Delete duplicate target short-cuts to dynamic sections
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
b49e97c9 313 long min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 317 long max_unref_got_dynindx;
b49e97c9
TS
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321};
322
1bbce132
MR
323/* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328struct plt_entry
329{
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347};
348
b49e97c9
TS
349/* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352struct mips_elf_link_hash_entry
353{
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
861fb55a
DJ
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
b49e97c9
TS
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
b49e97c9
TS
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
b49e97c9
TS
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
7c5fcef7 377
634835ae
RS
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
6ccf4795
RS
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
71782a75
RS
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
861fb55a
DJ
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
71782a75
RS
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
861fb55a
DJ
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
1bbce132
MR
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
b49e97c9
TS
416};
417
418/* MIPS ELF linker hash table. */
419
420struct mips_elf_link_hash_table
421{
422 struct elf_link_hash_table root;
861fb55a 423
b49e97c9
TS
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
861fb55a 426
b49e97c9
TS
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
861fb55a 429
e6aea42d
MR
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 432 bfd_boolean use_rld_obj_head;
861fb55a 433
b4082c70
DD
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
861fb55a 436
b49e97c9 437 /* This is set if we see any mips16 stub sections. */
b34976b6 438 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
833794fc
MR
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
0a44bf69
RS
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
861fb55a 448
0e53d9da
AN
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
861fb55a 451
0a44bf69
RS
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
0a44bf69 456 asection *srelplt2;
4e41d0d7 457 asection *sstubs;
861fb55a 458
a8028dd0
RS
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
861fb55a 461
d222d210
RS
462 /* The global symbol in the GOT with the lowest index in the dynamic
463 symbol table. */
464 struct elf_link_hash_entry *global_gotsym;
465
861fb55a 466 /* The size of the PLT header in bytes. */
0a44bf69 467 bfd_vma plt_header_size;
861fb55a 468
1bbce132
MR
469 /* The size of a standard PLT entry in bytes. */
470 bfd_vma plt_mips_entry_size;
471
472 /* The size of a compressed PLT entry in bytes. */
473 bfd_vma plt_comp_entry_size;
474
475 /* The offset of the next standard PLT entry to create. */
476 bfd_vma plt_mips_offset;
477
478 /* The offset of the next compressed PLT entry to create. */
479 bfd_vma plt_comp_offset;
480
481 /* The index of the next .got.plt entry to create. */
482 bfd_vma plt_got_index;
861fb55a 483
33bb52fb
RS
484 /* The number of functions that need a lazy-binding stub. */
485 bfd_vma lazy_stub_count;
861fb55a 486
5108fc1b
RS
487 /* The size of a function stub entry in bytes. */
488 bfd_vma function_stub_size;
861fb55a
DJ
489
490 /* The number of reserved entries at the beginning of the GOT. */
491 unsigned int reserved_gotno;
492
493 /* The section used for mips_elf_la25_stub trampolines.
494 See the comment above that structure for details. */
495 asection *strampoline;
496
497 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
498 pairs. */
499 htab_t la25_stubs;
500
501 /* A function FN (NAME, IS, OS) that creates a new input section
502 called NAME and links it to output section OS. If IS is nonnull,
503 the new section should go immediately before it, otherwise it
504 should go at the (current) beginning of OS.
505
506 The function returns the new section on success, otherwise it
507 returns null. */
508 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
509
510 /* Small local sym cache. */
511 struct sym_cache sym_cache;
1bbce132
MR
512
513 /* Is the PLT header compressed? */
514 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
515};
516
4dfe6ac6
NC
517/* Get the MIPS ELF linker hash table from a link_info structure. */
518
519#define mips_elf_hash_table(p) \
520 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
521 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
522
861fb55a 523/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
524struct mips_htab_traverse_info
525{
861fb55a
DJ
526 /* The usual link-wide information. */
527 struct bfd_link_info *info;
528 bfd *output_bfd;
529
530 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
531 bfd_boolean error;
b49e97c9
TS
532};
533
6ae68ba3
MR
534/* MIPS ELF private object data. */
535
536struct mips_elf_obj_tdata
537{
538 /* Generic ELF private object data. */
539 struct elf_obj_tdata root;
540
541 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
542 bfd *abi_fp_bfd;
ee227692 543
b60bf9be
CF
544 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
545 bfd *abi_msa_bfd;
546
351cdf24
MF
547 /* The abiflags for this object. */
548 Elf_Internal_ABIFlags_v0 abiflags;
549 bfd_boolean abiflags_valid;
550
ee227692
RS
551 /* The GOT requirements of input bfds. */
552 struct mips_got_info *got;
698600e4
AM
553
554 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
555 included directly in this one, but there's no point to wasting
556 the memory just for the infrequently called find_nearest_line. */
557 struct mips_elf_find_line *find_line_info;
558
559 /* An array of stub sections indexed by symbol number. */
560 asection **local_stubs;
561 asection **local_call_stubs;
562
563 /* The Irix 5 support uses two virtual sections, which represent
564 text/data symbols defined in dynamic objects. */
565 asymbol *elf_data_symbol;
566 asymbol *elf_text_symbol;
567 asection *elf_data_section;
568 asection *elf_text_section;
6ae68ba3
MR
569};
570
571/* Get MIPS ELF private object data from BFD's tdata. */
572
573#define mips_elf_tdata(bfd) \
574 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
575
0f20cc35
DJ
576#define TLS_RELOC_P(r_type) \
577 (r_type == R_MIPS_TLS_DTPMOD32 \
578 || r_type == R_MIPS_TLS_DTPMOD64 \
579 || r_type == R_MIPS_TLS_DTPREL32 \
580 || r_type == R_MIPS_TLS_DTPREL64 \
581 || r_type == R_MIPS_TLS_GD \
582 || r_type == R_MIPS_TLS_LDM \
583 || r_type == R_MIPS_TLS_DTPREL_HI16 \
584 || r_type == R_MIPS_TLS_DTPREL_LO16 \
585 || r_type == R_MIPS_TLS_GOTTPREL \
586 || r_type == R_MIPS_TLS_TPREL32 \
587 || r_type == R_MIPS_TLS_TPREL64 \
588 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 589 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
590 || r_type == R_MIPS16_TLS_GD \
591 || r_type == R_MIPS16_TLS_LDM \
592 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
593 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GOTTPREL \
595 || r_type == R_MIPS16_TLS_TPREL_HI16 \
596 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
597 || r_type == R_MICROMIPS_TLS_GD \
598 || r_type == R_MICROMIPS_TLS_LDM \
599 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
600 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GOTTPREL \
602 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 604
b49e97c9
TS
605/* Structure used to pass information to mips_elf_output_extsym. */
606
607struct extsym_info
608{
9e4aeb93
RS
609 bfd *abfd;
610 struct bfd_link_info *info;
b49e97c9
TS
611 struct ecoff_debug_info *debug;
612 const struct ecoff_debug_swap *swap;
b34976b6 613 bfd_boolean failed;
b49e97c9
TS
614};
615
8dc1a139 616/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
617
618static const char * const mips_elf_dynsym_rtproc_names[] =
619{
620 "_procedure_table",
621 "_procedure_string_table",
622 "_procedure_table_size",
623 NULL
624};
625
626/* These structures are used to generate the .compact_rel section on
8dc1a139 627 IRIX5. */
b49e97c9
TS
628
629typedef struct
630{
631 unsigned long id1; /* Always one? */
632 unsigned long num; /* Number of compact relocation entries. */
633 unsigned long id2; /* Always two? */
634 unsigned long offset; /* The file offset of the first relocation. */
635 unsigned long reserved0; /* Zero? */
636 unsigned long reserved1; /* Zero? */
637} Elf32_compact_rel;
638
639typedef struct
640{
641 bfd_byte id1[4];
642 bfd_byte num[4];
643 bfd_byte id2[4];
644 bfd_byte offset[4];
645 bfd_byte reserved0[4];
646 bfd_byte reserved1[4];
647} Elf32_External_compact_rel;
648
649typedef struct
650{
651 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
652 unsigned int rtype : 4; /* Relocation types. See below. */
653 unsigned int dist2to : 8;
654 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
655 unsigned long konst; /* KONST field. See below. */
656 unsigned long vaddr; /* VADDR to be relocated. */
657} Elf32_crinfo;
658
659typedef struct
660{
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666} Elf32_crinfo2;
667
668typedef struct
669{
670 bfd_byte info[4];
671 bfd_byte konst[4];
672 bfd_byte vaddr[4];
673} Elf32_External_crinfo;
674
675typedef struct
676{
677 bfd_byte info[4];
678 bfd_byte konst[4];
679} Elf32_External_crinfo2;
680
681/* These are the constants used to swap the bitfields in a crinfo. */
682
683#define CRINFO_CTYPE (0x1)
684#define CRINFO_CTYPE_SH (31)
685#define CRINFO_RTYPE (0xf)
686#define CRINFO_RTYPE_SH (27)
687#define CRINFO_DIST2TO (0xff)
688#define CRINFO_DIST2TO_SH (19)
689#define CRINFO_RELVADDR (0x7ffff)
690#define CRINFO_RELVADDR_SH (0)
691
692/* A compact relocation info has long (3 words) or short (2 words)
693 formats. A short format doesn't have VADDR field and relvaddr
694 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
695#define CRF_MIPS_LONG 1
696#define CRF_MIPS_SHORT 0
697
698/* There are 4 types of compact relocation at least. The value KONST
699 has different meaning for each type:
700
701 (type) (konst)
702 CT_MIPS_REL32 Address in data
703 CT_MIPS_WORD Address in word (XXX)
704 CT_MIPS_GPHI_LO GP - vaddr
705 CT_MIPS_JMPAD Address to jump
706 */
707
708#define CRT_MIPS_REL32 0xa
709#define CRT_MIPS_WORD 0xb
710#define CRT_MIPS_GPHI_LO 0xc
711#define CRT_MIPS_JMPAD 0xd
712
713#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
714#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
715#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
716#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
717\f
718/* The structure of the runtime procedure descriptor created by the
719 loader for use by the static exception system. */
720
721typedef struct runtime_pdr {
ae9a127f
NC
722 bfd_vma adr; /* Memory address of start of procedure. */
723 long regmask; /* Save register mask. */
724 long regoffset; /* Save register offset. */
725 long fregmask; /* Save floating point register mask. */
726 long fregoffset; /* Save floating point register offset. */
727 long frameoffset; /* Frame size. */
728 short framereg; /* Frame pointer register. */
729 short pcreg; /* Offset or reg of return pc. */
730 long irpss; /* Index into the runtime string table. */
b49e97c9 731 long reserved;
ae9a127f 732 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
733} RPDR, *pRPDR;
734#define cbRPDR sizeof (RPDR)
735#define rpdNil ((pRPDR) 0)
736\f
b15e6682 737static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
738 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
739 struct mips_elf_link_hash_entry *, int);
b34976b6 740static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 741 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
742static bfd_vma mips_elf_high
743 (bfd_vma);
b34976b6 744static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
745 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
746 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
747 bfd_vma *, asection *);
f4416af6 748static bfd_vma mips_elf_adjust_gp
9719ad41 749 (bfd *, struct mips_got_info *, bfd *);
f4416af6 750
b49e97c9
TS
751/* This will be used when we sort the dynamic relocation records. */
752static bfd *reldyn_sorting_bfd;
753
6d30f5b2
NC
754/* True if ABFD is for CPUs with load interlocking that include
755 non-MIPS1 CPUs and R3900. */
756#define LOAD_INTERLOCKS_P(abfd) \
757 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
758 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
759
cd8d5a82
CF
760/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
761 This should be safe for all architectures. We enable this predicate
762 for RM9000 for now. */
763#define JAL_TO_BAL_P(abfd) \
764 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
765
766/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
767 This should be safe for all architectures. We enable this predicate for
768 all CPUs. */
769#define JALR_TO_BAL_P(abfd) 1
770
38a7df63
CF
771/* True if ABFD is for CPUs that are faster if JR is converted to B.
772 This should be safe for all architectures. We enable this predicate for
773 all CPUs. */
774#define JR_TO_B_P(abfd) 1
775
861fb55a
DJ
776/* True if ABFD is a PIC object. */
777#define PIC_OBJECT_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
779
351cdf24
MF
780/* Nonzero if ABFD is using the O32 ABI. */
781#define ABI_O32_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
783
b49e97c9 784/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
785#define ABI_N32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
787
4a14403c 788/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 789#define ABI_64_P(abfd) \
141ff970 790 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 791
4a14403c
TS
792/* Nonzero if ABFD is using NewABI conventions. */
793#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
794
e8faf7d1
MR
795/* Nonzero if ABFD has microMIPS code. */
796#define MICROMIPS_P(abfd) \
797 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
798
7361da2c
AB
799/* Nonzero if ABFD is MIPS R6. */
800#define MIPSR6_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
802 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
803
4a14403c 804/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
805#define IRIX_COMPAT(abfd) \
806 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
807
b49e97c9
TS
808/* Whether we are trying to be compatible with IRIX at all. */
809#define SGI_COMPAT(abfd) \
810 (IRIX_COMPAT (abfd) != ict_none)
811
812/* The name of the options section. */
813#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 814 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 815
cc2e31b9
RS
816/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
817 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
818#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
819 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
820
351cdf24
MF
821/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
822#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.abiflags") == 0)
824
943284cc
DJ
825/* Whether the section is readonly. */
826#define MIPS_ELF_READONLY_SECTION(sec) \
827 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
828 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
829
b49e97c9 830/* The name of the stub section. */
ca07892d 831#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
832
833/* The size of an external REL relocation. */
834#define MIPS_ELF_REL_SIZE(abfd) \
835 (get_elf_backend_data (abfd)->s->sizeof_rel)
836
0a44bf69
RS
837/* The size of an external RELA relocation. */
838#define MIPS_ELF_RELA_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rela)
840
b49e97c9
TS
841/* The size of an external dynamic table entry. */
842#define MIPS_ELF_DYN_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_dyn)
844
845/* The size of a GOT entry. */
846#define MIPS_ELF_GOT_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->arch_size / 8)
848
b4082c70
DD
849/* The size of the .rld_map section. */
850#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b49e97c9
TS
853/* The size of a symbol-table entry. */
854#define MIPS_ELF_SYM_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->sizeof_sym)
856
857/* The default alignment for sections, as a power of two. */
858#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 859 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
860
861/* Get word-sized data. */
862#define MIPS_ELF_GET_WORD(abfd, ptr) \
863 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
864
865/* Put out word-sized data. */
866#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
867 (ABI_64_P (abfd) \
868 ? bfd_put_64 (abfd, val, ptr) \
869 : bfd_put_32 (abfd, val, ptr))
870
861fb55a
DJ
871/* The opcode for word-sized loads (LW or LD). */
872#define MIPS_ELF_LOAD_WORD(abfd) \
873 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
874
b49e97c9 875/* Add a dynamic symbol table-entry. */
9719ad41 876#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 877 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
878
879#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
880 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
881
0a44bf69
RS
882/* The name of the dynamic relocation section. */
883#define MIPS_ELF_REL_DYN_NAME(INFO) \
884 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
885
b49e97c9
TS
886/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
887 from smaller values. Start with zero, widen, *then* decrement. */
888#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 889#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 890
51e38d68
RS
891/* The value to write into got[1] for SVR4 targets, to identify it is
892 a GNU object. The dynamic linker can then use got[1] to store the
893 module pointer. */
894#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
895 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
896
f4416af6 897/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
898#define ELF_MIPS_GP_OFFSET(INFO) \
899 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
900
901/* The maximum size of the GOT for it to be addressable using 16-bit
902 offsets from $gp. */
0a44bf69 903#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 904
6a691779 905/* Instructions which appear in a stub. */
3d6746ca
DD
906#define STUB_LW(abfd) \
907 ((ABI_64_P (abfd) \
908 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
909 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 910#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 911#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 912#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
913#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
914#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
915#define STUB_LI16S(abfd, VAL) \
916 ((ABI_64_P (abfd) \
917 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
918 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
919
1bbce132
MR
920/* Likewise for the microMIPS ASE. */
921#define STUB_LW_MICROMIPS(abfd) \
922 (ABI_64_P (abfd) \
923 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
924 : 0xff3c8010) /* lw t9,0x8010(gp) */
925#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 926#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
927#define STUB_LUI_MICROMIPS(VAL) \
928 (0x41b80000 + (VAL)) /* lui t8,VAL */
929#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 930#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
931#define STUB_ORI_MICROMIPS(VAL) \
932 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
933#define STUB_LI16U_MICROMIPS(VAL) \
934 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
935#define STUB_LI16S_MICROMIPS(abfd, VAL) \
936 (ABI_64_P (abfd) \
937 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
938 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
939
5108fc1b
RS
940#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
941#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
942#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
943#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
944#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
945#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
946
947/* The name of the dynamic interpreter. This is put in the .interp
948 section. */
949
950#define ELF_DYNAMIC_INTERPRETER(abfd) \
951 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
952 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
953 : "/usr/lib/libc.so.1")
954
955#ifdef BFD64
ee6423ed
AO
956#define MNAME(bfd,pre,pos) \
957 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
958#define ELF_R_SYM(bfd, i) \
959 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
960#define ELF_R_TYPE(bfd, i) \
961 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
962#define ELF_R_INFO(bfd, s, t) \
963 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
964#else
ee6423ed 965#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
966#define ELF_R_SYM(bfd, i) \
967 (ELF32_R_SYM (i))
968#define ELF_R_TYPE(bfd, i) \
969 (ELF32_R_TYPE (i))
970#define ELF_R_INFO(bfd, s, t) \
971 (ELF32_R_INFO (s, t))
972#endif
973\f
974 /* The mips16 compiler uses a couple of special sections to handle
975 floating point arguments.
976
977 Section names that look like .mips16.fn.FNNAME contain stubs that
978 copy floating point arguments from the fp regs to the gp regs and
979 then jump to FNNAME. If any 32 bit function calls FNNAME, the
980 call should be redirected to the stub instead. If no 32 bit
981 function calls FNNAME, the stub should be discarded. We need to
982 consider any reference to the function, not just a call, because
983 if the address of the function is taken we will need the stub,
984 since the address might be passed to a 32 bit function.
985
986 Section names that look like .mips16.call.FNNAME contain stubs
987 that copy floating point arguments from the gp regs to the fp
988 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
989 then any 16 bit function that calls FNNAME should be redirected
990 to the stub instead. If FNNAME is not a 32 bit function, the
991 stub should be discarded.
992
993 .mips16.call.fp.FNNAME sections are similar, but contain stubs
994 which call FNNAME and then copy the return value from the fp regs
995 to the gp regs. These stubs store the return value in $18 while
996 calling FNNAME; any function which might call one of these stubs
997 must arrange to save $18 around the call. (This case is not
998 needed for 32 bit functions that call 16 bit functions, because
999 16 bit functions always return floating point values in both
1000 $f0/$f1 and $2/$3.)
1001
1002 Note that in all cases FNNAME might be defined statically.
1003 Therefore, FNNAME is not used literally. Instead, the relocation
1004 information will indicate which symbol the section is for.
1005
1006 We record any stubs that we find in the symbol table. */
1007
1008#define FN_STUB ".mips16.fn."
1009#define CALL_STUB ".mips16.call."
1010#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1011
1012#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1013#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1014#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1015\f
861fb55a 1016/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1017static const bfd_vma mips_o32_exec_plt0_entry[] =
1018{
861fb55a
DJ
1019 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1020 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1021 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1022 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1023 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1024 0x0018c082, /* srl $24, $24, 2 */
1025 0x0320f809, /* jalr $25 */
1026 0x2718fffe /* subu $24, $24, 2 */
1027};
1028
1029/* The format of the first PLT entry in an N32 executable. Different
1030 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1031static const bfd_vma mips_n32_exec_plt0_entry[] =
1032{
861fb55a
DJ
1033 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1034 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1035 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1036 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1037 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1038 0x0018c082, /* srl $24, $24, 2 */
1039 0x0320f809, /* jalr $25 */
1040 0x2718fffe /* subu $24, $24, 2 */
1041};
1042
1043/* The format of the first PLT entry in an N64 executable. Different
1044 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1045static const bfd_vma mips_n64_exec_plt0_entry[] =
1046{
861fb55a
DJ
1047 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1048 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1049 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1050 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1051 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1052 0x0018c0c2, /* srl $24, $24, 3 */
1053 0x0320f809, /* jalr $25 */
1054 0x2718fffe /* subu $24, $24, 2 */
1055};
1056
1bbce132
MR
1057/* The format of the microMIPS first PLT entry in an O32 executable.
1058 We rely on v0 ($2) rather than t8 ($24) to contain the address
1059 of the GOTPLT entry handled, so this stub may only be used when
1060 all the subsequent PLT entries are microMIPS code too.
1061
1062 The trailing NOP is for alignment and correct disassembly only. */
1063static const bfd_vma micromips_o32_exec_plt0_entry[] =
1064{
1065 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1066 0xff23, 0x0000, /* lw $25, 0($3) */
1067 0x0535, /* subu $2, $2, $3 */
1068 0x2525, /* srl $2, $2, 2 */
1069 0x3302, 0xfffe, /* subu $24, $2, 2 */
1070 0x0dff, /* move $15, $31 */
1071 0x45f9, /* jalrs $25 */
1072 0x0f83, /* move $28, $3 */
1073 0x0c00 /* nop */
1074};
1075
833794fc
MR
1076/* The format of the microMIPS first PLT entry in an O32 executable
1077 in the insn32 mode. */
1078static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1079{
1080 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1081 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1082 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1083 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1084 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1085 0x0318, 0x1040, /* srl $24, $24, 2 */
1086 0x03f9, 0x0f3c, /* jalr $25 */
1087 0x3318, 0xfffe /* subu $24, $24, 2 */
1088};
1089
1bbce132 1090/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1091static const bfd_vma mips_exec_plt_entry[] =
1092{
861fb55a
DJ
1093 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1094 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1095 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1096 0x03200008 /* jr $25 */
1097};
1098
7361da2c
AB
1099/* In the following PLT entry the JR and ADDIU instructions will
1100 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1101 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1102static const bfd_vma mipsr6_exec_plt_entry[] =
1103{
1104 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1105 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1106 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1107 0x03200009 /* jr $25 */
1108};
1109
1bbce132
MR
1110/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1111 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1112 directly addressable. */
1113static const bfd_vma mips16_o32_exec_plt_entry[] =
1114{
1115 0xb203, /* lw $2, 12($pc) */
1116 0x9a60, /* lw $3, 0($2) */
1117 0x651a, /* move $24, $2 */
1118 0xeb00, /* jr $3 */
1119 0x653b, /* move $25, $3 */
1120 0x6500, /* nop */
1121 0x0000, 0x0000 /* .word (.got.plt entry) */
1122};
1123
1124/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1125 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1126static const bfd_vma micromips_o32_exec_plt_entry[] =
1127{
1128 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1129 0xff22, 0x0000, /* lw $25, 0($2) */
1130 0x4599, /* jr $25 */
1131 0x0f02 /* move $24, $2 */
1132};
1133
833794fc
MR
1134/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1135static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1136{
1137 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1138 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1139 0x0019, 0x0f3c, /* jr $25 */
1140 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1141};
1142
0a44bf69 1143/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1144static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1145{
0a44bf69
RS
1146 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1147 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1148 0x8f390008, /* lw t9, 8(t9) */
1149 0x00000000, /* nop */
1150 0x03200008, /* jr t9 */
1151 0x00000000 /* nop */
1152};
1153
1154/* The format of subsequent PLT entries. */
6d30f5b2
NC
1155static const bfd_vma mips_vxworks_exec_plt_entry[] =
1156{
0a44bf69
RS
1157 0x10000000, /* b .PLT_resolver */
1158 0x24180000, /* li t8, <pltindex> */
1159 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1160 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1161 0x8f390000, /* lw t9, 0(t9) */
1162 0x00000000, /* nop */
1163 0x03200008, /* jr t9 */
1164 0x00000000 /* nop */
1165};
1166
1167/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1168static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1169{
0a44bf69
RS
1170 0x8f990008, /* lw t9, 8(gp) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000, /* nop */
1174 0x00000000, /* nop */
1175 0x00000000 /* nop */
1176};
1177
1178/* The format of subsequent PLT entries. */
6d30f5b2
NC
1179static const bfd_vma mips_vxworks_shared_plt_entry[] =
1180{
0a44bf69
RS
1181 0x10000000, /* b .PLT_resolver */
1182 0x24180000 /* li t8, <pltindex> */
1183};
1184\f
d21911ea
MR
1185/* microMIPS 32-bit opcode helper installer. */
1186
1187static void
1188bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1189{
1190 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1191 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1192}
1193
1194/* microMIPS 32-bit opcode helper retriever. */
1195
1196static bfd_vma
1197bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1198{
1199 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1200}
1201\f
b49e97c9
TS
1202/* Look up an entry in a MIPS ELF linker hash table. */
1203
1204#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1205 ((struct mips_elf_link_hash_entry *) \
1206 elf_link_hash_lookup (&(table)->root, (string), (create), \
1207 (copy), (follow)))
1208
1209/* Traverse a MIPS ELF linker hash table. */
1210
1211#define mips_elf_link_hash_traverse(table, func, info) \
1212 (elf_link_hash_traverse \
1213 (&(table)->root, \
9719ad41 1214 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1215 (info)))
1216
0f20cc35
DJ
1217/* Find the base offsets for thread-local storage in this object,
1218 for GD/LD and IE/LE respectively. */
1219
1220#define TP_OFFSET 0x7000
1221#define DTP_OFFSET 0x8000
1222
1223static bfd_vma
1224dtprel_base (struct bfd_link_info *info)
1225{
1226 /* If tls_sec is NULL, we should have signalled an error already. */
1227 if (elf_hash_table (info)->tls_sec == NULL)
1228 return 0;
1229 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1230}
1231
1232static bfd_vma
1233tprel_base (struct bfd_link_info *info)
1234{
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1239}
1240
b49e97c9
TS
1241/* Create an entry in a MIPS ELF linker hash table. */
1242
1243static struct bfd_hash_entry *
9719ad41
RS
1244mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1245 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1246{
1247 struct mips_elf_link_hash_entry *ret =
1248 (struct mips_elf_link_hash_entry *) entry;
1249
1250 /* Allocate the structure if it has not already been allocated by a
1251 subclass. */
9719ad41
RS
1252 if (ret == NULL)
1253 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1254 if (ret == NULL)
b49e97c9
TS
1255 return (struct bfd_hash_entry *) ret;
1256
1257 /* Call the allocation method of the superclass. */
1258 ret = ((struct mips_elf_link_hash_entry *)
1259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1260 table, string));
9719ad41 1261 if (ret != NULL)
b49e97c9
TS
1262 {
1263 /* Set local fields. */
1264 memset (&ret->esym, 0, sizeof (EXTR));
1265 /* We use -2 as a marker to indicate that the information has
1266 not been set. -1 means there is no associated ifd. */
1267 ret->esym.ifd = -2;
861fb55a 1268 ret->la25_stub = 0;
b49e97c9 1269 ret->possibly_dynamic_relocs = 0;
b49e97c9 1270 ret->fn_stub = NULL;
b49e97c9
TS
1271 ret->call_stub = NULL;
1272 ret->call_fp_stub = NULL;
634835ae 1273 ret->global_got_area = GGA_NONE;
6ccf4795 1274 ret->got_only_for_calls = TRUE;
71782a75 1275 ret->readonly_reloc = FALSE;
861fb55a 1276 ret->has_static_relocs = FALSE;
71782a75
RS
1277 ret->no_fn_stub = FALSE;
1278 ret->need_fn_stub = FALSE;
861fb55a 1279 ret->has_nonpic_branches = FALSE;
33bb52fb 1280 ret->needs_lazy_stub = FALSE;
1bbce132 1281 ret->use_plt_entry = FALSE;
b49e97c9
TS
1282 }
1283
1284 return (struct bfd_hash_entry *) ret;
1285}
f0abc2a1 1286
6ae68ba3
MR
1287/* Allocate MIPS ELF private object data. */
1288
1289bfd_boolean
1290_bfd_mips_elf_mkobject (bfd *abfd)
1291{
1292 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1293 MIPS_ELF_DATA);
1294}
1295
f0abc2a1 1296bfd_boolean
9719ad41 1297_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1298{
f592407e
AM
1299 if (!sec->used_by_bfd)
1300 {
1301 struct _mips_elf_section_data *sdata;
1302 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1303
f592407e
AM
1304 sdata = bfd_zalloc (abfd, amt);
1305 if (sdata == NULL)
1306 return FALSE;
1307 sec->used_by_bfd = sdata;
1308 }
f0abc2a1
AM
1309
1310 return _bfd_elf_new_section_hook (abfd, sec);
1311}
b49e97c9
TS
1312\f
1313/* Read ECOFF debugging information from a .mdebug section into a
1314 ecoff_debug_info structure. */
1315
b34976b6 1316bfd_boolean
9719ad41
RS
1317_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1318 struct ecoff_debug_info *debug)
b49e97c9
TS
1319{
1320 HDRR *symhdr;
1321 const struct ecoff_debug_swap *swap;
9719ad41 1322 char *ext_hdr;
b49e97c9
TS
1323
1324 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1325 memset (debug, 0, sizeof (*debug));
1326
9719ad41 1327 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1328 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1329 goto error_return;
1330
9719ad41 1331 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1332 swap->external_hdr_size))
b49e97c9
TS
1333 goto error_return;
1334
1335 symhdr = &debug->symbolic_header;
1336 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1337
1338 /* The symbolic header contains absolute file offsets and sizes to
1339 read. */
1340#define READ(ptr, offset, count, size, type) \
1341 if (symhdr->count == 0) \
1342 debug->ptr = NULL; \
1343 else \
1344 { \
1345 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1346 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1347 if (debug->ptr == NULL) \
1348 goto error_return; \
9719ad41 1349 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1350 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1351 goto error_return; \
1352 }
1353
1354 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1355 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1356 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1357 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1358 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1359 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1360 union aux_ext *);
1361 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1362 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1363 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1364 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1365 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1366#undef READ
1367
1368 debug->fdr = NULL;
b49e97c9 1369
b34976b6 1370 return TRUE;
b49e97c9
TS
1371
1372 error_return:
1373 if (ext_hdr != NULL)
1374 free (ext_hdr);
1375 if (debug->line != NULL)
1376 free (debug->line);
1377 if (debug->external_dnr != NULL)
1378 free (debug->external_dnr);
1379 if (debug->external_pdr != NULL)
1380 free (debug->external_pdr);
1381 if (debug->external_sym != NULL)
1382 free (debug->external_sym);
1383 if (debug->external_opt != NULL)
1384 free (debug->external_opt);
1385 if (debug->external_aux != NULL)
1386 free (debug->external_aux);
1387 if (debug->ss != NULL)
1388 free (debug->ss);
1389 if (debug->ssext != NULL)
1390 free (debug->ssext);
1391 if (debug->external_fdr != NULL)
1392 free (debug->external_fdr);
1393 if (debug->external_rfd != NULL)
1394 free (debug->external_rfd);
1395 if (debug->external_ext != NULL)
1396 free (debug->external_ext);
b34976b6 1397 return FALSE;
b49e97c9
TS
1398}
1399\f
1400/* Swap RPDR (runtime procedure table entry) for output. */
1401
1402static void
9719ad41 1403ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1404{
1405 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1406 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1407 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1408 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1409 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1410 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1411
1412 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1413 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1414
1415 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1416}
1417
1418/* Create a runtime procedure table from the .mdebug section. */
1419
b34976b6 1420static bfd_boolean
9719ad41
RS
1421mips_elf_create_procedure_table (void *handle, bfd *abfd,
1422 struct bfd_link_info *info, asection *s,
1423 struct ecoff_debug_info *debug)
b49e97c9
TS
1424{
1425 const struct ecoff_debug_swap *swap;
1426 HDRR *hdr = &debug->symbolic_header;
1427 RPDR *rpdr, *rp;
1428 struct rpdr_ext *erp;
9719ad41 1429 void *rtproc;
b49e97c9
TS
1430 struct pdr_ext *epdr;
1431 struct sym_ext *esym;
1432 char *ss, **sv;
1433 char *str;
1434 bfd_size_type size;
1435 bfd_size_type count;
1436 unsigned long sindex;
1437 unsigned long i;
1438 PDR pdr;
1439 SYMR sym;
1440 const char *no_name_func = _("static procedure (no name)");
1441
1442 epdr = NULL;
1443 rpdr = NULL;
1444 esym = NULL;
1445 ss = NULL;
1446 sv = NULL;
1447
1448 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1449
1450 sindex = strlen (no_name_func) + 1;
1451 count = hdr->ipdMax;
1452 if (count > 0)
1453 {
1454 size = swap->external_pdr_size;
1455
9719ad41 1456 epdr = bfd_malloc (size * count);
b49e97c9
TS
1457 if (epdr == NULL)
1458 goto error_return;
1459
9719ad41 1460 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1461 goto error_return;
1462
1463 size = sizeof (RPDR);
9719ad41 1464 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1465 if (rpdr == NULL)
1466 goto error_return;
1467
1468 size = sizeof (char *);
9719ad41 1469 sv = bfd_malloc (size * count);
b49e97c9
TS
1470 if (sv == NULL)
1471 goto error_return;
1472
1473 count = hdr->isymMax;
1474 size = swap->external_sym_size;
9719ad41 1475 esym = bfd_malloc (size * count);
b49e97c9
TS
1476 if (esym == NULL)
1477 goto error_return;
1478
9719ad41 1479 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1480 goto error_return;
1481
1482 count = hdr->issMax;
9719ad41 1483 ss = bfd_malloc (count);
b49e97c9
TS
1484 if (ss == NULL)
1485 goto error_return;
f075ee0c 1486 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1487 goto error_return;
1488
1489 count = hdr->ipdMax;
1490 for (i = 0; i < (unsigned long) count; i++, rp++)
1491 {
9719ad41
RS
1492 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1493 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1494 rp->adr = sym.value;
1495 rp->regmask = pdr.regmask;
1496 rp->regoffset = pdr.regoffset;
1497 rp->fregmask = pdr.fregmask;
1498 rp->fregoffset = pdr.fregoffset;
1499 rp->frameoffset = pdr.frameoffset;
1500 rp->framereg = pdr.framereg;
1501 rp->pcreg = pdr.pcreg;
1502 rp->irpss = sindex;
1503 sv[i] = ss + sym.iss;
1504 sindex += strlen (sv[i]) + 1;
1505 }
1506 }
1507
1508 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1509 size = BFD_ALIGN (size, 16);
9719ad41 1510 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1511 if (rtproc == NULL)
1512 {
1513 mips_elf_hash_table (info)->procedure_count = 0;
1514 goto error_return;
1515 }
1516
1517 mips_elf_hash_table (info)->procedure_count = count + 2;
1518
9719ad41 1519 erp = rtproc;
b49e97c9
TS
1520 memset (erp, 0, sizeof (struct rpdr_ext));
1521 erp++;
1522 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1523 strcpy (str, no_name_func);
1524 str += strlen (no_name_func) + 1;
1525 for (i = 0; i < count; i++)
1526 {
1527 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1528 strcpy (str, sv[i]);
1529 str += strlen (sv[i]) + 1;
1530 }
1531 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1532
1533 /* Set the size and contents of .rtproc section. */
eea6121a 1534 s->size = size;
9719ad41 1535 s->contents = rtproc;
b49e97c9
TS
1536
1537 /* Skip this section later on (I don't think this currently
1538 matters, but someday it might). */
8423293d 1539 s->map_head.link_order = NULL;
b49e97c9
TS
1540
1541 if (epdr != NULL)
1542 free (epdr);
1543 if (rpdr != NULL)
1544 free (rpdr);
1545 if (esym != NULL)
1546 free (esym);
1547 if (ss != NULL)
1548 free (ss);
1549 if (sv != NULL)
1550 free (sv);
1551
b34976b6 1552 return TRUE;
b49e97c9
TS
1553
1554 error_return:
1555 if (epdr != NULL)
1556 free (epdr);
1557 if (rpdr != NULL)
1558 free (rpdr);
1559 if (esym != NULL)
1560 free (esym);
1561 if (ss != NULL)
1562 free (ss);
1563 if (sv != NULL)
1564 free (sv);
b34976b6 1565 return FALSE;
b49e97c9 1566}
738e5348 1567\f
861fb55a
DJ
1568/* We're going to create a stub for H. Create a symbol for the stub's
1569 value and size, to help make the disassembly easier to read. */
1570
1571static bfd_boolean
1572mips_elf_create_stub_symbol (struct bfd_link_info *info,
1573 struct mips_elf_link_hash_entry *h,
1574 const char *prefix, asection *s, bfd_vma value,
1575 bfd_vma size)
1576{
a848a227 1577 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1578 struct bfd_link_hash_entry *bh;
1579 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1580 char *name;
1581 bfd_boolean res;
861fb55a 1582
a848a227 1583 if (micromips_p)
df58fc94
RS
1584 value |= 1;
1585
861fb55a 1586 /* Create a new symbol. */
e1fa0163 1587 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1588 bh = NULL;
e1fa0163
NC
1589 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1590 BSF_LOCAL, s, value, NULL,
1591 TRUE, FALSE, &bh);
1592 free (name);
1593 if (! res)
861fb55a
DJ
1594 return FALSE;
1595
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
a848a227
MR
1601 if (micromips_p)
1602 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1603 return TRUE;
1604}
1605
738e5348
RS
1606/* We're about to redefine H. Create a symbol to represent H's
1607 current value and size, to help make the disassembly easier
1608 to read. */
1609
1610static bfd_boolean
1611mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1612 struct mips_elf_link_hash_entry *h,
1613 const char *prefix)
1614{
1615 struct bfd_link_hash_entry *bh;
1616 struct elf_link_hash_entry *elfh;
e1fa0163 1617 char *name;
738e5348
RS
1618 asection *s;
1619 bfd_vma value;
e1fa0163 1620 bfd_boolean res;
738e5348
RS
1621
1622 /* Read the symbol's value. */
1623 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1624 || h->root.root.type == bfd_link_hash_defweak);
1625 s = h->root.root.u.def.section;
1626 value = h->root.root.u.def.value;
1627
1628 /* Create a new symbol. */
e1fa0163 1629 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1630 bh = NULL;
e1fa0163
NC
1631 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1632 BSF_LOCAL, s, value, NULL,
1633 TRUE, FALSE, &bh);
1634 free (name);
1635 if (! res)
738e5348
RS
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645}
1646
1647/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650static bfd_boolean
1651section_allows_mips16_refs_p (asection *section)
1652{
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660}
1661
1662/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666static unsigned long
cb4437b8
MR
1667mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
502e814e 1669 const Elf_Internal_Rela *relocs,
738e5348
RS
1670 const Elf_Internal_Rela *relend)
1671{
cb4437b8 1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1673 const Elf_Internal_Rela *rel;
1674
cb4437b8
MR
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687}
b49e97c9
TS
1688
1689/* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
861fb55a
DJ
1692static void
1693mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
b49e97c9 1695{
738e5348
RS
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
b49e97c9
TS
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
eea6121a 1711 h->fn_stub->size = 0;
b49e97c9
TS
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1715 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1716 }
1717
1718 if (h->call_stub != NULL
30c09090 1719 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1720 {
1721 /* We don't need the call_stub; this is a 16 bit function, so
1722 calls from other 16 bit functions are OK. Clobber the size
1723 to 0 to prevent it from being included in the link. */
eea6121a 1724 h->call_stub->size = 0;
b49e97c9
TS
1725 h->call_stub->flags &= ~SEC_RELOC;
1726 h->call_stub->reloc_count = 0;
1727 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1728 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1729 }
1730
1731 if (h->call_fp_stub != NULL
30c09090 1732 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1733 {
1734 /* We don't need the call_stub; this is a 16 bit function, so
1735 calls from other 16 bit functions are OK. Clobber the size
1736 to 0 to prevent it from being included in the link. */
eea6121a 1737 h->call_fp_stub->size = 0;
b49e97c9
TS
1738 h->call_fp_stub->flags &= ~SEC_RELOC;
1739 h->call_fp_stub->reloc_count = 0;
1740 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1741 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1742 }
861fb55a
DJ
1743}
1744
1745/* Hashtable callbacks for mips_elf_la25_stubs. */
1746
1747static hashval_t
1748mips_elf_la25_stub_hash (const void *entry_)
1749{
1750 const struct mips_elf_la25_stub *entry;
1751
1752 entry = (struct mips_elf_la25_stub *) entry_;
1753 return entry->h->root.root.u.def.section->id
1754 + entry->h->root.root.u.def.value;
1755}
1756
1757static int
1758mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1759{
1760 const struct mips_elf_la25_stub *entry1, *entry2;
1761
1762 entry1 = (struct mips_elf_la25_stub *) entry1_;
1763 entry2 = (struct mips_elf_la25_stub *) entry2_;
1764 return ((entry1->h->root.root.u.def.section
1765 == entry2->h->root.root.u.def.section)
1766 && (entry1->h->root.root.u.def.value
1767 == entry2->h->root.root.u.def.value));
1768}
1769
1770/* Called by the linker to set up the la25 stub-creation code. FN is
1771 the linker's implementation of add_stub_function. Return true on
1772 success. */
1773
1774bfd_boolean
1775_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1776 asection *(*fn) (const char *, asection *,
1777 asection *))
1778{
1779 struct mips_elf_link_hash_table *htab;
1780
1781 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1782 if (htab == NULL)
1783 return FALSE;
1784
861fb55a
DJ
1785 htab->add_stub_section = fn;
1786 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1787 mips_elf_la25_stub_eq, NULL);
1788 if (htab->la25_stubs == NULL)
1789 return FALSE;
1790
1791 return TRUE;
1792}
1793
1794/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1795 that it or its fn_stub might need $25 to be valid on entry.
1796 Note that MIPS16 functions set up $gp using PC-relative instructions,
1797 so they themselves never need $25 to be valid. Only non-MIPS16
1798 entry points are of interest here. */
861fb55a
DJ
1799
1800static bfd_boolean
1801mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1802{
1803 return ((h->root.root.type == bfd_link_hash_defined
1804 || h->root.root.type == bfd_link_hash_defweak)
1805 && h->root.def_regular
1806 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1807 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812}
1813
8f0c309a
CLT
1814/* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817static bfd_vma
1818mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820{
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832}
1833
861fb55a
DJ
1834/* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838static bfd_boolean
1839mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841{
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1848 if (htab == NULL)
1849 return FALSE;
861fb55a
DJ
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
8f0c309a 1858 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879}
1880
1881/* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885static bfd_boolean
1886mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888{
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1893 if (htab == NULL)
1894 return FALSE;
861fb55a
DJ
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916}
1917
1918/* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921static bfd_boolean
1922mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924{
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
861fb55a
DJ
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1939 if (htab == NULL)
1940 return FALSE;
1941
861fb55a
DJ
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
8f0c309a
CLT
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1964 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1965 value &= ~1;
8f0c309a
CLT
1966 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1967
861fb55a
DJ
1968 h->la25_stub = stub;
1969 return (use_trampoline_p
1970 ? mips_elf_add_la25_trampoline (stub, info)
1971 : mips_elf_add_la25_intro (stub, info));
1972}
1973
1974/* A mips_elf_link_hash_traverse callback that is called before sizing
1975 sections. DATA points to a mips_htab_traverse_info structure. */
1976
1977static bfd_boolean
1978mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1979{
1980 struct mips_htab_traverse_info *hti;
1981
1982 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1983 if (!bfd_link_relocatable (hti->info))
861fb55a 1984 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1985
861fb55a
DJ
1986 if (mips_elf_local_pic_function_p (h))
1987 {
ba85c43e
NC
1988 /* PR 12845: If H is in a section that has been garbage
1989 collected it will have its output section set to *ABS*. */
1990 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1991 return TRUE;
1992
861fb55a
DJ
1993 /* H is a function that might need $25 to be valid on entry.
1994 If we're creating a non-PIC relocatable object, mark H as
1995 being PIC. If we're creating a non-relocatable object with
1996 non-PIC branches and jumps to H, make sure that H has an la25
1997 stub. */
0e1862bb 1998 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
1999 {
2000 if (!PIC_OBJECT_P (hti->output_bfd))
2001 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2002 }
2003 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2004 {
2005 hti->error = TRUE;
2006 return FALSE;
2007 }
2008 }
b34976b6 2009 return TRUE;
b49e97c9
TS
2010}
2011\f
d6f16593
MR
2012/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2013 Most mips16 instructions are 16 bits, but these instructions
2014 are 32 bits.
2015
2016 The format of these instructions is:
2017
2018 +--------------+--------------------------------+
2019 | JALX | X| Imm 20:16 | Imm 25:21 |
2020 +--------------+--------------------------------+
2021 | Immediate 15:0 |
2022 +-----------------------------------------------+
2023
2024 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2025 Note that the immediate value in the first word is swapped.
2026
2027 When producing a relocatable object file, R_MIPS16_26 is
2028 handled mostly like R_MIPS_26. In particular, the addend is
2029 stored as a straight 26-bit value in a 32-bit instruction.
2030 (gas makes life simpler for itself by never adjusting a
2031 R_MIPS16_26 reloc to be against a section, so the addend is
2032 always zero). However, the 32 bit instruction is stored as 2
2033 16-bit values, rather than a single 32-bit value. In a
2034 big-endian file, the result is the same; in a little-endian
2035 file, the two 16-bit halves of the 32 bit value are swapped.
2036 This is so that a disassembler can recognize the jal
2037 instruction.
2038
2039 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2040 instruction stored as two 16-bit values. The addend A is the
2041 contents of the targ26 field. The calculation is the same as
2042 R_MIPS_26. When storing the calculated value, reorder the
2043 immediate value as shown above, and don't forget to store the
2044 value as two 16-bit values.
2045
2046 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2047 defined as
2048
2049 big-endian:
2050 +--------+----------------------+
2051 | | |
2052 | | targ26-16 |
2053 |31 26|25 0|
2054 +--------+----------------------+
2055
2056 little-endian:
2057 +----------+------+-------------+
2058 | | | |
2059 | sub1 | | sub2 |
2060 |0 9|10 15|16 31|
2061 +----------+--------------------+
2062 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2063 ((sub1 << 16) | sub2)).
2064
2065 When producing a relocatable object file, the calculation is
2066 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 When producing a fully linked file, the calculation is
2068 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2069 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2070
738e5348
RS
2071 The table below lists the other MIPS16 instruction relocations.
2072 Each one is calculated in the same way as the non-MIPS16 relocation
2073 given on the right, but using the extended MIPS16 layout of 16-bit
2074 immediate fields:
2075
2076 R_MIPS16_GPREL R_MIPS_GPREL16
2077 R_MIPS16_GOT16 R_MIPS_GOT16
2078 R_MIPS16_CALL16 R_MIPS_CALL16
2079 R_MIPS16_HI16 R_MIPS_HI16
2080 R_MIPS16_LO16 R_MIPS_LO16
2081
2082 A typical instruction will have a format like this:
d6f16593
MR
2083
2084 +--------------+--------------------------------+
2085 | EXTEND | Imm 10:5 | Imm 15:11 |
2086 +--------------+--------------------------------+
2087 | Major | rx | ry | Imm 4:0 |
2088 +--------------+--------------------------------+
2089
2090 EXTEND is the five bit value 11110. Major is the instruction
2091 opcode.
2092
738e5348
RS
2093 All we need to do here is shuffle the bits appropriately.
2094 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2095 little-endian system.
2096
2097 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2098 relocatable field is shifted by 1 rather than 2 and the same bit
2099 shuffling is done as with the relocations above. */
738e5348
RS
2100
2101static inline bfd_boolean
2102mips16_reloc_p (int r_type)
2103{
2104 switch (r_type)
2105 {
2106 case R_MIPS16_26:
2107 case R_MIPS16_GPREL:
2108 case R_MIPS16_GOT16:
2109 case R_MIPS16_CALL16:
2110 case R_MIPS16_HI16:
2111 case R_MIPS16_LO16:
d0f13682
CLT
2112 case R_MIPS16_TLS_GD:
2113 case R_MIPS16_TLS_LDM:
2114 case R_MIPS16_TLS_DTPREL_HI16:
2115 case R_MIPS16_TLS_DTPREL_LO16:
2116 case R_MIPS16_TLS_GOTTPREL:
2117 case R_MIPS16_TLS_TPREL_HI16:
2118 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2119 case R_MIPS16_PC16_S1:
738e5348
RS
2120 return TRUE;
2121
2122 default:
2123 return FALSE;
2124 }
2125}
2126
df58fc94
RS
2127/* Check if a microMIPS reloc. */
2128
2129static inline bfd_boolean
2130micromips_reloc_p (unsigned int r_type)
2131{
2132 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2133}
2134
2135/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2136 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2137 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2138
2139static inline bfd_boolean
2140micromips_reloc_shuffle_p (unsigned int r_type)
2141{
2142 return (micromips_reloc_p (r_type)
2143 && r_type != R_MICROMIPS_PC7_S1
2144 && r_type != R_MICROMIPS_PC10_S1);
2145}
2146
738e5348
RS
2147static inline bfd_boolean
2148got16_reloc_p (int r_type)
2149{
df58fc94
RS
2150 return (r_type == R_MIPS_GOT16
2151 || r_type == R_MIPS16_GOT16
2152 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2153}
2154
2155static inline bfd_boolean
2156call16_reloc_p (int r_type)
2157{
df58fc94
RS
2158 return (r_type == R_MIPS_CALL16
2159 || r_type == R_MIPS16_CALL16
2160 || r_type == R_MICROMIPS_CALL16);
2161}
2162
2163static inline bfd_boolean
2164got_disp_reloc_p (unsigned int r_type)
2165{
2166 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2167}
2168
2169static inline bfd_boolean
2170got_page_reloc_p (unsigned int r_type)
2171{
2172 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2173}
2174
df58fc94
RS
2175static inline bfd_boolean
2176got_lo16_reloc_p (unsigned int r_type)
2177{
2178 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2179}
2180
2181static inline bfd_boolean
2182call_hi16_reloc_p (unsigned int r_type)
2183{
2184 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2185}
2186
2187static inline bfd_boolean
2188call_lo16_reloc_p (unsigned int r_type)
2189{
2190 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2191}
2192
2193static inline bfd_boolean
2194hi16_reloc_p (int r_type)
2195{
df58fc94
RS
2196 return (r_type == R_MIPS_HI16
2197 || r_type == R_MIPS16_HI16
7361da2c
AB
2198 || r_type == R_MICROMIPS_HI16
2199 || r_type == R_MIPS_PCHI16);
738e5348 2200}
d6f16593 2201
738e5348
RS
2202static inline bfd_boolean
2203lo16_reloc_p (int r_type)
2204{
df58fc94
RS
2205 return (r_type == R_MIPS_LO16
2206 || r_type == R_MIPS16_LO16
7361da2c
AB
2207 || r_type == R_MICROMIPS_LO16
2208 || r_type == R_MIPS_PCLO16);
738e5348
RS
2209}
2210
2211static inline bfd_boolean
2212mips16_call_reloc_p (int r_type)
2213{
2214 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2215}
d6f16593 2216
38a7df63
CF
2217static inline bfd_boolean
2218jal_reloc_p (int r_type)
2219{
df58fc94
RS
2220 return (r_type == R_MIPS_26
2221 || r_type == R_MIPS16_26
2222 || r_type == R_MICROMIPS_26_S1);
2223}
2224
99aefae6
MR
2225static inline bfd_boolean
2226b_reloc_p (int r_type)
2227{
2228 return (r_type == R_MIPS_PC26_S2
2229 || r_type == R_MIPS_PC21_S2
2230 || r_type == R_MIPS_PC16
c9775dde 2231 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2232 || r_type == R_MIPS16_PC16_S1
2233 || r_type == R_MICROMIPS_PC16_S1
2234 || r_type == R_MICROMIPS_PC10_S1
2235 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2236}
2237
7361da2c
AB
2238static inline bfd_boolean
2239aligned_pcrel_reloc_p (int r_type)
2240{
2241 return (r_type == R_MIPS_PC18_S3
2242 || r_type == R_MIPS_PC19_S2);
2243}
2244
9d862524
MR
2245static inline bfd_boolean
2246branch_reloc_p (int r_type)
2247{
2248 return (r_type == R_MIPS_26
2249 || r_type == R_MIPS_PC26_S2
2250 || r_type == R_MIPS_PC21_S2
2251 || r_type == R_MIPS_PC16
2252 || r_type == R_MIPS_GNU_REL16_S2);
2253}
2254
c9775dde
MR
2255static inline bfd_boolean
2256mips16_branch_reloc_p (int r_type)
2257{
2258 return (r_type == R_MIPS16_26
2259 || r_type == R_MIPS16_PC16_S1);
2260}
2261
df58fc94
RS
2262static inline bfd_boolean
2263micromips_branch_reloc_p (int r_type)
2264{
2265 return (r_type == R_MICROMIPS_26_S1
2266 || r_type == R_MICROMIPS_PC16_S1
2267 || r_type == R_MICROMIPS_PC10_S1
2268 || r_type == R_MICROMIPS_PC7_S1);
2269}
2270
2271static inline bfd_boolean
2272tls_gd_reloc_p (unsigned int r_type)
2273{
d0f13682
CLT
2274 return (r_type == R_MIPS_TLS_GD
2275 || r_type == R_MIPS16_TLS_GD
2276 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2277}
2278
2279static inline bfd_boolean
2280tls_ldm_reloc_p (unsigned int r_type)
2281{
d0f13682
CLT
2282 return (r_type == R_MIPS_TLS_LDM
2283 || r_type == R_MIPS16_TLS_LDM
2284 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2285}
2286
2287static inline bfd_boolean
2288tls_gottprel_reloc_p (unsigned int r_type)
2289{
d0f13682
CLT
2290 return (r_type == R_MIPS_TLS_GOTTPREL
2291 || r_type == R_MIPS16_TLS_GOTTPREL
2292 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2293}
2294
d6f16593 2295void
df58fc94
RS
2296_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2297 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2298{
df58fc94 2299 bfd_vma first, second, val;
d6f16593 2300
df58fc94 2301 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2302 return;
2303
df58fc94
RS
2304 /* Pick up the first and second halfwords of the instruction. */
2305 first = bfd_get_16 (abfd, data);
2306 second = bfd_get_16 (abfd, data + 2);
2307 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2308 val = first << 16 | second;
2309 else if (r_type != R_MIPS16_26)
2310 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2311 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2312 else
df58fc94
RS
2313 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2314 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2315 bfd_put_32 (abfd, val, data);
2316}
2317
2318void
df58fc94
RS
2319_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2320 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2321{
df58fc94 2322 bfd_vma first, second, val;
d6f16593 2323
df58fc94 2324 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2325 return;
2326
2327 val = bfd_get_32 (abfd, data);
df58fc94 2328 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2329 {
df58fc94
RS
2330 second = val & 0xffff;
2331 first = val >> 16;
2332 }
2333 else if (r_type != R_MIPS16_26)
2334 {
2335 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2336 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2337 }
2338 else
2339 {
df58fc94
RS
2340 second = val & 0xffff;
2341 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2342 | ((val >> 21) & 0x1f);
d6f16593 2343 }
df58fc94
RS
2344 bfd_put_16 (abfd, second, data + 2);
2345 bfd_put_16 (abfd, first, data);
d6f16593
MR
2346}
2347
b49e97c9 2348bfd_reloc_status_type
9719ad41
RS
2349_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2350 arelent *reloc_entry, asection *input_section,
2351 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2352{
2353 bfd_vma relocation;
a7ebbfdf 2354 bfd_signed_vma val;
30ac9238 2355 bfd_reloc_status_type status;
b49e97c9
TS
2356
2357 if (bfd_is_com_section (symbol->section))
2358 relocation = 0;
2359 else
2360 relocation = symbol->value;
2361
2362 relocation += symbol->section->output_section->vma;
2363 relocation += symbol->section->output_offset;
2364
07515404 2365 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2366 return bfd_reloc_outofrange;
2367
b49e97c9 2368 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2369 val = reloc_entry->addend;
2370
30ac9238 2371 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2372
b49e97c9 2373 /* Adjust val for the final section location and GP value. If we
1049f94e 2374 are producing relocatable output, we don't want to do this for
b49e97c9 2375 an external symbol. */
1049f94e 2376 if (! relocatable
b49e97c9
TS
2377 || (symbol->flags & BSF_SECTION_SYM) != 0)
2378 val += relocation - gp;
2379
a7ebbfdf
TS
2380 if (reloc_entry->howto->partial_inplace)
2381 {
30ac9238
RS
2382 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2383 (bfd_byte *) data
2384 + reloc_entry->address);
2385 if (status != bfd_reloc_ok)
2386 return status;
a7ebbfdf
TS
2387 }
2388 else
2389 reloc_entry->addend = val;
b49e97c9 2390
1049f94e 2391 if (relocatable)
b49e97c9 2392 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2393
2394 return bfd_reloc_ok;
2395}
2396
2397/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2398 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2399 that contains the relocation field and DATA points to the start of
2400 INPUT_SECTION. */
2401
2402struct mips_hi16
2403{
2404 struct mips_hi16 *next;
2405 bfd_byte *data;
2406 asection *input_section;
2407 arelent rel;
2408};
2409
2410/* FIXME: This should not be a static variable. */
2411
2412static struct mips_hi16 *mips_hi16_list;
2413
2414/* A howto special_function for REL *HI16 relocations. We can only
2415 calculate the correct value once we've seen the partnering
2416 *LO16 relocation, so just save the information for later.
2417
2418 The ABI requires that the *LO16 immediately follow the *HI16.
2419 However, as a GNU extension, we permit an arbitrary number of
2420 *HI16s to be associated with a single *LO16. This significantly
2421 simplies the relocation handling in gcc. */
2422
2423bfd_reloc_status_type
2424_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2425 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2426 asection *input_section, bfd *output_bfd,
2427 char **error_message ATTRIBUTE_UNUSED)
2428{
2429 struct mips_hi16 *n;
2430
07515404 2431 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2432 return bfd_reloc_outofrange;
2433
2434 n = bfd_malloc (sizeof *n);
2435 if (n == NULL)
2436 return bfd_reloc_outofrange;
2437
2438 n->next = mips_hi16_list;
2439 n->data = data;
2440 n->input_section = input_section;
2441 n->rel = *reloc_entry;
2442 mips_hi16_list = n;
2443
2444 if (output_bfd != NULL)
2445 reloc_entry->address += input_section->output_offset;
2446
2447 return bfd_reloc_ok;
2448}
2449
738e5348 2450/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2451 like any other 16-bit relocation when applied to global symbols, but is
2452 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2453
2454bfd_reloc_status_type
2455_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2456 void *data, asection *input_section,
2457 bfd *output_bfd, char **error_message)
2458{
2459 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2460 || bfd_is_und_section (bfd_get_section (symbol))
2461 || bfd_is_com_section (bfd_get_section (symbol)))
2462 /* The relocation is against a global symbol. */
2463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2464 input_section, output_bfd,
2465 error_message);
2466
2467 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd, error_message);
2469}
2470
2471/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2472 is a straightforward 16 bit inplace relocation, but we must deal with
2473 any partnering high-part relocations as well. */
2474
2475bfd_reloc_status_type
2476_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2477 void *data, asection *input_section,
2478 bfd *output_bfd, char **error_message)
2479{
2480 bfd_vma vallo;
d6f16593 2481 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2482
07515404 2483 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2484 return bfd_reloc_outofrange;
2485
df58fc94 2486 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2487 location);
df58fc94
RS
2488 vallo = bfd_get_32 (abfd, location);
2489 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2490 location);
d6f16593 2491
30ac9238
RS
2492 while (mips_hi16_list != NULL)
2493 {
2494 bfd_reloc_status_type ret;
2495 struct mips_hi16 *hi;
2496
2497 hi = mips_hi16_list;
2498
738e5348
RS
2499 /* R_MIPS*_GOT16 relocations are something of a special case. We
2500 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2501 relocation (with a rightshift of 16). However, since GOT16
2502 relocations can also be used with global symbols, their howto
2503 has a rightshift of 0. */
2504 if (hi->rel.howto->type == R_MIPS_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2506 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2508 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2510
2511 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2512 carry or borrow will induce a change of +1 or -1 in the high part. */
2513 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2514
30ac9238
RS
2515 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2516 hi->input_section, output_bfd,
2517 error_message);
2518 if (ret != bfd_reloc_ok)
2519 return ret;
2520
2521 mips_hi16_list = hi->next;
2522 free (hi);
2523 }
2524
2525 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2526 input_section, output_bfd,
2527 error_message);
2528}
2529
2530/* A generic howto special_function. This calculates and installs the
2531 relocation itself, thus avoiding the oft-discussed problems in
2532 bfd_perform_relocation and bfd_install_relocation. */
2533
2534bfd_reloc_status_type
2535_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2536 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2537 asection *input_section, bfd *output_bfd,
2538 char **error_message ATTRIBUTE_UNUSED)
2539{
2540 bfd_signed_vma val;
2541 bfd_reloc_status_type status;
2542 bfd_boolean relocatable;
2543
2544 relocatable = (output_bfd != NULL);
2545
07515404 2546 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2547 return bfd_reloc_outofrange;
2548
2549 /* Build up the field adjustment in VAL. */
2550 val = 0;
2551 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2552 {
2553 /* Either we're calculating the final field value or we have a
2554 relocation against a section symbol. Add in the section's
2555 offset or address. */
2556 val += symbol->section->output_section->vma;
2557 val += symbol->section->output_offset;
2558 }
2559
2560 if (!relocatable)
2561 {
2562 /* We're calculating the final field value. Add in the symbol's value
2563 and, if pc-relative, subtract the address of the field itself. */
2564 val += symbol->value;
2565 if (reloc_entry->howto->pc_relative)
2566 {
2567 val -= input_section->output_section->vma;
2568 val -= input_section->output_offset;
2569 val -= reloc_entry->address;
2570 }
2571 }
2572
2573 /* VAL is now the final adjustment. If we're keeping this relocation
2574 in the output file, and if the relocation uses a separate addend,
2575 we just need to add VAL to that addend. Otherwise we need to add
2576 VAL to the relocation field itself. */
2577 if (relocatable && !reloc_entry->howto->partial_inplace)
2578 reloc_entry->addend += val;
2579 else
2580 {
d6f16593
MR
2581 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2582
30ac9238
RS
2583 /* Add in the separate addend, if any. */
2584 val += reloc_entry->addend;
2585
2586 /* Add VAL to the relocation field. */
df58fc94
RS
2587 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2588 location);
30ac9238 2589 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2590 location);
df58fc94
RS
2591 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
d6f16593 2593
30ac9238
RS
2594 if (status != bfd_reloc_ok)
2595 return status;
2596 }
2597
2598 if (relocatable)
2599 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2600
2601 return bfd_reloc_ok;
2602}
2603\f
2604/* Swap an entry in a .gptab section. Note that these routines rely
2605 on the equivalence of the two elements of the union. */
2606
2607static void
9719ad41
RS
2608bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2609 Elf32_gptab *in)
b49e97c9
TS
2610{
2611 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2612 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2613}
2614
2615static void
9719ad41
RS
2616bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2617 Elf32_External_gptab *ex)
b49e97c9
TS
2618{
2619 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2620 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2621}
2622
2623static void
9719ad41
RS
2624bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2625 Elf32_External_compact_rel *ex)
b49e97c9
TS
2626{
2627 H_PUT_32 (abfd, in->id1, ex->id1);
2628 H_PUT_32 (abfd, in->num, ex->num);
2629 H_PUT_32 (abfd, in->id2, ex->id2);
2630 H_PUT_32 (abfd, in->offset, ex->offset);
2631 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2632 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2633}
2634
2635static void
9719ad41
RS
2636bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2637 Elf32_External_crinfo *ex)
b49e97c9
TS
2638{
2639 unsigned long l;
2640
2641 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2642 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2643 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2644 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2645 H_PUT_32 (abfd, l, ex->info);
2646 H_PUT_32 (abfd, in->konst, ex->konst);
2647 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2648}
b49e97c9
TS
2649\f
2650/* A .reginfo section holds a single Elf32_RegInfo structure. These
2651 routines swap this structure in and out. They are used outside of
2652 BFD, so they are globally visible. */
2653
2654void
9719ad41
RS
2655bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2656 Elf32_RegInfo *in)
b49e97c9
TS
2657{
2658 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2659 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2660 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2661 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2662 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2663 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2664}
2665
2666void
9719ad41
RS
2667bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2668 Elf32_External_RegInfo *ex)
b49e97c9
TS
2669{
2670 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2671 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2672 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2673 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2674 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2675 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2676}
2677
2678/* In the 64 bit ABI, the .MIPS.options section holds register
2679 information in an Elf64_Reginfo structure. These routines swap
2680 them in and out. They are globally visible because they are used
2681 outside of BFD. These routines are here so that gas can call them
2682 without worrying about whether the 64 bit ABI has been included. */
2683
2684void
9719ad41
RS
2685bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2686 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2687{
2688 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2689 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2690 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2691 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2692 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2693 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2694 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2695}
2696
2697void
9719ad41
RS
2698bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2699 Elf64_External_RegInfo *ex)
b49e97c9
TS
2700{
2701 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2702 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2703 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2704 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2705 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2706 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2707 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2708}
2709
2710/* Swap in an options header. */
2711
2712void
9719ad41
RS
2713bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2714 Elf_Internal_Options *in)
b49e97c9
TS
2715{
2716 in->kind = H_GET_8 (abfd, ex->kind);
2717 in->size = H_GET_8 (abfd, ex->size);
2718 in->section = H_GET_16 (abfd, ex->section);
2719 in->info = H_GET_32 (abfd, ex->info);
2720}
2721
2722/* Swap out an options header. */
2723
2724void
9719ad41
RS
2725bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2726 Elf_External_Options *ex)
b49e97c9
TS
2727{
2728 H_PUT_8 (abfd, in->kind, ex->kind);
2729 H_PUT_8 (abfd, in->size, ex->size);
2730 H_PUT_16 (abfd, in->section, ex->section);
2731 H_PUT_32 (abfd, in->info, ex->info);
2732}
351cdf24
MF
2733
2734/* Swap in an abiflags structure. */
2735
2736void
2737bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2738 const Elf_External_ABIFlags_v0 *ex,
2739 Elf_Internal_ABIFlags_v0 *in)
2740{
2741 in->version = H_GET_16 (abfd, ex->version);
2742 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2743 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2744 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2745 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2746 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2747 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2748 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2749 in->ases = H_GET_32 (abfd, ex->ases);
2750 in->flags1 = H_GET_32 (abfd, ex->flags1);
2751 in->flags2 = H_GET_32 (abfd, ex->flags2);
2752}
2753
2754/* Swap out an abiflags structure. */
2755
2756void
2757bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2758 const Elf_Internal_ABIFlags_v0 *in,
2759 Elf_External_ABIFlags_v0 *ex)
2760{
2761 H_PUT_16 (abfd, in->version, ex->version);
2762 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2763 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2764 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2765 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2766 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2767 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2768 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2769 H_PUT_32 (abfd, in->ases, ex->ases);
2770 H_PUT_32 (abfd, in->flags1, ex->flags1);
2771 H_PUT_32 (abfd, in->flags2, ex->flags2);
2772}
b49e97c9
TS
2773\f
2774/* This function is called via qsort() to sort the dynamic relocation
2775 entries by increasing r_symndx value. */
2776
2777static int
9719ad41 2778sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2779{
947216bf
AM
2780 Elf_Internal_Rela int_reloc1;
2781 Elf_Internal_Rela int_reloc2;
6870500c 2782 int diff;
b49e97c9 2783
947216bf
AM
2784 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2786
6870500c
RS
2787 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2788 if (diff != 0)
2789 return diff;
2790
2791 if (int_reloc1.r_offset < int_reloc2.r_offset)
2792 return -1;
2793 if (int_reloc1.r_offset > int_reloc2.r_offset)
2794 return 1;
2795 return 0;
b49e97c9
TS
2796}
2797
f4416af6
AO
2798/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2799
2800static int
7e3102a7
AM
2801sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2802 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2803{
7e3102a7 2804#ifdef BFD64
f4416af6
AO
2805 Elf_Internal_Rela int_reloc1[3];
2806 Elf_Internal_Rela int_reloc2[3];
2807
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg1, int_reloc1);
2810 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2811 (reldyn_sorting_bfd, arg2, int_reloc2);
2812
6870500c
RS
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2814 return -1;
2815 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2816 return 1;
2817
2818 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2819 return -1;
2820 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2821 return 1;
2822 return 0;
7e3102a7
AM
2823#else
2824 abort ();
2825#endif
f4416af6
AO
2826}
2827
2828
b49e97c9
TS
2829/* This routine is used to write out ECOFF debugging external symbol
2830 information. It is called via mips_elf_link_hash_traverse. The
2831 ECOFF external symbol information must match the ELF external
2832 symbol information. Unfortunately, at this point we don't know
2833 whether a symbol is required by reloc information, so the two
2834 tables may wind up being different. We must sort out the external
2835 symbol information before we can set the final size of the .mdebug
2836 section, and we must set the size of the .mdebug section before we
2837 can relocate any sections, and we can't know which symbols are
2838 required by relocation until we relocate the sections.
2839 Fortunately, it is relatively unlikely that any symbol will be
2840 stripped but required by a reloc. In particular, it can not happen
2841 when generating a final executable. */
2842
b34976b6 2843static bfd_boolean
9719ad41 2844mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2845{
9719ad41 2846 struct extsym_info *einfo = data;
b34976b6 2847 bfd_boolean strip;
b49e97c9
TS
2848 asection *sec, *output_section;
2849
b49e97c9 2850 if (h->root.indx == -2)
b34976b6 2851 strip = FALSE;
f5385ebf 2852 else if ((h->root.def_dynamic
77cfaee6
AM
2853 || h->root.ref_dynamic
2854 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2855 && !h->root.def_regular
2856 && !h->root.ref_regular)
b34976b6 2857 strip = TRUE;
b49e97c9
TS
2858 else if (einfo->info->strip == strip_all
2859 || (einfo->info->strip == strip_some
2860 && bfd_hash_lookup (einfo->info->keep_hash,
2861 h->root.root.root.string,
b34976b6
AM
2862 FALSE, FALSE) == NULL))
2863 strip = TRUE;
b49e97c9 2864 else
b34976b6 2865 strip = FALSE;
b49e97c9
TS
2866
2867 if (strip)
b34976b6 2868 return TRUE;
b49e97c9
TS
2869
2870 if (h->esym.ifd == -2)
2871 {
2872 h->esym.jmptbl = 0;
2873 h->esym.cobol_main = 0;
2874 h->esym.weakext = 0;
2875 h->esym.reserved = 0;
2876 h->esym.ifd = ifdNil;
2877 h->esym.asym.value = 0;
2878 h->esym.asym.st = stGlobal;
2879
2880 if (h->root.root.type == bfd_link_hash_undefined
2881 || h->root.root.type == bfd_link_hash_undefweak)
2882 {
2883 const char *name;
2884
2885 /* Use undefined class. Also, set class and type for some
2886 special symbols. */
2887 name = h->root.root.root.string;
2888 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2889 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2890 {
2891 h->esym.asym.sc = scData;
2892 h->esym.asym.st = stLabel;
2893 h->esym.asym.value = 0;
2894 }
2895 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2896 {
2897 h->esym.asym.sc = scAbs;
2898 h->esym.asym.st = stLabel;
2899 h->esym.asym.value =
2900 mips_elf_hash_table (einfo->info)->procedure_count;
2901 }
4a14403c 2902 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2903 {
2904 h->esym.asym.sc = scAbs;
2905 h->esym.asym.st = stLabel;
2906 h->esym.asym.value = elf_gp (einfo->abfd);
2907 }
2908 else
2909 h->esym.asym.sc = scUndefined;
2910 }
2911 else if (h->root.root.type != bfd_link_hash_defined
2912 && h->root.root.type != bfd_link_hash_defweak)
2913 h->esym.asym.sc = scAbs;
2914 else
2915 {
2916 const char *name;
2917
2918 sec = h->root.root.u.def.section;
2919 output_section = sec->output_section;
2920
2921 /* When making a shared library and symbol h is the one from
2922 the another shared library, OUTPUT_SECTION may be null. */
2923 if (output_section == NULL)
2924 h->esym.asym.sc = scUndefined;
2925 else
2926 {
2927 name = bfd_section_name (output_section->owner, output_section);
2928
2929 if (strcmp (name, ".text") == 0)
2930 h->esym.asym.sc = scText;
2931 else if (strcmp (name, ".data") == 0)
2932 h->esym.asym.sc = scData;
2933 else if (strcmp (name, ".sdata") == 0)
2934 h->esym.asym.sc = scSData;
2935 else if (strcmp (name, ".rodata") == 0
2936 || strcmp (name, ".rdata") == 0)
2937 h->esym.asym.sc = scRData;
2938 else if (strcmp (name, ".bss") == 0)
2939 h->esym.asym.sc = scBss;
2940 else if (strcmp (name, ".sbss") == 0)
2941 h->esym.asym.sc = scSBss;
2942 else if (strcmp (name, ".init") == 0)
2943 h->esym.asym.sc = scInit;
2944 else if (strcmp (name, ".fini") == 0)
2945 h->esym.asym.sc = scFini;
2946 else
2947 h->esym.asym.sc = scAbs;
2948 }
2949 }
2950
2951 h->esym.asym.reserved = 0;
2952 h->esym.asym.index = indexNil;
2953 }
2954
2955 if (h->root.root.type == bfd_link_hash_common)
2956 h->esym.asym.value = h->root.root.u.c.size;
2957 else if (h->root.root.type == bfd_link_hash_defined
2958 || h->root.root.type == bfd_link_hash_defweak)
2959 {
2960 if (h->esym.asym.sc == scCommon)
2961 h->esym.asym.sc = scBss;
2962 else if (h->esym.asym.sc == scSCommon)
2963 h->esym.asym.sc = scSBss;
2964
2965 sec = h->root.root.u.def.section;
2966 output_section = sec->output_section;
2967 if (output_section != NULL)
2968 h->esym.asym.value = (h->root.root.u.def.value
2969 + sec->output_offset
2970 + output_section->vma);
2971 else
2972 h->esym.asym.value = 0;
2973 }
33bb52fb 2974 else
b49e97c9
TS
2975 {
2976 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2977
2978 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2979 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2980
33bb52fb 2981 if (hd->needs_lazy_stub)
b49e97c9 2982 {
1bbce132
MR
2983 BFD_ASSERT (hd->root.plt.plist != NULL);
2984 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2985 /* Set type and value for a symbol with a function stub. */
2986 h->esym.asym.st = stProc;
2987 sec = hd->root.root.u.def.section;
2988 if (sec == NULL)
2989 h->esym.asym.value = 0;
2990 else
2991 {
2992 output_section = sec->output_section;
2993 if (output_section != NULL)
1bbce132 2994 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2995 + sec->output_offset
2996 + output_section->vma);
2997 else
2998 h->esym.asym.value = 0;
2999 }
b49e97c9
TS
3000 }
3001 }
3002
3003 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3004 h->root.root.root.string,
3005 &h->esym))
3006 {
b34976b6
AM
3007 einfo->failed = TRUE;
3008 return FALSE;
b49e97c9
TS
3009 }
3010
b34976b6 3011 return TRUE;
b49e97c9
TS
3012}
3013
3014/* A comparison routine used to sort .gptab entries. */
3015
3016static int
9719ad41 3017gptab_compare (const void *p1, const void *p2)
b49e97c9 3018{
9719ad41
RS
3019 const Elf32_gptab *a1 = p1;
3020 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3021
3022 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3023}
3024\f
b15e6682 3025/* Functions to manage the got entry hash table. */
f4416af6
AO
3026
3027/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3028 hash number. */
3029
3030static INLINE hashval_t
9719ad41 3031mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3032{
3033#ifdef BFD64
3034 return addr + (addr >> 32);
3035#else
3036 return addr;
3037#endif
3038}
3039
f4416af6 3040static hashval_t
d9bf376d 3041mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3042{
3043 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3044
e641e783 3045 return (entry->symndx
9ab066b4
RS
3046 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3047 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3048 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3049 : entry->symndx >= 0 ? (entry->abfd->id
3050 + mips_elf_hash_bfd_vma (entry->d.addend))
3051 : entry->d.h->root.root.root.hash));
f4416af6
AO
3052}
3053
3054static int
3dff0dd1 3055mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3056{
3057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3059
e641e783 3060 return (e1->symndx == e2->symndx
9ab066b4
RS
3061 && e1->tls_type == e2->tls_type
3062 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3063 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3064 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3065 && e1->d.addend == e2->d.addend)
3066 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3067}
c224138d 3068
13db6b44
RS
3069static hashval_t
3070mips_got_page_ref_hash (const void *ref_)
3071{
3072 const struct mips_got_page_ref *ref;
3073
3074 ref = (const struct mips_got_page_ref *) ref_;
3075 return ((ref->symndx >= 0
3076 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3077 : ref->u.h->root.root.root.hash)
3078 + mips_elf_hash_bfd_vma (ref->addend));
3079}
3080
3081static int
3082mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3083{
3084 const struct mips_got_page_ref *ref1, *ref2;
3085
3086 ref1 = (const struct mips_got_page_ref *) ref1_;
3087 ref2 = (const struct mips_got_page_ref *) ref2_;
3088 return (ref1->symndx == ref2->symndx
3089 && (ref1->symndx < 0
3090 ? ref1->u.h == ref2->u.h
3091 : ref1->u.abfd == ref2->u.abfd)
3092 && ref1->addend == ref2->addend);
3093}
3094
c224138d
RS
3095static hashval_t
3096mips_got_page_entry_hash (const void *entry_)
3097{
3098 const struct mips_got_page_entry *entry;
3099
3100 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3101 return entry->sec->id;
c224138d
RS
3102}
3103
3104static int
3105mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3106{
3107 const struct mips_got_page_entry *entry1, *entry2;
3108
3109 entry1 = (const struct mips_got_page_entry *) entry1_;
3110 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3111 return entry1->sec == entry2->sec;
c224138d 3112}
b15e6682 3113\f
3dff0dd1 3114/* Create and return a new mips_got_info structure. */
5334aa52
RS
3115
3116static struct mips_got_info *
3dff0dd1 3117mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3118{
3119 struct mips_got_info *g;
3120
3121 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3122 if (g == NULL)
3123 return NULL;
3124
3dff0dd1
RS
3125 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3126 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3127 if (g->got_entries == NULL)
3128 return NULL;
3129
13db6b44
RS
3130 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3131 mips_got_page_ref_eq, NULL);
3132 if (g->got_page_refs == NULL)
5334aa52
RS
3133 return NULL;
3134
3135 return g;
3136}
3137
ee227692
RS
3138/* Return the GOT info for input bfd ABFD, trying to create a new one if
3139 CREATE_P and if ABFD doesn't already have a GOT. */
3140
3141static struct mips_got_info *
3142mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3143{
3144 struct mips_elf_obj_tdata *tdata;
3145
3146 if (!is_mips_elf (abfd))
3147 return NULL;
3148
3149 tdata = mips_elf_tdata (abfd);
3150 if (!tdata->got && create_p)
3dff0dd1 3151 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3152 return tdata->got;
3153}
3154
d7206569
RS
3155/* Record that ABFD should use output GOT G. */
3156
3157static void
3158mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3159{
3160 struct mips_elf_obj_tdata *tdata;
3161
3162 BFD_ASSERT (is_mips_elf (abfd));
3163 tdata = mips_elf_tdata (abfd);
3164 if (tdata->got)
3165 {
3166 /* The GOT structure itself and the hash table entries are
3167 allocated to a bfd, but the hash tables aren't. */
3168 htab_delete (tdata->got->got_entries);
13db6b44
RS
3169 htab_delete (tdata->got->got_page_refs);
3170 if (tdata->got->got_page_entries)
3171 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3172 }
3173 tdata->got = g;
3174}
3175
0a44bf69
RS
3176/* Return the dynamic relocation section. If it doesn't exist, try to
3177 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3178 if creation fails. */
f4416af6
AO
3179
3180static asection *
0a44bf69 3181mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3182{
0a44bf69 3183 const char *dname;
f4416af6 3184 asection *sreloc;
0a44bf69 3185 bfd *dynobj;
f4416af6 3186
0a44bf69
RS
3187 dname = MIPS_ELF_REL_DYN_NAME (info);
3188 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3189 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3190 if (sreloc == NULL && create_p)
3191 {
3d4d4302
AM
3192 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3193 (SEC_ALLOC
3194 | SEC_LOAD
3195 | SEC_HAS_CONTENTS
3196 | SEC_IN_MEMORY
3197 | SEC_LINKER_CREATED
3198 | SEC_READONLY));
f4416af6 3199 if (sreloc == NULL
f4416af6 3200 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3201 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3202 return NULL;
3203 }
3204 return sreloc;
3205}
3206
e641e783
RS
3207/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3208
3209static int
3210mips_elf_reloc_tls_type (unsigned int r_type)
3211{
3212 if (tls_gd_reloc_p (r_type))
3213 return GOT_TLS_GD;
3214
3215 if (tls_ldm_reloc_p (r_type))
3216 return GOT_TLS_LDM;
3217
3218 if (tls_gottprel_reloc_p (r_type))
3219 return GOT_TLS_IE;
3220
9ab066b4 3221 return GOT_TLS_NONE;
e641e783
RS
3222}
3223
3224/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3225
3226static int
3227mips_tls_got_entries (unsigned int type)
3228{
3229 switch (type)
3230 {
3231 case GOT_TLS_GD:
3232 case GOT_TLS_LDM:
3233 return 2;
3234
3235 case GOT_TLS_IE:
3236 return 1;
3237
9ab066b4 3238 case GOT_TLS_NONE:
e641e783
RS
3239 return 0;
3240 }
3241 abort ();
3242}
3243
0f20cc35
DJ
3244/* Count the number of relocations needed for a TLS GOT entry, with
3245 access types from TLS_TYPE, and symbol H (or a local symbol if H
3246 is NULL). */
3247
3248static int
3249mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3250 struct elf_link_hash_entry *h)
3251{
3252 int indx = 0;
0f20cc35
DJ
3253 bfd_boolean need_relocs = FALSE;
3254 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3255
0e1862bb
L
3256 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3258 indx = h->dynindx;
3259
0e1862bb 3260 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
e641e783 3267 return 0;
0f20cc35 3268
9ab066b4 3269 switch (tls_type)
0f20cc35 3270 {
e641e783
RS
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
0f20cc35 3273
e641e783
RS
3274 case GOT_TLS_IE:
3275 return 1;
0f20cc35 3276
e641e783 3277 case GOT_TLS_LDM:
0e1862bb 3278 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3279
e641e783
RS
3280 default:
3281 return 0;
3282 }
0f20cc35
DJ
3283}
3284
ab361d49
RS
3285/* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
0f20cc35 3287
ab361d49
RS
3288static void
3289mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
0f20cc35 3292{
9ab066b4 3293 if (entry->tls_type)
ab361d49 3294 {
9ab066b4
RS
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
0f20cc35
DJ
3304}
3305
0f20cc35
DJ
3306/* Output a simple dynamic relocation into SRELOC. */
3307
3308static void
3309mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
861fb55a 3311 unsigned long reloc_index,
0f20cc35
DJ
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315{
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
861fb55a 3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
861fb55a 3334 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3335}
3336
3337/* Initialize a set of TLS GOT entries for one symbol. */
3338
3339static void
9ab066b4
RS
3340mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
0f20cc35
DJ
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344{
23cc69b6 3345 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3346 int indx;
3347 asection *sreloc, *sgot;
9ab066b4 3348 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3349 bfd_boolean need_relocs = FALSE;
3350
23cc69b6 3351 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3352 if (htab == NULL)
3353 return;
3354
ce558b89 3355 sgot = htab->root.sgot;
0f20cc35
DJ
3356
3357 indx = 0;
3358 if (h != NULL)
3359 {
3360 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3361
0e1862bb
L
3362 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3363 &h->root)
3364 && (!bfd_link_pic (info)
3365 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3366 indx = h->root.dynindx;
3367 }
3368
9ab066b4 3369 if (entry->tls_initialized)
0f20cc35
DJ
3370 return;
3371
0e1862bb 3372 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3373 && (h == NULL
3374 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3375 || h->root.type != bfd_link_hash_undefweak))
3376 need_relocs = TRUE;
3377
3378 /* MINUS_ONE means the symbol is not defined in this object. It may not
3379 be defined at all; assume that the value doesn't matter in that
3380 case. Otherwise complain if we would use the value. */
3381 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3382 || h->root.root.type == bfd_link_hash_undefweak);
3383
3384 /* Emit necessary relocations. */
0a44bf69 3385 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3386 got_offset = entry->gotidx;
0f20cc35 3387
9ab066b4 3388 switch (entry->tls_type)
0f20cc35 3389 {
e641e783
RS
3390 case GOT_TLS_GD:
3391 /* General Dynamic. */
3392 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3393
3394 if (need_relocs)
3395 {
3396 mips_elf_output_dynamic_relocation
861fb55a 3397 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3398 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3399 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3400
3401 if (indx)
3402 mips_elf_output_dynamic_relocation
861fb55a 3403 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3404 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3405 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3406 else
3407 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3408 sgot->contents + got_offset2);
0f20cc35
DJ
3409 }
3410 else
3411 {
3412 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3413 sgot->contents + got_offset);
0f20cc35 3414 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3415 sgot->contents + got_offset2);
0f20cc35 3416 }
e641e783 3417 break;
0f20cc35 3418
e641e783
RS
3419 case GOT_TLS_IE:
3420 /* Initial Exec model. */
0f20cc35
DJ
3421 if (need_relocs)
3422 {
3423 if (indx == 0)
3424 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3425 sgot->contents + got_offset);
0f20cc35
DJ
3426 else
3427 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3428 sgot->contents + got_offset);
0f20cc35
DJ
3429
3430 mips_elf_output_dynamic_relocation
861fb55a 3431 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3432 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3433 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3434 }
3435 else
3436 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3437 sgot->contents + got_offset);
3438 break;
0f20cc35 3439
e641e783 3440 case GOT_TLS_LDM:
0f20cc35
DJ
3441 /* The initial offset is zero, and the LD offsets will include the
3442 bias by DTP_OFFSET. */
3443 MIPS_ELF_PUT_WORD (abfd, 0,
3444 sgot->contents + got_offset
3445 + MIPS_ELF_GOT_SIZE (abfd));
3446
0e1862bb 3447 if (!bfd_link_pic (info))
0f20cc35
DJ
3448 MIPS_ELF_PUT_WORD (abfd, 1,
3449 sgot->contents + got_offset);
3450 else
3451 mips_elf_output_dynamic_relocation
861fb55a 3452 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3454 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3455 break;
3456
3457 default:
3458 abort ();
0f20cc35
DJ
3459 }
3460
9ab066b4 3461 entry->tls_initialized = TRUE;
e641e783 3462}
0f20cc35 3463
0a44bf69
RS
3464/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3465 for global symbol H. .got.plt comes before the GOT, so the offset
3466 will be negative. */
3467
3468static bfd_vma
3469mips_elf_gotplt_index (struct bfd_link_info *info,
3470 struct elf_link_hash_entry *h)
3471{
1bbce132 3472 bfd_vma got_address, got_value;
0a44bf69
RS
3473 struct mips_elf_link_hash_table *htab;
3474
3475 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3476 BFD_ASSERT (htab != NULL);
3477
1bbce132
MR
3478 BFD_ASSERT (h->plt.plist != NULL);
3479 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3480
3481 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3482 got_address = (htab->root.sgotplt->output_section->vma
3483 + htab->root.sgotplt->output_offset
1bbce132
MR
3484 + (h->plt.plist->gotplt_index
3485 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3486
3487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3489 + htab->root.hgot->root.u.def.section->output_offset
3490 + htab->root.hgot->root.u.def.value);
3491
3492 return got_address - got_value;
3493}
3494
5c18022e 3495/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3496 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3497 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3498 offset can be found. */
b49e97c9
TS
3499
3500static bfd_vma
9719ad41 3501mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3502 bfd_vma value, unsigned long r_symndx,
0f20cc35 3503 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3504{
a8028dd0 3505 struct mips_elf_link_hash_table *htab;
b15e6682 3506 struct mips_got_entry *entry;
b49e97c9 3507
a8028dd0 3508 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3509 BFD_ASSERT (htab != NULL);
3510
a8028dd0
RS
3511 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3512 r_symndx, h, r_type);
0f20cc35 3513 if (!entry)
b15e6682 3514 return MINUS_ONE;
0f20cc35 3515
e641e783 3516 if (entry->tls_type)
9ab066b4
RS
3517 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3518 return entry->gotidx;
b49e97c9
TS
3519}
3520
13fbec83 3521/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3522
3523static bfd_vma
13fbec83
RS
3524mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3525 struct elf_link_hash_entry *h)
3526{
3527 struct mips_elf_link_hash_table *htab;
3528 long global_got_dynindx;
3529 struct mips_got_info *g;
3530 bfd_vma got_index;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 global_got_dynindx = 0;
3536 if (htab->global_gotsym != NULL)
3537 global_got_dynindx = htab->global_gotsym->dynindx;
3538
3539 /* Once we determine the global GOT entry with the lowest dynamic
3540 symbol table index, we must put all dynamic symbols with greater
3541 indices into the primary GOT. That makes it easy to calculate the
3542 GOT offset. */
3543 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3544 g = mips_elf_bfd_got (obfd, FALSE);
3545 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3546 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3547 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3548
3549 return got_index;
3550}
3551
3552/* Return the GOT index for the global symbol indicated by H, which is
3553 referenced by a relocation of type R_TYPE in IBFD. */
3554
3555static bfd_vma
3556mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3557 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3558{
a8028dd0 3559 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3560 struct mips_got_info *g;
3561 struct mips_got_entry lookup, *entry;
3562 bfd_vma gotidx;
b49e97c9 3563
a8028dd0 3564 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3565 BFD_ASSERT (htab != NULL);
3566
6c42ddb9
RS
3567 g = mips_elf_bfd_got (ibfd, FALSE);
3568 BFD_ASSERT (g);
f4416af6 3569
6c42ddb9
RS
3570 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3571 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3572 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3573
6c42ddb9
RS
3574 lookup.abfd = ibfd;
3575 lookup.symndx = -1;
3576 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3577 entry = htab_find (g->got_entries, &lookup);
3578 BFD_ASSERT (entry);
0f20cc35 3579
6c42ddb9 3580 gotidx = entry->gotidx;
ce558b89 3581 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3582
6c42ddb9 3583 if (lookup.tls_type)
0f20cc35 3584 {
0f20cc35
DJ
3585 bfd_vma value = MINUS_ONE;
3586
3587 if ((h->root.type == bfd_link_hash_defined
3588 || h->root.type == bfd_link_hash_defweak)
3589 && h->root.u.def.section->output_section)
3590 value = (h->root.u.def.value
3591 + h->root.u.def.section->output_offset
3592 + h->root.u.def.section->output_section->vma);
3593
9ab066b4 3594 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3595 }
6c42ddb9 3596 return gotidx;
b49e97c9
TS
3597}
3598
5c18022e
RS
3599/* Find a GOT page entry that points to within 32KB of VALUE. These
3600 entries are supposed to be placed at small offsets in the GOT, i.e.,
3601 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3602 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3603 offset of the GOT entry from VALUE. */
b49e97c9
TS
3604
3605static bfd_vma
9719ad41 3606mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3607 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3608{
91d6fa6a 3609 bfd_vma page, got_index;
b15e6682 3610 struct mips_got_entry *entry;
b49e97c9 3611
0a44bf69 3612 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3614 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3615
b15e6682
AO
3616 if (!entry)
3617 return MINUS_ONE;
143d77c5 3618
91d6fa6a 3619 got_index = entry->gotidx;
b49e97c9
TS
3620
3621 if (offsetp)
f4416af6 3622 *offsetp = value - entry->d.address;
b49e97c9 3623
91d6fa6a 3624 return got_index;
b49e97c9
TS
3625}
3626
738e5348 3627/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3628 EXTERNAL is true if the relocation was originally against a global
3629 symbol that binds locally. */
b49e97c9
TS
3630
3631static bfd_vma
9719ad41 3632mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3633 bfd_vma value, bfd_boolean external)
b49e97c9 3634{
b15e6682 3635 struct mips_got_entry *entry;
b49e97c9 3636
0a44bf69
RS
3637 /* GOT16 relocations against local symbols are followed by a LO16
3638 relocation; those against global symbols are not. Thus if the
3639 symbol was originally local, the GOT16 relocation should load the
3640 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3641 if (! external)
0a44bf69 3642 value = mips_elf_high (value) << 16;
b49e97c9 3643
738e5348
RS
3644 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3645 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3646 same in all cases. */
a8028dd0
RS
3647 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3648 NULL, R_MIPS_GOT16);
b15e6682
AO
3649 if (entry)
3650 return entry->gotidx;
3651 else
3652 return MINUS_ONE;
b49e97c9
TS
3653}
3654
3655/* Returns the offset for the entry at the INDEXth position
3656 in the GOT. */
3657
3658static bfd_vma
a8028dd0 3659mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3660 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3661{
a8028dd0 3662 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3663 asection *sgot;
3664 bfd_vma gp;
3665
a8028dd0 3666 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3667 BFD_ASSERT (htab != NULL);
3668
ce558b89 3669 sgot = htab->root.sgot;
f4416af6 3670 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3671 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3672
91d6fa6a 3673 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3674}
3675
0a44bf69
RS
3676/* Create and return a local GOT entry for VALUE, which was calculated
3677 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3678 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3679 instead. */
b49e97c9 3680
b15e6682 3681static struct mips_got_entry *
0a44bf69 3682mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3683 bfd *ibfd, bfd_vma value,
5c18022e 3684 unsigned long r_symndx,
0f20cc35
DJ
3685 struct mips_elf_link_hash_entry *h,
3686 int r_type)
b49e97c9 3687{
ebc53538
RS
3688 struct mips_got_entry lookup, *entry;
3689 void **loc;
f4416af6 3690 struct mips_got_info *g;
0a44bf69 3691 struct mips_elf_link_hash_table *htab;
6c42ddb9 3692 bfd_vma gotidx;
0a44bf69
RS
3693
3694 htab = mips_elf_hash_table (info);
4dfe6ac6 3695 BFD_ASSERT (htab != NULL);
b15e6682 3696
d7206569 3697 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3698 if (g == NULL)
3699 {
d7206569 3700 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3701 BFD_ASSERT (g != NULL);
3702 }
b15e6682 3703
020d7251
RS
3704 /* This function shouldn't be called for symbols that live in the global
3705 area of the GOT. */
3706 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3707
ebc53538
RS
3708 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3709 if (lookup.tls_type)
3710 {
3711 lookup.abfd = ibfd;
df58fc94 3712 if (tls_ldm_reloc_p (r_type))
0f20cc35 3713 {
ebc53538
RS
3714 lookup.symndx = 0;
3715 lookup.d.addend = 0;
0f20cc35
DJ
3716 }
3717 else if (h == NULL)
3718 {
ebc53538
RS
3719 lookup.symndx = r_symndx;
3720 lookup.d.addend = 0;
0f20cc35
DJ
3721 }
3722 else
ebc53538
RS
3723 {
3724 lookup.symndx = -1;
3725 lookup.d.h = h;
3726 }
0f20cc35 3727
ebc53538
RS
3728 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3729 BFD_ASSERT (entry);
0f20cc35 3730
6c42ddb9 3731 gotidx = entry->gotidx;
ce558b89 3732 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3733
ebc53538 3734 return entry;
0f20cc35
DJ
3735 }
3736
ebc53538
RS
3737 lookup.abfd = NULL;
3738 lookup.symndx = -1;
3739 lookup.d.address = value;
3740 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3741 if (!loc)
b15e6682 3742 return NULL;
143d77c5 3743
ebc53538
RS
3744 entry = (struct mips_got_entry *) *loc;
3745 if (entry)
3746 return entry;
b15e6682 3747
cb22ccf4 3748 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3749 {
3750 /* We didn't allocate enough space in the GOT. */
4eca0228 3751 _bfd_error_handler
b49e97c9
TS
3752 (_("not enough GOT space for local GOT entries"));
3753 bfd_set_error (bfd_error_bad_value);
b15e6682 3754 return NULL;
b49e97c9
TS
3755 }
3756
ebc53538
RS
3757 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3758 if (!entry)
3759 return NULL;
3760
cb22ccf4
KCY
3761 if (got16_reloc_p (r_type)
3762 || call16_reloc_p (r_type)
3763 || got_page_reloc_p (r_type)
3764 || got_disp_reloc_p (r_type))
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3766 else
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3768
ebc53538
RS
3769 *entry = lookup;
3770 *loc = entry;
3771
ce558b89 3772 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3773
5c18022e 3774 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3775 if (htab->is_vxworks)
3776 {
3777 Elf_Internal_Rela outrel;
5c18022e 3778 asection *s;
91d6fa6a 3779 bfd_byte *rloc;
0a44bf69 3780 bfd_vma got_address;
0a44bf69
RS
3781
3782 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3783 got_address = (htab->root.sgot->output_section->vma
3784 + htab->root.sgot->output_offset
ebc53538 3785 + entry->gotidx);
0a44bf69 3786
91d6fa6a 3787 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3788 outrel.r_offset = got_address;
5c18022e
RS
3789 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3790 outrel.r_addend = value;
91d6fa6a 3791 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3792 }
3793
ebc53538 3794 return entry;
b49e97c9
TS
3795}
3796
d4596a51
RS
3797/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3798 The number might be exact or a worst-case estimate, depending on how
3799 much information is available to elf_backend_omit_section_dynsym at
3800 the current linking stage. */
3801
3802static bfd_size_type
3803count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3804{
3805 bfd_size_type count;
3806
3807 count = 0;
0e1862bb
L
3808 if (bfd_link_pic (info)
3809 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3810 {
3811 asection *p;
3812 const struct elf_backend_data *bed;
3813
3814 bed = get_elf_backend_data (output_bfd);
3815 for (p = output_bfd->sections; p ; p = p->next)
3816 if ((p->flags & SEC_EXCLUDE) == 0
3817 && (p->flags & SEC_ALLOC) != 0
3818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3819 ++count;
3820 }
3821 return count;
3822}
3823
b49e97c9 3824/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3825 appear towards the end. */
b49e97c9 3826
b34976b6 3827static bfd_boolean
d4596a51 3828mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3829{
a8028dd0 3830 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3831 struct mips_elf_hash_sort_data hsd;
3832 struct mips_got_info *g;
b49e97c9 3833
d4596a51
RS
3834 if (elf_hash_table (info)->dynsymcount == 0)
3835 return TRUE;
3836
a8028dd0 3837 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3838 BFD_ASSERT (htab != NULL);
3839
a8028dd0 3840 g = htab->got_info;
d4596a51
RS
3841 if (g == NULL)
3842 return TRUE;
f4416af6 3843
b49e97c9 3844 hsd.low = NULL;
23cc69b6
RS
3845 hsd.max_unref_got_dynindx
3846 = hsd.min_got_dynindx
3847 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3848 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3849 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3850 elf_hash_table (info)),
3851 mips_elf_sort_hash_table_f,
3852 &hsd);
3853
3854 /* There should have been enough room in the symbol table to
44c410de 3855 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3857 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3858 == elf_hash_table (info)->dynsymcount);
3859 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3860 == g->global_gotno);
b49e97c9
TS
3861
3862 /* Now we know which dynamic symbol has the lowest dynamic symbol
3863 table index in the GOT. */
d222d210 3864 htab->global_gotsym = hsd.low;
b49e97c9 3865
b34976b6 3866 return TRUE;
b49e97c9
TS
3867}
3868
3869/* If H needs a GOT entry, assign it the highest available dynamic
3870 index. Otherwise, assign it the lowest available dynamic
3871 index. */
3872
b34976b6 3873static bfd_boolean
9719ad41 3874mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3875{
9719ad41 3876 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3877
b49e97c9
TS
3878 /* Symbols without dynamic symbol table entries aren't interesting
3879 at all. */
3880 if (h->root.dynindx == -1)
b34976b6 3881 return TRUE;
b49e97c9 3882
634835ae 3883 switch (h->global_got_area)
f4416af6 3884 {
634835ae
RS
3885 case GGA_NONE:
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3887 break;
0f20cc35 3888
634835ae 3889 case GGA_NORMAL:
b49e97c9
TS
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3892 break;
3893
3894 case GGA_RELOC_ONLY:
634835ae
RS
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3898 break;
b49e97c9
TS
3899 }
3900
b34976b6 3901 return TRUE;
b49e97c9
TS
3902}
3903
ee227692
RS
3904/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3907
3908static bfd_boolean
3909mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3911{
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3916
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3919 g = htab->got_info;
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3921 if (!loc)
3922 return FALSE;
3923
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3926 if (!entry)
3927 {
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3929 if (!entry)
3930 return FALSE;
3931
9ab066b4 3932 lookup->tls_initialized = FALSE;
ee227692
RS
3933 lookup->gotidx = -1;
3934 *entry = *lookup;
3935 *loc = entry;
3936 }
3937
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3940 if (!g)
3941 return FALSE;
3942
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3944 if (!bfd_loc)
3945 return FALSE;
3946
3947 if (!*bfd_loc)
3948 *bfd_loc = entry;
3949 return TRUE;
3950}
3951
e641e783
RS
3952/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3954 using the GOT entry for calls. */
b49e97c9 3955
b34976b6 3956static bfd_boolean
9719ad41
RS
3957mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
e641e783 3959 bfd_boolean for_call, int r_type)
b49e97c9 3960{
a8028dd0 3961 struct mips_elf_link_hash_table *htab;
634835ae 3962 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
a8028dd0
RS
3965
3966 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3967 BFD_ASSERT (htab != NULL);
3968
634835ae 3969 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3970 if (!for_call)
3971 hmips->got_only_for_calls = FALSE;
f4416af6 3972
b49e97c9
TS
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3974 table. */
7c5fcef7
L
3975 if (h->dynindx == -1)
3976 {
3977 switch (ELF_ST_VISIBILITY (h->other))
3978 {
3979 case STV_INTERNAL:
3980 case STV_HIDDEN:
33bb52fb 3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3982 break;
3983 }
c152c796 3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3985 return FALSE;
7c5fcef7 3986 }
b49e97c9 3987
ee227692 3988 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3990 hmips->global_got_area = GGA_NORMAL;
86324f90 3991
f4416af6
AO
3992 entry.abfd = abfd;
3993 entry.symndx = -1;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3997}
f4416af6 3998
e641e783
RS
3999/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4001
4002static bfd_boolean
9719ad41 4003mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4004 struct bfd_link_info *info, int r_type)
f4416af6 4005{
a8028dd0
RS
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
ee227692 4008 struct mips_got_entry entry;
f4416af6 4009
a8028dd0 4010 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4011 BFD_ASSERT (htab != NULL);
4012
a8028dd0
RS
4013 g = htab->got_info;
4014 BFD_ASSERT (g != NULL);
4015
f4416af6
AO
4016 entry.abfd = abfd;
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
e641e783 4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4020 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4021}
c224138d 4022
13db6b44
RS
4023/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4025 to ABFD. */
c224138d
RS
4026
4027static bfd_boolean
13db6b44
RS
4028mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
c224138d 4031{
a8028dd0 4032 struct mips_elf_link_hash_table *htab;
ee227692 4033 struct mips_got_info *g1, *g2;
13db6b44 4034 struct mips_got_page_ref lookup, *entry;
ee227692 4035 void **loc, **bfd_loc;
c224138d 4036
a8028dd0 4037 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4038 BFD_ASSERT (htab != NULL);
4039
ee227692
RS
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
a8028dd0 4042
13db6b44
RS
4043 if (h)
4044 {
4045 lookup.symndx = -1;
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4047 }
4048 else
4049 {
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4052 }
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4055 if (loc == NULL)
4056 return FALSE;
4057
13db6b44 4058 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4059 if (!entry)
4060 {
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4062 if (!entry)
4063 return FALSE;
4064
13db6b44 4065 *entry = lookup;
c224138d
RS
4066 *loc = entry;
4067 }
4068
ee227692
RS
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4071 if (!g2)
4072 return FALSE;
4073
13db6b44 4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4075 if (!bfd_loc)
4076 return FALSE;
4077
4078 if (!*bfd_loc)
4079 *bfd_loc = entry;
4080
c224138d
RS
4081 return TRUE;
4082}
33bb52fb
RS
4083
4084/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085
4086static void
4087mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4088 unsigned int n)
4089{
4090 asection *s;
4091 struct mips_elf_link_hash_table *htab;
4092
4093 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4094 BFD_ASSERT (htab != NULL);
4095
33bb52fb
RS
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4098
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 else
4102 {
4103 if (s->size == 0)
4104 {
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 ++s->reloc_count;
4108 }
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4110 }
4111}
4112\f
476366af
RS
4113/* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4117
4118static int
4119mips_elf_check_recreate_got (void **entryp, void *data)
4120{
4121 struct mips_got_entry *entry;
476366af 4122 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4123
4124 entry = (struct mips_got_entry *) *entryp;
476366af 4125 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4126 if (entry->abfd != NULL && entry->symndx == -1)
4127 {
4128 struct mips_elf_link_hash_entry *h;
4129
4130 h = entry->d.h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4133 {
476366af 4134 arg->value = TRUE;
33bb52fb
RS
4135 return 0;
4136 }
4137 }
476366af 4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4139 return 1;
4140}
4141
476366af
RS
4142/* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4146
4147static int
4148mips_elf_recreate_got (void **entryp, void *data)
4149{
72e7511a 4150 struct mips_got_entry new_entry, *entry;
476366af 4151 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4152 void **slot;
4153
33bb52fb 4154 entry = (struct mips_got_entry *) *entryp;
476366af 4155 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4160 {
4161 struct mips_elf_link_hash_entry *h;
4162
72e7511a
RS
4163 new_entry = *entry;
4164 entry = &new_entry;
33bb52fb 4165 h = entry->d.h;
72e7511a 4166 do
634835ae
RS
4167 {
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4170 }
72e7511a
RS
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4173 entry->d.h = h;
4174 }
476366af 4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4176 if (slot == NULL)
4177 {
476366af 4178 arg->g = NULL;
33bb52fb
RS
4179 return 0;
4180 }
4181 if (*slot == NULL)
72e7511a
RS
4182 {
4183 if (entry == &new_entry)
4184 {
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4186 if (!entry)
4187 {
476366af 4188 arg->g = NULL;
72e7511a
RS
4189 return 0;
4190 }
4191 *entry = new_entry;
4192 }
4193 *slot = entry;
476366af 4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4195 }
33bb52fb
RS
4196 return 1;
4197}
4198
13db6b44
RS
4199/* Return the maximum number of GOT page entries required for RANGE. */
4200
4201static bfd_vma
4202mips_elf_pages_for_range (const struct mips_got_page_range *range)
4203{
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205}
4206
4207/* Record that G requires a page entry that can reach SEC + ADDEND. */
4208
4209static bfd_boolean
b75d42bc 4210mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4211 asection *sec, bfd_signed_vma addend)
4212{
b75d42bc 4213 struct mips_got_info *g = arg->g;
13db6b44
RS
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4217 void **loc;
4218
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4220 lookup.sec = sec;
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4222 if (loc == NULL)
4223 return FALSE;
4224
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4228 if (!entry)
4229 {
b75d42bc 4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4231 if (!entry)
4232 return FALSE;
4233
4234 entry->sec = sec;
4235 *loc = entry;
4236 }
4237
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4239 with ADDEND. */
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4243
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4247 range = *range_ptr;
4248 if (!range || addend < range->min_addend - 0xffff)
4249 {
b75d42bc 4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4251 if (!range)
4252 return FALSE;
4253
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4257
4258 *range_ptr = range;
4259 entry->num_pages++;
4260 g->page_gotno++;
4261 return TRUE;
4262 }
4263
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4266
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4271 {
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4273 {
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4277 }
4278 else
4279 range->max_addend = addend;
4280 }
4281
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4285 {
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4288 }
4289
4290 return TRUE;
4291}
4292
4293/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297
4298static bfd_boolean
4299mips_elf_resolve_got_page_ref (void **refp, void *data)
4300{
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4304 asection *sec;
4305 bfd_vma addend;
4306
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4310
4311 if (ref->symndx < 0)
4312 {
4313 struct mips_elf_link_hash_entry *h;
4314
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4316 h = ref->u.h;
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 return 1;
4319
4320 /* Ignore undefined symbols; we'll issue an error later if
4321 appropriate. */
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4325 return 1;
4326
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4329 }
4330 else
4331 {
4332 Elf_Internal_Sym *isym;
4333
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4336 ref->symndx);
4337 if (isym == NULL)
4338 {
4339 arg->g = NULL;
4340 return 0;
4341 }
4342
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4345 if (sec == NULL)
4346 {
4347 arg->g = NULL;
4348 return 0;
4349 }
4350
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4356 {
4357 void *secinfo;
4358
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4363 else
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4366 }
4367 else
4368 addend = isym->st_value + ref->addend;
4369 }
b75d42bc 4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4371 {
4372 arg->g = NULL;
4373 return 0;
4374 }
4375 return 1;
4376}
4377
33bb52fb 4378/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
33bb52fb
RS
4382
4383static bfd_boolean
476366af
RS
4384mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
33bb52fb 4386{
476366af
RS
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4389
4390 oldg = *g;
33bb52fb 4391
476366af
RS
4392 tga.info = info;
4393 tga.g = g;
4394 tga.value = FALSE;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4396 if (tga.value)
33bb52fb 4397 {
476366af
RS
4398 *g = oldg;
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
33bb52fb
RS
4403 return FALSE;
4404
476366af
RS
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4406 if (!tga.g)
4407 return FALSE;
4408
4409 htab_delete (oldg.got_entries);
33bb52fb 4410 }
13db6b44
RS
4411
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4415 return FALSE;
4416
4417 tga.info = info;
4418 tga.g = g;
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420
33bb52fb
RS
4421 return TRUE;
4422}
4423
c5d6fa44
RS
4424/* Return true if a GOT entry for H should live in the local rather than
4425 global GOT area. */
4426
4427static bfd_boolean
4428mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4430{
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4436 return TRUE;
4437
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 return TRUE;
4444
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
0e1862bb 4448 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4449 return TRUE;
4450
4451 return FALSE;
4452}
4453
6c42ddb9
RS
4454/* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4459
4460static int
d4596a51 4461mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4462{
020d7251 4463 struct bfd_link_info *info;
6ccf4795 4464 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4465 struct mips_got_info *g;
4466
020d7251 4467 info = (struct bfd_link_info *) data;
6ccf4795
RS
4468 htab = mips_elf_hash_table (info);
4469 g = htab->got_info;
d4596a51 4470 if (h->global_got_area != GGA_NONE)
33bb52fb 4471 {
020d7251 4472 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
6ccf4795
RS
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
1bbce132 4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
6c42ddb9 4486 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4487 {
6c42ddb9 4488 g->reloc_only_gotno++;
23cc69b6 4489 g->global_gotno++;
23cc69b6 4490 }
33bb52fb
RS
4491 }
4492 return 1;
4493}
f4416af6 4494\f
d7206569
RS
4495/* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4497
4498static int
d7206569 4499mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4500{
d7206569
RS
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4503 void **slot;
f4416af6 4504
d7206569
RS
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4508 if (!slot)
f4416af6 4509 {
d7206569
RS
4510 arg->g = NULL;
4511 return 0;
f4416af6 4512 }
d7206569 4513 if (!*slot)
c224138d 4514 {
d7206569
RS
4515 *slot = entry;
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4517 }
f4416af6
AO
4518 return 1;
4519}
4520
d7206569
RS
4521/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4523
4524static int
d7206569 4525mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4526{
d7206569
RS
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4529 void **slot;
c224138d 4530
d7206569
RS
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4534 if (!slot)
c224138d 4535 {
d7206569 4536 arg->g = NULL;
c224138d
RS
4537 return 0;
4538 }
d7206569
RS
4539 if (!*slot)
4540 {
4541 *slot = entry;
4542 arg->g->page_gotno += entry->num_pages;
4543 }
c224138d
RS
4544 return 1;
4545}
4546
d7206569
RS
4547/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4551 callback.) */
c224138d
RS
4552
4553static int
d7206569 4554mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4557{
d7206569 4558 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4559 unsigned int estimate;
4560
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4565
e2ece73c 4566 /* And conservatively estimate how many local and TLS entries
c224138d 4567 would be needed. */
e2ece73c
RS
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4570
17214937
RS
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
e2ece73c 4573 conservatively as well. */
17214937 4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4575 estimate += arg->global_count;
4576 else
4577 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4578
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4581 return -1;
4582
c224138d 4583 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4584 tga.info = arg->info;
4585 tga.g = to;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4587 if (!tga.g)
c224138d
RS
4588 return 0;
4589
d7206569
RS
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4591 if (!tga.g)
c224138d
RS
4592 return 0;
4593
d7206569 4594 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4595 return 1;
4596}
4597
d7206569 4598/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4604
d7206569
RS
4605static bfd_boolean
4606mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4608{
c224138d
RS
4609 unsigned int estimate;
4610 int result;
4611
476366af 4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4613 return FALSE;
4614
c224138d
RS
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4620
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
c224138d 4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4626
c224138d 4627 if (estimate <= arg->max_count)
f4416af6 4628 {
c224138d
RS
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4631 if (!arg->primary)
4632 {
d7206569
RS
4633 arg->primary = g;
4634 return TRUE;
c224138d 4635 }
f4416af6 4636
c224138d 4637 /* Try merging with the primary GOT. */
d7206569 4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4639 if (result >= 0)
4640 return result;
f4416af6 4641 }
c224138d 4642
f4416af6 4643 /* If we can merge with the last-created got, do it. */
c224138d 4644 if (arg->current)
f4416af6 4645 {
d7206569 4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4647 if (result >= 0)
4648 return result;
f4416af6 4649 }
c224138d 4650
f4416af6
AO
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
c224138d
RS
4654 g->next = arg->current;
4655 arg->current = g;
0f20cc35 4656
d7206569 4657 return TRUE;
0f20cc35
DJ
4658}
4659
72e7511a
RS
4660/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4663
4664static bfd_boolean
4665mips_elf_set_gotidx (void **entryp, long gotidx)
4666{
4667 struct mips_got_entry *entry;
4668
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4671 {
4672 struct mips_got_entry *new_entry;
4673
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4675 if (!new_entry)
4676 return FALSE;
4677
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4680 entry = new_entry;
4681 }
4682 entry->gotidx = gotidx;
4683 return TRUE;
4684}
4685
4686/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4689
4690static int
72e7511a 4691mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4692{
72e7511a
RS
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4695
4696 /* We're only interested in TLS symbols. */
72e7511a 4697 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4698 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4699 return 1;
4700
72e7511a 4701 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4703 {
6c42ddb9
RS
4704 arg->g = NULL;
4705 return 0;
f4416af6
AO
4706 }
4707
ead49a57 4708 /* Account for the entries we've just allocated. */
9ab066b4 4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4710 return 1;
4711}
4712
ab361d49
RS
4713/* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
f4416af6 4716
f4416af6 4717static int
ab361d49 4718mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4719{
ab361d49
RS
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
f4416af6 4722
ab361d49
RS
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4729 return 1;
4730}
4731
4732/* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
72e7511a 4735 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4736
4737static int
4738mips_elf_set_global_gotidx (void **entryp, void *data)
4739{
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4742
ab361d49
RS
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4748 {
cb22ccf4 4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4750 {
4751 arg->g = NULL;
4752 return 0;
4753 }
cb22ccf4 4754 arg->g->assigned_low_gotno += 1;
72e7511a 4755
0e1862bb 4756 if (bfd_link_pic (arg->info)
ab361d49
RS
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
f4416af6
AO
4761 }
4762
4763 return 1;
4764}
4765
33bb52fb
RS
4766/* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4769
0626d451 4770static int
33bb52fb 4771mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4772{
33bb52fb
RS
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
0626d451 4776
33bb52fb
RS
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4780 BFD_ASSERT (htab != NULL);
4781
0626d451
RS
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
33bb52fb 4784 && entry->d.h->needs_lazy_stub)
f4416af6 4785 {
33bb52fb
RS
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
f4416af6 4788 }
143d77c5 4789
f4416af6
AO
4790 return 1;
4791}
4792
f4416af6
AO
4793/* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 the primary GOT. */
4795static bfd_vma
9719ad41 4796mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4797{
d7206569 4798 if (!g->next)
f4416af6
AO
4799 return 0;
4800
d7206569 4801 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4802 if (! g)
4803 return 0;
4804
4805 BFD_ASSERT (g->next);
4806
4807 g = g->next;
143d77c5 4808
0f20cc35
DJ
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4811}
4812
4813/* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4815
4816static bfd_boolean
9719ad41 4817mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4818 asection *got, bfd_size_type pages)
f4416af6 4819{
a8028dd0 4820 struct mips_elf_link_hash_table *htab;
f4416af6 4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4822 struct mips_elf_traverse_got_arg tga;
a8028dd0 4823 struct mips_got_info *g, *gg;
33bb52fb 4824 unsigned int assign, needed_relocs;
d7206569 4825 bfd *dynobj, *ibfd;
f4416af6 4826
33bb52fb 4827 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4828 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4829 BFD_ASSERT (htab != NULL);
4830
a8028dd0 4831 g = htab->got_info;
f4416af6 4832
f4416af6
AO
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
f4416af6
AO
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
0a44bf69 4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4838 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4839 - htab->reserved_gotno);
c224138d 4840 got_per_bfd_arg.max_pages = pages;
0f20cc35 4841 /* The number of globals that will be included in the primary GOT.
ab361d49 4842 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4843 information. */
4844 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4845
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
c72f2fb2 4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4850 {
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4853 return FALSE;
4854 }
f4416af6 4855
0f20cc35 4856 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4857 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4858 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4859 else
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4862
4863 /* GG is now the master GOT, and G is the primary GOT. */
4864 gg = g;
4865 g = g->next;
4866
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4871 list. */
d7206569 4872 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4873
634835ae
RS
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
23cc69b6 4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4878 g->global_gotno = gg->global_gotno;
f4416af6 4879
ab361d49
RS
4880 tga.info = info;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4885
4886 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
0f20cc35 4901 gg->tls_gotno = 0;
f4416af6
AO
4902 assign = 0;
4903 gg->next = gg;
4904
4905 do
4906 {
4907 struct mips_got_info *gn;
4908
861fb55a 4909 assign += htab->reserved_gotno;
cb22ccf4 4910 g->assigned_low_gotno = assign;
c224138d
RS
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4913 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4915
ead49a57
RS
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4919 gn = g->next;
4920 g->next = gg->next;
4921 gg->next = g;
4922
0f20cc35
DJ
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4926 tga.g = g;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 if (!tga.g)
4930 return FALSE;
1fd20d70 4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4932
ead49a57 4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4934 g = gn;
0626d451 4935
33bb52fb
RS
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
0626d451 4938 if (g)
33bb52fb 4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4940 }
4941 while (g);
4942
59b08994 4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4944
4945 needed_relocs = 0;
33bb52fb
RS
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4947 {
4948 unsigned int save_assign;
4949
ab361d49
RS
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
cb22ccf4
KCY
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4954 tga.info = info;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4956 tga.g = g;
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4958 if (!tga.g)
4959 return FALSE;
cb22ccf4
KCY
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
72e7511a 4962
0e1862bb 4963 if (bfd_link_pic (info))
33bb52fb 4964 {
cb22ccf4
KCY
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
861fb55a 4969 + htab->reserved_gotno);
33bb52fb 4970 }
ab361d49 4971 needed_relocs += g->relocs;
33bb52fb 4972 }
ab361d49 4973 needed_relocs += g->relocs;
33bb52fb
RS
4974
4975 if (needed_relocs)
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4977 needed_relocs);
143d77c5 4978
f4416af6
AO
4979 return TRUE;
4980}
143d77c5 4981
b49e97c9
TS
4982\f
4983/* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4985
4986static const Elf_Internal_Rela *
9719ad41
RS
4987mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
b49e97c9 4990{
c000e262
TS
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4992
b49e97c9
TS
4993 while (relocation < relend)
4994 {
c000e262
TS
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4997 return relocation;
4998
4999 ++relocation;
5000 }
5001
5002 /* We didn't find it. */
b49e97c9
TS
5003 return NULL;
5004}
5005
020d7251 5006/* Return whether an input relocation is against a local symbol. */
b49e97c9 5007
b34976b6 5008static bfd_boolean
9719ad41
RS
5009mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
020d7251 5011 asection **local_sections)
b49e97c9
TS
5012{
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5015 size_t extsymoff;
5016
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5020
5021 if (r_symndx < extsymoff)
b34976b6 5022 return TRUE;
b49e97c9 5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5024 return TRUE;
b49e97c9 5025
b34976b6 5026 return FALSE;
b49e97c9
TS
5027}
5028\f
5029/* Sign-extend VALUE, which has the indicated number of BITS. */
5030
a7ebbfdf 5031bfd_vma
9719ad41 5032_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5033{
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5037
5038 return value;
5039}
5040
5041/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5042 range expressible by a signed number with the indicated number of
b49e97c9
TS
5043 BITS. */
5044
b34976b6 5045static bfd_boolean
9719ad41 5046mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5047{
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5049
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
b34976b6 5052 return TRUE;
b49e97c9
TS
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
b34976b6 5055 return TRUE;
b49e97c9
TS
5056
5057 /* All is well. */
b34976b6 5058 return FALSE;
b49e97c9
TS
5059}
5060
5061/* Calculate the %high function. */
5062
5063static bfd_vma
9719ad41 5064mips_elf_high (bfd_vma value)
b49e97c9
TS
5065{
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067}
5068
5069/* Calculate the %higher function. */
5070
5071static bfd_vma
9719ad41 5072mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5073{
5074#ifdef BFD64
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5076#else
5077 abort ();
c5ae1840 5078 return MINUS_ONE;
b49e97c9
TS
5079#endif
5080}
5081
5082/* Calculate the %highest function. */
5083
5084static bfd_vma
9719ad41 5085mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5086{
5087#ifdef BFD64
b15e6682 5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5089#else
5090 abort ();
c5ae1840 5091 return MINUS_ONE;
b49e97c9
TS
5092#endif
5093}
5094\f
5095/* Create the .compact_rel section. */
5096
b34976b6 5097static bfd_boolean
9719ad41
RS
5098mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5100{
5101 flagword flags;
5102 register asection *s;
5103
3d4d4302 5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5105 {
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 | SEC_READONLY);
5108
3d4d4302 5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5110 if (s == NULL
b49e97c9
TS
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5113 return FALSE;
b49e97c9 5114
eea6121a 5115 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5116 }
5117
b34976b6 5118 return TRUE;
b49e97c9
TS
5119}
5120
5121/* Create the .got section to hold the global offset table. */
5122
b34976b6 5123static bfd_boolean
23cc69b6 5124mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5125{
5126 flagword flags;
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
14a793b2 5129 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5130 struct mips_elf_link_hash_table *htab;
5131
5132 htab = mips_elf_hash_table (info);
4dfe6ac6 5133 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5134
5135 /* This function may be called more than once. */
ce558b89 5136 if (htab->root.sgot)
23cc69b6 5137 return TRUE;
b49e97c9
TS
5138
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5141
72b4917c
TS
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
87e0a731 5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5145 if (s == NULL
72b4917c 5146 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5147 return FALSE;
ce558b89 5148 htab->root.sgot = s;
b49e97c9
TS
5149
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
14a793b2 5153 bh = NULL;
b49e97c9
TS
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5157 return FALSE;
14a793b2
AM
5158
5159 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5160 h->non_elf = 0;
5161 h->def_regular = 1;
b49e97c9 5162 h->type = STT_OBJECT;
2f9efdfc 5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5164 elf_hash_table (info)->hgot = h;
b49e97c9 5165
0e1862bb 5166 if (bfd_link_pic (info)
c152c796 5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5168 return FALSE;
b49e97c9 5169
3dff0dd1 5170 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5173
861fb55a 5174 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5177 | SEC_HAS_CONTENTS
5178 | SEC_IN_MEMORY
5179 | SEC_LINKER_CREATED);
861fb55a
DJ
5180 if (s == NULL)
5181 return FALSE;
ce558b89 5182 htab->root.sgotplt = s;
0a44bf69 5183
b34976b6 5184 return TRUE;
b49e97c9 5185}
b49e97c9 5186\f
0a44bf69
RS
5187/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5190
5191static bfd_boolean
5192is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5193{
5194 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5195 && bfd_link_pic (info)
0a44bf69
RS
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198}
861fb55a
DJ
5199
5200/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5203 stub. */
5204
5205static bfd_boolean
8f0c309a
CLT
5206mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5208{
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5215 return FALSE;
5216
5217 switch (r_type)
5218 {
5219 case R_MIPS_26:
5220 case R_MIPS_PC16:
7361da2c
AB
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
df58fc94
RS
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5228 return TRUE;
5229
8f0c309a
CLT
5230 case R_MIPS16_26:
5231 return !target_is_16_bit_code_p;
5232
861fb55a
DJ
5233 default:
5234 return FALSE;
5235 }
5236}
0a44bf69 5237\f
b49e97c9
TS
5238/* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5241
5242 The result of the relocation calculation is stored in VALUEP.
38a7df63 5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5245
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5250
5251static bfd_reloc_status_type
9719ad41
RS
5252mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5259 const char **namep,
5260 bfd_boolean *cross_mode_jump_p,
9719ad41 5261 bfd_boolean save_addend)
b49e97c9
TS
5262{
5263 /* The eventual value we will return. */
5264 bfd_vma value;
5265 /* The address of the symbol against which the relocation is
5266 occurring. */
5267 bfd_vma symbol = 0;
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
0a61c8c2 5270 bfd_vma gp;
b49e97c9
TS
5271 /* The place (section offset or address) of the storage unit being
5272 relocated. */
5273 bfd_vma p;
5274 /* The value of GP used to create the relocatable object. */
0a61c8c2 5275 bfd_vma gp0;
b49e97c9
TS
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5281 located. */
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5284 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5285 symbol. */
b34976b6 5286 bfd_boolean local_p, was_local_p;
77434823
MR
5287 /* TRUE if the symbol referred to by this relocation is a section
5288 symbol. */
5289 bfd_boolean section_p = FALSE;
b34976b6
AM
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5295 Elf_Internal_Shdr *symtab_hdr;
5296 size_t extsymoff;
5297 unsigned long r_symndx;
5298 int r_type;
b34976b6 5299 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5300 relocation value. */
b34976b6
AM
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5304 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5305 struct mips_elf_link_hash_table *htab;
5306 bfd *dynobj;
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
4dfe6ac6 5310 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
b34976b6 5320 overflowed_p = FALSE;
b49e97c9
TS
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5326 local_sections);
bce03d3d 5327 was_local_p = local_p;
b49e97c9
TS
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
9d862524 5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
77434823
MR
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
b49e97c9 5348 symbol = sec->output_section->vma + sec->output_offset;
77434823 5349 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5350 symbol += sym->st_value;
77434823 5351 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
b49e97c9 5357
df58fc94
RS
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
ceab86af 5366 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5367 *namep = bfd_section_name (input_bfd, sec);
5368
9d862524
MR
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
b49e97c9
TS
5389 }
5390 else
5391 {
560e09e9
NC
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
b49e97c9
TS
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
560e09e9 5407 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5413 return bfd_reloc_notsupported;
5414
b34976b6 5415 gp_disp_p = TRUE;
b49e97c9 5416 }
bbe506e8
TS
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
b49e97c9
TS
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
59c2e50f 5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
a4d0f181
TS
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
0e1862bb 5457 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5e2b0d47
NC
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
b49e97c9
TS
5472 else
5473 {
1a72702b
AM
5474 (*info->callbacks->undefined_symbol)
5475 (info, h->root.root.root.string, input_bfd,
5476 input_section, relocation->r_offset,
5477 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5478 || ELF_ST_VISIBILITY (h->root.other));
5479 return bfd_reloc_undefined;
b49e97c9
TS
5480 }
5481
30c09090 5482 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5483 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5484 }
5485
738e5348
RS
5486 /* If this is a reference to a 16-bit function with a stub, we need
5487 to redirect the relocation to the stub unless:
5488
5489 (a) the relocation is for a MIPS16 JAL;
5490
5491 (b) the relocation is for a MIPS16 PIC call, and there are no
5492 non-MIPS16 uses of the GOT slot; or
5493
5494 (c) the section allows direct references to MIPS16 functions. */
5495 if (r_type != R_MIPS16_26
0e1862bb 5496 && !bfd_link_relocatable (info)
738e5348
RS
5497 && ((h != NULL
5498 && h->fn_stub != NULL
5499 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5500 || (local_p
698600e4
AM
5501 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5502 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5503 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5504 {
5505 /* This is a 32- or 64-bit call to a 16-bit function. We should
5506 have already noticed that we were going to need the
5507 stub. */
5508 if (local_p)
8f0c309a 5509 {
698600e4 5510 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5511 value = 0;
5512 }
b49e97c9
TS
5513 else
5514 {
5515 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5516 if (h->la25_stub)
5517 {
5518 /* If a LA25 header for the stub itself exists, point to the
5519 prepended LUI/ADDIU sequence. */
5520 sec = h->la25_stub->stub_section;
5521 value = h->la25_stub->offset;
5522 }
5523 else
5524 {
5525 sec = h->fn_stub;
5526 value = 0;
5527 }
b49e97c9
TS
5528 }
5529
8f0c309a 5530 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5531 /* The target is 16-bit, but the stub isn't. */
5532 target_is_16_bit_code_p = FALSE;
b49e97c9 5533 }
1bbce132
MR
5534 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5535 to a standard MIPS function, we need to redirect the call to the stub.
5536 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5537 indirect calls should use an indirect stub instead. */
0e1862bb 5538 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5539 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5540 || (local_p
698600e4
AM
5541 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5542 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5543 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5544 {
b9d58d71 5545 if (local_p)
698600e4 5546 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5547 else
b49e97c9 5548 {
b9d58d71
TS
5549 /* If both call_stub and call_fp_stub are defined, we can figure
5550 out which one to use by checking which one appears in the input
5551 file. */
5552 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5553 {
b9d58d71 5554 asection *o;
68ffbac6 5555
b9d58d71
TS
5556 sec = NULL;
5557 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5558 {
b9d58d71
TS
5559 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5560 {
5561 sec = h->call_fp_stub;
5562 break;
5563 }
b49e97c9 5564 }
b9d58d71
TS
5565 if (sec == NULL)
5566 sec = h->call_stub;
b49e97c9 5567 }
b9d58d71 5568 else if (h->call_stub != NULL)
b49e97c9 5569 sec = h->call_stub;
b9d58d71
TS
5570 else
5571 sec = h->call_fp_stub;
5572 }
b49e97c9 5573
eea6121a 5574 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5575 symbol = sec->output_section->vma + sec->output_offset;
5576 }
861fb55a
DJ
5577 /* If this is a direct call to a PIC function, redirect to the
5578 non-PIC stub. */
5579 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5580 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5581 target_is_16_bit_code_p))
c7318def
MR
5582 {
5583 symbol = (h->la25_stub->stub_section->output_section->vma
5584 + h->la25_stub->stub_section->output_offset
5585 + h->la25_stub->offset);
5586 if (ELF_ST_IS_MICROMIPS (h->root.other))
5587 symbol |= 1;
5588 }
1bbce132
MR
5589 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5590 entry is used if a standard PLT entry has also been made. In this
5591 case the symbol will have been set by mips_elf_set_plt_sym_value
5592 to point to the standard PLT entry, so redirect to the compressed
5593 one. */
54806ffa
MR
5594 else if ((mips16_branch_reloc_p (r_type)
5595 || micromips_branch_reloc_p (r_type))
0e1862bb 5596 && !bfd_link_relocatable (info)
1bbce132
MR
5597 && h != NULL
5598 && h->use_plt_entry
5599 && h->root.plt.plist->comp_offset != MINUS_ONE
5600 && h->root.plt.plist->mips_offset != MINUS_ONE)
5601 {
5602 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5603
ce558b89 5604 sec = htab->root.splt;
1bbce132
MR
5605 symbol = (sec->output_section->vma
5606 + sec->output_offset
5607 + htab->plt_header_size
5608 + htab->plt_mips_offset
5609 + h->root.plt.plist->comp_offset
5610 + 1);
5611
5612 target_is_16_bit_code_p = !micromips_p;
5613 target_is_micromips_code_p = micromips_p;
5614 }
b49e97c9 5615
df58fc94 5616 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5617 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5618 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5619 {
4eca0228 5620 _bfd_error_handler
df58fc94
RS
5621 (_("MIPS16 and microMIPS functions cannot call each other"));
5622 return bfd_reloc_notsupported;
5623 }
5624
b49e97c9 5625 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5626 mode change. However, we can ignore calls to undefined weak symbols,
5627 which should never be executed at runtime. This exception is important
5628 because the assembly writer may have "known" that any definition of the
5629 symbol would be 16-bit code, and that direct jumps were therefore
5630 acceptable. */
0e1862bb 5631 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5632 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5633 && ((mips16_branch_reloc_p (r_type)
5634 && !target_is_16_bit_code_p)
5635 || (micromips_branch_reloc_p (r_type)
df58fc94 5636 && !target_is_micromips_code_p)
9d862524
MR
5637 || ((branch_reloc_p (r_type)
5638 || r_type == R_MIPS_JALR)
df58fc94
RS
5639 && (target_is_16_bit_code_p
5640 || target_is_micromips_code_p))));
b49e97c9 5641
c5d6fa44 5642 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5643
0a61c8c2
RS
5644 gp0 = _bfd_get_gp_value (input_bfd);
5645 gp = _bfd_get_gp_value (abfd);
23cc69b6 5646 if (htab->got_info)
a8028dd0 5647 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5648
5649 if (gnu_local_gp_p)
5650 symbol = gp;
5651
df58fc94
RS
5652 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5653 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5654 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5655 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5656 {
df58fc94
RS
5657 r_type = (micromips_reloc_p (r_type)
5658 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5659 addend = 0;
5660 }
5661
e77760d2 5662 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5663 to need it, get it now. */
b49e97c9
TS
5664 switch (r_type)
5665 {
738e5348
RS
5666 case R_MIPS16_CALL16:
5667 case R_MIPS16_GOT16:
b49e97c9
TS
5668 case R_MIPS_CALL16:
5669 case R_MIPS_GOT16:
5670 case R_MIPS_GOT_DISP:
5671 case R_MIPS_GOT_HI16:
5672 case R_MIPS_CALL_HI16:
5673 case R_MIPS_GOT_LO16:
5674 case R_MIPS_CALL_LO16:
df58fc94
RS
5675 case R_MICROMIPS_CALL16:
5676 case R_MICROMIPS_GOT16:
5677 case R_MICROMIPS_GOT_DISP:
5678 case R_MICROMIPS_GOT_HI16:
5679 case R_MICROMIPS_CALL_HI16:
5680 case R_MICROMIPS_GOT_LO16:
5681 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5682 case R_MIPS_TLS_GD:
5683 case R_MIPS_TLS_GOTTPREL:
5684 case R_MIPS_TLS_LDM:
d0f13682
CLT
5685 case R_MIPS16_TLS_GD:
5686 case R_MIPS16_TLS_GOTTPREL:
5687 case R_MIPS16_TLS_LDM:
df58fc94
RS
5688 case R_MICROMIPS_TLS_GD:
5689 case R_MICROMIPS_TLS_GOTTPREL:
5690 case R_MICROMIPS_TLS_LDM:
b49e97c9 5691 /* Find the index into the GOT where this value is located. */
df58fc94 5692 if (tls_ldm_reloc_p (r_type))
0f20cc35 5693 {
0a44bf69 5694 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5695 0, 0, NULL, r_type);
0f20cc35
DJ
5696 if (g == MINUS_ONE)
5697 return bfd_reloc_outofrange;
5698 }
5699 else if (!local_p)
b49e97c9 5700 {
0a44bf69
RS
5701 /* On VxWorks, CALL relocations should refer to the .got.plt
5702 entry, which is initialized to point at the PLT stub. */
5703 if (htab->is_vxworks
df58fc94
RS
5704 && (call_hi16_reloc_p (r_type)
5705 || call_lo16_reloc_p (r_type)
738e5348 5706 || call16_reloc_p (r_type)))
0a44bf69
RS
5707 {
5708 BFD_ASSERT (addend == 0);
5709 BFD_ASSERT (h->root.needs_plt);
5710 g = mips_elf_gotplt_index (info, &h->root);
5711 }
5712 else
b49e97c9 5713 {
020d7251 5714 BFD_ASSERT (addend == 0);
13fbec83
RS
5715 g = mips_elf_global_got_index (abfd, info, input_bfd,
5716 &h->root, r_type);
e641e783 5717 if (!TLS_RELOC_P (r_type)
020d7251
RS
5718 && !elf_hash_table (info)->dynamic_sections_created)
5719 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5720 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5721 }
5722 }
0a44bf69 5723 else if (!htab->is_vxworks
738e5348 5724 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5725 /* The calculation below does not involve "g". */
b49e97c9
TS
5726 break;
5727 else
5728 {
5c18022e 5729 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5730 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5731 if (g == MINUS_ONE)
5732 return bfd_reloc_outofrange;
5733 }
5734
5735 /* Convert GOT indices to actual offsets. */
a8028dd0 5736 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5737 break;
b49e97c9
TS
5738 }
5739
0a44bf69
RS
5740 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5741 symbols are resolved by the loader. Add them to .rela.dyn. */
5742 if (h != NULL && is_gott_symbol (info, &h->root))
5743 {
5744 Elf_Internal_Rela outrel;
5745 bfd_byte *loc;
5746 asection *s;
5747
5748 s = mips_elf_rel_dyn_section (info, FALSE);
5749 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5750
5751 outrel.r_offset = (input_section->output_section->vma
5752 + input_section->output_offset
5753 + relocation->r_offset);
5754 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5755 outrel.r_addend = addend;
5756 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5757
5758 /* If we've written this relocation for a readonly section,
5759 we need to set DF_TEXTREL again, so that we do not delete the
5760 DT_TEXTREL tag. */
5761 if (MIPS_ELF_READONLY_SECTION (input_section))
5762 info->flags |= DF_TEXTREL;
5763
0a44bf69
RS
5764 *valuep = 0;
5765 return bfd_reloc_ok;
5766 }
5767
b49e97c9
TS
5768 /* Figure out what kind of relocation is being performed. */
5769 switch (r_type)
5770 {
5771 case R_MIPS_NONE:
5772 return bfd_reloc_continue;
5773
5774 case R_MIPS_16:
c3eb94b4
MF
5775 if (howto->partial_inplace)
5776 addend = _bfd_mips_elf_sign_extend (addend, 16);
5777 value = symbol + addend;
b49e97c9
TS
5778 overflowed_p = mips_elf_overflow_p (value, 16);
5779 break;
5780
5781 case R_MIPS_32:
5782 case R_MIPS_REL32:
5783 case R_MIPS_64:
0e1862bb 5784 if ((bfd_link_pic (info)
861fb55a 5785 || (htab->root.dynamic_sections_created
b49e97c9 5786 && h != NULL
f5385ebf 5787 && h->root.def_dynamic
861fb55a
DJ
5788 && !h->root.def_regular
5789 && !h->has_static_relocs))
cf35638d 5790 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5791 && (h == NULL
5792 || h->root.root.type != bfd_link_hash_undefweak
5793 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5794 && (input_section->flags & SEC_ALLOC) != 0)
5795 {
861fb55a 5796 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5797 where the symbol will end up. So, we create a relocation
5798 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5799 linker. We must do the same for executable references to
5800 shared library symbols, unless we've decided to use copy
5801 relocs or PLTs instead. */
b49e97c9
TS
5802 value = addend;
5803 if (!mips_elf_create_dynamic_relocation (abfd,
5804 info,
5805 relocation,
5806 h,
5807 sec,
5808 symbol,
5809 &value,
5810 input_section))
5811 return bfd_reloc_undefined;
5812 }
5813 else
5814 {
5815 if (r_type != R_MIPS_REL32)
5816 value = symbol + addend;
5817 else
5818 value = addend;
5819 }
5820 value &= howto->dst_mask;
092dcd75
CD
5821 break;
5822
5823 case R_MIPS_PC32:
5824 value = symbol + addend - p;
5825 value &= howto->dst_mask;
b49e97c9
TS
5826 break;
5827
b49e97c9
TS
5828 case R_MIPS16_26:
5829 /* The calculation for R_MIPS16_26 is just the same as for an
5830 R_MIPS_26. It's only the storage of the relocated field into
5831 the output file that's different. That's handled in
5832 mips_elf_perform_relocation. So, we just fall through to the
5833 R_MIPS_26 case here. */
5834 case R_MIPS_26:
df58fc94
RS
5835 case R_MICROMIPS_26_S1:
5836 {
5837 unsigned int shift;
5838
df58fc94
RS
5839 /* Shift is 2, unusually, for microMIPS JALX. */
5840 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5841
77434823 5842 if (howto->partial_inplace && !section_p)
df58fc94 5843 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5844 else
5845 value = addend;
bc27bb05
MR
5846 value += symbol;
5847
9d862524
MR
5848 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5849 be the correct ISA mode selector except for weak undefined
5850 symbols. */
5851 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 && (*cross_mode_jump_p
5853 ? (value & 3) != (r_type == R_MIPS_26)
5854 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5855 return bfd_reloc_outofrange;
5856
5857 value >>= shift;
77434823 5858 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5859 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5860 value &= howto->dst_mask;
5861 }
b49e97c9
TS
5862 break;
5863
0f20cc35 5864 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5865 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5866 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5867 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5868 & howto->dst_mask);
5869 break;
5870
5871 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5872 case R_MIPS_TLS_DTPREL32:
5873 case R_MIPS_TLS_DTPREL64:
d0f13682 5874 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5875 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5876 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5877 break;
5878
5879 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5880 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5881 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5882 value = (mips_elf_high (addend + symbol - tprel_base (info))
5883 & howto->dst_mask);
5884 break;
5885
5886 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5887 case R_MIPS_TLS_TPREL32:
5888 case R_MIPS_TLS_TPREL64:
5889 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5890 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5891 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5892 break;
5893
b49e97c9 5894 case R_MIPS_HI16:
d6f16593 5895 case R_MIPS16_HI16:
df58fc94 5896 case R_MICROMIPS_HI16:
b49e97c9
TS
5897 if (!gp_disp_p)
5898 {
5899 value = mips_elf_high (addend + symbol);
5900 value &= howto->dst_mask;
5901 }
5902 else
5903 {
d6f16593
MR
5904 /* For MIPS16 ABI code we generate this sequence
5905 0: li $v0,%hi(_gp_disp)
5906 4: addiupc $v1,%lo(_gp_disp)
5907 8: sll $v0,16
5908 12: addu $v0,$v1
5909 14: move $gp,$v0
5910 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5911 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5912 ADDIUPC clears the low two bits of the instruction address,
5913 so the base is ($t9 + 4) & ~3. */
d6f16593 5914 if (r_type == R_MIPS16_HI16)
888b9c01 5915 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5916 /* The microMIPS .cpload sequence uses the same assembly
5917 instructions as the traditional psABI version, but the
5918 incoming $t9 has the low bit set. */
5919 else if (r_type == R_MICROMIPS_HI16)
5920 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5921 else
5922 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5923 overflowed_p = mips_elf_overflow_p (value, 16);
5924 }
5925 break;
5926
5927 case R_MIPS_LO16:
d6f16593 5928 case R_MIPS16_LO16:
df58fc94
RS
5929 case R_MICROMIPS_LO16:
5930 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5931 if (!gp_disp_p)
5932 value = (symbol + addend) & howto->dst_mask;
5933 else
5934 {
d6f16593
MR
5935 /* See the comment for R_MIPS16_HI16 above for the reason
5936 for this conditional. */
5937 if (r_type == R_MIPS16_LO16)
888b9c01 5938 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5939 else if (r_type == R_MICROMIPS_LO16
5940 || r_type == R_MICROMIPS_HI0_LO16)
5941 value = addend + gp - p + 3;
d6f16593
MR
5942 else
5943 value = addend + gp - p + 4;
b49e97c9 5944 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5945 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5946 _gp_disp are normally generated from the .cpload
5947 pseudo-op. It generates code that normally looks like
5948 this:
5949
5950 lui $gp,%hi(_gp_disp)
5951 addiu $gp,$gp,%lo(_gp_disp)
5952 addu $gp,$gp,$t9
5953
5954 Here $t9 holds the address of the function being called,
5955 as required by the MIPS ELF ABI. The R_MIPS_LO16
5956 relocation can easily overflow in this situation, but the
5957 R_MIPS_HI16 relocation will handle the overflow.
5958 Therefore, we consider this a bug in the MIPS ABI, and do
5959 not check for overflow here. */
5960 }
5961 break;
5962
5963 case R_MIPS_LITERAL:
df58fc94 5964 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5965 /* Because we don't merge literal sections, we can handle this
5966 just like R_MIPS_GPREL16. In the long run, we should merge
5967 shared literals, and then we will need to additional work
5968 here. */
5969
5970 /* Fall through. */
5971
5972 case R_MIPS16_GPREL:
5973 /* The R_MIPS16_GPREL performs the same calculation as
5974 R_MIPS_GPREL16, but stores the relocated bits in a different
5975 order. We don't need to do anything special here; the
5976 differences are handled in mips_elf_perform_relocation. */
5977 case R_MIPS_GPREL16:
df58fc94
RS
5978 case R_MICROMIPS_GPREL7_S2:
5979 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5980 /* Only sign-extend the addend if it was extracted from the
5981 instruction. If the addend was separate, leave it alone,
5982 otherwise we may lose significant bits. */
5983 if (howto->partial_inplace)
a7ebbfdf 5984 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5985 value = symbol + addend - gp;
5986 /* If the symbol was local, any earlier relocatable links will
5987 have adjusted its addend with the gp offset, so compensate
5988 for that now. Don't do it for symbols forced local in this
5989 link, though, since they won't have had the gp offset applied
5990 to them before. */
5991 if (was_local_p)
5992 value += gp0;
538baf8b
AB
5993 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5994 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
5995 break;
5996
738e5348
RS
5997 case R_MIPS16_GOT16:
5998 case R_MIPS16_CALL16:
b49e97c9
TS
5999 case R_MIPS_GOT16:
6000 case R_MIPS_CALL16:
df58fc94
RS
6001 case R_MICROMIPS_GOT16:
6002 case R_MICROMIPS_CALL16:
0a44bf69 6003 /* VxWorks does not have separate local and global semantics for
738e5348 6004 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6005 if (!htab->is_vxworks && local_p)
b49e97c9 6006 {
5c18022e 6007 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6008 symbol + addend, !was_local_p);
b49e97c9
TS
6009 if (value == MINUS_ONE)
6010 return bfd_reloc_outofrange;
6011 value
a8028dd0 6012 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6013 overflowed_p = mips_elf_overflow_p (value, 16);
6014 break;
6015 }
6016
6017 /* Fall through. */
6018
0f20cc35
DJ
6019 case R_MIPS_TLS_GD:
6020 case R_MIPS_TLS_GOTTPREL:
6021 case R_MIPS_TLS_LDM:
b49e97c9 6022 case R_MIPS_GOT_DISP:
d0f13682
CLT
6023 case R_MIPS16_TLS_GD:
6024 case R_MIPS16_TLS_GOTTPREL:
6025 case R_MIPS16_TLS_LDM:
df58fc94
RS
6026 case R_MICROMIPS_TLS_GD:
6027 case R_MICROMIPS_TLS_GOTTPREL:
6028 case R_MICROMIPS_TLS_LDM:
6029 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6030 value = g;
6031 overflowed_p = mips_elf_overflow_p (value, 16);
6032 break;
6033
6034 case R_MIPS_GPREL32:
bce03d3d
AO
6035 value = (addend + symbol + gp0 - gp);
6036 if (!save_addend)
6037 value &= howto->dst_mask;
b49e97c9
TS
6038 break;
6039
6040 case R_MIPS_PC16:
bad36eac 6041 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6042 if (howto->partial_inplace)
6043 addend = _bfd_mips_elf_sign_extend (addend, 18);
6044
9d862524
MR
6045 /* No need to exclude weak undefined symbols here as they resolve
6046 to 0 and never set `*cross_mode_jump_p', so this alignment check
6047 will never trigger for them. */
6048 if (*cross_mode_jump_p
6049 ? ((symbol + addend) & 3) != 1
6050 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6051 return bfd_reloc_outofrange;
6052
6053 value = symbol + addend - p;
538baf8b
AB
6054 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6055 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6056 value >>= howto->rightshift;
6057 value &= howto->dst_mask;
b49e97c9
TS
6058 break;
6059
c9775dde
MR
6060 case R_MIPS16_PC16_S1:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 17);
6063
6064 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6065 && (*cross_mode_jump_p
6066 ? ((symbol + addend) & 3) != 0
6067 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6068 return bfd_reloc_outofrange;
6069
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 17);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
7361da2c
AB
6077 case R_MIPS_PC21_S2:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 23);
6080
6081 if ((symbol + addend) & 3)
6082 return bfd_reloc_outofrange;
6083
6084 value = symbol + addend - p;
538baf8b
AB
6085 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6087 value >>= howto->rightshift;
6088 value &= howto->dst_mask;
6089 break;
6090
6091 case R_MIPS_PC26_S2:
6092 if (howto->partial_inplace)
6093 addend = _bfd_mips_elf_sign_extend (addend, 28);
6094
6095 if ((symbol + addend) & 3)
6096 return bfd_reloc_outofrange;
6097
6098 value = symbol + addend - p;
538baf8b
AB
6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6100 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6101 value >>= howto->rightshift;
6102 value &= howto->dst_mask;
6103 break;
6104
6105 case R_MIPS_PC18_S3:
6106 if (howto->partial_inplace)
6107 addend = _bfd_mips_elf_sign_extend (addend, 21);
6108
6109 if ((symbol + addend) & 7)
6110 return bfd_reloc_outofrange;
6111
6112 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6113 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6114 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6115 value >>= howto->rightshift;
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_PC19_S2:
6120 if (howto->partial_inplace)
6121 addend = _bfd_mips_elf_sign_extend (addend, 21);
6122
6123 if ((symbol + addend) & 3)
6124 return bfd_reloc_outofrange;
6125
6126 value = symbol + addend - p;
538baf8b
AB
6127 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6128 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6129 value >>= howto->rightshift;
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCHI16:
6134 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6135 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6136 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MIPS_PCLO16:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 16);
6143 value = symbol + addend - p;
6144 value &= howto->dst_mask;
6145 break;
6146
df58fc94 6147 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6148 if (howto->partial_inplace)
6149 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6150
6151 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 && (*cross_mode_jump_p
6153 ? ((symbol + addend + 2) & 3) != 0
6154 : ((symbol + addend + 2) & 1) == 0))
6155 return bfd_reloc_outofrange;
6156
c3eb94b4 6157 value = symbol + addend - p;
538baf8b
AB
6158 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6159 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6160 value >>= howto->rightshift;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6165 if (howto->partial_inplace)
6166 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6167
6168 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 && (*cross_mode_jump_p
6170 ? ((symbol + addend + 2) & 3) != 0
6171 : ((symbol + addend + 2) & 1) == 0))
6172 return bfd_reloc_outofrange;
6173
c3eb94b4 6174 value = symbol + addend - p;
538baf8b
AB
6175 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6176 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6177 value >>= howto->rightshift;
6178 value &= howto->dst_mask;
6179 break;
6180
6181 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6182 if (howto->partial_inplace)
6183 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6184
6185 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 && (*cross_mode_jump_p
6187 ? ((symbol + addend) & 3) != 0
6188 : ((symbol + addend) & 1) == 0))
6189 return bfd_reloc_outofrange;
6190
c3eb94b4 6191 value = symbol + addend - p;
538baf8b
AB
6192 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6193 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6194 value >>= howto->rightshift;
6195 value &= howto->dst_mask;
6196 break;
6197
6198 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6199 if (howto->partial_inplace)
6200 addend = _bfd_mips_elf_sign_extend (addend, 25);
6201 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
b49e97c9
TS
6208 case R_MIPS_GOT_HI16:
6209 case R_MIPS_CALL_HI16:
df58fc94
RS
6210 case R_MICROMIPS_GOT_HI16:
6211 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6212 /* We're allowed to handle these two relocations identically.
6213 The dynamic linker is allowed to handle the CALL relocations
6214 differently by creating a lazy evaluation stub. */
6215 value = g;
6216 value = mips_elf_high (value);
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_LO16:
6221 case R_MIPS_CALL_LO16:
df58fc94
RS
6222 case R_MICROMIPS_GOT_LO16:
6223 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6224 value = g & howto->dst_mask;
6225 break;
6226
6227 case R_MIPS_GOT_PAGE:
df58fc94 6228 case R_MICROMIPS_GOT_PAGE:
5c18022e 6229 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
a8028dd0 6232 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235
6236 case R_MIPS_GOT_OFST:
df58fc94 6237 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6238 if (local_p)
5c18022e 6239 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6240 else
6241 value = addend;
b49e97c9
TS
6242 overflowed_p = mips_elf_overflow_p (value, 16);
6243 break;
6244
6245 case R_MIPS_SUB:
df58fc94 6246 case R_MICROMIPS_SUB:
b49e97c9
TS
6247 value = symbol - addend;
6248 value &= howto->dst_mask;
6249 break;
6250
6251 case R_MIPS_HIGHER:
df58fc94 6252 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6253 value = mips_elf_higher (addend + symbol);
6254 value &= howto->dst_mask;
6255 break;
6256
6257 case R_MIPS_HIGHEST:
df58fc94 6258 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6259 value = mips_elf_highest (addend + symbol);
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_SCN_DISP:
df58fc94 6264 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6265 value = symbol + addend - sec->output_offset;
6266 value &= howto->dst_mask;
6267 break;
6268
b49e97c9 6269 case R_MIPS_JALR:
df58fc94 6270 case R_MICROMIPS_JALR:
1367d393
ILT
6271 /* This relocation is only a hint. In some cases, we optimize
6272 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6273 when the symbol does not resolve locally. */
6274 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6275 return bfd_reloc_continue;
6276 value = symbol + addend;
6277 break;
b49e97c9 6278
1367d393 6279 case R_MIPS_PJUMP:
b49e97c9
TS
6280 case R_MIPS_GNU_VTINHERIT:
6281 case R_MIPS_GNU_VTENTRY:
6282 /* We don't do anything with these at present. */
6283 return bfd_reloc_continue;
6284
6285 default:
6286 /* An unrecognized relocation type. */
6287 return bfd_reloc_notsupported;
6288 }
6289
6290 /* Store the VALUE for our caller. */
6291 *valuep = value;
6292 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6293}
6294
6295/* Obtain the field relocated by RELOCATION. */
6296
6297static bfd_vma
9719ad41
RS
6298mips_elf_obtain_contents (reloc_howto_type *howto,
6299 const Elf_Internal_Rela *relocation,
6300 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6301{
6346d5ca 6302 bfd_vma x = 0;
b49e97c9 6303 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6304 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6305
6306 /* Obtain the bytes. */
6346d5ca
AM
6307 if (size != 0)
6308 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6309
b49e97c9
TS
6310 return x;
6311}
6312
6313/* It has been determined that the result of the RELOCATION is the
6314 VALUE. Use HOWTO to place VALUE into the output file at the
6315 appropriate position. The SECTION is the section to which the
68ffbac6 6316 relocation applies.
38a7df63 6317 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6318 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6319
b34976b6 6320 Returns FALSE if anything goes wrong. */
b49e97c9 6321
b34976b6 6322static bfd_boolean
9719ad41
RS
6323mips_elf_perform_relocation (struct bfd_link_info *info,
6324 reloc_howto_type *howto,
6325 const Elf_Internal_Rela *relocation,
6326 bfd_vma value, bfd *input_bfd,
6327 asection *input_section, bfd_byte *contents,
38a7df63 6328 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6329{
6330 bfd_vma x;
6331 bfd_byte *location;
6332 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6333 unsigned int size;
b49e97c9
TS
6334
6335 /* Figure out where the relocation is occurring. */
6336 location = contents + relocation->r_offset;
6337
df58fc94 6338 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6339
b49e97c9
TS
6340 /* Obtain the current value. */
6341 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6342
6343 /* Clear the field we are setting. */
6344 x &= ~howto->dst_mask;
6345
b49e97c9
TS
6346 /* Set the field. */
6347 x |= (value & howto->dst_mask);
6348
a6ebf616 6349 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6350 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6351 {
6352 bfd_vma opcode = x >> 26;
6353
6354 if (r_type == R_MIPS16_26 ? opcode == 0x7
6355 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6356 : opcode == 0x1d)
6357 {
6358 info->callbacks->einfo
6359 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6360 input_bfd, input_section, relocation->r_offset);
6361 return TRUE;
6362 }
6363 }
38a7df63 6364 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6365 {
b34976b6 6366 bfd_boolean ok;
b49e97c9
TS
6367 bfd_vma opcode = x >> 26;
6368 bfd_vma jalx_opcode;
6369
6370 /* Check to see if the opcode is already JAL or JALX. */
6371 if (r_type == R_MIPS16_26)
6372 {
6373 ok = ((opcode == 0x6) || (opcode == 0x7));
6374 jalx_opcode = 0x7;
6375 }
df58fc94
RS
6376 else if (r_type == R_MICROMIPS_26_S1)
6377 {
6378 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6379 jalx_opcode = 0x3c;
6380 }
b49e97c9
TS
6381 else
6382 {
6383 ok = ((opcode == 0x3) || (opcode == 0x1d));
6384 jalx_opcode = 0x1d;
6385 }
6386
3bdf9505
MR
6387 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6388 convert J or JALS to JALX. */
b49e97c9
TS
6389 if (!ok)
6390 {
5f68df25
MR
6391 info->callbacks->einfo
6392 (_("%X%H: Unsupported jump between ISA modes; "
6393 "consider recompiling with interlinking enabled\n"),
6394 input_bfd, input_section, relocation->r_offset);
6395 return TRUE;
b49e97c9
TS
6396 }
6397
6398 /* Make this the JALX opcode. */
6399 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6400 }
9d862524
MR
6401 else if (cross_mode_jump_p && b_reloc_p (r_type))
6402 {
a6ebf616
MR
6403 bfd_boolean ok = FALSE;
6404 bfd_vma opcode = x >> 16;
6405 bfd_vma jalx_opcode = 0;
6406 bfd_vma addr;
6407 bfd_vma dest;
6408
6409 if (r_type == R_MICROMIPS_PC16_S1)
6410 {
6411 ok = opcode == 0x4060;
6412 jalx_opcode = 0x3c;
6413 value <<= 1;
6414 }
6415 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6416 {
6417 ok = opcode == 0x411;
6418 jalx_opcode = 0x1d;
6419 value <<= 2;
6420 }
6421
6422 if (bfd_link_pic (info) || !ok)
6423 {
6424 info->callbacks->einfo
6425 (_("%X%H: Unsupported branch between ISA modes\n"),
6426 input_bfd, input_section, relocation->r_offset);
6427 return TRUE;
6428 }
6429
6430 addr = (input_section->output_section->vma
6431 + input_section->output_offset
6432 + relocation->r_offset
6433 + 4);
6434 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6435
6436 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6437 {
6438 info->callbacks->einfo
6439 (_("%X%H: Cannot convert branch between ISA modes "
6440 "to JALX: relocation out of range\n"),
6441 input_bfd, input_section, relocation->r_offset);
6442 return TRUE;
6443 }
6444
6445 /* Make this the JALX opcode. */
6446 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
9d862524 6447 }
b49e97c9 6448
38a7df63
CF
6449 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6450 range. */
0e1862bb 6451 if (!bfd_link_relocatable (info)
38a7df63 6452 && !cross_mode_jump_p
cd8d5a82
CF
6453 && ((JAL_TO_BAL_P (input_bfd)
6454 && r_type == R_MIPS_26
6455 && (x >> 26) == 0x3) /* jal addr */
6456 || (JALR_TO_BAL_P (input_bfd)
6457 && r_type == R_MIPS_JALR
38a7df63
CF
6458 && x == 0x0320f809) /* jalr t9 */
6459 || (JR_TO_B_P (input_bfd)
6460 && r_type == R_MIPS_JALR
6461 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6462 {
6463 bfd_vma addr;
6464 bfd_vma dest;
6465 bfd_signed_vma off;
6466
6467 addr = (input_section->output_section->vma
6468 + input_section->output_offset
6469 + relocation->r_offset
6470 + 4);
6471 if (r_type == R_MIPS_26)
6472 dest = (value << 2) | ((addr >> 28) << 28);
6473 else
6474 dest = value;
6475 off = dest - addr;
6476 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6477 {
6478 if (x == 0x03200008) /* jr t9 */
6479 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6480 else
6481 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6482 }
1367d393
ILT
6483 }
6484
b49e97c9 6485 /* Put the value into the output. */
6346d5ca
AM
6486 size = bfd_get_reloc_size (howto);
6487 if (size != 0)
6488 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6489
0e1862bb 6490 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6491 location);
d6f16593 6492
b34976b6 6493 return TRUE;
b49e97c9 6494}
b49e97c9 6495\f
b49e97c9
TS
6496/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6497 is the original relocation, which is now being transformed into a
6498 dynamic relocation. The ADDENDP is adjusted if necessary; the
6499 caller should store the result in place of the original addend. */
6500
b34976b6 6501static bfd_boolean
9719ad41
RS
6502mips_elf_create_dynamic_relocation (bfd *output_bfd,
6503 struct bfd_link_info *info,
6504 const Elf_Internal_Rela *rel,
6505 struct mips_elf_link_hash_entry *h,
6506 asection *sec, bfd_vma symbol,
6507 bfd_vma *addendp, asection *input_section)
b49e97c9 6508{
947216bf 6509 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6510 asection *sreloc;
6511 bfd *dynobj;
6512 int r_type;
5d41f0b6
RS
6513 long indx;
6514 bfd_boolean defined_p;
0a44bf69 6515 struct mips_elf_link_hash_table *htab;
b49e97c9 6516
0a44bf69 6517 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6518 BFD_ASSERT (htab != NULL);
6519
b49e97c9
TS
6520 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6521 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6522 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6523 BFD_ASSERT (sreloc != NULL);
6524 BFD_ASSERT (sreloc->contents != NULL);
6525 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6526 < sreloc->size);
b49e97c9 6527
b49e97c9
TS
6528 outrel[0].r_offset =
6529 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6530 if (ABI_64_P (output_bfd))
6531 {
6532 outrel[1].r_offset =
6533 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6534 outrel[2].r_offset =
6535 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6536 }
b49e97c9 6537
c5ae1840 6538 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6539 /* The relocation field has been deleted. */
5d41f0b6
RS
6540 return TRUE;
6541
6542 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6543 {
6544 /* The relocation field has been converted into a relative value of
6545 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6546 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6547 *addendp += symbol;
5d41f0b6 6548 return TRUE;
0d591ff7 6549 }
b49e97c9 6550
5d41f0b6
RS
6551 /* We must now calculate the dynamic symbol table index to use
6552 in the relocation. */
d4a77f3f 6553 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6554 {
020d7251 6555 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6556 indx = h->root.dynindx;
6557 if (SGI_COMPAT (output_bfd))
6558 defined_p = h->root.def_regular;
6559 else
6560 /* ??? glibc's ld.so just adds the final GOT entry to the
6561 relocation field. It therefore treats relocs against
6562 defined symbols in the same way as relocs against
6563 undefined symbols. */
6564 defined_p = FALSE;
6565 }
b49e97c9
TS
6566 else
6567 {
5d41f0b6
RS
6568 if (sec != NULL && bfd_is_abs_section (sec))
6569 indx = 0;
6570 else if (sec == NULL || sec->owner == NULL)
fdd07405 6571 {
5d41f0b6
RS
6572 bfd_set_error (bfd_error_bad_value);
6573 return FALSE;
b49e97c9
TS
6574 }
6575 else
6576 {
5d41f0b6 6577 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6578 if (indx == 0)
6579 {
6580 asection *osec = htab->root.text_index_section;
6581 indx = elf_section_data (osec)->dynindx;
6582 }
5d41f0b6
RS
6583 if (indx == 0)
6584 abort ();
b49e97c9
TS
6585 }
6586
5d41f0b6
RS
6587 /* Instead of generating a relocation using the section
6588 symbol, we may as well make it a fully relative
6589 relocation. We want to avoid generating relocations to
6590 local symbols because we used to generate them
6591 incorrectly, without adding the original symbol value,
6592 which is mandated by the ABI for section symbols. In
6593 order to give dynamic loaders and applications time to
6594 phase out the incorrect use, we refrain from emitting
6595 section-relative relocations. It's not like they're
6596 useful, after all. This should be a bit more efficient
6597 as well. */
6598 /* ??? Although this behavior is compatible with glibc's ld.so,
6599 the ABI says that relocations against STN_UNDEF should have
6600 a symbol value of 0. Irix rld honors this, so relocations
6601 against STN_UNDEF have no effect. */
6602 if (!SGI_COMPAT (output_bfd))
6603 indx = 0;
6604 defined_p = TRUE;
b49e97c9
TS
6605 }
6606
5d41f0b6
RS
6607 /* If the relocation was previously an absolute relocation and
6608 this symbol will not be referred to by the relocation, we must
6609 adjust it by the value we give it in the dynamic symbol table.
6610 Otherwise leave the job up to the dynamic linker. */
6611 if (defined_p && r_type != R_MIPS_REL32)
6612 *addendp += symbol;
6613
0a44bf69
RS
6614 if (htab->is_vxworks)
6615 /* VxWorks uses non-relative relocations for this. */
6616 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6617 else
6618 /* The relocation is always an REL32 relocation because we don't
6619 know where the shared library will wind up at load-time. */
6620 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6621 R_MIPS_REL32);
6622
5d41f0b6
RS
6623 /* For strict adherence to the ABI specification, we should
6624 generate a R_MIPS_64 relocation record by itself before the
6625 _REL32/_64 record as well, such that the addend is read in as
6626 a 64-bit value (REL32 is a 32-bit relocation, after all).
6627 However, since none of the existing ELF64 MIPS dynamic
6628 loaders seems to care, we don't waste space with these
6629 artificial relocations. If this turns out to not be true,
6630 mips_elf_allocate_dynamic_relocation() should be tweaked so
6631 as to make room for a pair of dynamic relocations per
6632 invocation if ABI_64_P, and here we should generate an
6633 additional relocation record with R_MIPS_64 by itself for a
6634 NULL symbol before this relocation record. */
6635 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6636 ABI_64_P (output_bfd)
6637 ? R_MIPS_64
6638 : R_MIPS_NONE);
6639 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6640
6641 /* Adjust the output offset of the relocation to reference the
6642 correct location in the output file. */
6643 outrel[0].r_offset += (input_section->output_section->vma
6644 + input_section->output_offset);
6645 outrel[1].r_offset += (input_section->output_section->vma
6646 + input_section->output_offset);
6647 outrel[2].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649
b49e97c9
TS
6650 /* Put the relocation back out. We have to use the special
6651 relocation outputter in the 64-bit case since the 64-bit
6652 relocation format is non-standard. */
6653 if (ABI_64_P (output_bfd))
6654 {
6655 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6656 (output_bfd, &outrel[0],
6657 (sreloc->contents
6658 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6659 }
0a44bf69
RS
6660 else if (htab->is_vxworks)
6661 {
6662 /* VxWorks uses RELA rather than REL dynamic relocations. */
6663 outrel[0].r_addend = *addendp;
6664 bfd_elf32_swap_reloca_out
6665 (output_bfd, &outrel[0],
6666 (sreloc->contents
6667 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6668 }
b49e97c9 6669 else
947216bf
AM
6670 bfd_elf32_swap_reloc_out
6671 (output_bfd, &outrel[0],
6672 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6673
b49e97c9
TS
6674 /* We've now added another relocation. */
6675 ++sreloc->reloc_count;
6676
6677 /* Make sure the output section is writable. The dynamic linker
6678 will be writing to it. */
6679 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6680 |= SHF_WRITE;
6681
6682 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6683 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6684 {
3d4d4302 6685 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6686 bfd_byte *cr;
6687
6688 if (scpt)
6689 {
6690 Elf32_crinfo cptrel;
6691
6692 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6693 cptrel.vaddr = (rel->r_offset
6694 + input_section->output_section->vma
6695 + input_section->output_offset);
6696 if (r_type == R_MIPS_REL32)
6697 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6698 else
6699 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6700 mips_elf_set_cr_dist2to (cptrel, 0);
6701 cptrel.konst = *addendp;
6702
6703 cr = (scpt->contents
6704 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6705 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6706 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6707 ((Elf32_External_crinfo *) cr
6708 + scpt->reloc_count));
6709 ++scpt->reloc_count;
6710 }
6711 }
6712
943284cc
DJ
6713 /* If we've written this relocation for a readonly section,
6714 we need to set DF_TEXTREL again, so that we do not delete the
6715 DT_TEXTREL tag. */
6716 if (MIPS_ELF_READONLY_SECTION (input_section))
6717 info->flags |= DF_TEXTREL;
6718
b34976b6 6719 return TRUE;
b49e97c9
TS
6720}
6721\f
b49e97c9
TS
6722/* Return the MACH for a MIPS e_flags value. */
6723
6724unsigned long
9719ad41 6725_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6726{
6727 switch (flags & EF_MIPS_MACH)
6728 {
6729 case E_MIPS_MACH_3900:
6730 return bfd_mach_mips3900;
6731
6732 case E_MIPS_MACH_4010:
6733 return bfd_mach_mips4010;
6734
6735 case E_MIPS_MACH_4100:
6736 return bfd_mach_mips4100;
6737
6738 case E_MIPS_MACH_4111:
6739 return bfd_mach_mips4111;
6740
00707a0e
RS
6741 case E_MIPS_MACH_4120:
6742 return bfd_mach_mips4120;
6743
b49e97c9
TS
6744 case E_MIPS_MACH_4650:
6745 return bfd_mach_mips4650;
6746
00707a0e
RS
6747 case E_MIPS_MACH_5400:
6748 return bfd_mach_mips5400;
6749
6750 case E_MIPS_MACH_5500:
6751 return bfd_mach_mips5500;
6752
e407c74b
NC
6753 case E_MIPS_MACH_5900:
6754 return bfd_mach_mips5900;
6755
0d2e43ed
ILT
6756 case E_MIPS_MACH_9000:
6757 return bfd_mach_mips9000;
6758
b49e97c9
TS
6759 case E_MIPS_MACH_SB1:
6760 return bfd_mach_mips_sb1;
6761
350cc38d
MS
6762 case E_MIPS_MACH_LS2E:
6763 return bfd_mach_mips_loongson_2e;
6764
6765 case E_MIPS_MACH_LS2F:
6766 return bfd_mach_mips_loongson_2f;
6767
fd503541
NC
6768 case E_MIPS_MACH_LS3A:
6769 return bfd_mach_mips_loongson_3a;
6770
2c629856
N
6771 case E_MIPS_MACH_OCTEON3:
6772 return bfd_mach_mips_octeon3;
6773
432233b3
AP
6774 case E_MIPS_MACH_OCTEON2:
6775 return bfd_mach_mips_octeon2;
6776
6f179bd0
AN
6777 case E_MIPS_MACH_OCTEON:
6778 return bfd_mach_mips_octeon;
6779
52b6b6b9
JM
6780 case E_MIPS_MACH_XLR:
6781 return bfd_mach_mips_xlr;
6782
b49e97c9
TS
6783 default:
6784 switch (flags & EF_MIPS_ARCH)
6785 {
6786 default:
6787 case E_MIPS_ARCH_1:
6788 return bfd_mach_mips3000;
b49e97c9
TS
6789
6790 case E_MIPS_ARCH_2:
6791 return bfd_mach_mips6000;
b49e97c9
TS
6792
6793 case E_MIPS_ARCH_3:
6794 return bfd_mach_mips4000;
b49e97c9
TS
6795
6796 case E_MIPS_ARCH_4:
6797 return bfd_mach_mips8000;
b49e97c9
TS
6798
6799 case E_MIPS_ARCH_5:
6800 return bfd_mach_mips5;
b49e97c9
TS
6801
6802 case E_MIPS_ARCH_32:
6803 return bfd_mach_mipsisa32;
b49e97c9
TS
6804
6805 case E_MIPS_ARCH_64:
6806 return bfd_mach_mipsisa64;
af7ee8bf
CD
6807
6808 case E_MIPS_ARCH_32R2:
6809 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6810
6811 case E_MIPS_ARCH_64R2:
6812 return bfd_mach_mipsisa64r2;
7361da2c
AB
6813
6814 case E_MIPS_ARCH_32R6:
6815 return bfd_mach_mipsisa32r6;
6816
6817 case E_MIPS_ARCH_64R6:
6818 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6819 }
6820 }
6821
6822 return 0;
6823}
6824
6825/* Return printable name for ABI. */
6826
6827static INLINE char *
9719ad41 6828elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6829{
6830 flagword flags;
6831
6832 flags = elf_elfheader (abfd)->e_flags;
6833 switch (flags & EF_MIPS_ABI)
6834 {
6835 case 0:
6836 if (ABI_N32_P (abfd))
6837 return "N32";
6838 else if (ABI_64_P (abfd))
6839 return "64";
6840 else
6841 return "none";
6842 case E_MIPS_ABI_O32:
6843 return "O32";
6844 case E_MIPS_ABI_O64:
6845 return "O64";
6846 case E_MIPS_ABI_EABI32:
6847 return "EABI32";
6848 case E_MIPS_ABI_EABI64:
6849 return "EABI64";
6850 default:
6851 return "unknown abi";
6852 }
6853}
6854\f
6855/* MIPS ELF uses two common sections. One is the usual one, and the
6856 other is for small objects. All the small objects are kept
6857 together, and then referenced via the gp pointer, which yields
6858 faster assembler code. This is what we use for the small common
6859 section. This approach is copied from ecoff.c. */
6860static asection mips_elf_scom_section;
6861static asymbol mips_elf_scom_symbol;
6862static asymbol *mips_elf_scom_symbol_ptr;
6863
6864/* MIPS ELF also uses an acommon section, which represents an
6865 allocated common symbol which may be overridden by a
6866 definition in a shared library. */
6867static asection mips_elf_acom_section;
6868static asymbol mips_elf_acom_symbol;
6869static asymbol *mips_elf_acom_symbol_ptr;
6870
738e5348 6871/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6872
6873void
9719ad41 6874_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6875{
6876 elf_symbol_type *elfsym;
6877
738e5348 6878 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6879 elfsym = (elf_symbol_type *) asym;
6880 switch (elfsym->internal_elf_sym.st_shndx)
6881 {
6882 case SHN_MIPS_ACOMMON:
6883 /* This section is used in a dynamically linked executable file.
6884 It is an allocated common section. The dynamic linker can
6885 either resolve these symbols to something in a shared
6886 library, or it can just leave them here. For our purposes,
6887 we can consider these symbols to be in a new section. */
6888 if (mips_elf_acom_section.name == NULL)
6889 {
6890 /* Initialize the acommon section. */
6891 mips_elf_acom_section.name = ".acommon";
6892 mips_elf_acom_section.flags = SEC_ALLOC;
6893 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6894 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6895 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6896 mips_elf_acom_symbol.name = ".acommon";
6897 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6898 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6899 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6900 }
6901 asym->section = &mips_elf_acom_section;
6902 break;
6903
6904 case SHN_COMMON:
6905 /* Common symbols less than the GP size are automatically
6906 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6907 if (asym->value > elf_gp_size (abfd)
b59eed79 6908 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6909 || IRIX_COMPAT (abfd) == ict_irix6)
6910 break;
6911 /* Fall through. */
6912 case SHN_MIPS_SCOMMON:
6913 if (mips_elf_scom_section.name == NULL)
6914 {
6915 /* Initialize the small common section. */
6916 mips_elf_scom_section.name = ".scommon";
6917 mips_elf_scom_section.flags = SEC_IS_COMMON;
6918 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6919 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6920 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6921 mips_elf_scom_symbol.name = ".scommon";
6922 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6923 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6924 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6925 }
6926 asym->section = &mips_elf_scom_section;
6927 asym->value = elfsym->internal_elf_sym.st_size;
6928 break;
6929
6930 case SHN_MIPS_SUNDEFINED:
6931 asym->section = bfd_und_section_ptr;
6932 break;
6933
b49e97c9 6934 case SHN_MIPS_TEXT:
00b4930b
TS
6935 {
6936 asection *section = bfd_get_section_by_name (abfd, ".text");
6937
00b4930b
TS
6938 if (section != NULL)
6939 {
6940 asym->section = section;
6941 /* MIPS_TEXT is a bit special, the address is not an offset
6942 to the base of the .text section. So substract the section
6943 base address to make it an offset. */
6944 asym->value -= section->vma;
6945 }
6946 }
b49e97c9
TS
6947 break;
6948
6949 case SHN_MIPS_DATA:
00b4930b
TS
6950 {
6951 asection *section = bfd_get_section_by_name (abfd, ".data");
6952
00b4930b
TS
6953 if (section != NULL)
6954 {
6955 asym->section = section;
6956 /* MIPS_DATA is a bit special, the address is not an offset
6957 to the base of the .data section. So substract the section
6958 base address to make it an offset. */
6959 asym->value -= section->vma;
6960 }
6961 }
b49e97c9 6962 break;
b49e97c9 6963 }
738e5348 6964
df58fc94
RS
6965 /* If this is an odd-valued function symbol, assume it's a MIPS16
6966 or microMIPS one. */
738e5348
RS
6967 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6968 && (asym->value & 1) != 0)
6969 {
6970 asym->value--;
e8faf7d1 6971 if (MICROMIPS_P (abfd))
df58fc94
RS
6972 elfsym->internal_elf_sym.st_other
6973 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6974 else
6975 elfsym->internal_elf_sym.st_other
6976 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6977 }
b49e97c9
TS
6978}
6979\f
8c946ed5
RS
6980/* Implement elf_backend_eh_frame_address_size. This differs from
6981 the default in the way it handles EABI64.
6982
6983 EABI64 was originally specified as an LP64 ABI, and that is what
6984 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6985 historically accepted the combination of -mabi=eabi and -mlong32,
6986 and this ILP32 variation has become semi-official over time.
6987 Both forms use elf32 and have pointer-sized FDE addresses.
6988
6989 If an EABI object was generated by GCC 4.0 or above, it will have
6990 an empty .gcc_compiled_longXX section, where XX is the size of longs
6991 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6992 have no special marking to distinguish them from LP64 objects.
6993
6994 We don't want users of the official LP64 ABI to be punished for the
6995 existence of the ILP32 variant, but at the same time, we don't want
6996 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6997 We therefore take the following approach:
6998
6999 - If ABFD contains a .gcc_compiled_longXX section, use it to
7000 determine the pointer size.
7001
7002 - Otherwise check the type of the first relocation. Assume that
7003 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7004
7005 - Otherwise punt.
7006
7007 The second check is enough to detect LP64 objects generated by pre-4.0
7008 compilers because, in the kind of output generated by those compilers,
7009 the first relocation will be associated with either a CIE personality
7010 routine or an FDE start address. Furthermore, the compilers never
7011 used a special (non-pointer) encoding for this ABI.
7012
7013 Checking the relocation type should also be safe because there is no
7014 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7015 did so. */
7016
7017unsigned int
7018_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7019{
7020 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7021 return 8;
7022 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7023 {
7024 bfd_boolean long32_p, long64_p;
7025
7026 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7027 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7028 if (long32_p && long64_p)
7029 return 0;
7030 if (long32_p)
7031 return 4;
7032 if (long64_p)
7033 return 8;
7034
7035 if (sec->reloc_count > 0
7036 && elf_section_data (sec)->relocs != NULL
7037 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7038 == R_MIPS_64))
7039 return 8;
7040
7041 return 0;
7042 }
7043 return 4;
7044}
7045\f
174fd7f9
RS
7046/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7047 relocations against two unnamed section symbols to resolve to the
7048 same address. For example, if we have code like:
7049
7050 lw $4,%got_disp(.data)($gp)
7051 lw $25,%got_disp(.text)($gp)
7052 jalr $25
7053
7054 then the linker will resolve both relocations to .data and the program
7055 will jump there rather than to .text.
7056
7057 We can work around this problem by giving names to local section symbols.
7058 This is also what the MIPSpro tools do. */
7059
7060bfd_boolean
7061_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7062{
7063 return SGI_COMPAT (abfd);
7064}
7065\f
b49e97c9
TS
7066/* Work over a section just before writing it out. This routine is
7067 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7068 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7069 a better way. */
7070
b34976b6 7071bfd_boolean
9719ad41 7072_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7073{
7074 if (hdr->sh_type == SHT_MIPS_REGINFO
7075 && hdr->sh_size > 0)
7076 {
7077 bfd_byte buf[4];
7078
7079 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7080 BFD_ASSERT (hdr->contents == NULL);
7081
7082 if (bfd_seek (abfd,
7083 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7084 SEEK_SET) != 0)
b34976b6 7085 return FALSE;
b49e97c9 7086 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7087 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7088 return FALSE;
b49e97c9
TS
7089 }
7090
7091 if (hdr->sh_type == SHT_MIPS_OPTIONS
7092 && hdr->bfd_section != NULL
f0abc2a1
AM
7093 && mips_elf_section_data (hdr->bfd_section) != NULL
7094 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7095 {
7096 bfd_byte *contents, *l, *lend;
7097
f0abc2a1
AM
7098 /* We stored the section contents in the tdata field in the
7099 set_section_contents routine. We save the section contents
7100 so that we don't have to read them again.
b49e97c9
TS
7101 At this point we know that elf_gp is set, so we can look
7102 through the section contents to see if there is an
7103 ODK_REGINFO structure. */
7104
f0abc2a1 7105 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7106 l = contents;
7107 lend = contents + hdr->sh_size;
7108 while (l + sizeof (Elf_External_Options) <= lend)
7109 {
7110 Elf_Internal_Options intopt;
7111
7112 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7113 &intopt);
1bc8074d
MR
7114 if (intopt.size < sizeof (Elf_External_Options))
7115 {
4eca0228 7116 _bfd_error_handler
695344c0 7117 /* xgettext:c-format */
1bc8074d
MR
7118 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7119 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7120 break;
7121 }
b49e97c9
TS
7122 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7123 {
7124 bfd_byte buf[8];
7125
7126 if (bfd_seek (abfd,
7127 (hdr->sh_offset
7128 + (l - contents)
7129 + sizeof (Elf_External_Options)
7130 + (sizeof (Elf64_External_RegInfo) - 8)),
7131 SEEK_SET) != 0)
b34976b6 7132 return FALSE;
b49e97c9 7133 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7134 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7135 return FALSE;
b49e97c9
TS
7136 }
7137 else if (intopt.kind == ODK_REGINFO)
7138 {
7139 bfd_byte buf[4];
7140
7141 if (bfd_seek (abfd,
7142 (hdr->sh_offset
7143 + (l - contents)
7144 + sizeof (Elf_External_Options)
7145 + (sizeof (Elf32_External_RegInfo) - 4)),
7146 SEEK_SET) != 0)
b34976b6 7147 return FALSE;
b49e97c9 7148 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7149 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7150 return FALSE;
b49e97c9
TS
7151 }
7152 l += intopt.size;
7153 }
7154 }
7155
7156 if (hdr->bfd_section != NULL)
7157 {
7158 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7159
2d0f9ad9
JM
7160 /* .sbss is not handled specially here because the GNU/Linux
7161 prelinker can convert .sbss from NOBITS to PROGBITS and
7162 changing it back to NOBITS breaks the binary. The entry in
7163 _bfd_mips_elf_special_sections will ensure the correct flags
7164 are set on .sbss if BFD creates it without reading it from an
7165 input file, and without special handling here the flags set
7166 on it in an input file will be followed. */
b49e97c9
TS
7167 if (strcmp (name, ".sdata") == 0
7168 || strcmp (name, ".lit8") == 0
7169 || strcmp (name, ".lit4") == 0)
fd6f9d17 7170 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7171 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7172 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7173 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7174 hdr->sh_flags = 0;
b49e97c9
TS
7175 else if (strcmp (name, ".rtproc") == 0)
7176 {
7177 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7178 {
7179 unsigned int adjust;
7180
7181 adjust = hdr->sh_size % hdr->sh_addralign;
7182 if (adjust != 0)
7183 hdr->sh_size += hdr->sh_addralign - adjust;
7184 }
7185 }
7186 }
7187
b34976b6 7188 return TRUE;
b49e97c9
TS
7189}
7190
7191/* Handle a MIPS specific section when reading an object file. This
7192 is called when elfcode.h finds a section with an unknown type.
7193 This routine supports both the 32-bit and 64-bit ELF ABI.
7194
7195 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7196 how to. */
7197
b34976b6 7198bfd_boolean
6dc132d9
L
7199_bfd_mips_elf_section_from_shdr (bfd *abfd,
7200 Elf_Internal_Shdr *hdr,
7201 const char *name,
7202 int shindex)
b49e97c9
TS
7203{
7204 flagword flags = 0;
7205
7206 /* There ought to be a place to keep ELF backend specific flags, but
7207 at the moment there isn't one. We just keep track of the
7208 sections by their name, instead. Fortunately, the ABI gives
7209 suggested names for all the MIPS specific sections, so we will
7210 probably get away with this. */
7211 switch (hdr->sh_type)
7212 {
7213 case SHT_MIPS_LIBLIST:
7214 if (strcmp (name, ".liblist") != 0)
b34976b6 7215 return FALSE;
b49e97c9
TS
7216 break;
7217 case SHT_MIPS_MSYM:
7218 if (strcmp (name, ".msym") != 0)
b34976b6 7219 return FALSE;
b49e97c9
TS
7220 break;
7221 case SHT_MIPS_CONFLICT:
7222 if (strcmp (name, ".conflict") != 0)
b34976b6 7223 return FALSE;
b49e97c9
TS
7224 break;
7225 case SHT_MIPS_GPTAB:
0112cd26 7226 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7227 return FALSE;
b49e97c9
TS
7228 break;
7229 case SHT_MIPS_UCODE:
7230 if (strcmp (name, ".ucode") != 0)
b34976b6 7231 return FALSE;
b49e97c9
TS
7232 break;
7233 case SHT_MIPS_DEBUG:
7234 if (strcmp (name, ".mdebug") != 0)
b34976b6 7235 return FALSE;
b49e97c9
TS
7236 flags = SEC_DEBUGGING;
7237 break;
7238 case SHT_MIPS_REGINFO:
7239 if (strcmp (name, ".reginfo") != 0
7240 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7241 return FALSE;
b49e97c9
TS
7242 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7243 break;
7244 case SHT_MIPS_IFACE:
7245 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7246 return FALSE;
b49e97c9
TS
7247 break;
7248 case SHT_MIPS_CONTENT:
0112cd26 7249 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7250 return FALSE;
b49e97c9
TS
7251 break;
7252 case SHT_MIPS_OPTIONS:
cc2e31b9 7253 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7254 return FALSE;
b49e97c9 7255 break;
351cdf24
MF
7256 case SHT_MIPS_ABIFLAGS:
7257 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7258 return FALSE;
7259 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7260 break;
b49e97c9 7261 case SHT_MIPS_DWARF:
1b315056 7262 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7263 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7264 return FALSE;
b49e97c9
TS
7265 break;
7266 case SHT_MIPS_SYMBOL_LIB:
7267 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7268 return FALSE;
b49e97c9
TS
7269 break;
7270 case SHT_MIPS_EVENTS:
0112cd26
NC
7271 if (! CONST_STRNEQ (name, ".MIPS.events")
7272 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7273 return FALSE;
b49e97c9
TS
7274 break;
7275 default:
cc2e31b9 7276 break;
b49e97c9
TS
7277 }
7278
6dc132d9 7279 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7280 return FALSE;
b49e97c9
TS
7281
7282 if (flags)
7283 {
7284 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7285 (bfd_get_section_flags (abfd,
7286 hdr->bfd_section)
7287 | flags)))
b34976b6 7288 return FALSE;
b49e97c9
TS
7289 }
7290
351cdf24
MF
7291 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7292 {
7293 Elf_External_ABIFlags_v0 ext;
7294
7295 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7296 &ext, 0, sizeof ext))
7297 return FALSE;
7298 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7299 &mips_elf_tdata (abfd)->abiflags);
7300 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7301 return FALSE;
7302 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7303 }
7304
b49e97c9
TS
7305 /* FIXME: We should record sh_info for a .gptab section. */
7306
7307 /* For a .reginfo section, set the gp value in the tdata information
7308 from the contents of this section. We need the gp value while
7309 processing relocs, so we just get it now. The .reginfo section
7310 is not used in the 64-bit MIPS ELF ABI. */
7311 if (hdr->sh_type == SHT_MIPS_REGINFO)
7312 {
7313 Elf32_External_RegInfo ext;
7314 Elf32_RegInfo s;
7315
9719ad41
RS
7316 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7317 &ext, 0, sizeof ext))
b34976b6 7318 return FALSE;
b49e97c9
TS
7319 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7320 elf_gp (abfd) = s.ri_gp_value;
7321 }
7322
7323 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7324 set the gp value based on what we find. We may see both
7325 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7326 they should agree. */
7327 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7328 {
7329 bfd_byte *contents, *l, *lend;
7330
9719ad41 7331 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7332 if (contents == NULL)
b34976b6 7333 return FALSE;
b49e97c9 7334 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7335 0, hdr->sh_size))
b49e97c9
TS
7336 {
7337 free (contents);
b34976b6 7338 return FALSE;
b49e97c9
TS
7339 }
7340 l = contents;
7341 lend = contents + hdr->sh_size;
7342 while (l + sizeof (Elf_External_Options) <= lend)
7343 {
7344 Elf_Internal_Options intopt;
7345
7346 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7347 &intopt);
1bc8074d
MR
7348 if (intopt.size < sizeof (Elf_External_Options))
7349 {
4eca0228 7350 _bfd_error_handler
695344c0 7351 /* xgettext:c-format */
1bc8074d
MR
7352 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7353 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7354 break;
7355 }
b49e97c9
TS
7356 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7357 {
7358 Elf64_Internal_RegInfo intreg;
7359
7360 bfd_mips_elf64_swap_reginfo_in
7361 (abfd,
7362 ((Elf64_External_RegInfo *)
7363 (l + sizeof (Elf_External_Options))),
7364 &intreg);
7365 elf_gp (abfd) = intreg.ri_gp_value;
7366 }
7367 else if (intopt.kind == ODK_REGINFO)
7368 {
7369 Elf32_RegInfo intreg;
7370
7371 bfd_mips_elf32_swap_reginfo_in
7372 (abfd,
7373 ((Elf32_External_RegInfo *)
7374 (l + sizeof (Elf_External_Options))),
7375 &intreg);
7376 elf_gp (abfd) = intreg.ri_gp_value;
7377 }
7378 l += intopt.size;
7379 }
7380 free (contents);
7381 }
7382
b34976b6 7383 return TRUE;
b49e97c9
TS
7384}
7385
7386/* Set the correct type for a MIPS ELF section. We do this by the
7387 section name, which is a hack, but ought to work. This routine is
7388 used by both the 32-bit and the 64-bit ABI. */
7389
b34976b6 7390bfd_boolean
9719ad41 7391_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7392{
0414f35b 7393 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7394
7395 if (strcmp (name, ".liblist") == 0)
7396 {
7397 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7398 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7399 /* The sh_link field is set in final_write_processing. */
7400 }
7401 else if (strcmp (name, ".conflict") == 0)
7402 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7403 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7404 {
7405 hdr->sh_type = SHT_MIPS_GPTAB;
7406 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7407 /* The sh_info field is set in final_write_processing. */
7408 }
7409 else if (strcmp (name, ".ucode") == 0)
7410 hdr->sh_type = SHT_MIPS_UCODE;
7411 else if (strcmp (name, ".mdebug") == 0)
7412 {
7413 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7414 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7415 entsize of 0. FIXME: Does this matter? */
7416 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7417 hdr->sh_entsize = 0;
7418 else
7419 hdr->sh_entsize = 1;
7420 }
7421 else if (strcmp (name, ".reginfo") == 0)
7422 {
7423 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7424 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7425 entsize of 0x18. FIXME: Does this matter? */
7426 if (SGI_COMPAT (abfd))
7427 {
7428 if ((abfd->flags & DYNAMIC) != 0)
7429 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7430 else
7431 hdr->sh_entsize = 1;
7432 }
7433 else
7434 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7435 }
7436 else if (SGI_COMPAT (abfd)
7437 && (strcmp (name, ".hash") == 0
7438 || strcmp (name, ".dynamic") == 0
7439 || strcmp (name, ".dynstr") == 0))
7440 {
7441 if (SGI_COMPAT (abfd))
7442 hdr->sh_entsize = 0;
7443#if 0
8dc1a139 7444 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7445 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7446#endif
7447 }
7448 else if (strcmp (name, ".got") == 0
7449 || strcmp (name, ".srdata") == 0
7450 || strcmp (name, ".sdata") == 0
7451 || strcmp (name, ".sbss") == 0
7452 || strcmp (name, ".lit4") == 0
7453 || strcmp (name, ".lit8") == 0)
7454 hdr->sh_flags |= SHF_MIPS_GPREL;
7455 else if (strcmp (name, ".MIPS.interfaces") == 0)
7456 {
7457 hdr->sh_type = SHT_MIPS_IFACE;
7458 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7459 }
0112cd26 7460 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7461 {
7462 hdr->sh_type = SHT_MIPS_CONTENT;
7463 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7464 /* The sh_info field is set in final_write_processing. */
7465 }
cc2e31b9 7466 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7467 {
7468 hdr->sh_type = SHT_MIPS_OPTIONS;
7469 hdr->sh_entsize = 1;
7470 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7471 }
351cdf24
MF
7472 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7473 {
7474 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7475 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7476 }
1b315056
CS
7477 else if (CONST_STRNEQ (name, ".debug_")
7478 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7479 {
7480 hdr->sh_type = SHT_MIPS_DWARF;
7481
7482 /* Irix facilities such as libexc expect a single .debug_frame
7483 per executable, the system ones have NOSTRIP set and the linker
7484 doesn't merge sections with different flags so ... */
7485 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7486 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7487 }
b49e97c9
TS
7488 else if (strcmp (name, ".MIPS.symlib") == 0)
7489 {
7490 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7491 /* The sh_link and sh_info fields are set in
7492 final_write_processing. */
7493 }
0112cd26
NC
7494 else if (CONST_STRNEQ (name, ".MIPS.events")
7495 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7496 {
7497 hdr->sh_type = SHT_MIPS_EVENTS;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7499 /* The sh_link field is set in final_write_processing. */
7500 }
7501 else if (strcmp (name, ".msym") == 0)
7502 {
7503 hdr->sh_type = SHT_MIPS_MSYM;
7504 hdr->sh_flags |= SHF_ALLOC;
7505 hdr->sh_entsize = 8;
7506 }
7507
7a79a000
TS
7508 /* The generic elf_fake_sections will set up REL_HDR using the default
7509 kind of relocations. We used to set up a second header for the
7510 non-default kind of relocations here, but only NewABI would use
7511 these, and the IRIX ld doesn't like resulting empty RELA sections.
7512 Thus we create those header only on demand now. */
b49e97c9 7513
b34976b6 7514 return TRUE;
b49e97c9
TS
7515}
7516
7517/* Given a BFD section, try to locate the corresponding ELF section
7518 index. This is used by both the 32-bit and the 64-bit ABI.
7519 Actually, it's not clear to me that the 64-bit ABI supports these,
7520 but for non-PIC objects we will certainly want support for at least
7521 the .scommon section. */
7522
b34976b6 7523bfd_boolean
9719ad41
RS
7524_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7525 asection *sec, int *retval)
b49e97c9
TS
7526{
7527 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7528 {
7529 *retval = SHN_MIPS_SCOMMON;
b34976b6 7530 return TRUE;
b49e97c9
TS
7531 }
7532 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7533 {
7534 *retval = SHN_MIPS_ACOMMON;
b34976b6 7535 return TRUE;
b49e97c9 7536 }
b34976b6 7537 return FALSE;
b49e97c9
TS
7538}
7539\f
7540/* Hook called by the linker routine which adds symbols from an object
7541 file. We must handle the special MIPS section numbers here. */
7542
b34976b6 7543bfd_boolean
9719ad41 7544_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7545 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7546 flagword *flagsp ATTRIBUTE_UNUSED,
7547 asection **secp, bfd_vma *valp)
b49e97c9
TS
7548{
7549 if (SGI_COMPAT (abfd)
7550 && (abfd->flags & DYNAMIC) != 0
7551 && strcmp (*namep, "_rld_new_interface") == 0)
7552 {
8dc1a139 7553 /* Skip IRIX5 rld entry name. */
b49e97c9 7554 *namep = NULL;
b34976b6 7555 return TRUE;
b49e97c9
TS
7556 }
7557
eedecc07
DD
7558 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7559 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7560 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7561 a magic symbol resolved by the linker, we ignore this bogus definition
7562 of _gp_disp. New ABI objects do not suffer from this problem so this
7563 is not done for them. */
7564 if (!NEWABI_P(abfd)
7565 && (sym->st_shndx == SHN_ABS)
7566 && (strcmp (*namep, "_gp_disp") == 0))
7567 {
7568 *namep = NULL;
7569 return TRUE;
7570 }
7571
b49e97c9
TS
7572 switch (sym->st_shndx)
7573 {
7574 case SHN_COMMON:
7575 /* Common symbols less than the GP size are automatically
7576 treated as SHN_MIPS_SCOMMON symbols. */
7577 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7578 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7579 || IRIX_COMPAT (abfd) == ict_irix6)
7580 break;
7581 /* Fall through. */
7582 case SHN_MIPS_SCOMMON:
7583 *secp = bfd_make_section_old_way (abfd, ".scommon");
7584 (*secp)->flags |= SEC_IS_COMMON;
7585 *valp = sym->st_size;
7586 break;
7587
7588 case SHN_MIPS_TEXT:
7589 /* This section is used in a shared object. */
698600e4 7590 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7591 {
7592 asymbol *elf_text_symbol;
7593 asection *elf_text_section;
7594 bfd_size_type amt = sizeof (asection);
7595
7596 elf_text_section = bfd_zalloc (abfd, amt);
7597 if (elf_text_section == NULL)
b34976b6 7598 return FALSE;
b49e97c9
TS
7599
7600 amt = sizeof (asymbol);
7601 elf_text_symbol = bfd_zalloc (abfd, amt);
7602 if (elf_text_symbol == NULL)
b34976b6 7603 return FALSE;
b49e97c9
TS
7604
7605 /* Initialize the section. */
7606
698600e4
AM
7607 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7608 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7609
7610 elf_text_section->symbol = elf_text_symbol;
698600e4 7611 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7612
7613 elf_text_section->name = ".text";
7614 elf_text_section->flags = SEC_NO_FLAGS;
7615 elf_text_section->output_section = NULL;
7616 elf_text_section->owner = abfd;
7617 elf_text_symbol->name = ".text";
7618 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7619 elf_text_symbol->section = elf_text_section;
7620 }
7621 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7622 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7623 so I took it out. */
698600e4 7624 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7625 break;
7626
7627 case SHN_MIPS_ACOMMON:
7628 /* Fall through. XXX Can we treat this as allocated data? */
7629 case SHN_MIPS_DATA:
7630 /* This section is used in a shared object. */
698600e4 7631 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7632 {
7633 asymbol *elf_data_symbol;
7634 asection *elf_data_section;
7635 bfd_size_type amt = sizeof (asection);
7636
7637 elf_data_section = bfd_zalloc (abfd, amt);
7638 if (elf_data_section == NULL)
b34976b6 7639 return FALSE;
b49e97c9
TS
7640
7641 amt = sizeof (asymbol);
7642 elf_data_symbol = bfd_zalloc (abfd, amt);
7643 if (elf_data_symbol == NULL)
b34976b6 7644 return FALSE;
b49e97c9
TS
7645
7646 /* Initialize the section. */
7647
698600e4
AM
7648 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7649 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7650
7651 elf_data_section->symbol = elf_data_symbol;
698600e4 7652 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7653
7654 elf_data_section->name = ".data";
7655 elf_data_section->flags = SEC_NO_FLAGS;
7656 elf_data_section->output_section = NULL;
7657 elf_data_section->owner = abfd;
7658 elf_data_symbol->name = ".data";
7659 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7660 elf_data_symbol->section = elf_data_section;
7661 }
7662 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7663 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7664 so I took it out. */
698600e4 7665 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7666 break;
7667
7668 case SHN_MIPS_SUNDEFINED:
7669 *secp = bfd_und_section_ptr;
7670 break;
7671 }
7672
7673 if (SGI_COMPAT (abfd)
0e1862bb 7674 && ! bfd_link_pic (info)
f13a99db 7675 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7676 && strcmp (*namep, "__rld_obj_head") == 0)
7677 {
7678 struct elf_link_hash_entry *h;
14a793b2 7679 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7680
7681 /* Mark __rld_obj_head as dynamic. */
14a793b2 7682 bh = NULL;
b49e97c9 7683 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7684 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7685 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7686 return FALSE;
14a793b2
AM
7687
7688 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7689 h->non_elf = 0;
7690 h->def_regular = 1;
b49e97c9
TS
7691 h->type = STT_OBJECT;
7692
c152c796 7693 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7694 return FALSE;
b49e97c9 7695
b34976b6 7696 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7697 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7698 }
7699
7700 /* If this is a mips16 text symbol, add 1 to the value to make it
7701 odd. This will cause something like .word SYM to come up with
7702 the right value when it is loaded into the PC. */
df58fc94 7703 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7704 ++*valp;
7705
b34976b6 7706 return TRUE;
b49e97c9
TS
7707}
7708
7709/* This hook function is called before the linker writes out a global
7710 symbol. We mark symbols as small common if appropriate. This is
7711 also where we undo the increment of the value for a mips16 symbol. */
7712
6e0b88f1 7713int
9719ad41
RS
7714_bfd_mips_elf_link_output_symbol_hook
7715 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7716 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7717 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7718{
7719 /* If we see a common symbol, which implies a relocatable link, then
7720 if a symbol was small common in an input file, mark it as small
7721 common in the output file. */
7722 if (sym->st_shndx == SHN_COMMON
7723 && strcmp (input_sec->name, ".scommon") == 0)
7724 sym->st_shndx = SHN_MIPS_SCOMMON;
7725
df58fc94 7726 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7727 sym->st_value &= ~1;
b49e97c9 7728
6e0b88f1 7729 return 1;
b49e97c9
TS
7730}
7731\f
7732/* Functions for the dynamic linker. */
7733
7734/* Create dynamic sections when linking against a dynamic object. */
7735
b34976b6 7736bfd_boolean
9719ad41 7737_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7738{
7739 struct elf_link_hash_entry *h;
14a793b2 7740 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7741 flagword flags;
7742 register asection *s;
7743 const char * const *namep;
0a44bf69 7744 struct mips_elf_link_hash_table *htab;
b49e97c9 7745
0a44bf69 7746 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7747 BFD_ASSERT (htab != NULL);
7748
b49e97c9
TS
7749 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7750 | SEC_LINKER_CREATED | SEC_READONLY);
7751
0a44bf69
RS
7752 /* The psABI requires a read-only .dynamic section, but the VxWorks
7753 EABI doesn't. */
7754 if (!htab->is_vxworks)
b49e97c9 7755 {
3d4d4302 7756 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7757 if (s != NULL)
7758 {
7759 if (! bfd_set_section_flags (abfd, s, flags))
7760 return FALSE;
7761 }
b49e97c9
TS
7762 }
7763
7764 /* We need to create .got section. */
23cc69b6 7765 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7766 return FALSE;
7767
0a44bf69 7768 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7769 return FALSE;
b49e97c9 7770
b49e97c9 7771 /* Create .stub section. */
3d4d4302
AM
7772 s = bfd_make_section_anyway_with_flags (abfd,
7773 MIPS_ELF_STUB_SECTION_NAME (abfd),
7774 flags | SEC_CODE);
4e41d0d7
RS
7775 if (s == NULL
7776 || ! bfd_set_section_alignment (abfd, s,
7777 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7778 return FALSE;
7779 htab->sstubs = s;
b49e97c9 7780
e6aea42d 7781 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7782 && bfd_link_executable (info)
3d4d4302 7783 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7784 {
3d4d4302
AM
7785 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7786 flags &~ (flagword) SEC_READONLY);
b49e97c9 7787 if (s == NULL
b49e97c9
TS
7788 || ! bfd_set_section_alignment (abfd, s,
7789 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7790 return FALSE;
b49e97c9
TS
7791 }
7792
7793 /* On IRIX5, we adjust add some additional symbols and change the
7794 alignments of several sections. There is no ABI documentation
7795 indicating that this is necessary on IRIX6, nor any evidence that
7796 the linker takes such action. */
7797 if (IRIX_COMPAT (abfd) == ict_irix5)
7798 {
7799 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7800 {
14a793b2 7801 bh = NULL;
b49e97c9 7802 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7803 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7804 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7805 return FALSE;
14a793b2
AM
7806
7807 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7808 h->non_elf = 0;
7809 h->def_regular = 1;
b49e97c9
TS
7810 h->type = STT_SECTION;
7811
c152c796 7812 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7813 return FALSE;
b49e97c9
TS
7814 }
7815
7816 /* We need to create a .compact_rel section. */
7817 if (SGI_COMPAT (abfd))
7818 {
7819 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7820 return FALSE;
b49e97c9
TS
7821 }
7822
44c410de 7823 /* Change alignments of some sections. */
3d4d4302 7824 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7825 if (s != NULL)
a253d456
NC
7826 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7827
3d4d4302 7828 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7829 if (s != NULL)
a253d456
NC
7830 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831
3d4d4302 7832 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7833 if (s != NULL)
a253d456
NC
7834 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7835
3d4d4302 7836 /* ??? */
b49e97c9
TS
7837 s = bfd_get_section_by_name (abfd, ".reginfo");
7838 if (s != NULL)
a253d456
NC
7839 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7840
3d4d4302 7841 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7842 if (s != NULL)
a253d456 7843 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7844 }
7845
0e1862bb 7846 if (bfd_link_executable (info))
b49e97c9 7847 {
14a793b2
AM
7848 const char *name;
7849
7850 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7851 bh = NULL;
7852 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7853 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7854 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7855 return FALSE;
14a793b2
AM
7856
7857 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7858 h->non_elf = 0;
7859 h->def_regular = 1;
b49e97c9
TS
7860 h->type = STT_SECTION;
7861
c152c796 7862 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7863 return FALSE;
b49e97c9
TS
7864
7865 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7866 {
7867 /* __rld_map is a four byte word located in the .data section
7868 and is filled in by the rtld to contain a pointer to
7869 the _r_debug structure. Its symbol value will be set in
7870 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7871 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7872 BFD_ASSERT (s != NULL);
14a793b2 7873
0abfb97a
L
7874 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7875 bh = NULL;
7876 if (!(_bfd_generic_link_add_one_symbol
7877 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7878 get_elf_backend_data (abfd)->collect, &bh)))
7879 return FALSE;
b49e97c9 7880
0abfb97a
L
7881 h = (struct elf_link_hash_entry *) bh;
7882 h->non_elf = 0;
7883 h->def_regular = 1;
7884 h->type = STT_OBJECT;
7885
7886 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7887 return FALSE;
b4082c70 7888 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7889 }
7890 }
7891
861fb55a 7892 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7893 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7894 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7895 return FALSE;
7896
7897 /* Cache the sections created above. */
3d4d4302 7898 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69 7899 if (htab->is_vxworks)
ce558b89 7900 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
861fb55a 7901 if (!htab->sdynbss
0e1862bb 7902 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
ce558b89
AM
7903 || !htab->root.srelplt
7904 || !htab->root.splt)
861fb55a 7905 abort ();
0a44bf69 7906
1bbce132
MR
7907 /* Do the usual VxWorks handling. */
7908 if (htab->is_vxworks
7909 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7910 return FALSE;
0a44bf69 7911
b34976b6 7912 return TRUE;
b49e97c9
TS
7913}
7914\f
c224138d
RS
7915/* Return true if relocation REL against section SEC is a REL rather than
7916 RELA relocation. RELOCS is the first relocation in the section and
7917 ABFD is the bfd that contains SEC. */
7918
7919static bfd_boolean
7920mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7921 const Elf_Internal_Rela *relocs,
7922 const Elf_Internal_Rela *rel)
7923{
7924 Elf_Internal_Shdr *rel_hdr;
7925 const struct elf_backend_data *bed;
7926
d4730f92
BS
7927 /* To determine which flavor of relocation this is, we depend on the
7928 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7929 rel_hdr = elf_section_data (sec)->rel.hdr;
7930 if (rel_hdr == NULL)
7931 return FALSE;
c224138d 7932 bed = get_elf_backend_data (abfd);
d4730f92
BS
7933 return ((size_t) (rel - relocs)
7934 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7935}
7936
7937/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7938 HOWTO is the relocation's howto and CONTENTS points to the contents
7939 of the section that REL is against. */
7940
7941static bfd_vma
7942mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7943 reloc_howto_type *howto, bfd_byte *contents)
7944{
7945 bfd_byte *location;
7946 unsigned int r_type;
7947 bfd_vma addend;
17c6c9d9 7948 bfd_vma bytes;
c224138d
RS
7949
7950 r_type = ELF_R_TYPE (abfd, rel->r_info);
7951 location = contents + rel->r_offset;
7952
7953 /* Get the addend, which is stored in the input file. */
df58fc94 7954 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7955 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7956 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7957
17c6c9d9
MR
7958 addend = bytes & howto->src_mask;
7959
7960 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7961 accordingly. */
7962 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7963 addend <<= 1;
7964
7965 return addend;
c224138d
RS
7966}
7967
7968/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7969 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7970 and update *ADDEND with the final addend. Return true on success
7971 or false if the LO16 could not be found. RELEND is the exclusive
7972 upper bound on the relocations for REL's section. */
7973
7974static bfd_boolean
7975mips_elf_add_lo16_rel_addend (bfd *abfd,
7976 const Elf_Internal_Rela *rel,
7977 const Elf_Internal_Rela *relend,
7978 bfd_byte *contents, bfd_vma *addend)
7979{
7980 unsigned int r_type, lo16_type;
7981 const Elf_Internal_Rela *lo16_relocation;
7982 reloc_howto_type *lo16_howto;
7983 bfd_vma l;
7984
7985 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7986 if (mips16_reloc_p (r_type))
c224138d 7987 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7988 else if (micromips_reloc_p (r_type))
7989 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7990 else if (r_type == R_MIPS_PCHI16)
7991 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7992 else
7993 lo16_type = R_MIPS_LO16;
7994
7995 /* The combined value is the sum of the HI16 addend, left-shifted by
7996 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7997 code does a `lui' of the HI16 value, and then an `addiu' of the
7998 LO16 value.)
7999
8000 Scan ahead to find a matching LO16 relocation.
8001
8002 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8003 be immediately following. However, for the IRIX6 ABI, the next
8004 relocation may be a composed relocation consisting of several
8005 relocations for the same address. In that case, the R_MIPS_LO16
8006 relocation may occur as one of these. We permit a similar
8007 extension in general, as that is useful for GCC.
8008
8009 In some cases GCC dead code elimination removes the LO16 but keeps
8010 the corresponding HI16. This is strictly speaking a violation of
8011 the ABI but not immediately harmful. */
8012 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8013 if (lo16_relocation == NULL)
8014 return FALSE;
8015
8016 /* Obtain the addend kept there. */
8017 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8018 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8019
8020 l <<= lo16_howto->rightshift;
8021 l = _bfd_mips_elf_sign_extend (l, 16);
8022
8023 *addend <<= 16;
8024 *addend += l;
8025 return TRUE;
8026}
8027
8028/* Try to read the contents of section SEC in bfd ABFD. Return true and
8029 store the contents in *CONTENTS on success. Assume that *CONTENTS
8030 already holds the contents if it is nonull on entry. */
8031
8032static bfd_boolean
8033mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8034{
8035 if (*contents)
8036 return TRUE;
8037
8038 /* Get cached copy if it exists. */
8039 if (elf_section_data (sec)->this_hdr.contents != NULL)
8040 {
8041 *contents = elf_section_data (sec)->this_hdr.contents;
8042 return TRUE;
8043 }
8044
8045 return bfd_malloc_and_get_section (abfd, sec, contents);
8046}
8047
1bbce132
MR
8048/* Make a new PLT record to keep internal data. */
8049
8050static struct plt_entry *
8051mips_elf_make_plt_record (bfd *abfd)
8052{
8053 struct plt_entry *entry;
8054
8055 entry = bfd_zalloc (abfd, sizeof (*entry));
8056 if (entry == NULL)
8057 return NULL;
8058
8059 entry->stub_offset = MINUS_ONE;
8060 entry->mips_offset = MINUS_ONE;
8061 entry->comp_offset = MINUS_ONE;
8062 entry->gotplt_index = MINUS_ONE;
8063 return entry;
8064}
8065
b49e97c9 8066/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8067 allocate space in the global offset table and record the need for
8068 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8069
b34976b6 8070bfd_boolean
9719ad41
RS
8071_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8072 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8073{
8074 const char *name;
8075 bfd *dynobj;
8076 Elf_Internal_Shdr *symtab_hdr;
8077 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8078 size_t extsymoff;
8079 const Elf_Internal_Rela *rel;
8080 const Elf_Internal_Rela *rel_end;
b49e97c9 8081 asection *sreloc;
9c5bfbb7 8082 const struct elf_backend_data *bed;
0a44bf69 8083 struct mips_elf_link_hash_table *htab;
c224138d
RS
8084 bfd_byte *contents;
8085 bfd_vma addend;
8086 reloc_howto_type *howto;
b49e97c9 8087
0e1862bb 8088 if (bfd_link_relocatable (info))
b34976b6 8089 return TRUE;
b49e97c9 8090
0a44bf69 8091 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8092 BFD_ASSERT (htab != NULL);
8093
b49e97c9
TS
8094 dynobj = elf_hash_table (info)->dynobj;
8095 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8096 sym_hashes = elf_sym_hashes (abfd);
8097 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8098
738e5348
RS
8099 bed = get_elf_backend_data (abfd);
8100 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8101
b49e97c9
TS
8102 /* Check for the mips16 stub sections. */
8103
8104 name = bfd_get_section_name (abfd, sec);
b9d58d71 8105 if (FN_STUB_P (name))
b49e97c9
TS
8106 {
8107 unsigned long r_symndx;
8108
8109 /* Look at the relocation information to figure out which symbol
8110 this is for. */
8111
cb4437b8 8112 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8113 if (r_symndx == 0)
8114 {
4eca0228 8115 _bfd_error_handler
695344c0 8116 /* xgettext:c-format */
738e5348
RS
8117 (_("%B: Warning: cannot determine the target function for"
8118 " stub section `%s'"),
8119 abfd, name);
8120 bfd_set_error (bfd_error_bad_value);
8121 return FALSE;
8122 }
b49e97c9
TS
8123
8124 if (r_symndx < extsymoff
8125 || sym_hashes[r_symndx - extsymoff] == NULL)
8126 {
8127 asection *o;
8128
8129 /* This stub is for a local symbol. This stub will only be
8130 needed if there is some relocation in this BFD, other
8131 than a 16 bit function call, which refers to this symbol. */
8132 for (o = abfd->sections; o != NULL; o = o->next)
8133 {
8134 Elf_Internal_Rela *sec_relocs;
8135 const Elf_Internal_Rela *r, *rend;
8136
8137 /* We can ignore stub sections when looking for relocs. */
8138 if ((o->flags & SEC_RELOC) == 0
8139 || o->reloc_count == 0
738e5348 8140 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8141 continue;
8142
45d6a902 8143 sec_relocs
9719ad41 8144 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8145 info->keep_memory);
b49e97c9 8146 if (sec_relocs == NULL)
b34976b6 8147 return FALSE;
b49e97c9
TS
8148
8149 rend = sec_relocs + o->reloc_count;
8150 for (r = sec_relocs; r < rend; r++)
8151 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8152 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8153 break;
8154
6cdc0ccc 8155 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8156 free (sec_relocs);
8157
8158 if (r < rend)
8159 break;
8160 }
8161
8162 if (o == NULL)
8163 {
8164 /* There is no non-call reloc for this stub, so we do
8165 not need it. Since this function is called before
8166 the linker maps input sections to output sections, we
8167 can easily discard it by setting the SEC_EXCLUDE
8168 flag. */
8169 sec->flags |= SEC_EXCLUDE;
b34976b6 8170 return TRUE;
b49e97c9
TS
8171 }
8172
8173 /* Record this stub in an array of local symbol stubs for
8174 this BFD. */
698600e4 8175 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8176 {
8177 unsigned long symcount;
8178 asection **n;
8179 bfd_size_type amt;
8180
8181 if (elf_bad_symtab (abfd))
8182 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8183 else
8184 symcount = symtab_hdr->sh_info;
8185 amt = symcount * sizeof (asection *);
9719ad41 8186 n = bfd_zalloc (abfd, amt);
b49e97c9 8187 if (n == NULL)
b34976b6 8188 return FALSE;
698600e4 8189 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8190 }
8191
b9d58d71 8192 sec->flags |= SEC_KEEP;
698600e4 8193 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8194
8195 /* We don't need to set mips16_stubs_seen in this case.
8196 That flag is used to see whether we need to look through
8197 the global symbol table for stubs. We don't need to set
8198 it here, because we just have a local stub. */
8199 }
8200 else
8201 {
8202 struct mips_elf_link_hash_entry *h;
8203
8204 h = ((struct mips_elf_link_hash_entry *)
8205 sym_hashes[r_symndx - extsymoff]);
8206
973a3492
L
8207 while (h->root.root.type == bfd_link_hash_indirect
8208 || h->root.root.type == bfd_link_hash_warning)
8209 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8210
b49e97c9
TS
8211 /* H is the symbol this stub is for. */
8212
b9d58d71
TS
8213 /* If we already have an appropriate stub for this function, we
8214 don't need another one, so we can discard this one. Since
8215 this function is called before the linker maps input sections
8216 to output sections, we can easily discard it by setting the
8217 SEC_EXCLUDE flag. */
8218 if (h->fn_stub != NULL)
8219 {
8220 sec->flags |= SEC_EXCLUDE;
8221 return TRUE;
8222 }
8223
8224 sec->flags |= SEC_KEEP;
b49e97c9 8225 h->fn_stub = sec;
b34976b6 8226 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8227 }
8228 }
b9d58d71 8229 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8230 {
8231 unsigned long r_symndx;
8232 struct mips_elf_link_hash_entry *h;
8233 asection **loc;
8234
8235 /* Look at the relocation information to figure out which symbol
8236 this is for. */
8237
cb4437b8 8238 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8239 if (r_symndx == 0)
8240 {
4eca0228 8241 _bfd_error_handler
695344c0 8242 /* xgettext:c-format */
738e5348
RS
8243 (_("%B: Warning: cannot determine the target function for"
8244 " stub section `%s'"),
8245 abfd, name);
8246 bfd_set_error (bfd_error_bad_value);
8247 return FALSE;
8248 }
b49e97c9
TS
8249
8250 if (r_symndx < extsymoff
8251 || sym_hashes[r_symndx - extsymoff] == NULL)
8252 {
b9d58d71 8253 asection *o;
b49e97c9 8254
b9d58d71
TS
8255 /* This stub is for a local symbol. This stub will only be
8256 needed if there is some relocation (R_MIPS16_26) in this BFD
8257 that refers to this symbol. */
8258 for (o = abfd->sections; o != NULL; o = o->next)
8259 {
8260 Elf_Internal_Rela *sec_relocs;
8261 const Elf_Internal_Rela *r, *rend;
8262
8263 /* We can ignore stub sections when looking for relocs. */
8264 if ((o->flags & SEC_RELOC) == 0
8265 || o->reloc_count == 0
738e5348 8266 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8267 continue;
8268
8269 sec_relocs
8270 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8271 info->keep_memory);
8272 if (sec_relocs == NULL)
8273 return FALSE;
8274
8275 rend = sec_relocs + o->reloc_count;
8276 for (r = sec_relocs; r < rend; r++)
8277 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8278 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8279 break;
8280
8281 if (elf_section_data (o)->relocs != sec_relocs)
8282 free (sec_relocs);
8283
8284 if (r < rend)
8285 break;
8286 }
8287
8288 if (o == NULL)
8289 {
8290 /* There is no non-call reloc for this stub, so we do
8291 not need it. Since this function is called before
8292 the linker maps input sections to output sections, we
8293 can easily discard it by setting the SEC_EXCLUDE
8294 flag. */
8295 sec->flags |= SEC_EXCLUDE;
8296 return TRUE;
8297 }
8298
8299 /* Record this stub in an array of local symbol call_stubs for
8300 this BFD. */
698600e4 8301 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8302 {
8303 unsigned long symcount;
8304 asection **n;
8305 bfd_size_type amt;
8306
8307 if (elf_bad_symtab (abfd))
8308 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8309 else
8310 symcount = symtab_hdr->sh_info;
8311 amt = symcount * sizeof (asection *);
8312 n = bfd_zalloc (abfd, amt);
8313 if (n == NULL)
8314 return FALSE;
698600e4 8315 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8316 }
b49e97c9 8317
b9d58d71 8318 sec->flags |= SEC_KEEP;
698600e4 8319 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8320
b9d58d71
TS
8321 /* We don't need to set mips16_stubs_seen in this case.
8322 That flag is used to see whether we need to look through
8323 the global symbol table for stubs. We don't need to set
8324 it here, because we just have a local stub. */
8325 }
b49e97c9 8326 else
b49e97c9 8327 {
b9d58d71
TS
8328 h = ((struct mips_elf_link_hash_entry *)
8329 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8330
b9d58d71 8331 /* H is the symbol this stub is for. */
68ffbac6 8332
b9d58d71
TS
8333 if (CALL_FP_STUB_P (name))
8334 loc = &h->call_fp_stub;
8335 else
8336 loc = &h->call_stub;
68ffbac6 8337
b9d58d71
TS
8338 /* If we already have an appropriate stub for this function, we
8339 don't need another one, so we can discard this one. Since
8340 this function is called before the linker maps input sections
8341 to output sections, we can easily discard it by setting the
8342 SEC_EXCLUDE flag. */
8343 if (*loc != NULL)
8344 {
8345 sec->flags |= SEC_EXCLUDE;
8346 return TRUE;
8347 }
b49e97c9 8348
b9d58d71
TS
8349 sec->flags |= SEC_KEEP;
8350 *loc = sec;
8351 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8352 }
b49e97c9
TS
8353 }
8354
b49e97c9 8355 sreloc = NULL;
c224138d 8356 contents = NULL;
b49e97c9
TS
8357 for (rel = relocs; rel < rel_end; ++rel)
8358 {
8359 unsigned long r_symndx;
8360 unsigned int r_type;
8361 struct elf_link_hash_entry *h;
861fb55a 8362 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8363 bfd_boolean call_reloc_p;
8364 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8365
8366 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8367 r_type = ELF_R_TYPE (abfd, rel->r_info);
8368
8369 if (r_symndx < extsymoff)
8370 h = NULL;
8371 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8372 {
4eca0228 8373 _bfd_error_handler
695344c0 8374 /* xgettext:c-format */
d003868e
AM
8375 (_("%B: Malformed reloc detected for section %s"),
8376 abfd, name);
b49e97c9 8377 bfd_set_error (bfd_error_bad_value);
b34976b6 8378 return FALSE;
b49e97c9
TS
8379 }
8380 else
8381 {
8382 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8383 if (h != NULL)
8384 {
8385 while (h->root.type == bfd_link_hash_indirect
8386 || h->root.type == bfd_link_hash_warning)
8387 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8388
8389 /* PR15323, ref flags aren't set for references in the
8390 same object. */
8391 h->root.non_ir_ref = 1;
8392 }
861fb55a 8393 }
b49e97c9 8394
861fb55a
DJ
8395 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8396 relocation into a dynamic one. */
8397 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8398
8399 /* Set CALL_RELOC_P to true if the relocation is for a call,
8400 and if pointer equality therefore doesn't matter. */
8401 call_reloc_p = FALSE;
8402
8403 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8404 into account when deciding how to define the symbol.
8405 Relocations in nonallocatable sections such as .pdr and
8406 .debug* should have no effect. */
8407 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8408
861fb55a
DJ
8409 switch (r_type)
8410 {
861fb55a
DJ
8411 case R_MIPS_CALL16:
8412 case R_MIPS_CALL_HI16:
8413 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8414 case R_MIPS16_CALL16:
8415 case R_MICROMIPS_CALL16:
8416 case R_MICROMIPS_CALL_HI16:
8417 case R_MICROMIPS_CALL_LO16:
8418 call_reloc_p = TRUE;
8419 /* Fall through. */
8420
8421 case R_MIPS_GOT16:
861fb55a
DJ
8422 case R_MIPS_GOT_HI16:
8423 case R_MIPS_GOT_LO16:
8424 case R_MIPS_GOT_PAGE:
8425 case R_MIPS_GOT_OFST:
8426 case R_MIPS_GOT_DISP:
8427 case R_MIPS_TLS_GOTTPREL:
8428 case R_MIPS_TLS_GD:
8429 case R_MIPS_TLS_LDM:
d0f13682 8430 case R_MIPS16_GOT16:
d0f13682
CLT
8431 case R_MIPS16_TLS_GOTTPREL:
8432 case R_MIPS16_TLS_GD:
8433 case R_MIPS16_TLS_LDM:
df58fc94 8434 case R_MICROMIPS_GOT16:
df58fc94
RS
8435 case R_MICROMIPS_GOT_HI16:
8436 case R_MICROMIPS_GOT_LO16:
8437 case R_MICROMIPS_GOT_PAGE:
8438 case R_MICROMIPS_GOT_OFST:
8439 case R_MICROMIPS_GOT_DISP:
8440 case R_MICROMIPS_TLS_GOTTPREL:
8441 case R_MICROMIPS_TLS_GD:
8442 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8443 if (dynobj == NULL)
8444 elf_hash_table (info)->dynobj = dynobj = abfd;
8445 if (!mips_elf_create_got_section (dynobj, info))
8446 return FALSE;
0e1862bb 8447 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8448 {
4eca0228 8449 _bfd_error_handler
695344c0 8450 /* xgettext:c-format */
861fb55a
DJ
8451 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8452 abfd, (unsigned long) rel->r_offset);
8453 bfd_set_error (bfd_error_bad_value);
8454 return FALSE;
b49e97c9 8455 }
c5d6fa44 8456 can_make_dynamic_p = TRUE;
861fb55a 8457 break;
b49e97c9 8458
c5d6fa44 8459 case R_MIPS_NONE:
99da6b5f 8460 case R_MIPS_JALR:
df58fc94 8461 case R_MICROMIPS_JALR:
c5d6fa44
RS
8462 /* These relocations have empty fields and are purely there to
8463 provide link information. The symbol value doesn't matter. */
8464 constrain_symbol_p = FALSE;
8465 break;
8466
8467 case R_MIPS_GPREL16:
8468 case R_MIPS_GPREL32:
8469 case R_MIPS16_GPREL:
8470 case R_MICROMIPS_GPREL16:
8471 /* GP-relative relocations always resolve to a definition in a
8472 regular input file, ignoring the one-definition rule. This is
8473 important for the GP setup sequence in NewABI code, which
8474 always resolves to a local function even if other relocations
8475 against the symbol wouldn't. */
8476 constrain_symbol_p = FALSE;
99da6b5f
AN
8477 break;
8478
861fb55a
DJ
8479 case R_MIPS_32:
8480 case R_MIPS_REL32:
8481 case R_MIPS_64:
8482 /* In VxWorks executables, references to external symbols
8483 must be handled using copy relocs or PLT entries; it is not
8484 possible to convert this relocation into a dynamic one.
8485
8486 For executables that use PLTs and copy-relocs, we have a
8487 choice between converting the relocation into a dynamic
8488 one or using copy relocations or PLT entries. It is
8489 usually better to do the former, unless the relocation is
8490 against a read-only section. */
0e1862bb 8491 if ((bfd_link_pic (info)
861fb55a
DJ
8492 || (h != NULL
8493 && !htab->is_vxworks
8494 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8495 && !(!info->nocopyreloc
8496 && !PIC_OBJECT_P (abfd)
8497 && MIPS_ELF_READONLY_SECTION (sec))))
8498 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8499 {
861fb55a 8500 can_make_dynamic_p = TRUE;
b49e97c9
TS
8501 if (dynobj == NULL)
8502 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8503 }
c5d6fa44 8504 break;
b49e97c9 8505
861fb55a
DJ
8506 case R_MIPS_26:
8507 case R_MIPS_PC16:
7361da2c
AB
8508 case R_MIPS_PC21_S2:
8509 case R_MIPS_PC26_S2:
861fb55a 8510 case R_MIPS16_26:
c9775dde 8511 case R_MIPS16_PC16_S1:
df58fc94
RS
8512 case R_MICROMIPS_26_S1:
8513 case R_MICROMIPS_PC7_S1:
8514 case R_MICROMIPS_PC10_S1:
8515 case R_MICROMIPS_PC16_S1:
8516 case R_MICROMIPS_PC23_S2:
c5d6fa44 8517 call_reloc_p = TRUE;
861fb55a 8518 break;
b49e97c9
TS
8519 }
8520
0a44bf69
RS
8521 if (h)
8522 {
c5d6fa44
RS
8523 if (constrain_symbol_p)
8524 {
8525 if (!can_make_dynamic_p)
8526 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8527
8528 if (!call_reloc_p)
8529 h->pointer_equality_needed = 1;
8530
8531 /* We must not create a stub for a symbol that has
8532 relocations related to taking the function's address.
8533 This doesn't apply to VxWorks, where CALL relocs refer
8534 to a .got.plt entry instead of a normal .got entry. */
8535 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8536 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8537 }
8538
0a44bf69
RS
8539 /* Relocations against the special VxWorks __GOTT_BASE__ and
8540 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8541 room for them in .rela.dyn. */
8542 if (is_gott_symbol (info, h))
8543 {
8544 if (sreloc == NULL)
8545 {
8546 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8547 if (sreloc == NULL)
8548 return FALSE;
8549 }
8550 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8551 if (MIPS_ELF_READONLY_SECTION (sec))
8552 /* We tell the dynamic linker that there are
8553 relocations against the text segment. */
8554 info->flags |= DF_TEXTREL;
0a44bf69
RS
8555 }
8556 }
df58fc94
RS
8557 else if (call_lo16_reloc_p (r_type)
8558 || got_lo16_reloc_p (r_type)
8559 || got_disp_reloc_p (r_type)
738e5348 8560 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8561 {
8562 /* We may need a local GOT entry for this relocation. We
8563 don't count R_MIPS_GOT_PAGE because we can estimate the
8564 maximum number of pages needed by looking at the size of
738e5348
RS
8565 the segment. Similar comments apply to R_MIPS*_GOT16 and
8566 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8567 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8568 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8569 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8570 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8571 rel->r_addend, info, r_type))
f4416af6 8572 return FALSE;
b49e97c9
TS
8573 }
8574
8f0c309a
CLT
8575 if (h != NULL
8576 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8577 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8578 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8579
b49e97c9
TS
8580 switch (r_type)
8581 {
8582 case R_MIPS_CALL16:
738e5348 8583 case R_MIPS16_CALL16:
df58fc94 8584 case R_MICROMIPS_CALL16:
b49e97c9
TS
8585 if (h == NULL)
8586 {
4eca0228 8587 _bfd_error_handler
695344c0 8588 /* xgettext:c-format */
d003868e
AM
8589 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8590 abfd, (unsigned long) rel->r_offset);
b49e97c9 8591 bfd_set_error (bfd_error_bad_value);
b34976b6 8592 return FALSE;
b49e97c9
TS
8593 }
8594 /* Fall through. */
8595
8596 case R_MIPS_CALL_HI16:
8597 case R_MIPS_CALL_LO16:
df58fc94
RS
8598 case R_MICROMIPS_CALL_HI16:
8599 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8600 if (h != NULL)
8601 {
6ccf4795
RS
8602 /* Make sure there is room in the regular GOT to hold the
8603 function's address. We may eliminate it in favour of
8604 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8605 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8606 r_type))
b34976b6 8607 return FALSE;
b49e97c9
TS
8608
8609 /* We need a stub, not a plt entry for the undefined
8610 function. But we record it as if it needs plt. See
c152c796 8611 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8612 h->needs_plt = 1;
b49e97c9
TS
8613 h->type = STT_FUNC;
8614 }
8615 break;
8616
0fdc1bf1 8617 case R_MIPS_GOT_PAGE:
df58fc94 8618 case R_MICROMIPS_GOT_PAGE:
738e5348 8619 case R_MIPS16_GOT16:
b49e97c9
TS
8620 case R_MIPS_GOT16:
8621 case R_MIPS_GOT_HI16:
8622 case R_MIPS_GOT_LO16:
df58fc94
RS
8623 case R_MICROMIPS_GOT16:
8624 case R_MICROMIPS_GOT_HI16:
8625 case R_MICROMIPS_GOT_LO16:
8626 if (!h || got_page_reloc_p (r_type))
c224138d 8627 {
3a3b6725
DJ
8628 /* This relocation needs (or may need, if h != NULL) a
8629 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8630 know for sure until we know whether the symbol is
8631 preemptible. */
c224138d
RS
8632 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8633 {
8634 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8635 return FALSE;
8636 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8637 addend = mips_elf_read_rel_addend (abfd, rel,
8638 howto, contents);
9684f078 8639 if (got16_reloc_p (r_type))
c224138d
RS
8640 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8641 contents, &addend);
8642 else
8643 addend <<= howto->rightshift;
8644 }
8645 else
8646 addend = rel->r_addend;
13db6b44
RS
8647 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8648 h, addend))
c224138d 8649 return FALSE;
13db6b44
RS
8650
8651 if (h)
8652 {
8653 struct mips_elf_link_hash_entry *hmips =
8654 (struct mips_elf_link_hash_entry *) h;
8655
8656 /* This symbol is definitely not overridable. */
8657 if (hmips->root.def_regular
0e1862bb 8658 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8659 && ! hmips->root.forced_local))
8660 h = NULL;
8661 }
c224138d 8662 }
13db6b44
RS
8663 /* If this is a global, overridable symbol, GOT_PAGE will
8664 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8665 /* Fall through. */
8666
b49e97c9 8667 case R_MIPS_GOT_DISP:
df58fc94 8668 case R_MICROMIPS_GOT_DISP:
6ccf4795 8669 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8670 FALSE, r_type))
b34976b6 8671 return FALSE;
b49e97c9
TS
8672 break;
8673
0f20cc35 8674 case R_MIPS_TLS_GOTTPREL:
d0f13682 8675 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8676 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8677 if (bfd_link_pic (info))
0f20cc35
DJ
8678 info->flags |= DF_STATIC_TLS;
8679 /* Fall through */
8680
8681 case R_MIPS_TLS_LDM:
d0f13682 8682 case R_MIPS16_TLS_LDM:
df58fc94
RS
8683 case R_MICROMIPS_TLS_LDM:
8684 if (tls_ldm_reloc_p (r_type))
0f20cc35 8685 {
cf35638d 8686 r_symndx = STN_UNDEF;
0f20cc35
DJ
8687 h = NULL;
8688 }
8689 /* Fall through */
8690
8691 case R_MIPS_TLS_GD:
d0f13682 8692 case R_MIPS16_TLS_GD:
df58fc94 8693 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8694 /* This symbol requires a global offset table entry, or two
8695 for TLS GD relocations. */
e641e783
RS
8696 if (h != NULL)
8697 {
8698 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8699 FALSE, r_type))
8700 return FALSE;
8701 }
8702 else
8703 {
8704 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8705 rel->r_addend,
8706 info, r_type))
8707 return FALSE;
8708 }
0f20cc35
DJ
8709 break;
8710
b49e97c9
TS
8711 case R_MIPS_32:
8712 case R_MIPS_REL32:
8713 case R_MIPS_64:
0a44bf69
RS
8714 /* In VxWorks executables, references to external symbols
8715 are handled using copy relocs or PLT stubs, so there's
8716 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8717 if (can_make_dynamic_p)
b49e97c9
TS
8718 {
8719 if (sreloc == NULL)
8720 {
0a44bf69 8721 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8722 if (sreloc == NULL)
f4416af6 8723 return FALSE;
b49e97c9 8724 }
0e1862bb 8725 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8726 {
8727 /* When creating a shared object, we must copy these
8728 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8729 relocs. Make room for this reloc in .rel(a).dyn. */
8730 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8731 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8732 /* We tell the dynamic linker that there are
8733 relocations against the text segment. */
8734 info->flags |= DF_TEXTREL;
8735 }
b49e97c9
TS
8736 else
8737 {
8738 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8739
9a59ad6b
DJ
8740 /* For a shared object, we must copy this relocation
8741 unless the symbol turns out to be undefined and
8742 weak with non-default visibility, in which case
8743 it will be left as zero.
8744
8745 We could elide R_MIPS_REL32 for locally binding symbols
8746 in shared libraries, but do not yet do so.
8747
8748 For an executable, we only need to copy this
8749 reloc if the symbol is defined in a dynamic
8750 object. */
b49e97c9
TS
8751 hmips = (struct mips_elf_link_hash_entry *) h;
8752 ++hmips->possibly_dynamic_relocs;
943284cc 8753 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8754 /* We need it to tell the dynamic linker if there
8755 are relocations against the text segment. */
8756 hmips->readonly_reloc = TRUE;
b49e97c9 8757 }
b49e97c9
TS
8758 }
8759
8760 if (SGI_COMPAT (abfd))
8761 mips_elf_hash_table (info)->compact_rel_size +=
8762 sizeof (Elf32_External_crinfo);
8763 break;
8764
8765 case R_MIPS_26:
8766 case R_MIPS_GPREL16:
8767 case R_MIPS_LITERAL:
8768 case R_MIPS_GPREL32:
df58fc94
RS
8769 case R_MICROMIPS_26_S1:
8770 case R_MICROMIPS_GPREL16:
8771 case R_MICROMIPS_LITERAL:
8772 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8773 if (SGI_COMPAT (abfd))
8774 mips_elf_hash_table (info)->compact_rel_size +=
8775 sizeof (Elf32_External_crinfo);
8776 break;
8777
8778 /* This relocation describes the C++ object vtable hierarchy.
8779 Reconstruct it for later use during GC. */
8780 case R_MIPS_GNU_VTINHERIT:
c152c796 8781 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8782 return FALSE;
b49e97c9
TS
8783 break;
8784
8785 /* This relocation describes which C++ vtable entries are actually
8786 used. Record for later use during GC. */
8787 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8788 BFD_ASSERT (h != NULL);
8789 if (h != NULL
8790 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8791 return FALSE;
b49e97c9
TS
8792 break;
8793
8794 default:
8795 break;
8796 }
8797
1bbce132
MR
8798 /* Record the need for a PLT entry. At this point we don't know
8799 yet if we are going to create a PLT in the first place, but
8800 we only record whether the relocation requires a standard MIPS
8801 or a compressed code entry anyway. If we don't make a PLT after
8802 all, then we'll just ignore these arrangements. Likewise if
8803 a PLT entry is not created because the symbol is satisfied
8804 locally. */
8805 if (h != NULL
54806ffa
MR
8806 && (branch_reloc_p (r_type)
8807 || mips16_branch_reloc_p (r_type)
8808 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8809 && !SYMBOL_CALLS_LOCAL (info, h))
8810 {
8811 if (h->plt.plist == NULL)
8812 h->plt.plist = mips_elf_make_plt_record (abfd);
8813 if (h->plt.plist == NULL)
8814 return FALSE;
8815
54806ffa 8816 if (branch_reloc_p (r_type))
1bbce132
MR
8817 h->plt.plist->need_mips = TRUE;
8818 else
8819 h->plt.plist->need_comp = TRUE;
8820 }
8821
738e5348
RS
8822 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8823 if there is one. We only need to handle global symbols here;
8824 we decide whether to keep or delete stubs for local symbols
8825 when processing the stub's relocations. */
b49e97c9 8826 if (h != NULL
738e5348
RS
8827 && !mips16_call_reloc_p (r_type)
8828 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8829 {
8830 struct mips_elf_link_hash_entry *mh;
8831
8832 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8833 mh->need_fn_stub = TRUE;
b49e97c9 8834 }
861fb55a
DJ
8835
8836 /* Refuse some position-dependent relocations when creating a
8837 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8838 not PIC, but we can create dynamic relocations and the result
8839 will be fine. Also do not refuse R_MIPS_LO16, which can be
8840 combined with R_MIPS_GOT16. */
0e1862bb 8841 if (bfd_link_pic (info))
861fb55a
DJ
8842 {
8843 switch (r_type)
8844 {
8845 case R_MIPS16_HI16:
8846 case R_MIPS_HI16:
8847 case R_MIPS_HIGHER:
8848 case R_MIPS_HIGHEST:
df58fc94
RS
8849 case R_MICROMIPS_HI16:
8850 case R_MICROMIPS_HIGHER:
8851 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8852 /* Don't refuse a high part relocation if it's against
8853 no symbol (e.g. part of a compound relocation). */
cf35638d 8854 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8855 break;
8856
8857 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8858 and has a special meaning. */
8859 if (!NEWABI_P (abfd) && h != NULL
8860 && strcmp (h->root.root.string, "_gp_disp") == 0)
8861 break;
8862
0fc1eb3c
RS
8863 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8864 if (is_gott_symbol (info, h))
8865 break;
8866
861fb55a
DJ
8867 /* FALLTHROUGH */
8868
8869 case R_MIPS16_26:
8870 case R_MIPS_26:
df58fc94 8871 case R_MICROMIPS_26_S1:
861fb55a 8872 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8873 _bfd_error_handler
695344c0 8874 /* xgettext:c-format */
861fb55a
DJ
8875 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8876 abfd, howto->name,
8877 (h) ? h->root.root.string : "a local symbol");
8878 bfd_set_error (bfd_error_bad_value);
8879 return FALSE;
8880 default:
8881 break;
8882 }
8883 }
b49e97c9
TS
8884 }
8885
b34976b6 8886 return TRUE;
b49e97c9
TS
8887}
8888\f
d0647110 8889bfd_boolean
9719ad41
RS
8890_bfd_mips_relax_section (bfd *abfd, asection *sec,
8891 struct bfd_link_info *link_info,
8892 bfd_boolean *again)
d0647110
AO
8893{
8894 Elf_Internal_Rela *internal_relocs;
8895 Elf_Internal_Rela *irel, *irelend;
8896 Elf_Internal_Shdr *symtab_hdr;
8897 bfd_byte *contents = NULL;
d0647110
AO
8898 size_t extsymoff;
8899 bfd_boolean changed_contents = FALSE;
8900 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8901 Elf_Internal_Sym *isymbuf = NULL;
8902
8903 /* We are not currently changing any sizes, so only one pass. */
8904 *again = FALSE;
8905
0e1862bb 8906 if (bfd_link_relocatable (link_info))
d0647110
AO
8907 return TRUE;
8908
9719ad41 8909 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8910 link_info->keep_memory);
d0647110
AO
8911 if (internal_relocs == NULL)
8912 return TRUE;
8913
8914 irelend = internal_relocs + sec->reloc_count
8915 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8917 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8918
8919 for (irel = internal_relocs; irel < irelend; irel++)
8920 {
8921 bfd_vma symval;
8922 bfd_signed_vma sym_offset;
8923 unsigned int r_type;
8924 unsigned long r_symndx;
8925 asection *sym_sec;
8926 unsigned long instruction;
8927
8928 /* Turn jalr into bgezal, and jr into beq, if they're marked
8929 with a JALR relocation, that indicate where they jump to.
8930 This saves some pipeline bubbles. */
8931 r_type = ELF_R_TYPE (abfd, irel->r_info);
8932 if (r_type != R_MIPS_JALR)
8933 continue;
8934
8935 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8936 /* Compute the address of the jump target. */
8937 if (r_symndx >= extsymoff)
8938 {
8939 struct mips_elf_link_hash_entry *h
8940 = ((struct mips_elf_link_hash_entry *)
8941 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8942
8943 while (h->root.root.type == bfd_link_hash_indirect
8944 || h->root.root.type == bfd_link_hash_warning)
8945 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8946
d0647110
AO
8947 /* If a symbol is undefined, or if it may be overridden,
8948 skip it. */
8949 if (! ((h->root.root.type == bfd_link_hash_defined
8950 || h->root.root.type == bfd_link_hash_defweak)
8951 && h->root.root.u.def.section)
0e1862bb 8952 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8953 && !h->root.forced_local))
d0647110
AO
8954 continue;
8955
8956 sym_sec = h->root.root.u.def.section;
8957 if (sym_sec->output_section)
8958 symval = (h->root.root.u.def.value
8959 + sym_sec->output_section->vma
8960 + sym_sec->output_offset);
8961 else
8962 symval = h->root.root.u.def.value;
8963 }
8964 else
8965 {
8966 Elf_Internal_Sym *isym;
8967
8968 /* Read this BFD's symbols if we haven't done so already. */
8969 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8970 {
8971 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8972 if (isymbuf == NULL)
8973 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8974 symtab_hdr->sh_info, 0,
8975 NULL, NULL, NULL);
8976 if (isymbuf == NULL)
8977 goto relax_return;
8978 }
8979
8980 isym = isymbuf + r_symndx;
8981 if (isym->st_shndx == SHN_UNDEF)
8982 continue;
8983 else if (isym->st_shndx == SHN_ABS)
8984 sym_sec = bfd_abs_section_ptr;
8985 else if (isym->st_shndx == SHN_COMMON)
8986 sym_sec = bfd_com_section_ptr;
8987 else
8988 sym_sec
8989 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8990 symval = isym->st_value
8991 + sym_sec->output_section->vma
8992 + sym_sec->output_offset;
8993 }
8994
8995 /* Compute branch offset, from delay slot of the jump to the
8996 branch target. */
8997 sym_offset = (symval + irel->r_addend)
8998 - (sec_start + irel->r_offset + 4);
8999
9000 /* Branch offset must be properly aligned. */
9001 if ((sym_offset & 3) != 0)
9002 continue;
9003
9004 sym_offset >>= 2;
9005
9006 /* Check that it's in range. */
9007 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9008 continue;
143d77c5 9009
d0647110 9010 /* Get the section contents if we haven't done so already. */
c224138d
RS
9011 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9012 goto relax_return;
d0647110
AO
9013
9014 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9015
9016 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9017 if ((instruction & 0xfc1fffff) == 0x0000f809)
9018 instruction = 0x04110000;
9019 /* If it was jr <reg>, turn it into b <target>. */
9020 else if ((instruction & 0xfc1fffff) == 0x00000008)
9021 instruction = 0x10000000;
9022 else
9023 continue;
9024
9025 instruction |= (sym_offset & 0xffff);
9026 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9027 changed_contents = TRUE;
9028 }
9029
9030 if (contents != NULL
9031 && elf_section_data (sec)->this_hdr.contents != contents)
9032 {
9033 if (!changed_contents && !link_info->keep_memory)
9034 free (contents);
9035 else
9036 {
9037 /* Cache the section contents for elf_link_input_bfd. */
9038 elf_section_data (sec)->this_hdr.contents = contents;
9039 }
9040 }
9041 return TRUE;
9042
143d77c5 9043 relax_return:
eea6121a
AM
9044 if (contents != NULL
9045 && elf_section_data (sec)->this_hdr.contents != contents)
9046 free (contents);
d0647110
AO
9047 return FALSE;
9048}
9049\f
9a59ad6b
DJ
9050/* Allocate space for global sym dynamic relocs. */
9051
9052static bfd_boolean
9053allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9054{
9055 struct bfd_link_info *info = inf;
9056 bfd *dynobj;
9057 struct mips_elf_link_hash_entry *hmips;
9058 struct mips_elf_link_hash_table *htab;
9059
9060 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9061 BFD_ASSERT (htab != NULL);
9062
9a59ad6b
DJ
9063 dynobj = elf_hash_table (info)->dynobj;
9064 hmips = (struct mips_elf_link_hash_entry *) h;
9065
9066 /* VxWorks executables are handled elsewhere; we only need to
9067 allocate relocations in shared objects. */
0e1862bb 9068 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9069 return TRUE;
9070
7686d77d
AM
9071 /* Ignore indirect symbols. All relocations against such symbols
9072 will be redirected to the target symbol. */
9073 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9074 return TRUE;
9075
9a59ad6b
DJ
9076 /* If this symbol is defined in a dynamic object, or we are creating
9077 a shared library, we will need to copy any R_MIPS_32 or
9078 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9079 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9080 && hmips->possibly_dynamic_relocs != 0
9081 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9082 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9083 || bfd_link_pic (info)))
9a59ad6b
DJ
9084 {
9085 bfd_boolean do_copy = TRUE;
9086
9087 if (h->root.type == bfd_link_hash_undefweak)
9088 {
9089 /* Do not copy relocations for undefined weak symbols with
9090 non-default visibility. */
9091 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9092 do_copy = FALSE;
9093
9094 /* Make sure undefined weak symbols are output as a dynamic
9095 symbol in PIEs. */
9096 else if (h->dynindx == -1 && !h->forced_local)
9097 {
9098 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9099 return FALSE;
9100 }
9101 }
9102
9103 if (do_copy)
9104 {
aff469fa 9105 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9106 the SVR4 psABI requires it to have a dynamic symbol table
9107 index greater that DT_MIPS_GOTSYM if there are dynamic
9108 relocations against it.
9109
9110 VxWorks does not enforce the same mapping between the GOT
9111 and the symbol table, so the same requirement does not
9112 apply there. */
6ccf4795
RS
9113 if (!htab->is_vxworks)
9114 {
9115 if (hmips->global_got_area > GGA_RELOC_ONLY)
9116 hmips->global_got_area = GGA_RELOC_ONLY;
9117 hmips->got_only_for_calls = FALSE;
9118 }
aff469fa 9119
9a59ad6b
DJ
9120 mips_elf_allocate_dynamic_relocations
9121 (dynobj, info, hmips->possibly_dynamic_relocs);
9122 if (hmips->readonly_reloc)
9123 /* We tell the dynamic linker that there are relocations
9124 against the text segment. */
9125 info->flags |= DF_TEXTREL;
9126 }
9127 }
9128
9129 return TRUE;
9130}
9131
b49e97c9
TS
9132/* Adjust a symbol defined by a dynamic object and referenced by a
9133 regular object. The current definition is in some section of the
9134 dynamic object, but we're not including those sections. We have to
9135 change the definition to something the rest of the link can
9136 understand. */
9137
b34976b6 9138bfd_boolean
9719ad41
RS
9139_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9140 struct elf_link_hash_entry *h)
b49e97c9
TS
9141{
9142 bfd *dynobj;
9143 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9144 struct mips_elf_link_hash_table *htab;
b49e97c9 9145
5108fc1b 9146 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9147 BFD_ASSERT (htab != NULL);
9148
b49e97c9 9149 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9150 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9151
9152 /* Make sure we know what is going on here. */
9153 BFD_ASSERT (dynobj != NULL
f5385ebf 9154 && (h->needs_plt
f6e332e6 9155 || h->u.weakdef != NULL
f5385ebf
AM
9156 || (h->def_dynamic
9157 && h->ref_regular
9158 && !h->def_regular)));
b49e97c9 9159
b49e97c9 9160 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9161
861fb55a
DJ
9162 /* If there are call relocations against an externally-defined symbol,
9163 see whether we can create a MIPS lazy-binding stub for it. We can
9164 only do this if all references to the function are through call
9165 relocations, and in that case, the traditional lazy-binding stubs
9166 are much more efficient than PLT entries.
9167
9168 Traditional stubs are only available on SVR4 psABI-based systems;
9169 VxWorks always uses PLTs instead. */
9170 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9171 {
9172 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9173 return TRUE;
b49e97c9
TS
9174
9175 /* If this symbol is not defined in a regular file, then set
9176 the symbol to the stub location. This is required to make
9177 function pointers compare as equal between the normal
9178 executable and the shared library. */
f5385ebf 9179 if (!h->def_regular)
b49e97c9 9180 {
33bb52fb
RS
9181 hmips->needs_lazy_stub = TRUE;
9182 htab->lazy_stub_count++;
b34976b6 9183 return TRUE;
b49e97c9
TS
9184 }
9185 }
861fb55a
DJ
9186 /* As above, VxWorks requires PLT entries for externally-defined
9187 functions that are only accessed through call relocations.
b49e97c9 9188
861fb55a
DJ
9189 Both VxWorks and non-VxWorks targets also need PLT entries if there
9190 are static-only relocations against an externally-defined function.
9191 This can technically occur for shared libraries if there are
9192 branches to the symbol, although it is unlikely that this will be
9193 used in practice due to the short ranges involved. It can occur
9194 for any relative or absolute relocation in executables; in that
9195 case, the PLT entry becomes the function's canonical address. */
9196 else if (((h->needs_plt && !hmips->no_fn_stub)
9197 || (h->type == STT_FUNC && hmips->has_static_relocs))
9198 && htab->use_plts_and_copy_relocs
9199 && !SYMBOL_CALLS_LOCAL (info, h)
9200 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9201 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9202 {
1bbce132
MR
9203 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9204 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9205
9206 /* If this is the first symbol to need a PLT entry, then make some
9207 basic setup. Also work out PLT entry sizes. We'll need them
9208 for PLT offset calculations. */
9209 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9210 {
ce558b89 9211 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9212 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9213
861fb55a
DJ
9214 /* If we're using the PLT additions to the psABI, each PLT
9215 entry is 16 bytes and the PLT0 entry is 32 bytes.
9216 Encourage better cache usage by aligning. We do this
9217 lazily to avoid pessimizing traditional objects. */
9218 if (!htab->is_vxworks
ce558b89 9219 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9220 return FALSE;
0a44bf69 9221
861fb55a
DJ
9222 /* Make sure that .got.plt is word-aligned. We do this lazily
9223 for the same reason as above. */
ce558b89 9224 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9225 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9226 return FALSE;
0a44bf69 9227
861fb55a
DJ
9228 /* On non-VxWorks targets, the first two entries in .got.plt
9229 are reserved. */
9230 if (!htab->is_vxworks)
1bbce132
MR
9231 htab->plt_got_index
9232 += (get_elf_backend_data (dynobj)->got_header_size
9233 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9234
861fb55a
DJ
9235 /* On VxWorks, also allocate room for the header's
9236 .rela.plt.unloaded entries. */
0e1862bb 9237 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9238 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9239
9240 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9241 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9242 htab->plt_mips_entry_size
9243 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9244 else if (htab->is_vxworks)
9245 htab->plt_mips_entry_size
9246 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9247 else if (newabi_p)
9248 htab->plt_mips_entry_size
9249 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9250 else if (!micromips_p)
1bbce132
MR
9251 {
9252 htab->plt_mips_entry_size
9253 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9254 htab->plt_comp_entry_size
833794fc
MR
9255 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9256 }
9257 else if (htab->insn32)
9258 {
9259 htab->plt_mips_entry_size
9260 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9261 htab->plt_comp_entry_size
9262 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9263 }
9264 else
9265 {
9266 htab->plt_mips_entry_size
9267 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9268 htab->plt_comp_entry_size
833794fc 9269 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9270 }
0a44bf69
RS
9271 }
9272
1bbce132
MR
9273 if (h->plt.plist == NULL)
9274 h->plt.plist = mips_elf_make_plt_record (dynobj);
9275 if (h->plt.plist == NULL)
9276 return FALSE;
9277
9278 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9279 n32 or n64, so always use a standard entry there.
9280
9281 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9282 all MIPS16 calls will go via that stub, and there is no benefit
9283 to having a MIPS16 entry. And in the case of call_stub a
9284 standard entry actually has to be used as the stub ends with a J
9285 instruction. */
9286 if (newabi_p
9287 || htab->is_vxworks
9288 || hmips->call_stub
9289 || hmips->call_fp_stub)
9290 {
9291 h->plt.plist->need_mips = TRUE;
9292 h->plt.plist->need_comp = FALSE;
9293 }
9294
9295 /* Otherwise, if there are no direct calls to the function, we
9296 have a free choice of whether to use standard or compressed
9297 entries. Prefer microMIPS entries if the object is known to
9298 contain microMIPS code, so that it becomes possible to create
9299 pure microMIPS binaries. Prefer standard entries otherwise,
9300 because MIPS16 ones are no smaller and are usually slower. */
9301 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9302 {
9303 if (micromips_p)
9304 h->plt.plist->need_comp = TRUE;
9305 else
9306 h->plt.plist->need_mips = TRUE;
9307 }
9308
9309 if (h->plt.plist->need_mips)
9310 {
9311 h->plt.plist->mips_offset = htab->plt_mips_offset;
9312 htab->plt_mips_offset += htab->plt_mips_entry_size;
9313 }
9314 if (h->plt.plist->need_comp)
9315 {
9316 h->plt.plist->comp_offset = htab->plt_comp_offset;
9317 htab->plt_comp_offset += htab->plt_comp_entry_size;
9318 }
9319
9320 /* Reserve the corresponding .got.plt entry now too. */
9321 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9322
9323 /* If the output file has no definition of the symbol, set the
861fb55a 9324 symbol's value to the address of the stub. */
0e1862bb 9325 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9326 hmips->use_plt_entry = TRUE;
0a44bf69 9327
1bbce132 9328 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9329 htab->root.srelplt->size += (htab->is_vxworks
9330 ? MIPS_ELF_RELA_SIZE (dynobj)
9331 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9332
9333 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9334 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9335 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9336
861fb55a
DJ
9337 /* All relocations against this symbol that could have been made
9338 dynamic will now refer to the PLT entry instead. */
9339 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9340
0a44bf69
RS
9341 return TRUE;
9342 }
9343
9344 /* If this is a weak symbol, and there is a real definition, the
9345 processor independent code will have arranged for us to see the
9346 real definition first, and we can just use the same value. */
9347 if (h->u.weakdef != NULL)
9348 {
9349 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9350 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9351 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9352 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9353 return TRUE;
9354 }
9355
861fb55a
DJ
9356 /* Otherwise, there is nothing further to do for symbols defined
9357 in regular objects. */
9358 if (h->def_regular)
0a44bf69
RS
9359 return TRUE;
9360
861fb55a
DJ
9361 /* There's also nothing more to do if we'll convert all relocations
9362 against this symbol into dynamic relocations. */
9363 if (!hmips->has_static_relocs)
9364 return TRUE;
9365
9366 /* We're now relying on copy relocations. Complain if we have
9367 some that we can't convert. */
0e1862bb 9368 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9369 {
4eca0228
AM
9370 _bfd_error_handler (_("non-dynamic relocations refer to "
9371 "dynamic symbol %s"),
9372 h->root.root.string);
861fb55a
DJ
9373 bfd_set_error (bfd_error_bad_value);
9374 return FALSE;
9375 }
9376
0a44bf69
RS
9377 /* We must allocate the symbol in our .dynbss section, which will
9378 become part of the .bss section of the executable. There will be
9379 an entry for this symbol in the .dynsym section. The dynamic
9380 object will contain position independent code, so all references
9381 from the dynamic object to this symbol will go through the global
9382 offset table. The dynamic linker will use the .dynsym entry to
9383 determine the address it must put in the global offset table, so
9384 both the dynamic object and the regular object will refer to the
9385 same memory location for the variable. */
9386
9387 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9388 {
861fb55a
DJ
9389 if (htab->is_vxworks)
9390 htab->srelbss->size += sizeof (Elf32_External_Rela);
9391 else
9392 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9393 h->needs_copy = 1;
9394 }
9395
861fb55a
DJ
9396 /* All relocations against this symbol that could have been made
9397 dynamic will now refer to the local copy instead. */
9398 hmips->possibly_dynamic_relocs = 0;
9399
6cabe1ea 9400 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
0a44bf69 9401}
b49e97c9
TS
9402\f
9403/* This function is called after all the input files have been read,
9404 and the input sections have been assigned to output sections. We
9405 check for any mips16 stub sections that we can discard. */
9406
b34976b6 9407bfd_boolean
9719ad41
RS
9408_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9409 struct bfd_link_info *info)
b49e97c9 9410{
351cdf24 9411 asection *sect;
0a44bf69 9412 struct mips_elf_link_hash_table *htab;
861fb55a 9413 struct mips_htab_traverse_info hti;
0a44bf69
RS
9414
9415 htab = mips_elf_hash_table (info);
4dfe6ac6 9416 BFD_ASSERT (htab != NULL);
f4416af6 9417
b49e97c9 9418 /* The .reginfo section has a fixed size. */
351cdf24
MF
9419 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9420 if (sect != NULL)
9421 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9422
9423 /* The .MIPS.abiflags section has a fixed size. */
9424 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9425 if (sect != NULL)
9426 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9427
861fb55a
DJ
9428 hti.info = info;
9429 hti.output_bfd = output_bfd;
9430 hti.error = FALSE;
9431 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9432 mips_elf_check_symbols, &hti);
9433 if (hti.error)
9434 return FALSE;
f4416af6 9435
33bb52fb
RS
9436 return TRUE;
9437}
9438
9439/* If the link uses a GOT, lay it out and work out its size. */
9440
9441static bfd_boolean
9442mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9443{
9444 bfd *dynobj;
9445 asection *s;
9446 struct mips_got_info *g;
33bb52fb
RS
9447 bfd_size_type loadable_size = 0;
9448 bfd_size_type page_gotno;
d7206569 9449 bfd *ibfd;
ab361d49 9450 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9451 struct mips_elf_link_hash_table *htab;
9452
9453 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9454 BFD_ASSERT (htab != NULL);
9455
ce558b89 9456 s = htab->root.sgot;
f4416af6 9457 if (s == NULL)
b34976b6 9458 return TRUE;
b49e97c9 9459
33bb52fb 9460 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9461 g = htab->got_info;
9462
861fb55a
DJ
9463 /* Allocate room for the reserved entries. VxWorks always reserves
9464 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9465 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9466 if (htab->is_vxworks)
9467 htab->reserved_gotno = 3;
9468 else
9469 htab->reserved_gotno = 2;
9470 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9471 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9472
6c42ddb9
RS
9473 /* Decide which symbols need to go in the global part of the GOT and
9474 count the number of reloc-only GOT symbols. */
020d7251 9475 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9476
13db6b44
RS
9477 if (!mips_elf_resolve_final_got_entries (info, g))
9478 return FALSE;
9479
33bb52fb
RS
9480 /* Calculate the total loadable size of the output. That
9481 will give us the maximum number of GOT_PAGE entries
9482 required. */
c72f2fb2 9483 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9484 {
9485 asection *subsection;
5108fc1b 9486
d7206569 9487 for (subsection = ibfd->sections;
33bb52fb
RS
9488 subsection;
9489 subsection = subsection->next)
9490 {
9491 if ((subsection->flags & SEC_ALLOC) == 0)
9492 continue;
9493 loadable_size += ((subsection->size + 0xf)
9494 &~ (bfd_size_type) 0xf);
9495 }
9496 }
f4416af6 9497
0a44bf69 9498 if (htab->is_vxworks)
738e5348 9499 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9500 relocations against local symbols evaluate to "G", and the EABI does
9501 not include R_MIPS_GOT_PAGE. */
c224138d 9502 page_gotno = 0;
0a44bf69
RS
9503 else
9504 /* Assume there are two loadable segments consisting of contiguous
9505 sections. Is 5 enough? */
c224138d
RS
9506 page_gotno = (loadable_size >> 16) + 5;
9507
13db6b44 9508 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9509 conservative. */
9510 if (page_gotno > g->page_gotno)
9511 page_gotno = g->page_gotno;
f4416af6 9512
c224138d 9513 g->local_gotno += page_gotno;
cb22ccf4 9514 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9515
ab361d49
RS
9516 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9517 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9518 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9519
0a44bf69
RS
9520 /* VxWorks does not support multiple GOTs. It initializes $gp to
9521 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9522 dynamic loader. */
57093f5e 9523 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9524 {
a8028dd0 9525 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9526 return FALSE;
9527 }
9528 else
9529 {
d7206569
RS
9530 /* Record that all bfds use G. This also has the effect of freeing
9531 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9532 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9533 if (mips_elf_bfd_got (ibfd, FALSE))
9534 mips_elf_replace_bfd_got (ibfd, g);
9535 mips_elf_replace_bfd_got (output_bfd, g);
9536
33bb52fb 9537 /* Set up TLS entries. */
0f20cc35 9538 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9539 tga.info = info;
9540 tga.g = g;
9541 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9542 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9543 if (!tga.g)
9544 return FALSE;
1fd20d70
RS
9545 BFD_ASSERT (g->tls_assigned_gotno
9546 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9547
57093f5e 9548 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9549 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9550 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9551
33bb52fb 9552 /* Allocate room for the TLS relocations. */
ab361d49
RS
9553 if (g->relocs)
9554 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9555 }
b49e97c9 9556
b34976b6 9557 return TRUE;
b49e97c9
TS
9558}
9559
33bb52fb
RS
9560/* Estimate the size of the .MIPS.stubs section. */
9561
9562static void
9563mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9564{
9565 struct mips_elf_link_hash_table *htab;
9566 bfd_size_type dynsymcount;
9567
9568 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9569 BFD_ASSERT (htab != NULL);
9570
33bb52fb
RS
9571 if (htab->lazy_stub_count == 0)
9572 return;
9573
9574 /* IRIX rld assumes that a function stub isn't at the end of the .text
9575 section, so add a dummy entry to the end. */
9576 htab->lazy_stub_count++;
9577
9578 /* Get a worst-case estimate of the number of dynamic symbols needed.
9579 At this point, dynsymcount does not account for section symbols
9580 and count_section_dynsyms may overestimate the number that will
9581 be needed. */
9582 dynsymcount = (elf_hash_table (info)->dynsymcount
9583 + count_section_dynsyms (output_bfd, info));
9584
1bbce132
MR
9585 /* Determine the size of one stub entry. There's no disadvantage
9586 from using microMIPS code here, so for the sake of pure-microMIPS
9587 binaries we prefer it whenever there's any microMIPS code in
9588 output produced at all. This has a benefit of stubs being
833794fc
MR
9589 shorter by 4 bytes each too, unless in the insn32 mode. */
9590 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9591 htab->function_stub_size = (dynsymcount > 0x10000
9592 ? MIPS_FUNCTION_STUB_BIG_SIZE
9593 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9594 else if (htab->insn32)
9595 htab->function_stub_size = (dynsymcount > 0x10000
9596 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9597 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9598 else
9599 htab->function_stub_size = (dynsymcount > 0x10000
9600 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9601 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9602
9603 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9604}
9605
1bbce132
MR
9606/* A mips_elf_link_hash_traverse callback for which DATA points to a
9607 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9608 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9609
9610static bfd_boolean
af924177 9611mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9612{
1bbce132 9613 struct mips_htab_traverse_info *hti = data;
33bb52fb 9614 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9615 struct bfd_link_info *info;
9616 bfd *output_bfd;
9617
9618 info = hti->info;
9619 output_bfd = hti->output_bfd;
9620 htab = mips_elf_hash_table (info);
9621 BFD_ASSERT (htab != NULL);
33bb52fb 9622
33bb52fb
RS
9623 if (h->needs_lazy_stub)
9624 {
1bbce132
MR
9625 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9626 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9627 bfd_vma isa_bit = micromips_p;
9628
9629 BFD_ASSERT (htab->root.dynobj != NULL);
9630 if (h->root.plt.plist == NULL)
9631 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9632 if (h->root.plt.plist == NULL)
9633 {
9634 hti->error = TRUE;
9635 return FALSE;
9636 }
33bb52fb 9637 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9638 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9639 h->root.plt.plist->stub_offset = htab->sstubs->size;
9640 h->root.other = other;
33bb52fb
RS
9641 htab->sstubs->size += htab->function_stub_size;
9642 }
9643 return TRUE;
9644}
9645
9646/* Allocate offsets in the stubs section to each symbol that needs one.
9647 Set the final size of the .MIPS.stub section. */
9648
1bbce132 9649static bfd_boolean
33bb52fb
RS
9650mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9651{
1bbce132
MR
9652 bfd *output_bfd = info->output_bfd;
9653 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9654 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9655 bfd_vma isa_bit = micromips_p;
33bb52fb 9656 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9657 struct mips_htab_traverse_info hti;
9658 struct elf_link_hash_entry *h;
9659 bfd *dynobj;
33bb52fb
RS
9660
9661 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9662 BFD_ASSERT (htab != NULL);
9663
33bb52fb 9664 if (htab->lazy_stub_count == 0)
1bbce132 9665 return TRUE;
33bb52fb
RS
9666
9667 htab->sstubs->size = 0;
1bbce132
MR
9668 hti.info = info;
9669 hti.output_bfd = output_bfd;
9670 hti.error = FALSE;
9671 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9672 if (hti.error)
9673 return FALSE;
33bb52fb
RS
9674 htab->sstubs->size += htab->function_stub_size;
9675 BFD_ASSERT (htab->sstubs->size
9676 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9677
9678 dynobj = elf_hash_table (info)->dynobj;
9679 BFD_ASSERT (dynobj != NULL);
9680 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9681 if (h == NULL)
9682 return FALSE;
9683 h->root.u.def.value = isa_bit;
9684 h->other = other;
9685 h->type = STT_FUNC;
9686
9687 return TRUE;
9688}
9689
9690/* A mips_elf_link_hash_traverse callback for which DATA points to a
9691 bfd_link_info. If H uses the address of a PLT entry as the value
9692 of the symbol, then set the entry in the symbol table now. Prefer
9693 a standard MIPS PLT entry. */
9694
9695static bfd_boolean
9696mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9697{
9698 struct bfd_link_info *info = data;
9699 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9700 struct mips_elf_link_hash_table *htab;
9701 unsigned int other;
9702 bfd_vma isa_bit;
9703 bfd_vma val;
9704
9705 htab = mips_elf_hash_table (info);
9706 BFD_ASSERT (htab != NULL);
9707
9708 if (h->use_plt_entry)
9709 {
9710 BFD_ASSERT (h->root.plt.plist != NULL);
9711 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9712 || h->root.plt.plist->comp_offset != MINUS_ONE);
9713
9714 val = htab->plt_header_size;
9715 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9716 {
9717 isa_bit = 0;
9718 val += h->root.plt.plist->mips_offset;
9719 other = 0;
9720 }
9721 else
9722 {
9723 isa_bit = 1;
9724 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9725 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9726 }
9727 val += isa_bit;
9728 /* For VxWorks, point at the PLT load stub rather than the lazy
9729 resolution stub; this stub will become the canonical function
9730 address. */
9731 if (htab->is_vxworks)
9732 val += 8;
9733
ce558b89 9734 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9735 h->root.root.u.def.value = val;
9736 h->root.other = other;
9737 }
9738
9739 return TRUE;
33bb52fb
RS
9740}
9741
b49e97c9
TS
9742/* Set the sizes of the dynamic sections. */
9743
b34976b6 9744bfd_boolean
9719ad41
RS
9745_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9746 struct bfd_link_info *info)
b49e97c9
TS
9747{
9748 bfd *dynobj;
861fb55a 9749 asection *s, *sreldyn;
b34976b6 9750 bfd_boolean reltext;
0a44bf69 9751 struct mips_elf_link_hash_table *htab;
b49e97c9 9752
0a44bf69 9753 htab = mips_elf_hash_table (info);
4dfe6ac6 9754 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9755 dynobj = elf_hash_table (info)->dynobj;
9756 BFD_ASSERT (dynobj != NULL);
9757
9758 if (elf_hash_table (info)->dynamic_sections_created)
9759 {
9760 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9761 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9762 {
3d4d4302 9763 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9764 BFD_ASSERT (s != NULL);
eea6121a 9765 s->size
b49e97c9
TS
9766 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9767 s->contents
9768 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9769 }
861fb55a 9770
1bbce132
MR
9771 /* Figure out the size of the PLT header if we know that we
9772 are using it. For the sake of cache alignment always use
9773 a standard header whenever any standard entries are present
9774 even if microMIPS entries are present as well. This also
9775 lets the microMIPS header rely on the value of $v0 only set
9776 by microMIPS entries, for a small size reduction.
9777
9778 Set symbol table entry values for symbols that use the
9779 address of their PLT entry now that we can calculate it.
9780
9781 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9782 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9783 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9784 {
1bbce132
MR
9785 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9786 && !htab->plt_mips_offset);
9787 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9788 bfd_vma isa_bit = micromips_p;
861fb55a 9789 struct elf_link_hash_entry *h;
1bbce132 9790 bfd_vma size;
861fb55a
DJ
9791
9792 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9793 BFD_ASSERT (htab->root.sgotplt->size == 0);
9794 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9795
0e1862bb 9796 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9797 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9798 else if (htab->is_vxworks)
9799 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9800 else if (ABI_64_P (output_bfd))
9801 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9802 else if (ABI_N32_P (output_bfd))
9803 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9804 else if (!micromips_p)
9805 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9806 else if (htab->insn32)
9807 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9808 else
9809 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9810
1bbce132
MR
9811 htab->plt_header_is_comp = micromips_p;
9812 htab->plt_header_size = size;
ce558b89
AM
9813 htab->root.splt->size = (size
9814 + htab->plt_mips_offset
9815 + htab->plt_comp_offset);
9816 htab->root.sgotplt->size = (htab->plt_got_index
9817 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9818
9819 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9820
9821 if (htab->root.hplt == NULL)
9822 {
ce558b89 9823 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9824 "_PROCEDURE_LINKAGE_TABLE_");
9825 htab->root.hplt = h;
9826 if (h == NULL)
9827 return FALSE;
9828 }
9829
9830 h = htab->root.hplt;
9831 h->root.u.def.value = isa_bit;
9832 h->other = other;
861fb55a
DJ
9833 h->type = STT_FUNC;
9834 }
9835 }
4e41d0d7 9836
9a59ad6b 9837 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9838 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9839
33bb52fb
RS
9840 mips_elf_estimate_stub_size (output_bfd, info);
9841
9842 if (!mips_elf_lay_out_got (output_bfd, info))
9843 return FALSE;
9844
9845 mips_elf_lay_out_lazy_stubs (info);
9846
b49e97c9
TS
9847 /* The check_relocs and adjust_dynamic_symbol entry points have
9848 determined the sizes of the various dynamic sections. Allocate
9849 memory for them. */
b34976b6 9850 reltext = FALSE;
b49e97c9
TS
9851 for (s = dynobj->sections; s != NULL; s = s->next)
9852 {
9853 const char *name;
b49e97c9
TS
9854
9855 /* It's OK to base decisions on the section name, because none
9856 of the dynobj section names depend upon the input files. */
9857 name = bfd_get_section_name (dynobj, s);
9858
9859 if ((s->flags & SEC_LINKER_CREATED) == 0)
9860 continue;
9861
0112cd26 9862 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9863 {
c456f082 9864 if (s->size != 0)
b49e97c9
TS
9865 {
9866 const char *outname;
9867 asection *target;
9868
9869 /* If this relocation section applies to a read only
9870 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9871 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9872 assert a DT_TEXTREL entry rather than testing whether
9873 there exists a relocation to a read only section or
9874 not. */
9875 outname = bfd_get_section_name (output_bfd,
9876 s->output_section);
9877 target = bfd_get_section_by_name (output_bfd, outname + 4);
9878 if ((target != NULL
9879 && (target->flags & SEC_READONLY) != 0
9880 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9881 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9882 reltext = TRUE;
b49e97c9
TS
9883
9884 /* We use the reloc_count field as a counter if we need
9885 to copy relocs into the output file. */
0a44bf69 9886 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9887 s->reloc_count = 0;
f4416af6
AO
9888
9889 /* If combreloc is enabled, elf_link_sort_relocs() will
9890 sort relocations, but in a different way than we do,
9891 and before we're done creating relocations. Also, it
9892 will move them around between input sections'
9893 relocation's contents, so our sorting would be
9894 broken, so don't let it run. */
9895 info->combreloc = 0;
b49e97c9
TS
9896 }
9897 }
0e1862bb 9898 else if (bfd_link_executable (info)
b49e97c9 9899 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9900 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9901 {
5108fc1b 9902 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9903 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9904 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9905 }
9906 else if (SGI_COMPAT (output_bfd)
0112cd26 9907 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9908 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9909 else if (s == htab->root.splt)
861fb55a
DJ
9910 {
9911 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9912 room for an extra nop to fill the delay slot. This is
9913 for CPUs without load interlocking. */
9914 if (! LOAD_INTERLOCKS_P (output_bfd)
9915 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9916 s->size += 4;
9917 }
0112cd26 9918 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9919 && s != htab->root.sgot
9920 && s != htab->root.sgotplt
861fb55a
DJ
9921 && s != htab->sstubs
9922 && s != htab->sdynbss)
b49e97c9
TS
9923 {
9924 /* It's not one of our sections, so don't allocate space. */
9925 continue;
9926 }
9927
c456f082 9928 if (s->size == 0)
b49e97c9 9929 {
8423293d 9930 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9931 continue;
9932 }
9933
c456f082
AM
9934 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9935 continue;
9936
b49e97c9 9937 /* Allocate memory for the section contents. */
eea6121a 9938 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9939 if (s->contents == NULL)
b49e97c9
TS
9940 {
9941 bfd_set_error (bfd_error_no_memory);
b34976b6 9942 return FALSE;
b49e97c9
TS
9943 }
9944 }
9945
9946 if (elf_hash_table (info)->dynamic_sections_created)
9947 {
9948 /* Add some entries to the .dynamic section. We fill in the
9949 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9950 must add the entries now so that we get the correct size for
5750dcec 9951 the .dynamic section. */
af5978fb
RS
9952
9953 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9954 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9955 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9956 may only look at the first one they see. */
0e1862bb 9957 if (!bfd_link_pic (info)
af5978fb
RS
9958 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9959 return FALSE;
b49e97c9 9960
0e1862bb 9961 if (bfd_link_executable (info)
a5499fa4
MF
9962 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9963 return FALSE;
9964
5750dcec
DJ
9965 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9966 used by the debugger. */
0e1862bb 9967 if (bfd_link_executable (info)
5750dcec
DJ
9968 && !SGI_COMPAT (output_bfd)
9969 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9970 return FALSE;
9971
0a44bf69 9972 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9973 info->flags |= DF_TEXTREL;
9974
9975 if ((info->flags & DF_TEXTREL) != 0)
9976 {
9977 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9978 return FALSE;
943284cc
DJ
9979
9980 /* Clear the DF_TEXTREL flag. It will be set again if we
9981 write out an actual text relocation; we may not, because
9982 at this point we do not know whether e.g. any .eh_frame
9983 absolute relocations have been converted to PC-relative. */
9984 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9985 }
9986
9987 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9988 return FALSE;
b49e97c9 9989
861fb55a 9990 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9991 if (htab->is_vxworks)
b49e97c9 9992 {
0a44bf69
RS
9993 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9994 use any of the DT_MIPS_* tags. */
861fb55a 9995 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9996 {
9997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9998 return FALSE;
b49e97c9 9999
0a44bf69
RS
10000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10001 return FALSE;
b49e97c9 10002
0a44bf69
RS
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10004 return FALSE;
10005 }
b49e97c9 10006 }
0a44bf69
RS
10007 else
10008 {
861fb55a 10009 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10010 {
10011 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10012 return FALSE;
b49e97c9 10013
0a44bf69
RS
10014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10015 return FALSE;
b49e97c9 10016
0a44bf69
RS
10017 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10018 return FALSE;
10019 }
b49e97c9 10020
0a44bf69
RS
10021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10022 return FALSE;
b49e97c9 10023
0a44bf69
RS
10024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10025 return FALSE;
b49e97c9 10026
0a44bf69
RS
10027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10028 return FALSE;
b49e97c9 10029
0a44bf69
RS
10030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10031 return FALSE;
b49e97c9 10032
0a44bf69
RS
10033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10034 return FALSE;
b49e97c9 10035
0a44bf69
RS
10036 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10037 return FALSE;
b49e97c9 10038
0a44bf69
RS
10039 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10040 return FALSE;
10041
10042 if (IRIX_COMPAT (dynobj) == ict_irix5
10043 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10044 return FALSE;
10045
10046 if (IRIX_COMPAT (dynobj) == ict_irix6
10047 && (bfd_get_section_by_name
af0edeb8 10048 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10049 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10050 return FALSE;
10051 }
ce558b89 10052 if (htab->root.splt->size > 0)
861fb55a
DJ
10053 {
10054 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10055 return FALSE;
10056
10057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10058 return FALSE;
10059
10060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10061 return FALSE;
10062
10063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10064 return FALSE;
10065 }
7a2b07ff
NS
10066 if (htab->is_vxworks
10067 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10068 return FALSE;
b49e97c9
TS
10069 }
10070
b34976b6 10071 return TRUE;
b49e97c9
TS
10072}
10073\f
81d43bff
RS
10074/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10075 Adjust its R_ADDEND field so that it is correct for the output file.
10076 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10077 and sections respectively; both use symbol indexes. */
10078
10079static void
10080mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10081 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10082 asection **local_sections, Elf_Internal_Rela *rel)
10083{
10084 unsigned int r_type, r_symndx;
10085 Elf_Internal_Sym *sym;
10086 asection *sec;
10087
020d7251 10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10089 {
10090 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10091 if (gprel16_reloc_p (r_type)
81d43bff 10092 || r_type == R_MIPS_GPREL32
df58fc94 10093 || literal_reloc_p (r_type))
81d43bff
RS
10094 {
10095 rel->r_addend += _bfd_get_gp_value (input_bfd);
10096 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10097 }
10098
10099 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10100 sym = local_syms + r_symndx;
10101
10102 /* Adjust REL's addend to account for section merging. */
0e1862bb 10103 if (!bfd_link_relocatable (info))
81d43bff
RS
10104 {
10105 sec = local_sections[r_symndx];
10106 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10107 }
10108
10109 /* This would normally be done by the rela_normal code in elflink.c. */
10110 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10111 rel->r_addend += local_sections[r_symndx]->output_offset;
10112 }
10113}
10114
545fd46b
MR
10115/* Handle relocations against symbols from removed linkonce sections,
10116 or sections discarded by a linker script. We use this wrapper around
10117 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10118 on 64-bit ELF targets. In this case for any relocation handled, which
10119 always be the first in a triplet, the remaining two have to be processed
10120 together with the first, even if they are R_MIPS_NONE. It is the symbol
10121 index referred by the first reloc that applies to all the three and the
10122 remaining two never refer to an object symbol. And it is the final
10123 relocation (the last non-null one) that determines the output field of
10124 the whole relocation so retrieve the corresponding howto structure for
10125 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10126
10127 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10128 and therefore requires to be pasted in a loop. It also defines a block
10129 and does not protect any of its arguments, hence the extra brackets. */
10130
10131static void
10132mips_reloc_against_discarded_section (bfd *output_bfd,
10133 struct bfd_link_info *info,
10134 bfd *input_bfd, asection *input_section,
10135 Elf_Internal_Rela **rel,
10136 const Elf_Internal_Rela **relend,
10137 bfd_boolean rel_reloc,
10138 reloc_howto_type *howto,
10139 bfd_byte *contents)
10140{
10141 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10142 int count = bed->s->int_rels_per_ext_rel;
10143 unsigned int r_type;
10144 int i;
10145
10146 for (i = count - 1; i > 0; i--)
10147 {
10148 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10149 if (r_type != R_MIPS_NONE)
10150 {
10151 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10152 break;
10153 }
10154 }
10155 do
10156 {
10157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10158 (*rel), count, (*relend),
10159 howto, i, contents);
10160 }
10161 while (0);
10162}
10163
b49e97c9
TS
10164/* Relocate a MIPS ELF section. */
10165
b34976b6 10166bfd_boolean
9719ad41
RS
10167_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10168 bfd *input_bfd, asection *input_section,
10169 bfd_byte *contents, Elf_Internal_Rela *relocs,
10170 Elf_Internal_Sym *local_syms,
10171 asection **local_sections)
b49e97c9
TS
10172{
10173 Elf_Internal_Rela *rel;
10174 const Elf_Internal_Rela *relend;
10175 bfd_vma addend = 0;
b34976b6 10176 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 10177 const struct elf_backend_data *bed;
b49e97c9
TS
10178
10179 bed = get_elf_backend_data (output_bfd);
10180 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10181 for (rel = relocs; rel < relend; ++rel)
10182 {
10183 const char *name;
c9adbffe 10184 bfd_vma value = 0;
b49e97c9 10185 reloc_howto_type *howto;
ad3d9127 10186 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10187 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10188 REL relocation. */
b34976b6 10189 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10190 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10191 const char *msg;
ab96bf03
AM
10192 unsigned long r_symndx;
10193 asection *sec;
749b8d9d
L
10194 Elf_Internal_Shdr *symtab_hdr;
10195 struct elf_link_hash_entry *h;
d4730f92 10196 bfd_boolean rel_reloc;
b49e97c9 10197
d4730f92
BS
10198 rel_reloc = (NEWABI_P (input_bfd)
10199 && mips_elf_rel_relocation_p (input_bfd, input_section,
10200 relocs, rel));
b49e97c9 10201 /* Find the relocation howto for this relocation. */
d4730f92 10202 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10203
10204 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10205 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10206 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10207 {
10208 sec = local_sections[r_symndx];
10209 h = NULL;
10210 }
ab96bf03
AM
10211 else
10212 {
ab96bf03 10213 unsigned long extsymoff;
ab96bf03 10214
ab96bf03
AM
10215 extsymoff = 0;
10216 if (!elf_bad_symtab (input_bfd))
10217 extsymoff = symtab_hdr->sh_info;
10218 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10219 while (h->root.type == bfd_link_hash_indirect
10220 || h->root.type == bfd_link_hash_warning)
10221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10222
10223 sec = NULL;
10224 if (h->root.type == bfd_link_hash_defined
10225 || h->root.type == bfd_link_hash_defweak)
10226 sec = h->root.u.def.section;
10227 }
10228
dbaa2011 10229 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10230 {
10231 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10232 input_section, &rel, &relend,
10233 rel_reloc, howto, contents);
10234 continue;
10235 }
ab96bf03 10236
4a14403c 10237 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10238 {
10239 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10240 64-bit code, but make sure all their addresses are in the
10241 lowermost or uppermost 32-bit section of the 64-bit address
10242 space. Thus, when they use an R_MIPS_64 they mean what is
10243 usually meant by R_MIPS_32, with the exception that the
10244 stored value is sign-extended to 64 bits. */
b34976b6 10245 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10246
10247 /* On big-endian systems, we need to lie about the position
10248 of the reloc. */
10249 if (bfd_big_endian (input_bfd))
10250 rel->r_offset += 4;
10251 }
b49e97c9
TS
10252
10253 if (!use_saved_addend_p)
10254 {
b49e97c9
TS
10255 /* If these relocations were originally of the REL variety,
10256 we must pull the addend out of the field that will be
10257 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10258 RELA relocation. */
10259 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10260 relocs, rel))
b49e97c9 10261 {
b34976b6 10262 rela_relocation_p = FALSE;
c224138d
RS
10263 addend = mips_elf_read_rel_addend (input_bfd, rel,
10264 howto, contents);
738e5348
RS
10265 if (hi16_reloc_p (r_type)
10266 || (got16_reloc_p (r_type)
b49e97c9 10267 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10268 local_sections)))
b49e97c9 10269 {
c224138d
RS
10270 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10271 contents, &addend))
749b8d9d 10272 {
749b8d9d
L
10273 if (h)
10274 name = h->root.root.string;
10275 else
10276 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10277 local_syms + r_symndx,
10278 sec);
4eca0228 10279 _bfd_error_handler
695344c0 10280 /* xgettext:c-format */
749b8d9d
L
10281 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10282 input_bfd, input_section, name, howto->name,
10283 rel->r_offset);
749b8d9d 10284 }
b49e97c9 10285 }
30ac9238
RS
10286 else
10287 addend <<= howto->rightshift;
b49e97c9
TS
10288 }
10289 else
10290 addend = rel->r_addend;
81d43bff
RS
10291 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10292 local_syms, local_sections, rel);
b49e97c9
TS
10293 }
10294
0e1862bb 10295 if (bfd_link_relocatable (info))
b49e97c9 10296 {
4a14403c 10297 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10298 && bfd_big_endian (input_bfd))
10299 rel->r_offset -= 4;
10300
81d43bff 10301 if (!rela_relocation_p && rel->r_addend)
5a659663 10302 {
81d43bff 10303 addend += rel->r_addend;
738e5348 10304 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10305 addend = mips_elf_high (addend);
10306 else if (r_type == R_MIPS_HIGHER)
10307 addend = mips_elf_higher (addend);
10308 else if (r_type == R_MIPS_HIGHEST)
10309 addend = mips_elf_highest (addend);
30ac9238
RS
10310 else
10311 addend >>= howto->rightshift;
b49e97c9 10312
30ac9238
RS
10313 /* We use the source mask, rather than the destination
10314 mask because the place to which we are writing will be
10315 source of the addend in the final link. */
b49e97c9
TS
10316 addend &= howto->src_mask;
10317
5a659663 10318 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10319 /* See the comment above about using R_MIPS_64 in the 32-bit
10320 ABI. Here, we need to update the addend. It would be
10321 possible to get away with just using the R_MIPS_32 reloc
10322 but for endianness. */
10323 {
10324 bfd_vma sign_bits;
10325 bfd_vma low_bits;
10326 bfd_vma high_bits;
10327
10328 if (addend & ((bfd_vma) 1 << 31))
10329#ifdef BFD64
10330 sign_bits = ((bfd_vma) 1 << 32) - 1;
10331#else
10332 sign_bits = -1;
10333#endif
10334 else
10335 sign_bits = 0;
10336
10337 /* If we don't know that we have a 64-bit type,
10338 do two separate stores. */
10339 if (bfd_big_endian (input_bfd))
10340 {
10341 /* Store the sign-bits (which are most significant)
10342 first. */
10343 low_bits = sign_bits;
10344 high_bits = addend;
10345 }
10346 else
10347 {
10348 low_bits = addend;
10349 high_bits = sign_bits;
10350 }
10351 bfd_put_32 (input_bfd, low_bits,
10352 contents + rel->r_offset);
10353 bfd_put_32 (input_bfd, high_bits,
10354 contents + rel->r_offset + 4);
10355 continue;
10356 }
10357
10358 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10359 input_bfd, input_section,
b34976b6
AM
10360 contents, FALSE))
10361 return FALSE;
b49e97c9
TS
10362 }
10363
10364 /* Go on to the next relocation. */
10365 continue;
10366 }
10367
10368 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10369 relocations for the same offset. In that case we are
10370 supposed to treat the output of each relocation as the addend
10371 for the next. */
10372 if (rel + 1 < relend
10373 && rel->r_offset == rel[1].r_offset
10374 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10375 use_saved_addend_p = TRUE;
b49e97c9 10376 else
b34976b6 10377 use_saved_addend_p = FALSE;
b49e97c9
TS
10378
10379 /* Figure out what value we are supposed to relocate. */
10380 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10381 input_section, info, rel,
10382 addend, howto, local_syms,
10383 local_sections, &value,
38a7df63 10384 &name, &cross_mode_jump_p,
bce03d3d 10385 use_saved_addend_p))
b49e97c9
TS
10386 {
10387 case bfd_reloc_continue:
10388 /* There's nothing to do. */
10389 continue;
10390
10391 case bfd_reloc_undefined:
10392 /* mips_elf_calculate_relocation already called the
10393 undefined_symbol callback. There's no real point in
10394 trying to perform the relocation at this point, so we
10395 just skip ahead to the next relocation. */
10396 continue;
10397
10398 case bfd_reloc_notsupported:
10399 msg = _("internal error: unsupported relocation error");
10400 info->callbacks->warning
10401 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10402 return FALSE;
b49e97c9
TS
10403
10404 case bfd_reloc_overflow:
10405 if (use_saved_addend_p)
10406 /* Ignore overflow until we reach the last relocation for
10407 a given location. */
10408 ;
10409 else
10410 {
0e53d9da
AN
10411 struct mips_elf_link_hash_table *htab;
10412
10413 htab = mips_elf_hash_table (info);
4dfe6ac6 10414 BFD_ASSERT (htab != NULL);
b49e97c9 10415 BFD_ASSERT (name != NULL);
0e53d9da 10416 if (!htab->small_data_overflow_reported
9684f078 10417 && (gprel16_reloc_p (howto->type)
df58fc94 10418 || literal_reloc_p (howto->type)))
0e53d9da 10419 {
91d6fa6a
NC
10420 msg = _("small-data section exceeds 64KB;"
10421 " lower small-data size limit (see option -G)");
0e53d9da
AN
10422
10423 htab->small_data_overflow_reported = TRUE;
10424 (*info->callbacks->einfo) ("%P: %s\n", msg);
10425 }
1a72702b
AM
10426 (*info->callbacks->reloc_overflow)
10427 (info, NULL, name, howto->name, (bfd_vma) 0,
10428 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10429 }
10430 break;
10431
10432 case bfd_reloc_ok:
10433 break;
10434
df58fc94 10435 case bfd_reloc_outofrange:
7db9a74e 10436 msg = NULL;
df58fc94 10437 if (jal_reloc_p (howto->type))
9d862524
MR
10438 msg = (cross_mode_jump_p
10439 ? _("Cannot convert a jump to JALX "
10440 "for a non-word-aligned address")
10441 : (howto->type == R_MIPS16_26
10442 ? _("Jump to a non-word-aligned address")
10443 : _("Jump to a non-instruction-aligned address")));
99aefae6 10444 else if (b_reloc_p (howto->type))
a6ebf616
MR
10445 msg = (cross_mode_jump_p
10446 ? _("Cannot convert a branch to JALX "
10447 "for a non-word-aligned address")
10448 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10449 else if (aligned_pcrel_reloc_p (howto->type))
10450 msg = _("PC-relative load from unaligned address");
10451 if (msg)
df58fc94 10452 {
de341542 10453 info->callbacks->einfo
ed53407e
MR
10454 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10455 break;
7361da2c 10456 }
df58fc94
RS
10457 /* Fall through. */
10458
b49e97c9
TS
10459 default:
10460 abort ();
10461 break;
10462 }
10463
10464 /* If we've got another relocation for the address, keep going
10465 until we reach the last one. */
10466 if (use_saved_addend_p)
10467 {
10468 addend = value;
10469 continue;
10470 }
10471
4a14403c 10472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10473 /* See the comment above about using R_MIPS_64 in the 32-bit
10474 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10475 that calculated the right value. Now, however, we
10476 sign-extend the 32-bit result to 64-bits, and store it as a
10477 64-bit value. We are especially generous here in that we
10478 go to extreme lengths to support this usage on systems with
10479 only a 32-bit VMA. */
10480 {
10481 bfd_vma sign_bits;
10482 bfd_vma low_bits;
10483 bfd_vma high_bits;
10484
10485 if (value & ((bfd_vma) 1 << 31))
10486#ifdef BFD64
10487 sign_bits = ((bfd_vma) 1 << 32) - 1;
10488#else
10489 sign_bits = -1;
10490#endif
10491 else
10492 sign_bits = 0;
10493
10494 /* If we don't know that we have a 64-bit type,
10495 do two separate stores. */
10496 if (bfd_big_endian (input_bfd))
10497 {
10498 /* Undo what we did above. */
10499 rel->r_offset -= 4;
10500 /* Store the sign-bits (which are most significant)
10501 first. */
10502 low_bits = sign_bits;
10503 high_bits = value;
10504 }
10505 else
10506 {
10507 low_bits = value;
10508 high_bits = sign_bits;
10509 }
10510 bfd_put_32 (input_bfd, low_bits,
10511 contents + rel->r_offset);
10512 bfd_put_32 (input_bfd, high_bits,
10513 contents + rel->r_offset + 4);
10514 continue;
10515 }
10516
10517 /* Actually perform the relocation. */
10518 if (! mips_elf_perform_relocation (info, howto, rel, value,
10519 input_bfd, input_section,
38a7df63 10520 contents, cross_mode_jump_p))
b34976b6 10521 return FALSE;
b49e97c9
TS
10522 }
10523
b34976b6 10524 return TRUE;
b49e97c9
TS
10525}
10526\f
861fb55a
DJ
10527/* A function that iterates over each entry in la25_stubs and fills
10528 in the code for each one. DATA points to a mips_htab_traverse_info. */
10529
10530static int
10531mips_elf_create_la25_stub (void **slot, void *data)
10532{
10533 struct mips_htab_traverse_info *hti;
10534 struct mips_elf_link_hash_table *htab;
10535 struct mips_elf_la25_stub *stub;
10536 asection *s;
10537 bfd_byte *loc;
10538 bfd_vma offset, target, target_high, target_low;
10539
10540 stub = (struct mips_elf_la25_stub *) *slot;
10541 hti = (struct mips_htab_traverse_info *) data;
10542 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10543 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10544
10545 /* Create the section contents, if we haven't already. */
10546 s = stub->stub_section;
10547 loc = s->contents;
10548 if (loc == NULL)
10549 {
10550 loc = bfd_malloc (s->size);
10551 if (loc == NULL)
10552 {
10553 hti->error = TRUE;
10554 return FALSE;
10555 }
10556 s->contents = loc;
10557 }
10558
10559 /* Work out where in the section this stub should go. */
10560 offset = stub->offset;
10561
10562 /* Work out the target address. */
8f0c309a
CLT
10563 target = mips_elf_get_la25_target (stub, &s);
10564 target += s->output_section->vma + s->output_offset;
10565
861fb55a
DJ
10566 target_high = ((target + 0x8000) >> 16) & 0xffff;
10567 target_low = (target & 0xffff);
10568
10569 if (stub->stub_section != htab->strampoline)
10570 {
df58fc94 10571 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10572 of the section and write the two instructions at the end. */
10573 memset (loc, 0, offset);
10574 loc += offset;
df58fc94
RS
10575 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10576 {
d21911ea
MR
10577 bfd_put_micromips_32 (hti->output_bfd,
10578 LA25_LUI_MICROMIPS (target_high),
10579 loc);
10580 bfd_put_micromips_32 (hti->output_bfd,
10581 LA25_ADDIU_MICROMIPS (target_low),
10582 loc + 4);
df58fc94
RS
10583 }
10584 else
10585 {
10586 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10587 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10588 }
861fb55a
DJ
10589 }
10590 else
10591 {
10592 /* This is trampoline. */
10593 loc += offset;
df58fc94
RS
10594 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10595 {
d21911ea
MR
10596 bfd_put_micromips_32 (hti->output_bfd,
10597 LA25_LUI_MICROMIPS (target_high), loc);
10598 bfd_put_micromips_32 (hti->output_bfd,
10599 LA25_J_MICROMIPS (target), loc + 4);
10600 bfd_put_micromips_32 (hti->output_bfd,
10601 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10602 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10603 }
10604 else
10605 {
10606 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10607 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10608 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10609 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10610 }
861fb55a
DJ
10611 }
10612 return TRUE;
10613}
10614
b49e97c9
TS
10615/* If NAME is one of the special IRIX6 symbols defined by the linker,
10616 adjust it appropriately now. */
10617
10618static void
9719ad41
RS
10619mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10620 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10621{
10622 /* The linker script takes care of providing names and values for
10623 these, but we must place them into the right sections. */
10624 static const char* const text_section_symbols[] = {
10625 "_ftext",
10626 "_etext",
10627 "__dso_displacement",
10628 "__elf_header",
10629 "__program_header_table",
10630 NULL
10631 };
10632
10633 static const char* const data_section_symbols[] = {
10634 "_fdata",
10635 "_edata",
10636 "_end",
10637 "_fbss",
10638 NULL
10639 };
10640
10641 const char* const *p;
10642 int i;
10643
10644 for (i = 0; i < 2; ++i)
10645 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10646 *p;
10647 ++p)
10648 if (strcmp (*p, name) == 0)
10649 {
10650 /* All of these symbols are given type STT_SECTION by the
10651 IRIX6 linker. */
10652 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10653 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10654
10655 /* The IRIX linker puts these symbols in special sections. */
10656 if (i == 0)
10657 sym->st_shndx = SHN_MIPS_TEXT;
10658 else
10659 sym->st_shndx = SHN_MIPS_DATA;
10660
10661 break;
10662 }
10663}
10664
10665/* Finish up dynamic symbol handling. We set the contents of various
10666 dynamic sections here. */
10667
b34976b6 10668bfd_boolean
9719ad41
RS
10669_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10670 struct bfd_link_info *info,
10671 struct elf_link_hash_entry *h,
10672 Elf_Internal_Sym *sym)
b49e97c9
TS
10673{
10674 bfd *dynobj;
b49e97c9 10675 asection *sgot;
f4416af6 10676 struct mips_got_info *g, *gg;
b49e97c9 10677 const char *name;
3d6746ca 10678 int idx;
5108fc1b 10679 struct mips_elf_link_hash_table *htab;
738e5348 10680 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10681
5108fc1b 10682 htab = mips_elf_hash_table (info);
4dfe6ac6 10683 BFD_ASSERT (htab != NULL);
b49e97c9 10684 dynobj = elf_hash_table (info)->dynobj;
738e5348 10685 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10686
861fb55a
DJ
10687 BFD_ASSERT (!htab->is_vxworks);
10688
1bbce132
MR
10689 if (h->plt.plist != NULL
10690 && (h->plt.plist->mips_offset != MINUS_ONE
10691 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10692 {
10693 /* We've decided to create a PLT entry for this symbol. */
10694 bfd_byte *loc;
1bbce132 10695 bfd_vma header_address, got_address;
861fb55a 10696 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10697 bfd_vma got_index;
10698 bfd_vma isa_bit;
10699
10700 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10701
10702 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10703 BFD_ASSERT (h->dynindx != -1);
ce558b89 10704 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10705 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10706 BFD_ASSERT (!h->def_regular);
10707
10708 /* Calculate the address of the PLT header. */
1bbce132 10709 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10710 header_address = (htab->root.splt->output_section->vma
10711 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10712
10713 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10714 got_address = (htab->root.sgotplt->output_section->vma
10715 + htab->root.sgotplt->output_offset
1bbce132
MR
10716 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10717
861fb55a
DJ
10718 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10719 got_address_low = got_address & 0xffff;
10720
10721 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10722 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10723 if (ABI_64_P (output_bfd))
10724 bfd_put_64 (output_bfd, header_address, loc);
10725 else
10726 bfd_put_32 (output_bfd, header_address, loc);
10727
1bbce132
MR
10728 /* Now handle the PLT itself. First the standard entry (the order
10729 does not matter, we just have to pick one). */
10730 if (h->plt.plist->mips_offset != MINUS_ONE)
10731 {
10732 const bfd_vma *plt_entry;
10733 bfd_vma plt_offset;
861fb55a 10734
1bbce132 10735 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10736
ce558b89 10737 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10738
1bbce132 10739 /* Find out where the .plt entry should go. */
ce558b89 10740 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10741
10742 /* Pick the load opcode. */
10743 load = MIPS_ELF_LOAD_WORD (output_bfd);
10744
10745 /* Fill in the PLT entry itself. */
7361da2c
AB
10746
10747 if (MIPSR6_P (output_bfd))
10748 plt_entry = mipsr6_exec_plt_entry;
10749 else
10750 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10751 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10752 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10753 loc + 4);
10754
10755 if (! LOAD_INTERLOCKS_P (output_bfd))
10756 {
10757 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10758 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10759 }
10760 else
10761 {
10762 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10763 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10764 loc + 12);
10765 }
6d30f5b2 10766 }
1bbce132
MR
10767
10768 /* Now the compressed entry. They come after any standard ones. */
10769 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10770 {
1bbce132
MR
10771 bfd_vma plt_offset;
10772
10773 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10774 + h->plt.plist->comp_offset);
10775
ce558b89 10776 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10777
10778 /* Find out where the .plt entry should go. */
ce558b89 10779 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10780
10781 /* Fill in the PLT entry itself. */
833794fc
MR
10782 if (!MICROMIPS_P (output_bfd))
10783 {
10784 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10785
10786 bfd_put_16 (output_bfd, plt_entry[0], loc);
10787 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10788 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10789 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10790 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10791 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10792 bfd_put_32 (output_bfd, got_address, loc + 12);
10793 }
10794 else if (htab->insn32)
10795 {
10796 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10797
10798 bfd_put_16 (output_bfd, plt_entry[0], loc);
10799 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10800 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10801 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10802 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10803 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10804 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10805 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10806 }
10807 else
1bbce132
MR
10808 {
10809 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10810 bfd_signed_vma gotpc_offset;
10811 bfd_vma loc_address;
10812
10813 BFD_ASSERT (got_address % 4 == 0);
10814
ce558b89
AM
10815 loc_address = (htab->root.splt->output_section->vma
10816 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10817 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10818
10819 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10820 if (gotpc_offset + 0x1000000 >= 0x2000000)
10821 {
4eca0228 10822 _bfd_error_handler
695344c0 10823 /* xgettext:c-format */
1bbce132
MR
10824 (_("%B: `%A' offset of %ld from `%A' "
10825 "beyond the range of ADDIUPC"),
10826 output_bfd,
ce558b89
AM
10827 htab->root.sgotplt->output_section,
10828 htab->root.splt->output_section,
1bbce132
MR
10829 (long) gotpc_offset);
10830 bfd_set_error (bfd_error_no_error);
10831 return FALSE;
10832 }
10833 bfd_put_16 (output_bfd,
10834 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10835 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10836 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10837 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10838 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10839 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10840 }
6d30f5b2 10841 }
861fb55a
DJ
10842
10843 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10844 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10845 got_index - 2, h->dynindx,
861fb55a
DJ
10846 R_MIPS_JUMP_SLOT, got_address);
10847
10848 /* We distinguish between PLT entries and lazy-binding stubs by
10849 giving the former an st_other value of STO_MIPS_PLT. Set the
10850 flag and leave the value if there are any relocations in the
10851 binary where pointer equality matters. */
10852 sym->st_shndx = SHN_UNDEF;
10853 if (h->pointer_equality_needed)
1bbce132 10854 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10855 else
1bbce132
MR
10856 {
10857 sym->st_value = 0;
10858 sym->st_other = 0;
10859 }
861fb55a 10860 }
1bbce132
MR
10861
10862 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10863 {
861fb55a 10864 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10865 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10866 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10867 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10868 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10869 bfd_vma isa_bit = micromips_p;
10870 bfd_vma stub_big_size;
10871
833794fc 10872 if (!micromips_p)
1bbce132 10873 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10874 else if (htab->insn32)
10875 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10876 else
10877 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10878
10879 /* This symbol has a stub. Set it up. */
10880
10881 BFD_ASSERT (h->dynindx != -1);
10882
1bbce132 10883 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10884
10885 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10886 sign extension at runtime in the stub, resulting in a negative
10887 index value. */
10888 if (h->dynindx & ~0x7fffffff)
b34976b6 10889 return FALSE;
b49e97c9
TS
10890
10891 /* Fill the stub. */
1bbce132
MR
10892 if (micromips_p)
10893 {
10894 idx = 0;
10895 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10896 stub + idx);
10897 idx += 4;
833794fc
MR
10898 if (htab->insn32)
10899 {
10900 bfd_put_micromips_32 (output_bfd,
40fc1451 10901 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10902 idx += 4;
10903 }
10904 else
10905 {
10906 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10907 idx += 2;
10908 }
1bbce132
MR
10909 if (stub_size == stub_big_size)
10910 {
10911 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10912
10913 bfd_put_micromips_32 (output_bfd,
10914 STUB_LUI_MICROMIPS (dynindx_hi),
10915 stub + idx);
10916 idx += 4;
10917 }
833794fc
MR
10918 if (htab->insn32)
10919 {
10920 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10921 stub + idx);
10922 idx += 4;
10923 }
10924 else
10925 {
10926 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10927 idx += 2;
10928 }
1bbce132
MR
10929
10930 /* If a large stub is not required and sign extension is not a
10931 problem, then use legacy code in the stub. */
10932 if (stub_size == stub_big_size)
10933 bfd_put_micromips_32 (output_bfd,
10934 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10935 stub + idx);
10936 else if (h->dynindx & ~0x7fff)
10937 bfd_put_micromips_32 (output_bfd,
10938 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10939 stub + idx);
10940 else
10941 bfd_put_micromips_32 (output_bfd,
10942 STUB_LI16S_MICROMIPS (output_bfd,
10943 h->dynindx),
10944 stub + idx);
10945 }
3d6746ca 10946 else
1bbce132
MR
10947 {
10948 idx = 0;
10949 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10950 idx += 4;
40fc1451 10951 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10952 idx += 4;
10953 if (stub_size == stub_big_size)
10954 {
10955 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10956 stub + idx);
10957 idx += 4;
10958 }
10959 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10960 idx += 4;
10961
10962 /* If a large stub is not required and sign extension is not a
10963 problem, then use legacy code in the stub. */
10964 if (stub_size == stub_big_size)
10965 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10966 stub + idx);
10967 else if (h->dynindx & ~0x7fff)
10968 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10969 stub + idx);
10970 else
10971 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10972 stub + idx);
10973 }
5108fc1b 10974
1bbce132
MR
10975 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10976 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10977 stub, stub_size);
b49e97c9 10978
1bbce132 10979 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10980 only for the referenced symbol. */
10981 sym->st_shndx = SHN_UNDEF;
10982
10983 /* The run-time linker uses the st_value field of the symbol
10984 to reset the global offset table entry for this external
10985 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10986 sym->st_value = (htab->sstubs->output_section->vma
10987 + htab->sstubs->output_offset
1bbce132
MR
10988 + h->plt.plist->stub_offset
10989 + isa_bit);
10990 sym->st_other = other;
b49e97c9
TS
10991 }
10992
738e5348
RS
10993 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10994 refer to the stub, since only the stub uses the standard calling
10995 conventions. */
10996 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10997 {
10998 BFD_ASSERT (hmips->need_fn_stub);
10999 sym->st_value = (hmips->fn_stub->output_section->vma
11000 + hmips->fn_stub->output_offset);
11001 sym->st_size = hmips->fn_stub->size;
11002 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11003 }
11004
b49e97c9 11005 BFD_ASSERT (h->dynindx != -1
f5385ebf 11006 || h->forced_local);
b49e97c9 11007
ce558b89 11008 sgot = htab->root.sgot;
a8028dd0 11009 g = htab->got_info;
b49e97c9
TS
11010 BFD_ASSERT (g != NULL);
11011
11012 /* Run through the global symbol table, creating GOT entries for all
11013 the symbols that need them. */
020d7251 11014 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11015 {
11016 bfd_vma offset;
11017 bfd_vma value;
11018
6eaa6adc 11019 value = sym->st_value;
13fbec83 11020 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11021 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11022 }
11023
e641e783 11024 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11025 {
11026 struct mips_got_entry e, *p;
0626d451 11027 bfd_vma entry;
f4416af6 11028 bfd_vma offset;
f4416af6
AO
11029
11030 gg = g;
11031
11032 e.abfd = output_bfd;
11033 e.symndx = -1;
738e5348 11034 e.d.h = hmips;
9ab066b4 11035 e.tls_type = GOT_TLS_NONE;
143d77c5 11036
f4416af6
AO
11037 for (g = g->next; g->next != gg; g = g->next)
11038 {
11039 if (g->got_entries
11040 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11041 &e)))
11042 {
11043 offset = p->gotidx;
ce558b89 11044 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11045 if (bfd_link_pic (info)
0626d451
RS
11046 || (elf_hash_table (info)->dynamic_sections_created
11047 && p->d.h != NULL
f5385ebf
AM
11048 && p->d.h->root.def_dynamic
11049 && !p->d.h->root.def_regular))
0626d451
RS
11050 {
11051 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11052 the various compatibility problems, it's easier to mock
11053 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11054 mips_elf_create_dynamic_relocation to calculate the
11055 appropriate addend. */
11056 Elf_Internal_Rela rel[3];
11057
11058 memset (rel, 0, sizeof (rel));
11059 if (ABI_64_P (output_bfd))
11060 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11061 else
11062 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11063 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11064
11065 entry = 0;
11066 if (! (mips_elf_create_dynamic_relocation
11067 (output_bfd, info, rel,
11068 e.d.h, NULL, sym->st_value, &entry, sgot)))
11069 return FALSE;
11070 }
11071 else
11072 entry = sym->st_value;
11073 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11074 }
11075 }
11076 }
11077
b49e97c9
TS
11078 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11079 name = h->root.root.string;
9637f6ef 11080 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11081 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11082 sym->st_shndx = SHN_ABS;
11083 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11084 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11085 {
11086 sym->st_shndx = SHN_ABS;
11087 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11088 sym->st_value = 1;
11089 }
4a14403c 11090 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
11091 {
11092 sym->st_shndx = SHN_ABS;
11093 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11094 sym->st_value = elf_gp (output_bfd);
11095 }
11096 else if (SGI_COMPAT (output_bfd))
11097 {
11098 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11099 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11100 {
11101 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11102 sym->st_other = STO_PROTECTED;
11103 sym->st_value = 0;
11104 sym->st_shndx = SHN_MIPS_DATA;
11105 }
11106 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11107 {
11108 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11109 sym->st_other = STO_PROTECTED;
11110 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11111 sym->st_shndx = SHN_ABS;
11112 }
11113 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11114 {
11115 if (h->type == STT_FUNC)
11116 sym->st_shndx = SHN_MIPS_TEXT;
11117 else if (h->type == STT_OBJECT)
11118 sym->st_shndx = SHN_MIPS_DATA;
11119 }
11120 }
11121
861fb55a
DJ
11122 /* Emit a copy reloc, if needed. */
11123 if (h->needs_copy)
11124 {
11125 asection *s;
11126 bfd_vma symval;
11127
11128 BFD_ASSERT (h->dynindx != -1);
11129 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11130
11131 s = mips_elf_rel_dyn_section (info, FALSE);
11132 symval = (h->root.u.def.section->output_section->vma
11133 + h->root.u.def.section->output_offset
11134 + h->root.u.def.value);
11135 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11136 h->dynindx, R_MIPS_COPY, symval);
11137 }
11138
b49e97c9
TS
11139 /* Handle the IRIX6-specific symbols. */
11140 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11141 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11142
cbf8d970
MR
11143 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11144 to treat compressed symbols like any other. */
30c09090 11145 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11146 {
11147 BFD_ASSERT (sym->st_value & 1);
11148 sym->st_other -= STO_MIPS16;
11149 }
cbf8d970
MR
11150 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11151 {
11152 BFD_ASSERT (sym->st_value & 1);
11153 sym->st_other -= STO_MICROMIPS;
11154 }
b49e97c9 11155
b34976b6 11156 return TRUE;
b49e97c9
TS
11157}
11158
0a44bf69
RS
11159/* Likewise, for VxWorks. */
11160
11161bfd_boolean
11162_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11163 struct bfd_link_info *info,
11164 struct elf_link_hash_entry *h,
11165 Elf_Internal_Sym *sym)
11166{
11167 bfd *dynobj;
11168 asection *sgot;
11169 struct mips_got_info *g;
11170 struct mips_elf_link_hash_table *htab;
020d7251 11171 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11172
11173 htab = mips_elf_hash_table (info);
4dfe6ac6 11174 BFD_ASSERT (htab != NULL);
0a44bf69 11175 dynobj = elf_hash_table (info)->dynobj;
020d7251 11176 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11177
1bbce132 11178 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11179 {
6d79d2ed 11180 bfd_byte *loc;
1bbce132 11181 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11182 Elf_Internal_Rela rel;
11183 static const bfd_vma *plt_entry;
1bbce132
MR
11184 bfd_vma gotplt_index;
11185 bfd_vma plt_offset;
11186
11187 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11188 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11189
11190 BFD_ASSERT (h->dynindx != -1);
ce558b89 11191 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11192 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11193 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11194
11195 /* Calculate the address of the .plt entry. */
ce558b89
AM
11196 plt_address = (htab->root.splt->output_section->vma
11197 + htab->root.splt->output_offset
1bbce132 11198 + plt_offset);
0a44bf69
RS
11199
11200 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11201 got_address = (htab->root.sgotplt->output_section->vma
11202 + htab->root.sgotplt->output_offset
1bbce132 11203 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11204
11205 /* Calculate the offset of the .got.plt entry from
11206 _GLOBAL_OFFSET_TABLE_. */
11207 got_offset = mips_elf_gotplt_index (info, h);
11208
11209 /* Calculate the offset for the branch at the start of the PLT
11210 entry. The branch jumps to the beginning of .plt. */
1bbce132 11211 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11212
11213 /* Fill in the initial value of the .got.plt entry. */
11214 bfd_put_32 (output_bfd, plt_address,
ce558b89 11215 (htab->root.sgotplt->contents
1bbce132 11216 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11217
11218 /* Find out where the .plt entry should go. */
ce558b89 11219 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11220
0e1862bb 11221 if (bfd_link_pic (info))
0a44bf69
RS
11222 {
11223 plt_entry = mips_vxworks_shared_plt_entry;
11224 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11225 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11226 }
11227 else
11228 {
11229 bfd_vma got_address_high, got_address_low;
11230
11231 plt_entry = mips_vxworks_exec_plt_entry;
11232 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11233 got_address_low = got_address & 0xffff;
11234
11235 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11236 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11237 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11238 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11239 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11240 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11241 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11242 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243
11244 loc = (htab->srelplt2->contents
1bbce132 11245 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11246
11247 /* Emit a relocation for the .got.plt entry. */
11248 rel.r_offset = got_address;
11249 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11250 rel.r_addend = plt_offset;
0a44bf69
RS
11251 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252
11253 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11254 loc += sizeof (Elf32_External_Rela);
11255 rel.r_offset = plt_address + 8;
11256 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11257 rel.r_addend = got_offset;
11258 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259
11260 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11261 loc += sizeof (Elf32_External_Rela);
11262 rel.r_offset += 4;
11263 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11264 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11265 }
11266
11267 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11268 loc = (htab->root.srelplt->contents
1bbce132 11269 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11270 rel.r_offset = got_address;
11271 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11272 rel.r_addend = 0;
11273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274
11275 if (!h->def_regular)
11276 sym->st_shndx = SHN_UNDEF;
11277 }
11278
11279 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11280
ce558b89 11281 sgot = htab->root.sgot;
a8028dd0 11282 g = htab->got_info;
0a44bf69
RS
11283 BFD_ASSERT (g != NULL);
11284
11285 /* See if this symbol has an entry in the GOT. */
020d7251 11286 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11287 {
11288 bfd_vma offset;
11289 Elf_Internal_Rela outrel;
11290 bfd_byte *loc;
11291 asection *s;
11292
11293 /* Install the symbol value in the GOT. */
13fbec83 11294 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11295 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11296
11297 /* Add a dynamic relocation for it. */
11298 s = mips_elf_rel_dyn_section (info, FALSE);
11299 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11300 outrel.r_offset = (sgot->output_section->vma
11301 + sgot->output_offset
11302 + offset);
11303 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11304 outrel.r_addend = 0;
11305 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11306 }
11307
11308 /* Emit a copy reloc, if needed. */
11309 if (h->needs_copy)
11310 {
11311 Elf_Internal_Rela rel;
11312
11313 BFD_ASSERT (h->dynindx != -1);
11314
11315 rel.r_offset = (h->root.u.def.section->output_section->vma
11316 + h->root.u.def.section->output_offset
11317 + h->root.u.def.value);
11318 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11319 rel.r_addend = 0;
11320 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11321 htab->srelbss->contents
11322 + (htab->srelbss->reloc_count
11323 * sizeof (Elf32_External_Rela)));
11324 ++htab->srelbss->reloc_count;
11325 }
11326
df58fc94
RS
11327 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11328 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11329 sym->st_value &= ~1;
11330
11331 return TRUE;
11332}
11333
861fb55a
DJ
11334/* Write out a plt0 entry to the beginning of .plt. */
11335
1bbce132 11336static bfd_boolean
861fb55a
DJ
11337mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11338{
11339 bfd_byte *loc;
11340 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11341 static const bfd_vma *plt_entry;
11342 struct mips_elf_link_hash_table *htab;
11343
11344 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11345 BFD_ASSERT (htab != NULL);
11346
861fb55a
DJ
11347 if (ABI_64_P (output_bfd))
11348 plt_entry = mips_n64_exec_plt0_entry;
11349 else if (ABI_N32_P (output_bfd))
11350 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11351 else if (!htab->plt_header_is_comp)
861fb55a 11352 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11353 else if (htab->insn32)
11354 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11355 else
11356 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11357
11358 /* Calculate the value of .got.plt. */
ce558b89
AM
11359 gotplt_value = (htab->root.sgotplt->output_section->vma
11360 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11361 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11362 gotplt_value_low = gotplt_value & 0xffff;
11363
11364 /* The PLT sequence is not safe for N64 if .got.plt's address can
11365 not be loaded in two instructions. */
11366 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11367 || ~(gotplt_value | 0x7fffffff) == 0);
11368
11369 /* Install the PLT header. */
ce558b89 11370 loc = htab->root.splt->contents;
1bbce132
MR
11371 if (plt_entry == micromips_o32_exec_plt0_entry)
11372 {
11373 bfd_vma gotpc_offset;
11374 bfd_vma loc_address;
11375 size_t i;
11376
11377 BFD_ASSERT (gotplt_value % 4 == 0);
11378
ce558b89
AM
11379 loc_address = (htab->root.splt->output_section->vma
11380 + htab->root.splt->output_offset);
1bbce132
MR
11381 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11382
11383 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11384 if (gotpc_offset + 0x1000000 >= 0x2000000)
11385 {
4eca0228 11386 _bfd_error_handler
695344c0 11387 /* xgettext:c-format */
1bbce132
MR
11388 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11389 output_bfd,
ce558b89
AM
11390 htab->root.sgotplt->output_section,
11391 htab->root.splt->output_section,
1bbce132
MR
11392 (long) gotpc_offset);
11393 bfd_set_error (bfd_error_no_error);
11394 return FALSE;
11395 }
11396 bfd_put_16 (output_bfd,
11397 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11398 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11399 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11400 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11401 }
833794fc
MR
11402 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11403 {
11404 size_t i;
11405
11406 bfd_put_16 (output_bfd, plt_entry[0], loc);
11407 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11408 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11409 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11410 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11411 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11412 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11413 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11414 }
1bbce132
MR
11415 else
11416 {
11417 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11418 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11419 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11420 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11421 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11422 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11423 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11424 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11425 }
11426
11427 return TRUE;
861fb55a
DJ
11428}
11429
0a44bf69
RS
11430/* Install the PLT header for a VxWorks executable and finalize the
11431 contents of .rela.plt.unloaded. */
11432
11433static void
11434mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11435{
11436 Elf_Internal_Rela rela;
11437 bfd_byte *loc;
11438 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11439 static const bfd_vma *plt_entry;
11440 struct mips_elf_link_hash_table *htab;
11441
11442 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11443 BFD_ASSERT (htab != NULL);
11444
0a44bf69
RS
11445 plt_entry = mips_vxworks_exec_plt0_entry;
11446
11447 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11448 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11449 + htab->root.hgot->root.u.def.section->output_offset
11450 + htab->root.hgot->root.u.def.value);
11451
11452 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11453 got_value_low = got_value & 0xffff;
11454
11455 /* Calculate the address of the PLT header. */
ce558b89
AM
11456 plt_address = (htab->root.splt->output_section->vma
11457 + htab->root.splt->output_offset);
0a44bf69
RS
11458
11459 /* Install the PLT header. */
ce558b89 11460 loc = htab->root.splt->contents;
0a44bf69
RS
11461 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11462 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11463 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11464 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11465 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11466 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11467
11468 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11469 loc = htab->srelplt2->contents;
11470 rela.r_offset = plt_address;
11471 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11472 rela.r_addend = 0;
11473 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11474 loc += sizeof (Elf32_External_Rela);
11475
11476 /* Output the relocation for the following addiu of
11477 %lo(_GLOBAL_OFFSET_TABLE_). */
11478 rela.r_offset += 4;
11479 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11480 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11481 loc += sizeof (Elf32_External_Rela);
11482
11483 /* Fix up the remaining relocations. They may have the wrong
11484 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11485 in which symbols were output. */
11486 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11487 {
11488 Elf_Internal_Rela rel;
11489
11490 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11491 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11493 loc += sizeof (Elf32_External_Rela);
11494
11495 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11496 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11497 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11498 loc += sizeof (Elf32_External_Rela);
11499
11500 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11501 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11503 loc += sizeof (Elf32_External_Rela);
11504 }
11505}
11506
11507/* Install the PLT header for a VxWorks shared library. */
11508
11509static void
11510mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11511{
11512 unsigned int i;
11513 struct mips_elf_link_hash_table *htab;
11514
11515 htab = mips_elf_hash_table (info);
4dfe6ac6 11516 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11517
11518 /* We just need to copy the entry byte-by-byte. */
11519 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11520 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11521 htab->root.splt->contents + i * 4);
0a44bf69
RS
11522}
11523
b49e97c9
TS
11524/* Finish up the dynamic sections. */
11525
b34976b6 11526bfd_boolean
9719ad41
RS
11527_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11528 struct bfd_link_info *info)
b49e97c9
TS
11529{
11530 bfd *dynobj;
11531 asection *sdyn;
11532 asection *sgot;
f4416af6 11533 struct mips_got_info *gg, *g;
0a44bf69 11534 struct mips_elf_link_hash_table *htab;
b49e97c9 11535
0a44bf69 11536 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11537 BFD_ASSERT (htab != NULL);
11538
b49e97c9
TS
11539 dynobj = elf_hash_table (info)->dynobj;
11540
3d4d4302 11541 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11542
ce558b89 11543 sgot = htab->root.sgot;
23cc69b6 11544 gg = htab->got_info;
b49e97c9
TS
11545
11546 if (elf_hash_table (info)->dynamic_sections_created)
11547 {
11548 bfd_byte *b;
943284cc 11549 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11550
11551 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11552 BFD_ASSERT (gg != NULL);
11553
d7206569 11554 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11555 BFD_ASSERT (g != NULL);
11556
11557 for (b = sdyn->contents;
eea6121a 11558 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11559 b += MIPS_ELF_DYN_SIZE (dynobj))
11560 {
11561 Elf_Internal_Dyn dyn;
11562 const char *name;
11563 size_t elemsize;
11564 asection *s;
b34976b6 11565 bfd_boolean swap_out_p;
b49e97c9
TS
11566
11567 /* Read in the current dynamic entry. */
11568 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11569
11570 /* Assume that we're going to modify it and write it out. */
b34976b6 11571 swap_out_p = TRUE;
b49e97c9
TS
11572
11573 switch (dyn.d_tag)
11574 {
11575 case DT_RELENT:
b49e97c9
TS
11576 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11577 break;
11578
0a44bf69
RS
11579 case DT_RELAENT:
11580 BFD_ASSERT (htab->is_vxworks);
11581 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11582 break;
11583
b49e97c9
TS
11584 case DT_STRSZ:
11585 /* Rewrite DT_STRSZ. */
11586 dyn.d_un.d_val =
11587 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11588 break;
11589
11590 case DT_PLTGOT:
ce558b89 11591 s = htab->root.sgot;
861fb55a
DJ
11592 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11593 break;
11594
11595 case DT_MIPS_PLTGOT:
ce558b89 11596 s = htab->root.sgotplt;
861fb55a 11597 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11598 break;
11599
11600 case DT_MIPS_RLD_VERSION:
11601 dyn.d_un.d_val = 1; /* XXX */
11602 break;
11603
11604 case DT_MIPS_FLAGS:
11605 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11606 break;
11607
b49e97c9 11608 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11609 {
11610 time_t t;
11611 time (&t);
11612 dyn.d_un.d_val = t;
11613 }
b49e97c9
TS
11614 break;
11615
11616 case DT_MIPS_ICHECKSUM:
11617 /* XXX FIXME: */
b34976b6 11618 swap_out_p = FALSE;
b49e97c9
TS
11619 break;
11620
11621 case DT_MIPS_IVERSION:
11622 /* XXX FIXME: */
b34976b6 11623 swap_out_p = FALSE;
b49e97c9
TS
11624 break;
11625
11626 case DT_MIPS_BASE_ADDRESS:
11627 s = output_bfd->sections;
11628 BFD_ASSERT (s != NULL);
11629 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11630 break;
11631
11632 case DT_MIPS_LOCAL_GOTNO:
11633 dyn.d_un.d_val = g->local_gotno;
11634 break;
11635
11636 case DT_MIPS_UNREFEXTNO:
11637 /* The index into the dynamic symbol table which is the
11638 entry of the first external symbol that is not
11639 referenced within the same object. */
11640 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11641 break;
11642
11643 case DT_MIPS_GOTSYM:
d222d210 11644 if (htab->global_gotsym)
b49e97c9 11645 {
d222d210 11646 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11647 break;
11648 }
11649 /* In case if we don't have global got symbols we default
11650 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11651 DT_MIPS_SYMTABNO. */
11652 /* Fall through. */
b49e97c9
TS
11653
11654 case DT_MIPS_SYMTABNO:
11655 name = ".dynsym";
11656 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11657 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11658
131e2f8e
MF
11659 if (s != NULL)
11660 dyn.d_un.d_val = s->size / elemsize;
11661 else
11662 dyn.d_un.d_val = 0;
b49e97c9
TS
11663 break;
11664
11665 case DT_MIPS_HIPAGENO:
861fb55a 11666 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11667 break;
11668
11669 case DT_MIPS_RLD_MAP:
b4082c70
DD
11670 {
11671 struct elf_link_hash_entry *h;
11672 h = mips_elf_hash_table (info)->rld_symbol;
11673 if (!h)
11674 {
11675 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11676 swap_out_p = FALSE;
11677 break;
11678 }
11679 s = h->root.u.def.section;
a5499fa4
MF
11680
11681 /* The MIPS_RLD_MAP tag stores the absolute address of the
11682 debug pointer. */
b4082c70
DD
11683 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11684 + h->root.u.def.value);
11685 }
b49e97c9
TS
11686 break;
11687
a5499fa4
MF
11688 case DT_MIPS_RLD_MAP_REL:
11689 {
11690 struct elf_link_hash_entry *h;
11691 bfd_vma dt_addr, rld_addr;
11692 h = mips_elf_hash_table (info)->rld_symbol;
11693 if (!h)
11694 {
11695 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11696 swap_out_p = FALSE;
11697 break;
11698 }
11699 s = h->root.u.def.section;
11700
11701 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11702 pointer, relative to the address of the tag. */
11703 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11704 + (b - sdyn->contents));
a5499fa4
MF
11705 rld_addr = (s->output_section->vma + s->output_offset
11706 + h->root.u.def.value);
11707 dyn.d_un.d_ptr = rld_addr - dt_addr;
11708 }
11709 break;
11710
b49e97c9
TS
11711 case DT_MIPS_OPTIONS:
11712 s = (bfd_get_section_by_name
11713 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11714 dyn.d_un.d_ptr = s->vma;
11715 break;
11716
0a44bf69
RS
11717 case DT_RELASZ:
11718 BFD_ASSERT (htab->is_vxworks);
11719 /* The count does not include the JUMP_SLOT relocations. */
ce558b89
AM
11720 if (htab->root.srelplt)
11721 dyn.d_un.d_val -= htab->root.srelplt->size;
0a44bf69
RS
11722 break;
11723
11724 case DT_PLTREL:
861fb55a
DJ
11725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11726 if (htab->is_vxworks)
11727 dyn.d_un.d_val = DT_RELA;
11728 else
11729 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11730 break;
11731
11732 case DT_PLTRELSZ:
861fb55a 11733 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11734 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11735 break;
11736
11737 case DT_JMPREL:
861fb55a 11738 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11739 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11740 + htab->root.srelplt->output_offset);
0a44bf69
RS
11741 break;
11742
943284cc
DJ
11743 case DT_TEXTREL:
11744 /* If we didn't need any text relocations after all, delete
11745 the dynamic tag. */
11746 if (!(info->flags & DF_TEXTREL))
11747 {
11748 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11749 swap_out_p = FALSE;
11750 }
11751 break;
11752
11753 case DT_FLAGS:
11754 /* If we didn't need any text relocations after all, clear
11755 DF_TEXTREL from DT_FLAGS. */
11756 if (!(info->flags & DF_TEXTREL))
11757 dyn.d_un.d_val &= ~DF_TEXTREL;
11758 else
11759 swap_out_p = FALSE;
11760 break;
11761
b49e97c9 11762 default:
b34976b6 11763 swap_out_p = FALSE;
7a2b07ff
NS
11764 if (htab->is_vxworks
11765 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11766 swap_out_p = TRUE;
b49e97c9
TS
11767 break;
11768 }
11769
943284cc 11770 if (swap_out_p || dyn_skipped)
b49e97c9 11771 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11772 (dynobj, &dyn, b - dyn_skipped);
11773
11774 if (dyn_to_skip)
11775 {
11776 dyn_skipped += dyn_to_skip;
11777 dyn_to_skip = 0;
11778 }
b49e97c9 11779 }
943284cc
DJ
11780
11781 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11782 if (dyn_skipped > 0)
11783 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11784 }
11785
b55fd4d4
DJ
11786 if (sgot != NULL && sgot->size > 0
11787 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11788 {
0a44bf69
RS
11789 if (htab->is_vxworks)
11790 {
11791 /* The first entry of the global offset table points to the
11792 ".dynamic" section. The second is initialized by the
11793 loader and contains the shared library identifier.
11794 The third is also initialized by the loader and points
11795 to the lazy resolution stub. */
11796 MIPS_ELF_PUT_WORD (output_bfd,
11797 sdyn->output_offset + sdyn->output_section->vma,
11798 sgot->contents);
11799 MIPS_ELF_PUT_WORD (output_bfd, 0,
11800 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11801 MIPS_ELF_PUT_WORD (output_bfd, 0,
11802 sgot->contents
11803 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11804 }
11805 else
11806 {
11807 /* The first entry of the global offset table will be filled at
11808 runtime. The second entry will be used by some runtime loaders.
11809 This isn't the case of IRIX rld. */
11810 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11811 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11812 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11813 }
b49e97c9 11814
54938e2a
TS
11815 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11816 = MIPS_ELF_GOT_SIZE (output_bfd);
11817 }
b49e97c9 11818
f4416af6
AO
11819 /* Generate dynamic relocations for the non-primary gots. */
11820 if (gg != NULL && gg->next)
11821 {
11822 Elf_Internal_Rela rel[3];
11823 bfd_vma addend = 0;
11824
11825 memset (rel, 0, sizeof (rel));
11826 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11827
11828 for (g = gg->next; g->next != gg; g = g->next)
11829 {
91d6fa6a 11830 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11831 + g->next->tls_gotno;
f4416af6 11832
9719ad41 11833 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11834 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11835 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11836 sgot->contents
91d6fa6a 11837 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11838
0e1862bb 11839 if (! bfd_link_pic (info))
f4416af6
AO
11840 continue;
11841
cb22ccf4 11842 for (; got_index < g->local_gotno; got_index++)
f4416af6 11843 {
cb22ccf4
KCY
11844 if (got_index >= g->assigned_low_gotno
11845 && got_index <= g->assigned_high_gotno)
11846 continue;
11847
f4416af6 11848 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11849 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11850 if (!(mips_elf_create_dynamic_relocation
11851 (output_bfd, info, rel, NULL,
11852 bfd_abs_section_ptr,
11853 0, &addend, sgot)))
11854 return FALSE;
11855 BFD_ASSERT (addend == 0);
11856 }
11857 }
11858 }
11859
3133ddbf
DJ
11860 /* The generation of dynamic relocations for the non-primary gots
11861 adds more dynamic relocations. We cannot count them until
11862 here. */
11863
11864 if (elf_hash_table (info)->dynamic_sections_created)
11865 {
11866 bfd_byte *b;
11867 bfd_boolean swap_out_p;
11868
11869 BFD_ASSERT (sdyn != NULL);
11870
11871 for (b = sdyn->contents;
11872 b < sdyn->contents + sdyn->size;
11873 b += MIPS_ELF_DYN_SIZE (dynobj))
11874 {
11875 Elf_Internal_Dyn dyn;
11876 asection *s;
11877
11878 /* Read in the current dynamic entry. */
11879 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11880
11881 /* Assume that we're going to modify it and write it out. */
11882 swap_out_p = TRUE;
11883
11884 switch (dyn.d_tag)
11885 {
11886 case DT_RELSZ:
11887 /* Reduce DT_RELSZ to account for any relocations we
11888 decided not to make. This is for the n64 irix rld,
11889 which doesn't seem to apply any relocations if there
11890 are trailing null entries. */
0a44bf69 11891 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11892 dyn.d_un.d_val = (s->reloc_count
11893 * (ABI_64_P (output_bfd)
11894 ? sizeof (Elf64_Mips_External_Rel)
11895 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11896 /* Adjust the section size too. Tools like the prelinker
11897 can reasonably expect the values to the same. */
11898 elf_section_data (s->output_section)->this_hdr.sh_size
11899 = dyn.d_un.d_val;
3133ddbf
DJ
11900 break;
11901
11902 default:
11903 swap_out_p = FALSE;
11904 break;
11905 }
11906
11907 if (swap_out_p)
11908 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11909 (dynobj, &dyn, b);
11910 }
11911 }
11912
b49e97c9 11913 {
b49e97c9
TS
11914 asection *s;
11915 Elf32_compact_rel cpt;
11916
b49e97c9
TS
11917 if (SGI_COMPAT (output_bfd))
11918 {
11919 /* Write .compact_rel section out. */
3d4d4302 11920 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11921 if (s != NULL)
11922 {
11923 cpt.id1 = 1;
11924 cpt.num = s->reloc_count;
11925 cpt.id2 = 2;
11926 cpt.offset = (s->output_section->filepos
11927 + sizeof (Elf32_External_compact_rel));
11928 cpt.reserved0 = 0;
11929 cpt.reserved1 = 0;
11930 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11931 ((Elf32_External_compact_rel *)
11932 s->contents));
11933
11934 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11935 if (htab->sstubs != NULL)
b49e97c9
TS
11936 {
11937 file_ptr dummy_offset;
11938
4e41d0d7
RS
11939 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11940 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11941 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11942 htab->function_stub_size);
b49e97c9
TS
11943 }
11944 }
11945 }
11946
0a44bf69
RS
11947 /* The psABI says that the dynamic relocations must be sorted in
11948 increasing order of r_symndx. The VxWorks EABI doesn't require
11949 this, and because the code below handles REL rather than RELA
11950 relocations, using it for VxWorks would be outright harmful. */
11951 if (!htab->is_vxworks)
b49e97c9 11952 {
0a44bf69
RS
11953 s = mips_elf_rel_dyn_section (info, FALSE);
11954 if (s != NULL
11955 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11956 {
11957 reldyn_sorting_bfd = output_bfd;
b49e97c9 11958
0a44bf69
RS
11959 if (ABI_64_P (output_bfd))
11960 qsort ((Elf64_External_Rel *) s->contents + 1,
11961 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11962 sort_dynamic_relocs_64);
11963 else
11964 qsort ((Elf32_External_Rel *) s->contents + 1,
11965 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11966 sort_dynamic_relocs);
11967 }
b49e97c9 11968 }
b49e97c9
TS
11969 }
11970
ce558b89 11971 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11972 {
861fb55a
DJ
11973 if (htab->is_vxworks)
11974 {
0e1862bb 11975 if (bfd_link_pic (info))
861fb55a
DJ
11976 mips_vxworks_finish_shared_plt (output_bfd, info);
11977 else
11978 mips_vxworks_finish_exec_plt (output_bfd, info);
11979 }
0a44bf69 11980 else
861fb55a 11981 {
0e1862bb 11982 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11983 if (!mips_finish_exec_plt (output_bfd, info))
11984 return FALSE;
861fb55a 11985 }
0a44bf69 11986 }
b34976b6 11987 return TRUE;
b49e97c9
TS
11988}
11989
b49e97c9 11990
64543e1a
RS
11991/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11992
11993static void
9719ad41 11994mips_set_isa_flags (bfd *abfd)
b49e97c9 11995{
64543e1a 11996 flagword val;
b49e97c9
TS
11997
11998 switch (bfd_get_mach (abfd))
11999 {
12000 default:
12001 case bfd_mach_mips3000:
12002 val = E_MIPS_ARCH_1;
12003 break;
12004
12005 case bfd_mach_mips3900:
12006 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12007 break;
12008
12009 case bfd_mach_mips6000:
12010 val = E_MIPS_ARCH_2;
12011 break;
12012
12013 case bfd_mach_mips4000:
12014 case bfd_mach_mips4300:
12015 case bfd_mach_mips4400:
12016 case bfd_mach_mips4600:
12017 val = E_MIPS_ARCH_3;
12018 break;
12019
12020 case bfd_mach_mips4010:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12022 break;
12023
12024 case bfd_mach_mips4100:
12025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12026 break;
12027
12028 case bfd_mach_mips4111:
12029 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12030 break;
12031
00707a0e
RS
12032 case bfd_mach_mips4120:
12033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12034 break;
12035
b49e97c9
TS
12036 case bfd_mach_mips4650:
12037 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12038 break;
12039
00707a0e
RS
12040 case bfd_mach_mips5400:
12041 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12042 break;
12043
12044 case bfd_mach_mips5500:
12045 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12046 break;
12047
e407c74b
NC
12048 case bfd_mach_mips5900:
12049 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12050 break;
12051
0d2e43ed
ILT
12052 case bfd_mach_mips9000:
12053 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12054 break;
12055
b49e97c9 12056 case bfd_mach_mips5000:
5a7ea749 12057 case bfd_mach_mips7000:
b49e97c9
TS
12058 case bfd_mach_mips8000:
12059 case bfd_mach_mips10000:
12060 case bfd_mach_mips12000:
3aa3176b
TS
12061 case bfd_mach_mips14000:
12062 case bfd_mach_mips16000:
b49e97c9
TS
12063 val = E_MIPS_ARCH_4;
12064 break;
12065
12066 case bfd_mach_mips5:
12067 val = E_MIPS_ARCH_5;
12068 break;
12069
350cc38d
MS
12070 case bfd_mach_mips_loongson_2e:
12071 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12072 break;
12073
12074 case bfd_mach_mips_loongson_2f:
12075 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12076 break;
12077
b49e97c9
TS
12078 case bfd_mach_mips_sb1:
12079 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12080 break;
12081
d051516a 12082 case bfd_mach_mips_loongson_3a:
4ba154f5 12083 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
12084 break;
12085
6f179bd0 12086 case bfd_mach_mips_octeon:
dd6a37e7 12087 case bfd_mach_mips_octeonp:
6f179bd0
AN
12088 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12089 break;
12090
2c629856
N
12091 case bfd_mach_mips_octeon3:
12092 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12093 break;
12094
52b6b6b9
JM
12095 case bfd_mach_mips_xlr:
12096 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12097 break;
12098
432233b3
AP
12099 case bfd_mach_mips_octeon2:
12100 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12101 break;
12102
b49e97c9
TS
12103 case bfd_mach_mipsisa32:
12104 val = E_MIPS_ARCH_32;
12105 break;
12106
12107 case bfd_mach_mipsisa64:
12108 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12109 break;
12110
12111 case bfd_mach_mipsisa32r2:
ae52f483
AB
12112 case bfd_mach_mipsisa32r3:
12113 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12114 val = E_MIPS_ARCH_32R2;
12115 break;
5f74bc13
CD
12116
12117 case bfd_mach_mipsisa64r2:
ae52f483
AB
12118 case bfd_mach_mipsisa64r3:
12119 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12120 val = E_MIPS_ARCH_64R2;
12121 break;
7361da2c
AB
12122
12123 case bfd_mach_mipsisa32r6:
12124 val = E_MIPS_ARCH_32R6;
12125 break;
12126
12127 case bfd_mach_mipsisa64r6:
12128 val = E_MIPS_ARCH_64R6;
12129 break;
b49e97c9 12130 }
b49e97c9
TS
12131 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12132 elf_elfheader (abfd)->e_flags |= val;
12133
64543e1a
RS
12134}
12135
12136
28dbcedc
AM
12137/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12138 Don't do so for code sections. We want to keep ordering of HI16/LO16
12139 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12140 relocs to be sorted. */
12141
12142bfd_boolean
12143_bfd_mips_elf_sort_relocs_p (asection *sec)
12144{
12145 return (sec->flags & SEC_CODE) == 0;
12146}
12147
12148
64543e1a
RS
12149/* The final processing done just before writing out a MIPS ELF object
12150 file. This gets the MIPS architecture right based on the machine
12151 number. This is used by both the 32-bit and the 64-bit ABI. */
12152
12153void
9719ad41
RS
12154_bfd_mips_elf_final_write_processing (bfd *abfd,
12155 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12156{
12157 unsigned int i;
12158 Elf_Internal_Shdr **hdrpp;
12159 const char *name;
12160 asection *sec;
12161
12162 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12163 is nonzero. This is for compatibility with old objects, which used
12164 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12165 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12166 mips_set_isa_flags (abfd);
12167
b49e97c9
TS
12168 /* Set the sh_info field for .gptab sections and other appropriate
12169 info for each special section. */
12170 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12171 i < elf_numsections (abfd);
12172 i++, hdrpp++)
12173 {
12174 switch ((*hdrpp)->sh_type)
12175 {
12176 case SHT_MIPS_MSYM:
12177 case SHT_MIPS_LIBLIST:
12178 sec = bfd_get_section_by_name (abfd, ".dynstr");
12179 if (sec != NULL)
12180 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12181 break;
12182
12183 case SHT_MIPS_GPTAB:
12184 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12185 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12186 BFD_ASSERT (name != NULL
0112cd26 12187 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12188 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12189 BFD_ASSERT (sec != NULL);
12190 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12191 break;
12192
12193 case SHT_MIPS_CONTENT:
12194 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12195 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12196 BFD_ASSERT (name != NULL
0112cd26 12197 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12198 sec = bfd_get_section_by_name (abfd,
12199 name + sizeof ".MIPS.content" - 1);
12200 BFD_ASSERT (sec != NULL);
12201 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12202 break;
12203
12204 case SHT_MIPS_SYMBOL_LIB:
12205 sec = bfd_get_section_by_name (abfd, ".dynsym");
12206 if (sec != NULL)
12207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12208 sec = bfd_get_section_by_name (abfd, ".liblist");
12209 if (sec != NULL)
12210 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12211 break;
12212
12213 case SHT_MIPS_EVENTS:
12214 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12215 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12216 BFD_ASSERT (name != NULL);
0112cd26 12217 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12218 sec = bfd_get_section_by_name (abfd,
12219 name + sizeof ".MIPS.events" - 1);
12220 else
12221 {
0112cd26 12222 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12223 sec = bfd_get_section_by_name (abfd,
12224 (name
12225 + sizeof ".MIPS.post_rel" - 1));
12226 }
12227 BFD_ASSERT (sec != NULL);
12228 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12229 break;
12230
12231 }
12232 }
12233}
12234\f
8dc1a139 12235/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12236 segments. */
12237
12238int
a6b96beb
AM
12239_bfd_mips_elf_additional_program_headers (bfd *abfd,
12240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12241{
12242 asection *s;
12243 int ret = 0;
12244
12245 /* See if we need a PT_MIPS_REGINFO segment. */
12246 s = bfd_get_section_by_name (abfd, ".reginfo");
12247 if (s && (s->flags & SEC_LOAD))
12248 ++ret;
12249
351cdf24
MF
12250 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12251 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12252 ++ret;
12253
b49e97c9
TS
12254 /* See if we need a PT_MIPS_OPTIONS segment. */
12255 if (IRIX_COMPAT (abfd) == ict_irix6
12256 && bfd_get_section_by_name (abfd,
12257 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12258 ++ret;
12259
12260 /* See if we need a PT_MIPS_RTPROC segment. */
12261 if (IRIX_COMPAT (abfd) == ict_irix5
12262 && bfd_get_section_by_name (abfd, ".dynamic")
12263 && bfd_get_section_by_name (abfd, ".mdebug"))
12264 ++ret;
12265
98c904a8
RS
12266 /* Allocate a PT_NULL header in dynamic objects. See
12267 _bfd_mips_elf_modify_segment_map for details. */
12268 if (!SGI_COMPAT (abfd)
12269 && bfd_get_section_by_name (abfd, ".dynamic"))
12270 ++ret;
12271
b49e97c9
TS
12272 return ret;
12273}
12274
8dc1a139 12275/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12276
b34976b6 12277bfd_boolean
9719ad41 12278_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12279 struct bfd_link_info *info)
b49e97c9
TS
12280{
12281 asection *s;
12282 struct elf_segment_map *m, **pm;
12283 bfd_size_type amt;
12284
12285 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12286 segment. */
12287 s = bfd_get_section_by_name (abfd, ".reginfo");
12288 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12289 {
12bd6957 12290 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12291 if (m->p_type == PT_MIPS_REGINFO)
12292 break;
12293 if (m == NULL)
12294 {
12295 amt = sizeof *m;
9719ad41 12296 m = bfd_zalloc (abfd, amt);
b49e97c9 12297 if (m == NULL)
b34976b6 12298 return FALSE;
b49e97c9
TS
12299
12300 m->p_type = PT_MIPS_REGINFO;
12301 m->count = 1;
12302 m->sections[0] = s;
12303
12304 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12305 pm = &elf_seg_map (abfd);
b49e97c9
TS
12306 while (*pm != NULL
12307 && ((*pm)->p_type == PT_PHDR
12308 || (*pm)->p_type == PT_INTERP))
12309 pm = &(*pm)->next;
12310
12311 m->next = *pm;
12312 *pm = m;
12313 }
12314 }
12315
351cdf24
MF
12316 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12317 segment. */
12318 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12319 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12320 {
12321 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12322 if (m->p_type == PT_MIPS_ABIFLAGS)
12323 break;
12324 if (m == NULL)
12325 {
12326 amt = sizeof *m;
12327 m = bfd_zalloc (abfd, amt);
12328 if (m == NULL)
12329 return FALSE;
12330
12331 m->p_type = PT_MIPS_ABIFLAGS;
12332 m->count = 1;
12333 m->sections[0] = s;
12334
12335 /* We want to put it after the PHDR and INTERP segments. */
12336 pm = &elf_seg_map (abfd);
12337 while (*pm != NULL
12338 && ((*pm)->p_type == PT_PHDR
12339 || (*pm)->p_type == PT_INTERP))
12340 pm = &(*pm)->next;
12341
12342 m->next = *pm;
12343 *pm = m;
12344 }
12345 }
12346
b49e97c9
TS
12347 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12348 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12349 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12350 table. */
c1fd6598
AO
12351 if (NEWABI_P (abfd)
12352 /* On non-IRIX6 new abi, we'll have already created a segment
12353 for this section, so don't create another. I'm not sure this
12354 is not also the case for IRIX 6, but I can't test it right
12355 now. */
12356 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12357 {
12358 for (s = abfd->sections; s; s = s->next)
12359 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12360 break;
12361
12362 if (s)
12363 {
12364 struct elf_segment_map *options_segment;
12365
12bd6957 12366 pm = &elf_seg_map (abfd);
98a8deaf
RS
12367 while (*pm != NULL
12368 && ((*pm)->p_type == PT_PHDR
12369 || (*pm)->p_type == PT_INTERP))
12370 pm = &(*pm)->next;
b49e97c9 12371
8ded5a0f
AM
12372 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12373 {
12374 amt = sizeof (struct elf_segment_map);
12375 options_segment = bfd_zalloc (abfd, amt);
12376 options_segment->next = *pm;
12377 options_segment->p_type = PT_MIPS_OPTIONS;
12378 options_segment->p_flags = PF_R;
12379 options_segment->p_flags_valid = TRUE;
12380 options_segment->count = 1;
12381 options_segment->sections[0] = s;
12382 *pm = options_segment;
12383 }
b49e97c9
TS
12384 }
12385 }
12386 else
12387 {
12388 if (IRIX_COMPAT (abfd) == ict_irix5)
12389 {
12390 /* If there are .dynamic and .mdebug sections, we make a room
12391 for the RTPROC header. FIXME: Rewrite without section names. */
12392 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12393 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12394 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12395 {
12bd6957 12396 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12397 if (m->p_type == PT_MIPS_RTPROC)
12398 break;
12399 if (m == NULL)
12400 {
12401 amt = sizeof *m;
9719ad41 12402 m = bfd_zalloc (abfd, amt);
b49e97c9 12403 if (m == NULL)
b34976b6 12404 return FALSE;
b49e97c9
TS
12405
12406 m->p_type = PT_MIPS_RTPROC;
12407
12408 s = bfd_get_section_by_name (abfd, ".rtproc");
12409 if (s == NULL)
12410 {
12411 m->count = 0;
12412 m->p_flags = 0;
12413 m->p_flags_valid = 1;
12414 }
12415 else
12416 {
12417 m->count = 1;
12418 m->sections[0] = s;
12419 }
12420
12421 /* We want to put it after the DYNAMIC segment. */
12bd6957 12422 pm = &elf_seg_map (abfd);
b49e97c9
TS
12423 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12424 pm = &(*pm)->next;
12425 if (*pm != NULL)
12426 pm = &(*pm)->next;
12427
12428 m->next = *pm;
12429 *pm = m;
12430 }
12431 }
12432 }
8dc1a139 12433 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12434 .dynstr, .dynsym, and .hash sections, and everything in
12435 between. */
12bd6957 12436 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12437 pm = &(*pm)->next)
12438 if ((*pm)->p_type == PT_DYNAMIC)
12439 break;
12440 m = *pm;
f6f62d6f
RS
12441 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12442 glibc's dynamic linker has traditionally derived the number of
12443 tags from the p_filesz field, and sometimes allocates stack
12444 arrays of that size. An overly-big PT_DYNAMIC segment can
12445 be actively harmful in such cases. Making PT_DYNAMIC contain
12446 other sections can also make life hard for the prelinker,
12447 which might move one of the other sections to a different
12448 PT_LOAD segment. */
12449 if (SGI_COMPAT (abfd)
12450 && m != NULL
12451 && m->count == 1
12452 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12453 {
12454 static const char *sec_names[] =
12455 {
12456 ".dynamic", ".dynstr", ".dynsym", ".hash"
12457 };
12458 bfd_vma low, high;
12459 unsigned int i, c;
12460 struct elf_segment_map *n;
12461
792b4a53 12462 low = ~(bfd_vma) 0;
b49e97c9
TS
12463 high = 0;
12464 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12465 {
12466 s = bfd_get_section_by_name (abfd, sec_names[i]);
12467 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12468 {
12469 bfd_size_type sz;
12470
12471 if (low > s->vma)
12472 low = s->vma;
eea6121a 12473 sz = s->size;
b49e97c9
TS
12474 if (high < s->vma + sz)
12475 high = s->vma + sz;
12476 }
12477 }
12478
12479 c = 0;
12480 for (s = abfd->sections; s != NULL; s = s->next)
12481 if ((s->flags & SEC_LOAD) != 0
12482 && s->vma >= low
eea6121a 12483 && s->vma + s->size <= high)
b49e97c9
TS
12484 ++c;
12485
12486 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12487 n = bfd_zalloc (abfd, amt);
b49e97c9 12488 if (n == NULL)
b34976b6 12489 return FALSE;
b49e97c9
TS
12490 *n = *m;
12491 n->count = c;
12492
12493 i = 0;
12494 for (s = abfd->sections; s != NULL; s = s->next)
12495 {
12496 if ((s->flags & SEC_LOAD) != 0
12497 && s->vma >= low
eea6121a 12498 && s->vma + s->size <= high)
b49e97c9
TS
12499 {
12500 n->sections[i] = s;
12501 ++i;
12502 }
12503 }
12504
12505 *pm = n;
12506 }
12507 }
12508
98c904a8
RS
12509 /* Allocate a spare program header in dynamic objects so that tools
12510 like the prelinker can add an extra PT_LOAD entry.
12511
12512 If the prelinker needs to make room for a new PT_LOAD entry, its
12513 standard procedure is to move the first (read-only) sections into
12514 the new (writable) segment. However, the MIPS ABI requires
12515 .dynamic to be in a read-only segment, and the section will often
12516 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12517
12518 Although the prelinker could in principle move .dynamic to a
12519 writable segment, it seems better to allocate a spare program
12520 header instead, and avoid the need to move any sections.
12521 There is a long tradition of allocating spare dynamic tags,
12522 so allocating a spare program header seems like a natural
7c8b76cc
JM
12523 extension.
12524
12525 If INFO is NULL, we may be copying an already prelinked binary
12526 with objcopy or strip, so do not add this header. */
12527 if (info != NULL
12528 && !SGI_COMPAT (abfd)
98c904a8
RS
12529 && bfd_get_section_by_name (abfd, ".dynamic"))
12530 {
12bd6957 12531 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12532 if ((*pm)->p_type == PT_NULL)
12533 break;
12534 if (*pm == NULL)
12535 {
12536 m = bfd_zalloc (abfd, sizeof (*m));
12537 if (m == NULL)
12538 return FALSE;
12539
12540 m->p_type = PT_NULL;
12541 *pm = m;
12542 }
12543 }
12544
b34976b6 12545 return TRUE;
b49e97c9
TS
12546}
12547\f
12548/* Return the section that should be marked against GC for a given
12549 relocation. */
12550
12551asection *
9719ad41 12552_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12553 struct bfd_link_info *info,
9719ad41
RS
12554 Elf_Internal_Rela *rel,
12555 struct elf_link_hash_entry *h,
12556 Elf_Internal_Sym *sym)
b49e97c9
TS
12557{
12558 /* ??? Do mips16 stub sections need to be handled special? */
12559
12560 if (h != NULL)
07adf181
AM
12561 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12562 {
12563 case R_MIPS_GNU_VTINHERIT:
12564 case R_MIPS_GNU_VTENTRY:
12565 return NULL;
12566 }
b49e97c9 12567
07adf181 12568 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12569}
12570
12571/* Update the got entry reference counts for the section being removed. */
12572
b34976b6 12573bfd_boolean
9719ad41
RS
12574_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12575 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12576 asection *sec ATTRIBUTE_UNUSED,
12577 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12578{
12579#if 0
12580 Elf_Internal_Shdr *symtab_hdr;
12581 struct elf_link_hash_entry **sym_hashes;
12582 bfd_signed_vma *local_got_refcounts;
12583 const Elf_Internal_Rela *rel, *relend;
12584 unsigned long r_symndx;
12585 struct elf_link_hash_entry *h;
12586
0e1862bb 12587 if (bfd_link_relocatable (info))
7dda2462
TG
12588 return TRUE;
12589
b49e97c9
TS
12590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12591 sym_hashes = elf_sym_hashes (abfd);
12592 local_got_refcounts = elf_local_got_refcounts (abfd);
12593
12594 relend = relocs + sec->reloc_count;
12595 for (rel = relocs; rel < relend; rel++)
12596 switch (ELF_R_TYPE (abfd, rel->r_info))
12597 {
738e5348
RS
12598 case R_MIPS16_GOT16:
12599 case R_MIPS16_CALL16:
b49e97c9
TS
12600 case R_MIPS_GOT16:
12601 case R_MIPS_CALL16:
12602 case R_MIPS_CALL_HI16:
12603 case R_MIPS_CALL_LO16:
12604 case R_MIPS_GOT_HI16:
12605 case R_MIPS_GOT_LO16:
4a14403c
TS
12606 case R_MIPS_GOT_DISP:
12607 case R_MIPS_GOT_PAGE:
12608 case R_MIPS_GOT_OFST:
df58fc94
RS
12609 case R_MICROMIPS_GOT16:
12610 case R_MICROMIPS_CALL16:
12611 case R_MICROMIPS_CALL_HI16:
12612 case R_MICROMIPS_CALL_LO16:
12613 case R_MICROMIPS_GOT_HI16:
12614 case R_MICROMIPS_GOT_LO16:
12615 case R_MICROMIPS_GOT_DISP:
12616 case R_MICROMIPS_GOT_PAGE:
12617 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12618 /* ??? It would seem that the existing MIPS code does no sort
12619 of reference counting or whatnot on its GOT and PLT entries,
12620 so it is not possible to garbage collect them at this time. */
12621 break;
12622
12623 default:
12624 break;
12625 }
12626#endif
12627
b34976b6 12628 return TRUE;
b49e97c9 12629}
351cdf24
MF
12630
12631/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12632
12633bfd_boolean
12634_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12635 elf_gc_mark_hook_fn gc_mark_hook)
12636{
12637 bfd *sub;
12638
12639 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12640
12641 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12642 {
12643 asection *o;
12644
12645 if (! is_mips_elf (sub))
12646 continue;
12647
12648 for (o = sub->sections; o != NULL; o = o->next)
12649 if (!o->gc_mark
12650 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12651 (bfd_get_section_name (sub, o)))
12652 {
12653 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12654 return FALSE;
12655 }
12656 }
12657
12658 return TRUE;
12659}
b49e97c9
TS
12660\f
12661/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12662 hiding the old indirect symbol. Process additional relocation
12663 information. Also called for weakdefs, in which case we just let
12664 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12665
12666void
fcfa13d2 12667_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12668 struct elf_link_hash_entry *dir,
12669 struct elf_link_hash_entry *ind)
b49e97c9
TS
12670{
12671 struct mips_elf_link_hash_entry *dirmips, *indmips;
12672
fcfa13d2 12673 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12674
861fb55a
DJ
12675 dirmips = (struct mips_elf_link_hash_entry *) dir;
12676 indmips = (struct mips_elf_link_hash_entry *) ind;
12677 /* Any absolute non-dynamic relocations against an indirect or weak
12678 definition will be against the target symbol. */
12679 if (indmips->has_static_relocs)
12680 dirmips->has_static_relocs = TRUE;
12681
b49e97c9
TS
12682 if (ind->root.type != bfd_link_hash_indirect)
12683 return;
12684
b49e97c9
TS
12685 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12686 if (indmips->readonly_reloc)
b34976b6 12687 dirmips->readonly_reloc = TRUE;
b49e97c9 12688 if (indmips->no_fn_stub)
b34976b6 12689 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12690 if (indmips->fn_stub)
12691 {
12692 dirmips->fn_stub = indmips->fn_stub;
12693 indmips->fn_stub = NULL;
12694 }
12695 if (indmips->need_fn_stub)
12696 {
12697 dirmips->need_fn_stub = TRUE;
12698 indmips->need_fn_stub = FALSE;
12699 }
12700 if (indmips->call_stub)
12701 {
12702 dirmips->call_stub = indmips->call_stub;
12703 indmips->call_stub = NULL;
12704 }
12705 if (indmips->call_fp_stub)
12706 {
12707 dirmips->call_fp_stub = indmips->call_fp_stub;
12708 indmips->call_fp_stub = NULL;
12709 }
634835ae
RS
12710 if (indmips->global_got_area < dirmips->global_got_area)
12711 dirmips->global_got_area = indmips->global_got_area;
12712 if (indmips->global_got_area < GGA_NONE)
12713 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12714 if (indmips->has_nonpic_branches)
12715 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12716}
b49e97c9 12717\f
d01414a5
TS
12718#define PDR_SIZE 32
12719
b34976b6 12720bfd_boolean
9719ad41
RS
12721_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12722 struct bfd_link_info *info)
d01414a5
TS
12723{
12724 asection *o;
b34976b6 12725 bfd_boolean ret = FALSE;
d01414a5
TS
12726 unsigned char *tdata;
12727 size_t i, skip;
12728
12729 o = bfd_get_section_by_name (abfd, ".pdr");
12730 if (! o)
b34976b6 12731 return FALSE;
eea6121a 12732 if (o->size == 0)
b34976b6 12733 return FALSE;
eea6121a 12734 if (o->size % PDR_SIZE != 0)
b34976b6 12735 return FALSE;
d01414a5
TS
12736 if (o->output_section != NULL
12737 && bfd_is_abs_section (o->output_section))
b34976b6 12738 return FALSE;
d01414a5 12739
eea6121a 12740 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12741 if (! tdata)
b34976b6 12742 return FALSE;
d01414a5 12743
9719ad41 12744 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12745 info->keep_memory);
d01414a5
TS
12746 if (!cookie->rels)
12747 {
12748 free (tdata);
b34976b6 12749 return FALSE;
d01414a5
TS
12750 }
12751
12752 cookie->rel = cookie->rels;
12753 cookie->relend = cookie->rels + o->reloc_count;
12754
eea6121a 12755 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12756 {
c152c796 12757 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12758 {
12759 tdata[i] = 1;
12760 skip ++;
12761 }
12762 }
12763
12764 if (skip != 0)
12765 {
f0abc2a1 12766 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12767 if (o->rawsize == 0)
12768 o->rawsize = o->size;
eea6121a 12769 o->size -= skip * PDR_SIZE;
b34976b6 12770 ret = TRUE;
d01414a5
TS
12771 }
12772 else
12773 free (tdata);
12774
12775 if (! info->keep_memory)
12776 free (cookie->rels);
12777
12778 return ret;
12779}
12780
b34976b6 12781bfd_boolean
9719ad41 12782_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12783{
12784 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12785 return TRUE;
12786 return FALSE;
53bfd6b4 12787}
d01414a5 12788
b34976b6 12789bfd_boolean
c7b8f16e
JB
12790_bfd_mips_elf_write_section (bfd *output_bfd,
12791 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12792 asection *sec, bfd_byte *contents)
d01414a5
TS
12793{
12794 bfd_byte *to, *from, *end;
12795 int i;
12796
12797 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12798 return FALSE;
d01414a5 12799
f0abc2a1 12800 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12801 return FALSE;
d01414a5
TS
12802
12803 to = contents;
eea6121a 12804 end = contents + sec->size;
d01414a5
TS
12805 for (from = contents, i = 0;
12806 from < end;
12807 from += PDR_SIZE, i++)
12808 {
f0abc2a1 12809 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12810 continue;
12811 if (to != from)
12812 memcpy (to, from, PDR_SIZE);
12813 to += PDR_SIZE;
12814 }
12815 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12816 sec->output_offset, sec->size);
b34976b6 12817 return TRUE;
d01414a5 12818}
53bfd6b4 12819\f
df58fc94
RS
12820/* microMIPS code retains local labels for linker relaxation. Omit them
12821 from output by default for clarity. */
12822
12823bfd_boolean
12824_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12825{
12826 return _bfd_elf_is_local_label_name (abfd, sym->name);
12827}
12828
b49e97c9
TS
12829/* MIPS ELF uses a special find_nearest_line routine in order the
12830 handle the ECOFF debugging information. */
12831
12832struct mips_elf_find_line
12833{
12834 struct ecoff_debug_info d;
12835 struct ecoff_find_line i;
12836};
12837
b34976b6 12838bfd_boolean
fb167eb2
AM
12839_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12840 asection *section, bfd_vma offset,
9719ad41
RS
12841 const char **filename_ptr,
12842 const char **functionname_ptr,
fb167eb2
AM
12843 unsigned int *line_ptr,
12844 unsigned int *discriminator_ptr)
b49e97c9
TS
12845{
12846 asection *msec;
12847
fb167eb2 12848 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12849 filename_ptr, functionname_ptr,
fb167eb2
AM
12850 line_ptr, discriminator_ptr,
12851 dwarf_debug_sections,
12852 ABI_64_P (abfd) ? 8 : 0,
12853 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12854 return TRUE;
b49e97c9 12855
fb167eb2 12856 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12857 filename_ptr, functionname_ptr,
fb167eb2 12858 line_ptr))
b34976b6 12859 return TRUE;
b49e97c9
TS
12860
12861 msec = bfd_get_section_by_name (abfd, ".mdebug");
12862 if (msec != NULL)
12863 {
12864 flagword origflags;
12865 struct mips_elf_find_line *fi;
12866 const struct ecoff_debug_swap * const swap =
12867 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12868
12869 /* If we are called during a link, mips_elf_final_link may have
12870 cleared the SEC_HAS_CONTENTS field. We force it back on here
12871 if appropriate (which it normally will be). */
12872 origflags = msec->flags;
12873 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12874 msec->flags |= SEC_HAS_CONTENTS;
12875
698600e4 12876 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12877 if (fi == NULL)
12878 {
12879 bfd_size_type external_fdr_size;
12880 char *fraw_src;
12881 char *fraw_end;
12882 struct fdr *fdr_ptr;
12883 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12884
9719ad41 12885 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12886 if (fi == NULL)
12887 {
12888 msec->flags = origflags;
b34976b6 12889 return FALSE;
b49e97c9
TS
12890 }
12891
12892 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12893 {
12894 msec->flags = origflags;
b34976b6 12895 return FALSE;
b49e97c9
TS
12896 }
12897
12898 /* Swap in the FDR information. */
12899 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12900 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12901 if (fi->d.fdr == NULL)
12902 {
12903 msec->flags = origflags;
b34976b6 12904 return FALSE;
b49e97c9
TS
12905 }
12906 external_fdr_size = swap->external_fdr_size;
12907 fdr_ptr = fi->d.fdr;
12908 fraw_src = (char *) fi->d.external_fdr;
12909 fraw_end = (fraw_src
12910 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12911 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12912 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12913
698600e4 12914 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12915
12916 /* Note that we don't bother to ever free this information.
12917 find_nearest_line is either called all the time, as in
12918 objdump -l, so the information should be saved, or it is
12919 rarely called, as in ld error messages, so the memory
12920 wasted is unimportant. Still, it would probably be a
12921 good idea for free_cached_info to throw it away. */
12922 }
12923
12924 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12925 &fi->i, filename_ptr, functionname_ptr,
12926 line_ptr))
12927 {
12928 msec->flags = origflags;
b34976b6 12929 return TRUE;
b49e97c9
TS
12930 }
12931
12932 msec->flags = origflags;
12933 }
12934
12935 /* Fall back on the generic ELF find_nearest_line routine. */
12936
fb167eb2 12937 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12938 filename_ptr, functionname_ptr,
fb167eb2 12939 line_ptr, discriminator_ptr);
b49e97c9 12940}
4ab527b0
FF
12941
12942bfd_boolean
12943_bfd_mips_elf_find_inliner_info (bfd *abfd,
12944 const char **filename_ptr,
12945 const char **functionname_ptr,
12946 unsigned int *line_ptr)
12947{
12948 bfd_boolean found;
12949 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12950 functionname_ptr, line_ptr,
12951 & elf_tdata (abfd)->dwarf2_find_line_info);
12952 return found;
12953}
12954
b49e97c9
TS
12955\f
12956/* When are writing out the .options or .MIPS.options section,
12957 remember the bytes we are writing out, so that we can install the
12958 GP value in the section_processing routine. */
12959
b34976b6 12960bfd_boolean
9719ad41
RS
12961_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12962 const void *location,
12963 file_ptr offset, bfd_size_type count)
b49e97c9 12964{
cc2e31b9 12965 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12966 {
12967 bfd_byte *c;
12968
12969 if (elf_section_data (section) == NULL)
12970 {
12971 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12972 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12973 if (elf_section_data (section) == NULL)
b34976b6 12974 return FALSE;
b49e97c9 12975 }
f0abc2a1 12976 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12977 if (c == NULL)
12978 {
eea6121a 12979 c = bfd_zalloc (abfd, section->size);
b49e97c9 12980 if (c == NULL)
b34976b6 12981 return FALSE;
f0abc2a1 12982 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12983 }
12984
9719ad41 12985 memcpy (c + offset, location, count);
b49e97c9
TS
12986 }
12987
12988 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12989 count);
12990}
12991
12992/* This is almost identical to bfd_generic_get_... except that some
12993 MIPS relocations need to be handled specially. Sigh. */
12994
12995bfd_byte *
9719ad41
RS
12996_bfd_elf_mips_get_relocated_section_contents
12997 (bfd *abfd,
12998 struct bfd_link_info *link_info,
12999 struct bfd_link_order *link_order,
13000 bfd_byte *data,
13001 bfd_boolean relocatable,
13002 asymbol **symbols)
b49e97c9
TS
13003{
13004 /* Get enough memory to hold the stuff */
13005 bfd *input_bfd = link_order->u.indirect.section->owner;
13006 asection *input_section = link_order->u.indirect.section;
eea6121a 13007 bfd_size_type sz;
b49e97c9
TS
13008
13009 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13010 arelent **reloc_vector = NULL;
13011 long reloc_count;
13012
13013 if (reloc_size < 0)
13014 goto error_return;
13015
9719ad41 13016 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13017 if (reloc_vector == NULL && reloc_size != 0)
13018 goto error_return;
13019
13020 /* read in the section */
eea6121a
AM
13021 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13022 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13023 goto error_return;
13024
b49e97c9
TS
13025 reloc_count = bfd_canonicalize_reloc (input_bfd,
13026 input_section,
13027 reloc_vector,
13028 symbols);
13029 if (reloc_count < 0)
13030 goto error_return;
13031
13032 if (reloc_count > 0)
13033 {
13034 arelent **parent;
13035 /* for mips */
13036 int gp_found;
13037 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13038
13039 {
13040 struct bfd_hash_entry *h;
13041 struct bfd_link_hash_entry *lh;
13042 /* Skip all this stuff if we aren't mixing formats. */
13043 if (abfd && input_bfd
13044 && abfd->xvec == input_bfd->xvec)
13045 lh = 0;
13046 else
13047 {
b34976b6 13048 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13049 lh = (struct bfd_link_hash_entry *) h;
13050 }
13051 lookup:
13052 if (lh)
13053 {
13054 switch (lh->type)
13055 {
13056 case bfd_link_hash_undefined:
13057 case bfd_link_hash_undefweak:
13058 case bfd_link_hash_common:
13059 gp_found = 0;
13060 break;
13061 case bfd_link_hash_defined:
13062 case bfd_link_hash_defweak:
13063 gp_found = 1;
13064 gp = lh->u.def.value;
13065 break;
13066 case bfd_link_hash_indirect:
13067 case bfd_link_hash_warning:
13068 lh = lh->u.i.link;
13069 /* @@FIXME ignoring warning for now */
13070 goto lookup;
13071 case bfd_link_hash_new:
13072 default:
13073 abort ();
13074 }
13075 }
13076 else
13077 gp_found = 0;
13078 }
13079 /* end mips */
9719ad41 13080 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13081 {
9719ad41 13082 char *error_message = NULL;
b49e97c9
TS
13083 bfd_reloc_status_type r;
13084
13085 /* Specific to MIPS: Deal with relocation types that require
13086 knowing the gp of the output bfd. */
13087 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13088
8236346f
EC
13089 /* If we've managed to find the gp and have a special
13090 function for the relocation then go ahead, else default
13091 to the generic handling. */
13092 if (gp_found
13093 && (*parent)->howto->special_function
13094 == _bfd_mips_elf32_gprel16_reloc)
13095 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13096 input_section, relocatable,
13097 data, gp);
13098 else
86324f90 13099 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13100 input_section,
13101 relocatable ? abfd : NULL,
13102 &error_message);
b49e97c9 13103
1049f94e 13104 if (relocatable)
b49e97c9
TS
13105 {
13106 asection *os = input_section->output_section;
13107
13108 /* A partial link, so keep the relocs */
13109 os->orelocation[os->reloc_count] = *parent;
13110 os->reloc_count++;
13111 }
13112
13113 if (r != bfd_reloc_ok)
13114 {
13115 switch (r)
13116 {
13117 case bfd_reloc_undefined:
1a72702b
AM
13118 (*link_info->callbacks->undefined_symbol)
13119 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13120 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13121 break;
13122 case bfd_reloc_dangerous:
9719ad41 13123 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13124 (*link_info->callbacks->reloc_dangerous)
13125 (link_info, error_message,
13126 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13127 break;
13128 case bfd_reloc_overflow:
1a72702b
AM
13129 (*link_info->callbacks->reloc_overflow)
13130 (link_info, NULL,
13131 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13132 (*parent)->howto->name, (*parent)->addend,
13133 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13134 break;
13135 case bfd_reloc_outofrange:
13136 default:
13137 abort ();
13138 break;
13139 }
13140
13141 }
13142 }
13143 }
13144 if (reloc_vector != NULL)
13145 free (reloc_vector);
13146 return data;
13147
13148error_return:
13149 if (reloc_vector != NULL)
13150 free (reloc_vector);
13151 return NULL;
13152}
13153\f
df58fc94
RS
13154static bfd_boolean
13155mips_elf_relax_delete_bytes (bfd *abfd,
13156 asection *sec, bfd_vma addr, int count)
13157{
13158 Elf_Internal_Shdr *symtab_hdr;
13159 unsigned int sec_shndx;
13160 bfd_byte *contents;
13161 Elf_Internal_Rela *irel, *irelend;
13162 Elf_Internal_Sym *isym;
13163 Elf_Internal_Sym *isymend;
13164 struct elf_link_hash_entry **sym_hashes;
13165 struct elf_link_hash_entry **end_hashes;
13166 struct elf_link_hash_entry **start_hashes;
13167 unsigned int symcount;
13168
13169 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13170 contents = elf_section_data (sec)->this_hdr.contents;
13171
13172 irel = elf_section_data (sec)->relocs;
13173 irelend = irel + sec->reloc_count;
13174
13175 /* Actually delete the bytes. */
13176 memmove (contents + addr, contents + addr + count,
13177 (size_t) (sec->size - addr - count));
13178 sec->size -= count;
13179
13180 /* Adjust all the relocs. */
13181 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13182 {
13183 /* Get the new reloc address. */
13184 if (irel->r_offset > addr)
13185 irel->r_offset -= count;
13186 }
13187
13188 BFD_ASSERT (addr % 2 == 0);
13189 BFD_ASSERT (count % 2 == 0);
13190
13191 /* Adjust the local symbols defined in this section. */
13192 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13193 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13194 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13195 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13196 isym->st_value -= count;
13197
13198 /* Now adjust the global symbols defined in this section. */
13199 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13200 - symtab_hdr->sh_info);
13201 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13202 end_hashes = sym_hashes + symcount;
13203
13204 for (; sym_hashes < end_hashes; sym_hashes++)
13205 {
13206 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13207
13208 if ((sym_hash->root.type == bfd_link_hash_defined
13209 || sym_hash->root.type == bfd_link_hash_defweak)
13210 && sym_hash->root.u.def.section == sec)
13211 {
2309ddf2 13212 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13213
df58fc94
RS
13214 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13215 value &= MINUS_TWO;
13216 if (value > addr)
13217 sym_hash->root.u.def.value -= count;
13218 }
13219 }
13220
13221 return TRUE;
13222}
13223
13224
13225/* Opcodes needed for microMIPS relaxation as found in
13226 opcodes/micromips-opc.c. */
13227
13228struct opcode_descriptor {
13229 unsigned long match;
13230 unsigned long mask;
13231};
13232
13233/* The $ra register aka $31. */
13234
13235#define RA 31
13236
13237/* 32-bit instruction format register fields. */
13238
13239#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13240#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13241
13242/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13243
13244#define OP16_VALID_REG(r) \
13245 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13246
13247
13248/* 32-bit and 16-bit branches. */
13249
13250static const struct opcode_descriptor b_insns_32[] = {
13251 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13252 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13253 { 0, 0 } /* End marker for find_match(). */
13254};
13255
13256static const struct opcode_descriptor bc_insn_32 =
13257 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13258
13259static const struct opcode_descriptor bz_insn_32 =
13260 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13261
13262static const struct opcode_descriptor bzal_insn_32 =
13263 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13264
13265static const struct opcode_descriptor beq_insn_32 =
13266 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13267
13268static const struct opcode_descriptor b_insn_16 =
13269 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13270
13271static const struct opcode_descriptor bz_insn_16 =
c088dedf 13272 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13273
13274
13275/* 32-bit and 16-bit branch EQ and NE zero. */
13276
13277/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13278 eq and second the ne. This convention is used when replacing a
13279 32-bit BEQ/BNE with the 16-bit version. */
13280
13281#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13282
13283static const struct opcode_descriptor bz_rs_insns_32[] = {
13284 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13285 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13286 { 0, 0 } /* End marker for find_match(). */
13287};
13288
13289static const struct opcode_descriptor bz_rt_insns_32[] = {
13290 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13291 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13292 { 0, 0 } /* End marker for find_match(). */
13293};
13294
13295static const struct opcode_descriptor bzc_insns_32[] = {
13296 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13297 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13298 { 0, 0 } /* End marker for find_match(). */
13299};
13300
13301static const struct opcode_descriptor bz_insns_16[] = {
13302 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13303 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13304 { 0, 0 } /* End marker for find_match(). */
13305};
13306
13307/* Switch between a 5-bit register index and its 3-bit shorthand. */
13308
e67f83e5 13309#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13310#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13311
13312
13313/* 32-bit instructions with a delay slot. */
13314
13315static const struct opcode_descriptor jal_insn_32_bd16 =
13316 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13317
13318static const struct opcode_descriptor jal_insn_32_bd32 =
13319 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13320
13321static const struct opcode_descriptor jal_x_insn_32_bd32 =
13322 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13323
13324static const struct opcode_descriptor j_insn_32 =
13325 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13326
13327static const struct opcode_descriptor jalr_insn_32 =
13328 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13329
13330/* This table can be compacted, because no opcode replacement is made. */
13331
13332static const struct opcode_descriptor ds_insns_32_bd16[] = {
13333 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13334
13335 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13336 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13337
13338 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13339 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13340 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13341 { 0, 0 } /* End marker for find_match(). */
13342};
13343
13344/* This table can be compacted, because no opcode replacement is made. */
13345
13346static const struct opcode_descriptor ds_insns_32_bd32[] = {
13347 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13348
13349 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13350 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13351 { 0, 0 } /* End marker for find_match(). */
13352};
13353
13354
13355/* 16-bit instructions with a delay slot. */
13356
13357static const struct opcode_descriptor jalr_insn_16_bd16 =
13358 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13359
13360static const struct opcode_descriptor jalr_insn_16_bd32 =
13361 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13362
13363static const struct opcode_descriptor jr_insn_16 =
13364 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13365
13366#define JR16_REG(opcode) ((opcode) & 0x1f)
13367
13368/* This table can be compacted, because no opcode replacement is made. */
13369
13370static const struct opcode_descriptor ds_insns_16_bd16[] = {
13371 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13372
13373 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13374 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13375 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13376 { 0, 0 } /* End marker for find_match(). */
13377};
13378
13379
13380/* LUI instruction. */
13381
13382static const struct opcode_descriptor lui_insn =
13383 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13384
13385
13386/* ADDIU instruction. */
13387
13388static const struct opcode_descriptor addiu_insn =
13389 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13390
13391static const struct opcode_descriptor addiupc_insn =
13392 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13393
13394#define ADDIUPC_REG_FIELD(r) \
13395 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13396
13397
13398/* Relaxable instructions in a JAL delay slot: MOVE. */
13399
13400/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13401 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13402#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13403#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13404
13405#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13406#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13407
13408static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13409 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13410 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13411 { 0, 0 } /* End marker for find_match(). */
13412};
13413
13414static const struct opcode_descriptor move_insn_16 =
13415 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13416
13417
13418/* NOP instructions. */
13419
13420static const struct opcode_descriptor nop_insn_32 =
13421 { /* "nop", "", */ 0x00000000, 0xffffffff };
13422
13423static const struct opcode_descriptor nop_insn_16 =
13424 { /* "nop", "", */ 0x0c00, 0xffff };
13425
13426
13427/* Instruction match support. */
13428
13429#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13430
13431static int
13432find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13433{
13434 unsigned long indx;
13435
13436 for (indx = 0; insn[indx].mask != 0; indx++)
13437 if (MATCH (opcode, insn[indx]))
13438 return indx;
13439
13440 return -1;
13441}
13442
13443
13444/* Branch and delay slot decoding support. */
13445
13446/* If PTR points to what *might* be a 16-bit branch or jump, then
13447 return the minimum length of its delay slot, otherwise return 0.
13448 Non-zero results are not definitive as we might be checking against
13449 the second half of another instruction. */
13450
13451static int
13452check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13453{
13454 unsigned long opcode;
13455 int bdsize;
13456
13457 opcode = bfd_get_16 (abfd, ptr);
13458 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13459 /* 16-bit branch/jump with a 32-bit delay slot. */
13460 bdsize = 4;
13461 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13462 || find_match (opcode, ds_insns_16_bd16) >= 0)
13463 /* 16-bit branch/jump with a 16-bit delay slot. */
13464 bdsize = 2;
13465 else
13466 /* No delay slot. */
13467 bdsize = 0;
13468
13469 return bdsize;
13470}
13471
13472/* If PTR points to what *might* be a 32-bit branch or jump, then
13473 return the minimum length of its delay slot, otherwise return 0.
13474 Non-zero results are not definitive as we might be checking against
13475 the second half of another instruction. */
13476
13477static int
13478check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13479{
13480 unsigned long opcode;
13481 int bdsize;
13482
d21911ea 13483 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13484 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13485 /* 32-bit branch/jump with a 32-bit delay slot. */
13486 bdsize = 4;
13487 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13488 /* 32-bit branch/jump with a 16-bit delay slot. */
13489 bdsize = 2;
13490 else
13491 /* No delay slot. */
13492 bdsize = 0;
13493
13494 return bdsize;
13495}
13496
13497/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13498 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13499
13500static bfd_boolean
13501check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13502{
13503 unsigned long opcode;
13504
13505 opcode = bfd_get_16 (abfd, ptr);
13506 if (MATCH (opcode, b_insn_16)
13507 /* B16 */
13508 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13509 /* JR16 */
13510 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13511 /* BEQZ16, BNEZ16 */
13512 || (MATCH (opcode, jalr_insn_16_bd32)
13513 /* JALR16 */
13514 && reg != JR16_REG (opcode) && reg != RA))
13515 return TRUE;
13516
13517 return FALSE;
13518}
13519
13520/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13521 then return TRUE, otherwise FALSE. */
13522
f41e5fcc 13523static bfd_boolean
df58fc94
RS
13524check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13525{
13526 unsigned long opcode;
13527
d21911ea 13528 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13529 if (MATCH (opcode, j_insn_32)
13530 /* J */
13531 || MATCH (opcode, bc_insn_32)
13532 /* BC1F, BC1T, BC2F, BC2T */
13533 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13534 /* JAL, JALX */
13535 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13536 /* BGEZ, BGTZ, BLEZ, BLTZ */
13537 || (MATCH (opcode, bzal_insn_32)
13538 /* BGEZAL, BLTZAL */
13539 && reg != OP32_SREG (opcode) && reg != RA)
13540 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13541 /* JALR, JALR.HB, BEQ, BNE */
13542 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13543 return TRUE;
13544
13545 return FALSE;
13546}
13547
80cab405
MR
13548/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13549 IRELEND) at OFFSET indicate that there must be a compact branch there,
13550 then return TRUE, otherwise FALSE. */
df58fc94
RS
13551
13552static bfd_boolean
80cab405
MR
13553check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13554 const Elf_Internal_Rela *internal_relocs,
13555 const Elf_Internal_Rela *irelend)
df58fc94 13556{
80cab405
MR
13557 const Elf_Internal_Rela *irel;
13558 unsigned long opcode;
13559
d21911ea 13560 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13561 if (find_match (opcode, bzc_insns_32) < 0)
13562 return FALSE;
df58fc94
RS
13563
13564 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13565 if (irel->r_offset == offset
13566 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13567 return TRUE;
13568
df58fc94
RS
13569 return FALSE;
13570}
80cab405
MR
13571
13572/* Bitsize checking. */
13573#define IS_BITSIZE(val, N) \
13574 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13575 - (1ULL << ((N) - 1))) == (val))
13576
df58fc94
RS
13577\f
13578bfd_boolean
13579_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13580 struct bfd_link_info *link_info,
13581 bfd_boolean *again)
13582{
833794fc 13583 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13584 Elf_Internal_Shdr *symtab_hdr;
13585 Elf_Internal_Rela *internal_relocs;
13586 Elf_Internal_Rela *irel, *irelend;
13587 bfd_byte *contents = NULL;
13588 Elf_Internal_Sym *isymbuf = NULL;
13589
13590 /* Assume nothing changes. */
13591 *again = FALSE;
13592
13593 /* We don't have to do anything for a relocatable link, if
13594 this section does not have relocs, or if this is not a
13595 code section. */
13596
0e1862bb 13597 if (bfd_link_relocatable (link_info)
df58fc94
RS
13598 || (sec->flags & SEC_RELOC) == 0
13599 || sec->reloc_count == 0
13600 || (sec->flags & SEC_CODE) == 0)
13601 return TRUE;
13602
13603 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13604
13605 /* Get a copy of the native relocations. */
13606 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13607 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13608 link_info->keep_memory));
13609 if (internal_relocs == NULL)
13610 goto error_return;
13611
13612 /* Walk through them looking for relaxing opportunities. */
13613 irelend = internal_relocs + sec->reloc_count;
13614 for (irel = internal_relocs; irel < irelend; irel++)
13615 {
13616 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13617 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13618 bfd_boolean target_is_micromips_code_p;
13619 unsigned long opcode;
13620 bfd_vma symval;
13621 bfd_vma pcrval;
2309ddf2 13622 bfd_byte *ptr;
df58fc94
RS
13623 int fndopc;
13624
13625 /* The number of bytes to delete for relaxation and from where
13626 to delete these bytes starting at irel->r_offset. */
13627 int delcnt = 0;
13628 int deloff = 0;
13629
13630 /* If this isn't something that can be relaxed, then ignore
13631 this reloc. */
13632 if (r_type != R_MICROMIPS_HI16
13633 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13634 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13635 continue;
13636
13637 /* Get the section contents if we haven't done so already. */
13638 if (contents == NULL)
13639 {
13640 /* Get cached copy if it exists. */
13641 if (elf_section_data (sec)->this_hdr.contents != NULL)
13642 contents = elf_section_data (sec)->this_hdr.contents;
13643 /* Go get them off disk. */
13644 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13645 goto error_return;
13646 }
2309ddf2 13647 ptr = contents + irel->r_offset;
df58fc94
RS
13648
13649 /* Read this BFD's local symbols if we haven't done so already. */
13650 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13651 {
13652 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13653 if (isymbuf == NULL)
13654 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13655 symtab_hdr->sh_info, 0,
13656 NULL, NULL, NULL);
13657 if (isymbuf == NULL)
13658 goto error_return;
13659 }
13660
13661 /* Get the value of the symbol referred to by the reloc. */
13662 if (r_symndx < symtab_hdr->sh_info)
13663 {
13664 /* A local symbol. */
13665 Elf_Internal_Sym *isym;
13666 asection *sym_sec;
13667
13668 isym = isymbuf + r_symndx;
13669 if (isym->st_shndx == SHN_UNDEF)
13670 sym_sec = bfd_und_section_ptr;
13671 else if (isym->st_shndx == SHN_ABS)
13672 sym_sec = bfd_abs_section_ptr;
13673 else if (isym->st_shndx == SHN_COMMON)
13674 sym_sec = bfd_com_section_ptr;
13675 else
13676 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13677 symval = (isym->st_value
13678 + sym_sec->output_section->vma
13679 + sym_sec->output_offset);
13680 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13681 }
13682 else
13683 {
13684 unsigned long indx;
13685 struct elf_link_hash_entry *h;
13686
13687 /* An external symbol. */
13688 indx = r_symndx - symtab_hdr->sh_info;
13689 h = elf_sym_hashes (abfd)[indx];
13690 BFD_ASSERT (h != NULL);
13691
13692 if (h->root.type != bfd_link_hash_defined
13693 && h->root.type != bfd_link_hash_defweak)
13694 /* This appears to be a reference to an undefined
13695 symbol. Just ignore it -- it will be caught by the
13696 regular reloc processing. */
13697 continue;
13698
13699 symval = (h->root.u.def.value
13700 + h->root.u.def.section->output_section->vma
13701 + h->root.u.def.section->output_offset);
13702 target_is_micromips_code_p = (!h->needs_plt
13703 && ELF_ST_IS_MICROMIPS (h->other));
13704 }
13705
13706
13707 /* For simplicity of coding, we are going to modify the
13708 section contents, the section relocs, and the BFD symbol
13709 table. We must tell the rest of the code not to free up this
13710 information. It would be possible to instead create a table
13711 of changes which have to be made, as is done in coff-mips.c;
13712 that would be more work, but would require less memory when
13713 the linker is run. */
13714
13715 /* Only 32-bit instructions relaxed. */
13716 if (irel->r_offset + 4 > sec->size)
13717 continue;
13718
d21911ea 13719 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13720
13721 /* This is the pc-relative distance from the instruction the
13722 relocation is applied to, to the symbol referred. */
13723 pcrval = (symval
13724 - (sec->output_section->vma + sec->output_offset)
13725 - irel->r_offset);
13726
13727 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13728 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13729 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13730
13731 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13732
13733 where pcrval has first to be adjusted to apply against the LO16
13734 location (we make the adjustment later on, when we have figured
13735 out the offset). */
13736 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13737 {
80cab405 13738 bfd_boolean bzc = FALSE;
df58fc94
RS
13739 unsigned long nextopc;
13740 unsigned long reg;
13741 bfd_vma offset;
13742
13743 /* Give up if the previous reloc was a HI16 against this symbol
13744 too. */
13745 if (irel > internal_relocs
13746 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13747 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13748 continue;
13749
13750 /* Or if the next reloc is not a LO16 against this symbol. */
13751 if (irel + 1 >= irelend
13752 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13753 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13754 continue;
13755
13756 /* Or if the second next reloc is a LO16 against this symbol too. */
13757 if (irel + 2 >= irelend
13758 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13759 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13760 continue;
13761
80cab405
MR
13762 /* See if the LUI instruction *might* be in a branch delay slot.
13763 We check whether what looks like a 16-bit branch or jump is
13764 actually an immediate argument to a compact branch, and let
13765 it through if so. */
df58fc94 13766 if (irel->r_offset >= 2
2309ddf2 13767 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13768 && !(irel->r_offset >= 4
80cab405
MR
13769 && (bzc = check_relocated_bzc (abfd,
13770 ptr - 4, irel->r_offset - 4,
13771 internal_relocs, irelend))))
df58fc94
RS
13772 continue;
13773 if (irel->r_offset >= 4
80cab405 13774 && !bzc
2309ddf2 13775 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13776 continue;
13777
13778 reg = OP32_SREG (opcode);
13779
13780 /* We only relax adjacent instructions or ones separated with
13781 a branch or jump that has a delay slot. The branch or jump
13782 must not fiddle with the register used to hold the address.
13783 Subtract 4 for the LUI itself. */
13784 offset = irel[1].r_offset - irel[0].r_offset;
13785 switch (offset - 4)
13786 {
13787 case 0:
13788 break;
13789 case 2:
2309ddf2 13790 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13791 break;
13792 continue;
13793 case 4:
2309ddf2 13794 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13795 break;
13796 continue;
13797 default:
13798 continue;
13799 }
13800
d21911ea 13801 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13802
13803 /* Give up unless the same register is used with both
13804 relocations. */
13805 if (OP32_SREG (nextopc) != reg)
13806 continue;
13807
13808 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13809 and rounding up to take masking of the two LSBs into account. */
13810 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13811
13812 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13813 if (IS_BITSIZE (symval, 16))
13814 {
13815 /* Fix the relocation's type. */
13816 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13817
13818 /* Instructions using R_MICROMIPS_LO16 have the base or
13819 source register in bits 20:16. This register becomes $0
13820 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13821 nextopc &= ~0x001f0000;
13822 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13823 contents + irel[1].r_offset);
13824 }
13825
13826 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13827 We add 4 to take LUI deletion into account while checking
13828 the PC-relative distance. */
13829 else if (symval % 4 == 0
13830 && IS_BITSIZE (pcrval + 4, 25)
13831 && MATCH (nextopc, addiu_insn)
13832 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13833 && OP16_VALID_REG (OP32_TREG (nextopc)))
13834 {
13835 /* Fix the relocation's type. */
13836 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13837
13838 /* Replace ADDIU with the ADDIUPC version. */
13839 nextopc = (addiupc_insn.match
13840 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13841
d21911ea
MR
13842 bfd_put_micromips_32 (abfd, nextopc,
13843 contents + irel[1].r_offset);
df58fc94
RS
13844 }
13845
13846 /* Can't do anything, give up, sigh... */
13847 else
13848 continue;
13849
13850 /* Fix the relocation's type. */
13851 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13852
13853 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13854 delcnt = 4;
13855 deloff = 0;
13856 }
13857
13858 /* Compact branch relaxation -- due to the multitude of macros
13859 employed by the compiler/assembler, compact branches are not
13860 always generated. Obviously, this can/will be fixed elsewhere,
13861 but there is no drawback in double checking it here. */
13862 else if (r_type == R_MICROMIPS_PC16_S1
13863 && irel->r_offset + 5 < sec->size
13864 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13865 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13866 && ((!insn32
13867 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13868 nop_insn_16) ? 2 : 0))
13869 || (irel->r_offset + 7 < sec->size
13870 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13871 ptr + 4),
13872 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13873 {
13874 unsigned long reg;
13875
13876 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13877
13878 /* Replace BEQZ/BNEZ with the compact version. */
13879 opcode = (bzc_insns_32[fndopc].match
13880 | BZC32_REG_FIELD (reg)
13881 | (opcode & 0xffff)); /* Addend value. */
13882
d21911ea 13883 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13884
833794fc
MR
13885 /* Delete the delay slot NOP: two or four bytes from
13886 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13887 deloff = 4;
13888 }
13889
13890 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13891 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13892 else if (!insn32
13893 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13894 && IS_BITSIZE (pcrval - 2, 11)
13895 && find_match (opcode, b_insns_32) >= 0)
13896 {
13897 /* Fix the relocation's type. */
13898 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13899
a8685210 13900 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13901 bfd_put_16 (abfd,
13902 (b_insn_16.match
13903 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13904 ptr);
df58fc94
RS
13905
13906 /* Delete 2 bytes from irel->r_offset + 2. */
13907 delcnt = 2;
13908 deloff = 2;
13909 }
13910
13911 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13912 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13913 else if (!insn32
13914 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13915 && IS_BITSIZE (pcrval - 2, 8)
13916 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13917 && OP16_VALID_REG (OP32_SREG (opcode)))
13918 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13919 && OP16_VALID_REG (OP32_TREG (opcode)))))
13920 {
13921 unsigned long reg;
13922
13923 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13924
13925 /* Fix the relocation's type. */
13926 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13927
a8685210 13928 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13929 bfd_put_16 (abfd,
13930 (bz_insns_16[fndopc].match
13931 | BZ16_REG_FIELD (reg)
13932 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13933 ptr);
df58fc94
RS
13934
13935 /* Delete 2 bytes from irel->r_offset + 2. */
13936 delcnt = 2;
13937 deloff = 2;
13938 }
13939
13940 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13941 else if (!insn32
13942 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13943 && target_is_micromips_code_p
13944 && irel->r_offset + 7 < sec->size
13945 && MATCH (opcode, jal_insn_32_bd32))
13946 {
13947 unsigned long n32opc;
13948 bfd_boolean relaxed = FALSE;
13949
d21911ea 13950 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13951
13952 if (MATCH (n32opc, nop_insn_32))
13953 {
13954 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13955 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13956
13957 relaxed = TRUE;
13958 }
13959 else if (find_match (n32opc, move_insns_32) >= 0)
13960 {
13961 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13962 bfd_put_16 (abfd,
13963 (move_insn_16.match
13964 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13965 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13966 ptr + 4);
df58fc94
RS
13967
13968 relaxed = TRUE;
13969 }
13970 /* Other 32-bit instructions relaxable to 16-bit
13971 instructions will be handled here later. */
13972
13973 if (relaxed)
13974 {
13975 /* JAL with 32-bit delay slot that is changed to a JALS
13976 with 16-bit delay slot. */
d21911ea 13977 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13978
13979 /* Delete 2 bytes from irel->r_offset + 6. */
13980 delcnt = 2;
13981 deloff = 6;
13982 }
13983 }
13984
13985 if (delcnt != 0)
13986 {
13987 /* Note that we've changed the relocs, section contents, etc. */
13988 elf_section_data (sec)->relocs = internal_relocs;
13989 elf_section_data (sec)->this_hdr.contents = contents;
13990 symtab_hdr->contents = (unsigned char *) isymbuf;
13991
13992 /* Delete bytes depending on the delcnt and deloff. */
13993 if (!mips_elf_relax_delete_bytes (abfd, sec,
13994 irel->r_offset + deloff, delcnt))
13995 goto error_return;
13996
13997 /* That will change things, so we should relax again.
13998 Note that this is not required, and it may be slow. */
13999 *again = TRUE;
14000 }
14001 }
14002
14003 if (isymbuf != NULL
14004 && symtab_hdr->contents != (unsigned char *) isymbuf)
14005 {
14006 if (! link_info->keep_memory)
14007 free (isymbuf);
14008 else
14009 {
14010 /* Cache the symbols for elf_link_input_bfd. */
14011 symtab_hdr->contents = (unsigned char *) isymbuf;
14012 }
14013 }
14014
14015 if (contents != NULL
14016 && elf_section_data (sec)->this_hdr.contents != contents)
14017 {
14018 if (! link_info->keep_memory)
14019 free (contents);
14020 else
14021 {
14022 /* Cache the section contents for elf_link_input_bfd. */
14023 elf_section_data (sec)->this_hdr.contents = contents;
14024 }
14025 }
14026
14027 if (internal_relocs != NULL
14028 && elf_section_data (sec)->relocs != internal_relocs)
14029 free (internal_relocs);
14030
14031 return TRUE;
14032
14033 error_return:
14034 if (isymbuf != NULL
14035 && symtab_hdr->contents != (unsigned char *) isymbuf)
14036 free (isymbuf);
14037 if (contents != NULL
14038 && elf_section_data (sec)->this_hdr.contents != contents)
14039 free (contents);
14040 if (internal_relocs != NULL
14041 && elf_section_data (sec)->relocs != internal_relocs)
14042 free (internal_relocs);
14043
14044 return FALSE;
14045}
14046\f
b49e97c9
TS
14047/* Create a MIPS ELF linker hash table. */
14048
14049struct bfd_link_hash_table *
9719ad41 14050_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14051{
14052 struct mips_elf_link_hash_table *ret;
14053 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14054
7bf52ea2 14055 ret = bfd_zmalloc (amt);
9719ad41 14056 if (ret == NULL)
b49e97c9
TS
14057 return NULL;
14058
66eb6687
AM
14059 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14060 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14061 sizeof (struct mips_elf_link_hash_entry),
14062 MIPS_ELF_DATA))
b49e97c9 14063 {
e2d34d7d 14064 free (ret);
b49e97c9
TS
14065 return NULL;
14066 }
1bbce132
MR
14067 ret->root.init_plt_refcount.plist = NULL;
14068 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14069
b49e97c9
TS
14070 return &ret->root.root;
14071}
0a44bf69
RS
14072
14073/* Likewise, but indicate that the target is VxWorks. */
14074
14075struct bfd_link_hash_table *
14076_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14077{
14078 struct bfd_link_hash_table *ret;
14079
14080 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14081 if (ret)
14082 {
14083 struct mips_elf_link_hash_table *htab;
14084
14085 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14086 htab->use_plts_and_copy_relocs = TRUE;
14087 htab->is_vxworks = TRUE;
0a44bf69
RS
14088 }
14089 return ret;
14090}
861fb55a
DJ
14091
14092/* A function that the linker calls if we are allowed to use PLTs
14093 and copy relocs. */
14094
14095void
14096_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14097{
14098 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14099}
833794fc
MR
14100
14101/* A function that the linker calls to select between all or only
14102 32-bit microMIPS instructions. */
14103
14104void
14105_bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14106{
14107 mips_elf_hash_table (info)->insn32 = on;
14108}
b49e97c9 14109\f
c97c330b
MF
14110/* Structure for saying that BFD machine EXTENSION extends BASE. */
14111
14112struct mips_mach_extension
14113{
14114 unsigned long extension, base;
14115};
14116
14117
14118/* An array describing how BFD machines relate to one another. The entries
14119 are ordered topologically with MIPS I extensions listed last. */
14120
14121static const struct mips_mach_extension mips_mach_extensions[] =
14122{
14123 /* MIPS64r2 extensions. */
14124 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14125 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14126 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14127 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14128 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14129
14130 /* MIPS64 extensions. */
14131 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14132 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14133 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14134
14135 /* MIPS V extensions. */
14136 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14137
14138 /* R10000 extensions. */
14139 { bfd_mach_mips12000, bfd_mach_mips10000 },
14140 { bfd_mach_mips14000, bfd_mach_mips10000 },
14141 { bfd_mach_mips16000, bfd_mach_mips10000 },
14142
14143 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14144 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14145 better to allow vr5400 and vr5500 code to be merged anyway, since
14146 many libraries will just use the core ISA. Perhaps we could add
14147 some sort of ASE flag if this ever proves a problem. */
14148 { bfd_mach_mips5500, bfd_mach_mips5400 },
14149 { bfd_mach_mips5400, bfd_mach_mips5000 },
14150
14151 /* MIPS IV extensions. */
14152 { bfd_mach_mips5, bfd_mach_mips8000 },
14153 { bfd_mach_mips10000, bfd_mach_mips8000 },
14154 { bfd_mach_mips5000, bfd_mach_mips8000 },
14155 { bfd_mach_mips7000, bfd_mach_mips8000 },
14156 { bfd_mach_mips9000, bfd_mach_mips8000 },
14157
14158 /* VR4100 extensions. */
14159 { bfd_mach_mips4120, bfd_mach_mips4100 },
14160 { bfd_mach_mips4111, bfd_mach_mips4100 },
14161
14162 /* MIPS III extensions. */
14163 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14164 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14165 { bfd_mach_mips8000, bfd_mach_mips4000 },
14166 { bfd_mach_mips4650, bfd_mach_mips4000 },
14167 { bfd_mach_mips4600, bfd_mach_mips4000 },
14168 { bfd_mach_mips4400, bfd_mach_mips4000 },
14169 { bfd_mach_mips4300, bfd_mach_mips4000 },
14170 { bfd_mach_mips4100, bfd_mach_mips4000 },
14171 { bfd_mach_mips4010, bfd_mach_mips4000 },
14172 { bfd_mach_mips5900, bfd_mach_mips4000 },
14173
14174 /* MIPS32 extensions. */
14175 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14176
14177 /* MIPS II extensions. */
14178 { bfd_mach_mips4000, bfd_mach_mips6000 },
14179 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14180
14181 /* MIPS I extensions. */
14182 { bfd_mach_mips6000, bfd_mach_mips3000 },
14183 { bfd_mach_mips3900, bfd_mach_mips3000 }
14184};
14185
14186/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14187
14188static bfd_boolean
14189mips_mach_extends_p (unsigned long base, unsigned long extension)
14190{
14191 size_t i;
14192
14193 if (extension == base)
14194 return TRUE;
14195
14196 if (base == bfd_mach_mipsisa32
14197 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14198 return TRUE;
14199
14200 if (base == bfd_mach_mipsisa32r2
14201 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14202 return TRUE;
14203
14204 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14205 if (extension == mips_mach_extensions[i].extension)
14206 {
14207 extension = mips_mach_extensions[i].base;
14208 if (extension == base)
14209 return TRUE;
14210 }
14211
14212 return FALSE;
14213}
14214
14215/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14216
14217static unsigned long
14218bfd_mips_isa_ext_mach (unsigned int isa_ext)
14219{
14220 switch (isa_ext)
14221 {
14222 case AFL_EXT_3900: return bfd_mach_mips3900;
14223 case AFL_EXT_4010: return bfd_mach_mips4010;
14224 case AFL_EXT_4100: return bfd_mach_mips4100;
14225 case AFL_EXT_4111: return bfd_mach_mips4111;
14226 case AFL_EXT_4120: return bfd_mach_mips4120;
14227 case AFL_EXT_4650: return bfd_mach_mips4650;
14228 case AFL_EXT_5400: return bfd_mach_mips5400;
14229 case AFL_EXT_5500: return bfd_mach_mips5500;
14230 case AFL_EXT_5900: return bfd_mach_mips5900;
14231 case AFL_EXT_10000: return bfd_mach_mips10000;
14232 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14233 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14234 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14235 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14236 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14237 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14238 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14239 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14240 default: return bfd_mach_mips3000;
14241 }
14242}
14243
351cdf24
MF
14244/* Return the .MIPS.abiflags value representing each ISA Extension. */
14245
14246unsigned int
14247bfd_mips_isa_ext (bfd *abfd)
14248{
14249 switch (bfd_get_mach (abfd))
14250 {
c97c330b
MF
14251 case bfd_mach_mips3900: return AFL_EXT_3900;
14252 case bfd_mach_mips4010: return AFL_EXT_4010;
14253 case bfd_mach_mips4100: return AFL_EXT_4100;
14254 case bfd_mach_mips4111: return AFL_EXT_4111;
14255 case bfd_mach_mips4120: return AFL_EXT_4120;
14256 case bfd_mach_mips4650: return AFL_EXT_4650;
14257 case bfd_mach_mips5400: return AFL_EXT_5400;
14258 case bfd_mach_mips5500: return AFL_EXT_5500;
14259 case bfd_mach_mips5900: return AFL_EXT_5900;
14260 case bfd_mach_mips10000: return AFL_EXT_10000;
14261 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14262 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14263 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14264 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14265 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14266 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14267 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14268 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14269 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14270 default: return 0;
14271 }
14272}
14273
14274/* Encode ISA level and revision as a single value. */
14275#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14276
14277/* Decode a single value into level and revision. */
14278#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14279#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14280
14281/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14282
14283static void
14284update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14285{
c97c330b 14286 int new_isa = 0;
351cdf24
MF
14287 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14288 {
c97c330b
MF
14289 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14290 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14291 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14292 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14293 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14294 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14295 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14296 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14297 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14298 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14299 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14300 default:
4eca0228 14301 _bfd_error_handler
695344c0 14302 /* xgettext:c-format */
351cdf24
MF
14303 (_("%B: Unknown architecture %s"),
14304 abfd, bfd_printable_name (abfd));
14305 }
14306
c97c330b
MF
14307 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14308 {
14309 abiflags->isa_level = ISA_LEVEL (new_isa);
14310 abiflags->isa_rev = ISA_REV (new_isa);
14311 }
14312
14313 /* Update the isa_ext if ABFD describes a further extension. */
14314 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14315 bfd_get_mach (abfd)))
14316 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14317}
14318
14319/* Return true if the given ELF header flags describe a 32-bit binary. */
14320
14321static bfd_boolean
14322mips_32bit_flags_p (flagword flags)
14323{
14324 return ((flags & EF_MIPS_32BITMODE) != 0
14325 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14326 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14327 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14328 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14329 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14330 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14331 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14332}
14333
14334/* Infer the content of the ABI flags based on the elf header. */
14335
14336static void
14337infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14338{
14339 obj_attribute *in_attr;
14340
14341 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14342 update_mips_abiflags_isa (abfd, abiflags);
14343
14344 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14345 abiflags->gpr_size = AFL_REG_32;
14346 else
14347 abiflags->gpr_size = AFL_REG_64;
14348
14349 abiflags->cpr1_size = AFL_REG_NONE;
14350
14351 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14352 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14353
14354 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14355 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14356 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14357 && abiflags->gpr_size == AFL_REG_32))
14358 abiflags->cpr1_size = AFL_REG_32;
14359 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14360 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14361 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14362 abiflags->cpr1_size = AFL_REG_64;
14363
14364 abiflags->cpr2_size = AFL_REG_NONE;
14365
14366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14367 abiflags->ases |= AFL_ASE_MDMX;
14368 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14369 abiflags->ases |= AFL_ASE_MIPS16;
14370 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14371 abiflags->ases |= AFL_ASE_MICROMIPS;
14372
14373 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14374 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14375 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14376 && abiflags->isa_level >= 32
14377 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14378 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14379}
14380
b49e97c9
TS
14381/* We need to use a special link routine to handle the .reginfo and
14382 the .mdebug sections. We need to merge all instances of these
14383 sections together, not write them all out sequentially. */
14384
b34976b6 14385bfd_boolean
9719ad41 14386_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14387{
b49e97c9
TS
14388 asection *o;
14389 struct bfd_link_order *p;
14390 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14391 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14392 Elf32_RegInfo reginfo;
14393 struct ecoff_debug_info debug;
861fb55a 14394 struct mips_htab_traverse_info hti;
7a2a6943
NC
14395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14396 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14397 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14398 void *mdebug_handle = NULL;
b49e97c9
TS
14399 asection *s;
14400 EXTR esym;
14401 unsigned int i;
14402 bfd_size_type amt;
0a44bf69 14403 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14404
14405 static const char * const secname[] =
14406 {
14407 ".text", ".init", ".fini", ".data",
14408 ".rodata", ".sdata", ".sbss", ".bss"
14409 };
14410 static const int sc[] =
14411 {
14412 scText, scInit, scFini, scData,
14413 scRData, scSData, scSBss, scBss
14414 };
14415
d4596a51
RS
14416 /* Sort the dynamic symbols so that those with GOT entries come after
14417 those without. */
0a44bf69 14418 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14419 BFD_ASSERT (htab != NULL);
14420
d4596a51
RS
14421 if (!mips_elf_sort_hash_table (abfd, info))
14422 return FALSE;
b49e97c9 14423
861fb55a
DJ
14424 /* Create any scheduled LA25 stubs. */
14425 hti.info = info;
14426 hti.output_bfd = abfd;
14427 hti.error = FALSE;
14428 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14429 if (hti.error)
14430 return FALSE;
14431
b49e97c9
TS
14432 /* Get a value for the GP register. */
14433 if (elf_gp (abfd) == 0)
14434 {
14435 struct bfd_link_hash_entry *h;
14436
b34976b6 14437 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14438 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14439 elf_gp (abfd) = (h->u.def.value
14440 + h->u.def.section->output_section->vma
14441 + h->u.def.section->output_offset);
0a44bf69
RS
14442 else if (htab->is_vxworks
14443 && (h = bfd_link_hash_lookup (info->hash,
14444 "_GLOBAL_OFFSET_TABLE_",
14445 FALSE, FALSE, TRUE))
14446 && h->type == bfd_link_hash_defined)
14447 elf_gp (abfd) = (h->u.def.section->output_section->vma
14448 + h->u.def.section->output_offset
14449 + h->u.def.value);
0e1862bb 14450 else if (bfd_link_relocatable (info))
b49e97c9
TS
14451 {
14452 bfd_vma lo = MINUS_ONE;
14453
14454 /* Find the GP-relative section with the lowest offset. */
9719ad41 14455 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14456 if (o->vma < lo
14457 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14458 lo = o->vma;
14459
14460 /* And calculate GP relative to that. */
0a44bf69 14461 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14462 }
14463 else
14464 {
14465 /* If the relocate_section function needs to do a reloc
14466 involving the GP value, it should make a reloc_dangerous
14467 callback to warn that GP is not defined. */
14468 }
14469 }
14470
14471 /* Go through the sections and collect the .reginfo and .mdebug
14472 information. */
351cdf24 14473 abiflags_sec = NULL;
b49e97c9
TS
14474 reginfo_sec = NULL;
14475 mdebug_sec = NULL;
14476 gptab_data_sec = NULL;
14477 gptab_bss_sec = NULL;
9719ad41 14478 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14479 {
351cdf24
MF
14480 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14481 {
14482 /* We have found the .MIPS.abiflags section in the output file.
14483 Look through all the link_orders comprising it and remove them.
14484 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14485 for (p = o->map_head.link_order; p != NULL; p = p->next)
14486 {
14487 asection *input_section;
14488
14489 if (p->type != bfd_indirect_link_order)
14490 {
14491 if (p->type == bfd_data_link_order)
14492 continue;
14493 abort ();
14494 }
14495
14496 input_section = p->u.indirect.section;
14497
14498 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14499 elf_link_input_bfd ignores this section. */
14500 input_section->flags &= ~SEC_HAS_CONTENTS;
14501 }
14502
14503 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14504 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14505
14506 /* Skip this section later on (I don't think this currently
14507 matters, but someday it might). */
14508 o->map_head.link_order = NULL;
14509
14510 abiflags_sec = o;
14511 }
14512
b49e97c9
TS
14513 if (strcmp (o->name, ".reginfo") == 0)
14514 {
14515 memset (&reginfo, 0, sizeof reginfo);
14516
14517 /* We have found the .reginfo section in the output file.
14518 Look through all the link_orders comprising it and merge
14519 the information together. */
8423293d 14520 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14521 {
14522 asection *input_section;
14523 bfd *input_bfd;
14524 Elf32_External_RegInfo ext;
14525 Elf32_RegInfo sub;
14526
14527 if (p->type != bfd_indirect_link_order)
14528 {
14529 if (p->type == bfd_data_link_order)
14530 continue;
14531 abort ();
14532 }
14533
14534 input_section = p->u.indirect.section;
14535 input_bfd = input_section->owner;
14536
b49e97c9 14537 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14538 &ext, 0, sizeof ext))
b34976b6 14539 return FALSE;
b49e97c9
TS
14540
14541 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14542
14543 reginfo.ri_gprmask |= sub.ri_gprmask;
14544 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14545 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14546 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14547 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14548
14549 /* ri_gp_value is set by the function
14550 mips_elf32_section_processing when the section is
14551 finally written out. */
14552
14553 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14554 elf_link_input_bfd ignores this section. */
14555 input_section->flags &= ~SEC_HAS_CONTENTS;
14556 }
14557
14558 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14559 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14560
14561 /* Skip this section later on (I don't think this currently
14562 matters, but someday it might). */
8423293d 14563 o->map_head.link_order = NULL;
b49e97c9
TS
14564
14565 reginfo_sec = o;
14566 }
14567
14568 if (strcmp (o->name, ".mdebug") == 0)
14569 {
14570 struct extsym_info einfo;
14571 bfd_vma last;
14572
14573 /* We have found the .mdebug section in the output file.
14574 Look through all the link_orders comprising it and merge
14575 the information together. */
14576 symhdr->magic = swap->sym_magic;
14577 /* FIXME: What should the version stamp be? */
14578 symhdr->vstamp = 0;
14579 symhdr->ilineMax = 0;
14580 symhdr->cbLine = 0;
14581 symhdr->idnMax = 0;
14582 symhdr->ipdMax = 0;
14583 symhdr->isymMax = 0;
14584 symhdr->ioptMax = 0;
14585 symhdr->iauxMax = 0;
14586 symhdr->issMax = 0;
14587 symhdr->issExtMax = 0;
14588 symhdr->ifdMax = 0;
14589 symhdr->crfd = 0;
14590 symhdr->iextMax = 0;
14591
14592 /* We accumulate the debugging information itself in the
14593 debug_info structure. */
14594 debug.line = NULL;
14595 debug.external_dnr = NULL;
14596 debug.external_pdr = NULL;
14597 debug.external_sym = NULL;
14598 debug.external_opt = NULL;
14599 debug.external_aux = NULL;
14600 debug.ss = NULL;
14601 debug.ssext = debug.ssext_end = NULL;
14602 debug.external_fdr = NULL;
14603 debug.external_rfd = NULL;
14604 debug.external_ext = debug.external_ext_end = NULL;
14605
14606 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14607 if (mdebug_handle == NULL)
b34976b6 14608 return FALSE;
b49e97c9
TS
14609
14610 esym.jmptbl = 0;
14611 esym.cobol_main = 0;
14612 esym.weakext = 0;
14613 esym.reserved = 0;
14614 esym.ifd = ifdNil;
14615 esym.asym.iss = issNil;
14616 esym.asym.st = stLocal;
14617 esym.asym.reserved = 0;
14618 esym.asym.index = indexNil;
14619 last = 0;
14620 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14621 {
14622 esym.asym.sc = sc[i];
14623 s = bfd_get_section_by_name (abfd, secname[i]);
14624 if (s != NULL)
14625 {
14626 esym.asym.value = s->vma;
eea6121a 14627 last = s->vma + s->size;
b49e97c9
TS
14628 }
14629 else
14630 esym.asym.value = last;
14631 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14632 secname[i], &esym))
b34976b6 14633 return FALSE;
b49e97c9
TS
14634 }
14635
8423293d 14636 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14637 {
14638 asection *input_section;
14639 bfd *input_bfd;
14640 const struct ecoff_debug_swap *input_swap;
14641 struct ecoff_debug_info input_debug;
14642 char *eraw_src;
14643 char *eraw_end;
14644
14645 if (p->type != bfd_indirect_link_order)
14646 {
14647 if (p->type == bfd_data_link_order)
14648 continue;
14649 abort ();
14650 }
14651
14652 input_section = p->u.indirect.section;
14653 input_bfd = input_section->owner;
14654
d5eaccd7 14655 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14656 {
14657 /* I don't know what a non MIPS ELF bfd would be
14658 doing with a .mdebug section, but I don't really
14659 want to deal with it. */
14660 continue;
14661 }
14662
14663 input_swap = (get_elf_backend_data (input_bfd)
14664 ->elf_backend_ecoff_debug_swap);
14665
eea6121a 14666 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14667
14668 /* The ECOFF linking code expects that we have already
14669 read in the debugging information and set up an
14670 ecoff_debug_info structure, so we do that now. */
14671 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14672 &input_debug))
b34976b6 14673 return FALSE;
b49e97c9
TS
14674
14675 if (! (bfd_ecoff_debug_accumulate
14676 (mdebug_handle, abfd, &debug, swap, input_bfd,
14677 &input_debug, input_swap, info)))
b34976b6 14678 return FALSE;
b49e97c9
TS
14679
14680 /* Loop through the external symbols. For each one with
14681 interesting information, try to find the symbol in
14682 the linker global hash table and save the information
14683 for the output external symbols. */
14684 eraw_src = input_debug.external_ext;
14685 eraw_end = (eraw_src
14686 + (input_debug.symbolic_header.iextMax
14687 * input_swap->external_ext_size));
14688 for (;
14689 eraw_src < eraw_end;
14690 eraw_src += input_swap->external_ext_size)
14691 {
14692 EXTR ext;
14693 const char *name;
14694 struct mips_elf_link_hash_entry *h;
14695
9719ad41 14696 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14697 if (ext.asym.sc == scNil
14698 || ext.asym.sc == scUndefined
14699 || ext.asym.sc == scSUndefined)
14700 continue;
14701
14702 name = input_debug.ssext + ext.asym.iss;
14703 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14704 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14705 if (h == NULL || h->esym.ifd != -2)
14706 continue;
14707
14708 if (ext.ifd != -1)
14709 {
14710 BFD_ASSERT (ext.ifd
14711 < input_debug.symbolic_header.ifdMax);
14712 ext.ifd = input_debug.ifdmap[ext.ifd];
14713 }
14714
14715 h->esym = ext;
14716 }
14717
14718 /* Free up the information we just read. */
14719 free (input_debug.line);
14720 free (input_debug.external_dnr);
14721 free (input_debug.external_pdr);
14722 free (input_debug.external_sym);
14723 free (input_debug.external_opt);
14724 free (input_debug.external_aux);
14725 free (input_debug.ss);
14726 free (input_debug.ssext);
14727 free (input_debug.external_fdr);
14728 free (input_debug.external_rfd);
14729 free (input_debug.external_ext);
14730
14731 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14732 elf_link_input_bfd ignores this section. */
14733 input_section->flags &= ~SEC_HAS_CONTENTS;
14734 }
14735
0e1862bb 14736 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14737 {
14738 /* Create .rtproc section. */
87e0a731 14739 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14740 if (rtproc_sec == NULL)
14741 {
14742 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14743 | SEC_LINKER_CREATED | SEC_READONLY);
14744
87e0a731
AM
14745 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14746 ".rtproc",
14747 flags);
b49e97c9 14748 if (rtproc_sec == NULL
b49e97c9 14749 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14750 return FALSE;
b49e97c9
TS
14751 }
14752
14753 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14754 info, rtproc_sec,
14755 &debug))
b34976b6 14756 return FALSE;
b49e97c9
TS
14757 }
14758
14759 /* Build the external symbol information. */
14760 einfo.abfd = abfd;
14761 einfo.info = info;
14762 einfo.debug = &debug;
14763 einfo.swap = swap;
b34976b6 14764 einfo.failed = FALSE;
b49e97c9 14765 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14766 mips_elf_output_extsym, &einfo);
b49e97c9 14767 if (einfo.failed)
b34976b6 14768 return FALSE;
b49e97c9
TS
14769
14770 /* Set the size of the .mdebug section. */
eea6121a 14771 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14772
14773 /* Skip this section later on (I don't think this currently
14774 matters, but someday it might). */
8423293d 14775 o->map_head.link_order = NULL;
b49e97c9
TS
14776
14777 mdebug_sec = o;
14778 }
14779
0112cd26 14780 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14781 {
14782 const char *subname;
14783 unsigned int c;
14784 Elf32_gptab *tab;
14785 Elf32_External_gptab *ext_tab;
14786 unsigned int j;
14787
14788 /* The .gptab.sdata and .gptab.sbss sections hold
14789 information describing how the small data area would
14790 change depending upon the -G switch. These sections
14791 not used in executables files. */
0e1862bb 14792 if (! bfd_link_relocatable (info))
b49e97c9 14793 {
8423293d 14794 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14795 {
14796 asection *input_section;
14797
14798 if (p->type != bfd_indirect_link_order)
14799 {
14800 if (p->type == bfd_data_link_order)
14801 continue;
14802 abort ();
14803 }
14804
14805 input_section = p->u.indirect.section;
14806
14807 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14808 elf_link_input_bfd ignores this section. */
14809 input_section->flags &= ~SEC_HAS_CONTENTS;
14810 }
14811
14812 /* Skip this section later on (I don't think this
14813 currently matters, but someday it might). */
8423293d 14814 o->map_head.link_order = NULL;
b49e97c9
TS
14815
14816 /* Really remove the section. */
5daa8fe7 14817 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14818 --abfd->section_count;
14819
14820 continue;
14821 }
14822
14823 /* There is one gptab for initialized data, and one for
14824 uninitialized data. */
14825 if (strcmp (o->name, ".gptab.sdata") == 0)
14826 gptab_data_sec = o;
14827 else if (strcmp (o->name, ".gptab.sbss") == 0)
14828 gptab_bss_sec = o;
14829 else
14830 {
4eca0228 14831 _bfd_error_handler
695344c0 14832 /* xgettext:c-format */
b49e97c9
TS
14833 (_("%s: illegal section name `%s'"),
14834 bfd_get_filename (abfd), o->name);
14835 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14836 return FALSE;
b49e97c9
TS
14837 }
14838
14839 /* The linker script always combines .gptab.data and
14840 .gptab.sdata into .gptab.sdata, and likewise for
14841 .gptab.bss and .gptab.sbss. It is possible that there is
14842 no .sdata or .sbss section in the output file, in which
14843 case we must change the name of the output section. */
14844 subname = o->name + sizeof ".gptab" - 1;
14845 if (bfd_get_section_by_name (abfd, subname) == NULL)
14846 {
14847 if (o == gptab_data_sec)
14848 o->name = ".gptab.data";
14849 else
14850 o->name = ".gptab.bss";
14851 subname = o->name + sizeof ".gptab" - 1;
14852 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14853 }
14854
14855 /* Set up the first entry. */
14856 c = 1;
14857 amt = c * sizeof (Elf32_gptab);
9719ad41 14858 tab = bfd_malloc (amt);
b49e97c9 14859 if (tab == NULL)
b34976b6 14860 return FALSE;
b49e97c9
TS
14861 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14862 tab[0].gt_header.gt_unused = 0;
14863
14864 /* Combine the input sections. */
8423293d 14865 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14866 {
14867 asection *input_section;
14868 bfd *input_bfd;
14869 bfd_size_type size;
14870 unsigned long last;
14871 bfd_size_type gpentry;
14872
14873 if (p->type != bfd_indirect_link_order)
14874 {
14875 if (p->type == bfd_data_link_order)
14876 continue;
14877 abort ();
14878 }
14879
14880 input_section = p->u.indirect.section;
14881 input_bfd = input_section->owner;
14882
14883 /* Combine the gptab entries for this input section one
14884 by one. We know that the input gptab entries are
14885 sorted by ascending -G value. */
eea6121a 14886 size = input_section->size;
b49e97c9
TS
14887 last = 0;
14888 for (gpentry = sizeof (Elf32_External_gptab);
14889 gpentry < size;
14890 gpentry += sizeof (Elf32_External_gptab))
14891 {
14892 Elf32_External_gptab ext_gptab;
14893 Elf32_gptab int_gptab;
14894 unsigned long val;
14895 unsigned long add;
b34976b6 14896 bfd_boolean exact;
b49e97c9
TS
14897 unsigned int look;
14898
14899 if (! (bfd_get_section_contents
9719ad41
RS
14900 (input_bfd, input_section, &ext_gptab, gpentry,
14901 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14902 {
14903 free (tab);
b34976b6 14904 return FALSE;
b49e97c9
TS
14905 }
14906
14907 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14908 &int_gptab);
14909 val = int_gptab.gt_entry.gt_g_value;
14910 add = int_gptab.gt_entry.gt_bytes - last;
14911
b34976b6 14912 exact = FALSE;
b49e97c9
TS
14913 for (look = 1; look < c; look++)
14914 {
14915 if (tab[look].gt_entry.gt_g_value >= val)
14916 tab[look].gt_entry.gt_bytes += add;
14917
14918 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14919 exact = TRUE;
b49e97c9
TS
14920 }
14921
14922 if (! exact)
14923 {
14924 Elf32_gptab *new_tab;
14925 unsigned int max;
14926
14927 /* We need a new table entry. */
14928 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14929 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14930 if (new_tab == NULL)
14931 {
14932 free (tab);
b34976b6 14933 return FALSE;
b49e97c9
TS
14934 }
14935 tab = new_tab;
14936 tab[c].gt_entry.gt_g_value = val;
14937 tab[c].gt_entry.gt_bytes = add;
14938
14939 /* Merge in the size for the next smallest -G
14940 value, since that will be implied by this new
14941 value. */
14942 max = 0;
14943 for (look = 1; look < c; look++)
14944 {
14945 if (tab[look].gt_entry.gt_g_value < val
14946 && (max == 0
14947 || (tab[look].gt_entry.gt_g_value
14948 > tab[max].gt_entry.gt_g_value)))
14949 max = look;
14950 }
14951 if (max != 0)
14952 tab[c].gt_entry.gt_bytes +=
14953 tab[max].gt_entry.gt_bytes;
14954
14955 ++c;
14956 }
14957
14958 last = int_gptab.gt_entry.gt_bytes;
14959 }
14960
14961 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14962 elf_link_input_bfd ignores this section. */
14963 input_section->flags &= ~SEC_HAS_CONTENTS;
14964 }
14965
14966 /* The table must be sorted by -G value. */
14967 if (c > 2)
14968 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14969
14970 /* Swap out the table. */
14971 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14972 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14973 if (ext_tab == NULL)
14974 {
14975 free (tab);
b34976b6 14976 return FALSE;
b49e97c9
TS
14977 }
14978
14979 for (j = 0; j < c; j++)
14980 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14981 free (tab);
14982
eea6121a 14983 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14984 o->contents = (bfd_byte *) ext_tab;
14985
14986 /* Skip this section later on (I don't think this currently
14987 matters, but someday it might). */
8423293d 14988 o->map_head.link_order = NULL;
b49e97c9
TS
14989 }
14990 }
14991
14992 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14993 if (!bfd_elf_final_link (abfd, info))
b34976b6 14994 return FALSE;
b49e97c9
TS
14995
14996 /* Now write out the computed sections. */
14997
351cdf24
MF
14998 if (abiflags_sec != NULL)
14999 {
15000 Elf_External_ABIFlags_v0 ext;
15001 Elf_Internal_ABIFlags_v0 *abiflags;
15002
15003 abiflags = &mips_elf_tdata (abfd)->abiflags;
15004
15005 /* Set up the abiflags if no valid input sections were found. */
15006 if (!mips_elf_tdata (abfd)->abiflags_valid)
15007 {
15008 infer_mips_abiflags (abfd, abiflags);
15009 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15010 }
15011 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15012 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15013 return FALSE;
15014 }
15015
9719ad41 15016 if (reginfo_sec != NULL)
b49e97c9
TS
15017 {
15018 Elf32_External_RegInfo ext;
15019
15020 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15021 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15022 return FALSE;
b49e97c9
TS
15023 }
15024
9719ad41 15025 if (mdebug_sec != NULL)
b49e97c9
TS
15026 {
15027 BFD_ASSERT (abfd->output_has_begun);
15028 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15029 swap, info,
15030 mdebug_sec->filepos))
b34976b6 15031 return FALSE;
b49e97c9
TS
15032
15033 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15034 }
15035
9719ad41 15036 if (gptab_data_sec != NULL)
b49e97c9
TS
15037 {
15038 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15039 gptab_data_sec->contents,
eea6121a 15040 0, gptab_data_sec->size))
b34976b6 15041 return FALSE;
b49e97c9
TS
15042 }
15043
9719ad41 15044 if (gptab_bss_sec != NULL)
b49e97c9
TS
15045 {
15046 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15047 gptab_bss_sec->contents,
eea6121a 15048 0, gptab_bss_sec->size))
b34976b6 15049 return FALSE;
b49e97c9
TS
15050 }
15051
15052 if (SGI_COMPAT (abfd))
15053 {
15054 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15055 if (rtproc_sec != NULL)
15056 {
15057 if (! bfd_set_section_contents (abfd, rtproc_sec,
15058 rtproc_sec->contents,
eea6121a 15059 0, rtproc_sec->size))
b34976b6 15060 return FALSE;
b49e97c9
TS
15061 }
15062 }
15063
b34976b6 15064 return TRUE;
b49e97c9
TS
15065}
15066\f
b2e9744f
MR
15067/* Merge object file header flags from IBFD into OBFD. Raise an error
15068 if there are conflicting settings. */
15069
15070static bfd_boolean
50e03d47 15071mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15072{
50e03d47 15073 bfd *obfd = info->output_bfd;
b2e9744f
MR
15074 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15075 flagword old_flags;
15076 flagword new_flags;
15077 bfd_boolean ok;
15078
15079 new_flags = elf_elfheader (ibfd)->e_flags;
15080 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15081 old_flags = elf_elfheader (obfd)->e_flags;
15082
15083 /* Check flag compatibility. */
15084
15085 new_flags &= ~EF_MIPS_NOREORDER;
15086 old_flags &= ~EF_MIPS_NOREORDER;
15087
15088 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15089 doesn't seem to matter. */
15090 new_flags &= ~EF_MIPS_XGOT;
15091 old_flags &= ~EF_MIPS_XGOT;
15092
15093 /* MIPSpro generates ucode info in n64 objects. Again, we should
15094 just be able to ignore this. */
15095 new_flags &= ~EF_MIPS_UCODE;
15096 old_flags &= ~EF_MIPS_UCODE;
15097
15098 /* DSOs should only be linked with CPIC code. */
15099 if ((ibfd->flags & DYNAMIC) != 0)
15100 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15101
15102 if (new_flags == old_flags)
15103 return TRUE;
15104
15105 ok = TRUE;
15106
15107 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15108 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15109 {
4eca0228 15110 _bfd_error_handler
b2e9744f
MR
15111 (_("%B: warning: linking abicalls files with non-abicalls files"),
15112 ibfd);
15113 ok = TRUE;
15114 }
15115
15116 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15117 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15118 if (! (new_flags & EF_MIPS_PIC))
15119 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15120
15121 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15122 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15123
15124 /* Compare the ISAs. */
15125 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15126 {
4eca0228 15127 _bfd_error_handler
b2e9744f
MR
15128 (_("%B: linking 32-bit code with 64-bit code"),
15129 ibfd);
15130 ok = FALSE;
15131 }
15132 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15133 {
15134 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15135 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15136 {
15137 /* Copy the architecture info from IBFD to OBFD. Also copy
15138 the 32-bit flag (if set) so that we continue to recognise
15139 OBFD as a 32-bit binary. */
15140 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15141 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15142 elf_elfheader (obfd)->e_flags
15143 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15144
15145 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15146 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15147
15148 /* Copy across the ABI flags if OBFD doesn't use them
15149 and if that was what caused us to treat IBFD as 32-bit. */
15150 if ((old_flags & EF_MIPS_ABI) == 0
15151 && mips_32bit_flags_p (new_flags)
15152 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15153 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15154 }
15155 else
15156 {
15157 /* The ISAs aren't compatible. */
4eca0228 15158 _bfd_error_handler
695344c0 15159 /* xgettext:c-format */
b2e9744f
MR
15160 (_("%B: linking %s module with previous %s modules"),
15161 ibfd,
15162 bfd_printable_name (ibfd),
15163 bfd_printable_name (obfd));
15164 ok = FALSE;
15165 }
15166 }
15167
15168 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15169 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15170
15171 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15172 does set EI_CLASS differently from any 32-bit ABI. */
15173 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15174 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15175 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15176 {
15177 /* Only error if both are set (to different values). */
15178 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15179 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15180 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15181 {
4eca0228 15182 _bfd_error_handler
695344c0 15183 /* xgettext:c-format */
b2e9744f
MR
15184 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15185 ibfd,
15186 elf_mips_abi_name (ibfd),
15187 elf_mips_abi_name (obfd));
15188 ok = FALSE;
15189 }
15190 new_flags &= ~EF_MIPS_ABI;
15191 old_flags &= ~EF_MIPS_ABI;
15192 }
15193
15194 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15195 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15196 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15197 {
15198 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15199 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15200 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15201 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15202 int micro_mis = old_m16 && new_micro;
15203 int m16_mis = old_micro && new_m16;
15204
15205 if (m16_mis || micro_mis)
15206 {
4eca0228 15207 _bfd_error_handler
695344c0 15208 /* xgettext:c-format */
b2e9744f
MR
15209 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15210 ibfd,
15211 m16_mis ? "MIPS16" : "microMIPS",
15212 m16_mis ? "microMIPS" : "MIPS16");
15213 ok = FALSE;
15214 }
15215
15216 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15217
15218 new_flags &= ~ EF_MIPS_ARCH_ASE;
15219 old_flags &= ~ EF_MIPS_ARCH_ASE;
15220 }
15221
15222 /* Compare NaN encodings. */
15223 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15224 {
695344c0 15225 /* xgettext:c-format */
b2e9744f
MR
15226 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15227 ibfd,
15228 (new_flags & EF_MIPS_NAN2008
15229 ? "-mnan=2008" : "-mnan=legacy"),
15230 (old_flags & EF_MIPS_NAN2008
15231 ? "-mnan=2008" : "-mnan=legacy"));
15232 ok = FALSE;
15233 new_flags &= ~EF_MIPS_NAN2008;
15234 old_flags &= ~EF_MIPS_NAN2008;
15235 }
15236
15237 /* Compare FP64 state. */
15238 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15239 {
695344c0 15240 /* xgettext:c-format */
b2e9744f
MR
15241 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15242 ibfd,
15243 (new_flags & EF_MIPS_FP64
15244 ? "-mfp64" : "-mfp32"),
15245 (old_flags & EF_MIPS_FP64
15246 ? "-mfp64" : "-mfp32"));
15247 ok = FALSE;
15248 new_flags &= ~EF_MIPS_FP64;
15249 old_flags &= ~EF_MIPS_FP64;
15250 }
15251
15252 /* Warn about any other mismatches */
15253 if (new_flags != old_flags)
15254 {
695344c0 15255 /* xgettext:c-format */
4eca0228 15256 _bfd_error_handler
b2e9744f
MR
15257 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15258 "(0x%lx)"),
15259 ibfd, (unsigned long) new_flags,
15260 (unsigned long) old_flags);
15261 ok = FALSE;
15262 }
15263
15264 return ok;
15265}
15266
2cf19d5c
JM
15267/* Merge object attributes from IBFD into OBFD. Raise an error if
15268 there are conflicting attributes. */
15269static bfd_boolean
50e03d47 15270mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15271{
50e03d47 15272 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15273 obj_attribute *in_attr;
15274 obj_attribute *out_attr;
6ae68ba3 15275 bfd *abi_fp_bfd;
b60bf9be 15276 bfd *abi_msa_bfd;
6ae68ba3
MR
15277
15278 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15279 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15280 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15281 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15282
b60bf9be
CF
15283 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15284 if (!abi_msa_bfd
15285 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15286 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15287
2cf19d5c
JM
15288 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15289 {
15290 /* This is the first object. Copy the attributes. */
15291 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15292
15293 /* Use the Tag_null value to indicate the attributes have been
15294 initialized. */
15295 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15296
15297 return TRUE;
15298 }
15299
15300 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15301 non-conflicting ones. */
2cf19d5c
JM
15302 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15303 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15304 {
757a636f 15305 int out_fp, in_fp;
6ae68ba3 15306
757a636f
RS
15307 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15308 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15309 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15310 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15311 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15312 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15313 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15314 || in_fp == Val_GNU_MIPS_ABI_FP_64
15315 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15316 {
15317 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15318 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15319 }
15320 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15321 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15322 || out_fp == Val_GNU_MIPS_ABI_FP_64
15323 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15324 /* Keep the current setting. */;
15325 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15326 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15327 {
15328 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15329 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15330 }
15331 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15332 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15333 /* Keep the current setting. */;
757a636f
RS
15334 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15335 {
15336 const char *out_string, *in_string;
6ae68ba3 15337
757a636f
RS
15338 out_string = _bfd_mips_fp_abi_string (out_fp);
15339 in_string = _bfd_mips_fp_abi_string (in_fp);
15340 /* First warn about cases involving unrecognised ABIs. */
15341 if (!out_string && !in_string)
695344c0 15342 /* xgettext:c-format */
757a636f
RS
15343 _bfd_error_handler
15344 (_("Warning: %B uses unknown floating point ABI %d "
15345 "(set by %B), %B uses unknown floating point ABI %d"),
15346 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15347 else if (!out_string)
15348 _bfd_error_handler
695344c0 15349 /* xgettext:c-format */
757a636f
RS
15350 (_("Warning: %B uses unknown floating point ABI %d "
15351 "(set by %B), %B uses %s"),
15352 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15353 else if (!in_string)
15354 _bfd_error_handler
695344c0 15355 /* xgettext:c-format */
757a636f
RS
15356 (_("Warning: %B uses %s (set by %B), "
15357 "%B uses unknown floating point ABI %d"),
15358 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15359 else
15360 {
15361 /* If one of the bfds is soft-float, the other must be
15362 hard-float. The exact choice of hard-float ABI isn't
15363 really relevant to the error message. */
15364 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15365 out_string = "-mhard-float";
15366 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15367 in_string = "-mhard-float";
15368 _bfd_error_handler
695344c0 15369 /* xgettext:c-format */
757a636f
RS
15370 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15371 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15372 }
15373 }
2cf19d5c
JM
15374 }
15375
b60bf9be
CF
15376 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15377 non-conflicting ones. */
15378 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15379 {
15380 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15381 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15382 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15383 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15384 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15385 {
15386 case Val_GNU_MIPS_ABI_MSA_128:
15387 _bfd_error_handler
695344c0 15388 /* xgettext:c-format */
b60bf9be
CF
15389 (_("Warning: %B uses %s (set by %B), "
15390 "%B uses unknown MSA ABI %d"),
15391 obfd, abi_msa_bfd, ibfd,
15392 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15393 break;
15394
15395 default:
15396 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15397 {
15398 case Val_GNU_MIPS_ABI_MSA_128:
15399 _bfd_error_handler
695344c0 15400 /* xgettext:c-format */
b60bf9be
CF
15401 (_("Warning: %B uses unknown MSA ABI %d "
15402 "(set by %B), %B uses %s"),
15403 obfd, abi_msa_bfd, ibfd,
15404 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15405 break;
15406
15407 default:
15408 _bfd_error_handler
695344c0 15409 /* xgettext:c-format */
b60bf9be
CF
15410 (_("Warning: %B uses unknown MSA ABI %d "
15411 "(set by %B), %B uses unknown MSA ABI %d"),
15412 obfd, abi_msa_bfd, ibfd,
15413 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15414 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15415 break;
15416 }
15417 }
15418 }
15419
2cf19d5c 15420 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15421 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15422}
15423
a3dc0a7f
MR
15424/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15425 there are conflicting settings. */
15426
15427static bfd_boolean
15428mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15429{
15430 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15431 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15432 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15433
15434 /* Update the output abiflags fp_abi using the computed fp_abi. */
15435 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15436
15437#define max(a, b) ((a) > (b) ? (a) : (b))
15438 /* Merge abiflags. */
15439 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15440 in_tdata->abiflags.isa_level);
15441 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15442 in_tdata->abiflags.isa_rev);
15443 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15444 in_tdata->abiflags.gpr_size);
15445 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15446 in_tdata->abiflags.cpr1_size);
15447 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15448 in_tdata->abiflags.cpr2_size);
15449#undef max
15450 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15451 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15452
15453 return TRUE;
15454}
15455
b49e97c9
TS
15456/* Merge backend specific data from an object file to the output
15457 object file when linking. */
15458
b34976b6 15459bfd_boolean
50e03d47 15460_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15461{
50e03d47 15462 bfd *obfd = info->output_bfd;
cf8502c1
MR
15463 struct mips_elf_obj_tdata *out_tdata;
15464 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15465 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15466 asection *sec;
d537eeb5 15467 bfd_boolean ok;
b49e97c9 15468
58238693 15469 /* Check if we have the same endianness. */
50e03d47 15470 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15471 {
4eca0228 15472 _bfd_error_handler
d003868e
AM
15473 (_("%B: endianness incompatible with that of the selected emulation"),
15474 ibfd);
aa701218
AO
15475 return FALSE;
15476 }
b49e97c9 15477
d5eaccd7 15478 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15479 return TRUE;
b49e97c9 15480
cf8502c1
MR
15481 in_tdata = mips_elf_tdata (ibfd);
15482 out_tdata = mips_elf_tdata (obfd);
15483
aa701218
AO
15484 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15485 {
4eca0228 15486 _bfd_error_handler
d003868e
AM
15487 (_("%B: ABI is incompatible with that of the selected emulation"),
15488 ibfd);
aa701218
AO
15489 return FALSE;
15490 }
15491
23ba6f18
MR
15492 /* Check to see if the input BFD actually contains any sections. If not,
15493 then it has no attributes, and its flags may not have been initialized
15494 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15495 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15496 {
15497 /* Ignore synthetic sections and empty .text, .data and .bss sections
15498 which are automatically generated by gas. Also ignore fake
15499 (s)common sections, since merely defining a common symbol does
15500 not affect compatibility. */
15501 if ((sec->flags & SEC_IS_COMMON) == 0
15502 && strcmp (sec->name, ".reginfo")
15503 && strcmp (sec->name, ".mdebug")
15504 && (sec->size != 0
15505 || (strcmp (sec->name, ".text")
15506 && strcmp (sec->name, ".data")
15507 && strcmp (sec->name, ".bss"))))
15508 {
15509 null_input_bfd = FALSE;
15510 break;
15511 }
15512 }
15513 if (null_input_bfd)
15514 return TRUE;
15515
28d45e28 15516 /* Populate abiflags using existing information. */
23ba6f18
MR
15517 if (in_tdata->abiflags_valid)
15518 {
15519 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15520 Elf_Internal_ABIFlags_v0 in_abiflags;
15521 Elf_Internal_ABIFlags_v0 abiflags;
15522
15523 /* Set up the FP ABI attribute from the abiflags if it is not already
15524 set. */
23ba6f18
MR
15525 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15526 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15527
351cdf24 15528 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15529 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15530
15531 /* It is not possible to infer the correct ISA revision
15532 for R3 or R5 so drop down to R2 for the checks. */
15533 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15534 in_abiflags.isa_rev = 2;
15535
c97c330b
MF
15536 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15537 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15538 _bfd_error_handler
351cdf24
MF
15539 (_("%B: warning: Inconsistent ISA between e_flags and "
15540 ".MIPS.abiflags"), ibfd);
15541 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15542 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15543 _bfd_error_handler
dcb1c796 15544 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15545 ".MIPS.abiflags"), ibfd);
15546 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15547 _bfd_error_handler
351cdf24
MF
15548 (_("%B: warning: Inconsistent ASEs between e_flags and "
15549 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15550 /* The isa_ext is allowed to be an extension of what can be inferred
15551 from e_flags. */
15552 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15553 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15554 _bfd_error_handler
351cdf24
MF
15555 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15556 ".MIPS.abiflags"), ibfd);
15557 if (in_abiflags.flags2 != 0)
4eca0228 15558 _bfd_error_handler
351cdf24
MF
15559 (_("%B: warning: Unexpected flag in the flags2 field of "
15560 ".MIPS.abiflags (0x%lx)"), ibfd,
15561 (unsigned long) in_abiflags.flags2);
15562 }
28d45e28
MR
15563 else
15564 {
15565 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15566 in_tdata->abiflags_valid = TRUE;
15567 }
15568
cf8502c1 15569 if (!out_tdata->abiflags_valid)
351cdf24
MF
15570 {
15571 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15572 out_tdata->abiflags = in_tdata->abiflags;
15573 out_tdata->abiflags_valid = TRUE;
351cdf24 15574 }
b49e97c9
TS
15575
15576 if (! elf_flags_init (obfd))
15577 {
b34976b6 15578 elf_flags_init (obfd) = TRUE;
351cdf24 15579 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15580 elf_elfheader (obfd)->e_ident[EI_CLASS]
15581 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15582
15583 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15584 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15585 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15586 bfd_get_mach (ibfd))))
b49e97c9
TS
15587 {
15588 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15589 bfd_get_mach (ibfd)))
b34976b6 15590 return FALSE;
351cdf24
MF
15591
15592 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15593 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15594 }
15595
d537eeb5 15596 ok = TRUE;
b49e97c9 15597 }
d537eeb5 15598 else
50e03d47 15599 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15600
50e03d47 15601 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15602
a3dc0a7f 15603 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15604
d537eeb5 15605 if (!ok)
b49e97c9
TS
15606 {
15607 bfd_set_error (bfd_error_bad_value);
b34976b6 15608 return FALSE;
b49e97c9
TS
15609 }
15610
b34976b6 15611 return TRUE;
b49e97c9
TS
15612}
15613
15614/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15615
b34976b6 15616bfd_boolean
9719ad41 15617_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15618{
15619 BFD_ASSERT (!elf_flags_init (abfd)
15620 || elf_elfheader (abfd)->e_flags == flags);
15621
15622 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15623 elf_flags_init (abfd) = TRUE;
15624 return TRUE;
b49e97c9
TS
15625}
15626
ad9563d6
CM
15627char *
15628_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15629{
15630 switch (dtag)
15631 {
15632 default: return "";
15633 case DT_MIPS_RLD_VERSION:
15634 return "MIPS_RLD_VERSION";
15635 case DT_MIPS_TIME_STAMP:
15636 return "MIPS_TIME_STAMP";
15637 case DT_MIPS_ICHECKSUM:
15638 return "MIPS_ICHECKSUM";
15639 case DT_MIPS_IVERSION:
15640 return "MIPS_IVERSION";
15641 case DT_MIPS_FLAGS:
15642 return "MIPS_FLAGS";
15643 case DT_MIPS_BASE_ADDRESS:
15644 return "MIPS_BASE_ADDRESS";
15645 case DT_MIPS_MSYM:
15646 return "MIPS_MSYM";
15647 case DT_MIPS_CONFLICT:
15648 return "MIPS_CONFLICT";
15649 case DT_MIPS_LIBLIST:
15650 return "MIPS_LIBLIST";
15651 case DT_MIPS_LOCAL_GOTNO:
15652 return "MIPS_LOCAL_GOTNO";
15653 case DT_MIPS_CONFLICTNO:
15654 return "MIPS_CONFLICTNO";
15655 case DT_MIPS_LIBLISTNO:
15656 return "MIPS_LIBLISTNO";
15657 case DT_MIPS_SYMTABNO:
15658 return "MIPS_SYMTABNO";
15659 case DT_MIPS_UNREFEXTNO:
15660 return "MIPS_UNREFEXTNO";
15661 case DT_MIPS_GOTSYM:
15662 return "MIPS_GOTSYM";
15663 case DT_MIPS_HIPAGENO:
15664 return "MIPS_HIPAGENO";
15665 case DT_MIPS_RLD_MAP:
15666 return "MIPS_RLD_MAP";
a5499fa4
MF
15667 case DT_MIPS_RLD_MAP_REL:
15668 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15669 case DT_MIPS_DELTA_CLASS:
15670 return "MIPS_DELTA_CLASS";
15671 case DT_MIPS_DELTA_CLASS_NO:
15672 return "MIPS_DELTA_CLASS_NO";
15673 case DT_MIPS_DELTA_INSTANCE:
15674 return "MIPS_DELTA_INSTANCE";
15675 case DT_MIPS_DELTA_INSTANCE_NO:
15676 return "MIPS_DELTA_INSTANCE_NO";
15677 case DT_MIPS_DELTA_RELOC:
15678 return "MIPS_DELTA_RELOC";
15679 case DT_MIPS_DELTA_RELOC_NO:
15680 return "MIPS_DELTA_RELOC_NO";
15681 case DT_MIPS_DELTA_SYM:
15682 return "MIPS_DELTA_SYM";
15683 case DT_MIPS_DELTA_SYM_NO:
15684 return "MIPS_DELTA_SYM_NO";
15685 case DT_MIPS_DELTA_CLASSSYM:
15686 return "MIPS_DELTA_CLASSSYM";
15687 case DT_MIPS_DELTA_CLASSSYM_NO:
15688 return "MIPS_DELTA_CLASSSYM_NO";
15689 case DT_MIPS_CXX_FLAGS:
15690 return "MIPS_CXX_FLAGS";
15691 case DT_MIPS_PIXIE_INIT:
15692 return "MIPS_PIXIE_INIT";
15693 case DT_MIPS_SYMBOL_LIB:
15694 return "MIPS_SYMBOL_LIB";
15695 case DT_MIPS_LOCALPAGE_GOTIDX:
15696 return "MIPS_LOCALPAGE_GOTIDX";
15697 case DT_MIPS_LOCAL_GOTIDX:
15698 return "MIPS_LOCAL_GOTIDX";
15699 case DT_MIPS_HIDDEN_GOTIDX:
15700 return "MIPS_HIDDEN_GOTIDX";
15701 case DT_MIPS_PROTECTED_GOTIDX:
15702 return "MIPS_PROTECTED_GOT_IDX";
15703 case DT_MIPS_OPTIONS:
15704 return "MIPS_OPTIONS";
15705 case DT_MIPS_INTERFACE:
15706 return "MIPS_INTERFACE";
15707 case DT_MIPS_DYNSTR_ALIGN:
15708 return "DT_MIPS_DYNSTR_ALIGN";
15709 case DT_MIPS_INTERFACE_SIZE:
15710 return "DT_MIPS_INTERFACE_SIZE";
15711 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15712 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15713 case DT_MIPS_PERF_SUFFIX:
15714 return "DT_MIPS_PERF_SUFFIX";
15715 case DT_MIPS_COMPACT_SIZE:
15716 return "DT_MIPS_COMPACT_SIZE";
15717 case DT_MIPS_GP_VALUE:
15718 return "DT_MIPS_GP_VALUE";
15719 case DT_MIPS_AUX_DYNAMIC:
15720 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15721 case DT_MIPS_PLTGOT:
15722 return "DT_MIPS_PLTGOT";
15723 case DT_MIPS_RWPLT:
15724 return "DT_MIPS_RWPLT";
ad9563d6
CM
15725 }
15726}
15727
757a636f
RS
15728/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15729 not known. */
15730
15731const char *
15732_bfd_mips_fp_abi_string (int fp)
15733{
15734 switch (fp)
15735 {
15736 /* These strings aren't translated because they're simply
15737 option lists. */
15738 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15739 return "-mdouble-float";
15740
15741 case Val_GNU_MIPS_ABI_FP_SINGLE:
15742 return "-msingle-float";
15743
15744 case Val_GNU_MIPS_ABI_FP_SOFT:
15745 return "-msoft-float";
15746
351cdf24
MF
15747 case Val_GNU_MIPS_ABI_FP_OLD_64:
15748 return _("-mips32r2 -mfp64 (12 callee-saved)");
15749
15750 case Val_GNU_MIPS_ABI_FP_XX:
15751 return "-mfpxx";
15752
757a636f 15753 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15754 return "-mgp32 -mfp64";
15755
15756 case Val_GNU_MIPS_ABI_FP_64A:
15757 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15758
15759 default:
15760 return 0;
15761 }
15762}
15763
351cdf24
MF
15764static void
15765print_mips_ases (FILE *file, unsigned int mask)
15766{
15767 if (mask & AFL_ASE_DSP)
15768 fputs ("\n\tDSP ASE", file);
15769 if (mask & AFL_ASE_DSPR2)
15770 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15771 if (mask & AFL_ASE_DSPR3)
15772 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15773 if (mask & AFL_ASE_EVA)
15774 fputs ("\n\tEnhanced VA Scheme", file);
15775 if (mask & AFL_ASE_MCU)
15776 fputs ("\n\tMCU (MicroController) ASE", file);
15777 if (mask & AFL_ASE_MDMX)
15778 fputs ("\n\tMDMX ASE", file);
15779 if (mask & AFL_ASE_MIPS3D)
15780 fputs ("\n\tMIPS-3D ASE", file);
15781 if (mask & AFL_ASE_MT)
15782 fputs ("\n\tMT ASE", file);
15783 if (mask & AFL_ASE_SMARTMIPS)
15784 fputs ("\n\tSmartMIPS ASE", file);
15785 if (mask & AFL_ASE_VIRT)
15786 fputs ("\n\tVZ ASE", file);
15787 if (mask & AFL_ASE_MSA)
15788 fputs ("\n\tMSA ASE", file);
15789 if (mask & AFL_ASE_MIPS16)
15790 fputs ("\n\tMIPS16 ASE", file);
15791 if (mask & AFL_ASE_MICROMIPS)
15792 fputs ("\n\tMICROMIPS ASE", file);
15793 if (mask & AFL_ASE_XPA)
15794 fputs ("\n\tXPA ASE", file);
15795 if (mask == 0)
15796 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15797 else if ((mask & ~AFL_ASE_MASK) != 0)
15798 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15799}
15800
15801static void
15802print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15803{
15804 switch (isa_ext)
15805 {
15806 case 0:
15807 fputs (_("None"), file);
15808 break;
15809 case AFL_EXT_XLR:
15810 fputs ("RMI XLR", file);
15811 break;
2c629856
N
15812 case AFL_EXT_OCTEON3:
15813 fputs ("Cavium Networks Octeon3", file);
15814 break;
351cdf24
MF
15815 case AFL_EXT_OCTEON2:
15816 fputs ("Cavium Networks Octeon2", file);
15817 break;
15818 case AFL_EXT_OCTEONP:
15819 fputs ("Cavium Networks OcteonP", file);
15820 break;
15821 case AFL_EXT_LOONGSON_3A:
15822 fputs ("Loongson 3A", file);
15823 break;
15824 case AFL_EXT_OCTEON:
15825 fputs ("Cavium Networks Octeon", file);
15826 break;
15827 case AFL_EXT_5900:
15828 fputs ("Toshiba R5900", file);
15829 break;
15830 case AFL_EXT_4650:
15831 fputs ("MIPS R4650", file);
15832 break;
15833 case AFL_EXT_4010:
15834 fputs ("LSI R4010", file);
15835 break;
15836 case AFL_EXT_4100:
15837 fputs ("NEC VR4100", file);
15838 break;
15839 case AFL_EXT_3900:
15840 fputs ("Toshiba R3900", file);
15841 break;
15842 case AFL_EXT_10000:
15843 fputs ("MIPS R10000", file);
15844 break;
15845 case AFL_EXT_SB1:
15846 fputs ("Broadcom SB-1", file);
15847 break;
15848 case AFL_EXT_4111:
15849 fputs ("NEC VR4111/VR4181", file);
15850 break;
15851 case AFL_EXT_4120:
15852 fputs ("NEC VR4120", file);
15853 break;
15854 case AFL_EXT_5400:
15855 fputs ("NEC VR5400", file);
15856 break;
15857 case AFL_EXT_5500:
15858 fputs ("NEC VR5500", file);
15859 break;
15860 case AFL_EXT_LOONGSON_2E:
15861 fputs ("ST Microelectronics Loongson 2E", file);
15862 break;
15863 case AFL_EXT_LOONGSON_2F:
15864 fputs ("ST Microelectronics Loongson 2F", file);
15865 break;
15866 default:
00ac7aa0 15867 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15868 break;
15869 }
15870}
15871
15872static void
15873print_mips_fp_abi_value (FILE *file, int val)
15874{
15875 switch (val)
15876 {
15877 case Val_GNU_MIPS_ABI_FP_ANY:
15878 fprintf (file, _("Hard or soft float\n"));
15879 break;
15880 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15881 fprintf (file, _("Hard float (double precision)\n"));
15882 break;
15883 case Val_GNU_MIPS_ABI_FP_SINGLE:
15884 fprintf (file, _("Hard float (single precision)\n"));
15885 break;
15886 case Val_GNU_MIPS_ABI_FP_SOFT:
15887 fprintf (file, _("Soft float\n"));
15888 break;
15889 case Val_GNU_MIPS_ABI_FP_OLD_64:
15890 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15891 break;
15892 case Val_GNU_MIPS_ABI_FP_XX:
15893 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15894 break;
15895 case Val_GNU_MIPS_ABI_FP_64:
15896 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15897 break;
15898 case Val_GNU_MIPS_ABI_FP_64A:
15899 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15900 break;
15901 default:
15902 fprintf (file, "??? (%d)\n", val);
15903 break;
15904 }
15905}
15906
15907static int
15908get_mips_reg_size (int reg_size)
15909{
15910 return (reg_size == AFL_REG_NONE) ? 0
15911 : (reg_size == AFL_REG_32) ? 32
15912 : (reg_size == AFL_REG_64) ? 64
15913 : (reg_size == AFL_REG_128) ? 128
15914 : -1;
15915}
15916
b34976b6 15917bfd_boolean
9719ad41 15918_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15919{
9719ad41 15920 FILE *file = ptr;
b49e97c9
TS
15921
15922 BFD_ASSERT (abfd != NULL && ptr != NULL);
15923
15924 /* Print normal ELF private data. */
15925 _bfd_elf_print_private_bfd_data (abfd, ptr);
15926
15927 /* xgettext:c-format */
15928 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15929
15930 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15931 fprintf (file, _(" [abi=O32]"));
15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15933 fprintf (file, _(" [abi=O64]"));
15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15935 fprintf (file, _(" [abi=EABI32]"));
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15937 fprintf (file, _(" [abi=EABI64]"));
15938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15939 fprintf (file, _(" [abi unknown]"));
15940 else if (ABI_N32_P (abfd))
15941 fprintf (file, _(" [abi=N32]"));
15942 else if (ABI_64_P (abfd))
15943 fprintf (file, _(" [abi=64]"));
15944 else
15945 fprintf (file, _(" [no abi set]"));
15946
15947 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15948 fprintf (file, " [mips1]");
b49e97c9 15949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15950 fprintf (file, " [mips2]");
b49e97c9 15951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15952 fprintf (file, " [mips3]");
b49e97c9 15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15954 fprintf (file, " [mips4]");
b49e97c9 15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15956 fprintf (file, " [mips5]");
b49e97c9 15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15958 fprintf (file, " [mips32]");
b49e97c9 15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15960 fprintf (file, " [mips64]");
af7ee8bf 15961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15962 fprintf (file, " [mips32r2]");
5f74bc13 15963 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15964 fprintf (file, " [mips64r2]");
7361da2c
AB
15965 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15966 fprintf (file, " [mips32r6]");
15967 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15968 fprintf (file, " [mips64r6]");
b49e97c9
TS
15969 else
15970 fprintf (file, _(" [unknown ISA]"));
15971
40d32fc6 15972 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15973 fprintf (file, " [mdmx]");
40d32fc6
CD
15974
15975 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15976 fprintf (file, " [mips16]");
40d32fc6 15977
df58fc94
RS
15978 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15979 fprintf (file, " [micromips]");
15980
ba92f887
MR
15981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15982 fprintf (file, " [nan2008]");
15983
5baf5e34 15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15985 fprintf (file, " [old fp64]");
5baf5e34 15986
b49e97c9 15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15988 fprintf (file, " [32bitmode]");
b49e97c9
TS
15989 else
15990 fprintf (file, _(" [not 32bitmode]"));
15991
c0e3f241 15992 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15993 fprintf (file, " [noreorder]");
c0e3f241
CD
15994
15995 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15996 fprintf (file, " [PIC]");
c0e3f241
CD
15997
15998 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15999 fprintf (file, " [CPIC]");
c0e3f241
CD
16000
16001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16002 fprintf (file, " [XGOT]");
c0e3f241
CD
16003
16004 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16005 fprintf (file, " [UCODE]");
c0e3f241 16006
b49e97c9
TS
16007 fputc ('\n', file);
16008
351cdf24
MF
16009 if (mips_elf_tdata (abfd)->abiflags_valid)
16010 {
16011 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16012 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16013 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16014 if (abiflags->isa_rev > 1)
16015 fprintf (file, "r%d", abiflags->isa_rev);
16016 fprintf (file, "\nGPR size: %d",
16017 get_mips_reg_size (abiflags->gpr_size));
16018 fprintf (file, "\nCPR1 size: %d",
16019 get_mips_reg_size (abiflags->cpr1_size));
16020 fprintf (file, "\nCPR2 size: %d",
16021 get_mips_reg_size (abiflags->cpr2_size));
16022 fputs ("\nFP ABI: ", file);
16023 print_mips_fp_abi_value (file, abiflags->fp_abi);
16024 fputs ("ISA Extension: ", file);
16025 print_mips_isa_ext (file, abiflags->isa_ext);
16026 fputs ("\nASEs:", file);
16027 print_mips_ases (file, abiflags->ases);
16028 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16029 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16030 fputc ('\n', file);
16031 }
16032
b34976b6 16033 return TRUE;
b49e97c9 16034}
2f89ff8d 16035
b35d266b 16036const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16037{
0112cd26
NC
16038 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16039 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16040 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16041 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16042 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16043 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16044 { NULL, 0, 0, 0, 0 }
2f89ff8d 16045};
5e2b0d47 16046
8992f0d7
TS
16047/* Merge non visibility st_other attributes. Ensure that the
16048 STO_OPTIONAL flag is copied into h->other, even if this is not a
16049 definiton of the symbol. */
5e2b0d47
NC
16050void
16051_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16052 const Elf_Internal_Sym *isym,
16053 bfd_boolean definition,
16054 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16055{
8992f0d7
TS
16056 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16057 {
16058 unsigned char other;
16059
16060 other = (definition ? isym->st_other : h->other);
16061 other &= ~ELF_ST_VISIBILITY (-1);
16062 h->other = other | ELF_ST_VISIBILITY (h->other);
16063 }
16064
16065 if (!definition
5e2b0d47
NC
16066 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16067 h->other |= STO_OPTIONAL;
16068}
12ac1cf5
NC
16069
16070/* Decide whether an undefined symbol is special and can be ignored.
16071 This is the case for OPTIONAL symbols on IRIX. */
16072bfd_boolean
16073_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16074{
16075 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16076}
e0764319
NC
16077
16078bfd_boolean
16079_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16080{
16081 return (sym->st_shndx == SHN_COMMON
16082 || sym->st_shndx == SHN_MIPS_ACOMMON
16083 || sym->st_shndx == SHN_MIPS_SCOMMON);
16084}
861fb55a
DJ
16085
16086/* Return address for Ith PLT stub in section PLT, for relocation REL
16087 or (bfd_vma) -1 if it should not be included. */
16088
16089bfd_vma
16090_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16091 const arelent *rel ATTRIBUTE_UNUSED)
16092{
16093 return (plt->vma
16094 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16095 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16096}
16097
1bbce132
MR
16098/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16099 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16100 and .got.plt and also the slots may be of a different size each we walk
16101 the PLT manually fetching instructions and matching them against known
16102 patterns. To make things easier standard MIPS slots, if any, always come
16103 first. As we don't create proper ELF symbols we use the UDATA.I member
16104 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16105 with the ST_OTHER member of the ELF symbol. */
16106
16107long
16108_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16109 long symcount ATTRIBUTE_UNUSED,
16110 asymbol **syms ATTRIBUTE_UNUSED,
16111 long dynsymcount, asymbol **dynsyms,
16112 asymbol **ret)
16113{
16114 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16115 static const char microsuffix[] = "@micromipsplt";
16116 static const char m16suffix[] = "@mips16plt";
16117 static const char mipssuffix[] = "@plt";
16118
16119 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16121 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16122 Elf_Internal_Shdr *hdr;
16123 bfd_byte *plt_data;
16124 bfd_vma plt_offset;
16125 unsigned int other;
16126 bfd_vma entry_size;
16127 bfd_vma plt0_size;
16128 asection *relplt;
16129 bfd_vma opcode;
16130 asection *plt;
16131 asymbol *send;
16132 size_t size;
16133 char *names;
16134 long counti;
16135 arelent *p;
16136 asymbol *s;
16137 char *nend;
16138 long count;
16139 long pi;
16140 long i;
16141 long n;
16142
16143 *ret = NULL;
16144
16145 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16146 return 0;
16147
16148 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16149 if (relplt == NULL)
16150 return 0;
16151
16152 hdr = &elf_section_data (relplt)->this_hdr;
16153 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16154 return 0;
16155
16156 plt = bfd_get_section_by_name (abfd, ".plt");
16157 if (plt == NULL)
16158 return 0;
16159
16160 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16161 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16162 return -1;
16163 p = relplt->relocation;
16164
16165 /* Calculating the exact amount of space required for symbols would
16166 require two passes over the PLT, so just pessimise assuming two
16167 PLT slots per relocation. */
16168 count = relplt->size / hdr->sh_entsize;
16169 counti = count * bed->s->int_rels_per_ext_rel;
16170 size = 2 * count * sizeof (asymbol);
16171 size += count * (sizeof (mipssuffix) +
16172 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16173 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16174 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16175
16176 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16177 size += sizeof (asymbol) + sizeof (pltname);
16178
16179 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16180 return -1;
16181
16182 if (plt->size < 16)
16183 return -1;
16184
16185 s = *ret = bfd_malloc (size);
16186 if (s == NULL)
16187 return -1;
16188 send = s + 2 * count + 1;
16189
16190 names = (char *) send;
16191 nend = (char *) s + size;
16192 n = 0;
16193
16194 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16195 if (opcode == 0x3302fffe)
16196 {
16197 if (!micromips_p)
16198 return -1;
16199 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16200 other = STO_MICROMIPS;
16201 }
833794fc
MR
16202 else if (opcode == 0x0398c1d0)
16203 {
16204 if (!micromips_p)
16205 return -1;
16206 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16207 other = STO_MICROMIPS;
16208 }
1bbce132
MR
16209 else
16210 {
16211 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16212 other = 0;
16213 }
16214
16215 s->the_bfd = abfd;
16216 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16217 s->section = plt;
16218 s->value = 0;
16219 s->name = names;
16220 s->udata.i = other;
16221 memcpy (names, pltname, sizeof (pltname));
16222 names += sizeof (pltname);
16223 ++s, ++n;
16224
16225 pi = 0;
16226 for (plt_offset = plt0_size;
16227 plt_offset + 8 <= plt->size && s < send;
16228 plt_offset += entry_size)
16229 {
16230 bfd_vma gotplt_addr;
16231 const char *suffix;
16232 bfd_vma gotplt_hi;
16233 bfd_vma gotplt_lo;
16234 size_t suffixlen;
16235
16236 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16237
16238 /* Check if the second word matches the expected MIPS16 instruction. */
16239 if (opcode == 0x651aeb00)
16240 {
16241 if (micromips_p)
16242 return -1;
16243 /* Truncated table??? */
16244 if (plt_offset + 16 > plt->size)
16245 break;
16246 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16247 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16248 suffixlen = sizeof (m16suffix);
16249 suffix = m16suffix;
16250 other = STO_MIPS16;
16251 }
833794fc 16252 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16253 else if (opcode == 0xff220000)
16254 {
16255 if (!micromips_p)
16256 return -1;
16257 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16258 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16259 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16260 gotplt_lo <<= 2;
16261 gotplt_addr = gotplt_hi + gotplt_lo;
16262 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16263 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16264 suffixlen = sizeof (microsuffix);
16265 suffix = microsuffix;
16266 other = STO_MICROMIPS;
16267 }
833794fc
MR
16268 /* Likewise the expected microMIPS instruction (insn32 mode). */
16269 else if ((opcode & 0xffff0000) == 0xff2f0000)
16270 {
16271 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16272 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16273 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16274 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16275 gotplt_addr = gotplt_hi + gotplt_lo;
16276 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16277 suffixlen = sizeof (microsuffix);
16278 suffix = microsuffix;
16279 other = STO_MICROMIPS;
16280 }
1bbce132
MR
16281 /* Otherwise assume standard MIPS code. */
16282 else
16283 {
16284 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16285 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16286 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16287 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16288 gotplt_addr = gotplt_hi + gotplt_lo;
16289 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16290 suffixlen = sizeof (mipssuffix);
16291 suffix = mipssuffix;
16292 other = 0;
16293 }
16294 /* Truncated table??? */
16295 if (plt_offset + entry_size > plt->size)
16296 break;
16297
16298 for (i = 0;
16299 i < count && p[pi].address != gotplt_addr;
16300 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16301
16302 if (i < count)
16303 {
16304 size_t namelen;
16305 size_t len;
16306
16307 *s = **p[pi].sym_ptr_ptr;
16308 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16309 we are defining a symbol, ensure one of them is set. */
16310 if ((s->flags & BSF_LOCAL) == 0)
16311 s->flags |= BSF_GLOBAL;
16312 s->flags |= BSF_SYNTHETIC;
16313 s->section = plt;
16314 s->value = plt_offset;
16315 s->name = names;
16316 s->udata.i = other;
16317
16318 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16319 namelen = len + suffixlen;
16320 if (names + namelen > nend)
16321 break;
16322
16323 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16324 names += len;
16325 memcpy (names, suffix, suffixlen);
16326 names += suffixlen;
16327
16328 ++s, ++n;
16329 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16330 }
16331 }
16332
16333 free (plt_data);
16334
16335 return n;
16336}
16337
861fb55a
DJ
16338void
16339_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16340{
16341 struct mips_elf_link_hash_table *htab;
16342 Elf_Internal_Ehdr *i_ehdrp;
16343
16344 i_ehdrp = elf_elfheader (abfd);
16345 if (link_info)
16346 {
16347 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16348 BFD_ASSERT (htab != NULL);
16349
861fb55a
DJ
16350 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16351 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16352 }
0af03126
L
16353
16354 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16355
16356 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16357 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16358 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
17733f5b
FS
16359
16360 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16361 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
861fb55a 16362}
2f0c68f2
CM
16363
16364int
16365_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16366{
16367 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16368}
16369
16370/* Return the opcode for can't unwind. */
16371
16372int
16373_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16374{
16375 return COMPACT_EH_CANT_UNWIND_OPCODE;
16376}
This page took 3.032003 seconds and 4 git commands to generate.