = elf_elfheader (obfd)->e_flags;
10849
10850 if (! elf_flags_init (obfd))
10851 {
b34976b6 10852 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
10853 elf_elfheader (obfd)->e_flags = new_flags;
10854 elf_elfheader (obfd)->e_ident[EI_CLASS]
10855 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10856
10857 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
10858 && (bfd_get_arch_info (obfd)->the_default
10859 || mips_mach_extends_p (bfd_get_mach (obfd),
10860 bfd_get_mach (ibfd))))
b49e97c9
TS
10861 {
10862 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10863 bfd_get_mach (ibfd)))
b34976b6 10864 return FALSE;
b49e97c9
TS
10865 }
10866
b34976b6 10867 return TRUE;
b49e97c9
TS
10868 }
10869
10870 /* Check flag compatibility. */
10871
10872 new_flags &= ~EF_MIPS_NOREORDER;
10873 old_flags &= ~EF_MIPS_NOREORDER;
10874
f4416af6
AO
10875 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10876 doesn't seem to matter. */
10877 new_flags &= ~EF_MIPS_XGOT;
10878 old_flags &= ~EF_MIPS_XGOT;
10879
98a8deaf
RS
10880 /* MIPSpro generates ucode info in n64 objects. Again, we should
10881 just be able to ignore this. */
10882 new_flags &= ~EF_MIPS_UCODE;
10883 old_flags &= ~EF_MIPS_UCODE;
10884
0a44bf69
RS
10885 /* Don't care about the PIC flags from dynamic objects; they are
10886 PIC by design. */
10887 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10888 && (ibfd->flags & DYNAMIC) != 0)
10889 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10890
b49e97c9 10891 if (new_flags == old_flags)
b34976b6 10892 return TRUE;
b49e97c9
TS
10893
10894 /* Check to see if the input BFD actually contains any sections.
10895 If not, its flags may not have been initialised either, but it cannot
10896 actually cause any incompatibility. */
10897 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10898 {
10899 /* Ignore synthetic sections and empty .text, .data and .bss sections
10900 which are automatically generated by gas. */
10901 if (strcmp (sec->name, ".reginfo")
10902 && strcmp (sec->name, ".mdebug")
eea6121a 10903 && (sec->size != 0
d13d89fa
NS
10904 || (strcmp (sec->name, ".text")
10905 && strcmp (sec->name, ".data")
10906 && strcmp (sec->name, ".bss"))))
b49e97c9 10907 {
b34976b6 10908 null_input_bfd = FALSE;
b49e97c9
TS
10909 break;
10910 }
10911 }
10912 if (null_input_bfd)
b34976b6 10913 return TRUE;
b49e97c9 10914
b34976b6 10915 ok = TRUE;
b49e97c9 10916
143d77c5
EC
10917 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10918 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 10919 {
b49e97c9 10920 (*_bfd_error_handler)
d003868e
AM
10921 (_("%B: warning: linking PIC files with non-PIC files"),
10922 ibfd);
143d77c5 10923 ok = TRUE;
b49e97c9
TS
10924 }
10925
143d77c5
EC
10926 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10927 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10928 if (! (new_flags & EF_MIPS_PIC))
10929 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10930
10931 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10932 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 10933
64543e1a
RS
10934 /* Compare the ISAs. */
10935 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 10936 {
64543e1a 10937 (*_bfd_error_handler)
d003868e
AM
10938 (_("%B: linking 32-bit code with 64-bit code"),
10939 ibfd);
64543e1a
RS
10940 ok = FALSE;
10941 }
10942 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10943 {
10944 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10945 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 10946 {
64543e1a
RS
10947 /* Copy the architecture info from IBFD to OBFD. Also copy
10948 the 32-bit flag (if set) so that we continue to recognise
10949 OBFD as a 32-bit binary. */
10950 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10951 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10952 elf_elfheader (obfd)->e_flags
10953 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10954
10955 /* Copy across the ABI flags if OBFD doesn't use them
10956 and if that was what caused us to treat IBFD as 32-bit. */
10957 if ((old_flags & EF_MIPS_ABI) == 0
10958 && mips_32bit_flags_p (new_flags)
10959 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10960 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
10961 }
10962 else
10963 {
64543e1a 10964 /* The ISAs aren't compatible. */
b49e97c9 10965 (*_bfd_error_handler)
d003868e
AM
10966 (_("%B: linking %s module with previous %s modules"),
10967 ibfd,
64543e1a
RS
10968 bfd_printable_name (ibfd),
10969 bfd_printable_name (obfd));
b34976b6 10970 ok = FALSE;
b49e97c9 10971 }
b49e97c9
TS
10972 }
10973
64543e1a
RS
10974 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10975 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10976
10977 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
10978 does set EI_CLASS differently from any 32-bit ABI. */
10979 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10980 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10981 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10982 {
10983 /* Only error if both are set (to different values). */
10984 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10985 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10986 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10987 {
10988 (*_bfd_error_handler)
d003868e
AM
10989 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10990 ibfd,
b49e97c9
TS
10991 elf_mips_abi_name (ibfd),
10992 elf_mips_abi_name (obfd));
b34976b6 10993 ok = FALSE;
b49e97c9
TS
10994 }
10995 new_flags &= ~EF_MIPS_ABI;
10996 old_flags &= ~EF_MIPS_ABI;
10997 }
10998
fb39dac1
RS
10999 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11000 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11001 {
11002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11003
11004 new_flags &= ~ EF_MIPS_ARCH_ASE;
11005 old_flags &= ~ EF_MIPS_ARCH_ASE;
11006 }
11007
b49e97c9
TS
11008 /* Warn about any other mismatches */
11009 if (new_flags != old_flags)
11010 {
11011 (*_bfd_error_handler)
d003868e
AM
11012 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11013 ibfd, (unsigned long) new_flags,
b49e97c9 11014 (unsigned long) old_flags);
b34976b6 11015 ok = FALSE;
b49e97c9
TS
11016 }
11017
11018 if (! ok)
11019 {
11020 bfd_set_error (bfd_error_bad_value);
b34976b6 11021 return FALSE;
b49e97c9
TS
11022 }
11023
b34976b6 11024 return TRUE;
b49e97c9
TS
11025}
11026
11027/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11028
b34976b6 11029bfd_boolean
9719ad41 11030_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11031{
11032 BFD_ASSERT (!elf_flags_init (abfd)
11033 || elf_elfheader (abfd)->e_flags == flags);
11034
11035 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11036 elf_flags_init (abfd) = TRUE;
11037 return TRUE;
b49e97c9
TS
11038}
11039
b34976b6 11040bfd_boolean
9719ad41 11041_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11042{
9719ad41 11043 FILE *file = ptr;
b49e97c9
TS
11044
11045 BFD_ASSERT (abfd != NULL && ptr != NULL);
11046
11047 /* Print normal ELF private data. */
11048 _bfd_elf_print_private_bfd_data (abfd, ptr);
11049
11050 /* xgettext:c-format */
11051 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11052
11053 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11054 fprintf (file, _(" [abi=O32]"));
11055 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11056 fprintf (file, _(" [abi=O64]"));
11057 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11058 fprintf (file, _(" [abi=EABI32]"));
11059 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11060 fprintf (file, _(" [abi=EABI64]"));
11061 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11062 fprintf (file, _(" [abi unknown]"));
11063 else if (ABI_N32_P (abfd))
11064 fprintf (file, _(" [abi=N32]"));
11065 else if (ABI_64_P (abfd))
11066 fprintf (file, _(" [abi=64]"));
11067 else
11068 fprintf (file, _(" [no abi set]"));
11069
11070 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11071 fprintf (file, _(" [mips1]"));
11072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11073 fprintf (file, _(" [mips2]"));
11074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11075 fprintf (file, _(" [mips3]"));
11076 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11077 fprintf (file, _(" [mips4]"));
11078 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11079 fprintf (file, _(" [mips5]"));
11080 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11081 fprintf (file, _(" [mips32]"));
11082 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11083 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
11084 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11085 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
11086 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11087 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
11088 else
11089 fprintf (file, _(" [unknown ISA]"));
11090
40d32fc6
CD
11091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11092 fprintf (file, _(" [mdmx]"));
11093
11094 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11095 fprintf (file, _(" [mips16]"));
11096
b49e97c9
TS
11097 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11098 fprintf (file, _(" [32bitmode]"));
11099 else
11100 fprintf (file, _(" [not 32bitmode]"));
11101
11102 fputc ('\n', file);
11103
b34976b6 11104 return TRUE;
b49e97c9 11105}
2f89ff8d 11106
b35d266b 11107const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11108{
7dcb9820
AM
11109 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11110 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 11111 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
11112 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11113 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11114 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 11115 { NULL, 0, 0, 0, 0 }
2f89ff8d 11116};
5e2b0d47
NC
11117
11118/* Ensure that the STO_OPTIONAL flag is copied into h->other,
11119 even if this is not a defintion of the symbol. */
11120void
11121_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11122 const Elf_Internal_Sym *isym,
11123 bfd_boolean definition,
11124 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11125{
11126 if (! definition
11127 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11128 h->other |= STO_OPTIONAL;
11129}
12ac1cf5
NC
11130
11131/* Decide whether an undefined symbol is special and can be ignored.
11132 This is the case for OPTIONAL symbols on IRIX. */
11133bfd_boolean
11134_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11135{
11136 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11137}
e0764319
NC
11138
11139bfd_boolean
11140_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11141{
11142 return (sym->st_shndx == SHN_COMMON
11143 || sym->st_shndx == SHN_MIPS_ACOMMON
11144 || sym->st_shndx == SHN_MIPS_SCOMMON);
11145}
This page took 0.929311 seconds and 4 git commands to generate.